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Preface

This comprehensive and cohesive work includes all the relevant data to allow optical
engineers worldwide to meet present and upcoming challenges in their day-to-day
responsibilities. The thrust of the Handbook of Optical Engineering is toward
engineering and technology rather than theoretical science.

The book has 26 chapters that cover most but not all topics in optics, beginning
with a few chapters describing the principles of optics elements. These are followed
by more technical and applied chapters.

All authors prepared their chapters with the following criteria in mind:

Descriptions are restricted to explaining principles, processes, methods, and
procedures in a concise and practical way so that the reader can easily
apply the topics discussed. Fundamental descriptions and a how-to-do-it
approach are emphasized.

Useful formulas are provided wherever possible, along with step-by-step,
worked-out examples, as needed, to illustrate applications and clarify calcu-
lation methods. Formulas are arranged in the best sequence for use on a
computer or calculator.

The book is replete with tables, flow charts, graphs, schematics and line drawings in
the tradition of useful reference books and major handbooks. National and ISO
standards are included where appropriate, and permitted, in suitable abridgement
for useful reference. Overlapping among different chapters has been avoided unless
absolutely necessary.

Daniel Malacara
Brian J. Thompson
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1

Basic Ray Optics

ORESTES STAVROUDIS

Centro de Investigaciones en Optica, León, Mexico

1.1 INTRODUCTION

Geometrical optics is a peculiar science. It consists of the physics of the 17th and
18th centuries thinly disguised by the mathematics of the 19th and 20th centuries. Its
contemporary applications are almost entirely in optical design which, like all good
engineering, remains more of an art even after the advent of the modern computer.
This brief chapter is intended to convey the basic formulas as well as the flavor of
geometrical optics and optical design in a concise and compact form. I have
attempted to arrange the subject matter logically, although not necessarily in histor-
ical order.

The basic elements of geometrical optics are rays and wavefronts: neither exist,
except as mathematical abstractions. A ray can be thought of as a beam of light with
an finitesimal diameter. However, to make a ray experimentally by passing light
through a very small aperture causes diffraction to rear its ugly head and the light
spreads out over a large solid angle. The result is not a physical approximation to a
ray but a distribution of light in which the small aperture is a point source. A
wavefront is defined as a surface of constant phase to which can be attributed
definite properties such as principal directions, principal curvatures, cusps, and
other singularities. But, like the ray, the wavefront cannot be observed. Its existence
can only be inferred circumstantially with interferometric methods.

However there is in geometrical optics an object that is observable and mea-
surable: the caustic surface. [1] It can be defined in distinct but equivalent ways:

. As the envelope of an orthotomic system of rays; i.e., rays ultimately from a
single object point.

1



. As the cusp locus of a wavefront train, or, equivalently, the locus of points
where the element of area of the wavefront vanishes.

I think the most useful definition is that the caustic is the locus of principal centers of
curvature of a wavefront. In general, every surface has two principal curvatures at
each of its points. This definition then shows clearly that the caustic is a two-sheeted
surface.

1.2 GAUSSIAN OPTICS À LA MAXWELL

Usually the formulas of Gaussian optics are derived from paraxial optics, a system
based on approximations to the equations for ray tracing. These we will encounter in
a subsequent section. Maxwell, on the other hand, took a global approach. He used
a model of a perfect optical instrument and from that model, in a very elegant but
straightforward way, deduced its properties, defined its parameters, and derived the
various equations associated with Gaussian optics. Gauss actually found the equa-
tions for paraxial optics from the first-order terms of two power series expansions.
While this is not a forum appropriate for a detailed discussion of the method
Maxwell used, I will present an outline of his argument.

Maxwell [2] began by assuming that a perfect lens maps each point in object
space into one and only one point in image space. Since a lens turned around is still a
lens, the inverse of this mapping has to have exactly the same mathematical struc-
ture. Included in this mapping and its inverse are points at infinity whose images are
the focal points of the instrument.

The mapping that Maxwell chose is the linear fractional transformation,

x 0 ¼ a1xþ b1yþ c1zþ d1
axþ byþ czþ d

;

y 0 ¼ a2xþ b2yþ c2zþ d2
axþ byþ czþ d

;

z 0 ¼ a3xþ b3yþ c3zþ d3
axþ byþ czþ d

;

ð1:1Þ

where ðx; y; zÞ represents a point in object space and where ðx 0; y 0; z 0Þ is its image.
The inverse transform has an identical structure,

x ¼ A1x
0 þ B1y

0 þ C1z
0 þD1

Ax 0 þ By 0 þ Cz 0 þD
;

y ¼ A2x
0 þ B2y

0 þ C2z
0 þD2

Ax 0 þ By 0 þ Cz 0 þD
;

z ¼ A3x
0 þ B3y

0 þ C3z
0 þD3

Ax 0 þ By 0 þ Cz 0 þD
;

ð1:2Þ

another linear fractional transform. Here the coefficients, denoted by capital letters,
are determinants whose elements are the coefficients that appear in Eq. (1.1).

The fractional-linear transformation maps planes into planes. This can be seen
in the following way. Suppose a plane in object space is given by the equation,

pxþ qyþ rzþ s ¼ 0; ð1:3Þ

2 Stavroudis



into which we substitute ðx; y; zÞ from Eq. (1.2). The result is

ðpA1 þ qA2 þ rA3 þ sAÞx 0 þ ðpB1 þ qB2 þ rB3 þ sBÞy 0

þ ðpC1 þ qC2 þ rC3 þ sCÞz 0 þ ðpD1 þ qD2 þ rD3 þ sDÞ ¼ 0;
ð1:4Þ

clearly the equation of a plane in image space that is evidently the image of the plane
in object space.

This transformation, therefore, maps planes into planes. Since a straight line
can be represented as the intersection of two planes, it follows that this transform
maps straight lines into straight lines.

From Eq. (1.1) we can see that the plane in object space, axþ byþ czþ d ¼ 0
is imaged at infinity in object space; from Eq. (1.2), infinity in object space is imaged
into the plane Ax 0 þ By 0 þ Cz 0 þD ¼ 0, in image space.

We have established coordinate systems in both object and image space. Now
we impose conditions on the coefficients that bring the coordinate axes into corre-
spondence. First we look at a plane through the coordinate origin of object space
perpendicular to the z-axis, Eq. (1.3), with r ¼ s ¼ 0, as its equation. From this, and
Eq. (1.4), we obtain the equation of its image,

ðpA1 þ qA2Þx 0 þ ðpB1 þ qB2Þy 0 þ ðpC1 þ qC2Þz 0 þ pD1 þ qD2 ¼ 0:

For this plane to pass through the image space coordinate origin and be perpendi-
cular to the z 0-axis, the coefficient of z 0 and the constant term must vanish identi-
cally, yielding

C1 ¼ C2 ¼ D1 ¼ D2 ¼ 0: ð1:5Þ
Again using Eq. (1.3), by setting q ¼ 0, we get the equation of a plane perpendicular
to the y-axis whose image, from Eq. (1.4), is

ðpA1 þ rA3 þ sAÞx 0 þ ðpB1 þ rB3 þ sBÞy 0 þ ðrC3 þ sCÞx 0 þ rD3 þ sDÞ ¼ 0:

For this to be perpendicular to the y 0-axis the coefficient of y 0 must equal zero,
yielding

B1 ¼ B2 ¼ B ¼ 0; ð1:6Þ
The final step in this argument involves a plane perpendicular to the x-axis, obtained
by setting p ¼ 0 in Eq. (1.3). Its image, from Eq. (1.4), is

ðqA2 þ rA3 þ sAÞx 0 þ ðqB2Þy 0 þ ðrC3 þ sCÞz 0 þ rD3 þ sD ¼ 0:

Now the coefficient of x 0 must vanish, yielding the last of these conditions,

A2 ¼ A3 ¼ A ¼ 0: ð1:7Þ
These conditions assure that the coordinate axes in image space are the images

of those in object space. Nothing has been done to change any of the optical proper-
ties of this ideal instrument.

Substituting these, from Eqs (1.5), (1.6), and (1.7), into Eq. (1.2) yields

x ¼ A1x
0

Cz 0 þD
; y ¼ B2y

0

Cz 0 þD
; z ¼ C3z

0 þD3

Cz 0 þD
ð1:8Þ

It is a simple matter to invert this transformation to obtain
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A1 ¼
cd3 � c3d

a1
; B2 ¼

cd3 � c3d

b2
;

C3 ¼ �d; C ¼ c; D3 ¼ d3; D ¼ �c3;

ð1:9Þ

so that Eqs (1.1) and (1.2) now read

x 0 ¼ a1x

czþ d
; y 0 ¼ b2y

czþ d
; z 0 ¼ c3z� d3

czþ d
; ð1:10Þ

and

x ¼ x 0ðcd3 � c3dÞ
a1ðcz 0 � c3Þ

y ¼ y 0ðcd3 � c3dÞ
b2ðcz 0 � c3Þ

z ¼ dz 0 � d3
cz 0 � c3

:

ð1:11Þ

Now we impose a restriction on the instrument itself by assuming that it is
rotationally symmetric with the z-axis, and its image, the z 0-axis as its axis of sym-
metry. Then in Eqs (1.10) and (1.11), b2 ¼ a1, so that we need only the y- and z-
coordinates. They then degenerate into

y 0 ¼ a1y

czþ d
; z 0 ¼ c3zþ d3

czþ d
; ð1:12Þ

and

y ¼ y 0ðcd3 � c3dÞ
a1ðcz 0 � c3Þ

z ¼ dz 0 � d3
cz 0 � c3

:

ð1:13Þ

To recapitulate, the image of a point ðy; zÞ in object space is the point ðy 0; z 0Þ as
determined by Eq. (1.12). Conversely, the image of ðy 0; z 0Þ in image space is the point
ðy; zÞ in object space obtained from Eq. (1.13).

The plane perpendicular to the z-axis, given by the equation czþ d ¼ 0, has, as
its image, the plane at infinity, as can be seen from Eq. (1.12). Therefore, zf ¼ �d=c
is the z-coordinate of the focal point of the instrument in object space. In exactly the
same way, we can find the z 0-coordinate of the focal point in image space is
z 0f ¼ c3=c, from Eq. (1.13). To summarize, we have shown that

zf ¼ �d=c;

z 0f ¼ c3=c:
ð1:14Þ

At this point we make a change of variables, shifting both coordinate origins to
the two focal points; thus,

z ¼ �zzþ zf ;

z 0 ¼ �zz 0 þ z 0f ;

so that, from the second equation of Eq. (1.12), we obtain
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�zz 0 ¼ cd3 � c3d

c2 �zz
: ð1:15Þ

From the second equation of Eq. (1.13), using the same transformation, we obtain
an identical result.

When the transformation is applied to the first equation of Eq. (1.12), we
obtain

y 0 ¼ a1y

c �zz
; ð1:16Þ

while the first equation of Eq. (1.13) yields

y ¼ ðcd3 � c3dÞy 0

a1c �zz
0 : ð1:17Þ

Now define lateral magnification as m ¼ y 0=y. Then, from Eqs (1.16) and (1.17)
it follows that

m ¼ a1
c �zz

¼ a1c �zz
0

cd3 � c3d
; ð1:18Þ

from which we can see that the conjugate planes of unit magnification are given by

�zzp ¼ a1=c;

�zz 0p ¼ cd3 � c3d

a1c:

These are called the principal planes of the instrument. Now �zzp and �zz 0p are the
distances, along the axis of symmetry, between the foci and the principal points.
These distances are called the front and rear focal lengths of the instrument and are
denoted by f and f 0, respectively; thus,

f ¼ a1=c;

f 0 ¼ ðcd3 � c3dÞ=a1c:
ð1:19Þ

Next we substitute these relations into Eq. (1.15) and get Newton’s formula,

�zz �zz 0 ¼ f f 0; ð1:20Þ
while from Eqs (1.16) and (1.17) it follows that

y 0 ¼ fy= �zz;

y ¼ f 0y 0= �zz 0:
ð1:21Þ

Suppose now that �yy and �zz define a right triangle with a corner at the focus in
object space and let � be the angle subtended by the z-axis and the hypotenuse. Then
the first equation of Eq. (1.21) becomes the familiar

y 0 ¼ f tan �: ð1:22Þ
Finally, let e equal the distance of an axial point in object space to the first

principal point and let e 0 be the distance between its conjugate and the second
principal point. Then it follows that
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e ¼ �zz� f ;

e 0 ¼ �zz 0 � f 0:
ð1:23Þ

Substituting these relations into Newton’s formula, Eq. (1.20), results in the familiar

f

e
þ f 0

e 0
¼ 1: ð1:24Þ

We have seen that straight lines are mapped into straight lines. Now we com-
plete the argument and assume that such a line and its image constitute a single ray
that is traced through the instrument.

From these results we can find object–image relationships using a graphic
method. In Fig. 1.1 the points zf and z 0f are the instrument’s foci and zp and z 0p its
principal planes. Let O be any object point. Let OP be a ray parallel to the axis,
passing through P. Let its extention pass through P 0. Since P and P 0 lie on the
conjugate principal planes the ray in image space must pass through P 0. Since this
ray is parallel to the axis in object space its image must pass through z 0f . These two
points determine completely this ray in image space. Now take a second ray, OzfQ,
through the object point O. Since it passes through zf it must emerge in image space
parallel to the axis. Since it passes through Q on the principal plane it must also pass
through its image Q 0. These two points determine this ray in image space. Where the
two rays cross is I , the image of O.

With this concept we can find a most important third pair of conjugates for
which the instrument’s angular magnification is unity. Then a ray passing through
one of these points will emerge from the instrument and pass undeviated through the
other. These are the nodal points.

Refer now to Fig. 1.2. Suppose a ray passes through the axis at z0, at an angle
�, and intersects the principal plane at yp. After passing through this ideal instrument
it intersects the axis in image space at z 00, at an angle � 0, and passes through the
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Figure 1.1 Graphical construction of an object–image relationship. The points zf and z 0f are
the instrument’s foci and zp and z 0p its principal planes. From object point O, ray OP is parallel

to the axis. Since P is on the object principal plane, its image P 0 must be at the same height.

Image ray must therefore pass through P 0z 0f . A second ray, Oz 0fQ, passes through the object

focus and therefore must emerge in image space parallel to the axis. It must also pass through

Q 0, the image of Q. The two rays cross at I , the image point.



principal plane at y 0
p. Newton’s formula, Eq. (1.20) provides a relationship between

z0 and z 00,

z0z
0
0 ¼ f f 0: ð1:25Þ

Moreover, y1 and y 0
1 are equal, since they represent the heights of conjugate points

on the principal planes. From Fig. 1.2 we can see that

yp ¼ �ðz0 � f Þ tan �;
y 0
p ¼ �ð f 0 � z 00Þ tan � 0;

ð1:26Þ

so that the angular magnification is given by

M ¼ tan � 0

tan �
¼ z0 � f

f 0 � z 00
:

With the aid of Eq. (1.25) this becomes

M ¼ z0
f 0 :

For z0 and z 00 to represent points where the angular magnification is unity it must be
that

z0 ¼ f 0;
z 00 ¼ f :

ð1:27Þ

These nodal points are important for two reasons. In optical testing there is an
instrument called the nodal slide, which is based on the properties of the nodal points
and is used to find, quickly and accurately, the focal length of a lens. A more subtile
property is that images in image space bear the same perspective relationship to the
second nodal point as do the corresponding objects in object space to the first nodal
point.
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Figure 1.2 Graphical construction of the nodal points. The points zf and z 0f are the two focal

points and zp and z 0p its two principal planes; z0 and z 00 are the nodal points, where � ¼ � 0 and f

and f 0 are the front and rear focal lengths.



With this in mind we make another change of variables: a translation of the z-
axes to place the origins at the two nodal points. The new z-coordinates will be g and
g 0. The change is realized by

g ¼ �zz� �zzn ¼ �zz� f 0;
g 0 ¼ �zz 0 � �zz 0n ¼ �zz 0 � f :

Again, using Newton’s formula, Eq. (1.20), we obtain

gg 0 þ gf þ g 0f 0 ¼ 0;

from which comes

f

g 0 þ
f 0

g
þ 1 ¼ 0: ð1:28Þ

This concludes the study of the ideal optical instrument. We have found the six
cardinal points, the foci, the principal points and the nodal points, solely from con-
sidering the Maxwell model of an ideal instrument. The model is a static one; there is
no mention of wave fronts, velocities, or refractive indices. These characteristics will
be introduced in subsequent sections of this chapter.

1.3 THE EIKONAL FUNCTION AND ITS ANTECEDENTS

This subject has a rather odd pedigree. It was first discovered by Hamilton, who
called it the characteristic function. Then it was rediscovered by Bruns who dubbed it
the eikonal. [3] Its origins lie much earlier. The law of refraction, discovered by
Willebrord Snell using empirical methods, after his death, came into the hands of
Descartes who derived for it what he claimed to be an analytic proof. Fermat dis-
agreed. In his opinion, Snell’s law was only an approximation and Descartes’ proof
was erroneous. He then set out to find the exact formula for refraction. But, to his
surprise, Snell’s law was indeed exact.

The approach to the derivation that he used has come down to us as Fermat’s
principle: light consists of a flow of particles, termed corpuscles, the trajectories of
which are such that their time of transit from point to point is an extremum, either a
maximum or a minimum. These trajectories are what we now call rays. Fermat’s
justification for this principle goes back to observations by Heron of Alexandria, but
that is the subject of an entirely different story. What does concern us here is the
interpretation of his principle in mathematical terms: its representation in terms of
the variational calculus which deals specifically with the determination of extrema of
functions.

To set the stage, let us consider an optical medium in which a point is repre-
sented by a vector P ¼ ðx; y; zÞ and in which the refractive index is given by a vector
function of position: n ¼ nðPÞ. We will represent a curve in this medium by the vector
function PðsÞ, where the parameter s is the geometric distance along the curve. It
follows that dP=ds ¼ P

0 is a tangent vector to the curve. It can be shown that P 0 is a
unit tangent vector.

Note that

dP ¼ P
0ds ð1:29Þ

so that
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P
0 � dP ¼ P

02ds ¼ ds: ð1:30Þ
The velocity of light in this medium is c=n where c is its velocity in vacuo. The

time of transit between any two points on a ray is therefore given by
ð
ðn=cÞ ds;

which is proportional to the optical path length,

I ¼
ð
n ds: ð1:31Þ

For PðsÞ to be a ray, according to Fermat’s principle, I must be an extremum, a term
from the variational calculus. A necessary condition for the existence of an extre-
mum is that a set of differential equations, the Euler equations, must be satisifed. [4]
The Euler equations that guarantee that I be an extremum, for geometric optics,
takes the form, [5]

d

ds
n
dP

ds

� �
¼ rn; ð1:32Þ

which, when expanded becomes

nP 00 þ ðrn � P 0ÞP 0 ¼ rn: ð1:33Þ
What we have here is the general case, a ray in an inhomogeneous (but iso-

tropic) medium which has come to be called a gradient index medium and is treated
more broadly in a different chapter.

It is useful to look at this differential equation from the point of view of the
differential geometry of space curves. We define the unit tangent vector to the ray t,
the unit normal vector, n; and the unit binormal, b, as follows: [6]

t ¼ P
0;

n ¼ �P 00;
b ¼ t� n:

ð1:34Þ

With these, Eq. (1.31) can be rewritten as

n

�
nþ ðrn � tÞt ¼ rn; ð1:35Þ

which shows that the tangent vector, the normal vector, and the gradient of the
refractive index must be collinear. It follows that the binormal vector must be
perpendicular to the index gradient,

rn � b ¼ 0; ð1:36Þ
or, stated differently, that

n

�
b ¼ t� rn: ð1:37Þ

At any point on a space curve the vectors t, n, and b can be regarded as a set of
orthonormal axes for a local coordinate system. As the parameter s varies, this point,
along with the three associated vectors, slides along the curve (Fig. 1.3). Their
motion is governed by the Frenet–Serret equations, [7]
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t
0 ¼ 1

�
n;

n
0 ¼ � 1

�
tþ 1

�
b;

b
0 ¼ � 1

�
n;

ð1:38Þ

where 1=�, as before, is the curve’s curvature at the point in question and 1=� is its
torsion. These formulas show that the curvature is the rate of change of t and that
torsion is the rate of change of the b vector. Both these motions are in the direction
of n. By squaring the expression in Eq. (1.37) we obtain a formula for the ray’s
curvature,

1

�2
¼ ðt� rnÞ2

n2
: ð1:39Þ

For the torsion refer to the third of the Frenet–Serret equations in Eq. (1.38) and
obtain

1

�
¼ n

0 � b ¼ �2ðP 0 � P
00Þ � P000; ð1:40Þ

where we have used Eq. (1.34). By taking the derivative of Eq. (1.33) and multiplying
the result by P

0 � P
00, we obtain

1

�
¼ �2

n
ðP 0 � P

00Þ � ðrnÞ 0; ð1:41Þ

where ðrnÞ 0 represents the derivative of the gradient with respect to s.
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Figure 1.3 The sliding tetrahedron. As a point moves along the space curve the vectors t, n,

and b slide along with it. The Frenet–Serret equations (Eq. (1.38)) describe their rates of

change.



To show how this works, consider Maxwell’s fish eye [8] in which the refractive
index function is given, in idealized form, by

nðPÞ ¼ 1

1þ P2
;

so that its gradient is

rn ¼ �2P

ð1þ P2Þ2 :

Substituting these into the ray equation, Eq. (1.33), yields

ð1þ P
2ÞP 00 � 2ðP � P 0ÞP 0 þ 2P ¼ 0:

When this is differentiated, one obtains

ð1þ P
2ÞP000 � 2ðP � P 00ÞP 0 ¼ 0: ð1:42Þ

Now multiply by P
00 to get

P
000 � P 00 ¼ ð1=2ÞðP 002Þ 0 ¼ ð1=2Þð1=�2Þ 0 ¼ 0;

which shows that the curvature is constant. From Eqs (1.40) and (1.42) we get

1

�
¼ 0: ð1:43Þ

The torsion is everywhere zero so that the ray is a plane curve. It follows that the ray
path is the arc of a circle, exactly as it should be.

Let us return for the moment to Eq. (1.32), the ray equation. Its vector product
with P results in

P� d

ds
n
dP

ds

� �
¼ d

ds
P� n

dP

ds

� �� �
¼ P� rn: ð1:44Þ

Now assume that the refractive index function is symmetric with respect to the z-
axis, so that nðPÞ ¼ nð�; zÞ, where �2 ¼ x2 þ y2. Then its gradient is

rn ¼ @n

@�

x

�
;
@n

@�

y

�
;
@n

@z

� �
; ð1:45Þ

and

Z � P� d

ds
n
dP

ds

� �� �
¼ d

ds
Z � P� n

dP

ds

� �� �� �

¼ Z � ðP� rnÞ ¼ P � ðrn� ZÞ:
ð1:46Þ

But

rn� Z ¼ @n

@�

x

�
;
@n

@�

y

�
;
@n

@z

� �
� ð0; 0; 1Þ ¼ 1

�

@n

@�
ðy;�x; 0Þ; ð1:47Þ

so that

P � ðr � ZÞ ¼ 0; ð1:48Þ
showing that, from Eq. (1.38),

Basic Ray Optics 11



d

ds
Z � P� n

dP

ds

� �� �� �
¼ 0: ð1:49Þ

Thus

Z � P� n
dP

ds

� �� �
¼ constant: ð1:50Þ

This is therefore independent of s and is known as the skewness invariant or, more
simply, the skewness. [9]

Now we return to Eq. (1.31), which, when we apply Eq. (1.30), becomes the line
integral

I ¼
ð
nP 0 � dP; ð1:51Þ

where PðsÞ is a solution of the ray equation, Eq. (1.32) or Eq. (1.33). Now let P0 be a
starting point of a ray in this medium and let P1 be its end point. Then the line
integral is

IðP0;P1Þ ¼
ðP1

P0

nP 0 � dP: ð1:52Þ

Define two nabla operators,

r0 ¼
@

@x0
;
@

@y0
;
@

@z0

� �
; r1 ¼

@

@x1
;
@

@y1
;
@

@z1

� �
:

Then

r0I ¼ �n0P
0
0; r1I ¼ n1P

0
1 ð1:53Þ

where n0 ¼ nðP0Þ, n1 ¼ nðP1Þ, P 0
0 ¼ P

0jP0
, and P

0
1 ¼ P

0jP1
. The function I , given by

Eq. (1.52), is known as Hamilton’s characteristic function or, more simply, the eiko-
nal, while the equations in Eq. (1.53) are Hamilton’s characteristic equations. [10] By
squaring either of the expressions in Eq. (1.53) we obtain the eikonal equation,

ðrIÞ2 ¼ n2: ð1:54Þ
The eikonal equation can be derived from the Maxwell equations in several

different ways. By assuming that a scalar wave equation represents light propaga-
tion, along with an application of Huygens’ principle, Kirchhoff obtained a harmo-
nic solution (discussed in Chapter 2) for light intensity at a point. He showed that the
eikonal equation was obtained as a limit as wavelength approached zero. Kline and
Kay [11] give a critique as well as a detailed account of this method.

Luneburg, [12] on the other hand, took a radically different approach. He
started with an integral version of the Maxwell equations, regarded a wave front
as a singularity in the solution of these equations and that radiation transfer con-
sisted of the propagation of these singularities. Then he used Huygens’ principle to
obtain what we have called the eikonal equation.

This has led to speculation that geometric optics is a limiting case of physical
optics as frequency becomes small. Perhaps. Suffice it to say that the eikonal equa-
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tion, since it can be derived from sundry starting points remains a crucial point in
optical theory.

Now suppose the optical medium is discontinuous: that there is a surface S
where the index of refraction function has a jump discontinuity. To fix ideas, assume
that light travels from left to right. Choose a point P0 to the left of S and a second,
P1, to its right. Unless P0 and P1 are conjugates they will be connected by a unique
ray path determined by Fermat’s principle and, moreover, the segments of the ray
path will be solutions of Eqs (1.32) or (1.33). Let �PP be the point where this ray path
crosses the discontinuity S and let n� and nþ be the left- and right-hand limits of the
refractive index function along the ray path at �PP. For convenience let S ¼ dP=ds
represent a ray vector and let S� and Sþ represent the left and right limits of S at the
point �PP.

To best describe the consequences of a discontinuity with mathematical rigor
and vigor one should apply the Hilbert integral [13] of the calculus of variations. For
our purposes a schoolboy explanation is more appropriate.

Joos [14] uses the definition of the gradient in terms of limits of surface inte-
grals to define a surface gradient as a gradient that straddles a surface of disconti-
nuity so that

r� ¼ ð�þ � ��ÞN; ð1:55Þ
where N is a unit normal vector to the surface. Suppose we have Eq. (1.32) straddle S
and replace the derivative by a difference quotient; then we obtain

d

ds
ðnSÞ ¼ 1

�s
ðnþSþ � n�S�Þ ¼ ðnþ � n�ÞN: ð1:56Þ

When we take the vector product of this with N we obtain

nþðSþ �NÞ ¼ n�ðS� �NÞ: ð1:57Þ
As we shall see in the next section this leads to the vector form of Snell’s law for
homogeneous media.

There is another use for the eikonal concept: the Cartesian oval, a refracting
surface that images an object point perfectly onto an image point. [15] Let us assume
that such a surface passes through the coordinate origin and that the two conjugate
points be located at distances t and t 0 from that origin on the z-axis, so that their
coordinates are P ¼ ð0; 0;�tÞ and P

0 ¼ ð0; 0; t 0Þ. And let any point on the presumed
refracting surface have the coordinates ð �xx; �yy; �zzÞ. As usual, let n and n 0 be the refrac-
tive indices.

It turns out that for P and P
0 to be perfect conjugates the optical path length

along any ray must be constant. [16] In other words,

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xx2 þ �yy2 þ ð �zzþ tÞ2

q
þ n 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xx2 þ �yy2 þ ð �zz� t 0Þ2

q
¼ constant: ð1:58Þ

Now take a ray through the cordinate origin, so that �xx ¼ �yy ¼ �zz ¼ 0. From this we see
that the constant is exactly equal to nt ¼ n 0t 0, so that the equation for the surface is

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xx2 þ �yy2 þ ð �zzþ tÞ2

q
þ n 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xx2 þ �yy2 þ ð �zz� t 0Þ2

q
¼ ntþ n 0t 0: ð1:59Þ

By eliminating the square roots we get the rather formidable polynomial
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½ðn2 � n 02Þð �xx2 þ �yy2 þ �zz2Þ þ 2 �zzðn2tþ n 02t 0Þ�2
� 4nn 0ðntþ n 0t 0Þ½ðn 0tþ nt 0Þð �xx2 þ �yy2 þ �zz2Þ þ 2tt 0ðn� n 0Þ �zz� ¼ 0:

ð1:60Þ

a quartic surface in the shape of an oval. This is shown in Fig. 1.4.
Kepler found this numerically early in the 17th century. Descartes, a genera-

tion later, found the mathematical formula. And it has been rediscovered over and
over again, even by Maxwell, ever since.

An interesting (indeed, fascinating) consequence obtains when the object point
approaches infinity. Divide this formula by t2t 02 and then let t become large. The
result is

n2 �zz2 � n 02ð �xx2 þ �yy2 þ �zz2Þ � 2n 0t 0ðn� n 0Þ �zz ¼ 0; ð1:61Þ

which can be rearranged in the form

nþ n 0

n 0t 0

� �2

�zz� n 0t 0

nþ n 0

� �2

þ nþ n 0

ðn 0 � nÞt 02 ð �xx
2 þ �yy2Þ ¼ 1; ð1:62Þ

the equation of a conic section of revolution whose eccentricity is � ¼ n=n 0, whose
center is at zc ¼ n 0t 0=ðnþ n 0Þ, whose z intercepts are z ¼ 0 and z ¼ 2n 0t 0=ðnþ n 0Þ and
whose vertex curvature is c ¼ 1=ð1� �Þt 0. Clearly the surface is an ellipsoid when
n 0 > n and a hyperboloid when n 0 < n. This can be seen in Fig. 1.5.

Finally we come to the aplanatic surfaces of a sphere. [17] Let

t ¼ �kð1þ n 0=nÞ; t 0 ¼ kð1þ n=n 0Þ; ð1:63Þ

and substitute into Eq. (1.60). Since ntþ n 0t 0 ¼ 0, this degenerates into the equation
of a sphere that passes through the origin and has a radius of k,

�xx2 þ �yy2 þ �zz2 þ 2k �zz ¼ 0: ð1:64Þ

Since the refracting sphere has central symmetry, t and t 0 can be taken as the
radii of two other spheres, that are perfect conjugates. These are the aplanatic
surfaces and they are shown in Fig. 1.6. The aplanatic surfaces were the basis for
a system for tracing meridional rays before the advent of computers.
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Figure 1.4 The Cartesian oval. Point P is imaged perfectly on point P 0. Rays coming from

the left are from the real object P. For rays coming from the right, P is a virtual object.



1.4 RAY TRACING AND ITS GENERALIZATION

Now we take up the very practical problem of tracing rays in a homogeneous,
isotropic medium, a medium in which the refractive index, n, is constant. It follows
that its gradient, rn, is zero so that Eq. (1.32) becomes

d2P

ds2
¼ 0; ð1:65Þ

a second-order differential equation whose solution is a linear function of s; there-
fore, a ray in this medium must be a straight line. Note here that in media of constant
refractive index,

dP

ds
¼ S ¼ ð�; �; �Þ: ð1:66Þ

Snell’s law, from Eq. (1.57), now takes the form

n 0ðS 0 �NÞ ¼ nðS�NÞ; ð1:67Þ
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Figure 1.5 The Cartesian oval when the object is at infinity. In this case the quartic surface

degenerates into a quadratic surface: an ellipse when n 0 > n; a hyperbola when n 0 < n. ‘�’
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where S and S
0 are the direction cosine vectors of a ray before and after refraction,

respectively; where N is the unit normal vector to the refracting surface at the point
of incidence; and where n and n 0 are the refractive indices of the media before and
after the refracting surface. Note that in the preceding section we used the prime
symbol ( 0) to denote differentiation with respect to the parameter s; here we use it to
signal refraction or (subsequently) transfer.

By taking the absolute value of Eq. (1.67) we get the more familiar form of
Snell’s law

n 0 sin i 0 ¼ n sin i; ð1:68Þ
where i and i 0 are the angles of incidence and refraction, respectively. This statement,
unlike its vector form, does not tell the whole story. Equation (1.67) provides the
additional information that the vectors S 0, S, and N are coplanar and determines the
plane of incidence.

In what follows we will develop the equations for ray tracing. The form in
general use today, developed by T. Smith over a period of several decades, [18] will
be cast in vector form here. [19] An earlier scalar version designed particularly for
computer use, is by Feder. [20] If we rearrange the terms of Eq. (1.67) to get

ðn 0
S

0 � nSÞ �N ¼ 0; ð1:69Þ
we can see that the vector n 0

S
0 � nS is parallel to the unit normal vector N so that,

for some 	,

n 0
S

0 � nS ¼ 	N; ð1:70Þ
from which we can get the refraction equation,

n 0
S

0 ¼ nSþ 	N: ð1:71Þ

16 Stavroudis

Figure 1.6 The aplanatic surfaces of a sphere. Here k is the radius of the refracting sphere;

t ¼ kð1þ n 0=nÞ is the radius of the object surface; t ¼ kð1þ n=n 0Þ, that of the image surface.



Note that cos i ¼ S �N and cos i 0 ¼ S
0 �N, so that by taking the scalar product of Eq.

(1.71) with N we find that 	 is given by

	 ¼ n 0ðS 0 �NÞ � nðS �NÞ ¼ n 0 cos i 0 � n cos i: ð1:72Þ
The convention for reflecting surfaces is only a convention, quite divorced from

any physical reality. One sets n 0 ¼ �n in Eqs (1.71) and (1.72). Since i 0 ¼ i, it follows
that

S
0 ¼ �Sþ 2 cos iN: ð1:73Þ

This takes care of the refraction or reflection operation. It involves only local
properties of the refracting surface: the location of the point of incidence and the unit
normal vector N, at that point. On the other hand, the transfer operation, by means
of which the point of incidence and the surface normal are found, involves the global
properties of the surface.

Suppose the surface is given by a vector function of position,

fðPÞ ¼ 0: ð1:74Þ
A ray can be represented in parametric form by

P ¼ P0 þ 
S; ð1:75Þ
where 
 represents the distance along the ray from P0 to P. If P is the point of
incidence, then 
 must be a solution for the equation

fðP0 þ 
SÞ ¼ 0: ð1:76Þ
With the value of 
 so obtained, Eq. (1.75) provides the point of incidence. The
normal to a surface is best given by the gradient of its equation, rf, so that the unit
normal vector is found from

N ¼ rf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrfÞ2

q ; ð1:77Þ

calculated, of course, at the point of incidence.
But there is a problem here. Equation (1.76) may have multiple roots. For the

sphere, or for that matter for any other conic section, f is a quadratic and will have
two solutions: either two real roots, indicating that the ray intersects the surface at
two points; or two complex roots, in which case the ray misses the surface comple-
tely. More complicated surfaces produce more complicated solutions. A torus, a
quartic surface, may have up to four real roots, corresponding to four points
where ray and surface intersect. Deciding which is which is a daunting problem.

A particularly useful method is to identify that region of the surface that is of
interest, then do a translation of coordinates to a point in that region, and then solve
the equation for the reformulated f function and choose that solution that lies
within that region or is nearest to the chosen point. Thus, the transfer operation
becomes a two-step process.

To illustrate this, consider a rotationally symmetric optical system consisting of
spherical refracting surfaces. Let each surface have a local coordinate system with
the z-axis as the axis of symmetry and the x- and y-axes tangent to the sphere where
it is intersected by the z-axis. This x, y-plane is called, for reasons that I do not
understand, the vertex plane. Suppose P0 is the point of incidence of a ray with a
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refracting surface whose coordinates are relative to the local coordinates associated
with that surface; suppose, further, that the distance along the z-axis, between this
surface and the next succeeding surface, is t; then �PP, the point of intersection of the
ray with the next vertex plane, is given by Eq. (1.75), which in scalar form is

�xx ¼ x0 þ �

�

�yy ¼ y0 þ �

�

�zz ¼ z0 þ �

� ¼ t;

ð1:78Þ

so that

�

 ¼ �ðx0 � tÞ=�: ð1:79Þ
This next sphere passes through the origin at its vertex and has the formula

fðPÞ ¼ x2 þ y2 þ ðx� rÞ2 ¼ ðP� rZÞ2 ¼ r2; ð1:80Þ
relative to its own coordinate system. Substituting from Eq. (1.75) yields the equa-
tion

½ð �PP� rZÞ þ 
S�2 ¼ r2; ð1:81Þ
a quadratic equation in 
,


2 þ 2
ð �PP� rZÞ � Sþ ð �PP� rZÞ2 � r2 ¼ 0; ð1:82Þ
whose solution is


 ¼ �ð �PP� rZÞ � S� �; ð1:83Þ
where

�2 ¼ r2 � ½ð �PP� rZÞ � S�2: ð1:84Þ
This constitutes the second part of this two-part transfer operation.

The ambiguity in sign in Eq. (1.80) has an easy explanation. In general, a ray
will intercept a sphere at two points. We are almost always interested in the point of
incidence nearest the vertex plane and therefore choose the appropriate branch of the
solution.

The unit normal vector is easily obtained from the expression for the gradient
in Eq. (1.77) and that for the sphere in Eq. (1.80), and is

N ¼ 1

r
ðP� rZÞ ¼ 1

r
ðx; y; z� rÞ ¼ ðcx; cy; cz� 1Þ; ð1:85Þ

where c ¼ 1=r is the sphere’s curvature.
For surfaces more complicated than the sphere, we need only substitute their

formulas into Eq. (1.75) and proceed.
The skewness invariant, shown in Eq. (1.50), takes a slightly different form. In

media of constant refractive index,

dP

ds
¼ S ¼ ð�; �; �Þ;

so that

nZ � ðP� SÞ ¼ constant: ð1:86Þ
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Since P ¼ ðx; y; zÞ, the skewness invariant becomes

n 0ðx 0� 0 � y 0� 0Þ ¼ nðx�� y�Þ; ð1:87Þ
valid for both the refraction and transfer operations.

Geometric wavefronts (we exclude wavefronts that arise from diffraction) are
defined in several equivalent ways. [21] As a surface of constant phase, it is the locus
of points that have the same optical path length from some object point. A system of
rays originating from some common object is termed an orthotomic system or a
normal congruence. In these terms a wavefront can be thought of as a transversal
surface orthogonal to each of the rays in the system. A third definition is based on
Huygens’ principle, in which the wavefront is taken to be the envelope of a family of
spherical wavelets centered on a preceding wavefront.

However they are defined, wavefronts have structures and properties that are
best described using the language of the differential geometry of surfaces. [22] As we
shall see, wavefronts are smooth surfaces that may possess cusps but which have
continuous gradients.

In general, a smooth surface, at almost every point, possesses two unique
directions, called the principal directions, that may be indicated by a pair of ortho-
gonal vectors tagent to the surface. They have the property that curvatures of arcs
embedded in the surface in these directions have curvatures that are extrema; the arc
curvature in one principal direction is a maximum relative to that of all other arcs
through the same point. The arc curvature in the other principal direction is a
minimum. These two maximum and minimum curvatures are called the principal
curvatures. Obvious exceptions are the plane, in which curvature is everywhere zero,
and the sphere, where it is everywhere constant. In both cases principal directions
cannot be defined. Another exception is the umbilical point, a point on a surface at
which the two principal curvatures are equal. There the surface is best fit by a sphere.

What follows is a method for determining the changes in the principal direc-
tions and principal curvatures of a wavefront in the neighborhood of a traced ray.
These calculations depend on and are appended to the usual methods of tracing rays.
I have called them generalized ray tracing. [23]

Consider now a ray traced through an optical system. Through each of its
points passes a wavefront that has two orthogonal principal directions and two
principal curvatures. As before, let S be a unit vector in the direction of ray
propagation and therefore normal to the wavefront. Suppose one of these principal
directions is given by the unit vector T so that the other principal direction is
T� S. Let the two principal curvatures be 1=�1 and 1=�2. The quantities 1=�1,
1=�2, and T are found using general methods of differential geometry. These will
not be treated here.

Suppose this ray is intercepted by a refracting surface that has, at the point of
incidence, a unit normal vector N, a principal direction �TT and as principal curva-
tures, 1= ���1 and 1= ���2. Through this point passes one of the incident wavefronts, with
parameters defined as above.

The equations for refraction, Eqs (1.71) and (1.72), define the plane of inci-
dence. The unit normal vector P to this plane is defined by

P ¼ N� S

sin i
¼ N� S

0

sin i 0
; ð1:88Þ
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where we have used Eqs (1.67) and (1.68). Note that P is invariant with respect to
refraction. From this we may define three unit vectors lying in the plane of incidence:

Q ¼ P� S; �QQ ¼ P�N; Q
0 ¼ P� S

0: ð1:89Þ
Taking the vector product of P and Eq. (1.71) gives us the refraction equations for
the Q vectors,

n 0
Q

0 ¼ nQþ 	 �QQ; ð1:90Þ
where 	 is given in Eq. (1.72)

.
The next step in these calculations is to find the curvatures of sections of the

wavefront lying in and normal to the plane of incidence. Let � be the angle between
the wavefront principal direction T and the normal to the plane of incidence P, so that

cos � ¼ T � P: ð1:91Þ
Then we find the desired curvatures, 1=�p and 1=�q, as well as a third quantity, 1=�,
related to the torsion of these curves. The equations are

1

�q
¼ cos2 �

�1
þ sin2 �

�2
;

1

�q
¼ sin2 �

�1
þ cos2 �

�2
;

1

�
¼ 1

�1
� 1

�2

� �
sin 2�

2
:

ð1:92Þ

We do exactly the same thing for the refracting surface:

cos ��� ¼ �TT � P: ð1:93Þ

1

���p
¼ cos2 ���

���1
þ sin2 ���

���2
;

1

���q
¼ sin2 ���

���1
þ cos2 ���

���2
;

1

���
¼ 1

���1
� 1

���2

� �
sin 2 ���

2
:

ð1:94Þ

Note that Eqs (1.91) and (1.93) and Eqs (1.92) and (1.94) are identical. In a
computer program both can be calculated with the same subroutine.

The refraction equations we use to relate all these are

n 0

� 0
p

¼ n

�p
þ 	

���p
;

n 0 cos i 0

� 0 ¼ n cos i

�
þ 	

���
;

n 0 cos2 i 0

� 0
q

¼ n cos2 i

�q
þ 	

���q
;

ð1:95Þ

where 	 is given in Eq. (1.72).
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The next step is to find � 0, the angle between P and one of the principal
directions of the wavefront after refraction,

tan 2� 0 ¼ 2

� 0 1

� 0
q

� 1

� 0
p

� � : ð1:96Þ

The penultimate step is to find T
0, the vector in a principal direction,

T
0 ¼ P cos � 0 þQ

0 sin � 0; ð1:97Þ
where Q

0 is found using Eq. (1.89), and the two principal curvatures,

1

� 0
1

¼ cos2 � 0

� 0
p

þ sin2 � 0

� 0
q

þ sin 2� 0

� 0 ;

1

� 0
1

¼ sin2 � 0

� 0
p

þ cos2 � 0

� 0
q

� sin 2� 0

� 0 :

ð1:98Þ

This takes care of refraction at a surface. The transfer operation is far simpler.
The principal directions T and T� S are unchanged and the principal curvatures
vary in an intuitively obvious way,

� 0
1 ¼ �1 � 
; � 0

2 ¼ �2 � 
; ð1:99Þ
where 
 is obtained by adding Eqs (1.80) and (1.83).

Note that the first and third equations in Eq. (1.95) are exactly the Coddington
equations. [24] If a principal direction of the wavefront lies in the plane of incidence,
then � and therefore 1=� are zero. The same is true for the principal directions of the
refracting surface at the point of incidence: ��� and 1= ��� both vanish. If both occur, if
both the wavefront and the refracting surface have a principal direction lying in the
plane of incidence, then Eqs (1.92), (1.94) and (1.98) become ephemeral, in which
case Eq. (1.95) reduces to the two Coddington equations. However, generally speak-
ing, the surface principal directions will not lie in the plane of incidence. Indeed this
will happen only if the refracting surface is rotationally symmetric and the plane of
incidence includes the axis of symmetry.

In a rotationally symmetric system a plane containing the axis of symmetry is
called a meridional plane; a ray lying entirely in that plane is a meridional ray. A ray
that is not a meridional ray is a skew ray. What we have shown here is that the
Coddington equations are valid only for meridional rays in rotationally symmetric
optical systems where a principal direction of the incident wavefront lies in the
meridional plane. No such restriction applies to the equations of generalized ray
tracing.

This concludes the discussion on generalized ray tracing except for a few
observations. If the incident wavefront is a plane or a sphere, or if the traced ray
is at an umbilical point of the wavefronts, then the principal curvatures are equal and
the principal directions are undefined. In that case, as a modus operandi, the incident
T vector may be chosen arbitrarily as long as it is perpendicular to S.

It is no secret that rays are not real and that the existence of wavefronts can be
inferred only by interferometry. The only artifact in geometric optics that can be
observed directly is the caustic surface. [25] Unlike waves and wavefronts the caustic
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can be seen, photographed, and measured. It also can be calculated using the meth-
ods of generalized ray tracing.

Like the wavefront the caustic surface can be defined in several different but
equivalent ways, each revealing one of its properties. [26] As the envelope of an
orthotomic system of rays it is clear that light is concentrated on its locus. The
caustic also is where the differential element of area of a wavefront vanishes, showing
that it is a cusp locus of the wavefront train. Where the wavefront and caustic touch
the wavefront fold back on itself. Our final definition is that the caustic is the locus of
the principal centers of curvature of a wavefront. Since there are for each ray two
principal curvatures it is clear that the caustic is, in general, a complicated, two-
sheeted surface.

It is the last of these definitions that is relevant to generalized ray tracing and
that provides a means for calculating the caustic. Suppose that P represents a point
on a ray where it intersects the final surface or the exit pupil of an optical system and
that S is the ray’s direction vector, both found using ordinary ray tracing. At that
point �1 and �2 are found using generalized ray tracing. Then the point of contact of
the ray with each of the two sheets of the caustic is given by

Ci ¼ Pþ �i S; ði ¼ 1; 2Þ: ð1:100Þ
The importance of the caustic cannot be underestimated. For perfect image

formation, it degenerates into a single image point. Its departure from the ideal point
then is a measure of the extent of the geometric aberrations associated with that
image point; its location is an indicator of the optical system’s distortion and cur-
vature of field.

1.5 THE PARAXIAL APPROXIMATION AND ITS USES

In the conclusion of his two-volume opus in which he derived his equations for the
local properties of a wavefront, Coddington [27] remarked that his formulas were
OK (here I paraphrase) but were far too complicated to have any practical value and
that he intended to continue to use his familiar, tried-and-true methods to design
lenses. Such was the case until the advent of the modern computer. Tracing a single
ray was a long tedious process. Tracing enough rays to evaluate an optical system
was tedium raised to an impossible power. Indeed, most traced rays were meridian
rays; skew rays were far too difficult for routine use. Folklore has it that only
paraxial rays were used in the design process, which, when concluded, was followed
by the tracing of fans of meridian rays to determine whether the design was good
enough to make a prototype. If it was and if the prototype proved satisfactory the
lens went into production; otherwise, it was destroyed or relegated to a museum and
the designer tried again. It was cheaper to make and destroy unsatisfactory proto-
types than to trace the skew rays required to make a decision as to the quality of a
design.

The paraxial approximation is simplicity itself. [28] The quantities in the finite
ray-tracing equations are expanded into a power series and then all but the linear
turns are dropped. Thus the sine of an angle is replaced by the angle itself (in radians,
of course) while the cosines become unity. Rays calculated using these approxima-
tions are termed paraxial rays because their domain of validity is an � region that
hugs the axis of symmetry of the optical system.
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However, it needs to be mentioned that Gauss, whose name is often attached to
these equations, experimented with a power series solution to the eikonal equation,
shown in Eq. (1.54). [29] He got no further than terms of the first order but found
that these enabled him to obtain the paraxial equations that we are about to derive.
For that reason, these equations are frequently referred to as the first-order equa-
tions.

So, we make the following assumptions and approximations. First, we set
x ¼ � ¼ 0, so that we are confined to meridional rays and we can write � and � as
trigonometric functions of u, the angle between the ray and the axis. Here we need to
set � ¼ � sin u and � ¼ cos u; the minus sign is needed to conform with the sign
convention used in paraxial ray tracing. Next we assume the u is so small that
�2 � 0, so that � � u and � � 1. The ray vector now takes the form

S � ð0;�u; 1Þ: ð1:101Þ
The point of incidence can be represented by the vector

P ¼ ð0; y; zÞ; ð1:102Þ
where we further assume that y2 � 0 and z2 � 0. From Eq. (1.85) the unit normal
vector is

N ¼ 1

r
ðP� rZÞ ¼ ð0; cy; cz� 1Þ: ð1:103Þ

where Z is the unit vector along the axis of rotation. It follows that

N
2 ¼ c2y2 þ ðc2z2 � 2czþ 1Þ � 1� 2cz: ð1:104Þ

But N is a unit vector, so that cz � 0 and

N ¼ ð0; cy;�1Þ: ð1:105Þ
Finally, the sine of the angle of incidence is given by

sin i ¼ jN� Sj ¼ cy� u; ð1:106Þ
with a similar expression valid for sin i 0. But these, too, are paraxial quantities and

i � cy� u

i 0 � cy� u 0:
ð1:107Þ

When we apply the scalar form of Snell’s law, Eq. (1.68), we get its paraxial equiva-
lent,

n 0i 0 ¼ ni: ð1:108Þ
n 0u 0 ¼ nuþ cyðn 0 � nÞ; ð1:109Þ

the formula for paraxial refraction.
Next we take up the problem of paraxial transfer. Recall that transfer consists

of two parts. The generic formula is given by Eq. (1.75)

P
0 ¼ Pþ 
S: ð1:110Þ

The first part, transfer from vertex plane to vertex plane, is represented by Eq. (1.79),

�

 ¼ �ðz0 � tÞ=�; ð1:111Þ
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and the second part, transfer from vertex plane to sphere, by Eqs (1.83) and (1.84),


 ¼ �ð �PP� rZÞ � S� �;
�2 ¼ r2 � ½ð �PP� rZÞ � S�2:

ð1:112Þ

Consider the first transfer. To the paraxial approximation, z0 � 0 and � � 1, so
that

�

 ¼ t: ð1:113Þ
The second transfer is a little less straightforward. The second term in the

expression for �2 in Eq. 1.112 is the square of a paraxial quantity and is therefore
equal to zero so that � ¼ r. The distance 
 then becomes


 ¼ �ð �PP� rZÞ � S� r

¼ �ð0; �yy;�rÞ � ð0;�u; 1Þ � r

¼ �yyu � 0;

ð1:114Þ

which follows from the paraxial assumptions. Paraxial transfer is therefore given by

y 0 ¼ yþ tu: ð1:115Þ
Strictly speaking these formulas are valid only for rays exceedingly close to the

optical axis. (Indeed, because of the underlying assumptions, they are not valid for
systems lacking rotational symmetry.) Yet they are of immense value in defining
properties of lenses from a theoretical point of view and at the same time are indis-
pensable to the optical designer and optical engineer.

We can use these paraxial formulas for refraction to derive the Smith–
Helmholtz invariant. [30] Figure 1.7 shows a single refracting surface P and two
planes, located at P and P

0, that are conjugates. Let t and t 0 be the distance of each
of these planes from the surface. Because the two planes are conjugates, a ray from P

to a point �PP on the surface must then pass through P
0. Let the height P 0 be h and let

the angles that these two rays make with the axis be u and u 0, respectively. Then from
the figure, u ¼ h=t and u 0 ¼ h=t 0, so that

h ¼ tu ¼ t 0u 0: ð1:116Þ
Now take a point on the object plane at a height y and its image whose height is y 0

and consider a ray connecting these two points that intersects the refracting surface
at the axis. The angle subtended by this ray and the axis is its angle of incidence i, so
that i ¼ y=t. A similar expression holds for the refracted ray, i 0 ¼ y 0=t 0 with i 0 being
the angle of refraction. This yields

y ¼ it; y 0 ¼ i 0t 0: ð1:117Þ
Finally, we invoke the paraxial form of Snell’s law, Eq. (1.108), n 0i 0 ¼ ni. We make
the following cascade of calculations,

n 0y 0y 0 ¼ n 0i 0t 0u 0 ¼ nit 0u 0 ¼ nitu ¼ nyu; ð1:118Þ
in other words,

n 0y 0u 0 ¼ nyu: ð1:119Þ
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Suppose we are dealing with an optical system consisting of n surfaces. Then this
relation can be iterated at each surface in the following way:

nyu ¼ n1y1u1 ¼ . . . ¼ nk�1yk�1uk�1 ¼ nkykuk ¼ . . . ¼ n 0y 0u 0; ð1:120Þ

the Smith–Helmholtz invariant. This derivation is based on the paraxial ray tracing
equations. An identical result can be obtained by using the general equations for a
perfect optical system, as given in Section 1.1, applied to a single surface.

We say that paraxial rays are defined by Eqs (1.109) and (1.115). We also speak
of the paraxial image of a point. Consider two paraxial rays emanating from some
point in object space. Where they intersect in image space is the location of its image.
All other paraxial rays from that point will also intersect at the same paraxial image
point. We can conclude from this that any distinct pair of paraxial rays provides a
basis for all other paraxial rays; any other paraxial ray can be written as a linear
combination of these two. We can generalize this in an obvious way to paraxial
images of surfaces.

Now consider an optical system that consists of a sequence of glass elements,
all rotationally symmetric, all aligned on a common axis. Associated with each is a
surface; each surface is limited by an edge that defines its boundary. By tracing
paraxial rays through the surfaces preceding it, an image of that surface is formed
in object space together with an image of its boundary. Any ray in object space that
passes through this image and that lies inside the image of the boundary will pass
through the surface itself; a ray that fails to clear the boundary of this image will not
pass. All refracting surfaces in the lens will have images in object space; any ray that
clears the boundary of each of these images will pass through the lens. Those that fail
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of refractive index n and n 0, respectively. P and P
0 are a pair of conjugate planes.



to do so will exceed the boundary of some surface within the lens and be blocked.
[31]

In many cases, particularly for camera lenses, where the regulation of the light
passing through the lens is important for the control of film exposure, an additional
surface is introduced whose diameter is controlled externally. The paraxial image in
object space of this diaphragm or stop is called the entrance pupil: in image space, the
exit pupil. To be effective as a light regulator, the stop must be the dominant aper-
ture. This is assured by locating the entrance pupil and setting its diameter so that it
is smaller than the other aperture images in object space. (Its location is often
dictated by a need to adjust values of the third-order aberrations.) Indeed, once
its location and diameter have been established, the diameters of the other elements
in the lens can be adjusted so that their images match that of the entrance pupil.

The entrance pupil defines the boundary of the aggregate of rays from any
object point that pass through the lens; that ray that passes through its axial point is,
ideally, the barycenter of the aggregate. Such a paraxial ray is termed a chief ray or a
principal ray. The marginal ray is a ray from the object point that just clears the
boundary of the entrance pupil. Almost always these two paraxial rays are taken to
be the basis rays; every other paraxial ray can be represented as a linear combination
of these two.

From Eqs (1.109) and (1.115), the two sets of formulas for marginal rays and
chief rays, the latter indicated by a superior ‘bar,’ [32]

n 0u 0 ¼ nuþ cyðn 0 � nÞ n 0 �uu 0 ¼ n �uuþ c �yyðn 0 � nÞ
y 0 ¼ yþ tu �yy 0 ¼ �yyþ t �uu:

ð1:121Þ

It is easy to see that

l ¼ nðy �uu� �yyuÞ � n 0ðy 0 �uu 0 � �yy 0u 0Þ ð1:122Þ
is a paraxial invariant for the entire optical system and is called the Lagrange
invariant. Note that if �yy is equal to zero the Lagrange invariant reduces to the
Smith–Helmholtz invariant, which makes it clear that they are versions of each
other.

The stop or diaphragm controls the amount of radiation that passes through
the lens. The entrance pupil and the exit pupil can be likened to holes through which
the light pours. Apart from this, there is another important property associated with
these pupils. The larger the hole, for an ideal lens, the better its resolving power (see
Chapters 2 and 16). But lenses are rarely ideal and certain aberrations grow with the
stop aperture. (This is discussed in the following section.)

Several parameters are used to quantify the light transmission properties of a
lens. [33] The most familiar of these is the f =number, defined as the ratio of the
system’s focal length to the diameter of the entrance pupil. It can be used directly in
the formula for calculating the diameter of the Airy disk, for an equivalent ideal lens,
which provides an estimate of the upper limit of the lens’ resolving power. If the
geometric aberrations of such a lens are of the same magnitude as the Airy disk then
it is said to be diffraction limited. The details of this are treated in Chapter 6.

A second parameter, applied exclusively to microscope objectives is the numer-
ical aperature, defined as the sine of one-half the angle subtended by the entrance
pupil at the axial object point multiplied by the refractive index.
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1.6 THE HUYGENS’ PRINCIPLE AND DEVELOPMENTS

Christian Huygens (1629–1695) seemed to be a far different man than his renowned
contemporaries Renè Descartes and Pierre de Fermat. They were scholastic types
content to dream away in their ivory towers: the one constructed magnificent phi-
losophies out of his reveries; the other, after his magisterial and political duties,
retreated to his library where he entered notes in the margins of books. Huygens
was not like that. He made things; among his creations were lenses and clocks. He
was an observer. The legend is that he watched waves in a pond of water and noticed
that when these waves encountered an obstruction they gave rise to circular ripples,
centered where wave and obstruction met, that spread out and interfered with each
other and the original waves.

The principle that he expounded was that each point on a water wave was the
center of a circular wavelet and that the subsequent position and shape of that wave
was the envelope of all those wavelets with equal radii. [34]

The extension of Huygens’ observations on interfering wavelets to optical
phenomena is the basis of what we have come to know as optical interference,
interferometry, and diffraction, subjects that go far beyond the scope of this chapter.
[35] However, his principle on the formation and propagation of waves, when
applied to geometrical optics, provides an alternative route to the law of refraction.

Figure 1.8 shows the evolution of a train of wavefronts constructed as envel-
opes of wavelets developed from an arbitrary starting wavefront. The medium is
assumed to be homogeneous and isotropic. There are two things to notice. As men-
tioned previously, in the neighborhood of a center of curvature of the initial wave-
front, cusps are formed. The locus of these cusps constitutes the caustic surface
associated with the wavefront train. In the same region, wavefronts in the train
tend to intersect each other, giving rise to the interference patterns sometimes
observed in the neighborhood of the caustic surface. [36]

A ray in this construction can be realized as the straight line connecting the
center of a wavelet with the point where it touches the envelope. It is not possible to
see but it turns out that the envelope of these rays is exactly and precisely the caustic
and therefore coincides with the cusp locus of the wavefront.

Now for the law of refraction. Suppose a plane refracting surface separating
media of refractive index n and n 0, lies on the x; y-plane of a coordinate system so
that the surface unit normal vector Z is the z-axis. Take the incident ray vector to be
S ¼ ð�; �; �Þ. If W ¼ ðp; q; rÞ represents a point on a wavefront normal to S, then an
equation for this wavefront is

S �W ¼ p� þ q�þ r� ¼ s; ð1:123Þ
where s is a parameter for the distance from the wavefront to the coordinate origin.
The wavefront intersects the refracting surface on a line obtained from Eq. (1.123) by
setting p ¼ �xx, q ¼ �yy, and r ¼ 0, where �xx and �yy are coordinates on the refracting
plane; thus

�xx� ¼ �yy� ¼ s: ð1:124Þ
The point ð �xx; �yy; 0Þ is to be the center of a spherical wavelet with radius s 0. The

total optical path length to the wavefront will be nsþ n 0s 0 ¼ const: Then
s 0 ¼ �ðsþ kÞ, where � ¼ n=n 0 and k is that constant.
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The equation of the wavelet is then

f � ðx� �xxÞ2 þ ðy� �yyÞ2 þ z2 ¼ �2ðsþ kÞ2 ¼ �2ð �xx� þ �yy�þ kÞ2; ð1:125Þ
an equation for a two-parameter family of spherical wavelets all centered on the
refracting surface and all with radii arising from an incident wavefront. To find the
envelope of this family we take the partial derivatives of f with respect to �xx and �yy,
solve for those two parameters and then substitute their values back into the original
equation in Eq. (1.125). These derivatives are

f �xx � x� �xxþ �2ð �xx� þ �yy�� kÞ� ¼ 0

f �yy � y� �yyþ �2ð �xx� þ �yy�� kÞ� ¼ 0
ð1:126Þ

which rearranges itself into

ð1� �2�2Þ �xx� �2�� �yy ¼ x� �2k�

��2�� �xxþ ð1� �2�2Þ �yy ¼ y� �2k�;
ð1:127Þ
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Figure 1.8 Demonstrating Huygens’ principle. The curve on the left side of the figure

represents the initial state of a wavefront. To its right are four wavefronts generated by

families of wavelets centered on the initial wavefront. Note that the second, third, and fourth

of these have cusps and intersect themselves. The cusp locus is the caustic.



a simultaneous pair whose determinant of coefficients is

� ¼ 1� �2ð�2 þ �2Þ ¼ 1� �2ð1� �2Þ: ð1:128Þ
The solution is then

� �xx ¼ ð1� �2�2Þxþ �2��y� �2k�

��yy ¼ �2��xþ ð1� �2�2Þy� �2k�:
ð1:129Þ

From this we can show that

�xx� þ �yy�� k ¼ 1

�
ðx� þ y�� kÞ; ð1:130Þ

and with this and Eq. (1.126) we obtain

x� �xx ¼ ��
2

�
ðx� þ y�� kÞ�

y� �yy ¼ ��
2

�
ðx� þ y�� kÞ�:

ð1:131Þ

When this is substituted into Eq. (1.125) we obtain

�2z2 � �2ðx� þ y�� kÞ2½1� �2ð�2 þ �2Þ� ¼ 0; ð1:132Þ
which reduces to

�z2 � �2ðx� þ y�� kÞ2 ¼ 0: ð1:133Þ
Here we have used Eq. (1.128).

So, the three components of the vector that goes from the center of the wavelet
to its point of contact with the envelope are

x� �xx ¼ ��
2

�
ðx� þ y�� kÞ�

y� �yy ¼ ��
2

�
ðx� þ y�� kÞ�

z ¼ �
ffiffiffiffi
�

p ðx� þ y�� kÞ:

ð1:134Þ

Normalizing this vector yields S 0, the direction cosine vector for the refracted ray,

S
0 ¼ ð��; ��;

ffiffiffiffi
�

p
Þ ¼ �ð�; �; �Þ þ ð

ffiffiffiffi
�

p
� ��Þð0; 0; 1Þ: ð1:135Þ

But S ¼ ð�; �; �Þ, the unit normal vector to the refracting surface is N ¼ ð0; 0; 1Þ andffiffiffiffi
�

p � �� is exactly 	=n 0, this from Eq. (1.73). Thus, Eq. (1.135) is identical to the
refraction equation, Eq. (1.71).

This concludes the section of Huygens’ principle. We have shown how this
sytem of elementary wavelets and their envelope can be used to derive the refraction
equation. The same technique can be applied in media in which the wavelets are not
spheres; for example, in birefringent media, where the wavelets are two-sheeted
surfaces. [37]
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1.7 THE ABERRATIONS, SEIDEL AND OTHERWISE

Aberration theory and optical design are so profoundly intertwined as to be almost
indistinguishable. The most obvious difference is that mathematicians do one and
optical engineers do the other with some physicists playing an intermediate roll.
Perhaps another distinction is that what aberration theorists consider publishable,
optical engineers guard jealously as trade secrets. In this day and age computers and
their programmers yield wide control over both areas and to them accrue much of
the glory and much of the funding.

The etiology of the concept of an aberration makes an interesting, and some-
times droll, history. Kepler, nearly 400 years ago, identified spherical aberration.
Subsequently, it was realized that it was independent of object position, and that
other aberrations, namely coma and astigmatism, were not. In this century we deal
with a power series, that may not converge, whose terms are identified with the
physical appearance of the aberrations. Much of this history is contained in a
brief article by R. B. Johnson. [38]

The power series on which modern aberration theory is based is a solution of
the eikonal equation, Eq. (1.54), in which Hamilton’s equations, given in Eq. (1.53),
play an important part. Under the assumptions of rotational symmetry the power
series solution possesses only even terms; therefore, only odd terms appear in its
derivatives. Gauss experimented with these odd series but his studies did not go
beyond terms of the first order. These terms comprise the first-order equations
which are identical to the equations for paraxial optics. For this reason they are
often referred to as Gaussian optics. Seidel extended the work of Gauss to terms of
the third order and correlated their coefficients with observable image errors. [38]
The third-order or Seidel aberrations (in Europe frequently called the primary aber-
rations) are terms of the third order in this expansion and relate quantities obtained
from the paraxial equations with other components of an optical system to obser-
vable phenomena associated with defects in optical image formation.

1.7.1 The Classical Third-Order Aberration Equations

As in Section 1.5, we distinguish two types of paraxial rays. The chief ray passes
through the center of the entrance pupil and is indicated by a superior bar. The
marginal ray is a ray parallel to the axis of the lens that just clears the edge of the
aperature of the entrance pupil.

Further, we adapt the notation introduced by Feder. [39] A symbol with no
subscript denotes a quantity at a particular surface or in the following medium.
One with a subscript �1 lies on the next preceding surface or in the next pre-
ceding medium. Finally, a symbol with the subscript 1 is on the next following
surface.

Finally, we modify the equations in Eqs (1.125), (1.127), and (1.129) to con-
form with the notation of T. Smith, [40]

u ¼ cyð1� �Þ þ �u�1 �uu ¼ c �yyð1� �Þ þ � �uu�1

y1 ¼ y� tu �yy1 ¼ �yy� t �uu

i ¼ cy� u�1
�ii ¼ c �yy� �uu�1;

ð1:136Þ
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where c is the curvature of the refracting surface; t is the separation between two
adjacent surfaces; and � ¼ n=n�1, with n�1 being the refractive index of the medium
next preceding the refracting surface and n that of the next following. The Lagrange
invariant is of course, from Eq. (1.133):

l ¼ nðy �uu� �yyuÞ ¼ n�1ðy�1 �uu�1 � �yy�1u�1Þ ¼ n1ðy1 �uu1 � �yy1u1Þ; ð1:137Þ

In order to calculate the aberration contributions at each surface we need
several auxiliary quantities. The first of these is the Petzval contribution

P ¼ ð�� 1Þc
N�1

: ð1:138Þ

Two additional auxiliary quantities are

S ¼ N�1yðu� iÞð1� �Þ
2l

�SS ¼ N�1 �yyð �uu� �iiÞð1� �Þ
2l

;

ð1:139Þ

that are used, along with P, in calculating the aberration contributions from the
individual surfaces. It is remarkable that P is the only quantity that does not depend
on paraxial quantities but only on surface curvature and the surrounding refractive
indices.

The surface contributions are

Image contributions Pupil contributions

Spherical aberration B ¼ Si2 �BB ¼ � �SS �ii 2

Coma F ¼ Si �ii �FF ¼ � �SSi �ii

Astigmatism C ¼ S �ii 2 �CC ¼ � �SSi2 (1.140)

Curvature D ¼ C þ Pl=2 �DD ¼ �CC � Pl=2

Distortion E ¼ � �FF þ ð �uu2 � �uu2�1Þ=2 �EE ¼ �F þ ðu2 � u2�1Þ=2:
These are the third-order contributions from a single surface; the aberrations

for the entire system are obtained by summing the individual terms; thus

Image errors Field errors

b ¼P
B d ¼P

D

f ¼P
F e ¼P

E (1.141)

c ¼P
C

for the aberrations associated with image formation and similar ‘bared’ expressions
for the aberrations associated with the pupils. It is remarkable that these third-order
aberrations add algebraically. It is not the case for aberrations of degree greater than
third.

Now take a ray in object space with coordinates on the object that are y and z
and that passes through the point �yy and �zz on the entrance pupil plane. Let the
nominal format radius on the object plane be h and let the radius of the entrance
pupil aperture be �hh. Finally, let
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H ¼ e
y2 þ z2

h2
þ 2c

y �yyþ z �zz

h �hh
þf

�yy2 þ �zz2

�hh

K ¼ d
y2 þ z2

h2
þ 2f

y �yyþ z �zz

h �hh
þb

�yy2 þ �zz2

�hh
;

ð1:142Þ

then

y 0 ¼ h 0½ð1þHÞðy=hÞ þ Kð �yy= �hhÞ�
z 0 ¼ h 0½ð1þHÞðz=hÞ þ Kð �zz= �hhÞ�;

ð1:143Þ

where y 0 and z 0 are the coordinates of this ray on the image plane. When the ray
is a chief ray, then �yy ¼ �zz ¼ 0 and y 0=h 0 ¼ ð1þHÞðy=hÞ and z 0=h 0 ¼ ð1þHÞðz=hÞ.
In the absence of aberrations, H ¼ 0, so that h 0 must be the radius of the image
field.

As the object plane approaches infinity, the ratios y=h and z=h remain constant
and less than unity and are replaced by appropriate trigonometric functions.

The third-order chromatic aberrations are treated in the same way. If�N is the
partial dispersion of the medium after the refracting surface and if �N�1 is that for
the next preceding medium, then the chromatic aberrations are given by

a ¼ yð�N�1 � ��NÞi
b ¼ yð�N�1 � ��NÞ �ii: ð1:144Þ

These represent the blurring of the image due to the dispersion of the component
glasses and can be thought of as the displacement of an image point as the wave-
length changes. A lateral displacement of the image of a point, called lateral color or
chromatic difference of magnification, is given by

P
b; longitudinal color is the shift of

the image plane along the axis and is given by
P

a.

1.7.2 Aberrations of the Fifth Order

The completion of Seidel’s work represented an enormous step in the transformation
of optical design from an ill-understood art to the beginnings of an engineering
science. That it was only an improvement over paraxial optics was clear.
Moreover, it suggested that it was only the second of an infinite number of steps
in the power series expansion on which it was based.

The progression to the third step is an interesting story. In 1904,
Schwarzschild [41] derived what he called the Seidel eikonal, a function of five
variables whose first partial derivatives were, exactly, the five Seidel aberration
coefficients. Four years later Kohlschütter [42] calculated the second partial deri-
vatives. These he believed, by analogy, were the 15 fifth-order aberrations. Rightly
or not, the formulas were well beyond the capability of routine computation at the
time. Forty years later Wachendorf would describe them as schrechlich. Both
Wachendorf [43] and Herzberger [44] attempted the derivation of these compli-
cated expressions; both succeeded, but both failed to provide a significant improve-
ment in accuracy that warranted their over-complexity. It was Buchdahl who
realized that these fifth-order terms were not complete; that, at each surface,
functions of third-order terms from it and all preceding surfaces needed to be
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added. We have come to identify the fifth-order contributions at a surface as the
intrinsic contributions and the functions of the third-order contributions of the
preceding surfaces as the extrinsic contributions.

And here arises a paradox. Within the context of geometric optics it is well
known that rays are reversible; a ray traced from object space to image space is
identical to the ray traced, with the same parameters, from image space to object
space. It is also acknowledged that the aberration terms are approximations to real
ray tracing. But in the case of the fifth order this is not so. The intrinsic contribu-
tions are the same in both cases but the extrinsic contributions are not.

The following formulas are from Buchdahl [45] by way of Rimmer [46] and
Stavroudis. [47] Certain changes have been introduced to make them compatible
with Eqs (1.136)–(1.140).

(a) Auxiliary Quantities

x73 ¼ 3ii 0 þ 2u2 � 3u2�1 x42 ¼ �yy2ci � y �iið �uuþ �uu�1Þ
x74 ¼ 3i �ii 0 þ 2u �uu� 3u�1 �uu�1 x82 ¼ � �yy2cu�1 þ y �ii 0ð �uu� �uu�1Þ
x75 ¼ 3ii

0 þ 2 �uu2 � 3 �uu2�1 �xx42 ¼ y2c �ii þ �yyiðuþ u�1Þ
x76 ¼ �ið3u1 � uÞ �xx82 ¼ �y2c �uu�1 þ �yyi 0ðuþ u�1Þ
x77 ¼ � �iið2u�1 � uÞ � i �uu�1

x78 ¼ � �iið3 �uu�1 � �uuÞ
! ¼ ði2 þ i 02 þ u2 � 3u2�1Þ=8

ŜS1p ¼ 3!Si=2

ŜS2p ¼ Sð �iix73 þ ix74 � �uux76 � ux77Þ=4
S3p ¼ n�1ð�� 1Þ½x42x73 þ x76x82 þ yði þ uÞðix75 � ux78Þ�=8
ŜS4p ¼ Sð �iix74 � �uux77Þ=2
ŜS5p ¼ n�1ð�� 1Þ½x42x72 þ x77x82 þ yði þ uÞð �iix75 � �uux78Þ�=4
ŜS6p ¼ n�1ð�� 1Þðx42x75 þ x78x82Þ=8
ŜS1q ¼ n�1ð�� 1Þð �xx42x73 þ x76 �xx82Þ=8

(b) Intrinsic Fifth Order

Spherical aberration ~BB5 ¼ 2iŜS2p

Coma ~FF1 ¼ 2 �iiŜS1p þ iŜS2p

~FF2 ¼ iŜS2p

Oblique spherical aberration ~MM1 ¼ 2 �ii ~SS2p

~MM2 ¼ 2i ~SS3p

~MM3 ¼ 2i ~SS4p
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Elliptical coma ~NN1 ¼ 2 �ii ~SS3p

~NN2 ¼ 2 �ii ~SS4p þ 2i ~SS5p

~NN3 ¼ 2i ~SS5p

Astigmatism ~CC5 ¼ �ii ~SS5p=2

‘‘Petzval’’ ~5 ¼ 2i ~SS6p � �ii ~SS5p=2

Image distortion ~EE5 ¼ 2 �ii ~SS6p

Pupil distortion ~�EE�EE ¼ 2i ~SS1q

In what follows
P 0 denotes the sum of the third-order aberrations calculated on all

the refracting surfaces up to but not including the surface on which the fifth-order
intrinsic aberrations are calculated.

(c) Extrinsic Fifth Order

Spherical aberration Bo ¼ 3 F
P 0 B� B

P 0 F
� 	

=2l

Coma Fo
1 ¼ ðPþ 4cÞP 0 Bþ 5

P 0 F � 4
P 0 E


 �
F

�

� 2
P 0 Pþ 5

P 0 �CC

 �

B
	
=2l

Fo
2 ¼ ðPþ 2cÞP 0 Bþ 2 2

P 0 F �P 0 �EE

 �

F
�

� P 0 Pþ 4
P 0 �CC


 �
B
	
=2l

Oblique spherical Mo
1 ¼ E

P 0 Bþ 4
P 0 F �P 0 �EE


 �
C

�

þ P 0 C � 4
P 0 �CC � 2

P 0 P

 �

F � B
P 0 �FF

	
=l

Mo
2 ¼ E

P 0 Bþ ðPþ CÞ 2P 0 F �P 0 �EE

 ��

þ P 0 Pþ 3
P 0 C � 2

P 0 �CC

 �

F � 3B
P 0 �FF

	
=2l

Mo
3 ¼ 2 ð2C þ PÞP 0 F þ P 0 C � 2

P 0
 �
�FF

�

� B
P 0 �FF

	
=l

Astigmatism Co ¼ E 4
P 0 C þP 0 P


 �� P
P 0 �FF

�

þ 2C
P 0 E � 2

P 0 �FF

 �� 2F

P 0 �BB
	
=4l

‘‘Petzval’’ Po ¼ E
P 0 P� 2

P 0 C

 �þ P 4

P 0 E �P 0 �FF

 ��

þ 2C
P 0 E þP 0 �FF

�� 2F
P 0 �BB

	
=4l

Elliptical coma No
1 ¼ 3E

P 0 F � ðPþ CÞ P 0 PþP 0 �CC

 ��

þ 2C
P 0 P�P 0 �CC

 �þ F

P 0 E � 2
P 0 �FF


 �

� B
P 0 B

	
=2l

No
2 ¼ 3E

P 0 F þ ðPþ 3CÞ 3P 0 C �P 0 �CC þP 0 P

 ��

� C
P 0 PþP 0 C

 �þ F

P 0 E � 8
P 0 �FF


 �

� B
P 0 �BB

	
=l
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No
3 ¼ E

P 0 F þ ðPþ CÞ 3P 0 C �P 0 �CC þP 0 P

 ��

þ C
P 0 C þP 0 P

 �þ FðP 0 E � 4

P 0 �FF
�

� B
P 0 �BB

	
=2l

Image distortion Eo ¼ 3E
P 0 E � ðPþ 3CÞP 0 �BB

� 	
=2l

Pupil distortion �EEo ¼ �3E
P 0 �EE þ ðPþ 3 �CCÞP 0 B

� 	
=2l
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1. Cagnet, M., M. Françon, and J. C. Thrier, The Atlas of Optical Phenomina. Prentice

Hall, Englewood Cliffs, N. J., 1962.

2. Maxwell, J. C., Scientific Papers I, Cambridge University Press, 1890, p. 271. Cited in

Born, M. and E. Wolf, Principles of Optics, 4th edn, Pergamon Press, London, 1970, pp.

150–157.

The Eikonal Equation and Its Antecedents

3. Herzberger, M., ‘‘On the Characteristic Function of Hamilton, the Eikonal of Bruns and

Their Uses in Optics,’’ J. Opt. Soc. Am., 26, 177 (1936); Herzberger, M., ‘‘Hamilton’s

Characteristic Function and Bruns’ Eikonal,’’ J. Opt. Soc. Am., 27, 133 (1937); Synge, J.

L. , ‘‘Hamilton’s Characteristic Function and Bruns’ Eikonal,’’ J. Opt. Soc. Am., 27, 138

(1937).

4. A concise account is in Encyclopedic Dictionary of Mathematics, 2nd edn, MIT Press,

Cambridge, Mass, 1993, Section 46. A more detailed reference is, for example, Clegg, J.

C., Calculus of Variations, John Wiley, New York, 1968.

5. Stavroudis, O. N., The Optics of Rays, Wavefronts and Caustics, Academic Press, New

York, 1972, Chapter II. Klein, M., and I. W. Kaye, Electromagnetic Theory and

Geometrical Optics, Interscience Publishers, New York, 1965, pp. 72–74. Herzberger,

M., Modern Geometrical Optics, Interscience Publishers, New York, 1958, Chapter 35.

6. See Encyclopedic Dictionary of Mathematics, 1958, 2nd edn, MIT Press, Cambridge,

Mass, 1993, Section 111F; App. A, Table 4.1. See also Struik, D. J., Lectures on

Classical Differential Geometry, 2nd edn, Addison-Wesley, Reading, Mass., 1961,

Chapter 1.

7. Encyclopedic Dictionary of Mathematics, 2nd edn, MIT Press, Cambridge, mass., 1993,

Section 111D; 111H; App. A, Table 4.1. See also Struik, D. J., Lectures on Classical

Differential Geometry, 2nd edn, Addison-Wesley, Reading, Mass., 1961, Chapter 2.

8. Luneburg, R. K., Mathematical Theory of Optics, Berkeley, University of California

Press, 1966, pp. 172–182. Stavroudis, O. N., The Optics of Rays, Wavefronts and

Caustics, Academic Press, New York, 1972, Chapters 4 and 11. Born, M., and E.

Wolf, Principles of Optics, 4th edn, Pergamon Press, Oxford, 1970, pp. 147–149.

9. Welford, W. T., Aberrations of the Symmetrical Optical System, Academic Press,

London, 1974, pp. 66–69. Stavroudis, O. N., The Optics of Rays, Wavefronts and

Caustics, Academic Press, New York, 1972, Chapter 12.

10. Conway, A. W., and J. L. Synge (eds), The Mathematical Papers of Sir William Roan

Hamilton, Vol. 1, Geometrical Optics, Cambridge University Press, London, 1931. Rund,

H., The Hamilton–Jacobi Theory in The Calculus of Variations, Van Nostrand-Reinhold,

Princeton, N. J., 1966.

11. Klein, M., and I. W. Kay, Electromagnetic Theory and Geometrical Optics, New York,

Interscience Publishers, 1965, Chapter III.

Basic Ray Optics 35



12. Luneburg, R. K., Mathematical Theory of Optics, University of California Press,

Berkeley, 1966, Chapters I and II.

13. Bliss, G. A., Lectures on the Calculus of Variations, University of Chicago Press, 1946,

Chapter 1. Stavroudis, O. N., The Optics of Rays, Wavefronts and Caustics, Academic

Press, New York, 1972, pp. 71–73.

14. Joos, G., Theoretical Physics, Tr. I. M. Freeman, Blackie and Son, London, 1934, pp.

40–42. Stavroudis, O. N., The Optics of Rays, Wavefronts and Caustics, Academic Press,

New York, 1972, Chapter V.

15. Luneburg, R. K., Mathematical Theory of Optics, University of California Press,

Berkeley, 1966, pp. 129–138. Herzberger, M., Modern Geometrical Optics, Interscience

Publishers, New York, 1958, Chapter 17.

16. Born, M., and E. Wolf, Principles of Optics, 4th edn, Pergamon Press, Oxford, 1970, pp.

130–132.

17. Born, M., and E. Wolf, Principles of Optics, 4th edn, Pergamon Press, Oxford, 1970, pp.

149–150. Luneburg, R. K., Mathematical Theory of Optics, University of California

Press, Berkeley, 1966, pp. 136–138. Herzberger, M., Modern Geometrical Optics,

Interscience Publishers, New York, 1958, p. 190. Welford, W. T., Aberrations of the

Symmetric Optical System, Academic Press, London, 1974, pp. 139–142.

Ray Tracing and Its Generalization

18. Smith, T., articles in Glazebrook, R., Dictionary of Applied Physics, MacMillan and Co,

London, 1923.

19. Stavroudis, O. N., The Optics of Rays, Wavefronts and Caustics, Academic Press, New

York, 1972, Chapter VI.

20. Feder, D. P., ‘‘Optical Calculations with Automatic Computing Machinery,’’ J. Opt.

Soc. Am., 41, 630–635 (1951).

21. Welford, W. T., Aberrations of the Symmetric Optical System, Academic Press, London,

1974, pp. 9–11. Herzberger, M., Modern Geometrical Optics, New York, Interscience

Publishers, 1958, pp. 152–153, 269–271. Born, M., and E. Wolf, Principles of Optics, 4th

edn, Pergamon Press, London, 1970, Chapter 3. Stavroudis, O. N., The Optics of Rays,

Wavefronts and Caustics, Academic Press, New York, 1972, Chapter VIII. Klein, M.,

and I. W. Kay, Electomagnetic Theory and Geometrical Optics, Interscience Publishers,

New York, 1965, Chapter V.

22. Encyclopedic Dictionary of Mathematics, 2nd edn, MIT Press, Cambridge, Mass., 1993,

Section 111. Also Struik, D. J., Lectures on Classical Differential Geometry, 2nd edn,

Addison-Wesley, Reading, Mass., 1961, Chapter 2.

23. Stavroudis, O. N., The Optics of Rays, Wavefronts and Caustics, Academic Press, New

York, 1972, Chapter X. Stavroudis, O. N., ‘‘A Simpler Derivation of the Formulas for

Generalized Ray Tracing,’’ J. Opt. Soc. Am., 66, 1330–1333 (1976). Kneisley, J. A.,

‘‘Local Curvatures of Wavefronts,’’ J. Opt. Soc. Am., 54, 229–235 (1964).

24. Coddington, H., A System of Optics. In two parts. Simkin and Marshal, London, 1829,

1830–1839. Gullstrand, A., ‘‘Die Reelle Optische Abbildung.’’ Sven. Vetensk. Handl., 41,

1–119 (1906). Altrichter, O., and G. Schäfer, ‘‘Herleitung der gullstrandschen
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Basic Wave Optics

GLENN D. BOREMAN

University of Central Florida, Orlando, Florida

2.1 DIFFRACTION

If one looks closely at the edges of shadows—the transition regions between bright
and darkness—the transition is not abrupt as predicted by geometrical optics. There
are variations in irradiance—interference fringes—seen at the boundary. As the size
of the aperture is reduced, we expect that the size of the illuminated region in the
observation plane will decrease also. This is true, but only to a certain point, where
decreasing the dimensions of the aperture will produce spreading of the observed
irradiance distribution.

Huygens’ principle can be used to visualize this situation qualitatively. Each
point on the wavefront transmitted by the aperture can be considered a source of
secondary spherical waves. The diffracted wave is the summation of the secondary
sources, and the envelope of these spherical waves is the new diffracted wavefront.
For an aperture whose width is large compared with the wavelength of the radiation,
the transmitted wavefront has very nearly the direction of the original wavefront,
and the spreading caused by truncation of the spherical waves at the edges of the
aperture is negligible. However, when the aperture is sufficiently small that it con-
tains only a few Huygens’ sources, the transmitted wavefront will exhibit a large
divergence angle. A single Huygens’ source would emit uniformly in all directions as
a spherical wave.

We can put this phenomenon on a quantitative basis as follows. Let a scalar
field V represent an optical disturbance (like the magnitude of the electric field, but a
scalar rather than a vector), where V2 is proportional to irradiance. This field V
satisfies the scalar wave equation
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r2Vð �xx; tÞ ¼ 1

c2
@2Vð �xx; tÞ
@t2

: ð2:1Þ

If we assume that V is monochromatic, the scalar disturbance takes the form

Vð �xx; tÞ ¼  ð �xxÞe� j2vt; ð2:2Þ
where  ð �xxÞ accounts for the spatial variation of the amplitude and phase. The spatial
variation of the optical disturbance also satisfies a wave equation

r2 þ 2v

c

� �2

 ¼ r2 þ k2 ¼ 0: ð2:3Þ

An important point to note is that this wave equation is linear in  , which ensures
the validity of the superposition principle.

We consider two coordinate systems, with subscript s for the source plane and
subscript o for the observation plane. Any general point in the source plane Pðxs; ysÞ
gives rise to a spherical wave that emits equally in all directions. For a general source
distribution, the optical disturbance in the observation plane is just a weighted sum
of spherical waves that originate at the various source points that comprise the
source distribution. The proper expression for such a Huygens’ wavelet is

 ¼ 1

j


e jkrð �xxs; �xxoÞ

rð �xxs; �xxoÞ
; ð2:4Þ

where it is explicit that r is a function of position in both the source and observation
planes. Thus the source distribution  sðxs; ysÞ produces a field distribution in the
observation plane:

 ðxo; yoÞ ¼
ð

aperture

 sðxs; ysÞ
e jkrð �xxs; �xxoÞ

j
rð �xxs; �xxoÞ
dxsdys: ð2:5Þ

In simplifying Eq. (2.5), we can approximate r in the denominator of the
integrand by z, the axial separation between source and observation planes. In the
exponential, we express r using the first two terms of the binomial expansion

ffiffiffiffiffiffiffiffiffiffiffi
1þ a

p � 1þ a

2
� a2

8
þ � � � ð2:6Þ

yielding

rð �xxs; �xxoÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxo � xsÞ2 þ ðyo � ysÞ2 þ z2

q
¼ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ xo � xs
z

� 2
þ yo � ys

z

� 2
r

ð2:7Þ

rð �xxs; �xxoÞ � z 1þ 1

2

xo � xs
z

� 2
þ 1

2

yo � ys
z

� 2� �
ð2:8Þ

rð �xxs; �xxoÞ � zþ x2o þ y2o
2z

þ x2s þ y2s
2z

� 2
xsxo þ ysyo

2z

� 
: ð2:9Þ

With these substitutions, Eq. (2.5) becomes
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 ðxo; yoÞ ¼
1

j
z

ð

aperture

 sðxs; ysÞ exp½ jkrð �xxs; �xxoÞ�dxsdys ð2:10Þ

 ðxo; yoÞ ¼
1

j
z

ð

aperture

 sðxs; ysÞ

exp jk zþ x2o þ y2o
2z

þ x2s þ y2s
2z

� 2
xsxo þ ysyo

2z

�  !" #

dxsdys

ð2:11Þ

 ðxo; yoÞ ¼
e jkz

j
z
exp jk

x2o þ2
y o

2z

" # ð

aperture

 sðxs; ysÞ

exp jk
x2s þ y2s

2z
� 2

xsxo þ ysyo
2z

�  !" #

dxsdys:

ð2:12Þ

Diffraction problems separate into two classes, based on Eq. (2.12). For
Fresnel diffraction, the term ðk=2zÞðx2s þ y2s Þ is sufficiently large that it cannot be
neglected in the exponent. In Fresnel diffraction, the spherical waves arising from
point sources in the aperture are approximated as quadratic-phase surfaces. Fresnel
diffraction patterns change functional form continuously with distance z. The valid-
ity of the Fresnel approximation is ensured provided the third term in the binomial
expansion above is negligible. This condition can be written as

z
2




1

8

ðxo � xsÞ2 þ ðyo � ysÞ2
z2

" #2

	 1; ð2:13Þ

or equivalently

z3 
 

4

ðxo � xsÞ2 þ ðyo � ysÞ2
� 	2

: ð2:14Þ

Fraunhofer (far-field) diffraction conditions are obtained when the term
ðk=2zÞðx2s þ y2s Þ is small. Under this approximation, Eq. (2.12) for the diffracted
amplitude becomes

 ðxo; yoÞ ¼
e jkz

j
z
exp jk

x2o þ y2o
2z

" # ð

aperture

 sðxs; ysÞ

exp �j2 xs
xo

z

� 
þ ys

yo

z

� � h i
dxsdys;

ð2:15Þ

which aside from an amplitude factor 1=
z and a multiplicative phase factor (which
is of no importance when irradiance j ðxo; yoÞj2 is calculated) is just a Fourier trans-
form of the amplitude distribution across the aperature, with identification of the
Fourier-transform variables

� ¼ xo

z

and � ¼ yo

z
: ð2:16Þ

Thus, Fraunhofer diffraction patterns will scale in size with increasing distance z, but
keep the same functional form at all distances consistent with the far-field approx-
imation. Because the distance from the aperture to the observation plane is so large,
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the Fraunhofer expression approximates the spherical waves arising from point
sources in the aperture as plane waves.

2.1.1 Fresnel Diffraction

We must modify Eq. (2.9) for rð �xxs; �xxoÞ in the situation of point-source illumination of
the aperture from a point at a distance r10 away, as seen in Fig. 2.1. The aperture-to-
observation-plane axial distance is r20, and the distance from the source point to a
general point Qðx; yÞ in the aperture is r1 and the distance from Q to the observation
point P is r2. We analyze the special case of a rectangular aperture that is separable
in x- and y-coordinates. The diffraction integral, Eq. (2.10),

 ðxo; yoÞ ¼
1

j
z

ð

aperture

 sðxs; ysÞ exp½ jkrð �xxs; �xxoÞ�dxsdys ð2:17Þ

becomes, in terms of on-axis amplitude in the observation plane at a point P,

 ðPÞ ¼ 1

j
ðr10 þ r20Þ
ðy2

y1

ðx2

x1

exp½ jkðr1 þ r2Þ�dxdy; ð2:18Þ

where x1, x2, y1, and y2 are the edge locations of the diffracting aperture. The typical
procedure for computation of Fresnel diffraction patterns of separable aperatures
involves calculation of irradiance at point P for a particular aperture position, then
moving the aperture incrementally in x or y and calculating a new on-axis irradiance.
For aperture sizes small compared with r10 þ r20, this procedure is equivalent to a
calculation of irradiance as a function of position in the observation plane, but is
simpler mathematically.

The distance terms in the exponent of Eq. (2.18) can be expressed as

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r210 þ x2 þ y2

q
� r10 þ

x2 þ y2

2r10
ð2:19Þ

r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r220 þ x2 þ y2

q
� r20 þ

x2 þ y2

2r20
: ð2:20Þ

We can thus write, for Eq. (2.18), the amplitude in the observation plane as
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 ðPÞ ¼l
1

j
ðr10 þ r20Þ
ðy2

y1

ðx2

x1

exp jk ðr10 þ r20Þ þ ðx2 þ y2Þ r10 þ r20
2r10r20

� �� �� �
dxdy:

ð2:21Þ

With a change of variables

� ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðr10 þ r20Þ

r10r20

s

ð2:22Þ

and

� ¼ y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðr10 þ r20Þ

r10r20

s

; ð2:23Þ

we find, for Eq. (2.21), the diffracted wave amplitude

 ðPÞ ¼ 1

2j

e jkðr10þr20Þ

ðr10 þ r20Þ
ð�2

�1

e y�
2=2 d�

ð�2

�1

e j�
2=2d�: ð2:24Þ

An important special case is that of plane-wave illumination, r10 ! 1. Under those
conditions, Eqs (2.22) and (2.23) become

� ¼ x

ffiffiffiffiffiffiffiffiffi
2


r20

s

ð2:25Þ

� ¼ y

ffiffiffiffiffiffiffiffiffi
2


r20

s

: ð2:26Þ

In general, we identify the term

 0ðPÞ ¼
e jkðr10þr20Þ

ðr10 þ r20Þ
ð2:27Þ

as the unobstructed wave amplitude at P in the absence of a diffracting screen.
Hence, we can write for Eq. (2.24)

 ðPÞ ¼  oðPÞ
2j

ð�2

�1

e j�
2=2d�

ð�2

�1

e j�
2=2d�: ð2:28Þ

We identify the Fresnel cosine and sine integrals

CðwÞ ¼
ðw

0

cosð�2=2Þ d� ð2:29Þ

and

SðwÞ ¼
ðw

0

sinð�2=2Þ d� ð2:30Þ

seen in Fig. 2.2. Using Eqs (2.29) and (2.30), we can write for Eq. (2.28), the dif-
fracted on-axis amplitude
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 ðPÞ ¼  oðPÞ
2j

½Cð�2Þ � Cð�1Þ� þ j½Sð�2Þ � Sð�1Þ�
� �

½Cð�2Þ � Cð�1Þ� þ j½Sð�2Þ � Sð�1Þ�
� � ð2:31Þ

and for the diffracted on-axis irradiance

EðPÞ ¼ EoðPÞ
4

½Cð�2Þ � Cð�1Þ�2 þ ½Sð�2Þ � Sð�1Þ�2
� �

½Cð�2Þ � Cð�1Þ�2 þ ½Sð�2Þ � Sð�1Þ�2
� �

;

ð2:32Þ

where E0ðPÞ is the unobstructed irradiance. If the wavelength and geometry are
specified, the above expression can be evaluated numerically for separable apertures.

As an example of the calculation method, let us compute the Fresnel diffrac-
tion pattern from an edge, illuminated from a source at infinity. Assuming that the
edge is oriented vertically, �1 ¼ �1 and �2 ¼ 1. If we let the left edge of the open
aperture be at �1, we have �1 ¼ �1 and �2 ¼ x2ð2=
r20Þ1=2. Using the asymptotic
forms Cð�1Þ ¼ Sð�1Þ ¼ �0:5 and Cð1Þ ¼ Sð1Þ ¼ 0:5, we can write for Eq.
(2.32):

EðPÞ ¼ EoðPÞ
4

½Cð�2Þ þ 0:5�2 þ ½Sð�2Þ þ 0:5�2� � ½0:5þ 0:5�2 þ ½0:5þ 0:5�2� �
:

ð2:33Þ
The value of irradiance at the edge of the geometrical shadow region (�2 ¼ 0) is

found to be one-quarter of the unobstructed irradiance. This result is intuitive,
because the presence of the edge blocks half of the amplitude on-axis, resulting in
one-quarter of the irradiance that would be present without the edge. The complete
irradiance distribution is shown in Fig. 2.3.

Examples of other irradiance distribution calculations are shown in Fig. 2.4,
for an aperture of dimensions 2mm� 2mm, with plane-wave illumination at 0.5-mm
wavelength. The distance from the diffracting aperture to the observation screen, r20,
is the variable. In the first plot, cases are shown for r20 ¼ 0:4m and r20 ¼ 4m. The
changes in the form of the irradiance pattern with changes in r20 are evident. There is
not a simple scaling of size as one finds with Fraunhofer diffraction, but a change of
functional form depending on the value of r20. For the situation where r20 ¼ 0:4m,
the geometrical shadow region is within j�2j < 3:16; and for the case of r20 ¼ 4m, the
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Figure 2.2 Fresnel cosine and sine integrals.
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Figure 2.3 Fresnel diffraction pattern (irradiance) at an edge.

Figure 2.4 Fresnel diffraction patterns (irradiance) for an aperture at two distances.



shadow region is within j�2j < 1. The shadow region is just the size of the original
aperture, expressed in terms of �2, for a given distance.

Figure 2.5 shows the irradiance distribution at a longer distance, for
r20 ¼ 40m. This is calculated by means of the Fresnel-integral technique above,
but the dimensions involved are such that the observation plane is essentially in
the Fraunhofer region of the aperture. Thus, the irradance distribution approximates
that of the Fourier transform squared of the aperture distribution. Note that the
peak irradiance has decreased dramatically, consistent with the spreading of flux far
beyond the boundaries of the geometrical shadow at j�2j ¼ 0:32:

Fresnel diffraction from a nonseparable aperture, even one as simple as a
circular disk, is more difficult to describe analytically. The most effective calculation
method is to compute the squared modulus of a two-dimensional Fourier transform,
but with a multiplicative quadratic phase factor in the aperture. This phase factor
accounts for the optical path difference between the axial distance (r10 þ r20) between
source and observation points and the distance ðr1 þ r2Þ that traverses the maximum
extent of the aperture. The Fresnel pattern can then be calculated by the same means
as a Fraunhofer pattern.

2.1.2 Fraunhofer Diffraction

For situations in which the distance from the aperture to the observation plane is
sufficiently large, or for which the aperture is small, we can neglect the term
ðk=2zÞðx2s þ y2s Þ. According to Eq. (2.15), the diffracted amplitude can be expressed
in terms of the Fourier transform of the amplitude transmittance function of the
aperture  sðxs; ysÞ:
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Figure 2.5 Fresnel diffraction pattern (irradiance) for a square aperture at a long distance.



 ðxo; yoÞ ¼
e jkz

j
z
exp jk

x2o þ y2o
2z

" # ð

aperture

 sðxs; ysÞ

exp �j2 xs
xo

z
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þ ys

yo

z

� � h i
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ð2:34Þ

 ðxo; yoÞ ¼
1


z
exp j k zþ x2o þ y2o

2z

 !

� 
2

( )" #

ff sðxs; ysÞg
����
�¼xo


z;�¼yo

z

: ð2:35Þ

The complex exponential does not affect the value of the diffracted irradiance,
Eðxo; yoÞ ¼ j ðxo; yoÞj2, so that we find

Eðxo; yoÞ ¼
1


2z2
ff sðxs; ysÞg
�� ��

�¼xo

z;�¼yo


z
: ð2:36Þ

Note that the Fourier transform of a spatial-domain aperture function returns a
function of spatial frequency, and thus a change of variables seen in Eq. (2.16), � ¼
xo=
z and � ¼ yo=
z, is required for evaluation of the result, Eq. (2.36), in terms of
position in the observation plane. The change of variables takes the slightly different
form

� ¼ xo

f

and � ¼ yo

f
; ð2:37Þ

when the diffraction pattern is observed in the focal plane of a positive lens of focal
length f , allowing convenient scaling of the pattern to any desired dimensions by the
choice of lens focal length.

Our examples of calculation of Fraunhofer patterns begin with the one-dimen-
sional rectangular aperture of full-width b. Using the standard notation of Gaskill,
[1] we take the aperture distribution as  sðxsÞ ¼ rectðxs=bÞ, and for the usual expres-
sion of a diffraction pattern normalized to an on-axis value of unity,

EðxoÞ
Eðxo ¼ 0Þ ¼ sinc2

bxo

z

� �
¼

sin
bxo

z

� �

bxo

z

� �

0

BB@

1

CCA

2

: ð2:38Þ

This function, seen in Fig. 2.6, has a maximum value of 1 and a first zero at
xo ¼ 
z=b.

Another useful aperture distribution is that representing two point apertures
separated by a distance l:

 sðxsÞ ¼ 1
2
½�ðxs � l=2Þ þ �ðxs þ l=2Þ�; ð2:39Þ

for which the corresponding irradiance distribution in the diffraction pattern is

EðxoÞ
Eðxo ¼ 0Þ ¼ cos2

lxo

z

� �
: ð2:40Þ

A circular aperture of full width D,  sðxsÞ ¼ circðrs=DÞ, is another important
case. The normalized diffracted-irradiance distribution is
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EðroÞ
Eðro ¼ 0Þ ¼

2J1
Dro

z

� �

Dro

z

� �

2

664

3

775

2

ð2:41Þ

which, as seen in Fig. 2.7, has its first zero when

Dro

z

¼ 1:22 ¼ 3:83; ð2:42Þ

or in terms of radius at

ro ¼
1:22
z

D
: ð2:43Þ

Integrating the irradiance distribution, we find that 84% of the power con-
tained in the pattern is concentrated into a diameter equal to 2.44 
z=D. When the
diffracting aperture is a lens aperture itself, the full width of the diffracted-irradiance
distribution in the focal plane is then 2.44 
F=# where the lens focal ratio is defined
as F/# � f =D. This relationship determines the ability of an imaging sytem to resolve
objects of a certain size. The angular resolution �, expressed as the full width of the
diffraction spot divided by the focal length of the lens, is
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Figure 2.6 Sinc-squared function describing diffracted irradiance from a slit.



� ¼ 2:4

f =D

f
¼ 2:4




D
: ð2:44Þ

When the angle in Eq. (2.45) is multiplied by p, the distance from the lens to the
object plane, the resulting dimension is the diffraction-limited resolution in the
object, as seen in Fig. 2.8.

For example, a diffraction-limited system with an aperture size of 10 cm can
resolve a 12-mm target at 1 km if the system operates at a wavelength of 0.5 mm,
while a system of the same diameter operating at 
 ¼ 10 mm can resolve targets of
240-mm lateral dimension.

2.2 INTERFERENCE

The phenomenon of the interference depends on the principle of superposition of
waves. Suppose that the following sinusoid corresponds to the electric-field magni-
tude of a light wave:

eðx; tÞ ¼ A cosðkx� !tþ �Þ ð2:45Þ
where k ¼ 2=
 is the free-space wavenumber and ! ¼ 2=T is the radian frequency.
Any number of waves can be added together coherently, and the magnitude of the
resultant wave will depend on whether the interference is constructive or destructive.
As an example, suppose that two waves are added together (with time dependence
suppressed):
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Figure 2.7 Bessel-squared function for diffracted irradiance from a circular aperture.



eðxÞ ¼ A1 cosðkxþ �1Þ þ A2 cosðkxþ �2Þ: ð2:46Þ
Constructive interference occurs when the amplitude of the resultant sum wave is
larger than the magnitude of either component. This occurs when the relative phase
difference between the two waves � ¼ �2 � �1 is close to zero or an even multiple of
2. Destructive interference occurs when the amplitude of the resultant is less than
the magnitude of either component. This condition occurs when � is close to an odd
multiple of . The relative phase difference between two waves derived from the
same source depends on the optical path difference (OPD) between the two paths. In
terms of the refractive index n and the physical path length d for the two paths, the
phase difference is defined as

� ¼ 2



�OPD ¼ 2




X

path 2

nd �
X

path 1

nd

" #

: ð2:47Þ

Any detector of optical or infrared radiation responds to the long-term time
average of the square of the resultant electric field, a quantity proportional to irra-
diance, EðW=cm2Þ. Assuming that the e field vectors of the two waves are co-polar-
ized, we can write an expression for the total irradiance:

Etotal ¼ E1 þ E2 þ 2
ffiffiffiffiffiffiffiffiffiffiffi
E1E2

p
cos �: ð2:48Þ

If the interfering waves are of equal magnitude, the maximum value of
Etotal ¼ 4E, and the minimum value is 0. We characterize the contrast of the fringes
by the visibility V , a number between 0 and 1, defined as

V ¼ Emax � Emin

Emax þ Emin

: ð2:49Þ

For equal-amplitude co-polarized light waves, the visibility is 1. Unequal wave
amplitudes and any cross-polarized component (which does not interfere) will reduce
the fringe visibility. We have assumed the phase difference between the two waves is
stable with time. If � changes rapidly over a measurement time, then the cos � term
averages out, and an incoherent addition of irradiances is obtained.

Some special cases of interference are of particular interest for applications. If
we interfere two plane waves of the same frequency and parallel polarization:
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Figure 2.8 Diffraction-limited resolution in an optical system.



�ee1 ¼ ẑze1e
ið �kk1��rrþ�1Þ ð2:50Þ

�ee2 ¼ ẑze2e
ið �kk1��rrþ�2Þ; ð2:51Þ

where r is a position vector in the x�y plane, �rr ¼ x̂xxþ ŷyy. Letting the initial phases
both be equal to zero, we can write an expression for the constructive-interference
condition

k½xðcos �2 � cos �1Þ þ yðsin �2 � sin �1Þ� ¼ 2m ðm integerÞ: ð2:52Þ
This fringe pattern consists of straight fringes of equal spacing, parallel to the line
bisecting the ray directions. The fringe spacings along the x- and y-axes are

�y ¼ 


ðsin �2 � sin �1Þ
ð2:53Þ

and

�x ¼ 


ðcos �2 � cos �1Þ
: ð2:54Þ

As seen from Eqs (2.53) and (2.54), the fringe spacing increases as the angle between
the interfering beams gets smaller.

Interference of two spherical waves is another important special case, with the
two components given by

�ee1 ¼ ẑze1

eiðkj�rr��rr1jþ�1Þ

j�rr� �rr1j
ð2:55Þ

and

�ee2 ¼ ẑze2

eiðkj�rr��rr2jþ�2Þ

j�rr� �rr2j
: ð2:56Þ

Setting the phase offsets to zero in Eqs (2.55) and (2.56), we find, for a given fringe,
that

kðj�rr� �rr1j � j�rr� �rr2jÞ ¼ constant: ð2:57Þ
Because the distance between two points is a constant, this is the equation of a family
of hyperboloids of revolution. On an observation screen perpendicular to the line of
centers of the sources, one obtains circular fringes, and on an observation screen
parallel to the line of centers, one obtains (at least near the center) equally spaced
sinusoidal fringes. Taking the circular-fringe case (we will analyze the other case in
the next section when dealing with Young’s interference experiment), we begin with
the condition for a bright fringe:

m
 ¼ j�rr� �rr1j � j�rr� �rr2j: ð2:58Þ
Let source #1 be located on the x-axis at x ¼ �v and source #2 located at x ¼ �u.
Thus, we can write

j�rr� �rr1j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ v2

q
¼ v

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y2

v2

s

ffi v 1þ y2

2v2

" #

¼ vþ y2

2v
ð2:59Þ

and
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j�rr� �rr2j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ u2

q
¼ u

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y2

u2

s

ffi u 1þ y2

2u2

" #

¼ uþ y2

2u
: ð2:60Þ

The bright-fringe condition, Eq. (2.58), becomes

m
 ¼ j�rr� �rr1j � j�rr� �rr2j ¼ v� uþ y2

2

1

v
� 1

u

� �
; ð2:61Þ

and the resulting fringe pattern corresponds to the case where the radii are propor-
tional to the square root of the order number m.

The final special case to consider is interference of a plane wave and a spherical
wave. The components are

�ee1 ¼ ẑze1e
ið �kk��rrþ�1Þ ð2:62Þ

and

�ee2 ¼ ẑze2

eiðkj�rr��rr2jþ�2Þ

j�rr� �rr2j
: ð2:63Þ

Assuming that the spherical wave arises from a point source located on the x-axis, at
a point x ¼ �x0, the exponent in Eq. (2.63) can be written

kj�rr� �rr2j ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ y2 þ z2

q
: ð2:64Þ

The condition for a bright fringe is

k x cos � þ y sin � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ y2 þ z2

q� �
¼ 2m: ð2:65Þ

Observing in the y�z ðx ¼ 0Þ plane, Eq. (2.65) reduces to

m
 ¼ y sin � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ y2 þ z2

q� �
: ð2:66Þ

Assuming that we observe the fringe pattern in a small region of the y�z plane, jx0
j 
 y and jx0j 
 z, we can expand Eq. (2.66) as a binomial series:

m
 ¼ y sin � � x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y2 þ z2

x20

s

ffi y sin � � x0
1þ y2 þ z2

2x20

" #

: ð2:67Þ

Considering the case where the plane wave propagates parallel to the x-axis, we find
the condition for bright fringes, Eq. (2.67), reduces to

m
 ¼ x0 þ
r2

2x0
: ð2:68Þ

Thus, the fringes are concentric circles where the radius of the circle is proportional
to the square root of the order number m. The fringe spacing �r thus decreases with
radius, according to �r ¼ 
x0=r.
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2.2.1 Wavefront Division

Division-of-wavefront interferometers are configurations where the optical beam is
divded by passage through apertures placed side by side. The most important exam-
ple of this tyupe of interferometer is Young’s double-slit configuration. Typically, a
point source illuminates two point apertures in an opaque screen. We will consider
later the effects of finite source size (spatial coherence) and finite slit width (envelope
function). These points are sources of spherical waves (Huygens’ wavelets) that will
interfere in their region of overlap. The usual situation is that the fringes are
observed on a screen that is oriented parallel to the line of centers of the pinholes.
The basic setup is seen in Fig. 2.9. The bright-fringe condition is

m
 ¼ j�rr� �rr1j � j�rr� �rr2j: ð2:69Þ
If the two pinholes are illuminated with the same phase (source equidistant from
each), then there will be a bright fringe on the axis, along the line perpendicular to
the line of centers. The expressions for the distances from each pinhole to a general
point in the observation plane are

j�rr� �rr1j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy� l=2Þ2 þ x20

q
ð2:70Þ

and

j�rr� �rr2j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyþ l=2Þ2 þ x20

q
: ð2:71Þ

Using Eqs (2.70) and (2.71), the bright-fringe condition, Eq. (2.69) becomes

m
 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy� l=2Þ2 þ x20

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyþ l=2Þ2 þ x20

q

¼ x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðy� l=2Þ2
x20

s

� x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðyþ l=2Þ2
x20

s

:

ð2:72Þ

Under the binomial approximation of Eq. (2.6) (equivalent to a small-angle condi-
tion), Eq. (2.72) becomes

m
 ffi x0 1þ ðy� l=2Þ2
2x20

" #

� x0 1þ ðyþ l=2Þ2
2x20

" #

¼ ly

x0
: ð2:73Þ
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Figure 2.9 Young’s double-slit configuration.



A simple memnonic construction that yields this condition is seen in Fig. 2.10.
We assume that the rays drawn are essentially parallel and will thus interfere at
infinity. The OPD between the two rays is the distance identified as l sin �. When
the OPD is equal to an even number of wavelengths, there will be constructive
interference

m
 ¼ l sin � tan � ¼ ly

x0
: ð2:74Þ

The expression for center-to-center fringe separation is

�y ¼ x0


l
; ð2:75Þ

which means that as �y / x0, the fringe pattern scales with distance; as �y / 
, the
fringe pattern scales with wavelength; and as �y / 1=l, the fringe pattern scales as
the pinhole separation decreases.

It should also be noted from a practical point of view that it is not necessary to
make x0 a very long distance to achieve the overlap of these essentially parallel rays.
As seen in Fig. 2.11, a positive lens will cause parallel rays incident at an angle of � to
overlap at a distance f behind the lens, at a y height of �f . This configuration is often
used to shorten the distance involved in a variety of experimental setups for inter-
ference and diffraction.

It can be verified that the fringes obtained in a Young’s double-slit configura-
tion have a cosine-squared functional form. Taking a phasor model for the addition
of light from the two slits, and remembering that the irradiance is the square of the
field, we find

E / je j0 þ e j�j2 ¼ 2þ 2 cos � ¼ 4 cos2ð�=2Þ; ð2:76Þ

as seen in Fig. 2.12. The phase shift � can be written as

� ¼ 2



�OPD ¼ 2



½l sin �� ffi 2



l
y

x0
: ð2:77Þ

Thus, for small angles, Eq. (2.76) describing the irradiance becomes
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Figure 2.10 Simple construction for Young’s fringes.



E ¼ 4 cos2

2



l
y

x0
2

2

664

3

775 ¼ 4 cos2
ly


x0

� �
: ð2:78Þ

The first zero of cos2ð�Þ is at � ¼ =2, so the first zero of the double-slit irradiance
pattern of Eq. (2.78) is at

yfirst�zero ¼ 
x0
2l
; ð2:79Þ

and the fringe spacing near the center of the pattern is

�y ¼ 
x0
l
: ð2:80Þ

It is useful to develop expressions relating the phase difference �, the diffraction
angle �, and the position on the observation screen y. First, for small angles, where
sin � � tan � � �, we have, in terms of diffraction angle �,

l� � m
: ð2:81Þ
Taking the derivative with respect to order number m:

@�

@m
¼ 


l
: ð2:82Þ

Letting Eq. (2.82) be a finite difference
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Figure 2.11 Use of a lens to produce the far-field condition for Fraunhofer diffraction.

Figure 2.12 Irradiance as a function of phase shift � for two-beam interference.



�� ¼ �m



l
; ð2:83Þ

we have, for the angular spacing between fringes, �� for �m ¼ 1:

��j�m¼1 ¼



l
: ð2:84Þ

A similar development can be obtained in terms of position in the observation plane.
Assuming a small angle,

y � x0�: ð2:85Þ
Taking the derivative with respect to angle, we have

@y

@�
¼ x0: ð2:86Þ

Combining Eqs (2.85) and (2.86),

@y

@m
¼ @y

@�

@�

@m
¼ x0½
=l�: ð2:87Þ

Finding the y-position spacing between fringes as the increment in y for which the
increment in order number m ¼ 1

�y ¼ �m� x0½
=l� ð2:88Þ

�yj�m¼1 ¼ x0½
=l�: ð2:89Þ
Now, leaving the domain of small angles ðl 	 x0 but y not 	 x0), we begin the
development with

l sin � ¼ m
: ð2:90Þ
Taking the derivative

@�

@m
¼ 


l cos �
: ð2:91Þ

The angular fringe spacing is then

��j�m¼1 ¼



l cos �
: ð2:92Þ

We note that the fringe spacing increases as the angle increases.
Now, in terms of y position, we begin with

y ¼ x0 tan �: ð2:93Þ
Taking the derivative

@y

@�
¼ x0

1

cos2 �
ð2:94Þ

@y

@m
¼ @y

@�

@�

@m
¼ x0

cos2 �




l cos �
¼ x0


l cos3 �
: ð2:95Þ

For the fringe spacing in the observation plane (setting �m ¼ 1)

�y ¼ x0


l cos3 �
: ð2:96Þ
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Again, the fringes have a larger spacing away from the center of the pattern, but with
a different functional dependence than seen in Eq. (2.92) for the spacing in terms of
angle.

Young’s interference experiment can be performed with any number of slits,
and the result can be easily obtained using phasor addition:

E / je j0 þ e j� þ e j2�j2; ð2:97Þ
where � is the phase difference between successive slits. The three phasors are all in
phase for � ¼ m� 2, where m is an integer (including zero). The value of the
irradiance for this condition is nine times the irradiance of a single slit. There are
two values of �, for a three-slit pattern, for which the irradiance equals zero. Using
phasor diagrams, we can see that this condition is satisfied for � ¼ 2=3 and
� ¼ 4=3. There is a subsidiary maximum (with irradiance equal to that from one
slit alone) for the condition where � ¼ . The irradiance as a function of � is shown in
Fig. 2.13, for the three-slit and four-slit cases.

2.2.2 Amplitude Division

Division of amplitude interferometers is typically implemented when one surface of
the system is a partial mirror—in other words, a beamsplitter—that allows for an
optical wave to be split into two components which will travel different paths and
recombine afterwards. These interferometers are useful for determining the flatness
of optical surfaces or the thickness of transparent films and are widely used for
measurement purposes.

To properly account for the phase shift on reflection, it is necessary to note that
a ‘‘rare-to-dense’’ reflection will differ in phase by  radians from the ray undergoing
a ‘‘dense-to-rare’’ reflection. That this is true for either polarization can be shown
easily by application of the Stokes’ reversibility principle, which states that all light
rays are reversible if absorption is negligible. Using Fig. 2.14, we let the reflection
and transmission coefficients for a ray incident from medium #1 be r and t, respec-
tively. For a ray incident from the second medium, the reflection and transmission
coefficients are r 0 and t 0.

From Fig. 2.14, we have

rtþ r 0t ¼ 0 ð2:98Þ
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Figure 2.13 Irradiance as a function of phase shift � for three- and four-beam interference.



and

tt 0 þ r2 ¼ 1: ð2:99Þ

From Eq. (2.98), we can see that r ¼ �r 0, which verifies the required phase shift.
The first interferometer configuration we consider is that of fringes of equal

thickness. There is a thin transparent film for which the thickness is a function of
position. For example, the film can be an air film, contained between two pieces of
glass, an oil film on the surface of water, or a freestanding soap film. We begin our
analysis by considering interference in a plane-parallel plate of index n, immersed in
air. We assume illumination by a single point source, and follow the ray trajectory as
seen in Fig. 2.15.

We consider interference between the rays reflected from the top and bottom
surfaces of the plate. If the plate is parallel, these two rays will be parallel, and will
interfere at infinity, or at the focus of a lens. For this analysis, we ignore other rays
that undergo multiple reflections in the plate. Taking the plate as having a refractive
index of glass (around 1.5), the two rays shown each carry about 4% of the original
power in the incident ray, and all other rays carry a much smaller power. We assume
that the thickness d of the plate is small enough to be within the coherence length of
the light source used. Typically for films of a few micrometers or less thickness,
interference effects are seen even with white light, such as sunlight. As the thickness
of the plate increases to several millimeters or larger, interference effects are seen
only with coherent sources, such as lasers.

Taking into account the difference in phase shifts on reflection seen in Fig.
2.14, the condition for a bright fringe can be written as

2



nðABþ BCÞ � AD
� 	 ¼ ðmþ 1=2Þ2 ð2:100Þ
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Figure 2.14 Stokes’ reversibility principle.

Figure 2.15 Interference in a plane-parallel plate.



2



n

2d

cos �t
� 2nd tan �t sin �t

� �
¼ ðmþ 1=2Þ2 ð2:101Þ

2




2nd

cos �t
½1� sin2 �t� ¼ ðmþ 1=2Þ2 ð2:102Þ

2nd cos �t ¼ ðmþ 1=2Þ
: ð2:103Þ
It should be noted that as � increases, cos �t decreases, and hence the resonance
wavelength decreases. This effect can be important for the ‘‘off-angle’’ response
for optical interference filters. In general, d, cos �, and 
 can all be variables in a
given situation. If, by the configuration chosen, we arrange to keep �t constant, then
we get interference maxima at certain wavelengths (if white light is used), depending
on the local thickness of the film. If monochromatic light is used, we will see bright
and dark Fizeau fringes across the film that correspond to thickness variations. The
fringes are the loci of all points for which the film has a constant optical thickness.

Practically speaking, �t varies somewhat except when a collimated point source
is used to provide the input flux. However, the variation in cos �t is typically small
enough to neglect this effect. This is especially true if the aperture of the collection
lens is small, as is usually the case when viewing fringes directly by eye. Angular
variations can also be neglected for the cases wherer the collection lens is far from the
film being measured, or if the flux enters and leaves the film at nearly normal
incidence, where the change of cos �t with angle is minimum.

These conditions are satisfied in the Fizeau interferometer, often called a
Newton interferometer, when the surface to be tested is very nearly in contact
with a reference flat. As seen in Fig. 2.16, a slight tilt (�) between two planar glass
surfaces forms a wedge-shaped air film (n ¼ 1Þ between. For light incident at
approximately � ¼ 0, we can write the condition for a bright fringe (taking into
account phase shifts on reflection as before) as

2



½2h� ¼ ðmþ 1=2Þ2; ð2:104Þ

where 2h is the round-trip path length inside the air film of local height h. Thus,
bright fringes represent half-wave differences in film air-gap thickness, and are
formed whenever
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Figure 2.16 Interference in a wedge-shaped air gap between two flat surfaces.



h ¼ ðmþ 1=2Þ 

2
: ð2:105Þ

Referring to Fig. 2.17, if we look down from the top, we will see straight
fringes, assuming that both surfaces are flat. From the relationship

tan� � � ¼ 
=2

�x
; ð2:106Þ

we find that the fringe separation is

�x ¼ 
=2�: ð2:107Þ
These straight-line fringes do not indicate which way the wedge is oriented.
However, by physically pushing down on the low end of the wedge, more fringes
are added to the interferogram because the tilt angle is increased. Pushing on the
high end of the wedge decreases the tilt angle, and hence fewer fringes are seen.

Fringes that are not straight indicate a departure from flatness in the surface
being tested. Referring to Fig. 2.18, for a given peak departure from flatness �, the
peak height error in the piece is

height error ¼ �

�x




2
: ð2:108Þ

The interferogram of Fig. 2.18 does not show whether the peak error is a high spot
or a low spot. Remembering that a fringe is a locus of points of constant gap
dimension, a knowledge of which end of the air wedge is open will allow determina-
tion of the sign of the height error. Compared with a situation where equally spaced
fringes exist between two tilted flat surfaces, a high spot will displace the fringes
toward the open end of the wedge, and a low spot will displace the fringes toward the
closed end of the wedge. As seen in Fig. 2.19, this fringe displacement will keep the
local gap height constant along a fringe.

Newton’s rings are fringes of equal thickness seen between a flat and a curved
surface. If the sphere and the flat are in contact at the center of the curved surfrace,
there will be a dark spot at the center when viewed in reflected light, consistent with
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Figure 2.17 Relationship of wedge-shaped air gap to interferogram.



the  phase difference between dense-to-rare and rare-to-dense reflections. Referring
to Fig. 2.20, we can develop the expression for the fringe radii. By the Pythagorean
theorem, we can write a relationship between the air gap height h, the fringe radius r,
and the radius of curvature of the surface R:

ðR� hÞ2 þ r2 ¼ R2: ð2:109Þ
Under the approximation h2 	 r2, we find that

h � r2

2R
: ð2:110Þ

We can thus write the condition for a bright fringe (in reflection) as

2h ¼ ðmþ 1=2Þ
: ð2:111Þ
Substituting, we find the fringe radii are proportional to the square root of integers:

rbright fringe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ 1=2ÞR


p
: ð2:112Þ

Basic Wave Optics 61

Figure 2.18 Interferogram of a surface with a departure from flatness.

Figure 2.19 Fringe displacements for high and low areas.



For surfaces that are not spherical, the shape of the resulting Fizeau fringes can
provide a topographic characterization of the surface profile, because the fringes are
loci of points of constant thickness of the air gap. Addition of a small tilt between the
reference surface and the surface under test can allow quantitative measurement of
departure from flatness on the order of 
=20 or less, which would otherwise be
impossible to measure.

Using filtered arc sources, the Fizeau fringes must be observed in an air gap
that is within the coherence length of the source, a few micrometers at most. This
requires contact between the reference surface and the test surface. For situations
where this is undesirable, a laser-based Fizeau interferometer allows substantial
separation between the two surfaces, as seen in Fig. 2.21.

A wide variety of configurations for the laser-based Fizeau are possible, allow-
ing characterization of surface figure of both concave and convex surfaces, as well as
homogeneity of an optical part in transmission. Schematic diagrams of this instru-
mentation can be found in Malacara. [2] A Twyman–Green Interferometer, seen in
Fig. 2.22, allows for a distinct separation of the optical paths of the reference arm
and the test arm, and typically use a collimated point source such as a focused laser
beam for illumination.

The interpretation of Twyman–Green interferograms is essentially the same
as for Fizeau instruments, because in both cases light travels through the test
piece twice. This double-pass configuration yields a fringe-to-fringe spacing that
represents 
=2 of OPD. In a Mach–Zehnder interferometer, seen in Fig. 2.23, the
test piece is only traversed once, so that fringes represent one wavelength of
OPD.
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Figure 2.20 Construction for Newton’s rings.

Figure 2.21 Laser-based Fizeau interferometer.



2.2.3 Multiple-Beam Interference

In a typical fringes-of-equal-thickness configuration, where the refractive index dif-
ference is between air ðn ¼ 1:0Þ and uncoated glass ðn ¼ 1:5Þ, only the first two
reflected rays are significant, having powers referenced to the incoming beam of
4% and 3.69%. The next reflected beam has a power of 6� 10�3%. Only the two
primary beams interfere, producing cosine-squared fringes. The multiple reflected
beams do not effect the interference in any appreciable way. The situation changes
when the reflectivity of the interfaces is high. The example shown in Fig. 2.24 is for
surfaces having a power reflectivity of 90%. The falloff of power in the multiple
reflected beams is slower, both in reflection and in transmission. More rays will add
to produce the interference fringes. The fringe shape will be seen to be sharper than
sinusoidal, with narrower maxima in reflection and narrower minima in transmis-
sion. In Fig. 2.25 we show the multiple-beam case for a general surface reflectivity.

By our previous analysis of interference in a plane-parallel plate, the difference
in OPD between adjacent rays is

OPD ¼ 2nd cos �t; ð2:113Þ

and the resulting round-trip phase difference between adjacent rays is
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Figure 2.22 Twyman–Green interferometer.

Figure 2.23 Mach–Zehnder interferometer.



� ¼ 2



2nd cos �t: ð2:114Þ

These rays are parallel if the plate is parallel and can be brought to interfere at
infinity, or at the focus of a lens. The symbols t and r in Fig. 2.25 are the transmit-
tance and reflectance for the case of incidence from a low-index medium. The sym-
bols r 0 and t 0 apply for the case of incidence from a high-index medium. We can
write expressions for the complex amplitude of the total reflected er and transmitted
et beams, in terms of the amplitude of the incident beam e0 and the incremental
phase shift �:

er ¼ e0 rþ tt 0r 0ei� þ tt 0ðr 0Þ3ei2� þ tt 0ðr 0Þ5ei3� þ � � � þ tt 0ðr 0Þ2N�3eiðN�1Þ�
� 

;

ð2:115Þ
er ¼ e0 rþ tt 0r 0ei� 1þ ðr 0Þ2ei� þ ððr 0Þ2ei�Þ2 þ � � � þ ððr 0Þ2ei�ÞN�2


 �
 �
; ð2:116Þ

et ¼ e0tt
0 1þ ðr 0Þ2ei� þ ðr 0Þ4ei2� þ � � � þ ðr 0Þ2ðN�1ÞeiðN�1Þ�
� 

: ð2:117Þ

Letting N ! 1, we can sum Eq. (2.117) for the reflected amplitude using a geo-
metric series

lim
n!1

ð1þ aþ a2 þ � � � þ anÞ ! 1

1� a
ð2:118Þ
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Figure 2.24 Multiple reflected beams for a surface power reflectivity of 90%.

Figure 2.25 Multiple reflected beams for a general surface reflectivity.



to yield

er ¼ e0 rþ tt 0r 0ei�
1

1� ðr 0Þ2ei�
� �� �

: ð2:119Þ

Using the Stokes’ relations from Fig. 2.14, and Eqs (2.98) and (2.99)

r ¼ �r 0 ð2:120Þ
and

tt 0 ¼ 1� r2 ð2:121Þ
we find, for the reflected amplitude

er ¼ e0

rð1� ei�Þ
1� r2ei�

� �
: ð2:122Þ

We now express the ratio of reflected irradiance to incident irradiance:

Er

E0

¼ ere
�
r

e0e
�
0

¼ rð1� ei�Þ
1� r2ei�

rð1� e�i�Þ
1� r2e�i�

¼ 2r2ð1� cos �Þ
ð1þ r4Þ � 2r2 cos �

¼
2r

1� r2

� �2

sin2ð�=2Þ

1þ 2r

1� r2

� �2

sin2ð�=2Þ
:

ð2:123Þ

Using the power reflectance R ¼ r2, and with identification of the coefficient of
finesse F ,

F ¼ 2r

1� r2

� �2

¼ 4R

ð1� RÞ2 ; ð2:124Þ

we can write

Er

E0

¼ F sin2ð�=2Þ
1þ F sin2ð�=2Þ : ð2:125Þ

If there is no absorption in the plate, we can write an expression for the transmit-
tance

Et

E0

¼ 1� Er

E0

ð2:126Þ

Et

E0

¼ 1

1þ F sin2ð�=2Þ : ð2:127Þ

Equation (2.127) for transmittance is called the Airy function. For small surface
reflectivity, the reflection and transmission functions are nearly sinusoidal in nature.
For higher values of reflectivity (leading to larger values of F) the functions become
sharply peaked, as shown in the Fig. 2.26. It can be shown that the full width of the
Airy function at the 50% level of transmittance is equal to 4=

ffiffiffiffi
F

p
.
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2.3 COHERENCE

Issues of coherence are important in practical optical systems, because ideal sources
of light are never actually obtained. No source is truly monochromatic; there is
always a finite bandwidth, so we consider temporal coherence effects. Also, any
source of interest has a finite spatial extent; there are no true point sources. Thus,
we need to consider spatial coherence.

2.3.1 Temporal Coherence

The coherence time tc is the average time interval over which we can predict the
phase of a light wave. If the light wave were truly monochromatic (an infinite
sinusoid), one could predict the phase at all times, given the phase at one time.
Over time intervals that are short compared with tc, the light waves behave as a
coherent wavetrain, and interference fringes of good visibility can be formed. For
time intervals on the same order as tc, the fringe visibility begins to decrease. For
longer time intervals, interference is not possible because the wavetrain does not
have a stable phase relationship.
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Figure 2.26 Multiple-beam transmission and reflection curves as a function of the power

reflectance R.



Beginning with the basic relationship between wavelength and frequency and
speed of light c


� ¼ c; ð2:128Þ
we take the derivative with respect to 
 and find the following relationship between
the bandwidths in terms of frequency and wavelength:

�� ¼ �
c=
2: ð2:129Þ
The coherence time can be expressed as the inverse of the frequency bandwidth:

tc ¼ 1=��: ð2:130Þ
Some typical magnitudes of these quantities are given in the following exam-

ples. An He–Ne laser with mean wavelength 
 ¼ 0:63 mm and spectral bandwidth
�
 ¼ 5� 10�15 m will have a frequency bandwidth �� � 4MHZ and a correspond-
ing coherence time tc � 0:25 ms. For a filtered Hg-arc lamp with 
 ¼ 0:546 mm and
�
 ¼ 10�8 m, the frequency bandwidth will be � 1013Hz, corresponding to a coher-
ence time of � 10�13 s.

Coherence length lc is the distance that light travels during the coherence time:

lc ¼ ctc ¼ 
2=�
: ð2:131Þ
The coherence length is the maximum OPD allowed in an interference configuration
if fringes of high visibility are to be obtained. For the examples above, the He–Ne
laser had a coherence length of 75m, while the filtered Hg-arc lamp had a coherence
length of 30 mm. Another interesting example is visible light such as sunlight, with a
mean wavelength of 0.55 mm and a wavelength range from 0.4 to 0.7 mm. We find a
coherence length for visible sunlight on the order of 1 mm, which is just sufficient for
the operation of thin-film interference filters, for which the round-trip path in the
film is on the order of a micrometer.

2.3.2 Spatial Coherence

Spatial coherence is defined by the ability of two points on a source to form inter-
ference fringes. Using a Young’s interference configuration seen in Fig. 2.27, we ask
what is the visibility of the fringes that are formed in the observation plane, as a
function of the size of the source, the separation of the pinholes, and the distance
from the source to the pinhole plane.

Even for an extended incoherent source, where all points have an independent
random-phase relationship, we find interference fringes of good visibility are formed
in the observation plane for certain geometries. The key to understanding this phe-
nomenon is that, while independent point sources are incoherent and are incapable
of exhibiting mutual interference, the position of the fringes formed in a Young’s
interference setup will depend on the location of the point source that illuminates the
pinholes. For an extended source, a number of separate source locations correspond
to various point sources that comprise the extended source. If the radiation from
each of two such points gives rise to interference fringes that have maxima and
minima that are registered in the same location, the overall fringe pattern, while
just an incoherent superposition of the two individual fringe patterns, will still have
good fringe visibility. Because the mutual coherence of these two sources is measured

Basic Wave Optics 67



in terms of the visibility of the fringes that are formed, these two independent sources
are said to exhibit correlation. It is not that the sources themselves are made more
correlated by the process of propagation but that the corresponding fringe patterns
become co-registered. If the fringes formed by one source had maxima that were
located at the position of the minima of the other source, the resulting fringe pattern
would be of low visibility and the sources would be said to have small mutual
coherence.

We can put these ideas on an analytical footing using the VanCittert–Zernike
theorem, which states that the complex degree of coherence 	 is just the Fourier
transform of the spatial irradiance distribution of the source. We begin the devel-
opment by considering a particular off-axis source point at a location ys in the source
plane, as shown in Fig. 2.27. The distances from the source to each of the two
pinholes are r1 and r2, respectively. The fact that these two distances are different
gives rise to a phase shift in the fringes, so that the central maximum will not be
located on axis. We can write an expression for the irradiance as a function of yo in
the observation plane:

EðyoÞ ¼ Eo þRefEoe
j��e j2lyo=
xog; ð2:132Þ

where the phase shift is

�� ¼ 2



ðr1 � r2Þ: ð2:133Þ

Using the Pythagorean theorem, we have expressions for r1 and r2 in terms of the
axial distance xsp from the source plane to the pinhole plane, and the y position of
the two pinholes yp1 and yp2:

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2sp þ ðys � yp1Þ2

q
ð2:134Þ

and

r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2sp þ ðys � yp2Þ2

q
: ð2:135Þ

We form an expression for r1 � r2:

r1 � r2 ¼ x2sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðys � yp1Þ2
x2sp

s

� x2sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðys � yp2Þ2
x2sp

s

: ð2:136Þ

Using the binomial expansion of Eq. (2.6), we find
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Figure 2.27 Configuration for definition of complex degree of coherence.



r1 � r2 � xsp 1þ ðys � yp1Þ2
2x2sp

 !

� xsp 1þ ðys � yp2Þ2
2x2sp

 !

ð2:137Þ

r1 � r2 �
ðys � yp1Þ2 � ðys � yp2Þ2

2xsp
� y2p1 � y2p2 � 2ysðyp1 � yp2Þ

2xsp
: ð2:138Þ

So for the phase shift, Eq. (2.133), we find

�� ¼ 2


xxp
ðr1 � r2Þ �

2


xxp

1

2
ðy2p1 � y2p2Þ � ysðyp1 � yp2Þ

� �
: ð2:139Þ

If we now allow for an extended source, many such point sources will exist in
the source plane. Each source will independently form a Young’s fringe pattern in
the observation plane. Because these fringe patterns are each derived from a point
source that is incoherent with all the others, the resulting irradiance distribution in
the observation plane is simply the incoherent addition of the fringe patterns, each
with some value of spatial shift corresponding to the phase shift ��:

EðyoÞ ¼
ð

source

EoðysÞ dys þRe

ð

source

EoðysÞe j��ðysÞe j2lyo=
xo dys

8
<

:

9
=

;
: ð2:140Þ

Because the periodic phase term is independent of ys,

EðyoÞ ¼
ð

source

EoðysÞ dys þRe e j2lyo=
xo
ð

source

EoðysÞe j��ðysÞ dys

8
<

:

9
=

;
: ð2:141Þ

Let us introduce two new parameters, the total source exitance

Etotal �
ð

source

EoðysÞ dys ð2:142Þ

and the normalized source irradiance distribution

ÊEoðysÞ �
EoðysÞð

source

EoðysÞ dys
: ð2:143Þ

Then, noting that �� is a function of the pinhole coordinates, the complex degree of
coherence is defined as

	ðyp1; yp2Þ �
ð

source

ÊEoðysÞe j��ðysÞ dys: ð2:144Þ

Substituting in the expression for �� from Eq. (2.139),

	ðyp1; yp2Þ �
ð

source

ÊEoðysÞ exp j
2


xxp

1

2
ðy2p1 � y2p2Þ � ysðyp1 � yp2Þ

� �� �
dys

ð2:145Þ
and
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	ðyp1; yp2Þ � exp
j


xxp
ðy2p1 � y2p2Þ

� � ð

source

ÊEoðysÞ exp
�j2


xxp
ysðyp1 � yp2Þ

� �
dys:

ð2:146Þ
The first term in Eq. (2.146) is a purely imaginary phase factor; the integral following
is the Fourier transform of the normalized source brightness distribution function.
The change of variables

� ¼ yp1 � yp2


xsp
¼ l=xsp



¼ �p;s



ð2:147Þ

is used, where �p;s is the angular separation of the pinholes (with an in-plane separa-
tion l), as viewed from the source plane. With these substitutions, Eq. (2.141)
becomes

EðyoÞ ¼ Etotal 1þRe 	ðyp1; yp2Þe j2lyo=
xo
n oh i

: ð2:148Þ

Comparing this to the expression for double-slit interference, from Eqs (2.76) and
(2.78)

EðyoÞ ¼ 2Eo 1þRe e j2lyo=
xo
n oh i

; ð2:149Þ

we find the interpretation of the complex degree of coherence, 	ðyp1; yp2Þ. The mag-
nitude of 	 determines the contrast of the fringes produced in the observation plane,
and the phase portion of 	 determines the amount of phase shift relative to an on-
axis point source. Given the source size in the ys plane, 	 will be in pinhole ðypÞ
coordinates, and will depend on the specific values for 
 and xsp. However, 	 will be
independent of xo, because that distance scales the sizes of the fringe pattern and
changing that distance does not affect the fringe visibility.

As the first example, we consider a one-dimensional slit source of total length
L, which can be expressed in source-plane coordinates as

ÊEoðysÞ ¼ rectðys=LÞ: ð2:150Þ
Taking the Fourier transform and making the required change of variables from Eq.
(2.147), we find that

	 ¼
sin L

l


xsp

� �

L
l


xsp

� � ; ð2:151Þ

which exhibits a first zero of visibility at a pinhole separation l ¼ 
xsp=L.
The normalized source function for a two-dimensional uniform source can be

written as

ÊEoðrsÞ ¼
4

D2
cylðrs=DÞ; ð2:152Þ

which is Fourier transformed to yield
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	 ¼
2J1

Dl


xsp

� �

Dl


xsp

� � ; ð2:153Þ

which has its first zero of visibility at

Dl


xsp
¼ � 1:22; ð2:154Þ

corresponding to a pinhole spacing l ¼ 1:22xsp
=D:
Two point sources separated by a distance b can be described in normalized

form as

ÊEoðysÞ ¼ 1
2
½�ðys þ b=2Þ þ �ðys � b=2Þ�; ð2:155Þ

which, upon performing the transformation and the change of variables from Eq.
(2.147), can then be written as

	 ¼ cos 2
b=2


xsp
l

� �
: ð2:156Þ

In general, for a given size of an extended source, the farther away the source
is, we find that 	 will approach 1, for a given pinhole separation. This means that the
light from the extended source, if allowed to interfere after passing through pinholes
with that separation, would tend to form fringes with good visibility. This does not
mean that the extended source itself acquires a coherence by propagation, but that
the fringe patterns formed from each portion of the source would tend to become
more nearly registered as the source-to-pinhole distance xsp increases. Because the
fringe patterns add on an irradiance basis, an increasing registration of the fringe
maxima and minima will produce an overall distribution with higher visibility
fringes. Similar arguments apply when the pinhole separation decreases, for a
given source size and distance xsp.

2.4 POLARIZATION

Polarization effects on optical systems arise from the vectorial nature of the electric
field e, which is orthogonal to the direction of propagation of the light. Because of
the polarization dependence of the Fresnel equations, differences in the power dis-
tribution between reflected and transmitted rays occur when the electric field makes a
nonzero angle with the boundary between two media. Other effects arise in aniso-
tropic crystals from the fact that the refractive index of a material may depend upon
the polarization of the incident light. In this case, the trajectory of rays may depend
upon the orientation of the electric field to one particular preferred direction.

2.4.1 Polarizing Elements

Linear polarizers produce light polarized in a single direction from natural light,
which has light polarized in all directions. The amount of power transmitted through
a linear polarizer is at most 50% when the input light is composed of all polariza-
tions. Light that is already linearly polarized will be transmitted through a linear
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polarizer with a power transmittance that depends on the angle � between the electric
field of the input light, and the pass direction of the polarizer, according to Malus’
law:

�t ¼ �i cos
2 �: ð2:157Þ

The functions of a linear polarizer may be accomplished by long molecular
chains or by metallic wires with spacing less than the wavelength. These act by
allowing electric currents to flow in the long direction of the structure. Light with
an incident electric field oriented in this direction will be preferentially absorbed
because of joule heating arising in the currents, or may be reflected if the absorption
losses are small. Light having a polarization orthogonal to the long direction will
pass through the structure relatively unattenuated.

Another common means of producing linearly polarized light uses a stack of
dielectric plates, all oriented at Brewster’s angle to the original propagation direc-
tion. Each plate will transmit all of the p polarization component and some of the s
component. By arranging to have the incident light traverse many such plates of the
same orientation, the transmitted beam can be made to be strictly p polarized.

2.4.2 Anisotropic Media

Usually, optical materials are isotropic in that they have the same properties for any
orientation of electric field. However, anisotropic materials have a different refrac-
tive index for light polarized in different directions. The most useful case is a so-
called birefringent material that has two different refractive indices for light polar-
ized in two orthogonal directions. These refractive indices are denoted no, the ordin-
ary index, and ne, the extraordinary index. By convention, the ordinary index is less
than the extraordinary index. By properly orienting the polished faces of a slab of
birefringent material, it is possible to produce a retarder, which introduces a phase
delay ’ between the two orthogonal polarizations of a beam

’ ¼ 2


0
dðne � noÞ: ð2:158Þ

By proper choice of d, a phase delay of 908 can be produced. If linearly polarized
light is incident with its electric field at angle of 458 to the fast axis of such a slab, a
phase delay is introduced between the component of light polarized along the fast
axis and that polarized along the slow axis, producing circularly polarized light.

2.4.3 Optical Activity

Certain materials produce a continuous rotation of the electric field of polarized light
as the light traverses the bulk of the material. The most common substances having
this property are quartz and sugar dissolved in water, but the most important tech-
nologically are liquid crystals, which have the advantage that their optical activity
can be controlled by an external voltage. By placing such a material between ortho-
gonal linear polarizers, a variable amount of light can be made to pass through the
structure, depending upon the amount of rotation of the polarization.
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3

Basic Photon Optics

SOFIA E. ACOSTA-ORTIZ

Centro de Investigaciones en Optica, Aguascalientes, Mexico

3.1 NATURE OF QUANTUM OPTICS

The first indication of the quantum nature of light came in 1900 when M. Planck
discovered he could account for the spectral distribution of thermal light by postu-
lating that the energy of a harmonic oscillator is quantized. In 1905, Albert Einstein
showed that the photoelectric effect could be explained by the hypothesis that the
energy of a light beam was distributed in discrete bundles, later known as photons.

With the development of his phenomenological theory in 1917, Einstein also
contributed to the understanding of the absorption and emission of light from
atoms. Later it was shown that this theory is a natural consequence of the quantum
theory of electromagnetic radiation.

A remarkable feature of the theory of light is the large measure of agreement
between the predictions of classical and quantum theory, despite the fundamental
differences between the two approaches. For example, classical and quantum the-
ories predict identical interference effects and associated degrees of coherence for
experiments that use coherent or chaotic light, or light with coherence properties
intermediate between the two.

The vast majority of physical-optics experiments can be explained adequately
using the classical theory of electromagnetic radiation based on Maxwell’s equations.
Interference experiments of Young’s type do not distinguish between the predictions
of classical theory and quantum theory. It is only in higher-order interference experi-
ments involving the interference of intensities that differences between the predic-
tions of both theories appear. Whereas classical theory treats the interference of
intensities, in quantum theory the interference is still at the level of probability
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amplitudes. This is one of the most important differences between quantum theory
and classical theory.

The main tool in the quantum description of a beam of light is its photon
probability distribution, or more generally, its density operator. Photon-counting
experiments provide a fairly direct measurement of the photon probability distribu-
tion for all kinds of light embraced by the quantum theory. Such experiments form
the observational basis of quantum optics and play a leading role in the study of
quantum phenomena in light beams.

The field of quantum optics occupies a central position involving the interac-
tion of atoms with the electromagnetic field. It covers a wide range of topics, ranging
from fundamental tests of quantum theory to the development of new laser light
sources.

3.1.1 Young’s Experiment

Young’s experiment is one example of a phenomenon that can be explained by both
classical and quantum theory. In this experiment (Fig. 3.1), monochromatic light is
passed through a pinhole S so as to illuminate a screen containing two further
identical pinholes or narrow slits placed close together. The presence of the single
pinhole S provides the necessary mutual coherence between the light beams emerging
from the slits S1 and S2. The wavefronts from S intersect S1 and S2 simultaneously in
such a way that the light contributions emerging from S1 and S2 are derived from the
same original wavefront and are therefore coherent. These contributions spread out
from S1 and S2 as ‘‘cylindrical’’ wavefronts and interfere in the region beyond the
screen. If a second screen is placed as shown in the figure, then an interference
pattern consisting of straight line fringes parallel to the slits is observed on it.

The phase difference between the two sets of waves arriving at P from S1 and S2
depends on the path difference ðD2 �D1Þ as, in general, phase difference ¼ ð2=
Þ
(optical phase difference); then

� ¼ �2 � �1 ¼ ð2=
ÞðD2 �D1Þ; ð3:1Þ

where D1 and D2 are the distances from S1 and S2 to P, respectively.
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Figure 3.1 Schematic diagram showing Young’s double-slit interference experiment.



Bright fringes occur when the phase difference is zero or �2n, where n is an
integer; that is, when

ð2=
ÞðD2 �D1Þ ¼ �2n;

which is equivalent to D2 �D1 ¼ n
. Therefore, bright fringes will occur whenever
the path difference is an integral number of wavelengths. Similarly, dark fringes will
occur when � ¼ �ð2nþ 1Þ ; that is, when the path difference is an odd integral
number of half-wavelengths.

Bright fringes occur at points P a distance y from O such that

y ¼ �ðn
xÞ=H; ð3:2Þ
provided both y andH are small compared with x, whereH is the slit separation and
x is the distance from the screen containing the slits to the observing screen (Wilson
and Hawkes [1]).

The quantum theory of the experiment parallels the classical theory. The
Heisenberg electric-field operator at position r on the screen is given by

ÊEþðrtÞ ¼ u1ÊE
þðr1t1Þ þ u2ÊE

þðr2t2Þ; ð3:3Þ
where we have assumed for simplicity a single polarization direction for the light.

The superposition theory proceeds in a similar way to the classical treatment,
except that the classical intensity, proportional to an ensemble average of E�E, must
be replaced by the quantum-mechanical detector response, proportional to an aver-
age of the intensity operator ÊE�ÊEþ.

The intensity distribution is given by Loudon [2]:

hÎIðrtÞi ¼ 2"0c u21hÊE�ðr1t1ÞÊEþðr1t1Þi þ u22hÊE�ðr2t2ÞÊEþðr2t2Þi
n

þ u�1u2hÊE�ðr1t1ÞÊEþðr2t2Þi þ u1u
�
2hÊE�ðr2t2ÞÊEþðr1t1Þi

o
;

ð3:4Þ

where the angle-bracket expressions are evaluated as

hÊE�ðr1t1ÞÊEþðr2t2Þi ¼ Trð�ÊE�ðr1t1ÞÊEþðr2t2ÞÞ: ð3:5Þ
The two final expectation values in Eq. (3.4) are complex conjugates, and

bearing in mind the purely imaginary character of u1 and u2, the intensity reduces to

hÎIðrtÞi ¼ 2"0c u21hÊE�ðr1t1ÞÊEþðr1t1Þi þ u22hÊE�ðr2t2ÞÊEþðr2t2Þi
n

þ 2u�1u2RehÊE�ðr1t1ÞÊEþðr2t2Þi
o
:

ð3:6Þ

The electric-field operators in Eq. (3.6) are related to photon creation and destruc-
tion operators by

ÊEþðRtÞ ¼ i
X

k

ðh!k=2"0VÞ1=2"kâak expð�i!ktþ ik � RÞ ð3:7Þ

and

ÊE�ðRtÞ ¼ �i
X

k

ðh!k=2"0VÞ1=2"kâayk expði!kt� ik � RÞ; ð3:8Þ

where R is the position of the nucleus.
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The first two terms in Eq. (3.6) give the intensities on the second screen that
result from each pinhole in the absence of the other. The interference fringes result
from the third term, whose normalized form determines the quantum degree of first-
order coherence of the light.

Finer details of the quantum picture of the interference experiment are found in
Walls [3] and Loudon [2].

In Young’s experiment, each photon must be capable of interfering with itself
in such a way that its probability of striking the second screen at a particular point is
proportional to the calculated intensity at that point. This is possible only if each
photon passes partly through both pinholes, so that it can have a knowledge of the
entire pinhole geometry as it strikes the screen. Indeed, there is no way in which a
photon can simultaneously be assigned to a particular pinhole and contribute to the
interference effects. If a phototube is placed behind one of the pinholes to detect
photons passing through, then it is not possible to avoid obscuring that pinhole, with
consequent destruction of the interference pattern (Loudon [2]). These remarks are
in agreement with the principles of quantum mechanics.

In the 1960s improvements in photon counting techniques proceeded along
with the development of new laser light sources. Then, light from incoherent (ther-
mal) and coherent (laser) sources could be distinguished by their photon counting
properties.

It was not until 1975, when H. J. Carmichael and D. F. Walls predicted that
light generated in resonance fluorescence from a two-level atom would exhibit
photon antibunching, that a physically accessible system exhibiting nonclassical
behavior was identified.

3.1.2 Squeezed States

Nine years after the observation of photon antibunching, another prediction of the
quantum theory of light was observed: the squeezing of quantum fluctuations. To
understand what squeezing of quantum fluctuations means remember that the elec-
tric field for a nearly monochromatic plane wave may be decomposed into two
quadrature components with a time dependence cos!t and sin!t, respectively. In
a coherent state, the closest quantum counterpart to a classical field, the fluctuations
in the two quadratures are equal and minimize the uncertainty product given by
Heisenberg’s uncertainty relation. The quantum fluctuations in a coherent state are
equal to the zero-point vacuum fluctuation and are randomly distributed in phase. In
a squeezed state the quantum fluctuations are no longer independent of phase. One
quadrature phase may have reduced quantum fluctutions at the expense of increased
quantum fluctuations in the other quadrature phase such that the product of the
fluctuations still obeys Heisenberg’s uncertainty relation.

Then, squeezed states have been considered as a general class of minimum-
uncertainty states. A squeezed state may, in general, have less noise in one quad-
rature than a coherent state. To satisfy the requirements of a minimum-uncertainty
state, the noise in the other quadrature must be greater than that of a coherent state.
Coherent states are a particular member of this more general class of minimum
uncertainty states with equal noise in both quadratures.

Some applications of squeezed light are interferometric detection of gravita-
tional radiation and sub-shot-noise phase measurements (Walls and Milburn [4]).

78 Acosta-Ortiz



3.1.3 The Hanbury-Brown and Twiss Experiment

The experiment carried on by Hanbury-Brown and Twiss [5] in 1957 let us see more
clearly the differences between classical and quantum theories. The schematic dia-
gram of the experiment is shown in Fig. 3.2. In the experiment, each photon that
strikes the semitransparent mirror is either reflected or transmitted, and can only be
registered in one of the phototubes. Therefore, the two beams that arrive at the
detectors are not identical. The incident photons have equal probabilities of trans-
mission or reflection and their creation and destruction operators can be written as

âay ¼ ðâay1 þ âa
y
2 Þ=21=2

âa ¼ ðâa1 þ âa2Þ=21=2;
ð3:9Þ

where the 21=2 factors ensure that all like pairs of creation and destruction operators
have the same commutation rule:

½âa; âay� ¼ âaâay � âayâa ¼ 1:

A state with n incident photons has the form

n >¼ ðn!Þ�1=2ðâayÞn0 >;
and the probability Pn1;n2 that n1 photons are transmitted through the mirror to
detector 1 while n2 are reflected to detector 2. Pn1;n2 is given by

Pn1;n2 � hn1; n2; ni2 ¼ n!=n1!n2!2
n:

We can use the probability distribution to obtain average properties of the photon
counts in the two arms of the experimental system. The mean numbers of counts n1
and n2 are both equal to (1/2) (Loudon [2]).

�nn1 ¼ ð1=2Þn ð3:10Þ

�nn2 ¼ hn âa
y
2 âa2 ni ¼ ð1=2Þn; ð3:11Þ

and the correlation is
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Figure 3.2 Experimental arrangement for an intensity interference experiment (Hanbury-

Brown and Twiss [5]).



hâay1 âay2 âa2âa1i � hn1n2i ¼ ð1=4Þnðn� 1Þ; ð3:12Þ
hn1n2i indicates the average of the product of the photon counts at the two photon
photomultipliers.

Table 3.1 shows the photon-count distributions and the degrees of second-
order coherence ðgð2Þð�Þ), for small numbers n of incident photons.

The Hanbury-Brown and Twiss experiment was designed to produce the aver-
age

hðn1 � �nn1Þðn2 � �nn2Þi
�nn1 �nn2

¼ gð2Þð�Þ � 1; ð3:13Þ

where gð2Þð�Þ is given by

gð2Þð�Þ ¼ hn1n2i= �nn1 �nn2: ð3:14Þ
The normalized correlation gives (Loudon [2]):

hðn1 � �nn1Þðn2 � �nn2Þi
�nn1 �nn2

¼ �1=n: ð3:15Þ

From the above analysis it is seen that nonclassical light with a degree of second
order smaller than unity occurs in the Hanbury-Brown and Twiss experiment
because the photons must make a choice between reflection and transmission at
the mirror. This is an essential quantum requirement. The quantum analysis of
the Hanbury-Brown and Twiss experiment is readily extended to incident beams
that have some superposition of statistical mixture of the number states of a single
mode.

Later in this chapter some of the most actual quantum effects and their appli-
cations will be discussed.

3.2 NONLINEAR OPTICS

Nonlinear optics is the study of the phenomena that occur as a consequence of the
modification of the optical properties of matter due to the presence of light. In
principle, only laser light has the intensity sufficient to modify the optical properties

80 Acosta-Ortiz

Table 3.1 Photon Distribution in a Hanbury-Brown and Twiss Experiment

n n1 n2 �nn1 ¼ �nn2 hn1n2i gð2Þð�Þ

1
1
0

�
0
1 1/2 0 0

2

2
1
1
0

8
>><

>>:

0
1
1
2

1 1=2 1=2

3 — — 3/2 3/2 2/3

4 — — 2 3 3/4



of matter. In fact, the start of the nonlinear optics field is frequently considered as
the start of second-harmonic generation by Franken et al. [6] in 1961, soon after the
demonstration of the first laser by Maiman in 1960. Nonlinearity is intended in the
sense that nonlinear phenomena occur when the response of the material to an
applied electric field depends in a nonlinear manner on the magnitude of the optical
field.

As an example, second-harmonic generation occurs as a result of the atomic
response that depends quadratically on the magnitude of the applied optical field. As
a consequence, the intensity of the generated light at the frequency of the second
harmonic tends to increase as the square of the intensity of the applied laser light.

To better understand the significance of nonlinear optics, let us consider the
dependence of the dipolar moment by unitary volume: that is, the polarization PðtÞ
on the magnitude EðtÞ of the applied optical field. In the linear case, the relation is
given by

PðtÞ ¼ �ð1ÞEðtÞ; ð3:16Þ
where � is the constant of proportionality known as ‘‘linear susceptibility.’’ In non-
linear optics, the expression (3.16) can be generalized by expressing PðtÞ as a power
series on the magnitude of the field EðtÞ:

PðtÞ ¼ �ð1ÞEðtÞ þ �ð2ÞE2ðtÞ þ �ð3ÞE3ðtÞ þ � � �

PðtÞ � P1ðtÞ þ P2ðtÞ þ P3ðtÞ þ � � � ; ð3:17Þ
where �ð2Þ and �ð3Þ are known as the second- and third-order nonlinear optical
susceptibilities, respectively.

In general, PðtÞ and EðtÞ are nonscalar quantities but vectorial ones. In such
case, �ð1Þ becomes a second-rank tensor, �ð2Þ a third-rank tensor, �ð3Þ a fourth-rank
tensor, etc.

We refer then to P2ðtÞ ¼ �ð2ÞE2ðtÞ as second-rank nonlinear polarization and to
P3ðtÞ ¼ �ð3ÞE3ðtÞ as third-rank nonlinear polarization, each of which gives rise to
different physical phenomena.

Furthermore, second-order nonlinear optical interactions can only occur in
noncentrosymmetric crystals—that is, in crystals that no possess inversion symme-
try—while third-order nonlinear phenomena can occur in any medium regardless of
whether it possesses inversion symmetry or not.

Optical nonlinearity manifests by changes in the optical properties of a medium
as the intensity of the incident light wave increases or when two or more light waves
are introduced into a medium.

Optical nonlinearity can be classified into two general categories: extrinsic and
intrinsic (Baldwin [7]).

. Extrinsic Optical Nonlinearity. Extrinsic optical nonlinearity is the change in
the optical properties of the medium that is directly related to a change in
the composition of the medium as a result of the absorption or emission of
light. This change can be a change in the relative population of the base and
excited states or in the number of optically effective electrons. The laser
medium itself, certain dyes used for laser Q-switching, and laser mirrors
with semiconductor covers have this property.

Basic Photon Optics 81



. Intrinsic Optical Nonlinearity. The optical phenomena with intrinsic nonli-
nearity are violations to the superposition principle that arises from the
nonlinear response of the individual molecules or unitary cells to the fields
of two or more light waves. This category includes a nonlinear response to a
single light beam, as it is possible to consider any light beam as the sum of
two or more similar light waves, identical in polarization, frequency, and
direction.

In any type of nonlinearity, the optical properties of the medium depend on the
intensity of the light and therefore it is useful to classify them according to the
intensity of the light involved. For example, the intensity of the second-harmonic
light at 
 ¼ 0:53 mm generated in lithium niobatium by the laser radiation of neo-
dymium is observed to be proportional to the square of the intensity of the funda-
mental 1.06 mm and therefore is classified as a second-order nonlinear process.

Every advance in the development of optics has involved the development of
advanced technology. The quantum theory, for example, rests to a high degree in
highly sensitive and precise spectroscopic techniques. The key that opened the doors
to nonlinear optics was the development of the maser. This device uses stimulated
emission to generate radiation of narrow bandwidth in the range of microwaves from
an adequate prepared medium. Later, the range was extended to optical frequencies
by the development of the laser, which allows the generation of highly monochro-
matic light beams that can be concentrated at very high intensities.

A peculiar property of the laser, essential to nonlinear optics, is its high degree
of coherence; i.e., the several monochromatic light waves are emitted in a synchro-
nized way, being in phase both in time and space. This property allows us to con-
centrate the radiation from a laser into a small area, whose size is only limited by
diffraction and by the optical quality of the laser and the focusing system. In this
way, it is possible to obtain fields of local radiation that are extremely intense but in
small volumes.

Coherence also allows us to combine small contributions of nonlinear interac-
tions due to very separated parts of an extended medium to produce an appreciable
result. For this reason, it is necessary to use laser light as the light power, to be able
to observe optical nonlinear phenomena.

As examples of second- and third-order nonlinear processes, we have (the
number in parenthesis indicates the order of the optical nonlinearity):

. Second-harmonic generation (2)

. Rectification (2)

. Frequency generation of sum and difference (2)

. Third-harmonic generation (3)

. Parametric oscillation (2)

. Raman scattering (2)

. Inverse Raman effect (2)

. Brillouin scattering (2)

. Rayleigh scattering (2)

. Inverse Faraday effect (3)

. Two photons absorption (2)

. Parametric amplification (2)

. Induced reflectivity (2)
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. Intensity-dependent refraction index (3)

. Induced opacity (2)

. Optical Kerr effect (3)

. Four-wave mixing (3)

. Electro-optic effect (2)

. Birefringence (2)

We now describe some of these nonlinear phenomena.

3.2.1 Second-Harmonic Generation

The essential feature of second-harmonic generation (SHG) is the existence of a
perceptible dependence of the electronic polarization on the square of the electric
field intensity at optical frequencies, in addition to the usual direct dependence.

Practically all SHG materials are birefringent crystals. When its SHG is under
consideration, the ith component of the total charge polarization P in a birefringent
medium contains two contributions:

Pi ¼ P
ð!Þ
i þ P

ð2!Þ
i i ¼ 1; 2; 3 ð3:18Þ

where

P
ð!Þ
i ¼ "0�

ð!Þ
ij E

ð!Þ
j i; j ¼ 1; 2; 3 ð3:19Þ

and

P
ð2!Þ
i ¼ "0�

ð2!Þ
ijk E

ð!Þ
j E

ð!Þ
k i; j; k ¼ 1; 2; 3: ð3:20Þ

The first term, P
ð!Þ
i , accounts for the linear part of the response of the medium. The

second one, P
ð2!Þ
i , is quadratic in the electric field, and introduces the third-rank

tensor �ð2!Þijk . The superscripts (!) and (2!) are now necessary to distinguish the
frequencies at which the respective quantities must be evaluated. Thus, two sinusoi-
dal electric field components at frequency ! acting in combination exert a resultant
containing the double frequency 2! (and a dc term). The susceptibility factor �ijk
must be evaluated at the combination frequency.

The components of the nonlinear optical coefficients for three SHG crystals are
given in Table 3.2. The nonlinear optical coefficient is defined as d

ð2!Þ
ijk ¼ ð"0=2Þ�ð2!Þijk .

Only noncentrosymmetric crystals can possess a nonvanishing dijk tensor. This
follows from the requirement that in a centrosymmetric crystal, a reversal of the
signs of E

ð!Þ
j and E

ð!Þ
k must cause a reversal in the sign of P

ð2!Þ
i and not affect the

amplitude (Yariv [8]).
It follows that since no physical significance is attached to the order of the

electric field components, all the dijk coefficients that are related by a rearrangement
of the order of the subscripts are equal. This statement is known as the Kleinman’s
conjecture (Kleinman [9]). The Kleinman conjecture applies only to lossless media,
but since most nonlinear experiments are carried out in the lossless regime, it is a
powerful practical relationship.

Table 3.3 gives a list of the nonzero components for the nonlinear optical
coefficients of a number of crystals.

The first experiment carried to demonstrate optical second-harmonic genera-
tion was performed by Franken et al. [6] in 1961. A sketch of the original experiment
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is shown in Fig. 3.1. In this experiment a ruby laser beam at 694.3 nm was focused on
the front surface of a crystalline quartz plate. The emergent radiation was examined
with a spectrometer and was found to contain radiation at twice the input frequency,
that is at 
 ¼ 347:15 nm. The conversion efficiency in this experiment was very poor,
only about 10�8. In the last few years, the availability of more efficient materials,
higher intensity lasers, and index-matching techniques have resulted in conversion
efficiencies approaching unity.

Mathematical details to obtain the conversion efficiency as well as examples of
second-harmonic generation can be found in Yariv [8]; see also Zyss et al. [10].

3.2.2 Raman Scattering

The Raman effect is one of the first discovered and best-known nonlinear optical
processes. It is used as a tool in spectroscopic studies, and also in tunable laser
development, high-energy pulse compression, etc. Several review articles exist that
summarize the earlier work on the Raman effect (Bloembergen [11], Penzkofer et al.
[12]).

Raman scattering involves the inelastic scattering of light from a crystal. The
Raman effect belongs to a class of nonlinear optical processes that can be called
quasi-resonant (Mostowsky and Raymer [13]). Although none of the fields is in
resonance with the atomic or molecular transitions, the sum or difference between
two optical frequencies equals a transition frequency.

Raman scattering is one of the physical processes that can lead to spontaneous
light scattering. By spontaneous light scattering we mean light scattering under
conditions such that the optical properties of the material system are unmodified
by the presence of the incident light beam. Figure 3.4 shows a diagram for an
incident beam on a scattering medium (a) and the typical observed spectrum (b)
in which Raman, Brillouin, Rayleigh, and Rayleigh-wing features are present. By
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Table 3.2 Components of the Nonlinear Optical Coefficient for Several Crystals

Component i Components j, k

x;x y; y z; z y; z x; z x; y
Barium titanate

x 0 0 0 0 d15 0

y 0 0 0 d15 0 0

z d31 d31 d33 0 0 0

Potassium dihydrogen phosphate (KDP)

x 0 0 0 d14 0 0

y 0 0 0 0 d14 0

z 0 0 0 0 0 d36

Quartz

x d11 �d11 0 d14 0 0

y 0 0 0 0 �d14 �2d11
z 0 0 0 0 0 0



definition, those components that are shifted to lower frequencies are known as
Stokes’ components, and those that are shifted to higher frequencies are known as
anti-Stokes’ components. Typically the Stokes’ lines are orders of magnitude more
intense than the anti-Stokes’ lines. In Table 3.4 a list of the typical values of the
parameter describing these light-scattering processes is given.

Raman scattering results from the interaction of light with the vibrational
modes of the molecules constituting the scattering medium and can be equivalently
described as the scattering of light from optical phonons.

Light scattering occurs as a consequence of fluctuations in the optical proper-
ties of a material medium. A completely homogeneous material can scatter light only
in the forward direction (Fabelinskii [15]).
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Table 3.3 The Nonlinear Optical Coefficients of a Number of Crystals (Yariv [8])

Crystal d
ð2!Þ
ijk in units of ð1=9Þ � 10�22 MKS

LiIO3

NH4H2PO4

(ADP)

KH2PO4

(KDP)

KD2PO4

KH2ASO4

Quartz

AlPO4

ZnO

CdS

GaP

GaAs

BaTiO4

LiNbO3

Te

Se

Ba2NaNb5O15

Ag3AsS3
(proustite)

CdSe

CdGeAs2
AgGaSe2
AgSbS3
ZnS

d15 ¼ 4:4
d36 ¼ 0:45
d14 ¼ 0:50� 0:02
d36 ¼ 0:45� 0:03
d14 ¼ 0:35
d36 ¼ 0:42� 0:02
d14 ¼ 0:42� 0:02
d36 ¼ 0:48� 0:03
d14 ¼ 0:51� 0:03
d11 ¼ 0:37� 0:02
d11 ¼ 0:38� 0:03
d33 ¼ 6:5� 0:2
d31 ¼ 1:95� 0:2
d15 ¼ 2:1� 0:2
d33 ¼ 28:6� 2

d31 ¼ 30� 10

d36 ¼ 33

d14 ¼ 80� 14

d14 ¼ 72

d33 ¼ 6:4� 0:5
d31 ¼ 18� 2

d15 ¼ 17� 2

d15 ¼ 4:4
d22 ¼ 2:3� 1

d11 ¼ 517

d11 ¼ 130� 30

d33 ¼ 10:4� 0:7
d32 ¼ 7:4� 0:7
d22 ¼ 22:5
d36 ¼ 13:5
d31 ¼ 22:5� 3

d36 ¼ 363� 70

d36 ¼ 27� 3

d36 ¼ 9:5
d36 ¼ 13



Spontaneous Raman scattering was discovered in 1928 by Raman. To observe
the effect, a beam of light illuminates a material sample and the scattered light is
observed spectroscopically. In general, the scattered light contains frequencies dif-
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Figure 3.4 (a) Diagram for an incident beam on a scattering medium; (b) typical observed

Raman, Brillouin, Rayleigh, and Rayleigh-wing spectra.

Figure 3.3 Arrangement used for the first experimental demonstration of optical second-

harmonic generation (Franken et al. [6]).



ferent from those of the excitation source; i.e., contains Stokes’ and anti-Stokes’
lines. Raman–Stokes’ scattering consists of a transition from the ground state i to
a virtual level associated with the excited state f 0 followed by a transition from the
virtual level to the final state f . Raman–anti-Stokes’ scattering entails a transition
from level f to level i with f 0 serving as the intermediate level (Fig. 3.5). The anti-
Stokes’ lines are typically much weaker than the Stokes’ lines because, in thermal
equilibrium, the population of level f is smaller than the population in level i by the
Boltzmann factor: expð�h!ng=kTÞ.

The Raman effect has important spectroscopic applications because transitions
that are one-photon forbidden can often be studied using Raman scattering. Figure
3.6 shows a spectral plot of the spontaneous Raman emission from liquid N2

obtained by Clements and Stoicheff [16] in 1968. In Table 3.5 the Raman scattering
cross sections per molecule of some liquids are given.

Typically, the spontaneous Raman scattering process is a rather weak process.
The scattering cross section per unit volume for Raman–Stokes’ scattering in con-
densed matter is only about 10�6 cm�1. Hence, in propagating through 1 cm of the
scattering medium, only approximately 1 part in 106 of the incident radiation will be
scattered into the Stokes’ frequency. However, under excitation by an intense laser
beam, highly efficient scattering can occur as a result of the stimulated version of the
Raman scattering process.

The ability of lasers to produce light of extremely high intensity makes them
especially attractive sources for Raman spectroscopy of molecules by increasing the
intensity of the anti-Stokes’ components in the Raman effect. Each resulting pair
of lines, equally displaced with respect to the laser line, reveals a characteristic
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Table 3.4 Typical Values of the Parameters Describing Several Light-Scattering Processes

(Boyd [14])

Process

Shift

(cm�1)

Linewidth

(cm�1)

Relaxation time

(sec)

Gain*

(cm/MW)

Raman

Brillouin

Rayleigh

Rayleigh-wing

1000

0.1

0

0

5

5� 10�3

5� 10�4

5

10�12

10�9

10�8

10�12

5� 10�3

10�2

10�4

10�3

*Gain of the stimulated version of the process.

Figure 3.5 Energy level diagrams for (a) Raman–Stokes’ and (b) Raman–anti-Stokes’

scattering.



vibrational frequency of the molecule. Compared to the spontaneous Raman scat-
tering, stimulated Raman scattering is a very strong scattering process: 10% or
more of the energy of the incident laser beam is often converted into the Stokes’
frequency.

Stimulated Raman scattering was discovered by Woodbury and Ng [18] in
1962 and described by Eckhardt et al. [19] in the same year. Later some authors
made a review of the properties of stimulated Raman scattering; see, for example,
Bloembergen [11], Kaiser and Maier [20], Penzkofer et al. [12], and Raymer and
Walmsley [21].
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Figure 3.6 Spontaneous Raman emission from liquid N2 (Clements and Stoicheff [16]).

Table 3.5 Raman Scattering Cross Sections per Molecule of Some Liquids (Kato and

Takuma [17])

Raman lines

Wavelength of the

exciting light

(nm)

Raman scattering cross

section (d�=d�Þ
(10�29 cm2 molecule�1 � sr�1)

C6H6

992 cm�1

Benzene

C6H5CH3

1002 cm�1

Chlorobenzene

C6H5NO2

1345 cm�1

Nitrobenzene

CS2
656 cm�1

CCl4
459 cm�1

632.8

514.5

488.0

632.8

514.5

488.0

632.8

514.5

488.0

694.3

632.8

514.5

488.0

632.8

514.5

488.0

0:800� 0:029
2:57� 0:08
3:25� 0:10

0:353� 0:013
1:39� 0:05
1:83� 0:06

1:57� 0:06
9:00� 0:29
10:3� 0:4

0.755

0:950� 0:034
3:27� 0:10
4:35� 0:13

0:628� 0:023
1:78� 0:06
2:25� 0:07



One of the earliest methods of accomplishing Raman laser action employed a
repetitively pulsed Kerr cell as an electro-optical shutter, or ‘‘Q-switch,’’ enclosed
within the laser cavity, together with a polarizing prism, as shown in Fig. 3.7
(Baldwin [7]). This allows laser action to occur only during the brief time intervals
when the Kerr cell is transmitting; the laser avalanche then discharges energy stored
over the much longer time interval since the preceding pulse on the Kerr cell. It was
observed that for sufficiently high laser-pulse intensity, the 694.3 nm ruby laser line is
accompanied by a satellite line at 767 nm which originates in the nitrobenzene of the
Kerr cell. The satellite line increases markedly in intensity as the laser output is
increased above a threshold level of the order of 1MW/cm2, persists only while
the laser output is above this threshold, shares the direction of the laser radiation,
and becomes spectrally narrower at higher intensities. Its wavelength agrees with
that of the known Raman–Stokes’ shift in nitrobenzene. The conclusion was there-
fore reached that the phenomenon is a stimulated Raman scattering process,
pumped by the laser beam and resonated by the end-reflectors of the laser.

Raman media are now widely used in conjunction with pulsed lasers to gen-
erate coherent radiation at frequencies other than those currently accessible to direct
laser action. This is one of the powerful advantages of the Raman scattering process
as a spectroscopic technique. Table 3.6 gives some properties of stimulated Raman
scattering for several materials.

For detailed theoretical discussions of the Raman process, see Baldwin [7],
Boyd [14], Yariv [8], Mostowsky and Raymer [13]. For experimental techniques,
see Demtröder [22]; see also Ederer and McGuire [23].

3.2.3 Rayleigh Scattering

The spectrum of scattered light generally contains an elastic contribution, where the
scattered frequency !s equals the incident frequency !, together with several inelastic
components, where !s differs from !. The elastic component is known as Rayleigh
scattering.

Rayleigh scattering is the scattering of light from nonpropagating density fluc-
tuations. It is known as elastic or quasielastic scattering because it induces no fre-
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Figure 3.7 Experimental setup for pulsed operation of a laser employing a Kerr cell as an

electro-optical shutter (Baldwin [7]).



quency shift and can be described as scattering from entropy fluctuations (Boyd
[14]).

Rayleigh-wing scattering (i.e., scattering in the wing of the Rayleigh line) is
scattering from fluctuations in the orientation of anisotropic molecules. Since the
molecular reorientation process is very rapid, this component is spectrally very
broad. This type of scattering does not occur for molecules with an isotropic polar-
izability tensor.

Imagine a gaseous medium subdivided into volume elements in the form of
small cubes of 
=2 on a side, as shown in Fig. 3.8 (Baldwin [7]). The radiation
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Table 3.6 Frequency Shift �v, Scattering Cross Section Nðd�=d�Þ of Spontaneous Raman

Scattering (N is the number of molecules per cm3) and Steady-State Gain Factor gs=I1 of

Stimulated Raman Scattering in Different Substances (
1 ¼ 694:3 nm). Linewidths and

Temperatures are also Indicated (Kaiser and Maier [20])

Substance

Frequency

shift �v
(cm�1)

Linewidth ��
(cm�1)

Cross section

Nðd�=d�Þ
�108

(cm�1 ster�1Þ

Gain factora

gs=I1 in units of

10�3

(cm/MW)

Temperature

(K)

Liquid O2

Liquid N2

Benzene

CS2
Nitrobenzene

Bromobenzene

Chlorobenzene

Toluene

LiNbO3

Li6NbO3

Ba2NaNb5O15

LiTaO3

Li6TaO3

SiO2

H2 gas

1552

2326.5

992

655.6

1345

1000

1002

1003

256

258

637

643

256

266

637

643

650

655

201

215

600

608

467

4155

0.117

0.067

2.15
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a To obtain the gain constant gsðcm�1Þ at �s, multiply by �s=�1 and by the intensity in MW=cm2.



scattered by two adjacent elements will be in phase in the forward direction but
oppositely phased at 908; if they contain exactly equal numbers of molecules,
there will be no 908 scattering. However, for green light, 
 ¼ 500 nm, the volume
of each element will be 
3=8 ¼ 1:6� 10�20 m3, and at atmospheric pressure, it will
contain approximately

N
3=8 ¼ ½2:7� 1025 m�3� � ½1:6� 10�20 m3� ¼ 4:3� 105 molecules;

where N is the density of molecules. The root-mean-square fluctuation, approxi-
mately 600 molecules, is 0.15% of the total number. At shorter wavelengths, these
numbers are less, but the fluctuations become more pronounced. These produce the
net scattering. This phenomenon is responsible for the blue color of the sky. The
scattered power is proportional to the total number of scattering centers and to the
fourth power of the frequency. The scattered light is incoherent.

The Rayleigh scattering reduces the intensity of a light beam without actually
absorbing the radiation. Despite the regular arrangement of atoms in a crystalline
media, which reduces the fluctuations, light can also be scattered by crystals, as
thermal motion causes slight random fluctuations on density. Then we can observe
Rayleigh scattering not only in gases and liquids but also in crystalline media.

Details of how to obtain the total average cross sections can be found in
Loudon [2] and Chu [24]; other recommended texts are Bloembergen [25], Khoo
et al. [26], and Keller [27].

3.3 MULTIPHOTON PROCESSES

Multiphoton processes refer to the processes where transitions between discrete
levels of atoms are produced by the simultaneous absorption of n photons.

Multiphoton transitions are found whenever electrons bound in atoms or
molecules interact with sufficiently intense electromagnetic radiation. Multiphoton
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Figure 3.8 Coherent scattering of light by elementary dipoles induced in a medium by an

electromagnetic wave incident from the left. The wavelets reradiated by the dipoles interfere

constructively in the forward direction while those at 908 interfere destructively (Baldwin [7]).



ionization is the ultimate outcome of multiphoton transitions provided the radiation
is reasonably intense, which is usually taken to mean about 106 W=cm2, or more, at
optical frequencies. With intense sources and interaction times of the order of a
nanosecond or more, ionization may be expected for atomic gases, while dissocia-
tion, with varying degrees of ionization, for molecular gases.

Multiphoton processes have features that are different from the traditional
interaction of radiation with atoms and molecules. First, the interactions are non-
linear; secondly, a multiphoton transition probes atomic and molecular structure in a
more involved and detailed way than can be imagined in single-photon spectroscopy;
thirdly, owing to the high intensities available, extremely high levels of excitation can
be reached, thus introducing qualitatively new physics; and fourthly, new applica-
tions such as isotope separation, generation of coherent radiation at wavelengths
shorter than ultraviolet, and plasma diagnostics can be realized.

Multiphoton processes are one of the main sources of nonlinearity in the
interaction of intense laser fields with atoms and molecules. Resonant multiphoton
processes are of special interest because the multiphoton transition probabilities are
enhanced under resonance conditions, and can be observed in fields of moderate
intensity. The resonance is intended in the sense that the sum of the energies of the n
photons is equal to the energy difference between the two concerned levels. It
excludes the case where an intermediate level is resonantly excited during the process.
However, some authors have to deal with the problem of processes involving both
types of resonance (Feld and Javan 1969, Hänsch and Toschek [28]).

The first detailed theoretical treatment of two-photon processes was reported
more than 60 years ago, by Göppert-Mayer [29] in 1931. However, experiments
could not be realized until 30 years later, when lasers were available (Kaiser and
Garret [30], Hopfield et al. [31]).

3.3.1 Two-Photon Absorption

Two-photon absorption can be described by a two-step process from initial level ji >
via a ‘‘virtual level’’ jv > to the final level jf > as shown in Fig. 3.9. The virtual level
is represented by a linear combination of the wave functions of all real molecular
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Figure 3.9 Energy level diagrams for several two-photon transitions: (a) resonant two-

photon absorption with a real intermediate level jk >; (b) nonresonant two-photon absorp-

tion; (c) Raman transition; and (d) resonant and anti-Stokes’ Raman scattering.



levels jkn) which combine with ji > by allowed one-photon transitions. The excita-
tion of jv > is equivalent to the off-resonance excitation of all these real levels jkn).
The probability amplitude for a transition ji >! jv > is represented by the sum of
the amplitudes of all allowed transitions ji >! jk > with off-resonance detuning
(!� !ik). The same arguments apply to the second step jv >! jf >.

The probability of two-photon absorption at low intensity is proportional to
the square of the intensity of the light field I2 (in the case of a single laser beam), the
probability of absorption of each photon being proportional to I . In the case of n-
photon transitions, the probability of excitation is proportional to In. For this
reason, pulsed lasers are generally used, in order to have sufficiently large peak
powers. The spectral linewidth of these lasers is often comparable to or even larger
than the Doppler width.

For a molecule moving with a velocity v, the probability Aif for a two-photon
transition between the ground state Ei and an excited state Ef , induced by the photons
h!1 and h!2 from two light waves with wave vectors k1 and k2, polarization unit
vectors êe1, êe2, and intensities I1, I2, respectively, can be written as (Demtröder [22]):

Aif /
	if I1I2

½!if � !1 � !2 � v � ðk1 þ k2Þ�2 þ ð	if =2Þ2
ð3:21Þ

�
X

k

������
Rik � êe1 � Rkf � êe2

!if � !1 � !2 � v � k1
þ Rik � êe2 � Rkf � êe1
!if � !1 � !2 � v � k2

�����

2

:

The first factor gives the spectral line profile of the two-photon transition of a single
molecule. It corresponds exactly to that of a single-photon transition of a moving
molecule at the center frequency !if ¼ !1 þ !2 þ v � ðk1 þ k2Þ with a homogeneous
linewidth 	if .

The second factor describes the transition probability for the two-photon tran-
sition and can be derived quantum mechanically by second-order perturbation the-
ory (Bräunlich [32], Worlock [33]). It contains a sum of products of matrix elements
RikRkf for transitions between the initial state i and intermediate molecular levels k
or between these levels k and the final state f .

The summation extends over all molecular levels k that are accessible by
allowed one-photon transitions from the initial state ji >. However, only those levels
k which are not too far off resonance with one of the Doppler-shifted laser frequen-
cies ! 0

1 ¼ !1 � v � k1, ! 0
2 ¼ !2 � v � k2 will mainly contribute, as can be seen from the

denominator.
The frequencies !1 and !2 can be selected in such a way that the virtual level is

close to a real molecular eigenstate. This greatly enhances the transition probability
and then is generally advantageous to excite the final level Ef by two different
photons with !1 þ !2 ¼ ðEf � EiÞ=h rather than by two photons out of the same
laser with 2! ¼ ðEf � EiÞ=h.

Multiphoton processes have several applications in laser spectroscopy. For
example, two-quantum resonant transitions in a standing wavefield is an important
method for eliminating Doppler broadening. One of the techniques of high-resolu-
tion laser spectroscopy is based on this approach (Shimoda [34], Letokhov and
Chebotayev [35]).

Basic Photon Optics 93



3.3.2 Doppler-free Multiphoton Transitions

Doppler broadening is due to the thermal velocities of the atoms in the vapor. If v is
the velocity of the atom and k is the wave vector of the light beam, the first-order
Doppler shift is k � v. If the sense of the propagation of light is reversed ðk ! �kÞ,
the first-order Doppler shift is reversed in sign.

Suppose that a two-photon transition can occur between the levels Ei and Ef of
an atom in a standing electromagnetic wave of angular frequency ! (produced for
example by reflecting a laser beam onto itself using a mirror). In its rest frame, the
atom interacts with two oppositely traveling waves of angular frequencies !þ k � v
and !� k � v. If the atom absorbs one photon from each traveling wave, the energy
conservation implies that

Ef � Ei ¼ Efi ¼ hð!þ k � vÞ þ hð!� k � vÞ ¼ 2h!: ð3:22Þ

The term depending on the velocity of the atom disappears, indicating that, at
resonance, all the atoms, irrespective of their velocities, can absorb two photons
(Vasilenko et al. [36], Cagnac et al. [37]).

In theory, the Doppler-free two-photon absorption resonance must have a
Lorentzian shape, the width of the resonance being the natural one (Grynberg et
al. [38]). However, the wings of the resonance generally differ from the Lorentzian
curve because, if the frequency ! of the laser does not fulfill the resonant condi-
tion, Eq. (3.22), but is still close to it, the atoms cannot absorb two photons
propagating in opposite directions, although some atoms of definite velocity can
absorb two photons propagating in the same direction, provided that the energy
defect ðEfi � 2h!Þ is equal to the Doppler shift �2k � v. For each value of !, there
is only one group of velocities which contribute to this signal, whereas at resonance
(due to the absorption photons propagating in opposite directions) all the atoms
contribute.

The two-photon line shape appears as the superposition of two curves, as
shown in Fig. 3.10. A Lorentzian curve of large intensity and narrow width
(natural width) corresponds to the absorption of photons from the oppositely
traveling waves, while a Gaussian curve of small intensity and broad width
(Doppler width) corresponds to the absorption of photons from the same travel-
ing wave. Typically, the Doppler width of the Gaussian curve is 100 or 1000
times larger than the natural width of the Lorentzian curve and the Gaussian
curve appears as a very small background. In some cases, the choice of different
polarizations permits one to suppress completely the Doppler background, using
the different selection rules corresponding to different polarization (Biraben et al.
[39]).

The first experimental demonstrations of Doppler-free two-photon transitions
were performed with pulsed dye lasers on the 3S–5S transition in sodium (Biraben et
al. [39], Levenson and Bloembergen [40]). The precision of the measurements has
been increased by the use of cw dye lasers in single-mode operation. A typical setup
using a cw laser is shown in Fig. 3.11.

The cw laser is pumped by an argon ion laser. In order to obtain good control
of the laser frequency, two servo loops are used. The purpose of the first one is to
maintain the single-frequency oscillation of the dye laser. The Fabry–Perot etalon
inside the laser cavity selects one particular longitudinal mode of the cavity. The
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Figure 3.10 Theoretical Doppler-free two-photon absorption resonance. The two-photon

line shape appears as the superposition of two curves (Grynberg et al. 1980).

Figure 3.11 Typical setup for Doppler-free two-photon experiments using cw dye laser

(Feld and Letokhov [80]).



second servo loop is used to control the frequency of the laser cavity and does not
include any modulation. For details see Grynberg et al. [38].

The light coming from the laser is focused into the experimental cell in order to
increase the energy density. The transmitted light is refocused from the other side
into the cell using a concave mirror whose center coincides with the focus of the lens.
In some experiments the energy is increased by placing the experimental cell in a
spherical concentric Fabry–Perot cavity (Giacobino et al. [41]). The lens is chosen to
match the radius of curvature of the wavefront to the radius of the first mirror. In
order to reduce the losses in the cavity, the windows of the experimental cell are tilted
to the Brewster angle. The length of the cavity is locked to the laser frequency to
obtain the maximum transmitted signal. The two-photon resonance is detected by
collecting photons emitted from the excited state at a wavelength 
vf (see Fig. 3.9)
different from the exciting wavelength 
. Sometimes it is still more convenient to
detect the resonance on another wavelength 
ab emitted by the atom in a cascade.
The characteristic 
vf is selected with an interference filter or a monochromator. The
difference between 
vf and 
 allows the complete elimination of the stray light of the
laser, despite its high intensity, and the observation of very small signals on a black
background.

A simpler experimental arrangement for Doppler-free two-photon spectro-
scopy is shown in Fig. 3.12 (Demtröder [22]). The two oppositely traveling
waves are formed by reflection of the output beam from a single-mode tunable
dye laser. The Faraday rotator prevents feedback into the laser. The two-photon
absorption is monitored by the fluorescence emitted from the final state Ef into
other states Em. The two beams are focused into the sample cell by the lens L and
the spherical mirror M.
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Figure 3.12 A simpler experimental arrangement for Doppler-free two-photon experiments

(Demtröder [22]).



More examples of Doppler-free two-photon spectroscopy can be found in
Demtröder [22], page 475.

3.3.3 Multiphoton Spectroscopy

If the incident intensity is sufficiently large, a molecule may absorb several photons
simultaneously. Equation (3.21) can be generalized in order to obtain the probability
for absorption of a photon h!k on the transition ji >! jf > with Ef � Ei ¼

P
h!k.

In this case, the first factor in Eq. (3.21) contains the product �kIk of the intensities
Ik, of the different beams. In the case of n-photon absorption of a single laser beam,
this product becomes In. The second factor in Eq. (3.21) includes the sum over
products of n one-photon matrix elements.

In the case of Doppler-free multiphoton absorption besides the energy con-
servation

P
h!k ¼ Ef � Ei, the momentum conservation

X

k

pk ¼ h
X

k

kk ¼ 0 ð3:23Þ

has also to be fulfilled. Each of the absorbed photons transfers the momentum hkk to
the molecule.

If Eq. (3.23) holds, the total transfer of momentum is zero, which implies that
the velocity of the absorbing molecule has not changed. This means that the photon
energy is completely converted into excitation energy of the molecule without chan-
ging its kinetic energy. As this is independent of the initial velocity of the molecule,
the transition is Doppler-free.

Figure 3.13 shows a possible experimental arrangement for Doppler-free three-
photon absorption spectroscopy while Fig. 3.14 shows the three-photon excited
resonance fluorescence in Xe at 
 ¼ 147 nm, excited with a pulsed dye laser at

 ¼ 441 nm with 80 kW peak power (Faisal et al. 1977).

3.3.4 Multiphoton Ionization Using an Intermediate Resonant Step

Resonant multiphoton excitation often occurs as an intermediate step in other pro-
cesses. In the case of multiphoton ionization, the number of ions increases by a huge
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Figure 3.13 Possible experimental arrangement for Doppler-free three-photon absorption

spectroscopy.



factor when the wavelength of the exciting laser is adjusted to obtain a resonant
multiphoton with an intermediate level, as shown in Fig. 3.15.

The figure shows the four-photon ionization of cesium with an intermediate
resonant level. The variation of the number of atomic cesium ions as a function of
the laser frequency (Nd glass laser) is also shown. The curves have a big enhance-
ment in the neighborhood of the three-photon transition 6S ! 6F. The center of the
resonance is shifted by an amount which is proportional to the intensity. For an
intensity I ¼ 1GW=cm2, the wavelength of excitation is reduced by an amount
larger than 0.1 nm.

This light shift explains the strange behavior of the order of nonlinearity of a
multiphoton ionization process near an n-photon resonance (Morellec et al. [42]).

The order of nonlinearity K is defined by (Grynberg et al. [38]):

K ¼ @ logNi

@ log I
: ð3:24Þ

where Ni is the number of ions obtained in the multiphoton ionization and I is the
light intensity. Far away from any intermediate resonance, K is equal to the number
of photons K0 which is needed for photoionization, but close to a resonance, this is
not true.
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Figure 3.14 Three-photon excited resonance fluorescence in Xe at 
 ¼ 147 nm, excited with

a pulsed dye laser at 
 ¼ 441 nm with 80 kW peak power (Faisal et al. 1977).



Because of the light shift, the effective detuning from the resonance increases or
decreases, depending on the sign of the laser detuning (Efi � nh!). This explains why,
on one side of the resonance, K is much larger than K0 while, on the other side, K is
smaller.

The resonant multistep processes permit the selective photoionization of
atoms. This approach is fundamental for laser methods of single-atom detection
(Letokhov [43]).

3.4 PHASE CONJUGATE OPTICS

Phase conjugate optics refers in its most elemental basics to the conversion in real
time of a monochromatic optical field E1 to a new field E2 such that

E1ðr; tÞ ¼ Re½ ðrÞ eið!t�kzÞ�
E2ðr; tÞ ¼ Re½ �ðrÞ eið!tþkzÞ�:

We refer to E2 as the phase conjugate replica of E1.
Suppose that a monochromatic optical beam E1 propagates to the right and

then incides into a lossless medium that distorts it. If the distorted beam is reflected
by a mirror, then we will have a reflected beam traveling to the left that when it
incides into the lossless medium is distorted in exactly the opposite way such that the
emerging beam E2 is the replica of the initial beam E1 everywhere.
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Figure 3.15 Four-photon ionization of cesium with an intermediate resonant level. The

variation of the number of atomic cesium ions as a function of the laser frequency in the

neighborhood of the three-photon transition 6S ! 6F is also shown (Feld and Letokhov [80]).



To show that it is possible that both beams E1 and E2 coincide everywhere, we
refer and demonstrate the Distortion Correction Theorem (Yariv [44]), which may
be stated as follows: ‘‘If a (scalar) wave E1ðrÞ propagates from left to right through
an arbitrary dielectric (but lossless) medium, then if we generate in some region of
space (say, near z ¼ 0) its phase conjugate replica E2ðrÞ, then E2 will propagate
backward from right to left through the dielectric medium remaining everywhere
the phase conjugate of E1.’’

Consider the (scalar) right-going wave E1:

E1 ¼  1ðrÞ eið!t�kzÞ;

where k is a real constant. E1 obeys in the paraxial limit the wave equation:

r2E1 þ !2�"ðrÞE1 ¼ 0: ð3:25Þ
If we substitute E1 into the wave equation (3.25), we obtain

r2 1 þ ½!2�"ðrÞ � k� 1ðrÞ � 2ik @ 1=@z ¼ 0: ð3:26Þ
The complex conjugate of Eq. (3.26) leads to:

r2 �
1 þ ½!2�"�ðrÞ � k� �

1ðrÞ þ 2ik @ �
1=@z ¼ 0: ð3:27Þ

Now take the wave E2 propagating to the left, into the wave Eq. (3.23). We obtain

r2 2 þ ½!2�"ðrÞ � k� 2ðrÞ þ 2ik @ 2=@z ¼ 0: ð3:28Þ
We see from Eqs (3.27) and (3.28) that  �

1 and  2 obey the same differential equation
if "ðrÞ ¼ "�ðrÞ; i.e., if we have a lossless and gainless medium.

If  2 ¼ a �
1, where a is an arbitrary constant over any plane, say z ¼ 0, Eq.

(3.26) is still valid. Then due to the uniqueness property of the solutions to second-
order linear differential equations:

 2ðx; y; zÞ ¼ a �
1ðx; y; zÞ for all x; y; z < 0: ð3:27Þ

This completes the proof of the distortion correction theorem.
Phase conjugate waves can be generated by means of nonlinear optical tech-

niques. As second-order nonlinear optics gives rise to phenomena such as second-
harmonic generation and parametric amplification, third-order nonlinear optics,
which involves the third power of the electric field P / E, gives rise to phenomena
such as third-harmonic generation and to the phenomenon of four-wave mixing
(FWM) where, if three waves of different frequencies !1, !2, !3, incide into a
medium material, this radiates with a frequency !4, such that !4 ¼ !1 þ !2 � !3.

We will show that if three waves A1, A2, A3, are mixed into a medium as shown
in Fig. 3.16, this medium generates and radiates a new wave A4, which is the phase
conjugate of A1.

The nonlinear medium is crossed simultaneously by four waves at the same
frequency:

E1ðr; tÞ ¼ ð1=2ÞA 0
1ðzÞ eið!t�kzÞ þ c:c:

E2ðr; tÞ ¼ ð1=2ÞA 0
2ðzÞ eið!t�k2�zÞ þ c:c:
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E3ðr; tÞ ¼ ð1=2ÞA 0
3ðzÞ eið!t�k3 � zÞ þ c:c:

E4ðr; tÞ ¼ ð1=2ÞA 0
4ðzÞ eið!tþk2Þ þ c:c:

where k2 � !2�".
The output power of the beams 1 and 4 increases as they cross the nonlinear

medium to the expense of beams 2 and 3. The quantum mechanics description
(Fisher [45]) of the processes shows that in atomic scale, two photons—one from
the beam 2 and another one from beam 3—are simultaneously annihilated while two
photons are created. One of these photons is added to the beam 1 and the other one
to the beam 4.

The mathematical analysis gives us the expression (Yariv [8], Hellwarth [46]):

A4ðx; y; z < 0Þ ¼ �i½��=j�jÞ tan j�jL�A�
1ðx; y; z < 0Þ

This is the phase conjugation basic result for the four-wave mixing. This expression
shows that the reflected beam A4ðrÞ to the left of the nonlinear medium ðz < 0Þ is the
phase conjugate of the input beam A1ðrÞ. Here �� ¼ ð!=2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ð�=cÞ�A2A3�

p
and � is a

fourth-rank tensor.

3.4.1 Optical Resonators with Phase Conjugate Reflectors

In the optical resonators with phase conjugate optics, one of the mirrors of the
resonator is substituted by a phase conjugate mirror (PCM), as shown in Fig. 3.17.

Let us consider that the two mirrors are separated a distance l and that a
Gaussian beam with quantum numbers m, n, is reflected by both mirrors. Call
�1ðm; nÞ the phase shift suffered by the beam due to its propagation between the
two mirrors; let �R be the phase shift after reflection from the conventional mirror
and � the phase shift after reflection from the PCM.

If �1 is the initial phase of the beam in, for example, the plane P, then the
several phases of the beam after each reflection will be

�2 ¼ ��1 þ �
�3 ¼ �2 þ�1ðm; nÞ ¼ ��1 þ �þ�1ðm; nÞ
�4 ¼ �3 þ�R ¼ ��1 þ �þ�1ðm; nÞ þ�R

�5 ¼ �4 þ�1ðm; nÞ ¼ ��1 þ �þ 2�1ðm; nÞ þ�R
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�6 ¼ ��5 þ � ¼ �1 � 2�1ðm; nÞ ��R

�7 ¼ �6 þ�1ðm; nÞ ¼ �1 ��1ðm; nÞ ��R

�8 ¼ �7 þ�R ¼ �1 ��1ðm; nÞ
�9 ¼ �8 þ�1ðm; nÞ ¼ �1

We have shown that the phase of the beam reflected into the resonator reproduces
itself after two round trips. The phase conjugate resonator has a resonance at the
frequency of the pump beams. The resonance condition is satisfied independently of
the length l of the resonator and the transversal order ðm; nÞ of the Gaussian beam.
The phase conjugate resonator is stable independently of the radius of curvature R of
the mirror and the distance l between both mirrors.

3.4.2 Applications

We will consider only some of the most common applications of phase conjugation.

(a) Dynamic Correction of Distortion into a Laser Resonator

One important application of phase conjugate optics is the real-time dynamic cor-
rection of distortion in optical resonators. Let us consider the optical resonator
shown in Fig. 3.17, but now with an amplifier and a distortion (it could be the
gain medium itself or even a ‘‘bad’’ optics), as shown in Fig. 3.18. If a Gaussian
beam is distorted when it passes through the distortion, it recovers its form when it is
reflected by the PCM and passes the distortion again now in the opposite direction,
according to the Distortion Correction Theorem. Then, at the output of the reso-
nator, we will have a Gaussian beam again.

The experimental arrangement for a laser oscillator with phase conjugate
dynamic distortion correction is shown in Fig. 3.19.

(b) Aberration Compensation

During the generation, transmission, processing, or imaging of coherent light, we can
have aberrations due to turbulence, vibrations, thermal heating, and/or imperfec-
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Figure 3.17 Optical resonator formed by a conventional mirror and a phase conjugate

mirror (PCM).



tions of optical elements. Most of these aberrations can be compensated by the use of
a PCM if we let the wavefront follow the path shown in Fig. 3.20.

As stated before, the complex amplitudes of forward- and backward-going
waves are complex conjugates of each other and the function of the PCM is to
generate a conjugate replica of a general incident field, having an arbitrary spatial
phase and amplitude distribution.

One of the many experiments carried out to show aberration compensation is
that of Jain and Lind [72]. In this experiment, the input light was that of a focused,
pulsed ruby laser beam operating in a TEM00 mode. The phase aberrator was an
etched sheet of glass, and the PCM was realized via degenerate four-wave mixing
(DFWM), by using a semiconductor-doped glass as the nonlinear optical medium,
pumped by a ruby laser.

This experiment shows the near-perfect recovery of a diffraction-limited focal
spot using nonlinear phase conjugate techniques.

Another example of aberration compensation was carried out by Bloom and
Bjorklund [47]. In this experiment, a resolution chart is illuminated by a planar
probe wave and placed at plane (a) of Fig. 3.20. The PCM is realized using a
DFWM process, with carbon disulfide as the nonlinear medium and a doubled
Nd:YAG laser as the light source.

This example shows both the compensation ability of the system and its lensless
imaging capabilities. Also it points out the importance of generating a true phase
conjugate replica, both in terms of its wavefront contours and in terms of the
propagation direction.

(c) Lensless Imaging: Applications to High-Resolution
Photolithography using Four-Wave Mixing

Nonlinear phase conjugation (NLPC) allows us not only to compensate for defects
in optical elements, such as lenses, but permits the elimination of the lenses
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Figure 3.18 Laser oscillator with distortion.

Figure 3.19 Experimental system for a laser oscillator with a distortion D, a phase con-

jugate crystal C, and two mirrors M1 and M2.



altogether. Further, this lensless approach permits a major reduction in the effective
F number, thereby improving the spatial resolution of the system.

An example of an NLPC application on photolithography was carried out by
Levenson [40] in 1980 and by Levenson et al. [48] in 1981. A typical photolithogra-
phy requirement is diffraction-limited resolution over a wafer as large as 3–4 inches
in diameter. Levenson et al. obtained a resolution of 800 lines/mm over a 6.8mm2

field and a features size of 0.75 mm. This is equivalent to a numerical aperture (NA)
of 0.48, which far exceeds the NA of conventional imaging systems. A crystal of
LiNbO3 was used as the FWM phase conjugate mirror, pumped by a 413 nm Kr ion
laser. As in all phase conjugators, the accuracy of the conjugated wave produced by
the PCM is critically dependent upon the quality of the nonlinear medium and of the
pump waves.

The speckle typical problem in laser imaging systems is also eliminated, and
according to Levenson [40], the elimination is a consequence of using the PCM in
conjunction with plane-wave illumination.

(d) Interferometry

Phase conjugate mirrors can also be used in several conentional and unconventional
interferometers. For example, in the Mach–Zender type (Fig. 3.21) the object wave-
front interferes with its phase conjugate instead of a plane-wave reference (Hopf
[49]). In Fig. 3.21, the input signal Iðx; yÞ evaluated at plane x is given by

Iðx; yÞ ¼ Aðx; yÞ exp½i�ðx; yÞ�:

This field is imaged to the observation plane with an arbitrary transmission T ,
yielding an amplitude IT ¼ TIðx; yÞ. The conjugate of the input is generated by a
four-wave mixing process in reflection from a phase conjugate mirror and arrives at
the observation plane with an amplitude

IR ¼ RAðx; yÞ exp½�i�ðx; yÞ�;
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Figure 3.20 Experimental arrangement for aberration compensation. An input field at plane

(a) becomes aberrated at plane (b) after propagation through a distortion path ’ðrÞ. As a

consequence of the conjugation process the conjugate of the initial field is recovered at plane

(a). The beamsplitter allows one to view the same compensator field at the plane (c). PCM,

phase conjugate mirror.



where R and T depend on the reflectivity and transmittance of the PCM and other
components within the interferometer. The time-averaged intensity at the observa-
tion plane will be proportional to

I ¼ jIT þ IRj2 ¼ ½Aðx; yÞ�2fT2 þ R2 þ 2RT cos½2�ðx; yÞ�g
An advantage of this system is that we can adjust the reflectivity of the components,
including the PCM, so that T ¼ R, yielding a fringe visibility of unity, independent
of intensity variations in or across the sample beam.

(e) Nonlinear Laser Spectroscopy

Some spectroscopic studies have been carried out to obtain information about line-
widths, atomic motion, excitation diffusion, etc., by measuring the four-wave mirror-
frequency response, angular sensitivity, or polarization dependence. Table 3.7 gives
some examples of these spectroscopic studies.

In addition, the spatial structure of the nonlinear susceptibilities can be studied
using nonlinear microscopy by three-wave mixing (TWM), as reported by Hellwarth
and Christensen [50] or four-wave mixing, as has been done by Pepper et al. [51].

Some other interesting applications include optical computing, communica-
tions, laser fusion, image processing, temporal signal processing, and low-noise
detection schemes. Also, the extension of these applications to other regions of the
electromagnetic spectrum can provide new classes of quantum electronic processors.

3.5 ULTRASHORT OPTICAL PULSES

It has been more than three decades since the era of ultrashort optical pulse genera-
tion was ushered in with the report of passive model-locking of the ruby laser by
Mocker and Collins [95] in 1965. One year later, the first optical pulses in the
picosecond range were generated with an Nd:glass laser by Demaria [84]. Since
then, the width of optical pulses has been reduced at an exponential rate, as
shown in Fig. 3.22, where the logarithm of the shortest reported optical pulse
width versus year is graphed.
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Figure 3.21 Mach–Zender interferometer using phase conjugate mirror (Hopf [49]).
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Table 3.7 Laser Spectroscopy Using Four-Wave Mixing

Phase conjugate mirror

reflectivity versus Physical mechanism Reference

Angle Atomic-motional effects a

Buffer gas pressure Collisional excitation b

Pressure-broadening mechanisms c

Pump probe polarization Coherent-state phenomena d

Multiphoton transitions e

Quadrupole optical transitions f

Electronic and nuclear contributions

to nonlinear optical susceptibility g

Magnetic fields Optical pumping h

Zeeman state coupling i

Liquid-crystal phase transitions j

Electric fields Stark effects f

Liquid-crystal phase transitions k

RF and microwave fields Hyperfine state coupling f

Pump-probe detuning Atomic populations relaxation rates l

Atomic linewidth effects l

Optical pumping effects l

Doppler-free one- and two-photon

spectroscopy l

Frequency (!pump ¼ !probe) Natural linewidth measurements m

Atomic-motionally induced nonlinear

coherences m

Pump frequency scanning Laser-induced cooling of vapors n

Sub-Doppler spectroscopy f

Transient regime Atomic coherence times o

(temporal effects) Population relaxation rates p

Inter- and intramolecular relaxation q

Carrier diffusion coefficients r

Pump-wave intensity Saturation effects s

Inter- and intramolecular population

coupling t

Optically induced level shifts and

splittings u

a Wandzura [52]; Steel et al. [53]; Nilsen et al. [54]; Nilsen and Yariv [55, 56]; Humphrey et al. [57]; Fu and

Sargent [58]; Saikan and Wakata [59]; Bloch et al. [60].
b Liao et al. [61]; Fujita et al. [62]; Bodgan et al. [63].
c Raj et al. [64, 65]; Woerdman and Schuurmans [66]; Bloch et al. [60].
d Lam et al. [67].
e Steel and Lam [53]; Bloch et al. [60].
f No evidence regarding this mechanism has been reported to date.
g Hellwarth [46].
h Economou and Liao [68]; Steel et al. [69].
i Economou and Liao [68]; Yamada et al. [70]; Steel et al. [69].
j Khoo [71].
k Jain and Lind [72].



Each reduction in pulse width has been accompanied by an advance in tech-
nology. As an example, a pulse width of about 10�14 s was possible thanks to the
development of pulse compression. Optical pulse widths as short as 6 fs have been
generated, approaching the fundamental limits of what is possible in the visible
region of the spectrum.

Progress in generating intense ultrashort laser pulses has made possible sys-
tematic studies of coherent interactions between picosecond laser pulses and mole-
cular vibrations (Shapiro [85]). The first method used for this purpose (Von der
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Table 3.7 Laser Spectroscopy Using Four-Wave Mixing (contd.)

l Bloch [73]; Bloch et al. [60]; Steel et al. [69].
m Bloom et al. [74]; Lam et al. [67].
n Palmer [75].
o Liao et al. [61].
p Fujita et al. [62]; Steel et al. [69].
q Steel and Lam [53]; Steel et al. [76].
r Eichler [77]; Hamilton et al. [78]; Moss et al. [79].
s Fu and Sargent [80]; Harter and Boyd [81]; Raj et al. [64, 65]; Woerdman and Schuurmans [66]; Steel and

Lind [82].
t Dunning and Lam [83].
u Bloom et al. [74]; Nilsen et al. [54]; Nilsen and Yariv [55, 56]; Fu and Sargent [80]; Saikan and Wakata

[59]; Steel and Lind [82].

Figure 3.22 Historical development of the progress in generating ultrashort pulses

(Demtröder [22]).



Linde et al. [86], Alfano et al. [87]) has proved to be the most efficient. In this
method, the sample is simultaneously irradiated by two coherent collimated ultra-
short light pulses, whose frequency difference is equal to the molecular vibrational
frequency. This induces an excitation, of the Raman-type, of the N molecules con-
tained in a coherent interaction volume. An ultrashort pulse of variable delay then
probes the state of the system as it decays. Both the intensity and direction of the
scattered probe pulse can then be studied.

Because of the coherent nature of the interaction between the excitation and
probe pulses, the interaction efficiency for short delay is proportional to N2, and
depends on the relative orientation of the wave vectors of the exciting and probe
fields. However, as the molecular vibrations dephase, the interaction becomes inco-
herent, leading to isotropic efficiency proportional only to N. These features make it
possible to separate coherent and incoherent processes occurring on a picosecond
time scale (Feld and Letokhov [88]). The picosecond pulse techniques can also be
used to study inhomogeneous broadening of the vibrational transitions and its inter-
nal structure.

Ultrashort optical pulses are related to ultrafast nonlinear optics: ultrafast is
defined as referring to events which occur in a time of less than about 10 ps. The
motivation for using ultrafast pulses can be either that they afford the time resolu-
tion necessary to resolve the process of interest, or they are required to obtain a high
peak power at a relatively low pulse energy. Ultrafast pulses are not available at
every wavelength. In fact, most of them have been obtained in the orange region of
the spectrum where the most reliable sources exist. Some others have been obtained
in the gallium arsenide semiconductor research region at 800 nm, and in the optical
communications region at 1500 nm.

A major advance in the generation of ultrashort optical pulses has been the
process of mode-locking. Another approach to generating short pulses is the process
of pulse compression. Some other novel pulse-generation schemes have been recently
developed. We will try to describe them briefly along with applications.

3.5.1 Mode-Locking

Pulses in the picosecond regime can be generated by mode-locking. The simplest way
to visualize mode-locked pulses is as a group of photons clumped together and
aligned in phase as they oscillate through the laser cavity. Each time they hit the
partially transparent output mirror, part of the light escapes as an ultrashort pulse.
The clump of photons then makes another round trip through the laser cavity before
another pulse is emitted. Thus the pulses are separated by the cavity tround-trip time
2L=c, where L is the cavity length and c is the speed of light.

Mode-locking requires a laser that oscillates in many longitudinal modes.
Thus, it does not work for many gas lasers with narrow emission lines but can be
used with argon or krypton ion, solid-state crystalline, semiconductor and dye lasers
(which have exceptionally wide-gain bandwidth). The pulse length is inversely pro-
portional to the laser oscillating bandwidth, so dye lasers can generate the shortest
pulses because of their exceptionally broad-gain bandwidths.

The number of modes oscillating is limited by the bandwidth �� over which
the laser gain exceeds the loss of the resonator, as shown in Fig. 3.23. Unless some
mode-selecting element is placed in the laser resonator, the output consists of a sum
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of frequency components corresponding to the oscillating modes. The electric field
may be written as

EðtÞ ¼P
�n exp i½ð!0 þ n�!Þtþ �n�

n

where �n is the amplitude of the nth mode and �! is the mode spacing. In general, the
laser output varies in time, although the average power remains relatively constant.
This is because the relative phases between the modes are randomly fluctuating.
However, if the modes are forced to maintain a fixed phase and amplitude relation-
ship, the output of the laser will be a well-defined periodic function of time. In
thisway, we say that the laser is ‘‘mode-locked.’’

Both continuous and pulsed lasers can be mode-locked. In either case, mode-
locking produces a train of pulses separated by the cavity round-trip time, as shown
in Fig. 3.24.

In this case, the picture corresponds to a single pulse traveling back and forth
between the laser resonator mirrors. It is also possible to produce mode-locking with
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Figure 3.23 Resonator modes. The number of modes oscillating is limited by the bandwidth

�� and determined by the gain profile and the resonator loss.

Figure 3.24 Train of pulses obtained at the output of the laser with all modes locked in the

proper phase.



N pulses in the cavity, spaced by a multiple of c=2L. The pulses have a width ��,
which is approximately equal to the reciprocal of the total mode-locked bandwidth
��, and the temporal periodicity is given by Tp ¼ 2L=c. The ratio of the pulse width
to the period is approximately equal to the number of locked modes.

For pulsed lasers, the result is a series of pulses that fall within the envelope
defined by the normal pulse length. Single mode-locked pulses can be selected by
passing the pulse train through grating modulators that allow only a single pulse to
pass.

The modulation can be active, by changing the transmission of a modulator, or
passive, by saturation effects. In either case, interference among the modes produces
a series of ultrashort pulses.

Active Mode-Locking

As to date, a shutter than can be inserted into the optical cavity, which opens and
closes at the approximate frequency to obtain the desired pulse duration has not yet
been built; some approximations have been developed. For example, an intracavity
phase or loss modulator has been inserted into the optical cavity driven at the
frequency corresponding to the mode spacing (Hargrove et al. [89]). The principle
of active mode-locking by loss modulation is as follows: an optical pulse is likely to
form in such a way as to minimize the loss from the modulator. The peak of the pulse
adjusts in phase to be at the point of minimum loss from the modulator. However,
the slow variation of the sinusoidal modulation provides only a weak mode-locking
effect, making this technique unsuitable for generating ultrashort optical pulses.
Similarly, phase modulation can also produce mode-locking effects (Harris and
Targ [90]).

Active mode-locking is particularly useful for mode-locking Nd:YAG and gas
lasers such as the argon laser (Smith [91] and Harris [92]). Recently, a 10-fs pulse has
been generated from a unidirectional Kerr-lens mode-locked Ti:sapphire ring laser
(Kasper and Wittex [93]).

Passive Mode-Locking

Passive mode-locking works by the insertion of a saturable absorbing element inside
the optical cavity of a laser. The saturable absorber can be an organic dye, a gas, or a
solid, but the first one is the more common. The first optical pulses in the picosecond
time domain (DeMaria et al. [84], as well as the first optical pulses in the femtose-
cond time domain (Fork et al. [94]), were obtained by this method.

Passively mode-locked lasers can be divided in two groups: (a) giant pulse
lasers and (b) continuous or quasi-continuous lasers. Passive mode-locking was
first observed for the first group in ruby lasers (Mocker and Collins [95]) and in
Nd:glass lasers (DeMaria et al. [84]). Continuous passive mode-locking is observed
primarily in dye lasers and was first theoretically described by New [96] in 1972.

(a) Giant Pulse Lasers

The optical configuration for a mode-locked giant pulse laser is shown in Fig. 3.25.
The dye cell is optically contacted with the laser mirror in one end of the cavity in
order to reduce the problem of satellite pulses (Weber [97], Bradley et al. [98], Von
der Linde [99]). In designing the cavity, it is important to eliminate subcavity reso-
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nances and spurious reflections which may cause the formation of subsidiary pulse
trains.

For a giant pulse to occur, the upper laser level lifetime must be long (as in
ruby or Nd:glass lasers), typically hundreds of microseconds. Pulse generation
occurs in a highly transient manner in a time much shorter than the upper level
population response. The ‘‘fluctuation model’’ proposed by Letokhov [100] in 1969,
describes the operation of these lasers. Briefly, the operation is as follows (Kaiser
[101]): At the start of the flashlamp pumping pulse, spontaneous emission excites a
broad spectrum of laser modes within the optical cavity. Since the modes are ran-
domly phased, a fluctuation pattern is established in the cavity with a periodic
structure corresponding to a cavity round-trip time T ¼ 2L=c. When the gain is
sufficient to overcome the linear and nonlinear losses in the cavity, the laser thresh-
old is reached and the fields in the cavity initially undergo linear amplification. At
some point, the field becomes intense enough to enter a phase where the random
pulse structure is transformed by the nonlinear saturation of the absorber and by the
laser gain saturation. As a result, one of the fluctuation spikes grows in intensity
until it dominates and begins to shorten in time. As the short pulse gains intensity it
reaches a point where it begins to nonlinearly interact with the glass host and the
pulse begins to deteriorate. At the beginning of the pulse train, as recorded on an
oscilloscope, the pulses are a few picoseconds in duration and nearly bandwith
limited (Von der Linde et al. 1970, Zinth et al. [103]). Later, pulses in the train
undergo self-modulation of phase and self-focusing, which leads to temporal frag-
mentation of the optical pulse.

The role of the saturable absorber in the fluctuation model is to select a noise
burst that is amplified and ultimately becomes the mode-locked laser pulse. As a
consequence, the relaxation time and the absorber, Ta, sets an approximate limit to
the duration of mode-locked pulses (Garmire and Yariv [104], Bradley et al. [98]).
Kodak dyes A9740 and A9860, with lifetimes of 7 and 11 picoseconds, respectively,
are typically used. However other dyes with shorter lifetimes have been investigated
(Kopinsky et al. [105], Alfano et al. [106]).

(b) Continuous Lasers

In 1981, Fork et al. [94] described the generation of sub-100 femtosecond pulses for
the first time, and coined the term ‘‘colliding-pulse-mode-locked laser’’ or CPM
laser. The initial CPM laser consisted of a seven-mirror ring cavity with
Rhodamine 6G in the gain jet and the dye DODCI in the absorber jet. These
same two dyes have been used since 1972 in passively mode-locked cw dye lasers,
but only generated picosecond pulses (Ippen et al. [107]).

Basic Photon Optics 111

Figure 3.25 Optical configuration for a mode-locked giant pulse laser (Kaiser [101]).



Passive mode-locked continuous lasers involve a very different physics of pulse
formation from that of giant pulse lasers. Random noise fluctuations due to long-
itudinal mode beating occur in the laser until one of the noise spikes is large enough
to saturate the absorber. This pulse sees an increased transmission through the
absorber jet due to this saturation and then encounters the gain jet. Here, it saturates
the gain slightly and reduces the gain for the noise spikes that follow. This selection
process continues until only one pulse survives. The pulse then shortens further due
to the same saturable effects. Saturable absorption selectively removes energy from
the leading edge of the pulse while saturable gain steepens the trailing edge. The
pulse continues to shorten until a pulse-broadening effect, such as dispersion, can
balance it (Walmsley and Kafka [108]).

The mode-locked pulse duration is typically much shorter than either the life-
time of the amplifying or gain medium, or the saturable absorber recovery time. In
1972, New [96] described for the first time, the conditions of pulse formation in
continuous passively mode-locked lasers. Later, analytical and numerical techniques
were applied to describe the transient formation of an ultrashort optical pulse
(Garside and Lim [109, 110]; New and Rea [111]), while Haus obtained a closed
formed solution by assuming a cavity bandwidth and a hyperbolic secant pulse shape
(Haus [112]).

The shortest light pulses reported up to now are only 6 fs long (Fork et al.
[113]). This corresponds to about three oscillation periods of visible light at

 ¼ 600 nm!

Table 3.8 shows a short summary of different mode-locking techniques and the
typical pulse duration obtained.

Now, we will see some examples of mode-locked pulses generated by different
kinds of lasers.

Neodymium lasers. Neodymium lasers can generate mode-locked pulses (gen-
erally with continuous excitation), usually of tens to hundreds of picoseconds. The
shorter the pulse, the higher the peak power for a given laser rod and pump source;
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Table 3.8 Short Summary of Different Mode-Locking Techniques

Technique Mode locker Laser

Typical

pulse

duration

Typical

pulse

energy

Active mode-

locking

Acousto-optic modulator Argon cw

He–Ne cw

300 ps

500 ps

10 nJ

0.1 nJ

Pockels cell Nd:YAG pulsed 100 ps 10 mJ

Passive mode-

locking

Saturable absorber Dye cw

Nd:YAG

1 ps

1–10 ps

1 nJ

1 nJ

Synchronous

pumping

Mode-locked pump laser

and matching or

resonator length

Dye cw

Color center

1 ps

1 ps

10 nJ

10 nJ

CPM Passive mode-locking and

eventual synchronous

pumping

Ring dye laser <100 fs � 1 nJ



however, shrinking pulse length beyond a certain point can reduce the pulse energy.
Pulse lengths are listed in Table 3.9 based on data from industry directories (Hecht
[114]).

Because glass can be made in larger sizes and has lower gain than Nd-YAG,
glass lasers can store more energy and produce more energetic pulses. However, its
thermal problems limit repetition rate and thus lead to low average power. Nd-YLF
also can store more energy than Nd-YAG because of its lower cross section, but it
cannot be made in pieces as large as glass. Mode-locked lasers emit series of short
pulses, with spacing equal to the round-trip time of the laser cavity. Many of these
pulses may be produced during a single flashlamp pulse, and Q-switches can select
single mode-locked pulses. Glass lasers have lower repetition rates than Nd-YAG or
Nd-YLF, and commercial models typically produce no more than a few pulses per
second. Repetition rates may be as low as one pulse every few minutes, or single-shot
for large experimental lasers.

Both Nd-glass and Nd-YLF can generate shorter mode-locked pulses, because
they have broader spectral bandwidths than Nd-YAG. The shortest pulses are pro-
duced by a technique called chirped pulse amplification, which is similar to that used
to generate femtosecond pulses from a dye laser. A mode-locked pulse, typically
from an Nd-YLF laser, is passed through an optical fiber, where nonlinear effects
spread its spectrum over a broader range than the laser generates. Then that pulse is
compressed in duration by special optics, and amplified in a broad-bandwidth Nd-
glass laser. The resulting pulses are in the 1–3 picosecond range, and when amplified
can reach the terawatt (1012 W) level in commercial lasers (although their brief
duration means that pulse energy is on the order of only a joule). Pulses of
3� 1012 W have been reported and work has commenced on a 10� 1012 W laser
(Perry [116]).

Basic Photon Optics 113

Table 3.9 Duration and Repetition Rates Available from Mode-Locked Pulsed

Neodymium Lasers Operating at 1.06mm

Type length Modulation

Excitation

source

Typical repetition

rate Typical pulse

Nd-glass Mode-locked Flashlamp Pulse trainsa 5–20 ps

Nd-YAG Mode-locked Flashlamp Pulse trainsb 20–200 ps

Nd-YAG Mode-locked Arc lamp 50–500 MHz 20–200 ps

Nd-YAG Mode-locked

and Q-switched

Arc lamp Variesc 20–200 psd

Nd-YLF Mode-locked Arc lamp Same as YAG about half YAG

Nd-YLFe Mode-locked Diode 160 MHz 7 ps

Nd-YLF/glass Mode-locked and

chirped pulse

amplification

Lamp 0–2 Hz 1–5 ps

a;bSeries of 30–200 ps pulses, separated by 2–10 ns, lasting duration of flashlamp pulse, on the order of a

millisecond.
c Depends on Q-switch rate; mode-locked pulses.
d In pulse trains lasting duration of Q-switched pulses (100–700 ns).
e Laboratory results (Juhasz et al. [115]).



Dye lasers. Synchronous mode-locking of a dye laser to a mode-locked pump
laser (either rare gas ion or frequency-doubled neodymium) can generate pulses as
short as a few hundred femtoseconds. Addition of a saturable absorber can further
reduce pulse length. Alternatively, a saturable absorber can by itself passively mode-
lock a dye laser pumped by a cw laser. In each case, the saturable absorber allows
gain only briefly while it is switching between off and on states.

The commercial dye laser which generates the shortest pulses is a colliding-
pulse mode-locked ring laser. The schematic diagram is shown in Fig. 3.26. This
type of ring laser does not include components to restrict laser oscillation to one
direction, and produces pulses going in opposite directions around the ring. One-
quarter of the way around the ring from the dye jet, the cavity includes a saturable
absorber which has lowest loss when the two opposite-direction pulses pass
through it at the same time (causing deeper saturation and hence lower loss).
Pulse lengths can be under 100 fs in commercial versions and tens of femtoseconds
in laboratory systems.

Pulses from a dye laser can be further compressed by a two-stage optical
system which first spreads the pulse out in time (by passing it through a segment
of optical fiber) and then compresses it spatially (by passing it between a pair of
prisms or diffraction gratings). This requires extremely broad bandwidth pulses but
can generate pulses as short as 6 fs (Fork et al. [113]).

The wavelength range availabe from passively mode-locked dye lasers has been
extended with the use of different gain and absorber dyes, and subpicosecond pulses
can be generated from below 500 nm to nearly 800 nm (French and Taylor [117],
Smith et al. [118], French and Taylor [119]).
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Figure 3.26 Schematic of a colliding-pulse mode-locked ring laser (Clark Instrumentation

Inc.).



Ion lasers. Mode-locked ion lasers can produce trains of picosecond pulses
from lasers emitting in multiple longitudinal modes. With the typical 5GHz line-
width of ion laser lines, the resulting pulses are about 90–200 picoseconds long,
produced at repetition rates in the 75–150MHz range.

Diode lasers. Diode lasers can be mode-locked in external cavities, and
experimental diode lasers have been made with internal structures that generate
mode-locked pulses (Hecht [114]). For example, a passively mode-locked two-section
GaAlAs multiple-quantum-well laser has generated 2.4 ps pulses at 108GHz.
However, mode-locked diode lasers are not available commercially.

Colliding-pulse mode-locking techniques have been applied to form a mono-
lithic quantum-well semiconductor laser (Wu et al. [120]).

Passive mode-locking with the help of bulk semiconductors and quantum wells
was applied to generate femtosecond pulses in color-center lasers (Islam et al. [121,
122]).

Most of the experiments on femtosecond pulses performed up to now have
used dye lasers, Ti:sapphire-lasers, or color-center lasers. The spectral ranges were
restricted to the regions of optimum gain of the active medium. New spectral ranges
can be covered by optical mixing techniques. One example is the generation of 400 fs
pulses in the mid-infrared around 
 ¼ 5 mm by mixing the output pulses from a
colliding-pulse mode dye laser at 620 nm with pulses of 700 nm in a LiIO3 crystal
(Elsässer Th. 1991).

During recent years, new techniques have been developed in order to generate
still shorter pulses. One of these is pulse compression.

3.5.2 Pulse Compression

More than 30 years ago, Gires and Tournois [123] proposed that optical pulses could
be shortened by adapting microwave pulse compression techniques to the visible
spectrum. The shortest pulse duration that can be produced by a laser oscillator is
generally limited by the wavelength of the gain medium and the group velocity
dispersion into the cavity. However, if we give enough initial peak power, the tech-
nique of pulse compression can produce pulses one order of magnitude shorter. The
physics involved in pulse compression, called self-phase modulation, also plays an
important role in the majority of the ultrashort laser oscillators.

The general principles of pulse compression were first applied to radar signals
and later (in the 1960s) to optical signals (Giordmaine et al. [124]) (see also Johnson
and shank [125], for a review of pulse compression). Pulse compression technique
consists of two steps: in the first step, a frequency sweep or ‘‘chirp’’ is impressed on
the pulse; in the second step, the pulse is compressed by using a dispersive delay line.

Single-mode optical fibers were first used to create a frequency chirp
(Nakatsuka and Grischkowosky [126]). The chirp can be impressed on an intense
optical pulse by passing the pulse through an optical Kerr medium (Fisher et al.
[127]). When an intense optical pulse is passed through a nonlinear medium, the
refractive index, n, is modified by the electric field, E, as follows (Shank [128]):

n ¼ no þ n2hE2i þ � � �

A phase change, ��, is impressed on the pulse:
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�� � n2hE2ið!z=cÞ;
where ! is the frequency, z is the distance traveled in the Kerr medium, and c is the
velocity of light.

As the intensity of the leading edge of the optical pulse rises rapidly, a time-
varying phase or frequency sweep is impressed on the pulse carrier. Similarly, a
frequency sweep in the opposite direction occurs as the intensity of the pulse falls
on the trailing edge. This frequency sweep is given by

�! � ð!zn2=cÞ d=dthE2ðtÞi
For a more rigorous approach to this problem, see Shank [128], pp. 26–29.

As optical fiber waveguides are a nearly ideal optical Kerr medium for pulse
compression (Mollenauer et al. [129], Nakatsuka et al. [130]), one of the most com-
mon configurations of a pulse compressor uses self-phase modulation in an optical
fiber to generate the chirped pulse and a pair of gratings aligned parallel to each
other as the dispersive delay line.

Consider a Gaussian pulse

EðtÞinput ¼ A exp½�ðt=bÞ2� expði!0tÞ:
The effect of the pulse compressor on the Gaussian pulse has been calculated in the
limited of no group dispersion velocity by Kakfa and Baer [131] in 1988. The self-
phase modulation in the fiber transforms this pulse to

EðtÞfiber ¼ A exp½�ðt=bÞ2� exp i½!0tþ�ðIÞ�;
where �ðIÞ is an intensity-dependent shift in the phase of the carrier. We can Fourier
transform the pulse EðtÞ to the frequency domain Eð!Þ in order to apply the grating
operator. This operator causes a time delay, which depends on the instantaneous
frequency of the pulse:

Eð!Þcompressed ¼ Eð!Þfiber exp½�i�ð!Þ�:
The final pulse EðtÞcompressed is obtained by taking the Fourier transform of
Eð!Þcompressed. The intensity can be calculated at any point by taking the square of
this field.

The experimental set-up used for pulse compression in the femtosecond time
domain is shown in Fig. 3.27.

Mollenauer et al. [129] were the first who experimentlaly investigated pulse
compression using optical fibers as a Kerr medium. They worked on the soliton
compression of optical pulses from a color center laser. As the wavelength of the
optical pulses at 
 ¼ 1:3 mm was in the anomalous or negative dispersion region, a
separate compressor was not needed, because the dispersive properties of the fiber
material self-compressed the pulse. Using this compression technique, a 7 ps optical
pulse was compressed to 0.26 ps with a 100m length of single mode fiber (Mollenauer
et al. [132]).

Later in 1984, Mollenauer and Stolen [133] extended the ideas of fiber soliton
pulse compression to form a new type of mode-locked color center laser: the soliton
laser (Mitschke and Mollenauer [134]). In the soliton laser, an optical fiber of the
appropriate length is added to the feedback path of a synchronously pumped color
center laser. The soliton proeprties of the fiber feedback force the laser itself to
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produce pulses of a definite shape and width. With the soliton laser pulses of less
than 50 fs can be obtained.

The soliton mode-locking technique has been extended to the wavelength
region where solitons cannot form. This new technique is called additive pulse
mode-locking and has been described both theoretically (Ippen et al. [135]) and
experimentally (Goodeberlet et al. [136], French et al. [137], Zhu et al. [138], Zhu
and Sibbett [139]).

Nakatsuka and Grischkowosky [126] worked in the positive group velocity
dispersion regime ð
  1:3 mm) using an optical fiber for the chirping process and
anomalous dispersion from an atomic vapor as the compressor. Shank et al. [140]
replaced the atomic vapor compressor with a grating pair compressor (Treacy [141])
and achieved pulse compression to 30 fs optical pulse width.

3.5.3 Applications of Ultrashort Optical Pulses

Measurement of Subpicosecond Dynamics

One application of optical pulses is to measure the relaxation of elementary excita-
tions in matter, via the nonlinear optical response of the system under study. The
time scale and form of the relaxation gives information concerning the microscopic
physics of the dissipative forces acting on the optically active atom or molecule. The
development of coherent light sources that produce pulses of a few tens of femtose-
conds duration has greatly extended the possibility of realizing such measurements in
liquid and condenses phases of matter, where relaxation time scales are of the order
of pico- or femtoseconds (Walmsley and Karfa [108]).

There are several methods for the measurement of lifetimes [22] of excited
atomic or molecular levels, including phase-shift method (Demtröder [22],
Lakowvicz and Malivatt [142, 143]) and the delayed-coincidence technique
(O’Connor and Phillips [144]).

For measurements of very fast relaxation processes with a demanded time
resolution below 10�10 s, the pump and probe technique is the best choice
(Lauberau and Kaiser [145], Demtröder [22]). In this technique the molecules
under study are excited by a fast laser pulse on the transition from the base state
to the first excited state, as shown in Fig. 3.28. A probe pulse with a variable time
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second time domain.



delay � against the pump pulse probes the time evolution of the population density
N1ðtÞ. The time resolution is only limited by the pulse width �T of the two pulses but
not by the time constants of the detectors.

Strong-field Ultrafast Nonlinear Optics

The high peak powers obtained using short pulses have impacted significantly in the
field of multiphoton atomic ionization and molecular dissociation. Three important
applications are molecular photodissociation (Scherer et al. [145], Dantus et al.
[146]), above-threshold ionization (Agostini et al. [147], Gontier and Trahin [148])
and the generation of high-order harmonics (Rhodes [149], Li et al. [150], Kulander
and Shore [151]).

Study of Biological Processes

Ultrafast laser techniques have been applied to the study of biological processes,
such as heme protein dynamics, photosynthesis, and the operation of rhodopsin and
bacteriorhodopsin (Hochstrasser and Johnson [152]).

For other examples of applications see Khoo et al. [26]. Recent applications
include the determination of the magnitude and time response of the nonlinear
refractive index of transparent materials using spectral analysis after nonlinear pro-
pagation (Nibbering et al. [153]); the charcterization of ultrafast interactions with
materials through the direct measurement of the optical phase (Clement et al. [154])
and a proposal for the generation of subfemtosecond VUV pulses from high-order
harmonics (Schafer et al. [155]).
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4.1 PRISMS

In this chapter we will describe only prisms made out of isotropic materials such as
glass or plastic (Hopkins [1, 2]). There are two kinds of prisms: prisms that pro-
duce chromatic dispersion of the light beam and prisms that only deflect the light
beam, changing its traveling direction and image orientation. Deflecting prisms
usually make use of total internal reflection, which occurs only if the internal
angle of incidence is larger than the critical angle (about 418) for a material
whose index of refraction is 1.5. If an internal reflection is required with internal
angles of incidence smaller than the critical angle, the surface has to be coated with
silver or aluminum.

A deflecting prism or system of plane mirrors does not only deflect the light
beam but also changes the image orientation (Berkowitz [3], Pegis and Rao [4],
Walles and Hopkins [5], Walther [6]). We have four basic image transformations:
a reflection about any axis at an angle �; a rotation by an angle �; an inversion, which
is a reflection about a horizontal axis; and a reversion, which is a reflection about a
vertical axis. Any mirror or prism reflection produces a reflection transformation.
The axis for this operation is perpendicular to the incident and the reflected beams.
Two consecutive reflections may be easily shown to be equivalent to a rotation, with
the following rule:

reflection at �1 þ reflection at �2 ¼ rotation by 2ð�2 � �1Þ:
These transformations are illustrated in Fig. 4.1.

An image is said to be readable if it can be returned to its original orientation
with just a rotation. It can be proved that an even number of inversions, reversions,
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and reflections is equivalent to a rotation, thus producing a readable image. On the
other hand, an odd number of reflections always give a nonreadable image. Any
single reflection of the observed light beam produces a reflection, reversion, or
inversion of the image. An important conclusion is that an image observed through
a deflecting prism is readable if it is reflected an even number of times. Two con-
secutive transformations may be combined to produce another transformation, as in
the following examples:

Inversionþ Reversion ¼ Rotation by 1808

Inversionþ Rotation by 1808 ¼ Reversion

Reversionþ Rotation by 908 ¼ Reflection at 458

We may also show that if the axis of a reflection transformation rotates, the
resulting image also rotates, in the same direction and with twice the angular speed.
Thus, a practical consequence is that all inverting systems may be converted to
reversing systems by a rotation by an angle of 908.

Prisms and mirror systems with arbitrary orientations have many effects that
must be taken into account when designing an optical system (Hopkins [1,2]).
Among these effects we can mention the following:

(a) A change in the direction of propagation of the light beam.
(b) A transformation on the image orientation.
(c) The image is displaced along the optical axis.
(d) The finite size of their faces act as stops.
(e) Some aberrations, mainly spherical and axial chromatic aberrations, are

introduced.

The image displacement �L of the position on the image along the optical axis
is given by

�L ¼ n� cosU

cosU 0

� �
t

n
ffi ðn� 1Þ

n
t; ð4:1Þ

where U is the external angle of the meridional light ray with respect to the optical
axis, U 0 is the internal angle of the meridional light ray with respect to the optical
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Figure 4.1 Image transformations.



axis, t is the effective prism thickness, and n is its refractive index. The approxima-
tion is valid for paraxial rays.

Using this expression it is easy to conclude that the longitudinal spherical
aberration (SphL) introduced to the system by the presence of the prism is given by

SphL ¼ t

n
1� cosU

cosU 0

� �
ffi tu2

2n
; ð4:2Þ

where u is the paraxial external angle for the meridional ray with the optical axis.
From Eq. (4.1) we can see that the axial longitudinal chromatic aberration

introduced by the prism is

lC � lF ¼ �n

n2
t: ð4:3Þ

Thus, any optical design containing prisms must take into account the glass
added by the presence of the prism while designing and evaluating its aberration by
ray tracing. All studied effects may easily be taken into account by unfolding the
prism at every reflection to find the equivalent plane-parallel glass block. By doing
this we obtain what is called a tunnel diagram for the prism.

The general problem of the light beam deflection by a system of reflecting
surfaces has been treated by many authors, including Pegis and Rao [4] and
Walles and Hopkins [5]. The mirror system is described using an orthogonal system
of coordinates xo, yo, zo in the object space, with zo being along the optical axis and
pointing in the traveling direction of the light. For a single mirror we have the
following linear transformation with a symmetrical matrix R

l 0

m 0

n 0

2

4

3

5 ¼
ð1� 2L2Þ ð�2LMÞ ð�2LNÞ
ð�2LMÞ ð1� 2M2Þ ð�2MNÞ
ð�2LNÞ ð�2MNÞ ð1� 2N2Þ

2

4

3

5 �
l
m
n

2

4

3

5; ð4:4Þ

where ðl;m; nÞ and ðl;m; nÞ are the direction cosines of the reflected and incident rays,
respectively. The quantities ðL;M;NÞ are the direction cosines of the normals to the
mirror. This expression may also be written as �ll 0 ¼ A �ll, where �ll 0 is the reflected unit
vector and �ll is the incident unit vector. To find the final direction of the beam, the
reflection matrices for each mirror are multiplied in the order opposite to that in
which the light rays are reflected on the mirrors, as follows:

�ll 0n ¼ ½RNRN�1; . . . ;R2R1� �ll ð4:5Þ
On the other hand, as shown by Walles and Hopkins [5], to find the image orienta-
tion, the matrices are multiplied in the same order that the light strikes the mirrors.

Now, let us consider the general case of the deflection of a light beam in two
dimensions by a system of two reflecting faces with one of these faces rotated at an
angle � relative to the other, as shown in Fig. 4.2. The direction of propagation of the
light beam is changed by an angle 2�, independently of the direction of incidence
with respect to the system, as long as the incident ray is in a common plane with the
normals to the two reflecting surfaces.

In the triangle ABC we have

� ¼ 2�þ 2� ð4:6Þ
and, since in the triangle ABD,

Prisms and Refractive Optical Components 127



� ¼ �þ �; ð4:7Þ
then we can find

� ¼ 2�: ð4:8Þ
Thus, if the angle between the two mirrors is �, the light ray will deviate its trajectory
by an angle �, independently of the direction of incidence of the light ray.

Generalizing this result, we can prove that by means of three reflections in three
mutually perpendicular surfaces a beam of light may also be deflected by an angle of
1808, reflecting it back along a trajectory in a parallel direction to the incident light
beam. This is called a retroreflecting system.

The prisms with three mutually perpendicular reflecting surfaces is called a
cube corner prism, which has been studied by Yoder [7], Chandler [8], and
Eckhardt [9].

The general problem of prisms of systems of mirrors with a constant deviation
independent of the prism orientation, also called stable systems, has been studied by
Friedman and Schweltzer [10] and by Schweltzer et al. [11]. They found that in three-
dimensional space this is possible only if the deflection angle is either 1808 or 08.

4.1.1 Deflecting Prisms

Besides transforming the image orientation, these prisms bend the optical axis,
changing the direction of propagation of the light. There are many prisms of this
kind as will now be described.

The right angle prism is the simplest of all prisms and in most cases it can be
replaced by a flat mirror. The image produced by this prism is not readable, since
there is only one reflection, as shown by Fig. 4.3(a). This prism can be modified to
produce a readable image. This is accomplished by substituting the hypotenuse side
by a couple of mutually perpendicular faces, forming a roof, to obtain an Amici
prism (Fig. 4.3(b)). Rectangular as well as Amici prisms can be modified to deflect a
beam of light 458 instead of 908, as in the prisms shown in Fig. 4.4.

In the prisms previously described, the deflecting angle depends on the angle of
incidence. It is possible to design a prism in which the deflecting angle is independent
of the incidence angle. This is accomplished with two reflecting surfaces instead of
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Figure 4.2 Reflection of a ray in a system of two reflecting surfaces.



just one, by using the property described above. The deflection angle is twice the
angle between the two mirrors or reflecting surfaces.

This property is used in the Wollaston prism (Fig. 4.5) and in the pentaprism
(Fig. 4.6). In the Wollaston prism both reflecting surfaces form a 458 angle and the
deflecting angle is 908. In the pentaprism both surfaces form an angle of 1358 and
thus the deflection angle is 2708 in these two prisms; the image is readable, since there
are two reflections. The pentaprism is more compact and simpler to build. Although
both prisms can be modified to obtain a 458 deflection, it results in an impractical
and complicated shape. To obtain a 458 deflection independent of the incidence
angle, the prism in Fig. 4.7 is preferred. These prisms are used in microscopes, to
produce a comfortable observing position.
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Figure 4.3 (a) Right-angle and (b) Amici prisms.

Figure 4.4 458 deflecting prism.

Figure 4.5 Wollaston prism.



4.1.2 Retroreflecting Prisms

A retroreflecting prism is a particular case of a constant deviation prism, in which the
deflecting angle is 1808. A right-angle prism can be used as a retroreflecting prism
with the orientation shown in Fig. 4.8. In such a case, it is called a Porro prism. The
Porro prism is a perfect retreflector; the incident ray is coplanar with the normals to
the surfaces.
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Figure 4.6 Pentaprism.

Figure 4.7 Constant 458 deflecting prism.

Figure 4.8 Rectangular prism in a two-dimensional retroreflecting configuration.



Another perfect retroreflecting prism, made with three mutually perpendicular
reflecting surfaces, is called a cube corner prism. This prism is shown in Fig. 4.9.

Cube corner prisms are very useful in optical experiments where retroreflection
is needed. Uses for the cube corner retroreflector are found in applications where the
prism can wobble or jitter or is difficult to align because it is far from the light
source. Applications for this prism range from the common ones like reflectors in
a car’s red back light to the highly specialized ones like the reflectors placed on the
surface of the moon in the year 1969.

4.1.3 Inverting and Reverting Prisms

Theseprismspreserve the traveling directionof the light beam, changingonly the image
orientation. In order to produce an image inversion or reversion, these prisms must
have an odd number of reflections.We will consider only prisms that do not deflect the
light beam. The simplest of these prisms has a single reflection, as shown in Fig. 4.10.
This is a single rectangular prism, used in a configuration called a dove prism.

Although we have two refractions, there is no chromatic aberration since
entrance and exiting faces act as in a plane-parallel plate. These prisms cannot be
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Figure 4.9 Cube corner prism.

Figure 4.10 Dove prism.



used in strongly convergent or divergent beams of light because of the spherical
aberration introduced, unless this aberration is compensated elsewhere in the system.

An equilateral triangle prism can be used as an inverting or reverting prism if
used as in Fig. 4.11. On this configuration, we have two refractions and three
reflections. Like the dove prism, this prism cannot be used in strongly convergent
or divergent beams of light.

Figures 4.12, 4.13, and 4.14 show three reverting prisms with three internal
reflections. The first one does not shift the optical axis laterally, while in the last two
the optical axis is displaced. These prisms can be used in converging or diverging
beams of light. The first two prisms can be made either with two glass pieces or a
single piece.

The Pechan prism, shown in Fig. 4.15, can be used in converging or diverging
pencils of light, besides being a more compact prism than the previous ones.

4.1.4 Rotating Prisms

A half-turn rotating prism is a prism that produces a readable image, rotated 1808 as
the real image produced by a convergent lens. A rotating prism can bring back the
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Figure 4.11 Inverting-reversing equilateral triangle prism.

Figure 4.12 A reverting-inversing prism.



rotated image of a lens system to the original orientation of the object. These prisms
are useful for monocular terrestrial telescopes and binoculars.

All reversing prisms can be converted to rotating prisms by substituting one
of the reflecting surfaces by a couple of surfaces with the shape of a roof. With
this substitution the Abbe prism, the Leman prism, and the Schmidt–Pechan
prism, shown in Fig. 4.16, are obtained. This last prism is used in small hand
telescopes. An advantage for this prism is that the optical axis is not laterally
displaced.

A double prism commonly used in binoculars is the Porro prism, shown in
Fig. 4.17.
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Figure 4.13 A reverting-inversing prism.

Figure 4.14 A reverting-inversing prism.

Figure 4.15 Pechan prism.



4.1.5 Beamsplitting Prisms

These prisms divide the beam of light into two beams, with the same diameter as the
original one, but the intensity is reduced for both beams that now travel in different
directions. Beamsplitting prisms are used in amplitude division interferometers,
binocular microscopes, and telescopes, where a single image must be observed simul-
taneously with both eyes. Basically, this prism is formed by a pair of rectangular
prisms glued together to form a cube. One of the prisms has its hypotenuse face
deposited with a thin reflecting film, chosen in such a way that, after cementing both
prisms together, both the reflected and transmitted beam have the same intensity.
Both prisms are cemented in order to avoid a total internal reflection. This prism and
a variant are shown in Fig. 4.18.

4.1.6 Chromatic Dispersing Prisms

The refractive index is a function of the light wavelength and, hence, of the light
color. This is the reason why chromatic dispersing prisms decompose the light into
its elementary chromatic components, obtaining a rainbow, or spectrum.

Equilateral Prism. The simplest chromatic dispersing prism is the equilateral
triangle prism illustrated in Fig. 4.19. This prism is usually made with flint glass,
because of its large refractive index variation with the wavelength of the light.
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Figure 4.16 Schmidt–Pechan prism.

Figure 4.17 Porro prism.



As shown in Fig. 4.19, � is the deviation angle for a light ray and � is the prism
angle. We can see from this figure that

� ¼ ð�� � 0Þ þ ð�� � 0Þ; ð4:9Þ
also

� ¼ � 0 þ � 0; ð4:10Þ
From this we obtain

� ¼ �þ �� �: ð4:11Þ
From Snell’s law, we also know that

sin �

sin � 0 ¼ n ð4:12Þ

and

sin �

sin � 0 ¼ n: ð4:13Þ

Prisms and Refractive Optical Components 135

Figure 4.18 Binocular beamsplitting system.

Figure 4.19 Triangular dispersing prism.



From this we conclude that the deviation angle is a function of the incidence
angle �, the apex angle �, and the refractive index n. The angle � as a function of the
angle � for a prism with an angle � ¼ 608 and n ¼ 1:615 is shown in Fig. 4.20.

The deviation angle � has a minimum magnitude for some value of � equal to
�m. Assuming, as we easily can, that there exists a single minimum value for �, we
can use the reversibility principle to see that this minimum occurs when � ¼ � ¼ �m.
It may be shown that

sin �m ¼ n sin �=2: ð4:14Þ
Assuming that for yellow light � ¼ �m in a prism with � ¼ 608 made from flint

glass, the angle � changes with the wavelength 
, as shown in Fig. 4.21.
Let us now suppose that the angle � is small. It can be shown that the angle � is

independent from � and is given by

� ¼ ðn� 1Þ�: ð4:15Þ
Pellin-Broca or constant deviation prism. Taking as an example the prism shown

in Fig. 4.22, we can see that the beam width for every color will be different and with
an elliptical transverse section. The minor semi-axis for the ellipse for the refracted
beam will be equal to the incident beam only when the angle � is equal to the angle �.

For precise photometric spectra measurements, it is necessary that the
refracted beam width be equal to the incident beam for every wavelength. This
condition is only met when the prism is rotated so that � ¼ � (minimum deviation).
Usually, these measurements are uncomfortable, since both the prism and the obser-
ver have to be rotated.

A dispersing prism that meets the previous condition with a single rotation of
the prism for every measurement and does not require the observer to move is the
Pellin-Broca [12] or constant deviation prism, shown in Fig. 4.23. This prism is built
in a single piece of glass, but we can imagine it as the superposition of three rectan-
gular prisms, glued together as shown in the figure. The deflecting angle � is con-
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Figure 4.20 Angle of deflection vs. the angle of incidence in a dispersing prism.



137

Figure 4.21 Deflection angle vs. the wavelength in a dispersing prism.

Figure 4.22 Variation in the beam deflection for different wavelengths in a triangular prism.

Figure 4.23 Pellin-Broca or constant deviation prism.



stant, equal to 908. The prism is rotated to detect each wavelength. The reflecting
angle must be 458 and, hence, angles � and � must be equal.

The Pellin-Broca prism has many interesting applications besides its common
use as a chromatic dispersive element (Moosmüller [13]).

4.2 LENSES

In this section we will study isotropic lenses of all kinds—thin and thick, as well as
Fresnel and gradient index lenses.

4.2.1 Single Thin Lenses

A lens has two spherical concave or convex surfaces. The optical axis is defined as
the line that passes through the two centers of curvature. If the lens thickness is small
compared with the diameter it is considered a thin lens. The focal length f is the
distance from the lens to the image when the object is a point located at an infinite
distance from the lens, as shown in Fig. 4.24. The object and the image have posi-
tions that are said to be conjugate to each other and related by

1

f
¼ 1

l 0
� 1

l
ð4:16Þ

where l is the distance from the lens to the object and l 0 is the distance from the lens
to the image, as illustrated in Fig. 4.25. Some definitions and properties of the object
and image are given in Table 4.1.
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Figure 4.24 Focal length in a thin lens.

Figure 4.25 Image formation in a thin lens.



The focal length is related to the radii of the curvature r1 and r2 and the
refractive index n by

1

f
¼ ðn� 1Þ 1

r1
� 1

r2

� �
; ð4:17Þ

where r1 or r2 are positive if its center of curvature is to the right of the surface and
negative otherwise.

4.2.2 Thick Lenses and Systems of Lenses

A thick lens has a thickness that cannot be neglected in relation to its diameter. In a
thick lens we have two focal lengths; i.e., the effective focal length F and the back
focal length FB, as shown in Fig. 4.26. The effective focal length is measured from the
principal plane, which is defined as the plane where the rays would be refracted in a
thin lens whose focal length is equal to the effective focal length of the thick lens.
There are two principal planes: one when the image is at the right-hand side of the
lens and another when the image is at the left-hand side of the lens (Fig. 4.27).

In an optical system where the object and image media are air, the intersections
of the principal planes with the optical axis define the principal or nodal prints. A
lens can rotate about an axis, perpendicular to the optical axis and passing through
the second modal point N2 and the image from a distant object remains stationary.
This is illustrated in Fig. 4.28.

In a thick lens or system of lenses the object and image positions are given by

1

f
¼ 1

L 0 �
1

L
: ð4:18Þ
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Table 4.1 Some Properties of the Object and Image formed by a Lens

Real Virtual

Object l < 0 Left of lens l > 0 Right of lens

Image l 0 > 0 Right of lens l 0 < 0 Left of lens

Figure 4.26 Effective and back focal lengths in a thick lens or system of lenses.



Thick Lenses

The effective focal length f of a thick lens is the distance from the principal plane P2

to the focus. It is a function of the lens thickness, and it is given by

1

f
¼ ðn� 1Þ l 0

r1
� l

r2

� �
þ ðn� 1Þt

nr1r2
: ð4:19Þ

The effective focal length is the same for both possible orientations of the lens. The
back focal length is the distance from the vertex of the last optical surface of the
system to the focus, given by

1

FB

¼ ðn� 1Þ 1

r1 � t
ðn� 1Þ

n

� 1

r2

66664

77775: ð4:20Þ

This focal length is different for both lens orientations. The separation T between the
two principal planes could be called the effective thickness and it is given by

T ¼ 1� FðP1 þ P2Þ
n

� �
t � ðn � 1Þ t

n
; ð4:21Þ

where P1 and P2 are the powers of both surfaces, defined by
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Figure 4.27 Image formation in a thick lens or system.

Figure 4.28 Rotating a thick lens system about the nodal point.



P1 ¼
ðn� 1Þ

r1
; P2 ¼

ðn� 1Þ
r2

: ð4:22Þ

We see that the separations between the principal planes is nearly constant for any
radii of curvature, and gives the effective focal length, as in Fig. 4.30.

System of Two Separated Thin Lenses

The effective focal length of a system of two separated thin lenses, as in Fig. 4.31, is
given by

1

f
¼ 1

f1
þ 1

f2
� d

f1 f2
; ð4:23Þ

where d is the distance between the lenses. An alternative common expression is

F ¼ f1 f2
f1 þ f2 � d

: ð4:24Þ
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Figure 4.29 Light refraction in a thick lens.

Figure 4.30 Principal planes’ location in a thick lens.



As in thick lenses, the effective focal length is independent of the system orientation.
The separation T between the two principal planes is

T ¼ 1� FðP1 þ P2½ �d; ð4:25Þ
where the lens powers P1 and P2 are defined by

P1 ¼
1

f1
; P2 ¼

1

f2
: ð4:26Þ

4.2.3 Aspheric Lenses

Optical aberrations, such as spherical aberration, coma, and astigmatism, can ser-
iously affect the image quality of an optical system. To eliminate the aberrations,
several optical components lenses or mirrors have to be used so that the aberration
of one element is compensated by the opposite sign on the others. If we do not
restrict ourselves to the use of spherical surfaces, but use some aspherical surfaces,
a better aberration correction can be achieved with less lenses or mirrors.

Hence, in theory the use of aspherical surfaces is ideal. They are, in general,
more difficult to manufacture than spherical surfaces. The result is that they are
avoided if possible; but sometimes there is no other option but to use them. Let us
now consider a few examples for the use of aspherical surfaces:

The large mirror in astronomical telescopes are either paraboloids
(Cassegrainian and Newtonian telescopes) or hyperboloids of revolution
(Ritchey–Chretién, as the Hubble telescope).

Schmidt astronomical cameras have at the front a strong aspheric glass plate to
produce a system free of spherical aberration. Coma and astigmatism are
also zero, because of the symmetry of the system around a common center
of curvature.

A high-power single lens free of spherical aberration is frequently needed: for
example, in light condensers and indirect ophthalmoscopes. Such a lens is
possible only with one aspheric surface.

A rotationally symmetric aspheric optical surface is described by
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Figure 4.31 Light refraction in a system of two separated thin lenses.



z ¼ cS2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðK þ 1Þc2S2

p þ A4S4 þ A6S
6 þ A8S

8 þ A10S
10; ð4:27Þ

where K is the conic contrast, related to the eccentricity e by K ¼ �e2. The constants
A4;A6;A8; and A10 are called apsheric deformation constants.

The conic constant defines the type of conic, according to the Table 4.2. It is
wasy to see that the conic constant is not defined for a flat surface.

4.2.4 Fresnel Lenses

A Fresnel lens was invented by Agoustine Fresnel and may be thought off as a thick
plano-convex lens whose thickness has been reduced by breaking down the spherical
face in annular concentric rings. The first Fresnel lens was employed in a lighthouse
in France in 1822. The final thickness is approximately constant; therefore, the rings
had different average slopes and also different widths. The widths decrease as the
square of the semidiameter of the ring, as shown in Fig. 4.32.

In order to reduce the spherical aberration of a Fresnel lens the slope of each
ring is controlled in order to produce an effective aspherical surface. In a properly
designed and constructed lens, the on axis transverse aberration of all rings is zero;
however, its phase difference is not necessarily zero, but random. Thus, they are not
diffraction limited by the whole aperture but only by the central region.
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Table 4.2 Values of Conic Constants for Conic Surfaces

Type of conic Conic constant value

Hyperboloid K < �1

Paraboloid K ¼ �1

Ellipse rotated about its major axis (prolate spheroid or ellipsoid) �1 < K < 0

Sphere K ¼ 0

Ellipse rotated about its minor axis (oblate spheroid) K > 0

Figure 4.32 A Fresnel lens.



Fresnel lenses are made by hot pressing an acrylic sheet (Miller et al. [14], and
Boettner and Barnett [15]). Thus, a nickel master must first be produced.

4.3 GRADIENT INDEX OPTICS

A gradient index (GRIN) optical component is one where the refractive index is not
constant but varies within the transparent material (Machand [16]). In nature the
gradient index appears on the hot air above roads, creating the familiar mirage. In
optical instruments gradient index lenses are very useful as will be shown here.

The variation in the index of refraction in a lens can be:

(a) In the direction of the optical axis. This is called an axial gradient.
(b) Perpendicular to the optical axis, with the name of radial gradient.
(c) Symmetric about a point, which is the spherical gradient.

The spherical about gradient is rarely used in optical components mainly
because they are difficult to fabricate and because they are equivalent to axial
gradients.

Gradient index components are most often fabricated by an ion exchange
process. They are made out of glass, polymers, zinc selenide/zinc sulfide and germa-
nium (Moore [17]). Optical fibers with gradient index have been made by a chemical
vapor deposition process.

4.3.1 Axial Gradient Index Lenses

Figure 4.33 shows a plano-convex lens with an axial gradient. If the lens is made with
an homogeneous glass it is well known that a large amount of spherical aberration
occurs, making the marginal rays converge at a point on the optical axis closer to the
lens than the paraxial focus. A solution to correct this aberration is to decrease the
refractive index near the edge of the lens. If a gradient is introduced, decreasing the
refractive index in the direction of the optical axis, the average refractive index is
lower at the edge of the lens than at its center. The refractive index along the optical
axis can be represented by

nðzÞ ¼ N00 þN01zþN02z
2 þ � � � ; ð4:28Þ
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Figure 4.33 An axial gradient plano-convex lens.



where N00 is the refractive index at the vertex of the convex (first) lens surface. It can
be shown (Moore [18]) that for a single plane convex lens, a good correction is
obtained with linear approximation. The gradient should have a depth equal to
the sagitta of the convex surface. With these conditions it can be proved that the
refractive index change �n along the optical axis is given by

�n ¼ 0:15

ð f =N00Þ2
ð4:29Þ

where ð f =#Þ is the f -number of the lens. Thus, the necessary �n for sin f =4 lens is
only 0.0094, while for an f =1 lens it is 0.15.

4.3.2 Radial Gradient Index Lenses

Radial index gradients are symmetric about the optical axis and can be represented
by

nðrÞ ¼ N00 þN10r
2 þN20r

4 þ � � � ; ð4:30Þ
where r is the radial distance. A very thick plano-plano lens or rod, as shown in Fig.
4.34, refractor in a curved sinusoidal path all rays entering the lens. The wavelength
L of this wavy path can be shown to be given by

L ¼ 2 � N00

2N20

� �1=2

: ð4:31Þ

Thus, if the rod has a length L, an object at the front surface can be imaged at
the rear surface with unit magnification without any spherical aberration. This prop-
erty is used in relay systems such as those in endoscopes or borescopes.

An interesting and useful application of gradient index optics rods is as an
endoscopic relay, as described by Tomkinson et al. [19]. The great disadvantage is
that endoscopes using these rods are rigid. In compensation, the great advantage is
that they have a superior imaging performance in sharpness as well as in contrast.

4.4 SUMMARY

Optical elements made out of isotropic materials, homogeneous as well as inhomo-
geneous (gradient index), are the basic components of most optical systems.
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5.1 MIRRORS

Concave or convex mirrors as well as lenses can be used in optical systems to form
images. Like a lens, a mirror can introduce all five Seidel monochromatic aberra-
tions. Only the two chromatic aberrations are not introduced. The possible variables
are the mirror shape, aperture, pupil position, and image and object positions. In this
chapter the main properties of these mirrors are described.

5.1.1 Spherical Mirror

Let us begin with the study of spherical mirrors (Malacara and Malacara [1]). A
spherical mirror is free of spherical aberration only when the object and the image
are both at the center of curvature or at the vertex of the mirror. If the object is at
infinity, as shown in Fig. 5.1 ðl 0 ¼ �f ¼ r=2), the image is at the focus and the
longitudinal spherical aberration has the value

SphL ¼ � y2

4r
¼ D2

32f
¼ � z

2
ð5:1Þ

and, the transverse aberration is

SphL ¼ � y3

2r2
¼ D3

64 f 2
; ð5:2Þ

where D is the diameter of the mirror, z is the sagitta of the surface and r is the radius
of curvature. By integration of this expression, the wavefront aberration is given by

147



WðyÞ ¼ y4

4r3
: ð5:3Þ

This wavefront distortion is twice the sagitta difference between a sphere and a
paraboloid. This is to be expected, since the paraboloid is free of spherical aberration
when the object is at infinity.

The value of the Petzval curvature, i.e., the field curvature in the absence of
astigmatism, is

Ptz ¼ h 02

r
¼ � h 02

2f
: ð5:4Þ

Thus, the Petzval surface is concentric with the mirror. In a spherical mirror, when
the object and the image are at the center of curvature, the spherical aberration is
zero. If the stop is at the center of curvature, the coma and astigmatism aberrations
are also zero. Then, only the Petzval curvature exists and coincides with the field
curvature.

The value of the sagittal coma aberration is a function of the stop position,
given by

ComaS ¼ � y2h 02ð �ll � rÞ
r3

ð5:5Þ

where �ll is the distance from the mirror to the stop and h 0 is the image height. If the
object is located at infinity, the spherical mirror would be free of coma with the stop
at the mirror, only if the principal surface (the mirror surface itself) is a sphere with
center of curvature at the focus, but obviously this is not the case. Then, when the
stop is at the mirror ð �ll ¼ 0Þ, the value of the sagittal coma is

ComaS ¼
D2h 0

16f 2
; ð5:6Þ

when the stop is at the center of curvature ð �ll ¼ rÞ, the value of the sagittal coma
becomes zero, as mentioned before.

The longitudinal sagittal astigmatism in the spherical mirror is given by
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AstLS ¼ � h 02

r

�ll � r

r

 !2

; ð5:7Þ

which may also be written as

AstLS ¼ �
�ll � r

r

 !2

Ptz: ð5:8Þ

As pointed out before, we can see that AstLS ¼ Ptz when �ll ¼ 0 and the field is curved
with the Petzval curvature, as shown in Fig. 5.2(a). In general it can be shown that
the sagitta represented here by Best, the surface of best definition located between the
sagittal and the tangential surfaces, is given by

Best ¼ 1� 2
�ll � r

r

 !2

ffi
2

4

3

5Ptz: ð5:9Þ

If the stop is located at

�ll

r
¼ � 1

ffiffiffi
3

p þ 1 ¼ 0:42 and 1:58; ð5:10Þ

the tangential surface is flat, as shown in Fig. 5.2(b). When the stop is

�ll

r
¼ � 1

ffiffiffi
2

p þ 1 ¼ 0:29 and 1:707; ð5:11Þ

the surface of best definition is a plane, as in Fig. 5.2(c). When the stop is at the
mirror, as in Fig. 5.2(d), the sagittal surface is flat.
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5.1.2 Paraboloidal Mirrors

A paraboloidal mirror is an aspherical surface whose conic constant is K ¼ �1, as
described in Chapter 4. The spherical aberration is absent if the object is located at
infinity. However, if the object is at the center of curvature the spherical aberration
appears. Now, let us examine each of the primary aberrations in a paraboloidal
mirror. The exact expression for the longitudinal aberration of the normals to the
mirror is given by

SphLnormals ¼ f tan2 ’; ð5:12Þ
as illustrated in Fig. 5.3. When the object is at the center of curvature, the spherical
aberration of the paraboloid is approximately twice the aberration of the normals.
Thus, we may write

SphL ¼ y2

r
¼ �D2

8f
: ð5:13Þ

For the spherical aberration of a spherical mirror with the object at infinity, the abso-
lute values are different by a factor of four and are opposite in sign. In other words, the
wavefront aberrations must have opposite signs and the same absolute values.

As for the sphere, if the object is located at infinity, the paraboloid would be
free of coma with the stop at the mirror only if the principal surface is spherical with
center of curvature at the focus; but again, this is not the case. The principal surface
is the parabolic surface itself. Thus, the value of OSC (Malacara [1]) is given by

OSC ¼ fM
f

� 1; ð5:14Þ

where fM and f are the marginal and paraxial focal lengths, measured along the
reflected rays, as shown in Fig. 5.3. For a paraboloid, we may show that

fM ¼ f � z; ð5:15Þ
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with the sagitta z given by

z ¼ � D2

16f
: ð5:16Þ

This, the value of the sagittal coma can be shown to be

ComaS ¼ OSC � h 0 ¼ � zh 0

f
¼ D2h 0

16f 2
: ð5:17Þ

The coma aberrations are the same for spherical and parabolic mirrors when they
stop at the mirror.

The astigmatism for a paraboloid and a sphere are related by

AstLSparab ¼ AstLS sphere 1� i

�ii

�yy

y

� �2
" #

: ð5:18Þ

The astigmatism when the stop is at the mirror is equal to the astigmatism of a
spherical mirror, which can also be written as

AstLS total ¼
ð �ll � rÞ2 � �ll 2

r2

" #

Ptz: ð5:19Þ

We see that the surface of best definition is flat when �ll=r ¼ 0:25 and not 0.29, as
in the case of the spherical mirror.

5.1.3 Ellipsoidal Mirrors

Ellipsoidal mirrors whose surface is generated by rotating an ellipse about its major
axis produce an image free of spherical aberration when the image and object are
located at each of their foci (Nielsen [2]). As described in Chapter 4, the conic
constant for these ellipsoidal surfaces is in the range �1 < K < 0. If the major
and minor semiaxes are a and b, respectively, as in Fig. 5.4, the separation between
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the two foci of the ellipsoid is a2 � b2 and K ¼ �ð1� b2=a2Þ. Thus, these two foci are
at distances d1 and d2 from the vertex given by

d1; d2 ¼ a� ða2 � b2Þ1=2 ð5:20Þ
which, in terms of the conic constant K , can be shown to be

d1; d2 ¼
r

ðK þ 1Þ ð1�
ffiffiffiffiffiffiffiffi
�K

p
Þ; ð5:21Þ

where r is the radius of curvature at the vertex of the ellipsoidal surface.

5.2 SOME MIRROR SYSTEMS

There are some optical systems that use only mirrors (Churilovskii and Goldis [3],
Erdos [4]), such as the astronomical mirrors studied in Chapter 9 in this book. In this
section, some other interesting systems are described.

5.2.1 Manguin Mirror

This mirror was invented in 1876 in France by Manguin as an alternative for the
parabolic mirror used in search lights. It is made with a meniscus negative lens
coated with a reflective film on the convex surface, as shown in Fig. 5.5. The radius
of curvature of the concave refracting surface and the thickness are the variables
used to correct the spherical aberration. A bonus advantage is that the coma aberra-
tion is less than half that of a parabolic mirror. This system has two more advan-
tages; first, the surfaces are spherical not parabolic, making construction a lot easier;
secondly the reflecting coating is on the back surface, avoiding air exposure and
oxidation of the metal. A Manguin mirror made with crown glass (BK7) can be
obtained with the following formulas

r1 ¼ 0:1540T þ 1:0079F ð5:22Þ
and

r2 ¼ 0:8690þ 1:4977F; ð5:23Þ
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where T is the thickness, F is the effective focal length of the mirror, r1 is the radius
of curvature of this reflecting surface, and r2 is the radius of curvature of the front
surface.

5.2.2 Dyson System

Unit magnification systems are very useful for copying small structures or drawings,
a typical application is in photolithography in the electronics industry. In general,
these systems are symmetric, thus automatically eliminating coma, distortion, and
magnification chromatic aberration. An example of these systems, illustrated in Fig.
5.6, was designed by Dyson [5].

The system is concentric. A marginal meridional ray on axis, leaving from the
center of curvature, would not be refracted. Thus, spherical aberration and axial
chromatic aberration are absent. The radius of curvature rL of the lens is

rL ¼ n� 1

n

� �
rM; ð5:24Þ

where rM is the radius of curvature of the mirror, in order to make the Petzval sum
zero. The primary astigmatism is also zero, since the spherical aberration contribu-
tion of both surfaces are zero. However, the high-order astigmatism appears not very
far from the optical axis. Thus, all primary aberrations are corrected in this system.

It may be noted that since the principal ray is parallel to the optical axis in the
object as well as in the image media, the system is both frontal and back telecentric.

5.2.3 Offner System

The Offner [6] system is another 1:1 magnification system, formed only by mirrors,
as shown in Fig. 5.7. The system is concentric and with zero Petzval sum, as in the
case of the Dyson system. This system may be also corrected for all primary aberra-
tions, but since higher-order astigmatism is large in this configuration, actual Offner
systems depart from this configuration. Primary and high-order astigmatism are
balanced at a field zone to form a well-corrected ring where the sagittal and the
tangential surfaces intersect.

5.3 REFLECTIVE COATINGS

Reflecting coatings can be of many different types (Hass [7]). The best option also
depends on a large number of factors, such as the type of application, wavelength
range, the environment around the optical system, cost limitations, etc. Thin films
are described in detail in Chapter 23. However, here we describe some of the many
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thin film coatings used in reflective optical systems. The experimental procedures
used to produce them are not described here.

5.3.1 Silver

An advantage of silver films is that they can be deposited by an inexpensive chemical
procedure, without any vacuum deposition chamber (Strong [8]). Silver films have a
good reflectance in the whole visible spectrum and in the near-ultraviolet, as illu-
strated in Fig. 5.8. A serious disadvantage is that silver oxidates and becomes black
because of atmospheric humidity. This problem is solved when the silver is deposited
on the back surface of the glass and then protected with a paint layer. Most non-
optical common mirrors are made in this manner.

5.3.2 Aluminum

Aluminum coating has to be deposited in a vacuum deposition chamber by evapora-
tion; this procedure makes these mirrors more expensive than the ones made with
silver. The reflectivity of aluminum is worse than that of silver in the ultraviolet
region, but better in the infrared region, as shown in Fig. 5.8.

The most important characteristic of aluminum is that although it oxidates
quite rapidly, this oxide is transparent: it can be stained and easily scratched with
dust. So, it is generally protected with a hard coating. Most optical mirrors are
covered and protected with a layer of half a wave thick magnesium fluoride
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(MgF) or silicon monoxide (SiO). The great advantage is that a protected mirror can
be easily cleaned with isopropyl alcohol or acetone without damaging the mirror.
Multilayer protective coatings are also used to enhance the reflectivity in the visible
or in the ultraviolet regions.

5.3.3 Gold

Gold, like aluminum, has to be deposited by vacuum evaporation. As expected, it is
more expensive than aluminum, but it has the great advantage of a good reflectivity
in the infrared region, as shown in Fig. 5.8. Optical elements for use in the infrared
frequently use gold. Gold mirrors can also be protected with a silicon monoxide
overcoating.

5.3.4 Dielectric Films

Dielectric multilayer films are deposited by vacuum evaporation with a procedure
that permits deposition of different kinds of materials with a precisely controlled
thickness (see Chapter 23). Mirrors made in this manner are expensive. However, the
great advantage is that the reflectivity at the desired wavelength range can be
obtained as required. A common example are the mirrors used in gas lasers, with
nearly 100% reflectivity at the proper wavelength. Unlike metal mirrors, they can
reflect or transmit all of the incident light without absorbing anything; also, they can
reflect some colors and transmit others.

An interesting application of these films is in the concave mirrors used in
projector lamps, where the reflectivity has to be as high as possible in the visible
region but as low as possible in the infrared region to avoid heating the film.

5.4 BEAMSPLITTERS

Beamsplitters are partially reflecting and transmitting mirrors. They can be made
with an extremely thin film of metal or with a stack of thin films.

The reflectance and transmittance of thin metal films, as shown in Fig. 5.7, is
almost flat over the visible wavelength range; therefore, the color of the reflected and
transmitted light beam preserve their color. On the other hand, in a dielectric thin
films beamsplitter the reflected and transmitted beams have complementary colors.
They preserve their original colors only if the reflectivity is constant for all the visible
spectrum. Another important difference is that metal films absorb a small part of the
luminous energy.

Polarizing beamsplitters reflect a large percentage of the S polarized beam
while transmitting the P polarized beam. Thus, if the incident beam is unpolarized,
the reflected and the transmitted beams are linearly polarized, in orthogonal direc-
tions.
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6.1 INTRODUCTION

An optical system can be thought of as a device that transforms input wavefronts
into output wavefronts. The class of transformations that link the output to the
input wavefronts in refractive–reflective optical systems is quite limited. For example
it is not possible to design a refractive–reflective optical system for which the resul-
tant image is three dimensional when the input wavefront is a collimated beam. This
particular input–output transformation can be realized by using a hologram.

Holograms can also be made to have predefined optical transfer functions, in
which case they are referred to as holographic optical elements (HOEs). The optical
transfer function of an HOE is based on diffraction expressed by the diffraction
equation,


 ¼ dðsin �1 þ sin �2Þ; ð6:1Þ
where �1 and �2 are the angles of incidence and diffraction, respectively, and d is the
period of the diffraction grating.

The wavelength dependence of this grating will depend on its structure, as
shown in Fig. 6.1. Consequently, HOEs are useful and sometimes indispensable
components of optical systems when the source is monochromatic or when a wave-
length-dependent system is desired.

The fundamental difference between a general hologram and an HOE is that
the first one forms an image of some extended object that is recorded in holographic
material in the form of a holographic interference pattern combining an object beam
and a reference beam (Jannson et al., 1994). This image is reconstructed using a
beam with similar properties to the reference beam. On the other hand, an HOE is
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recorded using a simple wavefront such as a spherical wave, a Gaussian, plane,
elliptical, or any other elementary wave that satisfies, at least approximately, the
eikonal equation (Sommerfeld, 1962).

In principle, given an arbitrary input wavefront, an HOE can be designed to
transform into a desired output wavefront. In such a situation, the required HOE
recording beams would most likely be produced by computer-generated holograms
in conjunction with conventional refractive and reflective optical elements. Using the
recent advances in micromachining and microelectronics techniques the fabrication
of such structures with micron and submicron minimal details has become practical.
Correspondingly, nonspectroscopic applications of gratings as diffractive optical
elements (DOEs) have appeared. DOEs can not only replace reflective and refractive
elements but in many cases can perform functions not even possible with conven-
tional optics alone. The power of DOEs lies in their ability to synthesize arbitrary
phase functions. They are used as components in novel devices, which were once
considered too impractical but are now designed and fabricated. Complex micro-
scopic patterns can be generated on the surface of many optical materials to improve
the optical performance of existing designs as well as to make possible entirely new
ones.

6.1.1 Holographic and Diffractive Optical Elements

In general, the term diffractive elements (DE) (or diffractive optical elements) refers
to those that are based on the utilization of the wave nature of light. The HOEs and
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DOEs are based on grating composition (Jannson et al., 1994). Both are lens-like;
and its main difference is mostly in their fabrication. An HOE is produced by
holographic recording, while a DOE is usually fabricated by a photolithographic
method.

For both kinds of diffractive elements (HOEs and DOEs) the grating effect is
dominant and defines their function and limitations. In general, grating dispersion is
much stronger than prism dispersion. Thus, chromatic (wavelength) dispersion
strongly influences (and limits) the imaging properties of HOEs and DOEs.
Moreover, almost all applications of HOEs and DOEs are the result of effectively
controlling chromatic dispersion and chromatic aberrations.

Although DOEs typically have a periodic (grating) structure that is always
located at their surface as a surface relief pattern, HOEs also have a periodic struc-
ture that is located either on the surface or within the volume of the holographic
material (Fig. 6.2).

This categorization can be divided into several subsections:

. diffractive lenses: elements that perform functions similar to conventional
refractive lenses, e.g., they form images

. kinoforms: diffractive elements whose phase modulation is introduced by a
surface relief structure

. binary optics: kinoforms produced by lithography

. diffractive phase elements (DPEs): diffractive elements that introduce phase
change.

Regardless of the name or method of fabrication, diffractive optics can be
understood with just a few basic tools. The properties of diffractive optics that are
shared with conventional elements (focal length, chromatic dispersion, aberration
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contributions, etc.) do not depend on the specific type of diffractive element. Given a
phase function or, equivalently, a grating spatial frequency distribution, the influ-
ence of the diffractive element or an incident ray for a specified diffraction order is
found via the grating equation. The specific type involved (kinoform, binary lens,
HOE, etc.) only influences the diffraction efficiency. Because of this reason, though-
out this chapter the general term of diffractive elements (DEs) will be used.

One factor that has stimulated much of the recent interest in diffractive optics
has been the increased optical performance of such optical elements. This allows the
fabrication of optical elements that are smaller, lighter, and cheaper to fabricate, are
more rugged and have superior performance than the coventional optical compo-
nents they often replace. In addition, the design capabilities for binary optics now
available can make possible the design and manufacture of components having
optical properties never before produced.

6.2 DESIGN ISSUES

Diffractive optical elements introduce a controlled phase delay into an optical wave-
front by changing the optical path length, either by variating the surface height, or
by modulating the refractive index as a function of position. Because of their unique
characteristics, diffractive optical elements (DEs) present a new and very useful tool
in optical design.

Innovative diffractive components have been applied in a number of new
systems, such as laser-based systems, in which unusual features of these elements
are utilized. Due to the great number of parameters that can be used to define a
diffractive component, the efficient handling of this degree of freedom presents a
technical challenge.

Probably the best way to describe the design procedure was presented by
Joseph Mait (1995) who divided it into three basic stages: analysis, synthesis, and
implementation.

(a) Analysis. There are two important points. First, it is necessary to understand the
physics of the image formation required by the proposed diffractive element (DE)
that will determine the method to be used (Fig. 6.3). Among the methods available
are scalar or vector diffraction theory, geometrical, Fresnel and Fourier transform,
convolution, correlation, and rigorous theory. The choice of method depends on the
required diffraction properties of the DE and will affect the complexity of the design
algorithm and the definition and value of the measured performance.

Secondly, it is important to take into account the fabrication model (i.e., the
degree of linearity of the material and the possible errors in its fabrication) in which
the data generated by computer will be recorded.

(b) Synthesis. Identifing the appropriate scheme that represents mathematically the
underlying physical problem, the appropriate optimization techniques, design
metrics (i.e., diffraction efficiency, quantization or reconstruction error, modulation
transfer function, aberrations, undesired light, glare, etc.) and their degree of free-
dom.
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Among the proposed procedures for optimization of the problem are the
quantization, steepest descent, simulated annealing, and iterative Fourier algorithm,
which in general can be classified as direct and indirect approaches.

In the direct method the performance of the primary metric is optimized. This
method, although simple, can be time consuming. For indirect approaches, the
optimization of an alternate metric for solving the design problem is necessary.

(c) Implementation. This step considers the execution of the design, and the fabrica-
tion and testing of the resulting diffracting element. It is an iterative procedure. The
DE performance can be improved by using the data collected during the testing, or
by introducing more data on the material response into the design.

6.2.1 Modeling Theories

The theoretical basis for modeling diffractive optics can be divided into three
regimes: geometrical optics, scalar, and vector diffraction. The main features of
each regime are described below.

6.2.1.1 Geometrical Optics

In this case, rays are used to describe the propagation of the diffracted wavefront but
neglecting its amplitude variations; i.e., geometrical optics can predict the direction
of diffraction orders but not their relative intensities. Despite these limitations, if a
diffractive element is used in an application which is normally designed by tracing
rays, then ray tracing coupled with simple efficiency estimates will usually be suffi-
cient. The majority of these applications are conventional systems (imaging systems,
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Figure 6.3 Basic geometry of diffractive optics (transmission mode). The incident wave is

diffracted by the diffractive element (DE). The resultant amplitude distribution � must satisfy

the requirements of the specific design.



collimating or focusing optics, laser relay systems, etc.). In such systems the diffrac-
tive element corrects residual aberrations (chromatic, monochromatic, or thermal)
or replaces a conventional optic (e.g., a Fresnel lens replacing a refractive lens). In
most of these cases, the diffractive optic is blazed for a single order and can be
though as a generalized grating – one in which the period varies across the element.

Two methods are used: the grating equation and the Sweat model. In the
grating equation (Welford, 1986), the diffraction of an incident wave is calculated
on the grating point by point, and the propagation of the diffracted wave through
the rest of the optical system. This diffracted beam is calculated with the grating
equation, which is the diffractive counterpart to Snell’s law or the reflection law.
Deviation of the observed wavefront from a spherical shape constitutes the system’s
aberrations. This approach is very useful for the analysis of these aberrations.
Usually a thin hologram has been assumed, with an amplitude transmission during
reconstruction that is proportional to the intensity during the recording process.
Other assumptions lead to additional diffraction orders and different amplitude
distributions. For a given diffraction order, the imaging characteristics are the
same, regardless of the diffracting structure assumed.

Sweat (1977; 1979) showed that a diffracting element is mathematically equiva-
lent to a thin refracting lens in which the refractive index approaches infinity and the
lens’ curvatures converge to the substrate of the diffracting lens. Snell’s law is then
used to trace rays through this refractive equivalent of the diffractive element. As the
index approaches infinity, the Sweat model approaches the grating equation. Almost
all commercially available ray tracing software can handle either of these models.

6.2.1.2 Scalar Diffraction Theory

This approach must be used when the variations amplitude are not negligible, if the
value of the system’s diffraction efficiency cannot be separated from the rest of the
design, or if the diffraction element cannot be approximated by a generalized grat-
ing. There are two fundamental assumptions usually involved in the application of
scalar diffraction theory to the design and analysis of DEs. The first is that the
optical field just past the DE can be described by a simple transmission function.
In this case, the thin element approximation and, often, the paraxial approximation
are used, together with the treatment of the electromagnetic wave as a scalar phe-
nomenon. This ensures that the design problems are comparatively simple to solve.
The second assumption is the choice of propagation method to transform this field
to the plane of interest. On this point, it is possible to use the mathematical for-
mulation of Fourier optics when the image is in the far field elements or Fresnel
optics when it is in the near field.

Scalar diffraction theory is a simple tool for the analysis of diffractive optical
elements. In this case, the diffractive optic is modeled as an infinitely thin phase plate
and the light’s propagation is calculated using the appropriate scalar diffraction
theory.

Using the scalar approach, the design of optical diffracting elements for par-
allel optical processing systems has become possible. There are now highly efficient
space invariant spot array generators that provide a signal in the Fourier transform
plane of a lens, and space variant lens arrays which provide a signal in the device
focal plane. Diffractive beam samplers and beam shapers are also in use. Some
detailed designs can be found in the work of Mait (1995).
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Common optimization techniques include phase retrieval (Fienup, 1981), non-
linear optimization, and search methods or linear systems analysis.

6.2.1.2.1 The Resonant Domain

In recent years more attention has been paid to elements that push against the
validity of the scalar approximations or violate them completely. These work in
the so-called resonance domain, which is characterized by diffracting elements’ struc-
ture, with size w, that lie within the illuminating wavelength (
) range




10
< w < 10
: ð6:2Þ

The strongest resonance effects are produced when the size of the elemental features
approach the wavelength of the illuminating light. In this case, polarization effects
and multiple scattering must be taken into account by using the electromagnetic
theory rigorously. Such DE when working at optical wavelengths can be fabricated
using techniques such as direct-write electron beam lithography.

In the resonant domain the diffraction efficiency changes significantly with a
slight change of grating parameters such as period, depth, and refractive index.

This principle can be used to form different DEs such as a diffractive optic
beam deflector for high-power laser systems, where laser-induced damage limits the
usefulness of conventional elements. Reflection gratings operating as a polarization-
sensitive beamsplitter has also been proposed (Lightbody et al., 1995). Some numer-
ical simulation uses a single diffraction grating in the resonant domain for pulse
compression (Ichikawa, 1999).

6.2.1.3 Vector Diffraction Theory

The scalar theory fails when the output of the DE to be used is in its near field and
when the minimum size of the elemental features is on the order of the illumination
wavelength. Diffraction analysis of these situations requires a vector solution of
Maxwell’s equations that avoids the approximations present in scalar theories.

It has become possible to fabricate computer-synthesized diffractive elements
where the size of the elemental features are as small as a fraction of a wavelength due
to the progress in fabrication methods that are well known within integrated circuits
technology (Wei et al., 1994). This has been pushed toward compact small-size and
low-cost elements by industral requirements. An additional requirement is to incor-
porate several sophisticated functions into a single component.

A relatively simple method for finding an exact solution of the Maxwell’s
equations for the electromagnetic diffraction is by grating structures. It has been
used successfully and accurately to analyze holographic and surface-relief grating
structures, transmission and reflection planar dielectric/absorption holographic grat-
ings, dielectric/metallic surfaces relief gratings, multiplexed holographic gratings, etc.
(Moharam et al., 1994; Maystre, 1989).

In this theory, the surface-relief periodic grating is approximated by a stack of
lamellar gratings. The electromagnetic fields of each layer of the stack are decom-
posed into spatial harmonics having the same periodicity as the grating. These
spatial harmonics are determined by solving a set of coupled wave equations, one
for each layer. The electromagnetic fields within each layer are matched to those in
the two adjacent layers and to the fields associated with the backward and forward
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propagating waves or evanescent waves in two exterior regions. The amplitudes of
the diffracted fields are obtained by solving this system of equations.

Rigorous methods have led to several approaches: the integral, differential, or
variational (Noponen and Saarinen, 1996; Mirotznik et al., 1996); analytic con-
tinuation (Bruno and Reitich, 1995); and variational methods and others (Prather,
1995). The integral approach covers a range of methods based on the solution of
integral equations. The differential methods use a formally opposite approach of
solving first- or second-order differential equations. In some methods the wave
equations are solved by numerical integration through the grating. Recently a
method has been proposed for the calculation or the diffraction efficiency that
includes the response of photosensitive materials that have a nonuniform thickness
variation or erosion of the emulsion surface due to the developing process
(Kamiya, 1998).

Another method used to model all diffractive effects rigorously is to solve
Maxwell’s equations by using the finite element method (FEM) that is based on a
variational formulation of the scalar wave equation. The FEM is a tool in areas such
as geophysics, acoustics, aerodynamics, astrophysics, laser function, fluid dynamics
and electromagnetics, as well as to model complex structures. With this method the
analysis of complicated material structures can be calculated (Lichtenberg and
Gallagher, 1994).

Some hybrid integral–variational methods have also been studied (Mirotznik et
al., 1996; Cotter et al., 1995). In this case an FEM is used to solve the Helmholtz
equation for the interior of a DE. A boundary element method, a Green’s function
approach, is used to determine the field exterior to the DE. These two methods are
coupled at the surface of the DE by field continuity conditions. This work has been
applied to the design of a subwavelength diffractive lens in which the phase is
continuous and the analysis of diffraction from inhomogeneous scatterers in an
unbounded region.

There is a similar method for the design of periodic subwavelength diffracting
elements (Noponen et al., 1995; Zhou and Drabik, 1995) that begins with an initial
structure derived from scalar theory that uses simulated annealing to improve its
performance. However, the infinitely periodic nature of the structures allows the
rigorous coupled wave theory (RCW) developed by Moharam and Gaylord (1981)
to be used for the diffraction model. These methods are flexible and have been
applied to surface-relief gratings and to gradient-index structures.

6.2.1.3.1 Polarizing Components

Vector theory allows the analysis of the polarization properties of surface-relief
gratings and diffracted beams whenever cross-coupling between the polarization
states takes place. This is shown in the design and tolerance of components for
magneto-optical heads (Haggans and Kostuk, 1991). Another example is polarizing
beamsplitter (PBS) that combines the form birefringence of a spatial frequency
grating, with the resonant refractivity of a multilayer structure (Tyan et al., 1996).
The results demonstrate very high extinction ratios (1,000,000:1) when PBS is oper-
ated at the designed wavelength and angle of incidence, and good average extinction
ratios (from 800:1 to 50:1) when the PBS is operated for waves of 208 angular
bandwidth, with wavelength ranging from 1300 nm to 1500 nm, combining features
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such as small size and negligible insertion losses. The design has been optimized
using rigorous couple-wave analysis (RCWA).

6.2.1.4 Achromatic Diffractive Elements

Diffractive optical elements (DEs) operate at the wavelength for which they were
designed. When operating at a different wavelength, chromatic aberrations arise.
This is a characteristic feature of diffractive lenses. As described by Bennett
(1976), a complete analysis of the chromatic aberrations of holograms must take
into account the lateral displacement of an image point (lateral dispersion), and its
longitudinal dispersion, the change of magnification, third- and higher-order chro-
matic aberrations, and amplitude variation across the reconstructed wavefronts from
thick holograms.

The Abbe value of a diffractive lens vdiff , defined over the wavelength range
from 
short to 
long (Buralli, 1994)

vdiff ¼

0

ð
short � 
longÞ
ð6:3Þ

will always be negative as 
long > 
short. The absolute value of vdiff is much smaller
than the Abbe value for a conventional refractive lens. For this lens, aberration
coefficients can be derived.

Since many potential DE applications require the simultaneous use of more
than one wavelength, correction of chromatic aberration is essential.

The unique properties of the DE can be used to correct the aberration of the
optical systems that consists of conventional optical elements and DEs by combining
this with refractive elements to produce achromatic diffractive/refractive hybrid
lenses for use in optical systems. Figure 6.4 shows some hybrid eyepiece designs.
Many of these elements have been designed for use with spectral bands ranging from
the visible to mid-wave infrared and long-wave infrared regions. These show that a
DE is very effective in the correction of primary chromatic aberrations in the infra-
red region and of primary and secondary chromatic aberrations for visible optical
systems. Generally, a DE can improve optical system performance while reducing
cost and weight. One can reduce the number of lens elements by approximately one-
third; additional benefits can include reducing the sensitivity of the system to rigid
body misalignments.

The advantages offered by hybrid refractive–diffractive elements are particu-
larly attractive in infrared systems where the material used is a significant proportion
of the overall cost. Hybrid elements allow, for example, passive athermalization of a
lens in a simple aluminum amount with a minimum number of elements in which
two elements do the athermalization while the dispersive properties of a diffractive
surface are used to achromatize the system. In order to realize their full effectivity,
hybrid elements must include a conventional aspheric lens with a diffractive structure
on one surface (McDowell et al., 1994). Diamond turning permits the aspheric
profile and diffractive features to be machined on the same surface in a single
process.

Another method of achromatic DE design is that of Ford et al. (1996), where
the DE acts differently for each of the two wavelengths. The phase-relief hologram
can be transparent at one wavelength (
) yet diffracting efficiently at another (
 0)
provided that the phase delay is an integral number of wavelengths at 
 and a half-
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integer number of wavelengths at 
 0. In other words, there is an integral-multiple
phase retardation of 2 to one wavelength until the suitable phase retardation of the
secone wavelength is achieved (Fig. 6.5). In another method the DE is corrected for
chromatic aberration designed by combinating two aligned DEs made of different
materials (Arieli et al., 1998).

6.3 FABRICATION TECHNIQUES

The design of a diffractive optical element must include specifications for micro-
structure necessary to obtain the desired performance. With an appropriate fabrica-
tion technique, these microstructures will introduce a change in amplitude or phase
that alters the incident wavefront.

A factor that has stimulated much of the recent interest in diffractive optics has
been new manufacturing techniques that give the designer greater control over the
phase function that introduces the diffracting element, resulting in a reasonably high
diffraction efficiency. In fact, a scalar diffraction theory analysis indicates that a
properly designed surface profile can have a first-order diffraction efficiency of
100% at the design wavelength.
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In this section we discuss the main fabrication techniques. These are holo-
graphic recording, mask fabrication, and direct-writing techniques, as shown in
Fig. 6.6.

6.3.1 Holographic Recording

Amplitude or phase modulation at high spatial frequencies can be obtained from a
holographic recording. Off-axis diffractive optical elements have grating-like struc-
tures with submicron carrier frequency and diffraction efficiencies as high as 90%.
The holographic recording process is rather complicated and is extremely sensitive to
vibration, which can be avoided by using an active fringe stabilization system. With
this technique, it is possible to obtain positioning errors below 
=40.

Probably one of the best-known materials is dichromated gelatine, which can
be used to produce elements that introduce a phase-index modulation either in its
bulk or on its surface. The advantages of this material are its high resolution, index
modulation, diffraction efficiency, and low scattering. Further, factors such as
humidity affect the holographic record in dichromated gelatine over time and
hence the system is not stable unless it is properly sealed. This material is sensitive
to the blue part of the spectrum, although there are some dyes that can be incorpo-
rated to make it sensitive to a different wavelength (Solano, 1987).
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Figure 6.5 Effect of wavelength shift on (a) half-wave and (b) multiple-wave phase holo-

grams. The path-length difference on wavelength shift is greater when the etch depth is

optimum. With the correct etch depth, the phase delay at the second wavelength is zero,

and there is no diffraction (Ford et al., 1996).



Other materials are photopolymers and are based on the photopolymeriza-
tion of free-radical monomers such as acrylate esters (Lessard and Thompson,
1995). A relatively large number of free-radical monomers suitable for use in
holographic recording have been developed. These allow the rapid polymerization
of free-radical monomers with any of the common laser lines in the visible spec-
trum. Problems with these materials include the inhibition of free-radical polymer-
ization due to the presence of dissolved oxygen. To compensate, a high initial
exposure to oxygen is required, which causes a significant volume contraction,
distorting the recorded fringe pattern. Reprocity failure, reduced diffraction effi-
ciency at low spatial frequencies, and time-consuming post-exposure fixing are
limitations that are overcome in a photopolymer based on cationic ring-opening
polymerization (Close et al., 1969). Among those photopolymers with good stabi-
lity and high index modulation are those made by Dupont (Chen and Chen, 1998),
the laboratory made with poly(vinylalcohol) as a base and the ones containing
acrylamide, and some dyes (Pascual et al., 1999).

Surface-relief DE can be fabricated by holographic exposure in different mate-
rials such as photoresists (Zaidi and Brueck, 1988), chalkogenide glasses (Tgran et
al., 1997), semiconductor-doped glasses (Amuk and Lawandy, 1997), and in liquid
(Boiko et al., 1991) and dry self-developing photopolymer materials (Calixto, 1987;
Calixto and Paez, 1996; Neuman et al., 1999), etc. Two types can be distinguished:
those that approximate a staircase (Fresnel lens) and those based on diffractive
optical elements (Fresnel zone plates, gratings, etc.).

It has been shown (Ehbets et al., 1992) that almost any object intensity dis-
tribution can be interferometrically recorded and transferred to a binary surface
relief using a strongly nonlinear development. As a result, the sinusoidal interference
pattern is then transformed into a rectangular-shaped relief grating.
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6.3.2 Mask Fabrication: Binary Optical Elements

Binary optical elements are staircase approximations of kinoforms, which have
multiple levels created by a photolithographic process, as shown in Fig. 6.7. The
term binary optics comes from the binary mask lithography used to fabricate the
multilevel structures.

The optical efficiency of a diffraction grating depends on the phase encoding
technique. Binary optics is based in the creation of multilevel profiles, which requires
exposure, development, and etching with different masks that are accurately aligned
to each other. The number of phase levels realized through multiple binary masks
depends on the specific encoding approach.

To explain the principle of these elements, assume that a blazed grating is to be
written having the phase profile shown in Fig. 6.8(a), (Davis and Cottrell, 1994).
Here the total phase shift over the grating is 2 radians and the period of the grating
is defined as d. This grating would yield 100% diffraction efficiency into the first
order. To fabricate this grating using binary optics techniques, masks are designed
having increasingly finer resolutions of d=2, d=4, d=8, etc. Each mask is deposited
sequentially onto a glass substrate. After the deposition of the first mask, the surface
is etched in such a way that the phase difference between masked and unmasked
areas is  radians, as shown in Fig. 6.8(b). However, the diffraction efficiency of this
binary-phase-only mask is only 40.5%. To get higher diffraction efficiencies, increas-
ingly finer masks are deposited one after the other and the substrate is etched in such
a way as to produce increasingly smaller phase shifts. For the eight-phase level
grating of Fig. 6.8(c), the diffraction efficiency reached 95%. However, to reach
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Figure 6.7 Binary optics fabricated by binary semiconductor mask lithography: (a) Fresnel

zone, (b) Fresnel lenslet, and (c) Dammann grating.



higher diffraction efficiencies, the size of the elemental features must decrease in
order to maintain the periodicity.

This staircase profile can be generated with masks or by using thin-film deposi-
tion (Beretta et al., 1991).

These DE are constrained by spatial and phase quantization (Arrizon and
Testorf, 1997). The complexity and quality of the reconstructed image determines
the spatial complexity and phase resolution of the DE. The important issues in using
masks are the alignment between the successive steps and the linewidth errors. This
limits the fabrication of multilevel phase elements to three or four masks, corre-
sponding to eight- or 16-phase levels.

Masks can be generated with electron-beam or laser beam lithography. These
are amplitude elements that have to be transformed into surface-relief structures by
exposure, chemical processing, and etching of the photoresist. These processes per-
mit the fabrication of sawtooth, multilevel, or continuous profiles. For more rugged
elements with high optical quality, the photoresist profiles are then transferred into a
quartz substrate by standard techniques such as reactive ion etching.

With electron-beam lithography, one can write gratings with periods down to
100 nm, but beyond that they are limited by the proximity effect. Electron-beam
lithography is a highly flexible means of generating arbitrary structures, even micro-
lenses (Oppliger et al., 1994). However, in the case of elementary feature sizes of the
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binary phase grating profile; and (c) step phase grating profile (Davis and Cottrell, 1994).



order of 50–100 nm, this approach is limited by the positioning accuracy during the
writing process.

Binary and multilevel diffractive lenses with elementary feature sizes of the
order of submicrometers have been produced on silicon and gallium phosphide
wafers by using the CAD method, direct write electron-beam lithography, reactive
ion etching, antireflection coating, and wafer dicing. Measurements indicate that it is
possible to obtain aberration-free imaging and maximum diffraction efficiencies of
70% for lenses with numerical apertures (NAs) as high as 0.5. This technique has
been applied to off-axis arrays for 18-channel parallel receiver modules (Haggans
and Kostuk, 1991).

6.3.2.1 Photolithography

The interesting field of photolithography has developed as a result of the introduc-
tion of resist profiles to produce microoptical elements (Fresnel lenses, gratings,
kinoforms, etc.). The thickness of the resist film that must be altered can be several
micrometers thick to obtain the required profile depth of the optical element. The
efficiency of those elements depend on the shape and quality of the resist profiles.
Blazed and multilevel diffractive optical elements can reach a higher efficiency than
binary optical elements.

Surface-relief lithography diffractive elements generated show promise for
applications to magneto-optic heads for data storage due to their polarization selec-
tivity, planar geometry, high diffractive efficiency, and manufacturability. Former
applications of these elements had been limited due to the lack of information on
their polarization properties.

The use of lithographic techniques opens the way to the development of optical
elements that are economical, have high resolving power, and flexible design. These
ideas are used in many systems at optical or near-infrared wavelengths.

6.3.2.2 Gray-Tone Masks

The gray-scale masks is an alternative approach to the multiple mask technique; it
requires only one exposure and one etching process and yields a continuous profile.
The gray levels are made by varying a number of transparent holes in a chromium
mask that are so small that they are not resolved during the photolithographic step.
Diffraction efficiencies reported are of the order of 75% for an element etched in
fused silica, 
 ¼ 633 nm.

This process requires linearization of the photographic emulsion exposure as
well as linearization of photoresist exposure: both are hard to reproduce (Däschner
et al., 1995).

6.3.3 Direct-Writing Techniques

High-intensity pulsed lasers can uniformly ablate material from the surface of a wide
range of substrates (Braren et al., 1993). Proper choice of laser wavelength allows a
precise control of depth that can be applied in many materials that absorb in this
region of the spectrum. These lasers have been used in lithographic processes. Direct-
writing techniques yield higher phase resolutions (of the order of 64–128 phase
levels) than photolithographic methods but at the expense of reduced spatial
resolution.
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Another alternative, however, is to use an excimer laser with an ultraviolet
waveguide to etch diffractive structures directly into the substrate without masks or
intermediate processing steps (Fig. 6.9) (Duignan, 1994). This technique can be
applied to a large spectrum of substrate materials, such as glass, diamond, semicon-
ductors, and polymers, and can also reduce time and cost to produce a diffractive
element.

Figures 6.10 and 6.11 show the fabrication steps and a schematic of one of the
systems: in this particular case, a He–Cd laser is used to fabricate the DE on a
photoresist substrate (Gale et al., 1994).

Direct writing in photoresist, with accurate control of the process parameters,
enables one to fabricate a complex continuous relief microstructure with a single
exposure and development operation, which has been shown to produce excellent
results (Ehbets et al., 1992). Because writing times can be relatively long (many hours
for typical microstructures of 1 cm2) a latent image decay must be compensated. A
number of factors determine the fidelity of the developed microstructure. The domi-
nant experimental errors in the writing process are surface structures of the coated
and developed photoresist films, the profile of the focused laser spot, the accuracy of
the exposure dose, the line straightness, and the accuracy of the interline distance of
the raster scan on the substrate.

An example of elements fabricated by direct laser writing in photoresist (Gale
et al., 1993) is a fanout element and diffractive microlens with NA ¼ 0:5, which has
been produced with a diffraction efficiency of 60%.

6.3.4 Replication Techniques

The main attraction of micro-optical elements lies in the possibility of mass produc-
tion using replication technology.
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Replication technology is already well established for the production of dif-
fractive foil, display holograms, and holographic security features in which the
microrelief structures have a typical grating period of 0.5–1 mm with a maximum
depth of about 1 mm. These are produced with a hot roller press applied to rolls of
plastic up to 1m wide and thousands of meters in length. (Kluepfel and Ross, 1991).
For deeper microstructures, other replication techniques are required, such as hot-
press, casting, or molding. In all cases it is necessary first to fabricate a metal shim,
usually of nickel (Ni), by electroplating the surface of the microstructure. Figure 6.12
(Gale et al., 1993) illustrates the steps involved in the fabrication of these shims. The
recorded surface-relief microstructure in photoresist is first made conducting, either
by the evaporation of a thin film of silver or gold of the order of 100 nm, or by using
a commercial electronless Ni deposition bath. An Ni foil is then built up by electro-
plating this structure to a thickness of about 300 mm. Finally, the NI is separated
from the resist/substrate and cleaned to give the master (first-generation) replication
shim. This master shim can be used directly for replication, by hot-embossing or
casting. It can also be supplied to a commercial shim facility for recombination to
produce a large-area production shim.

The first-generation master can be used to generate multiple copies by electro-
plating further generations. The silver or nickel surface is first passivated by immer-
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Figure 6.10 Fabrication steps for continuous-relief micro-optical elements (Gale et al.,

1994).



sion in a dichromate solution or by O2 plasma treatment, followed by further elec-
troplating to form a copy that can readily be separated. In this way, numerous copies
can be made from a single recorded microrelief.

Advances in the sol–gel process have made it possible to replicate fine-pat-
terned surfaces in high-purity silica glass by a molding technique (Noguès and
LaPaglia, 1989). The different types of diffractive optics that have already been
replicated include binary grating, blazed grating, hybrid diffractive/refractive optical
element, and plano kinoform. The requirements of the optics leads to an appropriate
lens design, which then defines the design of the molds to be used to produce the
optical components. To manufacture the mold, a tool that contains the required
relief pattern must be fabricated. The mold is fabricated and used in the sol–gel
process to produce prototype parts. Quality control then provides the necessary
input to determine what, if any, changes are necessary in either mold or procedure
for the final DE (Moreshead et al., 1996).

There are three important advantages of the sol–gel replication process:

1. It provides a cost-effective way of producing optical elements with fine
features. Although the mold surface is expensive, its cost can be amortized
over a large volume of parts, thus making the unit cost relatively low.

2. The process can produce optical elements in silica glass, one of the best
optical materials. The advantages of silica include a very high transmission
over a broad wavelength range from 0.2 to 3.2 mm, excellent thermal sta-
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bility, radiation hardness, and chemical treatment. Therefore, it can be
used in harsh environments such as space, or for military uses and in
high-power systems.

3. In the sol–gel replication process there is a substantial shrinkage that is
controlled by adjusting the processing parameters. This shrinkage has been
accurately quantified and has been found to be very uniform in all three
dimensions, making it possible to fabricate parts with structures smaller
than those made by other processing techniques. This reduces imperfec-
tions and tool marks by a factor of 2.5, reducing scattered light at the
design wavelength.

Other techniques are compatible with the microfabrication techniques used in
the semiconductor industry and require the generation of a gray-level mask such as
that fabricated in high-energy beam sensitive (HEBS)-glass by means of a single
electron-beam direct-write step (Wu, 1992). This mask was used in an optical contact
aligner to print a multilevel DE in a single optical exposure. A chemically assisted
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Figure 6.12 Fabrication of replication shims (Gale et al., 1994).



ion-beam etching process has been used to transfer the DE structure from the resist
into the substrate (Däschner et al., 1995).

6.3.4.1 Plastic Optics

It is important to mention molded plastic DEs: they are low cost and can be mass-
produced (Meyers, 1996). They can be produced in different shapes: rotationally
symmetric, aspheric, and hybrid refractive/diffractive lenses. These are used in var-
ious applications, such as fixed focus and zoom camera lenses; camera viewfinders;
diffractive achromatized laser-diode objectives; and asymmetric anamorphic diffrac-
tive concentrating and spectral filtering lenses for rangefinding and autofocus appli-
cations.

Planar micro-optical elements can be found in an increasing number of appli-
cations in optical systems and are expected to play a major role in the future. Typical
elements for application at visible and infrared wavelengths are surface-relief micro-
structures with a maximum depth of about 5 mm. These can be mass-produced using
current replication techniques such as hot-embossing, molding, and casting (Gale et
al., 1994).

6.4 DYNAMIC DIFFRACTIVE ELEMENTS

In recent years there has been a great deal of interest in active, dynamic diffractive
elements that can be electrically programmed or switched. These elements can be
divided into two classes. The first class uses an element-by-element addressing struc-
ture to produce diffracting patterns as spatial light modulators. The second class
switches on a pre-patterned diffraction structure that has configured during fabrica-
tion. These devices could expand the range of application of the DE through the
real-time control of an element’s optical function. Both these devices have a large
range of designs and methods for generating dynamically the phase or amplitude
modulation of a spatial pattern in response to an electrical signal.

6.4.1 Programmable Diffraction Elements

Binary optics can be programmed to produce patterns with a large dynamic range.
These have two functions. First, the spatial light modulator (SLM) serves as a
programmable low-cost test for more complicated nonprogrammable binary optical
elements. Secondly, the programmability of this system allows real-time image pro-
cessing in which the optical element can be changed rapidly.

One way to obtain such elements is by using electro-optic material such as a
liquid crystal (LC) layer. The LC materials exhibit a large field-induced birefringence
effect, resulting in a local change in the index of refraction, polarization angle, or
both. The main disadvantage is that the scale of the electrode patterns in these
elements is larger than the microstructure needed for the diffractive elements.
These elements show no diffraction effects except at their edges.

Therefore another allternative is to use the diffractive optical elements written
onto an SLM (Parker, 1996). In this case, each phase region will be encoded onto an
individual pixel element whose size is limited by the resolution of the SLM. These
phase regions are limited by the operating physics of the SLM.
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One type of SLM system used is the magneto-optic spatial light modulator
(MOSLM). This binary modulator consists of a two-dimensional array of magneto-
optic modulators that are fabricated monolithically on a nonmagnetic substrate.
Each element of the array can be electronically addressed through an array of
crossed electrodes (Psaltis et al., 1984). By contrast, the phase-only nematic liquid
crystal monitor can encode continuous phase levels of up to 2 radians (Davis,
1994). Assuming that a wide range of phases can be encoded, the diffraction effi-
ciency can be increased by using a number of pixels to encode each period of the
grating. However, the maximum number of pixels is limited by the size and resolu-
tion of the SLM. For this reason an increase in the optical efficiency of the grating is
offset by a decrease in its resolving power. Similar problems exist in encoding Fresnel
lenses using SLMs.

The SLM has been used in Fresnel lenses, magneto-optic spatial light modu-
lators, optical interconnections, lens arrays, subdiffraction limited focusing lenses,
derivative lenses, nondiffractive lenses, and Damman gratings.

6.4.2 Switched Optical Elements

Switched optical elements use transmitting or reflecting structures that incorporate a
material that exhibits an index of refraction that can be varied electrically. When an
electric field is applied to the resulting composite structure, a range of predetermined
optical characteristics emerge that spatially modulate or redirect light in a controlled
matter. The effect on an incident wavefront may be controlled by varying the applied
electric field.

These devices are capable of producing diffraction effects when a drive signal is
applied, or in some designs, when it is removed.

Typically, SLMs are restricted to relatively small pixel arrays on the order of
256� 256 and with correspondingly low diffraction efficiency. Monolithic holo-
grams, on the other hand, have extremely high resolution, high optical quality, and
diffraction efficiency, with 1 million times the pixel density. Such elements can be used
in devices that are significantly different, especially from SLMs, if the material is also
of sufficiently high optical quality to permit series stacking (Sutherland et al., 1994).
Figure 6.13 shows a generic device made of stacks of switchable holograms.

Among the different approaches to these switching DE is the placing of electro-
des over a layer of liquid crystals to respond to the localized fields with two-dimen-
sional distribution birefringence. It is possible also to fill a surface-relief binary optical
element or a sinusoidal relief grating etched on dichromated gelatin with a layer of
liquid crystals (Sainov et al., 1987; Stalder and Ehbets, 1994). Reported switching
times ranged between 20 and 50ms for an applied voltage of 20Vrms. Some other
work involves special materials such as LC selective polymerization, or fabrication of
holographic gratings by photopolymerization of liquid crystalline monomers that can
be switched with the application of an electric field (Zhang and Sponnsler, 1992).

Most of the reported approaches involve liquid crystals in one way or another
although, in principle, semiconductor techniques could also be used (Domash et al.,
1994).

One of the most popular materials is the polymer-dispersed liquid crystal
(PDLC) formed in situ by a single-step photopolymer reaction (Sutherland et al.,
1994). These materials are composites of LC droplets imbedded in a transparent
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polymer host whose refractive index falls between the LC ordinary and extraordin-
ary indices. By modulating electrically the index match between LC droplets and
polymer host, the characteristics of the volume holographic diffraction may be
reduced. Fine-grained PDLCs have recently become available for electrically switch-
able holographic elements. The mechanism for the formation of the hologram grat-
ing is described by Sutherland, 1996. They have high diffraction efficiency, narrow
angular selectivity, low voltage switching, and microsecond switching speed in ele-
ments with good optical quality as well as for the storage of the holographic image.
Electro-optical read-out can be used with this new system material. Applications are
for switchable notch filters for sensor application, reconfigurable optical intercon-
nects in optical computing, fiber-optic switches, beam steering in laser radar, and
tunable diffractive filters for color projection displays.

Dynamic-focus lenses that are controlled electrically are used in autofocusing
devices for tracking in CD pickups, optical data storage components, and many
other purposes. Some applications require continuous focusing; others call for
switchable lenses with a discrete number of focal lengths. The basic concept is a
diffractive lens material whose diffractive characteristics can be turned off by the
application of an electric field. Using such a material, an electro-optic diffractive lens
may be switched between two states – transparency (infinite focus) and finite focus.

A number of light-modulating SOE devices for display applications use struc-
tures that can be referred to as hybrid; i.e., structures that combine a fixed array of
individually switched electrodes with a pre-patterned diffractive structure.

6.5 APPLICATIONS

6.5.1 Micro-optical Diffracting Elements

Micro-optical devices, such as diffractive and refractive microlenses have received
considerable attention in the optics R&D community.
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Technological advances make it possible to micromachine optical and diffrac-
tive devices with structures that have the same order of magnitude as the wavelength
of the incident light. Devices that were once considered impractical because of the
limitations of bulk optics are now designed and easily fabricated with advanced
microelectronics technology.

Micro-optical elements can be refractive, such as hemispherical lenslet and
lenslet arrays, diffractive as kinoforms, grating structures, etc., or a combination
of both such as Fresnel microlenses. They can be continuous surface-relief micro-
structures (Gale et al., 1993), binary or multilevel reliefs or made by direct laser
writing (Ehbets et al., 1992).

The ability to combine various optical functions, e.g., focusing and deflection,
and the reduced thickness and weight of DE in comparison to their refractive coun-
terparts essentially explain the concern of diffractive optics in micro-optics.

In processing optical materials two main classes of diffractive optics are higher
power lasers and their periphery (such as the interconnection of a high power
Nd:YAG laser with a fiber bundle) and the use of DE to shape the laser in order
to provide the illumination beam required for the same application such as the
production of diffuse illumination with high-power CO2 lasers (Wyroski et al., 1994).

On the other hand, such elements can be applied to holography for memory
imaging, nondestructive testing in interferometry, wavefront shaping, and as spatial
filters. They have been many practical applications, such as diffraction gratings to
shape the phase and polarization of incident fields, reflectors for microwave resonant
heating systems, microwave lenses, mode converters in integrated optical devices, for
dispersion compensation and pulse shaping in ultrafast optics, etc. (Lichtenberg and
Gallagher, 1994).

Technology for making binary optics is a broadly based diffractive optics using
advanced submicrometer processing tools and micromachining processes to create
novel optical devices. One potential role of binary optics is to integrate very large
scale integration (VLSI) of microelectronic devices with micro-optical elements
(Montamedi, 1994). Because small feature sizes and stringent process control have
been two major considerations, attention has focused on microlithography during
the past few years. The rapid growth of commercial devices, such as miniature
compact disk heads, demands both higher accuracy and lower-cost microlenses’
fabrication methods.

Binary optics microlenses arrays are typically fabricated from bulk material by
multi-mask-level photoresist patterning and sequential reactive-ion etching to form
multistep phase profiles that approximate a kinoform surface. To fabricate an effi-
cient microlens’ array, eight-phase-level zones are necessary. The main parameters
involved in its design are the wavelength (
), the microlens’ diameter (d 0), the focal
length ð f Þ, f# ¼ f =d 0, and the smallest feature size or critical dimension ðDÞ. For a
typical binary optic microlens with eight phase levels the D value is D ¼ ð
f#Þ=4. The
minimum value of VLSI is of the order of 0.5–1 mm. This limits the speed of binary
optic microlenses designed for wavelengths (diode laser) from 0.632 mm to 0.850 mm
to f =6 and f =3, respectively. Nevertheless, higher-speed microlenses can be fabri-
cated for infrared applications.

As already mentioned, the diffraction efficiency of the light diffracted to the
first-order focus increases with the number of phase levels. In practice, it decreases
with the number of processing factors. Values of 90% have been obtained for eight-
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phase-level microlenses. The extent to which this is acceptable will depend on the
application.

The surface relief of these diffractive microlenses has a planar structure of the
order of the design wavelength. In a typical system this reduces the volume and
weight of the optics relative to an all-refractive design.

Along with these developments in micro-optics technology is the development
of micro-electro-mechanical (MEM) technology, which is based on micromachining
methods for processing 3-D integrated circuits. MEM and micro-optics technologies
have one critically important feature: both technologies are compatible with VSLI
circuit processing. This feature means that the final device can be produced in
volume at low cost. The standard VLSI process is generally confined to the surface
of the wafer (Si or GaAs), extending only several micrometers under the surface.
Multilayers of metal and dielectric are either deposited/grown on the surface or are
etched into the surface.

Some micro-optical DE have been applied in optical choppers, optical
switches, and scanners.

6.5.2 Optical Disk Memory Read–Write Heads

The optical head is an important component in optical disk storage. In it a laser
beam is focused to a 1-mm diameter spot on the surface of the disk. The conventional
optical head usually contains several optical elements such as a beamsplitter prism, a
diffraction grating, a collimating lens, and a cylindrical lens, as shown in Fig. 6.14
(Huang et al., 1994).

The disk moves under the optical axis of the head as it rotates. In this system it is
necessary to detect and correct focus error to an accuracy of about�1 mm. This focus
error is determined from the total intensity of the light reflected by the optical disk.

Some systems have been suggested for replacing each of the optical elements
with a diffractive micro-optical element performing the three optical functions
required for an optical head: splitting the beam, focusing, and tracking the error
signals (Fig. 6.15) (Huang et al., 1994).

6.5.3 Optical Interconnects

Diffractive optics will play an important role in optical interconnects and optical
interconnecting networks necessary in high-parallel-throughput processing.
Diffractive optical interconnect elements provide several advantages over conven-
tional bulk elements such as spherical and cylindrical lenses (Herzig and Dändliker,
1993).

One of the most simple devices for fanning out signals in optical interconnect-
ing systems is the diffraction grating. A basic fan-out arrangement, consisting of a
diffraction grating and a collecting lens, is shown in Fig. 6.16. Diffraction by a
periodic pattern, such as in a Damman grating, divides the incident wave into
many beams that are then focused by the collimating lens onto the detector plane.
The amount of splitted light is determined by the specific pattern of the grating. The
light focused in the different orders illuminates photodetectors or fibers, depending
on the application of the system. These systems can compensate for wavelength
dispersion and distortion that occur in diffractive fan-out elements (Schwab et al.,
1994).
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The use of diffractive optics in interconnects is of considerable interest for
several reasons. First, multiple diffractive optic elements can be cascaded on to
planar substrates and more easily packaged with planar electronic substrates. To
be effective, however, the diffractive optical system must separate and distribute
optical signals in several dimensions. With diffractive optical interconnects for digi-
tal switching networks, current technology has the ability to form four-dimensional,
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free-space optical interconnects with boundary conditions (Rakuljic et al., 1992).
The optics must be packaged with standard board substrates, and have alignment
tolerances sufficient for board insertion, replacement, and changes of length caused
by temperature variations.

Bidirectional information transfer is necessary at each information port.
Parallel data transfer to increase information transfer rates is also important. It
must be possible to broadcast greater data processing signal loads to multiple lateral
and longitudinal locations.

In addition, the fabrication of microdiffractive optics using microlithographic
and holography methods can produce many optical functions that can be used in
both space variant and invariant systems. With these fabrication methods, units can
be mass-produced, lowering overall system costs. Fabrication of diffractive optics
uses computer-aided design (CAD) and microstructuring techniques. Reflection
losses has been achieved using common techniques used in microelectronics technol-
ogy such as ion-beam-sputter deposition. To reduce crosstalk and feedback, antire-
flection (AR) coatings or AR-structured surfaces have been suggested (Pawlowski
and Kuhlow, 1994).

Diffractive optical elements (HOEs) have proven to be useful in optical inter-
connection and routing systems, especially where volume, weight, and design flex-
ibility are important. Their characteristics can be increased by making them
polarization-selective (Nieuborg et al., 1997).

Finally, optical interconnect systems must be competitive in performance and
cost with electrical interconnect methods. An example of a hybrid diffractive element
design of a bidirectional interface is illustrated in Fig. 6.17 (Kostuk et al., 1993).

6.5.4 Polarizing Elements

As mentioned earlier, another important application for diffractive elements is their
ability to polarize light. Polarization-selective computer-generated holograms
(CGH) or birefringent CGH (BCGH) have been found useful for image processing,
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photonic switching, and the packaging of optoelectronic devices and systems. With
BCGH it is possible to perform two completely distinct functions using each of the
two orthogonal polarizations.

Other applications are polarized beamsplitters (PBS) used for read–write mag-
neto-optic disk heads (Ojima et al., 1986), polarization-based imaging systems
(Kinnstatter and Ojima, 1990; Kunstmann and Spitschan, 1990), and optical infor-
mation processing such as free-space optical switching networks (McCormick et al.,
1992). These require the PBS to provide high extinction ratios, tolerate a wide
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Figure 6.17 Schematic of (a) a single optical bus line connecting the processor board and (b)

an expanded view showing the components on the central board transmitting to the adjacent

boards through a bidirectional beamsplitter. This model uses a substrate-mode holographic

(SMH) window element (Kostuk et al., 1993).



angular bandwidth, a broad wavelength range of the incident light, and have a
compact size for efficient packaging. For these applications tradtional birefringent
structures such as the Wollaston prism or multilayer structures do not meet these
requirements.

Diffractive optical elements (DE) have proven to be useful components in
optical interconnection and routing systems, especially where volume, weight, and
design flexibility are important. Their usefulness has been increased by making them
polarization-selective using two wet etched anisotropic calcite substrates, joined at
their etched surfaces and with their optical axes mutually perpendicular. The gap was
filled with an index matching polymer (Nieuborg et al., 1997). This element is less
sensitive to fabrication errors. This method has been used to obtain elements that
change the form of the emerging wavefront, depending on the polarization of the
incident light, and has been applied in Fresnel lenses, gratings, and holograms that
generate different images in their Fourier plane.

6.5.5 Holographic Memory Devices

An important characteristic of holographic memory is its ability to parallel input and
record massive amounts of information into a memory. With this feature, memory
devices can be created with high information quality. By information quality, we
mean the product of the amount of recorded information and the retrieval rate.

The number of holograms that can be multiplexed in a given holographic
system is primarily a function of the system’s bandwidth in either temporal or spatial
frequency, and the dynamic range of the material. One can record around 10 angle
multiplexed holograms in a 38-mm thick film with diffraction efficiency of 10�3.
(Since it can typically work with holographic diffraction efficiencies on the order
of 10�6, we have sufficient dynamic range to record significantly more than 10
holograms.) The limitation in angular bandwidth can be alleviated with a thicker
film, but scattering increases rapidly with thickness in these materials. Another
method that has been previously used to increase the utilization of the available
bandwidth of the system is fractal sampling grids (Mok, 1990), and peristrophic
(consisting in turns) multiplexing has been used as a solution to the bandwidth
limited capacity problem. With this method the hologram is physically rotated,
with the axis of rotation perpendicular to the film’s surface every time a new holo-
gram is stored (Curtis and Psaltis, 1992).

6.5.6 Beam Shaping

In many applications one needs to reshape the laser beam intensity. The advantage
of DE is that the beam energy is redistributed rather than blocked or removed, so
that energy is preserved.

Some designs have been proposed using computer-generated holograms where
the Gaussian beam has been converted into a ring distribution (Miler et al., 1998), or
using a two-element holographic system to obtain a flat distribution (Aleksoff et al.,
1991). Another proposed system is a Gaussian to top hat converter using a multilevel
DE that can be fabricated with standard VLSI manufacturing equipment (Kosoburd
et al., 1994). This distribution is useful in material processing, laser radar, optical
processing, etc. An interesting application is the collimation of high-power laser
diodes (Goering et al., 1999).
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Free-space digital optical systems require optical power supplies that generate
two-dimensional arrays of uniform intensity (Gray et al., 1993). The resultant spot
arrays are used to illuminate optoelectronic logic devices’ arrays to optically encode
and transfer information. The favored method for creating these regularly spaced
beam arrays is to illuminate a computer-designed Fourier-plane hologram using a
collimated laser source. These surface-relief gratings, also referred to as multiple
beamsplitters, are designed using scalar diffraction theory by means of a computer
optimization process that creates an array of beams of uniform intensity (Gale et al.,
1993). The quality of the hologram is measured by its diffraction efficiency in cou-
pling light into a set of designated orders and the relative deviation of the beam
intensities from their targeted values.

Other beam shapers include the Laguerre–Gaussian beam, which has a phase
singularity that propagates along its axis (Miyamoto et al., 1999). Work has also
been done to convert a Gaussian-profile beam into a uniform-profile beam in a one-
dimensional optical system as well as rotationally symmetric optical systems both for
different fractional orders and different parameters of the beam (Zhang et al., 1998).
Another important application is the pseudo-nondiffracting beam DE, characterized
by an intensity distribution that is almost constant axially over a finite axial region
and a long propagation distance along the optical axis (Liu et al., 1998) and the
axicons. An axicon is an optical element that produces a constant light distribution
over a long distance along the optical axis. A diffractive axicon with a discrete phase
profile can be fabricated using lithographic fabrication techniques. Other elements
can be fabricated with linear phase profiles (Lunitz and Jahns, 1999).

Another beam-shaping procedure is the projection pattern that can be applied
to change the physical or chemical state of a surface with visible light or ultraviolet
radiation. Important applications in industrial production processes are microlitho-
graphy and laser material processing.

In conventional methods of pattern projection a real value (mostly binary)
transmission mask pattern is reproduced on the target surface by imaging or shadow
casting. This pattern is then formed by diffraction of the illuminating wave at the
mask where the diffracted wave is transformed by propagation, either through a lens
or through free space, to the target surface.

The use of DE allows us to add phase components to the mask, giving a
complex transmission coefficient. This method is called phase masking. It can be
used to improve the steepness of edges in projected patterns by reduction of the
spatial bandwidth. Also, the mask may be located at some distance from the target
surface or of its optical conjugate. The mask then contains the pattern to be pro-
jected in a coded form. When it is in the far field of the target surface, this code is
essentially a Fourier transformation (Velzel et al., 1994).
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Some Lens Optical Devices

DANIEL MALACARA, JR.

Centro de Investigacionos en Optica, León, Mexico

7.1 INTRODUCTION

In this chapter some of the most important optical systems using lenses will be
described. [1–4] However, telescopes and microscopes are not described here, since
they are the subject of other chapters in this book. Since optical instruments cannot
be studied without a previous background on the definitions of pupils, principal ray
and skew and meridional rays, we will begin with a brief review of these concepts.

7.2 PRINCIPAL AND MERIDIONAL RAYS

In any optical system with several lenses two important meridional rays can be
traced through the system, as shown in Fig. 7.1. [5] A meridional ray is in a common
plane with the optical axis. A skew ray, on the other hand, is not.

(a) A ray from the object plane, on the optical axis, to the image plane, also
on the optical axis, is called an on-axis meridional ray.

(b) A meridional ray from the edge (or any other off-axis point) on the object
to the corresponding point on the image is called the chief or principal
ray.

All the lenses in this optical system must have a minimum diameter to allow
these two rays to pass through the whole system. The planes on which the on-axis
meridional ray crosses the optical axis are conjugates to the object and image planes.
Any thin lens at these positions does not affect the path of the on-axis meridional ray
but affects the path of the principal ray. This lens is called a field lens. The diameter
of the field lenses determines the diameter of the image (field). If a field lens limits the

191



field diameter more than desired by stopping a principal ray with a certain height, we
have an effect called vignetting. The image does not have a sharp boundary, but its
luminosity decreases very rapidly towards the outside of the field when maximum
image height has been reached, i.e., when vignetting begins, because the effective
pupil size decreases very fast, as shown in Fig. 7.2.

The planes on which the principal ray crosses the optical axis are said to be
pupils or stop planes. At the first crossing of the ray, if it occurs before the first
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Figure 7.1 An optical system illustrating the concepts of stop, entrance pupil, and exit pupil.

Figure 7.2 Vignetting in an optical system.



surface of the system, or at its straight extrapolation after leaving, the ray from the
object, is the entrance pupil. At the last crossing of the ray, if it occurs after the last
surface of the system, or at its straight extrapolation before arriving, the principal
ray to the image, is the exit pupil. Any lens located at the pupil planes affects the path
of the meridional ray but not the path of the principal ray. This lens is an imaging or
relay lens. The diameter of the relay lenses determines the aperture of the system.

7.3 MAGNIFIERS

The most common and traditional use of a lens is as a magnifier. The stop of the
system is the pupil of the observing eye. Since with good illumination this pupil is
small (3–4mm or even smaller), the aberrations that increase with the diameter of the
pupil, such as spherical aberration, do not present any problem. On the other hand,
the field of view is not small.; hence, field curvature, astigmatism, and distortion are
the most important aberrations to be corrected.

The angular magnificationM is defined as the ratio of the angular diameter � of
the virtual image observed through the magnifier to the angular diameter � of the
object as observed from a distance of 250mm (defined as the minimum observing
distance for young adults). If the lens is placed at a distance from the observed object
so that the virtual image is at distance l 0 from the eye, the magnificationM is given by

M ¼ �

�
¼ 250

ðl 0 þ dÞ
l 0

f
þ 1

� �
; ð7:1Þ

where d is the distance from the lens to the eye, f is the focal length, and all distances
are in millimeters.

The maximum magnification, obtained when the virtual image is as close as
250mm in front of the observing eye, and the lens is close to the eye ðd ¼ 0Þ is

M ¼ 250

f
þ 1: ð7:2Þ

If the virtual image is placed at infinity to avoid the need for eye accommoda-
tion the magnification becomes independent of the distance d and has a value

M ¼ 250

f
: ð7:3Þ

Here, we have to remember that eye accommodation occurs when the eye lens
(crystalline) modifies its curvature to focus close objects.

We can thus see that for small focal lengths f , the magnification is nearly the
same for all lens’ positions with respect to the eye and the observed object, as long as
the virtual image is not closer than 250mm from the eye.

It has been shown [6] that if the magnifier is a single plano-convex lens, the
optimum orientation to produce the best possible image with the minimum aberra-
tions is

(a) with the plane on the eye’s side if the lens is closer to the eye than to the
object, as shown in Fig. 7.3(a), and

(b) with the plane on the side of the object if the lens is closer to the object
than to the eye, as shown in Fig. 7.3(b).
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The disadvantage of the plano-convex magnifier is that if one does not know
these rules one may use it with the wrong lens orientation. A safer magnifier con-
figuration would be a double convex lens, but then the image is not the best. For this
reason most high-quality magnifiers are symmetrical. To reduce the aberrations and
have the best possible image, more complicated designs can be used, as illustrated in
Fig. 7.4.

7.4 OPHTHALMIC LENSES

A human eye may have refractive defects that produce a defocused or aberrated
image in the retina. The most common defects are:
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Figure 7.3 A simple magnifier (a) with the observing eye close to the lens and (b) with the

observing eye far from the lens.

Figure 7.4 Some common magnifiers.



(a) Myopia, when the image of an object at infinity falls in front of the retina.
Eye accommodation cannot compensate this defocusing error. A myopic
eye sees in focus only close objects (see Fig. 7.5(b)).

(b) Hypermetropia, when the image of an object at infinity falls behind the
retina. This error can be compensated in young people by eye accommo-
dation. An hypermetropic eye feels the problem if it cannot accommodate
either due to age or to the high magnitude of the defect (see Fig. 7.5(c)).

(c) Astigmatism, when the rays in two planes passing through two perpendi-
cular diameters on the pupil of the eye have different focus positions along
the optical axis (see Fig. 7.5(d)).

These refractive defects are corrected by means of a single lens in front of the
eye. The geometry used to design an ophthalmic lens is shown in Fig. 7.6. The eye
rotates in its skull socket to observe objects at different locations away from the lens’
optical axis. Thus, its effective stop is not at the pupil of the eye but at the center of
rotation of the eye.

The ophthalmic lens is not in contact with the eye, but at a distance dv of about
14mm in front of the cornea. An image magnification is produced because of the lens
separation from the cornea. The focus of the ophthalmic lens has to be located at the
point in space that is conjugate to the retina. This point is in front of the eye for
myopic eyes and behind the eye for hypermetropic eyes.

Since the distance dv is a fixed constant parameter, the important quantity in
the ophthalmic lens is the back (or vertex) focal length Fv. The inverse of this vertex
focal length is the vertex power

Pv ¼
1

Fv

; ð7:4Þ

whyere Pv is in diopters if Fv is expressed in meters.
When an eye is corrected with an ophthalmic lens, the apparent image size

changes. The magnification M produced by this lens is
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M ¼ 1

1� dP
� 1

� �
� 100%: ð7:5Þ

The eye with refractive defects has a different image size than the normal
(emetropic) eye. Myopia is due to abnormal elongation image size of the eye
globe. Hypermetropia is due to an abnormal shortening of the eye globe.
Astigmatism arises when the curvature of the cornea (or one of the surfaces of the
eye lens) has two different values in mutually perpendicular diameters, like in a
toroid. The diameter of the eye globe, with a refractive defect of power P, is given
by the empirical relation

D ¼ Pv

6
þ 14:5; ð7:6Þ

where Pv is the vertex power in diopters of the required lens and D is in millimeters.
When designing an ophthalmic lens, the lens surface has to be spherical, con-

centric with the eye globe.
Since the pupil of the eye has a small diameter, the shape of the lens has to be

chosen so that the field curvature and the off-axis astigmatism are minimized, with
an equilibrium that can be selected by the designer. Two solutions are found, as
shown in the Tscherning ellipses in Fig. 7.7. In these ellipses, we can observe the
following:

(a) Two possible solutions exist: one is the Ostwald lens and the other is the
more curved Wollaston lens.

(b) The solutions for zero-field curvature (off-axis power error) and for off-
axis astigmatism are close to each another.

(c) There are no solutions for lenses with a vertex power larger than about 7–
10 diopters. If an aspheric surface is introduced, the range of powers with
solutions is greatly extended.
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7.5 ACHROMATIC DOUBLETS AND COLLIMATORS

A single lens has axial chromatic aberration. Its spherical aberration can be mini-
mized with the proper shape (bending), but it can never be zero. The advantage of a
doublet made by joining together two lenses with different glasses is that a good
correction of both axial chromatic and spherical aberrations can be achieved.

Considering a doublet of two thin lenses with focal lengths f1, and f2, the focal
length of the combination for red light (C) and blue light (F) can be made the same
to eliminate the axial chromatic aberration if

ðn1C � n1FÞK1 ¼ ðn2C � n2FÞK2; ð7:7Þ
where Ki has been defined by the lens maker’s equation:

1

fi
� ðni � 1Þ 1

r1i
� 1

r2i

� �
¼ ðni � 1ÞKi: ð7:8Þ

From Eq. (7.7) we can find

f1V1 ¼ �f2V2 ð7:9Þ
where the Abbe number V1 of the glass i has been defined as

Vi ¼
ðniD � 1Þ
ðniC � niFÞ

ð7:10Þ
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and from these expressions we finally obtain

f1 ¼ F 1� V2

V1

� �
ð7:11Þ

and

f2 ¼ F 1� V1

V2

� �
: ð7:12Þ

We see that any two glasses with different values of the Abbe number V can be
used to design an achromatic doublet. However, a small difference in the V values
would produce lenses with low power, which are desirable. This means that large
differences in the values ofV are appropriate. Typically, the positive (convergent) lens
is made with crown glass ðV > 50Þ and the negative (divergent) lens with flint glass
ðV < 50Þ. Of course, these formulas are thin-lenses approximations, but they produce
a reasonable close solution to perform ray tracing in order to find an exact solution.

Another advantage of a doublet made with two different glasses is that the
primary spherical aberration can be completely corrected if the proper shape of the
lenses is used, as in Fig. 7.8; the design data are given in Table 7.1.

A disadvantage of the cemented doublet is that the primary spherical aberra-
tion is well corrected but not the high-order spherical aberration. A better correction
is obtained if the two lens components are separated, as in Fig. 7.9; the design data
are given in Table 7.2.

Achromatic lenses are used as telescope objectives or as collimators. When
used as laser collimators, the off-axis aberrations are not as important as in the
telescope objective.

7.6 AFOCAL SYSTEMS

An afocal system by definition has an infinite effective focal length. Thus, the image
of an object at an infinite distance is also at an infinite distance. However, if the
object is at a finite distance in front of the system a virtual image is formed, or vice
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versa. Let us consider, as in Fig. 7.10, a real object with height H equal to the
semidiameter of the entrance pupil and the principal ray (dotted line) entering
with an angle �. A marginal ray (solid line) enters parallel to the principal ray.
Since the system is afocal and these two rays are parallel to each other, they will
also be parallel to each other when they exit the system. Thus, we can write
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Table 7.1 Achromatic Doublet (from Malacara and Malacara [6])

Radius of curvature

(mm)

Diameter

(mm)

Thickness

(mm) Material

12:8018
�9:0623
�37:6563

3.41

3.41

3.41

0.434

0.321

19.631

BaK-1

SF-8

Air

Focal ratio: 5.86632

Effective focal length (mm): 20:0042
Back focal length (mm): 19:6355
Front focal length (mm): �19:9043

Table 7.2 Broken-Contact Aplanatic Achromatic Doublet (from Malacara

and Malacara [6])

Radius of curvature

(mm)

Diameter

(mm)

Thickness

(mm) Material

58:393
�34:382
�34:677
�154:68

20.0

20.0

20.0

4.0

0.15

2.0

BK7

Air

F2

Air

Focal ratio: 4.99942

Effective focal length (mm): 99:9884
Back focal length (mm): 96:5450
Front focal length (mm): �99:3828

Figure 7.9 An air-spaced doublet.



M ¼ tan�

tan�
¼ D2

D1

X

X 0 ¼
1

M

X

X 0 : ð7:13Þ

The distance X is positive if the object is after the entrance pupil (virtual object)
and the distance X 0 is positive if the image is after the exit pupil (real image). These
two quantities always have the same sign. The total distance L between the object
and the image is given by

L ¼ Lp � X 1� 1

M2

� �
; ð7:14Þ

where Lp is the separation between the entrance and exit pupils. We notice then that
the lateral magnification H 0=H is a constant equal to the angular magnification of
the system.

Another interesting property of afocal systems is that, if the object and image
planes are fixed in space, the image can be focused by axially moving the afocal
system, without modifying the lateral magnification.

These properties find applications in microlithography.

7.7 RELAY SYSTEMS AND PERISCOPES

A periscope is an afocal instrument designed to observe through a tube or long hole,
as shown in Fig. 7.11.

An alternate series of imaging or relay lenses (RL) and field lenses (FL) form
the system. The first imaging lens is at the entrance pupil and the last imaging lens is
near the exit pupil, at the pupil of the observing eye. The field lenses are used to
maintain the principal ray propagating to the system. Thin field lenses introduce
almost no chromatic aberrations and distortion; hence, these are frequently thin
single lenses. Imaging lenses, on the other hand, produce axial chromatic aberration.
For this reason they are represented here by doublets.
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Figure 7.10 An afocal system forming a real image of a virtual object.



A disadvantage of this system is that all lenses have positive power, producing
a large Petzval sum. Thus, the only way of controlling the field curvature is by the
introduction of a large amount of astigmatism.

It must be pointed out that the ideal field lenses are at the intermediate images
positions: i.e., where the meridional ray crosses the optical axis. Then, the images will
be located on the plane of the field lenses and any dirt or imperfection on these lenses
will appear sharply focused on top of the image. This is not convenient. For this
reason field lenses are axially displaced a little from the intermediate images posi-
tions.

Imaging lenses are located at the pupils’ positions, where the principal ray
crosses the optical axis. This location avoids the introduction of distortion by
these lenses. However, the overall aberration balancing of the system may call for
a different lens location.

As in any afocal system, if the object is located at infinity and the image is also
located at infinity the meridional ray is parallel to the optical axis in the object space
as well as in the image space. Under this condition, the ratio of the slope � of the
principal ray in the image space to the slope � in the object space is the angular
magnification of the system, given by

M ¼ tan �

tan �
¼ D1

D2

ð7:15Þ

as in any afocal system, where D1 is the diameter of the entrance pupil and D2 is the
diameter of the exit pupil.

7.8 INDIRECT OPHTHALMOSCOPES AND FUNDUS CAMERA

These ophthalmic instruments are periscopic afocal systems, designed to observe the
retina of the eye. They have the following important characteristics:

(a) The entrance pupil must have the same position and diameter as the eye
pupil of the observed patient.

(b) To have a good observed field of the retina of the patient, the angular
magnification should be below 1. Thus, the exit pupil should be larger
than the entrance pupil.
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A version of this system is illustrated in Fig. 7.12. The first lens in front of the
eye is an imaging lens. The image of the retina is formed at the back focal plane of
this lens. The height of the meridional ray (solid line) is the semidiameter of the pupil
of the observed eye. This small aperture makes the on-axis aberations of this lens
very small. This principal ray (dotted lines) arrives far from the center of the imaging
lens, marking its diameter quite large if a good field angular diameter is desired. In
order to form a good image of the pupil of the observed eye this imaging lens has to
be aspheric.

At the image of the pupil of the observed eye a stop is located, which has three
small windows. Two windows provide a stereoscopic view of the retina, sending the
light from each window to a different observing eye. The third window is used to
illuminate the retina of the observed eye.

The angular magnification M of the ophthalmoscope, as pointed out before,
should be smaller than 1. Thus, the focal length of the eyepieces should be larger
than the focal length of the aspheric lens (about five times larger).

A slightly different indirect ophthalmoscope is illustrated in Fig. 7.13, using a
second imaging lens at the pupil of the observed eye, thus producing an erected
image at the focal planes of the eyepieces. This is an achromatic lens, since the
image of the pupil has been magnified. The aperture of this lens has a stop in contact
with three small apertures: one for illumination and two for stereoscopic observa-
tion. The final image is observed with a pair of Huygens’ eyepieces.

The angular magnification M of this ophthalmoscope is given by

M ¼ tan�

tan�
¼ m

fa
fe
; ð7:16Þ

where fa is the effective focal length of the aspheric lens, fe is the effective focal length
of the eyepiece, and m is the lateral magnification of the achromatic lens located at
the image of the pupil of the observed eye.

To effectively use all the field width provided by the aspheric lens aperture, the
tangent of the angular field semidiameter �e of the eyepiece should be equal to the
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Figure 7.12 Portable stereoscopic indirect ophthalmoscope.



tangent of the angular field semidiameter � of the aspheric lens multiplied by the
angular magnification M, as follows:

tan� ¼ M tan�e: ð7:17Þ

7.9 PROJECTORS

Projectors are designed to form the amplified real image of a generally flat object on
a flat screen. There are several kinds of projectors, but their optical layout is basically
the same.

7.9.1 Slide and Movie Projectors

The basic optical arrangemen in a slide projector is shown in Fig. 7.14. The light
from the lamp must reach the image screen as much as possible, after illuminating
the slide in the most homogeneous possible manner. If a lamp without reflector is
used, a concave mirror with the center of curvature at the lamp is employed.

In order to achieve this, the illuminating system must concentrate the max-
imum possible light energy at the entrance pupil of the objective, after passing
through the slide. The light must have a homogeneous distribution over the slide.
There are two basic illuminating systems. The classical configuration is shown in Fig.
7.14, where the condenser can have several different configurations. The spherical
mirror on the back of the lamp can be integrated in the lamp bulb.

Another more recent illumination configuration is shown in Fig. 7.15. The
lamp has a paraboloidal or elliptical reflector with a large collecting solid angle.
This lamp produces a more or less uniform distribution of the light on a plane
about 142mm from the rim of the reflector. The condensing lens is aspheric.

7.9.2. Overhead Projectors

An overhead projector is shown in Fig. 7.16. The light source is a lamp with a
relatively small filament. The condenser is at the transparency plane, formed by a
sandwich of two Fresnel lenses. This condenser forms, at the objective, an image of
the small incandescent filament. Thus, the small image of the light source makes the
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Figure 7.13 Schematics of a stereoscopic indirect ophthalmoscope.
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Figure 7.14 A classical slide projector.

Figure 7.15 Illumination in a modern slide projector.

Figure 7.16 An overhead projector.



effective aperture of the objective also small. This minimizes the need for spherical
aberration and axial chromatic aberration corrections. Off-axis aberrations are
nearly corrected with an almost symmetrical configuration of the objective, formed
by two identical meniscus lenses.

7.9.3 Television Projectors

A basic difference between slide projectors and projectors used for television is that
the object and the light source are the same. Thus, the objective has to have a large
collecting solid angle. However, this large aperture increases the requirements for
aberration corrections. A common system uses an inverted Schmidt configuration, as
shown in Fig. 7.17, but many others have been devised.

REFERENCES

1. Kingslake, R., ‘‘Basic Geometrical Optics,’’ in Applied Optics and Optical Engineering,

Vol. I, Kingslake, R. (ed.), Academic Press, San Diego, 1965.

2. Kingslake, R., ‘‘Lens Design,’’ in Applied Optics and Optical Engineering, Vol. III,

Kingslake, R. (ed.), Academic Press, San Diego, 1965.

3. Hopkins, R. R. and D. Malacara, ‘‘Optics and Optical Methods,’’ in Methods of

Experimental Physics, Geometrical and Instrumental Optics, Vol. 25, Malacara, D. (ed.),

Academic Press, San Diego, 1988.

4. Welford, W. T., ‘‘Aplanatism and Isoplonatism,’’ in Progress in Optics, Vol. XIII, Wolf,

E. (ed.), North Holland, Amsterdam, 1976.

5. Hopkins, R. E., ‘‘Geometrical Optics,’’ in Methods of Experimental Physics, Geometrical

and Instrumental Optics, Vol. 25, Malacara, D. (ed.), Academic Press, San Diego, 1988.

6. Malacara, D. and Z. Malacara, Handbook of Lens Design, Marcel Dekker, New York,

1994.

Some Lens Optical Devices 205

Figure 7.17 A television projector.
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Telescopes

GONZALO PAEZ and MARIJA STROJNIK
Centro de Investigaciones en Optica, León, Mexico

8.1 TRADITIONAL TRANSMISSIVE TELESCOPES

8.1.1 Introduction

According to the telescope’s primary function or application, we divide them into
three categories: the terrestrial telescope, the astronomical telescope, and the space
telescope. While they all meet the same prerequisite of increasing the angular sub-
tense of an object, each of them satisfies different additional requirements.

The layout of the basic telescope is shown in Fig. 8.1. It is used to view an
object subtending the angle � at the viewer. By using the correctly curved optical
surfaces of the two lenses that comprise the telescope, the rays from this distant
object are incident into the observer’s eye with a much larger angle of incidence, �.
The function of a telescope is most easily understood with reference to Fig. 8.2. The
radiation coming from a distant object subtends an angle � when viewed with an
unaided (naked) eye. When seen through the telescope, the object is magnified
transversely to subtend an angle � at the viewer.

The function of a telescope is exactly the same as that of a microscope, but for
a small difference. Even though they both magnify the angular extent of an object
that subtends a small angle at the human eye, in the case of a telescope, the small
angle subtended by the object arises as a consequence of the (very) large, or infinite,
object distance. In a microscope, on the other hand, the small angle is caused by the
very small size (height) of the object and the minimum accommodation distance of
the human eye.

So, we can summarize that we design and build the instruments, such as
microscopes and telescopes, so that we adapt the world around us to our limited
visual opto-neural system. Here we remember that the distribution of the rods and
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cones on the retina defines the limiting resolution of a normal human eye. The
accommodation distance of the lens defines the minimum comfortable viewing dis-
tance of the human eye. The design procedures for classical telescopes have been
described in the literature by many authors (see, for example, [1–3]).

8.1.2 Resolution

The resolution of a telescope may be defined in a number of ways. When a telescope
with a circular aperture is diffraction-limited, the image of a point source is not a
point, but rather a bright disk surrounded by a series of bright rings of much smaller
and decreasing amplitude. Figure 8.3 shows the normalized intensity pattern
obtained in the focal plane of a traditional telescope with a circular aperture.
Theoretically, there is zero intensity in the first minimum, from the central peak,
defining the first dark ring. About 84% of the optical energy is inside the first dark
ring. According to the diffraction theory of imaging, the resulting intensity distribu-
tion is proportional to the square of the Fourier transform of a disk aperture, i.e., a
Bessel function of the order 1 over its argument ½J1ð�Þ=��, in the case of a circular
aperture; see [4, 5] for more examples. The bright spot inside the first dark ring
generated by the diffraction pattern is called the Airy disk. The insert in Fig. 8.3
shows the corresponding gray-scale intensity, assuming a low exposure as expected
for most applications of the telescopes. The first bright ring is barely visible.
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Figure 8.1 Basic (Keplerian) telescope with two converging lenses separated by the sum of

their focal distances. The eyepiece lens, located closer to the viewer, is a strongly convergent

lens. The collimated rays incident at an angle � are incident into the observer’s eye on the right

with a higher angle, �.

Figure 8.2 The function of a telescope is to increase the angle that the distant object sub-

tends at the observer.



The radius of the bright disk is defined by the radius of the first zero intensity
ring,

r ¼ 1:22
 f =D ½m�: ð8:1Þ
Here 
 is wavelength ½m�, f is the focal length of the imaging system [m], and D is the
diameter of the aperture stop [m]. The quantities are illustrated in Fig. 8.4 for a
general optical system with the equivalent focal distance f and the stop or aperture
of diameter D. Angle � is defined as D=2f .

The larger the aperture, the higher the angular resolution of the telescope. For
the same magnitude of the figuring and the alignment errors, and the aberrations, the
diameter of the diffraction spot increases also with wavelength. Viewed from a
different perspective, the same telescope may give a diffraction-limited performance
in the infrared (IR) spectral region, but not in the visible. A telescope is said to be
diffraction-limited when the size of the diffraction spot determines the size of the
image of a point source. Even though the stars come in different sizes, they are
considered point sources due to their large (object) distance. Their image size
depends on the telescope resolution or the seeing radius, depending on the telescope
diameter (see Sec. 8.2.4.2), rather than the geometrical dimensions of the stars.
Astronomers identify the stars by the shape and the size prescribed by the diffraction
spot diameter; see, for example, [6, 7].
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Figure 8.3 The normalized intensity pattern obtained in the focal plane of a traditional

telescope with circular aperture. Theoretically, there is zero intensity in the first minimum,

from the central peak, defining the first dark ring, or the radius of the resolution spot. The

inset shows the corresponding gray-scale intensity, assuming a low exposure as expected for

most applications of the telescopes. The first bright ring is barely visible.



According to the Rayleigh resolution criterion, two point sources may be just
distinguishable if the zero in the image-intensity distribution of the first one coincides
with the peak of the second one. This means that, in the image space, they are
separated by the distance given in Eq. (8.1). Figure 8.5 shows the normalized inten-
sity patterns of two barely separated point objects obtained in the focal plane of a
traditional telescope with circular aperture. Theoretically, the intensity minimum
between the two peaks reaches 0.735. The first dark ring is barely seen, surrounding
both spots. The inset shows the corresponding gray-scale intensity distribution,
assuming a low exposure as expected for most applications of the telescopes. The
separate low exposure images are clearly identifiable as arising from two individual
point sources. The first bright ring is nearly invisible.

8.1.3 Geometrical Optics

In addition to diffraction effects, any optical instrument, including the telescope,
also suffers from performance degradation due to aberrations, fabrication imper-
fections, and alignment errors. All these effects contribute to the spreading of the
image point into a bright fuzzy disk. Aberrations are the variations by which an
optical system forms an image of a point source that is spread out into a spot, even
in the absence of diffraction effects. They are caused by the shape of the optical
component and are a phenomenon purely of a geometrical optics. In the paraxial
optics approximation, imaging is seen as merely a conformal transformation: the
image of a point is a point, the image of a straight line is a straight line. Strictly
speaking, spreading of the point into a spot is a consequence of aberrations, while
deformation of a line into a curve is interpreted as a deformation. The true third-
order aberrations are spherical aberration, astigmatism, and coma. A telescope, or
for that matter, any optical system corrected for spherical aberration and coma, is
referred to as aplanatic to the third order. When an optical system is additionally
free of astigmatism, it is called aplanatic and anastigmatic. The shape of the sur-
face on which the best image is located, the so-called Petzval curvature, is also
controllable within third-order aberration theory.

Additionally, there is also a tilt and defocus which may be compensated for by
the proper image displacement and image plane orientation.

When the spot size due to the effects of aberrations is smaller than the disk
inside the first dark ring of the diffraction pattern, the resolution is still given by Eq.
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Figure 8.4 Any optical system, including a telescope, may be replaced by an equivalent

optical system with limiting stop of diameter D and focal length f .



(8.1). When this condition is met, the optical system is said to be limited in its
performance by the diffraction effects; or put more succinctly, it is a diffraction-
limited optical system.

The resolution of a moderately aberrated optical system is defined by the
radius of the spot within which 90% of rays, originating at a point source, cross
the image surface. This is often obtained visually, upon the review of the spot
diagram. Figure 8.6 shows the spot diagrams for three image heights of a diffrac-
tion-limited Ritchey–Chretien telescope configuration with a two-element field cor-
rector (see Sec. 8.2.2.3) [8]. The squares indicate the CCD pixel size, whose side has
been chosen to be equal to the resolution in Eq. (8.1).

Figure 8.7 shows the intensity as a function of radial distance for an aberrated
and diffracted traditional telescope in the best focus location. The parameter is the
wavefront error due to the spherical aberration at the aperture edge, increasing from
zero to 0.8
 in increments of 0.2
. The central peak (Fig. 8.7(top)) decreases as the
aberration is increased, while the intensity peak of the annulus increases. For large
distances, the intensity patterns become similar, even though the similarity onset
depends on the amount of the aberration. In the lower part, the same information
is shown on a logarithmic scale.
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Figure 8.5 The normalized intensity patterns of two barely separated point objects obtained

in the focal plane of a traditional telescope with a circular aperture. Theoretically, the intensity

minimum between the two peaks reaches 0.735. The first dark ring is barely seen, surrounding

both spots. The inset shows the corresponding gray-scale intensity distribution, assuming a

low exposure as expected for most applications of the telescopes. The separate low exposure

images are clearly identifiable as arising from two individual point sources. The first bright

ring is nearly invisible.



Not surprisingly, in the paraxial focus, the effects of the aberrations rapidly
overshadow the diffraction effects. The first few dark rings are drowned in the bright
spot arising due to the aberrations. This is illustrated in Figure 8.8, where no inten-
sity zero is observed for low-order dark rings. The number of dark rings that dis-
appear is related to the amount of aberrations.

8.1.4 Modulation Transfer Function

The modern ray trace programs tend to summarize the performance of an optical
system in terms of its capacity to image faithfully the individual spatial frequency
components of the object. This presentation of results assumes that the object inten-
sity is decomposed into its Fourier components. Then, the optical system may be
considered as a black box which progressively decreases the modulation of the
spatial frequencies and, maybe, modifies its phases. This interpretation is known
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Figure 8.6 The spot diagrams for three image heights of a diffraction-limited Ritchey–

Chretien telescope configuration with a two-element field corrector (from Scholl [8]).
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Figure 8.7 The intensity as a function of radial distance for an aberrated and diffracted

basic telescope (see Fig. 8.1) in the best focus location. The parameter is the wavefront error

due to the spherical aberration at the aperture edge, increasing from zero to 0.8
 in increments

of 0.2
.



as an optical transfer function (OTF), and its magnitude as a modulation transfer
function (MTF), if the phase is not of interest. The significance of the modulation
transfer function is illustrated in Fig. 8.9.

Figure 8.10 shows the best (theoretical) modulation transfer function as a
function of position in the image plane of a traditional telescope with a circular
aperture. Figure 8.10(a) shows the three-dimensional view to illustrate its depen-
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Figure 8.8 The intensity as a function of radial distance for an aberrated and diffracted

basic telescope in the paraxial focus location. The parameter is the wavefront error due to the

spherical aberration at the aperture edge, increasing from zero to 0.8
 in increments of 0.2
.



dence on two spatial frequency coordinates; Fig. (b) shows one cross section of this
rotationally symmetric function. There exists one minimum spatial frequency in the
object space whose amplitude is zero in the image space. This spatial frequency is
referred to as the cutoff frequency, because the optical system images no spatial
frequencies larger than this one. For an optical system with a circular aperture it
is D=f 
.

The effects of the aberrations, component misalignment, and the imperfect
surface figuring result in an MF that does not achieve the values of the theoretical
MTF. This behavior may be seen in Fig. 8.11, showing the OTF as a function of the
normalized spatial frequency for the case of 0.2–0.8
 of spherical aberration at the
edge of the aperture. The theoretical MTF is shown for comparison. For an MTF of
0.4 as sometimes required for high-resolution imaging, we see that the incremental
increase of spherical aberration of 0.2
 decreases the corresponding maximum spa-
tial frequency by about 15%. For smaller values of MTF, the situation is only
worsened. Assuming that one is looking for a specific spatial frequency, let us say
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Figure 8.9 The significance of the modulation transfer function.



at 0.5, the increment of spherical aberration of 0.2
 results in about 20% reduction
in performance. The negative OTF arising from 0.8
 of spherical aberration corre-
sponds to the phase reversal in addition to an insignificant amount of modulation.
The MTF, the aberration effects, and image evaluation are described by Smith [9].

The publicized case of the spherical aberration on the primary mirror of the
Hubble telescope has been estimated to be about 0.5
.

The performance of a designed (potential) telescope for the imaging of indivi-
dual spatial frequencies is best assessed when it is presented in the form of its MTF.
Its predicted shape is compared with the optimum theoretically possible for the same
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Figure 8.10 The best (theoretical) modulation transfer function as a function of position in

the image plane of a traditional telescope with a circular aperture: (a) the three-dimensional

view to illustrate the dependence on two coordinates; (b) one cross section of this rotationally

symmetric function. No object frequencies are imaged larger than the system cutoff frequency.

(a)

(b)



aperture diameter. The MTF of a high-resolution telescope designed to survey the
Martian surface with the engineering goal of constructing topographic maps (for
requirements, see [10]) is shown in Fig. 8.12. The nearly perfect theoretically achiev-
able MTF is obtained for the three field positions. The MTF value at the design
spatial frequency of 71.7 cycles/mm is about 0.47. Fig. 8.12(b) shows that very small
MTF degradation of a few percent is encountered for the range of flat CCD dis-
placements out of the best image surface.

Generally, spatial frequencies in the image space with reduced amplitude will
not contribute well to the faithful conformal imaging by the optical system. Their
magnitudes may also be surpassed by the amplitudes of other sources of optical and
electronic noise. Thus, there exists a minimum value of MTF such that the spatial
frequencies larger than it are not recoverable from the noise background. This value
of MTFmin depends on the amount of post-processing and/image enhancement, and
on the degree and quality of the quantitative results that will be extracted from the
measured intensity distribution in the images. Therefore, the MTF in Fig. 8.12 is
shown only for the values of the MTF larger than 0.3 due to the requirement for the
recovery of quantitative data.

8.1.5 Refractory or Transmissive Telescopes

The simplest and most common telescope used in the refractory mode is the basic,
Keplerian telescope, shown in Fig. 8.1. Two positive lenses with focal distances f1
and f2 are combined in such a way that their focal points coincide in the common
focal point between them. The magnification of this system is

M ¼ �f1=f2 ¼ D1=D2: ð8:2Þ
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Figure 8.11 The optical transfer function (OTF) as a function of the normalized spatial

frequency for the cases of 0–0.8
 of spherical aberration at the edge of the aperture in incre-

ments of 0.2
.
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This means that the diameter of the first lens has to be much larger than the second
one, and that the ratio of their focal lengths is equal to the required angular magni-
fication.

A Keplerian telescope may also be used as an image erector, or as a beam
expander in the relatively low-power laser system. Its advantage of internal focus
allows the incorporation of a pinhole for beam centering and spatial cleaning.
However, it is not recommended for high-power laser applications due to excessive
air heating in the focal volume that may introduce thermal lensing effects, air break-
down, or even generate the second-order electric field effects.

The need for telescope compactness favors a Galilean telescope configuration,
depicted in Fig. 8.13. Here, the objective is a strong positive lens, while the eyepiece is
a negative lens, placed in such a way that the focal points once again coincide, this
time in the image space. The total telescope length is reduced by twice the focal
distance of the eyepiece. Also, there is no real focus, making it an ideal candidate as a
beam expander for high-power laser applications.

The simplest Galilean telescope is an example of an afocal system, both in the
object and in the image space, and is shown in Fig. 8.14. The object space is all the
space where the object may be located on the left of the telescope (optical system),
assuming the convention that the light is incident from the left as is done in this
monogram. The image space is all the space where the image may be found, on the
right of the telescope, within the convention stated. An afocal system is one that has
an effective focal distance equal to infinity. The effective focal distance is the distance
between the stop and the point where the ray incident parallel to the optical axis in
the object space crosses the optical axis in the image space. In an afocal system this
point is at infinity.

8.1.6 Terrestrial Telescope

The terrestrial telescope is used by hunters and explorers for outdoor applications or
as an ‘opera glass’ to observe new clothes of fine ladies in the audience. For those
purposes, it is absolutely necessary that the image be erect, color-corrected, and a
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Figure 8.12 The modulation transfer function (MTF) of a high-resolution telescope

designed to survey the Martian surface with a long-term goal of constructing topographic

maps. (a) The nearly perfect theoretically achievable MTF is obtained for the three field

positions. The MTF with the values larger than 0.3 is shown only due to the requirements

for the recovery of quantitative data. (b) A very small MTF degradation of a few percent is

encountered for the range of displacements out of the best image surface. (From Scholl [8]).

Figure 8.13 A Galilean telescope configuration.



wide half-field of view is highly desirable. The terrestrial telescopes may be used in
the visible spectral region and also in the very near-infrared for night-vision, with the
night-glow as the source of illumination. The object distance for these telescopes is
on the order of 50m to 1000m. For some applications like a vision scope, a tele-
photo arrangement is also desirable. For large distances, they tend to perform like
surveillance cameras. They may have half-fields of view up to about 35 degrees.

The first lens, the one close to the object, is called the objective for its proximity
to the object. The second lens, the one close to the observer, is referred to as the
eyepiece because it is designed for direct viewing in the terrestrial systems. As the
eyeball requires clearance, facility for the rotation around the eyeball axis, and a
relatively large half-field of view, the eyepiece is designed for these specifications. Eye
relief is the distance between the last surface of the eyepiece and the first surface of
the human eyeball. It has to be long enough to accommodate (long) eyelashes and/or
spectacle lenses for those with astigmatism. The eyepiece is often a compound lens
incorporating a field lens. The Huygens, Ramsden, and Kellner eyepieces represent a
successive improvement in the order of increasing degree of complexity, larger half-
field of view (20 degrees), and consequently, the user’s comfort. A review of a
number of eyepieces and objectives is described by Smith [9].

The terrestrial telescope incorporates an image erector system. A lens relay
system makes the system unnecessarily long, although a prism pair is considered
heavier and more compact.

Either Keplerian or Galilean telescopes may be modified to meet the objectives
of a terrestrial telescope. In practice, both the objective and the eyepiece are thick
lenses, or a combination of lenses in order to minimize the chromatic aberrations
and other aberrations, which is annoying to a human observer especially for large-
field angles.

8.2 REFLECTING TELESCOPES

8.2.1 Increasing the Light-Collecting Area

An object is seen or detected by the telescope only if enough energy is collected to
produce the requisite signal-to-noise ratio at the detector. This may be a photo-
graphic plate and, for many current applications, a CCD (charge-coupled device)
which has the additional advantage of easy readout and storage for further proces-
sing, reusability without the need for refurbishment, and high degree of linearity of
response.
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Figure 8.14 A Galilean telescope in afocal configuration.



The location of the best image produced by the telescope is on a curved surface,
requiring image field correctors to accommodate the plane surface of the CCD or
other semiconductor (solid state) detectors [11]. The CCD is placed in a plane such
that the pixel distance from the surface of the best focus is minimized for all pixels.
This is illustrated in Fig. 8.15 for the best image surface displaced only slightly from
the CCD surface, due to the incorporation of a two-element corrector system.

The photographic plate still remains the medium of choice for precise spectro-
scopic earth-based measurements, because its resolution, environmental stability,
and a faithfulness of recording have not been surpassed by any other (electronic)
recording medium.

For a great majority of astronomical applications, it is desirable to have a
large-diameter primary mirror to collect as much radiation as possible from faint
and distant celestial sources. With a large diameter for the primary lens, a number of
fabrication and operational issues arise. First, these kinds of telescopes are no longer
easily transportable; second, they require stability and a controlled environment,
such as that offered by a removable dome in most observatories.

There are basically three significant, fundamental challenges when incorporat-
ing a large-diameter primary lens into a transmissive telescope. The first one is due to
fabrication of two sides of an optical surface, while the second one is in mounting the
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Figure 8.15 The CCD surface is placed in a plane such that the pixel distances from the

surface of the best focus are minimized for all pixels. The best image surface is displaced only

slightly from the CCD surface, due to the incorporation of a two-element corrector system

(from Scholl [8]).



large primary lens in the appropriate structure. It is much easier to support the back
of a single reflecting surface while it lays on the ground. This applies equally well to
the fabrication stage as to the operational stage. Finally, large glass blanks are hard
to produce.

Mirrors have other advantages over lenses. The transmissive components gen-
erally suffer from chromatic aberration, making them well corrected only over nar-
row spectral intervals. Broadband reflective coatings are now available over large
spectral intervals with high reflectivity, permitting the use of a single design for
different spectral regions. Also, metals perform well as reflectors, whether uncoated
like aluminum, or gold, or coated. Finally, a mirror has less aberrations than a lens
of the same power.

All-reflective optical systems are also known as catoptric. Many well-corrected
reflective systems incorporate a transmissive lens or a corrector plate for further
correction. When an optical system incorporates reflective as well as refractive com-
ponents it is known as a catadioptric system.

8.2.2 Catadioptric Telescope

Mirror telescopes may be divided into one-, two-, and three-mirror systems. Flat
beam turning mirrors are not considered in the mirror count, as they have no power.
Many of them additionally incorporate transmissive components for specific aberra-
tion or as field correctors (catadioptric). An excellent corrector to the Ritchey–
Chretien design has been described by Rosin [12], with the corrector placement in
the hole of the primary mirror. The Schmidt camera is probably the best-known
system where the aberrations are corrected with a large transmissive element in the
incoming light. The field corrector is a lens (combination) used to flatten the surface
of the best image location, as commented on for Fig. 8.15.

8.2.2.1 One-Mirror Telescope

The simplest one-mirror system is a parabolic telescope, shown in Fig. 8.16(a),
consisting of a simple parabola. In this telescope or a simple collimator, the focal
plane work is performed on axis, indirectly obstructing the incoming beam. When
the stop is the front focal point, this telescope has no spherical aberration and
astigmatism, with the image on a spherical surface.

In a Newtonian telescope, shown in Fig. 8.16(b), a small 45-degree flat mirror
is placed in the beam path, deflecting the light out of the incoming beam to the work
space. The great disadvantage of the reflecting telescopes is seen clearly in the case of
the Newtonian telescope. Not all the area of the primary mirror is available to collect
the radiation. The part of the beam taken up by the beam-deflecting 45-degree
mirror is reflected back to the object space. Also, its field of view is limited.

By using only the part of the parabola above the focal plane, the need for the
beam-turning mirror disappears. This configuration is known as the Herschelian
telescope, seen in Fig. 8.16(c), and represents one of the first concepts in off-axis
configurations now so popular for stray-light sensitive applications (see Sec. 8.2.6).

The Herschelian telescope and the simple parabola are the simplest collimator
or telescope systems, depending on the direction of the incident light.

The elementary implementation of the Schmidt telescope incorporates a
spherical primary with a stop and a corrector plate at the center of the curvature
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(a)

(b)

(c)

Figure 8.16 The development of a simple one-mirror telescope from (a) a simple parabola,

to (b) a Newtonian telescope with an on-axis beam obstruction, to (c) a Herschelian telescope

with an off-axis optical configuration that takes full advantage of the aperture of the primary

mirror.



of the mirror. The freedom from coma and astigmatism results from monocentric
construction with the stop at the mirror’s center of curvature. For the object at
infinity, the image is free of spherical aberration, coma, astigmatism, and
distortion. The focal surface has radius equal to focal length. The design of the
corrector plates has recently been discussed thoroughly by Rosete-Aguilar and
Maxwell [13].

The fabrication of the corrector plate in the Schmidt telescope is complex,
because it is a plate with one flat surface and the other a second-order polynomial.
This telescope is popular because its inventor came up with an ingenious way of
fabricating the corrective surface. It is one of the first cases of stress polishing, also
used much later on for Keck segments. The mirror was polished under vacuum
conditions, and then released to assume its correct form. This surface has been
simplified in the Bouwers camera, on the basis of the work Schwarzchild had carried
out on concentric surfaces [14]. In this case, the stop is at the center of curvature, but
the corrector plate is a meniscus lens just before the focal point, so the rays trans-
verse it only once. Its surfaces are concentric with the mirror surface, eliminating all
off-axis aberrations. Maksutov designed his camera about the same time, with the
added improvement that the radii of curvature of the meniscus lens are related to
correct the axial chromatic aberration.

8.2.2.2 Optical Performance of Telescopes with Central Obstruction

The reduction of the effective light-collecting area of the telescope, i.e., the beam
incident on the primary mirror, is the consequence of the introduction of a central
obscuration. The light-collection area becomes

A ¼ ðR2 � r2Þ ¼ R2ð1� "2Þ ½m2� ð8:3Þ

Here R is the radius of the primary, and r is the radius of the central obstruction,
usually the secondary assembly, that includes the mirror, the mounts, and any baf-
fling and support structures that interfere with the passage of the incident beam. The
obscuration ratio " ¼ r=R is a parameter with a value of zero for no obscuration.

The intensity of the image of a point source at infinity in the telescope with the
central obscuration is given as a function of radial distance in Fig. 8.17. The obscura-
tion ratio " is varied from 0 to 0.8 in increments of 0.2. The curve corresponding to
" ¼ 0 has been shown in Fig. 8.3: the curves here are given in a logarithmic scale in
order to see the trends clearly. As the obscuration radius increases, the first zero of
the intensity pattern moves to shorter radial distances, thus increasing the resolution
of the optical system [6]. This effect has been utilized also in microscopy to achieve
so-called ultra-resolution. Also, the successive zeros in the intensity pattern are
moved to shorter radial distances from the central peak.

In Fig. 8.17(a) where the intensities of all curves are normalized at the origin,
we see that the increase in the beam obstruction ratio results in the increase in the
intensity height of the first bright annulus. The relative intensity peak of the first
annulus with respect to the first peak decreases with the increasing value of the
obscuration ratio ". In Fig. 8.17(b) we observe, that the actual peak of the intensity
in the first annulus achieves the highest value for some intermediate value of ", at
about 0.5, corresponding to the area ratio of 25%, the value considered very desir-
able in telescope designs.

224 Paez and Strojnik



Figure 8.18 gives the integrated intensity as a function of radial position for the
obscuration ratio " as a parameter, varying from 0 (no obscuration) to 0.8 in incre-
ments of 0.2. We identify the dark rings when the integrated intensity does not
change with increasing radial distance, i.e., the curves come momentarily to a pla-
teau. For all curves, the higher curve always corresponds to the case of lesser
obscuration. These curves are normalized to the size of the light-collecting area:
they all converge asymptotically to 1 (become 1 at infinity). Here we can read off
the curve that 84% of the energy is indeed contained within the first dark ring. The
radially integrated energy is a particularly convenient way of quantifying an aperture
configuration when the spot sizes have radial symmetry.
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Figure 8.17 The intensity of the image of a point source at infinity in the telescope with a

central obscuration as a function of radial distance with the obscuration ratio " as a para-

meter, varying from 0 (no obscuration) to 0.8 in increments of 0.2.



While the compactness of the optical spot (the image of a point source) is
measured most effectively from the intensity distributions in the focal plane, the
MTF often provides the important complimentary information about the ability
of the telescope to image a specific spatial frequency.

Thus, in Fig. 8.19 we show the MTF as a fucntion of radial spatial frequency
coordinate, with the obscuration ratio " as a parameter, varying from 0 (no obscura-
tion) to 0.8 in increments of 0.2. Within the theory of imaging, this figure is equiva-
lent to Fig. 8.17. However, the performance degradation upon the inclusion of the
central obscuration is potentially made much more obvious in this presentation of
results. It is clear that for the obscuration ratio of 0.5 (area obscuration of 0.25), the
imaging of the intermediate spatial frequencies (0.25–0.55) is decreased by approxi-
mately 40% with respect to the highest theoretically achievable value, with the MTF
of 0.25. For many imaging applications, this value is already considered too low for
image reconstruction from within the noise frequencies.

8.2.2.3 Two-Mirror Telescopes

The evolution of two-mirror telescopes may be most easily appreciated by examining
Figs. 8.20 and 8.21, where four different telescope configurations are shown with the
constraint of the same aperture size, obstruction area, and the f-number. Figure 8.20
shows (a) Newtonian, (b) Cassegrain, and (c) Gregorian telescopes. In Fig. 8.21, a
Schwarzschild configuration is shown separately due to its overall size, compared
with a Cassegrain telescope.

Strictly speaking, the simplest on-axis two-mirror telescope is a Newtonian,
using just a beam-turning mirror to bring the focal plane out of the incoming beam.
The two basic refractive telescopes may also be implemented as two-mirror systems.
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Figure 8.18 The integrated intensity as a function of radial position, with the obscuration

ratio " as a parameter, varying from 0 (no obscuration) to 0.8 in increments of 0.2. The

compactness of the central spot may be recognized from the slope of this curve. There is

84% of energy within the first dark ring in an optical system without the obscuration.
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Figure 8.19 Modulation transfer function (MTF) as a function of radial spatial frequency

coordinate, with the obscuration ratio " as a parameter, varying from 0 (no obscuration) to 0.8

in increments of 0.2.

(a)

(b)

(c)

Figure 8.20 Comparison of (a) Newtonian, (b) Cassegrain, and (c) Gregorian telescopes

under the conditions of the same f/number (F/#) and effective focal length. The image formed

by the secondary mirror is magnified compared to that of the primary mirror.



Figure 8.20(b) shows the case when the secondary mirror is divergent, resulting in an
appreciably shorter instrument length and a smaller central obscuration, generally
adopted for astronomical telescopes. This layout is known as a Cassegrain telescope,
when the primary mirror is a paraboloid and the secondary mirror is a hyperboloid,
a configuration necessary for the coincidence of the focal lengths behind the second-
ary mirror. The image formed by the primary mirror alone is smaller than the final
image formed by the Cassegrain telescope because the secondary mirror actually
magnifies it. When the secondary mirror is concave, there is a central focus between
the mirrors and the system length is somewhat larger than the sum of the focal
lengths. This layout is illustrated in Fig. 8.20(c), having the advantage that the
final image just outside the primary mirror is erect (head-up). This layout may be
used for terrestrial applications. This configuration is known as a Gregorian tele-
scope, when the primary mirror is an on-axis section of a paraboloid, and the
secondary mirror is an on-axis ellipsoid. In accordance with the established termi-
nology, we will use shorter terms and leave out on-axis, when not explicitly referring
to an off-axis configuration, and section even though this is always implied.

Table 8.1 lists the possible combinations of mirrors in the telescope systems
employing the corrector plate, and the aberrations that remain in the image. The
corrector plate may be used in the incoming beam only for small telescopes where
weight is not a problem. In other configurations, it is placed just before the image.
This refractory component has low power, so that its surface may be shaped to
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Table 8.1 Primary/Secondary Mirror Combinations in Telescopes

Schmidt

plate Primary Secondary

Spherical

aberration Coma Astigmatism

Field

curvature

Aspheric Spherical Spherical 0 Yes Yes Yes

Aspherica Spherical Hyperbolic 0 0 Yes Yes

Asphericb Oblate

spheroid

Oblate

spheroid

0 0 0 Yes

aClassical form of the shortened Schmidt–Cassegrain.
bRitchey–Chretien form.

Figure 8.21 A Schwarzschild configuration representing aberration-free design on a flat

field is appreciably larger than a Ritchey–Chretien telescope with the same F/# and effective

focal length.



correct for the aberrations generated by the primary and the secondary mirrors. The
Questar optical system uses a Schmidt-type corrector in the entering beam to correct
the spherical aberration of two spherical mirrors.

Table 8.2 lists the different forms of Cassagrain telescopes. The Ritchey–
Chretien configuration (see Fig. 8.22) is used nowadays for nearly all large telescopes
for astronomical applications, including a space application to survey the Martian
surface from orbit prior to proposed landing. An excellent review of these telescope
configurations has been given by Wynne [15]. Its residual aberration is astigmatism,
correctable with the introduction of an additional component. The field curvature
cannot be corrected as it is the consequence of the curvature of individual compo-
nents: however, it may be decreased by the introduction of a small field correcting
element, shown in Fig. 8.23.

Figure 8.21 shows the famous Schwarzschild layout, which appears much like
an inverted Cassagrain. This system is free of spherical aberration, coma, and astig-
matism, because the primary and the secondary mirrors are concentric, when the
stop is at the center of curvature. The radius of the image surface is equal to the focal
length. This telescope becomes very large in comparison with other two-mirror
layouts when the light-collecting aperture and the F/# are the same.
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Table 8.2 Different Forms of Cassegrain Telescopes

Primary mirror Secondary mirror Limiting aberrations

Classical Parabolic Hyperbolic Coma

Astigmatism

Field curvature

Ritchey–Chretien Hyperbolic Hyperbolic Astigmatism

Field curvature

Dall–Kirkham Elliptical Spherical Coma

Astigmatism

Field curvature

Figure 8.22 Ritchey–Chretien layout of a 1-m diameter F-10 telescope proposed for the

survey of the Martian surface with resolution of 0.25m from a stable orbit (from Scholl [8]).



An interesting review article points out how a secondary mirror might be
fabricated from the section of primary mirror that is cut out. Blakley [16] has
proposed to call it Cesarian in honor of the first famous baby boy born by this
method, while the mother was sacrificed for the good of the Empire. The idea of
using both parts of the blank seems to favor the joint survival of mother and the
child, so maybe Cosbian telescope might be a more appropriate term for it.

Afocal mirror combinations work very well, often including a beam-turning
mirror to bring the focal plane instruments out of the main beam. A Mersenne
telescope includes a parabola–parabola configuration. A very good review of afocal
telescopes was presented by Purryayev [17] and Wetherell [18].

8.2.2.4 Unobscured Catadioptric Telescopes

There are three ways of implementing a mirror system without an obscuration. In the
first, simplest one, the object, the image, and the mechanical axes of the parent
components from which the off-axis segments are generated are on the same optical
axis (see, for example [19]). The Herschelian telescope (see Fig. 8.16(c)) shows that an
off-axis segment may be cut out of an on-axis component, which is traditionally
referred to as the parent component. Its optical axis (the mechanical axis of the
parent component) then does not coincide with the physical center of the off-axis
component: the beam incident parallel to the optical axis reflects into a focal point
outside the incident beam path. Here, the object and the image remain on the optical
axis, while the stop displaces the beam position on the optical element to an off-axis
location. The term off-axis refers to the fact that the on-axis part of the parent
component is not used for the imaging.

In Figs. 8.20 and 8.21, the part of the incident beam above the optical axis has
been shaded. This shows how most common telescopes can be incorporated as off-
axis configurations without any beam obstruction. It is interesting that the
Gregorian configuration results in a better use of the parent component, as a larger
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Figure 8.23 A two-element field corrector used to flatten the field of the telescope shown in

Fig. 8.22 and to permit good-quality imaging in the infrared spectral region in addition to that

in the visible (from Scholl [8]).



off-axis section may be used than in the other two-mirror configurations. Dials [20]
describes the design of the high-resolution dynamics limb sounder (HIRDLS) instru-
ment, which includes an off-axis Gregorian telescope developed to meet 0.7 arcse-
conds pointing and the 1% radiometric accuracy requirements.

When implementing reflecting systems with finite conjugates (image and object
distances), the use of a z-configuration is favored. The field-dependent aberration
coma is canceled when imaging with two off-axis identical sections of a parabola
with parallel optical axis above and below the collimated beam. This is recom-
mended for source reimaging in the monochromators or for the placement of a
wind tunnel in the collimated light, in a schlieren system. The latter is illustrated
in Fig. 8.24. The less-compact layout is acceptable as is often set up in the laboratory
where space is not at a premium.

The optical axis of the parent component may also be broken, as in the second
incorporation of the unobstructed optical systems [21]. The optical component is
tilted. Another way of incorporating off-axis configurtions is when the optical axis is
completely broken at each component, such as when three mirrors are employed for
further aberration cancellation and field flattening. A combination of field-bias and
aperture offset is also employed, as the third way [22].

8.2.2.5 Three-Mirror Telescopes

The number of aberrations that can be corrected in an optical system increases with
the number of surfaces and their shapes. With three mirrors, the flat image surface is
more easily achieved without using any refractory components. Generally, using an
extra surface allows the correction of one more aberration than in a well-designed
two-mirror system. The three-mirror systems nowadays are designed in an off-axis
configuration.

Some three-mirror systems achieve the necessary performance by incorporating
spherical mirrors. These systems, in general, tend to be optomechanically quite
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Figure 8.24 Two off-axis parabolas may be used to generate a collimated beam, needed in

schlieren systems. The asymmetrical z-configuration results in a smaller amount of coma

critical in the monochromators.



complex; however the simplicity of fabrication, testing, and alignment of spherical
(primary) mirrors makes them highly beneficial.

The first reference to the advantages of a three-mirror system in a telescope,
depicted in Fig. 8.25, is made by Paul [23]. It is well known that two spherical
surfaces may be replaced by an aspherical surface to achieve the same performance.
He proposed to replace the hyperboloid in the classical Cassegrain with two sphe-
rical mirrors, with equal, but opposite radii of curvature. The first mirror, with a very
large radius of curvature is the secondary. Its image would be very far away if it were
not for the spherical tertiary located inside the hole of the primary mirror. This
forms an aplanatic and anastigmatic image in the space between the primary and
the secondary mirrors. The secondary mirror, whose diameter is equal to that of the
tertiary mirror, is in the path of the incoming beam. There is little space for the focal
plane instruments, making this a good candidate for off-axis configuration.

The idea of using a single primary mirror figured as two distinct optical sur-
faces started to become feasible when numerically controlled (diamond-turned) opti-
cal surfaces started to appear as a possibility. This may be particularly appropriate
for metal mirrors and/or in the infrared. Thus, the delicate step of cutting a hole in
the primary is avoided, no physical aperture is introduced, and the optical blank for
the tertiary mirror comes integrated with the primary mirror [24]. A significant
improvement on this idea follows with a design 20 years later [25], where the two
reflections, that from the primary mirror and that from the tertiary mirror, are off
the same mirror surface. Thus, the primary and the tertiary have the same form, a
hyperboloid, and are on the same blank. As shown in Fig. 8.26, the focal plane in
this aplanatic design with a central obscuration is conveniently located outside the
telescope volume, behind the hyperboloidal secondary. This system could be con-
sidered an improved version of a Ritchey–Chretien telescope with decreased amount
of aberrations.

Finally, three-mirror systems became popular with the advent of photolitho-
graphy and laser beam handling systems. An unobscured configuration incorporat-
ing spherical mirrors with off-centered field and unit magnification is corrected for
all five Seidel aberrations. The Offner system for microlithography consists of two
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Figure 8.25 A three-mirror telescope proposed by Paul in which he replaces the hyperboloid

in the classical Cassegrain with two spherical mirrors, with equal, but opposite radii of cur-

vature. This telescope becomes an aplanatic and anastigmatic optical system. There is little

space for the focal plane instruments, making this a good candidate for off-axis configuration.



spherical mirrors which are approximately (exactly, in the third order version) con-
centric. The primary and tertiary are the same mirror, and the secondary has a radius
equal to half that of the primary-tertiary. In the third order the aberrations are
corrected by the concentric arrangement, but to balance out the higher order astig-
matism the spacing must be changed by a very small, but critical amount, and of
course the useful field is restricted to a ring or annulus, centered on the optical axis
[26, 27]. Afocal three-mirror systems are used for (high energy) laser beam handling
and conditioning systems. They incorporate two paraboloids and an ellipsoid or a
hyperboloid, resulting only in the Petzval curvature.

All the optical layouts presented here represent results of exact ray tracing for
comparison of the relative shapes and sizes of the telescopes. With the exception of
the one to survey the Martian surface, designed using CODE V, the designs
described here have been prepared using the lens design program, OpDes, written
by the authors.

8.2.3 Astronomical Telescope

The primary function of the astronomical telescope is to collect as much energy as
possible from a distant star, often feeding the energy to a secondary set of instru-
ments. This requires the incorporation of a beam-turning mirror in a so-called
Coudé of Nasmyth arrangement. These layouts generally require the incorporation
of the type of mounts that follow the stars.

In the astronomical telescope the objective is known as the primary mirror,
because it has the primary or critical function of collecting the light. The eyepiece
becomes the secondary mirror, because it is really not needed as an eyepiece. Its
secondary function, in terms of its importance, is to present the image in a suitable
form for recording and data processing.

In astronomical applications, the objective lenses in the Galilean and Keplerian
telescope configuration are replaced with the mirrors of the same power in order to
have a large aperture without the associated weight and fabrication challenges.

In a mirror system completely equivalent to the refractive version, both the
primary mirror and the secondary mirror are located on the optical axis: the sec-
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Figure 8.26 The primary and the tertiary form the same mirror surface, a hyperboloid. In

this design with a central obscuration, the image is conveniently located outside the telescope

volume, behind the hyperboloidal secondary. This system could be considered a version of a

Ritchey–Chretien telescope with decreased amount of aberrations.



ondary mirror obstructs the incident beam and projects the image inside the central
section of the primary mirror. This procedure requires the construction of a physical
hole in the primary mirror which adds to the risk in the fabrication and the amount
of polishing.

Astronomical telescopes generally have an insignificant field of view com-
pared with that of a terrestrial telescope. They tend to be designed for a specific
spectral region, from ultraviolet (UV) to far-infrared. A most informative review of
the requirements for the imaging in UV and some of the solutions to those is
offered in the review article by Courtes [28]. The term ‘camera’ is sometimes
used when referring to the telescope with wide-angle capabilities, such as
Schmidt camera, with good half-field performance of up to more than 5 degrees.
This term has arisen due to the similar requirements of the photographic camera
[29].

A majority of the telescope configurations built in recent years take advantage
of the excellent performance of the Ritchey–Chretien design. Its resolution is much
higher than that actually achieved due to the atmospheric aberration.

The importance of the coupling of the telescope’s optics and the instrument’s
optics is that the combined optical system has to be designed for the optimum
performance of the overall system. This was considered when the Hubble telescope
was identified as having a certain amount of spherical aberration [30–32]. The smal-
ler imging camera was designed to compensate for this surface deformation, produ-
cing a much improved image in the camera image plane.

In space observational facilities, such as in the Hubble, ISO, SIRTF telescopes,
the focal plane remains fixed relative to the instrument. However, its lack of acces-
sibility means that the focal plane may be shared by several instruments concur-
rently. These might include a spectrometer, a monochromator, a photometer, a
radiometer, a spectroradiometer, and a wide- and narrow-field imaging camera. A
set of tertiary mirrors may have to be used to pick the beam into the individual
instruments off the main beam. This is illustrated for one instrument in Fig. 8.27 for
the preliminary version of the SIRTF telescope [33].
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Figure 8.27 An astronomical telescope is used to collect the radiation and deliver it to the

focal plane instruments. This is illustrated for one instrument and the pick-off mirror to

deliver a portion of the beam [33].



More complex forms of spreading the detectors in the focal plane incorporate a
pyramidal mirror, as was used in the Hubble telescope to enhance the number of
resolution elements in the CCD by using four separate ones. A similar layout may
also divide the available focal plane for a concurrent observation with several
instruments.

The distant star is considered a point object whose image size is defined by the
resolution of the telescope. In astronomical applications, we are much more inter-
ested in the angular position of the objects on the celestial sphere.

The half-angle corresponding to the diffraction blur radius is

� ¼ r=f ¼ 1:22
=D ½sr�; ð8:4Þ

where � is the semi-angle of resolution [sr] and r is the radius of the first zero in the
Bessel function [m]. This resolution criterion applies only to small-aperture tele-
scopes, or space-based instruments, where the affects of the atmosphere do not
destroy the local seeing conditions.

8.2.4 Atmospheric Effects

The atmosphere is a collection of gases that surround the earth’s surface. It has two
detrimental effects on the image quality of the telescope. The rays experience a
different phase delay when incident on the mirror upon traversing the atmosphere
having different amounts of air turbulence. The absorption characteristics of the
gases that constitute the atmosphere do not transmit the radiation of all spectral
intervals of interest to astronomers – in particular, the infrared and short wave-
length UV regions.

8.2.4.1 Seeing

Earth-based telescopes have their resolution limited by turbulence in the upper layers
of the atmosphere (stratosphere), referred to as ‘seeing’ at their specific sites. This
diameter, referred to as ‘‘cell,’’ is at most 26 cm maximum for the best observational
sites under most favorable conditions. Lower values of 16–20 cm are more common.
The seeing problems of large-diameter ground-based telescopes were discussed after
the successful completion of multiple-mirror telescopes [34, 35].

For large-aperture earth-based telescopes, the air movement in the atmosphere
provides the limiting resolution, especially in the visible region. Generally, the ‘see-
ing’ parameter of 10–20 cm is due to the stronger turbulence within the first several
meters from the ground. The stratospheric layer limits the isoplanatic patch angle.
There, different incident rays are subject to distinct conditions due to fluctuations in
density, temperature, and humidity. In terms of resolving power, turbulence-induced
wavefront distortions limit the telescope’s aperture to an effective diameter of ro, the
coherence diameter of the atmosphere [36]. The seeing increases with the temperature
stability the presence of large water mass with a high thermal constant, the absence
of human population and its different forms of perturbation of the environment, and
with the longer wavelengths. To improve the performance of the earth-based astro-
nomical telescopes, active systems are employed to measure the aberrations intro-
duced by the atmosphere in order to adjust the thin surface of the telescope primary
mirror to compensate for this aberration. This active correction is referred to as
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‘active optics’ and requires the employment of deformable optical surfaces figured
with the selective application of actuators [37].

Because of the effective resolution limitation imposed by the atmosphere, the
resolution of the earth-based astronomical telescope is not as important as its light-
gathering capability. Fainter and more distant celestial objects may be detected by
increasing the telescope diameter or by lengthening the signal-integration time.

8.2.4.2 Air Mass

Increased light-gathering capability is also achieved by prolonging the signal collec-
tion and integration time. One way of doing this in the surveillance cameras is by
time delay and integration [29]. In the astronomical facility, this increased integra-
tion time is routinely achieved by employing tracking mounts in the observatory.
Thus, the same object may be viewed for hours, limited by the air mass and the sky
background light, by incorporating the alt-azimuth mounts to compensate for the
earth’s rotation. This observational mode is limited by the facility’s physical con-
struction and the different air mass between the early/late and optimum (zenith)
observation periods. The air mass is the ratio of the thickness of the atmosphere
that is traversed by a ray comming from an object in a zenith and that at an angle �,
see Fig. 8.28. In the case of star position B, the ray passes through the air thickness d,
which is given by

d ¼ h= cos � ½km�: ð8:5Þ
Here h is the height of the air column in the zenith. One air mass corresponds to the
observation of the star in zenith. The air mass grows quite quickly with the angle.
For example, when the angle to the line of view to the star is 60 degrees, the light
traverses 2 air masses. Under this condition, the air turbulence is increased appre-
ciably with respect to the single air mass; and furthermore, the image of the star is
displaced due to refraction in the atmosphere.

8.2.4.3 Active and Adaptive Optics

The contribution of the atmosphere is to add a phase error to the light signal coming
from an extra-atmospheric object. There are other sources of phase error: the fab-
rication error of an optical component, alignment of a system, and mount jitter. All
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Figure 8.28 The air mass is the ratio of the apparent thickness of the atmosphere traversed

by a ray coming from a star into the telescope at an angle � divided by the thickness of the

atmosphere experienced by a ray traversing the atmosphere from a point at a local zenith.



these phase errors add to the image deterioration. They are not known in advance, so
a component or a system may not be built such as to compensate for their detri-
mental effects.

An adaptive optical component is an optical component that adjusts or adapts
its performance to the specific conditions and the associated electro-optical system
that makes it function this way. The most famous and the most used adaptive optics
component is the lens inside the human eyeball. Its surfaces flatten in a young eye to
focus from about 5 cm (with an effort) to infinity (5m).

An active system uses a feedback loop to minimize the undesirable residual
phase aberration. A phase measurement is performed to obtain the information
about phase error experienced by the surface. The active system uses this informa-
tion to send the instructions about the requisite changes on the surface shape of the
deformable optical component.

The active optical system in the case of the human includes the complete visual-
neuromotor system. When one cannot read the small print, the lymphatic neural
system automatically sends an order to contract the muscles that control the lens
shape (without the human even being aware of the process). A complex electrome-
chanical system is used to change the shape of an optical component after the
wavefront has been sensed as deformed and the degree of deformation has been
quantified. Thus, a deformable component is just a subsystem of an active system.

The spherical aberration discovered on the Hubble telescope after it had been
put in orbit might be an example of a phase error correctable with a deformable
component. It is generally expected that such a large structure as a grand observa-
tory would change its optomechanical characteristics after having been launched
into space, having experienced the high accelerations and the associated forces,
after adjusting to the gravity-free environment of space, and settling to the new
temperature equilibrium distribution due to the absence of air. Indeed, the Hubble
telescope incorporates a small number of actuators with a limited range to correct
for the changes due to the different settled conditions of the space environment.
However, this simple system was not sufficient to perform the requisite corrections.
Due to the good fortune that the primary mirror was reimaged on the secondary
mirrors on the wide-field and the planetary cameras (WFPC I), its surface shape was
redesigned and adjusted on the second trial with the placement of WFPC II [39]. This
is a form of an active system with a very long period between the identification of the
phase error and the adjustment of optomechanical surfaces to correct it.

A study [40] was made of the feasibility of correcting with an adaptive optic
component the spherical aberration on the primary mirror of a large-diameter tele-
scope with the following parameters: primary mirror diameter 2.4m, mirror obscura-
tion diameter 0.1056m, mirror radius of curvature 4.8m, design wavelength 0.5 mm,
suffering 6.5
 of spherical aberration.

In an adaptive mirror, the surface is deformed to produce an equal but oppo-
site phase error to that which is to be canceled. The combined effect of the aberrated
phase and the component intentionally deformed with the opposite algebraic sign is
expected to be close to zero. Only those spatial frequencies in the phase that are
smaller than the maximum spatial frequency in the actuator distribution may be
corrected. Thus, some high frequencies are expected to remain in the corrected phase
function. Figure 8.29 shows how the correction works. Each actuator in a rectan-
gular array exerts a force on the thin surface of the deformable component.
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Depending on the deformation characteristics of the thin faceplate, it is deformed in
a controlled or uncontrolled fashion with some coupling between the neighboring
actuators. A zonal model of the actuator phase–plate interaction has been used to
model the possible range of phase-sheet deformations [42]. Obviously, a large-dia-
meter mirror is more amenable to faithful shaping because more actuators and their
control mechanisms can be fitted behind a large area. The physical space occupied by
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Figure 8.29 In an adaptive mirror, the surface is deformed to produce an equal but opposite

phase error to that which is to be corrected in order to cancel the aberration. Its performance

is best understood in spatial and spatial frequency domains. (a) The original aberrated wave-

front is to be duplicated by applying a deformation to a thin faceplate using actuators. (b) The

effect of an actuator force exerted at a specific position is to deform the surface in a shape

similar to a Gaussian. (c) The amount of force applied at actuator locations reproduces the

general shape of the wavefront error. (d) The specific value of the actuator amplitudes are

calculated from the expected surface shape. (e) With the optimal choice of the width of the

actuator influence function, controlled by the faceplate stiffness, the actuator separation may

be set to determine the highest spatial frequency corrected in the phase. (f) The resulting

wavefront error, given as the difference between the initial phase and the phase due to the

surface deformation, contains only the high-frequency, low-amplitude phase components

(after Scholl [40]).



the actuators behind the mirrors makes them suitable correction candidates. When
only low frequencies are corrected, a smaller secondary is the preferred choice.

Figure 8.30(a) shows the aberrated wavefront and the resulting intensity dis-
tribution in the telescope focal plane (see Fig. 8.30(b), where many intensity rings
confirm the presence of a highly aberrated wavefront (see Fig. 8.8). Figure 8.30(c)
shows the intensity slices along the optical axis, as illustrated in Fig. 8.31. The spot is
spread along the optical axis. Using the deformable mirror model with the actuator
spacing of 4.6 cm, the corrected spot (see Fig. 8.30 (right)) has a Strehl ratio of 0.95.
When the number of actuators is reduced by a factor of 2 in each direction, the Strehl
ratio reduces to 0.86. With the application of an adaptive component, the intensity
distribution in the focal plane improves, showing only a single bright ring around the
central bright spot. Also, the spot extent along the optical axis tightens appreciably.
The corrected phase is seen to be nearly constant. Only a quantitative measure such
as the Strehl ratio allows us to appreciate the incremental improvement of about
10% upon quadrupling the number of actuators.

The incorporation of a fully fledged deformable primary mirror into a space
telescope would significantly improve its performance under most adverse condi-
tions. The inclusion of the obligatory robust control system adds significant further
complexities and increases the potential for risk of a single-point failure, which
prohibit its implementation in applications to space astronomy at this time.

Even if an adaptive component in a space system were feasible, the correction
implementation would not necessarily include a complete active system. The quality
of the images and their review by the scientific community provide the wavefront
sensing and evaluation to generate the control commands. This is basically a quasi-
static correction system with phase error evaluation performed infrequently (once a
month).

Atmosphere changes occur frequently, as a matter of fact constantly, as we can
acertain when we observe the twinkling of a distant light at night. For this reason,
many modern telescopes envision some active correction (see, for example, [43, 44]).
Any correction of the atmospheric effects would have to be monitored and corrected
with a frequency between 0.10 (for calm conditions) and 100 Hertz (for conditions of
turbulence). Real-time compensation of atmospheric phase distortions is generally
referred to as an active optics system [45, 46]. Such a temporally dependent system
by necessity includes an active system of sensing and a wavefront correction feed-
back loop.

Only a fraction of the phase error may be corrected during each sampling to
avoid instabilities and transients. The phase error has to be sampled at a frequency at
least five times larger than its highest significant temporal frequency.

The resolution limitation on a large telescope imposed by the atmosphere is a
generally accepted phenomenon. A great deal of effort has been expended in the last
40 years to understand its behavior, in order to be able to correct for it with an active
optics system. Atmospheric aberration may be described by the Kolmogorov spec-
tral distribution of the wavefront as a function of height above the earth surface, [47]

W2ð�; 
; nÞ ¼ 0:38


2 � �11=3
ðhmax

hmin

½CnðhÞ�2dh; ð8:6Þ
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where C2
n is the refractive index structure of the atmosphere as a function of the

height layer n, between hmin and hmax. Upon integration of this equation over all
layers of the atmosphere, characterized by their respective refractive index structure,
we can see clearly that the amount of atmospheric aberration is proportional to the
inverse wavelength and the variation in the index of refraction of the air. These
coefficients, of course, are dependent on the site in general, and on the specific
climatic and environmental conditions, in particular.

In terms of the seeing parameter ro that is used to describe empirically the effect
of the atmosphere on the phase error, this equation may also be written, when hmin

and hmax include the integration over the whole atmosphere, [48]

W2ð�; roÞ ¼
0:023

ðroÞ5=3 � �11=3
� e��

2�ðLiÞ2

1þ 1

ðLo � �Þ2
� �11=6 ; ð8:7Þ

where Li and Lo are the inner and outer scale, while � is the radial spatial frequency
coordinate. On comparing Eqs (8.6) and (8.7) we see that the seeing radius increases
with wavelength nearly linearly (exponent is 6/5).

roð
Þ ¼ 
1:2½Ro1ð
1Þ=
1:21 �: ð8:8Þ
This equation may be rewritten for the visible region, for which the seeing parameter
is usually known, between 0.1 and 0.2m.

Using Eq. (8.4) for the angular resolution, we obtain

�ð
Þ ¼ ½0:61=
0:2�½
1=Ro1ð
1Þ1:2� ½rad� ð8:9Þ
Thus, the angular resolution � of earth-based telescopes without atmospheric correc-
tion increases with wavelength with an exponent of wavelength of �0:2. We recall
that a small value for angular resolution means a better resolution. As the wave-
length increases, � in Eq. (8.9) decreases slowly. The angular resolution of earth-
based telescopes as a function of wavelength is shown in Fig. 8.32. This figure
incorporates two sets of parameters. The mirror diameter is varied from 1m to
10.95m (the diameter of the Keck telescope). Also the seeing radius is varied to
include (in the visible) the range that correspond to good astronomical sites. The
resolution limit corresponds to the higher of the curves for the applicable para-
meters. The region of the expected resolution values has been shaded. We observe
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Figure 8.31 The wavefront with a (compensated) aberration is incident on a perfect mirror,

which forms the far-field image in the (Cassegrain) focal plane. Customarily, the point-spread

function is shown as a function of the distance from the optical axis. Here the intensity slices

are given as a function of one transverse coordinate for a number of positions along the

optical axis (also known as inside, in, and outside focus positions). In Fig. 8.30(c), we show

the intensity slices along the optical axis, in order to assess the three-dimensional extent of the

bright spot (after Scholl [8]).



that in the visible and the near-infrared the seeing limits the resolution of the tele-
scope, independently of its diameter.

Thus, large-diameter telescopes are well utilized on the earth’s surface only in
the infrared. There, of course, the atmospheric spectral transmission as well as the
Earth’s emission generate a whole new set of problems.

The feasibility of correcting the atmospheric aberration using a deformable
mirror has also been analyzed. A laser beam is first expanded to 0.5m diameter,
with a beam expander that introduces 0.2
 astigmatism at 0.48 mm; the effects of the
atmospheric phase error are calculated, and the effects of the actuators are deter-
mined to neutralize the beam aberration, as shown in Fig. 8.33. With the actuator
separation on a square grid of 0.04m, we can see the sequence of intensity and phase
at each of the steps illustrated in Fig. 8.34. The initial intensity and phase are
depicted in Fig. 8.34(a), with the Strehl ratio of 1; the phase in Fig. 8.34(b) shows
some astigmatism after the beam passes through the aberrated beam expander, now
having the Strehl ratio of 0.924; the phase is severely, randomly, and unpredictably
aberrated in Fig. 8.34(c), with a significant Strehl ratio degradation to 0.344; and,
finally, the corrected phase in Fig. 8.34(d) exhibits a much improved Strehl ratio of
0.865. The residual phase error is characterized by the high-frequency components
whose presence could not be eliminated by the given small number of actuators.

The phase error introduced by the atmosphere just before the mirror surface is
equal to the deformation that needs to be placed on the mirror surface to produce
the corrected wavefront.
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Figure 8.32 The angular resolution of the earth-based telescope as a function of wavelength

with two sets of parameters: the mirror diameter varies from 1m to 10.95m; the seeing radius

includes the range from 0.1m to 0.26m, corresponding to good astonomical sites in the visible.



In principle, a bright star could be used as a radiation source for determination
of the atmospheric phase error to determine the requisite correction. When the
atmosphere is rapidly changing, we need to use an active illumination system such
as a laser beam directed to the upper atmospheric layers where the sodium atoms, so
excited, produce fluorescence that acts as a bright point source. Due to the practical
consideration of inadequate exposure, artificial sources have been developed using
an active laser beam as illuminator. For example, the Strehl ratio has been improved
from 0.025 to 0.64 on a 1.5m telescope using an active system [49] and an artificial
laser beacon. One of the disadvantages of this very effective tool is that it is insensi-
tive to tilt.

8.2.5 Space Telescopes

With the advent of larger and more powerful rockets, it became feasible in the late
1960s to send a satellite into space with communications and scientific remote-sen-
sing payloads. This was followed by telescope facilities, both in the UV and IR,
because there the atmosphere is opaque, effectively making it impossible to obtain
astronomical data with the ground facilities. The Far Infrared and Submillimeter
Space Telescope (FIRST) is intended to open up for study [50] the entire submilli-
meter and far-infrared band (85–900 mm). When the seeing problem was first fully
understood in the 1970s, a series of large observational telescope facilities incorpor-
ating large-diameter monolithic telescopes was initiated, including the Hubble tele-
scope in the visible, followed by the Infrared Space Observatory (ISO) in the
infrared. Remote sensing is another important area of application for space tele-
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Figure 8.33 The optical model to assess the feasibility of correcting the atmospheric aberra-

tion with a deformable mirror includes the laser beam, first expanded to 0.5m diameter, with a

beam expander that introduces 0.2
 astigmatism at 0.48 mm; the phase error introduced by the

atmosphere; and the actuator strengths, calculated so as to neutralize the beam aberration

(after Scholl [45]).
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scopes: for example, in instruments used to monitor ozone depletion in the strato-
sphere [51].

The clear advantage of placing a telescope in space is that the detrimental
effects of the atmosphere are avoided. The equally obvious disadvantage is that
the telescope orbiting in space is not easily accessible for (routine) repairs and
adjustments, as became significant in the case of the improperly formed primary
mirror on the Hubble telescope, which ended up with approximately 0.5
 of sphe-
rical aberration [52,53]. Two instruments were redesigned to compensate for this
aberration, the wide-field and the planetary cameras, and replaced in the observa-
tional facility several years later. In addition, COSTAR was added to allow the use
of the nonimaging spectrographs and the faint object camera.

The IRAS was the first IR satellite to survey the skies, while the ISO was the
first infrared astronomical observatory in space [54] operating at wavelengths from
2.5 to 200 mm. It was considered a success, having run longer than was originally
planned due to its conservative design [55–58]. Its successful completion resulted in
the implementation of a slightly larger facility, the Space Infrared Telescope
(SIRTF), planned for launch in 2002.

8.2.6 Infrared Telescopes

Telescopes may also be classified according to the wavelength of observation into
several important spectral intervals of observation: the visible, including blue and
red; the UV; the near- and far-infrared, and the millimeter and radio waves. The
infrared telescope facilities generally include the observations approaching a milli-
meter range, where the detection methods change, and the telescope primary mirror
functions just as a light-collecting surface, even in space. Both the UV and the
infrared regions are important to differentiate from the visible spectral regions,
because of the different light transmission characteristics of the atmosphere and
optical glasses in those two spectral regions. Additionally, the amount of stray
light in the infrared becomes of uttermost importance because it generates the ther-
mal noise.

Telescopes 245

Figure 8.34 The feasibility of correcting the atmospheric aberration using a deformable

mirror has been confirmed with the Strehl ratio from 0.344 due to atmospheric aberration

to the much improved Strehl ratio of 0.865 upon the application of the active optics system to

control the surface shape of the deformable mirror. While the beam and the phase are shown

at each significant step in the active optics system, the atmospheric aberration affects only the

phase. The laser beam intensity scattering within the atmosphere is not considered. (a) The

initial phase at the output of the laser is constant, with the Strehl ratio of 1. (b) A small

amount of astigmatism (0.2
) is introduced at the aberrated beam expander, reducing slightly

the Strehl ratio to 0.924. (c) The phase is severely, randomly, and unpredictably aberrated due

to its propagation through the atmosphere, with a significant Strehl ratio degradation to 0.344.

(d) Finally, the corrected phase exhibits only small-amplitude, high-frequency ripples after

reflection off the deformable mirror with the actuator separation on a square grid of 0.04m,

with a much improved Strehl ratio of 0.865. The residual phase error is characterized by the

high-frequency components whose presence could not be eliminated by the given small num-

ber of actuators (after Scholl [45]).



The material–transmission characteristics of infrared glasses favor the imple-
mentation of the all-reflective configurations in this spectral region. First of all, there
is an increased amount of absorption. Secondly, the index of refraction is larger, thus
increasing the losses upon refraction at a glass–air interface. Such problems are
eliminated if an all-reflective design is used. Additionally, the reflectivity of alumi-
num, silver, and gold increases in the red–infrared spectral region, making it even
more advantageous to incorporate all-metal reflecting telescopes for the IR.

There is one more important issue to address when dealing with telescopes
operating in the longer-wavelength regions. It is the significance of the thermal
noise, generally addressed during the early design steps in order to eliminate the so-
called stray light. The importance of the noise arising from sources outside the field of
view whose radiation scatters inside the telescope barrel has been analyzed and iden-
tified as important already for assessing the performance of theHubble telescope in the
1970s. A sun shade, similar to the one shown in Fig. 8.27, was used to prevent the sun
rays from out of field of view from entering the telescope barrel. These potential noise
sources include the sun, the moon, and the earth, as the radiators outside the field of
view whose light may scatter inside the telescope tube. The out-of-field sources are
even more detrimental in the IR, because the sun is a strong emitter in the IR Both the
earth and the moon remain an emitter in IR even from the side not illuminated directly
by the sun, due to their temperature. The temperature control of all parts of the
telescope systems is of critical importance for the minimization of the internally gen-
erated stray light noise [59, 60]. For these two reasons, IR telescopes tend to be heavily
baffled, as can also be seen in Fig. 8.27.

One detail that may be clearly appreciated in this layout with the exactly traced
optical beam volume is that the central part of the secondary mirror is not used for
imaging. As this part of the mirror is seen directly by the detector, it is obstructed by
the small planar reflector. It misses its objective somewhat in the telescopes where the
secondary mirror is nodded for the purpose of chopping, by looking at a different
sky region.

The secondary mirror, seen directly by the detector, requires extra attention,
resulting in a large obstruction to the incident radiation, much larger than the actual
diameter of the secondary. With such an enlarged obscuration, the amount of light
collected by an on-axis reflecting configuration is smaller, equal to ðR2 � r2Þ, where
r is the radius of the obstruction, rather than that of the secondary mirror.

In the IR designs the secondary mirror tends to be very small, for two reasons.
Due to its size it subtends a small angle at the detector in order to diminish the
amount of stray light. Secondly, the small secondary mirror is easier to control to
oscillate between the source and the reference patch of the sky using a fixed primary
mirror. Of course, such mechanisms add to the bulkiness of the secondary assembly.
The primary mirror has to be slightly oversized to accommodate the extreme posi-
tion of the nodding secondary mirror. The designers of these telescopes have not
come to an agreement whether it is better to have the stop on the primary or the
secondary mirror.

The large infrared facilities, such as ISO and SIRTF, have been designed as on-
axis configurations, due to improved mechanical stability of centered systems, even
though the shade introduces some mechanical asymmetry. In the past decade, there
has been an insurgence of small IR telescopes for dedicated missions of observing
earth, seas, and shores. These revolutionary designs incorporate the off-axis tele-

246 Paez and Strojnik



scope layouts with the Lyot stop configuration to minimize the amount of stray light
on the detector plane.

In this approach, the whole instrument is designed with the single overriding
purpose of maximizing the signal-to-noise ratio for detection of distant faint sources
as in the case of the wide-field infrared explorer [61]. The same high signal-to-noise
ratio may be achieved either with a large aperture for large light-collecting area or a
small amount of noise. In the design depicted in Fig. 8.35, the telescope uses an off-
axis reflective layout in the Gregorian configuration.

By choosing an off-axis reflecting mirror the whole primary is used as a light
collection system. The secondary neither obstructs the radiation, nor does it modify
the resolution (light distribution in the focal plane). The off-axis layout has the
undesirable consequences of introducing field aberrations, such as astigmatism,
coma, and the image is located on a surface with an increased amount of (Petzval)
curvature.

8.3 FILLED-APERTURE TELESCOPE

The maximum diameter of constructed (Earth-based) astronomical telescopes is
limited by the technological and engineering considerations of the day. First, there
are fabrication issues, in terms of the uniformity of the blank, then its transport,
optomechanical forming of the surface, and the component testing to meet the
specifications.

In the 1960s the belief that the maximum feasible blank was limited to about
2.3m led to the nearly simultaneous designs employing an arrangement of six mir-
rors, known as the multiple-mirror telescope (MMT); see for example [34, 62]. The
advantage of a large light-collecting area was paid for by the difficult phasing of the
different segments, aligning the segments so well with respect to each other to gen-
erate no phase error between them, as discussed by McCarthy [63]. This successful
telescope configuration was followed by the first Keck mirror, with 356 hexagonal
panels of 0.9-m side in a honeycomb arrangement; the first truly segmented mirror
was little more than 10m diameter (maximum diameter of 10.95m). This telescope
has been successfully fabricated, aligned. It has been used at visible as well as IR
wavelengths from its first use [64–67]. This system incorporates an active control to
align and maintain in alignment the large number of segments [68].
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Figure 8.35 A telescope designed with the objective of a decreased amount of stray light for

an improved signal-to-noise ratio takes advantage of the off-axis configuration to employ fully

the available light-collecting area of the primary mirror. To decrease the number of diffracting

edges, a Gregorian layout incorporating the internal focus where a field stop may be located,

and the Lyot stop for limiting the stray light (after Scholl [59]).



Figure 8.36 shows the diffraction patterns of two possible arrangements of
36 hexagonal segments with the diameter of the inscribed circle of 1.559m. The
diffraction pattern is shown on a logarithmic scale, such that intensity of 1
corresponds to gray level 255, and 10�6 and less intensity is black, with a gray
level of zero. The wavelength of 2.2 mm is assumed for the resolution calculations.
In both layouts, the aperture area is the same; thus, the light-collecting efficiency
does not change.

In Fig. 8.36(c) we see a layout with a single central segment missing, the actual
Keck configuration, while in Fig. 8.36(d) the first ring of mirrors is missing addi-
tionally. The six remaining mirrors are placed on the outside of the configuration
shown in Fig. 8.36(c). There are three benefits realized with this modification. In
both figures we observe the first zero ring that defines the resolution of the telescope,
both corresponding to an hexagonal shape just like the outline of the aperture. Thus,
the diameter of the first zero ring, representing the telescope resolution in Fig.
8.36(d) is smaller than that in Fig. 8.26(c). Additionally, the placement of six seg-
ments on the outside increases the diameter of the telescope, and therefore, the cutoff
frequency is larger along these directions. If the segmented configuration is para-
bolic or hyperbolic in shape, then the curvature of the segment decreases with the
segment distance from the apex.
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(a) (b) (c) (d)

Figure 8.36 Diffraction patterns in a logarithmic scale illustrating the effect of the segments

on the performance of the segmented array and the distribution of segments. (a) A single

circular segment with diameter 1.628m produces a set of circular rings, with the first-intensity

zero at 0.33 arcseconds. (b) A single hexagonal segment with the diameter of the inscribed

circle of 1.559m, with the first zero ring a slightly-deformed circle, with resolution of 0.33

arcseconds. (c) Thirty-six hexagonal segments in a honeycomb configuration, with the central

one missing, with the first zero ring at 0.055 arcseconds. (d) Thirty-six hexagonal segments in a

honeycomb configuration, with the central seven segments missing, with the first zero ring at

0.045 arcseconds. The wavelength of 2.2mm is taken for the resolution determination.



In Fig. 8.36(c) and (d) we observe a strong dark ring at 0.33 arcseconds, which
arises as a consequence of the diffraction pattern due to an individual segment,
shown by itself in Fig. 8.36(b). Finally, we show for comparison the diffraction
pattern of a circular aperture of diameter 1.638m, producing a circular ring at the
same location. While it is difficult to observe with the naked eye, we comment that
the first zero ring in Fig. 8.36(b), (c), and (d) are in fact a hexagon, nearly circular in
shape. Looking at the intensity distribution in Fig. 8.36(b), we therefore conclude
that the diffraction pattern of a hexagon produces a near-circular hexagonal ring as
its first zero, followed by a more clearly formed hexagons. When we search for the
first hexagon with a circle inscribed in the diffraction pattern of 36 segment config-
urations, we find it has the radius of 0.055 arc sec, representing the true resolution of
the segmented configurations.

In the 1970s, with the great success of radio astronomy [69], the successful
techniques of aperture synthesis began to be studied in optics.

The funding was initially available for military research; however, diluted
aperture optical systems turned out to be limited to a narrow field of view, preclud-
ing their use for surveillance [70]. Diluted apertures became of interest to the astro-
nomical community for interferometric rather than imaging applications, for
astrometric applications (exact star position), and for such exotic research as the
detection of planets outside our solar system (see, for example, [71, 72]). It is believed
that a single spatial frequency detected with an interferometric array could confirm
the presence of such an ephemeral object as a dark, small planet orbiting a bright
sun-like star.

The formation of the planets, solar systems, stars, galaxies, and the universe
remains of great scientific and astronomical interest worldwide, even if the planet
detection project has lost a bit of its appeal within the U.S. scientific community.

8.3.1 Increasing the Aperture Size

There are basically two ways of improving the radiometric sensitivity of a telescope.
The first one that has been receiving a great deal of technological impetus, in parallel
with the advances in the semiconductor technology due to the employment of similar
materials, is the detector technology [73] and the focal plane architecture. The second
one belongs to traditional optics: increasing the diameter of the light-collecting
aperture to intercept more photons. Its challenges are often the limitations of the
state of technology rather than the fundamental limits. This problem for the large-
diameter telescopes was addressed at the successful completion of testing the multi-
ple-mirror telescope by Woolf [74].

8.3.2 True Monolithic

When the Hubble telescope was first proposed, the 2.4-m diameter primary mirror
was considered the largest mirror that could be figured and tested for use in space.
Only a decade earlier, a 2-meter segment had been consider the best and the largest
that could be fabricated. In order to build a larger telescope than that, a telescope
had to be built of several segments of smaller size. The technology limitation of the
day is not to be taken lightly: a size limitation of a furnace to produce a quality blank
is a temporary technology limitation. A great advantage of the technology develop-
ment programs is that with time, efforts, funds, and human ingenuity, such limita-
tions may be overcome.

Telescopes 249



8.3.3 Monolithic in Appearance

Today, there exists a number of monolithic mirrors under development or already in
a telescope with diameters of 7–8.5m that started to be developed as light-weighted
mirrors [75–83]. This development includes the replacement of the one in the housing
originally prepared for the multiple-mirror telescope (see, for example, [84]).
Actually, in most of these cases, it was human ingenuity rather than a breakthrough
in technology and technology transfer from similar areas that brought about the
improvements. Possibly the most interesting such case is the building of a primary
from a set of hexagonal segments, whose surface is covered with a thin sheet of
glass – technology transfer from adaptive optics [85].

8.3.4 Segmented for Any Size

The multiple-mirror telescope represented a novel way of achieving largeness: if one
can combine six mirrors, why not 12, or 18 or even more: 36 in the case of Keck, and
127 for the extremely large telescope (ELT). Figure 8.37 shows the comparison of the
primaries for the Hubble, the Keck, and the extremely large telescope. The antici-
pated growth of the segmented mirrors represents an extension of the theorem of
natural numbers: if you can build two 2-m telescopes, then assume that you can
build an N-mirror telescope, and see if you can build a N þ 1 2-meter telescope. Of
course you can, and you will, because the astronomical community wants to inter-
cept photons from even fainter sources, and they just need to count them. This has
been the design philosophy of the Keck telescope as well as the Spanish telescope in
the Canaries, described by Espinosa [86].
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Figure 8.37 The primary apertures of Hubble; Keck, with 36 segments; and the extremely

large telescope, with 127 segments.



Equally, the huge telescopes of the future will be constructed on the basis of the
same principle. Consider the overwhelmingly large telescope (OWL) that incorpo-
rates 2000 segments of 2.3-m mirror diameter. In this telescope, the fabrication will
have been much simplified: each segment is planned to be a sphere, fabricated at a
rate of 1 per day. The primary will weight 1500 tons. The support structure is of the
same size as the Eiffel Tower, employing 4000 tubes of 2m diameter. The secondary
is planned to be larger than the Keck. Figure 8.38 shows for comparison the aper-
tures of the OWL and the Keck telescope.

At the same time that we learned that mozaicking a mirror surface is beneficial
to light collection but not necessarily to the resolution, we also discovered the
detrimental effects of the atmosphere. The appearance of segmented mirrors and
the need for the phase combining them brought into focus the application of inter-
ferometry to the detection of a specific feature in the spatial frequency domain. The
spatial frequency domain corresponds to the space in which a Fourier transform of a
spatial field or intensity distribution is presented. Thus, it has been known for a long
time that two separated apertures give information about one spatial frequency, that
corresponding to the inverse separation between the apertures, along the line con-
necting the apertures. By changing the separation of the apertures, also referred to as
the interferometer baseline, a continuous set of spatial frequencies could be sampled.
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Figure 8.38 The primary apertures of the Keck telescope and the OWL, the overwhelmingly

large telescope, incorporating 2000 spherical segments of 2.3-meter diameter.



It turns out that the interferometry has been used since the 1950s in radio astronomy
to synthesize the shape of radio sources, using a set of separated segments.

8.4 DILUTED-APERTURE TELESCOPE

8.4.1 Increasing the Resolution, But Not the Area

A segmented mirror is made of segments whose shapes combine to form a continuous
surface with a small (2mm) separation between segments. While the surface may be
made arbitrarily large, the diffraction pattern is dominated by that of the individual
segment, until the segments are correctly phased, as in the Keck telescopes. Then, the
diffraction pattern is that of the full aperture (see Fig. 8.36c). So the practice of
interferometry to measure a specific spatial frequency of a distant object through
the visibility function, and the earlier experience of image synthesis with radio
waves, led the researchers to ask themselves: why not separate the individual segments
spatially, in order to sample different and higher spatial frequencies. The idea was to
conserve the light-collecting area of the segments, and place the segments at such
position as to collect information about the spatial frequencies of interest. This is
the principle behind using an interferometric configuration to detect a planet around
a nearby star. If a planet is there, its presence is confirmed by one spatial frequency
corresponding to the star–planet separation. The separation of the segments may be
arranged to look for this spatial frequency. Thus, we can think of a diluted-aperture
array as a configuration where the light-collecting area is the same as in the segmented
mirror, the diffraction pattern or resolution is that of an individual mirror, but the
extent of specific spatial frequencies that may be sampled is increased in relation to the
separation between individual apertures.

Conversely, we may achieve the same coverage in the spatial frequency domain
by using a select set of apertures, but having a much smaller light-collecting area.
One such distribution of small circular areas may replace the spatial frequency
coverage even of the Keck telescope. The advantage of incorporating the diluted-
aperture configuration is that a much lower area of segments needs to be con-
structed, still sampling the important, information-carrying spatial frequencies,
related to the separation of the segments. The disadvantages of diluted-aperture
configurations are the phasing of the now distant segments, which in radio astron-
omy was successfully overcome; the challenges of image reconstruction with the
unusual optical transfer functions; and control, and construction of the system of
telescopes. While it is clear that this is a complex task, there has been no fundamental
limitation discovered to prevent its implementation; it has already been implemented
in the radio portion of the electromagnetic spectrum. Rather, the most obvious
limitation has been the application-bound one of the limited field of view, which
makes it of limited interest to the defense and surveillance communities, its original
proponents. The small field of view is not considered a limitation in astronomical
application, where attempts are being made to measure stellar diameters and star–
planet separations, all subtending very small angles.

The primary function of the diluted-aperture configuration is to detect specific
spatial frequencies of interest rather than to form a faithful image of the object.
Thus, those portions of the aperture that are involved in the imaging of the spatial
frequencies of no interest may be eliminated. In Fig. 8.39, we compare the MTF of

252 Paez and Strojnik



the simplest diluted aperture with that for filled one. One such ground-based con-
figuration involves Keck I and Keck II [87] to do ground-based interferometry. Two
apertures of diameter D and center-to-center separation L may produce the MTF
that exhibits zero values, as shown in Fig. 8.39(b). It is assumed that these spatial
frequencies have no information of interest. When the aperture separation L is
sufficiently small, the two MTF peaks start to overlap, and all the intermediate
spatial frequencies are also imaged with some modulation (see Fig. 8.39(c)). Here
fc is the maximum spatial frequency imaged by the monolithic optical system, as
shown in Fig. 8.39(a); fR is the maximum spatial frequency for which the MTF is
higher than zero; and fF is the functional frequency, i.e., the maximum spatial
frequency for which MTF remains higher than some MTFmin. As the latter depends
on the specific application, the value of the functional frequency fF depends more on
the application rather than on the configuration of the diluted aperture. For this
reason, it is not a figure of merit for aperture optimization. The frequencies fc and fR
coincide in the case of a monolithic mirror and when the mirror separation is small.
Each of these frequencies is a significant figure of merit in different applications: high
fR and fc are desirable for faithful imaging; high fc is sought in interferometry, and
high fc, but not necessarily fR, are required for imaging of select spatial frequencies.

Diluted imaging was analyzed in great depth for radiofrequencies. The first
case of an optical system employing a diluted configuration for the visible and near-
IR spectral regions was the multiple-mirror telescope, with six mirrors nearly in
contact. An approximation to this layout is shown in the inset of Fig. 8.40, described
as a six-aperture redundant configuration with a dilution factor of 1.5. A redundant
configuration is the one where each spatial frequency is sampled more than once, a
highly desirable feature for an imaging system. A dilution ratio is the ratio of the
area of the aperture of the monolithic mirror with the same cutoff frequency to the
combined area of the subapertures.
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(a) (b) (c)

Figure 8.39 The modulation transfer function (MTF) of (a) the monolithic and (b, c) sim-

plest diluted aperture composed of two apertures of the same diameter. Here fc is the max-

imum spatial frequency imaged by the optical system; fR is the maximum spatial frequency

below which the MTF does not dip to zero; and fF is the functional frequency, the maximum

spatial frequency for which MTF remains higher than some MTFmin. As the latter depends on

the specific application, the value of fF depends also on the application rather than on the

configuration of the diluted aperture. The fc and fR coincide in the case of a monolithic mirror

and when the mirrors are close.



The MTF of the six circular apertures in contact, depicted in Fig. 8.40, illus-
trates the general features of diluted-aperture optical systems. Due to its relatively
low dilution ratio, the MTF has a nonzero value for nearly the same spatial fre-
quencies as a monolithic mirror. However, the amplitudes of the spatial frequencies
are smaller: for the first 35% of the covered radial spatial frequencies, the MTF
decreases steeply to about 0.4; for the next 35% it is approxiamtely constant, at
about 0.4; in the last 30%, the MTF decreases at about the same rate as that of a
monolithic mirror. The MTF exhibits a large plateau for the moderate values of the
radial spatial frequency, much the same as that for a mirror with a central obscura-
tion (see Fig. 8.19). The decrease of performance for intermediate radial spatial
frequencies may be compared also to the degradation due to aberrations, illustrated
in Fig. 8.11. A tradeoff of cost and performance is continually made to determine the
largest diameter aperture of a monolithic mirror afflicted with some aberrations vs.
the challenges of phasing the individual subapertures to obtain its optimum perfor-
mance. Some of these issues are discussed in Hebden [88].

The interest of building diluted apertures has grown also in the Earth remote
sensing community. Figure 8.41 shows a configuration of a large mirror, flanked on
one side by several smaller ones, with the purpose of using the large mirror for
imaging up to its cutoff frequency and the smaller ones for the detection of a specific
phenomenon at a given spatial frequency and orientation. For illustrative purposes,
we present a potential redesign of this aperture, such that a complete coverage of the
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Figure 8.40 The modulation transfer function (MTF) of a six-aperture redundant config-

uration with a dilution factor of 1.5 illustrates the general features of the diluted aperture

systems. Due to a low dilution factor, the MTF for this system covers about the same spatial

frequencies as that of a monolithic aperture. The MTF exhibits a large plateau for moderate

values of the radial spatial frequency.
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Figure 8.41 The polar stratospheric telescope (POST) unsymmetrical aperture configuration

with a large mirror, flanked on one side by several smaller ones, with the purpose of using the

large mirror for imaging up to its cutoff frequency and the smaller ones for the detection of a

specific phenomenon at a given spatial frequency (after Ford [89]).

Figure 8.42 The diameters of the side mirrors in the POST layout are increased and their

centers are redistributed in a nonredundant manner to obtain a complete, even if a low-

amplitude, coverage of the spatial frequency plane up to the cutoff frequency.



spatial frequency plane is achieved: the side mirror apertures are increased and their
centers are redistributed in a nonredundant manner, as depicted in Fig. 8.42.

Figure 8.43 shows the general trend that the increase in the dilution factors
results in the decrease of the quality of imaging as measured by the fR (the maximum
spatial frequency for which the MTF is not zero), normalized with respect to the
cutoff frequency, fc.
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9

Spectrometers

WILLIAM WOLFE
The University of Arizona, Tucson, Arizona

9.1 INTRODUCTION

A spectrum is a representation of a phenomenon in terms of its frequency of occur-
rence. One example is sunrise. At first thought we might conclude that the sun rises
every 24 hours, so that the spectrum would be a one placed at a frequency of 1/24
cycle per hour. More careful consideration, of course, tells us that, as the seasons
pass and at my latitude, the sun rises anywhere from about once every 12 hours to
once every 16 hours. Therefore, for a period of a year, the spectrum would be ones
starting at a frequency of 1 at 0.0625 to 0.0833 cycles per hour. There might also be
several twos in there near the solstices when the sun has about the same period for
several days. In the arctic, there would be a bunch of zeros in the summer and winter
when the sun never sets or never rises. Another example, which is more or less
constant for all of us, is that we receive from one to 20 advertisements in the mail
every day, except on Sundays and official holidays. So this rate would vary from one
to 20 per day and have a few, blessed zeros once in a while. In mathematics such a
relationship is often called a spectral density, and the cumulative curve is called the
spectrum, i.e., about one to 20 at the end of the first week, then more at the end of 2
weeks and still more by the end of the year. In this chapter, the spectral density will
be called the spectrum for brevity. We will not have need of the cumulative spectrum.

A spectrometer is any device that measures a spectrum. In the example of the
advertisements, you, the counter of the ads, would be the spectrometer. In an optical
spectrometer, the emission, absorption, or fluorescence spectrum of a material is
measured. Spectrometers come in many different forms, and most of them are dis-
cussed in this chapter. Their function can be based on any physical phenomenon that
varies with optical wavelength or frequency.

Probably the earliest spectrum observed by man was the rainbow. Other obser-
vations were surely glories and perhaps the colors seen from oil slicks and other thin
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films. The first spectrometer may have been ‘constructed’ by Seneca during the first
century AD, who observed that the colors that came from the edge of a piece of glass
were similar to those of the rainbow. More likely it was the prism of Newton. He
observed prismatic colors and, indeed, differentiated among different substances by
their different refrangibility. [1]

The first observation of spectral lines was made by Thomas Melville in 1752. [1]
He used a prism and small aperture to observe the different spectra produced by sal
ammoniac, alum potash, and other substances. Wollaston (1766–1828) observed the
spectrum of the blue base of a candle flame and William Swan saw what are now
called the Swan bands in 1856. The first use of the spectrometer as a wave analyzer
must belong to Fraunhofer. While measuring the refractive indices of various glasses
in about 1815 (independent of the works cited above), he observed the sodium
doublet. He then proceeded to observe the Fraunhofer lines of the sun, first with
a slit and prism and then with a slit and a diffraction grating. This work was
followed in 1835 by Herschel and many other luminaries of physics: Talbot,
Foucault, Daguerre, Becquerel, Draper, Angstrom, Bohr, Kirchhoff, Bunsen,
Stewart . . . . The critical step of identifying the molecular and atomic structure
was the accomplishment of Bunsen and Kirchhoff, although others were involved,
including Miller, Stokes, and Kelvin.

Spectroscopy was critical in most of the advances in atomic and molecular
physics. The Bohr atom was defined and delineated by relating spectroscopic mea-
surements to the motion of electrons. [2] The very advent of quantum physics was
due to the exact representation of the spectrum of blackbody radiation. [3]
Sommerfeld applied the theory of relativity to the motion of the perihelion of an
electron in its orbit, [4] and Paschen and Meissner confirmed his theoretical predic-
tions with spectroscopic measurements of the fine structure. [5]

Prism spectrometers were improved little by little by the introduction of better
sources, better detectors, and better optics. Grating spectrometers had these
improvements, but also were improved in very substantial ways by the improvements
in grating manufacture. These advances were made by Wood, Harrison, Strong, and
others. [6] Gratings were ruled by very precise mechanical devices. A major advance
was the introduction of interferometric control. More modern devices now use holo-
graphic and replicated gratings. [7]

Spectroscopy is used today in many different applications. It is a standard
technique for the identification of chemicals. There are even extensive catalogs of
the spectra of many elements, molecules, and compounds to assist in this process. The
exhaust gases of our vehicles are tested spectroscopically for environmental purposes,
as are many smoke-stack emissions. The medical chemical laboratory uses colorime-
try, a simple type of spectrometer for blood, urine, and other fluids analysis.
Colorimetry, another simple form of spectroscopy, is used extensively in the garment
and paper industries. (These are different types of colorimetry – the first is a trans-
mission measurement at a single color; the second is a determination of chromaticity.)

9.2 SPECTROMETER DESCRIPTIONS

Spectrometers are described in terms of how well they resolve lines, how sensitive
they are, whether there is a ‘‘jumble’’ of lines, and their different geometric and path
configurations.
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9.2.1 Spectral Lines

The concept of a spectral line probably arose when Fraunhofer used a slit and a
prism. Where there was a local spectral region of higher intensity, it looked like a
line, because it was the image of a slit. The plot of a spectrum as a function of the
frequency can be low and flat until a local region of higher intensity occurs. If this is
narrow enough it looks like a vertical line. Line is probably a nicer term than spike or
pip, which could have been used. There is a story that has wonderful memories for
me. When the animals were being named, the question arose: ‘‘Why did you call that
a hippopotamus?’’ The answer was: ‘‘Because it looked like a hippopotamus.’’ That
applies here.

9.2.2 Spectral Variables

The spectra that are measured by spectrometers are described in terms of their
frequency and their wavelength as independent variables and by emission, absorption,
fluorescence, and transmission as dependent variables. Sometimes these are given as
arbitrary output values and as digital counts.

The spectral variables include �, the frequency in cycles per second or Hertz; �,
the wavenumber in cycles per centimeter; k, the radian wave number equal to 2� in
radians per centimeter; and the wavelength 
, given variously in nanometers, micro-
meters, or angstroms. The wavenumber is also cited as kaysers, and angstroms are
no longer on the ‘‘approved list’’ for a wavelength measure. Many authors use ~��, but
this is awkward in typography and will not be used here. In summary and in equa-
tion form the spectral variables are related by

� ¼ k

2
¼ 1



¼ �

c
: ð9:1Þ

All of these have the same units, usually cm and cm/s. Almost always � is given in
reciprocal centimeters and 
 in micrometers. In this case

� ¼ 10000



: ð9:2Þ

9.2.3 Resolution and Resolving Power

Resolution is a measure of the fineness with which the width of a spectral line can be
measured. One measure of this is the full width of the measured line at half the
maximum value, the FWHM. This can be given in any of the spectral variables: d
,
d�, dk, etc. Resolution can also be stipulated as a fraction of the wavelength: d
=
,
d�=�, dk=k, etc. This is slightly awkward in that lower values are generally better:
i.e., 0.01 is a higher resolution than 0.1! It is finer. Resolving power (RP) is a defini-
tion of resolution that avoids this little complication. It is the reciprocal of fractional
resolution: 
=d
, �=d�, etc. This is the same definition as the quality factor Q of an
electrical circuit. Thus both RP and Q are used for the resolving power of a spectro-
meter, and some authors use r and call it resolvance. The fractional resolution and
resolving power are equal no matter what the spectral variable:

Q ¼ RP ¼ �

d�
¼ 


d

¼ k

dk
¼ �

d�
¼ � � � : ð9:3Þ
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However, the resolution d� is not equal to the resolution in wavelength, but,
for � in reciprocal centimeters and 
 in micrometers, one finds

jd
j ¼ �



d�

���
��� ¼ 10000


2
d�

����

����: ð9:4Þ

Sometimes the base band is specified; it can be the full width at 1% of maximum or
the full width to the first zeros of the spectral line. The shape factor is the ratio of the
base band to the half width (FWHM).

9.2.4 Free Spectral Range and Finesse

In multiple-beam interference, which includes both Fabry–Perot interferometers and
diffraction gratings, there can be an overlapping of orders. The free spectral range is
the spectral interval between such overlaps. The finesse is the ratio of the free spectral
range to the spectral slit width.

9.2.5 Throughput and Sensitivity

Whereas resolution is one important characteristic of a spectrometer, defining how
well the spectral lines can be determined, throughput, is part of the determination of
the sensitivity of the spectrometer. The signal-to-noise ratio of a spectrometer can be
written as

SNR ¼ D�L
d
Zffiffiffiffiffiffiffiffiffi
AdB

p ; ð9:5Þ

where D� is the specific detectivity, [8] L
 is the spectral radiance, d
 is the spectral
bandwidth, Ad is the detector area, B is the electronic bandwidth, and Z is the
throughput, which is defined by the following expression

Z ¼ �Ae cos �fAf cos �i
f 2

¼ �Af cos �i�
0 ¼ �Af cos �i



4F2
¼ �AfNA2; ð9:6Þ

where � is the transmission of the spectrometer, Ae is the area of the entrance pupil,
Af if the area of the field stop, � 0 is the projected solid angle, f is the focal length, F
is the optical speed in terms of the F-number, and NA is the numerical aperture.
These will be evaluated in later sections for specific instruments.

The specific detectivity is a function of the detector used, and the radiance is a
function of the source used. The throughput is a property of the optical system and is
invariant throughout the optics.

In classic treatments [9] the product of the resolving power and the throughput
has been used as a figure of merit. While this is important and a reasonable figure, it
is not the whole story. From the expression for the SNR, it is easy to see that square
root of the detector area and noise bandwidth are important considerations. An
extended figure of merit that incorporates the bandwidth and detector area will be
used later to compare these different instruments.

9.3 FILTER SPECTROMETERS

In some ways these are the simplest of all spectrometers. There are, however, many
different types of filters and filter designs. A filter spectrometer in concept is a device
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that consists of a number of filters, each of which passes a small portion of the
spectrum. Filters are described by their transmission characteristics as narrow
band, wide band, cut on, and cut off. These are, of course, general descriptions
because narrow and wide are relative terms. Care must be exercised in reading
about cut-on and cut-off filters. Usually a cut-on filter has zero or very low transmis-
sion at short wavelengths and then is transparent at longer wavelengths. The cut-off
is the opposite. Sometimes, however, authors use the term cut on to mean a filter that
has zero or low transmission at short frequencies. The former nomenclature will be
used in this chapter.

9.3.1 Filter Wheels

It is easy to imagine the simple filter-wheel spectrometer as an optical system with a
detector behind a large wheel that has a set of filters in it, as shown schematically in
Fig. 9.1. The filter wheel is moved from position to position, thereby allowing
different portions of the spectrum to fall on the detector. The resolution and resol-
ving power depend upon the nature of the filter.

Filters can be classified as absorption filters, interference filters, Lyot filters,
Christiansen filters, reststrahlen filters, and acousto-optical tunable filters.

Absorption filters [10] operate on the principle that absorption in any material
is a function of wavelength. These filters are manufactured by a number of vendors,
including Kodak, Corning, Zeiss, and Schott. [11] Their spectral bands are not
regular (well behaved – neither symmetric nor of equal resolution in d
 or d� or
resolving power Q) because they are dependent upon the dyes that are usually used
in a glass or plastic substrate. Semiconductors make fine cut-on filters. They absorb
radiation of wavelengths short enough that the photons are energetic enough to
cause an electronic transition. Then, at the critical wavelength, where the photons

Spectrometers 267

Figure 9.1 A filter wheel.



are no longer more energetic than the bandgap, there is a sharp transition to trans-
mission. These can often be used in conjunction with interference filters as short-
wave blockers. The transmissions of special crystals and glasses are tabulated in
several publications. [12]

9.3.2 Christiansen Filters

These filters are based upon the fact that scattering of light is a function of wave-
length. Solid particles are immersed and spread throughout a liquid. Light is scat-
tered by the particles at every wavelength except the one for which the refractive
index of the particles is the same as that of the liquid. Liquids are used because their
refractive indices change faster than solids; some combinations of solids can certainly
be used if the particles can be properly distributed in the volume. McAlister [14]
made a set of Christiansen filters [13] with borosilicate glass spheres in different
concentrations of carbon disulfide in benzene. They had center wavelengths from
about 450 nm to 700 nm with a resolving power of about 10.

9.3.3 Reststrahlen Filters

Reststrahlen or residual ray filters are based on the variation of refractive index in the
wavelength regime of an absorption band. In this region the reflectance varies from
about 5 or 10% to almost 100%. By generating several reflections from such a
material in this region, the high-reflection portion of the spectrum is passed through
the system, while the low reflectivities are attenuated. Both the Christiansen and
reststrahlen filters are cumbersome and little used as commercial spectrometers.
They can be required for some parts of the spectrum, especially the infrared.

9.3.4 Lyot–Öhman Filters

Also called a polarization filter, filters of this type are based on the wavelength
variation of the rotation of the plane of polarization by certain materials, quartz
being one of the best known. They were developed independently by Lyot in France
in 1933 and by Öhman in 1938 in Sweden. A linear polarizer precedes a rotation
plate; another polarizer precedes a plate of twice the thickness, and so on, as shown
in Fig. 9.2. If the rotation is 90 degrees, then the second plate does not pass the
polarized light. To achieve 90-degree rotation, the plate must be ‘half-wave’, i.e., it
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must have an optical path difference that is one half wavelength (in the medium), or
� ¼ nd
=2. Then wavelengths of all odd multiples of this will be blocked, and all
even multiples, or full waves will be transmitted. The situation is the same for the
second plate and its polarizers, but it is twice as thick. It therefore has twice the
frequency of maxima. The successive transmissions and resultant are shown in Fig.
9.3. The passband is a function of wavelength because the path difference is a
function of the refractive index and therefore of wavelength. Filters of this type
have been made with half-widths of about 0.1 nm in the visible ðQ � 5000Þ and
peak transmissions of about 70%. [15]

9.3.5 Interference Filters

These are perhaps the most popular and useful filters in the arsenal [16]. They are
composed of thin layers of transparent material in various combinations of different
thicknesses and refractive indices. Of course the refractive index is a function of the
wavelength, so the interference is a function of the wavelength. An analysis of the
transmission of a single-layer filter can provide insight into the more complex
designs. The expression for its transmission always includes the cosine of the inci-
dence angle, a fact that can be critical to its use as a spectrometer. Figure 9.4 shows
the transmission of the filter as a function of wavelength; Fig. 9.5 shows the filter
transmission as a function of wavenumber and Fig. 9.6 shows a typical transmission
as a function of angle. These together illustrate why most theoretical treatments of
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interference filters are done on a frequency basis, i.e., the interference filter is a
multiple-beam system with a finite free spectral range and transmission is a function
of angle of incidence. The last fact implies that the passband can be altered by
tipping the filter, and that the passband is broadened when a convergent beam is
incident upon the filter.

Most bandpass interference filters are based on the Fabry–Perot interferometer
in which the mirrors and the spacer are all thin films – with differing refractive index
and thickness. Typically, one material is the high index and one other material is low
index, and the thickness are all QWOT – quarter-wave optical thickness. These
filters are also subject to the angle changes discussed above, although some special
designs can reduce the effect. Details of the Fabry–Perot interferometer, which apply
in large measure to the Fabry–Perot filter, are discussed later.
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9.3.6 Circular Variable Filters

Interference filters of the types described above can be made in a special way. The
different layers can be deposited according to the prescription on a circular sub-
strate – as the substrate is rotated at a variable rate. Therefore, each portion of the
circle has layers of slightly different thickness. There is a circular gradient of layer
thickness around the filter. Consequently, each different circumferential position of
the filter has a different wavelength of maximum transmission. It is a circularly
variable filter or CVF. These can be made to order, with different gradients, different
resolving powers, and different spectral regions, but there are constraints on them.
These filters are used in spectrometers of relatively low resolving power by rotating
them in front of the optical system. A slit is used right behind the filter, and the
optics then image the slit on the detector. As the filter rotates, different wavelength
bands are incident upon the detector.

An Optical Coating Laboratories Inc. (OCLI) filter can serve as an example. It
covers the region from 2.5 to 14.1 mm in three 86-degree arcs of radii 1.45 and 1.75 in.
for bands from 2.5 to 4.3, 4.3 to 7.7, and 7.7 to 14.1 mm. The gradients are therefore
0.75, 1.42, and 2.67 mm per inch, or a slit 0.1-inch (0.25 cm) wide has a resolution of
0.075, 0.142, and 0.267 mm in each of the bands and the resolving powers are about
45. The resolution could be made finer with a finer slit, but the flux is reduced
proportionately.

The throughput of a CVF spectrometer will include the slit area, the system
focal length, and the detector area, as well as the filter transmission. The throughput
will be determined by this aperture area, the size of the detector, and the focal ratio.
For the 0.1-inch slit and the wheel cited above, and an F/1 lens, and a 25� 75 mm
detector, the throughput is 10�6 in2 sr or 6:25� 10�6 cm2 sr. (I chose a small infrared
detector or a big visible one.)

Since this is a plane, parallel plate in front of the optical system, narcissus
(internal reflections) may be a problem. [17]
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9.3.7 Linear Variable Filters

Gradient filters can also be made such that the gradient is linear; therefore, these are
called linear variable filters or LVFs. These filters are generally meant for use with
detector arrays. They are placed in close proximity with the arrays, thereby ensuring
that each pixel in the array senses one component of the spectrum. This close
proximity can also cause a certain amount of scattering that may give rise to
cross-talk. The spectral range is 2:1 (an octave – do, re, mi, fa, so la, ti, do; do)
with resolving power of 10–100 and peak transmission of about 70%. The infrared
range of 1–20 mm is covered. The throughput can be larger, since a slit is not neces-
sary.

With both CVFs and LVFs the manufacturer should be contacted and can
surely make them to order with approximately these properties.

9.4 PRISM SPECTROMETERS

Prism spectrometers are probably the oldest type of spectrometer. First used by
Fraunhofer to determine refractive indices of various materials for better designs
of telescopes, they are still in use today and still provide good performance for some
applications.

9.4.1 Throughput

The ‘standard’ configuration of a prism spectrometer is shown in Fig. 9.7. Light
enters a slit with dimensions h� w, and is collimated by the first lens. A collimated
beam is incident upon the first face of the prism Aprism, where it is dispersed in a set
of collimated beams that cover a range of angles corresponding to a range of wave-
lengths. These beams are collected by the camera lens and focused onto the exit slit.
The light that passes through the exit slit is then focused onto an appropriate
detector. The throughput is determined by the area of the slit (which is normal to
the optical axis and is therefore equal to the projected area) and the projected area of
the prism and the square of the focal length of the lens. The throughput is constant
throughout. Since the prism is the critical element, the collimating lens is slightly
larger, and the prism area is the aperture stop of the system. The camera lens must be
a little larger than the collimating lens because of the dispersion. In a well-designed
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spectrometer the entrance and exit slits are equal in size, and either or both is the
field stop. Thus, the throughput is

Z ¼ AslitAprism cos �

f 2
¼ hwAprism cos �

f 2
: ð9:7Þ

9.4.2 Prism Deviation

The collimated beams that pass through the prism can be represented nicely by rays.
The geometry is shown in Fig. 9.8. The deviation � is easily seen to be

� ¼ �1 � � 01 þ �2 � � 02 ¼ �1 þ �2 � ð� 01 þ � 02Þ ¼ �1 þ �2 � �: ð9:8Þ
Minimum deviation can be found by taking the derivative and setting it to zero, as
usual:

d� ¼ d�1 þ d�2 ¼ 0 ð9:9Þ
The final expression is valid since two of the legs of the triangle formed by the

normals and the ray in the prism are perpendicular to each other, so the third angle
of the prism is �. Clearly, minimum deviation is obtained when the two angles are
equal, but opposite in sign. The minimum deviation angle is � ¼ 2�1 � �, and
� ¼ �=2. This information can be used to obtain an expression used for finding
the refractive index of such a prism. At the first surface, Snell’s law is

n1 sin �1 ¼ n2 sin �2; ð9:10Þ

n2
n1

¼ sin �1
sin �2

¼
sin

�þ �
2

sin
�

2

: ð9:11Þ

The angular magnification can be found by a reapplication of Snell’s law. At
the first surface, the relationship is

n1 sin �1 ¼ n2 sin �
0
1: ð9:12Þ

Differentiation yields

n cos �1d�1 ¼ n 0 cos � 01d�
0
1 ð9:13Þ

The same applies to the second surface, with 2’s as subscripts. Division and a
little algebra yield

Spectrometers 273

Figure 9.8 Ray geometry.



d�2
d�1

¼ � cos �1 cos �
0
2

cos � 01 cos �2
: ð9:14Þ

From Eq. (9.9), at minimum deviation,

d�2
d�1

¼ �1: ð9:15Þ

So, when the deviation is at a minimum, �1 ¼ �2 and �
0
1 ¼ � 02. In this condition there

is complete symmetry with respect to incident and exiting beams, and the beam is
parallel to the base (of an isometric prism with base normal to the prism angle
bisector). We note in passing that Eq. (9.7) provides the expression for the magni-
fication generated by the prims, which is 1 for minimum deviation.

9.4.3 Dispersion

One of the classical techniques for measuring the refractive index of a prism was
introduced by Fraunhofer. It can be written

n ¼ n2
n1

¼ sin �1
sin � 01

¼ sinð�þ �Þ=2
sinð�=2Þ ; ð9:16Þ

which was obtained from the relationships above at minimum deviation. Then

d�

dn
¼ 2 sin �=2

cosð�þ �Þ=2 ¼ 2 sin �=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n2 sin2
ð�þ �Þ

2

r ¼ 2 sin �=2

cos �1
: ð9:17Þ

This expression can be used to find the angular dispersion of a prism of relative
refractive index n, and the linear dispersion is f d�, where f is the focal length. The
resolving power of the prism is given by

Q ¼ 


d

¼ 


d�

d�

d

¼ a

d�

d

¼ a

d�

dn

dn

d

; ð9:18Þ

where a is the beam width. Then, substitution of a ¼ p cos �1 and b ¼ 2p sin �=2,
gives

Q ¼ a
b=p

a=p

dn

d

¼ b

dn

d

; ð9:19Þ

where p is the length of the side of the (square) prism face and b is the base of the
prism, or, more accurately, the maximum length of travel of the beam through the
prism. The resolving power is just the ‘base’ times the dispersion of the prism
material.

9.4.4 Some Mounting Arrangements

There are both refractive and reflective arrangements that have been invented or
designed for prism spectrometers. A few apply to imaging prism spectrometers.
Perhaps the most popular is the Littrow arrangement, which is illustrated in Fig.
9.9. Only the essential elements are shown. The light is retroreflected so that there are
two passes through the prism. Somewhere in the optics in front of the prism there
must be a beamsplitter or pick-off mirror to get to the exit slit. In the Wadsworth
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arrangement the mirror is set parallel to the base of the prism, as shown in Fig. 9.10,
in order to have an undeviated beam.

Symmetric and asymmetric mirror arrangements are shown in Fig. 9.11. The
symmetric arrangement is shown as image 1, and the other as image 2. A little
consideration leads to the conclusion that the asymmetric (right-hand) arrange-
ment leads to balancing of off-axis aberrations – because the tilt in one direction
helps to offset the aberrations that were introduced by the tilt in the other
direction.
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Figure 9.10 The Wadsworth mount.

Figure 9.11 Symmetric and asymmetric mounts.



9.5 GRATING SPECTROMETERS

Grating spectrometers make use of the diffraction of light from a regularly spaced,
ruled surface. They disperse the light by a combination of diffraction and interfer-
ence rather than the refractive index variation with wavelength, as with a prism.

Probably, Joseph Fraunhofer [18] was (again) the first to use diffraction grat-
ings (in 1823). Henry Rowland [19] later built extremely precise ruling engines that
could make relatively large, about 10-inch, gratings of high resolving power.
Rowland invented the concave grating. [20] Albert Michelson, America’s first phy-
sics Nobel laureate, developed interferometric techniques for ruling gratings that
were used and improved by John Strong and George Harrison. [21] It was R. W.
Wood [22] who introduced the blaze, and Strong who ruled on aluminum films that
had been coated on glass (for greater stability and precision than speculum).
Although Michelson indicated in 1927 the possibility of generating, not ruling,
gratings interferometrically, it took the advent of the laser to allow the development
of holographic gratings.

There are three types of grating: the rule grating, the holographic grating, and
replica gratings made from molds that have been ruled. The latter two are relatively
cheap, and are used in most commercial instruments today because they are cheap,
reproducible, and do not depend upon the transparency of a medium, as does a
prism.

9.5.1 Diffraction Theory

It can be shown [23] that the expression for the irradiance pattern from a ruled
grating is

E ¼ E0 sinc
2ðw sin �=
Þ sinðNsðsin �d þ sin �iÞ=
Þ

sinðs sin �=
Þ
� �2

ð9:20Þ

where N is the number of rulings, s is the ruling spacing, �i is the angle of incidence,
�d is the angle of diffraction, and 
 is the wavelength of the light. This pattern
consists of three terms: a constant, E0, that depends upon the system setup; the
source, optical speed, and transmission; a single-slit diffraction function and an
interference function. The general form is shown in Fig. 9.12. If the rulings are
sinusoidal rather than rectangular in cross section, the sinc function is replaced by
a sine. (The sinc function is given by sinc x ¼ sin x=x.) It can be seen, based on
Fourier transform theory, that this is the Fourier transform of the rectangle that
is the full grating � the comb function that represents grooves. [24] This equation is
sometimes written

E ¼ E0sinc
2�

sinN	

sin 	

� �2
: ð9:21Þ

In this form it is emphasized that � is half the phase difference between the
edges of a groove, and 	 is half the phase difference between rulings. This theory
does not take into account the generation of ghosts and other results of imperfect
rulings.
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9.5.2 Geometric Layout

The layout for a grating spectrometer is almost the same as for a prism. If the grating
operates in transmission, then it simply replaces the prism and is straight through, as
shown in Fig. 9.13. Configurations for plane and concave [25] reflective gratings are
shown at the end of this section.

9.5.3 Resolution and Resolving Power

The equation for the position of the peaks may be obtained from the basic expres-
sion for the irradiance. The position of the peaks for each wavelength is given by

m
 ¼ sðsin �i þ sin �dÞ; ð9:22Þ
where s is the line spacing, often called the grating spacing, �i is the angle of incidence
and �d is the angle of diffraction. The order of interference is m and 
 is the wave-
length.

d
 ¼ s cos �dd�d
m

: ð9:23Þ
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Figure 9.12 Multislit diffraction pattern.

Figure 9.13 Transparent grating layout.



The resolution can be found by differentiation (where only the diffraction
angle changes). Better (smaller) spectral resolution is obtained at higher orders,
with smaller line spacing and at angles that approach 90 degrees. A grating has
constant wavelength resolution as a function of angle in the image plane.

The resolving power is given by

Q ¼ 


d

¼ mN: ð9:24Þ

The resolving power is just the order number � the number of lines in the grating. It
is not possible to pick an arbitrarily large order or to get an unlimited number of
lines. This is true partly because the grating is of finite size, and efficiency generally
decreases with order number.

9.5.4 Throughput

The throughput of the grating is identical to that of a prism, as the product of the slit
area and projected area of the grating divided by the focal length of the collimating
lens. For this reason, it is desirable to have zero incidence angle when possible. This
can be possible with a transmission grating, but is almost never available with a
reflection grating. The entrance and exit slits should be identical.

9.5.5 Blazing Rulings

The efficiency may be increased by making the rulings triangular and using the slope
to reflect the light to a particular order. The manufacturer will specify the blaze
direction and the efficiency, typically about 60%. The rulings are still rectangular
in cross section; they are slanted within the groove.

9.5.6 Grating Operation

The normal operation of the grating is the same as with a prism. The grating is
rotated, and wavelength after wavelength passes the slit and its radiation is detected.
There is, however, an additional complication. The unwanted orders must be filtered
so that they do not taint the measurement.

The requirement to eliminate extraneous orders arises from the basic equation
and indicates that lower diffraction orders are preferable. Equation (9.22) has geo-
metry on the right-hand side. On the left-hand side is the product m
, the
order � the wavelength. So first order and 1 mm, for instance, is the same as second
order and 0.5 mm, and third order and 0.33 mm, etc. It is preferable from one stand-
point to operate at low orders, because it makes the separation of overlapping orders
easier. The ratio of wavelength is given by


2

1

¼ mþ 1

m
: ð9:25Þ

The higher the order, the closer are the two wavelengths. The separation of over-
lapping orders is

�
 ¼ 


m
: ð9:26Þ

This is the free spectral range.
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9.5.7 Some Mounting Arrangements

Most gratings are reflective and need special mounting arrangements. These include
Rowland, Eagle, and Paschen–Runge mountings for a concave grating, the Fastie
Ebert, and Czerny–Turner mounts for plane gratings. Clearly, prism mounts, like the
Littrow can be used for transparent gratings.

Both systems for use with plane gratings make use of the symmetry principle
for the reduction of off-axis aberrations, but there is usually some residual astigma-
tism. The Czerny–Turner, Fig. 9.14 has more flexibility and uses two mirrors that
can be adjusted independently. The Fastie–Ebert, Fig. 9.15, uses a larger, single
spherical mirror.

The Rowland mounting was, of course, invented by Rowland, himself, the
originator of the curved grating. It placed the curved grating and the detector
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Figure 9.14 Czerny–Turner mount.

Figure 9.15 The Fastie–Ebert mount.



(then a photographic plate) on the ends of a rigid bar, the length of which is equal to
the radius of curvature of the grating. The ends of the bar rest in two perpendicular
rails, as shown in Fig. 9.16. The entrance slit is placed at the intersection of the rails
with the jaws perpendicular to the rail that carries the grating. By this arrangement,
the slit, the centers of the grating, and the plate are all on a circle, the Rowland circle.
This mounting is now obsolete as a result of various technological advances. The
Abney mounting, now also obsolete, uses the same geometry, but the bar is rigid,
while the slit rotates about a radius arm at the middle of the bar and itself rotates to
keep the jaws perpendicular to the grating. Although this sounds more complicated,
only the light (not heavy) slit arrangement moves.

The Eagle mounting, shown in Fig. 9.17, is similar to the prism Littrow mount
in that the plate and slits are mounted close together on one end of a rigid bar. The
concave grating is at the other end of the bar. The main advantage of the Eagle
mount is its compactness. However, there are more adjustments to be made than
with either the Abney or Rowland mounting arrangements.

The Wadsworth mounting is shown in Fig. 9.18. The most popular modern
mounting is the Paschen–Runge mount, shown in Fig. 9.19.

9.6 THE FOURIER-TRANSFORM SPECTROMETER

This very important instrument had its origins in the interferometer introduced by
Michelson in 1891 [26] for the examination of high-resolution spectra. It is more
often used today in the form of a Twyman–Green interferometer, [27] which is
essentially a Michelson interferometer used with collimated light. The Twyman–
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Figure 9.16 The Rowland mounting.



Green was introduced to test the figure and quality of optical components. It has
more recently become the basis of many Fourier-transform spectrometers (FTSs).
The use of interferometers as spectral analysis instruments was pioneered by Felgett,
[28] Jacquinot, [29] and Strong [30].

9.6.1 Two-Beam Interference

When two monochromatic beams of light are superimposed, an interference pattern
results. If �1 and �2 represent the complex electric fields of the two beams that are
combined, the expression for the interference pattern in terms of the irradiance E is

Spectrometers 281

Figure 9.17 The Eagle mounting.

Figure 9.18 Wadsworth mounting.



E ¼ ð�2Þ� � ¼ � ��� ¼ �2
1 þ�2

2 þ 2�1�2 cos
2nd cos �




� �
ð9:27Þ

The optical quantity that is sensed is the time average of the square of the electric
field. The right-hand expression then consists of a dc or constant term plus the
interference term.

9.6.2 Interference in the Michelson Interferometer [31]

The Michelson interferometer is shown schematically in Fig. 9.20. An extended
source illuminates a beamsplitter, where the light is split into two separate beams.
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Figure 9.19 The Paschen–Runge mount.

Figure 9.20 The Michelson interferometer.



The light is returned from each of the mirrors to the beamsplitter, which now acts as
a beam combiner. The two beams then form an interference pattern at the focus of
the lens.

There is a maximum in the pattern whenever the phase term is 0, or a multiple
of . This, in turn, can happen when n�, the optical path difference is 0, or when
cos � is 0 or a multiple of . Thus the pattern is dependent upon both the effective
separation of the two mirrors d and the angle off axis, �.

The optical path of the on-axis beam that goes up, is uþ 2nt= cos � 0 � 2t= cos �,
where u is the (central) separation of the top mirror from the beamsplitter, n is the
refractive index of the plate, � 0 is the refracted angle in the beamsplitter and com-
pensator plate, � is the incidence angle, and t is their thickness. The path length of the
horizontal beam is 2vþ 2nt= cos � 0 � 2t= cos �, since the beam goes through the
beamsplitter twice for this configuration. (I have assumed that the bottom surface
has an enhanced reflection while the bottom is coated for low reflection. It could be
the other way around. It is troublesome if both surfaces have about the same reflec-
tion, because then there is multiple-beam interference generated in the beamsplitter.)
This difference in the two path lengths is the reason that many instruments have a so-
called compensation plate in one arm. The difference is just 2ðu� vÞ, but would be a
function of refractive index (and therefore wavelength) if the compensator were not
there, or if the top surface were the highly reflecting one. An off-axis beam is more
complicated, as is shown in Fig. 9.21. There are more cosines, but the results are
much the same. The differences are that the incidence and refraction angles are not
the same as in the first case, and the paths in air are longer by the cosine. The result,
with the compensator in place, is that the path difference is 2ðu� vÞ= cos �. This path
difference is part of the argument in the cosinusoidal interference term:

E ¼ E0½1þ cosð2n� cos �Þ�: ð9:28Þ

This gives the so-called bull’s-eye pattern of a central ring with annuli that surround
it of decreasing width, as shown in Fig. 9.22 in plan view and sectionally in Fig. 9.23.
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Figure 9.21 Off-axis beams in a Michelson.



9.6.3 The Twyman–Green Interferometer

When the Michelson interferometer is illuminated with monochromatic collimated
light, for instance by a lens that has a laser at its front focus, then the bull’s-eye
pattern disappears, and the pattern is a point. The flux density in this single on-axis
spot varies as a function of the separation of the mirrors, the path difference. This is
the basis of the Fourier-transform spectrometer.

9.6.4 The Fourier-Transform Spectrometer [32]

If the source of this on-axis interferometer is on axis, its flux density varies as the
separation, in a manner that depends upon the optical path difference and the
wavelength of the light in the usual way:
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Figure 9.22 Plan view of the bull’s-eye pattern.

Figure 9.23 Sectional view of the bull’s-eye pattern.



E þ E0 1þ cos
2�




� �� �
: ð9:29Þ

The optical path difference, �, as shown above is twice the difference of the mirror
separation from the beamsplitter. If the source is bichromatic, i.e., has two beams
with two different frequencies and amplitudes, the interference pattern will be the
sum of two cosines.

E ¼ E0

E1

E0

þ cos
2�


1

� �
þ E2

E0

cos
2�


2

� �� �
: ð9:30Þ

If there are many, the same is true, but with more components

E ¼
X

i

Ei cos
2�


i

� �
)
ð
Eð
Þ cos 2�




� �
d
 ð9:31Þ

and the integral represents a continuous summation in the usual calculus sense. The
pattern obtained, as the mirror moves, is the sum of a collection of monochromatic
interference patterns, each with its own amplitude. This is the interferogram. Its
Fourier transform is the spectrum. If the interferogram is measured by recording
the pattern of a given source as a function of the path difference (translation of one
mirror), then the mathematical operation of Fourier transformation will yield the
spectrum. We have just seen the essence of Fourier-transform spectroscopy, the so-
called FTS technique.

Figures 9.24 and 9.25 further illustrate these relationships. Figure 9.24 shows
five cosines plotted as a function of the path difference, which is assumed to be on
axis and is just nd. The wavelengths of these cosines are 10–14 mm in steps of 1 mm. It
can be seen how they all ‘cooperate’ in their addition at zero path difference, but as
the path difference increases, their maxima and minima separate, and they get
‘‘muddled up.’’ As the path difference increases, the interference pattern will
decreases, but not monotonically. Figure 9.25 shows the square of the sum of
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Figure 9.24 Waves in an FTS.



these five functions. It is the interferogram (within a constant and ignoring the
constant term).

There is another way to look at this. For every position of the moving mirror
the radiation that reaches the detector is a sum of components of different ampli-
tudes and different frequencies, and for each frequency there is a different phase
difference causing a different state of interference. This is the interferogram or
interference pattern – a sum of sine waves with different amplitudes. The Fourier
transform of this is the spectrum. The interferogram flux density can be written as

Eð�Þ ¼ E0ð1þ cos 2��Þ; ð9:32Þ
where Eð�Þ is the incidence as a function of the path difference �. For a nonmono-
chromatic beam it is

Eð�Þ ¼
ð1

0

E0ð1þ cos 2��Þd�; ð9:33Þ

where E0 is the intensity measured at zero path difference between the two arms and
Sð�Þ is the spectrum of the light. Then, ignoring the dc or fixed background term,
one has

Eð�Þ ¼
ð1

0

Eo cosð2��Þd�: ð9:34Þ

This is in the form of a Fourier cosine transform. The inverse transform
provides the spectrum:

Sð�Þ ¼
ð1

0

E0 cosð2��Þd�: ð9:35Þ

There is still another way to understand this relationship and process. The
motion of the mirror generates the autocorrelation function of the incident light,
and the power spectrum is the Fourier transform of the autocorrelation function.
Usually the interferogram is recorded by reading the output from the detector as one
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Figure 9.25 Superposition of waves in an FTS.



arm of the interferometer is moved. Then, after the fact, the spectrum is calculated
numerically by computer techniques.

The resolution can be found, integrating Eq. (9.22) from 0 to the full extent of
the path difference �max. The result is a sinc of 2��max. The first zero occurs when
this argument equals , and that gives the following condition:

�� ¼ 1

2�max

¼ 
2

20,000�max

: ð9:36Þ

By the Shannon sampling theorem, one needs two samples for every cycle. The
resolving power, of course, will be given by

Q ¼ �

d�
¼ 


d

¼ �

2�
¼ 5000


�
: ð9:37Þ

The relations for wavelength are obtained from those for frequency by the fact that

=d
 ¼ �=d� and, because the wavelength is in mm and the wavenumber is in cm�1,

 ¼ 10,000=�. The resolution in the frequency domain is independent of the fre-
quency, but the resolution in wavelength terms is dependent upon the wavelength.

9.6.5 Throughput and Sensitivity [33]

The Michelson (or Twyman–Green) has both a throughput and a multiplex advan-
tage. The detector is exposed to all the radiation in the total spectral band during the
entire scan, whereas with the grating and prism spectrometers only the part of the
spectral region within the resolution cell is incident upon the detector. The sensitivity
calculations can be complicated. The following is a fairly simple argument that
shows this advantage for the FTS. The expression for the interference on axis
(assuming the beam flux densities are equal) is the average over a full scan of the
moving mirror. This can be written

E ¼ 1

�

ð

�

ð

�

Eð�Þ½1þ cosð2�ndÞ�d�d� ¼
ð

�

Eð�Þd�: ð9:38Þ

The first term in the integral is a constant and represents the full density in the
spectrum. The second term is a cosine that has many cycles in the full-path averaging
and goes to zero. Of course, the optical efficiency of the beamsplitter, compensator
plate, mirrors, and any foreoptics need to be taken into account.

The throughput is given by the usual expression,

Z ¼ Ao cos �Ad cos �

f 2
¼ Ao cos �� ¼ Ao�; ð9:39Þ

where Ao is the area of the entrance optics, and equal to the area of the focusing
optics, Ad is the detector area, f is the focal length, and � is the solid angle the
detector subtends at the optics. The optics are on axis, so the cosine is 1. The area of
the detector can be at a maximum, the area of either the central circle of the bull’s
eye or any of the annuli or some combination. These can have a width that encom-
passes one full phase. The solid angle in general is given by

� ¼ 2ðcos �2 � cos �1Þ; ð9:40Þ
where the �s represent the minimum and maximum angles of the annuli’s radii. The
central circle has a zero minimum angle. Since the phase is represented by
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2�� cos �, cos � can be only as large as 1=��, which is the same as 2d�=� ¼ 2=Q.
This leads to the relationship

Q� ¼ 4; ð9:41Þ
which is one similar to that reported by Jacquinot [34]. This result is valid for the
Michelson interferometer and is 2 for the Fabry–Perot instrument (which makes
two passes of the spacing to generate interference), which is discussed next.

9.7 FABRY–PEROT SPECTROMETERS

The Fabry–Perot (FP) interferometer is a multiple-wave device. It is essentially a
plane, parallel plate of material, that can be air or vacuum, between two partially
reflecting plates, as shown in Fig. 9.26. (The rays are shown for a slightly off-axis
point to emphasize the repeated reflections.) It can be in the form of two partially
reflecting mirrors with a space between them, a plate of glass or other dielectric with
reflective coatings on the faces, or layers of thin films that form a filter. As shown,
there is walk off of the beams after many reflections. When used on axis, that is not
the case. The figure also shows two separate partially reflective mirrors; it could be a
single plate with two surfaces that perform the reflection functions. It is shown later
that the field covered by an FP is indeed quite small so that walk off is not a
problem, and the classic Airy function applies. Note, however, that in configurations
that are used relatively far off axis, the light is attenuated; the summation of beams is
not infinite, and modifications must be made.

The function that describes the transmission of the FP is the so-called Airy
function: [35]

�ð�Þ ¼ �max

1þ R sin2 �
; ð9:42Þ

where the maximum transmission �0 is given by

�max ¼
�1�2

ð1� �Þ2 ; ð9:43Þ

� ¼ ��� "1 þ "2
2

¼ �nd cos � � "1 þ "2
2

; ð9:44Þ

where the �’s are the reflectivities of the coating measured from the gap, the �’s are
the transmittances of the coatings on

288 Wolfe

Figure 9.26 Schematic of a Fabry–Perot interferometer.



R ¼ 4�

ð1� �Þ2 ; ð9:45Þ

� ¼ ffiffiffiffiffiffiffiffiffiffi
�1�2

p
; ð9:46Þ

the plates, the "s are the phase shifts on reflection, n is the refractive index of the
plate, and d is its thickness. The phase shifts serve only to shift maxima and minima;
they do not affect resolution, resolving power, free spectral range, finesse, and
throughput.

The pattern is shown in Fig. 9.27. The line width (FWHM) is given approxi-
mately, for small angles, by the following expression:

d� ¼ 1� �
2
ffiffiffi
�

p 1

�
: ð9:47Þ

It can be found by setting the transmission expression to 1
2
and solving for sin�.

Then, for small angles the angle is equal to the sine and the FWHM is twice the value
found, yielding Eq. (9.47).

The free spectral range is the distance in frequency space between the maxima,
i.e., when F sin� is zero. This occurs at integral multiples of , for � ¼ m, or when
� ¼ m=�. Therefore, the free spectral range, the distance between the peaks, is 1=�.
The resolving power is given by

Q ¼ �

d�
¼ 


d

¼ ��

ffiffiffi
�

p
1� � ¼ 

�




ffiffiffi
�

p
1� � : ð9:48Þ

It is related to plate separation and the reflectivities, and is proportional to the
number of waves in the separation. Assume that the reflectivity is 0.99, that the
separation is 5 cm, and that the light is right in the middle of the visible, at
500 nm. Then, the resolving power is

Spectrometers 289

Figure 9.27 The Airy function.



Q ¼ �

d�
¼ 


d

¼ 

�




ffiffiffi
�

p
1� �¼ 3:14

0:05

0:5� 10�6

ffiffiffiffiffiffiffiffiffi
0:99

p

0:01
¼ 3:14�107� 99:5 � 3� 109:

ð9:49Þ
This extremely high resolving power is the strength of the FP interferometer

spectrometer. Most of it, 107, comes from the number of waves in the cavity, but
having high reflectivity helps (by a factor of about 100) both the Q and the maximum
transmission, which increases as the reflectivity of the plates increases! The transmis-
sion maximum occurs when the square of the sine is zero and minimum when it is 1.
The maximum occurs when � is an integral multiple of , when �nd is a multiple of
1/2, or when nd is an integral number of waves. The separation of the peaks, the free
spectral range, is given by

�� ¼ 1

�
¼ 1

nd cos �
: ð9:50Þ

The free spectral range decreases as the path separation increases (the order
number increases), so high resolving power is obtained at the expense of free spectral
range. For the example given above, the free spectral range is 0.2 cm�1 (the resolu-
tion is 2� 10�12 cm�1). The finesse for collimated light is

��

Q
¼ 1� �

nd cos �
ffiffiffi
�

p
m

: ð9:51Þ

The throughput is calculated based upon the area of the beam that traverses
the plates and the size of the image. The image is a bull’s eye pattern with alternating
light and dark annuli, as with the Michelson, and it has the same expression. In fact
the throughput of the Fabry–Perot is the same as that of the Michelson. Some
workers [36] have used curved slits that match an arc of one of the annuli. In that
case, the solid angle is �ðcos �2 � cos �1Þ, with the angle � replacing the full circum-
ferential angle 2.

The expressions given here are for an idealized instrument. Jacquinot provides
information on the influence of various imperfections and provides some additional
insights into the operation of the performance of Fabry–Perot interferometers.

Fabry–Perot interferometers are research tools, and are not available commer-
cially.

9.8 LASER SPECTROMETERS

Laser spectrometers [37] are different from classical spectrometers in that there is no
monochromator; the source is a tunable laser. The line width can be very narrow.
These can be used for transmission, reflection, and related measurements, but cannot
be used to measure emission spectra. The limitations are strictly those of the band-
width and spectral range of tunable lasers. Some of the salient characteristics of
lasers used in the visible and infrared are power, resolving power, and spectral range.

There are several different types of tunable lasers, all with different character-
istics. [38] The most useful type seem to be semiconductor lasers [39] that can span
the spectrum from about 350 nm to about 14 mm. This range must be accomplished
with different materials, ranging from ZnCdS to HgCdTe, of various mixture ratios.
Tuning is accomplished in these semiconductor lasers by varying either the drive
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current or the pressure. Powers range from microwatts to milliwatts; line widths as
small as 10�6 cm�1 have been observed, but useful widths are somewhat larger. Note
that this represents a resolving power of about 1010!

The second most useful type is probably the family of dye lasers. [40] These
cover the region from about 350 nm to 1 mm using several different dyes and solvents.
Each combination can be tuned several hundred wavenumbers from its spectral peak
with a concomitant reduction in power.

Color-center lasers, in which lasers like NdYAG pump certain alkali halides,
cover the region from about 1–3 mm, again with several different pump and color-
center lasers.

The fourth class is molecular lasers, such as carbon dioxide, carbon monoxide,
deuterium fluoride, and carbon disulfide, which are used at relatively high pressures
to broaden the vibrational–rotational bands of the gases themselves. These typically
have much greater power, but somewhat lower resolving power.

These laser spectrometers have incredibly high resolving powers as a result of
the narrowness of the laser lines. They can be used in special situations with rela-
tively limited spectral ranges, with relatively low power and with the specter of mode
hopping as a problem to be overcome and controlled.

A summary of the properties of the main tunable lasers that can be used for
these spectrometers is given in Table 9.1.

9.9 UNUSUAL SPECTROMETERS

During the 1950s, largely as a result of the pioneering work of Jacquinot on the
importance of throughput in spectrometers and that of Felgett on the value of
multiplexing, many innovative designs arose. Some became commercial; others
have died a natural death. The concepts are interesting.

The general treatments have been based on classical spectrometers like the
prism and grating instruments described above. Therefore, these newer ones are
described as having either a multiplex or a throughput advantage. The spirit of
this section is to reveal these interesting concepts for those who might employ one
or more of them.

9.9.1 Golay Multislit Spectrometer

Marcel Golay described the technique of using more than one entrance slit and more
than one exit slit to gain a throughput and multiplex advantage. His first paper [41]
describes what might be called dynamic multislit spectrometry. His example is
repeated here; it is for an instrument with six slits. They are modulated by a chopper.
Table 9.2 shows how each of the slits is blocked or unblocked by the chopper.

The convention is that 1 is complete transmission and 0 represents no trans-
mission; it is a binary modulation of the slits. During the first half cycle, no radiation
that passes through the first entrance slit gets through the first exit slit. During the
second half cycle, all of the radiation passes through both. The same is true for the
rest of the slits. This provides 100% modulation for corresponding entrance and exit
slits. However, during the first half cycle, no light gets through the 1–4, 2–5, and 3–6
slit combinations and one-fourth gets through the others in each half cycle. There is,
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therefore, strong modulation of the corresponding slits, but no modulation from the
‘‘off’’ combinations.

Static multislit spectroscopy uses some of the same ideas, but establishes two
masks, an entrance and an exit mask. Again, using Golay’s example, [42] assume that
there is an optical system with two side-by-side entrance pupils. In each there is a set
of eight slits, and there are corresponding exit pupils and slits. Table 9.3 shows the
arrangement.

Light passes through the entire system only when 1’s are directly above each
other in each half. In this arrangement, there are four pairs that allow light through
in the first pair of pupils and none in the second. Light of a nearby wavelength is
represented by a shift of the entrance pupils. In the first set, only one pair will let
light through for a shift of 1, and the same is true for the second set. This is also true
for shifts of up to six, and no light gets through for shifts of more than six. These, of
course, are not really shifts, but static blockages of unwanted spectra. The scheme
can be adapted to more than one row and more slits.

9.9.2 Haddamard Spectrometer [42]

This device bears a very distinct similarity to the Golay devices just described. It
consists of a collection of entrance slits and correlated exit slits. Decker [44] describes
these as binary masks (100% transmitting and 0% transmitting) arranged in a
pseudo-random pattern that do not depend upon any prior knowledge. They are
an analog of frequency modulation and can be thought of as a set of n equations
with n unknowns.
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Table 9.2 Dynamic Multislit Modulation Scheme

Slit

Entrance slits Exit slits

First half cycle Second half cycle First half cycle Second half cycle

1

2

3

4

5

6

0101

0011

0110

0101

0011

0110

0101

0011

0110

1010

1100

1001

1010

1100

1001

1010

1100

1001

0101

0011

0110

1010

1100

1001

Table 9.3 Modulation Scheme for Static Multislit

Spectroscopy

First entrance pupil

First exit pupil

Second entrance pupil

Second exit pupil

11001010

11001010

10000001

01111110



One fairly representative device operated in the 2.5–15 mm region, with a reso-
lution of 3.5 cm�1, from 666–4000 cm�1. It used several gratings and order sorting
that will not be described here. The effective throughput was 1.3mm2 sr.

9.9.3 Girard Grille [45]

This device is another version of a multislit spectrometer, although one must con-
sider the word slit in a very general way. Rather than slits, the entrance and exit
planes contain Fresnel zone plates. In other respects this system operates the same as
the Golay static multislit spectrometer. At one specific wavelength, the light passes
both grilles without attenuation. At other wavelengths, the dispersed light passes
through the first zone plate on axis, but through the exit plate off axis. The auto-
correlation function of these zone plates is peaked at the reference wavelength (zero
displacement) and decays rapidly off axis. The Girard grille has high throughput, but
does not have the multiplex advantage. It was once offered commercially by Huet in
Paris, but does not seem to be in existence as a commercial instrument today. The
instrument they built was a large (3m � 2:3m diameter with 2m focal length mir-
rors) laboratory device that used a vacuum system and PbS, InSb, and extrinsic
germanium detectors for operation from 1 to 35 mm.

9.9.4 Mock Interferometer

Although Mertz described this as a mock interferometer, a more descriptive appella-
tion might be a rotating multislit spectrometer. Besides the usual optics, it consists of
an entrance aperture, comprising a set of parallel bars, as shown in Fig. 9.28, which
is a schematic of the arrangement. The exit slit is an image of the entrance slit. As
these rotate, a modulation is imposed on the light that is proportional to the distance
between the centers of the disks. Since the exit slit is an image of the entrance slit in
the light dispersed from the prism, the modulation is a function of the frequency of
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Figure 9.28 Mock interferometer.



the light. The detector measures a quantity proportional to the integral of the spec-
tral flux � the cosine of the rotational frequency of the disks, i.e.,

VðtÞ ¼ r

ð�2

�1

�ð�Þ cos2ð2�tþ �0Þdr ð9:52Þ

where r is the responsivity and � is the flux on the detector. This system has both
the throughput and the multiplex advantage. Although Block engineering offered it
commercially for some years, it no longer appears available as a commercial product.

9.9.5 SISAM

The acronym is from the French, systemé interferential selection amplitude moduation
(well, it’s almost English. Is this the Anglaise that some French despise?). The
technique, developed by Connes [46] is to use a Michelson interferometer with grat-
ings rather than mirrors. Motion of one of the gratings provides modulation of a
given spectral line. The advantage here is throughput. Imagine that a monochro-
matic beam enters and that the (identical) gratings are set to reflect the beam directly
back. Then at zero-path difference there is constructive interference of that beam. It
can be modulated by rotating the compensation plate or by translating one of the
gratings. In that way the radiation of that wavelength is modulated. Radiation of a
nearby wavelength will also be modulated, but not as strongly, until the gratings are
rotated (in the same direction) to obtain constructive interference for that wave-
length.

It can be shown that the resolving power is 2�� without apodization and ��
with apodization (masking the gratings with a diamond shape); the throughput is the
same as for a Michelson; the free spectral range is the same as that for a grating.

9.9.6 PEPSIOSIS [47]

No this is not some sort of stomach remedy; it stands for purely interferometric high-
resolution scanning spectrometer. I confess that I do not understand the acronym. In
its simplest form it is a Fabry–Perot with three etalons. More are described in the
pertinent articles. Here it is enough to note that one can eliminate some of the
maxima of one etalon by interference with the second etalon and thereby increase
the finesse. The arguments and calculations are very similar to those involving the
Lyot–Öhman filter.

9.10 ACOUSTO-OPTICAL FILTERS

Acousto-optics has provided us with a new method of performing spectral filtering.
An acoustic wave can be set up in a crystal. This wave, which is an alternation of rare
and dense portions of the medium, provides a diffraction grating in the crystal. The
grating spacing can be adjusted by tuning the frequency of the acoustic wave. This is
a tunable diffraction grating. It provides the basis for the acousto-optical tunable
filter, the AOTF.

There are two types of acousto-optical tunable filters: collinear and noncol-
linear. In the collinear version, unpolarized light is polarized and propagated
through a medium, usually a rectangular cylinder of the proper AO material. An
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acoustic transducer is attached to the side of the cylinder and by way of a prism, as
shown in Fig. 9.29, the acoustic waves propagate collinearly with the optical waves.
There is energy coupling so that a new wave with a frequency that is the sum of the
acoustic and optical frequencies is generated – as long as the phases match. The
acoustic wave is reflected to a beam dump; the output light is passed through an
analyzer in order to maintain only the phase-matched light. As a result of the two
polarization operations, the maximum transmission is 0.25. In practice it will also be
reduced by the several surfaces and by the efficiency of coupling. The collinear
AOTF couples the energy from one polarization state to the other; the noncollinear
system separates the beams in angle, as shown in Fig. 9.30.

The center wavelength of the passband 
0 is given by


0 ¼
v�n

f
; ð9:53Þ

where v is the acoustic velocity in the material, �n is the difference between the
ordinary and extraordinary refractive indices, and f is the acoustic frequency.
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Figure 9.29 The collinear AOTF.

Figure 9.30 Noncollinear AOTF.



The spectral resolution is given by

d
 ¼ 0:9
20

�l sin2 �i
; ð9:54Þ

where l is the interaction length (the length in the material over which the acoustic
waves and the optical waves are superimposed and interact), �i is the angle of
incidence, and � is the dispersion constant, given by

� ¼ �n� 
0
@�n

@
0
; ð9:55Þ

where �n is the change in refractive index over the band and 
0 is the center
wavelength.

The solid angle of acceptance is given approximately by

� ¼ n2
0
l�n

: ð9:56Þ

The more accurate representation includes both angles, and is given by

d�1 ¼ n

ffiffiffiffiffiffiffiffiffiffiffi

0

dnlF1

s

; ð9:57Þ

d�2 ¼ n

ffiffiffiffiffiffiffiffiffiffiffi

0

dnlF2

s

; ð9:58Þ

where

F1 ¼ 2 cos2 �i � sin2 �i F2 ¼ 2 cos2 �i þ sin2 �i; ð9:59Þ
where �i is again the angle of incidence. The solid angle is obtained by integrating
these two differential angles, and when multiplied by the projected area gives the
throughput of the system, as usual.

The acoustic power required is given by

�0 ¼ sin2
l


0

ffiffiffiffiffiffiffiffiffiffiffiffi
M2Ea

2

r" #

ð9:60Þ

where �0 is the maximum transmission, Ea is the acoustic power density, and M2 is
the acoustic figure of merit.

In a noncollinear system, the separation of beams is given by

��d ¼ �n sin 2�0; ð9:61Þ
as illustrated in Fig. 9.30.

One of the early AOTFs used in the visible [48] was TeO2, operated from 450 to
700 nm with an acoustic frequency of 100–180MHZ, a spectral band FWHM of
4 nm and an acoustic power of 0.12W. Nearly 100% of the incident light is diffracted
with an angle of about 6 degrees. The resolution is given by Eq. (9.54). The accep-
tance angles, by Eqs (9.57) and (9.58), are 0.016 and 0.015 rad (9.16 and 8.59 degrees
and 2.4 msr). The required power is given as 120mW. Finally, the deviation angle is
about 6 degrees.
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Westinghouse built an AOTF System [49] for Eglin Air Force Base to measure
the spectra of jet aircraft exhaust plumes. It was an imaging spectrometer. The
properties are summarized in Table 9.4.

9.11 SPECTROMETER CONFIGURATIONS

Grating and prism spectrometers come in a variety of configurations: single and
double pass, single and double beam, and double monochromator versions.

A classic spectrometer has a source, a monochromator, and a receiver. These
configurations are different, according to how the monochromator is arranged. The
simplest configuration is a single-pass, single-beam single monochromator. It is
shown in Fig. 9.31. This configuration uses a source to illuminate the monochroma-
tor through the entrance slit, a prism with a Littrow mirror to disperse the light, and
an off-axis paraboloidal mirror to focus and collimate the beam. The light of a single
wavelength passes through the exit slit to a detector. Although the beam actually
passes through the prism twice, it is considered a single-pass instrument. Figure 9.32
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Table 9.4 Properties of the Westinghouse AOTF Imaging Spectrometer

Property Value Units

Spectral resolution

Resolving power

Spectral band

Crystal length, area

Interaction length

Acoustic input

Detector

Optics

f ;F;A
SNRa vs. 400K

SNRa vs. 400K

5

400–1000

2–5

3.5, 2:5� 1:4
2.6

0.86

128� 128 InSb

TMA and reimager

207.4, 3.27, 56:2� 56:2
13 dB @ 2 mm, 31 db @ 3 mm
2 @ 2 mm, 126 @ 3 mm

cm�1

mm
mm

cm

Wcm�2 (80% efficiency)

D� ¼ 4� 1011

mm

for 1 frame/s

for 0.01 frame/s

aThe SNR data in db are given directly from the paper, where db ¼ 10 log (ratio). A TMA is a Three-

Mirror Anastigmat. [50]

Figure 9.31 Single-pass Littrow spectrometer.



shows the double-pass version of this. The use of two passes, provides better resolu-
tion at the cost of a second prism and some additional components.

Double-beam spectrometers are used to obtain instrumental corrections for
changes in atmospheric transmission, slit size variations, and spectral variations of
the source and detector. They are nulling instruments, the most popular of which
uses a comb-shaped attenuator to match the signals, and the position of the attenua-
tor is monitored. A pair of choppers is used to switch from beam to beam in the
nulling process, as shown in Fig. 9.33. With a single-beam instrument, a transmission
measurement requires a measurement without a sample and then with, and the
ratioing of the two. The double-beam does this instrumentally. The two choppers
are synchronized so that light passes onto the detector alternately from the sample
beam and the reference beam. In this way everything is the same, except for the
comb-shaped attenuator in the reference beam. The position of the comb is mon-
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Figure 9.32 Double-pass Littrow spectrometer.

Figure 9.33 Schematic of the double-beam principle.



itored as it always seeks a zero difference between the two beams. Other attenuators
can be used, but this one has the advantage of spectral neutrality. The top beam is
the sample beam; the bottom beam is the reference beam.

Double-monochromator spectrometers use two monochromators in series to
obtain greater immunity from scattered light.

Compound spectrometers may use a prism monochromator as a prefilter for a
grating monochromator.

Interferometer spectrometers come in different configurations as well. The two-
beam versions most often are in the form of a Michelson interferometer. However, it
is critical that the moving mirror does not tip, tilt, or translate. One approach to
eliminating tip and tilt is to use a cube corner as the moving mirror. This does not
eliminate the possibility of translation. Another approach is the use of cat’s-eye
mirrors, as shown in Fig. 9.34. For Michelsons, in particular, knowledge of the
position of the mirror is critical; most systems use a position-sensing laser system
to record the position, and this information is used in the Fourier transformation.
The transformation can be done accurately even if the velocity of translation is not
constant.

Some have used interferometer configurations other than the Michelson to
obtain the advantages of Fourier-transform spectrometers. These include the
Mach–Zender, shown in Fig. 9.35, and the Sagnac. The Sagnac interferometer is
one of a class of interferometers that are of the two-beam variety with beams that
traverse the same path in opposite directions. There can be as few as three mirrors
and as many as imagination and space will allow. The four-plate Sagnac is shown in
Fig. 9.36 because it seems to be the easiest to illustrate and explain. The light enters
the Sagnac at A where the beamsplitter sends it to B above and D to the right. The
mirror D sends the light up to C, where it rejoins the beam that went from A to B to
C. The two go through the output beamsplitter with a phase difference that is
determined by the positions of the mirrors M1 and M2. That this is not multiple-
beam interferometry can be seen by considering the lower beam that goes from A to
D to C. It is reflected to B and to A, but then it is refracted out of consideration to E.
Similarly, the ABCDA beam returns to the source. Similar considerations apply to
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Figure 9.34 Cat’s-eye reflector.



these counter-rotational interferometers. Some of the history and performance are
described by Hariharan, who also gives ample references. [51]

There are also several versions of multiple-wave interferometers. These include
the double etalon and the use of spherical mirrors. [52] The spherical Fabry–Perot
has the same transmission, resolving power, free spectral range, and contrast as the
plane version, but the throughput is directly proportional to the resolving power
rather than inversely proportional.

9.11.1 Spherical Fabry–Perot [53]

Consider two identical spherical mirrors, the upper parts of which are partially
reflecting and the lower parts are completely reflecting, as shown in Fig. 9.37.
They have centers of curvatures on the opposite mirror, as indicated by C1 and
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Figure 9.35 Mach–Zender interferometer.

Figure 9.36 The Sagnac four-mirror interferometer.



C2. A ray, representing a collimated beam, enters the instrument at A and traverses
to B, where it is partially reflected. It goes to C on the mirror part, where it is totally
reflected towards C and back again to A. There it joins the incident ray with a phase
shift that is exactly twice the mirror separation. This is why it has the properties of a
Fabry–Perot with twice the etalon separation.

The literature also contains descriptions of some designs for maintaining the
position of the mirror while it translates. [54]

Jackson describes a Fabry–Perot with a double etalon to increase the finesse.
[55]

9.12 COMPARISONS

There are many similarities among the different types of spectrometers. They are
presented here, and a summary of the salient properties is given in Tables 9.5 and
9.6. Table 9.5 lists the different types of spectrometers and the expressions for
resolution, d� and d
, resolving power Q, free spectral range ��, throughput Z,
the required number of samples Ns during a spectral scan, and a normalized signal-
to-noise ratio, SNR�. For purposes of this summary, the appropriate symbol defini-
tions are reviewed here. The prism base is b; dn=d
 is the prism material dispersion;
m is the grating order number; N is the number of lines in the grating; � is the
maximum total path difference; R is the reflection factor in the Fabry–Perot filter,
i.e., �

p
=ð1� �Þ; s is the grating spacing; h and w are the linear dimensions of the

grating or prism slit; � and � are the angular measures; and the equivalent noise
bandwidth B is given by B ¼ Ns=ð2tsÞ.

There have been other such comparisons, and it seems appropriate to compare
their results as well. Jacquinot compared gratings, prisms and Fabry–Perots. He
compared a grating to a prism that has the same base area as the grating area.
The ratio of the flux outputs for the same resolving power was found to be

�prism

�grating

¼ 
dn=d


2 sin �
! 


dn

d

; ð9:62Þ
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Figure 9.37 The spherical Fabry–Perot.



where the blaze angle has been taken as 30 degrees for the final expression. Since the
dispersion is very low in the regions where the prism transmission is high, the
practical advantage for the grating is about 100.

The comparison of the grating with the Fabry–Perot proceeded along the same
lines, whereby

�FP

�grating

¼ �FP0:7
2=2

�grating2� sin �
¼ 3:4

�
ð9:63Þ

for equal resolving powers and areas, where the factor of 0.7 is the ratio of the
effective resolving power to the theoretical value, � is the angular height of the
slit, and � is again taken as 30 degrees. Values for � typically run from 0.1 to
0.01; the Fabry–Perot is therefore from 34 to 340 times as good as a grating based
on these assumptions and criteria. Any other interferometric device that does not
have a slit will have an equivalent advantage over the grating and prism instruments.
The evaluation criteria are valid, but they are limited. Other considerations may
enter, including the size of the free spectral range, ease of scanning, and computation
of spectra as well as the size, weight, availability, and convenience of the components
and their implementation.

The comparisons change a little when the full sensitivity equation is used as
part of the comparison. The equation that determines the signal-to-noise ratio, SNR,
is repeated here for convenience,

SNR ¼ D�L
d
Zffiffiffiffiffiffiffiffiffi
AdB

p ; ð9:64Þ

where D� is the specific detectivity, L
 is the spectral radiance, d
 is the spectral
interval, Z is the throughput, Ad is the detector area, and B is the noise bandwidth.
The values for the throughput derived above can be used in this expression. For
prisms and gratings, the required sample number is �
=d
, the total spectrum
divided by the resolution. For a Fourier-transform spectrometer the required sample
number is twice the number of minimum wavelengths in the maximum path differ-
ence, i.e., �=
min, and this can be related to the resolving power, �max=d�. The other
major difference is that the flux available to the prism and grating is the spectral
radiance L
� the resolution, d
, while for the Fourier-transform spectrometer it is
the spectral radiance � the total spectral interval �
 (more precisely, the integral
over the band of the spectral radiance). These equations can be reformulated in a
variety of ways by the use of the expressions given in Table 9.5, which is a summary
of the expressions that have been determined earlier.

The normalized SNR is found from the appropriate expressions for the SNR
itself. In terms of the specific detectivity the SNR is

SNR ¼ D�L
d
Zffiffiffiffiffiffiffiffiffi
AdB

p ¼ D�L�d�Zffiffiffiffiffiffiffiffiffi
AdB

p : ð9:65Þ

Since the detectivity depends upon the detector selected, the spectral radiance
depends upon the source used, and the sample time is a design variable, the normal-
ized SNR takes these out of consideration. The normalized SNR is the SNR per unit
specific detectivity, spectral radiance, and the square root of 2ts, i.e.,
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It can be expressed in terms of the radiance per unit wavelength or radiance per unit
wavenumber as long as the spectral interval is expressed in the proper units.

Perhaps the first and most obvious generality is that grating, Fourier-transform
spectrometer, and Fabry–Perot spectrometers, all of which are based on interference,
have a resolving power that is proportional to the number of waves in the maximum
path difference. The same is true for a Fabry–Perot filter. (This applies also to the
MTF of a diffraction-limited imaging system. The cutoff frequency is
1=ð
FÞ ¼ ð1=f ÞðD=
Þ, where D is the optics diameter, f is the focal length, and F
is the speed.)

Greenler has used the product of throughput and resolving power as a figure of
merit for rating spectrometers. Using this lead, I define a figure of merit, FOM, as
the normalized SNR � the resolving power. Then, using the information given
above, the FOM is easily generated.

Table 9.6 shows some representative performance characteristics of the differ-
ent types of spectrometers. Of course, a representation is only a guide and can only
be approximate, i.e., representative. The spectral range �
 may need to be covered
by more than one instrument. A second column indicates the range generally covered
by one instrument, prism, grating, laser, etc. The filter spectral range depends upon
materials, but generally covers the ultraviolet through the long-wave infrared and
even the millimeter range. The individual range is usually one octave.

The resolving power is a function of construction; it can be made larger, but
usually at the expense of maximum transmission. The AOTF range is covered by
different materials. Each of them has a range that is somewhat less than the center
wavelength 
0. The aperture size today is typically less than 1 cm, thereby limiting
the throughput. Prisms cover the range from the ultraviolet (with LiF) to the long-
wave infrared, but are practically limited at about 80mm (CsI). The limitation to a
single prism is a result of having proper transmission and dispersion over a limited
range. The resolving power is a function of the dispersion, typically from 0.001 to
0.01 mm in this range and the size of the prism. The (reflection) grating is limited in its
single range by the groove spacing and the blaze efficiency as well as overlapping of
orders. The octave is obtained only for use in the first order, where the resolving
power is smaller. The Fourier-transform spectrometer has a spectral range that is
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Table 9.6 Representative Spectrometer Properties

Type �
 ðmmÞ �
 singly (mm) Q Aperture size (cm)

Filter

AOTF

Prism

Grating

FTS

FP

Laser

0.3–1000

0.5–14

0.2–80

1–1000

1–1000

1–1000

0.3–1.5

octave

< 
0
10

octave

detector/splitter

detector/splitter

< 
0

100

1000

1000

106

106

109

1012

1–20

< 1

1–20

1–40

10

10

0.5



limited only by the transmission of the beamsplitter and the spectral sensitivity of the
detector. Its resolving power is a function of the path difference and the minimum
wavelength of the spectral region. The value given is for 1 mm and 1m. This is
somewhat extreme. The Fabry–Perot has the same spectral limitations as the FTS,
but it has a higher resolving power as a result of multiple-wave interference. Laser
spectrometers, like the AOTF, are limited to an individual spectral range of a little
less than the center wavelength. Their resolving power is phenomenal. Size is not so
important as the fact that the output is of very high radiance, very bright.

REFERENCES

1. Cajori, F., A History of Physics, Dover, 1962.

2. Bohr, N., Philosophical Magazine, 26, 476, 857 (1913).

3. Planck, M., Physikalische Abhandlungen und Vorträge, Band III, Braunschweig (1958).
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APPENDIX: GLOSSARY

a beam width
Ad detector area
Ae entrance pupil area
Af field stop area
Aslit slit area
Aprism prism face area
b prism base
B effective noise bandwidth
c light speed in vacuo
d distance
d
 resolution
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d� resolution
D� specific detectivity
E irradiance
f focal length
F focal ratio, speed
f finesse
h slit height
k radian wavenumber
l interaction length
L radiance
L
 spectral radiance
m order number
M2 acoustic figure of merit
n refractive index
N number of rulings
NA numerical aperture
p length of prism side
Q resolving power
R 4�=ð1� �Þ2
r responsivity
s ruling spacing
SNR signal-to-noise ratio
t time
v velocity
w slit width
Z throughput

Greek Symbols

� prism angle
� groove width phase
� deviation angle
" phase shift on reflection
� dispersion constant
� general angle
�
 spectral range
� path difference
�� spectral range
	 half spacing phase

 wavelength
� frequency
� reflectance
� wavenumber
� transmittance
� flux
� wave function
� solid angle
� 0 projected solid angle
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Subscripts and Superscripts

d diffraction
i incident
d detector
o optics
1 first
2 second
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Wavefront Slope Measurements in
Optical Testing

ALEJANDRO CORNEJO-RODRIGUEZ and ALBERTO CORDERO-DAVILA

Centro de Investigaciones en Optica, León, Mexico

10.1 INTRODUCTION AND HISTORICAL REVIEW

In this chapter we analyze a group of methods for testing optical surfaces and
systems whose main characteristics are the measurements of the rays’ slopes at
certain planes. Auxiliary optics are not required, which allows us to have a direct
measurement of the wavefront under test that comes from the optical system or
surface under test, which is not possible in other measuring methods.

Historically the first test that can be classified into this group here described, is
the so-called knife edge or Foucault test (Foucault, 1858). Subsequently, other tech-
niques were described in the first half of the last century, including the wire (Ritchey,
1904), Ronchi (Ronchi, 1923), Hartmann (Hartmann, 1900), and Platzeck–Gaviola
tests (Platzeck, 1939). More recently, one technique derived from the Hartmann
method is the Shack–Hartmann (Shack and Platt, 1971) test; two more of the tests
were developed by Ichikawa (Ichikawa et. al., 1988) and Roddier (Roddier et al.,
1988), both based on the theory of the irradiance transport equation (Teague, 1983).
The Shack–Hartmann and Roddier tests are normally applied to wavefront testing of
working astronomical telescopes, and mainly function under an adapative optics
technique.

In general, each one of the tests mentioned has its own physical and mathe-
matical description (Malacara, 1992). However, in this chapter, easier explanations
of the methods are given, and a common step-by-step description of the older tests is
presented. For the case of the Ronchi and Hartmann methods, a unified theory has
also been developed (Cordero et al., 1992). Even though in some cases geometrical
and physical optics can be used to describe the tests, as mentioned, in this chapter
geometrical optics is mainly used to explain the methods applied to measuring the
slope rays of the wavefronts coming from optical surfaces or systems.
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The presentation of each one of the tests contains comments on some practical
aspects rather than the theoretical foundations of the methods. Of course, theoretical
and practical aspects are considered elsewhere (Malacara, 1992; De Vany, 1967).

10.2 KNIFE TEST

It is assumed, in the first place, that the optical system under test is illuminated by a
point source, or equivalently by a perfect spherical wavefront; hence, if a perfect
spherical wavefront is leaving the exit pupil of an optical system, and you place the
knife edge into the light beam, see Fig. 10.1a, then the border of the shade that you
will see in any observation plane corresponds to a straight line, independently of the
orientation and position of knife edge, and the wavelength of the light.

Figure 10.1b shows the observed pattern. From the geometrical point of view,
the border between the dark and illuminated zones is defined by the plane that passes
through the BC border of the knife for an image point A 0. Despite the diffraction
effects, the border will be a plane that, when it is intersected with any other observa-
tion plane, E 00, a straight line B 00C 0 is being defined and therefore, corresponds to the
border of the shade that will be observed.

In the usual form of observation, see Fig. 10.1b, the camera lens is placed near
the image point A 0 and you focus the plane of the exit pupil E. In this case, the
virtual border (in similarity with the virtual images), is the observed shade and will
be a straight line. A real image will be formed, with the aid of a camera lens, on the
detector plane (charge-coupled device (CCD), photographic plate), or the retina of
the eye in the case of a direct observation. It could also be recorded, in any further
plane from the knife edge, without a lens. This last type of observation is very useful
when the distance between the camera lens (or the eye) and the observation plane is
very short and it is not achieved as an acceptable focus, or when the F# of the system
under test is very small. In this last case, the pupil of the eye obstructs the passage of
the rays, and only some parts of the pattern are observed with certain circular shape.

When the light rays do not converge toward a unique point, then the projected
and observed shadow will not be a straight line; this means that the wavefront is not
perfectly spherical. In such case, the border of the shadow is given by the intersection
points of the rays that will pass exactly on the border of the knife: i.e., the shadow
will not follow a straight line.

In this test the comparison between the experimental and the real patterns are
very important; for this reason in the next section an algorithm will be presented,
such that simulated Foucaultgrams can be obtained if skew rays can be traced
through the optical system.

10.2.1 Foucaultgram Simulations

In order to simulate the Foucaultgrams, it is assumed that in the optical systems, see
Fig. 10.2, there are several planes with their respective coordinates as follows: the
entrance pupil plane ðX;YÞ; the exit pupil plane ðXo;YoÞ; the observation plane
ðXob;YobÞ, and the knife edge plane ðTX ;TY Þ.

If it is assumed that the knife edge is parallel to the X-axis, then all the points
that belong to the semiplane of the knife edge could be expressed mathematically
through the next inequality
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(a)

Figure 10.1 (a) Foucaultgram of a spherical wavefront. (b) Foucaultgram recorded by

means of a camera focused at the exit pupil of the system under test.

(b)



Ty � Tyn  0 ð10:1Þ

where Tyn is the distance from the knife edge to the origin of the coordinate system.
Equation (10.1) is equal to zero for the points that belong to the border of the knife;
negative values are obtained for the points over the knife; while for the points that
are not covered by the knife edge, values will be greater than zero. This property is
important because it serves to distinguish, numerically, between a ray that falls on
the knife and another which arrives to the transparent zone.

The Foucaultgram simulation has its basis in the previous idea and allows us to
show that it is not necessary to trace all the rays but only a very limited number.
However, several rays are traced from the point source to the knife plane, passing
through the entrance pupil, on which the incident rays are located at equally spaced
points and in one straight line parallel to the Y-axis, similar to the ray tracing in the
optical design.

The important data for each traced ray are the pairs of coordinates ðX;YÞ,
ðXob;YobÞ, and ðTX ;TY Þ. If Ty of this last pair satisfies the equality in Eq. (10.1), then
the corresponding ðXob;YobÞ, belongs to the border of the shade. However, when the
Ty values are found which do not satisfy Eq. (10.1), then it is necessary to identify the
successive values for pairs of the coordinates Ty, for which a change of sign accord-
ing to the inequality (10.1) is obtained. Once a first interval is identified and satisfied,
the bisection method is used until the limit of an established required precision. To
have as many points as possible for the pattern, the previous procedure is repeated
for a family of parallel straight lines within the entrance pupil.
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When the edge is rotated an angle �, then it is applied a rotation to the
coordinates ðTX ;TY Þ for obtaining the new coordinate T�

y which must be substituted
in Eq. (10.1).

Two practical remarks are important. First, if we increase the distance between
two consecutive points on the scanned line, then the time for obtaining the pattern
diminishes; however we could not detect some points that would appear when the
patterns are closed. Secondly, if you carry out the scan only on parallel straight lines
to the axes, then it is difficult to locate some points of the pattern; this occurs mainly
for the case when the straight lines of the scan are nearly parallel to the knife edge.
To avoid this last problem, it is important to carry out two scans on perpendicular
straight lines.

We develop the program FOURON to simulate Foucaultgrams and
Ronchigrams shearing the same computer program for any section of a conic mirror
and with the source at any position. In Figs. 10.3a and 10.3b we show some
Foucaultgrams obtained with the program. We left out the simulation of
Foucaultgrams for systems affected by Seidel aberrations, which can be calculated
analytically (Ojeda, 1992).

In the development of this section it has been assumed that the illumination
of the system under test is with a point source; however, it is possible to substitute
it with a linear source, under the basic condition that the linear source is parallel to
the border of the knife. In this case the patterns are almost identical for each point
of the linear source. When the knife and the linear source are perpendicular to
each other, astigmatic effects will appear that show tilts and displacements of the
border of the shades; in this case, the patterns show a slow change of intensities in
the border and therefore a more poor definition of the Foucaultgram. It is evident
that the use of white light has no effects when the mirrors are tested, but for no
corrected refractive systems the chromatic aberration becomes evident and appears
as colored borders.

Wavefront Slope Measurements 315

Figure 10.3 Foucaultgram simulated by using the FOURON program.
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The Foucault test has been analyzed only from a simplified geometrical point
of view, but it could also be analyzed using physical optics. For such an analysis, it is
demonstrated that if an obstruction in the Fourier plane exists (image plane), then
the observed intensity will be uniform. However, when the knife edges are in the
Fourier plane, then some changes of intensity are observed which are proportional to
the derivate of the amplitude of the field in the image plane (Ojeda, 1992).

10.3 WIRE TEST

The Foucault test is often used to analyze spherical wavefronts, and particularly to
test spherical surfaces with the point source placed in the plane of the center of
curvature of the surface. However, in testing aspherical mirrors, the Foucault test
is not very sensitive, since details are lost. Ritchey (1904) developed the wire test,
which is more sensitive as a zonal test and is analyzed in this section.

The wire test can be considered as an extension of the Foucault test, since a
wire can be assumed to be a double-edged knife. Thus, a wiregram can be obtained
from two simulated Foucaultgrams for which the two edge knifes are parallel, and at
heights Ya and Yb from the optical axis. In the particular case of a perfect spherical
wavefront, the zonal pattern will be formed by a straight band.

When the wire is located on the optical axis of an axisymmetrical mirror, at a
distance L� from the vertex of the mirror, then a dark ring can be observed on the
mirror, of radius S�, corresponding to the points from the zone S� with radius of
curvature at the distance L�. Then the rays coming from zone S� cross the wire at
position L�.

With this idea, Ritchey (1904) proposed to test parabolic surfaces by compar-
ing the experimental and theoretical longitudinal spherical aberrations. He measured
several values of L� and S� and compared them using theoretical calculus. The same
idea is presented in what follows, applied to any conic mirror, but using the math-
ematical formulations of Sherwood (1958) and Malacara (1965). These authors
demonstrated, independently that, if figure 4 is used, the equation of the reflected
ray is given by

T ¼
ðl þ L� 2zÞ 1� dz

ds

� �2
" #

þ 2
dz

ds

� �
s� ðl � zÞðL� zÞ

s

� �

ðl � zÞ
s

1� dz

ds

� �2
" #

þ 2
dz

ds

� � ; ð10:2Þ

where T , the transverse aberration, is the height of the reflected ray at the distance L,
l is the position of the point source, and z is the function that describes the saggita of
the mirror, given by

z ¼ cs2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðK þ 1Þc2s2

p : ð10:3Þ

In this last equation s is the distance to the axis where the incident ray is
reflected, c is the paraxial curvature, and K is the conic constant of the mirror
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under test. From Eq. (10.2) it is evident that if we take an incident cone of rays
with vertex in the point source and whose base is a circle of radius s on the mirror,
then the reflected rays will also form a cone whose base is the same zone s, and
whose vertex will be located in L�, corresponding to the zero of Eq. (10.2) and
given by

L� ¼
ðl � 2zÞ 1� dz

ds

� �2
" #

þ 2
dz

ds

� �
s� zðl � zÞ

s

� �

2
dz

ds

� � ðl � zÞ
s

� 1� dz

ds

� �2
" # : ð10:4Þ

From Eq. (10.4) it is clear that for a given value of s we will have an only value
of L� and since s defines a circumference on the mirror, then, if the rays are
obstructed precisely in L�, then at least the rays coming from the circumference of
radius s will be blocked. Besides, the point of the wire it will be observed as a straight
line parallel to the wire. Figure 10.5 shows a pattern obtained with aid of the
program FOURON.

The application of Ritchey’s idea begins with the designing of a screen, for
testing a parabolic mirror, that allows illumination of different zones as the paraxial,
intermediate (0.7071 Smax) and at the border of the mirror, see Fig. 10.6a. The screen
is placed in front of the mirror and the wire is displaced along the axis to find the
positions corresponding to the different ring zones of the screen on the mirror. In
each case they become a series of measurements of L� and they are compared with
the theoretical calculus made with aid of the Eq. (10.4).

There are more versatile screens, see Fig. 10.6b; however, it is not possible to
detect the asymmetrical defects (Ojeda, 1992). This type of test is highly recom-
mended for use only in the first phases of fabrication of optical surfaces.
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Figure 10.4 Geometry for the transverse aberration, T , of the reflected ray and in the wire

test.



As it was pointed out, a linear source can be used when the wire and the linear
source are parallel to each other. In this case, the advantages and disadvantages
mentioned in the knife test are retained.

From the physical optics point of view, it could be possible to consider that
the wire is a space filter located in the Fourier plane with the advantage, over the
knife test, in that here the position and the thickness of the wire could be
selected.

10.5 RONCHI TEST

As well as the wire test being considerated as conceptually, like an extension of the
knife test, the Ronchi test (1923) can be considered, see Fig. 10.7a, as an extension of
the wire test, if we consider a Ronchi ruling as formed of several wires equidistant
and parallel. In the Ronchi ruling the slits are alternated clear and dark, with the
same width, and are assumed to be parallel to the X-axis. The extension for the
Ronchi test also gives us global information of the surface, in this test the informa-
tion is obtained at the same time from several wires and, therefore, Ronchigram
fringes ‘‘cover’’ the exit pupil of the system under test.

From the wire test it is clear that if you are testing a spherical wavefront with a
Ronchi ruling, a Ronchigram of parallel and equally spaced fringes will be observed
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Figure 10.6 (a) Zonal screen and (b) Couder screen for the wire test.



(see Fig. 10.7b). The separation, Sb, between two consecutive fringe borders in the
Ronchigrams is equal to

Sb ¼
R

Df

d; ð10:5Þ

where R is the radius of curvature of the wavefront, Df is the separation, A 0O 00,
between the ideal image point, A 0, and the intersection point O 00 of the ruling plane
with the optical axis, and d is the distance between two consecutive borders in the
Ronchi ruling, which is the half period of the ruling.

From Eq. (10.5) we obtain a well-known result in the application of the Ronchi
test. If Df is increased, i.e., the ruling moves away, before or after the image point A 0,
then the width of the observed fringes diminishes and you will see an increase in the
number of fringes in the exit pupil plane. If Df becomes zero, then Sb becomes
infinite and, therefore, a field totally brilliant or dark is observed experimentally,
depending upon whether the light arrives to a clear or dark slit on the Ronchi ruling.
This result is important if you want to locate the image point of an optical system,
A 0; since in this case, when the ruling is placed at the plane that contains the image
point, then the fringes will become, theoretically, infinitely wide. However, in prac-
tice, you cannot measure a width greater than the diameter of the exit pupil of the
system under test; therefore, you will have an uncertainty in the localization of the
image point A 0.

For a spherical mirror, another well-known result of this test comes from
Eq. (10.5), which is the dependence of the width of the fringes, Sb, with the
width, d, of the ruling slits. In this case, if a ruling of greater frequency is
used (a minor d), the frequency of the fringes will also increase; this means tht
Sb will diminish.

10.4.1 Ronchigram Simulations

Up to now we have analyzed the Ronchigrams that could be obtained with spherical
surface or wavefronts; in this section, an algorithm will be described to simulate
Ronchigrams of optical systems by just doing ray tracing.
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Figure 10.7 (a) Ronchigram for a spherical wavefront. A 0 is the paraxial center of curva-

ture; O 00 is the ruling plane located along the optical axis; O 0 is the exit pupil plane or surface
under test plane. (b) Experimental Ronchigram for a spherical wavefront.

(a) (b)



The procedure has its theoretical basis in the simulation of several wiregrams;
in the Ronchigrams each wire corresponds to a dark slit of the grating. In practice,
the simulation is based in the ray tracing for two neighboring rays (in the entrance
pupil), through the optical system and by assuming that these two rays are neighbors
also in the ruling plane. The rays at the entrance pupil for the positions ðX;YÞ and
ðX 0;Y 0Þ will correspond to the positions ðTX ;TY Þ and ðT 0

X ;T
0
Y Þ at the Ronchi ruling

(Fig. 10.7b). An important case for this pair of rays corresponds to when in the
Ronchi ruling one ray falls in a dark zone and the other ray falls in an illuminated
one. If the slits of the ruling are assumed parallel to the X-axis, then the borders can
be described by the equation

Ty ¼ md; ð10:6Þ

where m ¼ 0;�1;�2;�3 . . . : Then, in order to identify the existence of one border
between two points ðTX ;TY Þ and ðT 0

X ;T
0
Y Þ, it is possible to calculate

M ¼ int
TY

d

� �
ð10:7aÞ

and

M 0 ¼ int
T 0
Y

d

� �
; ð10:7bÞ

where [int] is the computer instruction by means of which the integer part of the
quantity that appears between parentheses is calculated.

For two neighboring rays, two possibilities exist: the two integers are equal or
different. In the first case, we have not passed over any border and in the second
case, it is an indicative of that we have crossed some border. In this latter case, the
separation between the neighboring rays in the entrance pupil can be diminished by
using an intermediate point between ðX;YÞ and ðX 0;Y 0Þ; then, the procedure is
repeated in order to elect the new subinterval that we refine as in the bisection
method. This procedure is followed until the desired limit is reached. As in the
case of the Foucaultgrams, two scans are required: one parallel to the X-axis and
other parallel to the Y-axis.

Using the previously described idea, the FOURON algorithm was developed
to allow us to obtain simulated Ronchigrams for conic sections; centered or decen-
tered. In Fig. 10.8 several Ronchigrams are simulated with the aid of the FOURON
program are shown.

When the Ronchi ruling is rotated at an angle �, then the coordinates ðTX ;TY Þ
must be transformed through a rotation with the same angle �, in order to obtain a
new coordinate T�

Y , which is substituted in Eqs (10.7a) and (10.7b).
Despite the fact that the previous program has a general character, Malacara

(1966) developed another option that can be used exclusively for systems with sym-
metry of revolution, with respect to the optical axis, and with the point source
located on that axis. Under these conditions, the computer programming is easier
and elegant, the calculus time is inferior to the mentioned FOURON program and
the procedure is sufficient to simulate the majority of the Ronchigrams needed in an
optical shop.
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The simplified procedure developed by Malacara (1966) can be interpreted as a
ray tracing from a source, on axis, to a point located on the entrance pupil of the
system (Fig. 10.9), to a certain distance, S, from the optical axis. Such a ray tracing
represents all the traced rays over the circle with radius S, i.e., they are the traced
rays that belong to a cone whose vertex is the point source and whose base is the
circle with radius S, on the entrance pupil. Similarly, all the rays that left the system
will belong to a cone of rays whose intersection points at the Ronchi ruling plane will
define a circle whose points of intersection could be easily calculated. The idea of
Malacara (1965) has been programmed in order to simulate Ronchigrams for any
reflecting conic surface (ROMA), and a refractive systems with centered spherical
surfaces (ROLEN).
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Figure 10.8 Ronchigrams simulated with the aid of the FOURON program. A parabolic

mirror of 15 cm diameter and 200 cm radius of curvature was used. The position of the Ronchi

ruling (LR ¼ 1fz), point source (1fx, 1fy, 1fz), and center of the conic section (X0), are

indicated in each case.



10.4.2 Ronchigram Evaluations

As was mentioned previously, the aim of the application of these tests is to know
quantitatively the wavefront deformations of any surface or, in general, an optical
system. In order to knowW (the wavefront deformations) using the Ronchi test, two
crossed Ronchigrams are required; since the fringes of a Ronchigram can be inter-
preted as the level curves of only one of the components of the transverse aberration,
~TT , and for the transverse aberration components ðTX ;TY Þ, they are related with W
by the equation

~TT ¼ � ~rrW; ð10:8Þ
therefore, it is necessary to carry out an integration to evaluate W from the mea-
surements of the transverse aberrations. Thus, if we have only one Ronchigram, and
then only one partial derivative, then we cannot evaluate the line integral; given such
situations, we need two crossed Ronchigrams in order to carry out the line integral.

In order to obtain two perpendicular Ronchigrams with only one grating, the
first Ronchigram is obtained with the ruling oriented along one direction and, after-
wards, the grating is rotated 90 degrees and then the second Ronchigram is recorded
(Cornejo, 1992). In this case, it is not possible to simultaneously record the two
patterns, and then precision is lost if there are temporal variations of W . A second
option is achieved by amplitude division of the wavefront (by using a beamsplitter)
into two similar channels, each one having a lens, a grating and a detector array. A
third option (Meyers and Stahl, 1992; Cordero, et. al. 1998a) is by means of a
squared grating, instead of the classical Ronchi ruling. This kind of grating could
be considered like the intersection of two crossed Ronchi rulings; and then the
obtained pattern could be considered like the intersection points of two crossed
Ronchigrams, that in general, they are required in order to calculate W (Fig. 10.10).

For the Ronchigram evaluation (Fig. 10.11), with the slits of the Ronchi ruling
parallel to the X-axis, N vectors ðXi;Yi;MXiÞ are considered, where ðXi;YiÞ are the
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coordinates of the point associated to the maximums and/or minimums of intensity
of the Ronchigram fringes, and MXi is the interference order associated to the fringe.
In the next step, the least-square method is applied to the mentioned vectors in order
to estimate the polynomial coefficients of degree K � 1, for the bidimensional poly-
nomial transverse aberration component, TX . In a similar way, the polynomial
coefficients for TY are calculated for the crossed Ronchigram (Cornejo and
Malacara, 1976). If it is assumed that W could also be written like another poly-
nomial function but now of degree K , then the integration is carried out using the
relationship among the coefficients of the polynomial expressions of W , TX , and TY .

If a squared grating is used in the Ronchi test, the BIROEV program can be
used for calculating the polynomial coefficients until degree 8. In this case (Fig.
10.10), N data vectors ðXi;Yi;MXi;MYiÞ are taken into account, where the data
for the point coordinates and the respective interference orders are considered for
the application of the Ronchi test with a squared grating. The coordinates ðXi;YiÞ
should be normalized to a unitary circle, in order to apply the Zernike polynomials.

An important aspect to start a pattern evaluation within a unitary circle is the
knowledge of the center coordiantes and the radius of the exit pupil. Cordero et al.,
(1993) have proposed an algorithm, BOFI that allows us to evaluate both the center
coordinates and the radius of a pattern, starting with the border points that are
supposed to be affected by Gaussian errors.
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The Ronchigram evaluations using polynomial fittings have the disadvantage
of introducing an overfitting through the election of the polynomial degree.
Therefore, Cordero et al. (1994) have proposed a new algorithm by means of
which the fitting is carried out assuming that the Gaussian errors are on the fringe
coordinates. Another algorithm (Cordero et al., 1998b), was developed in order to
avoid the overfitting and the incorrect interpretation at the borders. In this case,
numerical integration is used, as in the Hartmann test. Unfortunately, this procedure
only could be used in the Ronchi test with the squared grating.

The Ronchigrams could be analyzed from the point of view of the physical
optics predicting the intensities that one should observe (Malacara, 1990). In this last
case, the Ronchigrams could also be considered as lateral shearing interferograms.
The analysis can be simplified if it is assumed that only two of the diffracted orders
interfere, and it is possible to drop the third derivative of W ; hence, both interpreta-
tions, the geometrical and physical theory, coincide (Cornejo, 1992).

In the experimental setup of the Ronchi test it is common to use a point light
source or a slit parallel to the ruling lines. Anderson and Porter (1992) suggested
allowing the grating to extend over the lamp, instead of employing a slit source. In
practice, a led (light emission diode) source for illuminating the grating from
behind can be used; this simplifies the experimental array. More recently,
Patorsky and Cornejo (1986) found that the setup can be further greatly simplified
by illuminating the grating with daylight and setting a strip of aluminum foil just
behind this part.
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10.5 HARTMANN TEST

The exclusive use of Schlieren’s tests in testing optical surfaces could be insufficient,
as in the case of the Foucault test in that it is little sensitive to slow variations of the
wavefront (Ghozeil, 1992). That is not an important problem in surfaces of small
dimensions; however, it could be a severe drawback for large surfaces. On the other
hand, with the wire test, as has been explained, only radial zones of the surface under
test can be carried out.

It is evident that the interferometric tests are much more precise than the
geometrical tests. However, interferometric tests could be a very expensive method
for testing surfaces and/or optical systems of large aperture. However, the Hartmann
test could prove to be an important and economical alternative for testing optics,
mainly if large surfaces are under test.

The principal advantage of the Hartmann test is that it does not require the
inclusion of wavefront compensators to convert the reflected wavefront into a sphe-
rical wavefront, which is required in the use of other methods. It is obvious that
correctors can be a source of additional errors.

The basic hypothesis, in the evaluation of the Hartmann test, is that the slopes
of the wavefront under test do not change abruptly, but rather in a slow manner;
such an assumption is important because the surface or wavefront is sampled in a
few zones, where the holes of the Hartmann screen are located, and continuous slow
variations are considered.

In this test the Hartmann screen is a kind of filter, at a certain location plane,
and usually is placed at the exit pupil of the system under test. The observation-
registering plane is located near the image point of the point source illuminating the
screen of the surface. If the coordinates of the centers of each hole in the Hartmann
screen are well known and the positions of the centers of the dots in the
Hartmanngram are measured, then the director cosines of the rays joining corre-
sponding holes and dots, and then the slopes of the rays of the wavefront can be
calculated. Alternatively, two Hartmanngrams recorded with the same Hartmann
screen, at two different distances, could be used for evaluation in the Hartmann test,
and to avoid the measurement of the distance from the vertex mirror to the observa-
tion or Hartmanngram plane; however, you should measure with precision the dis-
tance between the observed and registered Hartmanngram planes.

The evaluation of the wavefront is carried out by using Eq. (10.8), which
gives us the relationship between the transverse aberration and the optical path
difference, W . In testing a surface, you could suppose that the errors, h, are related
to W by

W ¼ 2h: ð10:9Þ

In Eq. (10.9) it is assumed normal incidence and, therefore, h is measured along the
same direction.

One of the main advantages of the Hartmann method is that the evaluation of
W can be done by using polynomial fittings or by means of numerical integration.
Theoretically, it is possible to think that it is better to use polynomial fittings,
because they avoid the errors due to the numerical integration methods. However,
polynomial fittings usually introduce overfitting, which means artificiality in the
surface under test or problems of interpretation in the borders.
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When surfaces of large dimensions are tested, systematic errors are produced as
a result of the laminar turbulence produced by local gradients of temperature, or
mirror deformations due to the weight of the mirror, which can be seen as astigmatic
aberrations of W .

10.5.1 Screen Design and Hartmanngram Evaluation

The holes distribution in the Hartmann screen has changed from the radial distribu-
tion used by Hartmann, to the helical one and, finally, to a squared-hole array that
has been commonly employed for the testing of large primary mirrors of astronom-
ical telescopes. The main disadvantage of the radial and helical screens is that sam-
pling is not uniform, since the density of holes diminishes radially. Another
important disadvantage of these screens is that concentric scratches, or other general
defects, produced during the lapping working could not be detected with such a type
of screen. Thus, in order to overcome those kinds of problems, a square screen is
used, which produces a uniform sampling. Another advantage of this screen is that it
could become rigid and then, with this structure, it could achieve high precision in
the hole positions. This can be accomplished by making holes of largest size in the
rigid structure and, later on, other holes, with the final size are made on small
badges. Finally, the holes in the badges can be aligned and fixed with a higher
precision in the rigid structure.

An analysis of the conditions that limit the applicability of the Hartmann test
was made by Vitrichenko (1976) and Morales and Malacara (1983). Three important
factors limiting the use of the Hartmann test are as follows:

. diffraction effects of the holes of the screen and its mechanical strength,
fixed some limit for the diameters of the screen holes and the distance
between their centers;

. the total numbers of holes is limited by the accuracy which must be devel-
oped to obtain results of a given reliability; and

. the adequacy of the description of the surface of an optical component is
limited by the degree of smoothness of the surface.

The HASC program was developed in order to take into account these limitations
and to calculate the optimum diameter of the holes and the minimum distance
between two of them.

Some important practical recommendations when the Hartmann test is applied
are:

. The screen must be centered accurately (Landgrave and Moya, 1986), since
a decentering of the screens leads to an apparent presence of coma.

. The point light source used to illuminate must be centered properly to
prevent the introduction of off-axis aberrations.

. The photographic plate or CCD array should be perpendicular to the opti-
cal axis.

The surface evaluation can be made by running the EVHAR program. The
complete data are organized in three data sets:

. surface data (curvature radius, conic constant, and diameter);
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. experimental array data (locations of the point source and the
Hartmanngram plate); and

. coordinates and the number order of the dots of the Hartmanngram, corre-
sponding to the order numbers of the holes in the Hartmanngram screen.

The processing of all the data sets is now analysed.
Once the Hartmanngram has been recorded, the location of the dots on the

photographic plate (or CCD) must be measured to a high accuracy. The
Hartmanngram coordinates ðXdei;YdeiÞ can be measured by means of a microdensit-
ometer or a measuring microscope having an X–Y traveling stage, or as is usual, if a
CCD is used, the locations of the dots can be found after the Hartmanngram has
been digitized and stored in a computer. For each dot, the coordinates are measured
and a set of numbers ðMXi;MYiÞ are assigned. They are related to the center of a hole
in the Hartmann screen, with coordinates ðXi;YiÞ, by means of the equation

ðXi;YiÞ ¼ eðMXi;MYiÞ; ð10:10Þ
where e is the distance between two nearest holes centers.

Starting with the N data vectors ðXdei;Ydei;MXi;MYiÞ, it is required to know
the coordinates of each one of the dots of the Hartmanngram, with a coordinate
system whose origin is at the intersection of the Hartmanngram plane with the
optical axis of the system under test. An estimted origin could be found by supposing
that the point source is located on the optical axis, and the surface under test is near
to a axisymmetrical surface. In this case, the optical axis crosses the Hartmanngram
plane at the point ðXav;YavÞ, given by the average of all the coordinates of the dots in
the Hartmanngram; and, therefore, the N vectors referred to the optical axis can be
calculated from

ðXoai;Yoai; MXi;MYiÞ ¼ ðXdei � Xav;Ydei � Yav;MXi;MYiÞ: ð10:11Þ
In the next step the ideal dot coordinates ðXeri;YeriÞ are calculated with the aid of an
exact ray tracing. From these ideal coordinates the transverse aberration values can
be calculated by means of

ðXabi;Yabi;MXi;MYiÞ ¼ ðXoai;Xeri;Yoai � Yeri;MXi;MYiÞ; ð10:12Þ
the new N vectors describe the transverse aberration values of the wavefront that
leaves the mirror or system under test. In this data, a defocus error can be present
since the hypothetical location of the Hartmanngram plane in the exact ray tracing
can be different from the actual Hartmanngram plane. The optimum focus can be
found by subtraction of the linear term that can be calculated by means of two least-
square fits applied to the data vectors given in Eq. (10.12). In this case the focus error
data ðX�

abi;Y
�
abiÞ, can be calculated as function of the hole centers with the equation

ðX�
abi;Y

�
abiÞ ¼ ðAþ BXi;A

0 þ B 0YÞ; ð10:13Þ
where A, B, A 0, and B 0 can be evaluated through two least-square independent
fittings.

If we apply the two independent fits described above, we can eliminate some
astigmatic terms in the linear dependence, which can be interpreted as a defocusing
term, and therefore one can have an incorrect interpretation of the form of the
surface. In order to avoid the previous problem only one least-square fitting should
be carried out (Zverev et al., 1977).
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With the new transverse aberration coordinates ðXabi � X�
abi;Yabi � Y�

abiÞ a
numerical or polynomical integration is carried out to get the values of the optical
path differences. Once these evaluations are concluded, we can do a new fitting with
the terms to fourth degrees but special care must be taken for not subtracting them
without the quantitative knowledge of the origin of each term; this last factor could
be known after evaluating the expected flexions of the mirror and/or the decentering
of the source of light.

10.6 NULL TESTS AND THE RONCHI AND HARTMANN TESTS

Even with the technological advances in the recording and evalutation of the pat-
terns, important efforts have been done recently in order to design and construct
modifications to the traditional tests in such a way that—although still not for
spherical wavefronts—we have a direct interpretations as in the case of a pattern
of right fringes in the Ronchi test or of a Hartmanngram whose dots are distributed
on a squared array.

The previous idea has particular importance in testing aspherical conic sections
and/or in the case of production in series since the criterion of acceptance/refusal is
very direct. In order to achieve a simplified analysis, an additional optical system
could be introduced and, with this, the original wavefront can be modified and
converted into a spherical one, as in the case of the optical compensators, whose
principal problem is the increment of the number of possible errors such as defects in
their construction and/or assembling of their components. An unexpensive alterna-
tive for the Ronchi and Hartmann tests consists in the modification of the Ronchi
ruling or the Hartmann screen. In the Ronchi test, this idea was developed qualita-
tively for conic surfaces by Pastor (1969), and with theory of third order by Popov
(1972), Mobsby (1974); and with more precise solution by Malacara and Cornejo
(1974). Finally, the idea was developed for any optical system and using exact ray
tracing by Hopkins and Shagan (1977).

The null Hartmann test has been studied by Cordero et al. (1990). With an
analysis based on a common treatment of both tests of Ronchi and Hartmann.
Cordero et al. (1992) have demonstrated that if the centers of the holes in the
Hartmann screen are distributed at the interesection points of two crossed
Ronchigrams then the dots in the Hartmanngram will be located on the intersection
points of the two crossed rulings. And for the Ronchi, if we desire to get a
Ronchigram of right- and same-spaced fringes, then the lines of the null Ronchi
ruling should contain the Hartmanngram points.

10.7 GRADIENT TESTS

In this section we present two techniques that solve the problem of finding the
wavefront coming from a system or surface, mainly by sensing the irradiance for
several different planes (Platzeck et al. ), and at two planes (Teague, 1983), coming
from the surface or wavefront under test.

10.7.1 Platzeck–Gaviola Test

A different and interesting approach to the testing of optical surfaces was presented
by Platzeck and Gaviola in 1939. In such a technique, the different zones of an
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aspheric or conic surface are identified by means of the so-called caustic coordinates.
These coordinates correspond to the center of curvature of each one of the zones in
which the surface or system under test is divided. In Fig. 10.12a the meaning of
caustic coordinates is illustrated (Cornejo, 1978); they physically correspond to the
coordinates ðx; yÞ of the paraxial center of curvature, zone a; as well as of the
observed b� b 0; c� c 0; . . . ; l � l 0 zones, located at certain distances from the optical
axis, and correspond to certain sagitta value Zk. For each zone a spherical region is
considered, with certain values for the radius of curvature, R, of the zone, and the
corresponding localized center of curvature with coordinates ðx; yÞ. The values for
the local radius of curvature can be obtained by means of the following equation,
derived from calculus,

R ¼ 1þ ð@z=@sÞ2� 	3=2

@2z=@2s

 � ; ð10:14Þ

after obtaining the first and second derivatives of the sagitta z, then

R ¼ 1

c
ð1� Kc2s2Þ3=2: ð10:15Þ
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Figure 10.12 (a) Center of curvature for the different considered spherical zones of a gen-

eral conic or aspheric surfaces corresponds to the paraxial center of curvature, taken as a

reference point for the other zones. (b) Best focusing image for certain zones a; b� b 0; c�
c 0; . . . ; l � l 0 of an aspherical or conic surface.



For the case of the conic constant K ¼ 0, a sphere, the usual relation R ¼ 1=c is
obtained. In order to obtain a set of equations for the caustic coordinates x; y, from
Fig. 10.13, it is possible to write

y

2ðxþ KzÞ ¼
s

ð1=cÞ � ðK þ 1Þ2 ð10:16Þ

and

R2 ¼ sþ y

2

� 2
þðHcþ h� 2Þ2: ð10:17Þ

By means of Eqs (10.15–10.17), equations for x and y can be obtained as

x ¼ �Kzf3þ czðK þ 1Þ½czðK þ 1Þ � 3�g ð10:18Þ
and

y ¼ �2scKz
2þ czðK þ 1Þ½czðK þ 1Þ � 3�

1� czðK þ 1Þ
� �

: ð10:19Þ

It is important to notice that the caustic coordinates ðx; yÞ from Eqs (10.18) and
(10.19) are measured taking as a origin the corresponding paraxial center of curva-
ture for the zone a of the surface.

Experimentally what it is necessary to do is to register, in a photographic film
or with the use of some other modern detector, the position of a wire or a slit that
moves along the optical axis producing a sharp focusing image for the different
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zones of the surface. A detailed procedure for this experiment can be read in
Schroader (1953) paper, or in the same Platzeck and Gaviola (1939) work.

In Fig. 10.12b it can be seen how a complete set of focal points for the different
zones of the surface under test are registered in a photographic plate.

10.7.2 Irradiance Transport Equation

The problem of finding the phase of a wavefront from irradiance measurements has
been studied intensively by several authors in the last 25 years. Some of them have
developed algorithms – for example, Gerchberg and Saxton (1972) and Teague
(1982) – or established more comprehensive theories based in Helmholtz and irra-
diance transport equations, as those works by Teague (1983), Streibl (1984), Roddier
et al. (1988), and Ichikawa et al. (1998); interesting review works are those by Fienup
(1982) and, more recently, Campos (1985).

Before establishing a particular application of the solutions of the irradiance
transport equations to the field of testing optical surfaces or systems, a general and
brief review will be given about the development of obtaining information for the
phase wavefront by means of intensity measurements. Finally, the presentation of
the work by Teague (1983) will be described.

According to a paper by Gerchberg and Saxon, some of the first trials to obtain
the wavefront phase from irradiance measurements were done by Hoppe, Schiske,
and Erickson and Klug. In all these works they abandon the Gabor proposals to add
a reference wave, in order to find the wavefront phase. In their first paper Gerchberg
and Saxon (1971), they developed a method for the determination of the phase from
intensity recordings in the imaging and diffraction planes. One of the most important
characteristics of such a paper was that it was not limited to small phase deviations.
In a second paper, the same authors, Gerchberg and Saxon (1972) improved the
computing time, recognizing the wave relation in the imaging and diffraction planes
by means of the Fourier transform.

Following the work of many authors to solve the retrieval of phase from
irradiance measurements, a crucial problem was always the uniqueness of the solu-
tion [(see for example, Gonzalves, 1976, Devaney and Chidlaw (1978), Fienup
(1982)]. A step forward to find the solution was given by Teague (1982), where for
the first time he established that mathematically it is sufficient to retrieve the phase
from irradiance data in two optical planes, and that the solution was deterministic.
With this last result the previous problem of the uniqueness of the solution was
finally solved. A year later Teague (1982) described an alternative method based
on a Green’s functions solution to the propagation equations of phase and irradi-
ance; and Fienup made a comparison among the different algorithms to the retrieval
of phase. More recently, Gureyev et al. (199x), and Salas found other possible
solutions to the radiation transfer equation.

In the next paragraphs, we describe briefly how Teague (1983) derived the
propagation equation for irradiance.

Starting from the Helmholtz equation

ðr2 þ k2Þuðx; y; zÞ ¼ 0; ð10:20Þ
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where r2 ¼ ð@2=@x2Þ þ ð@2=@y2Þ þ ð@2=@z2Þ, and k ¼ 2=
, it will be assumed that any
wave depending only of the position must obey Eq. (10.20). For a wave traveling in
the z-positive direction and considering only the spatial component, then

 ðx; y; zÞ ¼ uðx; y; zÞ expð�ikzÞ: ð10:21Þ
Substituting  ðx; y; zÞ of Eq. (10.21) into Eq. (10.20), we obtain

r2
T þ @2

@z2
� 2ik

@

@z

� �" #

uðx; y; zÞ ¼ 0; ð10:22Þ

where r2
T ¼ ð@2=@x2Þ þ ð@2=@y2Þ. Assuming that the amplitude u varies slowly along

the Z-direction, implies that the term @2u=@z2 can be dropped from Eq. (10.22), and
the so-called paraxial wave equation is obtained:

r2
T � 2ik

@

@z

� �� �
uðx; y; zÞ ¼ 0: ð10:23Þ

If now a Fresnel diffraction theory solution is proposed, without the term expðikzÞ
for Eq. (10.23), then the so-called parabolic equation can be derived:

ðr2
T Þ

2k
� k� i

@

@z
uFðx; y; zÞ ¼ 0: ð10:24Þ

Following the Teague paper (1983), where wzðx; y; zÞ is normalized such that
jUFðx; y; zÞj2 ¼ IF, with IF the irradiance at the point ðx; y; zÞ, and writing

UFðx; y; zÞ ¼ jIFj1=2 exp½i�ðx; y; zÞ� ð10:25Þ
and after some algebraic manipulations and with � ¼ ð2=
ÞWðx; y; zÞ, where
Wðx; y; zÞ is the wavefront, the irradiance transport equation is obtained as

@

@2
I þ rTW � rTI þ Ir2

TW ¼ 0; ð10:26Þ

or in a compact form

rT � ðIrTWÞ ¼ @

@z
I : ð10:27Þ

A similar result for the irradiance transport equation was obtained by Streibl, fol-
lowing a different and more simplified approach.

With the irradiance transport equation well established, Teague proved its
validity and possible solution by means of the Green’s functions, carrying out a
numerical simulation. Streibl applied it for thin phase structures, obtaining mainly
qualitative results. The first quantitative experimented results were obtained by
Ichikawa, Lomhann, and Takeda (1988). In order to obtain experimental results,
those last authors solved the ITE by the Fourier-transform method, and explained in
detail the physical meaning of the different terms of Eq. (10.26). In their experiment,
Ichikawa et al. used as a phase object a lens and, with the help of a grating and a
CCD camera, the irradiance in two planes, separated by 0.7mm, was registered and
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the wavefront phase was found with the experimental setup proposed (Fig. 10.14).
Figure 10.15 shows the results obtained by Alonso et al., using a Nodal bench,
following Ichikawa et al.’s technique.

10.7.3 Roddier Method

For testing astronomical telescopes or for using with adaptive optics devices,
Roddier developed a method to find the phase retrieval from wavefront irradiance
measurements. In Fig. 10.16 is shown what Roddier called the curvature sensor,
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Figure 10.14 Experimental setup.

Figure 10.15 Wavefront of a lens tested using the method developed by Ichikawa et al.

(a) One scan irradiance measurement. (b) Spatial frequency spectra of (a). (c) Derivative of

the wavefront. (d) Wavefront shape. (Alonso et al., 2000).



because the aim was to obtain irradiance data at the two off-focus planes, P1 and P2,
and obtain the phase of the wavefront coming from the optical system.

For his method, Roddier derived the next equation

I1 � I2
I1 þ I2

¼ f ð f � 1Þ
l

@

@n
WSðr� aÞ � P

f

l
�rr

� �
r2
TW

� �
: ð10:28Þ

On the left side of Eq. (10.28) are the irradiance measurements at the two planes P1

and P2. On the right side of Eq. (10.28), f is the focal length of the system under test;
l is the distance where the planes P1 and P2 are located symmetrically from the focal
point F ; and S is the circular Dirac distribution, representing the outward-pointing
derivative at the edge of the pupil where it is different to zero.

Equation (10.28) can be derived in a more or less straightforward way from the
ITE, Eq. (10.26), as has been explained by Roddier0 08. Assuming a plane wavefront
at the pupil plane ðZ ¼ 0Þ, then everywhere except in at the pupil border

rI j20 ¼ 0
�I jz¼0n̂n@ðr� aÞ:

�
ð10:29Þ

Substituting Eq. (10.29) into Eq. (10.26), we obtain

@I

@z

����
z¼0

¼ ISðr� aÞ @
@n

W þ Pð�rrÞIr2W

� �����
z¼0

; ð10:30Þ

where Pð~rrÞ is the pupil transmittance and n̂n � rW ¼ ð@W=@nÞ.
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P1 and P2, from the focal point F.



The irradiance measurements at planes I1, and I2 can be written as

I1 ¼ Iz¼0 þ
@

@z
I z¼0�Z1

��

and

I2 ¼ Iz¼0 þ
@

@z
I z¼0�Z2

�� ; ð10:31Þ

an important condition for the Roddier method is that j�Z1j ¼ j�Z2j ¼ �Z. With
this last condition, substituting Eq. (10.30) into Eq. (10.31), the next expression can
be derived:

I1 � I2
I1 þ I2

¼ @ðr� aÞ @
@n

W � Pð�rrÞr2
TW

� �
�Z: ð10:32Þ

Using the thin lens equation, it can be proved that �Z ffi f ð f � lÞ=l; with this result
Eq. (10.32) can be written as Eq. (10.28), which Roddier used for his technique. It is
worth mentioning that it is advised that the planes P1 and P2 must be outside the
caustic in order to avoid mixing the same rays and their irradiance.

Roddier developed an algorithm to find the solution for W of Roddier’s equa-
tion (10.28), from the irradiance measurements I1 and I2. The Roddier algorithm
solves the Poisson equation with Neumann boundary conditions, and the iterative
method to find the solution is called overrelaxation.
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Basic Interferometers

DANIEL MALACARA

Centro de Investigaciones en Optica, León, Mexico

11.1 INTRODUCTION

Interferometers have been described with detail in many textbooks (Malacara, 1992).
They produce the interference of two or more light waves by superimposing them on
a screen or the eye. If the relative phase of the light waves is different for different
points on the screen, constructive and destructive interference appears at different
points, forming interference fringes. Their uses and applications are extremely
numerous. In this chapter only their basic configurations will be described.

To begin, let us consider the interference of two light waves, one having a flat
wavefront (constant phase on a plane in space at a given time) and the other a
distorted wavefront with deformations Wðx; yÞ, as in Fig. 11.1. Thus, the amplitude
E1ðx; yÞ in the observing plane is given by the sum of the two waves, with amplitudes
A1ðx; yÞ and A2ðx; yÞ, given by

E1ðx; yÞ ¼ A1ðx; yÞ exp½ikWðx; yÞ� þ A2ðx; yÞ exp½ikx sin ��; ð11:1Þ
where k ¼ 2=
 and � is the angle between the wavefront. The irradiance function
Iðx; yÞ may then be written as

E1ðx; yÞ � E�
1 ðx; yÞ ¼ A2

1ðx; yÞ
þ A2

2ðx; yÞ þ 2A1ðx; yÞA2ðx; yÞ cos k½x sin � �Wðx; yÞ�;
ð11:2Þ

where the symbol * denotes the complex conjugate. This function is plotted in Fig.
11.2. We see that the resultant amplitude becomes a maximum when the phase
difference is a multiple of the wavelength and a minimum when the phase difference
is an odd multiple of half the wavelength. These two conditions are constructive and
destructive interference, respectively.
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11.2 COHERENCE OF LIGHT SOURCES FOR INTERFEROMETERS

If light source has a single spectral line, we say that it is monochromatic. Then, it is
formed by an infinite sinusoidal wavetrain or, equivalently, it has a long coherence
length. On the other hand, a light source with several spectral lines or a continuous
spectrum is nonmonochromatic. Then, its wavetrain or coherence length is short. A
light source with a short wave train is said to be temporally incoherent and a
monochromatic light source is temporally coherent.

The helium–neon laser has a large coherence length and monochromaticity.
For this reason it is the most common light source in interferometry. However, this
advantage can sometimes be a problem, because many undesired spurious fringes are
formed. Great precautions must be taken to avoid this noise on top of the fringes.

With laser light sources extremely large, optical path differences (OPDs) can be
introduced without appreciably losing fringe contrast. Although almost perfectly
monochromatic, the light emitted by a gas laser consists of several spectral lines,
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Figure 11.1 Two interfering wavefronts.

Figure 11.2 Irradiance as a function of phase difference for two-wave interference.



called longitudinal modes. They are equally spaced but very close together, with a
frequency spacing �� given by

�� ¼ c

2L
; ð11:3Þ

where L is the length of the laser cavity. If this laser cavity length L is modified due
to thermal expansion or contraction or to mechanical vibrations, the spectral lines
change their frequency, approximately preserving their separation, but with their
intensities inside a Gaussian dotted envelope called a power gain curve, as shown
in Fig. 11.3.

Helium–neon lasers with a single mode or frequency can be constructed, thus
producing a perfectly monochromatic wavetrain. However, if special precautions are
not taken, because of instabilities in the cavity length, the frequency may be unstable.
Lasers with stable frequencies are commercially produced, making possible extre-
mely large OPDs without reducing the fringe contrast. A laser with two longitudinal
modes can also be frequency stabilized if desired, to avoid contrast changes. When
only two longitudinal modes are present and they are orthogonally linearly polar-
ized, one of them can be eliminated with a linear polarizer. This procedure greatly
increases the temporal coherence of the laser.

With a multimode helium–neon laser the fringe visibility in an interferometer is
a function of the OPD, as shown in Fig. 11.4. In order to have a good fringe
contrast, the OPD has to be an integral multiple of 2L.

A laser diode can also be used as a light source in interferometers. Creath
(1985), and Ning et al. (1989) have described the coherence characteristics of laser
diodes. Their coherence length is of the order of 1mm, which is a great advantage in
many applications, besides the common advantage of their low price and small size.

11.3 YOUNG’S DOUBLE SLIT

The typical interference experiment is the Young’s double slit (Fig. 11.5). A line light
source emits a cylindrical wavefront that illuminates both slits. The light is diffracted
on each slit, producing cylindrical waves diverging from these slits. Any point on the
screen is illuminated by the waves emerging from these two slits. Since the total paths
from the point source to a point on the observing screen are different, the phases of
the two waves are not the same. Then, constructive or destructive interference takes
place at different points on the screen, forming interference fringes.

The amplitude E at the observing point D on the screen is

E ¼ aei�1 þ aei�2 ; ð11:4Þ
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Figure 11.3 Longitudinal modes in a He–Ne laser.



where a is the amplitude at D due to each one of the two slits alone and �i are the
phases whose difference is given by

�2 � �1 ¼ kOPD; ð11:5Þ
where

OPD ¼ ðACþ CDÞ � ðABþ BDÞ: ð11:6Þ
From Eq. (11.2), the irradiance I at the point D is

I ¼ EE� ¼ 2a2ð1þ cosðkOPDÞÞ: ð11:7Þ
The minima of the irradiance occurs when

OPD ¼ m
; ð11:8Þ
where m is an integer; thus

ðACþ CDÞ � ðABþ BDÞ ¼ m
; ð11:9Þ
which is the expression for a hyperbola. Thus, the bright fringes are located at
hyperboloidal surfaces, as in Fig. 11.6. If a plane screen is placed a certain distance
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Figure 11.4 Contrast as a function of the optical path difference in a two interferometer.

Figure 11.5 Interference in Young’s double slit.



in front of the two slits, the fringes are straight and parallel with an increasing
separation as they separate from the optical axis.

For a screen located at infinity, OPD is equal to CE� FB, as in Fig. 11.7.
Then, Eq. (11.4) become

I ¼ 2a2½1þ cosðkdðsin � 0 � sin �ÞÞ�; ð11:10Þ

where d is the slits’ separation and � is the angle of observation with respect to the
optical axis. For small values of �, these fringes are sinusoidal. The peaks of the
irradiance (center of the bright fringes) are given by
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Figure 11.6 Locus of fringes in Young’s double slit.

Figure 11.7 Young’s experiment with light source and observing plane at infinite distances.



d sin � ¼ m
; ð11:11Þ
so that their separation �� has to be much larger than the eye resolution, which is
about 1 arc minute ðd < 3500
 � 2mm).

11.3.1 Coherence in Young’s Interferometer

An ideal light source for many optics experiments is a point source with only one
pure wavelength (color). However, in practice, most light sources are not a point but
have a certain finite size and emit several wavelengths simultaneously. A point source
is said to be spatially coherent if, when used to illuminate a system of two slits,
interference fringes are produced. If an extended light source is used to illuminate the
two slits and no interference fringes are observed, the extended light source is said to
be spatially incoherent.

All proceeding theory for the two slits assumes that the light source is a point
and also that it is monochromatic. Let us now consider the cases when the light
source does not satisfy these conditions. If the light source has two spectral lines with
different wavelengths, two different fringe patterns with different fringe separation
will be superimposed on the observing screen, as shown in Fig. 11.8. The central
maxima coincide but they are out of phase for points far from the optical axis. If the
light soruce is white, the fringes will be visible only in the neighborhood of the
optical axis.

Let us assume that the two slits are illuminated by two point light sources
aligned in a perpendicular direction to the slits. Then, two identical fringe patterns
are formed, but one displaced with respect to the other, as in Fig. 11.9. If the angular
separation between the two light sources, as seen from the slits plane, is equal to half
the angular separation between the fringe, the contrast is close to zero. With a single
large pinhole the contrast is reduced. More details will be given in the next section,
when studying the stellar Michelson interferometer.

11.3.2 Stellar Michelson Interferometer

Let us consider a double-slit interferometer with the light source and the observing
screen at infinite distance from the slits’ plane. If we have an extended light source,
each element with apparent angular dimensions d�xd�y will generate a fringe pattern
with irradiance dI , given from Eq. (11.10) by
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dI ¼ 1þ cos½kdðsin � 0y � sin �yÞÞ� d�xd�y; ð11:12Þ
which is a general expression; if we assume that the angular size of the light source is
small and that the fringes are observed in the vicinity of the optical axis, we have

dI ¼ ½1þ cosðkdð� 0y � �yÞÞ� d�xd�y: ð11:13Þ
This is a valid expression for any shape of the light source. If we assume that it

is square with angular dimensions equal to 2�� 2�, we have

I ¼ �2 þ 2 cosðkd� 0
yÞ sinðkd� 0yÞ: ð11:14Þ

The fringe visibility V or contrast, defined by Michelson, is

V ¼ Imax � Imin

Imax þ Imin

: ð11:15Þ

Thus, in this case, we have

V ¼ sinðkd� 0
yÞ

ðkd� 0
yÞ

¼ sincðkd� 0
yÞ: ð11:16Þ

We can see that the fringe visibility V is a function of the angular size of the
light source, as shown in Fig. 11.10(a), with a maximum when it is a point source
ð� ¼ 0Þ or the slit separation d is extremely small. The first zero of this visibility
occurs when kd� 0

y ¼ ; that is, if 2d� ¼ 
. Using this result, the apparent angular
diameter of a square or rectangular light source can be found by forming the fringes
with two slits with variable separation. The slits are separated until the fring visibility
becomes zero.

If the light source is a circular disk, the visibility can be shown to be an Airy
distribution:

V ¼ J1ðkd� 0
yÞ

ðkd� 0
yÞ
; ð11:17Þ

which is plotted in Fig. 11.10(b). This interferometer has been used to measure the
angular diameter of some stars.
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Figure 11.9 Superposition of two diffraction patterns with different frequencies.



11.4 MICHELSON INTERFEROMETER

A Michelson interferometer (Fig. 11.11) is a two-beam interferometer, illuminated
with an extended light source. The beam of light from the light source is separated
into two beams with smaller amplitudes, at the plane parallel glass plate (beamsplit-
ter). After reflection on two flat mirrors, the beams are reflected back to the beam-
splitter, where the two beams are recombined along a common path.

The observing eye (or camera) sees two virtual images of the extended light
source, one on top of the other, but separated by a certain distance. The reason is
that the two arms of the interferometer may have different lengths. Thus, the optical
path difference is given by

OPD ¼ 2½L1 � L2 � nT �; ð11:18Þ

where T is the effective glass thickness traveled by the light rays on one path through
the beamsplitter. On the other hand, from geometrical optics we can see that the
virtual images of the extended light source are separated along the optical axis by a
distance s, given by

s ¼ 2 L1 � L2 �
T

n

� �
; ð11:19Þ

we can see that these two expressions are different. Either the optical path difference
or the two images separation can be made equal to zero.
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Figure 11.10 Contrast variation for (a) two slit light sources and (b) for two circular light

sources.



To observe interference fringes with a nonmonochromatic or white light source
the OPD must be zero for all wavelengths. This is possible only if the optical path is
the same for the two interfering beams, at all wavelengths. We can see that the OPD
can be made equal to zero by adjusting L1 and L2 for any desired wavelength but not
for all the spectrum, unless T is zero or n does not depend on the wavelength. Only if
a compensating glass plate is introduced, as in Fig. 11.11, can the OPD be made
equal to zero for all wavelengths if L1 ¼ L2. In this manner, white light fringes can be
observed. In an uncompensated Michelson interferometer the optical path difference
can also be written as

OPD ¼ s� 2T
n� 1

n

� �
; ð11:20Þ

but in a compensated interferometer the second term is not present.
If the light source is extended, but perfectly monochromatic, clearly spaced

fringes can be observed if the two virtual images of the light sources are nearly at the
same plane.

When the two virtual images of the light source are parallel to each other and
the observing eye or camera is focused at infinity, circular equal inclination fringes
will be observed, as in Fig. 11.13(a). We see in Fig. 11.12(a) that the OPD in a
compensated interferometer is given by

OPD ¼ s cos �; ð11:21Þ
thus, the larger the images separation s, the greater the number of circular fringes in
the pattern. The diameter of these fringes tends to infinity when the images separa-
tion becomes very small.

If there is a small angle between the two light source images, as in Fig. 11.12(b),
the fringes appear curved, as if the center of the fringe had been shifted to one side,
as in Fig. 11.13(b). In this case the fringes are not located at infinity, but close to the
light source images. These are called localized fringes.
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Figure 11.11 A Michelson interferometer.



The fringes may appear to be in front of the two images of the light source,
as in Fig. 11.12(b), between the two images, as in Fig. 11.12(c), or at the back of
the two images, as in Fig. 11.12(d), depending on the relative position of these two
images.

When the angle between the light sources is large, the optical path differ-
ence is nearly equal to the local separation between the two images of the light
source. The fringes will be almost straight and parallel, as in Fig. 11.13(c). Their
separation decreases when the angle increases. These are called equal thickness
fringes.

A final remark about this interferometer, which is valid for all other amplitude
division interferometers, is that there are two outputs with complementary interfer-
ence patterns. In other words, a dark point in one of them corresponds to a bright
point on the other and vice versa. The second interferogram is one with the wave-
fronts going back to the light source. These two interferogram patterns are exactly
complementary if there are no energy losses in the system, as can be easily proved
with Stokes’ relations.
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Figure 11.12 Images in space of two extended light sources in a Michelson interferometer

for four different relative positions.

Figure 11.13 Fringe patterns in a Michelson interferometer: (a) equal inclination fringes, (b)

localized fringes, and (c) equal thickness fringes.



11.5 FIZEAU INTERFEROMETER

The Fizeau interferometer, illustrated in Fig. 11.14, is quite similar to the Michelson
interferometer described in the preceding section, producing the two interfering
beams by means of an amplitude beamsplitter. Unlike in the Michelson interferom-
eter, the illuminating light source is a monochromatic point, producing a spherical
wavefront, which becomes flat after being collimated by a converging lens. This
wavefront is reflected back on the partially reflecting front face of the beamsplitter
plate. The transmitted beam goes to the optical element to be measured and is then
reflected back to the beamsplitter.

The quality of many different optical elements can be evaluated with this
interferometer: for example, a glass plate, which also serves here as the reference
beamsplitter, as in Fig. 11.14. The optical path difference in this interferometer,
when testing a single plane parallel plate, is given by

OPD ¼ nt; ð11:22Þ
where t is the glass plate thickness. A field without interference fringes is produced
when nt is a constant, but n and t cannot be determined, only its product.

In order to test a convex optical surface, the reference surface can be either flat
or concave, as in Figs 11.15(a) and (b). The quality of a flat optical surface can be
measured with the setup in Fig. 11.14. In this case the OPD is equal to 2d. If we
laterally displace the point light source by a small amount s, the refracted flat
wavefront would be tilted at angle �:

� ¼ s

f
; ð11:23Þ

where f is the effective focal length of the collimator. With this tilted flat wavefront,
the optical path difference is given by

OPD ¼ 2d cos �: ð11:24Þ
The OPD with a small angle � from the OPD on axis can be approximated by
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Figure 11.14 Fizeau interferometer.



OPD ¼ 2d 1� �
2

2

 !

¼ 2d 1� s2

2f

 !

: ð11:25Þ

If a small extended light source with semidiameter s is used, the fringes have good
contrast, as long as the condition

�OPD ¼ ds2

f
 


4
ð11:26Þ

is satisfied. The light source can increase its size s only if the air gap d is reduced.
If the collimator lens has spherical aberration, the collimated wavefront would

not be flat. The maximum transverse aberration (TA) in this lens can be interpreted
as the semidiameter s of the light source. Thus, the quality requirements for the
collimator lens increase as the OPD is increased. When the OPD is zero, the colli-
mator lens can have any value of spherical aberration without decreasing its preci-
sion.

11.5.1 Laser Fizeau and Shack Interferometers

An He–Ne gas laser can be used as a light source for a Fizeau interferometer with the
great advantage that a large OPD can be used due to its light temporal coherence.
This large OPD is highly necessary when testing concave optical surfaces with a long
radius of curvature. However, the high coherence of the laser also brings some
problems, such as undesired interference fringes from several optical surfaces in
the system. With the introduction of a wedge in the beamsplitter and the use of
pinholes acting as spatial filters, undesired reflections can be blocked out. Also,
polarizing devices and antireflecting coating can be used for this purpose.
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Figure 11.15 Fizeau interferometer to test a concave surface with (a) a reference sphere and

(b) a reference plane.



A Shack interferometer, as illustrated in Fig. 11.16, is an example of a Fizeau
interferometer using an He–Ne laser.

The light from an He–Ne laser is focused on a spatial filter in contact with a
nonpolarizing cube beamsplitter. Since the OPD is large, a high temporal coherence
is needed. The gas laser is of such a length and characteristics that it contains two
longitudinal modes with linear orthogonal polarizations. One of the two spectral
lines is isolated by means of a polarizer.

The reference wavefront is reflected at the spherical convex surface of a plane
convex lens cemented to the cube beamsplitter. This cube with the lens can be
considered as a thick lens that forms a real image of the surface under test at the
image plane; then, this image is visually observed with an eyepiece.

11.6 NEWTON INTERFEROMETER

The Newton interferometer can be considered as a Fizeau interferometer in which
the air gap is greatly reduced to less than 1mm, so that a large extended source can
be used. This high tolerance in the magnitude of the angle � also allows us to
eliminate the need for the collimator, if a reasonably large observing distance is
desired. Figure 11.17 shows a Newton interferometer, with a collimator, so that
the effective observing distance is always infinite. The quality of this collimator
does not need to be high. If desired, it can even be taken out, as long as the observing
distance is not too short.

A Newton interferometer is frequently used in manufacturing processes, to test
planes, concave spherical, or convex spherical optical surfaces by means of measur-
ing test plates with the opposite curvature, placed on top of the surface under test.
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Figure 11.16 A Shack–Fizeau interferometer.



11.7 TWYMAN–GREEN INTERFEROMETER

A Twyman–Green interferometer, designed by Twyman (1918) as a modification of
the Michelson interferometer is shown in Fig. 11.18. The basic modification is to
replace the extended light source by a point source and a collimator, as in the Fizeau
interferometer. Thus, the wavefront is illuminated with a flat wavefront. Hence, the
fringes in a Twyman–Green interferometer are of the equal-thickness type.

As in the Michelson interferometer, white light fringes are observed only if the
instrument is compensated with a compensating plate. However, normally, a mono-
chromatic light source is used, eliminating the need for the compensating plate.
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Figure 11.17 Newton interferometer.

Figure 11.18 Twyman–Green interferometer.



The beamsplitter must have extremely flat surfaces and its material must be
highly homogeneous. The best surface must be the reflecting one. The nonreflect-
ing surface must not reflect any light, to avoid spurious interference fringes. Thus
the nonreflecting face must be coated with an antireflection multilayer coating.
Another possibility is to have an incidence angle on the beamsplitter with a
magnitude equal to the Brewster angle and properly polarizing the incident
light beam.

The size of the light source can be slightly increased to a small finite size if the
optical path difference between the two interferometer arms is small, following the
same principles used for the Fizeau interferometer.

A glass plate can be tested as in Fig. 11.19(a) or a convergent lens as in Fig.
11.19(b). When testing a glass plate, the optical path difference is given by

OPD ¼ ðn� 1Þd: ð11:27Þ

When no fringes are present, we can conclude that ðn� 1Þd is a constant, but not
independent of n or d. If we compare this expression with the equivalent for the
Fizeau interferometer (Eq. (11.22)), we see that n and t can be measured indepen-
dently if both Fizeau and Twyman–Green interferometers are used.

A convex spherical mirror with its center of curvature at the focus of the lens is
used to test convergent lenses, as in Fig. 11.20(a), or a concave spherical mirror can
be used to test lenses with short focal lengths, as in Fig. 11.20(b). The small, flat
mirror at the focus of the lens can also be employed. The small region being used on
the flat mirror is so small that its surface does not need to be very accurate. However,
the wavefront is rotated 1808, making the spatial coherence requirements higher and
canceling odd aberrations like coma.

The Twyman–Green and Fizeau interferograms produce the same interfero-
gram if the same aberration is present. The interferograms produced by the Seidel
primary aberrations have been described by Kingslake (1925–1926) and their asso-
ciated wavefront deformations can be expressed by
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Figure 11.19 Testing (a) a glass plate and (b) a lens in a Twyman–Green interferometer.



Wðx; yÞ ¼ Aðx2 þ y2Þ2 þ Byðx2 þ y2Þ þ Cðx2 � y2Þ
þDðx2 þ y2Þ þ Exþ Fyþ G;

ð11:28Þ

where

A ¼ spherical aberration coefficient

B ¼ coma coefficient

C ¼ astigmatism coefficient

D ¼ defocussing coefficient

E ¼ tilt about the y-axis coefficient (image displacement along the x-axis)

F ¼ tilt about the x-axis coefficient (image displacement along the y-axis)

G ¼ piston or constant term.

The interferograms produced by these Seidel primary aberrations are illu-
strated in Fig. 11.21. To determine these eight constants from measurements in
the interferogram, the eight sampling points shown in Fig. 11.22 can be used.

11.7.1 Laser Twyman–Green Interferometer

Large astronomical mirrors can also be tested with a Twyman–Green unequal-
path interferometer, as in Fig. 11.23, and described by Houston et al. (1967).
However, there are important considerations to take into account because of the
large OPD.

(a) As in the Fizeau interferometer, when the OPD is large, the collimator as
well as the focusing lens must be almost perfect, producing a flat and a
spherical wavefront, respectively.
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Figure 11.20 Testing (a) concave and (b) convex surfaces in a Twyman–Green

interferometer.



(b) The laser must have a large temporal coherence. Ideally, a single long-
itudinal mode has to be present.

(c) The concave mirror under test must be well supported, in a vibration and
atmospheric turbulence-free environment.

11.7.2 Mach–Zehnder Interferometer

The Twyman–Green or Michelson configurations are sometimes unfolded to pro-
duce the optical arrangement shown in Fig. 11.24. An important characteristic is that
any sample located in the interferometer is traversed by the light beam only once.
Another important feature is that since there are two beamsplitters, the interferom-
eter is compensated if their thicknesses are exactly equal.
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Figure 11.21 Interferograms of primary aberrations in a Twyman–Green interferometer.



11.8 COMMON PATH INTERFEROMETERS

In common path interferometers the two interfering wavefronts travel along the
same path from the light source to the observing plane. The advantages are that
the fringes are quite stable and also that the OPD is nearly zero, thus producing
white light fringes.

There are many different types of common path interferometers. Here, a few of
the most important will be described.

11.8.1 Burch and Murty Interferometers

The Burch interferometer, also called the scattering interferometer, is illustrated in
Fig. 11.25(a). The real image of a small tungsten lamp is formed at the center of a
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Figure 11.22 Points selected to evaluate the primary aberrations in a Twyman–Green

interferogram.

Figure 11.23 Unequal path Twyman–Green interferometer.



concave surface under test. This light forming the image passes through a scattering
glass plate SP1 that can be made in several different manners, but the most common
is with a half-polished glass surface. The light after the scattering plate can be
considered as formed by two beams, one just transmitted undisturbed and another
being scattered in a wide range of directions. The direct beam forms the image of the
lamp on the central region of the concave surface and the diffracted one illuminates
the whole surface of the mirror.

A second identical scattering plate SP2 is located on the image of the plate SP1

but rotated 1808. These scattering plates have to be identical point to point. This is
the most critical condition, but one possible solution is to make a photographic copy
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Figure 11.24 Mach–Zehnder interferometer.

Figure 11.25 Scattering interferometer.



of the first plate SP1. Both beams passing through the first scattering plate arrive at
the second one. Here, the light beam not scattered on the first plate can go through
the second plate, again, without being scattered. With this light, the observing eye
sees a bright image of the lamp on the surface under test.

This direct beam from the SP1 beam can also be scattered on the plate SP2,
producing many spherical wavefronts originating at each of the scattering points on
the plates SP2.

The scattered beam from SP1 can also be considered to be formed by many
spherical beams, with center on curvature on each scattering point in SP1. Each of
these spherical wavefronts illuminates the whole concave surface under test. If this
surface is spherical, the reflected wavefront is also spherical and convergent to SP1.
However, if the concave surface is not spherical but contains deformations, the
convergent wavefronts will also be deformed with twice the value present in the
mirror. When these convergent deformed wavefronts pass through the plate SP2

without being scattered, they interfere with the spherical wavefronts being
produced there. The interference pattern is observed, projected over the concave
surface.

To avoid the need for two identical scattering plates, a small flat mirror can be
placed at the image of the scattering plate SP, as in Fig. 11.25(b). Then, the light goes
back to the scattering plates after being reflected on this mirror and twice on the
concave surface.

This interferometer is simpler to construct and is more insensitive to mechan-
ical vibrations of the concave mirror. Another advantage is that the sensitivity to the
deformations in the concave mirror is duplicated due to the double reflection here.
There are two disadvantages: first, the concave surface has to be coated to increase
its reflectivity because the double reflection here reduces the amount of light too
much; secondly, the interferometer has no sensitivity to antisymmetric wavefront
deformations. Thus, coma-like aberrations cannot be detected.

11.8.2 Point Diffraction Interferometer

In a point diffraction interferometer, first described by Linnik (1933) and later
rediscovered independently by Smartt and Strong (1972), the aberrated wavefront
passes through a specially designed plate, as in Fig. 11.26. This plate has a semi-
transparent small pinhole with a diameter equal to the Airy disk or smaller to that
produced by a perfect spherical surface under test. The aberrated wavefront pro-
duces an image much greater than the pinhole size on this plate. The light from this
aberrated wavefront goes through the semitransparent plate.

The small pinhole diffracts the light passing through it, producing a spherical
wavefront with center of curvature at this pinhole. After the plate with the pinhole,
the two wavefronts, one being aberrated and the second being spherical, produce the
interferogram.

11.9 LATERAL SHEARING INTERFEROMETERS

Lateral shear interferometers produce two identical wavefronts, one laterally sheared
with respect to the other, as shown in Fig. 11.27. The advantage is that a perfect
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reference wavefront is not needed. The optical path difference in these interferom-
eters can be written as

OPD ¼ Wðx; yÞ �Wðx� S; yÞ þOPD0; ð11:29Þ

where S is the lateral shear and OPD0 is the optical path difference with two undis-
torted wavefronts. If this lateral shear is small compared with the aperture diameter,
the smallest spatial wavelength of the Fourier components of the wavefront distor-
tions is much smaller than S. Thus, we may obtain

OPD ¼ S
@Wðx; yÞ
@x

: ð11:30Þ

This interferometer can be quite simple, but a practical problem is that the
interferogram represents the wavefront slopes in the shear direction, not the actual
wavefront shape. Thus, to obtain the wavefront deformations a numerical integra-
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Figure 11.26 Point diffraction interferometer.

Figure 11.27 Wavefronts in a lateral shear interferometer.



tion of the slopes has to be performed; in addition, two laterally sheared interfero-
grams in mutually perpendicular directions are needed.

If the shear is not small enough, the interferogram does not represent the
wavefront slope. Then, to obtain the wavefront deformation, a different method
has to be used. One of the possible procedures has been proposed by Saunders
(1961) and is described in Fig. 11.28. To begin, let us assume that W1 ¼ 0. Then,
we may write

W1 ¼ 0
W2 ¼ �W1 þW1

W3 ¼ �W2 þW2

� � � � � � � � � � � � � � �
Wn ¼ �Wn�1 �Wn�1

ð11:31Þ

A disadvantage of this method is that the wavefront can be evaluated only at points
separated by a constant distance S. Intermediate values have to be estimated by
interpolation.

An extremely simple lateral shear interferometer was described by Murty
(1964) and is shown in Fig. 11.29. The practical advantages of this instrument are
its simplicity, low price, and fringe stability. The only disadvantage is that it is not
compensated and, thus, it has to be illuminated by laser light.

The lateral shear interferograms for the Seidel primary aberrations may be
obtained as follows. The interferogram for a defocused wavefront is given by

2DxS ¼ m
: ð11:32Þ
This is a system of straight, parallel, and equidistant fringes. These fringes are
perpendicular to the lateral shear direction. When the defocusing is large, the spacing
between the fringes is small. When there is no defocus, there are no fringes in the
field.

For spherical aberration the interferogram is given by

4Aðx2 þ y2ÞxS ¼ m
: ð11:33Þ
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Figure 11.28 Saunders’ method to find the wavefront in a lateral shear interferometer.



If this aberration is combined with defocus we have

½4Aðx2 þ y2Þxþ 2Dx�S ¼ m
: ð11:34Þ
The interference fringes are cubic curves. When coma is present, the interferogram is
given by

2BxyS ¼ m
 ð11:35Þ
if the lateral shear is S in the sagittal direction. When the lateral shear is T in the
tangential y-direction, the fringes are described by

Bðx2 þ 3y2ÞT ¼ m
: ð11:36Þ
For astigmatism, if the lateral shear is S in the sagittal x-direction, the fringes

are described by

ð2Dxþ 2CxÞS ¼ m
 ð11:37Þ
and, for lateral shear T in the tangential y-direction, we have

ð2Dy� 2CyÞT ¼ m
: ð11:38Þ
Then, the fringes are straight and parallel as for defocus, but with a different separa-
tion in both interferograms. Typical interferograms for the Seidel primary aberra-
tions are illustrated in Fig. 11.30.

The well-known and venerable Ronchi test, illustrated in Fig. 11.31, can be
considered as a geometrical test but also as a lateral shear interferometer. In the
geometrical model, the fringes are the projected shadows of the Ronchi ruling dark
lines. However, the interferometric model assumes that several laterally sheared
wavefronts are produced by diffraction. Thus, the Ronchi test can be considered
as a multiple wavefront lateral shear interferometer.

11.10 TALBOT INTERFEROMETER AND MOIRÉ DEFLECTOMETRY

Projecting the shadow of a Ronchi ruling with a collimated beam of light, as in Fig.
11.32, the shadows of the dark and clear lines are not clearly defined due to diffrac-
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Figure 11.29 Murty’s lateral shear interferometer.
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Figure 11.30 Interferograms in a lateral shear interferometer.

Figure 11.31 Ronchi test.

Figure 11.32 Observation of the Talbot effect.



tion. Sharp and well-defined shadows are obtained for extremely short distances
from the ruling to the observing screen. When the observing distance is gradually
increased, the fringe sharpness decreases, until, at a certain distance, the fringes
completely disappear. However, as discovered by Talbot (1836), by further increas-
ing the observing distance the fringes become sharp again and then disappear in a
sinusoidal manner. With negative contrast a clear fringe appears where there should
be a dark fringe and vice versa. Talbot was not able to explain this phenomenon but
it was later explained by Rayleigh (1981). The period of this contrast variation is
called the Rayleigh distance Lr, which can be expressed by

Lr ¼
2d2



; ð11:39Þ

where d is the spatial period (lines separation) of the ruling and 
 is the wavelength
of the light.

When an aberrated glass plate is placed in the collimated light beam, the
observed projected fringes will also be distorted, instead of straight and parallel.

A simple interpretation is analogous to the Ronchi test, with both the geome-
trical and the interferometric models. The geometrical model interprets the fringe
deformation as due to the different local wavefront slopes producing different illu-
mination directions, as in Fig. 11.33(a); then, the method is frequently known as
deflectometry (Glatt and Kafri, 1988). The interferometric model interprets the
fringes as due to the interference between multiple diffracted and laterally sheared
wavefronts, as illustrated in Fig. 11.33(b). Talbot interferometry and their multiple
applications have been described by many authors: for example, by Patorski (1988)
and Takeda et al. (1984).
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Figure 11.33 Interferometric and geometrical interpretations of Talbot interferometry.



The fringes being produced have a high spatial frequency and, thus, the linear
carrier has to be removed by a Moiré effect with another identical Ronchi ruling at
the observation plane.

11.11 FOUCAULT TEST AND SCHLIEREN TECHNIQUES

Leon Foucault proposed an extremely simple method to evaluate the shape of con-
cave optical surfaces. A point light source is located slightly off axis, near the center
of curvature. If the optical surface is perfectly spherical, a point image will be formed
by the reflected light also near the center of curvature, as shown in Fig. 11.34.

A knife edge then cuts the converging reflected beam of light. Let us consider
three possible planes for the knife edge:

. If the knife is inside of focus, the project shadow of the knife will be pro-
jected on the optical surface on the same side as the knife

. If the knife is outside of focus, the shadow will be on the opposite side to the
knife

. If the knife is at the image plane, nearly all light is intercepted with even a
small movement of the knife.

If the wavefront is not spherical, the shadow of the knife will create a light
pattern on the mirror where the darkness or lightness will be directly proportional to
the wavefront slope in the direction perpendicular to the knife edge. The intuitive
impression is a picture of the wavefront topography. With this test even small
amounts of wavefront deformations of a fraction of the wavefront can be detected.

If a transparent fluid or gas is placed in the light optical path between the lens
or mirror producing a spherical wavefront and the knife edge, a good sensitivity to
the refractive index gradients in the direction perpendicular to the knife edge is
obtained. For example, any air turbulence can thus be detected and measured.
This is the working principle of the Schlieren techniques used in atmospheric turbu-
lence studies.

11.12 MULTIPLE REFLECTION INTERFEROMETERS

A typical example of a multiple reflection interferometer is the Fabry–Perot inter-
ferometer illustrated in Fig. 11.35. An extended light source optically placed at
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Figure 11.34 Foucault test.



infinity by means of a collimator illuminates the interferometer, formed by a pair of
plane and parallel interfaces. These two interfaces can be the two highly reflecting
(coated) faces of a single plane parallel plate or two reflecting plane faces oriented
front-to-front of a pair of glass plates. Then, the observed plane is optically placed at
infinity by a focusing lens. Here, circular fringes will be observed.

As shown in Fig. 11.36, a ray emitted from the extended light source follows a
path with multiple reflections. Then if the amplitude of this ray is a, the resultant
transmitted amplitude ETð�Þ at a point on the observing screen located at an infinite
distance is

ETð�Þ ¼ at1t2 þ at1t2r1r2e
i� þ at1t2r

2
1r

2
2e

2i� þ at1t2r
3
1r

3
2e

3i� þ � � � ð11:40Þ

thus, obtaining
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Figure 11.35 Fabry–Perot interferometer.

Figure 11.36 Multiple reflections in a Fabry–Perot interferometer.



ETð�Þ ¼
at1t2

1� r1r2e
i�
: ð11:41Þ

Assuming now that the two faces are equally reflecting faces and dielectric (nonab-
sorbing), we can consider the Stokes’ relations to apply as follows:

r2 þ tt 0 ¼ 1;

r ¼ �r 0;
ð11:42Þ

where t and r are for a ray traveling towards the interface from vacuum and t 0 and r 0

are for a ray traveling to the interface inside the glass. Thus, for this case we can
write

ETð� ¼ a
1� r2

1� r2ei�
: ð11:43Þ

The irradiance ITð�Þ of the transmitted interference pattern as a function of the
phase difference � between two consecutive rays is then given by the square of the
amplitude of this complex amplitude:

ITð�Þ ¼ I0
1

1þ 4r2

ð1� r2Þ2 sin2
�

2

� � ; ð11:44Þ

where I0 ¼ a2 is the irradiance of the incident light beam. This irradiance is plotted in
Fig. 11.37 for several values of the reflectivity r of the faces. The interesting result is
that the fringes become very narrow for high values of this reflectivity; then the
position and shape of each fringe can be measured with a high precision.

As in any amplitude-division interferometer without energy losses, there are
two complementary interference patterns. The sum of the energy in the reflected and
the transmitted patterns must be equal to the incident energy. Thus, we can write

I0 ¼ ITð�Þ þ IRð�Þ; ð11:45Þ
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Figure 11.37 Irradiance as a function of the phase difference � in a Fabry–Perot

interferometer.



where the reflected irradiance is

IRð�Þ ¼ I0

4r2

ð1� r2Þ2 sin2
�

2

� �

1þ 4r2

ð1� r2Þ2 sin2
�

2

� � : ð11:46Þ

There are a large number of multiple reflection interferometers whose principle
is based on this narrowing of the fringes.

11.12.1 Cyclic Multiple Reflection Interferometers

Cyclic multiple reflection interferometers have been described by Garcia-Márquez et
al. (1997), and are shown in Fig. 11.38. The amplitude Eð�Þ at the output can be
found with a similar method to that used for the Fabry–Perot interferometer, obtain-
ing

Eð�Þ ¼ a
rþ �ei�
1þ �rei� ; ð11:47Þ

where � is the coefficient for the energy loss of the system for one cyclic travel around
the system (� ¼ 1 if no energy and � ¼ 0 if all the energy is lost). This coefficient can
be the transmittance or absorbance of one of the mirrors when it is not 100%
reflective. The irradiance Ið�Þ as a function of the phase difference � between two
consecutive passes through the system is given by

Ið�Þ ¼ I0

ðrþ �Þ2 � 4�r sin2
�

2

� �

ð1þ �rÞ2 � 4�r sin2
�

2

� � ; ð11:48Þ

Basic Interferometers 367

Figure 11.38 Cyclic multiple reflections interferometer.



where I0 ¼ a2 is the incident irradiance. It is interesting to consider three particular
cases:

(a) When the coefficient � ¼ 1, i.e., if no energy is lost, then Ið�Þ ¼ a2. In
other words, all energy arriving to the interferometer is in the output. An
interesting consequence is that, then, no fringes can be observed.

(b) When the coefficient � 6¼ 1 because the mirror M2 is a semitransparent
mirror with reflectance r, then � ¼ �r and the irradiance Ið�Þ becomes
equal to the irradiance IRð�Þ in the Fabry–Perot interferometer. In this
case, there is a transmitted interference pattern in the semitransparent
mirror, which acts as a second beamsplitter.

(c) When the coefficient � ¼ 1 due to energy absorption in the mirrors or
because an absorbing material is introduced in the interferometer, then
there is only one output in the interferometer, but it contains visible
fringes. The complementary interference pattern is hidden as absorption.

11.13 CYCLIC INTERFEROMETERS

The basic arrangements for a cyclic interferometer are either square, as in Fig. 11.39,
or triangular, as in Fig. 11.40. The two interfering wavefronts travel in opposite
directions around the square or triangular path.

In both the square and the triangular configurations, the two interfering wave-
fronts keep their relative orientations on the output beam. Also, it can be observed in
Figs 11.39 and 11.40 that these interferometers are compensated, so that their optical
path difference OPD ¼ 0 for all wavelengths. Thus, white light illumination can be
used.

Any transparent object or sample located inside the interferometer will be
traversed twice, in opposite directions, by the light beams. In the square configura-
tion these beams pass through the sample with a reversal orientation (not 1808
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Figure 11.39 Square cyclic interferometer.



rotation), making it sensitive to antisymmetric aberrations, like coma or tilt in one of
the mirrors.

In the triangular configuration the two interfering beams have an even number
of reflections (two and four) going from the light source to the observing plane.
Therefore, tilt fringes cannot be introduced by tilting any of the two mirrors.
However, any tilt or displacement of the mirrors in a perpendicular direction to
their surfaces produces a relative lateral shear of the two interfering beams on the
observing plane. This property has been used to make lateral shear interferometers.

By introducing a telescopic afocal system in the interferometer a radial shear
interferometer can also be made using this configuration.

11.14 SAGNAC INTERFEROMETER

The Sagnac interferometer (Sagnac 1913) is a cyclic interferometer with a typical
square configuration, as in Fig. 11.39; it can also be made circular, with a coiled
optical fiber, but the working principle is the same. The Sagnac interferometer was
used as an optical gyroscope, to sense slow rotations.

Figure 11.41 shows the working principle. The beamsplitter A and the mirrors
B, C, and D form the interferometer. The whole interferometer system rotates,
including the light source and observer. Then, for a single travel of the light around
the cyclic path in opposite directions, the beamsplitter and the mirrors have con-
secutive positions, labeled with subscripts 1, 2, 3, 4, and finally 5. When there is no
rotation, the path length s from one mirror to the next is the same for both beams:

s ¼
ffiffiffi
2

p
r; ð11:49Þ

where r is half the diagonal of the square arrangement. However, when the system is
rotating, it can be observed in this figure that these paths have different lengths for
the two beams, given by

Basic Interferometers 369

Figure 11.40 Triangular cyclic interferometer.



s ¼
ffiffiffi
2

p
r 1� �

2

� �
; ð11:50Þ

where � is the angle rotated between two consecutive positions in Fig. 11.41. Thus
the OPD at the output for both interfering beams is

OPD ¼ 2
ffiffiffi
2

p
r �

hence it can be shown that

OPD



¼ 4wr2

c

¼ 4wA

c


where A is the area of the interferometer square.
This small shift in the fringes is constant given a fixed speed of rotation. If the

interferometer plane is turned up side down, the fringe shifts in the opposite direc-
tion. This optical gyroscope has been used to detect and measure the earth’s rotation.

REFERENCES

Cornejo, A., ‘‘Ronchi Test,’’ in Optical Shop Testing, D. Malacara, ed., John Wiley and Sons,

New York, 1992.

Creath, K., ‘‘Interferometric Investigation of a Laser Diode’’ Appl. Opt., 24, 1291–1293

(1985).

Fabry, C. and A. Perot, ‘‘Sur les Franges des Lames Minces Argentées et Leur Application a

la Measure de Petites Epaisseurs d’air,’’ Ann. Chim. Phys., 12, 459 (1897).

Foucault, L. M., ‘‘Description des Procédés Employés pou Reconnaitre la Configuration des

Surfaces Optiques,’’ C. R. Acad. Sci. Paris, 47, 958 (1858).
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12.1 INTRODUCTION

Optical methods of testing with the output in the form of an interferogram, or more
general fringe pattern, have been used since the early 1800s. However, the routine
quantitative interpretation of the information coded into a fringe pattern was not
practical in the absence of computers. In the late 1970s the advances in video CCD
(charge-coupled device) cameras and image-processing technology coupled with the
development of the inexpensive but powerful desktop computer provided the means
for the birth and rapid development of automatic fringe pattern analysis. This caused
a major resurgence of interest in interferometric metrology and related disciplines
and formed an excellent basis for their industrial, medical, civil, and aeronautical
engineering applications.

12.2 THE FRINGE PATTERN

12.2.1 Information Content

A fringe pattern can be considered as a sinusoidal signal fluctuation in two-dimen-
sional space (Fig. 12.1):

Iðx; yÞ ¼ aðx; yÞ þ bðx; yÞ cos�ðx; yÞ þ nðx; yÞ ð12:1Þ
or

Iðx; yÞ ¼ aðx; yÞ½1þ Vðx; yÞ cos�ðx; yÞ� þ nðx; yÞ; ð12:2Þ

373



where aðx; yÞ, bðx; yÞ, Vðx; yÞ are background, local contrast, and fringe visibility
functions, respectively, and �ðx; yÞ is the phase function obtained when an inter-
ferometer, Moiré system, or other device produces a continuous map which is an
analogue of the physical quantity being measured (shape, displacement, deforma-
tion, strain, temperature, etc.).

Fringe pattern analysis (fringe analysis for short) (Robinson and Reid, 1993)
refers to full reconversion to the original feature represented by a fringe pattern. In
this process the only measurable quantity is intensity Iðx; yÞ. The unknown phase
�ðx; yÞ should be extracted from Eqs (12.1) or (12.2), although it is screened by two
other functions aðx; yÞ and bðx; yÞ; that is, Iðx; yÞ depends periodically on the phase,
which causes additional problems:

. Due to periodicity, the phase is only determined mod 2 (2 phase ambi-
guity),

. Due to even character of the cosine function cos� ¼ cosð��Þ, the sign of �
cannot, in principle, be extracted from a single measurement of Iðx; yÞ with-
out a priori knowledge (sign ambiguity), and

. in all practical cases some noise nðx; yÞ is introduced in an additive and/or
multiplicative way.

Additionally, the fringe pattern may suffer from a number of distortions
degrading its quality and, additionally, screening the phase information (Schwider,
1990; Creath, 1991).

The background and contrast functions contain the intensities of interfering
(superposed) fields and the various disturbances. Generally one can say that aðx; yÞ
contains all additive contributions – i.e., varying illumination and changing object
reflectivity, time-dependent electronic noise due to electronic components of the
image-capturing processing, diffraction of dust particles in the optical paths – while
bðx; yÞ comprises all multiplicative influences, including the ratio between the reference
and object beams, speckle decorrelation and contrast variations caused by speckles.

For computer-aided quantitative evaluation the fringe pattern is usually
recorded by a CCD camera and stored in the computer memory in a digital format,
i.e., the recorded intensity is digitized into an array of M �N image points (pixels)
and quantized into G discrete gray values. The numbers M and N set an upper
bound to the density of the fringe pattern to be recorded. The sampling theorem
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Figure 12.1 A fringe pattern as a sinusoidal signal fluctuation in space: (a) its cross section

A–A and (b) its intensity distribution.



demands more than two detection points per fringe; however, due to dealing with
finite-sized detector elements, charge leakage to neighboring pixels, and noise in the
fringe pattern, one has to supply at least 3–5 pixels per fringe period to yield a
reliable phase estimation.

When intensity frames are acquired, the analog video signal is converted to a
digital signal of discrete levels. In practice, a quantization into 8 bits corresponding
to 256 gray values or into 10 bits, giving 1024 values, are the most common. Usually,
8 bits for reliable evaluation of fringe patterns are sufficient. The quantization error
is affected by the modulation depth of the signal, as the effective number of quanti-
zation levels equals the modulation of the signal � the number of quantization
levels.

12.2.2 Fringe Pattern Preprocessing and Design

A fringe pattern obtained as the output of a measuring system may be modified by
the optoelectronic–mechanical hardware (sensors and actuators) and software (vir-
tual sensors and actuators) of the system (Fig. 12.2) (Kujawinska and Kosinski,
1997). These modifications refer to both phase and amplitude (intensity) of the signal
produced in space and time, so that the most general form of the fringe pattern is
given by

Iðx; y; tÞ ¼ a0ðx; yÞ þ
X1

m¼1

amðx; yÞ cosm2 f0xxþ f0yyþ v0tþ �ðtÞ þ �ðx; yÞ
� 	

þ nðx; yÞ;
ð12:3Þ

where amðx; yÞ is the amplitude of mth harmonic of the signal, f0x, f0y are the funda-
mental spatial frequencies, v0 is the fundamental temporal frequency, and � is the
phase shift value. The measurand is coded in the phase �ðx; yÞ; ðx; yÞ and t represent
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Figure 12.2 The scheme of a smart optical measuring system.



the space and time coordinates of the signal, respectively, and nðx; yÞ represents
additionally extracted random high-frequency noise.

Assuming a purely sinusoidal signal, Eq. (12.3) becomes

Iðx; y; tÞ ¼ aðx; yÞ þ bðx; yÞ cosm2 f0xxþ f0yyþ v0tþ �ðtÞ þ �ðx; yÞ
� 	

þ nðx; yÞ; ð12:4Þ

where aðx; yÞ ¼ a0ðx; yÞ and bðx; yÞ ¼ a1ðx; yÞ.
The fringe pattern has to be modified by hardware actuators in the measuring

system in order to fulfil the demands of an a priori selected analysis method and
resistance to environmental conditions. The sensors within the system enable it to
determine and control the fringe pattern features ð f0x; f0y; v0; �; aðx; yÞ; bðx; yÞÞ and
in this way allow operational parameters of the actuators to be set. Table 12.1 shows
the most commonly used actuators in modern research and commercial measuring
systems. Special attention is paid to the new possibilities connected with the applica-
tion of laser diodes (Kozlowska and Kujawinska, 1997), fiber optics, spatial light
modulators (LCD, DMD) (Efron, 1989), and piezoelectric transducer (PZT) micro-
positioning devices. These devices not only allow one to design properly an output
fringe pattern but also help to stabilize fringes in the presence of vibrations (Jones,
1994; Yamaguchi et al., 1996; Olszak and Patorski, 1997).

However, in a given technical measurement, there is always a certain limit to
which the appearance of a fringe pattern can be controlled. Real images are often
noisy, low contrast, and with signficant variations of background. The fringe pattern
analysis method described in the next sections should be designed to handle these
problems. However, some general purpose image preprocessing techniques are often
used to improve the original data prior to fringe analysis. Two main groups of
operations are applied (Joenathan and Khorana, 1992; Van der Heijden, 1994).

. Arithmetic (pixel-to-pixel) operations including normalization, gamma cor-
rection, adding/subtractions, and multiplication/divisions performed
directly on the images. These operations lead to production of a fringe
pattern which looks better to human perception and is based on manipula-
tions of the histogram of a digital image.

. Filtering operations which may be performed alternatively: directly on the
image by convolution with a local operator or in Fourier space by multi-
plying the image spectrum with a filter window. In general, high-pass filter-
ing weakens the influence of nonhomogeneous background aðx; yÞ, while a
low-pass filter removes high-frequency noise nðx; yÞ.

After correctly performed hardware modifications of the features of fringe patterns
and their software preprocessing, the images are ready for further analysis.

12.2.3 Classification of the Analysis Methods

The main task which has to be performed by fringe pattern analysis methods is to
compute the phase �ðx; yÞ from the measured intensity values (Fig. 12.3). This means
that an inverse problem has to be solved with all its difficulties:

. The regularization problem (an ill-posed problem due to unknown a; b; �)
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. The sign ambiguity problem

. The 2 phase ambiguity problem.

The first two difficulties may be overcome by two alternative approaches:

. Intensity methods in which we work passively on an image intensity distri-
bution captured by a detector. These include fringe extrema localization
methods (skeletoning, fringe tracking) and regularization methods.

. Phase methods for which we actively modify fringe pattern(s) in order to
provide additional information to solve the sign ambiguity problem. These
include:
. temporal heterodyning (introducing running fringes) (Towers et al.,

1991);
. spatial heterodyning (Fourier-transform method (Takeda et al., 1982),

PLL (Servin and Rodriguez-Vera, 1993), and spatial carrier phase shift-
ing method (Servin and Cuevas, 1995);

. temporal (Bruning et al., 1974) and spatial phase shifting (Shough et al.,
1990), which are discrete versions of the above methods, where the time
or spatially varying interferogram is sampled over a single period.

The third difficulty, the 2 phase ambiguity, coming from the sinusoidal nature
of the signal is common to fringe pattern analysis methods (Fig. 12.3). The only
method which measures nearly directly absolute phase with no 2 ambiguity is
temporal heterodyning (Towers et al., 1991). The other fringe pattern analysis meth-
ods determine absolute phase �ðx; yÞ by

. Fringe numbering and phase extrapolation (Robinson and Reid, 1993),

. Phase unwrapping (Huntley, 1994a; Takeda, 1996),

. Hierarchical unwrapping (Osten et al., 1996), and

. Regularized phase-tracking techniques (Servin et al., 1997b).

These procedures finalize the fringe measurement stage, which reduces a fringe
pattern to a continuous phase map. To solve a particular engineering problem,
the stage of phase scaling has to be implemented. It converts the phase map into
the physical quantity to be measured in the form which enables further informa-
tion processing and implementation system, finite element modeling, and machine
vision systems (Schreiber et al., 1996; Van der Heijden, 1994). This stage is specific
application-oriented and is developing rapidly due to the implementation of fringe
measurement to a vast range of different types of interferometers, Moiré, and
fringe projection systems and due to the increased quality of the phase data
obtained.

12.3 SMOOTHING TECHNIQUES

12.3.1 Introduction

It is very common that the fringe pattern, as captured by the video digitizing device,
contains excessive noise. Generally speaking, fringe patterns contain mostly a low-
frequency signal along with a degrading white noise (multiplicative or additive);
therefore, a low-pass filtering (smoothing) of the fringe pattern may remove a sub-
stantial amount of this noise, making the demodulation process more reliable. We
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are going to discuss two basic and commonly used low-pass filters, the averaging
convolution window and the regularized low-pass filters.

12.3.2 Convolution Methods

The convolution averaging window is by far the most used low-pass filter in fringe
analysis. The discrete impulse response of this filter may be represented by

hðx; yÞ ¼ 1

9

1 1 1
1 1 1
1 1 1

0

@

1

A; ð12:5Þ

the frequency response of this convolution matrix is
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Figure 12.3 The general scheme of the fringe pattern analysis process.



Hð!x; !yÞ ¼ ð1=9Þ½1þ 2 cos!x þ 2 cos!y þ 2 cos
ffiffiffi
2

p
ð!x þ !yÞ

þ 2 cos
ffiffiffi
2

p
ð!x � !yÞ�

ð12:6Þ

where !x, !y are the angular frequency in the x- and y-direction, respectively. This
convolution filter may be used several times to decrease the bandpass frequency.
Using a low-pass convolution filter several times changes the shape of the filter as
well as its low-pass frequency. The frequency response of a series of identical low-
pass filters will approach a Gaussian-shaped response, as can be seen in Fig. 12.4,
which shows how rapidly the frequency response’s shape of the 3� 3 averaging filter
changes as it is convolved with itself 1, 2, and 3 times.

12.3.3 Regularization Methods

The main disadvantage of convolution filters as applied to fringe pattern processing
is their undesired effect at the edges of the interferogram. This distortion arises
because at the boundary of the fringe pattern, convolution filters mix the back-
ground illumination with that of the fringe pattern, raising an estimated phase
error in that zone. This undesired edge distortion may be so important that some
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Figure 12.4 Frequency response of a 3� 3 averaging window. As the number of convolu-

tion increases, the frequency response tends to a Gaussian shape.



people shrink the interferogram’s area to avoid those unreliable pixels near the edge.
Also, convolution filters cannot preserve fast gray-level variations while removing
substantive amounts of noise. For these reasons, it is more convenient to formulate
the smoothing problem in the ways described below.

Classical Regularization

The filtering problem may be stated as follows (Marroquin, 1993): find a smooth (or
piecewise smooth) function f ð:Þ defined on a two-dimensional field L, given observa-
tions gð:Þ that may be modeled by

gðx; yÞ ¼ f ðx; yÞ þ nðx; yÞ; ðx; yÞ 2 S; ð12:7Þ
where nð:Þ is a noise field (for example a Gaussian white noise) and S is the subset of
L, where observations have good signal-to-noise ratio.

The filtering problem may be seen as an optimizing problem in which one has a
compromise between obtaining a smooth filtered field f ðx; yÞ, while keeping a good
fidelity to the observed data gðx; yÞ. In the continuous domain, a common mathe-
matical form for the smoothing problem may be stated as the field f ðx; yÞ which
minimizes the following cost or energy functional

U½ f ðx; yÞ� ¼
ð ð

ðx;yÞ2S

½ f ðx; yÞ � gðx; yÞ�2 þ 
 @f ðx; yÞ
@x

� �2

þ
 @f ðx; yÞ
@y

� �2
( )

:

ð12:8Þ
As the above equation shows, the first term is a measure of the fidelity between the
smoothed field f ðx; yÞ and the observed data gðx; yÞ in a least-squares sense. The
second term (the regularizer) penalizes the departure from smoothness of the filtered
field f ðx; yÞ. The first-order regularizer is also known as a membrane regularizer.
That is because the cost functional to be minimized corresponds to the mechanical
energy of a two-dimensional membrane f ðx; yÞ attached by linear springs to the
observations gðx; yÞ. The parameter 
 measures the stiffness of the membrane
model. A high stiffness value will lead to a smoother filtered field f ðx; yÞ.

One may also smooth f ðx; yÞ using higher-order regularizers such as the sec-
ond-order or thin-plate regularizer. In the continuous domain, the energy functional
to be minimized for the filtered field f ðx; yÞ may be stated as

U½ f ðx; yÞ� ¼
ð ð

ðx;yÞ2S

(
1



½ f ðx; yÞ � gðx; yÞ�2

þ @2f ðx; yÞ
@x2

 !2

þ @2f ðx; yÞ
@y2

 !2

þ @2f ðx; yÞ
@y @x

 !2)

:

ð12:9Þ

In this case the smoothed field f ðx; yÞ corresponds to the height of a metallic thin
plate attached to the observations gðx; yÞ by linear springs. Again, the parameter 

measures the stiffness of the thin-plate model or conversely (as in the last equation)
the looseness of the linear spring connecting the thin plate (filtered field) to the
observed data.

To optimize the cost functionals shown above using a digital computer one
needs first to discretize the cost functional. Therefore, the functions f ðx; yÞ and
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gðx; yÞ are now defined on the nodes of a regular lattice L, so the integrals become
sums over the domain of interest, i.e.,

U½ f ðx; yÞ� ¼
XX

ðx;yÞ2S
½ f ðx; yÞ � gðx; yÞ�2 þ 
R1½ f ðx; yÞ�
� �

; ð12:10Þ

where S is the subset of L where observations are available. The discrete version of
the first-order regularizer R1½ f ðx; yÞ� may be approximated by

R1½ f ðx; yÞ� ¼ ½ f ðx; yÞ � f ðx� 1; yÞ�2 þ ½ f ðx; yÞ � f ðx; y� 1Þ�2 ð12:11Þ

and the second-order regularizer R2½ f ðx; yÞ� may be approximated by

R2½ f ðx; yÞ� ¼ ½ f ðxþ 1; yÞ � 2f ðx; yÞ þ f ðx� 1; yÞ�2 þ ½ f ðx; yþ 1Þ � 2f ðx; yÞ
þ f ðx; y� 1Þ�2 þ ½ f ðxþ 1; yþ 1Þ � f ðx� 1; y� 1Þ
þ f ðx� 1; yþ 1Þ � f ðxþ 1; y� 1Þ�2:

ð12:12Þ

By considering only the first two terms of the second-order regularizer one may
reduce significantly the computational load of the filtering process, while preserving
a thin-plate-like behavior.

A simple way to optimize the discrete cost functions stated in this section is by
gradient descent, i.e.,

f kþ1ðx; yÞ ¼ f kðx; yÞ � � @U½ f ðx; yÞ�
@f ðx; yÞ ; ð12:13Þ

where k is the iteration number and � � 0:1 is the step size of the gradient search.
Although this is a simple optimizing technique it is a slow procedure specially for
high-order regularizers. One may use instead conjugate gradient methods to speed
up the optimizing process.

Let us point out a possible practical way of implementing in a digital computer
the derivative of the cost function U½ f ðx; yÞ� using a irregularly shaped domain S.
Let us define an indicator function mðx; yÞ in the lattice L having N �M nodes. The
indicator function mðx; yÞ ¼ 1 if the pixel at ðx; yÞ is inside S (valid observations) and
0 otherwise. Using this indicator field, the filtering problem with a first-order reg-
ularizer may be rewritten as

U½ f ðx; yÞ� ¼
XN�1

x¼0

XM�1

y¼0

½ f ðx; yÞ � gðx; yÞ�2mðx; yÞ þ 
R½ f ðx; yÞ�� �
; ð12:14Þ

where

R1½ f ðx; yÞ� ¼ ½ f ðx; yÞ � f ðx� 1; yÞ�2mðx; yÞmðx� 1; yÞ
þ ½ f ðx; yÞ � f ðx; y� 1Þ�2mðx; yÞmðx; y� 1Þ;

ð12:15Þ

then the derivative may be found as
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@U½ f ðx; yÞ�
@f ðx; yÞ ¼ ½ f ðx; yÞ � gðx; yÞ�mðx; yÞ þ 
½ f ðx; yÞ

� f ðx� 1; yÞ�mðx; yÞmðx� 1; yÞ þ 
½f ðx ¼ 1; yÞ
� f ðx; yÞ�mðxþ 1; yÞmðx; yÞ
þ 
½ f ðx; yÞ � f ðx; y� 1Þ�mðx; yÞmðx; y� 1Þ þ 
½ f ðx; yþ 1Þ
� f ðx; yÞ�mðx; yþ 1Þmðx; yÞ:

ð12:16Þ
As we can see, only the difference terms lying completely within the region of valid
fringe data marked by mðx; yÞ survive. In other words, the indicator field mðx; yÞ is
the function that actually decouples valid fringe data from its surrounding back-
ground.

Finally, one may consider regularization filters as being more robust than
convolution filters in the following sense:

. Unlike convolution filters, the data outside the filtering area S do not affect
the filtering process inside S; i.e., no cross-talking occurs between the filtered
field inside S and its surrounding data in L. In other words, the edge effect
of regularized filters at the boundary of S is minimized. This is specially
important when dealing with irregular-shaped regions.

. They tolerate missing observations due to the capacity of these filters to
interpolate over regions of missing data with a well-defined behavior. The
interpolating behavior of the filter is given by the form of the regularization
term.

. By modifying the potentials in the cost function one may obtain many
different types of filters, such as quadrature bandpass filters (QFs), which
are very important in fringe analysis as phase demodulators.

Frequency Response of Low-Pass Regularized Filters

The filtered field f ðx; yÞ that minimizes the cost functions seen in the previous section
smooths out the observation field gðx; yÞ. To have a quantitative idea of the amount
of smoothing one may find the frequency response of the regularizer. To see the
frequency response of the first-order low-pass filter (Marroquin et al., 1997a, 1997b)
consider an infinite two-dimensional lattice. Setting the gradient of the cost function
to 0 one obtains the following set of linear equations:

f ðx; yÞ � gðx; yÞ þ 
½�f ðx� 1; yÞ þ 2f ðx; yÞ � f ðxþ 1; yÞ � f ðx; y� 1Þ
þ 2f ðx; yÞ � f ðx; yþ 1Þ� ¼ 0

ð12:17Þ
and taking the discrete Fourier transform of the last equation one obtains

Gð!x; !yÞ ¼ Fð!x; !yÞ½1þ 2
ð2� cos!x � cos!yÞ�; ð12:18Þ
this leads to the following transfer function:

Hð!x; !yÞ ¼
Fð!x!yÞ
Gð!x; !yÞ

¼ 1

1þ 2
½2� cosð!xÞ � cosð!yÞ�
; ð12:19Þ

which represents a low-pass filter with a bandwidth controlled by the parameter 
.
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12.4 TEMPORAL PHASE-MEASURING METHODS

12.4.1 Introduction

Phase-stepping interferometry (PSI) is the most common technique used to detect
the modulating phase of interferograms. Given the high popularity of this method,
there have been many researches contributing in this area of interferometry
(Shagam, 1978; Morgan, 1982; Schwider et al., 1983; Greivenkamp, 1984; Ai and
Wyatt, 1987; Asundi and Yung, 1991; Creath, 1991; Joenathan and Khorana, 1992;
Robinson and Reid, 1993; Yamaguchi et al., 1996). The PSI method was first intro-
duced by Bruning et al. (1974) for testing optical components using a video CCD
array to map, over a large number of points, the optical wavefront under analysis. In
the PSI technique (Greivenkamp and Bruning, 1992) an interference pattern is phase
stepped under computer control and spatially digitized over several phase steps. The
digitized intensity values may then be linearly combined to detect the optical phase at
every pixel in the interferogram. Since then, a number of algorithms have been used
to recover the wavefront phase of interference patterns, for which the emphasis is
laid on using a small number of phase-shifted samples. The measured intensity of a
CCD detector may be written as

Iðx; y; n�Þ ¼ aðx; yÞ þ bðx; yÞ cos½�ðx; yÞ þ n��; n ¼ �N; . . . ; 0; . . . ;N;

ð12:20Þ

where �ðx; yÞ is the phase to be determined, aðx; yÞ is the slowly varying background
illumination, and bðx; yÞ is the contrast of the interference fringes. The parameter � is
the phase step among the interferograms obtained by linearly varying the path
difference between the test and reference beams.

All the phase-shifting algorithms proposed work fine whenever the following
ideal conditions are met:

. The light-intensity range should be within the linear range of the CCD.

. The phase-shifted interferograms are taken at exactly the right phase shift.

. The device used to move the reference beam moves linearly in a purely
piston fashion.

. All the mechanical perturbation of the interferometer (vibrations, air turbu-
lence) are small during the capture of the digital interferograms.

If the above requirements are fulfilled, then one may expect a reliable phase deter-
mination using any PSI interferometry method. Nevertheless, sometimes one or
several conditions mentioned above are not met. In this case, we need a robust
temporal quadrature filter. To evaluate the merits of different PSI formulas, one
may analyze the frequency response of these PSI formulas; this was first done by
Freischlad and Koliopoulos (1990).

As mentioned, the first important contribution to the understanding of the
different flavors of phase shifting formulas interpreted as linear quadrature filters
was given by Freischlad and Koliopoulos (1990). These researchers investigated in
the Fourier domain several commonly used formulas in phase shifting interferome-
try. Using this frequency domain analysis one is able to classify and decide the best
algorithm available in the literature for the experimental setup and/or interfero-
metric data at hand. If no one of the available phase shifting formulas meet your
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experimental requirements one may also synthesize the one that best fit your parti-
cular needs. Such procedures were proposed by Surrel (1996), Tang (1996), and
Servin et al. (1997a).

12.4.2 General Theory of PSI

The phase estimation by phase stepping is achieved by convolving in the time axis a
discrete temporal quadrature filter with several phase-shifted interferograms. Here
we will only consider PSI formulas involving equally and uniformly spaced phase
steps. Suppose that we have the following equally spaced phase-stepped interfero-
grams:

Iðx; y; tÞ ¼
XN

n¼�N

aðx; yÞ þ bðx; yÞ cos½�ðx; yÞ þ t�� �
�ðt� n�Þ: ð12:21Þ

Parameter � is the phase (time) step among the interferograms. Figure 12.5 shows
four phase-shifted frinte patterns. The phase step among these fringe patterns is =2.
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Figure 12.5 This figure shows four phase-shifted interferograms. The phase shift among

them is =4 radians.



To estimate the phase �ðx; yÞ of the above space-temporal signal Iðx; y; tÞ we
need to filter it using a one-sided bandpass convolution filter tuned at the temporal
frequency of the signal ð! ¼ 1:0). One-sided bandpass filters are normally called
quadrature filters and are widely used in fringe analysis as phase estimators. A
quadrature filter is a complex filter having the property that its output angle gives
the searched phase. For example, consider the following discrete complex linear filter

hðtÞ ¼
XN

n¼�N

hrðnÞ�ðt� n�Þ þ i
XN

n¼�N

hiðnÞ�ðt� n�Þ; ð12:22Þ

where i is the square root of �1 and � is the sampling period of this discrete filter.
This filter may be seen as being obtained from sampling a continuous filter hðtÞ every
� seconds. Quadrature filters are complex filters having a symmetric real component
and an antisymmetric imaginary component, i.e.,

hrðnÞ ¼ hrð�nÞ; hiðnÞ ¼ �hið�nÞ; hið0Þ ¼ 0; ð12:23Þ
taking the Fourier transform of the filter, the quadrature filter will have a frequency
response given by

Hð!Þ ¼ ffhðtÞg ¼ hrð0Þ þ 2
XN

n¼1

hrðnÞ cosðn�!Þ þ 2i
XN

n¼1

hiðnÞ sinðn�!Þ: ð12:24Þ

The coefficients of this filter must be chosen in such a way to obtain a bandpass
and one-sided frequency response. Filtering a sequence of 2N þ 1 interferograms
Iðx; y; tÞ using the complex discrete filter shown above one obtains

gðx; y; tÞ ¼ Iðx; y; tÞ � hðtÞ; ð12:25Þ
where the symbol * denotes a one-dimensional discrete convolution and gðx; y; tÞ is
the output sequence of complex-valued images. The convolution with the complex
kernel of size 2N þ 1 temporal samples applied to a sequence of 2N þ 1 discrete
temporal images generates 4N þ 2 complex images gðx; y; n�Þ, but we are only inter-
ested in the phase of the complex signal located at the origin gðx; y; 0Þ of this output
sequence. The angle of the complex signal gðx; y; 0Þ is the one that gives the most
reliable phase determination. This is given by

gðx; y; 0Þ ¼
XN

n¼�N

Iðx; y; n�Þhð�nÞ

¼
XN

n¼�N

Iðx; y; n�ÞhrðnÞ � i
XN

n¼�N

Iðx; y; n�Þ hiðnÞ;
ð12:26Þ

where we have used the symmetry relations of the complex filter. From the 2N þ 1
phase-shifted fringe patterns we have obtained two in quadrature fringe patterns, so
the searched phase will be given by

�ðx; yÞ ¼ �arctan

XN

n¼�N

Iðx; y; n�Þ hiðnÞ

XN

n¼�N

Iðx; y; n�Þ hrðnÞ

0

BBBB@

1

CCCCA
: ð12:27Þ
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The general theory of PSI using quadrature linear filters finishes here. But we have
still not given any way for calculating the coefficients for the quadrature filter. Some
examples of temporal quadrature linear filters used in phase stepping are presented
in the next sections.

Given the limited number of phase-shifted interferograms that one usually
obtains (from 3 to 20 typically), we have to make some comments about such a
limited quadrature filter:

1. It is convenient that the quadrature linear filters used in PSI have the same
number of coefficients as the temporal signal being filtered in order to use
all the available information.

2. One needs to know the exact amount of phase step introduced; otherwise,
a linear miscalibration would result. This linear phase error is called detun-
ing; thus, it is convenient whenever possible to use a quadrature filter
robust to detuning.

3. Sometimes we may have amplitude distortion in the frame-grabbed inter-
ferogram due to oversaturation or undersaturation of the CCD array used
to obtain the video signal. In that case, harmonic signals are generated
with a consequent degradation in the estimated phase. Therefore, it is
convenient to also have a good rejection to the harmonics of the signal
being filtered.

In the following sections we analyze several possible weights for the quadrature filter
to obtain different types of phase-stepping formulas.

12.4.3 Performance of Some Commonly Used Phase-Shifting
Methods

Before the frequency analysis of the linear quadrature filters used in PSI by
Freischlad and Koliopoulos (1990), there was no systematic way to compare the
different flavors of PSI formulas. In this section we are going to assign values to the
quadrature filter coefficients and evaluate in the frequency domain some of the most
used phase-detecting algorithms. The basic criteria to evaluate the performance of a
PSI formula are

1. Robustness to detuning, that is linear phase miscalibration.
2. Harmonic signal rejection.
3. Highest possible noise rejection, i.e., small bandwidth of the quadrature

filter.

Three-Step PSI

Given that in a fringe pattern one normally has three unknowns then, three inter-
ferograms is the practical minimum to make a PSI measurement. Let us begin with
the form of the space-temporal signal:

Iðx; y; tÞ ¼
X1

n¼�1

Iðx; y; n�Þ

¼
X1

n¼�1

aðx; yÞ þ bðx; yÞ cos½�ðx; yÞ þ t�� �
�ðt� n�Þ;

ð12:28Þ
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where � is the phase step among the fringe patterns. In this equation we have three
unknowns, namely að:Þ, bð:Þ, and �ð:Þ. Solving algebraically for �ð:Þ we obtain
(Greivenkamp and Bruning, 1992)

�ðx; yÞ ¼ arctan
ð1� cosð�ÞÞ½Ið��Þ � Ið�Þ�
sinð�Þ½2Ið0Þ � Ið��Þ � Ið�Þ�
� �

; ð12:29Þ

for clarity purposes the ðx; yÞ dependance has been dropped from the irradiances.
From here we may see that the linear quadrature filter may be written as

hðtÞ ¼ sinð�Þ½2�ðtÞ � �ðtþ �Þ � �ðtþ �Þ� þ ið1� cos�Þ½�ðt� �Þ � �ðtþ �Þ�:
ð12:30Þ

This quadrature filter has the following frequency response:

Hð!Þ ¼ Hrð!Þ þ iHið!Þ ¼ ðsin �Þ½2� 2 cosð�!Þ� þ i2ð1� cos�Þ sinð�!Þ:
ð12:31Þ

In Fig. 12.6(a) the frequency response of the real and imaginary parts of this quad-
rature filter is shown: although they are always in quadrature, their magnitude is the
same only for the nominal expected temporal frequency. In other words, we can only
obtain a valid phase estimation if the real and imaginary parts of the complex filter
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Figure 12.6 Frequency response of a three-step algorithm: the phase step (�) among the

samples is =2 radians. (a) Amplitude response of the real and imaginary parts of the quad-

rature filter used to estimate the phase. (b) Maximum phase error due to detuning. This PSI

technique is very sensitive to detuning.



are in quadrature and have the same magnitude. This condition is fulfilled only for
the temporal frequency equal to one. If for some reason the phase steps were not
taken at exactly the required phase step, a detuning error will occur. The robustness
to detuning RDð!Þ of the three-step PSI algorithm is quite bad; it is given by

RDð!Þ ¼ atan
Hið!Þ
Hrð!Þ
� �

� atan
Hið1:0Þ
Hrð1:0Þ
� �

: ð12:32Þ

As seen from Fig. 12.6(b) the three-step phase-shifting algorithm is very weak to
detuning. If you are not absolutely sure of having the exact phase steps, you must
move to another quadrature filter. Finally, as Fig. 12.6(a) shows, the three sample
quadrature filter has rejection to the fourth harmonic of the signal in the frequency
range shown.

Four-Step PSI

Another widely used formula for phase stepping is the so-called four-frame method
(Wyant, 1982). In this case the four recorded interferograms are given by

Iðx; y; tÞ ¼
X3

n¼0

aðx; yÞ þ bðx; yÞ cos½�ðx; yÞ þ t�� �
�ðt� n�Þ; � ¼ 

2
: ð12:33Þ

Solving for �ðx; yÞ, the searched phase is given by

�ðx; yÞ ¼ atan
Ið3�Þ � Ið�Þ
Ið0Þ � Ið2�Þ

� �
; ð12:34Þ

again, the spatial dependance of the fringe patterns has been removed for notation
clarity. So the quadrature filter is given by

hðtÞ ¼ �ðt� 3�Þ � �ðt� �Þ þ i½�ðtÞ � �ðt� 2�Þ�: ð12:35Þ
The frequency response of this four-frame quadrature filter is

Hð!Þ ¼ ffhðtÞg ¼ ½expð�i3�!Þ � expð�i�!Þ� þ i½1� expð�i2�!Þ� ð12:36Þ
or, equivalently,

Hð!Þ ¼ ffhðtÞg ¼ �2 sinð�!Þ expð2�!Þ þ i2 sinð�!Þ expð�!Þ: ð12:37Þ
This expression does not seem to represent a quadrature filter because both the
amplitude of the real part and the amplitude of the imaginary part are the same
(not in quadrature as expected) except at the angular frequency ! ¼ 1:0 where they
are in quadrature. The main disadvantage of the mathematical representation of this
filter is that its frequency response does not give an idea of how robust this filter is to
detuning. To transform this filter into a filter having both components always in
quadrature but with different amplitudes we may ‘‘shift’’ or more precisely ‘‘rotate’’
(in the sense described in Malacara et al., 1998) the filter by =4 radians. Therefore,
the transformed-rotated filter may be written as

h 0ðtÞ ¼ �ðtþ 3� 0Þ � �ðtþ � 0Þ � �ðt� � 0Þ þ �ðt� 3� 0Þ þ i½�ðtþ 3� 0Þ þ �ðtþ � 0Þ
� �ðt� � 0Þ � �ðt� 3� 0Þ�; � 0 ¼ 

4
;

ð12:38Þ
which has the following frequency response:
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H 0ð!Þ
2

¼ cosð3� 0!Þ � cosð� 0!Þ þ i½sinð3� 0!Þ þ sinð� 0!Þ�: ð12:39Þ

Now the filter looks more like a quadrature filter. Even though this quadrature filter
has a very different mathematical form with respect to the one given before, it has
the same properties regarding its phase-detection capabilities. The frequency
response of the filter is shown in Fig. 12.7(a), and the robustness to detuning in
Fig. 12.7(b). As can be seen from Fig. 12.7, this quadrature filter is quite sensitive to
detuning; it is insensitive to the second, fourth, sixth, . . . harmonics of the signal.

Symmetrical Five-Step PSI

A very popular algorithm is the so-called Schwider–Hariharan five-step algorithm
(Schwider et al., 1983; Hariharan et al., 1987). The five-phase stepped interferograms
may be written as

Iðx; y; tÞ ¼
X2

n¼�2

aðx; yÞ þ bðx; yÞ cos½�ðx; yÞ þ t�� �
�ðt� n�Þ; � ¼ 

2
:

ð12:40Þ

The formula to obtain the phase is
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Figure 12.7 Frequency response of Wyant’s four-step algorithm – the phase step among the

samples is =4 radians. (a) Amplitude response of the real and imaginary parts of the quad-

rature filter. (b) Phase error due to detuning.



�ðx; yÞ ¼ atan
2½Ið��Þ � Ið�Þ�

Ið�2�Þ � 2Ið0Þ þ Ið2�Þ
� �

; ð12:41Þ

where, for notation simplicity, the space dependance of the fringe pattern has been
omitted. The quadrature filter associated with this formula is

hðtÞ ¼ �ðtþ 2�Þ � 2�ðtÞ þ �ðt� 2�Þ þ i2½�ðtþ �Þ � �ðt� �Þ�; ð12:42Þ
therefore, its frequency response is

Hð!Þ ¼ ffhðtÞg ¼ Hrð!Þ þ iHð!Þ ¼ 2 sinð�!Þ þ i½1� cosð2�!Þ�: ð12:43Þ
The frequency response of the Schwider–Hariharan algorithm is shown in Fig.
12.8(a). This quadrature filter is insensitive to even harmonics of the signal. The
real and imaginary components are always orthogonal and have the same magnitude
(reliable phase estimation) around the frequency ! ¼ 1:0. This means that the sym-
metrical five-step PSI filter is robust to detuning, so it can tolerate small linear phase
miscalibrations and still give a reliable phase estimation. The robustness to detuning
RDð!Þ may be found by

RDð!Þ ¼ atan
Hið!Þ
Hrð!Þ
� �

� atan
Hið1:0Þ
Hrð1:0Þ
� �

; ð12:44Þ

and it is graphically shown in Fig. 12.8(b).
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Figure 12.8 Frequency response of the five-step Schwider–Hariharan PSI algorithm using a

phase step of =2 radians. (a) Amplitude response of the real and imaginary parts of the

quadrature filter. (b) Maximum phase error due to detuning.



Discussion

Before leaving this section, one cannot finish without mentioning some additional
important works in temporal phase shifting, such as the ones made by Morgan
(1982), Greivenkamp (1984), Groot (1995), Hibino et al. (1995), Schmith and
Creath (1995a, 1996), and, finally, the recent work of Hibino and Yamaguchi
(1998), which presents the following algorithm:

tan� ¼
ffiffiffi
3

p 5Ið�3�Þ � 6Ið�2�Þ � 17Ið��Þ þ 17Ið�Þ þ 6Ið2�Þ � 5Ið3�Þ
Ið�3�Þ � 26Ið�2�Þ � 25Ið��Þ þ 25Ið�Þ þ 26Ið2�Þ þ Ið3�Þ :

ð12:45Þ
There are still a lot more phase-stepping formulas. All of them have their

particular merit. To find the best one for your needs you may review all the literature
regardingt this or you may instead design your own PSI quadrature filter to fit your
particular needs in terms of the number of phase-shifted interferograms, amount of
phase shifting, detuning robustness, harmonic rejection, or noise removal. As it will
be seen in the next section all these factors may be optimized to obtain the best
possible linear quadrature filter given the number of phase shifted interferograms at
hand.

Although many sources of error exist in taking several phase-shifted interfer-
ograms, the most common of these in the experimental implementation of phase-
shifting interferometry is detuning. Having a detuning error means that the sampling
of the temporal signal is uniform but does not occur at a phase spacing of the proper
fraction of the signal period. Detuning is referred to as a linear phase shift miscali-
bration, in which, for example, the phase shift between the samples might be another
quantity of degrees instead of the expected phase step. As seen above, the linear
quadrature filter found by Schwider et al. (1983) and Hariharan et al. (1987) is
robust to a small amount of detuning.

Regularizing methods can also be used when several phase-shifting interfero-
grams are available (Marroquin et al., 1998; Servin et al., 1998b). This is revised in
another section.

12.4.5 Synthesis of Quadrature Linear Filters for Phase Shifting

Given a number of phase-shifted fringe patterns with a constant phase shift � among
them, there is an infinite number of quadrature filters (given by a different set of
coefficients) that may estimate the desired phase. Up to now we have analyzed
several quadrature filters and their properties in terms of harmonic rejection and
phase detuning. Another more efficient method is to find the optimum quadrature
filter coefficients given some desired properties in the frequency response of this filter
(Servin et al., 1997a).

Assume that we want to find the coefficients of the following linear quadrature
filter in an optimum way:

hðtÞ ¼
XN

n¼�N

hrðnÞ�ðt� n�Þ þ i
XN

n¼�N

hiðnÞ�ðt� n�Þ; ð12:46Þ

where hrðnÞ and hiðnÞ are the filter coefficients. The filter given by the last equation is,
in general, not in quadrature. To simplify our analysis assume that the real and
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imaginary parts of the filter are symmetrical and antisymmetrical, respectively. Then,
the Fourier transform of the complex filter is

ffhðtÞg ¼ Hrð!Þ þ iHið!Þ ¼ hrð0Þ þ 2
XN

n¼1

hrðnÞ cosðn�!Þ þ 2i
XN

n¼1

hiðnÞ sinðn�!Þ:

ð12:47Þ
Given some predefined phase (time) steps �, we may define the required complex
filter (that must be in quadrature at least in !0 ¼ 1:0) in terms of the coefficients hrðnÞ
and hiðnÞ as the minimizer of the following cost function:

U ¼ 
0Hrð0Þ2 þ 
1
ð1:0þ�1

!¼1:0��1

½Hrð!Þ �Hið!Þ�2d!þ 
2
ð2:0þ�2

!¼2:0��2

½Hrð!Þ2 þHið!Þ2� þ � � � ;

ð12:48Þ

where 
1; 
2 are numbers that weight the different requirements that the filter must
fulfill. The filter which minimizes this cost function will have several good properties.
One of them is that the real part of the filter has minimum response at zero frequency
(the imaginary part of Hið!Þ is already zero at the origin). The second requirement
states that the complex filter must remain in quadrature at least in a frequency band
equal to 2�1 centered at the nominal or expected time-angular frequency (detuning
robustness). The remaining terms deal with minimizing the filter response around
some expected harmonic components that the temporal signal may have. Therefore
the actual values needed for the complex filter given some predefined phase steps �
may be obtained by optimizing the cost function U for the available free parameters
hrðnÞ and hiðnÞ. This may be accomplished by solving the following linear system of
equations for the filter coefficients as

@U

@hrðnÞ ¼ 0;

@U

@hiðnÞ ¼ 0:

ð12:49Þ

Having calculated our quadrature filter coefficients we may find the required
phase information as

�ðx; yÞ ¼ atan

XN

n¼�N

hiðnÞIðx; y; n�Þ

XN

n¼�N

hrðnÞIðx; y; n�Þ

0

BBBB@

1

CCCCA
: ð12:50Þ

It must be remarked that having a summing notation running from �N to N does
not necessarily mean that we need 2N þ 1 interferogram samples; we may have, for
example, four phase-centered samples.

As an example of this optimizing method, let us consider seven equally spaced
sampling points with a phase interval of =2 and optimize for detuning, using the
following weights
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0 ¼ 1:0; 
1 ¼ 1:0

2 ¼ 0:01


3 ¼ 
4 . . . ¼ 0
�1 ¼ 0:8
�2 ¼ 0:1:

ð12:51Þ

With these parameters we define a quadrature filter with a large detuning robustness
and some attenuation in the second harmonics. The solution of the linear system
gives the following phase-estimation equation:

tan� ¼ Ið�3�Þ þ 4:3Ið�2�Þ � 14Ið��Þ þ 14Ið�Þ � 4:3Ið2�Þ � Ið3�Þ
1:5Ið�3�Þ � 6Ið�2�Þ � 4:5Ið��Þ þ 18Ið0Þ � 4:5Ið�Þ � 6Ið2�Þ þ 1:5Ið3�Þ :

ð12:52Þ
The frequency response of the real and imaginary parts of this filter is shown in Fig.
12.9(a). The detuning robustness is shown in Fig. 12.9(b) and it is compared against
the Schwider–Hariharan PSI formula to have an idea of the superior detuning
robustness.

12.5 SPATIAL PHASE-MEASURING METHODS

As seen before, PSI uses a sequence of phase-shifted interferograms to find the
searched phase. The phase-estimating system is a one-dimensional quadrature filter
tuned at the fundamental time frequency of the signal. Sometimes we cannot have
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Figure 12.9 Frequency response of the seven-step Servin’s PSI algorithm using a phase step

of =2 radians. (a) Amplitude response of the real and imaginary parts of the quadrature filter.

(b) Maximum phase error due to detuning of the Servin’s algorithm RDSð!Þ compared against

the detuning error of the Schwider–Hariharan algorithm RDS�Hð!Þ.



several phase-shifted interferograms. In such cases one needs to deal with only one
interferogram with either closed or open fringes (Ichioka and Inuiya, 1972; Macy,
1983; Mertz, 1983; Shough, 1990; Patorski, 1993). Open fringes may be obtained by
introducing a large tilt in the reference beam of a two-path interferometer or by
projecting a linear ruling in profilometry. A single carrier frequency interferogram
(an open fringe interferogram) is much easier to demodulate than an interferogram
which has closed fringes. Closed-fringe interferograms are difficult to demodulate
due to the nonmonotonic variation of the phase field within the fringe pattern.

An open-fringe interferogram can always be written as

Iðx; yÞ ¼ aðx; yÞ þ bðx; yÞ cos½!0xþ �ðx; yÞ�: ð12:53Þ
The carrier frequency must be higher than the maximum frequency content of the
phase in the carrier direction, i.e.,

!0 >
@�ðx; yÞ
@x

; ð12:54Þ

this condition ensures that the total phase of the interferogram will grow (or
decrease) monotonically, so the slope of the total phase will always be positive (or
negative).

Figure 12.10 shows a carrier frequency interferogram phase modulated by
spherical aberration and defocusing.

12.5.1 The Fourier-Transform Method for Carrier Frequency Fringe
Patterns

One may also use frequency domain techniques to estimate the modulating phase of
fringe patterns. The phase estimation using the Fourier method is due to Takeda et
al. (1982). This method is based in a bandpass quadrature filter in the frequency
domain. The method works as follows: rewrite the carrier frequency interferogram
given above as

Iðx; yÞ ¼ aðx; yÞ þ cðx; yÞ expði!0xÞ þ c � ðx; yÞ expð�i!0xÞ; ð12:55Þ
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with

cðx; yÞ ¼ bðx; yÞ
2

exp½i�ðx; yÞ� ð12:56Þ

and * denotes the complex conjugate. The Fourier transform of this signal is then

ffIðx; yÞg ¼ Að!x; !yÞ þ Cð!x þ !0; !yÞ þ C�ð!x � !0; !yÞ: ð12:57Þ
After this, using a quadrature bandpass filter, one keeps only one of the two Cð:Þ
terms of the frequency spectrum; therefore,

Cð!x þ !0; !yÞ ¼ Hð!x þ !0; !yÞffIðx; yÞg; ð12:58Þ
where Hð!x þ !0; !yÞ represent a quadrature bandpass filter centered at �!0 and
with a bandwidth large enough to contain the spectrum of Cð!x þ !0; !yÞ. Then, the
following step is either to translate the information peak toward the origin to remove
the carrier frequency !0 to obtain Cð!x; !yÞ or Fourier transform it to find directly
the inverse Fourier transform of the filtered signal, so that one gets alternatively:

f�1fCð!x; !yÞg ¼
bðx; yÞ

2
exp½i�ðx; yÞ�;

f�1fCð!x � !0; !yÞg ¼
bðx; yÞ

2
exp½ið!0xþ �ðx; yÞÞ�;

ð12:59Þ

so their respective phase is given by

�ðx; yÞ ¼ atan
Im½cðx; yÞ�
Re½cðx; yÞ�
� �

;

!0xþ �ðx; yÞ ¼ atan
Im½cðx; yÞ expð�i!0xÞ�
Re½cðx; yÞ expð�i!0xÞ�
� �

:

ð12:60Þ

In the second case the estimated phase �ðx; yÞ is usually obtained after a plane-fitting
procedure performed on the total phase function. Of course, the estimated phase
given above is wrapped because of the atan(.) function involved. Therefore, the last
step in this process is to unwrap the phase. Figure 12.11(a) shows the frequency
spectrum of the carrier frequency interferogram shown in Fig. 12.10. The detected
phase using the phase information provided by keeping only one of the two side
lobes of this spectrum is shown in Fig. 12.11(b). We can see how the recovered phase
has some distortion at the boundary of the pupil. This phase distortion at the edge of
the fringe pattern may be reduced by apodizing the fringe pattern intensity using, for
example, a Hamming window (Malacara et al., 1998).

While using the Fourier-transform method, which involves the global but
pointwise operation on the interferogram spectrum, one has to be aware of the
main sources of errors (Bone et al., 1986; Roddier and Roddier, 1987; Takeda et
al., 1982; Kujawinska and Wójciak, 1991a,b):

. The errors associated with the use of fast Fourier transform (FFT): aliasing
if the sampling frequency is too low; the picket fence effect, if the analyzed
frequency includes a frequency which is not one of the discrete frequencies;
and, the most significant error, leakage of the energy from one frequency
into adjacent ones, due to fringe discontinuity or inappropriate truncation
of the data.
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. The errors due to incorrect filtering in the Fourier space, especially if a
nonlinear recording of the fringe pattern has occurred.

. The influence of random noise and spurious fringes in the interferogram.

Here we refer to the most significant errors. The leakage of the energy can be reduced
significantly by apodizing the fringe pattern intensity using Haming, Hanning, bell,
or cos4 windows. The errors due to incorrect filtering are sometimes difficult to
avoid, especially if the assumption of ½@�ðrÞ=@r�max 	 f0 is not fulfilled and minimiz-
ing the filtering window is required due to noise in the image. Bone et al. (1986) have
shown that with an optimum filter window, the errors due to noise are approxi-
mately equal to the errors from information components lost from the filter window.

The Fourier transform method can also be modified by a technique proposed
by Kreis (1986). He transformed an interferogram without a spatial frequency carrier
added (but with a certain linear phase term intrinsic to the data) and obtained a
complex analytic signal by applying a filter function which covers nearly a half plane
of the Fourier space, which gives us the possibility of evaluating more complex fringe
patterns.

12.5.2 Spatial Carrier Phase Shifting Method

The spatial carrier phase shifting method (SCPI) is based on the use of the same
phase-stepping quadrature filters used in temporal PSI but in the space domain. So
the most simple quadrature filter to use is the three-step filter (Shough et al., 1990).
This filter along the x-direction looks like

hðxÞ ¼ hrðxÞ þ ihiðxÞ ¼ sinð!0Þ½2�ðxÞ � �ðxþ �Þ � �ðxþ �Þ�
þ ið1� cos!0Þ½�ðx� �Þ � �ðxþ �Þ�: ð12:61Þ

When this filter is convolved with a carrier frequency fringe pattern given by

Iðx; yÞ ¼ aðx; yÞ þ bðx; yÞ cos½!0xþ �ðx; yÞ�; ð12:62Þ
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Figure 12.11 Phase detection using Takeda’s Fourier technique. (a) Frequency spectrum of

the interferogram shown in Fig. 12.10. (b) Estimated phase of the quadrature filter.



one obtains two fringe patterns in quadrature, i.e.,

g1ðx; yÞ þ ig2ðx; yÞ ¼ Iðx; yÞ � hrðxÞ þ iIðx; yÞ � hiðxÞ: ð12:63Þ
So, the interesting phase may be estimated as

�ðx; yÞ ¼ atan
giðx; yÞ
grðx; yÞ
� �

¼ atan
1� cosð!0Þ
sinð!0Þ

Iðx� 1; yÞ � Iðxþ 1; yÞ
2Iðx; yÞ � Iðx� 1; yÞ � Iðxþ 1; yÞ

� �
:

ð12:64Þ

But, as we mentioned before, the three-step PSI filter has the disadvantage of
being too sensitive to detuning. The detuning weakness of the three-step algorithm is
evident when dealing with wide-band carrier-frequency interferograms. For that
reason, one may use a more robust to detuning PSI algorithm, such as the five-
step Schwider–Hariharan formula or the seven-step quadrature filter presented by
Servin et al. (1995). The main inconvenience of using a larger-size convolution filter
is that the first two or three pixels inside the boundary of the fringe pattern are not
going to be phase estimated.

One possible solution is to stick with three samples but, instead of assuming a
constant phase over three consecutive pixels, we will make a correction due to the
instantaneous frequency variation within the three sample window. This was made
by Ranson and Kokal (1986) and later, independently, by Servin and Cuevas (1995).
The first step is to filter the interferogram Iðx; yÞ with a high-pass filter in order to
eliminate the DC term aðx; yÞ. Now consider the following three consecutive pixels of
the high-pass filtered fringe pattern I 0ðx; yÞ:

I 0ðx� 1; yÞ ¼ bðx� 1; yÞ cos½!0ðx� 1Þ þ �ðx� 1; yÞ�;
I 0ðx; yÞ ¼ bðx; yÞ cos½!0xþ �ðx; yÞ�;

I 0ðxþ 1; yÞ ¼ bðx� 1; yÞ cos½!0ðxþ 1Þ þ �ðxþ 1; yÞ�:
ð12:65Þ

Assuming that the modulating function bðx; yÞ remains constant over three conse-
cutive pixels, and using a first-order approximation of �ðx; yÞ around the pixel at
ðx; yÞ along the x-axis, we obtain

I 0ðx� 1; yÞ ¼ bðx; yÞ cos !0xþ �ðx; yÞ � !0 �
@�ðx; yÞ
@x

� �
;

I 0ðx; yÞ ¼ bðx; yÞ cos½!0xþ �ðx; yÞ�;

I 0ðxþ 1; yÞ ¼ bðx; yÞ cos !0xþ �ðx; yÞ þ !0 þ
@�ðx; yÞ
@x

� �
:

ð12:66Þ

In these equations we have three unknowns – namely, bðx; yÞ, �ðx; yÞ, and
@�ðx; yÞ=@x – so we may solve for �ðx; yÞ as

tan½!0xþ �ðx; yÞ� ¼ I 0ðx� 1; yÞ � I 0ðxþ 1; yÞ
sgn½I 0ðx; yÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2I 0ðx; yÞ�2 � ½I 0ðx� 1; yÞ þ I 0ðxþ 1; yÞ�2

p

 !

;

ð12:67Þ
where the function sgn[.] takes the sign of its argument. For a more detailed discus-
sion of this method see Servin et al. (1995) or, in general, the n-point phase-shifting
technique, as explained by Schmith and Creath (1995b) and Küchel (1997). A similar
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approach, with the assumption of constancy of the first derivative of phase within
the convolution filter, is also used to the five-point algorithm (Pirga and Kujawinska,
1996), together with the concept of the two-directional spatial-carrier phase-shifting
method (Pirga and Kujawinska, 1995). This last approach allows us to analyze
multiplexed information coded into a fringe pattern.

12.5.3 Synchronous Spatial Phase Detection of Carrier Frequency
Fringe Patterns

The method of synchronous spatial phase detection was first introduced in digital
form by Womack (1984). To analyze this phase-demodulating system, consider as
usual the following carrier frequency fringe pattern:

Iðx; yÞ ¼ aþ b cos½!0xþ �ðx; yÞ�: ð12:68Þ
The dependance on the spatial coordinates of aðx; yÞ and bðx; yÞ will be omitted in
this section for notation clarity. This fringe pattern is now multiplied by the sine and
cosine of the carrier phase as follows:

grðx; yÞ ¼ Iðx; yÞ cosð!0xÞ ¼ a cosð!0xÞ þ b cosð!0xÞ cos½!0xþ �ðx; yÞ�;
giðx; yÞ ¼ Iðx; yÞ sinð!0xÞ ¼ a sinð!0xÞ þ b sinð!0xÞ cos½!0xþ �ðx; yÞ�;

ð12:69Þ
this may be rewritten as

grðx; yÞ ¼ a cosð!0xÞ þ
b

2
cos½2!0xþ �ðx; yÞ� þ b

2
cos½�ðx; yÞ�;

giðx; yÞ ¼ a sinð!0xÞ þ
b

2
sin½2!0xþ �ðx; yÞ� � b

2
sin½�ðx; yÞ�:

ð12:70Þ

To obtain the searched phase �ðx; yÞ we have to low-pass filter the signals grðx; yÞ
and giðx; yÞ to eliminate the two first high-frequency terms. Finally to find the
searched phase we need to find their ratio as

�ðx; yÞ ¼ atan
giðx; yÞ � �hðx; yÞ
giðx; yÞ � �hðx; yÞ
� �

¼ atan
�ðb=2Þ sin½�ðx; yÞ�
ðb=2Þ cos½�ðx; yÞ�

� �
; ð12:71Þ

where hðx; yÞ is a low-pass convolution low-pass filter.

12.5.4 Robust Quadrature Filters

A robust quadrature bandpass filter may be obtained by simply shifting in the
frequency domain the regularizing potentials seen in Section 12.3.3 to the carrier
frequency !0x of the fringe pattern (Marroquin et al., 1997a). That is

U½ f ðx; yÞ� ¼
XX

ðx;yÞ2S
½ f ðx; yÞ � 2gðx; yÞ�2 þ 
R1½ f ðx; yÞ�
� �

; ð12:72Þ

in which the first-order regularizer is now

R1½ f ðx; yÞ� ¼ ½ f ðx; yÞ � f ðx� 1; yÞ expð�!0xxÞ�2 þ ½ f ðx; yÞ � f ðx; y� 1Þ�2;
ð12:73Þ
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where we have shifted the first-order regularizer in the x-direction. The minimizer of
this cost function given the observation field 2gðx; yÞ is a quadrature bandpass filter.
To see this, let us find the frequency response of the filter that minimizes the above
cost function; consider an infinite two-dimensional lattice. Setting the gradient of
U½ f ðx; yÞ� to zero, one obtains the following set of linear equations:

0 ¼ f ðx; yÞ � 2gðx; yÞ þ 
½�f ðx� 1; yÞ expði!0xÞ þ 2f ðx; yÞ
� f ðxþ 1; yÞ expði!0xÞ� þ 
½�f ðx; y� 1Þ þ 2f ðx; yÞ � f ðx; yþ 1Þ�;

ð12:74Þ
and taking the discrete Fourier transform of this equation, one obtains

½1þ 2
½2� cosð!x � !oxÞ � cosð!yÞ�Fð!Þ ¼ Gð!Þ; ð12:75Þ
which leads to the following transfer function Hð!Þ:

Hð!x; !yÞ ¼
Fð!x; !yÞ
Gð!x; !yÞ

¼ 1

1þ 2
½2� cosð!x � !oxÞ � cosð!yÞ�
; ð12:76Þ

which is a bandpass quadrature filter centered at the frequency ð!x ¼ !0x; !y ¼ 0Þ
with a bandwidth controlled by the parameter 
. As this frequency response shows
the form of the filter, it is exactly the same as the membrane low-pass filter studied in
Section 12.3.3 but moved in the frequency domain to the coordinates ð!0x; 0Þ. So this
filter may be used for estimating the phase of a carrier frequency interferogram.

An even better signal-to-noise ratio and edge-effect immunity may be obtained
if one lets the tuning frequency vary in the two-dimensional space (i.e.,
!0x ¼ !xðx; yÞÞ; that is,

Rf ½ f ðx; yÞ� ¼ ½ f ðx; yÞ � f ðx� 1; yÞ expð�i!xðx; yÞÞ�2 þ ½ f ðx; yÞ � f ðx; y� 1Þ�2:
ð12:77Þ

Using this regularizer, one obtains an adaptive quadrature filter (Marroquin et al.,
1997b). In this case one must optimize not only for the filtered field f ðx; yÞ but also
for the two-dimensional frequency field !xðx; yÞ. Additionally, if we want the esti-
mated frequency field !xðx; yÞ to be smooth, one needs also to use a regularizer for
this field: for example, a first-order regularizer,

R!x½!xðx; yÞ� ¼ ½!xðx; yÞ � !xðx� 1; yÞ�2 þ ½!xðx; yÞ � !xðx; y� 1Þ�2: ð12:78Þ
The final cost function will have the following form:

U½ f ðx; yÞ� ¼
XX

ðx;yÞ2S
½ f ðx; yÞ � 2gðx; yÞ�2 þ 
1Rf ½ f ðx; yÞ� þ 
2R!x½!xðx; yÞ�
� �

:

ð12:79Þ
Unfortunately, this cost function contain a nonlinear quadrature term (the
Rf ½!xðx; yÞ� term), so the use of fast convergence techniques such as conjugate gra-
dient or transformed methods are precluded. One needs then to optimize this cost
function following simple gradient search or Newtonian descent (Marroquin et al.,
1997b).

Finally, we may also optimize for the frequency in the y-direction !yðx; yÞ. By
estimating !xðx; yÞ and !yðx; yÞ altogether, it is possible to demodulate a single fringe
pattern containing closed fringes (see Marroquin et al., 1997b).
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12.5.5 The Regularized Phase-Tracking Technique

The regularized phase-tracking (RPT) technique may be applied to almost every
aspect of the fringe pattern processing. The RPT evolved from an early phase-locked
loop (PLL) technique that was applied for the first time to fringe processing by
Servin et al. (1993, 1994). In the RPT (Servin et al., 1997b) technique, one assumes
that locally the phase of the fringe pattern may be considered as spatially mono-
chromatic, so its irradiance may be modeled as a cosinusoidal function phase modu-
lated by a plane pð:Þ. Additionally, this phase plane pð:Þ located at ðx; yÞmust be close
to the phase values �0ð�; �Þ already detected in the neighborhood of the site ðx; yÞ.

Specifically, the proposed cost function to be minimized by the estimated phase
�0ðx; yÞ at each site ðx; yÞ, is

Uðx; yÞ ¼
X

ð�;�Þ2ðNx;y\SÞ
I 0ð�; �Þ � cos pðx; y;2; �Þ�2 þ 
½�0ð�; �Þ
�

�pðx; y; �; �Þ�2mð�; �Þ�
ð12:80Þ

and

pðx; y; �; �Þ ¼ �0ðx; yÞ þ !xðx; yÞðx� �Þ þ !yðx; yÞðy� �Þ; ð12:81Þ
where S is a two-dimensional lattice having valid fringe data (good amplitude mod-
ulation); Nx;y is a neighborhood region around the coordinate ðx; yÞ where the phase
is being estimated; mðx; yÞ is an indicator field which equals one if the site ðx; yÞ has
already been phase estimated, and zero otherwise. The fringe pattern I 0ð�; �Þ is the
high-pass filtered and amplitude normalized version of Iðx; yÞ; this operation is
performed in order to eliminate the low-frequency background aðx; yÞ and to
apprxoimate bðx; yÞ � 1:0. The functions !xðx; yÞ and !yðx; yÞ are the estimated
local frequencies along the x- and y-directions, respectively. Finally, 
 is the regular-
izing parameter that controls (along with the size of Nx;y) the smoothness of the
detected phase.

The first term in Eq. (12.80) attempts to keep the local fringe model close to the
observed irradiance in a least-squares’ sense within the neighborhood Nx;y. The
second term enforces the assumption of smoothness and continuity using only pre-
viously detected pixels �0ðx; yÞ marked by mðx; yÞ. To demodulate a given fringe
pattern we need to find the minimum of the cost function Uðx; yÞ with respect to
the fields �0ðx; yÞ, !xðx; yÞ, and !yðx; yÞ. This may be achieved using the algorithm
described in the next paragraph.

The first phase estimation on S is performed as follows: To start, the indicator
function mðx; yÞ is set to zero ðmðx; yÞ ¼ 0 in SÞ. Then, one chooses a seed or starting
point (x0; y0Þ inside S to begin the demodulation of the fringe pattern. The function
Uðx0; y0Þ is then optimized with respect to �0ðx0; y0Þ, !xðx0; y0Þ, !yðx0; y0Þ; the visited
site is marked as detected, i.e., we set mðx0; y0Þ ¼ 1. Once the seed pixel is demo-
dulated, the sequential phase demodulation proceeds as follows:

1. Choose the ðx; yÞ pixel inside S (randomly or with a prescribed scanning
order).

2. If mðx; yÞ ¼ 1, return to the first statement.
If mðx; yÞ ¼ 0, then test if mðx 0; y 0Þ ¼ 1 for any adjacent pixel ðx 0; y 0Þ:
If no adjacent pixel has already been estimated, return to the first state-
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ment.
If mðx 0; y 0Þ ¼ 1 for an adjacent pixel, take ½�0ðx 0; y 0Þ; !xðx 0; y 0Þ; !yðx 0; y 0Þ�
as initial condition to minimize Uðx; yÞ with respect to
½�0ðx; yÞ; !xðx; yÞ; !yðx; yÞ�.

3. Set mðx; yÞ ¼ 1.
4. Return to the first statement until all the pixels in S are estimated.

An intuitive way of considering the first iteration just presented is as a crystal
growing (CG) process where new molecules are added to the bulk in that particular
orientation which minimizes the local crystal energy given the geometrical orienta-
tion of the adjacent and previously positioned molecules. This demodulating strategy
is capable of estimating the phase within any fringe pattern’s boundary.

To optimize Uðx; yÞ at site ðx; yÞ with respect to ð�0; !x; !yÞ, we may use simple
gradient descent:

�kþ1
0 ðx; yÞ ¼ �k0ðx; yÞ � �

@Uðx; yÞ
@�0ðx; yÞ

;

!kþ1
x ðx; yÞ ¼ !k

xðx; yÞ � �
@Uðx; yÞ
@!xðx; yÞ

;

!kþ1
y ðx; yÞ ¼ !k

yðx; yÞ � �
@Uðx; yÞ
@!yðx; yÞ

;

ð12:82Þ

where � is the step size and k is the iteration number. Only one or two iterations are
normally needed (except for the demodulation of the starting seed point which may
take about 20 iterations); this is because the initial conditions for the gradient search
are taken from a neighborhood pixel already estimated. In this way the initial con-
ditions are already very close to the stable point of the gradient search. It is impor-
tant to remark that the two-dimensional RPT technique gives the estimated phase
�0ðx; yÞ already unwrapped, so no additional phase-unwrapping process is required.

The first global phase estimation in S (using the gradient search along with the
CG algorithm) is usually very close to the actual modulating phase; if needed, one
may perform additional global iterations to improve the phase-estimation process.
Additional iterations may be performed using, again, Eq. (12.82), but now taking as
initial conditions the last estimated values at the same site ðx; yÞ (not the ones at a
neighborhood site as done in the first global CG iteration). Note that for the addi-
tional iterations, the indicator function mðx; yÞ in Uðx; yÞ is now everywhere equal to
one; therefore, one may scan S in any desired order whenever all the sites are visited
at each global iteration. In practice, only three or four additional global iterations
are needed to reach a stable minimum of Uðx; yÞ at each site ðx; yÞ in S.

Figure 12.12 shows the result of applying the RPT technique to the fringe
pattern shown in Fig. 12.10. From Fig. 12.12 we can see that the estimated phase
at the borders is given accurately.

As mentioned previously, the RPT technique may also be used to demodulate
closed-fringe interferograms. Figure 12.13(a) shows a closed-fringe interferogram
and Fig. 12.13(b) shows its estimated phase using the RPT technique. Some addi-
tional modifications (see Servin et al., 1997b) are needed to the RPT to make it more
robust to noise when dealing with closed-fringe interferograms.
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12.6 PHASE UNWRAPPING

Except for the RPT technique, all other interferometric methods give the detected
phase wrapped (the modulo 2 of the true phase) due to the arc tangent function
involved in the phase-estimation process. The relationship between the wrapped
phase and the unwrapped phase may be stated as

�wðx; yÞ ¼ �ðx; yÞ þ 2kðx; yÞ; ð12:83Þ

where �wðx; yÞ is the wrapped phase, �ðx; yÞ is the unwrapped phase, and kðx; yÞ is an
integer-valued correcting field. The unwrapping problem is trivial for phase maps
calculated from good-quality fringe data; in such phase maps, the absolute phase
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Figure 12.12 Estimated phase using the phase-tracking technique (RPT) applied to the

carrier frequency interferogram shown in Fig. 12.10. As we can see, the interferogram’s

edge was properly estimated.

Figure 12.13 Estimated phase using the phase-tracking technique (RPT) applied to a

closed-fringe pattern. (a) The fringe pattern. (b) Its estimated phase.



difference between consecutive phase samples in both the horizontal and vertical
directions is less than , except for the expected 2 discontinuities. Unwrapping is
therefore a simple matter of adding or subtracting 2 offsets at each discontinuity
(greater than  radians) encountered in the phase data or integrating wrapped phase
differences (Itoh, 1982; Ghiglia et al., 1987; Bone, 1991; Owner-Petersen, 1991;
Huntley, 1994a, 1994b; Takeda, 1996).

Unwrapping becomes more difficult when the absolute phase difference
between adjacent pixels at points other than discontinuities in the arctan() function
is greater than . These unexpected discontinuities may be introduced, for example,
by high-frequency, high-amplitude noise, discontinuous phase jumps and regional
undersampling in the fringe pattern, or a real physical discontinuity of the domain.

12.6.1 Unwrapping Using Least-Squares Integration of Gradient
Phase

The least-squares technique was first introduced by Ghiglia et al. (1994) to unwrap
inconsistent phase maps. To apply this method, start by estimating the wrapped
phase gradient along the x- and y-direction, i.e.,

�yðx; yÞ ¼ W ½�wðx; yÞ � �wðx; y� 1Þ�
�xðx; yÞ ¼ W ½�wðx; yÞ � �wðx� 1; yÞ� ð12:84Þ

having an oversampled phase map with moderately low noise, the phase differences
in Eq. (12.84) will be everywhere in the range ð�;þÞ. In other words, the esti-
mated gradient will be unwrapped. Now we may integrate the phase gradient in a
consistent way by means of a least-squares integration. The integrated or searched
continuous phase will be the one which minimizes the following cost function:

U½�ðx; yÞ� ¼
X

ðx;yÞ2S

�
½�ðx; yÞ � �ðx� 1; yÞ � �xðx; yÞ�2

þ½�ðx; yÞ � �ðx; y� 1Þ � �yðx; yÞ�2
� ð12:85Þ

The estimated unwrapped phase �ðx; yÞ may be found, for example, using simple
gradient descent, as

�kþ1ðx; yÞ ¼ �kðx; yÞ � � @U

@�ðx; yÞ ð12:86Þ

where k is the iteration number and � is the convergence rate of the gradient search
system. There are faster algorithms of obtaining the searched unwrapped phase
among the techniques of conjugate gradient or the transform methods (Ghiglia et
al., 1994). Figure 12.14 shows the resulting unwrapped phase (Fig. 12.14(b)) apply-
ing the least-squares technique to a noiseless phase map (Fig. 12.14(a)).

We may also include regularizing potentials to the least-squares unwrapper in
order to smooth out some phase noise and possibly interpolate over regions of
missing data with a predefined behavior (Marroquin et al., 1995).

When the phase map is too noisy, the fundamental basis of the least-squares
integration technique may be broken; i.e., the wrapped phase difference may no
longer be a good estimator of the gradient field due to a high amplitude noise. In
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this severe noise situation, the wrapped phase difference among neighborhood pixels
is no longer less than . As a consequence, a reduction of the dynamic range of the
resulting unwrapped phase is obtained (Servin et al., 1998a).

12.6.2 Unwrapping Using the Regularized Phase-Tracking
Technique

The main motivation to apply the RPT method to phase unwrapping (Servin et al.,
1998a) is its superior robustness to noise with respect to the least-squares integration
technique. The RPT technique as the least-squares integration of phase gradient is
also robust to the edge effect at the boundary of the phase map.
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Figure 12.14 Phase unwrapping. (a) Wrapped phase. (b) Path-independent phase unwrap-

ping using the least-squares integration technique.



The first step to unwrap a given phase map using the RPT technique is to put
the wrapped phase into two-phase orthogonal fringe patterns. These fringe patterns
may be obtained using the cosine and the sine of the map phase being unwrapped:
i.e.,

ICðx; yÞ ¼ cos½�wðx; yÞ�;
ISðx; yÞ ¼ sin½�wðx; yÞ�;

ð12:87Þ

where �Wðx; yÞ is the phase map being unwrapped.
Now the problem of phase unwrapping may be treated as a demodulation of

two phase-shifted fringe patterns using the RPT technique (Servin et al., 1998a).
Therefore, the cost function to be minimized by the unwrapped phase �0ðx; yÞ at
each site ðx; yÞ is

Uðx; yÞ ¼
X

ð�;�Þ2ðNx;y\SÞ
½ICð�; �Þ � cos pðx; y; �; �Þ�2 þ ½ISð�; �Þ � sin pðx; y; �; �Þ�2�


½�0ð�; �Þ � pðx; y; �; �Þ�2mð�; �Þ�

ð12:88Þ
and

pðx; y; �; �Þ ¼ �0ðx; yÞ þ !xðx; yÞðx� �Þ þ !yðx; yÞð y� �Þ; ð12:89Þ
where S is a two-dimensional lattice having valid fringe data (good amplitude mod-
ulation); Nx;y is a neighborhood region around the coordinate ðx; yÞ where the phase
is being unwrapped; mðx; yÞ is an indicator field which equals 1 if the site ðx; yÞ has
already been unwrapped, and 0 otherwise. The functions !xðx; yÞ and !yðx; yÞ are the
estimated local frequencies along the x- and y-directions respectively. Finally, 
 is the
regularizing parameter which controls (along with the size of Nx;y) the smoothness of
the detected-unwrapped phase.

The algorithm to optimize this cost function is the same as the one described in
the RPT section 12.5.5, so we are not going into the details here.

12.6.3 Temporal Phase Unwrapping

This phase unwrapping technique was introduced by Huntley and Saldner in 1993
and it has been applied in optical metrology to measure deformation. The basic idea
of this technique is to take several interferograms as the object is deformed; there-
fore, the number of deformation fringes within that object will grow due to the
increasing applied force. If one wants to analyze each fringe pattern using the PSI
technique, one needs to take at least three phase-shifted interferograms for each
object’s deformation to obtain its corresponding phase map. The sampling theorem
must be fulfilled in the temporal space for every pixel in the fringe pattern; i.e.,
consecutive pixels should have a phase difference less than  in the time domain.
The main advantage of this method is that the unwrapping of each pixel is an
independent process from the unwrapping process of any other pixel in the temporal
sequence of phase maps at hand.

As mentioned before, for each object’s deformation the modulating phase of
the object is estimated using the PSI technique. This gives us a temporal sequence of
wrapped phases. The sequence of phase maps may be represented by
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�wð1; x; yÞ; �wð2; x; yÞ; �wð3; x; yÞ; . . . ; �wðN; x; yÞ; ðx; yÞ 2 S; ð12:90Þ
where S is the region of valid phase data and N is the total number of intermediate-
phase maps. In order to fulfill the sampling theorems, the following condition must
be fulfilled.

W ½�wði þ 1; x; yÞ � �wði; x; yÞ�
�� �� < ; ð1  i  N � 1Þ; ðx; yÞ 2 S

ð12:91Þ
and W ½:� is the wrapping operator. The unwrapping process then proceeds according
to

�ðx; yÞ ¼
XN�1

i¼1

W ½�wði þ 1; x; yÞ � �wði; x; yÞ�: ð12:92Þ

The distribution given by �ðx; yÞ gives the unwrapped phase difference between the
initial state �wð1; x; yÞ and the final state �wðN; x; yÞ.

Figure 12.15 shows a sequence of phase maps that may be unwrapped using the
temporal phase unwrapping technique herein described. Each wrapped phase has
less than half a fringe among them, as required by this technique. It must be pointed
out that the unwrapped phase is going to be equal to the phase difference between
the phase map shown in Fig. 12.15(a) and the phase map shown in Fig. 12.15(d).

12.7 EXTENDED RANGE FRINGE PATTERN ANALYSIS

Extended range interferometry allows us to measure larger numbers of aspheric
wavefronts than standard two arms interferometers. The reason for this extended
range is that using these techniques enables one to directly measure the gradient or
curvature of the wavefront instead of the wavefront itself. If the wavefront being
measured is smooth, then one needs less image pixels to represent its spatial varia-
tions. As we will see later, an exception to this is the sub-Nyquist interferometry,
where the wavefront is taken in a direct way, with the disadvantage of needing a
special-purpose CCD video array.

12.7.1 Phase Retrieval from Gradient Measurement Using Screen-
Testing Methods

The screen-testing methods are used to detect the gradient of the wavefront under
analysis. One normally uses a screen with holes or strips lying perpendicular to the
propagation direction of the testing wavefront. Then, one collects the irradiance
pattern produced by the shadow or the self-image (whenever possible) of the testing
screen at some distance from it. If the testing wavefront is aberrated, then the
shadow or self-image of the screen will be distorted with respect to the original
screen. The phase difference between the screen’s shadow and the screen is related
to the gradient of the aberrated wavefront at the screen plane. Thus, to obtain the
shape of the testing wavefront, one must use an integration procedure. The integra-
tion procedure that we employ is the least-squares solution, which has the advantage
of being path-independent and robust to noise.

The two most used screens to test the wavefront aberration are the Ronchi
ruling (Cornejo, 1992) and the Hartmann testing plate (Ghozeil, 1992). The Ronchi
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ruling, which is a linear grating, is inserted in a place perpendicular to the average
direction of propagation of the wavefront being tested. The other frequently used
screen is the Hartmann plate, which is a screen with a two-dimensional array of small
circular holes evenly spaced in the screen. A linear grating such as a Ronchi ruling is
only sensitive to the ray aberration perpendicular to the ruling strips. This means that,
in general, we will need two shadow Ronchi images to fully determine the aberration
of the wavefront. In contrast, only one Hartmann testing screen is needed to collect all
the data regarding the wavefront aberration. Unfortunately, a Hartmanngram (the
irradiance shadow of the Harmann screen at the testing plane) is more difficult to
analyze than a Ronchigram. That is because a Ronchigram may be analyzed using
robust and well-known carrier frequency interferometry.

The main advantage of using screen tests along with a CCD camera is to
increase the measuring dynamic range of the tested wavefront: i.e., sensing the
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Figure 12.15 A sequence of wrapped phases suitable for being unwrapped by the method of

temporal phase unwrapping. The unwrapped phase will be the difference between the first

wrapped phase in (a) and the one in (d).



gradient of the testing wavefront instead of the wavefront itself allow us to increase
the number of aberration waves that can be tested. This is why the most popular way
of testing large optics, such as telescopes’ primary mirrors, are screen tests. Thus, for
a given number of pixels of a CCD camera, it is possible to measure more waves of
aberration using screen tests than using a standard interferometer, which measures
the aberration waves directly.

12.7.2 Wavefront Slope Analysis with Linear Gratings (Ronchi Test)

As mentioned earlier, a linear grating is easier to analyze using standard carrier
fringe detecting procedures such as the Fourier method, the synchronous method,
or the spatial phase shifting (SPSI) method. These techniques have already been
discussed above. The Ronchi test has been a widely used technique and has been
reported by several researchers in metrology (Yatagai, 1984; Omura and Yatagai,
1988; Wan and Lin, 1990; Fischer, 1992).

We may start with a simplified mathematical model for the transmittance of a
linear grating (Ronchi rulings are normally made of binary transmittance):

Txðx; yÞ ¼
½1þ cosð!0xÞ�

2
; ð12:93Þ

where !0 is the angular spatial frequency of the Ronchi ruling. The linear ruling is
then placed at the plane where the aberrated wavefront is being estimated. If a light
detector is placed at a distance d from the Ronchi plate then, as a result of wavefront
aberrations, we obtain a distorted irradiance pattern that will be given, approxi-
mately, by

Idðx; yÞ ¼
1

2
þ 1

2
cos !0xþ !0d

@Wðx; yÞ
@y

� �
ð12:94Þ

where Ixðx; yÞ is the distorted shadow of the transmittance Txðx; yÞ, and Wðx; yÞ
represents the wavefront under test. As Eq. (12.94) shows, it is necessary to detect
two orthogonal shadow patterns to completely describe the gradient field of the
wavefront under test. The other linear ruling, located at the same testing plane
but with its strip lines oriented in the y-direction, is

Tyðx; yÞ ¼
½1þ cosð!0yÞ�

2
: ð12:95Þ

Thus, the distorted image of the Ronchi ruling at the collecting data plane is given by

Iyðx; yÞ ¼
1

2
þ 1

2
cos !0yþ !0d

@Wðx; yÞ
@x

� �
: ð12:96Þ

We may use any of the carrier fringe methods described in this chapter to demodu-
late these two Ronchigrams. Figure 12.16(a) shows a Ronchi ruling and Fig. 12.16(b)
shows the same Ronchi ruling modulated by a wavefront containing aspheric aber-
ration.

Once the detected and unwrapped phase of the ruling’s shadows has been
obtained, one needs to integrate the resulting gradient field. To integrate this
phase gradient, one may use path-independent integration such as least-squares
integration. The least-squares integration of the gradient field may be stated as the
function which minimizes the following quadratic cost function:
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UðŴWÞ ¼
X

ðx;yÞ2S
ŴWðxþ 1; yÞ � ŴWðx; yÞ � @Wðx; yÞ

@x

� �2

þ
X

ðx;yÞ2S
ŴWðx; yþ 1Þ � ŴWðx; yÞ � @Wðx; yÞ

@y

� �2
;

ð12:97Þ

where the hat function ŴWðx; yÞ is the estimated wavefront, and we have approxi-
mated the derivative of the searched phase along the x- and y-axis as first-order
differences of the estimated wavefront. The least-squares estimator may then be
obtained from Uðx; yÞ by simple gradient descent as

ŴWkþ1ðx; yÞ ¼ ŴWkðx; yÞ � � @UðŴWÞ
@ŴWðx; yÞ ; ð12:98Þ

or using a faster algorithm such as conjugate gradient or transform methods (Fried,
1977; Hudgin, 1977; Noll, 1978; Hunt, 1979; Freischlad et al., 1985, 1992; Takajo
and Takahashi, 1988; Ghiglia and Romero, 1994).

12.7.3 Moiré Deflectometry

We may increase the sensitivity of the Ronchi test by placing the collecting data
plane at the first self-image of the linear ruling. The first Talbot self-image for a
collimated light beam appears at the so-called Rayleigh distance LR, given by

LR ¼ 2 d2



: ð12:99Þ

The resulting deflectograms may be analyzed in the same way as the one described
for the Ronchigrams.
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Figure 12.16 (a) Unmodulated Ronchi ruling. (b) Modulated Ronchi ruling.



12.7.4 Wavefront Analysis with Lateral Shearing Interferometry

Lateral shearing interferometry consists in obtaining a fringe by constructing an
interfering pattern using two lateral displaced copies of the wavefront under analysis
(Rimmer and Wyant, 1975; Hung, 1982; Yatagai and Kanou, 1984; Gasvik, 1987;
Hardy and MacGovern, 1987; Welsh et al., 1995). The mathematical form of the
irradiance of a lateral sheared fringe pattern may be written as

Ixðx; yÞ ¼
1

2
þ 1

2
cos

2



½Wðx� �x; yÞ �Wðxþ �x; yÞ�

� �
;

Ixðx; yÞ ¼
1

2
þ 1

2
cos

2



�xWðx; yÞ

� �
;

ð12:100Þ

where �x is half of the total lateral displacement. As the Eq. (12.100) shows, one also
needs the orthogonally displaced shearogram to describe the wavefront under ana-
lysis completely. The orthogonal shearogram in the y-direction may be written as

Iyðx; yÞ ¼
1

2
þ 1

2
cos

2



½Wðx; y� �yÞ �Wðx; yþ �yÞ�

� �
;

Iyðx; yÞ ¼
1

2
þ 1

2
cos

2



�yWðx; yÞ

� �
:

ð12:101Þ

These fringe patterns may be transformed into carrier frequency interferograms by
introducing a large and known amount of defocusing to the testing wavefront
(Mantravadi, 1992). Having linear carrier fringe patterns, one may proceed to
their demodulation using standard techniques of fringe carrier analysis, as seen in
this chapter. A shearing interferogram is shown in Fig. 12.17. This shearing inter-
ferogram corresponds to a defocused wavefront having a circular pupil and, as we
can see from Fig. 12.17, interference fringes are only present in the common area of
the two copies of the laterally displaced wavefront.

We may analyze in the frequency domain the modulating phase of a sheared
interferogram (in the x-direction, for example) as the output of a linear filter:
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Figure 12.17 Lateral shearing of a circular pupil containing a defocused wavefront.

Interference fringes form only at the superposition of both sheared pupils.



f½�xWðxÞ� ¼ f½Wðx� �xÞ �Wðxþ �xÞ�
¼ 2i sinð�x!xÞf½WðxÞ�: ð12:102Þ

As can be seen, the transfer function of the shearing operator in the frequency
domain is a sinusoidal-shaped filter. As a consequence, the inverse filter (the one
needed to obtain the searched wavefront) has poles in the frequency domain, so its
use is not straightfoward. Instead of using a transformed method to recover the
wavefront from the sheared data we feel it is easier to use a regularization approach
in the space domain.

Assume that we have already estimated and unwrapped the interesting phase
differences �xWðx; yÞ and �yWðx; yÞ. Using this information, the least-squares
wavefront reconstruction may be stated as the minimizer of the following cost func-
tion:

UðŴWÞ ¼
X

ðx;yÞ2Sx

ŴWðx� �x; yÞ � ŴWðxþ �x; yÞ ��xWðx; yÞ
n o2

þ
X

ðx;yÞ2Sy

ŴWðx; y� �yÞ � ŴWðx; yþ �yÞ ��yWðx; yÞ
n o2

UðŴWÞ ¼
X

ðx;yÞ2Sx

Uxðx; yÞ2 þ
X

ðx;yÞ2Sy

Uyðx; yÞ2;

ð12:103Þ

where the ‘‘hat’’ function represents the estimated wavefront and Sx and Sy are two-
dimensional lattices containing valid phase data in the x- and y-shearing directions
(the common area of the two laterally displaced pupils). Unfortunately, the least-
squares cost function stated above is not well posed, because the matrix that results
from setting the gradient of U equal to 0 is not invertible (as seen previously, the
inverse filter may contain poles in the frequency range of interest). Fortunately, we
may regularize this inverse problem and find the expected smooth solution of the
problem (Servin et al., 1996b). As seen before, the regularizer may consist of a linear
combination of squared magnitude of differences of the estimated wavefront within
the domain of interest. In particular, one may use a second-order or thin-plate
regularizer:

Rxðx; yÞ ¼ ŴWðx� 1; yÞ � 2ŴWðx; yÞ þ ŴWðxþ 1; yÞ;
Ryðx; yÞ ¼ ŴWðx; y� 1Þ � 2ŴWðx; yÞ þ ŴWðx; yþ 1Þ:

ð12:104Þ

Therefore, the regularized cost function becomes

UðŴWÞ ¼
X

ðx;yÞ2Sx

Uxðx; yÞ2 þ
X

ðx;yÞ2Sy

Uyðx; yÞ2 þ 

X

ðx;yÞ2Pupil
½Rxðx; yÞ2 þ Ryðx; yÞ2�;

ð12:105Þ
where Pupil refers to the two-dimensional lattice inside the pupil of the wavefront
being tested. The regularizing potentials discourage large changes in the estimated
wavefront among neighboring pixels. As a consequence, the searched solution will be
relatively smooth. The parameter 
 controls the amount of smoothness of the esti-
mated wavefront. It should be remarked that the use of regularizing potentials in this
case is a must (even for noise-free observations) to yield a stable solution of the least-
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squares integration for lateral displacements greater than two pixels, as analyzed by
Servin et al. (1996b).

The estimated wavefront may be calculated using simple gradient descent as

ŴWkþ1ðx; yÞ ¼ ŴWkðx; yÞ � � @UðŴWÞ
@ŴWðx; yÞ ; ð12:106Þ

where � is the convergence rate. This optimizing method is not very fast. One nor-
mally uses faster algorithms such as conjugate gradient.

12.7.5 Wavefront Analysis with Hartmann Screens

The Hartmann test is a well-known technique for testing large optical components
(Ghozeil, 1992; Welsh et al., 1995). The Hartmann technique samples the wavefront
under analysis using a screen of uniformly spaced holes situated at the pupil plane.
The Hartmann screen may be expressed as

HSðx; yÞ ¼
XN=2

n¼�N=2

XN=2

m¼�N=2

hðx� pn; y� pmÞ; ð12:107Þ

where HSðx; yÞ is the Hartmann screen and hðx; yÞ are the small holes which are
uniformly spaced in the Hartmann screen. Finally, p is the space among the holes of
the screen. A typical Hartmann screen may be seen in Fig. 12.18, where the two-
dimensional arrangement of holes is shown. The measuring wavefront must pass
through these holes, and their shadow is recorded at a distance d from it. If we have
wavefront aberrations higher than defocusing, the Hartmann screen’s shadow will be
geometrically distorted.

The collimated rays of light that pass through the screen holes are then cap-
tured by a photographic plate at some distance d from it. The uniformly spaced
array of holes at the instrument’s pupil is then distorted at the photographic plane by
the aspherical aberrations of the wavefront under test. The screen deformations are
then proportional to the slope of the aspheric wavefront: i.e.,
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Figure 12.18 A typical Hartmann screen used in the Hartmann test.



Hðx; yÞ ¼
XN=2

ðn;mÞ¼�N=2;

h 0 x� pn� d
@Wðx; yÞ
@x

; y� pm� d
@Wðx; yÞ
@x

� �" #

Pðx; yÞ;

ð12:108Þ
where Hðx; yÞ is the Hartmanngram (the irradiance of the screen’s shadow) obtained
at a distance of d from the Hartmann screen. The function h 0ðx; yÞ is the image of the
screen’s hole hðx; yÞ as projected at the Hartmanngram plane. Finally, Pðx; yÞ is the
pupil of the wavefront being tested. As seen in Eq. (12.108), only one Hartmanngram
is needed to fully estimate the wavefront’s gradient. The frequency content of the
estimated wavefront will be limited by the sampling theorem to the hole’s period p of
the screen. A typical Hartmanngram may be seen in Fig. 12.19. This Hartmanngram
corresponds to an aspheric wavefront having a strong spherical aberration compo-
nent.

Traditionally, these Hartmanngrams (the distorted image of the screen at the
observation plate’s plane) are analyzed by measuring the centroid of the spots images
h 0ðx; yÞ generated by the screen holes hðx; yÞ. The deviation of these centroids from
their uniformly spaced positions (unaberrated positions) are recorded. These devia-
tions are proportional to the aberration’s slope. The centroids’ coordinates give a
two-dimensional discrete field of the wavefront gradient that needs integration and
interpolation over regions without data. Integration of the wavefront’s gradient field
is normally done by using the trapezoidal rule (Ghozeil, 1992). The trapezoidal rule
is carried out following several independent integration paths and their outcomes
averaged. In this way, one may approach a path-independent integration. Using this
integration procedure, the wavefront is only known at the hole’s position. Finally, a
polynomial or spline wavefront fitting is necessary to estimate the wavefront’s values
at places other than the discrete points where the gradient data is collected. A two-
dimesional polynomial for the wavefront’s gradient may be proposed. This polyno-
mial is then fitted by least squares to the slope data; it must contain every possible
type of wavefront aberration, otherwise some unexpected features (specially at the

Modern Fringe Pattern Analysis in Interferometry 415

Figure 12.19 A distorted image of the Hartmann screen as seen inside the paraxial focus of

a paraboloid under test.



edges) of the wavefront may be filtered out. On the other hand, if one uses a high-
degree of polynomial (in order to ensure not to filter out any wavefront aberration),
the estimated continuous wavefront may wildly oscillate in regions where no data are
collected.

Recently, robust quadratic filters have been used to demodulate
Hartmanngrams (Servin et al., 1996d). Also the regularized phase tracker (RPT)
has been used to demodulate the gradient information of the Hartmanngram.
Using the RPT technique one is able to estimate the gradient field not only at the
hole’s positions but continuously over the whole pupil of the Hartmanngram (Servin
et al., 1999).

12.7.6 Wavefront Analysis by Curvature Sensing

Teague (1983), Streibl (1984), and Roddier (1990) have analyzed and demonstrated
phase retrieval using the irradiance transport equation. Assuming a paraxial beam
propagating along the z-axis, we may obtain the irradiance transport equation as
(Teague, 1983; Streibl, 1984):

@Iðx; y; zÞ
@z

¼ �rIðx; y; zÞ � rWðx; y; zÞ � Iðx; y; zÞ r2Wðx; y; zÞ ð12:109Þ

where Iðx; y; zÞ is the distribution of the illumination along the propagating beam,
Wðx; y; zÞ is the wavefront surface at distance z from the origin, and r is the
ð@=@x; @=@yÞ operator. In the analysis of wavefronts using the transport equation
there is no need for a codifying screen pupil, as in the case of the Ronchi or
Hartmann test.

Following an interesting interpretation of the irradiance transport equation
given by Ichikawa et al. (1988), one may note in the transport equation the following
interpretation for each term:

. The first term rI � rW may be seen as the irradiance variation caused by a
transverse shift of the inhomogeneous ðrI 6¼ 0Þ beam due to the local tilt of
the wavefront whose normal (ray) direction is given by rW ; this may be
called a prism term.

. The second term Ir2W may be interpreted as the irradiance variation
caused by convergence or divergence of the beam whose local focal length
is inversely proportional to r2W ; this may be called a ‘‘lens term.’’

Thus, the sum expresses the variation of the beam irradiance caused by the prism
and lens effect as it propagates along the z-axis. Rewriting the transport equation as

� @Iðx; y; zÞ
@z

¼ r � ½Iðx; y; zÞ rWðx; y; zÞ� ð12:110Þ

and remarking that rW is the direction of the ray vector, we can easily see that the
transport equation represents the law of light energy conservation, which is analo-
gous to the law of mass or charge conservation, frequently expressed by

@�

@t
¼ divð� vÞ; ð12:111Þ

with � and v being the mass or charge density and the flow velocity, respectively.
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The technique proposed by Roddier (1990) to use the transport equation in
wavefront estimation is as follows. Let Pðx; yÞ be the transmittance of the pupil. That
is, Pðx; yÞ equals 1 inside the pupil and 0 outside. Furthermore we may assume that
the illumination at the pupil’s plane is uniform and equal to I0 inside Pðx; yÞ. Hence
rI ¼ 0 in Pðx; yÞ is everywhere 0 except at the pupil’s edge, where it has the value

rI ¼ �I n �c ð12:112Þ
Here �c is a Dirac distribution around the pupil’s edge and n is the unit vector
perpendicular to the edge and pointing outward. Substituting the irradiance
Laplacian in Pðx; yÞ into the irradiance transport equation, one obtains

@Iðx; y; zÞ
@z

¼ �I0 �
@Wðx; y; zÞ

@n
�c � I0Pðx; yÞr2Wðx; y; zÞ ð12:113Þ

where @W=@n ¼ n � rW is the wavefront derivative in the outward direction perpen-
dicular to the pupil’s edge. Curvature sensing consists in taking the difference
between the illumination observed in two close planes separated a distance ��z
from the reference plane where the pupil Pðx; yÞ is located. Then we obtain the
following two measurements as

I1 ¼ I0 þ
@I

@z
�z

I2 ¼ I0 �
@I

@z
�z

ð12:114Þ

Having these data, one may form the so-called sensor signal as

S ¼ I1 � I2
I1 þ I2

¼ 1

I0

@I

@z
�z ð12:115Þ

Substituting this into Eq. (12.113) yields

S ¼ @Wðx; yÞ
@n

�c � Pðx; yÞr2Wðx; yÞ
� �

�z ð12:116Þ

Solving this differential equation one is able to estimate the wavefront inside the
pupil Pðx; yÞ, knowing both the Laplacian ofWðx; yÞ inside Pðx; yÞ and @W=@n along
the pupil’s edge as Neumann boundary conditions.

12.7.7 Sub-Nyquist Analysis

Testing of aspheric wavefronts is nowadays routinely achieved in the optical shop by
the use of commercial interferometers. The testing of deep aspheres is limited by the
aberrations of the interferometer’s imaging optics as well as the spatial resolution of
the CCD video camera used to gather the interferometric data. The CCD video
arrays come typically with 256� 256 or 512� 512 image pixels. The number of
CCD pixels limits the highest recordable frequency over the CCD array to  rad/
pixel. This maximum recordable frequency is called the Nyquist limit of the sampling
system. The detected phase map of an interferogram having frequencies higher than
the Nyquist limit is said to be aliased and cannot be unwrapped using standard
techniques such as the ones presented so far.

The main prior knowledge that is going to be used by us is that the expected
wavefront is smooth (Greivankamp, 1987; Greivenkamp and Bruning, 1992). Then,
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one may introduce this prior knowledge into the unwrapping process. The main
requirement to apply sub-Nyquist techniques is to have a CCD camera with detec-
tors much smaller than the spatial separation among them. Another alternative is to
use a mask with small holes over the CCD array to reduce the light-sensitive area of
the CCD pixels. This requirement allows us to have a strong signal even for thin
interferogram fringes. To obtain the undersampled phase map, one may use any
well-known PSI techniques using phase-shifted undersampled interferograms.

The undersampled interferogram may be imaged directly over the CCD video
array with the aid of an optical interferometer, as seen in Chapter 1. If the CCD
sampling rate is Dx over the x-direction, and Dy over the y-direction and the dia-
meter of the light-sensitive area of the CCD is d, we may write the mathematical
expression for the sampling operation over the interferograms irradiance as

S½Iðx; yÞ� ¼ Iðx; yÞ � � circ �

d

� h i
comb

x

�x
;
y

�y

� �
; � ¼ ðx2 þ y2Þ1=2; ð12:117Þ

where the function S½Iðx; yÞ� is the sampling operator over the interferogram’s irra-
diance. The symbol ð��Þ indicates a two-dimensional convolution. The circð�=dÞ is
the circular size of the CCD detector. The comb function is an array of delta func-
tions with the same spacing as the CCD pixels. The phase map of the subsampled
interferogram may be obtained using, for example, three phase-shifted interfero-
grams, as

Iðx; y; tÞ ¼
X1

n¼�1

anðx; yÞ þ bnðx; yÞ cos
2



�ðx; yÞ þ t

� �
�ðt� n�Þ; ð12:118Þ

where the variable � is the amount of phase shift. Using well-known formulae we can
find the subsampled wrapped phase by

�wðx; yÞ ¼ tan�1 1� cosð�Þ
sinð�Þ

S½I1ðx; yÞ� � S½I3ðx; yÞ�
2S½I1ðx; yÞ� � S½I2ðx; yÞ� � S½I3ðx; yÞ�

� �
: ð12:119Þ

As Eq. (12.119) shows, the obtained phase is a modulo 2 of the true undersampled
phase due to the arc tangent function involved in the phase-detection process.

Now we may treat the problem of unwrapping undersampled phase maps due
to smooth wavefronts: i.e., the only prior knowledge about the wavefront being
analyzed is smoothness. This is far less restrictive than the null testing technique
presented in the last section. Analysis of interferometric data beyond the Nyquist
frequency was first proposed by Greivenkamp (1987), who assumed that the wave-
front being tested is smooth up to the first or second derivative. Greivenkamp’s
approach to unwrap subsampled phase maps consists of adding multiples of 2
each time a discontinuity in the phase maps is found. The number of 2 values
added is determined by the smoothness condition imposed on the wavefront in its
first or second derivative along the unwrapping direction. Although Greivenkamp’s
approach is robust against noise, its weakness is that it is a path-dependent phase
unwrapper.

In this section we present a method (Servin et al., 1996a) which overcomes the
path dependency of the Greivenkamp approach while preserving its noise robust-
ness. In this case an estimation of the local wrapped curvature (or wrapped
Laplacian) of the subsampled phase map �wðx; yÞ is used to unwrap the interesting
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deep aspheric wavefront. Once having the local wrapped curvature along the x- and
y-directions, one may use least-squares integration to obtain the unwrapped contin-
uous wavefront. The local wrapped curvature is obtained as

Lxðx; yÞ ¼ W ½�wðx� 1; yÞ � 2�wðx; yÞ þ �wðxþ 1; yÞ�;
Lyðx; yÞ ¼ W ½�wðx; y� 1Þ � 2�wðx; yÞ þ �wðx; yþ 1Þ�: ð12:120Þ

If the absolute value of the discrete wrapped Laplacian is less than , its value will be
nonwrapped. Then we may obtain the unwrapped phase �ðx; yÞ as the function
which minimizes the following quadratic cost function (least squares):

U½�ðx; yÞ� ¼
X

ðx;yÞ2S
Uxðx; yÞ2 þUyðx; yÞ2; ð12:121Þ

where S is a subset of a two-dimensional regular lattice of nodes having good
amplitude modulation. The functions Uxðx; yÞ and Uyðx; yÞ are given by

Uxðx; yÞ ¼ Lxðx; yÞ � ½�ðx� 1; yÞ � 2�ðx; yÞ þ �ðxþ 1; yÞ�;
Uyðx; yÞ ¼ Lyðx; yÞ � ½�ðx; y� 1Þ � 2�ðx; yÞ þ �ðx; yþ 1Þ�: ð12:122Þ

The minimum of the cost function is obtained when its partial with respect to �ðx; yÞ
equals zero. Therefore, the set of linear equations that must be solved is

@U½�ðx; yÞ�
@�ðx; yÞ ¼ Uxðx� 1; yÞ � 2Uxðx; yÞ þUxðxþ 1; yÞ þUyðx; y� 1Þ

� 2Uyðx; yÞ þUyðx; yþ 1Þ:
ð12:123Þ

Several methods may be used to solve this system of linear equations; among others,
there is the simple gradient descent:

�kþ1ðx; yÞ ¼ �kðx; yÞ � � @U

@�ðx; yÞ ; ð12:124Þ

where the parameter � is the rate of convergence of the gradient search. The simple
gradient descent is quite slow for this application; instead we may conjugate gradient
or transformed techiques to speed up the computing time. Figure 12.20 shows a
subsampled phase map along with its unwrapped version using the technique herein
described.

Finally, if one has a good knowledge of the wavefront being tested up to a
few wavelengths, one may use this information to obtain an oversampled phase
map (Servin and Malacara, 1996c). This oversampled phase map is then the esti-
mation error between what is the expected wavefront and the actual wavefront
being tested. One also may reduce the number of aspherical aberration wavelengths
by introducing a compensating hologram (Horman, 1965; Dörband and Tiziani,
1985).

12.8 APPLICABILITY OF FRINGE ANALYSIS METHODS

The success in implementation of optical full-field measuring methods into indus-
trial, medical, and commercial areas depends on proper retrieval of a measurand
coded in an arbitrary fringe pattern. This is the reason why such variety of tech-
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niques exist. Table 12.2 provides a comparison of the fringe pattern analysis meth-
ods, and indicates which techniques are most commonly used in commercial
systems.

In order to fulfill the conditions of fast, automatic, accurate, and reliable
analysis of fringe data the new solutions of phase-measuring methods focus on the
following issues:

. Active approach to fringe-pattern forming.

. Active approach to design of phase analysis algorithms (phase shifting).

. Improving the methods.

. Given that many problems involved with fringe analysis are ill-posed, it is
convenient to search for regularizers for the solution according to prior
information available.
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Figure 12.20 Undersampled phase unwrapping. (a) Undersampled phase map. (b)

Unwrapped phase.
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13

Optical Methods in Metrology:
Point Methods

H. ZACARIAS MALACARA and RAMON RODRIGUEZ-VERA

Centro de Investigaciones en Optica, León, Mexico

13.1 INTRODUCTION

Light and optics have been used as the ultimate tools for metrology since olden days.
An example of this is the way a ray beam is used as a reference for straightness, or in
modern times, the definition of a given wavelength as a distance standard (Swyt,
1995). In this chapter, we provide an overview of some optical measuring methods
and their applications to optical technology. We do not intend to cover all the optical
methods in metrology. Several metrology techniques are described more extensively
in other chapters in this book.

During the measuring process we need to adopt a common measuring standard
from which all the references are made. The SI measuring system has a worldwide
acceptance, and it is the one used in this chapter. Among the main characteristics of
the SI system is the definition of a primary standard for every defined fundamental
physical unit. A set of derived units is also defined from the primary units. The
primary standard in the SI system is the meter. After several revised definitions
(Baird and Howlett, 1963), the meter is now defined as the distance traveled by
light in 1/299,792,458 of a second (Swyt, 1995). Under this new definition, the
meter is a derived unit from the time standard. To avoid the meter being a derived
unit, it has been proposed to define the meter as ‘‘the length equal to 9,192,631,770/
299,792,458 wavelengths in the vacuum of the radiation corresponding to the transi-
tion between the two hyperfine levels of the ground state of the cesium 133 atom’’
(Giacomo, 1980; Goldman, 1980).
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13.2 LINEAR DISTANCE MEASUREMENTS

Linear distance measurements are made through a direct comparison to a scale or a
secondary standard. In other cases, an indirect measurement to the standard is done
with known precision. Optics give us the flexibility and simplicity of both methods.
We have an assortment of optical methods for distance measurements, depending on
the scale of distances to be measured. Some representative methods are described
next.

13.2.1 Large-Distance Optical Measurements

Large distances (about a human body and larger) can be measured by optical means
to a high degree of precision. Direct distance comparison, distance and angle mea-
surement, and time-of-flight methods are used.

13.2.1.1 Range Finders and Optical Radar

Range finders are devices used to measure distances in several ways. The simplest
case of a range finder is called a stadia. A stadia is made from a telescope and a
precision rotating mirror (Fig. 13.1). A bar with a known distance w is placed at the
range to be measured R. A beamsplitting prism superimposes two images from the
bar in the telescope. First, both images are brought into coincidence; then, opposite
ends of the bar are put together by rotating the mirror at an angle � from the
coincidence point. This gives the angle subtense for the reference bar. The range R
is then

R ¼ W

�
; ð13:1Þ

where � is small and expressed in radians. Another stadia technique is used by some
theodolites that have a reticle for comparison against a graduated bar. If a bar with
known length W is seen through a telescope with focal length f , the image of the bar
on the reticle has a size i; then, the distance is

R ¼ f

i

� �
W : ð13:2Þ

A range finder uses a baseline instead of a reference bar as the standard length.
A basic range finder schematic is shown in Fig. 13.2. Two pentaprisms separated a
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Figure 13.1 A stadia range finder.



distance B have each two identical telescope objectives. Both telescope images are
brought to the same eyepiece by means of a beamsplitter or a coincidence prism.
Originally, the instrument is built so that images from an infinite-distance located
object are overlapped. A range compensator is a device inserted in one of the instru-
ment branches to displace laterally one image on the focal plane (angularly on the
object space), and brings into coincidence objects that are not at infinity. Figure 13.3
shows some devices used as range compensators. The baseline B viewed from the
distant point subtends an angle � and the range is then

R ¼ B

�
: ð13:3Þ

For a given error in the angle measurement, the range error is

�R ¼ �B��2��; ð13:4Þ
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Figure 13.2 Range finder schematics.

Figure 13.3 Range compensators for range finders.



also, from Eq. (13.3),

�R ¼ �R2

B
��; ð13:5Þ

To keep the range finder error low, the baseline must be as large as possible,
but the error increases with the square of the distance. Since the eye has an angular
acuity of about 10 arc seconds, the angular error is about 0.00005 radians (Smith,
1966). The image displacement can be measured using two CCD (charge-coupled
device) cameras, one for each branch, and measuring the parallax automatically with
a computer (Tocher, 1992). Another method correlates electronically the images
from both telescopes (Schmidt, 1984).

Another method for distance measurement is the time of flight method, tested
shortly after the laser invention (Buddenhagen et al., 1961, Stitch et al., 1961; Stitch,
1972). For a light beam traveling at a known speed, the distance can be measured by
the time a light beam takes to go and return from the measuring point. For very large
distance scales, optical radar is used, as in the moon distance determination (Faller
and Wampler, 1970); but it has also been used in surveying instruments (Rüeger and
Pascoe, 1989). While in RF radar the main problem was to obtain a fast rising pulse,
the problem is well solved with Q-switched lasers. A block diagram for the moon
ranging experiment is shown in Fig. 13.4.

A precise measurement of the time-of-flight method is done by measuring the
phase of an amplitude-modulated beam. Several systems that use this method are
described in the literature (Sona, 1972; Burnside, 1991). The light beam is amplitude
modulated at a frequency !, the output light beam has an amplitude so ¼ Ao sin!t,
and the returning beam has an amplitude sr ¼ Ar sin!ðtþ�tÞ, where �t is the time
of flight for the light beam. The resulting phase difference between the returning and
a local reference beam will be �� ¼ !�t. Since the modulating signal is periodical,
the returning and reference signal will be in phase for distances that are multiples of
the modulating wavelength, or �� ¼ n, n being an integer. The phase difference is
equivalent to a distance of x ¼ c�t ¼ c��=!; c is the speed of light in the medium.
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Figure 13.4 Moon ranging experiment.



For a returning beam in phase with the sending beam, the distance can be found
from the modulating wavelength:

x ¼ c��

2f
¼ n
: ð13:6Þ

For any given distance, the distance in terms of the modulating wavelength is

D ¼ n
þ�
: ð13:7Þ
Since the number of full wavelengths in Eq. (13.7) is unknown, we can use a

wavelength longer than the range to be measured with the consequent loss in preci-
sion. An alternative is to use at least three close frequencies:

D ¼ n1
1 þ�
1;

D ¼ n2
2 þ�
2;

D ¼ n3
3 þ�
3:

ð13:8Þ

To solve Eqs (13.8) we use three close frequencies, and assume the same n for
the three measurements. Another solution could be made making 
1 and 
2 an exact
multiple (about 1000) one from another, and solving for D and n. In another
method, a system that resembles a phase-locked loop (PLL) is used (Takeshima,
1996). The system sweeps in frequency until locks, repeats for the next frequency
ðnþ 1Þ, and two more frequencies. When the oscillator is locked, the phase difference
is zero ð�
 ¼ 0Þ; we need only to determine D and n1, n2, and n3.

Absolute distance laser ranging: For a laser distance measuring system, we
assume a given refractive index n. The limiting factor will always be any change in
the refractive index that is a function of the temperature, pressure, and moisture
content. By measuring at two or more wavelengths, all the sources of uncertainty are
removed. Systems have been designed for two wavelengths (Shipley and Bradsell,
1976; Dändliker et al., 1998). A nonambiguity measuring range of 0.2 parts per
million has been achieved.

13.2.1.2 Curvature and Focal Length

Optical manufacturing has several ways to measure a radius of curvature, including
templates, spherometers, and test plates. Templates are rigid metal sheets with both
concave and a convex curvature cut at opposite faces (Fig. 13.5). Templates are
brought into direct contact with the sample. A minimal light space must be observed
at the contact point. If the space between surfaces is small, the light between surfaces
turns blue, due to diffraction. A template has the simplicity that it can be made in a
mechanical shop with appropriate measuring tools, but it is also commercially avail-
able. For a more precise curvature measurement, a spherometer is used. Essentially,
a spherometer measures the sagitta in a curved surface. Assume a bar spherometer,
as shown in Fig. 13.6 (Cooke, 1964). For a leg separation y and a ball radius r, the
radius of curvature R can be obtained from the sagitta z:

R ¼ z

2
þ y2

2z
� r; ð13:9Þ

where the plus sign is used for concave surfaces and minus for convex surfaces.
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Figure 13.5 Templates.

Figure 13.6 Bar spherometer.



The uncertainty in the measurement is found by differentiating the previous
equation:

�R ¼ �z

2
1� y2

z2

 !

; ð13:10Þ

assuming no error in the determination of the parameters for the instrument, the
leg’s separation is perfectly known.

Several variants of the basic spherometer include the ring spherometer (Fig.
13.7), which is commonly used where a spherical surface is assumed. An interchange-
able set of rings extends its use to improve the accuracy for a larger lens diameter.
The Geneva gauge is a portable bar spherometer that reads the diopter power
directly, assuming a nominal refractive index for ophthalmic lenses. Modern sphe-
rometers are now digital, and include a microprocessor to convert the sagitta dis-
tance to a radius of curvature, diopter power, or curvature. Spherometer precision
and accuracy are analyzed by Jurek (1977).

Test plates (Malacara, 1992) are glass plates polished to a curvature opposite to
the one we want to check. Curvature is tested by direct contact. A test plate is made
for each cuvature to be tested. Test plates are appropriate for online curvature
testing. Plane testing plates are common on the optical shop.

Several means have been devised for optical curvature measuring. For concave
curvature measurements, probably the simplest method is the Foucault test. Analysis
and applications for this test are covered in another chapter in this book. Another
precise curvature radii’s measurement device is the traveling microscope (Horne,
1972), shown in Fig. 13.8. A point source is produced at the front focus of a traveling
microscope. Also, an illuminated reticle eyepiece could be used. In both cases, a
sharp image of the point source or the reticle is sought when the surface coincides
with the front focus. Then, the microscope is moved until a new image is found. The
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Figure 13.7 Ring spherometer.



curvature radius is then the distance between these positions. Carnell and Welford
(1971) describe a method using only one measurement. After focusing the micro-
scope at the curvature center, a bar micrometer is inserted with one end touching the
vertex of the surface. This method is also suitable for convex surfaces by inserting a
well-corrected lens such that the conjugate focus is larger than the curvature radius
under test. Convex curvatures can be measured using an autocollimator and an
auxiliary lens (Boyd, 1969).

For a large curvature radius, an autocollimator and a pentaprism is used, as
shown in Fig. 13.9. A shift in the reticle image is measured in the autocollimator.
This is an indirect measure of the surface’s slope. By scanning the surface with the
prism, samples of the slope are obtained and by integration, the curvature is calcu-
lated. This system is appropriate for large curvature measurements and can be used
both for concave and convex surfaces (Cooke, 1963).

Another commonly used method for curvature measurements is the confocal
cavity method. The so-called optical cavity technique, described by Gerchman and
Hunter (1979 and 1980), interferometrically measures the radii of curvature for long
curvature concave surfaces. A Fizeau interferometer is formed, as shown in Fig.
13.10. A nth order confocal cavity is obtained where n is the number of times the
optical path is folded. The radius of curvature is equal to 2n times the cavity length
Z. The accuracy is about 0.1%.

13.2.2 Moiré Techniques in Medium Distances

When two periodic objects are superimposed, a well-known effect takes place; this is
the moiré effect (Kafri and Glatt, 1990; Patorski, 1993; Post et al., 1994). This effect
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Figure 13.8 Traveling microscope for curvature measurements.

Figure 13.9 Curvature measurements with an autocollimator and a traveling pentaprism.



produces a low-frequency pattern of secondary fringes known as moiré fringes. In
this manner, for example, in Fig. 13.11 we can see several overlapping periodic
objects, showing moiré fringes. For measuring purposes, the periodic objects are
usually constituted by gratings of alternating clear and dark lines. Figure 13.12(a)
is a sample of a linear grid and Fig. 13.12(b) is the moiré pattern taking place by the
overlapping of two such gratings. Ronchi gratings are a particular case of linear
grids with a quadratic profile that can easily be reproduced.

From the geometric point of view (Nishijima and Oster, 1964), the moiré
fringes are defined as a locus of points of two overlapping periodical objects. It is
possible to determine the period p 0 and the angle ’ of the moiré fringes knowing the
periods p1, p2, and the angle � among the lines of the gratings (Fig. 13.13). Then,

p 0 ¼ p1p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p21 þ p22 � 2p1p2 cos �

q ; ð13:11Þ

and

sin ’ ¼ p2 sin �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p21 þ p22 � 2p1p2 cos �

q : ð13:12Þ

When � ¼ 0, then ’ ¼ 0, and Eq. (13.11) becomes

p 0 ¼ p1p2
jp1 � p2j

: ð13:13Þ

Now, if p1 ¼ p2 ¼ p, then Eq. (13.11) transforms into

p 0 ¼ p

2 sin �=2
: ð13:14Þ

If � � 0, then p 0 ¼ p=� and ’ � 908. A quick analysis of Eq. (13.14) shows that
when the angle between the gratings is large, the moiré pattern frequency increases
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Figure 13.10 Confocal cavity arrangements for curvature measurements.
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Figure 13.11 Formation of moiré fringes with different periodic objects.

Figure 13.12 (a) Linear grating; (b) moiré pattern formed by two linear gratings.



(the period is reduced); otherwise, the frequency diminishes until the moiré fringes
disappear.

One of the fundamental characteristics of a moiré pattern is that if one of the
gratings is deformed and the other remains fixed, the moiré pattern is also
deformed, as shown in the Fig. 13.14. Deformation of one of the gratings can
arise because of the large size to be measured. For this reason, it is possible to call
the deformed grating a grating object, while the one not deformed is the reference
grating.
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Figure 13.13 Diagram showing the intersection points of two superimposed linear gratings

of periods p1 and p2; � is the angle among the lines of the gratings. Dotted lines correspond to

moiré fringes, which make an angle ’ with the lines of the grating of period p2.

Figure 13.14 Moiré patterns formed by two linear gratings; one of them is lightly deformed.



A simple way to obtain a couple of linear gratings is to photocopy in a trans-
parency the image of the Fig. 13.12(a). When superimposing these gratings the moiré
effect is observed, similar to that of Fig. 13.12(b). Another characteristic of the moiré
effect is that if we maintain a grating fixed and other displaced a small distance in the
direction of its lines, the moiré pattern has a large displacement.

There are several ways of overlapping two gratings. The simplest, as already
mentioned, is by contact. Another manner is to project the image of a grating by
means of an optical system over another grating. A third form is by means of some
logic or arithmetic operation in a digital way (Asundi and Yung, 1991; Rodriguez-
Vera 1994). This last method can be carried out when the gratings are stored in a
computer.

Several metrology techniques are based on the moiré effect. These techniques
have been used in several applications of science and engineering. Some of the
techniques will now be explained along with different measuring tasks.

13.2.2.1 Photoelectric Fringe Counting

Typical examples of distance meters based on the moiré effect are verniers and digital
micrometers, and coordinate measuring machines (CMM). Their operation consists
of the photoelectric detection of the moiré fringes’ movement (Luxmoore, 1983). The
basic elements of such a system are shown in the Fig. 13.15. This system consists of a
light source, a collimating lens, two linear gratings, and a set of four photocells. The
displacement is measured by counting moiré fringes when one of the gratings moves
in the normal direction to its lines. The displacement of the moiré fringes will be
analogous to the lateral displacement of the lines of the gratings. Using a photocell,
the moiré fringes are detected during the movement (Watson, 1983). In practice, to
determine the displacement sense, four photocells are required. These detectors are
positioned at four points in a moiré fringe pattern, and they are spaced to a quarter of
their period. Alternate count of phase steps and signs combines to be fed to an
amplifier, in a pair of symmetrical signals in quadrature. The sensibility of the instru-
ments based on this moiré technique can be up to 0.000250 inches (Farago, 1982).
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Figure 13.15 Opto-electronic arrangement of distance measurement based on the moiré

effect.



13.2.2.2 The Talbot Effect

When a periodic object is illuminated with a spherical or plane wavefront, replicas of
the object are obtained in very defined planes along the light propagation direction
(Patorski, 1993). This phenomenon is known as the Talbot effect or self-imaging. In
spherical illumination, the replication of the object is amplified and the distance
between planes are not a constant. On the other hand, when the illumination of
the periodic object is made by means of a collimated wave, the self-image planes are
equispaced and well defined (Fig. 13.16). If the periodic object is a linear grating with
a period p, the self-images are formed in planes, given by the equation (Malacara,
1974):

�n ¼
np2



; ð13:15Þ

where n is the n-order plane and 
 is the illumination wavelength.
This effect is very useful for measuring the distance � between a grating and its

Talbot image, forming a moiré pattern. In this manner, for example, Jutamulia et al.
(1986) and Rodriguez-Vera et al. (1991a) used the Talbot effect to identify depths or
separate planes in color. The color appears naturally by illuminating the grating with
a white light source and by superimposing the self-image reflected from different
planes of the scene into a second grating. Moiré fringes look at different colors
depending on the plane position.

13.2.2.3 Liquid Level Measurement

As an extension of moiré techniques, the Talbot effect is used for liquid level and
volume determination in containers (Silva and Rodriguez-Vera, 1996). This techni-
que uses the reflected image from the liquid–air interface inside a container. The
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Figure 13.16 Moiré fringes formed by (a) collimated and (b) noncollimated light.



incident light to this interface comes from the image of a linear grating illuminated
from a collimated monochromatic light source. By means of an appropriate optical
system, the reflected image is formed onto a second grating, forming a sharp moiré
pattern, when the second grating is at a distance equal to the Talbot plane. For a
given longitudinal displacement in the liquid–air interface that corresponds to a level
change, the moiré pattern becomes unsharp. Consequently, it is necessary to adjust
the second grating mechanically to observe, again, a sharp moiré pattern. This linear
mechanical adjustment reflects the level change in the container.

13.2.2.4 Focal Length Measurement

Moiré fringes and the Talbot effect have also been useful in the focal length mea-
surement of an optical system. Two categories are used for these techniques: the first
is based on the measurement of the moiré pattern’s rotation (Nakano and Murata,
1985; Chang and Su, 1989; Su and Chang, 1990); the second is based on the beating
of a moiré pattern (Glatt and Kafri, 1987b; Bernardo and Soares, 1988). In the first
case, the focal length f is obtained by measuring the rotation angle �n for the moiré
fringes due to beam divergence changes to noncollimation the incident beam suffers
at the first grating, as shown in Fig. 13.16. The moiré fringes are observed through a
diffuse screen. The focal length will be calculated using the following equation
(Nakano and Murata, 1985):

f ¼ 1

sin � tan�n þ cos � � 1
� np

2



; ð13:16Þ

where � is the angle between the lines of the gratings and p is the period of the
gratings. A typical experimental setup used to make these arrangements is shown in
Fig. 13.17.

The second case uses the beating of the moiré pattern produced when the lines
of the grills are parallel ð� ¼ 0Þ. In this case, the moiré fringes are caused by different
periods on both grills, and the focal length is calculated by means of the equation

f ¼ npp 0



: ð13:17Þ

This last case is more difficult in practice, since the setup is more difficult to
implement, and measuring the moiré pattern period p 0 is more time consuming than
the angle �n.
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Figure 13.17 Experimental setup to determine the focal length of a lens.



An additional method that does not use collimated illumination has been
reported (Sriram et al., 1993). However, this method requires additional mechanical
displacements to the gratings while the measurement is being performed.

Based also on moiré techniques and Talbot interferometry, systems have been
built that not only measure the focal length of a lens but also its refractive power
(Nakano et al., 1990; Malacara Doblado, 1995). The strength of these techniques
resides in the use of automatic digital processing of the moiré fringes.

13.2.2.5 Thickness Measurement

Thickness measurement is based on the very well-known method of projection moiré
contouring (Hovanesian and Hung, 1971). Basically, it consists in projecting a grat-
ing over the object under study. The projected grating is deformed according to the
topography of the object. By means of an optical system, the deformed grating is
imaged on a similar reference grating, in such a way that a moiré pattern is obtained
on the overlapping plane. Under this outline the moiré fringes represent contours or
level curves of the surface object. This technique has been broadly used for measur-
ing tasks in ways using a Talbot image as projection grating (Rodrı́guez-Vera et al.,
1991b), or determining form and deformation of engineering structures by means of
digital grating superposition (Rodrı́guez-Vera and Servin, 1994).

A simple way to interpret the moiré fringes in this outline is through the
contour interval (Dessus and Leblanc, 1973). For collimated illumination and far
away observation, the contour interval (Rodriguez-Vera et al., 1991b) is given by

�z ¼ p

sin �
; ð13:18Þ

where p is the projected grating period and � is the angle between illumination and
detection optical axes, as shown in Fig. 13.18. Equation (13.18) displays height
differences between a contour and the next one.

This projection outline can be simplified by analyzing the projected grating or a
light line. Figures 13.19(a) and (b) show schematically a grating and a light line on a
cube, respectively. Note that both projected grating and light line are deformed
according to the topography of the surface. In this case we do not deal with closed
contours or level lines, but with ‘‘grid contours’’ (Rodriguez-Vera et al., 1992). These
grid contours are similar to those of carrier frequency introduced in an interferom-
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Figure 13.18 Scheme of the projection moiré contouring technique.



eter. For the case of a step like the one shown in Fig. 13.20(a), the fringes are
displaced. This displacement is a change of phase of the grid contour and, therefore,
is related to the difference of height between the two planes. Figure 13.20(b) shows
the three-dimensional plot of phase shift when applying the technique of phase-
locked loop detection to determine the height between the planes that form the
step (Rodriguez-Vera and Servin, 1994).

A limitation of this technique lies in the ambiguity that results when the differ-
ences of height are large enough so that projected fringes surpass the phase change
by 2. To solve this problem, the possibility of using a narrow light sheet to illumi-
nate the object has been investigated recently (Muñoz Rodriguez et al., 2000) as
shown in Fig. 13.19(b). The object to be analyzed is placed on a servomechanism to
be moved along an axis. During the movement, the object is illuminated with a sheet
light beam (flat-shaped beam); the images are captured on a computer and pro-
cessed. Figure 13.21 shows the object with the projected deformed light line formed
by the incident light sheet and its topographical reconstruction.

13.2.3 Interferometric Methods in Small Distance Measurement

Fringe counting in an interferometer suggests an obvious application for the laser in
short distance measurement. Interferometric methods are reviewed by Hariharan
(1987). The high radiance and monochromaticity are the main useable characteristics
in the laser. From the conceptually simple outline of a Michelson interferometer,
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Figure 13.19 (a) Fringes produced by a projected linear grating, (b) projected light line.

Figure 13.20 Projected linear grating on a step produced by two planes. (a) Grid contours;

(b) difference of height between planes.



several improvements make it a more convenient and practical instrument. Some
problems from the simple form are

(a) A light source must have a highly stable frequency to improve the preci-
sion. Since the light wavelength is used as a standard, as much as the
source remains stable, the more precise the measurement will be. The
original length standard was chosen as a discharge 86Kr source. The
frequency of this source is stable up to one part in 108, even better than
some laser sources (Baird and Howlett, 1963). To improve the laser light
stability, several means have been developed for frequency stabilization
(McDuff, 1972). For a precise measurement device, frequency stabiliza-
tion is essential.

(b) A light beam reflected back to the laser makes it unstable and the radiance
will fluctuate with the moving-mirror displacement. For example, a
Michelson interferometer forms two complementary interference pat-
terns, one reflected back to the source. This reflected pattern eventually
makes the laser unstable and the intensity will fluctuate as the optical path
in one branch is changed. To avoid this problem, a nonreacting config-
uration must be used.

(c) Fringe counting in the interferometer is usually made electronically, which
means the electronic counters should discriminate the fringe movement
direction. To discriminate the direction movement, two detectors at a 908
phase difference are used.

(d) the fringe count across the aperature should be kept low and constant as
the mirror is moved. This problem is easily solved by using retroreflectors
instead of plane mirrors. Now, the phase shift across the full aperture is
kept almost constant.

The so-called DC interferometer is shown in Fig. 13.22. The use of two corner
cube retroreflectors is twofold: to have a noreacting configuration and to have a
constant phase shift across the full aperture. For a nonabsorbing beamsplitter, the
phase shift between both interference patterns will be 1808, but for an absorbing one,
it can be adjusted to a 908 phase shift, making is possible to discriminate for the
movement direction.

Another nonreacting interferometer for distance measuring is described by
Minkowitz et al. (1967). A circularly polarized beam of light (Fig. 13.23) is obtained
through a linearly polarized laser and a 
=4 phase plate. A first beamsplitter sepa-
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Figure 13.21 (a) Sheet of light projected on a metallic surface. (b) Three-dimensional

reconstruction of the object of (a).



rates between the reference and measuring beam. Upon reflection, the reference
beam changes its polarization while the measuring beam changes twice its polariza-
tion at both reflections on the moving corner cube reflector. Since both beams have
opposite polarizations, the resulting beams are linearly polarized, with a polarization
angle determined by the optical path difference. The polarization angle rotates 3608
for every 
=2 path difference. Two polarizers are placed at each complementary
output of the beamsplitter. Since the polarizers are rotated 908 each from the
other, the irradiance varies sinusoidally with the corner cube displacement with a
quadrature phase shift at the detectors.

A different approach is taken in an ac interferometer (Fig. 13.24) described by
Burgwald and Kruger (1970) and Dukes and Gordon (1970) and commercially
produced by Hewlett–Packard. A frequency stabilized He–Ne laser is Zeeman-split
by a magnetic field and the optical beam has now two frequencies about 2MHz
apart. The two signals with frequencies f1 and f2 are circularly polarized and with
opposite handness. A 
=4 phase plate changes the signals f1 and f2 into two ortho-
gonal linearly polarized beams, one in the vertical and the other horizontal plane. A
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Figure 13.22 DC interferometer for distance measurement.

Figure 13.23 Minkowitz nonreacting interferometer.



beamsplitter takes a sample of the beam. Since both signals are mixed, the resulting
beam is linearly polarized, rotating at a frequency f1 � f2. Later, the polarizer makes
a sinusoidally modulated beam at this frequency. Another portion of the beam is
sent to a polarizing beamsplitter. One branch of the interferometer receives the f1
component while the other receives the f2 part of the signal. On each branch, a 
=4
phase plate converts the polarization to circularly polarized, but while one branch is
left handed, the other is right handed. After two reflections at the corner cube
reflectors, the handness is preserved but the 
=4 phase plate changes its polarization
to a perpendicular one. Assuming a moving corner cube, the signal will be Doppler-
shifted to a frequency f1 þ�f . Both beams meet again at the polarizing beamsplitter
and the outgoing beams are opposite-handed circularly polarized beams that add to
form a slowly varying circularly polarized beam at a frequency f1 � f2 þ�f . The
signals from the detectors are fed to a couple of digital counters, one increasing at a
frequency f1 � f2 while the other at a frequency f1 � f2 þ�f . A digital subtracter
obtains the accumulated pulse difference. For a stationary reflector, each counter
increases at about two million counts per second, but the difference remains con-
stant. Some advantages of this system lie in its relative insensibility to radiance
variations from the laser.

13.2.3.1 Multiple-Wavelength Interferometry

At the best, all the measuring instruments can measure incremental fringes from an
initial point. Absolute distance measurments can be made from a multiple-wave-
length laser. The technique is similar to that described in Section 13.2.1 and is
reviewed by Dändliker et al. (1998). For a double-pass interferometer, the distance
is expressed as

D ¼ Nð
=2Þ þ �; ð13:19Þ

Optical Methods in Metrology: Point Methods 445

Figure 13.24 Hewlett–Packard distance measuring interferometer.



where N is an integer number and � is a fractional excess less than half wavelength.
For a multiple wavelength laser, the distance is

D ¼ Ni½ð
iÞ=2� þ �i; ð13:20Þ
Since Ni are integer constants, it is possible to know D from several wavelengths
ð
i’s). Bourdet and Orszag (1979) use six wavelengths from a CO2 laser for an
absolute distance determination.

By using two wavelengths, a beating is obtained at the detector. This beating
has a synthetic wavelength:

	 ¼ 
1
2

1 � 
2

: ð13:21Þ

In practice, each wavelength has to be optically filtered for measurement. The
absolute distance accuracy depends on the properties of the source. Both wave-
lengths must be known very accurately. To increase the nonambiguity range, multi-
ple wavelengths are used by dispersive comb spectrum interferometry (Rovati et al.,
1998). If one laser is continuously tuned, a variable synthetic wavelength is used
(Bechstein and Fuchs, 1998).

13.3 ANGULAR MEASUREMENTS

Angle measurements are done with traditional and interferometrical methods. For
traditional methods, templates are used in the lower end for low-precision work
while goniometers and autocollimators are used for high precision. The best preci-
sion is obtained with interferometric angle-measuring methods. Interferometric
angle measurements have the additional advantage that they can be interfaced to
automatic electronic systems.

13.3.1 Some Noninterferometric Methods

13.3.1.1 Divided Circles and Goniometers

For a rough scale, protractors and divided circles are used for angle determination.
Although these devices are limited to a precision of about 30 min, modern electronic
digital protractors and inclinometers can measure precise angles up to 0.5min. At
the optical shop, angle measurements can be made by means of a sine plate (Fig.
13.25). The sine plate can both support a piece of glass and measure its angle by itself
or with a collimator. The angle is defined from the base plate’s length and a cali-
brated plate inserted in one point. The angle is then calculated from the plate length
and the calibrated plate length inserted in one leg to form a triangle. The angle is
calculated assuming a rectangular triangle: hence its name of sine plate. With a good
sine plate, an accuracy of 30min can be achieved. A serrated table for angle mea-
surement is described by Horne (1972) with an accuracy of 0.1 s.

Angle blocks are also used for comparison. These are available commercially
to an accuracy of �20 s. By reversing and combining the blocks, any angle between
18 and 908 can be obtained. Since angle blocks have precision flat polished faces,
together with a goniometer, they can be used as an angle standard. A glass polygon
used with an autocollimator can precisely calibrate goniometers or divided circles.
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A goniometer (Fig. 13.26) is a precision spectrometer table. Its divided circles
are used for precise angle measurement. For angle measurement, the telescope reticle
is illuminated and the reflected beam is observed. Prism or polygon angles are
measured in a goniometer. The divided circle sets the precision for the instrument.
The polygon under test is set at the table while the telescope is turned around until
the reflected reticle is centered.

13.3.1.2 Autocollimators and Theodolites

An autocollimator is essentially a telescope with an illuminated reticle: for example,
a Gauss or Abbe eyepiece (Fig. 13.27) at the focal plane of the objective. By placing a
mirror at a distance from the autocollimator, the reflected beam puts an image from
the reticle displaced from its original position at a distance
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Figure 13.25 Sine plate.

Figure 13.26 Goniometer.



d ¼ 2�f ; ð13:22Þ

where f is the collimator’s focal distance and � the mirror tilt angle from perpendi-
cularity. Since the angle varies with the focal length, the objective is critically cor-
rected to maintain its accuracy. Precise focus adjustment can be achieved through
Talbot interferometry (Kothiyal and Sirohi, 1987). Autocollimators are manufac-
tured with corrected doublets, although some include a negative lens to form a
telephoto system to get a more compact system. A complete description of auto-
collimators and applications can be found in Hume (1965).

Some autocollimators have a drum micrometer to measure the image displace-
ment precisely, while others have an electronic position sensor to obtain the image
centroid. Electronic autocollimators can go beyond diffraction limit, about an order
of magnitude from visual systems. Micro-optic autocollimators use a microscope to
observe the image position.

Autocollimators, besides measuring angles of a reflecting surface, can be used
for parallelism in glass plates, or divided circles manufacturing (Horne, 1974). By
slope integration, from an autocollimator, flatness measurements can be obtained
for a machine tool bed or an optical surface (Young, 1967). In an autocollimator
measurement, the reflecting surface must have high reflectivity and be very flat.
When a curved surface is measured, this is equivalent of introducing another lens
in the system with a change in the effective focal length (Young, 1967).

Theodolites are surveying instruments made from a telescope mounted in a
precise altitude-azimuth mounting with a spirit level and a tree screw base for leveling.
Besides giving a precise means of measuring both the elevation and the azimuth
angles, a reticle with stadia markings permits distance measurements. Old instru-
ments with engraved circles had an accuracy of 20 arcmin. Modern electronic theo-
dolites contain digital encoders for angle measurements and electronic range finders.
Angle accuracy is better than 20 arcsec. Errors derived from eccentricity and perpen-
dicularity are removed by rotating both axes 1808 and repeating the measurement.

Besides surveying, theodolites are used for anglemeasurement in the optical shop
from reference points visually taken through the telescope for large baseline angles.

13.3.1.3 Angle Measurement in Prisms

Angle measurement in prisms is very important, since prisms are frequently used as
angle standards. Optical prisms are made with 308, 408, and 908 angles. Optical
means of producing these angles are easily obtained without the need for a standard.
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Figure 13.27 Illuminated eyepieces: (a) Gauss, (b) bright line, and (c) Abbe.



A very important issue in prism measurement is the assumption of no pyra-
midal error. For a prism to be free of pyramidal error, surface normals for all faces
must lie in a single plane (Fig. 13.28). Pyramidal error can be visually checked
(Martin, 1924; Johnson, 1947; Taarev et al, 1985) for a set of three faces by examin-
ing both the reflected and refracted image from a straight line (Fig. 13.29). Under
pyramidal error, the straight line appears broken. A far target can be used as a
reference to measure the angle error.

Precise angle replication can be made by mounting the blank glass pieces in
the same axis as the master prism (Twyman, 1957; DeVany, 1971). An autocolli-
mator is directed to see the reflected beam from each face on the master prism
(Fig. 13.30).

Precise 908 prisms can be tested either visually or with auxiliary instruments.
By looking from the hypotenuse side, a retroreflected image (Johnson, 1947) from
the pupil is seen that depends on the departure from the 908 angle, as shown in Fig.
13.31. This test can be improved, as shown by Malacara and Flores (1990) by using a
target with a hole and a cross in the path, as shown in Fig. 13.32.

An autocollimator can be used to increase the sensitivity of the test
(DeVany, 1968; Taarev, 1985). Two overlapped images are observed, with a
separation 2N�, where � is the magnitude of the prism angle error and its
sign is unknown. To determine the error of the sign, DeVany (1978) suggests
defocusing the autocollimator inward. If the images tend to separate, then the
angle in the prism is larger than 908. Another means of determining the angle
error is by introducing, between the autocollimator and the prism, a glass plate
with a small wedge with a known orientation. The wedge is introduced to cover
half the aperture. Polarized light can also be used as suggested by Ratajczyk and
Bodner (1966).
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Figure 13.28 Pyramidal error.
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Figure 13.29 Pyramidal error check by reflected and refracted reference observation.

Figure 13.30 Angle replication in polygons with an autocollimator.

Figure 13.31 Pupil’s image in a rectangular prism with and without error.



13.3.1.4 Level Measurement

Levels are optical instruments that define a horizontal line of sight. The traditional
form is a telescope with a spirit level. Once the spirit level is adjusted, the telescope is
aimed at a constant level line. For an original adjustment of the spirit level
(Kingslake, 1983), a pair of surveying staves are set some distance apart (Fig.
13.33). The level is directed to a fixed point in one of the staves from two opposite
directions and the corresponding point in the other staff is compared. Any difference
in the reading is compensated by moving the telescope to a midpoint in the second
staff; then the spirit level is fixed for the horizontal position.

An autoset level (Fig. 13.34) relies on a pendulum-loaded prism inside the
telescope tube. A small tilt is compensated by the pendulum movement, although
other mechanisms are also used (Ahrend, 1968). A typical precision for this autoset
level lies within 1 arcsecond and works properly for a telescope angle within 15
arcmin (Young, 1967).

13.3.1.5 Parallelism Measurement

Rough parallelism measurements can be done with micrometers and thickness
gauges, but they need a physical contact with a damage risk; besides, it is necessary
to make several measurements to make a reliable test. Optically, parallelism is mea-
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Figure 13.32 Prism angle error observation.

Figure 13.33 Level adjustment with two staves.



sured with the versaility provided by an autocollimator. The reticle from the auto-
collimator is reflected back by both surfaces simultaneously in a transparent optical
plane. Any departure from parallelism is seen as two reticles. Under this setup, the
reflected image from the first surface is adjusted for perpendicularity and the angle
for the second surface is simply found from the Snell’s law. Parallelism in opaque
surfaces can be measured after Murty and Shukla (1979) by using a low-power laser
incident in an optical wedged plate as shown in Fig. 13.35. The plate under test is
placed in a three point support base, then the reflected point is noted on a distant
screen. Next the plate is rotated 1808 and the new position for the beam is recorded.
Let the separation for both points be d, and the screen distance from the plate is D;
then the wedge angle � is
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Figure 13.34 The autoset level.

Figure 13.35 Parallelism measurement in an opaque plate.



� ¼ d

4D
: ð13:23Þ

By using two opposed collimators in a single optical bench, they are adjusted to
center the other collimator image. The plate to be checked for parallelism is inserted
between both collimators and first adjusted for perpendicularity in one of the colli-
mators while the other reads the amount of departure for the second surface (Tew,
1966). The latter technique could be used for nontransparent surfaces.

13.3.2 Moiré Methods in Level, Angle, Parallelism and
Perpendicularity Measurements

The different optical techniques that follow have their foundation in the formation
of moiré fringes (see Section 13.2.2). These techniques, in principle, will give the
shadowy characteristics of angular measurement with applications toward the
same angular measurement, parallelism or collimation, perpendicularity, alignment,
slope, and curvature.

If a grating of period pp is projected on a flat object, the size of the period
changes if it is observed to a different angle from that of projection, as shown in Fig.
13.36. In this figure, it is supposed that the projection and observation systems are
far from the surface, in such a way that the illumination and reflected beams are
plane wavefronts. An angular change of the surface also produces a change in the
period of the observed grating, as shown in Fig. 13.37. If the observed gratings are
superimposed before and after the surface is tilted, a moiré pattern of period p 0,
given by Eq. (13.14), will be observed. Then, we can find the relationship between the
observed pattern’s period and the angular displacement of the surface, knowing the
period of the projected grating. The observed period p1 before the surface is moved is
given by (see Fig. 13.37):

p1 ¼ pp
cos �

cos�
; ð13:24Þ

where pp is the period of the projected grating and � and � are the angles to the z-axis
of the optical axes of observation and projection systems, respectively. Figure 13.37
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Figure 13.36 Diagram of a linear grating projected on a flat surface. The grating lines are

perpendicular to the x�y plane.



shows all these parameters. The observed period p2 after the surface is tilted is given
by

p2 ¼ pp
cosð�� 	Þ
cosð�þ 	Þ ; ð13:25Þ

where 	 is the angular displacement that suffered the surface. Substituting Eqs
(13.24) and (13.25) in (13.13), one has

p 0 ¼ pp
cos � cosð�� 	Þ

cosð�þ 	Þ cos �� cos � cosð�� 	Þ
����

����: ð13:26Þ

For the particular case of a perpendicular observation to the surface, where
� ¼ 0, Eq. (13.26) is transformed into

tan 	 ¼ pp

p 0 sin �
: ð13:27Þ

This last equation allows us to calculate the inclination that suffers a surface by
means of the moiré method. The tilt angle 	 that moves the surface from its original
position is determined from the moiré pattern’s period p 0, the projected grating
period pp, and the projection angle �.

13.3.2.1 Tilt Measurement

Moiré fringes are used in three methods to measure angular variations of a surface.
One is based on the use of linear grating (Nakano and Murata, 1986; Nakano, 1987);
another is the use of nonlinear gratings (Glatt and Kafri, 1987a; Ng and Chau, 1994;
Ng, 1996); and, the third, in the projection of interference fringes (Dai et al., 1995,
1997).

The interference fringe projection method is based on the detection of phase
changes of the projected fringes when the object is tilted at a small angle (Dai et al.,
1995). The projected interference fringes on the object are reflected and they are
detected in two points. The change in the phase difference between the two detected
phase points is a function of the object rotation angle. The sensibility of the techni-
que depends on the position of the two detection reference points in the fringe
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Figure 13.37 Parameters for calculating the moiré fringe period when the test surface is

tilted.



pattern. With this technique, angular variations up to 17 mrad/arcsec can be
detected. The technique suffers from an ambiguity: the maximum detected phase
change is 2. In order to increase the sensibility of the method, projection of two
interference fringe patterns with different period were employed (Dai et al., 1997).

Techniques of angular measurement with nonlinear gratings can use two (Glatt
and Kafri, 1987a; Ng, 1996) or a single circular grating (Ng and Chau, 1994). The
basic technique consists of detecting the moiré pattern when the circular gratings are
superimposed. For the case of a single circular grating, the shadow moiré technique
is used (Takasaki, 1970). The grating is placed in front of a reference plane and
illuminated. A projected shadow of the grating is formed on the reference plane and
is superimposed with the physical grating, producing in this way the moiré pattern.
The observed moiré pattern, with a camera located perpendicularly to the reference
plane, is similar to that of the Fig. 13.11(c).

Nakano (1987) uses the Talbot effect to measure small angular variations of a
surface. Figure 13.38 is an experimental diagram to carry out tilt measurements. By
means of a collimated monochromatic beam a grating g1 is illuminated. The wave-
front passing through the grating is reflected on a surface M that makes an angle 	
with respect to the optical axis. This reflected wavefront impinges on a second
grating g2. The grating g2 is placed at a Talbot distance, with respect to g1. So, in
the observation plane, a moiré pattern is formed. If the angle between the lines of the
gratings is �, the moiré fringes appear inclined a quantity �1, to the x 0-axis. If the
surface object is tilted an angle �	 from its original position, the Talbot self-image
suffers a modification. This modification means that the moiré fringes lean at an
angle �2, to the same x 0-axis. Then, the small angular variation �	 will be given by
Nakano (1987).

The inclination angles of the moiré fringes are measured in a direct way or
automatically, taking as reference the first position of the surface M. The accu-
racy of this technique depends on the method used to measure the inclination
angles of the moiré fringes, �. Other error sources affecting the sensitivity of the
method are the measurement of the Talbot distance and the angle between the
grating lines, �.
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Figure 13.38 Experimental outline to measure the tilt angle �	 of the surface M.



13.3.2.2 Optical Collimation

A very simple technique for beam collimating is also based on the moiré and Talbot
effects (Silva, 1971; Foueré and Malacara, 1974; Yokozeki et al., 1975). The experi-
mental arrangement consists of a couple of identical linear gratings, a laser, a beam
expander, and the collimating lens, as shown in Fig. 13.39. The principle consists on
adjusting the collimating lens mechanically to coincide its focal points with that of
the expander lens. A way to corroborate this coincidence of points is by means of the
moiré pattern. It is known, by Eq. (13.14), that when two identical linear gratings are
superimposed, the moiré pattern’s period becomes infinitely big when the angle
among the lines of the gratings goes to zero. On the other hand, if the beam illumi-
nating the first grating, in the outline of the Fig. 13.39, is not collimated, the self-
image is amplified and the moiré pattern appears; even the angle among the grating
lines becomes zero (see Eq. (13.13). So, the mechanical movement of the collimating
lens (along the optical axis) and of the second grating must be adjusted until the
moiré pattern disappears when � ¼ 0. A similar outline to that previously described
has been reported by Kothiyal et al. (1988) and Kothiyal and Sirohi (1987). Each one
of the gratings is built with two different frequencies and dispositions of the lines,
giving a greater sensitivity to the technique.

13.3.2.3 Optical Level and Optical Alignment

Under certain conditions an optical collimator, as the one described in previous
sections, can serve as an optical level. This way, for example, it is possible to
place one or several objects in a straight line. This line can be parallel or perpendi-
cular to the optical axis of the system. In consequence, this system can serve as help
for alignment, center, and measure perpendicular deviation. This idea of using the
moiré as an optical measurement tool has resulted in instruments for precise optical
levels and ‘‘aligners’’ (Palmer, 1969). Some of these use circular gratings (Patorski et
al., 1975) or combinations of linear and circular gratings (Reid, 1983).

13.3.2.4 Slope and Curvature Measurements

Measurement of a surface by means of the moiré effect is very well known (Takasaki,
1970; Hovanesian and Hung, 1971). The fundamental characteristic of this technique
is the formation of contours or level curves, as mentioned in the section 13.2.2, Eq.
(13.18). However, for some applications, it is useful to know contours of slopes or
local surface curvature, mainly when it is required to know the field of mechanical
strains on this surface. A useful technique to measure the slope and curvature of the
surface is the reflection moiré (Rieder and Ritter, 1965; Kao and Chiang, 1982;
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Figure 13.39 Experimental arrangement for optical collimating.



Asundi, 1994). This technique is based on projecting a linear grating on a mirror-like
test surface. The projected grating is recorded photographically or electronically
twice before and after subjecting the object to a flection. As a result, a moiré pattern
is formed and interpreted as a slope map (derived) in the perpendicular direction to
the lines of the projected grating.

Another possibility is to obtain a local curvature map on the plate (Ritter and
Schettler-Koehler, 1983). To obtain this map, two slope moiré maps are superim-
posed, giving a second moiré pattern (moiré of moiré). The slope maps that will be
superimposed to give the moiré of moiré are displaced a small quantity. This cur-
vature map (second derived) is also perpendicular to the lines of the projected grat-
ing.

13.3.3 Interferometric Methods

Interferometric angle measurement seems an obvious task for a simple Michelson
interferometer. A small tilt in one mirror produces a fringe pattern. Unfortunately,
since the interferometer sensitivity is very high, this device could practically measure
very small angles only. Interferometric angle measurement with both high precision
and large range is a desired device. Angular measurements can be done (Sirohi and
Kothiyal, 1990) with a distance-measuring interferometer, built as shown in Fig.
13.40. By tilting the retroreflectors assembly, the distance difference changes and
the angle can be obtained from the equation:

� ¼ arcsin
�x

L
; ð13:28Þ

where L is the mirror separation and �x is the distance difference between retro-
reflectors. From this equation, it is evident that the angle precision depends on the
angle, so the measurement range is also limited.

A laser Doppler displacement interferometer is used for a large angle precise
measurement in a telescope. The setup is the same as the previously described sys-
tem. With a single interferometer, the resolution is 0.01 arcsec. For a mirror separa-
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Figure 13.40 Interferometric angular measurement.



tion of 28mm, the maximum angle is 48. To cover the full 3608 circle, a polygon and
two measuring systems can be used (Ravensbergen et al., 1995).

A Murty’s shearing interferometer has been proposed by Malacara and Harris
(1970) that is accurate within tenths of arcseconds. The basic setup is shown in Fig.
13.41. A collimated beam of light is reflected from the two faces of a plane parallel
faces glass. The angle can be obtained from the fringe count as the plate rotates. This
method can be used for any angle but only for a limited angle span.

Laser speckle interferometry has been suggested for angle measurements. The
objected is illuminated with a laser and a defocused image is formed at H (Fig.
13.42). A double exposure of the object will form a fringe pattern that reflects the
amount of rotation (Tiziani, 1972; Françon, 1979).

13.4 VELOCITY AND VIBRATION MEASUREMENT

Velocity measurement u involves two physical magnitudes to be determined: displa-
cement �x and time �t. The measurement of time is essentially a process of count-
ing. Any phenomenon that repeats periodically can be used as a time measurement;
this measure consists on counting the repetitions. Of the many phenomenon of this
type that occur in nature, the rotation of the Earth around its axis is adopted. This
movement, when reflected in the apparent movement of the stars and the sun, is a
basic unit that one has easily to reach.

Another way of measuring time is artificially, by means of two apparatuses:
one that generates periodic events and another to count these events. Today, optical
clocks operate by means of atomic transition measurements between energy levels of
the cesium atom ( Lee et al., 1995; Teles et al., 1999). Also, electronics can be used to
implement instrumentation of time measurement. Perhaps the most convenient and
widely utilized instruments for accurate measurement of time interval and frequency
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Figure 13.41 Lateral shear interferometer for angle measurement.



are based on piezoelectric crystal oscillators, which generate a voltage whose fre-
quency is very stable (Bottom, 1982).

Distance measurement also has its historical ingredient, and has also been
based on the observation of natural phenomena. For example, Eratosthenes (273
BC) tried to calculate the diameter of the Earth. This was based on his observations
in Assuan that, in the summer solstice, the sun’s rays fell perpendicularly and there-
fore a shadow was not cast, while at the same time, in Alexandria, there was a ray
inclination of 7.28 in the shadows. Performing the appropriate calculations, this
Greek astronomer obtained the Earth’s diameter with an error of 400 km from
the actual value (Eratosthenes measured 39,690 km; the actual diameter is
40,057 km). Currently, popular techniques for distance measurement use graduated
rules, traced to the standard meter (Busch, 1989). However, as we have seen in the
present chapter, there are several optical techniques that can be used to make this
measurement with a very high precision.

This section describes some different optical methods for local displacement,
velocity, acceleration, and vibration measurements.

13.4.1 Velocity Measurement Using Stroboscopic Lamps

Translation and rotational velocity can conveniently be measured using electronic
stroboscopic lamps which emit light in a controlled and intermittent way. For the
case of translation velocity measurement, the movement of the target is recorded on
a photographic film when the camera shutter is opened and several shots of the
strobe lamp are fired during that time. The measurement is made of the number
of lamp shots time, and the serial position of the registered target. In order to
measure the target displacement, a fixed rule is placed along the target path.

Sometimes, it is desirable to measure a value of average velocity of an object
over a short distance or time interval, and velocity or time is not required in a
continuous way. A useful basic optical method is to somehow generate a pulse of
light when the object in movement passes through two points whose spacing is
exactly known (Doebelin, 1990). If the velocity were constant, any spacing could
be used: for large spacing, of course, one has a better accuracy. If the velocity is
varying, the spacing �x should be small enough so that the average velocity over �x
is not very different from the velocity at either end of �x.
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Figure 13.42 Speckle angle measurement.



Rotational velocity can be measured using a strobe lamp firing the target and
adjusting its shot frequency until the object is observed motionless. At this setting the
lamp frequency and motion frequency are identical, and the numerical value can be
read from lamp’s calibrated dial for pulse repetition rate to an accuracy of about
�1% of the reading; or up to 0.01% in some units with crystal-controlled timebase
(Doebelin, 1990).

13.4.2 The Laser Interferometer

Although the principle of the interference of light as a measuring tool is very old, it
continues to be advantageous. Albert A. Michelson, in the 1890s, was the first to use
the interferometer, that bears his name, to measure distance and position in a very
precise way.

The first efforts to use interferometry for the study of mechanical vibrations
dates back to the 1920s (Osterberg, 1932; Thorton and Kelly, 1956). The use of the
interferometer replaced stroboscopic techniques in those experiments where mea-
suring oscillation frequencies are higher than those in the range of stroboscopic
lamps.

The advent of the laser in the 1960s popularized the interferometer as a useful
optical instrument for measuring distances and displacements with high precision
(Dukes and Gordon, 1970; Hariharan, 1987; Fischer et al., 1995; Gouaux et al.,
1998), as well as accelerometer and vibrometer calibration (Ruiz Boullosa and
Perez Lopez, 1990; Ueda and Umeda, 1995; Martens et al., 1998) to high measuring
velocities.

Figure 13.43 shows a Michelson interferometer. A laser beam is divided in two
parts: beam 1 hits the moving (test) mirror directly and beam 2 impinges on the fixed
(reference) mirror. Due to the optical path difference between the overlapping
beams, light and dark fringes are produced on the observing screen. The motionless
test mirror produces a static fringe pattern. Cycles of maxima and minima passing
through a fixed point on the observation screen are detected when the mobile mirror
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Figure 13.43 The laser interferometer.



moves. Fringe displacement is due to a phase change (and therefore, optical path
change) of the beam 1 with respect to the fixed one. If we know the laser light
wavelength to be, for example 0:5� 10�6 m, then each 0:25� 10�6 m of mirror
movement corresponds to one complete cycle (light to dark to light) at the fixed
point on the observation screen. It is possible to calculate the displacement of the
mobile mirror between two positions by counting the number of cycles. Therefore,
the mobile mirror velocity is determined by calculating the number of cycles in the
unit of time.

Electronic fringe counting involves two uniform interferograms, one of them
with an additional quarter wavelength optical path difference introduced between
the interfering beams. Two detectors viewing these fields provide signals in quad-
rature, which are used to drive a bidirectional counter which gives the changes in the
integral fringe order (Peck and Obetz, 1953). Nowadays, the two signals can also be
processed in a microcomputer to give an accurate estimate of the fractional fringe
order (Smythe and Moore, 1984; Martins et al., 1998).

Another technique used to carry out fringe counting uses a laser emitting two
frequencies, which avoids low-frequency laser noise (Dukes and Gordon, 1970).
These kinds of interferometers have been widely used for industrial measurements
over distances up to 60m.

Additional techniques, where the phase of moving interference fringe patterns
are measured, have been applied. These methods are heterodyne phase measurement
and phase lock detection (Greivenkamp and Bruning, 1992; Dändliker et al., 1995;
Malacara et al., 1998). In the heterodyne technique, also known as AC interferome-
try, the interferometer produces a continuous phase shift by introducing two differ-
ent optical frequencies between both arms. With this approach the interferogram
intensity is modulated at the difference frequency. Phase lock interferometry involves
applying a small sinusoidal oscillation to the reference mirror (Johnson and Moore,
1977; Matthews et al., 1986; Fischer et al., 1995).

13.4.3 Laser Speckle Photography and Particle Image Velocimetry

Laser speckle photography (LSP) and particle image velocimetry (PIV) are two
nearly related optical techniques for the measurement of in-plane two-dimensional
displacement, rotation, and velocity (Siorhi, 1993, Raffel et al., 1998). LSP is used
primarily for the measurement of the movement of solid surfaces, while PIV is used
in applications of fluid dynamics. In both cases, the principle of operation is based
on photographic recording under light laser illumination.

In LSP, light scattered from a moving object illuminated by coherent laser light
is double-exposure photographed with a known time delay between exposures, as
shown in Fig. 13.44(a). In this way, locally identical but slightly shifted speckle
patterns are recorded, which can be analyzed optically to find local displacement
vectors at the surface of the moving object surface.

In PIV a double-pulsed laser sheet of light is used to illuminate a plane within a
seeded flow, which is photographed to produce a double-exposure transparency as
shown in Fig. 13.44(b). It is important to note, however, that, for practical seeding
densities in PIV, the recorded image consists no longer of two overlapping speckle
patterns but of discretely resolved particle–image pairs corresponding to both
exposures.
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In both cases, the double-exposure transparencies could be analyzed in two
ways. The first method, a whole-field approach, consists of optically filtering the
recorded transparency in a setup, as schematized in Fig. 13.45.

Supposing that the object shift is s along the x-axis; displacement fringe con-
tours appear on the Fourier focal plane described by (Gasvik, 1987)

jfðjUðxÞj2Þj2 cos2 s!

2

� 
; ð13:29Þ

where ffUðxÞg means the Fourier transform of UðxÞ, the complex amplitude dis-
tribution of the object, and ! ¼ 2�=
f , with f being the focal length. Then, object’s
displacement can be measured by
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Figure 13.44 (a) Experimental recording of laser speckle photography and (b) particle

image velocimetry.



s0 ¼

f

M�
; ð13:30Þ

where M is a magnification produced by the recorder camera objective, and �
denotes the distance from zero diffraction order, parallel to the x-axis.

The second method, a point-by-point approach, consists of scanning the trans-
parency by means of a narrow laser beam (Fig. 13.46). The laser beam diffracted by
the speckles (or seed images in the PIV case) lying within the beam area gives rise to a
diffraction halo. The halo is modulated by an equidistant system of fringes arising
from the interference of two identical but displaced speckles, like the Young’s inter-
ferometer. The directions of these fringes are perpendicular to the displacement
direction. The magnitude of displacement, inversely proportional to the fringe spa-
cing d, is given by

S ¼ 
z

Md
; ð13:31Þ

where z is the separation between the transparency and the observation screen.
Figure 13.47 shows examples of such a point-by-point approach obtained for dif-
ferent linear displacements of a metallic plate (Lopez-Ramirez, 1995). Young fringes
were formed by displacing the metallic plate 120, 100, 80, 60, 40, and 20 mm, respec-
tively. Note that the number of fringes increases with the displacement.

By using LSP, in-plane rotation of a metallic plate is measured. In this case, in-
plane displacements are not uniform point to point, because different speckles move
in different directions. Near to the rotation axis, speckles will move less than at the
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ends. The recording step is made in such a way that the rotation and viewing optical
axes coincide. By placing the transparency into to slide, movable in both horizontal
and vertical directions, measurement on different points on the transparency were
carried out. Knowing the distance r from rotation center to the sampling point and
the displacement s, it is easy to know the rotation angle by means of the relationship

� ¼ Ms

y
; ð13:32Þ

By combining Eqs (13.32) and (13.31), we obtain

� ¼ Mz

yd
; ð13:33Þ

Figure 13.48(a) shows Young’s fringe images for different points on the same
plate. These points are localized, as shown in Fig. 13.48(b). Both direction and fringe
separation can be measured directly on the observation screen. In order to check
experimentally, three zones on the surface object are analyzed. Figure 13.49 shows
such zones. Measurements from the center to each zone are measured directly on the
photographic plate. In this case, the distance between transparence and observation
screen is z ¼ 46 cm, the wavelength 632.8 nm, and the optical recording system
amplification 0.2222. Table 13.1 show figures of the measurements obtained by
using Eq. (13.33).
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Presented results have been made by manual evaluation of the Young’s fringes;
therefore, it is a time-consuming, tedious and impractical procedure. For this reason,
considerable effort has been put into developing optical systems with digital image
processing to automate the analysis procedure (Pickering and Halliwell, 1984;
Kaufmann, 1993; Malacara et al., 1998).

Other ways of reducing times of dynamic phenomena by means of PIV and
LSP are using streak and CCD cameras instead of making photographic recordings
(Grant et al., 1998; Fomin et al., 1999; Funes-Galanzi, 1998). Nowadays, experi-
mental setups have been implemented by using two cameras to make three-dimen-
sional measurements from stereoscopic images. Together with the modern recording
instruments, computational techniques have been developed for a reliable and quick
interpretation, such as the use of neural networks (Grant et al., 1998).
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points shown in (B) (reproduced by kind permission of J. Manuel Lopez-Ramirez).



13.4.4 Laser Doppler Velocimetry

13.4.4.1 Physical Principle

Laser Doppler velocimetry (LDV) also known as laser Doppler anemometry (LDA)
is now a well-established optical nondestructive technique for local measurements of
velocity. Although initially this technique, developed at the end of the 1960s, was
applied in the field of fluid flows, it has now been extended to solid mechanics
(Drain, 1980).

The physical principle of all LDVs lies in the detection of Doppler frequency
shift of coherent light scattered from a moving object. The frequency shift is propor-
tional to the component of its velocity along the bisector angle between illuminating
and viewing directions. This frequency shift can be detected by beats produced either
by the scattered light and a reference beam or by scattered light from two illuminat-
ing beams incident at different angles. An initial frequency offset can be used to
distinguish between positive and negative movement direction (Durst et al., 1976).

Figure 13.50(a) shows a schematic diagram of the effect when a particle moving
with a velocity u scatters light in a direction k2 from a laser beam, fundamentally, a
single frequency traveling in a direction k1, where k1 and k2 are wavenumber vectors.
The light frequency shift, �f , produced by the moving point is given by (Yeh and
Cummins, 1964):
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Figure 13.49 Zones analyzed on the transparency (reproduced by kind permission of J.

Manuel Lopez-Ramirez).

Table 13.1 Displacement Calculation and Angle for Rotational Movement

Zone d (mm) r (mm) s (mm) � (rad)

A

B

C

20.66

21.60

36.00

9.50

9.00

5.50

63.40

60.64

36.40

0.00148

0.00150

0.00147



�f ¼ ðk2 � k1Þ � u ¼ K � u; ð13:34Þ

where K ¼ k2 � k1.
Figure 13.50(b) shows a geometry which is appropriate for solid surface velo-

city measurement where the laser beam is directed at a solid surface which acts like a
dense collection of particle scatters. In this situation k1 and k2 are parallel so that the
Doppler frequency shift measured corresponds to the surface velocity component in
the direction of the incident beam and is given by

�f ¼ 2ku: ð13:35Þ

Measuring the frequency shift �f , then the linear relationship with surface
velocity to measure u can be used. Furthermore, tracking the changing Dopper
frequency it is possible to have a means of time-resolved measurement. The scattered
light, as shown in Figs 13.50(a) and (b) has a frequency which is typically 1015 Hz;
that is too high to demodulate directly. Therefore, �f should be measured electro-
nically by mixing the scattered light with another frequency shifted reference beam so
that the two signals are heterodyned on a photodetector face. This is shown sche-
matically in Figs 13.51 and 13.52, where a beamsplitter has been used to mix the two
beams. These figures also demonstrate the need to frequency preshift the reference
beam. If the reference beam is not preshifted, as in Fig. 13.51 then, when the target
surface moves through zero velocity, the Doppler signal disappears and cannot be
tracked (Halliwell, 1990). Figure 13.52 shows the situation required where the target
surface frequency modulates the carrier frequency which is provided by the constant
frequency preshift ð fRÞ in the reference beam. Frequency tracking the changing
Doppler frequency then provides a time-resolved voltage analogue to the surface
velocity.

13.4.4.2 Frequency Shifting and Optical Setups

All LDVs work on the physical principle described above and differ only in the
choice of optical geometry and the type of frequency-shifting device used. Just as
frequency shifting is paramount for solid surface velocity measurement, it is also
included as a standard item in commercially available LDV systems which are used
for flow measurement. It is obviously necessary for measurements in highly oscilla-
tory flows and in practice it is extremely useful to have a carrier frequency corre-
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sponding to zero motion for alignment and calibration purposes. For instrumenta-
tion purposes there are six types of signal which can be used to modulate sensors.
These are mechanical, thermal, electrical, magnetic, chemical, and radiant (Medlock,
1986). But, the most commonly used form of frequency shifting is the Bragg cell
(Crosswy and Hornkohl, 1973). The incident laser beam passes through a medium in
which acoustic waves are traveling and the small-scale density variations diffract the
beam into several orders. Water or glass are amongst the media of choice and usually
the first-order diffracted beam is used. In this way the frequency-shifted beam
emerges at a slight angle to the incident beam, which requires compensation in
some setups. Physical limitations often restrict the frequency shift provided by a
Bragg cell to tens of megahertz, which is rather high for immediate frequency track-
ing demodulation. Consequently, two Bragg cells are often used which shift both
target and reference beams by typically 40MHz and 41MHz, respectively.
Subsequent heterodyning then provides a carrier frequency that is readily demodu-
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Figure 13.51 Reference beam mixing.

Figure 13.52 Preshifted reference beam mixing.



lated. An alternative scheme sometimes utilized is to preshift with one cell and to
electronically downbeat the photodetector output prior to demodulation (Hurst et
al., 1981).

Figures 13.53 and 13.54 show two possible optical setups which can be used for
solid surface velocity measurement and which incorporate Bragg cells for frequency
shifting. Their compactness, electronic control, and freedom from mechanically
moving parts make them popular as preshift devices in commercially available
LDV systems for laboratory uses. Their presence does, however, add to the expense
of the system, which then requires additional electronic and optical components.

Rotating a diffraction grating disk through an incident laser beam provides
another common means of frequency shifting. Just as the small density variations in
the Bragg cell diffracted the beam, in the diffraction grating case, the small periodic
thickness variations perform the same task. Advantages over the Bragg cell are the
smaller shifts obtained (� 1 MHz) and the easy and close control of the latter
through modification of the disk speed. Disadvantages are the mechanically moving
parts and the inherent fragility of the disk itself, which is expensive to manufacture.
Extra optical components are again needed to control the cross-sectional areas of the
diffracted orders. A typical optical geometry for the measurement of solid surface
vibration using a rotating diffraction grating as a frequency shifter, as shown in Fig.
13.55. Other frequency shifting devices that have been utilized consist of Kerr cells
(Drain and Moss, 1972), Pockel’s cells, and rotating scatter plates (Rizzo and
Halliwell, 1978; Halliwell, 1979). In the case of an LDV using a CO2 laser, a
liquid-nitrogen-cooled mercury–cadmium–telluride (MCT) detector is used to detect
a Doppler-shift signal (Churnside, 1984). The liquid nitrogen should be replenished
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in the MCT detector at a predetermined time interval. Lately, optogalvanic effect has
been investigated with the purpose of detecting a Doppler-shift signal in the self-
mixing-type CO2 LDV without using an MCT detector (Choi et al., 1997).

Another important variation of the LDVs uses stabilized double-frequency
lasers (Doebelin, 1990; Müller and Chour, 1993). These designs provide portable
measuring systems that are highly precise and easy to use. For example, in Fig. 13.56
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Figure 13.54 Torsional geometry.

Figure 13.55 Frequency shifting by diffraction grating.



is shown a diagram of one such systems. A frequency-stabilized laser generates a
beam composed by two emission modes with frequencies f1 and f2 and a known
frequency difference f1 � f2. Beams of frequency f1 and f2 are polarized perpendicu-
larly, in such a way that due to the polarizing beamsplitter, this only allows the beam
of frequency f1 to pass to the movable corner cube. The beam of frequency f2
impinges directly on the fixed corner cube. When neither of the two retroreflectors
moves, the two photodetectors detect both frequencies. When the mobile mirror
moves, frequency f1 suffers a change �f as a result of the Doppler effect and this
is related to the velocity.

Another particular geometry is shown in Fig. 13.57, in which in-plane surface
velocity measurement is made. This experimental geometry is called Doppler differ-
ential mode, to differentiate it from the previous ones known as reference beam mode.
In the Doppler differential mode, two symmetrical beams from the same laser are
used for illuminating the moving point-object (or particle). The Doppler frequency
shift is given by (Ready, 1978)

�f ¼ 2u



sin

�

2
; ð13:36Þ

where 
 is the wavelength of the laser light and � is the angle between the two
illuminating beams.

The operation of this dual-beam system is possible to visualize in terms of
fringes applied in fluid dynamics. Where the two beams cross the region, the light
waves interfere to form alternate regions of high and low intensity. If one particle
traverses the fringe pattern, it will scatter more light when it crosses through regions
of high intensity. Thus, the light received by the detector will show a varying elec-
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trical signal whose frequency is proportional to the rate at which the particle crosses
the interference fringes.

13.4.4.3 Photodetector and Doppler Signal Processing

(a) Photodetectors

A very important step in the measurement process of velocity is the manner of how
the Doppler signal is detected and processed. Normally a photodetector and its
associated electronics for use in LDVs convert incident optical energy into electrical
energy. Since early days, photosensors have been used for fringe detection and are
based on the photoelectric effect: i.e., an incident photon on a given material may
remove an electron from its surface (cathode). These removed electrons are acceler-
ated towards, and collected by, an anode. This mechanism involves vacuum and gas-
filled phototubes. Electron–ion pairs are also produced as the primary electrons
collide and atoms of the gas, so that electron multiplication occurs. One of the
most sensitive sensors of this family is the photomultiplier. This same effect can be
carried out in solid-state sensors in which the photoelectric effect is made internally
(Watson, 1983). Phototubes are primarily sensitive to the energetic photons of the
UV and blue regions, while solid-state detectors are sensitive over the red and IR
regions of the spectrum.

There is a variety of different configurations and technologies used for the
manufacture of solid-state sensors, including frame transfer and interline transfer
charge-coupled devices (CCDs), charge injection devices (CIDs), and photodiode
arrays. Solid-state sensors can be classified by their geometry as either area arrays
or linear arrays. Area arrays are the most commonly used for image detection and
permit the measurement of a two-dimensional section of a surface. The system
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spatial resolution is related to the number of pixels along each dimension of the
sensor, and commonly available sensors have resolutions appropriate for television
applications, typically about 500� 500 pixels or less. Some newer sensors designed
for machine vision applications or high-definition television, have dimensions of
about 1000� 1000 or even 2000� 2000 pixels, but these sensors are expensive and
are difficult to use. These kinds of sensors make slower frame rates and the amount
of required computer memory and processing is quite high. Linear arrays, on the
other hand, measure only one-dimensional trace across the part, but make up for this
disadvantage by providing a higher spatial resolution along this line. Linear sensors
containing over 7000 pixels are available today, so that measurements with extremely
high spatial resolution can be obtained. The amount of data from these large linear
arrays is small and easily handled when compared with the 100,000 or more pixels on
even a low-resolution area array. Because of advances in semiconductor fabrication,
we can expect to see the dimensions of available sensors continuing to grow.

Photoresistors are sensors that consist essentially of a film of material whose
resistance is a function of incident illumination. This film can be either an intrinsic or
extrinsic semiconductor material, but for the visible part of the spectrum, the chal-
cogenides, cadmium sulphide and cadmium selenide, are the more common. The size
and shape of the active film determines both the dark resistance and the sensitivity.
However, for fringe counting, a small strip of material upon which the fringes can be
focused is most suitable, and this strip must be connected to a pair of electrodes. The
resistance of the cell decreases as the illumination is increased, so that it is common
to consider the inverse of this resistance or the conductance, as being the basic
parameter, which, accounts for the alternative name of the sensor, the photoconduc-
tive cell. Electrically, therefore, it is resistance or conductance changes which must be
detected. This implies that a current must be passed through the sensor, and either
variations in this, or in associated voltage drops, should be measured.

If a single crystal of a semiconductor such as silicon or germanium is doped
with both donor or acceptor impurities to form P and N regions, then the junction
between these regions causes the crystal to exhibit diode properties. The commonly
used photodiodes include the simple P–N junction diode, the P–I–N diode, and the
avalanche diode (Sirohi and Chau, 1999). The operation region of a photodiode is
limited to that of light polarization change. Incident light to the junction P–N will
give an energy transfer as a result of the atomic structure, which originates a bigger
inverse current level. The current returns to zero once the polarization of the light
changes 908, and so forth.

(b) Doppler Signal Processing

The choice of a Doppler signal-processing method is dictated by the characteristics
of the Doppler signal itself that is directly related to the particular measurement
problem.* In fluid flows (water excepted), for example, it is usually necessary to seed
the flow with scattering particles in order to detect sufficient intensities of Doppler-
shifted light (Hinsch, 1993). Clearly for time-resolved measurements the ideal situa-
tion requries a continuous Doppler signal but unfortunately in practice the latter is
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often intermittent due to changes in seeding particle density, which occur naturally.
The three most popular methods of signal processing are frequency tracking, fre-
quency counting, and photon correlation (although in the specialized literature
others like burst counting, Fabry–Perot interferometry, and filterbank are found).
Tracking requires a nearly continuous Doppler signal, while correlation has been
developed to deal with situations where seeding is virtually absent. The increased
ability to deal with intermittent signals (in what is really a statistical sampling pro-
blem) is usually indicative of the expense of the commercial processor concerned,
and the relationship is not linear.

Fortunately in the case of solid-surface vibration measurements Doppler
signals are continuous and frequency tracking demodulation is the treatment of
choice. With this form of processing, a voltage-controlled oscillator (VCO) is used
to track the incoming Doppler signal and is controlled via a feedback loop
(Watson et al., 1969; Lewin, 1994). Usually, a mixer at the input stage produces
an ‘‘error’’ signal between the Doppler and VCO frequencies which is bandpass
filtered and weighted before being integrated and used to control the oscillator to
drive the error to a minimum. The feedback loop has an associated ‘‘slew rate’’
which limits the frequency response of the processor. With respect to the Doppler
signal the tracker is really a low-pass filter which outputs the VCO volage as a
time-resolved voltage analogue of the changing frequency. The frequency range of
interest for vibration measurements (20 kHz in dc) is well within the range of this
form of frequency demodulation. Some trackers carry sophisticated weighting net-
works that tailor the control of the VCO according to the signal-to-noise ratios of
the incoming signal. A simple form of this network will hold the last value of
Doppler frequency being tracked if the amplitude of the signal drops below a
preset level. In this way the Doppler signal effectively ‘‘drops out’’, and careful
consideration must be given to the statistic of what is essentially a sampled output
especially when high-frequency information of the order of a drop-out period is
required.

In several outdoors applications the sensitivity of the LDV suffers, along the
free space path, from cochannel interference arising from spurious scattered light
from rain, moisture, speckle, refractive index change, and dust, among others. New
methods of demodulation signals from LDVs have been proposed. In order to
minimize spurious scattering, an amplitude-locked loop (ALL) is combined with a
phase-locked loop (PLL). The signal from the photodiode is down-converted to an
intermediate frequency before being demodulated by a PLL to obtain baseband
information, i.e., the vibration frequency of the mirror. The ALL is a high-band-
width servo loop that is able to obtain extra information on the amplitude of the
spikes. The incoming corrupted FM signal is directly connected to the ALL. The
output of the ALL gives a fixed output FM signal, which is connected to the PLL
input (Dussarrat et al., 1998; Crickmore et al., 1999).

Commercially available LDVs were originally designed for use in fluid-flow
situations. Consequently, a great deal of research and development work has been
directed toward solving the signal drop-out problem and other Doppler uncertainties
produced by the finite size of the measurement volume. Since the early work in the
middle to late 1970s manufacturers now appear to prefer frequency counting for the
standard laboratory system. This represents a successful compromise between track-
ing and correlation. Modern electronics will allow very fast processing, so that a
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counter will provide a time-resolved analogue in a continuous signal situation while
producing reliable data when seeding is sparse.

Compact LDVs have come to revolutionize the instrumentation of the velo-
city sensors. Optical systems of gradient index, together with diode lasers and
optical fibers, have made the use of portable systems a reality. Fast response of
modern photodetectors, as well as rapid computers for Doppler-shifted signal
analysis and data reduction, has come to aid performance of such instruments
(Jentink et al., 1988; D’Emilia, 1994; Lewin, 1998). Basic investigation has also
continued to be carried out, such as near-field investigations to determine three-
dimensional velocity fields by combining differential and reference beam LDVs and
the use of evanescent waves for determining flow velocity (Ross, 1997; Yamada,
1999).

13.4.5 Optical Vibrometers

Displacement sensors and transducers are used to modulate signals with the purpose
of making measurements of dynamic magnitudes. In previous sections, a number of
optical transducers have been analyzed, which have provided different forms of
signal modulating to measure displacement and velocity. Now, in this section, a
survey of punctual optical techniques to determine mechanical vibrations is given.

The measurement of vibration of a solid surface is usually achieved with an
accelerometer or some other form of surface-contacting sensor (Harris, 1996). There
are, however, many cases of engineering interest where this approach is either impos-
sible or impractical, such as for lightweight, very hot, or rotating surfaces. Practical
examples of these loudspeakers, engine exhausts, crankshafts, etc. Since the advent
of the laser in the early 1960s, optical metrology has provided a means of obtaining
remote measurements of vibration in situations which had been hitherto thought
unobtainable. The first demonstration of the use of the laser as a remote velocity
sensor was in the measurement of a fluid flow (Yeh and Cummins, 1964). The
physical principles of the optical vibrometers have their roots in velocity and dis-
placement measurement systems, like those described above. These concepts have
already been treated in previous sections; however, they will be described again in an
electronics context.

A variety of methods are at hand for utilizing the frequency (temporal) coher-
ence, spatial coherence, or modulation capacity of laser light to measure the com-
ponent’s dynamics of a moving object. For general applications, the element under
study is moving with displacements of normal and angular deflection, or tilt, with
respect to some axis in the plane of the surface. Methods for detection for both types
of motion will be described.

In general, the surface motion can be detected by observing its effect on the
phase or frequency of a high-frequency subcarrier which has been amplitude modu-
lated onto the optical carrier, or by observing the phase or frequency changes
(Doppler shift) on the reflected optical carrier itself. In addition, the surface acts
as a source of reflected light that changes its orientation in space with respect to the
optical receiver; hence, the arrival angle of reflected light varies with target position
and can be detected. All of the vibration measurement techniques that will be
described fit into these general classifications. From the historical point of view,
optical vibrometers will be described, starting with the first systems that appeared
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in scientific literature (based on subcarriers) and their evolution, up to the state of the
art (scanning LDV).

When the subcarrier methods are used, the vibration-induced phase shift is
proportional to the ratio of the vibration amplitude to the subcarrier wavelength.
Obviously, then, it is desirable to use the highest possible subcarrier or modulation
frequency at which efficient modulation and detection can be performed.

When the optical carrier is used, a photodetector alone is not adequate, as
already mentioned above, to detect frequency changes as small as those produced in
this application. Some type of optical interference is required to convert optical
phase variations on the reflected signal into intensity variations (interference fringes)
which the photosensor can detect. A reference beam from the laser transmitter may
be used to produce the interference with the incoming signal beam collected by the
receiver optics. In such a system, the reference beam is often called the local oscillator
beam, using the terminology established for radiofrequency receivers. Demodulation
using a reference beam is known as coherent detection. If the frequency of the
reference or local oscillator beam is the same as the transmitted signal, the system
is a coherent optical phase detector, or homodyne system (Deferrari et al., 1967;
Gilheany, 1971). When the frequency of the reference is shifted with respect to the
transmitted wavelength, an electrical beat is produced by the square-law photode-
tector at the difference, or intermediate, frequency between the two beams. Such a
system is called a heterodyne detector or coherent optical intermediate frequency
system (Ohtsuka, 1982; Oshida et al., 1983). Obviously, the coherent phase detector
or homodyne is a special case of heterodyne detection with the intermediate fre-
quency equal to zero.

13.4.5.1 Subcarrier Systems

Three different subcarrier systems are analyzed. Each of them uses an electro-optic
amplitude modulator to vary the intensity of the transmitted laser beam at a micro-
wave rate (Medlock, 1986). In practical devices, only a fraction, M, of the light
intensity is modulated. These intensity variations represent a subcarrier envelope
on the optical carrier; they can be detected by a photodetector, which has good
enough high-frequency performance to respond to intensity variations at the sub-
carrier frequency. When the modulated light is reflected from the moving surface, the
phase of the subcarrier envelope will vary with time, according to the expression:

�ðzÞ ¼ 4z0

m

sin!rt; ð13:37Þ

where z0 is the zero-to-peak vibration amplitude, !r ¼ 2fr is the vibration fre-
quency, and 
m is the microwave subcarrier wavelength. For a subcarrier frequency
of 3GHz, 
m is 10 cm; thus, the peak of phase deviation for small vibrations is much
less than 1 rad. The information on the vibration state of the surface appears on the
reflected light in the subcarrier sidebands produced by the time-varying phase
changes. For small peak-phase deviations, which are always of interest in determin-
ing the maximum sensitivity of a given system, only the first two sidebands are
significant (the exact expression gives an infinite set of sidebands with Bessel function
amplitudes, most of which are negligibly small). In that case, the reflected spectrum
of light intensity is given by the approximation:
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P ¼ P0

2

þMP0

2
sin!mt

þMP0�0
2
m

sinð!m þ !rÞtþ
MP0�0
2
m

sinð!m � !rÞt;

ð13:38Þ

where !m is the microwave signal, M is the modulation index of the incident light,
and P0 is the reflected power. The first term of Eq. (13.38) is the unmodulated light;
the second term, the subcarrier; and, third term, shows the sidebands. The necessary
receiver bandwidth is simply the maximum range of vibration frequencies to be
measured. Thus, any usable microwave system must be able to detect the sideband
amplitudes in the presence of receiver noise integrated over the required bandwidth.
It should be noted that Eq. (13.58) is for optical power; the demodulated power
spectral components in the electrical circuits will be proportional to the squares of
the individual terms in Eq. (13.38).

(a) Direct Phase Detection System

This approach is the simplest subcarrier technique and is shown schematically in Fig.
13.58. The subcarrier is recovered after reflection by the photodetector, which might
be a tube or solid state diode. The diode has the disadvantages of no multiplication
and effective output impedances of only a few hundred ohms at best. However, solid-
state quantum efficiencies can approach unity (Blumenthal, 1962).

The low-noise traveling-wave amplifier and tunnel diode limiter are required to
suppress low-frequency amplitude fluctuations on the received signal due to surface
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tilt, laser amplitude fluctuations, and other effects. The balanced mixer further
rejects amplitude modulation on either of the microwave input signals.

The voltage-tunable magnetron exciter for the optical modulator is used. This
might be tuned by a servo-control system, not shown in Fig. 13.58, to follow the drift
in modulator resonant frequency during warm-up. Such a servo-system would
include a sensor placed in or near the modulator cavity to sample the phase and
amplitude of the cavity field. This signal would be processed by narrow-band elec-
tronics to derive the tuning voltage needed to make the oscillator track the cavity
resonance.

The directional coupler, attenuator, and variable phase shifter provide the
reference or local oscillator signal to the balanced mixer at the phase and amplitude
for phase quadrature detection.

(b) Intermediate Frequency Detection System

This technique is illustrated schematically in Fig. 13.59. The receiver portion of this
system differs from the one above because the local oscillator signal to the micro-
wave mixer has been shifted in frequency. This is the purpose of the intermediate
frequency (IF) generator and sideband filter. The microwave mixer produces a beat
frequency when a signal is present. A second mixer, known as a phase detector, is
used to demodulate the phase modulation produced on the IF by the surface
motion. Thus the mixing down to audio is done in two steps. This improves the
mixer noise figures, and with limiting in the IF amplifier it might be possible to
operate the phototube directly into the first mixer. As pointed out in the previous
section, the mixer noise is negligible anyway, so the additional complexity of this
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approach appears unnecessary. Sensitivity is the same as for the direct phase
detector analyzed above.

(c) Double Modulation System

The fundamental limitation in performance of the systems above is imposed by the
low quantum efficiency of the microwave phototube. A method which avoids this is
illustrated in Fig. 13.60. Here, the phase demodulation is done not with a high-
frequency detector but with a gated receiver and low-frequency detector. Gating
of the microwave rate is accomplished by passing the reflected light back through
the microwave optical modulator. A beamsplitter mirror or calcite prism and quar-
ter-wave plate might be used to allow transmission and reception through the same
optical system. The re-modulated signal in this case will have audiofrequency inten-
sity variations corresponding to the subcarrier phase shifts (Doppler effect) pro-
duced by the vibration. Efficient, low-noise phototubes and diodes are now
available at these frequencies.

With the external optical path adjusted so that the second modulation occurs
908 out of phase with the first one, the detected optical power is of the form:

P ¼ Pr 1þM2 2z0

m

sinð!; tÞ
� �

; ð13:39Þ

where Pr is the average power reaching the photodetector.
Several limitations were found in this system. It was not possible to detect the

phase shift on the subcarrier because of the large spurious amplitude fluctuations due
to surface tilt. This was true even when the vibrating mirror was placed at the focal
point of a lens, an optical geometry that minimizes the angular sensitivity. Thus, any
substantial amplitude change due to laser noise or reflected beam deflection will
overcome the desired signal. Another limitation is that the subcarrier demodulation

Optical Methods in Metrology: Point Methods 479

Figure 13.60 Microwave double modulation system.



to audio is done optically; thus, it is not possible to use limiting to remove the large
amplitude variations before detection. For this reason it is doubtful that this system
could be used to its theoretical limit of performance even if the modulator were
improved to make M almost unity. If this problem could somehow be eliminated,
the double-modulation system would realize the advantage of requiring no micro-
wave receiver components and could make use of the best possible optical detectors.

13.4.6 Types of Laser Doppler Vibrometers

For overcoming the limitations imposed by subcarrier systems, coherent optical
detection methods, based on the Doppler effect, began to be used. Combining the
signal beam with a local oscillator beam that acts as a phase reference can coherently
demodulate the vibration-induced phase shifts on the optical carrier. When both
beams are properly aligned and are incident on an optical detector, the output
current is proportional to the square of the total incident electric field. This current
may be written as (Oshida et al., 1983)

IðtÞ ¼ Ir þ Is þ 2
ffiffiffiffiffiffiffi
IrIs

p
cosð!r � !sÞt; ð13:40Þ

where Ir is the local oscillator field only, Is, is the direct field due to signal alone, and
!r and !s are the frequencies of the local oscillator and the signal wave, respectively
(see Fig. 13.56). The instantaneous frequency shifts from the local oscillator and
target surface are, equivalently,

!r ¼ 2kuþ �; ð13:41Þ

!s ¼ 2kz0!v cosð!vtÞ; ð13:42Þ
where k is the wavenumber of the laser light and ðz0 cos!vtÞ represents the target
surface displacement of amplitude z0 and frequency !v.

iðtÞ ¼ A cosf2k½u� z0!v cosð!vtÞ�tþ �ðtÞg; ð13:43Þ
The function �ðtÞ represents a pseudo-random phase contribution due to the

changing population of particulate scatters in the laser spot. Neglecting constant
terms, we can write A ¼ ðIrIsÞ1=2 and �ðtÞ ¼ t�ðtÞ. The function �ðtÞ is pseudo-random
since when using a reference beam oscillating to frequency shift the spatial distribu-
tion of scatters repeats after each revolution. These cause the frequency spectrum of
the noise floor of the instrument to be a periodogram since the random amplitude
modulation of iðtÞ due to �ðtÞ repeats exactly after each oscillation period.

With reference to Eq. (13.43) a frequency tracking demodulator follows the
frequency modulation of the carrier frequency ð2kuÞ to produce a voltage output
which is an analogue of the changing surface velocity of amplitude ðz0!vÞ.

13.4.6.1 Referenced (Out-of-Plane) Vibrometer

This LDV measures the vibrational component zðtÞ which lies along the laser beam,
already analyzed for velocity measuring, which is the most common type of LVD
system. The system is a heterodyne interferometer, as shown in Fig. 13.61, which
means that the signal and reference beams are frequency shifted relative to one
another to allow the FM carrier generation. The two outputs of the interferometer
provide complementary signals which, when differentially combined, generate a
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zero-centered FM carrier signal. The superimposed frequency (or phase) shifts are
related to the surface position via the wavelength of the laser used as optical source,
given by Eq. (13.40). This system has a resolution up to 10�15 m (Hz)1=2 (Lewin,
1994).

Axial measurements can be obtained by approaching the same measurement
point from three different directions.

13.4.6.2 Dual Beam (In-Plane) or Differential Vibrometer

The basic differential LDV vibrometer arrangement is shown in Fig. 13.57. The
output from a laser is split into two beams of about equal intensity. A lens focuses
the two beams together in a small spot on the face of a vibrating plate in direction
xðtÞ, which is the target surface. Light scattered by the target surface is collected by a
second lens and focused into a pinhole in front of a photodetector. The photode-
tector output is processed by an LDV counter in a similar manner to that of refer-
enced vibrometer (Ross, 1997). By rotating the probe by 908, xðtÞ or yðtÞ can be
measured.

13.4.6.3 Scanning Vibrometer

An extension of the standard out-of-plane system, the scanning LDV uses computer-
controlled deflection mirrors to direct the laser to a user-selected array of measure-
ment points. The system automatically collects and processes vibration data at each
point; scales the data in standard displacement, velocity, or acceleration engineering
units; performs fast Fourier transform (FFT) or other operations; and displays full-
field vibration pattern images and animated operational deflection shapes. The role
of this system is found in its scanning system. Scanning mirrors can be moved by
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using voltage changes (Zeng et al., 1994) or galvanometer-based (Li and Mitchell,
1994; Stafne et al., 1998), requiring high-precision mechanical mounts. But once the
scanning system is calibrated, the unit gives a haughty standard LDV.

13.4.6.4 Spot Projection Systems

Other optical vibrometers non-less important are spot projection-based or triangula-
tion principle methods (Doebelin, 1990, pp. 283–286). If the moving surface is a
diffuse reflector, it is possible to obtain information about some components of the
motion by projecting one or more spots of laser light onto the surface and measuring
the motion-induced effects on reflected light collected by an optical receiver. One
method, in which the apparent motion of the spot is measured, does not make use of
the spectral coherence of the laser. This system has been called the incoherent spot
projection technique or triangulation-based technique. Another approach, in which
two spots are projected and the interference between reflected waves from both of
them is used, is known as coherent spot projection, because the laser coherence is
utilized.

(a) Incoherent Spot Projection System

This system is illustrated in Fig. 13.62. The laser beam is projected to a small spot on
the vibrating surface. A rectangular receiver aperature collects some of the reflected
light. In the receiver focal plane, motion of the surface produces a lateral motion of
the spot image. If a knife-edge stop is placed a short distance behind the image,
where the beam has expanded to a rectangle, motion of the image affects the fraction
of the light that passes the stop. In practice the stop would cover half the beam on
average, and the distance behind focus would be adjusted to accommodate the
largest expected image displacements in the linear range. The fraction of power
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passing the knife edge is measured by a photodetector whose current output is a
linear analogue of the surface displacement along the axis of the transmitted beam.

It is interesting to notice that the sensitivity can approach that of the Doppler-
shift-based systems if the maximum displacement is no greater than an optical
wavelength, good optics are used, and the receiver aperature is large. In such a
situation, the spatial coherence of the laser is fully utilized. Such a system is therefore
not incoherent in the limit.

For large vibrations the system has many advantages and a few disadvantages.
The main disadvantage is the need for careful alignment of the receiver and the knife
edge. For scanning, the separate receiver and transmitter are troublesome. However,
tolerance on the optical components is not severe for large maximum displacements,
and other components are simple and reliable.

(b) Coherent Spot Projection System

The above incoherent system measures normal displacement of the surface. The
coherent system to be described measures angular tilt of the surface in the plane
determined by the transmitter and receiver axes. Figure 13.63 illustrates the system
schematically. Two small spots are projected by high-quality optics. They are sepa-
rated on the surface by a distance approximately equal to a spot diameter. Then, at
the receiver plane there will be interference fringes produced by reflected light from
the two spots. If the spot separation is sufficiently small, the fringes can become large
enough to fill a receiver aperature of a few inches. A tilt of the surface corresponding
to a relative motion between the spots equal to 1/2 wavelength will move the fringe
pattern laterally by a full spatial period. Power changes due to motion of the fringe
pattern are detected in the receiver. The spot separation corresponding to a 3-inch
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receiver at 3 feet is about 4� 10�4 inches or 10�2 mm. The tilt associated with a half-
wave relative motion is then approximately 30mrad, or about 1.78.

Some limitations of this technique are encountered. First of all, the diffuse
surface causes self-interference in the reflected light from each spot. Thus, at any
point in the receiver plane, the fields from the spots are likely to be far from equal.
Consequently, the desired fringes have very low contrast over most of the plane, and
must be detected in the presence of a large, strongly modulated background of
random interference. The second problem is the inability to produce very small
spots on a diffuse surface. Scattering among the rough elements near the illuminated
region spreads the effective spot size considerably, thus reducing the maximum
usable receiver aperture. Because of these problems, the receiver aperture needs to
be carefully positioned in the fringe pattern for linear demodulation (a condition
difficult to meet if the surface must be scanned).

13.4.7 Vibration Analysis by Moiré Techniques

The first works on moiré techniques that appeared for vibration measuring were
based on the use of two gratings in contact (Aitchison et al., 1959). Maximum and
minimum of the moiré pattern in movement, due to vibration, is detected by means
of photoelectric cells and transduced through an electronic system. Recently, the use
of techniques such as fringe projection (Hovanesian and Hung, 1971; Dessus and
Leblanc, 1973), reflection moiré (Theocaris, 1967; Asundi, 1994), shadow moiré
(Dirckx et al., 1986), moiré deflectometry (Kafri et al., 1985), and holographic
moiré (Sciammarella and Ahmadshahi, 1991) have been applied to vibration analy-
sis. All these techniques have been used in a similar way to the time-average speckle
technique (Jones and Wykes, 1983). On vibrating surfaces, antinodal positions will
give continuously varying deflections, while nodes will produce zero deflection. A
time-averaged photograph of a projected grating on to a vibrating object will pro-
duce areas of washed-out grating at the antinodes and a sharp grating image at the
nodal positions. If a second grating is superimposed on the photograph to produce
dark fringes at the nodes, the antinodes will appear brilliant, and one immediately
has a contour map of the nodal positions.
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Fringe Technique,’’ J. Sci. Instrum., 36, September, 400–402 (1959).

Asundi, A., ‘‘Novel Techniques in Reflection Moiré,’’ Exp. Mech., 34, September, 230–242
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14.1 INTRODUCTION

Optical metrology of diffuse objects, as opposed to metrology of specularly reflecting
optical surfaces (Malacara, 1992), is performed with some procedures that are
described in this chapter. These techniques are extremely useful in engineering to
measure solid bodies or structures that do not have a specularly reflecting surface.
Optical metrology of diffuse objects focuses on gathering information about shape
and displacement or deformation vector rðu; v;wÞ of three-dimensional solid state
bodies or structures with nonspecularly reflecting surfaces.

In this chapter, the full-field coherent and non-coherent methods that are most
frequently applied in engineering (Table 14.1) are considered. The specific feature of
these methods is coding the measurand into a fringe pattern that is analyzed by one
of the methods described in Chapter 12.

In Table 14.1 wð Þ is an out-of-plane displacement in the z-direction, and uð Þ
and vð Þ are in-plane displacements in the x- and y-directions, respectively.

14.2 FRINGE PROJECTION

The shape of a solid three-dimensional body can be measured by projecting the
image of a periodic structure or ruling over the body (Idesawa et al., 1977;
Takeda, 1982; Doty, 1983; Gåsvik, 1983; Kowarschik et al., 2000) or by interference
of two tilted plane or spherical wavefronts (Brooks and Heflinger, 1969). The fringes
may be projected on the body by a lens or slide projector (Takasaki, 1970, 1973;
Parker, 1978; Pirodda, 1982; Suganuma and Yoshisawa, 1991; Halioua et al., 1983;
Gåsvik, 1995).
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Depending on the topology of the surface the fringes are distorted and may be
described by the equation:

Iðx; yÞ ¼ aðx; yÞ þ bðx; yÞ cos½2foxþ �ðx; yÞ�; ð14:1Þ
where aðx; yÞ and bðx; yÞ are background and local modulation functions, while fo is
the frequency of projected fringes in a reference plane close to the object and �ðx; yÞ
is the phase related to the height of the object.

The fringes are imaged on the observing plane by means of an optical system,
photographic camera, or a charged-coupled device (CCD) camera. These fringes can
be analyzed directly ðIðx; yÞÞ or preprocessed by one of the moiré techniques: projec-
tion moiré (Idesawa et al., 1977) and shadow moiré (Pirodda, 1982). In projection
moiré the distorted fringes are superimposed on a linear ruling with approximately
the same frequency as the projected fringes. The reference ruling may be real or
software generated on the computer analyzing the image (Asundi, 1991). In shadow
moiré, a Ronchi ruling is located just in front of the object under study and is
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Table 14.1 Review of the Methods Used in Optical Metrology of Diffuse Objects

Method Features of object Measurand (range)

Grid projection Arbitrary shape, diffuse

object

Shape, w (mm–cm)

Out-of-plane moiré

� Projection Arbitrary shape Shape, w

� Shadow diffuse object (mm–cm)

Holographic interferometry

� Classical

� Digital

Arbitrary shape, arbitrary

surface including diffuse

objects

u; v;w (nm–mm)

Shape (mm–cm)

Speckle interferometry

� ESPI in plane

� ESPI out of plane

Flat object, diffuse surface

Arbitrary shape, diffuse

surface

v; v (nm–mm)

w (nm–mm)

Shape (mm–cm)

Shearography

� In plane

� Out of plane

Flat object, diffuse surface

Arbitrary shape, diffuse

surface

Derivatives of u and v

derivative of w

Speckle photography

� Conventional

� Digital

Diffuse object, flat surface

often painted white

u; v (mm–mm)

In-plane moiré Flat sample with grating

attached u; v
� Conventional

� Photographic (high

resolution)

f < 40 lines/mm

f < 300 lines/mm

(mm–mm)

(mm–cm)

Grating interferometry

(moiré)

Flat sample with high

frequency grating

f < 3000 lines/mm

u; v
(nm–mm)



obliquely illuminated. The moiré fringes are formed as a result of beating between
the distorted shadow grid and the grid itself.

Recently, fringe projection is most frequently used in engineering, medical, and
multimedia applications. The process of measurement may be divided into two steps:

. To each image point of the object a phase �ðx; yÞ is assigned as the primary
measuring quantity. The phase is calculated from the fringe pattern (Eq.
(14.1)) by phase shifting or the Fourier-transform method (Patorski, 1993).
In the case of steep slopes or step-like objects the methods which allow us to
avoid unwrapping are applied, namely the coded light or gray code techni-
que or hierarchical absolute phase decoding (Osten et al., 1996) which rely
on using the combination of at least two projected patterns with different
spatial frequencies.

. Based on the geometrical model of the image formation process the three-
dimensional coordinates are determined using these phase values, and cer-
tain parameters of the measurement system have to be identified in advance.

The basis of the evaluation is the triangulation principle. A light point is
projected onto the surface, which is observed under the so-called triangulation
angle � (Fig. 14.1). Using an optical system, this point is imaged on a light-sensitive
sensor. Consequently, the measurement of the height h is reduced to the measure-
ment of the lateral position �x on the CCD chip. For the calculation of h the
imaging geometry and the triangulation angle is needed. There are three basic con-
figurations, as illustrated in Figs 14.2 and 14.3. In the first two cases (Fig. 14.2(a) and
(b)) the optical axis of projection and observation systems intersect under an angle �;
however, the fringes are projected by the telecentric lens. If the observation point is
located at a height l from the reference plane the contour surfaces are not planes
(except the reference one) and the height h of a body is given by (Fig. 14.3(a))

h ¼ l�x

l tan � þ x
; ð14:2Þ
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where the fringe deviation �x is given by

�x ¼ d

2
� ðx; yÞ ð14:3Þ

where d is the period of the projected fringes (in the reference plane) and x is
measured perpendicularly to the projected fringes with an origin at the point
where the axis of the projection intersects the observation lenses.
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Figure 14.2 Three configurations to project a periodic structure over a solid body to mea-

sure its shape.

Figure 14.3 Geometries for the three basic configurations used to calculate the object height

in the fringe projection.



Knowing the phase values �ðx; yÞ from fringe pattern analysis (Malacara et al.,
1998), the height of an object is calculated from

h ¼ 1

2

ld

l tan � þ x

� �
� ðx; yÞ: ð14:4Þ

The easiest scaling of the height of a three-dimensional object is given by a system
with telecentric projection and detection (Figs 14.2(b) and 14.3(b)) and is given by

h ¼ 1

2

ld

tan �

� �
� ðx; yÞ: ð14:5Þ

However, in this configuration the size of the measured object is restricted by the
diameter of the telecentric optics.

The third configuration is based on the geometry, with mutual parallel optical
axis of projecting and observation systems (Figs 14.2(c) and 14.3(c)). In this case, the
height of the body is given by

h ¼ 1

2

ld

bþ d

2
� ðx; yÞ

� ðx; yÞ: ð14:6Þ

If the geometry of the fringe projection system is not predetermined a calibration of
the measurement volume is required (Sitnik and Kujawinska, 2000) or combining
photogrametric and triangulation/phase-measuring approaches (Reich et al., 2000).
Modern shape measurement systems deliver data about an object’s coordinates ðx;
y; zÞ in the form of a cloud of points measured and merged from different directions;
these data are extensively used in CAD–CAM and rapid prototyping systems as well
as in computer graphics and virtual reality environments.

14.3 HOLOGRAPHIC INTERFEROMETRY

Holographic interferometry (Ostrovsky et al., 1980) is the most universal method of
investigation of diffuse object. However, the bottleneck of holographic interferome-
try is the recording medium. Silver halides provide the best resolution with high
sensitivity and good-quality holographic reconstruction, but need wet chemical pro-
cessing. Photothermoplasts require special electronics, and are limited in size, reso-
lution, and diffraction efficiency. The new solution is brought together with progress
in high-resolution CCD cameras and fast computers. Below, the principles of both
optical (conventional) and digital holographic interferometry are described.

14.3.1 Optical Holographic Interferometry

The basis for holographic interferometry is that a reconstructed hologram contains
all the information (phase and amplitude) about the recorded object. If this holo-
graphic image is superimposed with the object wave from the same object, but
slightly changed, the two waves will interfere (Kreis, 1996). This can be done by
making the first exposure from the object in a reference state with an amplitude
E1 expði�1ðrÞÞ, and the second one – after some changes in the state of the object –
with an amplitude E2 expði�2ðrÞÞ (Fig. 14.4(a)). It is called a double-exposure holo-
gram. After the development of the photographic plate, the hologram is illuminated
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with the reference wave, thus leading to the reconstruction of both states of the
object at the same time in the original position (Fig. 14.4(b)). It is also possible to
record the reference object state only, and monitor interference between the object
wavefront and the wavefront reconstructed from the hologram (real-time holo-
graphic interferometry). If the change of the object is small enough, the two recon-
structed waves interfere forming a fringe pattern given by

I ¼ E2
1 þ E2

2 þ E1E2 exp½ið�1ðrÞ � �2ðrÞÞ� þ E1E2 exp½�ðið�1ðrÞ � �2ðrÞÞÞ�
¼ I1 þ I2 þ 2I1I2 cos½�1ðrÞ � �2ðrÞ�:

ð14:7Þ
The two phase terms can be combined to �ðx; y; zÞ, which is calculated from the
intensity distribution by one of the fringe pattern analysis algorithms. The phase
difference between two object states is related to the optical path difference (OPD)
by

�ðx; yÞ ¼ 2




� �
OPD: ð14:8Þ
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Figure 14.4 Optical arrangement in digital holographic interferometry with an off-axis

reference beam. (a) Recording of a double-exposure hologram; (b) reconstruction of a dou-

ble-exposure hologram.



The optical path difference OPD is the geometrical one but projected onto the
sensitivity vector s ¼ p� q (Pryputniewicz, 1994), which is the vector given by the
difference of the unity vector q from the illumination source to the point P with
coordinates ðx; y; zÞ located at the object and the unity vector p from P to the
observation point (Fig. 14.5)

OPD ¼ d � ðp� qÞ; ð14:9Þ
where d is the displacement vector from the point P with coordinates ðx; y; zÞ to the
shifted point with coordinates ðx 0; y 0; z 0Þ. The sensitivity vector s is along the bisec-
trix for the angle between the illuminating ray and the ray traveling from the illu-
minated object to the observing point. Its maximum magnitude is 2 when the two
light rays coincide.

Since the phase term is only the projection of the displacement vector onto the
sensitivity vector, one needs three sensitivity vectors for the full determination of d.
They may be introduced by changing the observation direction or (most often) by
changing the illumination direction.

A specific application of displacement measurement is the analysis of vibrating
objects where the displacement of each point is

dðP; tÞ ¼ dðPÞ sin!t; ð14:10Þ
this task is performed by

. Stroboscopic holographic interferometry, which consists of recording a
hologram by using a sequence of short pulses that are synchronized with
the vibrating object (Hariharan et al., 1987).

. Time-average holographic interferometry, in which the object is recorded
holographically with a single exposure which is long compared with the
period of vibration (Pryputniewicz, 1985). The resulting intensity in the
reconstructed image is

IðPÞ ¼ I0ðPÞJ2
0

2



d � s

� �
ð14:11Þ
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where s ¼ ½p� q�. Maximum intensity occurs at the nodes of the vibration
modes and dark fringes appear when ð2=
Þðd � sÞ equals the arguments of
the zeros of the zero-order Bessel function of the first kind.

Besides the measurement of a map of object displacement, holographic
interferometry enables us to measure the shape of an object. Holographic
contouring requires recording two holograms of a static object with two
different sensitivity vectors, introduced by changing alternatively:

. Laser wavelengths (from 
 to 
 0) (Friesem and Levy, 1976):

�z ¼ 

 0

½ð
� 
 0Þð1þ cos �Þ� ; ð14:12Þ

where �z is the depth difference.
. The directions of illumination (DeMattia and Fossati-Bellani, 1978). It is

most frequently used with collimated beams which produce equidistant
parallel contour surfaces with the depth distance

�z ¼ 


2 sinð�=2Þ ð14:13Þ

. Refractive index of the medium surrounding an object (from n to n 0)
(Tsuruta et al., 1967):

�z ¼ 


2ðn� n 0Þ ð14:14Þ

14.3.2 Digital Holographic Interferometry

The principle used in digital holographic interferometry is basically the same used in
conventional holography. The main difference is that instead of a holographic photo-
graphic plate, a CCD detector is used to record the image. The typical size of a CCD is
about 7mm with 1000� 1000 pixels. Since the resolution is low compared with that
of the holographic plate, the fringe separation must be much larger. Thus, if 	max is
the maximum angle between the reference beam and the object point with the largest
angle from the light source as seen from the detector, and illustrated in Fig. 14.6, we
should have

sin 	max 	



d
; ð14:15Þ

where d is the distance between two consecutive pixels on the CCD. This require-
ment can be satisfied if the object is small, of the order of a few millimeters and the
light source producing the collimated reference beam is at least at a distance of about
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Figure 14.6 Optical arrangement in digital holographic interferometry.



1m. These restrictions may be soon not valid if CCD cameras with the pixel size of
1 mm are available.

In digital holography (Yaroslavski and Merzlyakov, 1980; Schnars, 1994) the
object reconstruction is performed not by an optical reconstruction as in classical
holography but numerically in a computer, by performing a discrete finite Fresnel
transformation. The phase on the object surface is thus computed. If two holo-
grams are registered, one of them after a small displacement or deformation of the
body, the phase difference can be obtained. This is called digital holographic
interferometry.

In earlier digital holography, the off-axis setup just described was used, with
zero order and the two conjugate images. This limitation was removed, allowing on-
axis configuration, by using phase-shifting techniques with a piezoelectric translated
in one of the mirrors. The distribution on complex amplitude, thus including the
phase, at the hologram plane can be obtained (Yamaguchi, 1999).

The hologram is imaged on a CCD detector. The reconstruction plane is located
very close to the object to be measured. The measured complex amplitude at the CCD
detector is represented by hðx; yÞ. Then, the complex amplitude Eð�; �Þ on the recon-
struction plane at distance z from the hologram is given by (Goodman, 1975a):

Eð�; �Þ ¼ iU0


z
exp � i


z
ð�2 þ �2Þ

� � ð ð
hðx; yÞ exp � i


z
ðx2 þ y2Þ

� �

exp � i


z
ðx� þ y�Þ

� �
d� d�;

ð14:16Þ

hence, the phase on this plane is given by

�ð�; �Þ ¼ arctan
Im½Eð�; �Þ�
Re½Eð�; �Þ� : ð14:17Þ

There are two methods to calculate the phase difference between the two body
states. The general principles involved in these procedures are described in the block
diagram in Fig. 14.7 (Kreis, 1996).

Using holographic interferometry, the displacement vector at any point of the
body being examined can be detected and measured. It has sensitivity to in plane in
any direction as well as out of plane.

14.4 ELECTRONIC SPECKLE PATTERN INTERFEROMETRY

Speckle pattern interferometry has been developed to study vibrations and deforma-
tions by many authors, especially by Macovski et al. (1971) in the United States and
by Butters and Leendertz (1971) in England. Later, many other developments fol-
lowed: for example, by Løkberg (1987) and by Jones and Wykes (1981, 1989). A
review on this subject can be found in the book by Cloud (1995) and in the article by
Ennos (1978). To understand the procedure, let us consider an extended nonspecular
diffusing surface, illuminated with a single well-defined wavefront. In other words,
the illuminating light beam must be spatially coherent. If a second diffusing surface
is located in front of the illuminated surface, as illustrated in Fig. 14.8(a), each bright
point in the illuminated surface contributes to illuminate the surface in front of it.
Since the light arriving at point P comes from all points in the illuminated surface
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Figure 14.7 Procedures used to compute the object phase distribution in holographic inter-

ferometry.

Figure 14.8 Speckle formation: (a) subjective speckles and (b) objective speckles.



and they are coherent to each other, multiple interference takes place. The second
surface appears as if covered by many small and bright speckles. These speckes are
real, as can be easily proved by substituting the second surface by a photographic
plate. These are called objective speckles. Their average size d depends on the angu-
lar semidiameter � of the illuminated surface as follows:

d ¼ 1:22
 sin �: ð14:18Þ

If we place a lens in front of the illuminated surface, as in Fig. 14.8(b), this lens
forms the image of the illuminated surface on the plane of another diffusing surface.
Each point of the illuminated surface is imaged as a small Airy disk with a diameter
given by Eq. (14.18), where � is the angular diameter of the imaging lens, as seen
from the image point P. If F is the focal length of the lens, D its diameter, and m its
magnification,

d ¼ 1:22
D

2Fðmþ 1Þ : ð14:19Þ

The interference between neighboring Airy disks produces speckles, which are called
subjective speckles.

The speckle patterns are extremely complicated, but they depend only on two
factors, i.e., the roughness configuration of the surface being illuminated and the
phase distribution of the illuminating light beam. We can conclude that, given a
diffusing surface, if the relative phase distribution for all points on the diffusing
surface or on its image at the observing screen also changes, the speckle pattern
structure is also modified. Furthermore, it can be seen that this relative phase dis-
tribution changes only if there are two interfering beams present. One of these two
beams can go to illuminate the diffusing surface and the other directly to the obser-
ving screen, or both can go to the diffusing surface.

14.4.1 Optical Setups for Electronic Speckle Pattern Interferometry

To understand how the speckle pattern structure can change, let us consider some
typical illumination configurations producing subjective speckle patterns. Any pos-
sible displacement along the coordinate axes x; y; z of the body being examined will
be represented by u; v;w, where the coordinate z is along the perpendicular to the
surface on the body.

(a) Coaxial Arrangement

If the object is illuminated with a normally incident flat wavefront and the illumi-
nated surface moves in its own plane, the speckle pattern also moves with this sur-
face, but its structure remains unchanged. If this surface moves in the normal
direction, the speckle structure also remains unchanged. However, if a reference
wavefront traveling directly to the detector is added, out-of-plane movements
could be detected. This setup is easily obtained if one of the mirrors in a
Twyman–Green interferometer is replaced by the diffusing surface whose out-of-
plane movement is to be detected.
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(b) Asymmetrical Arrangement

When the illuminating wavefront has oblique incidence, as with normal illumination,
it can be seen that neither of the two possible movements (in-plane or out-of-plane
movements) of the illuminated surface change the speckle structure, unless there is a
reference wavefront. A possible experimental arrangement with the reference beam
going directly to the detector with normal incidence is illustrated in Fig. 14.9(a).
Then, if the plane of incidence is the plane x; z, for a small in-plane displacement in
the plane of incidence (along the x-axis) and a small out-of-the-plane displacement w
(along the z-axis) the phase difference increases or decreases by an amount �� given
by

�� ¼ ku sin � þ kwð1þ cos �Þ; ð14:20Þ

where k ¼ 2=
 and � is the angle of incidence for the oblique illuminating beam.
The expression for a normally illuminating beam (coaxial arrangement) can be
obtained with � ¼ 1808, as

�� ¼ 2kw: ð14:21Þ
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Figure 14.9 Schematic arrangements for out-of-plane movement detection in speckle inter-

ferometry: (a) out-of-plane and (b) in-plane movements.



The displacement values u and w can be separated only with two measurements
using two different values of �. When we have a combined displacement u and w, the
movement cannot be detected if

u

w
¼ 1þ cos �

sin �
: ð14:22Þ

An optical arrangement to perform electronic speckle pattern interferometry
with a single beam with oblique incidence is illustrated in Fig. 14.10(a).
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Figure 14.10 Optical configurations for movement detection in speckle interferometry. (a)

In-plane and out-of-plane movements; (b) in-plane movement; and (c) in-plane movement.



(c) Symmetrical Arrangement

Let us assume that the two illuminating wavefronts have the same angle of incidence,
but in opposite directions, in the plane of incidence x; z, as shown in Fig. 14.10(b).
We can consider the observed speckle pattern to be formed by the interference of two
speckle patterns, produced by each of the two illuminating light beams. These two
speckle patterns have identical structure if observed independently, but their average
phase changes linearly in opposite directions. This superposition has a different
structure from any of its two components.

In-plane v movements in a direction perpendicular to the plane of incidence of
the illuminating beams (y-axis) do not change the speckle structure. The phase
difference between the two illuminating beams remains the same for all points in
the surface. Thus, there is insensitivity for these movements.

With an in-plane movement u (x-axis direction), the phase increases for one of
the beams and decreases for the other beam. The phase difference between the two
beams increases in one direction and decreases in the opposite direction. Thus, the
phase difference changes by an amount ��, given by

�� ¼ 2ku sin �; ð14:23Þ

where � is the angle of incidence for the two illuminating beams. Thus, the larger the
angle �, the larger the sensitivity. It is important to notice that the introduced dis-
placement should be smaller than the speckle size. An optical arrangement to per-
form electronic speckle pattern interferometry with two symmetric divergent beams
with oblique incidence is illustrated in Fig. 14.10(b). The lack of collimation of the
illuminating beams produces a nonconstant sensitivity over the illuminated area to
in-plane displacements. Another configuration uses a flat mirror on one side of the
object and thus produces the two illuminating beams with only one, as in Fig.
14.10(c). An arrangement with two collimated symmetrical beams to provide con-
stant sensitivity over the illuminated area is shown in Fig. 14.11, with the disadvan-
tage that the measured area is relatively small.

Another possible experimental setup using fiber optics is shown in Fig. 14.12.
The beam is divided into two beams of equal intensity by a directional coupler.
The light in one of the two arms of the interferometer passes through a phase
shifter, which is formed by a PTZ cylinder with some fiber loops wrapped around.
The phase shifted is used to perform phase-shifting interferometry controlled by a
computer.

In speckle interferometry, two similar speckle patterns must be superimposed
on each other by an additive or subtractive procedure. One speckle pattern is taken
before and the other after a certain object movement has taken place. The correla-
tion between these two patterns appear as moiré fringes. These fringes represent the
phase difference between the two positions or shapes of the object on which the
speckle pattern is formed. Each one of the two superimposed speckle patterns is
made by the interference of the speckle pattern of the diffuse surface being measured
with a reference beam. As pointed out by Jones and Wykes (1981), speckle inter-
ferometers can be classified into two categories:

. Class 1, where the reference beam is a single wavefront, generally plane or
spherical, as in the arrangement just described.
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. Class 2, where both the object beam and the reference beams are speckle
patterns, as in a Michelson interferometer with both mirrors replaced by
diffuse objects.

In speckle photographic interferometry (Butters and Leendertz, 1971) a photo-
graph of the previous speckle pattern is superimposed on the new speckle pattern,
after the diffusing screen has been distorted or bended. In another method, two
photographs may be placed on top of each other. In electronic speckle pattern
interferometry (ESPI) (Ennos, 1978) two television images are electronically super-
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Figure 14.11 Optical configuration for in-plane movement detection with uniform

sensitivity.

Figure 14.12 Configuration for in-plane movement detection using fiber optics.



imposed. An important requirement is that the speckle size must be greater than the
size of each detector element.

14.4.2 Fringe Formation by Video Signal Subtraction or Addition

Let us consider the interference of two speckle patterns with irradiances I0 and IR
and with random phases  0 and  R. Both these irradiances and these phases change
very rapidly from point to point, due to the speckle nature. The interference of these
two speckle patterns produce another speckle pattern with irradiance I1, given by

I1 ¼ I0 þ IR þ 2
ffiffiffiffiffiffiffiffiffi
I0IR

p
cos ; ð14:24Þ

where  ¼  0 �  R is a random phase. Now, an additional smooth (not random)
phase �� is added to one of the two interfering speckle patterns by a screen dis-
placement or deformation. The new phase is  þ��, and, then, the irradiance in the
interference pattern is

I2 ¼ I0 þ IR þ 2
ffiffiffiffiffiffiffiffiffi
I0IR

p
cosð þ��Þ: ð14:25Þ

These two speckle patterns produced by interference are quite similar, with
relatively small differences introduced by the phase ��. A high-pass spatial filter is
also applied to each of the two speckle patterns to remove low-frequency noise and
variation in mean speckle irradiance. When these patterns are combined, their cor-
relation becomes evident as a moiré pattern. There are two ways to produce moiré
fringes between these two speckle patterns. One is by subtracting these two irra-
diances, obtaining

I1 � I2 ¼ 2
ffiffiffiffiffiffiffiffiffi
I0IR

p
sin  þ��

2

� �
sin

��

2

� �
: ð14:26Þ

This irradiance has positive as well as negative values. Thus, the absolute value must
be taken

I1 � I2 ¼ 2
ffiffiffiffiffiffiffiffiffi
I0IR

p
sin  þ��

2

� �����

���� sin
��

2

� �����

����: ð14:27Þ

Then, a low-pass filter is applied to eliminate the high-frequency components pro-
duced by the speckle, obtaining a brightness B on the screen, given by

B� ¼ 2K
ffiffiffiffiffiffiffiffiffi
I0IR

p
sin

��

2

� �����

���� ð14:28Þ

This subtraction method is used for the analysis of static events, as it requires the
separate storing of two images.

The second method to form the fringes is by adding the irradiances of the two
speckle patterns, as follows

I1 þ I2 ¼ 2ðI0 þ IRÞ þ 4
ffiffiffiffiffiffiffiffiffi
I0IR

p
cos  þ��

2

� �
cos

��

2

� �
: ð14:29Þ

This irradiance has a constant average value given by

hI1 þ I2i ¼ 2hI0i þ 2hIRi ð14:30Þ
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but a variable contrast produced by the phase ��. The variance � of this irradiance
for many points in the vicinity of a given point in the pattern is given by

�2 ¼ hI2i � hIi2; ð14:31Þ
and the standard deviation � is

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hI2i � hIi2

q
; ð14:32Þ

where hIi is the mean value of the irradiance values in the vicinity of the point being
considered. This standard deviation of the irradiance over many points in the vicinity
of a point has the advantage of eliminating the DC bias and at the same time rectifies
the signal and applies a low-pass filter to eliminate the speckle. This standard devia-
tion is given by

�2 ¼ 4�2R þ 4�20 þ 8hIRI0i cos2
��

2

� �
: ð14:33Þ

On the other hand, assuming a Poissonian probability for each of the two speckle
patterns, as shown by Goodman (1975b), it is possible to show that the standard
deviation for each of these two speckle patterns is

�R ¼ hI2Ri � hIRi2
� 	1=2¼ hIRi ð14:34Þ

and

�0 ¼ hI20 i � hI0i2
� 	1=2¼ hI0i: ð14:35Þ

Thus, the brightness Bþ on the screen which is proportional to this standard
deviation of the irradiance, is given by

Bþ ¼ 4K hIRi2 þ hI0i2 þ 2hIRI0i cos2
��

2

� �� �2
: ð14:36Þ

The two speckle patterns to be correlated in order to produce the fringes are
added together at the camera CCD detector. The two patterns do not need to be
simultaneous because of the characteristic time persistence of the detector of about
0.1 s. This property permits the observation of dynamic or transient events or modal
analysis of membranes, with a pulsed laser, using two consecutive pulses.

Areas in the fringe pattern with a large correlation have the maximum contrast.
However, in the addition process the contrast is lower than in the subtraction
method. The great advantage is that storage space for the two images is not needed.
This problem of low fringe contrast can be solved by a computer processing of the
image with different spatial filters (Alcalá-Ochoa et al., 1997).

Figure 14.13 shows two speckle images, before and after the object was mod-
ified. The effect of adding and subtracting the image is also illustrated. Figure 14.14
shows a block diagram with the basic steps followed in electronic speckle interfero-
metry. A great advantage in this method is its relatively high speed with low envir-
onmental requirements. A disadvantage is its high noise content.
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14.4.3 Real-Time Vibration Measurement

When the out-of-plane vibrations of an object, like a membrane or loud-speaker
diaphragm, are to be measured by speckle interferometry, the system is operated in
time average. Commonly an addition of the frames is performed. At any time t, the
irradiance in the speckle image is given by

IðtÞ ¼ I0 þ IR þ 2
ffiffiffiffiffiffiffiffiffi
I0IR

p
cos ��þ 4



a0 sin!t

� �
; ð14:37Þ

where a0 sin!t represents the position of the vibrating membrane at the time t. This
irradiance is averaged over a time �, obtaining

I� ¼ I0 þ IR þ 2

�

ffiffiffiffiffiffiffiffiffi
I0IR

p ð�

0

cos ��þ 4



a0 sin!t

� �
d�: ð14:38Þ
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Figure 14.13 Speckle images. (a) First frame, (b) second frame, (c) subtraction and (d)

addition.

Figure 14.14 Speckle interferometry procedure to obtain the fringes.



If we take the time average for several cycles, we can assume that 2=!	 �. Then, it
is possible to show that

I� ¼ I0 þ IR þ 2
ffiffiffiffiffiffiffiffiffi
I0IR

p
J2
0

4




� �
cos�; ð14:39Þ

where J0 is the zero-order Bessel function.
Figure 14.15 shows an interferogram of the vibrating modes of a square dia-

phragm.
Vibration analysis with an in-plane sensitive arrangement using pulsed phase-

stepped electronic speckle pattern interferometry has also been performed
(Mendoza-Santoyo et al., 1991).

14.5 ELECTRONIC SPECKLE PATTERN SHEARING
INTERFEROMETRY

Electronic speckle pattern shearing interferometry (Sirohi, 1993) also called shearo-
graphy was introduced by Hung (1982) and later further developed by many
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Figure 14.15 Speckle interferometry pattern for a square vibrating membrane.



researchers (Sirohi, 1984a, 1984b; Owner-Petersen, 1991. In this method two differ-
ent points, laterally separated by a small distance called the shear, are added together
at the same point on the detector.

Shearography provides information about out-of-plane deformations but in a
direct manner about the slopes (derivatives) of these deformations. As in conven-
tional lateral shearing interferometry, the fringes are the locus of the points with the
same slope in the direction of the shear. Thus, an object tilt can not introduce any
fringes. These properties make these interferograms more difficult to interpret and
analyze. The deformations can be obtained only after numerical integration of the
slopes in two perpendicular directions. This requires the generation of two shearo-
grams with lateral shear in two orthogonal directions. However, in the theory of
small deflections of a thin plate the strains are directly related to the second deriva-
tive of the deflection. Thus, to obtain the strains in shearography, only one derivative
is necessary (Toyooka et al., 1989). As described by Sirohi (1984b) and Ganesan et
al. (1988), speckle shear interferometry can also be performed with radial or rota-
tional shear, but the most common is lateral shear. If desired, as in conventional
lateral shearing interferometry, a linear carrier can be introduced by defocusing, as
described by Templeton and Hung (1989).

The principle is basically the same as in normal speckle pattern interferometry.
As in conventional speckle interferometry, two images with a relative lateral shear
are recorded, one before and one after the body deformations due to external applied
forces. Then, the irradiances of these two images are added or subtracted. The result
after low-pass filtering to remove the speckle noise is a fringe pattern with informa-
tion about the body deformations. Using an oblique illumination beam with an angle
of incidence �, the phase differences with small lateral shear �x for the sheared
speckle patterns before deformation of the sample are

�� ¼ kð�xÞ sin � ð14:40Þ
and after deformation

�� ¼ kð�xþ�uÞ sin � þ kð�vÞð1þ cos �Þ; ð14:41Þ
where �x is the lateral shear and u and w are small local in-plane (along x-axis) and
out-of-plane displacements. Thus, the change in the phase difference after these
small local displacements is

�� ¼ kð�uÞ sin � þ kð�vÞð1þ cos �Þ; ð14:42Þ
which can also be written as

�� ¼ kð�xÞ @u
@x

sin � þ @w
@x

ð1þ cos �Þ
� �

: ð14:43Þ

If both types of displacement u and w are present and only the slope of w is
desired, normal illumination can be used. However, if the slope of u is desired, two
different measurements with different angle illuminations have to be used. Figure
14.16 shows three possible arrangements to produce this superposition of two lat-
erally sheared speckle images on the detector. In the first case, a Michelson inter-
ferometer configuration is used, with a tilt of one of the mirrors. In the second
example, the lens aperture is divided into two parts, one of them covered with a
glass wedge. Finally, the third example shows a system with a Wollaston prism. Two
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symmetrically oriented beams are used, with opposite angles of incidence, producing
a system which is insensitive to out-of-plane displacements w. This system is sensitive
only to in-plane displacements u. The change in the phase difference �� due to these
in-plane displacements is

�� ¼ k
@u

@x
ð�xÞ sin �: ð14:44Þ

Since the two illuminating beams are circularly polarized with opposite senses,
the analyzer should be oriented at þ458 or �458, where two complementary patterns
are formed.

The setups normally used are simple and stable, making them ideal for in-situ
measurements even with rough environmental conditions. In conclusion, electronic
pattern shearing interferometry or shearography has many advantages, such as good
vibration isolation and fringes of acceptable contrast, however most often it is used
for qualitative, but quantitative evaluation.
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Figure 14.16 Configuration for speckle shearing interferometry. (a) With a glass wedge

covering half of the lens aperture, (b) with a Michelson interferometer configuration with a

tilted mirror and (c) with a Wollaston prism.



14.6 IN-PLANE GRID AND MOIRÉ METHODS

Moiré methods, also called moiré interferometry, were developed by Post (1965,
1982, 1986), Abbiss et al. (1976), and many other researchers. As in electronic
speckle pattern interferometry, small deformations or displacements of a solid
body can be measured (Olszak et al., 1996). In grating or moiré interferometry a
specially prepared diffraction grating is attached to a nearly flat surface in a solid
body, as shown in Fig. 14.17. Depending on the specimen material and the requested
frequency of the specimen grating, the surface of an object is prepared by:

. Gluing printed patterns, photographic prints or stencilled paper patterns
(frequencies up to 100 lines/mm),

. By replicating in epoxy a relief-type master grating or by exposing interfero-
metric fringes in a photoresist layer spined at the specimen surface (frequen-
cies up to 4000 lines/mm).

When the specimen is deformed by external forces, the attached grating is
displaced and deformed as well. Frequencies up to 4000 lines/mm have been used.
The grating is illuminated with two oblique and symmetrically oriented collimated
light beams, with an angle of incidence � given by

sin � ¼ 


d
; ð14:45Þ

where d is the period of the grating attached to the solid body.
Thus, two conjugated orders of diffraction (+1 from illuminating beam A and

�1 from illuminating beam B, as shown in Fig. 14.18) emerge from the grating,
traveling along the normal to the grating. These two wavefronts produce an inter-
ference pattern. The illuminated surface is then imaged on a CCD camera to register
and analyze the fringe pattern.

The system is sensitive mainly to in-plane displacements along the incidence
plane of the illuminating beams. The observed fringes represent the locus of the point
on the object with a constant equal displacement. The displacement u of point on the
fringe with order n, relative to the point on the fringe with order zero, is given by
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Figure 14.17 Grating interferometry configuration.



u ¼ n

f
¼ nd; ð14:46Þ

where f is the grating frequency and d is the period.
If there are changes in the spatial frequency of the grating attached to the solid

body, due to stresses, expansions, contractions, or bendings, the two diffracted
beams become distorted.

Moiré interferometry can be explained in the preceding manner with a physical
model, as the interference of two wavefronts. However, it can also be explained as a
geometrical moiré effect.

14.6.1 Basis of Grid Method

Whenever two slightly different periodic structures are superimposed, a beating
between the two structures is observed in the form of another periodic structure
with a lower spatial frequency, called a moiré pattern. As in Fig. 14.19, the two
illuminating wavefronts interfere with each other, projecting a fringe pattern on the
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Figure 14.18 Diffracted beams in grating interferometry.

Figure 14.19 Projection of a virtual grating in grating interferometry.



grating. Thus, we can consider the grating to be illuminated by a periodic linear
structure, with a period d equal to that of the grating. The observed fringe pattern
can thus be interpreted as a moiré of the two superimposed structures.

Moiré techniques were used in metrology by Sciammarella (1982), Patorski
(1988), and many other authors, with different configurations. Moiré patterns are
frequently analyzed and interpreted from a geometrical point of view.

In moiré interferometry, the image of a grating produced by the interference of
the two illuminating beams is projected over the grating attached to the solid body
being examined. The two illuminating flat wavefronts produce interference fringes in
space as dark and clear walls, parallel to each other and perpendicular to the plane of
incidence and to the illuminated surface. Thus, a fringe pattern with straight lines,
called a virtual grating, is projected on the body. The superposition of this virtual
grating with the real grating on the body produces the moiré fringe pattern. This
superposition can be interpreted as a multiplication of the irradiance on the virtual
grating by the reflectivity on the real grating.

14.6.2 Conventional and Photographic Moiré Patterns

In the general case the superposition of the two periodic structures to produce the
moiré patterns can be performed by multiplication, addition, or subtraction.

The multiplication can be implemented, for example, by superimposing the
slides of two images or as in moiré interferometry (Post, 1971). The irradiance
transmission of the combination is equal to the product of the two transmittances
in the case of two slides. The contrast in the moiré image is smaller than in each of
the two images. In addition or subtraction the contrast in the moiré pattern is higher.

In moiré interferometry the fringes are due to the superposition of the grating
attached to the surface to be analyzed, which is illuminated by the projected virtual
grating. Let us consider the fixed grating as a periodic structure, which is phase
modulated (distorted) and whose amplitude reflectance Rðx; yÞ, assuming the max-
imum contrast, may be described by

Rðx; yÞ ¼ 1þ cos
2

d
ðxþ uðx; yÞÞ

� �
; ð14:47Þ

where d is the grating period and uðx; yÞ represents the local displacement of the
grating at the point ðx; yÞ. Let us now illuminate this distorted grating to be mea-
sured by a projected virtual reference grating with an amplitude Erðx; yÞ given by

Erðx; yÞ ¼ Aðx; yÞ cos 2

d
x

� �
: ð14:48Þ

There is no DC term, since this is a virtual grating without zero order. The observed
amplitude pattern is the product of these two functions. Thus, the observed ampli-
tude Eðx; yÞ in the moiré pattern is

Eðx; yÞ ¼ Aðx; yÞ 1þ cos
2

d
ðxþ uðx; yÞÞ

� �� �
� cos

2

d
x

� �� �
; ð14:49Þ

from which we may obtain
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Eðx; yÞ ¼ Aðx; yÞ cos 2

d
x

� �
þ Aðx; yÞ

2
cos

2

d
ð2x� uðx; yÞÞ

� �

þ Aðx; yÞ
2

cos
2

d
uðx; yÞ

� �
:

ð14:50Þ

The first term represents the two zero-order beams. The second term represents
the þ1 order beam from illuminating beam A and the �1 order beam from the
illuminating beam B. Finally, the last term represents the first-order beam from
illuminating beam B and the negative first-order beam from the illuminating beam
A. The last term squared is equal to Eq. (14.44), as we should expect. Figure 14.20
shows an interferogram obtained with moiré interferometry. Sometimes, instead of a
projected virtual grating, a real reference grating placed over the body grating has
been used (Post, 1982).

As in electronic speckle pattern shearing interferometry, moiré interferometry
can be modified as proposed by Patorski et al. (1987) to produce fringes with infor-
mation about the object slopes, for strain analysis.

14.6.3 Moiré Interferometry

As pointed out before, a local change in the frequency of the grating produces a
wavefront distortion in the diffracted beams, by changing the local wavefront slope.
Since the order of diffraction of the two diffracted interfering beams is of apposite
sign, they are conjugate. In other words, their wavefront deformations Wðx; yÞ
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produced by the local displacements uðx; yÞ have opposite signs. As a result, the
sensitivity to in-plane deformations of the grating lines is doubled.

Any lateral displacement (in plane) uðx; yÞ of the grating in a perpendicular
direction to the grating lines produces a relative phase shift on the two diffracted
beams, shifting the interference fringes. The amplitude of the þ1 order of diffraction
beam, produced by the illuminating beam A, with maximum amplitude Aðx; yÞ is

EA
þ1 ¼ Aðx; yÞ exp i

2

d
uðx; yÞ þ 2



wðx; yÞ

� ���
ð14:51Þ

and the amplitude of the �1 order of diffraction beam, produced by the illuminating
beam B, with maximum amplitude Bðx; yÞ is

EB
�1 ¼ Bðx; yÞ exp �i

2

d
uðx; yÞ � 2



wðx; yÞ

� �� �
ð14:52Þ

where k ¼ 2=
. Thus, the irradiance in the interferogram is

Iðx; yÞ ¼ ½Aðx; yÞ�2 þ ½Bðx; yÞ�2 þ ½Aðx; yÞ�½Bðx; yÞ� cos 4

d
uðx; yÞ

� �
: ð14:53Þ

The phase shifts produced by an out-of-plane displacement w are of the same
magnitude and sign for both beams, thus keeping the interference fringe pattern
unchanged.

If there is a local change in the slope of the grating in the perpendicular
direction to the lines, the two diffracted beams also tilt by different amounts, as
illustrated in Fig. 14.21. If the local grating tilt is �, the angle �� between the two
diffracted wavefronts is

�� ¼ 
�2

d
¼ �2 sin �; ð14:54Þ

where d is the grating period. This effect provides sensitivity to slope changes in the
object being measured (McKelvie and Patorski, 1988), and should be taken into
consideration if significant out-of-plane displacements are present.
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With special experimental setups, two independent interferograms can be
obtained from the two diffracted complementary wavefronts. This permits us to
obtain the information not only about in-plane displacements but also about out-
of-plane displacements, as shown by Basehore and Post (1982).

14.6.4 Multiple-Channel Grating Interferometric Systems

Phase-shifting techniques for the analysis of interferometer patterns require at least
three interference patterns taken at three different phase-difference values. In the
most common procedures the three pictures are registered in a CCD camera in a
sequential manner. The problem is that in an unstable environment with vibrations
and mechanical instabilities this is not possible. It is then necessary to generate the
three phase-spaced fringe patterns simultaneously. This is called a multichannel
interferometer (Kwon and Shough, 1985; Kujawinska, 1987; Kujawinska et al.,
1991; Kujawinska, 1993). Three types of interferometers are specially useful when
measuring stresses and deformations of diffuse objects with speckle or moiré inter-
ferometry. An example is the three-channel phase-stepped system for moiré inter-
ferometry (Kujawinska et al., 1991), illustrated in Fig. 14.22.

This moiré interferometer is similar to the one described in Fig. 14.9(c). A
collimated beam of circularly polarized light illuminates the system. The light
reflected on the flat mirror changes its sense of circular polarization. Thus, the
body under examination is illuminated by two symmetrically oriented beams of
circularly polarized light as in the speckle interferometer in Fig. 14.16(c). The key
characteristic is the presence of the high-frequency grating that splits the interfering
beams into three. Again, as in the system in Fig. 14.16(c), an analyzer selects only
one plane of polarization, producing the interference pattern. Since the two inter-
fering beams are circularly polarized in opposite directions, a rotation of the analy-
zer changes the phase difference between these beams. Thus, using three analyzers
with different orientations, three interference patterns with different phase differ-
ences are produced.

If a light beam goes through a diffraction grating, several diffracted beams
traveling in different directions are produced. A lateral displacement of the grating in
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the direction perpendicular to the grating lines changes the relative phases of
the diffracted beams. This effect has been used to construct several multichannel
systems, as described by Kujawinska (1987, 1993).
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Moiré Interferometry,’’ Appl. Opt., 30, 1633–1635 (1991).

Kujawinska, M., ‘‘Spatial Phase Measuring Methods,’’ in Interferogram Analysis, Robinson,

D. W. and G. T. Reid, eds, Institute of Physics Publishing, Bristol and Philadelphia,

1993.

Løkberg, O. J., ‘‘The Present and Future Importance of ESPI,’’ Proc. SPIE, 746, 86–97 (1987).

McKelvie, J. and K. Patorski, ‘‘Influence of the Slopes of the Specimen Grating Surface on

Out-of-Plane Displacements Measured by Moiré Interferometry,’’ Appl. Opt., 27, 4603–
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15

Holography

CHANDRA S. VIKRAM

The University of Alabama in Huntsville, Huntsville, Alabama

15.1 INTRODUCTION

In common photography, a two-dimensional projection of the object intensity dis-
tribution is stored on the photosensitive medium. The information about the depth
or the phase is lost. This loss of information can be explained in a very simple way. A
photograph cannot reveal the object’s distance from the camera or the photogra-
pher. Holography provides a powerful solution. Although a hologram is generally a
two-dimensional intensity distribution on a photosensitive medium, with suitable
illumination by a so-called reconstruction beam it creates a three-dimensional scene
which in many respects is a replica of the original object. A hologram is an inter-
ference pattern between the light representing the object (called object beam) and
another light, called the reference beam. Thus, the reference beam acts as a coding
device about the object information, including depth or phase. Illuminated by a
reconstruction beam which may be an exact replica of the original reference beam,
the decoding occurs in the form of an erect three-dimensional image in space. Thus, a
hologram is a complex grating. Likewise, a common grating can be called a simple
hologram.

The history of holography can be traced to X-ray crystallography, which led to
the Bragg X-ray microscope in 1942 (Bragg, 1942) where the image of the crystal
structure can be reconstructed. Starting in 1948, Gabor (1948, 1949, 1951) intro-
duced the idea of holographic imaging for increasing the resolution in electron
microscopy. In early experiments, the object was opaque lines on a clear transpar-
ency. A collimated monochromatic beam illuminated the transparency and the sub-
sequent diffraction pattern was stored on a photographic plate. The diffraction
pattern is the interference between directly transmitted light (the reference wave)
and the one diffracted by the lines. Once the processed transparency is illuminated
by a monochromatic light, directly transmitted light and two diffracted waves (one
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corresponding to the original object wave and the other conjugate) are erect; the way
a diffraction grating yields direct and �1 order waves. These historical developments
did not yield good-quality images. Two images (twin-image problem) and the direct
light were superimposed. Although several techniques were proposed and demon-
strated for better-quality images, the interest in optical holography declined.
However, with the development of the laser, the off-axis reference beam concept
introduced by Leith and Upatnieks (1962, 1963, 1964) solved the twin-image pro-
blem. Now one may divide a beam into two parts – one to illuminate the object and
the other to send directly with an angle to the hologram recording plane. As a result
of the high degree of coherence, the object and reference beams will still interfere to
form the complex interference pattern, or hologram. Upon reconstruction, different
diffracted waves are angularly separated.

Parallel to these developments, Denisyuk (1962, 1963, 1965) reported holo-
grams where the object and reference beams reached the hologram plane from
opposite directions. Such holograms are formed basically by placing the photosen-
sitive medium between the light source and a diffusely reflecting object. Besides
simplicity of the recording procedure, such holograms can be viewed by white
light, as only a narrow wavelength region is reflected back in the reconstruction
process.

For very small objects such as aerosols, a special type of holography called far-
field holography or Fraunhofer holography evolved around the pioneering work of
Thompson (1963, 1964). Due to individual objects in the far-field, the twin images
are not a problem. Early applications on high-resolution imaging of aerosols were
followed by many others, and enthusiasm still persists.

Once high-quality images were formed as stated above, the subject went
through an explosive growth period in imaging itself as well as diverse applications
such as information storage, information processing, and interferometry. These
areas of application are still limited by imagination only, and developments are
continuously being reported in literature. Web bookseller Amazon.com lists well
over 200 book titles on holography. Fairly complete descriptions on optical holo-
graphy are available: for example, in references by Collier (1971), Smith (1975),
Caulfield (1979), Syms (1990), and Hariharan (1996). The bibliography of
Hariharan (1996) lists 42 books.

Developments in different aspects continue. Abramson (1998) describes the
holodiagram as a powerful nonmathematical tool. An up-to-date summary on elec-
tron holography is also available (Tonomura, 1999).

15.2 TYPES OF HOLOGRAMS

There are several (Caulfield and Lu, 1970) possible ways of classifying holograms
based on geometry, application type, object type, and type of recording media, often
with overlapping characteristics. In this section we describe several common types.
However, the off-axis approach forming Fresnel holograms is the most general and
can explain or help an understanding of the other types.

524 Vikram



15.2.1 Off-Axis Holography

A general principle of off-axis holography can be described by Fig. 15.1. A quasi-
monochromatic light such as that from a laser is divided into two parts. The division
can be either by wave front or amplitude.

Lenses, mirrors, spatial filters, optical fibers, etc., are used to obtain clean
beams of desired cross sections. One part, often called the object beam, illuminates
the object [a typical point on the object is O]. The scattered light (the case of a
diffusively reflecting object is presented) reaches the recording ðx; yÞ plane. Let us
represent the object beam light amplitude distribution at the hologram plane as
oðx; yÞ expði’oÞ. oðx; yÞ is real and positive and called the absolute amplitude,
whereas ’o represents the local phase at the point. The other beam, called the
reference beam, represented as a divergent beam in the figure, originates from the
point R and directly illuminates the recording plane. Like the object beam, the light
amplitude distribution of the reference beam at the recording plane can be repre-
sented by rðx; yÞ expði’RÞ. The definition of the reference beam is very general,
although a practical case of a divergent beam is shown. However, the point R is
generally far away from the recording plane, so that rðx; yÞ is practically a constant
over the recording plane. In another common case of a collimated reference beam
ðzR ¼ �1Þ, rðx; yÞ is a constant anyway. Let us also assume that the optical path
difference between the two beams at every point on the recording plane is small or

Holography 525

Figure 15.1 General principle of off-axis holographic recording and reconstruction.



well within the coherence length of the laser. In that case, two beams will interfere,
yielding the irradiance distribution:

Iðx; yÞ ¼ oðx; yÞ expði’oÞ þ rðx; yÞ expði’RÞ
�� ��2

¼ o2ðx; yÞ þ r2ðx; yÞ þ 2oðx; yÞrðx; yÞ cosð’o � ’RÞ:
ð15:1Þ

We have assumed that the object and reference beams at the hologram plane have
identical polarization states. Practically, using a vertically polarized laser, that is not
a problem. The experimental setup on the horizontal laboratory table, nondepolar-
izing optical components and objects generally retain the vertical polarization direc-
tion on the recording plane as well. Nevertheless, in the case of seriously depolarizing
objects, a polarizer may be used before the recording plane. Otherwise, the holo-
graphic fringes given by Eq. 15.1 may become partially or completely modulated or
washed out. On the other hand, by proper manipulation of the recording and recon-
struction beam geometry and polarization state, the original object beam polariza-
tion can be reconstructed.

Suppose the amplitude transmittance of the processed hologram (recording
time t) is linearly related to the intensity in the interference pattern. Thus, the
amplitude transmittance of the hologram can be represented as

tðx; yÞ ¼ �0 þ �tIðx; yÞ; ð15:2Þ
where �0 is the average transmittance and � is the slope of the exposure–transmit-
tance curve. For common negative hologram, � is a negative quantity. For practical
realization of the linear relationship given by Eq. (15.2), it is necessary that the
amplitude of the harmonic term in Eq. (15.1) is small compared with the back-
ground. To assure this, a reference-to-object beam intensity ratio r2ðx; yÞ=o2ðx; yÞ
between 3 and 10 is a commonly accepted standard.

When the processed hologram is illuminated by the reconstructed beam (shown
originating at point C in Fig. 15.1) whose complex amplitude distribution at the
hologram plane is cðx; yÞ expði’cÞ, the transmitted amplitude becomes

aðx; yÞ ¼ tðx; yÞcðx; yÞ expði’cÞ
¼ a1ðx; yÞ þ a2ðx; yÞ þ a3ðx; yÞ;

ð15:3Þ

where

a1ðx; yÞ ¼ ½�0 þ �to2ðx; yÞ þ �tr2ðx; yÞ�cðx; yÞ expði’cÞ; ð15:4Þ
a2ðx; yÞ ¼ �trðx; yÞcðx; yÞoðx; yÞ exp½ið�’R þ ’cÞ� expði’oÞ; ð15:5Þ

and

a3ðx; yÞ ¼ �trðx; yÞcðx; yÞoðx; yÞ exp½ið’R þ ’cÞ� expð�i’oÞ: ð15:6Þ
Under the practical assumption that �0; �; t; rðx; yÞ; cðx; yÞ are either constant or slow
varying over the hologram plane and also r2ðx; yÞ 
 o2ðx; yÞ; a1ðx; yÞ is the directly
transmitted reconstruction beam; a2ðx; yÞ is proportional to the original object wave
and, in the case of identical reference and reconstruction beams ½’R ¼ ’c�, truly
represents the original object wave except with some intensity modulation. To an
observer, the image would appear in the original object position. Obviously, the
image is virtual. The third term, a3ðx; yÞ, is also an image but with reversed phase.
The real image is pseudoscopic, i.e., appears to be turned inside out.
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Although we have represented a point object, a diffusing object consists of a
large number of scattering points or centers. In that case, the object beam at the
recording plane can be represented by a sum of beams from all the points. During the
reconstruction, all the point images and hence the entire image is erect.

The reconstruction beam wavelength and geometry is general and can be dif-
ferent from the original reference beam. Consequently the images may be altered
from the original position as described by holographic magnification relationships
(Caulfield and Lu, 1970; Collier, 1971; Smith, 1975; Caulfield, 1979; Syms, 1990).
The reconstruction beam geometry is often used to manipulate the desired image
type (say real), minimize aberrations, etc. (Collier, 1971; Smith, 1975; Caulfield,
1979; Syms, 1990).

Equation (15.2) is the outcome of common thin absorption process.
Nevertheless, such (amplitude or absorption) holograms can be bleached to
make them transparent but with thickness and/or refractive index varying propor-
tionally to Iðx; yÞ to be classified as phase holograms. Likewise, the recording
media itself can be phase kind, such as a photopolymer or photoresist. In those
cases, the amplitude transmittance of the processed hologram becomes
exp j� 00 þ � 0tIðx; yÞj, where � 00 and � 0 are new constants. In general, besides positive
and negative first orders, all other orders are present. However, since higher orders
are angularly separated from the desired one, the bleaching process is advanta-
geous from the diffraction efficiency point of view. Diffraction efficiency is the
fraction of the reconstructed image intensity to the reconstruction beam intensity.
In the case of the amplitude hologram described by Eq. (15.2), even with equal
object and reference beam intensity ratio, the optimum transmittance to cover the
entire range between 0 and 1 is 1=2þ 1=4½expð’o � ’RÞ þ expð�’o þ ’RÞ�. The
maximum efficiency of a particular image term is ð1=4Þ2 or about 6.3% only.
For the linear recording, one has to increase the reference-to-object beam intensity
ratio typically between 3 and 10 further, reducing the modulation and hence the
diffraction efficiency. The theoretical maximum diffraction efficiency of a thin
phase transmission hologram dramatically increases to about 34% (Caulfield and
Lu, 1970; Collier, 1971; Smith, 1975; Caulfield, 1979; Hariharan, 1996). At this
stage it is appropriate to introduce the concept of thick holograms. If the thickness
of the recording medium is significantly large compared with the wavelength of the
laser or the hologram fringe spacing, the holographic fringes are no longer two-
dimensional or surface phenomena. They will be volume gratings throughout the
depth of the material. The reconstruction will no longer be governed by Eq. (15.2)
but by Bragg’s law (Caulfield and Lu, 1970; Collier, 1971; Smith, 1975; Caulfield,
1979; Syms, 1990; Hariharan, 1996). The holographic reconstruction becomes
wavelength- and orientation-selective. So, even if white light is used for the recon-
struction, a particular color region image is reconstructed. The maximum theore-
tical reconstruction efficiency of a thick phase hologram is 100%. An experimental
efficiency close to 100% is also commonly achieved. Another advantage of volume
holograms is in multiplexing. Localized holograms are not only on the surface but
throughout the volume, thus significantly increasing the number of holograms
being stored.

Besides the object beam, the reference beam can be of a general form such as a
speckle pattern. Local reference beam holography (Caulfield and Lu, 1970) derives
the reference beam from a focused spot on the object or a tiny mirror attached to the
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object. Thus, a successful hologram storage of a moving object is possible.
Zel’dovich et al. (1995) describe holography with speckle waves in some detail.

The recording medium must be able to store the fine structure associated with
the hologram. The fringe spacing, in the case of a two-dimensional recording plane
inclined at an angle � with respect to the bisector of a two plane waves (say object
and reference waves of wavelength 
 and half angle � between them) is

=ð2 sin � sin�Þ. Object and reference beams should be separated by some angle so
that different reconstructed waves are angularly separated. At a practical �, say 308,
and He–Ne laser wavelength 0.6328 mm, the minimum possible fringe spacing (at
� ¼ 908) becomes 0.6328 mm. The frequency of 1580 lines/mm cannot be resolved by
ordinary photographic emulsions. However, extremely fine-grain silver halide mate-
rials, commercially known as holographic materials, are available. These are gener-
ally described in holographic books (Caulfield and Lu, 1970; Collier, 1971; Smith,
1975; Caulfield, 1979; Hariharan, 1996). Besides the fine-grain silver halide emul-
sions, dichromated gelatin, photoresists, photopolymers, photocromics, photother-
moplastics, photorefractive crystals, spectral hole-burning materials, and even
bacteriohodopsin films are used. These materials have unique characteristics, such
as fast-in-place dry processing, real-time capability, etc. Several volumes are devoted
to holographic recording materials (Smith, 1977; Bjelkhagen, 1995, 1996; Lessard
and Manivannan, 1995). Nevertheless, recording material research is still one of the
most active areas in holography. Unique concepts, such as silver halide sensitized
gelatin (Neipp et al., 1999) and photopolymer-filled nanoporous glass (Schnoes et
al., 1999) have always been of interest to holographic materials research. So are
critical characterization of available materials (Kostuk, 1999), ultrafast holography
with instantaneous display (Ramanujam et al., 1999), and materials dispersed in
liquid crystals (Cipparrone et al., 1998).

The hologram recording material is generally but not necessarily plane.
Cylindrical film has been used for 3608 view holography (Jeong et al., 1966;
Jeong, 1967). For ballistic applications, half-cylindrical films have been used for
behind-armor-debris analysis (Hough et al., 1991; Anderson et al., 1997).

15.2.2 Fraunhofer Holograms

The object can be very small compared with its distance from the recording medium
and the hologram itself. In that case, the object beam at the hologram plane becomes
a Fraunhofer diffraction pattern. As such, the general formulation of off-axis or
Fresnel holography is still valid. The hologram of such a small object can still be
stored in an off-axis manner. However, if the object and reference beams are along
the same direction, the twin-image contributions become negligible, as it is now a
Fraunhofer diffraction pattern (Thompson, 1963, 1964) from twice the original
object distance. Such holography led to the enormous development of in-line
Fraunhofer holography (Vikram, 1992, 1997; Thompson, 1996). As shown in Fig.
15.2, a volume containing small dynamic objects (bubbles, particles, droplets, etc.) is
illuminated by a suitably pulsed laser (collimated shown but not necessary) and the
hologram stored. It is assumed that a large portion of the beam that is uninterrupted
by the objects acts as the reference beam. Now, when reconstructed, the directly
transmitted light and the real and virtual images (of the original object cross sections
in the case of opaque objects), are reconstructed. These images are generally magni-
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fied using a closed-circuit television (CCTV) system. Although a particular plane in
the image space is in focus at a time, by moving the hologram or the camera on a
x�y�z translation the entire volume can be covered. As stated earlier, when studying
the real images, the contribution of virtual images is negligible due to far-field (twice
the original object distance from the hologram). Such holography is very common
for studying dynamic micro-objects in a volume. Processes are, for example, cavita-
tion, combustion, ice crystal formation, fog studies, high-speed ballistic events, acce-
lometry in space microgravity conditions, droplet growth and coarsening
phenomena, and holographic particle velocimetry (PIV) (Vikram, 1992, 1997;
Thompson, 1996).

15.2.3 Fourier-Transform Holograms

These holograms, basically, are interference patterns between the Fourier transform
of the object and reference sources. Such holograms are generally employed as
spatial filters in pattern recognition. One basic requirement is that the reference
source and subject are coplanar. Thus, such holograms are restricted to planar
subjects or transparencies. One of the original arrangements of such holography is
shown in Fig. 15.3. Subject transparency and source point are Fourier transformed
on the recording plane using a lens of focal length f . Upon reconstruction the inverse
Fourier-transform process yields the zero order, the original and conjugate
(inverted) images. The generated images remain static even if the hologram is trans-
lated. Other geometrical arrangements and even lensless Fourier transform are pos-
sible (Collier, 1971).

15.2.4 Image Plane Holograms

In this type of hologram, the object is imaged near the recording plane using a lens,
as shown in Fig. 15.4. Upon reconstruction, obviously part of the image may be real
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and part imaginary. The view angle of the image is limited by the lens aperture. One
special characteristic of such a hologram is that larger sources (such as bright,
extended ones) with little spatial coherence can be used to view the image. The
relaxation of the spatial coherence is ideal at the hologram plane and image degra-
dation occurs as the distance increases. Thus, the object (image) depth should still be
as small as possible.

Similarly, the bandwidth allowance of the reconstruction source may be large
and even a white light source may be used.
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Figure 15.3 A typical Fourier-transform hologram recording and reconstruction

arrangement.

Figure 15.4 Image plane holographic recording arrangement.



15.2.5 Pinhole Holograms

This type of hologram (Xu et al., 1989) of multiplex holography has the distinct
advantage of selective reconstruction with the help of spatial light modulators and
has applications in optical computing and page-oriented holographic memory.

As shown in Fig. 15.5, a pinhole is placed between the object and the recording
plane. During the reconstruction with a conjugate beam, the entire object system
including the image of the pinhole will be erected. Thus, in the pinhole plane the area
except the pinhole is not containing the object information. Consequently, different
holograms for different objects can be stored by changing the pinhole location. All
the images will be simultaneously reconstructed. However, only a group of images
will be reconstructed if the pinhole plane is masked to allow only corresponding
locations to transmit. The masking can be done mechanically, or more conveniently
using a spatial light modulator connected to a computer. Nondiffusing objects such
as amplitude masks can also be multiplexed this way by illuminating them by a
converging beam from a lens.

15.2.6 Color Holograms

There are several detailed discussions on color holograms (Collier, 1971; Smith,
1975; Caulfield, 1979; Syms, 1990; Hariharan, 1983, 1996). Basically, superimposed
images with three primary colors are to be simultaneously reconstructed to have the
desired color effect. Let us start our discussion with thin holograms. If the holograms
with different wavelengths are superimposed (multiple exposure) on the same record-
ing emulsion, then at the time of reconstruction (with all the wavelengths simulta-
neously) each wavelength will reconstruct several unwanted images along with the
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desired one. The reason is the presence of holograms corresponding to other wave-
lengths. This type of cross-talk makes such color holography impractical.

Each image can be collected by a lens and spatially filtered to remove unwanted
images. Besides unwanted system problems, the object depth has to be limited
because spatial filtering works best for planar objects.

Spatial multiplexing is another option. Separate holograms are recorded on
different portions of the hologram. Reconstruction of all the colors simultaneously is
done with the aid of proper color filters to illuminate desired sections with particular
colors. The process yields high-quality images. However, separate holograms must
be small for the viewer to see all the colors simultaneously.

Thicker or volume holograms act as a filter and solve the multiple image
problems as stated above. Rather than hologram formation on the surface, volume
gratings are formed. These gratings, due to the Bragg effect, have wavelength selec-
tivity. Thus, each color will be reconstructed without unwanted images. However,
care must be taken to avoid emulsion shrinkage effects for ideal color reproduction.

15.2.7 Rainbow Holograms

The problem of disturbing superimposition of different images can be partly solved
by this approach. Although the hologram is stored by monochromatic or laser
source, the reconstruction can be viewed by a white light sources. Loss of vertical
parallax is accepted for the gain in the color reconstruction by white light.

The classical two-step recording process (Fig. 15.6) pioneered by Benton
(1969) involves first storing a primary hologram in the usual fashion with a laser
source. This hologram is illuminated by the original laser source to reconstruct
images. Near the reconstructed real image the hologram plate (for rainbow holo-
graphy) is kept to store the second hologram using a convergent reference beam.
However, a long slit near the primary hologram is used. Since images can be
reconstructed using small hologram apertures, this does not pose a problem except
a minor loss in resolution.

When reconstructed by a conjugate divergent source (may be white light now)
real slit images are reconstructed and different color images can be viewed through
these slits.

The different slit locations are due to holographic magnification which is
wavelength dependent. Significant developments have occurred following the work
of Benton (1969). Improved processes, interferometric applications, display applica-
tions, etc., followed (Yu, 1983) and are continuing (Taketomi and Kubota, 1998;
Zhang et al., 1988; Guan et al., 1999). The approach of Guan et al. (1999) does not
use a physical slit. A synthetic slit is created by a short movement of the object.

15.2.8 Computer-Generated Holograms

A laser-illuminated subject can be described by a finite but large number of light
scattering centers. Geometrical and physical parameters can then be used to compute
the amplitude and phase of the light reaching hologram points, first due to individual
centers and then cumulatively, to obtain the object beam parameters. Similarly, the
reference beam parameters can be obtained in a more straightforward manner. The
hologram amplitude transmittance thus obtained can be used to plot the hologram
via a suitable display or storage device. The hologram thus stored will be able to
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reconstruct the image of the object form used for the original computation. Several
detailed descriptions on such holograms are available (Lee, 1978, 1992; Yoraslavskii
and Merzlyakov, 1980; Bryngdahal and Wyrowski, 1983; Casasent, 1985; Soifer and
Golub, 1994; Yaroslavsky and Eden, 1996). A reprints collection by Lee (1992) is
classified based on theory and design, fabrication, performance, and applications.

There are several applications of such holograms. Complex objects (still having
mathematical descriptions) to be fabricated usually do not have a master for com-
parisons or testing. A computer hologram can be used to reconstruct the desired
image and then compare it with the fabricated object interferometrically. The com-
plex objects could be, for example, aspheric lenses or mirrors, and lenses with multi-
ple focal points. Creath and Wyant (1992) have summarized the use of computer-
generated holograms in optical testing.

Some established application areas are complex spatial filtering, laser beam
mode selection, weighted optical interconnections in neural networks, complex opti-
cal information processing, and display holography. New applications or refine-
ments are constantly appearing. These are, for example in security applications
(Yoshikawa et al., 1998), generating diffuser for color mixing (Chao et al., 1998),
generating high-density intensity patterns (Takaki and Hojo, 1999), fabricating high-
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frequency gratings (Suleski et al., 1999), waveguide grating coupling with tailored
spectral response (Li et al., 1999), pattern enhancement with photorefractive crystal
(Nakagawa et al., 1999), optical particle trapping (Reicherter et al., 1999), color
image generation (Suh, 1999) and auto design (Noaker, 1999). Conventional calcu-
lation of the hologram is time consuming. A recent process can gain the speed to a
factor of 60–90 times (Ritter et al., 1999).

15.3 APPLICATIONS

15.3.1 Holographic Interferometry

We have seen (Eq. (15.5)) that an exact replica of the original object wave can be
reconstructed. Let us, for example, assume that half of the hologram exposure was
provided with the object in a static position and the remaining in a different static
position, say slightly stressed position to create surface strains. The object beam in
the stressed position can be represented by ’o þ�’o where �’o corresponds to the
optical phase change due to the strain. Now, upon reconstruction, both the images
will be simultaneously present. The reconstructed amplitude will be proportional to
expði’oÞ þ expði’o þ i�’oÞ. In other words, the image irradiance will be modulated
by cos2ð�’o=2Þ. As �’o varies over the image, the modulation may reach maxima
and minima forming interference fringes. These fringes can then yield local strain, as
�’o is known in terms of geometrical parameters and the wavelength of light used.
Generally, �’o is directly proportional to the strain and inversely proportional to
the wavelength.

The above description is called double-exposure holographic interferometry. A
single exposure while the object is changing, say vibrating, can also be stored. Such
holograms are termed as time-average. Upon reconstruction the time-averaged effect
causes a fringe pattern over the image, such as the one governed by a Bessel function
yielding local vibration amplitude.

One may also store a hologram and replace it in the original recording position
for the image reconstruction. If the original object is also present and illuminated by
the original object beam, one may observe interference between the object and
reconstructed image beams. Live interference fringes can be observed as the object
is moving, vibrating, etc. The fringes will yield the strain or other parameter in real
time. Such holography is called real-time holography. An example is presented in
Fig. 15.7. A hologram of a common ceramic coffee cup was stored on a thermo-
plastic plate using a diode-pumped, frequency-doubled neodymium vanadate laser
operating at 532 nm. To view real-time or live interference fringes, the cup was filled
with warm water to a point just above the intersection of the bottom of the handle
and the body. Changing strains created by the thermal process resulted in the chan-
ging interference pattern, of which one frame is shown in the figure.

The above description is also valid for phase objects when the object beam
passes to such sections in a combustion chamber, wind tunnel, etc.

The objects do not have to move to create the phase difference. Different
wavelengths, changing illumination angles, etc., can yield the desired effects related
to object contours.

Object, reference, and reconstruction beams in any combination can be tem-
porally modulated, frequency translated, phase modulated, etc., for enhanced sensi-
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tivity and advanced quantitative applications. Advanced quantitative tools such as
phase-shifting interferometry and heterodyne interferometry have also been used for
quantitative analysis.

Being such a general tool for deformation analysis for objects in their natural
form, holographic interferometry has been a popular subject, as evident by a large
number of books and extended discussions (Erf, 1974; Vest, 1979; Von Balley, 1979;
Schumann and Dubas, 1979; Schumman et al., 1985; Jones and Wykes, 1989;
Takemoto, 1989; Robillard and Caulfield, 1990; Ostrovsky, 1991; Conley and
Robillard, 1992; Robinson and Reid, 1993; Rastogi, 1994b, 1997; Kreis, 1996;
Sirohi and Hinsch, 1998). Applications have been in engineering, biology, and geo-
physics, as well as in commercial areas. Study areas cover aspects such as heat and
mass transfer, vibration, deformation, stress, flaw detection, surface topography, etc.
With TV holography (Jones and Wykes, 1989; Sirohi, 1993, 1996; Rastogi, 1994,
1997; Kreis, 1996; Sirohi and Hinsch, 1998; Meinlschmidt et al., 1996), the conven-
tional emulsion is replaced by solid-state camera making the interferometric analysis
convenient and fast.

New applications are constantly appearing. As reported by Gaughan (1999),
the classical flaw-detection tool (localized abrupt strain changes in the region of flaw
against an appropriate loading) of holographic interferometry has an application in
breast cancer detection. A double-exposure hologram under different ambient con-
ditions yields a surface-change profile. Nonuniformities result in nonuniform
changes as asymmetries in the pattern. The results so far are encouraging and a
powerful early detection tool is possible.

The phase change in the reconstructed image yielding fringes has been the
main source of information for subsequent analysis. However, surface micro-
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warm water. (Picture courtesy of Dr. Martin J. Pechersky, Savannah River Technology

Center, Aiken, South Carolina.)



structure may also change between two exposures or observation times. These
changes will partially to completely decorrelate the usual fringes. The measure-
ment of the loss of the correlation (or fringe contrast) is also a very powerful
tool in studies on erosion, corrosion, and mechanical wear (Vikram, 1996)
including mechanical contacts (Ostrovsky, 1991). Finally, there have been unique
approaches to perform holographic interferometry between two different surfaces
(Rastogi, 1994a).

15.3.2 Hologram Copying and Embossing

It is often desirable to have several identical holograms. Although one may store
several holograms to begin with, mass copying from a single master (Caulfield, 1979;
Syms, 1990; Saxby, 1991; Hariharan, 1996) has economic and technical advantages.
In an obvious approach, the reconstructed image from the master can be used as the
object for the new or copied hologram. The recording geometry and parameters can
now be altered to change the copy to a desired one, say to reflection, transmission,
virtual, real, image-plane, enhanced reconstruction efficiency, different type of emul-
sion, with different wavelength, etc.

Contact printing of the original hologram is another optical option.
However, for diffraction effects to be negligible, the separation between the ori-
ginal and copy must not be more than �2=
, where � is the fringe spacing and 

is the wavelength used. Usually the hologram frequency is very high, so the
condition is difficult to meet; still, satisfactory copies can be made even for
considerable hologram-copy separation by using a highly coherent source for
the copying. However, three (directly transmitted and � orders) waves from
the original holograms will interfere at the copy plane, creating unwanted
image-doubling effects.

Although these optical methods are useful, the most common mass production
technique is embossing. Beside now common applications like those seen on credit
cards, book covers, greetings cards, etc., one recent application is embossing on
chocolate or hard candy (Peach, 1997). An embossing die is first made through a
complicated process. However, once the die is made, duplication for mass produc-
tion of holograms is a rather easy and cheap process. These holograms are now
common, for example on bank cards.

First, a master hologram is made on a photoresist medium. Assuming a posi-
tive (soluble on exposure to light) photoresist is coated on glass, the resulting pro-
cessed record will be a relief on the substrate. This type of phase hologram is formed
due to thickness variation of the coating. Commonly, 488 nm wavelength Arþ laser
light is used due to sensitivity requirements of the photoresist.

The next step is to chemically or vacuum deposit a layer of metal on the master
or photoresist hologram. Finally, nickel is grown on the master by electroforming.
The electroformed nickel is mounted on an embossing die or roller.

Now holograms can be hot rolled continuously on plastic materials. These
relief holograms are usually coated with aluminum to make them reflective and
also for surface protection.

Such holograms can be safely and securely applied to credit cards or other
surfaces by hot-foil blocking. Being rainbow holograms, they can generate images in
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ordinary white light. However, for serious security applications more than one
channel with different colors can be made to make counterfeiting very difficult.

15.3.3 Acoustical and Microwave Holography (Kock, 1981)

Acoustical holograms are formed by sound wave interference pattern. The pattern
itself can be converted into a light wave pattern, say, by scanning the sound field and
displaying the intensity variations and then storing into a photosensitive emulsion.
After proper size reduction, the optical image can be veiwed by laser light.

One unique way employs a liquid–air interface to create stationary ripples to
display the sound wave interference pattern. The advantage is real-time optical
reconstruction. Short-wavelength coherent ultrasonic waves are used. The reference
wave is directly sent to the interface, whereas the object wave, after passing through
the object, is focused near the surface using an acoustic lens. The interference creates
sound pressure variations and, hence, stationary ripples. Optical reconstruction will
display absorption characteristics of the object, such as the presence of small breast
tumors.

Likewise, two sets of coherent microwaves can be generated by a klystron and
allowed to interefere. With a microwave-receiving antenna and suitable scanning
mechanism, a photographic record of the microwave field or the hologram can be
stored.

The most important contribution of microwave holography is synthetic aper-
ture radar. An aircraft moving in a straight path emits highly coherent microwave
pulses for the terrain illumination. The reflected signals from each of the points along
the flight path are combined with the reference signal. Transformation to a light
pattern and photographic record or hologram follows. Even if the aircraft has tra-
veled a large distance, the signals being coherent, the processed effective antenna size
is the long distance covered. This large effective aperture yields high-resolution
pictures, even through clouds where microwave transmission is high.

15.3.4 Holographic Optical Elements

Holograms can effectively perform many of the operations of conventional optical
elements like lenses and mirrors. For example, a hologram of a point source can be
used to perform focusing operations. The mass fabrication eliminates grinding, pol-
ishing, coating, etc., associated with conventional processes. Holographic optical
elements (HOE) are flat so they are lightweight and take less space even if multiple
elements are stacked for complex operations such as multifocus capability. Volume
holographic elements (VOHE) can also be fabricated on thick media. However, the
term HOE is generally used and VOHE is a thick HOE.

Although not a substitute for all well-designed and established optical elements
in cameras, precision telescopes, precision mirrors, etc., HOE have been found to be
very useful in many applications. The principle of HOE is simple. Suppose a holo-
gram is formed by interference between light coming from two point sources.
Illuminating by either, the other will be reconstructed. Thus, the hologram works
like a lens for the focusing operation. Real, virtual, transmittive (like a lens), reflec-
tive (like a mirror), on- or off-axis, etc., can be realized by holographic magnification
relationships. In fact, a simple grating formed by two interfering waves is an HOE.
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Hologram motion will shift the image point. Thus, a scan can easily be
obtained, such as is common in supermarket bar code scanners. Beiser (1988) pro-
vides a detailed description on holographic scanning.

The holographic optical head in compact disk players performs multifunction
beamsplitting, focusing, and tracking-error detection simultaneously.

Displays such as helmet-mounted, night-vision applications, selective rejection
of certain wavelengths, etc., have found military applications. Selective rejection of
a certain wavelength or wavelengths by a holographic filter is based on volume
holographic recording. Such holograms have peak reflectance at a desired wave-
length governed by Bragg’s law. The notch filters can be used for laser eye protec-
tion while maintaining high overall transmittance for the view. In Raman
spectroscopy, the Rayleigh line can be suppressed while allowing the useful
Stokes’ region to dramatically enhance the signal-to-noise ratio. For reduced
solar heating, the near-infrared region can be rejected, while maintaining high
transmittance in the visible region.

Laser wavelength selection is another application of dye lasers. The cavity may
contain a single holographic grating for the wavelength selection, different gratings
for different wavelength selection, or several superimposed for simultaneous multi-
ple-wavelength emission.

The hologram of a point made with a single wavelength, if illuminated by a
group of wavelengths simultaneously, will form different color image (like slit images
in rainbow holography) points on different or shifted locations. Thus, a demultiplex-
ing operation is performed.

Multiple elements can also be obtained by holographic multiplexing. These can
be used in selective interconnects, etc.

These, as well as other applications such as in Fabry–Perot etalons and solar
astronomy, have been described by Syms (1990) and Hariharan (1996). A collection
of reprints on the subject is available (Stone and Thompson, 1991). The reprints are
classified based on properties, types of elements, and applications. At this stage, it
should be noted that these elements may be fabricated by the traditional holographic
process as well as computer-generated. The applications are very diverse, such as in
multiple imaging, laser machining, data processing, helmet-mounted display, stero-
graphy, fiber-optic coupling, multifocusing, optical computation, speckle interfero-
metry, telescopy, compact disk applications, wide-field imaging, optical testing, and
phase correction. A review of applications in speckle metrology is also available
(Shakhar, 1993). Several critical spects and applications are also reported (Sirohi,
1990) and are continuing (Yadav and Ananda Rao, 1997; Petrov and Lau, 1998;
Moustafa et al., 1999).

Even residual aberration of readout lens in in-line holography can be corrected
by another holographic optical element or an auxillary off-axis hologram (Ozkul and
Anthore, 1991). Such phase conjugation (Barnhart et al., 1994) or playback geome-
try to compensate for aberrations has been known (McGehee and Wuerker, 1985).

Novel applications of HOE are continuing in correcting large spherical aber-
rations in fast optics for high-resolution imaging, lithography, and communications
(Andersen et al., 1997; Andersen and Knize, 1998; Bains, 1999). For example,
microscope objectives with high resolution require low working distances. A
large aperture would allow larger working distances but with multielement cor-
rected optics it becomes bulky and costly. In the HOE approach (Fig. 15.8), a
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hologram of spatially filtered light is passed through the microscope objective (say
a large Fresnel lens) and collimated by an imaging lens is used as an object beam.
A reference beam is collimated. If the reconstruction is performed by the spatially
filtered light using the original system, the real original reference beam will be
reconstructed. The aberrations caused by the original recording arrangement will
be canceled out. If the spatial filter plane is replaced by an object, the aberration
corrected images can be obtained. In summary, with a large and not critically
corrected objective allowing a large objective–object distance, high-resolution
images can be obtained.

Some other recent applications of optical elements are in optical interconnec-
tions (Cheben et al., 1998), automotive windshield displays (Chao and Chi, 1998a),
nondegenerate four-wave mixing (Gurley et al., 1998), color filtering (Chao and Chi,
1998b), polarization selective holograms as photonic delay lines (Madamopoulos
and Riza, 1998), laser mode selection (Yarovoy, 1998), grating for dual-wavelength
operation (Lepage and McCarthy, 1998), variable beamsplitting (Blesa et al., 1999),
switching between single mode fibers (Wolffer et al., 1999), collimating optics (Miler
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Figure 15.8 Diagrams representing holographic correction of aberration of an optical
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et al., 1999), wideband phase-array antennas (Fu et al., 1999), confocal microscopy
(Barbastathis et al., 1999), and spatial light modulation (Wu et al., 1999).

15.3.5 Display Holograms

Being three-dimensional, reconstruction of images, displays, or pictorial applications
have long been an area of interest. Using pulsed lasers, holograms of human subjects
were successfully stored (Collier, 1971). Nevertheless, conventional laser recording
and reconstruction have limitations for the purpose. A limited angle of view is one,
while low image illuminance, etc., further limits the role of a conventional approach
in this regard. There have been innovative approaches to solve these problems.

To solve limited view angles, holograms using several plates or cylindrical films
can be recorded simultaneously to cover different views (Hariharan, 1996; Jeong et
al., 1966; Jeong, 1967). For a 3608 view, the cylindrical film surrounds the object. A
spatially filtered divergent laser beam (Fig. 15.9) illuminates the system. Portions
reaching the film directly act as the reference beam, whereas those scattered by the
object act as the object beam. Upon reconstruction, one may move around the
cylindrical hologram to constantly view the corresponding side. These holograms
are bulky, due to the need to surround the film on a rigid support such as a glass
cylinder. A compromise is to use flat holograms with capability to view front and
back of the image by viewing from two sides of the hologram. A sequence of storing
front and back sides of the object finally yields a single hologram with this capability
(Hariharan, 1996). Needless to mention, if stored on a thick volume material, such
holograms can be viewed with ordinary white light. Another approach to simulate a
3608 view on a flat hologram is to store a slit hologram using a mask. Multiple
images at different slit locations are stored while rotating the object on a turntable.
When the entire hologram is reconstructed, the eye movement across the hologram
will yield constantly changing views.

A hologram of an ordinary photographic transparency can be holographically
stored and reconstructed. Using a movable slit mask, holograms of the transparen-
cies of the object taken from different angles can be multiplexed. Upon reconstruc-
tion, sterographic or acceptable three-dimensional views can be obtained. Such
holograms, being non-laser source for the original storage, find applications in dis-
plays of X-ray and ultrasound images (Hariharan, 1996). The volume multiplexing
has found applications in computed axial tomography (CAT), scanning tunnelling
microscopy (STM), confocal scanning optical microscopy, etc. (Syms, 1990). White
light stereography from a movie film is also possible (Hariharan, 1996). Commercial
systems capable of making stereograms in a few minutes are underway (Bains, 1998).
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For display applications the volume occupied by the reconstruction beam of
ordinary off-axis holography is disadvantageous. In the edge-lit holography, the
reference and reconstruction beam enter from a side parallel to the plate. Thus,
the reconstruction setup is in a plane rather in a volume. Compact portable displays
can thus be obtained.

As we have seen in Section 15.2.7, bright ordinary white light sources can be
used for the reconstruction in rainbow holography. This is very advantageous for the
display applications. Color holography (Section 15.2.6) as well as image plane holo-
graphy (Section 15.2.4) have primarily been developed for display applications.
Color holography for display applications critically depends on high-quality prac-
tical recording materials, with considerable progress made in the recent past
(Kaplan, 1998).

There is significant current commercial interest in holographic display technol-
ogy (Wilson, 1998), including auto design (Suh, 1999) and holographic three-dimen-
sional photocameras (Levin et al., 1998). Specific tools such as pixelated holograms
for three-dimensional display (Chen and Chatterjee, 1998) and improved holography
on liquid-crystal displays (Mishina et al., 1999) are constantly being investigated.

15.3.6 Information Storage and Processing

Holography have long been applied to information storage and processing. Synthesis
of complex filters to perform numerous operations such as image enhancement,
image restoration, optical pattern recognition, imaging through random media,
high-density data storage, etc., have long been of active interest (Goodman, 1966;
Stroke, 1966; Casasent, 1981, 1985; Yu, 1983) and still are being continued and
applied (Collings, 1988; Mikaelian, 1994; Yu and Jutamula, 1996). In this section
we describe some primary concepts.

A common area of interest is associative storage property and applications to
pattern recognition, processing, coding, etc. Associative storage is a basic property
of holography. Either (object or reference) of the original beams can illuminate the
hologram to reconstruct the other. A common way is to store a Fourier-transform
hologram because several operations can be performed in the Fourier plane,
including manipulations by a spatial light modulator (SLM). Let us consider the
object transparency O (Fig. 15.10) centered on the optical axis and a reference
point R (point not necessary but convenient for describing the process) in the back
focal plane of a Fourier-transform lens. They are illuminated by the same laser
source, and in the front focal plane the hologram is recorded. The processed
hologram is replaced for the reconstruction. If illuminated by the original reference
point and reconstruction inverse Fourier transformed, the image will be obtained
at O 0 in the focal plane of the lens as shown. As such, the outcome is obvious from
the holographic point of view. Now, suppose instead of using the original reference
point, the object or the illuminated transparency is used for the reconstruction. In
that case, a sharp reconstructed image point will appear at R 0 corresponding to the
original point at R. Now if the original transparency is changed, the hologram
illumination beam may be randomly different and the intensity of the point at R 0

will sharply decline. This characteristic is very useful in pattern recognition. Several
useful aspects have been demonstrated in the past, including variations in the
architecture. One is for coding applications. The reference source can be diffused,
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such as that derived by focusing a laser beam on a ground glass. However, differ-
ent coded sources may be obtained just by moving the glass. The perfect recon-
struction will be obtained with the ground glass in the original position; otherwise,
the image will disappear or be very noisy. Thus, even if the hologram is available,
the reconstruction is possible only if the code (diffuser and its orientation, position,
etc.) is known.

At the reconstruction stage, processing or modifications in the Fourier (holo-
gram) plane can yield a modified picture at O 0. For example, if the original trans-
parency was recorded with an imperfect optical system, the image can still be
corrected. By creating filters using the imperfect system and placing in the hologram
plane, the image at O 0 can be as if it was stored with a perfect system.

More complex operations for storing holographic arrays, particularly for page-
oriented holographic memory, have been performed.

Optical information in compact form in a microfilm is limited by the film
resolution beyond which information is lost. Holographic information storage is
also related to the recording medium resolution, but the process itself provides
serious advantages. On the same medium or emulsion, a multiplexed storage (say
by different reference beams) yields many superimposed holograms. With a thick
emulsion, a large number of holograms can be stored even with volumetric multi-
plexing. The information coding (for readout only the desired hologram at a time) is
performed by wavelength, polarization, reference beam direction, orientation, etc. In
1993 as many as 5000 holograms were recorded in a single crystal of Fe:LiNbO3

(Mok, 1993). Since then, there has been considerable progress in high-density holo-
graphic data storage materials and processes (Burr et al., 1998; Dhar et al., 1988,
1999; Guenther et al., 1998; Adibi et al., 1999; An et al., 1999; Cheng et al., 1999;
Markov et al., 1999; Zhou et al., 1999).

Such capacity resulted in archival storage of documents and maps, video-
tape and videodisk systems, digital audio storage, page-oriented storage systems,
credit and identity card verification, and other security applications (Hariharan,
1996).

Optical interconnection is another area associated with high-density storage.
Using a single ordinary or computer-generated hologram, a light beam can recon-
struct in several output beams (a diffraction grating is a simple form of such a
hologram). Likewise, several optical beams can be combined into one. Unlike elec-
trical connections, the optical approach yields minimum propagation delays and
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space requirements. Using such a capability is an active area of research with,
applications to switching, optical neural networks, etc.

15.4 OTHER DEVELOPMENTS

Although we have covered many common aspects of holography, the discussion is
far from complete. There have been constant critical re-evaluations, innovations,
and new applications. We briefly describe some of them here. Lebrun et al. (1999)
applied optical wavelet transform to perform the reconstruction process. Their par-
ticular interest is to reduce the noise associated with conventional reconstruction
when the object is glass fibers being drawn in a turbulent flame. Wallace (1999a)
reported a recent development of contact printing or ‘‘rubber stamp’’ of features
down to 20 nm. Obviously, such technology has implications in the mass fabrication
of holograms as well. Spinning disk holography (Wallace, 1999b) is another recent
development for storing movies and high-speed events.

Gated holography (Abramson, 1981; Shih, 1999; Shih et al., 1999) is another
important development. Gating can be performed by several methods, such as short-
coherence, Fourier synthesis, and spectral decomposition (Shih et al., 1999). For
example, if a short pulse is used as a light source, the object light arriving at different
times will not be stored. The different light may be, for example, due to diffusion in
the object media. Thus, one can avoid unwanted diffusion effects, such as while
imaging through highly scattering media.

Digital recording and numerical reconstruction (Pomarico et al., 1995) has
long been of interest, as reported by Yamaguchi and Zhang (1998). The hologram
is captured by a video camera and the image is reconstructed by mathematical
means. As a result of significant progress in storage and processing technology,
the interest in various aspects and applications has been growing (Marquardt and
Richter, 1998; Nilsson and Carisson, 1998; Zhang and Yamaguchi, 1998; Cuche et
al., 1999; Pedrini et al., 1999; Takaki and Ohzu, 1999).

Optical scanning holography (Poon et al., 1996) stores holographic informa-
tion using heterodyning. The output, being in the form of electrical current rather
than light intensity in common holographic recording, has several unique features of
information storage, transmission, and processing. New applications such as fluor-
escence imaging (Schilling et al., 1997; Indebetouw et al., 1998) and three-dimen-
sional image recognition (Poon and Kim, 1999) are continuing.

Critical aberration aspects of underfluid objects have also been of significant
interest (Coupland and Halliwell, 1997; Fang and Hobson, 1998).

Obviously, new concepts and applications are limited by imagination only. For
example, Hariharan (1998) finds similarities between Lippmann color photography
and holography. Maripov and Shamshiev (1999) described ‘‘the superhologram’’
possessing properties of Gabor’s, Leith and Upatnieks’s, Denisyuk’s, Benton’s,
and others.
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Fourier Optics and Image Processing

FRANCIS T. S. YU

The Pennsylvania State University, University Park, Pennsylvania

16.1 FOURIER OPTICS AND IMAGE PROCESSING

The discovery of intensive lasers has enabled us to build more efficient optical
systems for communication and signal processing. Most of the optical processing
architectures to date have confined themselves to the cases of complete coherence or
complete incoherence. However, a continuous transition between these two extremes
is possible. Added to the recent development of spatial light modulators, this has
brought optical signal processing to a new height. Much attention has been focused
on high-speed and high-data-rate optical processing and computing.

In this chapter we shall discuss the basic principles of Fourier optics as applied
to image processing and computing.

16.1.1 Fourier Transformation by Optics

To understand the basic concept of Fourier optics, we shall begin our discussion with
the Fresnel–Kirchhoff theory. Let us start from the Huygens’ principle, in which the
complex amplitude observed at the point p 0 of a coordinate system �ð�; �Þ, due to a
monochromatic light field located in another coordinate system �ðx; yÞ, as shown in
Fig. 16.1, can be calculated by assuming that each point of light source is an infini-
tesimal spherical radiator. Thus, the complex light amplitude hlð�; �; kÞ contributed
by a point p in the ðx; yÞ coordinate system can be considered to be that from an
unpolarized monochromatic point source, such that

hl ¼ � i


r
exp½iðkr� !tÞ�; ð16:1Þ

where 
, k, and ! are the wavelengths, wave number, and angular frequency, respec-
tively, of the point source, and r is the distance between the point source and the
point of observation.
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If the separation l of the two-coordinate systems is assumed to be large com-
pared with the regions of interest in the ðx; yÞ and ð�; �Þ coordinate systems, r can be
approximated by

r ¼ l þ ð�� xÞ2
2l

þ ð�� yÞ2
2l

; ð16:2Þ

which is known as a paraxial approximation. By the substituting into Eq. (16.1), we
have

hlð� � �; kÞ ffi � i


l
exp ik l þ ð�� xÞ2

2l
þ ð�� yÞ2

2l

" #( )

; ð16:3Þ

which is known as the spatial impulse response, where the time-dependent exponent
has been dropped for convenience. Thus, we see that the complex amplitude pro-
duced at the ð�; �Þ coordinate system by the monochromatic radiating surface f ðx; yÞ
can be written as

gð�; �Þ ¼
ð ð

x;y

f ðx; yÞhlðr� q; kÞdxdy; ð16:4Þ

which is the well-known Kirchhoff’s integral. In view of the proceeding equation, we
see that the Kirchhoff’s integral is in fact the convolution integral, by which can be
written

gð�; �Þ ¼ f ðx; yÞ � hlðx; yÞ; ð16:5Þ
where the asterisk denotes the convolution operation.

hlðx; yÞ ¼ C exp i
k

2l
ðx2 þ y2Þ

� �
ð16:6Þ

and C ¼ ði=
lÞ expðiklÞ is a complex constant. Consequently, Eq. (16.5) can be repre-
sented by a block box system diagram, as shown in Fig. 16.2. In other words, the
complex wave field distributed over the ð�; �Þ coordinate system plane can be eval-
uated by the convolution integral of Eq. (16.4).
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It is well known that a two-dimensional Fourier transformation can be
obtained with a positive lens. Fourier-transform operations usually require compli-
cated electronic spectrum analyzers or digital computers. However, this complicated
transform can be performed extremely simply with a coherent optical system.

To perform Fourier transformations in optics, it is required that a positive lens
is inserted in a monochromatic wave field of Fig. 16.1. The action of the lens can
convert a spherical wavefront into a plane wave. The lens must induce a phase
transformation, such as

Tðx; yÞ ¼ C exp �i



f
ðx2 þ y2Þ

� �
; ð16:7Þ

where C is an arbitrary complex constant.
Let us now show the Fourier transformation by a lens, as illustrated in Fig.

16.3, in which a monochromatic wave field at input plane ð�; �Þ is f ð�; �Þ. Then, by
applying the Fresnel–Kirchhoff theory of Eq. (16.5), the complex light distribution
at ð�; �Þ can be written as

gð�; �Þ ¼ C ½ f ð�; �Þ � hlð�; �Þ�Tðx; yÞ� � � hf ðx; yÞ; ð16:8Þ

where C is a proportionality complex constant, hlð�; �Þ and hf ðx; yÞ are the corre-
sponding spatial impulse responses, and Tðx; yÞ is the phase transform of the lens, as
given in Eq. (16.7).

By a straightforward, tedious evaluation, we can show that
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Figure 16.2 Linear system representation.

Figure 16.3 Fourier transformation by a lens.



gð�; �Þ ¼ C1 exp �i
k

2f

1� v

v
ð�2 þ �2Þ

� � ð ð
f ð�; �Þ exp �i

k

f
ð�� þ ��Þ

� �
d�d�;

ð16:9Þ
which is essentially the Fourier transform of f ð�; �Þ with a quadratic phase factor. If
the signal plane is placed at the front focal plane of the lens, that is l ¼ f , the
quadratic phase factor vanishes, which leaves an exact Fourier transformation,

Gðp; qÞ ¼ C1

ð ð
f ð�; nÞ exp½�iðp� þ q�Þ�d�d�; ð16:10Þ

where p ¼ k�=f and q ¼ k�=f are the angular spatial frequency coordinates.

16.1.2 Coherent and Incoherent Processing

Let a hypothetical optical processing system be as shown in Fig. 16.4. Assume that
the light emitted by the source � is monochromatic, and uðx; yÞ is the complex light
distribution at the input signal plane due to the incremental source d�. If the com-
plex amplitude transmittance of the input plane is f ðx; yÞ, the complex light field
immediately behind the signal plane is uðx; yÞf ðx; yÞ. We assume the optical system in
the black box is linearly spatially invariant with a spatial impulse response of hðx; yÞ,
the output complex light field, due to d�, can be calculated by

gð�; �Þ ¼ ½uðx; yÞ f ðx; yÞ� � hðx; yÞ; ð16:11Þ
which can be written as

dIð�; �Þ ¼ gð�; �Þg�ð�; �Þd�; ð16:12Þ
where the superscript asterisk denotes the complex conjugate. The overall output
density distribution is therefore

Ið�; �Þ ¼
ð ð

jgð�; �Þj2d�;

which can be written in the following convolution integral:

Ið�; �Þ ¼
ð ð ð ð


ðx; y; x 0; y 0Þhð�� x; �� yÞh�ð�� x 0; �� y 0Þ
� f ðx; yÞ f �ðx 0; y 0Þdxdydx 0dy 0;

ð16:13Þ

where
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Figure 16.4 A hypothetical optical processing system.




ðx; y : x 0; y 0Þ ¼
ð ð

�

uðx; yÞu�ðx 0y 0Þd�

is the spatial coherence function, also known as the mutual intensity function, at input
plane ðx; yÞ.

By choosing two arbitrary points Q1 and Q2 at the input plane, and if r1 and r2
are the respective distances from Q1 and Q2 to d�, the complex light distrubances at
Q1 and Q2 due to d� can be written as

u1ðx; yÞ ¼
½Ið�; �Þ��1=2

r1
expðikr1Þ ð16:14Þ

and

u2ðx 0; y 0Þ ¼ ½Ið�; �Þ��1=2

r1
expðikr2Þ; ð16:15Þ

where Ið�; �Þ is the intensity distribution of the light source. By substituting Eqs
(16.14) and (16.15) into Eq. (16.13), we have


ðx; y; x 0; y 0Þ ¼
ð ð

�

Ið�; �Þ
r1r2

exp½ikðr1 � r2Þ�d�: ð16:16Þ

In the paraxial case, r1 � r2 may be approximated by

r1 � r2 ’
1

r
½�ðx� x 0Þ þ �ð y� y 0Þ�;

where r is the separation between the source plane and the signal plane. Then, Eq.
(16.16) can be reduced to


ðx; y; x 0; y 0Þ ¼ 1

r2

ð ð

�

Ið�; �Þ exp i
k

r
½�ðx� x 0Þ þ �ð y� y 0Þ�

� �
d�d� ð16:17Þ

which is known as the Van Cittert–Zernike theorem. Notice that Eq. (16.17) forms an
inverse Fourier transform of the source intensity distribution.

Now one of the two extreme cases is by letting the light source become infi-
nitely large: for example, Ið�; �Þ ’ K ; then Eq. (16.17) becomes


ðx; y; x 0; y 0Þ ¼ K1�ðx� x 0; y� y 0Þ; ð16:18Þ
which describes a completely incoherent illumination, where K1 is an appropriate
constant.

On the other hand, if the light source is vanishingly small, i.e., Ið�; �Þ ’ K ,
�ð�; �Þ, Eq. (16.17) becomes


ðx; y; x 0; y 0Þ ¼ K2; ð16:19Þ
which describes a completely coherent illumination, where K2 is a proportionality
constant. In other words, a monochromatic point source describes a strictly coherent
processing regime, while an extended source describes a strictly incoherent system.
Furthermore, an extended monochromatic source is also known as a spatially inco-
herent source.
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By referring to the completely incoherent illumination, we have

ðx; y; x 0; y 0Þ ¼ K1�ðx� x 0; y� y 0Þ, the intensity distribution at the output plane,
can be shown

Ið�; �Þ ¼
ð ð

jhð�� x; �� yÞj2j f ðx; yÞj2dxdy; ð16:20Þ

in which we see that the output intensity distribution is the convolution of the input
signal intensity with respect to the intensity impulse response. In other words, for the
completely incoherent illumination, the optical signal processing system is linear in
intensity, i.e.,

Ið�; �Þ ¼ jhðx; yÞj2 � j f ðx; yÞj2; ð16:21Þ
where the asterisk denotes the convolution operation. On the other hand, for the
completely coherent illumination, i.e., 
ðx; y;x 0; y 0Þ ¼ K2, the output intensity dis-
tribution can be shown as

Ið�; �Þ ¼ gð�; �Þg�ð�; �Þ ¼
ð ð

hð�� x; �� yÞ f ðx; yÞdxdy

�
ð ð

h�ð�� x 0; �� y 0Þ f ðx 0; y 0Þdx 0dy 0
ð16:22Þ

when

gð�; �Þ ¼
ð ð

hð�� x; �� yÞ f ðx; yÞdxdy; ð16:23Þ

for which we can see that the optical signal processing system is linear in complex
amplitude. In other words, a coherent optical processor is capable of processing the
information in complex amplitudes.

16.1.3 Fourier and Spatial Domain Processing

The roots of optical signal processing can be traced back to Abbe’s work in 1873,
which led to the discovery of spatial filtering. However, optical pattern recognition
was not appreciated until the complex spatial filtering of Van der Lugt in 1964. Since
then, techniques, architectures, and algorithms have been developed to construct
efficient optical signal processors. The objective of this section is to discuss the optical
architectures and techniques as applied to image processing. Basically, there are two
frequently used signal-processing architectures in Fourier optics: namely, the Vander
Lugt correlator (VLC) and the joint transform correlator (JTC). Nevertheless, image
processing can be accomplished either by Fourier domain filtering or spatial domain
filtering or both. Processors that use Fourier domain filtering are known as VLCs and
the spatial-domain filtering is often used for JTC. The basic distinctions between them
are that VLC depends on a Fourier-domain filter, whereas JTC depends on a spatial
domain filter. In other words, the complex spatial filtering of Vander Lugt is input
scene independent, whereas the joint transform filtering is input scene dependent. The
reason is that once the Fourier domain spatial filter is synthesized, the structure of the
filter will not be altered by the input scene (e.g., for multitarget detection or back-
ground noise). Thus the performance of Fourier domain filtering is independent of
the input scene. On the other hand, the joint transform power spectrum would be
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affected by the input noise and multitarget detection, for which the performance in
the JTC is input scene dependent.

It is apparent that a pure optical correlator has drawbacks which make certain
tasks difficult or impossible to perform. The first problem is that optical systems are
difficult to program, in the sense of a general-purpose digital computer. A second
problem is that accuracy is difficult to achieve in Fourier optics. A third problem is
that optical systems cannot easily be used to make decisions. Even a simple decision
cannot be performed optically without the intervention of electronics. However,
many deficiencies of optics happen to be the strong points of the electronic counter-
part. For example, accuracy, controllability, and programmability are the obvious
traits of digital computers. Thus, by combining an optical system with its electronic
counterpart is rather natural to have a better processor, as shown in Figs 16.5 and
16.6, in which spatial light modulators (SLMs) are used for input-object and spatial
filter devices. One of the important aspects of these hybrid-optical architectures is
that decision making can be done by the computer.

We shall now consider the VLC (depicted in Fig. 16.5), which we assume is
illuminated by a coherent plane wave. If an input object f ðx; yÞ is displayed at the
input plane, the output complex light can be shown as

gð�; �Þ ¼ Kf ðx; yÞ � hðx; yÞ; ð16:24Þ
where � denotes the convolution operation, K is a proportionality constant, and
hðx; yÞ is the spatial impulse response of the Fourier domain filter, which can be
generated on the SLM. We note that a Fourier domain filter can be described by a
complex-amplitude transmittance such as

Hð p; qÞ ¼ jHðp; qÞj exp½i�ð p; qÞ�; ð16:25Þ
for which the physically realizable conditions are imposed by

jHð p; qÞj  1 ð16:26Þ
and

0  �ð p; qÞ  2; ð16:27Þ
where ð p; qÞ is the angular spatial frequency coordinator system. We stress that the
complex transmittance imposed by the physical constraints can be represented by a
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Figure 16.5 Hybrid optical Vander Lugt correlator (VLC). SLMs, spatial light modulators;

CCDs, charge-coupled detectors; SF, spatial filter; Ls, lenses.



set of points within or on a unit circle in a complex plane shown in Fig. 16.7. In other
words, a physically realizable filter can only be synthesized within or on the unit
circle of the complex plane.

Let us now illustrate a complex signal detection using the VLC. We assume
that a Fourier-domain matched filter is generated at the spatial frequency plane, as
given by

Hðp; qÞ ¼ K 1þ jFð p; qÞj2 þ 2jFð p; qÞj cos½�0pþ �ð p; qÞ�
� �

; ð16:28Þ

which is a positive real function subject to the physical constraints of Eqs (16.26) and
(16.27), where �0 is the spatial carrier frequency. It is straightforward to show that
the output complex light distribution is given by

558 Yu

Figure 16.6 Hybrid optical joint transform correlator (JTC). SLMs, spatial light modula-

tors; CCDs, charge-coupled detectors; BS, beamsplitter; M, mirror; Ls, lenses.

Figure 16.7 Complex amplitude transmittance.



gð�; �Þ ¼ K ½ f ðx; yÞ þ f ðx; yÞ � f ðx; yÞ � f �ð�x;�yÞ þ f ðx; yÞ � f ðxþ x0; yÞ
þ f ðx; yÞ � f �ð�xþ �0;�yÞ�;

ð16:29Þ
in which the first and second terms represent the zero-order diffraction; the third and
fourth terms are the convolution and cross-correlation terms, which are diffracted in
the neighborhood of � ¼ ��0, and � ¼ �0 respectively. The zero-order and convolu-
tion terms are of no particular interest here; it is the cross-correlation term that is
used in signal detection.

Now, if the input signal is assumed to be embedded in an additive white
Gaussian noise n, that is,

f 0ðx; yÞ ¼ f ðx; yÞ þ nðx; yÞ; ð16:30Þ
then the correlation term in Eq. (16.29) would be

Rð�; �Þ ¼ K ½ f ðx; yÞ þ nðx; yÞ� � f �ð�xþ �0;�yÞ: ð16:31Þ
Since the cross-correlation between nðx; yÞ and f �ð�xþ �0;�yÞ can be shown to be
approximately equal to zero, Eq. (16.31) reduces to

Rð�; �Þ ¼ f ðx; yÞ � f �ð�xþ �0;�yÞ; ð16:32Þ
which is the autocorrelation distribution of f ðx; yÞ.

To ensure that the zero-order and the first-order diffraction terms will not
overlap, the spatial carrier frequency �0 is required that

�0 > lf þ 3
2
ls; ð16:33Þ

where lf and ls are the spatial lengths in the x-direction of the input object transpar-
ency and the detecting signal f ðx; yÞ, respectively. To show that this is true, we
consider the length of the various output terms of gð�; �Þ, as illustrated in Fig. 16.8.

Since lengths of the first, second, third, and fourth terms of Eq. (16.29) are lf ,
2ls þ lf , and lf þ ls, respectively, to achieve complete separation the spatial carrier
frequency �0 must satisfy the inequality of Eq. (16.33).

Complex spatial filtering can also be performed by JTC (shown in Fig. 16.6) in
which the input object displayed on the SLMs are given by

f1ðx� �0; yÞ þ f2ðxþ �0; yÞ; ð16:34Þ
where 2�0 is the main separation of the input objects. The corresponding joint trans-
form power spectrum (JTPS), as detected by charge-coupled detector (CCD1), is
given by

Ið p; qÞ ¼jF1ð p; qÞj2 þ jF2ð p; qÞj2 þ 2jF1ð p; qÞj2jF2ð p; qÞj2
� cos½2�0p� �1ð p; qÞ þ �2ð p; qÞ�;

ð16:35Þ

where

F1ð p; qÞ ¼ jF1ð p; qÞjei�1ð p;qÞ;
and

F2ð p; qÞ ¼ jF2ð p; qÞjei�2ð p;qÞ:
If the JTPS is displayed on SLM2, the output complex light distribution would be
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gð�; �Þ ¼ f1ðx; yÞ � f �1 ðx; yÞ þ f2ðx; yÞ � f �2 ðx; yÞ þ f1ðx; yÞ
� f �2 ðx� 2�0; yÞ þ f �1 ðx; yÞ � f2ðxþ 2�0; yÞ;

ð16:36Þ

where � denotes the correlation operation. The first two terms represent overlapping
correlation functions f1ðx; yÞ and f2ðx; yÞ, which are diffracted at the origin of the
output plane. The last two terms are the two cross-correlation terms, which are
diffracted around � ¼ 2�0 and � ¼ �2�0, respectively.

To avoid the correlation term overlapping with the zero diffraction, it is
required that the separation between the input object should be

2�0 � 2�; ð16:37Þ

where � is the width of the input object.
For complex target detection, we assume that target f1ðx� �0; yÞ is embedded

in an additive white Gaussian noise, i.e., f1ðx� �0; yÞ þ nðx� �0; yÞ and f2ðx� �0; y)
is replaced by f1ðx� �0; yÞ. Then it can be shown that the JTPS is given by

Ið p; qÞ ¼ 2jF1j2 þ jNj2 þ F1N
� þNF�

1 þ ðF1F
�
1 þNF�

1 Þe�2�0p

þ ðF1F
�
1F1N

�Þei2�0p:
ð16:38Þ

Since the noise is assumed to be additive and Gaussian distributed with zero mean,
we note that

ð ð
f1ðx; yÞnð�þ x; �þ yÞdxdy ¼ 0:

Thus, the output complex light field is
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Figure 16.8 Sketch of the output diffraction.



gð�; �Þ ¼ 2f1ðx; yÞ � f �1 ðx; yÞ þ nðx; yÞ � n�ðx; yÞ þ f1ðx; yÞ � f �1 ðx� 2�0; yÞ
þ f1ðx; yÞ � f �1 ðxþ 2�0; yÞ;

ð16:39Þ
in which the autocorrelation terms are diffracted at �0 ¼ 2�0 and �0 ¼ �2�0, respec-
tively.

16.1.4 Exploitation of Coherence

The use of a coherent source enables optical processing to be carried out in complex
amplitude processing, which offers a myriad of applications. However, coherent
optical processing also suffers from coherent artifact noise, which limits its proces-
sing capabilities. To alleviate these limitations, we discuss methods to exploit the
coherence contents from an incoherent source for complex amplitude processing.
Since all physical sources are neither strictly coherent nor strictly incoherent, it is
possible to extract their inherent coherence contents for coherent processing.

Let us begin with the exploitation of spatial coherence from an extended inco-
herent source. By referring to the conventional optical processor shown in Fig. 16.9,
the spatial coherence function at the input plane can be written as


ðx2 � x 0
2Þ ¼

ð ð
	ðx1Þ exp i2

x1

f

ðx2 � x 0
2Þ

� �
dx1; ð16:40Þ

which is the well-known Van Citter–Zernike theorem, where 	ðx1Þ is the extended
source, f is the focal length of the collimated lens, and 
 is the wavelength of the
extended source. Thus, we see that the spatial coherence at the input plane and the
source-encoding intensity transmittance form a Fourier-transform pair, given by

	ðx1Þ ¼ f½
ðx2 � x 0
2Þ�; and 
ðx2 � x 0

2Þ ¼ f�1½	ðx1Þ�; ð16:41Þ
where f denotes the Fourier-transform operation. In other words, if a specific
spatial coherence requirement is needed for information processing, a source-encod-
ing can be performed. The source-encoding 	ðx1Þ can consist of apertures of different
shapes or slits, but it should be a positive real function that satisfies the following
physically realizable constraint:

0  	ðx1Þ  1: ð16:42Þ
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Figure 16.9 Incoherent source optical processor: I, incoherent source; L1, collimating lens;

L2 and L3, achromatic transformation lenses; P1, source encoding mask; P2, input plane; P3,

Fourier plane, and P4, output plane.



For the exploitation of temporal coherence, we note that the Fourier spectrum
is linearly proportional to the wavelength of the light source. It is apparently not
capable of (or inefficient at) using a broadband source for complex amplitude pro-
cessing. To do so, a narrow-spectral-band (i.e., temporally coherent) source is
needed. In other words, the spectral spread of the input object should be confined
within a small fraction fringe spacing of the spatial filter, which is given by

pmf�


2
	 d; ð16:43Þ

where d is the fringe spacing of the spatial filter, pm is the upper angular spatial
frequency content of the input object, f is the focal length of the transform lens, and
�
 is the spectral bandwidth of the light source. In order to have a higher temporal
coherence requirement, the spectral width of the light source should satisfy the
following constraint:

�




	 

hpm
; ð16:44Þ

where 
 is the center wavelength of the light source, 2h is the size of the input object
transparency, and 2h ¼ ð
f Þ=d.

There are ways to exploit the temporal coherence content from a broadband
source. One of the simplest methods is by dispersing the Fourier spectrum, which can
be obtained by placing a spatial sampling grating at the input plane P2. For example,
if the input object is sampled by a phase grating, as given by

f ðx2ÞTðx2Þ ¼ f ðx2Þ expðip0x2Þ; ð16:45Þ
then the corresponding Fourier transform would be

Fðp; qÞ ¼ F x3 �

f

2
p0

� �
; ð16:46Þ

in which we see that Fðp; qÞ is smeared into rainbow colors at the Fourier plane.
Thus, a high temporal coherence Fourier spectrum within a narrow-spectral-band
filter can be obtained, as given by

�




ffi 4pm

p0
	 1: ð16:47Þ

Since the spectral content of the input object is dispersed in rainbow colors, as
illustrated in Fig. 16.10(a), it is possible to synthesize a set of narrow-spectral-
band filters to accommodate the dispersion.

On the other hand, if the spatial filtering is a 1D operation, it is possible to
construct a fan-shaped spatial filter to cover the entire smeared Fourier spectrum, as
illustrated in Fig. 16.10(b). Thus, we see that a high degree of temporally coherent
filtering can be carried out by a simple white light source. Needless to say, the
(broadband) spatial filters can be synthesized by computer-generated techniques.

In the preceding, we have shown that spatial and temporal coherence can be
exploited by spatial encoding and spectral dispersion of an incoherent source. We
have shown that complex amplitude processing can be carried out with either a set of
2-D narrow-spectral-band filters or with a 1-D fan-shaped broadband filter. Let us
first consider that a set of narrow-spectral-band filters is being used, as given by
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Hnðpn; qn; 
nÞ; for n ¼ 1; 2; . . . ;N; ð16:48Þ

where ð pn; qnÞ represents the angular frequency coordinates and 
n is the center
wavelength of the narrow-width filter; then it can be shown that the output light
intensity would be the incoherent superposition of the filtered signals, as given by

Iðx; yÞ ffi
XN

n¼1

�
n f ðx; y; 
nÞ � hðx; y; 
nÞ
�� ��2; ð16:49Þ

where � denotes the convolution operation, f ðx; y; 
nÞ represents the input signal
illuminated by 
n, �
n is the narrow spectral width of the narrow-spectral-band
filter, and hðx; y; 
nÞ is the spatial impulse response of Hnð pn; qn; 
nÞ, that is,

hnð pn; qn; 
nÞ ¼ f�1½Hð pn; qn; 
nÞ�: ð16:50Þ
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Figure 16.10 Broad spectral filtering: (a) using a set of narrow-spectral-band filters, (b)

using a 1-D fan-shaped broadband filter.



Thus we see that by exploiting the spatial and temporal coherence, an inco-
herent source processor can be made to process the information in complex ampli-
tude as a coherent processor. Since the output intensity distribution is the sum of
mutually incoherent image irradiances, the annoying coherent artifact noise can be
avoided.

On the other hand, if the signal processing is a 1-D operation, then the infor-
mation processing can be carried out with a 1-D fan-shaped broadband filter. Then
the output intensity distribution can be shown as

Iðx; yÞ ¼
ð

�


f ðx; y; 
Þ � hðx; y; 
nÞ
�� ��2d
; ð16:51Þ

where the integral is over the entire spectral band of the light source. Again, we see
that the output irradiance is essentially obtained by incoherent superposition of the
entire spectral band image irradiances, by which the coherent artifact noise can be
avoided. Since one can utilize a conventional white light source, the processor can
indeed be used to process polychromatic images. The advantages of exploiting the
incoherent source for coherent processing are that, it enables the information to be
processed in complex amplitude as a coherent processor and it is capable of suppres-
sing the coherent artifact noise as an incoherent processor.

16.2 IMAGE PROCESSING

16.2.1 Coherent Processing

In the preceding sections, we have seen that by simple insertion of spatial filters, a
wide variety of image processings can be performed by coherent processors (i.e.,
VLC or JTC). In this section we shall describe a couple of image processings by
coherent light.

One of the interesting applications of coherent optical image processing is the
restoration of blurred photographic images. The Fourier spectrum of a blurred (or
distorted) image can be written as

Gð pÞ ¼ Sð pÞDð pÞ; ð16:52Þ
where Gð pÞ is the distorted-image, Sð pÞ is the nondistorted image, Dð pÞ is the dis-
torting function, and p is the angular spatial frequency. Then the inverse filter
transfer function for the restoration is

Hð pÞ ¼ 1

Dð pÞ : ð16:53Þ

However, the inverse filter function is generally not physically realizable. If we would
accept some restoration errors, then an approximated restoration filter may be phy-
sically realized. For example, let the transmission function of a linear smeared point
image be

f ð�Þ ¼ 1; �1=2��  �  1=2��;
0; otherwise

�
ð16:54Þ
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where �� is the smear length. If the preceding smeared transparency is displayed on
the input SLM1 of the VLC shown in Fig. 16.5 the complex light field at the Fourier
plane is given by

Fð pÞ ¼ ��
sinð p��=2Þ

p��=2
; ð16:55Þ

which is plotted in Fig. 16.11. In principle, an inverse filter as given by

Hð pÞ ¼ p��=2

sinð p��=2Þ ð16:56Þ

should be used for the image restoration. However, it is trivial to see that it is not
physically realizable, since it has infinite poles. If one is willing to sacrifice some
degree of restoration, an approximate filter may be realized as follows:

An approximated inverse filter can be physically constructed by combining an
amplitude filter with a phase filter, as shown in Figs 16.12 and 16.13, respectively, by
which the combined transfer function is given by

Hð pÞ ¼ Að pÞei�ð pÞ: ð16:57Þ
Thus by displaying the preceding inverse filter in SLM2, the restored Fourier spec-
trum is given as given by

F1ð pÞ ¼ Fð pÞHð pÞ: ð16:58Þ
By denoting Tm as the minimum transmittance of the amplitude filter, then the
restored Fourier spectrum is the shaded area of Fig. 16.11. Let us define the degree
of image restoration as given by

#ðTmÞð%Þ ¼ 1

Tm�p

ð

�p

Fð pÞHð pÞ
��

dp� 100; ð16:59Þ

where �p is the spectral bandwidth of restoration. A plot as a function of Tm is
shown in Fig. 16.14. We see that high degree of restoration can be achieved as Tm

approaches zero. However, at the same time the restored Fourier spectrum is also
vanishing small, for which no restored image can be observed. Although the inverse
filter in principle can be computer generated, we will use a holographic phase filter
for the demonstration, as given by
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Figure 16.11 The solid curve represents the Fourier spectrum of a linear smeared point

image. The shaded area represents the restored Fourier spectrum.



Tð pÞ ¼ 1
2
1þ cos½�ð pÞ þ �0p�
� �

; ð16:60Þ
where �0 is an arbitrarily chosen constant, and

�ð pÞ ¼ ; pn  p  pnþ1; n ¼ �1;�3;�5; . . .
0; otherwise:

�
ð16:61Þ

Thus, by combining with the amplitude filter we have

H1ð pÞ ¼ Að pÞTð pÞ ¼ 1
2
Að pÞ þ 1

4
Hð pÞ expði�0pÞ þH�ð pÞ expð�i�0pÞ½ �: ð16:62Þ

If this complex filter H1ð pÞ is inserted in the Fourier domain, then the transmitted
Fourier spectrum would be

F2ð pÞ ¼ 1
2
Fð pÞAð pÞ þ 1

4
Fð pÞHð pÞ expði�0pÞ þ Fð pÞH�ð pÞ expð�i�0pÞ½ �;

ð16:63Þ
in which we see that the second and third terms are the restored Fourier spectra,
which will be diffracted around � ¼ �0 and � ¼ ��0, respectively, at the output
plane. It is interesting to show that the effects of restoration due to amplitude filter
alone, phase filter alone, and the combination of both, as plotted in Fig. 16.15. We
see that by phase filtering alone it offers a significant effect of restoration as com-
pared with the one using the amplitude filter. To conclude this section, a restored
image using this technique is shown in Fig. 16.16. We see that the smeared image can
indeed be restored with a coherent processor, but the stored image is also contami-
nated with coherent noise, as shown in Fig. 16.16(b).
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Figure 16.12 Amplitude filter.

Figure 16.13 Phase filter.



Another coherent image processing we shall demonstrate is the image subtrac-
tion. Image subtraction can be achieved by using a diffraction grating technique, as
shown in Fig. 16.17. By displaying two input images on the input SLM1,

f1ðx� h; yÞ þ f2ðxþ h; yÞ: ð16:64Þ
The corresponding Fourier spectrum can be written as

Fð p; qÞ ¼ F1ð p; qÞe�ihp þ F2ð p; qÞeihp; ð16:65Þ
where 2h is the main separation between the two input images. If a bipolar grating,
given by

Hð pÞ ¼ sin hp; ð16:66Þ
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Figure 16.14 Relative degree of restoration as a function of Tm.

Figure 16.15 Restoration due to amplitude, phase, and complex filters.



is displayed on SLM2 at the Fourier domain, it can be shown that the output light-
intensity distribution is given by

Iðx; yÞ ¼
ð
f1ðx� 2h; yÞj2 þ j f1ðx; yÞ � f2ðx; yÞj2 þ j f1ðxþ 2h; yÞj2; ð16:67Þ

in which we see that the subtracted image (i.e., f1 � f2) is diffracted around the origin
at the output plane. Figure 16.18 shows an experimental result obtained with the
coherent processor. Again, we see that the subtracted image is contaminated by
severe coherent artifact noise.

Mention must be made that JTC can also be used as an image processor.
Instead of using the Fourier domain filter, JTC uses the spatial domain filter. For
example, an image f ðx; yÞ and a spatial filter domain hðx; yÞ are displayed at this
input plane of the JTC shown in Fig. 16.2, as given by

f ðx� h; yÞ þ hð�xþ h;�yÞ: ð16:68Þ

It can be shown that output complex light distribution is

gð�; �Þ ¼ f ðx; yÞ � f ðx; yÞ þ hð�x;�yÞ � ð�x;�yÞ þ f ðx; yÞ � hðx� 2h; yÞ
þ f ðx; yÞ � hðxþ 2h; yÞ;

ð16:69Þ

in which two processed images (i.e., the convolution terms) are diffracted around
x ¼ �2h. Thus, we see that JTC can indeed be used as an image processor, for which
it uses a spatial domain filter.
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(a) (b)

Figure 16.16 Image restoration: (a) smeared image; (b) restored image with coherent light.

Figure 16.17 Optical setup for image subtraction.



16.2.2 Processing with Incoherent Light

In Section 16.1.2 we have shown that the incoherent processor is only capable of
processing the image in terms of intensity and it is, however, not possible to process
the information in complex amplitude. It is for this reason that makes coherent
processors are more attractive for optical signal processing. Nevertheless, we have
shown that the complex amplitude processing can be exploited from an incoherent
source, as described in Section 16.1.4. In this section, we demonstrate a couple of
examples that complex amplitude image processing can indeed be exploited from an
incoherent light processor.

Let us now consider the image deblurring under the incoherent illumination.
Since smeared image deblurring is a 1-D processing operation, inverse filtering takes
place with respect to the smeared length of the blurred object. Thus, the required
spatial coherence depends on the smeared length instead of the entire input plane. If
we assume that a spatial coherence function is given by


ðx2 � x 0
2Þ ¼ sin c



�x2
ðx2 � x 0

2Þ
� �

; ð16:70Þ
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(a)

(b)

Figure 16.18 (a) Input images. (b) Subtracted image with coherent light.



then the source-encoding function can be shown as

	ðx1Þ ¼ rect
x1
w

� 
; ð16:71Þ

where �x2 is the smeared length, w ¼ ð f 
Þ=ð�x2Þ is the slit width of the encoding
aperture as shown in Fig. 16.19(a), and

rect
x1
w

� 
¼ 1; �w

3
 x1 

w

2
0; otherwise. :

(

ð16:72Þ

As for the temporal coherence requirement, a sampling phase grating is used to
disperse the Fourier spectrum in the Fourier plane. Let us consider the temporal
coherence requirement for a 2-D image in the Fourier domain. A high degree of
temporal coherence can be achieved by using a higher sampling frequency. We
assume that the Fourier spectrum dispersion is along the x-axis. Since the smeared
image deblurring is a 1-D processing, a fan-shape broadband spatial filter to accom-
modate the smeared Fourier spectrum can be utilized. Therefore, the sampling fre-
quency of the input phase grating can be determined by

p0 �
4
pm
�


; ð16:73Þ

in which 
 and �
 are the center wavelength and the spectral bandwidth of the light
source, respectively, and pm is the x-axis spatial frequency limit of the blurred image.

Figure 16.20(a) shows a set of blurred letters (OPTICS) due to linear motion.
By inserting this blurred transparency in an incoherent source processor of Fig. 16.9
a set of deblurred letters is obtained, as shown in Fig. 16.20(b). Thus we see that by
properly exploiting the coherence contents, complex amplitude processing can
indeed be obtained from an incoherent source. Since the deblurred image is obtained
by incoherent integration (or superposition) of the broadband source, the coherent
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Figure 16.19 Source encoding and spatial coherence 
, spatial coherence function 	, and
source-encoding mask (a) for image deblurring and (b) for image subtraction.



artifact can be suppressed. As compared with the one obtained with coherent illu-
mination of Fig. 16.16(b), we see that the coherence noise has been substantially
reduced, as shown in Fig. 16.20(b).

Let us now consider an image subtraction processing with incoherent light.
Since the spatial coherence depends on the corresponding point-pair of the images to
be subtracted, a strictly broad spatial coherence function is not required. Instead a
point-pair spatial coherence function is needed. To ensure the physically reliability of
the source-encoding function, we let the point-pair spatial coherence function be
given by


ðx2 � x 0
2Þ ¼

sin½Nð=hÞðx2 � x 0
2Þ�

N sin½ð=hÞðx2 � x 0
2Þ�

sin c
w

hd
ðx2 � x 0

2Þ
h i

; ð16:74Þ

where 2h is the main separation of the two input image transparencies. As N 
 1
and w 	 d, Eq. (16.74) converges to a sequence of narrow pulses located at
ðx2 � x 0

2Þ ¼ nh, where n is a positive integer, as shown in Fig. 16.19(b). Thus, a
high degree of coherence between the corresponding point-pair can be obtained.
By Fourier transforming Eq. (16.74), the source-encoding function can be shown as

	ðx1Þ ¼
XN

n¼1

rect
x1 � nd

w

� �
; ð16:75Þ

where w is the slit width, and d ¼ ð
f Þ=h is the separation between the slits. By
plotting the preceding equation, the source-encoding mask is represented by N
equally spaced narrow slits, as shown in Fig. 16.19(b).

Since the image subtraction is a 1-D processing operation, the spatial filter
should be a fan-shaped broadband sinusoidal grating, as given by

G ¼ 1

2
1þ sin

2xh


f

� �� �
: ð16:76Þ

Figure 16.21(a) shows two input image transparencies inserted at the input plane of
the incoherent source processor of Fig. 16.9. The output subtracted image obtained
is shown in Fig. 16.21(b) in which we see that the coherent artifact noise is sup-
pressed.

To conclude this section we note that the broadband (white-light) source con-
tains all the visible wavelengths; the aforementioned incoherent source processor can
be utilized to process color (or polychromatic) images.

16.3 NEURAL NETWORKS

Electronic computers can solve some classes of computational problems thousands
of times faster and more accurately than the human brain. However, for cognitive
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Figure 16.20 (a) Smeared image. (b) Restored image with incoherent light.



tasks, such as pattern recognition, understanding and speaking a language, etc., the
human brain is much more efficient. In fact, these tasks are still beyond the reach of
modern electronic computers.

A neural network consists of a collection of processing elements, called neu-
rons. Each neuron has many input signals, but only one output signal which is
fanned out to many pathways connected to other neurons. These pathways inter-
connect with other neurons to form a network. The operation of a neuron is deter-
mined by a transfer function that defines the neuron’s output as a function of the
input signals. Every connection entering a neuron has an adaptive coefficient called a
weight assigned to it. The weight determines the interconnection strength between
neurons, and they can be changed through a learning rule that modifies the weights
in response to input signals and the transfer function. The learning rule allows the
response of the neuron to change with time, depending on the nature of the input
signals. This means that the network adapts itself to the environment and organizes
the information within itself, which is a type of learning.

16.3.1 Optical Neural Net Architectures

Generally speaking, a one-layer neural network of N neurons has N2 interconnec-
tions. The transfer function of a neuron can be described by a nonlinear relationship
such as a step function, making the output of a neuron either 0 or 1 (binary), or a
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(b)

Figure 16.21 (a) Input images. (b) Subtracted image with incoherent light.



sigmoid function, which gives rise to analog values. The state of the ith neuron in the
network can be represented by a retrieval equation, given by

ui ¼ f
XN

j¼1

Tijuj � �i
( )

; ð16:77Þ

where ui is the activation potential of the ith neuron, Tij is the interconnection weight
matrix (IWM) (associative memory) between the jth neuron and the ith neuron, �i is
a phase bias, and f is a nonlinear processing operator. In view of the summation
within the retrieval equation, it is essentially a matrix-vector outer-product opera-
tion, which can be optically implemented.

Light beams propagating in space will not interfere with each other and optical
systems generally have large space-bandwidth products. These are the traits of optics
that prompted the optical implementation of neural networks (NNs). An optical NN
using a liquid-crystal television (LCTV) SLM is shown in Fig. 16.22, in which the
lenslet array is used for the interconnection between the IWM and the input pattern.
The transmitted light field after LCTV2 is collected by an imaging lens, focusing at
the lenslet array and imaging onto a CCD array detector. The array of detected
signals is sent to a thresholding circuit and the final pattern can be viewed at the
monitor, and it can be sent back for the next iteration. The data flow is primarily
controlled by the microcomputer, by which the LCTV-based neural net just
described is indeed an adaptive optical NN.

16.3.2 Hopfield Neural Network

One of the most frequently used neural network models is the Hopfield model, which
allows the desired output pattern to be retrieved from a distorted or partial input
pattern. The model utilizes an associative memory retrieval process equivalent to an
iterative thresholded matrix–vector outer product expression, as given by

Vi ! 1 if
XN

j¼1
TijVj � 0;

Vi ! 1 < 0;
ð16:78Þ

where Vi and Vj are binary output and binary input patterns, respectively, and the
associative memory operation is written as
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Figure 16.22 An optical hybrid neural network. CCD, charge-coupled detectors; LCTVs,

liquid-crystal televisions.



Tij ¼
XN

m¼1
ð2Vm

i � 1Þð2Vm
j � 1Þ; for i 6¼ j

0; for i ¼ j

(

ð16:79Þ

where Vm
i and Vm

j are ith and jth elements of the mth binary vectory.
The Hopfield model depends on the outer-product operation for construction

of the associated memory, which severely limits storage capacity, and often causes
failure in retrieving similar patterns. To overcome these shortcomings, neural net-
work models, such as back propagation, orthogonal projection, multilevel recogni-
tion, interpattern association, moment invariants, and others have been used. One of
the important aspects of neural computing must be the ability to retrieve distorted
and partial inputs. To illustrate partial input retrieval a set of letters shown in Fig.
16.23(a) were stored in a Hopfield neural network. The positive and negative parts of
the memory matrix are given in Fig. 16.23(b) and (c), respectively. If a partial image
of A is presented to the Hopfield net, a reconstructed image of A converges by
iteration, and is shown in Fig. 16.23(d). Thus, we see that the Hopfield neural net-
work can indeed retrieve partial patterns.

16.3.3 Interpattern Association Neural Network

Although the Hopfield neural network can retrieve erroneous or partial patterns, the
construction of the Hopfield neural network is through intrapattern association,
which ignores the association among the stored exemplars. In other words,
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Figure 16.23 Results from a Hopfield model: (a) training set; (b) and (c) positive and

negative IWMs, respectively; and (d) retrieved image.



Hopfield would have a limited storage capacity and it is not effective or even incap-
able of retrieving similar patterns. One of the alternative approaches is called the
interpattern association (IPA) neural network. By using simple logic operations, an
IPA neural network can be constructed. For example, consider three overlapping
patterns given in the Venn diagram shown in Fig. 16.24, where the common and the
special subspaces are defined. If one uses the following logic operations, then an IPA
neural net can be constructed:

I ¼ A ^ ðB _ CÞ;

II ¼ B ^ ðA _ CÞ; V ¼ ðB ^ CÞ ^ A;

III ¼ C ^ ðA _ BÞ; VI ¼ ðC ^ AÞ ^ B;

IV ¼ ðA ^ BÞ ^ C; VII ¼ ðA ^ B ^ CÞ ^ �:

ð16:80Þ

If the interconnection weights are assigned 1, �1, and 0, for excitory, inhibi-
tory, and null interconnections, then a tristate IPA neural net can be constructed.
For instance, in Fig. 16.25(a), pixel 1 is the common pixel among patterns A, B, and
C, pixel 2 is the common pixel between A and B, pixel 3 is the common pixel between
A and C, whereas pixel 4 is the special pixel, which is also an exlusive pixel with
respect to pixel 2. Applying the preceding logic operations, a tristate neural network
can be constructed as shown in Fig. 16.25(b), and the corresponding IPA IWM is
shown in Fig. 16.25(c).

By using the letters B, P, and R as the training set for constructing the IPA
IWM shown in Fig. 16.26(a), the positive and negative parts of the IWM are shown
in Fig. 16.26(b) and (c). If a noisy pattern of B, (SNR ¼ 7 dB), is presented to the
IPA neural network, a retrieved pattern of B is obtained, as shown in Fig. 16.26(e).
Although the stored examples B, P, and R are very similar, the retrieved pattern can
indeed be extracted by using the IPA model.

For comparison of the IPA and the Hopfield models, we have used an 8� 8
neuron optical NN for the tests. The training set is the 26 letters lined up in
sequence based on their similarities. Figure 16.27 shows the error rate as a func-
tion of the number of stored letters. In view of this plot, we see that the Hopfield

Fourier Optics and Image Processing 575

Figure 16.24 Common and special subspaces.



model becomes unstable to about 4 patterns, whereas the IPA model is quite
stable even for 10% input noise, which can retrieve 12 stored letters effectively.
As for the noiseless input, the IPA model can in fact produce correct results for
all 26 stored letters.

Pattern translation can be accomplished using the heteroassociation IPA.
Using similar logic operations among input–output (translation) patterns, a hetero-
associative IWM can be constructed. For example, an input–output (translation)
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Figure 16.25 Construction of IPA neural network: (a) three reference patterns; (b) one-layer

neural net; and (c) IWM.

Figure 16.26 IPA neural network: (a) input training set; (b) and (c) positive and negative

IWMs; (d) noisy input SNR ¼ 7 dB; and (e) retrieved image.



training set is given in Fig. 16.28(a). Using the logic operations, a heteroassociation
neural net can be constructed, as shown in Fig. 16.28(b), while Fig. 16.28(c) is its
IWM. To illustrate the optical implementation, an input–output training set is
shown in Fig. 16.29(a). The positive and negative parts of the heteroassociation
IWMs are depicted in Fig. 16.29(b). If a partial Arabic numeral 4 is presented to
the optical neural net, a translated Chinese numeral is obtained, as shown in Fig.
16.29(c). Thus, the heteroassociation neural net can indeed translate Arabic numer-
als into Chinese numerals.
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Figure 16.27 Comparison of the IPA and the Hopfield models. Note I, 10% noise level; II,

5% noise level; III, no noise.

Figure 16.28 Construction of a heteroassociation IPA neural network: (a) input–output

training sets; (b) a heteroassociation neural net; and (c) heteroassociation IWM.



16.4 WAVELET TRANSFORM PROCESSING

A major question concerning this section may be asked: What is a wavelet? Why is it
interesting for solving signal-processing problems? These are crucial remarks that a
signal analyst would want to know. The answer to these questions may be summar-
ized as: wavelet representation is a versatile technique having, very much, physical
and mathematical insights with great potential applications to signal and image
processing. In other words, wavelets can be viewed as a new basis signals and images
representation, which can be used for signal analysis and image synthesis.

16.4.1 Wavelet Transform

For nonstationary signal processing, the natural way to obtain joint time–frequency
resolution of a signal is to take the Fourier transform of the signal within a time
window function. This transform is known as short-time Fourier transform (STFT),
where the size of the window is assumed invariant. However, if the size of the
window changes as the analyzing frequency changes, then the transform is known
as a wavelet transform (WT). The expression of the STFT can be written as

STFTð�; !Þ ¼
ð
xðtÞh�ðt� �Þ expð�i!tÞdt; ð16:81Þ

where hðtÞ is an analyzing window function, ! is the analyzing frequency, and � is an
arbitrary time shift. Notice that if hðtÞ is a Gaussian function, then the transform is
also known as the Gabor transform. the STFT has been widely used in signal proces-
sing, such as time-varying signal analysis and filtering, spectral estimation, signal
compression, and others. Usually the STFT offers very good performances for sig-
nals having uniform energy distribution within an analyzing window. Thus, the
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Figure 16.29 Pattern translation: (a) Arabic–Chinese training set; (b) heteroassociation

IWM (positive and negative parts); and (c) partial Arabic numeral to the translated Chinese

numeral.



selection of the analyzing window size is critically important for achieving an opti-
mum joint time–frequency resolution. However, the apparent drawback of STFT
must be the invariant size of the analyzing window. To ovecome this shortcoming,
the WT can be used:

WTð�; aÞ ¼ 1
ffiffiffi
a

p
ð
xðtÞ � t� �

a

� 
dt; ð16:82Þ

where a is a scaling factor and  ðtÞ is called the mother wavelet. We note that the
shape of  ðtÞ shrinks as the scaling factor a decreases, while it dilates as a increases.
The shrunken and dilated wavelets are also known as the daughter wavelets. Thus, to
have a better time resolution, a narrower WT window should be used for higher
frequency content. In principle, the WT suffers from the same time–frequency reso-
lution limitation as the STFT; that is, the time resolution and the frequency resolu-
tion cannot be resolved simultaneously, as imposed by the following inequity:

�t�! � 2; ð16:83Þ
where �t and �! are defined as

�t ¼
Ð jhðtÞjdt
jhð0Þj ; and �! ¼

Ð jHð!Þjd!
jHð0Þj : ð16:84Þ

Since window functions having a smaller resolution cell are preferred, the Gaussian
window function is the best in the sense of meeting the lower bound of the inequality.
However, the Gaussian function lacks either the biorthogonality or the orthogon-
ality, which is the constraint of window functions for perfect signal (or image)
reconstruction. We note that perfect reconstruction is one of the objectives for
using the STFT and the WT: for example, as applied to nonlinear filtering, image
compression, and image synthesis.

Let us begin with the basic definitions of the semicontinuous WT, which is
given by

WTð�; nÞ ¼ an0

ð
XðtÞ �ðan0ðt� �ÞÞdt; ð16:85Þ

and its Fourier domain representation is written as

WTð�; nÞ ¼ 1

2

ð
Xð!Þ �ða�n

0 !Þ expði!�Þd!; ð16:86Þ

where a0 > 1 is a scaling factor (i.e., a ¼ a�n
0 Þ, n is an integer,  ðtÞ is the mother

wavelet, and  ð!Þ is its Fourier transform. Equation (16.85) is somewhat different
from Eq. (16.82), where 1=

ffiffiffi
a

p
(i.e., an=20 ) is used instread of an0 (i.e., 1=a). We note that

this modification simplifies the optical implementation of the WT, as will be shown
later. Similar to the STFT, the WT can be regarded as a multifilter system in the
Fourier domain by which a signal can be decomposed into different spectral bands.
Although WT uses narrower and wider band filters to analyze the lower and the
higher frequency components, the operation is essentially similar to that of STFT.

To meet the admissibility of WT,  ðtÞ has to be a bandpass filter; however, for
signals having rich low-frequency contents, a scaling function ’ðtÞ to preserve the
low-frequency spectrum is needed. The scaling transform of the signal is defined as
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STð�Þ ¼
ð
xðtÞ��ðt� �Þdt: ð16:87Þ

Thus, the inverse operation of the WT can be written as

xðtÞ ¼
ð
STð�Þs�ðt� �Þd� þ

X1

n¼�1

ð
WTð�; nÞs ðan0ðt� �ÞÞan0d�; ð16:88Þ

and its Fourier domain representation can be shown as

xðtÞ ¼ 1

2

ð
FfSTð�ÞgS ð!Þ expði!tÞd!þ 1

2

X1

n¼�1

ð
FfWTð�; nÞg

�S ða�n
0 !Þ expði!tÞd!;

ð16:89Þ

where s�ðtÞ and s ðtÞ are the synthesis scaling function and wavelet function, respec-
tively, and S�ð!Þ and S ð!Þ are the corresponding Fourier transforms.

If the WT is used for signal or image synthesis, for a perfect reconstruction ’ðtÞ
and  ðtÞ must satisfy the following biorthogonality and orthogonality constraints:

��ð!Þ þ
Xþ1

n¼�1
 �ða�n

0 !Þ ¼ C; for s�ðtÞ ¼ �ðtÞ; and s ðtÞ ¼ �ðtÞ; ð16:90Þ

j��ð!Þj2 þ
Xþ1

n¼�1
j �ða�n

0 !Þj2 ¼ C; for s�ðtÞ ¼ �ðtÞ; and s ðtÞ ¼  ðtÞ:

ð16:91Þ

Similar to STFT,  ð!Þ that satisfies the biorthogonality constraints is given by

 ð!Þ ¼

0; ! < !0;

sin2


2
v
!� !0

!0ða0 � 1Þ
� �

!0  !  a0!0;

cos2


2
v
!� a0!0

!0a0ða0 � 1Þ
� �

a0!0  !  a20!0;

0; ! > a20!0;

8
>>>>>>>><

>>>>>>>>:

ð16:92Þ

for which the scaling function �ð!Þ can be shown as

�ð!Þ ¼ cos2


2
v

j!j
ða0 þ 1Þ!0=2

� �
; j!j  ða0 þ 1Þ!0=2; ð16:93Þ

where the function vð�Þ has the same definition as the STFT shown in Fig. 16.30.
Thus, we see that  ð!Þ forms a biorthogonal wavelet, and the squared-root

ffiffiffiffiffiffiffiffiffiffi
 ð!Þp

is
known as the Mayer’s wavelet, which is orthogonal in terms of the constraint of Eq.
(16.92).

Figure 16.30 shows a set of Fourier domain wavelets, given by
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 1ð!Þ ¼
1; 1:5  !  3;

0; others

(

 2ð!Þ ¼
sin½ð!� 1Þ=2�; 1  !  2

cos½ð!� 2Þ=4�; 2  !  4

0; others

8
>><

>>:

 3ð!Þ ¼
sin½ð!� 1Þ=2�; 1  !  2

cos½ð!� 2Þ=4�; 2  !  4

0; others

8
>><

>>:

 4ð!Þ ¼
exp½�ð!� 2Þ2�; !  2

exp½�ð!� 2Þ2=4�; ! � 2;

(

ð16:94Þ

where we assume a0 ¼ 2. By plotting the real parts, as shown in Fig. 16.31, we see
that the biorthogonal window  3ðtÞ is an excellent approximation to the Gaussian
function  4ðtÞ, both in the Fourier and the time domains. Therefore, the wavelet
 3ðtÞ has the advantages of having the smaller joint time–frequency resolution and
biorthogonality, which simplifies the inversion of the WT. The function  2ðtÞ can be
used as an orthogonal wavelet, which has a relatively good joint time–frequency
resolution. Nevertheless, wavelet  1ðtÞ is often used, since its Fourier transform is
a rectangular form, which is rather convenient for the application in Fourier domain
processing.

Although our discussions are limited to the wavelets which have similar forms
to the window functions, in practice the WT offers more solutions than the STFT:
namely, one can select the wavelets for specific applications.
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Figure 16.30 Function v as n increases.



16.4.2 Optical Implementations

A couple of possible optical implementations for 1-D WT processing are shown in
Fig. 16.32. The architecture of Fig. 16.32(a) is ued for biorthogonal WT, in which we
assume that the synthesis function sðtÞ ¼ �ðtÞ. For example, let an input signal be
displayed on a spatial light modulator (SLM) at P1 and a set of filter banks are
placed at the Fourier plane P2. Then WT signals can be obtained in the back focal
plane P3. Thus, the reconstructed signal can be obtained at P4, by summing all the
WT signals diffracted from the filter banks. We notice that real-time processing can
be realized by simply inserting an SLM filter at P3. Let us assume that the desired
filter is Fð�; nÞ; then the reconstructed signal would be

x 0ðtÞ ¼ STð�Þ þ�WTð�; nÞFð�; nÞ: ð16:95Þ
Figure 16.32(b) shows the implementation of the orthogonal WT, in which we
assume that the orthogonal wavelets sðtÞ ¼  ðtÞ. Notice that the optical configura-
tion is rather similar to that of Fig. 16.32(a) except the inverse operation. By virtue of
the reciprocity principle, the inverse operation can be accomplished by placing a
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Figure 16.31 (a) Fourier domain representations, �1ð!Þ;�2ð!Þ;�3ð!Þ;�4ð!Þ, of the com-

plex-valued wavelets (b) �1ðtÞ, (c) �2ðtÞ, (d) �3ðtÞ and �4ðtÞ.



phase conjugate mirror (PCM) behind plane P3. The major advantage of the PCM
must be the self-alignment, for which the filter alignment can be avoided. As the
return phase conjugate signal, WT�ð�; nÞ, arrives at plane P2, it is subjected to the
Fourier transformation. By inserting a desired filter at plane P3, we see that real-time
processing can indeed be obtained. We note that the filter at the plane P3 would be
proportional to Fð�; nÞ1=2, since the signal has gone through the filter twice. Thus, the
reconstructed signal at plane P4 would be

x�r ðtÞ ¼
ð
FfST�ð�ÞFð�Þg��ð!Þ expði!tÞd!

þ
X

n

ð
FfWT�ð�; nÞg� �ðan0! expði!tÞd!;

ð16:96Þ
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Figure 16.32 Optical implementations for WT: (a) for biorthogonal windows, i.e.,

sðtÞ � �ðtÞ; (b) for orthogonal windows, i.e., SðtÞ ¼ �ðtÞ.



which can be observed with a CCD camera. Although the preceding discussion is
limited to 1-D signal processing, the basic concepts can be easily extended to 2-D
image processing.

For comparison, a set of Fourier domain filter banks, for complex-valued
STFT and WT, are shown in Fig. 16.33(a) and (b) respectively. Note that the filter
banks for WT are constant Q-filters, by which the bandwidth varies. We have
omitted the filters for negative frequency components since the scalegram from the
negative frequency components is the same as that from the positive components. A
test signal, that includes a chirp and a transient shown at the bottom of Fig. 16.33(c)
and (d), is given by

xðtÞ ¼ sin


256
ðt� 127Þ2

h i
þ cos

3

4
ðt� 27Þ

� �
exp

jðt� 127Þj
2

� �
; 0  t < 256:

ð16:97Þ
The STFT spectrogram and the WT scalegram are shown at the upper portion of
these figures. Although STFT offers a relatively good time–frequency resolution for
the chirp signal, it gives rise to a weaker response for the transient which is located at
the center. On the other hand, the WT provides a higher time resolution for the
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Figure 16.33 Computer simulations, for a chirp and transient signal: (a) filter banks for

STFT; (b) filter banks for WT; (c) spectrogram; and (d) scalegram.



transient signal, but offers relatively poorer performance for the uniformly distrib-
uted chirp signal.

16.5 COMPUTING WITH OPTICS

Reaffirmation of optics parallelism and the development of picosecond and femto-
second optical switches have thrust optics into the nontraditional area of digital
computing. The motivation primarily arises from the need for higher performance
general-purpose computers. However, computers with parallelism require compli-
cated interconnections which is difficult to achieve by using wires or microcircuits.
Since both parallelism and space interconnection are the inherent traits of optics, it is
reasonable to look into the development of a general-purpose optical computer. We
shall, in this section restrict ourselves to discussing a few topics where computing can
be performed conveniently by optics.

16.5.1 Logic-Based Computing

All optical detectors are sensitive to light intensity: they can be used to represent
binary numbers 0 and 1, with dark and bright states. Since 1 (bright) cannot be
physically generated from 0s (dark), there are some difficulties that would occur
when a logical 1 has to be the output from 0s (e.g., NOR, XNOR, NAND).
Nevertheless, shadow casting method can solve these problems, by simply initially
encoding 1 and 0 in a dual-rail form.

The shadow-casting logic essentially performs all sixteen Boolean logic func-
tions based on the combination of the NOT, AND, and OR. For example, 1 and 0
are encoded with four cells, as shown in Fig. 16.34, in which the spatially encoded
formats A and B are placed in contact, which is equivalent to an AND operation, as
shown in Fig. 16.34(b). On the other hand, if the uncoded 1 and 0 are represented by
transparent and opaque cells, they provide four AND operations, i.e., AB, AB, AB,
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Figure 16.34 (a) Encoded input patterns. (b) Product of the input patterns for the shadow-

casting logic array processor.



and AB, as shown in Fig. 16.34(b). This superposed format is the input-coded image
of the optical logic array processor, and is set in the input plane. Four spatially
distributed light-emitting diodes (LEDs) are employed to illuminate the encoded
input. The shadows from each LED will be cast onto an output screen, as shown
in Fig. 16.35. A decoding mask is needed to extract only the true output. The shadow
casting is essentially a selective OR operation among AB, AB, AB, and AB. If the
on–off states of the LEDs are denoted by �, �, 	, � (where on is 1, and off is 0), the
shadow-casting output can be expressed as follows:

G ¼ �ðABÞ þ �ðABÞ þ 	ðABÞ þ �ðABÞ; ð16:98Þ

which is the intensity at the overlapping cell. The complete combination for gener-
ating the 16 Boolean functions is given in Table 16.1. A schematic diagram of a
hybrid-optical logic array processor is depicted in Fig. 16.36, in which the endoded
inputs A and B are displayed on LCTV SLM1 and SLM2, respectively, and the
SLM3 is employed to determine the values of �, �, 	, and �. However, the OR
operation is performed electronically rather than optically. This has the advantage
that no space is needed for shadow-casting NOR. The problems with this system are
(1) the encoding operation would slow down the whole process, (2) if the OR opera-
tion is performed in parallel, a large number of electronic OR gates and wire inter-
communications are required, and if it is performed sequentially, a longer processing
time is required. Since all the optic logic processors use encoded inputs, if the coding
is done by electronics, the overall processing speed will be substantially reduced. On
the other hand, the optical output is also an encoded pattern that requries a decoding
mask to obtain only the true output. Although the decoding process is parallel, and
thus takes no significant processing time, the decoding mask does change the format
of the output. A noncoded shadow-casting logic array that is free from these diffi-
culties is shown in Fig. 16.37. An electronically addressed SLM, such as an LCTV,
can be used to write an image format. The negation can be done by rotating the
LCTV’s analyzer (by 908) without altering the addressing electronics or software
processing. The electronic signal of input A is split into four individual SLMs.
Two of them display input A, and the other two display A. Input B follows a similar
procedure to generate two Bs and two Bs. The products of AB, AB, AB, and AB are
straightforwardly obtained by putting two corresponding SLMs up to each other.
Finally, beamsplitters combine the AB, AB, AB, and AB. The logic functions are
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Figure 16.35 A shadow-casting logic array processor. The shadows of the encoded input

generated by four laser-emitting diodes (LEDs) are superimposed.
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Figure 16.36 Shadow-casting logic processor using cascaded spatial light modulators

(SLMs).

Table 16.1 Generation of Sixteen Boolean Functions

� � Y �
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Figure 16.37 A noncoded shadow-casting logic array processor: S, light source; BS, beam-

splitter; M, mirror.



controlled by the on–off state (�; �; 	, and �) of the illuminating light (S1, S2, S3, and
S4), as illustrated in Table 16.1.

The implementation of these logic functions using LCTVs is straightfoward,
since no electronic signal modification or software data manipulation is required to
encode inputs A and B. Although it seems that more SLMs are needed (four times as
many), there is no increase in the space–bandwidth product of the system. In the
original shadow-casting logic array, four pixels are used to represent a binary num-
ber 1 or 0, while a binary number can be represented by only one pixel in the
noncoded system. The use of four sets of individual SLMs is to utilize fully the
capability of the LCTV to form a negative image format by simply rotating the
analyzer by 908. This method can eliminate the bottleneck of the shadow-casting
optical parallel logic array, which is introduced by the coding process.

16.5.2 Matrix–Vector and Matrix–Matrix Processors

The optical matrix–vector multiplier can be implemented as shown in Fig. 16.38. The
elements of the vector are entered in parallel by controlling the intensities of N light-
emitting diodes (LEDs). Spherical lens L1 and cylindrical lens L2 combine to image
the LED array horizontally onto the matrix mask M, which consists of N �N
elements. The combination of a cylindrical lens L3 and a spherical lens L4 is to
collect all the light from a given row and bring it into focus on one detector element
that measures the value of one output vector element. Thus, we see that it is essen-
tially the matrix–vector multiplication operation. Furthermore, this configuration
can be further simplified by fabricating line-shape LEDs and a line-shape detector
array, as depicted in Fig. 16.39. Note that the LED array can be replaced by an SLM
with a uniform illumination.
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Figure 16.38 Schematic diagram of an optical matrix–vector multiplier.

Figure 16.39 Optical matrix–vector multiplier using line-shape LEDs and detectors.



Many important problems can be solved by the iterative multiplication of a
vector by a matrix, which includes finding eigenvalues and eigenvectors, solving
simultaneous linear equations, computing the discrete Fourier transform, and imple-
mentation of neural networks. For example, a neural network consists of several
layers of neurons in which two successive neuron layers are connected by an inter-
connection net. If the neuron structure in a layer is represented by a vector, then the
interconnect can be represented by a matrix.

For example, the Hopfield neural network (see Section 16.3.2) uses an asso-
ciative memory retrieval process, which is essentially a matrix–vector multiplier, as
given by

Vi ! 1 if
X

TijVi � 0;

Vi ! 1 if
X

TijVi < 0;
ð16:99Þ

where Vi and Vj are the output and the input binary vectors, respectively, and Tij is
the interconnect matrix.

If the matrix is binary, the matrix–vector multiplier becomes a crossbar switch.
The crossbar switch is a general switching device that can connect any N inputs to
any N outputs; this is called global interconnect. Crossbar switches are usually not
implemented in electronic computers because they would require N2 individual
switches; however, they are used in telephone exchanges. On the other hand, an
optical crossbar interconnected signal processor would be very useful for performing
fast-Fourier transforms (FFTs), convolution and correlation operations, by taking
advantage of the reconfigurability and parallel processing of crossbar interconnect.
Also, the optical crossbar switch can be employed to implement a programmable
logic array (PLA). The electronic PLA contains a two-level, AND–OR circuit on a
single chip. The number of AND and OR gates and their inputs is fixed for a given
PLA. A PLA can be used as a read-only memory (ROM) for the implementation of
combinational logic.

The matrix–matrix multiplier is a mathematical extension of the matrix–vector
multiplier. In contrast, the implementation of the matrix–matrix multiplier requires a
more complex optical arrangement. Matrix–matrix multipliers may be needed to
change or process matrices that will eventually be used in a matrix–vector multiplier.
Matrix–matrix multiplication can be computed by successive outer-product opera-
tions as follows:

a11 a12 a13

a21 a22 a23

a31 a32 a33

2

64

3

75

b11 b12 b13

b21 b22 b23

b31 b32 b33

2

64

3

75 ¼
a11

a21

a31

2

64

3

75½b11b12b13� þ
a12

a22

a32

2

64

3

75½b21b22b23�

þ
a13

a23

a33

2

64

3

75½b31b32b33�:

ð16:100Þ

Since the outer product can be expressed as
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a11
a21
a31

2

4

3

5½b11b12b13� ¼
a11b11 a11b12 a11b13
a21b11 a21b12 a21b13
a31b11 a31b12 a31b13

2

4

3

5; ð16:101Þ

it can be obtained by simply butting two SLMs against each other. Equation (16.101)
can be realized optically, as shown in Fig. 16.40. Each pair of the SLMs performs the
multiplication of the outer products, while beamsplitters perform the addition of the
outer products.

Thus we see that the basic operations of matrix–matrix multiplication can be
performed by using a pair of SLMs, while the addition is performed by using a
beamsplitter. The whole combinational operation can be completed in one cycle.
If the addition is performed electronically in a sequential operation, then only a pair
of SLMs is required; if the multiplication is performed sequentially then more than
one cycle of operation is needed, and the approach is known as systolic processing,
and is discussed in Section 16.5.3. The obvious advantage of systolic processing is
that fewer SLMs are needed. The trade-off is the increase in processing time.

Figure 16.41 illustrates an example of a systolic array matrix operation. Two
transmission-type SLMs are placed close together and in registration at the input
plane. By successively shifting the A and B systolic array matrix formats into two
SLMs, one can obtain the product of matrices A and B with a time-integrating CCD
at the output plane. Although only two SLMs are required, the computation time
needed for performing an n� n matrix–matrix multiplication with b-bit numbers
would be ð2nb� 1Þ þ ðn� 1Þ times that needed by an outer-product processor.

590 Yu

Figure 16.40 Matrix–matrix multiplier based on outer product. BS, beamsplitter; SLMs,

spatial light modulators.

Figure 16.41 Matrix–matrix multiplier based on systolic array.



Figure 16.42 shows an example of a systolic outer-product processing. The
optical processor consists of n� n ¼ 3� 3 ¼ 9 pieces of SLM, with b� b ¼ 5� 5
pixels each. Note that the systolic array representation of matrices A and B differs
from the systolic formats described previously. By sequentially shifting the row and
column elements of A and B into the SLMs, we can implement the aijbkl multi-
plication at each step, with an outer-product operation that has been performed in
the 5� 5 SLM. The result can be integrated in relation to time with a CCD detector
at the output plane. Since more SLMs are employed in parallel, the matrix–matrix
multiplication can be completed in fewer steps.

16.5.3 Systolic Processor

The engagement matrix–vector multiplier, in fact a variation of a systolic processor,
is illustrated in Fig. 16.43. The components of vector B are shifted into multiplier-
added modules starting at time t0. Subsequent vector components are clocked in
contiguously at t1 for b2, t2 for b3, and so on. At time t0, b1 is multiplied with a11 in
module 1. The resultant b1a11 is retained within the module to be added to the next
product. At time t1, b1 is shifted to module 2 to multiply with a21. At the same time,
b2 enters module 1 to multiply with a12, which forms the second product of the
output vector component. Consequently, module 1 now contains the sum
b1a11 þ b2a12. This process continues until all the output vector components have
been formed. In all, ð2N � 1Þ clock cycles that employ N multiplier-adder modules
are required. The main advantage of a systolic processor is that optical matrix–
vector multiplication can be performed in the high-accuracy digital mode.
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A discrete linear transformation (DLT) system can be characterized by an
impulse response hmn. The input–output relationship of such a system can be sum-
marized by the following equation:

gm ¼
X

fnhmn ð16:102Þ

Since the output gm and the input hn can be considered vectors, the preceding
equation can be represented by a matrix–vector multiplication, where hmn is
known as a transform matrix. Thus, the different DLTs would have different
matrices. The discrete Fourier transform (DFT) is one of the typical examples for
DLT, as given by

Fm ¼ ð1=NÞ
X

fn exp½�i2mn=N� ð16:103Þ

where n ¼ 0; 1; . . . ;N, and

hmn ¼ exp½�i2mn=N�; ð16:104Þ
is also known as the transform kernel. To implement the DFT transformation in an
optical processor, we present the complex transform matrix with real values, for
which the real transform matrices can be written

Re½hmn� ¼ cos
2mn

N
; Im½hmn� ¼ sin

2mn

N
ð16:105Þ

which are the well-known discrete cosine transform (DCT) and the discrete sine
transform (DST).

The relationship between the real and imaginary parts of an analytic signal can
be described by the Hilbert transform. The discrete Hilbert transform (DHT) matrix
can be written as

hmn ¼
2 sin2½ðm� nÞ=2�

ðm� nÞ m� n 6¼ 0;

0; m� n ¼ 0:

8
<

:
ð16:106Þ
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Figure 16.43 Conceptual diagram of an engagement systolic array processor.



Another frequently used linear transform is the chirp-Z transform, which can
be used to compute the DFT coefficients. The discrete chirp-Z transform (DCZT)
matrix can be written as

hmn ¼ exp
iðm� nÞ2

N
: ð16:107Þ

Since the DLT can be viewed as the result of a digital matrix–vector multi-
plication, systolic processing can be used to implement it. By combining the systolic
array processing technique and the two’s complement representation, a DLT can be
performed with a digital optical processor. As compared with the analog optical
processor, the technique has high accuracy and a low error rate. Also, it is compa-
tible with other digital processors.

Two’s complement representation can be applied to improving the accuracy of
matrix multiplication. Two’s complement numbers provide a binary representation
of both positive and negative values, and facilitate subtraction by the same logic
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hardware that is used for addition. In a b-bit two’s complement number, the most
significant bit is the sign. The remaining b� 1 bits represent its magnitude. An
example for DCT is given in Fig. 16.44 in which we see that the digital transform
matrix is encoded in two’s complement representation and arranged in the systolic
engagement format.

To conclude this chapter we remark that it was not our intention to cover the
vast domain of Fourier optics. Instead, we have provided some basic principles and
concepts. For further reading, we refer the readers to the list of references as cited at
the end of this chapter. Nevertheless, several basic applications of Fourier optics are
discussed, including coherent and incoherent light image processing, optical neural
networks, wavelet transform, and computing with optics.
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17.1 INTRODUCTION

In this chapter, we introduce and discuss the basic role of photoconduction, photo-
detection, and electro-optic and acousto-optic modulation. These concepts are vital
in the design and understanding of various detection, imaging, amplification, mod-
ulation, and signal processing systems, many of which are either electronic or hybrid
in nature.

Section 17.2 introduces the concepts of photoconduction. It is followed by
Section 17.3, where we discuss design, characteristics, and applications of p�n and
p�i�n photodiodes, avalanche photodiodes, vacuum photodiodes, and photomulti-
pliers. The concept of metal oxide semiconductor (MOS) capacitor and its applica-
tion in the design of charge-coupled device (CCD) structure, MOS read-out scanner,
and CCD imager are introduced in Section 17.4. Next, in Section 17.5, we describe
cathode-ray tube (CRT) technology and various imaging tube technologies, such as
vidicon, plumbicon, and image intensifier. Section 17.6 introduces the physics of
electro-optic (EO) modulation. Section 17.7 discusses the working of EO amplitude
modulator, EO phase modulator, Pockels read-out optical modulator, Kerr modu-
lator, liquid-crystal light valve, spatial light modulator, and liquid-crystal display
devices. Finally, in Section 17.8, the concept of acousto-optical modulation and its
application to a few hybrid systems are elaborated.

17.2 PHOTOCONDUCTORS

Almost all semiconductors exhibit a certain degree of photoconductivity. A photo-
conductor is a simple photodetection device built exclusively of only one type of
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semiconductor that has a large surface area and two ohmic contact points. In the
presence of an energized incident photon, the excited valence band electron of the
photoconductor leaves behind a hole in the valence band. Often an extrinsic semi-
conductor is better suited for the purpose of photoconduction. For example, a far-
infrared (IR) sensitive photoconductor can be designed by introducing an acceptor
level very close to the valence band or by introducing a donor level very close to the
conduction band. Consequently, photoconduction may have two causes. It is caused
either by the absorption of photons at the impurity levels in an extrinsic semicon-
ductor or due to band-gap transition in an intrinsic semiconductor. Typically, photo-
conductors are cooled in order to avoid excessive thermal excitation of carriers.

Figure 17.1 shows a typical photoconductor circuit where Rs is the series
resistance. Assume further that the resistance of the photoconductor is larger than
Rs, so that most of the bias voltage appears across the photoconductor surface. To
guarantee that in the absence of incoming light the number of carriers is a minimum,
the operating temperature is maintained sufficiently low. Incident light continues to
affect both generation and recombination of carriers until the photoconductor has
reached a new equilibrium at higher carrier concentration. A change in carrier
density causes a reduction in the photoconductor’s resistance. In fact, there are a
great many commercial applications of photoconductors where the fractional change
in resistance value is significant. In the presence of an electrical field, the generated
excess majority carriers drift away from the appropriate terminals.

The absorbed portion of the incoming monochromatic light that falls normally
onto the photoconductor is determined in terms of the absorption coefficient �. In
the case of extrinsic semiconductors, � is typically very small (1/cm to 10/cm) since
the number of available impurity levels is rather small. But in the case of an intrinsic
photoconductor, � is large (ffi 104/cm) in comparison, as the number of available
electron states is very large. The absorbed optical power Pabsð yÞ is given by

Pabsð yÞ ¼ Pinð1� RÞe��y; ð17:1Þ
where Pin represents the incoming optical power and R is the surface reflectance of
the photoconductor. At steady state, the generation and recombination rates are
equal to each other. Consequently,

�Pabsð yÞ=h�
! ¼ f�Pinð1� RÞe��yg=h�
!
¼ nð yÞ=�n

¼ pð yÞ=�p; ð17:2Þ

596 Karim

Figure 17.1 A photoconductor circuit.



where �n and �p are the mean lifetimes, respectively, of electrons and holes; nð yÞ and
pð yÞ are the carrier densities, respectively, of electrons and holes; and the product lw
represents the surface area of the photoconductor.

The total drift current passing through the intrinsic photoconductor is deter-
mined using Eq. (17.2):

is ¼ ð�pcePin=h�lÞEð�n�n þ �p�pÞ; ð17:3Þ
where the quantum efficiency �pc is defined as

�pc ¼ �ð1� RÞð1� e��hÞ=� ð17:4Þ
and E is the electric field. In the case of an extrinsic photoconductor, the signal
current of Eq. (17.3) reduces to

is ¼ ð�pcePin=h�Þ½ðE�n�n=lÞ�; n-type
ð�pcePin=h�Þ½ðE�p�p=lÞ�; p-type:

�
ð17:5Þ

In either case, the quantity within the square bracket is generally referred to as the
photoconductive gain G, as given by

G ¼ �n=�d; n-type
�p=�d; p-type;

�
ð17:6Þ

where �d is the average carrier drift time or transit time between the two metal
contacts, since drift velocity is given by the product of electrical field and carrier
mobility. The photoconductive gain generally measures the effective charge trans-
ferred through the external circuit due to each of the photoinduced carriers. A high
gain is attained by reducing �d. It is accomplished by increasing the volume of the
photoconductor and decreasing the separation between the metal contacts.
Accordingly, photoconductive ribbons are often prepared in the shape of a long
ribbon with metal contacts along its edges. However, it should be noted that the
carrier lifetime will affect the device response. The current diminishes at a faster rate
if light is withdrawn at any instant. Consequently, the device is not sufficiently
effective unless the duration of exposure exceeds the carrier lifetime.

Photoconductors are relatively easy to construct, but they are relatively slow in
their operation. They require external voltage sources and in most cases are cryo-
genically cooled to minimize the effect of thermally generated charge carriers. Thus
what appears to be a less-expensive detector in the beginning becomes quite expen-
sive when all the peripherals are taken into account. Some of the common photo-
conductor materials are PbS, CdS, CdSe, InSb, and HgxCd1�xTe. While InSb has a
good response ðffi 50 ns), CdS and CdSe have poor responses (ffi 50ms). CdS and
CdSe are used for detecting visible light, and both have very high photoconductive
gain ðffi 104Þ.

17.3 PHOTODIODES

In general, a photovoltaic detector consists of a semiconductor junction so that the
equilibrium energy bands on the two sides of the junction are shifted relative to one
another. If a sufficiently energized photon strikes a junction, it will result in the
generation of an electron–hole pair, which in turn results in a current flowing
through the wire that connects the two components of the junction. Such a mode
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of operation, which requires no external bias, is said to be photovoltaic. Photovoltaic
detectors have large surface areas so that they can generate a large photocurrent in
the absence of a bias. However, they are nonlinear in their responses. Light-powered
meters and solar cells are common examples of this type of detector. Interestingly,
we may use photovoltaic detectors in the so-called photoconductive mode by apply-
ing a reverse bias. When used in this mode, the detector has a rather linear response.

Photodiodes are examples of bipolar semiconductor junctions that are oper-
ated in reverse bias. These photodetectors are generally sensitive, easily biased, small
in area, and compatible with integrated optics components. Consequently, they are
suitable for use in systems like those of fiber communication links. Beyond a certain
bias voltage, the detector response is generally improved at higher bias values. The
frequency response is often limited by two factors: carrier diffusion time across the
depletion layer and junction capacitance of the diode. The carrier diffusion time is
generally reduced by increasing the bias voltage but without exceeding the value of
the breakdown voltage, whereas the junction capacitance is improved by incorpor-
ating an intrinsic layer between the p and n regions as in the p�i�n photodiode. Our
attention later in this section is geared toward the details of such semiconductor
devices.

As soon as a semiconductor junction is established, electrons start flowing from
the n-region to the p-region, leaving behind donor ions, and holes start flowing from
the p-region to the n-region, leaving behind acceptor ions. This flow of electrons and
holes builds up a depletion layer at the junction. In the absence of any bias, however,
the drift and diffusion components of the total current balance each other out. A
reverse bias, on the other hand, greatly reduces the diffusion current across the
junction but leaves the drift component relatively unaltered.

The photodiode is reverse-biased such that a current (generated by incoming
photons) proportional to the number of absorbed photons can be generated. With
an optical energy in excess of the band-gap energy, electron and hole pairs are
generated in photodiodes. Those pairs that are generated in the depletion region
are driven by the electric field through the junction, thus contributing to reverse
current. In addition, those pairs that are generated in the bulk regions, but within
the diffusion length of the depletion region, diffuse into the depletion region and also
contribute to the reverse current. If we neglect the amount of recombination loss in
the depletion region, we can estimate photocurrent by

I
 ¼ e�pnPabs=h�; ð17:7Þ
where Pabs is the absorbed optical power and �pn is the conversion efficiency. The
effective conversion efficiency is reduced by the fact that some of the electron–hole
pairs of the bulk areas diffuse into the depletion region.

The number of minority holes generated in the n-side but within the diffusion
length of the depletion region is ALpg, where g is the generation rate and A is the
cross-sectional area of the junction. Similarly, the number of minority electrons
generated in the p-side but within the diffusion length of the depletion region is
ALng. The net photocurrent in the reverse-biased photodiode is thus given by

I ¼ eA½ðLppn0=�pÞ þ ðLnpp0=�nÞ� expðeVA=kTÞ � 1½ � � eAgðLp þ LnÞ; ð17:8Þ
where the first term refers to photodiode dark current id and the second term
accounts for the oppositely directed diffusion photocurrent.
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When a photodiode is short-circuited (i.e., when VA ¼ 0), the photocurrent is
not any more absent since the current caused solely by the collection of optically
generated carriers in the depletion region is nonzero. The equivalent circuit of the
photodiode and the corresponding V�I characteristics are shown in Fig. 17.2. If the
photodiode is open-circuited (i.e., when I ¼ 0Þ in the presence of illumination, an
open-circuit photovoltage VA ¼ Voc appears across the photodiode terminals.

The magnitude of the open-circuit photovoltage, Voc is found from Eq. (17.8):

Voc ¼ ðkT=eÞ ln½gðLp þ LnÞ=fðLppn0=�pÞ þ ðLnpp0=�nÞg þ 1�
¼ ðkT=eÞ ln½ðI
=I0Þ þ 1�; ð17:9Þ

where �I0 is the peak reverse dark current. The open-circuit voltage is thus a loga-
rithmic function of the incidental optical power Pabs. In a symmetrical p�n photo-
diode, I
=I0 approaches the value g=gth, where gth ¼ pno=�p is the equilibrium
thermal generation-recombination rate. Thus, as the minority carrier concentration
is increased, gth increases due to the decrease in the carrier lifetime. Consequently,
the increase of the minority carrier concentration does not allow Voc to grow indefi-
nitely. In fact Voc is limited by the value of the equilibrium junction potential.

The power delivered to the load is given by

PL ¼ IVA ¼ I0VA½expðeVA=kT Þ � 1� � I
VA: ð17:10Þ
Thus the particular voltage VAm, corresponding to the maximum power transfer, is
found by setting the derivative of PL to zero. Consequently, we obtain

½1þ ðeVAm=kTÞ expðeVAm=kTÞ ¼ 1þ ðI
=I0Þ: ð17:11Þ
Since a p�n photodiode is also used as a solar cell for converting the sunlight to
electrical energy, we may increase the value of VAm as well as the corresponding
photocurrent Im. Note that the photodiode can achieve a maximum current of I
 and
a maximum voltage of Voc. Often, therefore, the efficiency of the photodiode is
measured in terms of the ratio, ðVAmIm=VocI
Þ, also known as the fill factor. The
present thrust of solar-cell research is thus directed toward increasing this ratio. By
cascading thousands of individual solar cells, we can generate an enormous amount
of power that is sufficient for energizing orbiting satellites.

The mode of operation where the photodiode circuit of Fig. 17.2(a) is applied
across a simple load is photovoltaic. The voltage across the load RL can be used to
evaluate the current flowing through it. However, if the photodiode in conjunction
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with a load is subjected to a relatively large external bias, the operation will be
referred to as photoconductive. The latter mode is preferred over the photovoltaic
because the current flowing through the load is generally large enough and, there-
fore, approaches I
. Thus, while the current-to-optical power relationship in the
photovoltaic mode is logarithmic, it is linear in the photoconductive mode. Since
the depletion-layer junction-capacitance Cj in an abrupt junction is proportional to
A½ðNdNaÞ=fVaðNd þNaÞg�1=2, the photovoltaic mode contributes to a larger capaci-
tance and, therefore, to a slower operation. In comparison, the photoconductive
photodiode has a faster response.

A cut-off frequency, fc, is generally defined as the frequency when the capaci-
tive impedance of the photodiode equals the value of the load resistance. Therefore,

fc ¼
1

2RLCj

: ð17:12Þ

Thus, the junction capacitance has to be decreased to increase the frequency
response. This is achieved by decreasing the junction area, by reducing the doping,
or by increasing the bias voltage. While there is a physical limit to the smallest
junction area, the other two requirements in effect tend to increase depletion
width, drift transit time, bulk resistance, none of which is truly desirable.

The p�n photodiode discussed so far has one weakness: the incident optical
power is not fully utilized in the optical-to-electrical conversion process because the
depletion width of a p�n junction is extremely small. Because of this physical limita-
tion, the p�n photodiodes do not have a desirable response time. This obstacle is
overcome by introducing a semi-insulating thick intrinsic (lightly doped) semicon-
ductor layer between its p-layer and its n-layer, as shown in Fig. 17.3. Such especially
organized photodiodes are referred to as p�i�n photodiodes.

In p�i�n photodiodes, the separating electric field occupies a large fraction of
the device. The wider the thickness of the intrinsic layers the higher the quantum
efficiency. High field strength in the intrinsic layer allows the electron–hole pairs to
be driven rapidly towards the respective extrinsic regions. However, the carrier
transit time is generally proportional to the thickness of the intrinsic layer.
Accordingly, there is a design compromise between the expected quantum efficiency
and the desirable response time. For a typical p�n photodiode, the response time is in
the order of 10�11 s, whereas that for a p�i�n photodiode is about 10�9 s. The
quantum efficiency of a p�i�n photodiode can be anywhere in the range of 50%
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through 90%. Usually, indirect band-gap semiconductors are preferred over direct
band-gap semiconductors as photodiode materials because otherwise there is a sig-
nificant conversion loss due to surface recombination. Indirect band-gap materials
engage photons to conserve momentum during the transfer. A p�i�n configuration
eliminates part of this problem because of its longer absorption length.

Si photodiodes (having a maximum quantum efficiency of 90% at 0.9 mm) are
used mostly in the wavelength region below 1 mm, whereas Ge photodiodes (having a
maximum quantum efficiency of 50% at 1.35 mm) are preferred in the ranges above
1 mm. In addition to the single-element semiconductor photodiodes, there are many
ternary (e.g., InGaAs, HgCdTe, and AlGaSb) photodiodes that are commercially
produced.

Photodiodes have proven to be very successful in their applications in the
background-limited photodetection. However, photodiodes lack internal gain and
in many cases require an amplifier to provide noticeable signal currents. The ava-
lanche photodiode (APD) is a specific photodiode that makes use of the avalanche
phenomenon. By adjusting the bias voltage to a level where it is on the verge of
breakdown, we can accelerate the photogenerated carriers. The accelerated carriers,
in turn, produce additional carriers by collision ionization.

Avalanche gain is generally dependent on impact ionization encountered in the
regions having sufficiently high electric field. This gain is achieved by subjecting the
reverse-biased semiconductor junction to voltage below its breakdown field
(¼ 105 V/cm). Electrons and holes thereby acquire sufficient kinetic energy to collide
inelastically with a bound electron and ionize it generating an extra electron–hole
pair. These extra carriers, in turn, may have sufficient energy to cause further ioniza-
tion until an avalanche of carriers has resulted. Such a cumulative avalanche process
is normally represented by a multiplication factor M that turns out to be an expo-
nential function of the bias. Gains of up to 1000 can be realized in this way. This
makes an APD that competes strongly with another high-gain photodetector device,
known as a photomultiplier tube, in the red and near-infrared.

The probability that carrier ionization will occur depends primarily on the
electric field in the depletion layer. Again, since the electric field in the depletion
layers is a function of position, the ionization coefficients, � and �, respectively, for
the electrons and the holes, turn out also to be functions of position. The ionization
coefficients are particularly low at lower values of electric field, as shown in Fig. 17.4,
for the case of silicon.

Consider the reverse-biased p�n junction of depletion width shown in Fig. 17.5.
The entering hole current Ipð0Þ increases as it travels toward the p-side, and the
entering electron current InðWÞ increases as it travels toward the n-side. In addition,
hole and electron currents due to generation in the depletion layer also move in their
respective directions. Thus, for the total hole and electron currents we can write

dIpðxÞ
dx

¼ �ðxÞInðxÞ þ �ðxÞIpðxÞ þ gðxÞ;

� dInðxÞ
dx

¼ �ðxÞInðxÞ þ �ðxÞIpðxÞ þ gðxÞ;
ð17:13Þ

where gðxÞ is the rate per unit length with which the pairs are generated thermally
and/or optically. With first of Eq. (17.13) integrated from x ¼ 0 to x ¼ x and simi-
larly, the second of Eq. (17.13) integrated from x ¼ x to x ¼ W we obtain
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IpðxÞ � Inð0Þ ¼
ðx

0

½�ðxÞ � �ðxÞ�InðxÞdxþ I

ðx

0

�ðxÞdxþ
ðx

0

gðxÞdx ð17:14aÞ

and

�InðWÞ þ InðxÞ ¼
ðw

x

½�ðxÞ � �ðxÞ�InðxÞdxþ I

ðw

x

�ðxÞdxþ
ðw

x

gðxÞdx ð17:14bÞ
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Figure 17.5 Avalanche in a reverse-biased p�n junction.



where the sum I ffi InðxÞ þ IpðxÞ is independent of position. Note, however, that I is
equivalent to the saturation current I0. Adding Eqs (17.14a) and (17.14b), we obtain

I ¼ ½ðI0 þ IgÞ þ Intðf�ðxÞ � �ðxÞgInðxÞÞ�=½1� Intð�ðxÞ�; ð17:15Þ
where Ig represents the total generation current and Intð�Þ is the integral of � with
respect to x when evaluated from x ¼ 0 to x ¼ W .

For a very special case when �ðxÞ ¼ �ðxÞ, the total current is given by

I ¼ MðI0 þ IgÞ; ð17:16Þ
where M is the avalanche multiplication factor as defined by

M ¼ 1=½1� Intð�ðxÞÞ� ¼ 1=ð1� �Þ: ð17:17Þ
Ideally speaking, the avalanche condition is thus given by

Intð�ðxÞÞ ¼ 1; ð17:18Þ
when M becomes infinite. In most practical cases, electron and hole coefficients are
not equal and these coefficients vary with the electric field. A practical avalanche
photodiode is thus referred to by its ionization rate ratio, k (� �=�). We can then
arrive at an expression for M after going through some extremely cumbersome
mathematics and multiple assumptions:

M ¼ k� 1

k� eðk�1Þ� : ð17:19Þ

We may note from Fig. 17.6 that for most electrical fields of interest, k is negligible.
Thus, the avalanche multiplication factor reduces to

M � e�: ð17:20Þ
When k ¼ 0, the gain increases exponentially with �, but it does not necessarily
become infinite. As shown in Fig. 17.6, with k approaching unity, the gain
approaches infinity at a still smaller value of the field.

It is appropriate to note that changing the level of doping can easily alter the
electric field. The ionization coefficient � is often given by

� ¼ Ae�B=j"j; ð17:21Þ
where A and B are material constants and " is the electric field in terms of doping
level. For silicon, A and B are, respectively, 9� 105=cm and 1:8� 106 V/cm. At a
gain of 100 when k ¼ 0:01, for example, a 0.5% alteration in the doping changes the
gain would have changed by almost 320% if � ¼ �. The choices of k and doping are,
therefore, critical in the design of an APD. APDs are meant for use with small
signals, and they require special power supplies to maintain them in their avalanche
mode.

The phototransistor, like APD, is a detector that exhibits current gain. It can
be regarded as a combination of a simple photodiode and a transistor.
Phototransistors are photoconductive bipolar transistors that may or may not
have base lead. Light is generally absorbed in the base region. A p�n�p phototran-
sistor is shown in Fig. 17.7. When there is no light, no current flows because there is
no base control current. Upon illumination, holes that are excited in the base diffuse
out leaving behind an overall negative charge of the excess base electrons that are
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neutralized by recombination. In the photodiode, a much larger current flows
through the device. Thus, while the phototransistor works very much like the photo-
diode, it amplifies the photogenerated current. Also, a longer recombination time for
the excess base electrons contributes to higher gain.

For the phototransistors,

IE ¼ IC þ IB; ð17:22Þ

where IE; IC; and IB are emitter, collector, and base currents, respectively. In the
presence of illumination, the base current is given by �IabsAe
=hc, where A is the
junction area, � is the internal quantum efficiency, and Iabs is the intensity of the
absorbed light. The collector current IC has two components: (a) the standard diodes
reverse saturation current, ICBO and (b) the portion of the emitter current �IE that
crosses into the collector where � < 1. The leakage current ICBO corresponds to the
collector current at the edge of the cutoff when IE ¼ 0. Thus,

IE ¼ ðIB þ ICBOÞ 1þ �

1� �
h i

: ð17:23Þ

The ratio �=1� � is an active region performance parameter of a phototransistor.
This ratio is usually in the order of � 102. In the absence of light, the current flowing
in a phototransistor is ICBO½1þ f�ð1� �Þg�, which is much larger than that in a
photodiode under similar (dark) conditions. When illuminated, phototransistor cur-
rent approaches IB½1þ f�ð1� �Þg�, thus contributing to significant gain like that of
an APD. The only limitation of the phototransistor happens to be its response time,
which is about 5 ms, whereas that in a photodiode is on the order of 0.01 ms.

604 Karim

Figure 17.6 Gain versus electric field in an APD.



Electrons may be emitted when light of an appropriate frequency � strikes the
surface of solids. Such light-emitted solids are called photocathodes. The minimum
energy necessary for the emission of an electron is referred to as the work function �
of the solid. In the specific case of semiconductors, electron affinity (energy differ-
ence between the vacuum level and Ec) plays the role of work function. The behavior
of an electron in solids is like that of an electron in a finite potential well, where the
difference between the highest occupied (bound) level and vacuum (free) level is �, as
shown in Fig. 17.8(a). The Fermi level is equivalent to the highest possible bound
energy. Thus, the kinetic energy E of an emitted electron is given by

E ¼ h�� �: ð17:24Þ

Since electrons reside at or below the Fermi level, E corresponds to the max-
imum possible kinetic energy. The emission of an electron thus requires a minimum
of � (¼ h�) photoenergy. However, in case of a semiconductor, this minimum energy
is equivalent to Eg þ Ea, where Ea is the electron affinity energy. Often it may
become necessary to reduce the value of Ea, which is accomplished by making the
semiconductor surface p-type. The band bending at the surface results in a down-
ward shift of the conduction band by an amount Eb, as shown in Fig. 17.8(b).
Consequently, the effective electron affinity becomes
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E 0
a ¼ Ea � Eb: ð17:25Þ

In certain semiconductors – those referred to as having negative electron affinity –
Eb exceeds Ea. Semiconductors such as these are used for infrared photocathodes.

The vacuum photodiode shown in Fig. 17.9 is a quantum detector designed by
placing a photocathode along with another electrode (referred to as an anode) within
a vacuum tube. In prctice, the photocathode consists of a semicylindrical surface
while the anode is placed along the cylindrical axis. When an optical energy in excess
of the work function illuminates the photocathode, current begins to flow in the
circuit. When the bias voltage VA is large enough (ffi 100V), the emitted electrons are
collected at the anode. When optical energy falls below the work function level,
current ceases to exist, irrespective of the bias voltage. For efficient collection of
electrons, the distance between the anode and the photodiode is kept to a minimum
by making sure that the associated capacitance value remains reasonable. Often the
anode is made of highly grid-like wires so as not to impede the incoming optical
energy. In comparison, solid-state photodetectors are not only smaller, faster, and
less power consuming but also more sensitive. Consequently, vacuum photodiodes
are used only when the incoming optical energy is more than a certain maximum that
may otherwise damage the solid-state photodetectors.

The characteristic curve of a vacuum phototube shows that the photocurrent
for a given illumination is invariant above the saturation voltage. The saturation
voltage is mildly wavelength- and illumination-sensitive. Since the operating voltage
of a phototube is usually larger than the saturation voltage, minor fluctuations in the
supply voltage do not cause any discrepancy in the phototube’s performance. An
important feature of a phototube is that the photocurrent varies linearly with light
flux. A slight departure from linearity occurs at high enough flux values and is
caused by the space-charge effects. This nonlinearity is avoided by using a large
anode-to-photocathode voltage. In practice, the flux level sets a lower limit on the
value of the load resistance. The load, used to produce a usable signal voltage, in
turn, sets a lower limit on the time constant.
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Figure 17.8 Energy level diagram in (a) a solid–vacuum interface and (b) a band-bended

semiconductor–vaccuum interface.



Gas-filled phototubes are identical to vacuum phototubes except that they
contain approximately 0.1mm of an inert gas. The inert gas provides a noise-free
amplification (ffi 5�10) by means of ionization of the gas molecules. However, inert
gases have poor frequency responses. Again the response, which is basically non-
linear, is a function of the applied voltage. The phototubes are, therefore, used in
applications where the frequency response is not critical.

Photoemissive tube technology is used to develop an alternative but quite pop-
ular high-gain device known as a photomultiplier. In a photomultiplier tube (PMT),
the photoelectrons are accelerated through a series of anodes (referred to as dynodes)
housed in the same envelope; these dynodes are maintained at successively higher
potentials. A photoelectron emitted from the photocathode is attracted to the first
dynode because of the potential difference. Depending on the energy of the incident
electron and the nature of the dynode surface, secondary electrons are emitted upon
impact at the first dynode. Each of these secondary electrons produces more elecrons
at the next dynode, and so on, until the elecrons from the last dynode are collected at
the anode. The dynodes are constructed from materials that, on average, emit � (>1)
electrons for each of the incident electrons. One such photomultiplier is shown in Fig.
17.10(a), where � is a function of the interdynode voltage. When the PMT is provided
with N such dynodes, the total current amplification factor is given by

G ¼ ðiout=iinÞ�n: ð17:26Þ
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Figure 17.9 A vacuum photodiode: (a) circuit; (b) characteristic curve; and (c) current

versus light flux.



Thus, with fewer than 10 dynodes and � < 5, the gain can easily approach 106.
The problems of a PMT are quite the same as those of a vacuum photodiode.

However, a PMT is undoubtedly more sensitive. The response of a PMT is com-
paratively slower since electrons have to move through a longer distance. In addi-
tion, there is a finite spread in the transit time because all of the electrons may not
have identical velocities and trajectories. This transit-time spread is often reduced,
not by reducing the number of dynodes but by increasing the value of �. However, it
must be noted that for the most photocathode materials, the maximum wavelength
of incoming light is permitted to be about 1200 nm. Thus, for the detection of longer
wavelength radiation, a solid-state detector is preferred. PMTs are commonly oper-
ated with � 102 V between the dynodes, which is advantageous because the overall
gain of the tube may be varied over a wide range by means of a relatively small
voltage adjustment. But, at the same time, it is also disadvantageous because the
voltage supply for the PMT must be extremely stable for the calibration to be
reliable. We can show that in an N-stage PMT operating at an overall voltage V ,
a fluctuation �V in the voltage produces a change �G in the gain G such that

�g ¼ GN
�V

V
: ð17:27Þ

Consequently, a 1% fluctuation in a 10-stage PMT will cause a 10% change in the
gain.
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Figure 17.10 A photomultiplier tube: (a) schematic of a five-stage PMT and (b) focusing

dynode structure.



Different types of PMTs are distinguishable by their geometrical arrangement
of dynodes. In particular, the focusing-type PMT, as shown in Fig. 17.10(b), employs
electrostatic focusing between the adjacent dynodes and thereby reduces the spread in
the transit time. These PMTs are, however, somewhat more noisy and unstable than
the unfocused types. Like phototubes, PMTs have an exceptionally linear response.

It is appropriate to introduce a solid-state equivalent of PMT, known as the
staircase avalanche photodiode (SAPD) that has been added lately to the list of
photodetectors. The noise is an APD increases with the increase in the ratio of the
ionization coefficient k (� �=�). On the other hand, a high k is required for a higher
gain. An SAPD provides a suitable solution to this apparent anomaly by incorpor-
ating PMT-like stages in the solid-state APDs. An unbiased SAPD consists of a
graded-gap multilayer material (almost intrinsic) as shown in Fig. 17.11(a). Each
dynode-like stage is linearly graded in composition from a low band-gap value Egl to
a high band-gap value Egh. The materials are chosen so that the conduction band
drops �Ec at the end of each stage equals or just exceeds the electron ionization
energy. Note, however, that �Ec is much larger than the valence-band rise �Ev.
Consequently, only electrons contribute to the impact ionization provided the
SAPD, is biased as shown in Fig. 17.11(b).

A photoelectron generated next to pþ-contact drifts toward the first conduction
band under the influence of the bias field and the grading field (given by �Ec=l,
where l is the width of each step). But this field value is not large enough for the
electrons to impact ionize. In this device, only the bias field is responsible for the
hole-initiated ionization. The actual impact ionization process in each stage occurs at
the very end of the step when the conduction-band discontinuity undergoes a �Ec

change. The total SAPD gain becomes ð2� f ÞN , where N is the number of stages and
f is the average fraction of electrons that do not impact ionize in each of the stages.
The critical bias SAPD field just exceeds �Ec=l so as to provide the electrons with
necessary drift through l but not impact ionize.

17.4 CHARGE-COUPLED IMAGERS

An important solid-state photodetecting device is the charge-coupled imager, which
is composed of a closely spaced array of charge-coupled devices (CCDs) arranged
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Figure 17.11 Staircase APD: (a) unbiased and (b) biased.



in the form of a register. Each of the CCD units is provided with a storage
potential well and is, therefore, able to collect photogenerated minority carriers.
The collected charges are shifted down the array and converted into equivalent
current or voltage at the output terminal. To understand the overall function of
such repetitive storage and transfer of charge packets, consider the metal oxide
semiconductor (MOS) structure of Fig. 17.12, where the metal electrode and the p-
type semiconductor are separated by a thin SiO2 layer of width x0 and dielectric
constant K0. Silicon nitride, Si3N4, is also used for the insulating layer. The capa-
citance of such a structure depends on the voltage between the metal plate and the
semiconductor.

In thermal equilibrium, the Fermi level is constant all throughout the device.
For simplicity, we may assume (a) that the work function difference between the
metal and the semiconductor is zero and (b) that there is no charge accumulated in
the insulator or at the junction between the insulator and the semiconductor.
Consequently, the device may be considered to have no built-in potential.

A biased MOS capacitor results in two space-charge regions by the displace-
ment of mobile carriers, as shown in Fig. 17.13. The total bias voltage VG applied at
the gate input G is shared between the oxide layer and the semiconductor surface,
whereas there is only a neglible voltage across the metal plate. Under reverse bias the
surface potential gives rise to an upward bend in the energy diagram, as shown in
Fig. 17.13(a). At the edges Ei�EF becomes comparatively larger, thus resulting in a
higher hole density at the surface than that within the bulk region. This condition
generally increases the surface conductivity. Figure 17.13(b) shows the forward-
biased case, where a decrease of Ei � EF at the edges causes a depletion of holes
at the semiconductor surface. The total charge per unit area in the bulk semicon-
ductor is given by

QB ¼ �eNAxd; ð17:28Þ

where xd is the width of the depletion layer. Using the depletion approximation in
Poisson’s equation, we can arrive at the potential within the semiconductor as
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Figure 17.12 MOS capacitor and its unbiased energy-band diagram.



VsðxÞ ¼ Vsð0Þ 1� x

xd

� �2
; ð17:29Þ

where

Vsð0Þ ¼
eNA

2Ks"0
x2d ð17:30Þ

is often referred to as the surface potential. The voltage characteristic is similar to
that of a step junction having a highly doped p-side. Note, however, that as the bias
voltage VG is increased further, the band bending could result in a crossover of Ei

and EF within the semiconductor, as shown in Fig. 17.13(c). Consequently, the
carrier depletion gives rise to an extreme case of carrier inversion whereby electrons
are generated at the junction and holes are generated inside the semiconductor with
two regions being separated by the crossover point. Therefore, a p�n junction is
induced under the metal electrode. The effect of the gate voltage is to remove the
majority carriers from the semiconductor region that is closest to the gate and
introduce a potential well. Absorbed photons contribute to the freeing of minority
carriers that are collected in the well. The resulting output signal corresponds to the
photoinduced charge.

If the semiconductor were approximated as a borderline conductor, the metal–
semiconductor structure could be envisioned as a parallel-plate capacitor with the
oxide layer working as its dielectric material. However, in forward bias, the MOS
structure is modeled by incorporating an additional capacitor in series with the oxide
capacitor to accommodate the presence of a surface space-charge layer in the semi-
conductor. The overall MOS capacitance c is thus given by

1

c
¼ 1

c0
þ 1

cs
; ð17:31Þ

where
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Figure 17.13 Energy-band diagram and charge distribution of an unbiased MOS capacitor:

(a) VG < 0, (b) VG > 0, and (c) VG 
 0.



c0 ¼
K0"0
x0

ð17:32aÞ

and

cs ¼
Ks"0
xd

: ð17:32bÞ

Neglecting the voltage drop in the metal plate, the forward bias can be expressed as

VG ¼ Vsð0Þ �
Qs

c0
ð17:33Þ

where Qs is the density of induced charge in the semiconductor surface region and
Vsð0Þ is the surface potential. The gradient of the surface potential generally deter-
mines the minority carrier movements. The depth of the potential well is often
decreased either by decreasing the oxide capacitance – i.e., by increasing the oxide
thickness – or by increasing the doping level of the p-type material.

Sufficient forward bias may eventually induce an inversion layer. With the
passing of time, electrons accumulate at the oxide–semiconductor junction, and a
saturation condition is reached when the electron drift current arriving at the junc-
tion counterbalances the electron diffusion current leaving the junction. The time
required to reach this saturation condition is referred to as the thermal relaxation
time. The net flow of electrons is directed toward the junction prior to from the
thermal-relaxation time, whereas the net flow of electrons is directed away from the
junction after the thermal-relaxation time has elapsed. Since there was no inversion
layer prior to the saturation, the induced charge Qs is obtained by summing AB and
the externally introduced charge Qe. Equations (17.28) and (17.29) can be incorpo-
rated into Eq. (17.33) to give surface potential as

Vsð0Þ ¼ VG �Qe

c0
þ eKs"0

c20
1� 1þ

2c20 VG � Qe

c0

� 

eKs"0NA

8
<

:

9
=

;

1=2
2

64

3

75: ð17:34Þ

The depth of the potential well xd is often evaluated using Eqs (17.24) and (17.29).
The value of xd is used in turn to evaluate cs using Eq. (17.32b) and, consequently,
we can determine the overall MOS capacitance as

c ¼ c0

1þ 2c20
eNAKs"0

VG

" #1=2
: ð17:35Þ

The MOS capacitor in effect serves as a storage element for some period of time
prior to reaching the saturation point.

A CCD structure formed by cascading an array of MOS capacitors, as shown
in Fig. 17.14(a), is often referred to as a surface channel charge-coupled device
(SCCD). Basically, the voltage pulses are supplied in three lines, each connected
to every third gate input (and consequently this CCD is called a three-phase
CCD). In the beginning, G1 gates are turned on, resulting in an accumulation and
storage of charge under the gates. This step is followed by a step whereby G2 is
turned on, thus resulting in a charge equalization step across two-thirds of each cell.
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Subsequently G1 is turned off, resulting in a complete transfer of all charges to the
middle one-third of each cell. This process is repeated to transfer charge to the last
one-third of the CCD cell. Consequently, after a full cycle of clock voltages has been
completed, the charge packets shift to the right by one cell, as illuminated in Fig.
17.14(b) and (c). When the CCD structure is formed using an array of photosensors,
charge packets proportional to light intensity are formed and these packets are
shifted to a detector for the final readout.

The CCD signal readout is also accomplished by using either two-phase or
four-phase clocking schemes. In each of the cases, however, transfer of charges is
accomplished by means of the sequentially applied clock pulses. There are three
phenomena that enhance the transfer of charges in the SCCD: (a) self-induced
drift; (b) thermal diffusion; and (c) fringe-field drift. The self-induced drift, respon-
sible for most of the transfer, is essentially a repulsion effect between the like
charges. The thermal diffusion component makes up for most of the remaining
signal charge. It can be shown that for most materials the thermal time constant is
longer than self-induced time constant. The upper frequency limit for switching
operations is thus determined by the thermal time constant. For the SCCDs, this
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Figure 17.14 (a) CCD structure; (b) potential wells at different times; and (c) timing dia-

gram.



upper limit can be in the order of 10MHz. The fringe-field drift is determined by
the spacing of the electrodes and results in a smoothing out of the transitional
potential fields. This third effect is responsible for the transfer of the final few
signal electrons.

Figure 17.15(a) shows a system of MOS transistors along with a photodiode
array, both of which can be embedded under the same monolithic structure. The
system is able to perform sequential readout. A voltage pattern can be generated
from the shift register so as to turn on only one transistor at a time. The switching
voltage is shifted serially around all diodes. This scheme can also be extended to two
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Figure 17.15 MOS readout scanner: (a) one-dimensional and (b) two-dimensional.



dimensions, as shown in Fig. 17.15(b), where one row is switched on and all columns
are then scanned serially. The process is repeated for the remaining rows until all the
photodiodes have experienced the scanning.

The primary item that hinders transfer of charge is surface-state trapping that
occurs along the semiconductor–oxide interface. These trapping energy levels are
introduced by nonuniformities in the interface. These energy levels tend to trap and
re-emit electrons at a rate that is a function of clocking frequency and their positions
relative to the Fermi level. Transferring a constant amount of charge in each of the
CCD wells reduces this hindrance of the transfer of charge. This charge fills most of
the trapping states, as a result of which interaction of trapping levels and charge is
minimized.

A popular method used to control the problem of surface trapping is accom-
plished by having what is known as a buried channel CCD (BCCD). It involves
implementing a thin secondary layer that is opposite polarity to that of the substrate
material along the oxide surface. The fringe fields are much smoother in a BCCD
than in an SCCD, but the well depth is smaller. Hence, a BCCD can switch informa-
tion at a faster rate, but it cannot hold as much signal. Switching speeds of up to
350MHz are not uncommon for BCCDs.

In applications where a semiconductor depletion region is formed, electron–
hole pairs are generated due to the thermal vibration of the crystal lattice at any
temperature above 0K. This generation of carriers constitutes a dark current level
and determines the minimum frequency with which the transfer mechanism can
occur. The time taken by a poential well to fill up with dark electrons can be
quite long in some of CCDs. There are two basic types of CCD imagers: the line
imager and the area imager. In the line imager, charge packets are accumulated and
shifted in one direction via one or two parallel CCD shift registers, as shown in Fig.
17.16(a), where the CCD register is indicated by the shaded regions. The two basic
types of CCD area imagers are shown in Figs 17.16(b) and (c).

In the interline transfer CCD (ITCCD), photocells are introduced between the
vertical CCD shift registers. Polysilicon strips are placed vertically over each line of
the photocells to provide shielding. During an integration period (referred to as one
frame), all of the cells are switched with a positive voltage. The ITCCD is obtained
by extending the line imager to a two-dimensional matrix of line imagers in parallel.
The outputs of the line imagers in parallel are fed into a single-output CCD register.
For the case of the frame transfer (CCD (FTCCD), the sensor is divided into two
halves: a photosensitive section and a temporary storage section. The charge packets
of the photosensing array are transferred over to the temporary storage array as
frame of picture. Subsequently, the information is shifted down one-by-one to the
output register and is then shifted horizontally.

Besides CCDs, a different family of MOS charge transfer devices, referred to as
charge-injection devices (CIDs), can also be an integral part of the focal plane array.
CIDs involve exactly the same mechanism for detecting photons as CCDs. They
differ only in the methods used for reading out the photoinduced charges. The
mechanism of charge injection is illustrated in Fig. 17.17, where the CID consists
of an n-substrate, for example. Application of a negative gate voltage causes the
collection of photoinduced minority carriers in the potential well adjacent to the
semiconductor–oxide interface. This accumulation of charge is directly proportional
to the incident optical irradiance. Once the gate voltage is withdrawn, the potential

Electro-Optical and Acousto-Optical Devices 615



well dissipates and the minority carriers are injected promptly into the substrate,
resulting in current flow in the circuit.

Because of the serial nature of the CCDs, optical input signals cause the
resulting charge to spill over into adjacent cells. This effect, referred to as blooming,
causes the image to appear larger than its actual magnitude. In comparison, CIDs
are basically x�y addressable such that any one of their pixels can be randomly
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Figure 17.16 CCD imager: (a) line, (b) interline transfer, and (c) frame transfer.



accessed with little or no blooming. However, the CID capacitance (sum of the
capacitance of a row and a column) is much larger than the CCD capacitance
and, therefore, the CID images tend to be noisier.

17.5 CRT AND IMAGING TUBES

The cathode-ray tube (CRT) is a non-solid-state display that is deeply entrenched in
our day-to-day video world. Even though other competing technologies such as flat-
panel display or making serious inroads, it is unlikely that CRTs will be totally
replaced. In spite of its large power consumption and bulky size, it is by far the
most common display device found in both general- and special-purpose usage, aside
from displaying small alphanumeric. The cost factor and the trend toward using
more and more high-resolution color displays are the key factors that guarantee the
CRT’s longevity. CRTs have satisfactory response speed, resolution, design, and life.
In addition, there are very few electrical connections, and CRTs can present more
information per unit time at a lower cost than any other display technology. A CRT
display is generally subdivided into categories such as having electrostatic or mag-
netic deflection, monochromatic or color video, and single or multiple beams.

Figure 17.18(a) shows the schematic of a CRT display where the cathod lumi-
nescent phosphors are used at the output screen. Cathodoluminescent refers to the
emission of radiation from a solid when it is bombarded by a beam of electrons. The
electrons in this case are generated by thermionic emission of a cathode and are
directed onto the screen by means of series of deflection plates held at varying
potentials. The electron beam is sequentially scanned across the screen in a series
of lines by means of electrostatic or electromagnetic fields (introduced by deflection
plates) orthogonal to the direction of electron trajectory. The bulb enclosing the
electron gun, the deflectors, and the screen are made air-free for the purpose of
having an electron beam and a display area. The video signals to be displayed are
applied to both the electron gun and deflectors in synchronization with the scanning
signals. The display is usually refreshed 60 times a second to avoid having a flick-
ering image. While in the United States CRT displays consist of 525-scan line, the
number is about 625 overseas. The phosphor screen is often treated as being split
into two interlaced halves. Thus, if a complete refreshing cycle takes tr time, only
odd-numbered lines are scanned during the first tr=2 period, and the even-numbered
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Figure 17.17 CID charge: (a) accumulation and (b) injection.



lines are scanned during the remaining half. Consequently, our eyes treat the refresh-
ing rate as if it were 2=tr Hz instead of only 1=tr Hz.

The deflected electron strikes the CRT phosphor screen causing the phosphors
of that CRT location to emit light. It is interesting to note that both absorption and
emission distributions of phosphors are bell shaped, but the distribution peaks are
relatively displaced in wavelength. When compared with the absorption distribution,
the emission distribution peaks at a higher wavelength. This shift toward the red end
of the spectrum is referred to as the Stokes’ shift. It is utilized to convert ultraviolet
radiation to useful visible radiation. It is used in fluorescent lamps to increase their
luminous efficiencies. In particular, the CRT illumination, caused by the cathodo-
luminescent phosphors, is a strong function of both current and accelerating voltage
and is given by

Le ¼ Kf ðiÞVn; ð17:36Þ

where K is a constant, f ðiÞ is a function of current and n ranges between 1.5 and 2.
With larger accelerating voltages, electrons penetrate further into the phosphor
layer, causing more phosphor cells to irradiate.

The factors that are taken into consideration in selecting a particular phosphor
are, namely, decay time, color, and luminous efficiency. Note that even though a
phosphor may have lower radiant efficiency in the green, the latter may have a more
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Figure 17.18 (a) A CRT schematic and (b) a CRT screen.



desirable luminous efficiency curve. Usually, the phosphor screen consists of a thin
layer ð� 5 mmÞ of phosphor powder placed between the external glass faceplate and a
very thin (� 0:1 mm) aluminium backing as shown in Fig. 17.18(b). The aluminium
backing prevents charge build-up and helps in redirecting light back toward the glass
plate. The aluminum backing is thin enough so that most of the electron beam
energy can get through it. A substantial amount of light that reaches the glass at
normal (beyond the critical angle of incidence) may be totally internally reflected at
the glass–air interface, some of which may again get totally internally reflected at the
phosphor–glass interface. Such physical circumstances produce a series of concentric
circles of reduced brightness instead of one bright display spot. The combination of
diffused display spots results in a display spot that has a Gaussian-distribution
profile.

Of the many available methods, the most common one for introducing color in
a CRT display involves the use of a metal mask and three electron guns, each
corresponding to a primary phosphor granule (red, blue, and green), as shown in
Fig. 17.19. The three electron guns are positioned at different angles, so that while
each of the electron beams is passing through a particular mask-hole strikes a
particular primary phosphor dot. All three beams are deflected simultaneously. In
addition, the focus elements for the three guns are connected in parallel so that a
single focus control is sufficient to manipulate all beams. The three primary dots are
closely packed in the screen so that proper color can be generated for each signal.
Misalignment of the three beams causes a loss of purity for the colors. In any event,
when compared with the monochrome display, the CRT color reproduction process
involves a loss of resolution to a certain degree because the primary phosphor cells
are physically disjointed.

Imaging tubes convert a visual image into equivalent electrical signals that are
used thereafter for viewing the image on display devices such as CRTs. They are used
as in a television camera tube in which a single multilayer structure serves both as an
image sensor and as a charge storage device. A beam of low-velocity electrons to
produce a video signal scans the single multilayer structure. In particular, when the
characteristics of the photosensor layer during the optical-to-electrical conversion
depend on photosensor’s photoconductive property, the imaging tube is referred as a
vidicon. Figure 17.20 shows a typical vidicon whose thin target material consists of a
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Figure 17.19 Shadow masking in a color CRT.



photoconductive layer, such as selenium or antimony trisulphide, placed immedi-
ately behind a transparent conductive film of tin oxide. Its charge-retention quality is
very good since the resistivity of the photoconductor material is very high ð� 1012 �-
cm). The conducting layer is connected to a positive potential VB via a load resistor.
The other side of the target is scanned with an electron beam almost in the same way
as CRT scanning. The output video signal is generally capacitively coupled, and the
majority of vidicons employ magnetic focusing and deflection schemes.

The vidicon target is often modeled as a set of leaking capacitors, each of which
corresponds to a minute area of the target. One side of these capacitors is tied
together by means of a transparent conductive layer and is connected to a bias
voltage VB. The low-velocity scanning electron beam makes momentary contact
with each of the miniature areas, charging them negatively. The target has high
resistance in the dark, but when it is photoirradiated its resistance drops signifi-
cantly. In the absence of illumination, the scanning beam drives the target to a
potential value close to that of the cathode, which allows for a small amount of
dark current to flow when the beam is removed. The decrease in resistivity due to
photoirradiance causes the capacitor-like target to discharge itself in the absence of
the electron beam. However, when the electron beam scans this discharged area, it
will recharge the target. More current is being taken away from the illuminated area
than from unilluminated area, thus generating a video signal at the output. The
video signal is found to be proportional to nth power of illumination, where n is a
positive number less than unity.

The dark current is rather large in vidicons. Again, the spectral response of
antimony trisulphide is very poor at wavelengths greater than 0.6 mm. An imaging
tube referred to as a plumbicon is often used to overcome the aforementioned short-
comings of a vidicon. The plumbicon is essentially identical to the vidicon, except
that the photoconductive target is replaced by a layer of lead oxide that behaves like
p�i�n diode and not like a photoconductor.
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Figure 17.20 A vidicon structure.



The band-gap energy of lead oxide is 2 eV and, therefore, it is not too
sensitive to red. However, the introduction of a thin layer of lead sulfide (with a
band gap of about 0.4 eV), along with lead oxide, eliminates the problem of red
insensitivity in the plumbicon. The transparent conductive film acts like an n-type
region, and the PbO layer acts like a p-type region, whereas the region between the
two behaves like an intrinsic semiconductor. Photoirradiance of this p�i�n struc-
ture generates carriers in the plumbicon. But the flow of carriers in the opposite
direction generally reduces the amount of stored charge. However, in the absence
of photoirradiance, the reverse bias gives rise to a dark current that is negligible in
comparison to that encountered in the vidicon. There are two serious disadvan-
tages using plumbicons because their resolution (fewer than 100 lines) is octane
limited by the thick lead oxide layer and because the change in target voltage
cannot be used to control their sensitivity. In spite of these demerits, they are
used widely in color TV studios. However, the lead oxide layer can be replaced
by an array formed by thousands of silicon diodes to increase the sensitivity of
plumbicons.

Another important imaging tube, referred to as an image intensifier, is of
significant importance in the transmittal of images. In principle, it is vacuum photo-
diode equipped with a photocathode on the input window and a phosphor layer on
the output window. Image intensifiers are devices in which the primary optical image
is formed on a photocathode surface (with an S20 phosphor layer backing), and the
resulting photocurrent from each of the image points is intensified by increasing the
energy of the electrons, as shown in Fig. 17.21. The windows are made of the fiber-
optic plates, so that the plane image surface of the input can be transformed to the
curve object and image surfaces of a simple electrostatic lens. The electrons strike a
luminescent screen and the intensified image is produced by cathodoluminescent. It
is possible to cascade more than one such intensifier with fiber-optic coupling
between them, making sure that an accelerating potential is applied between the
photocathode and the screen. Such a cascade device, along with an objective lens
and an eyepiece, is used in the direct-view image intensifier. In any event, it is
possible to achieve a luminance gain of up to 1000 with each image intensifier. An
image intensifier such as this can also be designed by increasing the number of
electrons (as in a photomultiplier).
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Figure 17.21 Two cascaded image intensifiers.



17.6 ELECTRO-OPTIC MODULATION

Electro-optic (EO) modulators consist of a dielectric medium and a means of apply-
ing an electric field to it. Application of an electric field causes the refractive index of
the dielectric medium to be modified. The mechanism involved in this phenomenon
is referred to as the electro-optic effect of the dielectric medium. The mechanism is
often used for realizing both amplitude as well as the phase modulation of optical
signals. The application of such a modulation scheme exists in optical communica-
tions, Q-switching of lasers, and beam deflections. In principle, electro-optic mod-
ulators cause a change in phase shift, which in turn is either a linear or a quadratic
function of the applied electric field. This change in phase shift implies a change in
optical length or index of refraction.

In an electro-optic crystal, such as those mentioned in the last section, the
change in the index of refraction n along a crystal axis may be expressed in series
form as

�
1

n2

� �
¼ pE þ kE2 þ � � � ; ð17:37Þ

where E is the electric field, p is the linear electro-optic coefficient, and k is the
quadratic electro-optic coefficient. In useful crystal, either the linear electro-optic
effect (referred to as the Pockels effect) or the quadratic electro-optic effect (referred
to as the Kerr effect) is predominant. In either case, the index of refraction will
change at the modulation rate of the electric field. The effect allows a means of
controlling the intensity or phase of the propagating beam of light. A Pockets cell
uses the linear effect in crystals, whereas a Kerr cell uses the second-order electro-
optic effect in various liquids and ferroelectrics; however, the former requires far less
power than the latter to achieve the same amount of rotation and thus is used more
widely. The Pockets effect, in particular, depends on the polarity of the applied
electric field.

In the absence of an external electric field, the indices of refraction along the
rectangular coordinate axes of a crystal are related by the index ellipsoid:

ðx=nxÞ2 þ ð y=nyÞ2 þ ðz=nzÞ2 ¼ 1: ð17:38Þ
In the presence of an arbitrary electric field, however, the linear change in the
coefficients of the index ellipsoid can be represented by

�
1

n2

� �

i

¼
X

j

pijEj; ð17:39Þ

where pij ’s are referred to as Pockels constants, i ¼ 1; 2; 3; . . . ; 6; and j ¼ x; y; z. The
6� 3 electro-optic matrix having pij as its elements is often called the electro-optic
tensor. In centro-symmetric crystals, all 18 elements of the tensor are zero, whereas
in the triclinic crystals, all elements are nonzero. But in the great majority of crystals,
while some of the elements are zero many of the elements have identical values.
Table 17.1 lists the characteristics of the electro-optic tensors for some of the
more important noncentrosymmetric crystals.

Determining the electro-optic effect in a particular modulator thus involves
using the characteristics of the crystal in question and finding the allowed polariza-
tion directions for a given direction of propagation. Knowledge of refractive indices
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along the allowed directions can be used to decompose the incident optical wave
along those allowable polarization directions. Thereafter, we can determine the
characteristics of the emergent wave. Consider, for example, the case of KDP,
whose nonzero electro-optic tensor components are p41, p52, and p63. Using Eqs
(17.38) and (17.39), we can write an equation of the effective index ellipsoid for
KDP as

x2 þ y2

n20
þ z

nE

� �2

þ2p41yzEx þ 2p63xyEz ¼ 1; ð17:40Þ

with nx ¼ ny ¼ n0 and nz ¼ nE for this uniaxial crystal where p41 ¼ p52. To be spe-
cific, let us restrict ourselves to the case in which the external field is directed along
only the z-direction. Equation (17.40), for such a case, reduces to

x2 þ y2

n20
þ z

nE

� �2

þ2p63xyEz ¼ 1: ð17:41Þ

Equation (17.41) can be transformed to have a form of the type

x 0

nx 0

� �2

þ y 0

ny 0

� �2

þ z 0

nz 0

� �2

¼ 1; ð17:42Þ

which has no mixed terms. The parameters x 0, y 0, and z 0 of Eq. (17.42) denote the
directions of the major axes of the index ellipsoid in the presence of the external field;
2n 0

x, 2n
0
y, and 2n 0

z give the lengths of the major axes of the index ellipsoid, respec-
tively.

By comparing Eqs (17.41) and (17.42), it is obvious that z and z 0 are parallel to
each other. Again, the symmetry of x and y in Eq. (17.41) suggests that x 0 and y 0 are
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Table 17.1 Some of the Important Electro-optic Constants

Crystal Nonzero elements (in 1012 m/V) Refractive index

BaTiO3 p13 ¼ p23 ¼ 8:0
p33 ¼ 23:0
p42 ¼ p51 ¼ 820:0

Nx ¼ ny ¼ n0 ¼ 2:437
NE ¼ nz ¼ 2:365

KDP p41 ¼ p52 ¼ 8:6
p63 ¼ 10:6

Nx ¼ ny ¼ n0 ¼ 1:51
NE ¼ nz ¼ 1:47

ADP p41 ¼ p52 ¼ 28:0
p63 ¼ 8:5

Nx ¼ ny � n0 ¼ 1:52
NE ¼ nz ¼ 1:48

GaAs p41 ¼ p52 ¼ p63 ¼ 1:6 Nx ¼ nþ y � n0 ¼ 3:34

CdTe p41 ¼ p52 ¼ p63 ¼ 6:8 Nx ¼ ny ¼ n0 ¼ 2:6

Quartz p11 ¼ 0:29; p21 ¼ p62 ¼ �0:29
p41 ¼ 0:2; p52 ¼ �0:52

Nx ¼ ny � n0 ¼ 1:546
Nz ¼ nE ¼ 1:555

LiNbO3 p13 ¼ p23 ¼ 8:6; p33 ¼ 30:8
p22 ¼ 3:4; p12 ¼ p61 ¼ �3:4
p42 ¼ p51 ¼ 28

Nx ¼ ny ¼ n0 ¼ 2:286
Nz ¼ nE ¼ 2:200

CdS p13 ¼ p23 ¼ 1:1
p33 ¼ 2:4; p42 ¼ p51 ¼ 3:7

Nx ¼ ny ¼ n0 ¼ 2:46
Nz ¼ nE ¼ 2:48



related to x and y by a rotation of 458. The transformation between the coordinates
ðx; yÞ and ðx 0; y 0Þ is given by

x

y

" #

¼ cos 1
4



 �� sin 1
4



 �

sin 1
4



 �
cos 1

4



 �

" #
x 0

y 0

" #

; ð17:43Þ

which, when substituted in Eq. (17.41), results in

1

n2
þ p63Ez

� �
x

02 þ 1

n20
� p63Ez

� �
y

02 þ z 0

nE

� �2

¼ 1: ð17:44Þ

Comparing Eqs (17.42) and (17.44) and using the differential relation
dn ¼ 1

2
n3dð1=n2Þ, we find that

nx 0 ¼ n0 � 1
2
n30p63Ez ð17:45aÞ

ny 0 ¼ n0 þ 1
2
n30p63Ez ð17:45bÞ

nz 0 ¼ nE ð17:45cÞ
when ð1=n20Þ 
 p63Ez. The velocity of propagation of an emerging wave polarized
along the x 0 axis differs from that of an emerging wave polarized along y 0 axis. The
corresponding phase shift difference between the two waves (referred to as electro-
optic retardation) after having traversed a thickness W of the crystal is given by

�� ¼ 2W



jnx 0 � ny 0 j � 2W



n30p63Ez: ð17:46Þ

Provided that V is the voltage applied across the crystal, retardation is then given by

�� ¼ 2



n30p63V : ð17:47Þ

The emergent light is in general elliptically polarized. It becomes circularly polarized
only when �� ¼ 1=2 and linearly polarized when �� ¼ . Often the retardation is
also given by V=V, where Vð� 
=2n30p63Þ is the voltage necessary to produce a
retardation of .

17.7 ELECTRO-OPTIC DEVICES

In the last section, we showed that it is possible to control optical retardation and,
thus, flow of optical energy in non-centrosymmetric cyrstals by means of voltage.
This capability of retardation serves as the basis of modulation of light. Figure 17.22
shows a schematic of a system showing how a KDP modulator can be used to
achieve amplitude modulation. This particular setup is also known as Pockels elec-
tro-optic (EO) amplitude modulator. The crossed polarizer-analyzer combination of
the setup is necessary for the conversion of phase-modulated light into amplitude-
modulated light. Further, in this setup, the induced electro-optic axes of the crystal
make an angle of 458 with the analyzer–polarizer axes.

Elliptically polarized light emerges from the EO crystal since, upon modula-
tion, the two mutually orthogonal components of the polarized beams travel inside
the crystal with different velocities. To feed an electric field into the system, the end
faces of the EO crystal are coated with a thin conducting layer that is transparent to
optical radiation. As the modulating voltage is changed, the eccentricity of the ellipse
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changes. The analyzer allows a varying amount of outgoing light in accordance with
the modulating voltage applied across the EO crystal.

The electric field components associated with the optical wave, immediately
upon emerging from the EO crystal, are respectively

E 0
x ¼ A; ð17:48aÞ

E 0
y ¼ Ae�j��: ð17:48bÞ

Thus the total field that emerges out of the analyzer is evaluated by summing the E 0
x

and E 0
y components (along the analyzer axis), which gives us

Eo ¼ ½Ae�j�� � A� cosð1=4Þ
¼ A

ffiffiffi
2

p e�j�� � 1:
ð17:49Þ

The resulting irradiance of the transmitted beam is therefore given by

I0 ¼ constðE0ÞðE�
0 Þ ¼ const 2A2 sin2

��

2

� �
� Ii sin

2 ��

2

� �
; ð17:50Þ

where Ii is the irradiance of the light incident on the input side of the EO crystal. One
can rewrite Eq. (17.50) as

I0
Ii
¼ sin2

1

2

V

V

� �
; ð17:51Þ

where V ¼ j
=2p63n30j is the voltage required for having the maximum transmission.
Often V is also referred to as the half-wave voltage because it corresponds to a
relative spatial displacement of 
=2 or to an equivalent phase difference of .

Figure 17.23 shows the transmission characteristics of the cross-polarized EO
modulator as a function of the applied voltage. It can be seen that the modulation is
nonlinear. In fact, for small voltages, the transmission is proportional to V2. The
effectiveness of an EO modulator is often enhanced by biasing it with a fixed retar-
dation of =2. A small sinusoidal voltage will then result in a nearly sinusoidal
modulation of the transmitted intensity. This is achieved by introducing a quarter-
wave plate between the polarizer and the EO crystal. The quarter-wave plate shifts
the EO characteristics to the 50% transmission point. With the quarter-wave plate in
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Figure 17.22 Pockels EO amplitude modulator: (a) system and (b) orientation of crystal

axes.



place, the net phase difference between the two emerging waves becomes
�� ¼ ��þ ð=2Þ. Thus the output transmission is then given by

I0
Ii
¼ sin2



4
þ 1

2

V

V

� �
� 1

2
1þ sin 

V

V

� �� �
: ð17:52Þ

Note that, with no modulating voltage, the modulator output intensity transmission
reduces to 0.5 gain. Again, for small V , the transmission factor varies linearly as the
crystal voltage.

For an input sine wave modulating voltage, the transmission can be expressed
as

I0
Ii
¼ 1

2
½1þ sinfmVp sinð!ptÞg�; ð17:53Þ

where m is a constant of proportionality, Vp is the peak modulating voltage, and !m

is the modulation angular frequency. When mVp 	 1, the intensity modulation
becomes a replica of the modulating voltage. The irradiance of the transmitted
beam begin to vary with the same frequency as the sinusoid voltage. If, however,
the condition mVp 	 1 is not satisfied, the intensity variation becomes distorted.
Note that Eq. (17.53) can be expanded in terms of Bessel functions of the first kind to
give

I0
Ii
¼ 1

2
þ J1ðmVpÞ sinð!mtÞ þ J3ðmVpÞ sinð3!mtÞ þ J5ðmVpÞ sinð5!mtÞ þ � � �

ð17:54Þ
since

sinðx sin yÞ ¼ 2 J1ðxÞ sinð yÞ þ J3ðxÞ sinð3yÞ þ J5 sinð5yÞ þ � � �½ � ð17:55Þ
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when J0ð0Þ ¼ 1 and, for nonzero n, JnðxÞ ¼ 0. The ratio between the square root of
the sum of harmonic amplitude squares and the fundamental term amplitude often
characterizes the amount of distortion in the modulation process. Therefore,

Distortion (%) ¼ ½J3ðmVpÞ�2 þ ½J5ðmVpÞ�2 þ � � �� �1=2

J1ðmVpÞ
� 100: ð17:56Þ

Consider the setup of Fig. 17.24 where the EO crystal is oriented in such a way that
the incident beam is polarized along one of the birefringence axes, say x 0. In this
specific case, the state of polarization is not changed by the applied electric field.
However, the applied field changes the output phase by an amount

��x 0 ¼ !W

c
j�nx 0 j ð17:57Þ

where W is the length of the EO crystal. For a sinusoidal bias field Ez ¼ Ez;p sinð!ptÞ
and an incident Ein ¼ Ein;p cosð!tÞ, the transmitted field is given by

Eout ¼ Ein;p cos !t�
!W

c
fn0 ���x 0 g

� �

¼ Ein;p cos !t�
!W

c
n0 �

1

2
n30p63Ez;p sinð!mtÞ

� �� �
:

ð17:58Þ

If the constant phase factor !Wn0=c is neglected, the transmitted electric field can be
rewritten as

Eout ¼ Ein;p cos½!tþ � sinð!mtÞ�; ð17:59Þ
where � � 1=2ð!Wn30p63Ez;p=cÞ is the phase-modulation index. Note that this phase-
modulation index is one-half of the retardation �� (as given by Eq. (17.47)). Using
Eq. (17.55) and the relationship

cosðx sin yÞ ¼ J0ðxÞ þ 2 J2ðxÞ cosð2yÞ þ J4ðxÞ cosð4yÞ þ � � �½ �; ð17:60Þ
we can rewrite Eq. (17.59) as

Eout ¼ Ein;p½J0ð�Þ cosð!tÞ þ J1ð�Þ½cosfð!þ !mÞtg � cosfð!� !mÞtg�
þ J2ð�Þ½cosfð!þ 2!mÞtg � cosfð!� 2!mÞtg�
þ J3ð�Þ½cosfð!þ 3!mÞtg � cosfð!� 3!mÞtg� þ � � ��:

ð17:61Þ
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Figure 17.24 A phase modulator using an EO crystal: (a) the system and (b) the orientation

of crystal axes.



Accordingly, in this case, the optical field is seen to be phase modulated with energy
distribution in the side bands varying as a function of the modulation index �. We
observe that while the EO crystal orientation of Fig. 17.23 provides an amplitude
modulation of light, the setup of Fig. 17.24 can provide a phase modulation of light.
Both of these modulators are called longitudinal effect devices because in both cases
the electric field is applied in the same direction as that of propagation. In both of
these cases, the electric field is applied either by electrodes with small apertures in
them or by making use of semitransparent conducting films on either side of the
crystal. This arrangement, however, is not too reliable because the field electrodes
tend to interfere with the optical beam.

Alternatively, transverse electro-optic modulators can be used, as shown by the
system shown in Fig. 17.25. The polarization of the light lies in the x 0�z plane at a
458 angle to the x 0-axis while light propagates along the y 0-axis and the field is
applied along z. With such an arrangement, the electrodes do not block the incident
optical beam and, moreover, the retardation can be increased by introducing longer
crystals. In this longitudinal case, the amount of retardation is proportional to V and
is independent of the crystal length W according to Eq. (17.47). Using Eqs (17.45a)
and (17.45c), the retardation caused by the transverse EO amplitude modulator is
given by

��t ¼ �x 0 � �z 0 ¼
2W



ðn0 � nEÞ � n30p63

V

d

� �
; ð17:62Þ

where n0 and nE are refractive indices, respectively, along ordinary and extraordinary
axes. Note that ��t has a voltage-independent term that can be used to bias the
irradiance transmission curve. Using a long and thin EO crystal can reduce the half-
wave voltage. Such an EO crystal allows the transverse EO modulators to have a
better frequency response but at the cost of having small apertures.

There are occasions when we might be interested in driving the modulating
signals to have large bandwidths at high frequencies. This can happen when we
decide to use the wide-frequency spectrum of a laser. To meet the demand of such
a scenario, the modulator capacitance that is caused by the parallel-plate electrodes
and the finite optical transit time of the modulator limits both bandwidth and the
maximum modulation frequency. Consider the equivalent circuit of a highfrequency,
electro-optic modulator as shown in Fig. 17.26. Let Rin be the total internal resis-
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tance of the modulating source V , while C represents the parallel-plate capacitance
of the EO crystal. When Rin is greater than the capacitance impedance, a significant
portion of the modulating voltage is engaged across the internal resistance, thus
making the generation of electro-optic retardation relatively insignificant. In order
to increase the proportion of the modulating voltage that is engaged across the EO
crystal, it is necessary to connect a parallel resistance-inductance circuit in parallel
with the modulator. The load RL is chosen to be very large when compared with Rin.
The choice guarantees that most of the modulating voltage is employed across the
EO crystal. At the resonant frequency �0 ¼ ½1=f2ðLCÞg1=2�, the circuit impedance is
equivalent to load resistance. However, this system imposes a restriction on the
bandwidth and makes it finite. The bandwidth is given by ½1=f2RLCg� and is cen-
tered at the resonant frequency �0. Beyond this bandwidth, the modulating voltage is
generally wasted across Rin. Consequently, for the modulated signal to be an exact
replica of the modulating signal, the maximum modulation bandwidth must not be
allowed to exceed ��, where �� is usually dictated by the specific application.

The power P needed to drive the EO crystal is given by 1=2ðV2
max=RLÞ where

Vmax ð¼ Ez;maxWÞ is the peak modulating voltage that produces the peak retardation
��max. Using Eq. (17.47) we can relate the driving power and the modulation
bandwidth by

P ¼ ð��maxÞ2
2C��

4p263n
6
0

;

¼ ð��maxÞ2
2AKs"0��

4p263n
6
0W

;

ð17:63Þ

since at the modulation frequency �0, the parallel-plate capacitance C is given by
AKs"0=W , where A is the cross-sectional area of the crystal, Ks is the relative dielec-
tric constant for the material, and W is the plate separation between the two elec-
trodes.

As long as the modulating frequency is relatively low, the modulating voltage
remains appreciably constant across the crystal. If the above condition is not ful-
filled, however, the maximum allowable modulation frequency is restricted substan-
tially by the transit time of the crystal. To overcome this restriction, the modulating
signal is applied transversely to the crystal in the form of a traveling wave with a
velocity equal to the phase velocity to the optical signal propagating through the
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Figure 17.26 A circuit equivalent to an EO modulator.



crystal. The transmission line electrodes are provided with matched impedance at the
termination point, as shown in Fig. 17.27(a). The optical field is then subjected to a
constant refractive index as it passes through the modulator, thus making it possible
to have higher modulation frequencies. The traveling modulation field at a time t will
have the form

Eðt; zðtÞÞ ¼ Ep exp j!m t� z

vp

� �� �

¼ Ep exp j!m t� c

nvp
ðt� t0Þ

� �� �
;

ð17:64Þ

where vp is the phase velocity of the modulation field, !m is the modulating angular
frequency, and t0 is defined as a reference to account for the time when the optical
wavefront enters the EO modulator. The electro-optic retardation due to the field
can be written in accordance with Eq. (17.47) as

�� ¼ �
c

n

ðt0þtt

t0

Eðt; zðtÞÞdt; ð17:65Þ

where � ¼ 2n30p63=
 and tt ¼ nW=c is the total transit time (i.e., time taken by light
to travel through the crystal). Equation (17.65) can be evaluated to give the traveling
wave retardation as

��travel ¼ ð��Þ0
e j!mt0 ½e j!mtt½1�ðc=nvpÞ� � 1�

j!mtt 1� c

nvp

� � ; ð17:66Þ

where ð��Þ0 ¼ ð�cttEp=nÞ is the peak retardation. The reduction factor

Ftravel ¼
e j!mtt½1�ðc=nvpÞ� � 1

j!mtt 1� c

nvp

� � ð17:67Þ

provides the amount of reduction in the maximum retardation owing to transit time
limitation. If instead we had begun to calculate the retardation for a sinusoidal
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Figure 17.27 (a) Ideal traveling wave EO modulator and (b) zig-zag traveling wave
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modulation field that has the same value throughout the modulator, the retardation
would have been

��travel ¼ ð��Þ0 expðj!mt0Þ
e j!mt � 1

j!mtt

� �
: ð17:68Þ

By comparing Eqs. (17.66) and (17.68), we find that the two expressions are identical
except that in the traveling wave, the EO modulator tt is replaced by ttf1� ðc=nvpÞg.
The reduction factor in this latter case is given by

Fnontravel ¼
e j!mt � 1

j!mtt
: ð17:69Þ

In the case of a nontraveling system, the reduction factor is unity only when
!mtt 	 1, i.e., when the transit time is smaller than the smallest modulation period.
But in the case of the traveling system, F approaches unity whenever the two-phase
velocities are equal – that is, when c ¼ nvp. Thus, in spite of the limitation of transit
time, the maximum retardation is realized using the traveling wave modulator.

In practice, it might become very difficult to synchronize both electrical and
optical waves. For a perfect synchronization, we expect to use an EO crystal for
which n ¼ K1=2

s . But for most naturally occurring materials, n is less than K1=2
s . Thus,

synchronization is achieved either by including air gaps in the electrical waveguide
cross section or by slowing down the optical wave by means of a zigzag modulator,
as shown in Fig. 17.27(b).

A useful amplitude modulator involving waveguides, known as the Mach–
Zehnder modulator, consists of neither polarizer nor analyzer but only EO material.
The system, as shown in Fig. 17.28, splits the incoming optical beam into a ‘‘wave-
guide Y’’ and then recombines them. If the phase shift present in both of the arms is
identical, all of the input power minus the waveguide loss reappears at the output.
One arm of the Mach–Zehnder system is provided with an electric field placed across
it such that the amplitude of the field can be varied. Changing the voltage across the
waveguides modulates the output power. When a sufficiently high voltage is applied,
the net phase shift difference between the arms can become 1808, thus canceling the
power output altogether. Because of the small dimensions involved in electrode
separations, relatively small switching voltages are used in such a modulation
scheme.
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Figure 17.28 Mach–Zehnder waveguide EO modulator.



Figure 17.29(a) shows a prism deflector that uses a bulk electro-optic effect so
that we can deflect an optical beam by means of an externally applied electric
voltage. The electric voltage induces regions having different refractive indices, as
a result of which the prism steers the refracted beam of light. Stacks of prisms can be
used to provide a larger angle of deflection. Figure 17.29(b) shows an interesting
application where birefringent crystals are combined with a Pockels cell modulator
to form a digital EO deflector. By applying an electric field, we can rotate the
direction of polarization by =2. Accordingly, by manipulating voltage (V1 and
V0) we can shift the input optical beam to any one of the four spatial locations at
the output. Similarly, by using n Pockels cell modulators and n birefringent crystals,
we can shift light to a total of 2n spatial locations. A system such as that of Fig.
17.29(b) can be considered for various optical computing applications.

A device by the name of Pockels read-out optical modulator (PROM) can be
fabricated by having an EO crystal, such as Bi2SiO20 or ZnSe, sandwiched between
two transparent electrodes. There is also an insulating layer between the EO crystal
and the electrode. A dc voltage can create mobile carriers, which in turn causes the
voltage in the active crystal to decay. The device is normally exposed with the
illumination pattern of a blue light. The voltage in the active area that corresponds
to the brightest zones of the input pattern decays, while that corresponding to the
comparatively darker area either does not change or changes very little. On the other
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hand, the read-out beam usually uses a red light. Note that the sensitivity of an EO
crystal is much higher in the blue region than in the red region. Such a choice of
read-out beam ensures that the read-out beam may not cause a change in the stored
voltage pattern. In the read-out mode, the regions having the least amount of voltage
act like a half-wave retarder. The reflected light, whose polarization is thus a func-
tion of the voltage pattern, is then passed through a polarizer to reproduce the
output. For an eraser light E, the amplitude of the output is found to be

A ¼ A0 sin
V0

V1=2

� �
e�KE; ð17:70Þ

where A0 is the amplitude of the input read-out beam, V0 is the voltage applied
across the EO crystal, V1=2 is the half-wave voltage, and K is a positive constant. In
the reflection read-out mode, V1=2 ¼ 2V0. The amplitude of the reflectance of the
PROM when plotted against the exposure is surprisingly found to be similar to that
of a photographic film with a nearly linear region between E ¼ 0 and E ¼ 2=K , as
shown in Fig. 17.30.

There are many isotropic media available that behave like uniaxial crystals
when subjected to an electric field E. The change in refractive index �n of those
isotropic media varies as the square of the electric field. Placing one of these media
between crossed polarizers produces a Kerr modulator. Modulation at frequencies
up to 1010 Hz has been realized using a Kerr modulator. The difference between the
two refractive indices that corresponds respectively to light polarized perpendicular
to the induced optic axis and light polarized perpendicular to the induced optic axis
is provided by

�n ¼ jnk � n?j ¼ k
E2; ð17:71Þ
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Figure 17.30 The characteristics of a PROM device.



where k is the Kerr constant of the material. At room temperature, the Kerr constant
has a typical value of 0:7� 10�12, 3:5� 10�10, and 4:5� 10�10 cm=V2, respectively,
for benzene, carbon disulphide, and nitrobenzene.

The applied electric field induces an electric moment, which in turn reorients
the molecules in a manner so that the medium becomes anisotropic. The delay
between the application of the field and the appearance of the effect is, though
not negligible, on the order of 10�12 s. A liquid Kerr cell containing nitrobenzene,
as shown in Fig. 17.31, has been used for many years, but it has the disadvantage of
requiring a large driving power. This problem is often overcome by using, instead,
mixed ferroelectric crystals at a temperature near the Curie point, where ferroelectric
materials start exhibiting optoelectric properties. Potassium tantalate niobate (KTN)
is an example of such a mixture of two crystals, where one has a high Curie point and
the other has a low Curie point, but the Curie point of the compound lies very close
to room temperature. The transmittance characteristics of a Pockels cell and a Kerr
cell are shown, for comparison, in Fig. 17.32.

One of the ways one can realize a Q-switched laser involves subjecting either an
EO crystal or a liquid Kerr cell to an electric field. Such a nonmechanical system is
shown in Fig. 17.33. When there is no electric field, there is no rotation. But in the
presence of the field, an EO device can introduce a rotation =2. Thus, when the EO
device is assembled along with a polarizer, the combination works as a shutter.
Because of the vertical polarizer, the light coming out of the lasing medium is
plane-polarized. Because the polarized light has to traverse through the EO device
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twice before coming back to the polarizer, only half of the voltage required to
produce a rotation of =2 is applied to the system. Accordingly, the polarizer of
the EO system blocks the light from coming to the main chamber of the laser. This is
equivalent to causing a loss in the laser resonator. Such a loss, when suitably timed,
can be made to produce a pulsed laser output with each pulse having an extremely
high intensity. The voltages required to introduce appropriate fields are usually in
the order of kilovolts, and thus it becomes possible to Q-switch at a rate of only
nanoseconds or less.

The liquid-crystal light valve (LCLV) is a specific spatial light modulator
(SLM) with which one can imprint a pattern on a beam of light in nearly real
time. The two aspects of this device that are particularly important are the modula-
tion of light and the mechanism for addressing the device. Besides LCLVs, there are
many SLMs that are currently being considered for electro-optic applications.
However, most of these devices follow only variations of the same physical principle.

The term liquid crystal (LC) refers to a particular class of materials whose
rheological behavior is similar to that of liquids, but whose optical behavior is
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similar to that of crystalline solids over a given range of temperature. In particular, a
type of LC, referred to as the nematic LC, is commonly used in LCLV as well as in
most other LC devices. Lately, ferroelectric LCs are also being used in real-time
display devices. In comparison, ferroelectric LC-based devices respond at a faster
rate than nematic LC-based devices. Nematic LCs generally consist of thin, long
molecules, all of which tend to be aligned in the same direction, as shown in Fig.
17.34. When an electric field is applied to an LC layer, the molecules are reoriented in
space due to both field and ionic conduction effects. The fact that LCs have a rod-
like cylindrical molecular shape and that they tend to be aligned are prime reasons
for yielding two EO effects: electric field effect and birefringence. In the ‘‘off’’ state,
an LCLV utilizes the properties of a nematic cell, while in the ‘‘on’’ state, it utilizes
the birefringence properties.

The shape of the LC molecule introduces a polarization-dependent variation
of the index of refraction that contributes to its birefringence characteristics. The
difference between the two indices of refraction given by �n ¼ jnk � n?j is a mea-
sure of the anisotropy of the material, where nk represents the index of refraction
for the component of light parallel to the molecular axis, and n? represents the
index of refraction for the light component having an orthogonal polarization.
Since LC molecules tend to be aligned, a bulk LC sample exhibits the same
anisotropy as that exhibited by an individual LC molecule. In fact, a birefringent
LC cell is normally formed by stacking LC layers parallel to the cell wall.
Accordingly, all of the LC molecules are aligned along only one direction. When
linearly polarized (at 458 to the alignment axis) light enters an LC cell of thickness
D, the parallel polarization component lags behind the orthogonal component (due
to positive anisotropy) by �� ¼ ½2Dð�nÞ�=
. In general, the transmitted light
turns out to be elliptically polarized. With a suitable choice of D, we can force
the LC cell to behave like a half-wave or a quarter-wave plate. When compared
with other traditional materials, LCs are preferable for making such retardation
plates. In a typical LC material, �n is non-negligible quantity. For example, for a
typical LC, �n is about 0.2 in the infrared, whereas �n is only about 0.0135 in
CdS in the infrared; in the visible, say, for quartz, �n can be as low as 0.009.
Thinner LC cells produce a comparatively large value of ��. Note that a thinner
LC cell allows for a larger acceptance angle for the incoming light, whereas a
thicker, solid crystal like quartz forms a cell that is extremely sensitive to the
angle of incidence. Further, LC cells can be grown to have reasonably large aper-
ture sizes, suitable for handling higher laser power; however, the size will be limited
by the tolerance for optical flatness.
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For positive anisotropy, there is a region of applied voltage over which the LC
molecules may gradually rotate, introducing a variable phase delay in the output
light. This feature, as illustrated in Fig. 17.35, can be used to create a voltage-control
phase shifter. As stated earlier, a typical LC device combines the characteristics of
both birefringence and field effects. A typical SLM structure is shown in Fig. 17.36,
where the cell is organized in the form of a quarter-wave plate. Consider an incoming
light that is linearly polarized at an angle of 458 to the direction of alignment. The
transmitted light is then found to be circularly polarized, but the reflected light that
passes back through the quarter-wave cell becomes polarized in a direction perpen-
dicular to that of the incident light. The first polarizer acts as an analyzer and thus
blocks the light. In the presence of an external voltage, however, the birefringence
can be reduced. The polarization characteristics of the resultant reflected light are
changed so that the analyzer cannot block all of the reflected light. The external
voltage can thus be used to control the transmission of light. In particular, transmis-
sion is zero when voltage is zero, but transmission reaches a maximum at high
enough voltage. It is possible for the transmission to have a nonbinary value when
voltage is set between the two extremes. Devices made using this SLM configuration
are generally very sensitive to variations in cell thickness and light wavelength.
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Interestingly, the twisted nematic LCs are also used in the common liquid-
crystal display (LCD), as shown in Fig. 17.37. Instead of having parallel layers of
LC stacks, the alignment layers at the opposite faces of the cell are maintained at 908
to each other. The remaining layers, depending on their positions, are oriented in a
manner such that there is a gradual change in orientation from one end of the cell to
the other. The molecules of a stack tend to line up in the same common direction, but
they tend to align themselves with those of the neighboring stacks. The tilt of the
molecular axes changes gradually between the two edges. An externally applied
voltage can generally overcome the effects of alignment force and, with sufficient
voltage, the molecules can fall back to their isotropic states. When voltages are
withdrawn, the light going through the cell undergoes a rotation of 908 and thus
passes through the analyzer. But in the presence of voltage, light falls short of 908
and, as a result, the analyzer can block most of the light.

When the voltage is low or completely withdrawn, LC molecules remain gra-
dually twisted across the cell from the alignment direction of one wall to that of the
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other wall. Such smooth transition is referred to as adiabatic. The light polarization
is able to follow this slowly varying twist primarily because the cell width is larger
than the light wavelength. As voltage is increased, LC molecules tend to be reorga-
nized along the direction of the applied field. But in order for this to happen, the LC
molecules have to overcome the alignment forces of the cell walls. The molecules
located at the very center are farthest away from the walls and are, therefore, more
likely to be reorganized.

As the tilt angle approaches =2, molecules fail to align themselves with their
immediate neighbors. In the extreme case of a =2 tilt, the cell splits into two distinct
halves. While the molecules in one half are aligned with one wall, the molecules in the
other half are aligned with the other wall. Such a nonadiabatic system is modeled
simply as a birefringent cell with an elliptically polarized transmission.
Consequently, this state corresponds to maximum transmission. Other than two
extremes, slowly varying and abrupt, there exists transmitted light with an inter-
mediate degree of elliptical polarization. The amount of polarization in the transmis-
sion is thus controllable by an externally applied voltage that allows the LCLV to
operate with gray levels. Note that the maximum birefringence occurs when the
incident light forms an angle of =4 with the molecular axis. Thus, nematic LCs
having a 458 twist provide the maximum LCLV transmission.
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The LCLV functions quite similarly to an LCD with only slight differences.
The transmission characteristics of the analyzer in the case of an LCLV are the
inverse of those in an LCD. This is indicated in Fig. 17.38. The LCLV requires
only a little energy to produce an output, but it requries a large energy to yield its
maximum output. This allows the device to produce a positive image when it is
addressed optically. Again, while an LCD deals with binary transmission, an
LCLV utilizes gray levels (corresponding to intermediate levels of transmission) to
accurately represent an image. Thus, an LCLV is often operated in the transition
region that exists between the minimum and the maximum transmission. To produce
such an operating characteristic, therefore, an LCLV is organized differently from an
LCD.

The light incident on a cell normally strikes its surface along the normal. The
incident beam of light becomes linearly polarized in the direction of the molecular
alignment of the first layer. In the absence of an applied voltage, the polarization
direction rotates through an angle of =4 along the helical twist of the LCs. The
returning reflected light from the mirror undergoes a further twist of =4, amounting
to a total of =2 rotation, and is thus blocked by the analyzer. With external voltage,
however, light transmission increases because light can no longer follow the twist.
Thus, by a combination of both birefringence and field effects, the twisted nematic
cell can produce EO modulation.

Typical LCDs are addressed via electrode leads; each is connected to only one
display segment. Such an addressing technique poses a serious problem when the
number of leads begins to increase. LCLVs are, however, addressed differently – by
means of optics. Optical addressing allows the image information to be fed into an
LCLV in parallel. Thus, in the case of an LCLV, the frame time is the same as the
response time of only one pixel. By comparison, in a scanning display, a frame time
may equal the response time of one pixel multiplied by the total number of pixels.
For example, a typical 20 inch� 20 inch flat panel display may consist of up to
1000� 1000 pixels, with 2000–3000 pixels per dimension possible. The simplicity
of optical addressing is thus obvious. Optical addressing is also preferable because
it provides better resolution.
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A typical optically addressed LCLV is shown in Fig. 17.39. A photoconductive
material is used to transfer the optical input to an equivalent voltage on the LC layer.
The photoconductor is highly resistive, and it thus utilizes most of the voltage when
there is no incident light. Very little or no voltage can be applied across the LC layer
to limit the transmission of the read-out light. In the presence of incident light, the
resistivity of the photoconductor decreases, as a result of which more voltage
appears across the LC layer. The intensity of the incident light thus engages a
proportional amount of voltage across the LC layer. Accordingly, an input intensity
variation will manifest itself as a voltage variation across the LC layer. Again, the
coherent read-out beam illuminating the back of the LCLV is reflected back but
modulated by the birefringent LC layer. Thus the input optical image is transferred
as a spatial modulation of the read-out beam. The dielectric mirror present in the
device provides optical isolation between the input in coherent beam and the coher-
ent read-out beam. In practice, however, the LCLV is driven by the ac voltage. For
frequencies with periods less than the molecular response time, the LCLV responds
to the rms value of the voltage. An ac-driven LCLV allows flexibility in choosing
both the type of photoconductor as well as the arrangement of the intermediate
layers.

For the ac-driven LCLV, CdS is generally chosen as the photoconductor, while
CdTe is used as the light-blocking material. The CdTe layer isolates the photocon-
ductor from any read-out light that gets through the mirror. It is possible to feed the
optical input data by means of a CRT, fixed masks, or even an actual real-time
imagery. A typical LCLV has a 25-mm diameter aperture, a 15ms response time, 60
lines/mm resolution at 50% modulation transfer function, 100:1 average contrast
ratio, and a lifetime of several thousand operating hours.
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Amore recent innovation is the CCD-addressed LCLV, as shown in Fig. 17.40.
The CCD structure is introduced at the input surface of the semiconductor wafer in
the LCLV. The first CCD register is fed with charge information until it is full. The
content of this CCD register is then clocked into the next CCD register. The serial
input register is again filled and then emptied in parallel. This process is repeated
until the total CCD array is loaded with a complete frame of charge information. An
applied voltage can then cause the charge to migrate across the silicon to mirror
surfaces. The CCD-addressed LCLV generally requires a positive pulse to transfer
the charge. This particular display device is very attractive because of its high speed,
high sensitivity, high resolution, and low noise distortion.

The LCLV is able to provide image intensification because the read-out beam
may be as much as five orders of magnitude brighter than the write beam. The
efficient isolation provided by both the mirror and the light-blocking layer is respon-
sible for such intensification as well as for the wavelength conversion between two
beams. An LCLV is thus ideally suited to process infrared imagery. Infrared images
typically consist of weak signals that require amplification before being processed
further. In addition, it is easier to perform optical processing in the visible domain
than in the infrared. LCLVs have already been applied to radar-signal processing,
digital-optical computation, optical correlation, and optical image processing; in
fact, they have many more applications. However, the response time of an LCLV
(determined by the finite time it takes to rotate the LC molecules) is questionable for
many of the operations. New LC materials that may improve the response time are
currently being developed. The LCLV can be operated with all-coherent, all-inco-
herent, or mixed read-and-write beams. But the real limitation of this device happens
to be its inflated cost.

Often in an adaptive system it becomes necessary to measure the difference
between a signal and an estimate of the signal. This measured difference is often used
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to improve future estimates of the signal. Figure 17.41 shows such a feedback sys-
tem, which uses a special spatial light modulator, known as a microchannel spatial
light modulator, MSLM. The MSLM consists of an EO crystal, a dielectric mirror, a
microchannel plate, and a photocathode. The signal wavefront passes through the
beamsplitter (BS) and is then reflected by an optically controlled MSLM that serves
as a phase shifter. After further reflections, a part of the beam passes through a
second beamsplitter to generate a compensated signal beam. The remaining portion
of the beam is mixed with a local oscillator to produce an error signal, which in turn
is used to control further phase shifting as well as to maintain phase compensation.

17.8 ACOUSTO-OPTIC MODULATION AND DEVICES

The terms acousto-optic (AO) or elasto-optic effects are used interchangeably to
indicate that the refractive index of a medium is being changed either by a mechani-
cally applied strain or by ultrasonic waves. Accordingly, a cousto-optic modulator
consists of a medium whose refractive index undergoes a sinusoidal variation in the
presence of an externally applied ultrasonic signal, as shown in Fig. 17.42. The solid
lines indicate the regions of maximum stress, and the dashed lines indicate the
regions of minimum stress. There are many materials, such as water, lithium niobate,
lucite, cadmium sulphide, quartz, and rutile, that exhibit changes in the refractive
index once they are subjected to strain.

As the light enters an AO medium, it experiences a higher value of refractive
index at the region of maximum stress, and thus advances with a relatively lower
velocity than those wavefronts that encounter the regions of minimum stress. The
resultant light wavefront thus inherits a sinusoidal form. The variation in the acous-
tic wave velocity is generally negligible, and so we may safely assume that the
variation of refractive index in the medium is stationary as far as the optical wave-
front is concerned. A narrow collimated beam of light incident upon such a medium
is thus scattered into primary diffraction orders. In most practical cases, higher-
diffraction orders have negligible intensities associated with them. The zero-order
beam generally has the same frequency as that of the incident beam, while the
frequencies of þ1 and �1 orders undergo a frequency modulation.

In order to appreciate the basics of acousto-optic effects, we can consider the
collisions of photons and phonons. Light consists of photons that are characterized
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by their respective momentum, hkl=2 and hka=2, where ka and kl are the respective
wave vectors. Likewise, photon and phonon energies are given respectively by h�l
and h�a, where �l and �a are the respective frequencies. Consider the scenario where a
wave vector is given by k 0

l , as illustrated in Fig. 17.43. The condition for the con-
versation of momentum, when applied to this collision, yields

kl cos � ¼ k 0
l cos �

0 ð17:72aÞ
and

ka ¼ kl sin � þ k 0
l sin �

0; ð17:72bÞ
where � and � 0 are the angles formed by the incident and the scattered photons,
respectively. Consequently, the angle of scattered photon is evaluated to give

� 0 ¼ arctan
ka
kl

sec � � tan �

� �
: ð17:73Þ

It is reasonable to assume that ka 	 kl and, thus, for small values of �, Eq. (17.73)
reduces to

� 0 ¼ c

�a�l

� �
�a � � ð17:74Þ

where �a is the acoustic velocity. Equation (17.74) explicitly shows that the angle
formed by the scattered photon is proportional to the acoustic frequency. By mea-
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suring the deflection angle, we can estimate the acoustic frequency. Further, Eq.
(17.73) reveals that for an incident angle � ¼ �B ¼ sin�1ðka=2klÞ in an isotropic med-
ium, � ¼ � 0 and kl ¼ k 0

l . At this particular angle of incidence, referred to as the Bragg
angle, photon momentum is conserved and the diffraction efficiency reaches a max-
imum. Note that the power in the scattered beam varies with � and reaches a max-
imum when � is equal to the Bragg angle.

It is important to realize that the acousto-optical effect is produced by multiple
collisions of photons and phonons. In any event, the scope of Eq. (17.74) is some-
what valid in most practical devices. The condition for conservation of energy is only
approximately valid in photon–phonon collision. However, in practice, the fre-
quency of the scattered photon �l ¼ � 0l , since �a 	 �1. In anisotropic materials, k 0

l

approaches rkl, where r is the ratio of the refractive indices corresponding to the
diffracted and incident waves, respectively. Equations (17.72a) and (17.72b) can be
modified to give

� ¼ sin�1 ka
2kl

1þ kl
ka

� �2

ð1� r2Þ
( )" #

ð17:75aÞ

and

� 0 ¼ sin�1 ka
2rkl

1� kl
ka

� �2

ð1� r2Þ
( )" #

: ð17:75bÞ

But to have valid solutions, the condition

1� ka
kl

	 r 	 1þ ka
kl

ð17:76Þ

must be satisfied. It is obvious that � and � 0 are equal only when r ¼ 1 because it is
not possible to have r ¼ ðka=klÞ � 1 when ka 	 kl. Thus, the phenomenon � ¼ � 0 is
associated only with the Bragg angle of incidence and the condition r ¼ 1. In general,
for an incident wave vector, there are two values of ka (and thus k 0

l ) that satisfy the
condition of conservation of momentum. Note that in anisotropic media, the con-
servation of momentum is satisfied over a wider range of acoustic frequencies or
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incident light beam directions than is normally realizable in isotropic materials.
Consequently, in acousto-optical devices, birefringent diffraction plays a dominant
role in determining modulation.

The diffraction of the light beam in AO modulators is justifiably associated
with a diffraction grating set up by the acoustic waves. The exact characteristics of
this diffraction are indicated by the parameter Q ¼ k2ad=kl, where d is the width of
the acoustic-optic device. When Q < 1, the diffraction is said to operate in the
Raman–Nath regime, and when Q 
 1, the diffraction is said to operate in the
Bragg regime. In the region where 1 	 Q 	 10, the diffraction has a characteristic
that is a mixture of the two extremes. Since Q is directly proportional to d, a higher
Q requires lesser drive power for any given interaction efficiency. In the Raman–
Nath regime, the acoustic-optic grating can be treated as a simple grating, such that

m
 ¼ 
a sin �m; ð17:77Þ
where 
a is the acoustic wavelength, m is an integer, and �m is the corresponding
angle of diffraction. By comparison, in the Bragg regime, the acoustic field acts very
much like a ‘‘thick’’ diffraction grating, requiring that

� ¼ � 0 ¼ sin�1 m


2
a

� �
: ð17:78Þ

Bragg diffraction is identical to that of a plane grating when the angle of incidence
equals the diffracting angle. Reflected waves, except those for which � ¼ � 0, interfere
constructively, producing a very strong first-order component.

The fraction of the light diffracted is often characterized by the diffraction
efficiency �, defined as ðI0 � IÞ=I0, where I is the output irradiance in the diffraction
orders and I0 is the output irradiance in the absence of the acoustic waves. While the
diffraction efficiency of the Raman–Nath grating is only about 0.35, it approaches
1.00 for the Bragg case. At the Bragg angle, the diffraction efficiency is given by
sin2½ð�ndÞ=ð
 cos �BÞ�, where �n is the amplitude of the refractive index fluctuation.

A Bragg cell can be used to switch light beam directions by turning on and off
the acoustic source. The intensity of the diffracted light, however, depends on the
amplitude of the acoustic wave. An amplitude modulation of the acoustic wave will,
therefore, produce amplitude-modulated light beams. But again the movement of the
acoustic waves produces a moving diffraction grating, as a result of which the
frequencies of the diffracted beams are Doppler-shifted by an amount þ=�mva.
This frequency shifting can be effectively manipulated to design frequency modula-
tors. AO modulator transfer function is sinusoidally dependent on the input voltage;
however, this presents no difficulty in on-and-off modulation. For analog modula-
tion, it is necessary to bias only the modulator at a carrier frequency such that the
operating point is in an approximately linear region of operation. When compared
with an EO modulator that consumes voltage on the order of 103 V, an AO mod-
ulator requires only a couple of volts. But since the acoustic wave propagation is
slow, the AO devices are often limited by the frequency response of the acoustic
source, figure of merit, and acoustic attenuation. Most of the AO materials are lossy.
Materials with high figures of merit normally have a high attenuation. The most
commonly used AO materials are quartz, tellurium dioxide, lithium niobate, and
gallium phosphide. The materials with lower figures of merit are also used, but they
operate with a higher drive power. A practical limit for small devices is a drive power
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density of 100–500 W/mm2, provided there is a proper heat sink. Bandwidths of up
to 800MHz are common in most commercial AO modulators.

AO modulators are used widely in a large number of applications, such as laser
ranging, signal-processing systems, optical computing, medium-resolution high-
speed optical deflectors, acoustic traveling-wave lens devices, and mode-locking.
Figure 17.44 shows a system where AO modulators are used to support beam scan-
ning of a laser printer. In the laser printers, a rotating drum with an electrostatically
charged photosensitive surface (a film of cadmium sulfide or selenium on an alumi-
num substrate) is used so that a modulated laser beam can repeatedly scan across the
rotating surface to produce an image. The most commonly used beam-scanning
system utilizes an He–Ne laser, a modulator, and a rotating polygonal prism. The
He–Ne laser is preferred over other lasers because the photosensitive layer is sensitive
to its output. But since it is difficult to modulate an He–Ne laser internally, the
mdoulation is done externally. We can also use an EO cell for the modulator, but
an AO modulator is preferred because of its ability to operate with unpolarized light,
and also because it requires a low-voltage power supply.

AO modulators are also used in systems involving optical disks. Quite like their
audio counterparts, optical disks store information in optical tracks. But in the case
of optical disks, there is neither a groove nor a continuous line present, but rather
‘‘pits’’ that are small areas providing an optical contrast with respect to their sur-
roundings. The varied reflectance along the track represents the information stored.
These disks are versatile in the sense that they can be used for both direct read-out
and recording. Figure 17.45 shows one such direct-read-after-write optical disk sys-
tem. The write laser usually has more power than the read laser. The more sophis-
ticated systems are arranged to have angular and polarization separation of beam to
ensure that the read beam does not interfere with the reflections of the write beam.

17.9 SUMMARY

This chapter provides only a brief introduction and discussion of the basic role of
photoconduction, photodetection, and electro-optic and acousto-optic modulation.
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Some of the more significant applications of these concepts have contributed to
various detection, imaging, amplification, modulation, and signal-processing systems
which have also been discussed in this chapter. For details on many of the systems
considered in this chapter, as well as for elaboration on other variations, one will
need to use other reference sources and public-domain publications.
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18

Radiometry

MARIJA STROJNIK and GONZALO PAEZ
Centro de Investigaciones en Optica, León, Mexico

18.1 INTRODUCTORY CONCEPTS

Radiometry refers to the measurement of radiation. The word radiation is closely
associated with radio waves, because Hertz generated radio waves in 1887 when
electromagnetic waves were first generated in a laboratory using electronics. Based
on the earlier theoretical work by Maxwell, we know today that the radiation of
different wavelengths spans the whole electromagnetic spectrum; see Fig. 18.1 and
Table 18.1. Within the broad area of optical engineering, we are interested in the
ultraviolet (UV), visible, infrared (IR), and often, millimeter waves. Many of the
concepts apply equally well to the X-ray region, which has recently been gaining in
importance. Historically, humans have more narrowly focused their interest on the
visible wavelength region, the portion of the electromagnetic spectrum where the
human eyes are sensitive. This has resulted in the development of a special branch
of radiometry, tailored to the human eyes as detectors, referred to as illumination
engineering, together with the development of specific units related to human
vision.

As we learned that radiation existed outside the visible region, we found it
advantageous to apply a uniform terminology for the quantities related to the optical
radiation and to the units applicable to the radiation of all wavelengths. Thus, we
prefer to use the terminology for the optical radiation which is based on power (the
standard terminology in physics) for the shorter wavelengths, and that based on
frequency (or wavelength), used traditionally in electrical engineering and infrared,
for the longer wavelengths. We refer to those as radiometric quantities and units.
The MKS units have been widely accepted in the international communities, based
on the proposition that we can measure the radiative power at specific wavelengths
or frequencies in watts. When the visible radiation is considered just a portion of the
electromagnetic spectrum, the radiometric terminology and units may also be
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applied. However, when referring to the effect of the visible radiation on the parti-
cular detector of the human visual system, the photometric terminology and units are
preferred. They are discussed in Section 18.4.

The advantages of using the concept of power are obvious when we think of
the radiation as the carrier of information from one point in space to a different
point in space. The information may be coded in terms of the wavelength, or its
spectral content, or, even better, in terms of the amount of the radiation at the
specific wavelength that is being transferred. The amount of radiation of a specific
wavelength that is being transferred is the spectral radiative power.

While the amount of radiation may be characterized by its power, its spectral
characteristics may be defined by the wavelength region: we are familiar with the
rainbow produced by water drops or dispersion generated with a glass prism. The
concept of wavelength has been used advantageously in the infrared, or the long-
wavelength region of the electromagnetic spectrum because this radiation has very
low energy. The simplest way of visualizing the wavelength is by considering the
generation of the radiation with an oscillating dipole, as in radio transmission. A
wavelength is that distance in space for which the electromagnetic radiation has the
same phase and the same algebraic sign of its derivative. For the radio waves, we
actually prefer to use the concept of frequency, measuring the number of waves that
pass a given position in space per unit time:
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� ¼ c=
; ½Hz� ð18:1Þ
where c is speed of the radiation in [m/s], in vacuum ¼ 2:9972� 108 m/s, 
 is the
wavelength in [m], or usually in [mm] for convenience, and � is frequency in [s�1] or
[Hz]. We use a square bracket to denote the units. In radiometry, a consistent use of
units helps avoid confusion due to varied, and oftentimes, confusing, terminology.

In the shorter wavelength regions, we are familiar with the effects of UV
radiation, which is powerful enough to produce changes in material physical char-
acteristics, ranging from burning the human skin to causing glass to darken. In the
short-wavelength region, we characterize the radiation by energy carried by the
smallest packet of such radiation, called a photon. Its energy is

Qq ¼ h� ¼ hc=
q; ½J� ð18:2Þ
where Q is energy [J] and h is Planck’s constant (¼ 6:6266176� 10�34 Js).

There are two ways of looking at the matter. In the first one, referred to as the
microscopic point of view, we consider the individual atoms, even if there are many
of them. The second one, called the macroscopic view, deals with the collective
behavior of very many atoms together, in an assembly.

Radiation may be viewed similarly. When we think of the power of the radia-
tion, or the radiative power, we can define it macroscopically as the power of the
radiation of a certain wavelength, or of a certain frequency. When we assume this
view, we do not have to accept the concept of the minimum energy carried by a single
photon. This point of view is most widely accepted in optical engineering applica-
tions. It deals with the type of power that is defined in mechanical and electrical
engineering. It is the power that may be used to generate work; it is the power that
generates heat when not used wisely; it is the power that is the energy expanded per
unit time. This concept of power is used in Section 18.2 to define the radiometric
concepts,

P ¼ dQ=dt: ½W� ð18:3Þ
where P is the power in [W], Q is energy in [J], t is the time in [s], and d(quantity A)/
d(quantity B) ¼ derivative of quantity A with respect to quantity B in units of [A/B].

Another concept of power may be introduced when we consider the quantum
nature of light, with the number of quanta carrying energy per unit time to produce
the ‘‘photon’’ power Pq. This power, and the quantities associated with it, are pre-
sented in Section 18.3. To distinguish them from the macroscopic, the more com-
monly used quantities, we denote them with the subscript q; i.e.,

Pq ¼ dn=dt; ½#=s� ð18:4Þ
where Pq is the photon power, the power transferred by N photons per unit time,
and n ¼ the number of photons in [#].

18.2 STANDARD TERMINOLOGY FOR RADIOMETRIC QUANTITIES

Unfortunately, a standard terminology for radiation quantities does not exist. Every
field and just about every application has found its particular nomenclature and
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symbols. Here, we adopt the terminology recommended by Nicodemus [1] and made
popular by William L. Wolfe and George J. Zissis’ The Infrared Handbook. [2] Table
18.2 includes a list of the commonly used radiometric terms.

18.2.1 Power

We consider that the primary characteristics of the radiation is to propagate in free
space: it cannot stand still. Due to its ‘‘motion’’ or ‘‘propagation,’’ it is often referred
to as the radiant flux, emphasizing the transfer of energy past some imaginary sur-
face in space. When it encounters a material surface it is either reflected or absorbed
by it. We can say that the electromagnetic radiation carries the optical energy across
space in time – it moves with the speed of light. The amount of energy transferred per
unit time is defined as power, given in Eq. (18.3). Additional terms that may be
found in the literature, describing the fleeting nature of radiation, include the radia-
tive power and the radiative flux.

The terms derived from the concept of the power are related to the geometrical
consideration and the spectral content of the radiative power. We refer to the spec-
tral power as the power of wavelength 
 found in the narrow wavelength interval �
:

�Pð
Þ ¼ P
ð
Þ �
; ½W� ð18:5Þ

652 Strojnik and Paez

Table 18.1 The Electromagnetic Spectrum, Its Natural Sources, Detection,

and Manmade Generators



where �Pð
Þ is the infinitesimal element of power of the wavelength 
 in the wave-
length interval �
, �
 is the width of the infinitesimal wavelength interval in ½mm], and
P
 ð
Þ is the spectral power of wavelength 
 in [W/mm].

We denote spectral quantities with the subscript 
, explicitly indicating a deri-
vative with respect to the wavelength 
. The laser is one popular source of coherent,
narrow wavelength-band radiation. Equation (18.5) describes well the quasi-mono-
chromatic power output of a laser source, due to its power output in the narrow
wavelength range. The majority of sources, though, emit the radiation in a wide
wavelength interval. For those, the spectral power is defined as follows:

P
 ð
Þ ¼ dPð
Þ=d
: ½W=mm� ð18:6Þ
Most of the natural sources, and, therefore, most of the naturally occurring

radiation is broadband. Additionally, the electro-optical systems used to transfer the
radiation do so effectively only between two wavelengths 
1 and 
2, or within a
wavelength interval ½
1; 
2�.

�
 ¼ 
2 � 
1: ½mm� ð18:7Þ
The radiative power within a wavelength interval depends not only on the

width of the wavelength interval �
, but also on specific choice of the wavelength
limits 
1 and 
2. The radiative power within a wavelength interval is obtained by
integrating Eq. (18.6) over the wavelength, from wavelength 
1 to wavelength 
2,

W½
1;
2� ¼
ð
W
 ð
Þ d
: ½W� ð18:8Þ

We find it advantageous to record the wavelength subscripts explicitly for the wave-
length interval to remind us that the integrated power (or any other radiometric
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Table 18.2 List of Commonly Used Radiometric Terms

Term Symbol Defining equation Units

Radiant energy J

Radiant power P J=s ¼ W

Radiant exitance M M ¼ dP

dA
W/m2

Radiant incidance E E ¼ dP

dA
W/m2

Radiant intensity I I ¼ dP

d!
W/sr

Radiance L L ¼ @2 P

@Ap@!
W/(m2 sr)

Solid angle ! ! ¼ A

r2
sr

Frequency v l/s

Wavelength 
 
 ¼ c

v
m

Wavenumber m m ¼ 
�1 l/m



quantity), is considered, evaluated, or integrated over a given wavelength interval.
We refer to such power as the power in the wavelength interval from 
1 to 
2.

18.2.2 Exitance and incidance

One of the important concepts to keep in mind is that the radiation is generated by
matter, whose spatial extent is defined by its surfaces. The radiation may similarly be
absorbed by matter. The creation and destruction of radiation requires the presence
of matter. The radiative power may be generated within the boundaries defined and
limited by surfaces. Similarly, it may be incident on a surface.

The surface characteristics most likely vary from point to point. In both of
these cases, the properties of the surface vary as a function of position – generating
or absorbing a different amount of radiation depending on the surface spatial coor-
dinates. We can thus define the power (area) density as the infinitesimal amount of
power incident on the infinitesimal amount of area �A:

�P ¼ p �A; ½W� ð18:9Þ
where �P is the infinitesimal radiative power incident on the infinitesimal area �A in
[W], p is the radiative power (area) density in [W/m2], and �A is the infinitesimal area
in [m2].

It is important to distinguish radiative power (area) density from radiative
power (volume) density. The volume power density is the relevant quantity when
discussing the radiation in a cavity or the radiation generated by the volume, or bulk,
radiators. From Eq. (18.9) we define the radiative power (area) density as follows:

p ¼ dP=dA: ½W=m2� ð18:10Þ
This quantity is often called irradiance, and denoted by E with units [W/m2�. In
radiometry, we do not use this term, due to the possibility of ambiguities.

When we consider a specific spectral component of the radiative power, Eq.
(18.10) may be modified so that it refers to the spectral power area density

p
 ¼ dP
=dA: ½W=ðm2 mmÞ� ð18:11Þ
In optical engineering applications, the radiation leaving the surface (or, exiting the
surface) is usually different from the radiation incident on the surface. For example,
the spatial characteristics of radiation may be different when we use optical compo-
nents to collect or redistribute the radiation. The radiation leaves the natural,
nonpolished surface dispersed in all directions. The radiation may be incident on
the surface within only a narrow cone specified by the F-number of the optical
system, when the surface is the detector element in a radiometer.

Let us consider a beam of radiation incident on a specific surface. A portion of
it is reflected from the surface, a portion is transmitted, and a portion is absorbed,
depending on the material characteristics. The surface spectral reflectivity modifies
the amount of reflected radiation, and, thus, its spectral distribution. The surface
shape and its finish modify the directional characteristics of the reflected and trans-
mitted radiation. For these reasons, the term irradiance is considered ambiguous
within the radiometric community.

The nature of the surface shape, finish, and composition changes the spectral
and directional characteristics of the reflected or transmitted radiation. As the sur-
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face modifies the radiation, we find it preferable to differentiate between the radia-
tion before it is incident on the surface and after it is incident on and reflected off the
surface. The power (area) density for the radiation incident on the surface is called
the incidance, and is denoted by E in [W/m2]:

Eðx; y; zÞ ¼ dP=dA: ½W=m2� ð18:12Þ
The spectral incidance is similarly defined for each spectral component:

E
ðx; y; zÞ ¼ dP
=dA: ½W=ðm2 mmÞ� ð18:13Þ
The radiation leaving the surface, either generated by the matter or reflected from it,
is described by the term exitance, and is denoted by Mðx; y; zÞ with units [W/m2]:

Mðx; y; zÞ ¼ dP=dA: ½W=m2� ð18:14Þ
The spectral exitance M
ðx; y; zÞ is defined for each spectral component

M
ðx; y; zÞ ¼ dP
=dA: ½W=ðm2 mmÞ� ð18:15Þ

18.2.3 Radiance

The propagation of the radiation may be guided or manipulated using one or more
optical components, resulting in a change in power density from one point to the
next along the propagation path. The imaging components, such as lenses and
mirrors, change the angular distribution of the radiation in order to modify the
spatial extent and direction of propagation of radiation. Thus, the incidance is not
a particularly suitable parameter to characterize the radiation in an optical system.

The objects that generate radiation are called sources. They typically emit
radiation with an angular dependence that is a consequence of the source physical
characteristics, shape, form, layout, and construction. Thus, the directional charac-
teristics of emitted radiation determine the source capacity to produce useful radia-
tive power. Additionally, the sources typically do not generate the power uniformly
over its surface area, due to the surface nonuniformity.

Thus, a quantity that is suitable to characterize spatial and angular radiative
properties of an extended (surface) area source is required. It is called the radiance, L
in [W/(m2 sr)]:

Lðx; y; z; �; ’Þ ¼ @2P=ð@Ap @!Þ; ½W=ðm2 srÞ� ð18:16Þ
where ! is the solid angle in steradians, [sr], and Ap is projected area in [m2]; @A=@B
denotes a partial derivative of quantity A with respect to quantity B. The use of
partial derivatives is required when a function depends on several variables.

The source radiance may also be given as a spectral quantity when the spectral
power is considered:

L
ðx; y; z; �; ’Þ ¼ @2P
=ð@Ap @!Þ: ½W=ðm2 sr mmÞ� ð18:17Þ
Because of the directional nature of the emitted radiation from the extended area
sources, the spectral radiance is the quantity used to describe the radiative charac-
teristics of such a source.

In an optical system the beam cross section often decreases at the same time as
the solid angle increases, resulting in simultaneous changes in area and solid angle in
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an optical beam. Thus, the radiance is also the most appropriate radiometric quan-
tity to characterize the transfer of radiative power in an optical system.

18.2.4 Intensity

The radiation may propagate through the free space, but it cannot be generated or
annihilated (aborbed) in free space. For these two phenomena to take place, the
presence of matter is required. In particular, when talking about a radiative source,
matter is required, so that its energy level is changed in order to generate the radia-
tion. A material body is always of finite dimensions. As already mentioned in the
previous section, the radiance is used to describe the spatial and directional char-
acteristics of the radiation emitted from an extended-area source.

Often, though, we find it convenient to talk about point sources. While they do
not exist in the physical world, we define the point source as the source whose spatial
extent is not resolved by the resolution of the optical system used to image it. For
this reason, the concept of the point source depends solely on the sensor resolution,
and not on the source spatial extent. We may consider stars as point sources, even
though their size is quite large. The human visual system resolves only the nearest
star, the sun. Therefore, it is usually not considered a point source, while the other
stars are.

Even though the characteristics of the area distribution of the radiation emitted
by a point source cannot be resolved with the sensor, the directional characteristics
of its radiation are of uttermost importance. There may be another reason why we
may want to talk about point sources – we are not interested in their spatial char-
acteristics. This may be because we are far away from the source, because its spatial
characteristics are within the uniformity tolerances of our application, or because the
system analysis is significantly simplified if the source is treated as a point. This is
often the simplifying assumption when analyzing laser beam propagation: we define
an imaginary point source, such that the laser beam appears to originate from it.

We do not consider that the spatial distribution of the power emitted by the
point source is important; however, its angular distribution is significant. Thus, we
define the concept of intensity with the symbol I [W/sr], the power per unit solid
angle:

Ið�; ’Þ ¼ dP=d!: ½W=sr� ð18:18Þ
Often, the quantity of interest is the spectral intensity I
ð�; ’Þ

I
ð�; ’Þ ¼ dP
=d!: ½W=ðsr mmÞ� ð18:19Þ
The angular dependence of the power radiated by the point source into a solid angle
is given by the spectral intensity. A radiator is said to be isotropic if its intensity does
not depend on direction.

The intensity is the most appropriate quantity to characterize a point source.

18.3 PHOTON-BASED RADIOMETRIC QUANTITIES

There are two ways of looking at radiation. They were considered mutually exclusive
prior to the acceptance of the quantum theory at the beginning of the 20th century;
now they are considered complementary. Radiation may be considered as a contin-
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uous flow of waves that carry energy (see Eq. (18.1)). The alternative, equally useful,
way of looking at radiation is that this same energy is carried in quanta, each
containing the minimum packet of energy equal to the change between specific
(electronic) energy states in an atom, molecule, or a solid. These changes between
the energy levels, E1 and E2, are also referred to as energy transitions.

�Eq ¼ E1 � E2 ¼ h� ¼ hc=
q; ½J� ð18:20Þ
where E1 and E2 are the two energy levels involved in the transition. Radiation may
be considered to consist of packets and waves, both carrying the energy, which is
referred to as the dual nature of the radiation. The smallest packet of radiation with
energy �Eq is called a photon.

Instead of describing the radiation in terms of the energy transferred across an
imaginary surface per unit time, or power, we can take advantage of the quantum
representation to emphasize its other aspect. Sometimes, it is more appropriate or
convenient to count the number of photons that pass an imaginary surface per unit
time. The photon-based quantities are defined similarly to the power-based terms.
We use a subscript q to distinguish the photon-based quantities from the power-
based quantities. When it is necessary to emphasize the power-based quantities the
subscript e is used to indicate the energy or power-based units. Usually, though, the
subscript e is omitted for the power-based quantities.

The photon flux Pq is the number of photons crossing an imaginary surface per
unit time:

Pq ¼ dnq=dt: ½#=s� ð18:21Þ
Here, dnq=dt is the number of photons per unit time, which may be evaluated by
considering that the power transferred is equal in both representations:

P ¼ Pqðh�Þ ¼ ðdnq=dtÞðh�Þ ¼ ðdnq=dtÞðhc=
Þ: ½W� ð18:22Þ
To obtain the last two equalities we used Eq. (18.4). From here we obtain for the
photon flux or photon power

Pq ¼ dnq=dt ¼ P=ðh�Þ ¼ Pð
=hcÞ: ½#=s� ð18:23Þ
The spectral photon flux is the power that includes only the photons of the same
energy, or with the same wavelength:

Pq;
 ¼ dnq;
=dt ¼ P
=ðh�Þ ¼ P
 ð
=hcÞ: ½#=ðs mmÞ� ð18:24Þ
The photon incidance Eq is defined similarly:

Eq ¼ ð@=@AÞðdnq=dtÞ ¼ E=ðh�Þ ¼ Eð
=hcÞ: ½#=ðsm2Þ� ð18:25Þ
The photon spectral incidance is, correspondingly,

Eq;
 ¼ ð@=@AÞðdnq;
=dtÞ ¼ E
=ðh�Þ ¼ E
ð
=hcÞ: ½#=ðsm2 mmÞ� ð18:26Þ
Photon exitance Mq is defined as

Mq ¼ ð@=@AÞðdnq=dtÞ ¼ M=ðh�Þ ¼ Mð
=hcÞ: ½#=ðsm2Þ� ð18:27Þ
The photon spectral exitance Mq;
 is given by

Mq;
 ¼ ð@=@AÞðdnq;
=dtÞ ¼ M
=ðh�Þ ¼ M
 ð
=hcÞ: ½#=ðsm2 mmÞ� ð18:28Þ
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Additionally, the photon intensity Iqð�; ’Þ may be defined as

Iqð�; ’Þ ¼ dPq=d!: ½#=sr� ð18:29Þ
Likewise, photon spectral exitance Iq;
ð�; ’Þ is correspondingly,

Iq;
ð�; ’Þ ¼ dPq;
=d!: ½#=ðs sr mmÞ� ð18:30Þ
In the photon-based formalism, the radiance is also the most appropriate quantity to
characterize an extended-area source

Lqðx; y; z; �; ’Þ ¼ @2Pq=ð@A @!Þ: ½#=ðsm2 srÞ� ð18:31Þ
Similarly, the photon spectral radiance Lq;
ðx; y; z; �; ’Þ may be defined in the same
way:

Lq;
ðx; y; z; �; ’Þ ¼ @2Pq;
=ð@A @!Þ: ½#=ðsm2 sr mmÞ� ð18:32Þ

18.4 PHOTOMETRIC QUANTITIES AND UNITS

Photometric quantities, with their corresponding units, have been developed to deal
with the use of a specific detector, i.e., the human eye. [3] They incorporate the
response of the human eye to the incident radiation. Thus, they are defined to
deal with the radiation only within the wavelength interval where the human eye
is sensitive. For a typical observer, this wavelength region is from 0.380 mm to
0.760 mm.

Photometric quantities and units have been developed to describe the sensation
that reports the standard observer in response to the radiation of 1W at a specific
wavelength. Table 18.3 lists the basic photometric quantities, their defining equa-
tions, and units. In this system of units, therefore, there is no radiation if it cannot be
detected by the average human observer.

Figure 18.2 shows the nominal eye response of a standard observer to a con-
stant amount of radiation of 1W, as a function of wavelength, for both photopic
(the Kð
Þ curve) and the scotopic (the K 0ð
Þ curve) vision. Photopic vision refers to
vision under conditions of high illumination and includes color vision. Scotopic
vision does not permit color recognition and is effective under conditions of low
illumination.

The Kð
Þ curve is also called the luminous efficacy, as it describes the ability or
the efficiency of a human eye to sense the incident radiation of different wavelengths
in the visible range. Specifically, the meaning of this curve is as follows: the response
of a human observer to the constant monochromatic radiation is solicited as the
wavelength of the incident radiation is varied.

The standard human observer reports the sensation of much more radiation
when the wavelength of the incident light is 0.55 mm than when the wavelength is
only 0.4 mm, even though the incident (physical) radiative power is the same.
Specifically, the observers were able to quantify their perceptions that the radiation
of one given wavelength is sensed as twice as intense as radiation of another
wavelength, even though the incident radiation had the same (physical) power in
both cases. Thus, the response curve changes as a function of the wavelength.
There is no response to the radiation outside the interval [0.380–0.760 mm]. Thus,
photometric units may not be used to characterize the radiation outside this
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interval; i.e., the radiation outside this interval expressed in photometric units has a
value of zero.

The efficacy curves Kð
Þ normalized to 1 at their peak responsivity are called
the relative spectral luminous efficiency for the CIE-standard photometric observer.

Radiometry 659

Table 18.3 Basic Photometric Quantities, Their Defining Equations, and Units

Term Symbol Defining equation Units

Radiative power

(luminous flux)

Pv Pv ¼ Km

ð0:760mm

0:380 mm
P
Vð
Þd
 dP

dA
lm

Luminous intensity Iv Iv ¼
dPv

d!
lm/sr,

cd

Luminance

(luminous radiance)

Lv Lv ¼
@2Pv

@Ap@!
lm/(m2 sr),

cd/m2

Illuminance Ev Ev ¼
dPv

dA
lm/m2

Luminous exitance Mv Mv ¼
dPv

dA
lm/m2

Luminous efficacy

function

Kð
Þ Kð
Þ ¼ KmVð
Þ

Figure 18.2 Spectral luminous efficacy functions Kð
Þ and K 0ð
Þ for photopic and scotopic

vision.



They are designated as Vð
Þ and V 0ð
Þ curves, respectively, and are shown in Fig.
18.3. At the wavelength of 0.555mm, where the V 0ð
Þ curve attains a peak, 1W of
(physical) radiative power equals 683 lumens. At other wavelengths, the curve pro-
vides the corrective factor by which the source spectral power in watts needs to be
multiplied to obtain the source luminous power in lumens.

More precisely, the luminous power Pv in lumens [lm] is the radiative power
detected by a standard human observer:

Pv ¼ Km

ð
2¼0:760 mm


1¼0:380 mm
P
Vð
Þd
; ½lm� ð18:33Þ

where Pv is the luminous power in lumens [lm] or talbots per second [talbot/s], Km is
the maximum luminous efficacy, equal to 683 lm/W, Vð
Þ is the relative spectral
luminous efficacy for the CIE-standard photometric observer, with the tabulated
values given in Table 18.4, and 
1 ¼ 0:380 mm, 
2 ¼ 0:760 mm is the wavelength
interval within which Vð
Þ and V 0ð
Þ have values different from zero. The subscript
v is used to designate the quantities related to the human visual system and for
dealing with the illumination (the radiation as sensed by the human eye). The source
luminous power depends on its spectral distribution, weighted with respect to that of
the spectral luminous efficiency.

The luminous energy "v in lumen-second [lm s] (also called talbot) is the radia-
tive energy detected by the standard observer:
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Table 18.4 Luminous Efficiency Functions Vð
Þ and
V 0ð
Þ for Photopic and Scotopic Vision

Wavelength


 (nm)

Photopic

Vð
Þ
Scotopic

V 0ð
Þ
380

390

0.00004

0.00012

0.000589

0.002209

400

410

420

430

440

0.0004

0.0012

0.0040

0.0116

0.023

0.00929

0.03484

0.0966

0.1998

0.3281

450

460

470

480

490

0.038

0.060

0.091

0.139

0.208

0.455

0.567

0.676

0.793

0.904

500

510

520

530

540

0.323

0.503

0.710

0.862

0.954

0.982

0.997

0.935

0.811

0.650

550

560

570

580

590

0.995

0.995

0.952

0.870

0.757

0.481

0.3288

0.2076

0.1212

0.0655

600

610

620

630

640

0.631

0.503

0.381

0.265

0.175

0.03315

0.01593

0.00737

0.003335

0.001497

650

660

670

680

690

0.107

0.061

0.032

0.017

0.0082

0.000677

0.0003129

0.0001480

0.0000715

0.00003533

700

710

720

730

740

0.0041

0.0021

0.00105

0.00052

0.00025

0.00001780

0.00000914

0.00000478

0.000002546

0.000001379

750

760

770

780

0.00012

0.00006

0.00003

0.000015

0.000000760

0.000000425

0.0000002413

0.0000001390



"v ¼ Km

ð
2¼0:760 mm


1¼0:380 mm
Q
Vð
Þd
: ½lm s� ð18:34Þ

The luminous energy is related to the luminous power in the same way as energy is
related to power. Luminous energy in lumen-second is luminous power integrated
over time.

"v ¼
ð
Pv dt: ½lm s� ð18:35Þ

Luminous power (volume) density pv;V in lumens per cubic meter [lm/m3� is lumi-
nous power per unit volume. It is also called luminous flux (volume) density.

pv;V ¼ dP�=dV : ½lm=m3� ð18:36Þ
Here V is the volume. The luminous power (area) density or luminous irradiance Iv
is the luminous power per unit area:

Iv ¼ dPv=dA: ½lm=m2�; ½lux� ð18:37Þ
There are two units for the luminous power density: lumen per square meter [lm/m2]
is also called lux [lux]; and for smaller areas, we use lumen per square centimeter [lm/
cm2], also called phot [phot].

Luminous exitance Mv is luminous power (area) density for the luminous
radiation per unit area leaving the surface:

Mv ¼ dPv=dA: ½lm=cm2�; ½phot� ð18:38Þ
Luminous exitance is measured in lumens per square meter [lm/m2]. A preferred unit
is 1 phot [phot], equal to 1 lumen per square centimeter, [lm/cm2],[phot].

Illuminance Ev is the luminous power (area) density or luminous incidance for
the luminous radiation incident per unit surface area:

Ev ¼ dPv=dA: ½lm=ft2�; ½ft-c� ð18:39Þ
The established unit for the illuminance is lumen per square foot, also known as
foot-candle [ft-c]. Taking into consideration that the definition assumes the human
eye as a detecting element, the illuminance measures the same physical quantity as
luminous irradiance (Eq. (18.37)).

Luminous intensity Iv is the luminous power per unit solid angle:

Iv ¼ dPv=d!: ½lm=sr� ð18:40Þ
Its units are lumens per steradian [lm/sr], commonly known as candela [cdla].

Luminance, luminous radiance, or photometric brightness Lv is the luminous
radiation, either incident or exiting, per unit area per unit solid angle:

Lv ¼ @2Pv=ð@Ap @!Þ: ½lm=ðm2 srÞ� ð18:41Þ
The most common unit for the luminance is lumen per square meter per steradian
[lm/(m2 sr)], also called nit. This unit is called candela per square meter [cdla/m2],
taking into account that lumen per steradian is a candela. A smaller unit is candela
per square centimeter [cdla/cm2], also known as stilb [stlb].

An additional photometric unit, important in particular for characterizing the
luminance, is a foot-lambert [ft-lb], generally applicable to describing diffuse materi-
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als (those that behave like Lambertian reflectors and radiators). One foot-lambert is
equal to (1/) candela per square foot. A somewhat smaller unit is a lambert, which
is equal to ð1=Þ candela per square centimeter.

Here we note once again that a great number of units have developed over time
in various branches of photometric applications. Table 18.5 lists the conversion
factors between illuminance and luminance.

18.5 RADIATIVE POWER TRANSFER IN A THREE-DIMENSIONAL
SPACE

18.5.1 Geometrical Factors

Proper functioning of the radiation source, as well as its detectors, requires the
presence of matter. A material object is limited by its surfaces: therefore, it is desir-
able to define the geometrical characteristics of the radiation emitting and absorbing
surfaces. Toward this goal, we first review some basic, but important geometrical
concepts.

We start with the distinction between a surface and an area. A geometrical
surface is an assembly of points in a three-dimensional (3-D) space in contact with
one another, that separate two regions with different physical properties. In optics,
materials are differentiated by their complex indices of refraction which, in general,
are wavelength-dependent. The real part of the index of refraction is the index of
refraction as used in optical design applications; its complex part is related to the
absorption coefficient. Figure 18.4(a) shows a surface separating two regions of
space.

Sometimes, we find it convenient to extend further this rather theoretical
description of a surface by defining it as a continuous assembly of points separating
two regions of space. Therefore, there exists no requirement that the surface separate
two regions of space having different physical characteristics. An area, on the other
hand, is a purely geometrical property of a surface, similar to its orientation or
position.

Let us now consider a special case as shown in Fig. 18.4(a): region 1 of space is
filled with (made of) opaque material, raised to some temperature above that of its
background. Consequently, the surface emits radiation into the region of space
according to Planck’s radiation law; thus, it is a radiative source. Region 2 is a
vacuum, devoid of any material presence. The light emitted from the source propa-
gates in a straight line through the vacuum, until it encounters an obstruction in the
form of a physical object.

18.5.1.1 Area and Projected Area

Area

A surface of an arbitrary shape may be thought of as being covered by small,
infinitesimal elements of area inclined with respect to one another (see Fig.
18.4(b)). One of the intrinsic characteristics of a surface is its total area. It is obtained
by adding up all the infinitesimal elements of the area that encompass the surface,
i.e., by performing the integration over the surface. The total, actual, area is
obviously larger than the apparent surface area, seen from a particular direction.
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In radiometry, we are more interested in how an area appears from a certain
direction, or from a particular view point, rather than in its exact, absolute size.
When an element of area serves as a radiation collector, the intrinsic characteristics
of its surface area are less significant than how large this surface ‘‘appears’’ to the
incident radiation. Similarly, the actual area of a radiative source is not as important
as the ‘‘projected’’ area, seen from the direction of the collector.

We consider the geometrical configuration of Fig. 18.5, which shows a differ-
ential element of area �A1 in space and an arbitrary point P. The line connecting the
center of the area and the point P is referred to as the line of sight between the area
and the point P. We characterize the area by its unit normal N. (Vectors are denoted
with a bold letter.)

The line directed from the center of the area to the point of observation P is
referred to as the direction of observation, characterized by a unit vector S. It may be
considered as defining the z-axis of a hypothetical spherical coordinate system,
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Figure 18.4 (a) Surface S separates two regions of space. (b) Surface S, separating two

regions of space, is composed of small area elements.



erected at the center of the area �A1. Thus, � is the angle between the direction of
observation and the normal to the area �A1, N. The cosine of the angle � then is the
dot or the scalar product of the unit normal to the area N and the direction of the
line of sight S:

cos � ¼ N � S: [unitless] ð18:42Þ

Projected Area

We define the projected area �Ap as the projection of the area �A on the plane
normal to vector S.

�Ap ¼ �A cos �: ½m2� ð18:43Þ
In this plane, an area of size �Ap will appear to the observer at point P as having the
same size as the area �A. The plane normal to the unit vector S through the point B
on the area �A is called a projection plane; and the area in this plane �Ap is called
the projected area. Its magnitude depends only on the orientation of the area �A
with respect to the direction of observation. When we substitute Eq. (18.42) into Eq.
(18.43) we obtain

�Ap ¼ �AN � S: ½m2� ð18:44Þ
This equation applies equally well to infinitesimal areas. The infinitesimal area is that
assembly of points that all lie in the same plane, i.e., they may all be characterized by
the same unit normal:

dAp ¼ dA cos �A ¼ dAN � S: ½m2� ð18:45Þ
In this equation, the subscript A on � has been included explicitly to emphasize that
each differential area has its own normal. If a surface consists of many elements of
area with different orientations, then the projected area is an integral over the
individual projected surfaces. Each infinitesimal element of the area contributes an
infinitesimal projected area to the total projected area. The total projected area is
obtained by integrating over all infinitesimal surface areas:
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Figure 18.5 Area and projected area, as seen from the point of observation P.



Ap ¼
ð

Surface

dAp: ½m2� ð18:46Þ

Substituting the expression for the infinitesimal projected area from Eq. (18.44) we
obtain

Ap ¼
ð

Surface

dA cos �A ¼
ð

Surface

NA � S dA: ½m2� ð18:47Þ

Here we show explicitly that the angle � depends on the orientation of each indivi-
dual element of area dA and that, in general, this angle will vary. Next, some familiar
examples of projected areas are presented for a few well-known surfaces: the pro-
jected area of a cone is a triangle or a circle, depending on the direction of observa-
tion; that of a sphere is a circle; that of an ellipsoid of revolution is an ellipse or a
circle; that of a cube is a square. There exist more complicated projections of these
geometrical entities when the direction of observation does not coincide with one of
the principal axes.

The difference between the area and the projected area is important only for
angles � larger than 108. In many radiometric applications, the angle � is quite small.
The approximation of replacing the projected area with the area is acceptable for the
vast majority of cases. The error in using the area instead of the projected area is less
than 5% for values of angle � equal to or less than 108.

18.5.1.2 Solid Angle and the Projected Solid Angle

The solid angle is an even more important concept in radiometry than the projected
area, because it describes real objects in 3-D space. It is an extension into three
dimensions of a two-dimensional angle. For this reason, it will help us to appreciate
the idea of a solid angle if we first review the formal definition of an angle.

Angle

Let us refer to Fig. 18.6. We define the angle with the help of a point P located at the
center of curvature of a unit circle and an arc AB on this circle. Angle �, measured in
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Figure 18.6 Definition of an angle in radians as a length on a unitary circle.



radians, is equal to the length of the arc on the unit circle with the center of the
curvature at the point P; i.e.,

� ¼ AB ¼� su; ½rad� ð18:48Þ
where AB is the length of the arc. The subscript u refers to the unit radius of the
sphere: su is the length of a curve, along the arc on the unit circle. In a more general
case, when the distance PA is not unitary, but rather has a general value r, the angle
� may be interpreted as the following ratio:

� ¼ AB=r: ½rad� ð18:49Þ
The infinitesimal angle d� is even more easily interpreted with the help of Fig. 18.7.
When the angle d� is infinitesimally small, the corresponding arc ds approaches a
straight line dd, which is parallel to the tangent at the midpoint of the arc. Then the
length of the curve at the point C, ds, may be replaced by the tangent at this point:

d� ¼ dd=r: ½rad� ð18:50Þ
For the differential quantities, we have a similar relationship:

�� ¼ �d=r: ½rad� ð18:51Þ
The unit for the angle is radian [rad]. It is defined as follows: a circle of unit radius
subtends an angle of 2 radians. Equally, we know that a circle of unit radius
subtends an angle of 360 degrees [8] or [deg]. Thus, we obtain

1 rad ¼ ð180=Þdeg; ð18:52Þ
and

1 deg ¼ ð=180Þ rad: ð18:53Þ
Referring back to Fig. 18.7, we reiterate that the arc AB subtends an angle � at the
point P. The point of observation P may be thought of as coinciding with the center
of curvature of the circle. Also, the arc or the element of path along the arc �s is the
distance that the angle subtends at the point of observation P. Figure 18.8 shows a
number of arcs or (incomplete) circles with different radii of curvature, r, all centered
at P. The radius r1 is smaller than the unitary radius r2, while the radii r3 and r4 are
larger than it. We note that the arcs A1B1, A2B2, A3B3, A4B4 all subtend the same
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angle �. Thus, we conclude correctly that the two definitions presented earlier are
completely equivalent.

We further see that the tangent d2, the straight line segment connecting point
A2 with B2, subtends the same angle as the arc A2B2. Thus, for all practical purposes
we can replace the arc length with the arc segment in the functional definition of the
angle. So, we obtain a new definition for an angle:

� ¼ A2B2 ¼ AuBu; ½rad� ð18:54Þ
where AuBu is the distance along the arc on a circle with a unitary radius. For the arc
AB on a circle with an arbitrary radius r, we obtain

� ¼ AB=r: ½rad� ð18:55Þ
Line segments may be described according to their construction as tangents at the
midpoint of the arc AB. The tangent to an arc is normal to the radius at that point.
Similarly, the line segment C is normal to the line connecting its midpoint with the
point of observation P. The point of observation P defines the location of the vertex
of the angle.

We now examine in more detail the general line segment A4sB4s, skewed or
inclined with respect to the segment A4B4, but intersecting it at its midpoint C4. We
note that the line segment A4sB4s subtends the same angle � at the point P as the line
segment A4B4, parallel to the tangent at the midpoint C4 of the arc A4B4.

We may generalize this observation as follows: any arbitrary curve segment
whose endpoints lie on lines PA and PB, respectively, and whose midpoint C defines
the distance to the origin CP equal to radius r, may be projected on the tangent at C
with the same projected length AB. All such curve segments subtend the same angle
�, given as

� ¼ AB=r: ½rad� ð18:56Þ
A segment whose endpoints lie on lines PA and PB, respectively, and whose mid-
point C defines a distance to the origin CP equal to radius r, may be projected on the
tangent at C, having the same length, according to
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Figure 18.8 Generalized definition of a solid angle as an area on a sphere of arbitrary

radius.



d ¼ AB ¼ AsBs cos �s: ½rad� ð18:57Þ

We now see that an angle may be defined using only two geometrical quantities – a
point and a line segment oriented in an arbitrary, but specified direction, as illu-
strated in Fig. 18.9. These two quantities in space determine a single plane in which
the angle is defined. The angle � is given as follows:

� ¼ AsBs cos �s=PC: ½rad� ð18:58Þ

This, indeed, is the definition of an angle that we will find most useful in the inter-
pretation of a solid angle in three dimensions, a basic concept in radiometric ana-
lysis. By examining Eq. (18.57) and Fig. 18.9, we conclude that the general definition
of an angle does not call for the circle or its radius of curvature.

Often, the geometrical definitions in the 3-D space are simplified in the vector
notation. A line segment ds defines an angle at the point C at a distance r, equal to

� ¼ ðNd � S dsÞ=r: ½rad� ð18:59Þ
We employed two unitary vectors in this definition: Nd is a unitary vector,
normal to the line segment ds, that defines a line segment in a plane; S is a
unitary vector directed from the central point on the line segment to the point of
observation.

Field of View

The field of view of an optical instrument is usually given as an angle. Its numerical
value may be given as half of the apex angle of a cone whose base is the focal plane
array and height is the focal distance. The cone may be inscribed inside a square field
of view subtended by a (square) focal plane array. It is sometimes given as a half-
angle of the cone circumscribed outside the square field of view subtended by a
(square) focal plane array. One half of the length of the array diagonal then defines
the half field of view. These two options are illustrated in Fig. 18.10. In both cases,
the assumption is generally made that the optical system is rotationally symmetric,
and that the field of view may be defined in a single (meridional) plane.
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Figure 18.9 Definition of an angle using a line, its normal, and the point of observation.



The casual use of the term ‘‘field of view’’ often leaves out ‘‘half ’’ when refer-
ring to this concept.

Solid Angle

The solid angle ! is an angle in a 3-D space. It is subtended by an area at a distance r
from a point of observation P, in the same manner as a line at distance r subtends an
angle � in a plane.

The unit of a solid angle is a steradian [sr]. A (full) sphere subtends 4 ster-
adians. An infinitesimal area dA at a distance r from the origin subtends an infini-
tesimal solid angle d! equal to the size of the projection of this small area dA on a
unit sphere. This is illustrated in Fig. 18.11:

d! ¼ dA=r2: ½sr� ð18:60Þ
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Figure 18.10 Inscribed and circumscribed field of view of an optical instrument with respect

to a square focal plane array.

Figure 18.11 Differential solid angle subtended by an element of area dA at a distance r

from the point of observation P.



The concept of a solid angle in 3-D space is similar to that of an angle in two
dimensions. The definition of a solid angle is given correctly only in its differential
form. The infinitesimal element of a solid angle may also be given in spherical
coordinates:

d! ¼ sin �d�d�: ½sr� ð18:61Þ
The factor r2 in the numerator and the denominator has been canceled in the deriva-
tion leading to Eq. (18.61).

We are most often interested in the solid angle subtended by an optical com-
ponent, such as a lens, or a mirror, at a particular point along the optical axis as, for
example, at the image (or object) location. The solid angle is completely character-
ized by the area that an optical element subtends at a particular point of observation.
It may be found by integrating Eq. (18.61) over the appropriate limits. In an optical
system with a cylindrical symmetry, an optical element with the area A subtends a
circular cone with the apex half-angle � at the image. We orient the z-axis along the
cone axis of symmetry, as illustrated in Fig. 18.12:

! ¼
ð2

0

ð�

0

sin �d�

2

4

3

5 d� ¼ 2ð1� cos�Þ: ½sr� ð18:62Þ

In an optical system without an axis of symmetry, the solid angle must be found by
numerical integration.

Projected Solid Angle

The projected solid angle � is neither a physical nor a geometrical concept. Rather, it
is a convenient mathematical abstraction: it appears in many radiometric expres-
sions, even though it has no physical significance. It may best be understood by
extending the analogy between the area and the projected area to the concept of the
solid angle: the projected solid angle is related to the solid angle in the same manner
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Figure 18.12 Optical surface of Ao area subtends a circular cone with a half-angle (apex

angle) � at the image.



as the projected area is related to the area. A factor of cos �, or obliquity factor, has
to multiply an area to convert it to the ‘‘projected’’ area. The same obliquity factor,
cos �, has to multiply the solid angle to obtain the projected solid angle. It is visua-
lized in the following manner, as illustrated in Fig. 18.13.

First we consider the solid angle as being equal to the area on a unit sphere, in
units of steradians. Then we recall that a projected area depends on the direction of
observation from the point P, defining the angle �.

The projected solid angle is smaller in comparison with the solid angle by the
factor of cos �, the angle between the normal to the surface and the direction of
observation.

The element of the projected solid angle d� is given in spherical coordinates:

d� ¼ cos �d! ¼ sin � cos �d�d�: ½sr� ð18:63Þ
The projected solid angle � for a circular disc subtending the apex semi-angle of �,
shown in Fig. 18.12, is obtained by integrating Eq. (18.63) over angles:

� ¼
ð2

0

ð�

0

sin � cos �d�

2

4

3

5d� ¼  sin2 �: ½sr� ð18:64Þ

The numerical value of the projected solid angle is equal to the value of the solid
angle with less than 5% error for the values of angle � equal to or less than 108. The
unit of the projected solid angle is obviously the same as that of the solid angle,
steradians, [sr].

A projected solid angle may be visualized as the projection of the area on a unit
hemisphere onto the base of the hemisphere. With this interpretation we can easily
appreciate that the solid angle !, subtended by the hemisphere, is equal to 2, the
area of a half-sphere. This solid angle corresponds to the apex semi-angle � of =2.
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Figure 18.13 A projected solid angle as an area on a unit hemisphere projected on the base

of the hemisphere.



However, the projected solid angle �, subtended by the hemisphere, is equal to only
, the area of the base of the hemisphere (the area of the circle of unit radius).

18.5.2 Radiative Power

Radiation carries energy from one point in space to another: being nothing other
than a portion of the electromagnetic spectrum, it travels rapidly across space,
transferring the energy with ‘‘the speed of light.’’ The only time when the radiation
does not move, it is either being generated or absorbed, which is done instanta-
neously for all practical considerations. The amount of radiation emitted by a spe-
cific surface element and the direction of the radiation propagation depends on the
source’s geometrical characteristics.

18.5.3 Sources and Collectors

Radiation is generated in a specific region of space. After having been created, it
propagates somewhere else. A radiative source is a physical body of finite extent,
occupying a specific region of space that generates the radiative energy. From each
source point, the radiation propagates in all directions not obstructed by (another)
physical body, in accordance with the source’s radiance – the amount of radiative
power emitted per unit source area per unit solid angle. In a homogeneous, trans-
parent medium, the radiation propagates in a straight line. (In this context, we
consider the vacuum, the absence of material, a special case of homogeneous trans-
parent medium.) The radiation may be absorbed, reflected (scattered) or, most com-
monly both, after it has encountered another physical body or particle. At this
instant, the radiation no longer propagates in a straight line.

The physical parameters that determine the source spectral distribution and the
amount of the emitted radiation are the source material composition, its finish, and
its temperature. The source surface geometry additionally determines the directional
characteristics of the emitted radiation.

The area that intercepts and collects the radiation is referred to as a collector. It
is not to be confused with a detector. A detector is a transducer that changes the
absorbed radiation into some other physical parameter, amenable to further proces-
sing. This includes, for example, the electrical current, voltage, polarization, displa-
cement, etc.

We consider two small area elements �As and �Ac, each with an arbitrary
orientation in space, whose centers are separated by a distance d, shown in Fig.
18.14. We may think of the element of area �As to be a part of the source with the
area As, and the element of area �Ac to be a part of the collector with the area Ac,
illustrated in Fig. 18.15. We place the source and the collector into their respective
coordinate systems. The element of area of the source is located at coordinates
Sðxs; ys; zsÞ and the element of area of the collector at the point Cðxc; yc; zcÞ.

The element of source area �As is considered so small that it is emitting the
radiation whose radiance does not change as a function of position over the element
of surface area �As or the direction of emission. This means that the radiance is
constant over the surface element �As. Similarly, the elements of the area �As and
�Ac are so small that all the points on the element of the area of the collector �Ac

may be considered equidistant from all the points on the element of the area of the

674 Strojnik and Paez



source �As. The orientation of the planar surface elements �As and �Ac, respec-
tively, is defined by their surface normals Ns and Nc.

We connect the centers of the incremental area elements with a straight line of
length d, which indeed depends on the specific choice of the area elements. The line
connecting them is also called the line of sight from the source to the collector, or
from the collector to the source, depending on the ‘‘point of view’’ that we wish to
assume. We consider the direction of the line connecting these two points as being
from S to P at the source, and as being from P to S at the collector: �s is the angle
that the normal at the source subtends with the line of sight at the source; similarly,
�c is defined as the angle that the normal at the collector subtends with the line of
sight at the collector.

In many, but not all, power transfer applications, the distance d is sufficiently
large with respect to the size of the element of the area �As that the radiation-
emitting area �As may be considered a point source from the point on the collector
Cðxs; ys; zsÞ.

18.5.4 Inverse Power Square Law

The power density (the power per unit area, also called the incidance) falloff for a
radiating point source is described by the inverse square law. This law may be easily
understood if we consider the radiation emitted from a point source into a full
sphere, as illustrated in Fig. 18.16. By conservation of power, we see that the
same amount of power passes through the sphere of radius r1 as through the sphere
of radius r2:
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Figure 18.14 Geometry for the power transfer from the incremental source to the incre-

mental image area.
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Figure 18.16 The radiative power passing through the sphere of radius r1 is equal to that

through the sphere of radius r2. They both are equal to the power radiated by the point source,

due to the absence of energy sources and sinks.

Figure 18.15 The (spectral) power transfer equation gives the amount of (spectral) power

generated and emitted by a source of area As oriented in the direction Ns and intercepted by a

collector of area Ac, oriented in direction Nc.



P ¼ ð4r21ÞE1 ¼ ð4r22ÞE2: ½W� ð18:65Þ
Equation (18.65) is a conservation of energy, expressed in terms of power (the energy
per unit time). We can solve it for the power density across the sphere of radius r2,
denoted as E2 in Eq. (18.65):

E2 ¼ E1ðr21=r22Þ ¼ ðE1r
2Þ=r22 ¼ 4Is=r

2
2 ¼ P=r22: ½W=m2� ð18:66Þ

For a point source, the incidance E decreases with the distance from the source
according to the inverse power square law; Is is the intensity of the presumed
point source at the center of the sphere. It was defined previously as the power
per unit solid angle, the radiative quantity most appropriate for the characterization
of point sources. Upon regrouping the terms in Eq. (18.66), we obtained several
different ways of expressing the inverse square law. The power in this case refers to
the exponent of the sphere radius, as opposed to its normal use in radiometry.

While Eq. (18.66) has been derived for simplicity for a full sphere, the same
relationship may be shown to be true also for cones bounded by areas and subtend-
ing solid angles.

18.5.5 Power Transfer Equation for the Incremental Surface Areas

The radiance, i.e., the incremental power that the source area �As emits into the
incremental solid angle �!, may be found by considering the definition of radiance.
In this section only, we show explicitly the dependence of the radiometric quantities,
radiance in particular, on the independent variables.

Referring to Fig. 18.17, we define two coordinate systems to describe the source
radiance. The source is shown as an extended body in a plane ðxs; ysÞ with the
irregularly shaped boundary. The center of the incremental area �As is located at
the point S with coordinates ðxs; ysÞ. This point forms one end of the line of sight in
the direction toward the collector (not shown). The radiation is emitted into an
incremental projected solid angle ��sð�s; ’sÞ, subtended by an imaginary collector
at the source. The subscript s on the (projected) solid angle indicates that the apex of
the cone defining the solid angle is at the source. The direction of the line-of-sight
forms two angles with respect to the normal to the incremental area �As;Ns. These
two angles are the angle coordinates in a spherical coordinate system erected at each
point Sðxs; ysÞ whose z-axis is along the normal to the incremental area �As.

We replace the differential quantities with the increments in the definition of
radiance to obtain

L
ðxs; ys; �s; ’sÞ ¼�2P
ðxs; ys; �s; ’sÞ=½�Asðxs; ysÞ��sð�s; ’sÞ�: ½W=ðm2 sr mmÞ�
ð18:67Þ

We observe that the increments in the numerator are balanced with those in the
denominator. It is important to keep in mind that the radiance is defined for every
point on the source Sðxs; ysÞ and for every direction of emission ð�s; ’sÞ. Here we note
again that the subscript on the solid angle �sð�s; ’sÞ refers to the point of observa-
tion, i.e., the apex of the cone that the solid angle may be seen to subtend. The
spherical coordinate system ð�s; ’sÞ is erected at any source point Sðxs; ysÞ. From Eq.
(18.67) we solve for the double increment of spectral power �2P
:
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�2P
ðxs; ys; �s; ’sÞ ¼ L
ðxs; ys; �s; ’sÞ�Asðxs; ysÞ��sð�s; ’sÞ: ½W=mm�
ð18:68Þ

We refer to Fig. 18.17 to obtain the full appreciation of the significance of Eq.
(18.68). It gives us the (doubly) incremental amount of power that an incremental
area �As of the source with spectral radiance L
 emits into the incremental, pro-
jected solid angle ��s in the direction of ð�s; ’sÞ. The assumption is made again that
the incremental projected solid angle ��s is so small that the radiance may be
considered constant within it.

18.5.6 Power Transfer Equation in Integral Form

If the incremental source area �As and the incremental projected solid angle ��s are
simultaneously allowed to decrease to infinitesimally small quantities, we obtain the
expression for the infinitesimal amount of power emitted by the infinitesimal surface
area dAs into the infinitesimal element of a projected solid angle d�s. Formally, this
means that all the incremental (physical) quantities are changed into the infinitesimal
(mathematical) quantities:
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d2P
ðxs; ys; �s; ’sÞ ¼ L
ðxs; ys; �s; ’sÞ dAsðxs; ysÞ d�sð�s; ’sÞ: ½W=mm�
ð18:69Þ

The infinitesimal amount of radiative power dP
, emitted by the total source area As

into an infinitesimal projected solid angle, may then be obtained by integrating both
sides of Eq. (18.69) over the source area:

d

ð

As

dP
ðxs; ys; �s; ’sÞ

2

64

3

75 ¼
ð

As

L
ðxs; ys; �s; ’sÞ dAsðxs; ysÞ d�sð�s; ’sÞ: ½W=mm�

ð18:70Þ
The infinitesimal projected solid angle that the collector subtends at the source,
d�sð�s; ’sÞ, is independent of the source Cartesian coordinates. Therefore, it is placed
outside the integral:

d½ðP
ð�s; ’sÞ� ¼
ð

As

L
ðxs; ys; �s; ’sÞ dAsðxs; ysÞ

2

64

3

75 d�sð�s; ’sÞ: ½W=mm�

ð18:71Þ
We may perform the integrals over the area on both sides of Eq. (18.71):

dP
ð�s; ’sÞ ¼ d�sð�s; ’sÞ
ð

As

L
ðxs; ys; �s; ’sÞ dAsðxs; ysÞ

2

64

3

75: ½W=mm� ð18:72Þ

In Eq. (18.72) one power of the infinitesimal symbol ‘‘d’’ has been integrated (out)
over the source area:

P
ð�s; ’sÞ ¼
ð

As

dP
ðxs; ys; �s; ’sÞ: ½W=mm� ð18:73Þ

For this reason the spectral power P
ð�s; ’sÞ no longer shows the explicit dependence
on the source Cartesian coordinates xs; ys. The infinitesimal amount of radiative
power, emitted by the area As of the source with radiance L
 into an infinitesimal
solid angle d�s is obtained by evaluating the integral in the parenthesis over the
source area. This may only be found if the functional form of the source radiance is
known.

Special Case 1: Radiance Independent of the Source Coordinates

We assume that the radiance is independent of the source position in order to
simplify further the expression for the power transfer in Eq. (18.72):

L
ðxs; ys; �s; ’sÞ ¼ L
ð�s; ’sÞ: ½W=ðm2 sr mmÞ� ð18:74Þ
For the case that the source is characterized by the radiance that is independent of
the source position, Eq. (18.72) is appreciably simplified. The radiance may be placed
outside the integral:
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dP
ð�s; ’sÞ ¼ d�sð�s; ’sÞ L
ð�s; ’sÞ
ð

As

dAsðxs; ysÞ

2

64

3

75: ½W=mm� ð18:75Þ

The integral over the differential of the source area is just the source area

As ¼
ð

As

dAsðxs; ysÞ: ½m2� ð18:76Þ

The infinitesimal power dP
 emitted into the infinitesimal projected solid angle d�s

by the source of area As, whose radiance is independent of the source coordinates, is
obtained upon substitution of Eq. (18.76) into Eq. (18.75):

dP
ð�s; ’sÞ ¼ AsL
ð�s; ’sÞ d�sð�s; ’sÞ: ½W=mm� ð18:77Þ
This brings the special case to an end.

We now return to the general radiation transfer presented in Eq. (18.72). In
order to find the power emitted by the source of area As into the projected solid angle
�s, we integrate both sides of Eq. (18.72) over the solid angle �s:

ð

�s

dP
ð�s; ’sÞ ¼
ð

�s

ð

As

L
ðxs; ys; �s; ’sÞ dAsðxs; ysÞ

2

64

3

75 d�sð�s; ’sÞ: ½W=mm�

ð18:78Þ
First, we comment on the left side of Eq. (18.78). The integral over the infinitesimal
power emitted into the projected solid angle �s is just the total power emitted by the
source:

P
 ¼
ð

�s

d½P
ð�s; ’sÞ�: ½W=mm� ð18:79Þ

The right side of Eq. (18.78) is more difficult to evaluate. The functional form of the
dependence of the radiance on the set of four coordinates is, in general, not known.
Therefore, we leave it in the form of the integral over the solid angle:

P
 ¼
ð

�s

ð

As

L
ðxs; ys; �s; ’sÞ dAsðxs; ysÞ

2

64

3

75 d�sð�s; ’sÞ: ½W=mm� ð18:80Þ

We have chosen a particular order of integration, indicated by the square bracket in
Eq. (18.80), although we could have chosen a different order by first integrating over
the projected solid angle and then over the surface area. By examining Eq. (18.80),
we see that the order of the integration may be interchanged. Thus, the general
equation for the power transfer is usually written without prescribing the order of
integration:

P
 ¼
ð

�s

ð

As

L
ðxs; ys; �s; ’sÞ dAsðxs; ysÞ d�sð�s; ’sÞ: ½W=mm� ð18:81Þ
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This equation usually appears in a much simplified form; it does not show explicitly
that the source area is a function of the source coordinates and that the solid angle
depends on the spherical coordinates erected at a source point, with the z-axis along
the line of sight to the collector. Its familiar, but less explicit form is given next:

P
 ¼
ð

�s

ð

As

L
ðxs; ys; �s; ’sÞ dAs d�s: ½W=mm� ð18:82Þ

The radiance is usually given as a function of position and angle. It depends on the
source Cartesian coordinates and the spherical coordinate system subtended at the
specific source point. As this is implicitly understood, the subscripts are not shown
explicitly.

P
 ¼
ð

�s

ð

As

L
ðx; y; �; ’Þ dAd�: ½W=mm� ð18:83Þ

Equation (18.81) is an exact, informative, but somewhat busy equation. As before,
we try to simplify the power transfer equation, Eq. (18.81).

Special Case 1: Radiance Independent of the Source Coordinates

Once again we make the assumption that the radiance is independent of the source
position, given previously in Eq. (18.74). We evaluate Eq. (18.81) for the radiance
that is independent of the source coordinates. The integral over the area of the
source is just the source area, as in Eq. (18.76):

P
 ¼ As

ð

�s

L
ð�s; ’sÞ d�sð�s; ’sÞ: ½W=mm� ð18:84Þ

If we wish to further simplify the power transfer equation, we must make an addi-
tional assumption about the radiance.

Special Case 2: Constant Radiance

We next assume that the radiance is also independent of the direction of observation,
in addition to the source coordinates:

L
ðxs; ys; �s; ’sÞ ¼ L
: ½W=ðm2 sr mmÞ� ð18:85Þ
When the radiance is additionally independent of the angle coordinates, it may be
placed outside the integrals:

P
 ¼ L
As

ð

�s

d�sð�s; ’sÞ: ½W=mm� ð18:86Þ

The integral over the projected solid angle in Eq. (18.86) is the projected solid angle:

�s ¼
ð

�s

d�sð�s; ’sÞ: ½sr� ð18:87Þ

Upon the substitution of Eq. (18.87) into Eq. (18.86), we obtain the simplest form of
the power transfer equation, applicable to the case when the radiance is independent
of the source coordinates and the direction of observation:

Radiometry 681



P
 ¼ L
As�s: ½W=mm� ð18:88Þ
For a surprisingly large number of radiometric problems this equation produces
adequate results. For other applications, this equation represents the first-order
approximation, which may be used to estimate the order-of-magnitude results.
This form is identical to the power transfer equation in the incremental form,
given in Eq. (18.68), but with the symbols for increments missing.

In an even greater number of radiometric problems, the distance between the
source and the collector is so large that Eq. (18.88) (or Eq. (18.68)) is given correctly
for the incremental quantities. This implies that the transverse dimensions of the
source and collector are appreciably smaller than their separation. Similarly, for such
large separation distances, the radiance variation across the source and its angular
dependence are justifiably assumed negligible.

In the special case when the source and collector are relatively small with
respect to their separation, the power transfer equation (Eq. (18.88)) is applicable
in its incremental form:

�2P
 ¼ L
�As��s: ½W=mm� ð18:89Þ
We may substitute different expressions for the solid angle to present Eq. (18.89) in
different forms.

18.6 LAMBERT’S LAW

18.6.1 Directional Radiator

In Section 18.2.3, we defined the radiance as the second derivative of the power with
respect to both the projected solid angle and the area. The radiance depends on the
Cartesian coordinates of the source and the spherical coordinates whose z-axis is
along the normal to the source area element. These two coordinate systems are
illustrated in Fig. 18.17:

Lðxs; ys; �; �Þ ¼ @2P=ð@� @AsÞ: ½W=ðm2 srÞ� ð18:90Þ
We show the subscripts explicitly only for the Cartesian coordinates, indicating that
we are in the plane of the source. This spectral radiance is indeed the most general
radiometric quantity to characterize a radiative source:

L
ðxs; ys; �; �Þ ¼ @2P
=ð@� @AsÞ: ½W=ðm2 sr mmÞ� ð18:91Þ
While it is easy to understand that the radiance depends on the coordinates of

the point on the source Sðxs; ysÞ, its directional properties are a bit more difficult to
visualize: the implication is that the source radiance has a different angular depen-
dence for each source point. The direction of observation has been defined as the
angle that the local normal to the surface makes with the line of sight (the line
connecting the source with the collector). The angle �, belonging to a spherical
coordinate system erected at the source point Sðxs; ysÞ, is then the angle of observa-
tion.

The angular dependence of the source radiance may be measured only with a
great deal of difficulty even just for a few representative incremental source areas. In
principle, we would like to know its value for all source points, but the point is an
abstract, geometrical entity. The measurement of the radiation emission from an
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incremental area of the source into a specific direction toward the collector may be
accomplished using two small apertures, as illustrated in Fig. 18.18: the first aperture
defines the size of the radiation-emitting surface area; the second aperture specifies
the size of the incremental solid angle into which the radiation is being emitted.

The aperture that defines the incremental source area may actually interfere
with the normal operation of the source if it comes in contact with it. If it does not
come in contact, the aperture may limit the solid angle into which the elemental area
of the source is radiating.

The important point to keep in mind here is that the very process of measure-
ment is bound to introduce errors because of the finite size of the apertures and their
unavoidable interference with the normal operation of the source.

Fortunately, most sources behave in a somewhat predictable manner that may
be described sufficiently well with a few parameters for approximate radiometric
analysis. Only a few sources fall into one of the two extreme cases of directional
and nondirectional or isotropic radiators. The isotropic radiator emits the same
amount of power in all directions. A point source in a homogeneous medium or a
vacuum is an example of an isotropic radiator. A laser is an example of a directional
source, emitting the radiation only within a very narrow angle.

The majority of natural sources tend to be adequately well described as
Lambertian radiators.

18.6.2 Lambertian Radiator

Natural sources most often have directional characteristics; they emit strongly in the
forward direction, i.e., in the direction along the normal to the radiative surface. The
amount of radiation usually decreases with increasing angle until, at the angle of 90
degrees with respect to the surface normal, its emission reduces to zero. This angular
dependence is characteristic of the so-called Lambertian radiator. Most natural
sources are similar to Lambertian radiators, even though there are very few perfect
ones to be found.
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A Lambertian radiator is a good example of why it is so difficult to measure
radiative characteristics of a source. The finite apertures used in the measurement
setup on the one hand limit the solid angle being measured, and, on the other hand,
average the results due to their size.

A Lambertian radiator is an extended area source characterized by a cosinu-
soidal dependence of the (spectral) radiance on the angle �, according to the equation

L
ðxs; ys; �; �Þ ¼ L
ð�Þ ¼ L
o cos �: ½W=ðm2 sr mmÞ� ð18:92Þ

Here L
o is the constant spectral radiance, which does not depend on the source
coordinates. This dependence is shown in Fig. 18.19. So, the radiance of a
Lambertian radiator is independent of the source coordinates. Its radiance has azi-
muthal symmetry. A Lambertian radiator may also be specified with the integrated
radiance:

Lðxs; ys; �; �Þ ¼ Lð�Þ ¼ Lo cos �: ½W=ðm2 srÞ� ð18:93Þ

Here, the integrated radiance Lo is a constant. Thus, a Lambertian radiator is a
source whose emission depends only on the cosine of the azimuthal angle. We may
also say that a Lambertian source emits radiation according to the (Lambert’s)
cosine law.

When the source radiance obeys Lambert’s cosine law, the source is referred to
as a Lambertian radiator, or a perfectly diffuse source. A diffuse source radiates in
all directions within a hemisphere. The amount of radiation emitted by an incre-
mental area �As in the direction � is decreased by the obliquity factor, the very same
factor that decreases the apparent size of the area viewed from this direction.

A Blackbody Radiator

The radiation that is established inside an evacuated cavity with completely absorb-
ing walls at temperature T is referred to as a blackbody radiator (Fig. 18.20(a)). It is
completey isotropic, i.e., the same in all directions. If an infinitesimally small hole of
area �As is punched in a wall, as shown in Fig. 18.20(b), then the radiation escaping
from the blackbody cavity is referred to as a blackbody radiation.

The radiation that escapes from such a cavity, even if somewhat idealized, is
Lambertian. The radiation that is incident on any area of the wall, including the area
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of the hole �As, is isotropic. However, the apparent size of the opening as seen by the
radiation incident from direction y changes, according to the cos y obliquity factor.
The reduced area has been called the projected area in the previous section. The
small opening in the cavity where the isotropic blackbody radiation leaves the cavity
with walls at temperature T is a Lambertian source – the projected area has an
obliquity factor cos y when viewed from the direction �.

Nonplanar Sources

In general, portions of a source may also lie outside the x�y plane. Nevertheless, if
the source emission is given by Eq. (18.93), it is considered a diffuse or a Lambertian
radiator. Our sun is an example of such a Lambertian radiator: its emission surface is
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pletely absorbing walls at temperature T . (b) The radiation escaping from the cavity at
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a sphere, with each surface element �As at the angle � offering a projected area of
�As cos � (Fig. 18.21). Thus, the sun appears as a disk of uniform radiance or
brightness. (Brightness is the term used for the radiance when dealing with the visible
radiation.)

18.6.3 Relationship Between the Radiance and Exitance for a
Lambertian Radiator

The problem that we are tying to solve is the following: consider a small area
�Aðxs; ysÞ on the xs�ys plane, radiating into a hemisphere as a Lambertian radiator.
How much power does this area �Aðxs; ysÞ emit into the space? Figure 18.22 illus-
trates this problem.
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Figure 18.21 Our sun is an example of a Lambertian radiator: its emission surface is a

sphere, with each surface element �As at the angle � offering a projected area of �As cos �.

Figure 18.22 An increment of solid angle intercepts the radiation that a small area �Aðxs
; ysÞ on the xs�ys plane emits as a Lambertian radiator into the hemisphere.



We first recall that an extended source emits the radiation only into a hemi-
sphere. The increment of area �As is located in the x�y plane; z is equal to zero, and,
therefore, is omitted in the analytical development. We present the development for a
general radiator. Finally, we evaluate the power emitted into the hemisphere for a
Lambertian radiator, given in Eq. (18.92):

L
ðxs; ys; zs�;’Þ ¼ L
ðxs; ys; 0; �; ’Þ ¼ L
ðxs; ys; �; ’Þ: ½W=ðm2 sr mmÞ�
ð18:94Þ

The mathematical relationship between the radiance and exitance for an infinitesimal
source area �Aðxs; ysÞ has been found in Section 18.2.3. The (spectral) radiance of a
source is its (spectral) exitance per unit solid angle:

L
ðxs; ys; �; ’Þ ¼ dM
ððxs; ys; �; ’Þ=d!: ½W=ðm2 sr mmÞ� ð18:95Þ
Thus, the source (spectral) exitance is the (spectral) radiance integrated over the solid
angle �. From Eq. (18.95) we solve for the spectral exitance dM
:

dM
ðxs; ys; �; ’Þ ¼ L
ðxs; ys; �; ’Þ d!: ½W=ðm2 mmÞ� ð18:96Þ
Another way of interpreting this problem is to emphasize its physical significance.
How much power does an incremental surface area at Oðxo; yoÞ emit, having
Lambertian radiance, into an incremental solid angle subtended by the area dA on
the unit sphere (equal to d!, by the definition of a solid angle)?

We consider the specific point ðxo; yoÞ on the source xs�ys plane:

M
ðxo; yoÞ ¼ M
ðxs; ysÞ: ½W=ðm2 sr mmÞ� ð18:97Þ
We substitute Eqs. (18.97) and (18.92) into Eq. (18.96):

dM
ðxo; yo; �; ’Þ ¼ L
ð�; �Þd!: ½W=ðm2 mmÞ� ð18:98Þ
Then we integrate over the solid angle:

M
ðxo; yoÞ ¼
ð

Full hemisphere

L
ð�; �Þ d!: ½W=ðm2 mmÞ� ð18:99Þ

Next we substitute the differential angles for the differential solid angle and specify
the limits of integration. First, we evaluate this integral for general angles:

M
ðxo; yoÞ ¼
ð�max

�min

ð�max

�min

L
ð�; �Þ sin �d�d�: ½W=ðm2 mmÞ� ð18:100Þ

To determine the relationship between the radiance and exitance of a radiating
source we consider the geometry shown in Fig. 18.22. We assume that the infinite-
simally small radiation-emitting area �A is located in the plane of the source. A
planar Lambertian radiator emits the radiation in all directions defined above the
plane, into the whole hemisphere. (A source of infinitesimal area cannot emit in more
than half of the hemisphere, because the infinitesimal area is assumed to be planar.)
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Thus, the limits of integration in Eq. (18.100) for the Lambertian radiative emitters
are 0 to 2 for the coordinate � and 0 to =2 for the coordinate �:

M
ðxo; yoÞ ¼
ð2

0

ð=2

0

L
ð�; �Þ sin �d�d�: ½W=ðm2 mmÞ� ð18:101Þ

This integral is generally difficult to evaluate, unless the (spectral) radiance is a
particularly simple function of � and �, such as the Lambertian radiator. Usually,
we have to resort to the methods of numerical integration. There are a number of
approximations to the real radiation emitters of the form

L
ð�; �Þ ¼ L
o cos
n �: ½W=ðm2 sr mmÞ� ð18:102Þ

Here n is a rational number and L
o is a constant that depends only on wavelength.
Fortunately, there are a large number of natural emitters that are well represented by
this expression. The source characterized by the angular dependence given in Eq.
(18.97) reduces to a Lambertian radiator when n ¼ 1. We substitute Eq. (18.102) into
Eq. (18.101):

M
ðxo; yoÞ ¼
ð2

0

ð=2

0

L
o cos
n � sin �d�d�: ½W=ðm2 mmÞ� ð18:103Þ

This integral is easy to integrate once we change the variable

sin �d� ¼ �d½cos ��: ð18:104Þ
The limits are changed correspondingly: when � ¼ 0, cos � ¼ 1; when � ¼ =2,
cos � ¼ 0. Using Eq. (18.103) we get for (spectral) exitance, given in Eq. (18.99),

M
ðxo; yoÞ ¼ L
o

ð2

0

ð1

0

cosn �d½cos ��d�: ½W=ðm2 mmÞ� ð18:105Þ

We changed the limits of integration to eliminate the negative sign. With this change
of variables, Eq. (18.105) is easily evaluated:

M
ðxo; yoÞ ¼ 2L
o=ðnþ 1Þ: ½W=ðm2 mmÞ� ð18:106Þ
We may assume that this relationship holds for any point xo; yo. For a Lambertian
radiator, n ¼ 1 (see Eq. (18.92)). Thus, Eq. (18.106) reduces to

M
ðxo; yoÞ ¼ L
o: ½W=ðm2 mmÞ� ð18:107Þ
The source coordinates are omitted in the familiar form of the relationship between
the radiance and exitance for a Lambertian radiator. So, Eq. (18.106) becomes

M
 ¼ 2L
o=ðnþ 1Þ: ½W=ðm2 mmÞ� ð18:108Þ
Similarly, for a Lambertian radiator, we obtain
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M
 ¼ L
o: ½W=ðm2 mmÞ� ð18:109Þ
This is a very significant relationship, stating that the spectral exitance of a
Lambertian radiator into the full hemisphere is the spectral radiance multiplied by
a factor .

At first glance, this result may appear somewhat surprising, because the volume
of the hemisphere equals 2, rather than . This apparent discrepancy can be under-
stood quite easily when we remember functional dependence of a Lambertian radia-
tor. We note that the amount of radiation is maximum for normal emission,
decreasing with increasing angle � to the point of being zero for the tangential
emission of radiation. Thus, the exitance may be interpreted as the angle-average
radiance over the whole hemisphere.

We have tried to indicate throughout this section that the relationships pre-
sented here are valid for the spectral and integrated quantities. If the relationship is
valid for any wavelength, it is also valid for the sum of wavelengths, or their inte-
grals. So, for the integrated exitance for a general radiator, we obtain

M ¼ 2Lo=ðnþ 1Þ: ½W=m2� ð18:110Þ
Similarly, the integrated exitance is obtained for a Lambertian radiator:

M ¼ Lo: ½W=m2� ð18:111Þ
Thus, for a Lambertian radiator the exitance is equal to � the radiance. This is to
be contrasted with the amount of radiation emitted into a hemisphere by a point
source of constant intensity Io equal to 4Io. The factor of 4 in the expression for the
point source may be attributed to the different geometries of these two sources. A
point source of constant intensity omits radiation uniformly in all directions with the
solid angle 4. An extended area source emits the radiation from its planar surface
and experiences a diminished projected area. The projected area �As cos y averaged
over a hemisphere is �As=2. The radiance of the point source differs from that of an
extended source by a factor 2. The other factor of 2 may be explained away by the
fact that 2 is the ratio of the solid angle of a sphere over that of a hemisphere.

18.7 POWER TRANSFER ACROSS A BOUNDARY

18.7.1 Polished and Diffuse Surface

Radiometry concerns itself with the transfer of information in the form of the
electromagnetic radiation. The radiative power is transferred from the point on
the source to the point on the detector using an optical system consisting of
beam-shaping elements such as mirrors, prisms, and gratings, whose function is to
reshape and redistribute the radiation. These components are made of different
materials with distinct indices of refraction. We refer to the boundary as that surface
which separates two regions of space with different indices of refraction and absorp-
tion.

In terms of its response to the incident radiation, a surface may be reflective,
transmissive, or both. A reflective surface may be specularly reflective, diffusive, or
both. In fact, the majority of surfaces are specularly reflective and diffusive at the
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same time. Surfaces are said to be specularly reflective when the specular component
of the reflected light is the more prominent one, while for the diffusive surfaces the
majority of the radiation is reflected in all directions.

An optical surface is said to be specularly reflective when it reflects the beam of
incident radiation in accordance with Snell’s law of reflection. In this case, the angle
that the reflected beam forms with the surface normal is equal to the angle that the
incident beam makes with the surface normal. Also, the reflected beam lies in the
plane defined by the incident beam and the surface normal, called the plane of
incidance. An example of a reflective surface is a polished optical component such
as a plane or a curved mirror. A magnified image of a polished surface shows the
actual surface lying within two bounding surfaces that are separated by a very small
distance and with approximately the same slope. An unpolished surface has large
deviations from the reference surface, with high peaks and deep valleys, and a wide
distribution of slopes. The two types of surfaces are illustrated in Fig. 18.23.

A polished surface has a prevailing amount of surface area at approximately
the same height above the reference surface and has about the same slope; thus, it
reflects the incident pencil of light as a collimated light beam, acting as a specular
reflector. On the other hand, an unpolished surface has a wide range of slope values
and heights, resulting in the random redistribution of the parallel beam of light into
all directions.

A diffuse surface reflects the parallel beam of radiation in all directions. When
the reflected radiation examined at a short distance from a surface shows no angular
preference, then the surface is said to be a diffuse reflector. A perfectly diffuse
reflector is also referred to as a Lambertian reflector, and exhibits only the cos y
dependence for a planar surface. This is due purely to the geometrical effects of the
projected area. A nonspecularly reflecting surface is often referred to as a scattering
surface.

Light scattering is an optical phenomenon that takes place at a rough (planar)
surface that reflects the incident collimated beam into all directions. Most often,
though, it happens within solids, liquids, and gases that offer scattering centers to
the incident radiation. The angle that each randomly reflected (scattered) ray makes
with the surface normal is referred to as a scattering angle. Within the realm of
radiometry, the scattered light nonetheless follows the laws of geometrical optics:
due to the surface texture, Snell’s law applies on a microscopic scale.

18.7.2 BRDF

The surface reflection characteristic is formally described by a functional dependence
that includes two angles of incidance ð�i; �iÞ, and two reflecting or scattering angles
ð�r; �rÞ, which specify the direction into which the light reflects or scatters (Fig.
18.24). This function of four angles, the bidirectional reflectivity distribution func-
tion, BRDF(�i; �i; �r; �rÞ, is the surface reflection coefficient that relates the radiance
reflected into an element of solid angle �!r along a particular angular direction
ð�r; �rÞ with the beam incidance Mð�i; �iÞ on a small surface area �A being
characterized:

BRDFð�i; �i; �r; �rÞ ¼ ½Lð�r; �rÞ�!r�=Mð�i; �iÞ; ½unitless� ð18:112Þ
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where �!r is the incremental solid angle subtended by the detecting surface. For a
specularly reflecting surface, the BRDF is a delta function:

BRDFð�i; �i; �r; �rÞ ¼ �ð�r � �i; �r � �iÞ ¼ 1 when �r ¼ �i and �r ¼ �i

¼ 0 otherwise: ½unitless�
ð18:113Þ

For a perfectly diffuse or a Lambertian surface, the BRDF has a cos y dependence.

BRDFð�i; �i; �r; �rÞ ¼ cos �r�!r: ½unitless� ð18:114Þ
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Figure 18.23 (a) A small surface detail on a polished plate. (b) A surface much magnified

shows large peaks and valleys. (c) A polished surface displays small separation between the

upper surface envelope and the lower surface envelope.

(a)

(b)

(c)



The subscript r is usually left out for diffuse surfaces. The component of the radia-
tion that is not reflected according to Snell’s law in a reflective (polished) component
is referred to as the scattered light. This fraction of light may be decreased by careful
polishing, handling, and storage in a dust-free environment, but it cannot ever be
completely eliminated. It is one of the major contributors to the stray light noise in
an optical system.

The angular dependence of the light transmitted into the second medium may
behave in one of two ways: it may obey Snell’s law for refraction if the surface is
polished, as in the case of a lens or a prism; it may be scattered, as in the case of
highly absorbing coating materials designed to increase the absorption of the inci-
dent radiation by the detector.

The material is said to be reflecting, when only an negligibly small amount of
radiation is transmitted into it. A material is transparent if the surface is transmissive
and the material is not absorptive. With the exception of a few highly reflecting
interfaces [4], a significant fraction of the radiation is transmitted into the second
medium, especially in the case of transparent materials.

18.7.3 Surface or Fresnel Losses

When the incident light passes from one transparent region with a given index of
refraction n1 to another transparent region with a different index of refraction n2,
only a small fraction of light is reflected, while the major part of the light is trans-
mitted, as illustrated in Fig. 18.25.

The portion of the radiative energy lost to crossing the boundary is referred to
as the Fresnel loss. It depends only on the indices of refraction on each side of the
interface and the ray angle of incidence. The fraction of energy reflected at a single
surface separating two different regions of space, characterized by two indices of
refraction n1 and n2, respectively, is simplified for the normally incident beam of
light:
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Figure 18.24 The reflectivity of a surface is determined by measuring the amount of the

radiation incident as a collimated beam and reflected from an increment of area into an

element of solid angle.



R12 ¼ r212 ¼ ½ðn1 � n2Þ=ðn1 þ n2Þ�2; ½unitless� ð18:115Þ
where R is the energy (or intensity) reflection coefficient, while r is the field reflection
coefficient. The fraction of the radiative energy that remains in the main beam and is
transmitted into the second medium, �, is called the transmission coefficient. Using
the conservation of energy and assuming that the surface does not absorb any
energy, we get the single-surface transmission factor:

�12 ¼ 1� R12: ½unitless� ð18:116Þ
Upon the substitution of Eq. (18.115) into Eq. (18.116), we obtain the desired result:

�12 ¼ 1� ½ðn1 � n2Þ=ðn1 þ n2Þ�2 ¼ ð4n1n2Þ=ðn1 þ n2Þ2: ½unitless� ð18:117Þ
Here we note the symmetry of indices of two media, indicating that the transmission
(losses) from medium 1 to medium 2 are equal to the transmission (losses) from
medium 2 to medium 1:

�12 ¼ �21 ¼ ð4n1n2Þ=ðn1 þ n2Þ2: ½unitless� ð18:118Þ
The transmission losses of a complete optical system are a product of the losses at
each individual surface. The reflection losses for an optical system consisting of a
number of surfaces made of the same material with the same index of refraction are
equal to that of a single surface raised to the exponent of the number of surfaces.

18.7.4 Radiation Propagating in a Medium

In the previous section, we saw that the radiation incident on the boundary between
two media may be reflected into the medium from where it came, or it may be
transmitted.

We consider a beam of light with incidance MI incident on a medium. The
amount of light transmitted into the medium is given by

M0 ¼ �12MI ¼ ð1� R12ÞMI ¼ ð1� r212ÞMI: ½W=m2� ð18:119Þ
Here R denotes the energy (or power) reflection coefficient. The parallel beam of
light incident normally on a polished interface will continue as such even inside the
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Figure 18.25 The surface or Fresnel loss is that fraction of incident power that is reflected

back into the medium of exitance when the incident light passes from one transparent region

with a given index of refraction n1 to another one, also transparent, but with a different index

of refraction n2.



medium, unless the medium is scattering, i.e., it includes particles that deviate the
beam of light in a random fashion.

Generally, the beam transmitted into the second medium M0 will consist of a
component in the direction of the incident beam MT and a component scattered out
of the beam in all directions. The scattered component MS represents losses for the
information-carrying main beam. The amount of radiation absorbed in the medium
MA represents additional losses. These beams are illustrated in Fig. 18.26:

M0 ¼ MT þMS þMA: ½W=m2� ð18:120Þ
This relation expresses the conservation of radiative energy inside the medium.

18.7.5 Radiation Scattered in a Medium

The amount of radiation that is scattered within a medium may be described by an
exponential function. We consider a beam of radiation incident on an imaginary
surface at a distance z from the surface delineating the absorbing material, as illu-
strated in Fig. 18.27. In the transverse section of material of width �z, a fraction of
the radiation �MðzÞ is scattered outside the beam. This exitance is equal to the
difference between the exitance at z, MðzÞ, and that at zþ�z, Mðzþ�zÞ; i.e.,
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Figure 18.26 In a material, some rays are scattered and others are absorbed out of the main

beam, resulting in a decrease in the exitance as a function of propagation distance.

Figure 18.27 A beam of radiation is incident on an imaginary surface at a distance z from

the surface. In the section of material of width �z, a fraction of the radiation �MðzÞ is

scattered outside the beam. This exitance is equal to the difference between the exitance at

z, MðzÞ, and that at zþ�z, Mðzþ�zÞ.



�MðzÞ ¼ MðzÞ �Mðzþ�zÞ: ½W=m2� ð18:121Þ
The amount of radiation scattered out of the beam along the path from z to zþ�z is
proportional to the interval �z and the exitance at z, MðzÞ. The proportionality
constant is called the (linear) scattering coefficient, ks, in [m�1]. The negative sign
indicates that the exitance remaining in the beam decreases with the propagation
distance z:

�MðzÞ ¼ �ks�zMðzÞ: ½W=m2� ð18:122Þ
The volume scattering coefficient is important when considering the integrated
amount of radiation scattered out of or into a 3-D optical beam. In such a case,
the radiation incident from all directions is evaluated. For this problem, the differ-
ential equation has to be formulated in three dimensions.

Equation (18.22) is integrated after the differentials have been replaced with
the infinitesimals:

ðMðzÞ

M0

dMðzÞ=MðzÞ ¼ �ks

ðz

0

dz

� �
: ½unitless� ð18:123Þ

The lower limits on the definite integrals are set as follows: at z ¼ 0 the exitance is
intact, Mð0Þ ¼ M0: at zero propagating distance, no light has been scattered out of
the beam as yet. So, the definite integrals in Eq. (18.123) are evaluated:

MðzÞ ¼ M0e
�ksz: ½W=m2� ð18:124Þ

The scattered radiation is ‘‘lost’’ to the main b eam as to its capacity to transfer
information efficiently: within the first-order analysis, it gets neither reflected nor
transmitted outside the medium. However, the scattered radiation is not associated
with the image-carrying optical beam. Its contribution is just the opposite: first of all,
it reduces the signal; secondly, if it is finally incident on the image plane, most likely
its location does not correspond to the conjugate object point. Thus, it increases the
optical noise. Both of these effects diminish the signal-to-noise ratio. [5]

In fact, there are two phenomena characteristic of the interaction of the radia-
tion with matter that decrease the signal-to-noise ratio of the information-carrying
optical beam: in addition to scattering, there is also the radiation absorption within
the matter.

18.7.6 Radiation Absorbed in a Medium

The absorption of radiation is the other phenomenon characteristic of light interac-
tion with matter. Similarly to scattering, the amount of radiation absorbed upon
propagation is also described by an exponential function. We consider a beam of
radiation incident on an imaginary surface at a distance z from the surface delineat-
ing the absorbing material, as illustrated in Fig. 18.28. In material of width �z, a
fraction of the radiation incident on this imaginary surface �MðzÞ is absorbed from
the beam. This exitance is equal to the difference between the exitance at z,MðzÞ, and
that at zþ�z, Mðzþ�zÞ:

�MðzÞ ¼ MðzÞ �Mðzþ�zÞ: ½W=m2� ð18:125Þ
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The amount of radiation absorbed from the beam along the path from z to zþ�z is
proportional to the width of the interval of propagation �z and the exitance at z,
MðzÞ. The proportionality constant is called the (linear) absorption coefficient, �, in
[m�1]. The negative sign indicates that the exitance remaining in the beam decreases
with the propagation distance z:

�MðzÞ ¼ ���zMðzÞ: ½W=m2� ð18:126Þ

Equation (18.126) is easily integrated, as for the case of scattering,

MðzÞ ¼ M0e
��z: ½W=m2� ð18:127Þ

The absorbed radiation is also lost to the information-transmitting beam. It
increases the internal energy of the material, raising ever so slightly its temperature.
This may be significant for those materials whose index of refraction, expansion, or
the absorption coefficient are temperature-dependent. Germanium is an example of
such a material.

Some materials exhibit both absorption and scattering. It is easy to show that
the exitance at the distance z in the medium MðzÞ becomes

MðzÞ ¼ M0e
�ð�þksÞz: ½W=m2� ð18:128Þ

When the absorption or scattering coefficients become appreciable, the material no
longer functions as a transmissive medium.

18.7.7 External and Internal Transmittance

First, we consider the case of internal transmittance. We refer to Fig. 18.29, which
shows a parallel beam of light with exitance MI incident on a plane of thickness d.
We evaluate Eq. (18.128) for the beam-propagation distance z ¼ d to find the inter-
nal transmittance in the case of the absorbing and scattering plate. Thus, we obtain

MðdÞ ¼ M0e
�ð�þksÞd : ½W=m2� ð18:129Þ
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Figure 18.28 A beam of radiation is incident on an imaginary surface at a distance z from

the surface. In the section of material of width �z, a fraction of the radiation �MðzÞ is

absorbed from the beam. This exitance is equal to the difference between the exitance at z,

MðzÞ, and that at zþ�z, Mðzþ�zÞ.



The internal transmittance �i is defined as the ratio of the exitance at the end of the
propagation distance d within the medium MðdÞ to the exitance after the beam has
entered the medium M0. It is given as follows:

�i ¼ MðdÞ=M0: ½unitless� ð18:130Þ
Thus, the internal transmittance is equal to

�i ¼ e�ð�þksÞd : ½unitless� ð18:131Þ
The internal transmittance depends on the thickness over which the beam is propa-
gating, the material properties, and the absorption and scattering coefficients. If we
know the plate thickness and the absorption and scattering coefficients, we can
calculate the internal transmittance. The internal transmission of a plate is increased
when the material has low absorption and scattering coefficients, for any plate
thickness. When a plate of a thickness d1 is replaced by a plate of the same material
but with a different thickness d2, the internal transmittance is changed.

The external transmittance is the ratio of the exitance leaving the plate MD to
the exitance incident on the plate MI:

�e ¼ MD=MI: ½unitless� ð18:132Þ
To find the external transmittance, we need to determine the amount of light trans-
mitted through the plate to the other side, MD. The external transmittance includes,
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External transmittance includes, in addition to the internal transmittance, the Fresnel losses

at both interfaces.



in addition to the internal transmittance, the Fresnel reflection losses at both bound-
aries. Using Eq. (18.119) again, we obtain at each surface:

M0 ¼ �12MI; ½W=m2� ð18:133Þ
and

MD ¼ �21MðdÞ: ½W=m2� ð18:134Þ
The exitances on the inside of the slab, M0 and MðdÞ, are related through Eq.
(18.129). We substitute Eq. (18.129) into Eq. (18.134):

MD ¼ �21M0e
�ð�þksÞd : ½W=m2� ð18:135Þ

We now substitute Eq. (18.133) into Eq. (18.135) to obtain an explicit result:

MD ¼ �21�12MIe
�ð�þksÞd : ½W=m2� ð18:136Þ

The expression for the external transmission is simplified when the exitance leaving
the plate, given in Eq. (18.136), is substituted into Eq. (18.132). The common factor
MI cancels in the numerator and denominator; i.e.,

�e ¼ �21�12e
�ð�þksÞd : ½unitless� ð18:137Þ

Equation (18.137) is the most physically intuitive expression for the external trans-
mittance. It may also be given in terms of internal transmittance, when Eq. (18.131)
is substituted in Eq. (18.137):

�e ¼ �21�12�i: ½unitless� ð18:138Þ
This expression shows quite clearly that the external transmittance is the product of
the internal transmittance multiplied by the Fresnel losses at each surface. It is
important to keep in mind that we may only measure the external transmittance.

For the normal angle of incidence, the Fresnel losses are given in terms of the
indices of refraction, Eq. (18.116). Then, Eqs (18.137) and (18.138) become

�e ¼ �212e
�ð�þksÞd ¼ ð1� R12Þ2e�ð�þksÞd ; ½unitless� ð18:139Þ

and

�e ¼ �212�i ¼ ð1� R12Þ2�i: ½unitless� ð18:140Þ
Using the second equality in Eq. (18.117), we obtain another set of expressions:

�e ¼ ½ð4n1n2Þ=ðn1 þ n2Þ2�2e�ð�þksÞd ; ½unitless� ð18:141Þ
and

�e ¼ ½ð4n1n2Þ=ðn1 þ n2Þ2�2�i: ½unitless� ð18:142Þ
Only in the case when the plate is made of material that is neither scattering nor
absorbing is the internal transmittance equal to 1, and the transmission losses of a
plate are due solely to the inevitable Fresnel losses at the two surfaces.
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Incoherent Light Sources

H. ZACARIAS MALACARA
Centro de Investigaciones en Optica, León, Mexico

19.1 INTRODUCTION

A light source is a necessary component in most optical systems. Except for those
systems that use natural light, all others must include an artificial light source. In
more than 100 years, a very large variety of light sources have been developed, and
still new ones are currently being designed. Five main types of artificial sources are
available:

(a) Light sources that emit from a thermally excited metal. Most of these
sources are made from a tungsten filament. The spectrum of light corre-
sponds to a quasi-blackbody emitter at the emitter temperature.

(b) Light emitted by an electrically produced arc in a gap between two elec-
trodes. The arc can be produced in open air, although most modern arc
lamps are enclosed within a transparent bulb in a controlled atmosphere.
The spectrum is composed of individual lines from the gas, superimposed
to a continuous spectrum emitted by the hot electrode.

(c) Light produced by the excitation of a material by ultraviolet energy in a
long discharge tube, generically known as fluorescent lamps.

(d) Light emitted due to a recombination of charge carriers in a semiconduc-
tor gap. A semiconductor pair is needed for the light to be emitted. These
light sources receive the generic name of light-emitting diodes (LEDs).

(e) Light emitted as a result of the stimulated radiation of an excited ensem-
ble of atoms. This emission results in laser radiation with light having
both spatial coherence (collimated light) and temporal coherence (mono-
chromaticity). Due to its importance in optical instruments, these devices
are described in another chapter in this book and will not be described in
this chapter.
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Some Basic Concepts

(a) Luminous efficacy. All light sources emit only a small amount of visible power
from their input power. Luminous efficacy e is defined as the ratio of the total
luminous flux F to the total power input P, measured in lumen per watt (lm/W); i.e.,

e ¼ F

P
ð19:1Þ

Assuming an ideal white source, which is one with constant output power over all the
visible portions only, the luminous efficacy will be about 220 lm/W. [20]
(b) Color temperature. For a blackbody emitter, the color temperature corresponds
to the spectral energy distribution for a blackbody at that temperature. The Kelvin
temperature scale is used to describe color temperature for a source.
(c) Correlated color temperature. When the emitter is not a perfect blackbody, but the
color appearance resembles that of a blackbody, the correlated color temperature is
the closest blackbody temperature found in the CIExy color diagram.
(d) Color rendering index (CRI). This is a property of a light source to reproduce
colors as compared with a reference source. [16] This figure reflects the capability of a
light source to faithfully reproduce colors. The color rendering index is 100 for
daylight.

19.2 TUNGSTEN FILAMENT SOURCES

The tungsten filament source, which is now more than 100 years old, is also the first
reliable light source for optical devices. The basic lamp has evolved since its inven-
tion by Edison. An historical account is described by Anderson and Saby [1],
Josephson [10] and Elenbaas [5]. The basic components for a tungsten lamp are
(Fig. 19.1): an incandescent electrically heated filament; supporting metal stems
for the filament, two of them used to conduct electrical current to the filament; a
glass envelope; filling gas; and a base to support and make the electrical contact.
These basic components, with variations according to their applications, are now
considered.
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(a) Filament. Electrical power heats the filament with a spectral distribution
that follows a gray body. Since high temperatures are attained, filaments must sup-
port the highest possible temperatures. The higher the temperature, the higher the
light efficacy. Carbon is capable of sustaining the highest temperature; unfortu-
nately, it also evaporates too fast. After testing several materials, such as osmium
and tantalum, tungsten is the metal most used for filaments. High temperature has
the effect of vaporizing the filament material, until after some time, the thinning
filament breaks. The evaporation rate is not constant and depends on the impurity
contents. [13] Most optical applications require a point-like source. Ideally, filaments
should have low extension. To reduce the emitter extension, and at the same time
increase the emissivity, filaments are coiled and, in some cases, double coiled. The
reason is that by coiling the filament, the surface exposed to cool gas is reduced,
decreasing the convection cooling. [18] Some typical filaments are shown in Fig. 19.2.
Additional filament shapes can be seen in the book by Rea. [20] Where light must be
concentrated, filaments have low extension, as in projection, searchlights, or spot-
lights. If light is needed to cover a large area, large filaments are used instead. Some
optical instruments require a line source. Straight filaments are used: for example, in
hand-held ophthalmoscopes. Filaments operate at a temperature of about 3200K.
Tungsten emissivity ranges typically from 0.42 to 0.48. Spectral emissivity is reported
in the literature. [6, 13]

(b) Wire stems. Besides carrying electrical current to the filament, stems are
used to hold the filament in position. Several different kinds of stems are used,
depending on the filament and bulb shape. Mechanical vibration from the outside
can create vibration modes in the filament and stems, reducing its life by metal
fatigue. Some lamps have a design to reduce vibration but they must be mounted
according to manufacturer specifications. Lead-in wires are chosen as to have a
similar thermal coefficient to pinch the glass at the electric seal to avoid breaking
the glass.
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(c) Filling gas. The purpose of filling with gas is twofold: (i) to provide an inert
atmosphere and avoid filament burning and (ii) to exert a pressure over the filament
and delay the evaporation process. A negative effect of the gas is convective cooling,
reducing the lamp efficacy. Low current lamps are made with a vacuum instead of a
filling gas because the gas may give a negative effect for small filaments. Nitrogen
and argon are the most commonly used gases, but some small lamps use the more
expensive krypton gas. A common lamp is the quartz-halogen lamp. [28] A mixture
of a halogen and a gas are enclosed in a low-volume quartz envelope. As the lamp
burns, the tungsten filament is evaporated over the inner bulb surface, but due to the
high temperatures attained by the quartz envelope, a reaction occurs between the
halogen and the evapaorated tungsten, removing it from the bulb. At the arrival of
this mixture to the filament, the tungsten is captured again by the filament. Due to
this effect, called the halogen cycle, the filament has a much longer life than any
standard filament lamp for a filament at a higher temperature. Actually, the hot
quartz envelope reacts easily with the stems, eroding the wire, and the breakage is
usually produced in the stem. Quartz halogen lamps do not usually show bulb
blackening. Due to the high chemical reactivity of the quartz bulb, care must be
taken to avoid any grease deposition over the bulb surface; otherwise, a hot center is
developed, resulting in the bulb breaking. It has been found that halogen vapor
absorbs some radiation in the yellow-green part of the spectrum and emits in the
blue and ultraviolet. [26]

(d) Glass envelope. The glass bulb prevents the oxygen from burning the fila-
ment and allows a wide light spectrum to leave from the lamp. Most lamps are made
of soft lime-soda glass. Outdoor lamps have impact or heat-resisting glass. Halogen
and tubular heat lamps are made of quartz. As mentioned, glass bulbs are chosen to
transmit most of the visible spectrum. The transmission spectrum for a glass bulb is
reported by Kreidl and Rood [12] and Wolfe [27]. Optical transmittance is affected
by temperature. For lamps for use at near-infrared wavelengths, a window is placed
at some distance from the source, like Osram WI 17/g (Osram 2000, internet site).
Tungsten lamps are manufactured with diverse bulb shapes, designated by their
shape: A for arbitrary shape, R for reflector, T for tubular, and PAR for parabolic
reflector (Fig. 19.3). New shapes are brought to the market constantly, and others
are discontinued. The most recent catalog from the manufacterer is recommended
for current bulb shapes. Some lamps are made transparent while others are frosted
by acid etching. Some are covered with white silica powder on the inner surface for a
better diffusing light. Acid-etched lamps do not absorb significant amounts of light;
silica-covered lamps absorb about 2% of the light. [18]

(e) Supporting bases. Besides the electrical contact, the base must support the
lamp in place. The traditional all-purpose screw base is used for most general light-
ing applications. For most optical instruments, where the filament position is critical,
the so-called prefocus base is used. Other bases are also used, such as bayonet-type
bases. Quartz-halogen lamps are subjected to high temperature, and ceramic bases
are used in those cases.

Some optical applications where tungsten lamps are used are described as
follows:

(i) Spectral irradiance standard lamps. Since quartz halogen lamps have a high
stability for a relative long period of time (about 3%), it has been proposed for use as
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a secondary standard for spectral irradiance. [Osram, 2000] Later, an FEL lamps has
been proposed as a secondary standard. [8] This type of lamp is placed at a fixed
distance and at a specified orientation, where the spectral irradiance is known. This
lamp provides a handy reference to check for the calibration of some light sensors.
Some laboratories make a traceable calibration for every lamp they sell.

(ii) Standard type A source. The International Committee for Illumination
(CIE) has defined a standard source called a Type A source. This source is a refer-
ence for a color specimen to be observed. The original definition describes a tungsten
lamp with quartz window operating at a correlated color temperature of 2856K.
Originally, this description was for a 75W lamp under a fixed supply voltage. Any
tungsten lamp with a carefully controlled filament temperature could be used; also, it
can be purchased with a certification to be used for this purpose, like the OsramWI 9
(Osram, 2000).

(iii) Photographic flash lamps and photolamps. Daylight color films are made for
a color temperature of 6500K. The maximum attainable temperatures for photo-
lamps used to be 3200 and 3400K. For this reason, a film with a color balance of
3200 or 3400K were selected for indoor use of color light. The mean life for a 3200K
lamp was about 6 hours, while a 3400K lamp lasted for about 100–150 hours. [2]
Now, quartz halogen lamps have a life about 10 times longer, with a higher light
output. For movies, TV studio, and photographic use, tungsten halogen lamps are
always used.

Old photoflash lamps were built to produce the highest possible light output.
To make it possible, a glass bulb was made with a long filament and filled with
oxygen instead of a vacuum. The filament was quickly burned, producing a high
light output. Flash lamps were usually covered with a lacquer to avoid an explosion
and to support a color-balancing dye. Since the light power curve increased at a fixed
rate, the shutter had to be synchronized for the highest power output. For filament
flash lamps, the synchronization is called M synchronization. Other disposable
lamps had a piezoelectric element to fire the lamp and yet others, a mechanical firing
device started the chemical filament reaction for filament burning. [2–4]
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(iv) Projection lamps. Old projection lamps were made with a screen-shaped
filament, to form on the film gate a blurred image of the filament, producing an
almost uniform illumination at the gate. This resulted in a large filament with a
complicated support and a reduced color temperature. Recent projection lamps
rely on lamps with a single coiled filament and an elliptic reflector (Fig. 19.4). The
advantages for the new system results in the following: (a) the integrated elliptical
reflector has a thin film cold mirror to reduce heat at film gate; (b) short single-coiled
filaments increase color temperature; (c) quartz halogen lamps increase life and
reduce bulb blackening; and (d) nonuse of condenser lenses. The condenser system
brings about 55–60% of total flux to the objective, while an elliptical mirror without
a condenser lens can bring up to 80% of total flux. [2]

19.3 ARC SOURCES

Among other mechanisms that can produce light, is the electron de-excitation in
gases. An electron is excited by an electron or ion collision, which is achieved by the
following means:

1. Thermal electron emission by a hot cathode. A heating incandescent fila-
ment emits some electrons that statistically overcome the metal’s work
function. In the presence of an electrical potential, the electron is acceler-
ated and, by collision, new ions are produced. This method is used to start
a discharge.
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2. Secondary emission. Several electrons are emitted from a metal that is
struck by a colliding electron. Once a discharge begins, it is maintained
by continuous ion bombardment. This mechanism is responsible for the
arc maintaining in arc sources.

3. Field emission. A strong electrical field applied in a relatively cold cathode
can be high enough for electrons to be emitted from the metal. This
mechanism is used to start the discharge in an initially cold lamp.

The oldest form of an arc can be found in the now-obsolete carbon arc. Two carbon
electrodes were brought into contact and in series to a limiting resistor. There are
three types of carbon arcs: low intensity, high intensity, and flame. Low-intensity arcs
operate by circulating a current high enough to reach the sublimation point for the
carbon (3700K). The emission characteristics of a carbon arc is that of a blackbody.
Although simple in operation, carbon electrodes are consumed fast and new electro-
des should be replaced. In old movie theater projectors, a device was made to
maintain a constant current (constant luminance) on the electrodes. For some special
applications, where a carbon arc was to be operated for long time, an automatic
electrode supply was devised. [14] In flame arcs, an additional compound was
included with the carbon electrode to modify the emission characteristics of the
light, increasing at the same time the efficiency of the source. High-intensity arcs
are a special kind of flame arc with an increased current. Because of its low reliability
and short light cycle, arc lamps are not currently used; they have been replaced by
short arc lamps. Emissivity for carbon arcs is about 0.98–0.99. [17]

Short arc lamps: modern arc sources are made from tungsten electrodes
enclosed in a large spherical or ellipsoidal fused silica envelope. In this case, light
is produced by electron de-excitation in gases. Gases are at about atmospheric
pressure, but when hot, pressure may increase up to 50 atmospheres. Thoriated
tungsten electrodes have a typical gap between 0.3 and 12mm. Since short arc
lamps have a negative resistance region, once the arc is started, a very low impedance
appears at the electrodes. Short arc lamps’ lives are rated at more than 1000 hours,
when the bulb blackens or the electrode gap increases and the lamp cannot start.
Commercially, lamps are available from 75W up to 30,000W. Short arc or compact
arc lamps are used in motion picture and television illumination, movie theater
projection, solar simulators, and TV projection.

The starting voltage may raise up to 40 kV. To avoid a rapid destruction of the
lamp due to a high current, a ballast must be used. For ac operation, an inductive
ballast is used, but for many applications where line current modulation is not
allowed, an electronic current limiter must be provided after the start. Three short
arc lamps are available: mercury and mercury–xenon; xenon lamps; and metal halide
lamps.

1. Mercury and mercury–xenon lamps. Short arc mercury lamps have at low
temperature and a pressure of about 20–60 Torr [2, 20] of argon with traces
of mercury. After the initial pulse starts the arc, mercury is vaporized, the
pressure increases and the emission spectrum is of mercury, but with broad
lines because of high gas pressure (Fig. 19.5(a)). It takes several minutes to
reach full power, but if the lamp is turned off, it may take up to 15min to
cool down for restart. By adding xenon to the lamp, the warm-up time is
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reduced by about 50%. The spectral light distribution is the same as the
mercury lamp. The luminous efficacy is about 50 lm/W for a 1000W lamp.

2. Xenon lamps. These lamps have a continuous spectral distribution with
some lines from the xenon (Fig. 19.5(b)); maximum power is obtained a
few seconds after the start. Correlated color temperature for a xenon lamp
is 5000K. The luminous efficacy ranges from 30 to 50 lm/W.

3. Metal halide lamps. The inclusion of rare earth iodides and bromides to a
mercury short arc lamp results in a lampwith a full-spectrumemission, a high
color-rendering index, and a high luminous efficacy. These lamps are used
mainly in TV andmovie lighting, and some fiber optics illuminating devices.

19.4 DISCHARGE LAMPS

High-intensity discharge lamps produce light by the electrical current flowing
through a gas. It is necessary to reach the gas ionization for the gas to glow. As
already mentioned, gas discharges have negative resistance characteristics; then,
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discharge lamps need a ballast to limit current once it is started. Most high-intensity
discharge lamps operate from an ac supply. Three main types of lamps are produced
for illumination purposes: mercury, metal halide, and high pressure.

1. Mercury lamps. Mercury lamps are made of two glass bulbs, one within the
other. The inner bulb contains two tungsten electrodes for electrical con-
tact. Argon gas is used to initiate the discharge, but small amounts of
mercury are quickly vaporized to produce a broad line spectrum with
the lines at 404.7, 432.8, 546.1, 577, and 579 nm. This results in a blue-
green light. In contrast to a short arc lamp, the distance between the
electrodes is several centimeters. The outer glass bulb serves as a filter
for the ultraviolet light and contains some nitrogen to reduce pressure
differences with the atmosphere. Sometimes the inner surface for this
bulb is covered with a phosphor to convert ultraviolet radiation to visible
light. The color is selected in the orange-red portion to improve the color-
rendering properties of the lamp. A version of this lamp includes a phos-
phor to convert the 253.7 nm UV radiation to near-UV light (black light).
High-intensity mercury discharge lamps have a light efficacy of 30–65 lm/
W. Most mercury lamps operate with a 220V supply voltage, but can also
function with 127V with an auto transformer-ballast.

2. Metal halide. The inclusion of some metal halide in a mercury lamp adds
several spectral lines to an almost continuous spectrum. [21] The effect is a
better color-rendering index and an improvement in the luminous efficacy
(75–125 lm/W). Scandium iodide and sodium iodide are two of the added
materials.

3. High-pressure sodium lamps. Sodium vapor at high pressure is used for
discharge lamps. Spectral width is strongly dependent on gas pressure,
so that a high-pressure sodium lamp gives a broad spectrum dominant
at the yellow line. [25]

Most high-intensity discharge lamps are operated with an inductive ballast; this
drops the power factor up to 50%, but with a power factor correcting capacitor, it
increases up to 90%. [18] Dimming of discharge lamps imposes several design restric-
tions as for power factor correction and harmonics control. Electronic systems for
this purpose are described in RCA. [19]

Discharge lamps, which are used for general lighting and are not frequently
used for optical instruments, include the following types.

1. Low-pressure discharge lamps. Small low-pressure discharge lamps are
made for spectroscopic application. Due to its low pressure, spectral
lines are sharp and can be used for spectral line calibrations. Table 19.1
shows some spectral lamps. [Osram, 2000]

2. Long-discharge lamps. Low-pressure long-arc lamps are also made. They
are used for solar simulators. Since they have low luminous efficacy (30 lm/
W), they are not used for general lighting. Long-arc xenon lamps produce
a color similar to daylight, rich in UV content. These lamps are used for
ageing chambers, as recommended by ASTM G-181 and G155-98 and ISO
4582 standards.
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3. Flash lamps. Flash lamps are discharge lamps with a long arc that emits a
fast flash of light for a short time. Flash lamps are used in photography,
stroboscopic lamps, warning lights in aviation and marine, and laser
pumping. Flash lamps uses low-pressure xenon as the active gas, although
some have traces of hydrogen to change its spectral content. Tubes for
photoflash are usually a long arc in a long straight tube; sometimes the
tube is coiled or U-shaped. A ring electrode is wrapped to the tube to
trigger the flash.

Lamp electrodes are at high impedance, but the trigger electrode increases the
gas conductivity to almost zero impedance. A typical circuit for a flash is shown in
Fig. 19.6. A capacitor is charged in a relatively long time; after charging the capa-
citor C2, another capacitor, also previously charged is discharged through a trans-
former to produce a high voltage at the trigger electrode. Capacitor C1 is discharged
through the lamp. The luminous efficacy is about 50 lm/W for a typical flash lamp.
Loading in joules for a flash tube is: [20]

Loading ¼ CV2

2
ð19:2Þ
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Table 19.1 Characteristics for Spectral Low Pressure Lamps [Osram, 2000]

Designation Elements

Lamp

voltage

(V)

Lamp

current

(A)

Type of

current

Lamp

wattage

(W)

Luminous area

H � B

(mm)

Cd/10

Cs/10

He/10

Hg/100

HgCd/10

K/10

Na/10

Na/10FL

Ne/10

Rb/10

Tl/10

Zn/10

Cadmium

Caesium

Helium

Mercury

Mercury + cadmium

Potassium

Sodium

Sodium

Neon

Rubidium

Thallium

Zinc

10

10

60

45

30

10

15

16

30

10

15

15

1.0

1.0

1.0

0:6 . . . 1
1.0

1.0

1.0

0.57

1.0

1.0

1.0

1.0

ac

ac

ac

ac/dc

ac

ac

ac

ac

ac

ac

ac

ac

15

10

55

22 . . . 44

25

10

15

9

30

10

15

15

15� 6

15� 6

15� 8

20� 3

20� 8

15� 6:5
15� 6:5

15� 8

15� 6

8� 3

15� 6

Figure 19.6 A typical circuit for a photographic flash lamp.



The flash tube impedance is

Z ¼ �L

A
; ð19:3Þ

where � is the plasma impedance in ohm-cm, L is the tube length, and A is the cross-
sectional area in cm.

A version of a xenon arc lamp is used for photography. Xenon flash lamps
have spectral distribution that closely resembles CIE D65 illuminant or daylight.
Photographic flash lamps can stand more than 10,000 flashes. Flash tubes cannot be
connected in parallel, since each lamp must have its own capacitor and trigger
circuit. For multiple lamp operation, a slave flash lamp is designed to trigger with
the light from another lamp. Flash lamps are synchronized to the camera in such a
way that lamps are triggered when the shutter is fully opened. This is called the X-
synchronization.

19.5 FLUORESCENT LAMPS

Fluorescent lamps are a general kind of lamp that produce a strong mercury line at
253.7 nm from low–pressure mercury gas. This excites a fluorescent material to emit
a continuum of visible radiation.

(i) Physical construction. Fluorescent lamps are made mainly in tubular form,
the diameter is specified in eighths of an inch, starting with 0.5 inch designated to T-4
to 2.125 inches or T-17. The length, including lamp holders, ranges from 4 inches
(100mm) to 96 inches (2440 mm). Lamp tubes are usually made from soft lime soda
glass, and at each end, a small tungsten filament is used as electrode and as preheater
to start the lamp. Alternatively, fluorescent lamps are also made in circular form, U-
shaped and quad or double parallel lamps for compact fluorescent lamps. At each
end of the tube, a base for electrical contact is provided. For circular lamps, at some
point on the cicle, a connector for both ends is located.

As a filling gas, low-pressure mercury with some argon or argon and krypton is
added to initiate the discharge. At this low pressure (200 Pa) most of the mercury is
vaporized, but this depends on the ambient temperature.

(ii) Electrical characteristics. When cold, the electrical impedance of the gas is
very high, but as soon as the lamp ignites, the conductivity decreases suddenly to a
very low value. A means must be provided for current limitation. The principle of the
electrical operation is shown in Fig. 19.7. Both filaments, an inductive ballast, and
the starter are all in a single series circuit. Initially, the starter is closed, and both
filaments in series are heated to vaporize the mercury gas and to ionize the gas. A
rapid break in the starter circuit produces a high voltage from the ballast, enough to
initiate the discharge. Multiple lamps can operate from a single ballast assembly
designed for such a case. Electronic ballasts work on high line frequency
(� 20�60 kHz), since the efficacy increases about 10% for frequencies above
10 kHz. Electronic ballasts have better ballast efficiency, less weight, less noise,
and some other advantages. There are two main modes of operation in fluorescent
lamps, glow and arc.

In the glow mode, electrodes are made of single-ended cylinders; the inside is
covered with an emissive material. In this mode of operation, the current in the lamp
is less than 1A, and the voltage through the lamp is about 50V.
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In the arc mode, the electrodes are tungsten, at a temperature of 10008C.
Electrons are emitted thermically. The current increases up to more than 1.5A
and the lamp voltage across the lamp is around 12V. [20] This mode of operation
is more efficient than the glow mode, and most of the fluorescent lamps work on this
principle.

(iii) Optical characteristics. The optical spectrum for a fluorescent lamp is
composed mostly of the continuous emission from the fluorescent material and a
small amount of the line spectra from mercury. Fluorescent materials for lamps
determine the light color. Table 19.2 shows some common phosphors and its result-
ing color.

Table 19.3 shows some of the most common lamp color designations and
characteristics. CIExy color coordinates for each phosphor are referenced in
Philips [18] as well as the spectral distribution for several phosphors.

(iv) Applications. One of the most common applications for a fluorescent lamp is
found in color evaluation boots. Some industries have standardized a light that is
commonly found in stores. This lamp is the cool white lamp. For graphic arts indus-
tries, a correlated color temperature of 5000K, is selected; then some lamps are
specifically designed for this purpose, like the Ultralume 851 or equivalent. For a
good color consistency, it is recommended to replace lamps well before they cease to
emit light. Another use for fluorescent lamps is found in photography, but since the
color is not matched for any commercial film, a color compensating filter must be
used for most fluorescent lamps. [23] Since phosphors have a relatively low time
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Figure 19.7 Electrical operation of a fluorescent lamp.

Table 19.2 Phosphor Properties for Fluorescent Lighting

Phosphor Color of fluorescence

Zinc silicate

Calcium tungstate

Calcium borate

Calcium halo phosphate

Magnesium tungstate

Green

Blue

Pink

Whites of various color temp.

Bluish white



constant, some flickering from line frequency can be observed. To avoid flickering in
some fast optical detectors, like photodetectors and some video cameras, a high line
frequency must be provided, such as the ones provided by electronic ballasts.
Fluorescent lamps emit light in a cylindrically symmetric pattern. For some purposes,
this can be adequate, especially for diffuse illumination. In some other cases, lamps
with an internal reflector have been designed to send most of the light in some pre-
ferred direction. [4, 20] These lamps are used in desktop scanners and photocopiers.

Germicidal lamps are lamps with the same construction as any fluorescent
lamp except that they have no fluorescent phosphor. This kind of lamp does not
have high luminance since most ð� 95%) of the radiated energy is at the UV line of
253.7 nm. This radiation is harmful, since it produces burning to the eyes and skin.
These lamps are used for air and liquid disinfection, lithography, and EPROM
erasure.

The so-called black light lamp has a phosphor that emits UV radiation at the
UV-A band (350–400 nm) and peaks at 370 nm. Two versions are available for these
lamps: unfiltered lamps with a white phosphor that emits a strong blue component; a
filtered one, with a filter to block most of the visible part. Uses for these lamps are
found in theatrical scenery lighting, counterfeit money detection, stamp examina-
tion, insect traps, fluorescence observing in color inspection boots, and mineralogy.
These lamps are manufactured in tubular form, from T5 to T12, compact fluorescent
lamps, and a high-intensity discharge lamp.
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Table 19.3 Fluorescent Lamp Designation Characteristics

Lamp description Designation

Light output

(%)

Color-rendering

index

Color

temperature (K)

Cool white

Cool white deluxe

White

Warm white

Warm white deluxe

Daylight

Colortone 50

Cool green

Sign white

Natural

Supermarket white

Modern white deluxe

Soft white

Lite white

Ultralume 83

Ultralume 84

Ultralume 85

Red

Pink

Gold

Green

Blue

CW

CWX

W

WW

WWX

D

C50

CG

SGN

N

SMW

MWX

SW

LW

83U

84U

85U

R

PK

GO

G

B

100

70

102

102

68

83

70

83

75

66

74

77

68

105

105

105

105

6

35

60

140

35

67

89

58

53

79

79

92

70

82

81

85

80

79

51

85

85

85

—

—

—

—

—

4100

4200

3500

3000

3000

6500

5000

6100

5300

3400

4100

3450

3000

4100

3000

4100

5000

—

—

—

—

—



19.6 LIGHT-EMITTING DIODES

Light-emitting diodes (LEDs) are light sources in which light is produced by the
phenomenon of luminescence. An LED is made from a semiconductor device with
two doped zones: one positive, or p-region, and the other negative, or n-region, as in
any semiconductor diode. Electrons are injected in the n-region, while holes are
injected in the p-region. At the junction, both holes and electrons are annihilated,
producing light in the process. This particular case of luminescence is called electro-
luminescence and is explained in several books. [9, 15, 22, 24] Recombined electrons
and holes release some energy in either a radiative or nonradiative process. For the
latter, a phonon is produced and no visible energy is produced, whereas for the first
case, the energy is released in some form of electromagnetic radiation or photon. The
emitted photon has an energy that is equal to the energy difference between the
conduction and the valence band minus the binding energy for the isoelectronic
centers for the crystal impurities in the semiconductor. [9] Hence, the photon has
a wavelength


 ¼ 1240

�E
nm ð19:4Þ

where �E is the energy transition in electron volts.
Historically, the first commercial LED was made in the late 1960s by combin-

ing three primary elements; gallium, arsenic, and phosphor (GaAsP), giving a red
light at 655 nm. Galium phosphide LEDs were developed with a near-IR emission at
700 nm. Both found applications for indicators and displays, although the latter has
poor luminance, since its spectral emission is in a region where the eye has a poor
sensibility.

Since light is produced in an LED at the junction, this device has to show this
junction to the detecting area. Figure 19.8(a) shows a cross section of an LED. These
devices are found also in fiber optics. To make an efficient coupling to the fiber, most
of the emitting area must be within the acceptance cone for the fiber. The Burrus
LED was developed for optical fibers and its cross section is shown in Fig. 19.8(b).

(a) Optical characteristics. As mentioned, peak wavelength is a function of the
band gap in the semiconductor. Several materials are used for making LEDS. Table
19.4 shows some materials used for making LEDS and their corresponding wave-
lengths.

Spectral bandwidth for most LEDs lie between 30 and 50 nm. Figure 19.9
shows the relative intensity for some LEDs. The first LEDs were red, then infrared
and amber. Later green was obtained, but although blue LEDs were made on the
laboratory scale, [11] life for these devices was very short due to the high photon
energy.

At the emission point, light is emitted in all directions; hence at this point, an
LED is a Lambertian emitter. Some LEDs have reflective electrical contacts, and the
light is confined to emit along the junction. This device is called an edge-emitting
LED, and is appropriate for fiber optics and integrated optics.

Some devices include two LEDs with different color in a single package.
Current flowing in one direction produces light from one emitter; the other emitter
lights by reversing the current. Mixed light color is obtained with bipolar square
waves, the exact hue depending on the duty cycle for the square wave.
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(b) Electrical characteristics. An LED electrically is a diode operated in direct
polarization; by reversing polarization it does not emit light. To limit current, a
limiting resistor is placed in series with the source and the diode. Heat dissipated
by the device, may eventually end the diode’s life. To avoid this, instead of operating
the diode from direct current, a pulsed current operation dissipates less power for a
given retinal perception. This is due to the eye retentivity to a rapid light pulse or
light enhancement factor. [7] Different LED materials have different threshold vol-
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Figure 19.8 Cross section of (a) a typical LED and (b) a Burrus LED.

Table 19.4 Materials for Making LEDs

Material Wavelength (nm) Color

SiC

GaN

GaP

GaP:N

SiC

GaAs0:15P0:85:N

GaAs0:35P0:65:N

GaAsP0:5

GaAs0:6P0:4

GaAlAs

GaP

GaP:Zn,N

GaAlAs

GaAs:Zn

GaAs:Si

470

490

560

565

590

590

630

610

660

660

690

700

880

900

940

Deep blue

Blue

Green

Green

Yellow

Yellow

Orange

Amber

Red

Red super bright

Red

Deep red

Infrared super bright

Infrared

Infrared



tage: consult manufacturers’ data for proper operating levels and maximum power
dissipation.

(c) Applications. The main application of LEDs are found in economical fiber-
optic links. This is an economic alternative to lasers, where bit rate is lower than
high-performance laser systems. LEDs for optical fiber communications can be
purchased both connectorized or without the connector included. Wavelength
can be chosen to fit the optimum transmission for the fiber. Some LED combina-
tions can give red, green, and blue light. Some colorimeters, as an alternative to
tristimulus colorimetry, can use these LEDs instead of filters. Since spectral dis-
tribution is not similar to tristimulus values, some error exists in the color mea-
surement. Also, LED triads are used in some color document scanners for image
capture.

High efficiency–low-cost LEDs are now produced. They can be used for illu-
mination as well as indicators. Currently, a green LED can have luminous efficiency
of about 100 lm/w, while a blue LED has only about 0.01 lm/w.
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INTERNET SITES

http://www.astm.org site for the American Society for Testing and Materials, where some

testing methods are established in illumination and color evaluation.

http://www.hike.te.chiba-u.ac.jp/ikeda/CIE/ International commission for illumination.

Tables for illuminants, sources, and tristimulus values.

http://iso.ch International standards organization, with standards for color and lighting.

http://www.osram.de Commercial lamps catalog.

http://www.lighting.philips.com Commercial lamps catalog.

http://www.sylvania.com Commercial lamps catalog.
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20

Lasers

VICENTE ABOITES
Centro de Investigaciones en Optica, León, Mexico

20.1 TYPES OF LASERS, MAIN OPERATION REGIMES, AND
EXAMPLES

Based on the quantum idea used by Max Planck [49] to explain blackbody radiation
emission, in 1917 Albert Einstein proposed the processes of stimulated emission and
absorption of radiation [14]. Light amplification by stimulated emission of radiation
(laser) [59] was first demonstrated by Maiman [42] in 1960 using a ruby crystal
pumped with a xenon flash lamp. Since then, laser coherent emission has been
generated in thousands of substances using a wide variety of pumping mechanisms.
Lasers are normally classified according to their active medium: solid, liquid, and
gas. Table 20.1 shows examples of some of the most important used lasers according
to the nature of the active media; their typical operation wavelengths and temporal
operation regimes are also shown.

20.1.1 Solid-State Lasers

There are essentially two types of solid lasers media: impurity-doped crystals and
glasses. They are almost exclusively optically pumped with flash lamps, continuous
wave arc lamps or with other laser sources such as semiconductor lasers. Well-
known examples are the Nd3þ:YAG and the Nd3þ:glass lasers.

20.1.2 Semiconductor Lasers

Even though these are also ‘‘solid-state lasers,’’ for classification purposes they are
generally considered different due to the difference in the inversion mechanism.
These lasers are characterized in terms of the way by which the hole–electron pair
population inversion is produced. They can be optically pumped by other laser
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sources, by electron beams, or more frequently by injection of electrons in a p�n
junction. A common example is the GaAs laser.

20.1.3 Gas Lasers

There are essentially six different types of gas lasers, involving

1. electronic transitions in neutral atomic active media
2. electronic transitions in ionized atomic active media
3. electronic transitions in neutral molecular active media
4. vibrational transitions in neutral molecular active media
5. rotational transitions in neutral molecular active media
6. electronic transitions in ionic molecular active media.

These lasers are pumped by several methods including continuous wave (CW),
pulsed, and rf electrical discharges, optical pumping, chemical reaction, and gasdy-
namic expansion. Common examples for each of the above lasers are Ne–He, Arþ,
KrF, CO2, CH3F, and Nþ

2 .

20.1.4 Liquid Lasers

The active medium is a solution of a dye compound in alcohol or water. There are
three main types: organic dyes, which are well known because of their tunability;
rare-earth chelate lasers using organic molecules; and lasers using inorganic solvents
and trivalent rare earth ion active centers. Typically, they are optically pumped by
flash lamps or using other lasers. Common examples are Rh6G, TTF, and POCl4.

20.1.5 Plasma Lasers

These lasers use as active medium a plasma typically generated by a high-power,
high-intensity laser (or a nuclear detonation). They radiate in the UV or X-ray
region of the spectrum. A typical example is the C6þ laser.

20.1.6 Free Electron Lasers

These lasers make use of a magnetic ‘‘wiggler’’ field produced by a periodic arrange-
ment of magnets of alternating polarity. The active medium is a relativistic electron
beam moving in the wiggler field. The most important difference in relation to other
lasers is that the electrons are not bound to any active center such as an atom or a
molecule. The amplification of an electromagnetic field is due to the energy that the
electromagnetic laser beam takes from the electron beam.

20.1.7 Temporal Laser Operation

Any laser can be induced to produce output radiation with specific temporal char-
acteristics. This can be achieved by proper design of the excitation source and/or by
controlling the Q of the laser resonator. Table 20.2 describes the most common
temporal operation regimes. Tables 20.3 and 20.4 show examples and the perfor-
mance of some important CW and pulsed lasers, respectively.
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20.2 LASER MEDIUM

The amplification of electromagnetic radiation takes place in a laser medium which is
pumped in order to obtain a population inversion. Next are described the basic terms
used to characterize a laser medium.

20.2.1 Unsaturated Gain Coefficient

The unsaturated gain coefficient or unsaturated gain per unit length � is given by

� ¼ c2

8n2f 2�R
½N2 � ðg2=g1ÞN1�gð f Þ; ð20:1Þ

where gð f Þ is the lineshape function; N2;N1; g2; and g1 are the population inversion
densities and the degeneracies of levels 22.2 and 22.1, respectively; and n, f , c, and �R
are the refractive index, the frequency of the laser radiation, the speed of light, and
the radiative lifetime of the upper laser level, which is given as

�R ¼ "0
2

�  mec
3

f12e
2f 20

; ð20:2Þ

where "0, e, me, f0, and f12 are the permitivity in vacuum, the electronic charge, the
elctronic mass, the frequency at the line center, and the oscillator strength of the
transition between levels 22.2 and 22.1.

The stimulated transition cross section � is

� ¼ c2

8n2f 2�R
gð f Þ: ð20:3Þ

Therefore, the unsaturated gain per unit length can also be written as

� ¼ N2 � ðg2=g1ÞN1½ ��: ð20:4Þ
The increase in the intensity I per unit length dI=dz is described by the equation

722 Aboites

Table 20.2 Main Temporal Operation Regimes

Temporal operation Technique Pulse width (s)

Continuous wave (CW) Continuous pumping;

resonator Q is held constant

1

Pulsed Pulsed pumping, resonator Q

is held constant

10�8�10�3

Q-switched Pumping is continuous or

pulsed; resonator Q varies

between a low and a high

value

10�8�10�6

Mode-locked Excitation is continuous or

pulsed; a modulation rate

related to the transit time in

the resonator is introduced

10�12�10�9
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dI

dz
¼ �I : ð20:5Þ

For an initial intensity Ið0Þ at z ¼ 0, the beam intensity varies along the propagation
distance z according to

IðzÞ ¼ Ið0Þe�z: ð20:6Þ
For a laser medium of length l the total unsaturated gain Gdb (in decibels) is

Gdb ¼ 4:34�l: ð20:7Þ
From Eq. (20.6) it is clear that when the total gain per pass �l is sufficiently small the
following approximation is valid:

IðlÞ
Ið0Þ � 1þ �l ð20:8Þ

and the gain is equal to the fractional increase in intensity:

½IðlÞ � Ið0Þ�=Ið0Þ ð20:9Þ
Therefore, the percentage gain is

G (in percent) ¼ 100�l: ð20:10Þ
The threshold population inversion �Nth needed to sustain laser oscillation in a
resonator with output mirror reflectivity R is

�Nth ¼ ½N2 � ðg2=g1ÞN1�th ¼ 	 � 1

2L

� �
lnR

� ��
�; ð20:11Þ

where 	 is the absorption coefficient of the host medium at frequency f and L is the
distance between the mirror resonator (assumed equal to the laser medium length l).
The threshold gain coefficient to start laser oscillation is given as

�th ¼ 	 � lnR

2L
: ð20:12Þ

20.2.2 Lineshape Function

To describe the gain distribution as a function of the frequency of the lineshape
function gð f Þ is used. The function gð f Þ is normalized:

ð1

�1
gð f Þdf ¼ 1: ð20:13Þ

The normalized Lorentzian lineshape function gLð f Þ is

gLð f Þ ¼
�f

2 ð f � f0Þ2 þ
�f

2

� �2
" # : ð20:14Þ

For natural broadened transitions the Lorentzian lineshape has a linewidth
�f ¼ �fN, where

�fN ¼ 1

�F
¼ 1



1

�R
þ 1

�NR

� �
: ð20:15Þ
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In this expression �F is the fluorescent lifetime and �NF is the nonradiative decay time
constant given by

1

�NR

¼ NbQab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8kT


ðM�1

a þM�1
b Þ

r

ð20:16Þ

whereMa,Mb, and Qab are the masses of the atoms (or molecules) of species a and b,
respectively, and its collision cross section, N is the number density of atoms (or
molecules), k is the Boltzmann constant, and T the temperature. For collision-broa-
dened transitions, the Lorentzian lineshape has a linewidth �f ¼ �fcoll, where

�Fcoll ¼
NQ



ffiffiffiffiffiffiffiffiffiffiffi
16kT

M

r

: ð20:17Þ

This bandwidth arises from elastic collisions between like atoms (or molecules) of
atomic mass M and collision cross section Q.

The normalized Gaussian lineshape function gGð f Þ is given as

gGð f Þ ¼
2ðln 2Þ1=2
1=2�f

e�½4ðln 2Þð f�f0Þ2=ð�f Þ2�: ð20:18Þ

For a Doppler-broadened transition the linewidth �f ¼ �fD is

�fD ¼ 2f0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kT ln 2

Mc2

r

: ð20:19Þ

The Gaussian and Lorentzian lineshape are shown in Fig. 20.1. The linewidths at
half-maximum are shown as �fG (for Gaussian profile) and as �fL (for the
Lorentzian profile).

20.2.3 Saturated Gain Coefficient

The saturated gain coefficient for a homogeneously broadened line is

�s ¼
�

1þ ðI=IsÞ
; ð20:20Þ
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Figure 20.1 Gaussian and Lorentzian lineshapes.



where Is is the saturation intensity:

Is ¼
4n2hf


2gð f Þ
�R
�F

� �
ð20:21Þ

where �F is the fluorescence lifetime of the upper laser level, h is the Planck constant,
and 
 is the wavelength of the laser radiation.

The saturated gain coefficient for an inhomogeneously broadened line is

�s ¼
�

½1þ ðI=IsÞ�1=2
ð20:22Þ

where the saturation intensity is

Is ¼
22n2hf�f


2
�R
�F

� �
ð20:23Þ

The bandwidth�f is the homogeneous linewidth of the inhomogeneously broadened
transition.

20.3 RESONATORS AND LASER BEAMS

Most lasers have an optical resonator consisting of a pair of mirrors facing each
other. In this way it is possible to maintain laser oscillation due to the feedback
provided to the active (amplifying) medium and it is also possible to sustain well-
defined longitudinal and transversal oscillating modes. An optical resonator is shown
in Fig. 20.2. One of the mirrors has an ideal optical reflectivity of 100% and the other
less than 100% (the laser beam is emitted through this second mirror). The mirrors
are separated by a distance L and the radii of curvature of the mirrors are R1 and R2.

20.3.1 Stability, Resonator Types, and Diffraction Losses

A resonator is stable if the stability condition:

0 < g1g2 < 1 ð20:24Þ
is satisfied, where g1 and g2 are the resonator parameters:

g1 ¼ 1� L

R1

and g2 ¼ 1� L

R2

: ð20:25Þ
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The radius of curvature R is defined as positive if the mirror is concave with respect
to the resonator interior and the radius of curvature is negative if the mirror is
convex. In Fig. 20.2, both R1 and R2 are positive.

Figure 20.3 draws the hyperbola defined by the stability condition (Eq. (20.24))
and is called the stability diagram. Since an optical resonator can be represented by
its coordinates g1 and g2 in the stability diagram, the resonator is stable if the point
ðg1; g2) falls within the shaded region. Figure 20.3 also shows the location of several
resonator types. Clearly, if

g1g2 < 0 or g1g2 > 1; ð20:26Þ

the resonator is unstable and upon multiple reflections a ray will diverge from the
cavity axis.

The diffraction losses in a laser are characterized by the resonator Fresnel
number N. This is a dimensionless parameter given as

N ¼ a2

L

; ð20:27Þ

where a is the radius of the mirror resonator. A large Fresnel number implies small
diffraction losses.

Some important resonator types (shown in Fig. 20.4) are the following:

. Plane parallel resonator, shown in Fig. 20.4(a). This resonator has the largest
mode volume, but is difficult to keep in alignment and is used only with high
gain medium. Its diffraction losses are larger than those of stable resonators
with spherical mirrors.

. Symmetrical confocal resonator, shown in Fig. 20.4(b). The spot sizes at the
mirrors are the smallest of any stable symmetric resonator. With a Fresnel
number larger than unity, the diffraction losses of this resonator are essen-
tially negligible.

728 Aboites

Figure 20.3 Stability diagram.



. Symmetrical concentric resonator, shown in Fig. 20.4(c). As with the plane
resonator, the exactly concentric resonator is relatively difficult to keep in
alignment; however, when L is slightly less than 2R, the alignment is no
longer critical. The TEM00 mode in this resonator has the smallest beam
waist.

. Confocal-planar resonator, shown in Fig. 20.4(d). This resonator is simple to
keep in alignment, especially when L is slightly less than R. Also, small
variations in the mirror spacing allows the adjustment of the spot size w2,
so that only the TEM00 mode fills the laser medium or mirror. It is widely
used in low-power gas lasers.

There are some useful empirical formulas to find the diffraction losses in a resonator.
The one-way power loss per pass � in a real finite-diameter resonator for two com-
mon cases are:

For a confocal resonator:

� � 224N expð�4NÞ for N � 1 ð20:28Þ
� � 1� ðN2Þ for N ! 0

For a plane parallel resonator:

� � 0:33N�3=2 for N � 1 ð20:29Þ

20.3.2 Axial Modes

The axial or longitudinal modes of the resonator are the resonant frequencies of the
cavity fq, where q is the number of half-waves along the resonator axis.
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Figure 20.4 Resonator types: (a) plane parallel resonator, (b) symmetrical confocal reso-

nator, (c) symmetrical concentric resonator, and (d) confocal-planar resonator.



fq ¼ qðc=2LÞ: ð20:30Þ
The frequency spacing f�q between two axial resonances of the laser cavity is

f�q ¼ fðqþ1Þ � fq ¼
c

2nL
: ð20:31Þ

For a TEMmnq mode the resonance frequency of the qth axial mode with the mnth
transverse mode is

fmnq ¼ qþ ðmþ nþ 1Þ cos
�1 ffiffiffiffiffiffiffiffiffi

g1g2
p


" #
c

2nL
: ð20:32Þ

The frequency spacing f�mnq between transverse modes is

f�mnq ¼ cos�1 ffiffiffiffiffiffiffiffiffi
g1g2

p
 � c

2nL
: ð20:33Þ

The above expression is represented in Fig. 20.5. The bandwidth of a resonant mode
of frequency fmnq is

�fmnq ¼
1

2�c
¼ cð	L� ln

ffiffiffiffi
R

p Þ
2nL

ð20:34Þ

Substituting in Eq. (20.32) the parameters g1 and g2 for particular resonators we
obtain, for a plane parallel resonator,

fmnq ¼
qc

2nL
; ð20:35Þ

for a symmetrical concentric resonator,

fmnq ¼ ½q� ðmþ nþ 1Þ� c

2nL
; ð20:36Þ

for a symmetrical confocal and a confocal-planar resonator,

fmnq ¼ qþ ðmþ nþ 1Þ
2

� �
c

2nL
: ð20:37Þ

20.3.3 Transverse Modes

For rectangular coordinates ðx; yÞ, the transverse field distribution Eðx; yÞ of a
TEMmnq mode is given as
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Figure 20.5 Frequency spacing between transverse modes.



Eðx; yÞ ¼ EoHm

ffiffiffi
2

p
x

wðzÞ

 !

Hn

ffiffiffi
2

p
y

wðzÞ

 !

exp � x2 þ y2

w2ðzÞ

 !

; ð20:38Þ

where HnðxÞ are the Hermite polynomials defined by

HnðxÞ ¼ ð�1Þnex2 dn

dxn
e�x2 : ð20:39Þ

The first four Hermite polynomials are

H0ðxÞ ¼ 1;

H1ðxÞ ¼ 2x;

H2ðxÞ ¼ 4x2 � 2;

H3ðxÞ ¼ 8x3 � 12x;

ð20:40Þ

these polynomials obey the recursion relation

Hnþ1ðxÞ ¼ 2xHnðxÞ � 2nHn�1ðxÞ; ð20:41Þ
which also provides a useful way of calculating the higher-order polynomials. Figure
20.6 shows some transverse mode patterns.

For polar coordinates ðr; �Þ, the transverse field distribution Eðr; �Þ of a
TEMmnq mode is given as

Eðr; �Þ ¼ E0

ffiffiffi
2

p
r

wðzÞ

 !l

Ll
p

2r2

w2ðzÞ

 !

exp � r2

w2ðzÞ

 !
sin
cos

� �
l�

� �
ð20:42Þ

where Ll
pðxÞ are the Laguerre polynomials defined by

Ll
pðxÞ ¼ ex

x�1

p!

dp

dxp
ðe�xxpþ1Þ ð20:43Þ
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The first three Laguerre polynomials are

Ll
0ðxÞ ¼ 1;

Ll
1ðxÞ ¼ l þ 1� x;

Ll
2ðxÞ ¼ 1

2
ðl þ 1Þðl þ 2Þ � ðl þ 2Þxþ 1

2
ðx2Þ;

ð20:44Þ

these polynomials obey the recursion relation:

ð pþ 1ÞLl
pþ1ðxÞ ¼ ð2pþ l þ 1� xÞLl

pðxÞ � ð pþ lÞLl
p�1ðxÞ; ð20:45Þ

which also provides a useful way of calculating the higher-order polynomials. Figure
20.7 shows some transverse mode patterns. A mode may be described as a super-
position of two like modes. For example, the TEM�

01 is made up of a rectangular
TEM01 and TEM10 modes.

20.3.4 Resonator Quality Parameter

The quality factor Q of a laser resonator is defined as

Q ¼ 2
energy stored in the resonator

energy lost in one cycle
; ð20:46Þ

Q ¼ 2fmnq

E

jdE=dtj : ð20:47Þ

The loss of energy dE=dt is related to the energy decay time or photon lifetime �c by

dE

dt
¼ � E

�c
ð20:48Þ

where

�c ¼
nL

cð	L� ln
ffiffiffiffi
R

p Þ : ð20:49Þ
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This expression can also be written as

Q ¼ fmnq

�fmnq

: ð20:50Þ

20.4 GAUSSIAN BEAMS

As can be seen from Eq. (20.38) with n ¼ m ¼ 0, the transverse field distribution
TEM00 has a bell-shaped Gaussian amplitude:

Eðx; yÞ / Eo exp � x2 þ y2

w2ðzÞ

 !

: ð20:51Þ

Taking as w0 the 1=e transversal spot size at z ¼ 0, the description of a Gaussian
beam at any position z is given by the parameters wðzÞ describing the spot size and
RðzÞ describing the wavefront radius of curvature. This is schematically shown in
Fig. 20.8:

wðzÞ ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 
z

w2
0

� �2
s

¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z

zR

� �2
s

ð20:52Þ

RðzÞ ¼ z 1þ w2
0


z

 !2
2

4

3

5 ¼ z 1þ zR
z

� 2� �
ð20:53Þ

In the above equations zR is the Rayleigh distance, defined as

zR ¼ w2
0



: ð20:54Þ

Lasers 733

Figure 20.8 Gaussian beam showing the spot size wðzÞ and the wavefront radius of curva-

ture Rð2Þ.



For a laser resonator (Fig. 20.9), with parameters g1 and g2, the spot size at the beam
waist w0 is given by

w0 ¼

L



� �1=2 ½g1g2ð1� g1g2Þ�1=4
ðg1 þ g2 � 2g1g2Þ1=2

: ð20:55Þ

The position of the beam waist w0 relative to the resonator mirrors (Fig. 20.9) is

z1 ¼
�g2ð1� g1ÞL
g1 þ g2 � 2g1g2

; ð20:56Þ

z2 ¼
g1ð1� g2ÞL

g1 þ g2 � 2g1g2
¼ z1 þ L: ð20:57Þ

The spot sizes w1 and w2 at each of the resonator mirrors are

w1 ¼
L




� �1=2
g2

g1ð1� g1g2Þ
� �1=4

; ð20:58Þ

w2 ¼
L




� �1=2
g1

g2ð1� g1g2Þ
� �1=4

: ð20:59Þ

The half-angle beam divergence in the far field (for z 
 zRÞ, shown in Fig. 20.8, is
given by

� ¼ 


w0

: ð20:60Þ

The focusing of a Gaussian laser beam by a thin lens is shown in Fig. 20.10. The
position of the focused beam waist is given by

z2 ¼ f þ ðz1 � f Þf 2

ðz1 � f Þ2 þ w2
01




 !2
: ð20:61Þ

The spot size of the focused laser beam is obtained from

1

w2
2

¼ 1

w2
1

1� z1
f

� �2

þ 1

f 2
w1




� 2
: ð20:62Þ

In most practical applications, this expression can be approximated to
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Figure 20.9 Optical resonator with parameters g1 and g2.



w2 ffi f �1; ð20:63Þ
where (from Eq. (20.60)), �1 � 
=w1:

20.5 LASER APPLICATIONS AND INSTRUMENTS

There are at least as many laser instruments as there are laser applications. This only
mirrors the fact that all laser instruments (the laser itself) started as research tools.
What follows is a general listing of some important laser applications and instru-
ments along with some significant published results in the following areas: laser
Doppler velocimetry and its medical applications; laser radar (LIDAR) and tunable
laser radars for applications to pollution detection, laser thermometry, laser applica-
tions to the electronics and solid-state industry, and laser applications to art. For
these and other areas not mentioned here the reader is also referred to general
references. [13, 24, 25, 27, 30, 32, 35, 37, 45, 46, 48, 50, 52, 54, 63, 68, 75]

20.5.1 Laser Doppler Velocimetry

Laser Doppler velocimetry is a well-established technique widely applied in many
engineering areas. Examples of recent research work applied to fluid dynamics can
be found in references. [4, 31, 33, 39, 41, 53, 57, 58, 67] The use of this technique in
medical applications is a wide and promising area of research where many new
instruments are currently developed for specific problems. [2, 55, 69, 73]

20.5.2 LIDAR

The short and intense laser pulses produced by a Q-switched laser are ideal for
optical ranging. These instruments are also called optical radar or LIDAR. Small
solid-state lasers with the associated detection electronics are available in small and
rugged units for military field applications. Laser ranging systems making use of
tunable lasers whose wavelengths can be tuned to specific molecular or atomic
transitions can be used for pollution detection, ranging of clouds, and aerosol mea-
surements, etc. These instruments placed in orbiting satellites may also be used for
weather forecasting applications. [3, 5, 16, 17, 21, 23, 28, 30, 69, 71]
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Figure 20.10 Focusing of a Gaussian beam by a thin lens.



20.5.3 Laser Thermometry

The fact that the laser can be used as a nonintrusive measurement instrument is
widely used in many applications where a measurement instrument would be
damaged or plainly destroyed by the studied system. Flames and air jets are good
examples of systems that can be studied using laser-based techniques such as spectro-
scopy and holography. [8, 9, 20, 26, 36, 44, 64]

20.5.4 Laser Applications to the Electronic Industry

The electronics industry has widely benefited from the use of lasers. Many new laser
instruments and applications are currently being designed. Nowadays, the laser is
used in automatic microsoldering, in laser recrystalization of semiconductor sub-
strates, and in laser ablation of thin-films deposition among other applications.
[11, 12, 15, 18, 19, 22, 34, 38, 43, 47, 56, 57, 60, 65, 66, 74]

20.5.5 Laser Applications to Art

Lasers are being used for diagnostic, conservation, and restoration of great master-
works. Until recently the cleaning of painted surfaces required the use of solvents to
remove old varnish or encrustations from the painted surfaces. This is a difficult
process because the solvents may also damage the paint layer itself, causing soluble
materials in the paint to diffuse out in a process known as leaching. This restoration
process is now carried out using lasers without any effect on the original paint layers.
[1, 6, 7]
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APPENDIX: LIST OF SYMBOLS

c Speed of light c ¼ 2:998� 108 m/s
e Electronic charge e ¼ 1:602� 10�19 coulomb
f Focal length of thin lens
f Frequency of laser radiation
f0 Frequency at line center
f12 Oscillator strength of the transition between levels 2 and 1
�f Frequency bandwidth at half-maximum
fmnq Frequency of TEMmnq mode
g1; g2 Degeneracies of lower and upper laser levels, respectively
g1; g2 Resonator g parameters for mirrors 1 and 2, respectively
gð f Þ Lineshape function
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I Beam intensity
Is Saturation beam intensity
l Transverse mode number (radial geometry)
l Length of gain medium
L Distance between resonator mirrors
m Transverse mode number (rectangular coordinates)
me Electronic rest mass me ¼ 9:109� 10�31 kg
M Mass of atom (or molecule)
Ma;Mb Mass of atom (or molecule) of species a and b, respectively
n Transverse mode number in rectangular coordinates
n Index of refraction
N Number density of atoms (or molecules)
Ni Number density of atoms (or molecules) in level i
�Nth Threshold population inversion
N0 Number density of laser atoms (or molecules)
p Transverse mode number (radial geometry)
Qab Collision cross section
r Radial coordinate
R1;R2 Radii of curvature of resonator mirrors 1 and 2, respectively
RðzÞ Radius of curvature of wavefront
R Reflectivity of output mirror
t Time
T Temperature
w0 Spot size at beam waist
w1;w2 Spot sizes at mirrors 1 and 2, respectively
wðzÞ Spot size at a distance z from beam waist
x; y; z Rectangular coordinates
zR Rayleigh range

Greek Symbols

� Unsaturated gain coefficient per unit length
�s Saturated gain coefficient per unit length
�th Threshold gain coefficient per unit length
	 Absorption coefficient of laser medium
"0 Permittivity in vacuum
� Far-field beam divergence half-angle

 Wavelength of laser radiation
� Stimulated transition cross section
�F Fluorescence lifetime of the upper laser level
�NR Nonradiative decay time constant
�R Radiative lifetime of the upper laser level
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21

Spatial and Spectral Filters

ANGUS MACLEOD
Thin Film Center, Inc., Tucson, Arizona

21.1 INTRODUCTION

A filter is a device that modifies a distribution of entities by varying its acceptance or
rejection rate according to the value of a prescribed attribute. A true filter simply
selects but does not change the accepted entities, although those rejected may be
changed. Power may be supplied to aid in the filtering process. A simple form of filter
is a screen that separates particles according to their size. The filters that are to be
described here select according to the spectral characteristics or the spatial charac-
teristics of a beam of light. The selected light is unmodified as far as wavelength or
frequency is concerned, although the direction may be changed. In most cases the
objective is to render the light more suitable for carrying out a prescribed task, with
the penalty of a loss in available energy. The filters that we are concerned with in this
chapter are all linear in their operation; that is, their response is independent of the
actual magnitude of the input and for any value of the prescribed attribute the ratio
of the magnitude of the output to that of the input is constant. We exclude tuned
amplifiers, fluorescence filters, spatial modulators, and other active components as
outside the scope of this chapter.

21.2 SOME FUNDAMENTAL IDEAS

A propagating electromagnetic disturbance that is essentially in the optical region
and that can be described as a single entity is usually loosely referred to as a beam of
light. In the general case, a complete description of the attributes of an arbitrary light
beam would be impossibly complicated. More often, however, the beams of light
that concern us in optical systems have a regularity in character that allows us to
make good use of them and, at the same time, allows us to describe them in reason-
ably uncomplicated terms. There are, of course, many properties that can be
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involved in the description of a regular beam of light. Here we are interested in only
two of these: the spatial distribution and the spectral distribution of the energy
carried by the beam. These two characteristics are not strictly completely separable
in any given beam but in the simple cases that we use most often they can profitably
be considered separately.

We imagine a beam of light that has the simplest spatial distribution possible.
The beam can be considered to be propagating in a well-defined direction in an
isotropic medium at levels of energy that are well below any that might produce
nonlinear effects. We choose a set of coordinate axes such that the z-axis is along the
direction of propagation of the beam of light, and then the x- and y-axes are normal
to it. We can make measurements of the attributes of the beam in any plane parallel
to the x- and y-axes, that is normal to the direction of propagation. If we find that
the attributes of the beam at any point are completely independent of the values of
the x- and y-coordinates of that point and depend only on the values of the z-
coordinate and the time, then we describe the beam of light as a plane wave propa-
gating in the z-direction. See Heavens and Ditchburn [1] for a detailed description of
fundamental optical ideas.

At any value of z we can measure the temporal variation of the energy, or of
the fields of the plane wave. This yields the temporal profile of the wave. When we
compare the temporal profile of the wave at one value of z with that measured at
another, we should expect to see the same general shape but with a separation in time
equal to the separation in z divided by the velocity of the wave. However, we see this
simple relationship only when the wave is propagating through free space. For all
other media there is a distortion of the temporal profile that increases with the
distance between the two measurement points. Furthermore, because of this effect
it becomes impossible to assign a definite velocity to the wave. All media, except free
space, exhibit an attribute known as dispersion and it is dispersion that is responsible
for the profile shape change and the uncertainty in the velocity measurement.

Fortunately, we find that there is one particular temporal profile that propa-
gates without change of shape even in dispersive media. This is a profile that can be
described as a sine or cosine function. A wave that possesses such a profile is known
as a harmonic or monochromatic wave. In the simplest form of the plane, monochro-
matic wave there is a consistency in the directions of the electric and magnetic fields
of the wave which is known by the term polarization. Polarization is described else-
where in the handbook. Here we adopt the simplest form known as linear or, some-
times, plane, where the directions of the electric and magnetic vectors are constant.
Our simple wave is now a linearly polarized, plane, monochromatic wave. The
electric field, magnetic field, and direction of propagation are all mutually perpendi-
cular and form a right-handed set.

Such a monochromatic wave travels at a well-defined velocity in a medium.
The ratio of the velocity of the wave in free space to that in the medium is known as
the refractive index, written n. The ratio of the magnetic field magnitude to the
electric field magnitude of the wave is another constant of the medium known as
the characteristic admittance, usually written as y. A great simplification is possible at
optical frequencies. There the interaction of a wave with a propagation medium is
entirely through the electric field, which can exert a force on even a stationary
electron. The magnetic field can interact only with moving electrons, and at optical
frequencies any direct magnetic interaction with the electrons is negligible. Then
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y ¼ ny; ð21:1Þ
y being the admittance of free space, 1/377 siemens. This relationship is usually
expressed as

y ¼ n free space units; ð21:2Þ
allowing the same number to be used for both quantities.

In the linear regime the combination of two separate waves is quite simple.
Whatever the characteristics and directions of the individual waves, the resultant
electric and magnetic fields are simply the vector sum of the individual fields. This is
the Principle of Linear Superposition. Irradiances, in general, do not combine in such
a simple way.

Since the interaction with the medium is through the electric field, and since the
magnetic field of a harmonic wave can be found readily from the direction of pro-
pagation and the characteristic admittance, y, it is normal to write the analytical
expression for a harmonic wave in terms of the electric field only. Moreover, since
the combinations of waves are linear, we can profitably use a complex form for the
harmonic wave expression:

E ¼ jej expfið!t� �zþ ’Þg ¼ ½jej expði’Þ� � ½expfið!t� �zÞg�
¼ e expfið!t� �zÞg; ð21:3Þ

where the relative phase is usually incorporated into what is known as the complex
amplitude, ", and the remaining exponential is known as the phase factor; ! and �
are the temporal and spatial angular frequencies, � usually being known as the
wavenumber. We can write

! ¼ 2=� and � ¼ 2n=
; ð21:4Þ
where 
 is the wavelength that the light has in free space.

The expression for the wave is usually written

E ¼ e exp i !t� 2nz




� �� �
: ð21:5Þ

If the medium is absorbing, then there will be a fall in amplitude of the wave as
it propagates. This can be accommodated in the expression by introducing a complex
form for n:

n ! ðn� ikÞ and y ! ðn� ikÞy; ð21:6Þ

E ¼ e exp i !t� 2ðn� ikÞz



� �� �
¼ e exp � 2kz




� �
exp i !t� 2nz




� �� �
:

ð21:7Þ
The irradiance of the harmonic wave in its complex form is given by

Irradiance ¼ I ¼ 1
2
RefEH�g ¼ 1

2
Refehg ¼ 1

2
n�jej2: ð21:8Þ

Now let us return to the plane wave of arbitrary profile and let us insist that it
be linearly polarized. In the first instance we consider its propagation through free
space. The electric field, the magnetic field, and the direction of propagation will
form a right-handed set. Let us freeze the electric field and magnetic field at a
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particular instant. By a Fourier decomposition process we can construct a contin-
uous set of harmonic profiles that, when added together at each point, will yield the
instantaneous profile. In free space there is no dispersion and we can show that the
magnetic and electric field profiles are always in the ratio of the admittance of free
space, y. The magnetic field decomposition therefore mimics the electric and when
we pair frequencies we construct a complete set of monochromatic component waves
that make up the primary wave. The set of attributes of the component waves as a
function of wavelength or frequency is known as the spectrum of the primary wave
and the process of finding the spectrum is sometimes called spectral decomposition.
The spectrum is most often expressed in terms of the varying irradiance of the
component waves per frequency or wavelength unit. Real optical sources exhibit
fluctuations in the nature of their output. These translate into fluctuations, either
of amplitude or phase or both, in the spectral components. Such fluctuations are best
handled in a statistical context. The theory of coherence that deals with such ideas is
discussed elsewhere in this handbook. Here we use only a very elementary treatment
of waves.

Now let us remove our restriction of linear polarization. We can represent our
wave now as made up of two major components linearly polarized in orthogonal
directions. If there is no consistent relationship between these components – in other
words they are unpolarized – then although the irradiance spectrum of each com-
ponent may be similar, the individual components will have no consistent phase
relationship that will allow their combination into a consistent polarization state
and neither the primary wave nor the component waves will exhibit polarization. If,
however, there is a consistent polarization in the primary beam, then this will be
reflected also in the components.

Now let the wave enter a dispersive material. Since the primary wave and the
spectral component waves are entirely equivalent we can look most closely at the
latter and follow their progress through the medium individually. To find the net
disturbance we combine them. Each experiences a refractive index and a character-
istic admittance that are functions of the properties of the medium. In a dispersive
medium these attributes show a dependence on frequency or wavelength. Thus the
components are not treated equally. As they propagate through the medium, there-
fore, their resultant changes, and this is the reason for the changes in the profile in
dispersive media mentioned earlier.

A plane wave strictly has no center or axis and really does not correspond at
all to our ideas of a light ray. It has a direction but there is nothing that corre-
sponds to a lateral position or lateral displacement. Yet beams of light emitted
from lasers have all the attributes of spectral purity and potential for interference
that we would expect from a plane wave, and yet they have a position as well as
direction and act in many ways as if they were light rays rather than plane waves.
These are better described as Gaussian beams. A Gaussian beam has a direction
and phase factor not unlike the plane wave but it is limited laterally and the
irradiance expressed in terms of lateral distance from the center of the beam is a
Gaussian expression. If we define the beam radius, � as the diameter of the ring
where the irradiance has fallen to 1=e2 of the irradiance in the center of the beam,
I0, then we can write for the irradiance

I ¼ I0e
�2r2=�2 ð21:9Þ
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where r is the radius of the point in question. Strictly speaking the Gaussian beams
described by Eq. (21.9) are in the fundamental mode, the TEM00 mode. There can be
higher-order modes that have more complicated variations of irradiance as a func-
tion of displacement from the axis.

Equation (21.9) is insufficient for a complete description of the beam. We need
also the wavelength, 
, and the beam divergence (or convergence) #, which may be
defined as the angle between the axis and the 1=e2 irradiance ring (Fig. 21.1). (The
divergence is also defined sometimes as the total angle.) The Gaussian beam appears
to emanate from or converge to a point. However, in the neighborhood of the point,
the beam – instead of contracting completely – reaches a minimum size and then
expands to take up the cone again. The minimum is called the beam waist and it has
a radius that is a function both of the wavelength and the divergence of the beam:

�0 ¼



#
: ð21:10Þ

The diameter of the beam at distance d from the beam waist is given by

�2 ¼ �20 þ #2d2: ð21:11Þ
Normal thin lens theory where the positions of the beam waists are taken as the

image points applies to Gaussian beams. An excellent account of Gaussian beams
and their manipulation is given by O’Shea [2].

21.3 SPATIAL AND SPECTRAL FILTERING

Filtering is performed to render light more suitable for a given purpose. Spatial
filters accept light on the basis of positional information in the filter plane, while
spectral filters operate according to the wavelength or frequency. Although they are
separate attributes of a light beam they may be required to operate together to
achieve the desired result. Frequently, for example, spatial filters are a necessary
part of spectral filters. Rather less often, spectral filters may be involved in spatial
filtering. We shall consider the two operations separately but it will become clear in
the section on spectral filtering that they are often connected.

A simple example of a common spatial filter is a field stop. This is usually an
aperture that is placed in an image plane to limit the extent of the image that is
selected. Normally the boundaries between that part of the image that is selected and
that rejected should be sharp but this may not always be the case. Especially in the
early part of the 20th century, vignettes were a popular form of photographic por-
trait. There, a defocused field stop, usually elliptical in shape, graded the boundary
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of a head and shoulders image so that in the final print it was detached from the
background and appeared to be surrounded by a gradually thickening white mist.

An improved aesthetic effect may demand a change in the color balance of
illumination. An interferometric application may require a greater degree of spectral
purity. A luminous light beam may contain also appreciable infrared energy that will
damage the object under illumination. An interaction with a material may demand a
particular frequency. Operation of a spectrum analyzer may demand elimination of
all light of frequency higher than a given limit. The signal-to-noise ratio of a mea-
suring apparatus may need elimination of white background light and acceptance of
a narrow emission line. A bright line creating problems in the measurement of a dim
background may require removal. The list of possibilities is enormous. All these
involve spectral filters that use wavelength or frequency as the operating criterion.

Spatial filters will usually either accept light, which is then used by the system,
or reject it completely so that it takes no part in what follows. Spectral filters may
have a similar role but they may also be required to separate the light into different
spectral bands, each of which is to be used separately. A bandpass filter is typical of
the first role and a dichroic beamsplitter of the second.

We consider linear filters only, i.e., filters with properties independent of irra-
diance but dependent on wavelength or frequency or position. We exclude tuned
receivers, wavelength shifting filters, tuned amplifiers, and the like. The output of the
filters is derived by the removal of light from the input beam and can be described by
a response function that is the ratio of output to input as a function of wavelength or
frequency or position and is a number between 0 and 1 or between 0 and 100%.
Usually the parameter characterizing input and output will be the irradiance per
element of wavelength or frequency or area. The response will normally be a trans-
mittance T or reflectance R. Typical ideal response functions for spectral filters are
sketched in Fig. 21.2. Spatial filters would be similar with wavelength replaced by
position.

A beamsplitter will have two such responses. Usually one will be in reflection
and the other in transmission.

There are many classifications of spectral filter: those that transmit narrow
bands of wavelength are usually called narrow band pass filters; those that reflect
narrow bands are notch filters; those that transmit broad regions at wavelengths
longer or shorter than a rapid transition between acceptance and rejection are edge
filters and are either long-wave pass or short-wave pass.
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The light may be removed by redirection or by conversion or by both.
A process of absorption is really one of conversion. The light energy is con-

verted into kinetic and potential energy of molecules, atoms, and electrons. Some of
this energy may then be re-emitted in a changed form or dissipated as heat.

An important question that should always be asked about a filter is: ‘‘Where
does the unwanted energy go?’’

Most filters exhibit the various modifications of the input shown in Fig. 21.3.
For example an absorption filter to eliminate short wavelengths will reflect residual
light (redirection), will convert some light (fluorescence), will scatter some light, and
will emit thermal radiation – all unwanted. If this light is accepted back into the
system, performance will suffer.

Figure 21.4 shows a sketch of a very simple instrument showing the stops. The
image of the aperture stop in source space is the entrance pupil and in receiver space
the exit pupil. Note that the performance of a filter inserted in the instrument cannot
be separated from the details of stops and pupils. These are part of the overall system
design.

In the design of an instrument that includes spatial or spectral filters the
behavior of the unwanted light, and especially any redirected light, is very important.
For example, can rejected light be scattered back into the acceptance zone of the
system?

Baffles, a special form of spatial filter, can help to prevent return of unwanted
energy and their correct design is as important as the design of the primary compo-
nents such as lenses.

Since performance is system-dependent, an optical filter is usually specified
with regard to standard (and that usually means ideal) conditions. For spectral
filters, for example, entrance and exit pupils are usually considered to be at infinity
(light ideally collimated), and scattered, redirected, converted, and emitted light are
assumed lost to the system. A real system will rarely have this ideal arrangement and,
therefore, the performance may not correspond to the standard specified perfor-
mance of the filter.
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direction, from its character as part of the input beam. The rejected light may simply be

redirected or may suffer a conversion; some possible mechanisms are illustrated here.



21.4 SPATIAL FILTERS

Any optical instrument that has a limited field of view is effectively a spatial filter. In
the vast majority of instruments a deliberate limitation of the field of view is desir-
able. If it is not well defined, then uncontrolled and unwanted input may be received
that will interfere with the correct operation.

In a very simple case a stop is placed in a field plane somewhere in the instru-
ment. Microscopes are frequently fitted with a variable field stop in the form of an
adjustable diaphragm that can be used to select a particular part of an image and
eliminate the remainder, which is useful when precise measurements on a selected
object have to be made.

Spatial filtering is often a vital instrumental feature. An instrument that is to
be used to examine images near the sun, for example, may even be destroyed if
light from the sun can reach the image plane. Such demanding spatial filtering
tasks usually involve not just the elimination of the direct light by a suitably
shaped aperture but also the elimination of scattered light as well, using compli-
cated assemblies of spatial filters known as baffles. A solar telescope acquires an
actual image of the sun, but when details of the limb must be investigated the solar
image must be removed and this is achieved by a special spatial filter called an
occluding disk that fits exactly the image of the disk of the sun but allows the
surrounding regions to be examined. Elimination of stray light in this configuration
is of critical importance.

Apart from its instrumental uses, probably the commonest form of spatial
filtering is in the collimation of light: i.e., the attempt to construct a beam of light
that is as near as possible to a plane wave. Plane waves are necessary inputs to all
kinds of optical instruments. To construct a plane wave we first of all create a point
source. The point source emits a spherical wave and the spherical wave can be
converted into a plane wave by passing it through a suitable lens. Unfortunately,
a point source is an unattainable ideal. The best we can do is to make the source very
small. We do this by first producing an image of a real source and in the image plane
we introduce a diaphragm with a very small aperture. This aperture is then used as
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our point source. A lens is then placed such that the point source is at the focus. This
is illustrated in Fig. 21.5.

The radiance, L, of this source is the important quantity. This is the power in
unit solid angle leaving the unit projected area of a source. It is measured in watt/
steradian meter2 (W sr�1 m�2). The total power accepted by the collimating lens will
be given by

Power ¼ L � AS � AL=R
2; ð21:12Þ

where AS is the area of the effective source, AL is the area of the collimating lens and
R is the distance from effective source to the collimating lens. If �L and �S are the
solid angles subtended by the lens at the effective source and by the effective source
at the lens, respectively, then we can write

Power ¼ L � AS ��L ¼ L � AL ��S; ð21:13Þ
here AL�S and AS�L are equal and are known as the A� product. For a well-
designed system this should be a constant. Unfortunately it is very easy to make a
mistake in pairing the correct A with the correct � and so Eq. (21.12), which is
completely equivalent, is a safer expression to start with.

The degree to which the light departs from perfect collimation may be defined
as the semiangle of the vertex of the cone – i.e., the solid angle subtended by the
effective source at the center of the collimating lens. It is easy to see that a factor of 2
improvement in this angle is accompanied by a factor of 4 reduction in power.
Thermal sources, in particular, give disappointing performance when the collimated
light must also be of narrow spectral bandwidth. A common use of collimators is in
dispersive filters such as grating or prism monochromators, where the dispersion can
be arranged to be in one well-defined direction and the high degree of collimation is
demanded only in this direction. This permits the use of a long slit as aperture in the
spatial filter of the collimator. The degree of collimation can then be varied by
changing the width of the slit but not its length. This makes the power proportional
to the collimation angle rather than its square, and permits much more satisfactory
use of thermal sources.

A Gaussian beam from a laser is already collimated with a degree of collima-
tion defined by the divergence, #. This divergence may not be acceptable. Since # and
�0 are interrelated, a reduction in # implies an increase in �0, and vice versa. A large
degree of spatial magnification implies an object at or near the focal length of a
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spatial filter to produce the effective point source.



positive lens and the image at near infinity. Since the Gaussian beam at the input to
the collimator will almost certainly be some distance from its beam waist it is neces-
sary to insert a leading lens to form a waist at a suitable distance from the following
collimating lens. Any beam that propagates through an optical system will tend to
accumulate spurious stray light. It is usual, then, to insert a spatial filter with the
purpose of cleaning up the beam. Any light representing a departure from regularity
will tend to appear off axis at the beam waist. A small-diameter filter, usually called a
pinhole, selects the ideal image and rejects the rest. Usually the pinhole is quite large
compared with the Gaussian beam waist, since the usual objective is the elimination
of spurious light rather than the creation of the diffraction-limited spot itself. The
assembly of input and collimator lenses is also sometimes called a beam expander,
because this is effectively what it does. O’Shea [2] gives more information on design-
ing systems using Gaussian beams.

A rather different type of spatial filter is sometimes used in wide-angle aircraft
cameras. Figure 21.6 shows a typical arrangement. If we assume that the ground is
flat and that its emission characteristic is independent of direction, that is a
Lambertian surface, then the energy in an element of area on the photographic
plate in the image plane will be proportional to the A� product for the areal element
on the ground and the pupil of the camera. If we assume the ground is completely
flat, then this will be easily shown to be given by

A� ¼ ðApupil= cos#ÞðAelement= cos#Þ
ðh cos#Þ2 / 1

cos4 #
: ð21:14Þ

However, since the surface is Lambertian and the focus of the camera is fixed, the
energy on unit element area on the photographic plate will follow the rule in Eq.
(21.14) even if the terrain height varies across the image. The fall-off in energy with
cos4 # applies to all cameras with a flat focal plane, but it is only in wide-angle
cameras that the problem can be severe. These may have acceptance angles higher
than 458. At 458 the ratio of energies is 1:4 and such a large ratio cannot be accom-
modated in the optical design of the camera lens. A simple solution, again involving
rejection of otherwise useful light, is a spatial filter fixed in front of the lens, usually
on the hood, where there is an appreciable spatial separation of marginal from axial
light. An evaporated film of Inconel or Nichrome with a radial distribution so that it
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1= cos4 #, assuming constant radiance and a flat horizontal Lambertian surface for the terrain.



has a higher density in the center than at the periphery is usually sufficient. This is
often combined with the light yellow antihaze filter that is normal in high-altitude
photography. The correction is rarely exact.

A circular pupil, with sharp boundaries is illuminated in collimated light that
is imaged to a single spot, as shown in Fig. 21.7. If the rays obeyed the laws of
geometry, the spot would be a single point, but diffraction causes a spreading of
the point. The resulting distribution of energy in the focal plane is known as the
point-spread function. Note that the point-spread function may be the result of
aberrations in the system rather than diffraction. When an image is produced in
the focal plane of any system the result is a convolution of the image and the
point-spread function. The point-spread function for a sharply defined circular
pupil illuminated by a perfectly uniform collimated beam, with no other aberra-
tions, is the Airy distribution. This has a pronounced outer ring that can be an
undesirable feature in diffraction-limited systems. A special type of spatial filter,
known as an apodizing filter, inserted in the plane of the pupil can modify this
distribution. It operates by varying the distribution of irradiance across the aper-
ture. As with all the other filters described, it is rejecting energy. A simple form of
apodizing filter yields a linear fall in irradiance from a maximum in the center to
zero at the outer edge. This gives a point-spread function that is the square of the
Airy distribution and the first diffraction ring is now much reduced. An apodizing
filter that has a Gaussian distribution will produce a spot with a Gaussian dis-
tribution of energy. Although in all cases the central part of the spot is broader (we
are rejecting some of the otherwise useful light) the resulting image can be much
clearer.

The ideas of the previous paragraph are carried much further in a class of
spatial filters that uses a property of a lens and its front and back focal planes. It
can be shown that the light distribution in the rear focal plane is the two-dimensional
spatial Fourier transform of the distribution in the front focal plane. If the front
focal plane contains an image, then the rear focal plane will contain a distribution
that is the two-dimensional spectrum of the image in spatial frequency terms. Higher
frequency terms in the image are translated into light in the back focal plane that
appears at points further from the axis of the system. If, now, a second similar lens is
added so that its front focal plane coincides with the current back plane, then the
image will be recovered in the back focal plane of the second lens: Fig. 21.8 shows
the arrangement.
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Figure 21.7 A simple telecentric imaging system with object at infinity. The distribution of

energy in the images is indicated to the right of the focal plane.



Since this system has, at its final output, the original image, but has also at an
intermediate plane, the spatial spectrum of the image, it becomes possible to make
modifications to the spectrum so that desirable changes may be made in the final
image (Fig. 21.9).

The spatial filters may be used in many different ways but a common applica-
tion is in removing high spatial frequency structure from images. For instance, the
raster lines in a television frame could readily be removed using this technique. The
apodizing filters mentioned previously are a special case of such spatial filters.

More advanced filters of this kind also operate to change the phase of selected
frequencies but are completely beyond the scope of this chapter. Much more infor-
mation is given by VanderLugt [3].

Phase contrast microscopy uses an interesting kind of spatial filter. Objects
that are completely transparent and are immersed in a fluid of only slightly dif-
ferent refractive index are difficult to see. If the light that is transmitted by the
phase objects is arranged to interfere with that transmitted by the medium the
result is a very slight difference in contrast, because the phase difference is suffi-
cient for just a slight change at the peak of a cosine fringe. Small changes in
relative phase are much more visible if they are occurring on the side of a fringe
peak where there is much larger variation with small phase differences. In the
phase contrast microscope the sample is illuminated by light derived from a ring
source created by a spatial filter admitting a narrow circle only. Beyond the illu-
minated specimen, the optical system is arranged to produce an image of the
circular light source. However, the light that passes through the objects that are
the subject of examination is scattered and although it passes through the optical
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Figure 21.8 The two lens system showing the Fourier plane where the spatial spectrum is

located and the final image plane.

Figure 21.9 The two lens system of Fig. 21.8 showing a spatial spectrum filter inserted in the

Fourier plane. The filter is simply known as a spatial filter.



system it does not form any image of the circular ring light source. Light that
passes through the supporting medium of the specimen is scattered to a much
smaller extent and forms a reasonable ring image. It is arranged that the ring is
formed exactly over a narrow spatial filter that alters the phase of the light by one-
quarter of a wavelength with respect to the scattered unaffected light. All the light
then goes on to form the final image where there is interference between the light
that propagated through the medium and through the phase objects but now,
because of the quarter-wave phase difference, the variation is on the side of the
cosine fringes and the variation in radiance large. This brilliant idea conceived by
Fritz Zernike in the 1930s has inspired other optical instruments where a quarter-
wave phase difference reveals small phase excursions as much larger differences in
the radiance of an image: see, for example, Hecht and Zajac [4].

A class of lasers uses what are known as unstable resonators. In such lasers
the gain is extremely high and so there is no need for the confining effect of the
regular modes of stable resonators. It is possible with such constructions to make
exceedingly efficient use of the gain medium. The penalty is that the output of the
laser is rather far from ideal and certainly not at all like the regular Gaussian beam
profile. In particular, much energy propagates rapidly away from the resonator
axis making it difficult to use the beams efficiently. It has been found that a rather
special type of spatial filter renders the output beams much nearer the ideal
Gaussian profile. The special type of spatial filter involved is the graded coating
filter.

Even the unstable resonators must be in the form of a cavity. The light must be
reflected back and forth between opposite mirrors, which need reflecting coatings for
their correct operation. It has been shown that if the profile of the reflectance of the
output mirror is Gaussian then the output beam will also have a Gaussian, or near-
Gaussian, profile. The Gaussian profile is achieved by a process of grading the
thicknesses of the reflecting coating. Laser systems using such graded mirrors are
already commercially available.

How do we make a reflector with a radial Gaussian profile? The reflectance of
a quarter-wave stack as a function of the thicknesses of all the layers is shown in
Fig. 21.10. This means that a suitable radial grading of the thicknesses of the layers
can result in a radial variation of reflectance at the reference wavelength that is
Gaussian. Similarly, Fig. 21.11 shows another arrangement where just one of the
layers is varied in thickness radially, the other layers remaining of constant
thickness.

A Gaussian profile is ideal but the real mirrors are more or less successful in
achieving it and, provided the agreement is reasonable, exact correspondence is not
necessary nor is it really practical. Usually masks are used during the appropriate
part of the deposition process that assures the correct thickness distribution either of
the chosen layer or even the entire multilayer.

Note that the variation represented by Fig. 21.11, where one layer only is
varied, is rather easier than that of Fig. 21.10, where the percentage variation to
change from almost zero to almost 100% reflectance is quite small. On the other
hand, the process that uses Fig. 21.11 must mask only one of the layers, a difficult
mechanical problem, whereas the other process masks all of them. Both types of
graded coatings are actually used in practice. For a much more detailed description
see Piegari [5].
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Figure 21.10 Variation of the reflectance at the reference wavelength of a quarter-wave

stack as a function of the thicknesses of the layers. The stack is made up of 13 alternating

quarterwave layers of titanium and silica.

Figure 21.11 Variation of the reflectance at the reference wavelength of a quarterwave stack

in which one of the layers is varied in thickness. The quarterwave stack is identical to that of

Fig. 21.10 but in this case only the thickness of the third layer from the incident medium is

varied. The thickness scale is in units of the reference wavelength.



21.5 SPECTRAL FILTERS

The operation of different filter types is often a mixture of several mechanisms, some
of which include absorption, refraction, reflection, scattering, polarization, interfer-
ence, and diffraction. We exclude neutral density and similar filters because they
cannot be described as spectral filters since their attempted purpose is to treat all
spectral elements equally.

21.5.1 Absorption Filters

Semiconductors are intrinsically long-wave pass absorption filters. Photons of energy
greater than the gap between valence and conduction bands of the electrons are
absorbed by transferring energy to electrons in the valence band to move them
into the conduction band. High transmittance implies intrinsic semiconductors of
high resistivity. Gallium arsenide, silicon, germanium, indium arsenide, and indium
antimonide are all useful (Fig. 21.12). Note that these semiconductors have a high
refractive index so must be antireflected in the pass region. They are rarely antire-
flected in the absorbing region and so a large amount of the rejected light is actually
reflected (Fig. 21.13).

Some colored filter glasses of the long-wave pass type contain colloidal semi-
conductors.

Other colored glasses have metallic ions dispersed in them. In general, colored
glass filters make excellent long-wave pass filters but it is not possible to find short-
wave pass filters with the same excellent edge steepness. In fact, short-wave pass
filters present an almost universal problem. For more information see Dobrowolski
[6, 7].

Strong absorbers are also strong reflectors. In the far infrared, the reststrahlen
bands associated with very strong lattice resonances show strong reflectance and are
sometimes used as filters. Beryllium oxide reflects strongly in the 8–12 mm atmo-
spheric window. Because its thermal emittance is therefore very low in the atmo-
spheric window, it is sometimes used as a glaze on electrical insulators to keep them
warmer and therefore frost-free during cold nights.
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Figure 21.12 Transmittance of a germanium filter with antireflection coatings.



21.5.2 Refraction and/or Diffraction

A prism monochromator is a variable spectral filter of a very inexpensive nature. The
prisms operate due to refraction that varies because of the dispersion of the index of
the prism material. The optical arrangement usually assures that the spatial distribu-
tion of the component waves will vary according to wavelength or frequency. A
spatial filter of a simple kind is then used to select the appropriate wavelength.
Usually, although not always, the light source is in the form of a narrow slit that
is then intentionally imaged to enhance chromatic effects in the image. A spatial
filter, also in the shape of a slit, is then used to select the light in the image having the
correct wavelength.

Diffraction gratings are used in a similar way to refractive prisms. They are
essentially multiple-beam interference devices that use diffraction to broaden the
beams to given reasonable efficiency over slightly more than an octave.
Disadvantages are the low throughput because of the narrow entrance and exit
slits, although they are superior in this respect to prisms, and the need for mechanical
stability of a high degree. A further problem with diffraction gratings is that they
admit multiple interference orders so that harmonics of the desired wavelength may
also be selected. Order-sorting filters may be necessary to remove the unwanted
orders. Figure 21.14 shows a sketch of a grating monochromator where the wave-
length can be changed by rotating the diffraction grating, all other elements remain-
ing unchanged. High-performance monochromators invariably use mirrors rather
than refracting elements for collimating and collecting since they have no chromatic
aberrations.

21.5.3 Scattering

Christiansen filters consist of dispersed fragments or powder in a matrix. The dis-
persion curves of the two materials differ but cross at one wavelength at which the
scattering disappears. The undesired scattered light is then removed from the desired
specular light by a simple spatial filter (Fig. 21.15)

Christiansen filters have been constructed for virtually the entire optical spec-
trum. An excellent and compact account is given by Dobrowolski [6].
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Figure 21.13 Reflectance of the same filter as in Fig. 21.12.



21.5.4 Polarization

Retardation produced by thickness d of a birefringent material is given by

’ ¼ 2ðn1 � n2Þd



; ð21:15Þ

so that a half-wave retarder made of birefringent material is correct for only one
wavelength. Let there be a polarizer, a retarder at 458, and an orthogonal polarizer in
series. All the light transmitted by the first polarizer will be transmitted without loss
through the remainder of the system provided the retardation is equivalent to an odd
number of half-wavelengths half-wave plate. For any other value of retardation the
light will be stopped by the second polarizer either totally, if the retardation is an
integral number of wavelengths, or partially, if not. The irradiance is given by an
expression of the style:

Irradiance / sin2
’

2
: ð21:16Þ
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Figure 21.14 Sketch of a grating monochromator. Additional optics focus a light source on

the entrance slit and collect the light from the exit slit.

Figure 21.15 Schematic diagram of the principle of the Christiansen filter. Where the dis-

persion curves of the matrix and scattering particles cross, there is no scattering loss and the

transmittance of the device is specular; elsewhere, the light is scattered. A spatial filter is then

used to select the specular light and reject the scattered.



This effect can be used in filters either in a single element or in a series of such
elements. The Lyot filter consists of a series, each member having an increased half-
wave plate order and so a narrower, more rapidly changing response (Fig. 21.16).
The responses of the various elements combine to give a very narrow band width.

The Solc filter has only two polarizers and a set of identical retarder plates in
between with the axes arranged in a fan. For a detailed theoretical analysis of such
filters see Yariv and Yeh [8].

21.5.5 Acousto-optic Filters

In acousto-optic filters the periodic strain caused by an acoustic wave alters the
refractive index in step with the wave. This impresses a thick Bragg phase grating
on the material. The light interacts with this grating, which effectively becomes a
narrow band filter. In the collinear case, the light is polarized and a narrow band is
scattered into the orthogonal plane of polarization where it is selected by a suitably
oriented polarizer (Fig. 21.17). Variation of the frequency of the RF drive for the
acoustic transducer varies the wavelength of the filter.

In the noncollinear type of filter, the Bragg grating deflects the light with high
efficiency. The light need not be polarized. Unwanted light is obscured from the
receiver by a spatial filter (not usually as crude as in the diagram, Fig. 21.18).

Bandwidths of a few nanometers with an aperture of a few degrees with an area
of almost 1 cm2 and with tuning over the visible region are possible. The collinear
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Figure 21.16 Schematic of a Lyot filter. Real filters have rather greater numbers of elements

and must be tightly controlled in temperature.

Figure 21.17 Schematic of a collinear acousto-optic filter.



type has yielded bandwidths of 0.15 nm with tuning range over the visible and near
ultraviolet. For more information see Chang [9].

21.5.6 Interference

The bulk of filters that depend on interference for their operation are of the thin-film
class. Because they form a rather special and very important category they are
considered separately. Here we examine filters that operate by processes of interfer-
ence, usually multiple beam, but are not made up of assemblies of thin films, nor can
be included in the other classes we have considered.

Any interferometer is potentially a narrow-band filter. Since the fringe posi-
tions normally vary with wavelength, a spatial filter can be used to select the light of
a particular wavelength. The commonest interference filter is probably based on a
Fabry–Perot etalon. The fringes are localized at infinity. Thus, if a spatial filter is
placed in the focal plane of an objective lens, then it can be used to select the
appropriate wavelength. The etalon is usually arranged so that the central fringe is
of the correct wavelength and then the spatial filter can be a simple circular aperture
of the correct diameter. The filter can be tuned by varying the optical thickness of the
spacer layer in the etalon and this can be achieved either by varying the refractive
index, as for example by altering the gas pressure, or by physically moving the
interferometer plates themselves. Over rather small tuning ranges, tilting the etalon
is another arrangement that can be, but is less frequently, used.

Most filters that employ interference are thin-film filters, which are discussed
separately. However, there is a variant of the thin-filter that is usually known as a
holographic filter. The holographic filter is produced in a completely different way
but, in principle, it can be thought of as a thin-film reflecting filter that has been
sliced across its width at an angle and then placed on a substrate. This is illustrated in
Fig. 21.19. We take a thin-film reflecting filter that consists of alternate high and low
index quarter-waves or, in the case of the hologram a sinusoidal variation of index in
the manner of a rugate filter (described later). The thin-film reflecting filter is sliced
by two parallel cuts at angle # to the normal and the slice is laid over its substrate.
The hologram now reflects strongly at the angle # to the hologram surface. As in the
rugate, the sinusoidal variation assures that there are no higher orders that are
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Figure 21.18 Schematic of a noncollinear acousto-optic filter.



reflected at the same angle. A simple spatial filter that selects light propagating at the
correct angle completes the filter. The variation in refractive index in the hologram is
small and this means that the reflecting band is very narrow in terms of wavelength.

Another variant of the rugate filter is in the form of an optical fiber with a
propagation constant that varies in a sinusoidal fashion along the core. This reflects
a very narrow band of wavelengths and transmits all others. Such fiber filters are,
therefore, very narrow notch filters.

21.5.7 Thin Films

A thin film is a sheet of material defined by surfaces that are sufficiently parallel for
interference to exist between light reflected at the surfaces. Usually this means that
the films will be at most a few wavelengths in thickness. They are usually deposited
from the vapor or liquid phase directly on a substrate. The optical thickness of the
individual films and the wavelength determine the phase differences between the
beams that interfere. Assemblies of many films exhibiting complicated but engi-
neered interference effects are common. Frequently, the interference effects are sup-
plemented by the intrinsic properties of the materials, especially their absorption
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Figure 21.19 Diagram of the way in which a holographic filter may be imagined to be

produced from a thin-film filter. The thin-film reflecting filter, usually a rugate filter, is sliced

by two parallel cuts at angle # to the normal. The slice is then placed on a substrate. Both

filters reflect strongly, the thin-film filter at normal incidence but the holographic filter at the

angle # to the hologram surface.



behavior. Thin-film optical coatings, therefore, operate by a mixture of interference
and material properties.

We can classify the materials that are used in optical coatings into three prin-
cipal classes: dielectrics, metals, and semiconductors. The main characteristics of
these materials are summarized in Table 21.1. Note that these are somewhat idea-
lized. For example there is slight variation of n with 
 in the case of the dielectrics but
it is negligible compared with the enormous changes in k with 
 in metals. Similarly,
there is a residual small finite n even in high-performance metals.

With increasing wavelength:

Dielectrics Metals
Become weaker Become stronger
T increases R increases
Dielectrics have lower losses Metals have higher losses

Note that for interference coatings we require the presence of dielectric (or
transparent semiconductor) layers. Metals by themselves are not enough, although
they may act as broadband absorbers, reflectors, or beamsplitters.

In a device that operates by optical interference, the path differences vary with
angle of incidence. Although at first sight it may seem anomalous, path differences
actually are smaller when the angle of incidence moves away from normal. Thus, all
filters of the thin-film interference type exhibit a shift of their characteristics towards
shorter wavelengths with increasing angle of incidence. Polarization effects also
gradually become important. For small tilts of a few degrees in air the wavelength
shift is proportional to the square of the angle of incidence:

�




¼ 1:5� 10�4

n2e
#2; ð21:17Þ

where ne is the effective index of the coating (a value in between the highest and
lowest indices in the coating) and where # is the angle of incidence in degrees.
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Table 21.1 Principal Characteristics of Dielectrics, Metals, and Semiconductors

Dielectrics Metals Semiconductors

n real

y ¼ n�
n independent of 


� ¼ 2nd



/ 1




y ¼ constant

Progressive wave

"eið!t��zÞ

y ¼ �ik�
k / 


� ¼ 2kd



¼ constant

y / 

Evanescent wave

"e��zei!t

Usually classified as either

metal or dielectric, depending

on the spectral region

In all cases R ¼ y0 � y

y0 þ y

����

����
2

and T ¼ 4y0 Re y

jy0 þ yj2



21.5.7.1 Multilayer Coatings

Combinations of purely metal layers show no interference effects and so multilayer
filters are constructed either from purely dielectric layers or from combinations of
dielectrics and metals. Figures 21.20 and 21.21 show some idealized characteristics.
Because of their nature the natural type of filter for dielectric layers is one that
reflects over a limited region at shorter wavelengths and transmits well to longer
and longer wavelengths: in other words, a long-wave pass filter. Metal–dielectric
systems, on the other hand, lend themselves to short-wave transmittance and stron-
ger reflection toward longer and longer wavelengths: i.e., a short-wave pass filter.
Any requirement that demands the opposite of these simple characteristics presents
formidable difficulties.

Transparent conductors such as indium tin oxide (ITO) or ZnO:Al appear
dielectric at shorter wavelengths and metallic at longer wavelengths (Fig. 21.22).
They are much used as heat-reflecting short-wave pass filters.

A metal film can be antireflected on either side by a dielectric system consisting
of a phase-matching layer and a reflector (Fig. 21.23). The reflector generates a
reflected beam that is capable of destructively interfering with the beam reflected
by the metal surface, provided the phases are opposite. The parameters of the out-
ermost reflector are adjusted until the amplitudes of the beams are correct and then
correct choice of the thickness of the phase-matching layer assures the necessary
relative phase. The greater the thickness of the primary metal film, the greater must
be the reflectance of the outer reflector. Provided the primary metal layer is not too
thick, good transmittance within the antireflected region can result.

For a very thin metal the mismatch between high-admittance phase-matching
layers and the surrounding media can give a sufficiently high reflectance for the
antireflection condition. This leads to a very simple design consisting of a thin silver
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Figure 21.20 Ideal characteristics of a dielectric layer (top) and a metal layer (bottom).

Dielectrics transmit well but reflect poorly. Metals reflect more and more strongly with

increasing wavelength but have low transmittance.



layer surrounded by two thin titania layers (Fig. 21.24). This is a structure that has
been known for some time. Early filters of this kind used gold and bismuth oxide but
the performance of silver is better. The metal assures the high reflectance at long
wavelengths and the antireflection coating the transmittance at shorter wavelengths,
as in the idealized Fig. 21.21. The silver layer is rather thin and there are some
difficulties in achieving metallic performance from it.
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Figure 21.21 Idealized characteristics of an interference filter made up of dielectric layers

(top) and of a filter made of metal and dielectric layers. The dielectric system is able to reflect

by an interference process effective over a limited region only. Similarly, the metal is induced

to transmit by an interference process that is likewise limited.

Figure 21.22 Calculated transmittance and reflectance of a layer of indium tin oxide (ITO),

showing high transmittance in the visible region and gradually increasing reflectance and

reducing transmittance in the infrared. The refractive index in the visible region is around

2.0 and, consequently, interference fringes are pronounced.



To improve the properties of this filter more silver is needed in the central layer
and this implies a more powerful outer matching reflector. For this we make use of
the properties of quarter-wave dielectric layers.

A quarter-wave dielectric layer acts as an admittance transformer. If the admit-
tance of the emergent medium is ysub and that of the film yf , then the addition of a
quarter-wave film to the substrate will transform the admittance according to the
quarter-wave rule:

Y ¼ y2f
ysub

: ð21:18Þ

An additional quarter-wave of magnesium fluoride on either side, making a
five-layer coating, effectively reduces the admittance of the substrate and incident
medium (Fig. 21.25). This increases the contrast between the titania and the outer
media and increases the reflectance, permitting the use of a thicker silver layer. This
thicker silver layer then reflects more strongly in the infrared and gives a steeper
transition between transmitting and reflecting.

Increasing the outer reflectance still further, and therefore permitting still
greater thickness of silver narrows the transmittance zone further and steepens the
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Figure 21.23 A central metal layer is antireflected by a system of phase matching layer and

reflector on each side.

Figure 21.24 A three-layer heat-reflecting filter consisting of a silver layer surrounded by

two titania layers and a glass cover cemented over it:

Glass|TiO2(20 nm)Ag(10 nm)TiO2(20 nm)|Glass



edge between transmission and reflection. This increased reflectance is achieved by
adding a further titania quarter-wave layer to each side of the design of Fig. 21.25.
This gives the seven-layer coating shown in Fig. 21.26, where the performance is now
much more than that of a bandpass filter.

With a reflecting system consisting of four quarter-waves of titania and mag-
nesium fluoride and the silver thickness increased to 60 nm the coating is now a
narrowband filter (Fig. 21.27).

Such filters are used by themselves as useful bandpass filters in their own right
and, also, because of their low infrared transmittance that is difficult to achieve in
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Figure 21.25 The design of Fig. 21.24 with additional quarter-waves of magnesium fluoride

added between the titania layers and the glass media permitting the use of thicker silver. The

additional silver makes the reflectance rise much more rapidly into the infrared, and improves

the performance of the coating.

Figure 21.26 A bandpass filter consisting of seven layers. A reflector of titania and

magnesium fluoride bounds the silver and phase-matching layer system on either side:

Glass|HLH 0(34 nm)Ag(34 nm)H 00(34 nm)LH|Glass.

H and L represent quarter-waves at 51 nm.



any other way, as blocking filters for use with other types of filters with less accep-
table infrared performance such as all-dielectric narrowband filters.

A coating to transmit the infrared and reflect a band in the visible would best
be constructed from dielectric materials. In the quarter-wave stack, repeated use of
the quarter-wave transformer achieves high admittance mismatch and hence high
reflectance (Fig. 21.28).

Ripple in the long-wave pass band is clearly a severe problem. This can be
reduced by changing the thicknesses of the outermost layers to eighth waves (Fig.
21.29).

Losses in the central metal layers are the major limitations in the narrowband
filters discussed so far. We can use the quarter-wave stack structure to replace the
central metal layer and reduce losses. This allows us to make still narrower filters
(Fig. 21.30).

Figure 21.30 has the design:

Air j HLHLHHLHLHLHLHLHHLHLH j Glass
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Figure 21.27 The performance of the 11-layer silver-based narrowband filter.

Figure 21.28 The performance of a quarter-wave stack consisting of 11 alternate quarter-

wave layers of titania and silica with the titanium outermost. The characteristic is a long-wave

pass filter, but the pronounced oscillatory ripple is a problem.



Because the losses are so much lower, it is possible to achieve exceedingly
narrow filters. The half-wave layers, those designated as HH, and derived from
the original phase-matching layers, are called cavity layers because their function
is really that of a tuned cavity. The filter of Fig. 21.30 is a two-cavity filter. The
greater the number of cavities, the steeper become the passband sides.

A narrowband filter design involving 59 layers and three cavities is shown in
Fig. 21.31.

Antireflection coatings are not strictly spectral filters in the normal sense of the
word because their purpose is not to filter but to reduce losses due to residual
reflection. But they are essential components of filters and so a few words about
them is in order. An antireflection coating with low loss implies the use of dielectric
layers.

The simplest antireflection coating is a single quarter-wave layer. The quarter-
wave rule permits us to write an expression for the reflectance of a quarter-wave of
material on a substrate:

R ¼ y0 � y2f =ysub
y0 þ y2f =ysub

( )2

; ð21:19Þ
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Figure 21.29 The greatly improved performance produced by the change in the thicknesses

in the outermost layers of Fig. 21.28 to eighth waves.

Figure 21.30 An all-dielectric narrowband filter based on the metal–dielectric arrangement

of Fig. 21.27. The central metal layer is now replaced by an all-dielectric quarter-wave stack.



and if y0 ¼ y2f =ysub then the reflectance will be zero. Unfortunately, suitable materials
with such a low refractive index as would perfectly antireflect glass, of admittance
1.52, in air, 1.00, are lacking. Magnesium fluoride, with admittance 1.38, is the best
that is available. The performance, at 1.25% reflectance, is considerably better than
the 4.25% reflectance of an uncoated glass surface (Fig. 21.32).

This performance is good enough for many applications and the single-layer
antireflection coating is much used. It has a characteristic magenta color in reflec-
tion, because of the rising reflectance in the red and blue regions of the spectrum.

There are applications where improved performance is required. If zero reflec-
tance at just one wavelength, or over a narrow range, then the two-layer V-coat is the
preferred solution. This consists of a thin high-index layer, say roughly one-sixteenth
of a wave in optical thickness of titania, followed by roughly five-sixteenths of a

770 Macleod

Figure 21.31 The performance of the 59-layer narrowband three-cavity filter.

Figure 21.32 Computed performance of a single-layer antireflection coating consisting of a

quarter-wave of MgF2 on glass with air as the incident medium.



wave of low-index material, magnesium fluoride or, sometimes, silica. The thick-
nesses are adjusted to accommodate the particular materials that are to be used in
the coating. A typical performance is illustrated in Fig. 21.33.

Then there will be other applications demanding low reflectance over the visi-
ble region, 400–700 nm. These requirements are usually met with a four-layer design
based on the V-coat with a half-wave flattening layer inserted just one quarter-wave
behind the outer surface. The design is of the form

Air j LHHL 0H j Glass

A slight adjustment by refinement then yields the performance shown in Fig. 21.34.
The ultimate antireflection coating is a layer that represents a gradual,

smooth transition from the admittance of the substrate to the admittance of the
incident medium. Provided this layer is thicker than a half-wave, the reflectance
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Figure 21.33 The performance of a typical V-coat, a two-layer antireflection coating to give

(near) zero reflectance for just one wavelength.

Figure 21.34 The performance of the four-layer two-material design over the visible region.



will be very low. This implies that for all wavelengths shorter than a maximum, the
layer will be virtually a perfect antireflection coating. The profile of such a layer is
shown in Fig. 21.35. Figure 21.36 shows the performance as a function of g, i.e.,

0=
, where 
0 is the wavelength for which the layer is a half-wave. Best results are
obtained if the derivative of admittance as a function of distance can be smoothed
along with the admittance. This implies a law of variation that is a fifth-order
polynomial.

For an air incident medium the inhomogeneous layer can be achieved only by
microstructural variations (Fig. 21.37). Processes involving etching, leaching, sol–gel
deposition, and photolithography have all been used. This does give the expected
reduction in reflectance, but as the wavelength gets shorter, the microstructural
features become comparatively larger and so there is a short-wave limit determined
by scattering. For a low reflectance range of reasonable width, the features must be
very long and thin. Because of the inherent weakness of the film, this solution is
limited to very special applications.

The quarter-wave stack, already mentioned, is a useful rejection filter for
limited spectral regions. Unfortunately, for some applications, the interference
conditions that assures high reflectance repeats itself for discrete bands of shorter
wavelengths. Thus, the first-order reflection peak at 
0 is accompanied by peaks at

0=3; 
0=5, and so on. There are many applications where such behavior is unde-
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Figure 21.35 Sketch of the variation of optical admittance as a function of optical thickness

through an inhomogeneous matching layer.

Figure 21.36 The reflectance of an inhomogeneous layer with fifth-order polynomial varia-

tion of admittance throughout. The substrate has admittance 5.1 and the incident medium,

1.00.



sirable. The inhomogeneous layer can be used to advantage in the suppression of
these higher-order peaks because it can act as an antireflection coating that sup-
presses all reflection at wavelengths shorter than a long-wavelength limit. A rugate
filter, the word filter often being omitted, consists of essentially a quarter-wave
stack that has been antireflected by an inhomogeneous layer at each of the inter-
faces between the original quarter-wave layers. The result is a cyclic variation of
admittance that can be considered close to sinusosidal throughout the structure.
All higher orders of reflectance are suppressed. The width of the zone of high
reflectance, now only the fundamental, can be adjusted by varying the amplitude
of the cycle of admittance. The smaller this amplitude, the narrower the reflectance
peak. Of course when the amplitude is small many cycles are needed to achieve
reasonable reflectance (Fig. 21.38). Rugate filters are used in applications where a
narrow line must be removed from a background. They can simply be suppressing
a bright laser line, as in Raman spectroscopic applications, or they can be actually
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Figure 21.37 Microstructural approach to an inhomogeneous layer.

Figure 21.38 Performance of a rugate filter comprising 40 cycles of sinusoidal admittance

variation from 1.45 to 1.65. The horizontal axis is in terms of g, which is a dimensionless

variable given by 
0=
, where 
0 is the reference wavelength. Note the absence of higher-order

peaks. The slightly more pronounced oscillation at g ¼ 2 is a real feature of the design.



reflecting the line and transmitting all others. Head-up displays can make use of
narrowband beamsplitters of this type.

For more information on thin film filters, see Dobrowolski [10] or Macleod
[11].
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Optical Fibers and Accessories
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Centro de Investigaciones en Optica, León, Mexico

22.1 INTRODUCTION

Historically, light-guiding effects were demonstrated in the mid-19th century when
Swiss physicist D. Collodon and French physicist J. Babinet showed that light can be
guided in jets of water for fountain displays. In 1854 the British physicist J. Tyndall
demonstrated this effect in his popular lectures on science, guiding light in a jet of
water flowing from a tank. In 1880, in Massachusetts, an engineer W. Wheeler
patented a scheme for piping light through buildings. He designed a net of pipes
with reflective linings and diffusing optics to carry light through a building. Wheeler
planned to use light from a bright electric arc to illuminate distant rooms. However,
this project was not successful. Nevertheless, the idea of light piping reappeared
again and again until it finally converted into the optical fiber.

During the 1920s, J. L. Baird in England and C. W. Hansell in the United
States patented the idea of image transmission through arrays of hollow pipes or
transparent rods. In 1930, H. Lamm, a medical student in Munich, had demon-
strated image transmission through a bundle of unclad optical fibers. However,
the major disadvantage of this device was the poor quality of the transmitted images.
Light ‘‘leaked’’ from fiber to fiber, resulting in degradation of the quality of the
image.

Modern optical fibers technology began in 1954 when A. van Heel of the
Technical University of Delft in Holland covered a bare fiber of glass with a trans-
parent cladding of lower refractive index. This protected the reflection surface from
contamination, and greatly reduced cross-talk between fibers.

The invention of the laser in 1957 provided a promising light source for an
optical communication system and stimulated research in optical fibers. In 1966 Kao
and Hockman pointed out that purifying glass could dramatically improve its trans-
mission properties. In 1970 the scientists from Corning Glass reported fibers made
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from extremely pure fused silica with losses below 20 dB/km at 633 nm. Over the next
few years fiber losses dropped dramatically. In 1976, Bell Laboratories combined in a
laboratory experiment all the components needed for an optical communication
system, including lasers, detectors, fibers, cables, splices, and connectors. Since
1980, the growth in the number of installed communications systems has been extre-
mely rapid. The improvement of the quality of optical fibers and fast development of
the fiber analogs of bulk optical elements stimulated nontelecommunication applica-
tions of fiber optics in such areas as aircraft and shipboard control, sensors, optical
signal processors, displays, delivery of high-power radiation, and medicine.

Starting in the 1970s a number of good books have been published that discuss
the theoretical aspects of fiber optics. In the last ten years practical guides of fiber
optics for telecommunication applications have appeared. The objective of this chap-
ter is to describe the principles of fiber optics, with an emphasis on basic fiber optical
elements such as fibers, spectrally selective and polarization-sensitive fiber elements,
and couplers.

22.2 OPTICAL FIBERS

22.2.1 Single-Mode and Multimode Fibers

Optical fiber is the medium in which radiation is transmitted from one location to
another in the form of guided waves through glass or plastic fibers. A fiber wave-
guide is usually cylindrical in form. It includes three layers: the center core that
carries the light, the cladding layer covering the core, and the protection coating.
The core and cladding are commonly made from glass, while the coating is plastic or
acrylate.

Figure 22.1 shows a fiber structure. The core of radius a has a refractive index
n1. The core is surrounded by a dielectric cladding with a refractive index n2 that is
less than n1. The silica core and cladding layers differ slightly in their composition
due to small quantities of dopants such as boron, germanium, or fluorine. Although
light can propagate in the core without cladding, the latter serves several purposes.
The cladding reduces scattering loss on a glass–air surface, adds mechanical strength
to the fiber, and protects the core from surface contaminants. An elastic plastic
material that encapsulates the fiber (buffer coating) adds further strength to the
fiber and mechanically isolates the fiber from adjacent surfaces, protecting from
physical damage and moisture.

Glass optical fibers can be single-mode fibers (SMFs) or multimode fibers
(MMFs). A single-mode fiber sustains only one mode of propagation and has a
small core of 3–10 mm. In an MMF, the core diameter is usually much larger than
that of an SMF. In an MMF, light can travel many different paths (called modes)
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through the core of the fiber. The boundary between the core and the cladding may
be sharp (step-index profile) or graduated (graduated-index profile). The core index
profile of an SMF is usually a step-index type (Fig. 22.2(a), while in an MMF it can
be either step-index or a graded-index type (Fig. 22.2(b) and (c)). Step-index fiber has
a core composed completely of one type of glass. Straight lines, reflecting off the
core–cladding interface can describe mode propagation in such a fiber. Since each
mode travels at different angles to the axis of the fiber and has a different optical
path, a pulse of light is dispersed while traveling along the fiber. This effect called
intermodal dispersion limits the bandwidth of a step-index fiber.

In graded-index fibers, the core is composed of many different layers of glass.
The index of refraction of each layer is chosen to produce an index profile approx-
imating a parabola with maximum in the center of the core (Fig. 22.2(c)). In such a
fiber, low-order modes propagate close to the central part of the core with higher
refractive index. Higher-order modes, although traversing a much longer distance
than the central ray, does so in a region with less refractive index and hence the
velocities of these modes are greater. Thus, the effects of these two factors can be
made to cancel each other out, resulting in very similar propagation velocities. A
properly constructed index profile will compensate for different path lengths of each
mode, increasing the bandwidth capacity of the fiber by as much as 100 times over
that of step-index fiber.

Multimode fibers offer several advantages over single-mode fibers. The larger
core radius of MMFs makes it easier to launch optical power into the fiber and
facilitate the connecting together of similar fibers. Another advantage is that radia-
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Figure 22.2 Single-mode and multimode fibers: (a) single-mode step-index fiber, (b) multi-

mode-step-index fiber, and (c) multimode graded-index fiber.

(a)

(b)

(c)



tion from light-emitting diodes can be efficiently coupled to an MMF, whereas
SMFs must generally be excited with laser diodes. However, SMFs offer higher
bandwidths in communication applications.

22.2.2 Fiber Modes

When light travels through a medium with a high refractive index n1 to a medium
with a lower refractive index n2, the optical ray is refracted at the boundary into the
second medium. According to the Snell’s law n1 sin �1 ¼ n2 sin �2, the angle of refrac-
tion �2 is greater than the angle of incidence �1 in this case. As the incident angle
increases, a point is reached at which the optical ray is no longer refracted into the
second medium ð�2 ¼ =2Þ. The optical radiation is completely reflected back into
the first medium. This effect is called total internal reflection.

When total internal reflection occurs, a phase shift is introduced between the
incident and reflected beams. The phase shift depends on polarization of the incident
beam and on the difference of refractive indices. Two different cases should be
considered: when electric field vector E is in the plane of incidence ðEkÞ, and when
E is perpendicular to this plane ðE?Þ. These two situations involve different phase
shifts when total internal reflection takes place, and hence they give rise to two
independent sets of modes. Because of the directions of E and H with respect to
the direction of propagation down the fiber, the two sets of modes are called trans-
verse magnetic (TM) and transverse electric (TE), which correspond to the Ek and
E?, respectively. Two integers, l and m, are required to completely specify the modes.
This is because the waveguide is bounded in two dimensions. Thus we refer to TMlm

and TElm modes.
In fiber waveguides the core–cladding index difference is rather small and does

not exceed a few percent. The phase shift acquired under total internal reflection is
practically equal for both sets of modes. Thus, the full set of modes can be approxi-
mated by a single set called linearly polarized (LPlm) modes. Such a mode in general
has m field maxima along a radius vector and 2l field maxima round a circumference.
Figure 22.3 shows an electric field distribution for LP01 and LP21 modes.

22.2.3 Fiber Parameters

The light can enter and leave a fiber at various angles. The maximum angle (accep-
tance angle �max) that supports total internal reflection inside the fiber defines the
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numerical aperture (NA). Numerical aperture can be expressed in terms of core–
cladding refractive index difference as

NA ¼ n0 sin �max ¼ ðn21 � n22Þ1=2 � n1ð2�Þ1=2; ð22:1Þ
where � ¼ ðn1 � n2Þ=n1 is the relative (or normalized) index difference and n0 is the
refractive index. This representation is valid when � 	 1. Since the numerical aper-
ture is related to the maximum acceptance angle, it is commonly used to describe the
fiber characteristics and to calculate source-to-fiber coupling efficiencies.

A second important fiber parameter is the normalized frequency V , which
defines the number of modes supported by a fiber. This parameter depends on
optical wavelength 
, a core radius a, and a core–cladding refractive index difference,
and can be written as

V ¼ 2a



NA: ð22:2Þ

With the parameters V , �, and index profile optical fibers can be classified
more precisely. For V < 2:405, the fiber sustains only one mode and is a single mode.
Multimode fibers have values V > 2:405 and can sustain many modes simulta-
neously. The number 2.405 corresponds to the first zero of the Bessel function,
which appears in the solution of the wave equation for the fundamental mode in a
cylindrical waveguide. A fiber can be multimode for short wavelengths and, simul-
taneously, can be single mode for longer wavelengths. The wavelength correspond-
ing to V ¼ 2:405 is known as the cutoff wavelength of the fiber and is given by


c ¼
2a

2:405
NA: ð22:3Þ

The fiber is single mode for all wavelengths longer than 
c and is multimode for
shorter wavelengths. By decreasing the core diameter or the relative index difference
such that V < 2:405, the cutoff wavelength can be shifted to shorter wavelengths,
and single-mode operation can be realized. Usually the fiber diameters are greater
for longer wavelengths.

The small core diameter of an SMF makes it difficult to couple light into the
core and to connect two fibers. To increase the effective core diameter, fibers with
multiple cladding layers were designed. In such a fiber, two layers of cladding, an
inner and an outer cladding surround its core with a barrier in between. The index
profiles of single and multiple cladding fibers are shown in Fig. 22.4(a) and (b). The
multiple cladding schemes permit the design of an SMF with a relatively larger core
diameter, facilitating fiber-handling and splicing. The additional barrier provides an
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efficient control of dispersion properties of a fiber and permits us to vary the total
dispersion of an SMF.

A more complicated index profile called a quadrupole clad (Fig. 24.4(c)) gives
even more flexibility in handling of fiber dispersion. The quadrupole-clad fiber has
low dispersion (< 1 ps/km-nm) over a wide wavelength range extending from 1.3 mm
to 1.6 mm.

Figure 22.4(d) shows a triangle index profile. A fiber with triangle profile called
a T-fiber provides a much higher second-order mode cutoff wavelength (for LP11

mode) and lower attenuation than does a step-index fiber.
If the parameter V increases much above 2.405, the step-index fiber can sup-

port a large number of modes. The maximum number of modes propagating in the
fiber can be calculated as

Nmode �
V2

2
: ð22:4Þ

When many modes propagate through a fiber, carrying the same signal but along
different paths, the output signal is the result of interference of different modes. If a
short pulse enters into the fiber, at the output this pulse has longer length because of
the temporal delay between carrying modes. As has been mentioned above, this
effect is called intermodal dispersion. The quality of the signal deteriorates as the
fiber length increases, limiting the information capacity of the step-index fiber.

To reduce the effect of intermodal dispersion, a graded-index fiber has been
proposed. A typical core profile is shown in Fig. 22.4(f). The most often used index
profile is the power law profile designed according to the following expression

nðrÞ ¼ n1 1� 2�
r

a

� gh i1=2
; ð22:5Þ

where g is usually chosen to reduce the effect of intermodal dispersion. For optimum
effect

g ¼ 2� 12
5


 �
�: ð22:6Þ

The refractive index of the cladding is maintained at a constant value.

22.2.4 Optical Losses (Attenuation)

Light traveling in a fiber loses power over distance. If P0 is the power launched at the
input of a fiber, the transmitted power Pt at a distance L is given by

Pt ¼ P0 expð��LÞ; ð22:7Þ
where � is the attenuation constant, known also as the fiber loss. Attenuation is
commonly measured in decibels (dB). In fibers, the loss is expressed as attenuation
per 1 km length, or dB/km, using the following relationship:

�dB ¼ �10
10

L
log

Pt

P0

� �
¼ 4:343�: ð22:8Þ

Fiber loss is caused by a number of factors that can be divided into two
categories: induced and inherent losses. The induced losses may be introduced during
manufacturing processes. These losses are caused by inclusions of contaminating
atoms or ions, by geometrical irregularities, by bending and microbending, by spli-
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cing, by connectors, and by radiation. The fabrication process is aimed at reducing
these losses as much as possible.

Bend losses occur due to the change of the angle of incidence at the core–
cladding boundary and depend strongly on the radius of curvature. The loss will be
greater (a) for bends with smaller radii of curvature, and (b) for those modes that
extend most into the cladding. The bending loss can generally be represented by a
loss coefficient �B, which depends on fiber parameters and radius of curvature R, and
is given as

�B ¼ C exp � R

Rc

� �
ð22:9Þ

where C is a constant, Rc is given by Rc ¼ r=ðNAÞ2, and r is the fiber radius. As is
seen from Eq. (22.9), the attenuation coefficient depends exponentially on the bend
radius. Thus, decreasing the radius of curvature drastically increases the bending
losses. The bending loss decreases as the core–cladding index difference increases.
The optical radiation at wavelengths close to cutoff will be affected more than that at
wavelengths far from cutoff.

Bending loss can also occur on a smaller scale due to fluctuations of core
diameter and perturbations in the size of the fiber, caused by buffer, jacket, fabrica-
tion, and installation practice. This loss is called microbending and can contribute
significantly over a distance.

Splice and connector loss can also add to the total induced loss. The mechan-
ism of these losses will be discussed below.

Light loss that cannot be eliminated during fabrication process is called inher-
ent losses. The inherent losses have two main sources: (a) Rayleigh scattering and (b)
ultraviolet and infrared absorption losses.

Scattering

Glass fibers have a disordered structure. Such a disorder results in variations in
optical density, composition, and molecular structure. These types of disorder, in
turn, can be described as fluctuations in refractive index of the material. If the scale
of these fluctuations is of the order of 
=10 or less, then each irregularity can be
considered as a point scattering center. The light is scattered in all directions by each
point center. The intensity of scattered light and the power loss coefficient vary with
wavelength as 
�4. The term 
�4 is the characteristic wavelength-dependence factor
of Rayleigh scattering. The addition of dopants into the silica glass increases the
scattering loss because the microscopic inhomogeneities become more important.
Rayleigh scattering is a fundamental process limiting the minimum loss that can
be obtained in a fiber.

Absorption

The absorption of light in the visible and near-infrared regions at the molecular level
arises mainly from the presence of impurities such as transition metal ions (Fe3þ,
Cu2þ) or hydroxyl (OH�) ions. The OH radical of the H2O molecule vibrates at a
fundamental frequency corresponding to the infrared wavelength of 2.8 mm. Because
the OH radical is an anharmonic oscillator, the overtones can occur, producing
absorption peaks at 0.725 mm, 0.95 mm, 1.24 mm, and 1.39 mm. Special precautions
must be taken during the fiber-fabrication process to diminish the impurity concen-
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trations. The OH concentration should be kept at levels below 0.1 ppm if ultralow
losses are desired in the 1.20–1.60 mm range.

Ultraviolet absorption produces an absorption tail in the wavelength region
below 1 mm. This absorption decreases exponentially with increasing wavelength and
is often negligible in comparison with Rayleigh scattering within the visible wave-
length range.

At wavelengths greater than about 1.6 mm the main contribution to the loss is
due to transitions between vibrational states of the lattice. Although the fundamental
absorption peaks occur at 9 mm, overtones and combinations of these fundamental
vibrations lead to various absorption peaks at shorter wavelengths. The tails of these
peaks result in typical values of 0.02 dB/km at 1.55 mm, and 1 dB/km at 1.77 mm.
Figure 22.5 shows the total loss coefficient (solid curve) as a function of wavelength
for a silica fiber. The absorption peak at 1.39 mm corresponds to OH radicals. A
properly chosen fiber-fabrication process permits suppression of this peak. The
inherent loss level is shown by a dashed curve. The minimum optical losses of
0.2 dB/km have been obtained with GeO2-doped silica fiber at 1.55 mm.

22.2.5 Dispersion, Fiber Bandwidth

When an optical pulse propagates along a fiber, the shape of the pulse changes.
Specifically, a pulse of light gets broader. There are three main sources of such
changes: intermodal dispersion, material dispersion, and waveguide dispersion.
Intermodal dispersion can be avoided by using single-mode fibers or can be dimin-
ished by using graded-index multimode fibers.

Material (or chromatic) dispersion is due to the wavelength dependence of the
refractive index. On a fundamental level, the origin of material dispersion is related
to the electronic absorption peaks. Far from the medium resonances, the refractive
index is well approximated by the Sellmeier equation:

n2ð!Þ ¼ 1þ
Xl

i¼1

Bi!
2
i

!2
i � !2

; ð22:10Þ

where !i is the resonance frequency and Bi is the strength of ith resonance. For bulk
fused silica these parameters are found to be B1 ¼ 0:6961663, B2 ¼ 0:4079426,
B3 ¼ 0:8974794, 
1 ¼ 0:0684043 mm, 
2 ¼ 0:1162414 mm, 
3 ¼ 9:896161 mm, where
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i ¼ 2c=!i. Fiber dispersion plays an important role in propagation of short optical
pulses since the different spectral components travel at different velocities, resulting
in pulse broadening. Dispersion-induced pulse broadening can be detrimental for
optical communication systems.

Mathematically, the effects of fiber dispersion are accounted for by expanding
the mode-propagation constant �ð!Þ in a Taylor series near the central frequency !0:

�ð!Þ ¼ nð!Þ!
c
¼ �0 þ �1ð!� !0Þ þ

1

2
�2ð!� !0Þ2 þ � � � ; ð22:11Þ

where

�m ¼ dm�

d!m

� �

!0

ðm ¼ 0; 1; 2; . . .Þ ð22:12Þ

The parameter �1 characterizes a group velocity vg ¼ d!=d� ¼ ð�1Þ�1. Although
individual plane waves travel with a phase velocity vp ¼ !=�, a signal envelope
propagates with a group velocity. The parameter �2 is responsible for pulse broad-
ening.

The transit time required for a pulse to travel a distance L is � ¼ L=vg. Since
the refractive index depends on wavelength, the group velocity is also a function of 
.
The travel time per unit length �=L may be written as

�

L
¼ 1

c
n� 
 dn

d


� �
: ð22:13Þ

The difference in travel time �� for two pulses at wavelengths 
1 and 
2, respec-
tively, is a measure of dispersion. In a dispersive medium, the optical pulse of a
spectral width �
, after traveling a distance L, will spread out over a time interval

�� ¼ d�

d

�
: ð22:14Þ

The derivative d�=d
 describes the pulse broadening and can be expressed through
parameter �2 as

1

L

d�

d

¼ � 


c

d2n

d
2
¼ � 2c


2
�2 ¼ D: ð22:15Þ

The parameter D (in units ps/nm-km), called also dispersion parameter or dispersion
rate, is commonly used in fiber-optics literature instead of �2. The parameter �2 is
generally referred to as the group velocity dispersion (GVD) coefficient. For a bulk
silica, �2 vanishes with wavelength and is equal to zero at 1.27 mm. This wavelength is
often called zero-dispersion wavelength 
D. An interesting fact is that the sign of the
dispersion term changes in passing through zero-dispersion point.

Waveguide dispersion is due to the dependence of propagation constant on
fiber parameters when the index of refraction is assumed to be constant. The
reason for this is that the fiber parameters, such as the core radius and the core–
cladding index difference, cause the propagation constant of each mode to
change for different wavelengths. The sign of waveguide dispersion is opposite
to the sign of material dispersion at wavelengths above 1.3 mm. This feature is
used to shift the zero-dispersion wavelength 
D in the vicinity of 1.55 mm, where
the fiber loss has a minimum value. Such dispersion-shifted fibers have found
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numerous applications in optical communication systems. It is possible to design
dispersion-flattened optical fibers having low dispersion (jDj  1 ps/nm-km) over
a relatively large wavelength range. This is achieved by the use of multiple
cladding layers. Figure 22.6 shows the dependence of the dispersion parameter
D on wavelength for a single-clad fiber (dashed curve) and a quadrupole-clad
fiber (solid curve) with flattened dispersion in the wavelength range extending
from 1.25 to 1.65 mm.

Fiber Bandwidith

Optical fiber bandwidth is a measure of the information-carrying capacity of an
optical fiber. The fiber’s total dispersion limits the bandwidth of the fiber. This
occurs because pulses distort and broaden, overlapping one another and become
indistinguishable at a receiver. To avoid an overlapping, pulses should be trans-
mitted at less repetition rate (thereby reducing bit rate). Use of these terms (band-
width and bit rate) is technically difficult because of two factors: link length and
dispersion. To calculate a desired bandwidth or bit rate, the fiber provider must
know the length of the link. In addition, the provider does not know the spectral
bandwidth of the optical source to be used in the system. The spectral bandwidth of
the light source determines the amount of chromatic dispersion in the link. Because
of these two difficulties, instead of terms ‘‘bandwidth’’ and ‘‘bit rate’’ two other
terms are used: bandwidth-distance product, in MHz-km, for multimode fibers; dis-
persion rate, in ps/nm/km, for single-mode fibers.

The bandwidth-distance product is the product of the fiber length and the
maximum bandwidth that the fiber can transmit. For example, a fiber with a band-
width-distance product of 100MHz-km, can transmit a signal of 50MHz over a
distance of 2 km or a signal of 100MHz over a distance of 1 km. It should be
noted that graded-index MMF have an information-carrying capacity 30 to 50
times greater than step-index MMF because of diminished intermodal dispersion.
In single-mode fibers, the information-carrying capacity is approximately two orders
of magnitude greater than that of graded-index MMF.
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22.2.6 Typical Fibers and Fiber Parameters

Optical fibers used for telecommunications and other applications are manufactured
with different core and cladding diameters. Fiber size is specified in the format ‘‘core/
cladding.’’ A 100/140 fiber means the fiber has a core diameter of 100 mm and a
cladding diameter of 140 mm. A polymer coating covers the cladding and can be
either 250 or 500mm. For a tight-buffered cable construction, a 900-mm-diameter
plastic buffer covers the coating. Table 22.1 shows typical fiber core, cladding and
coating diameters.

Most fibers have a glass core and glass or plastic cladding. These fibers can be
classified in four types: all glass, plastic clad silica, hard clad silica, and plastic optical
fibers.
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Table 22.1 Fiber Parameters

Core/cladding/

coating diameter

(mm)

Wavelength

(nm)

Optical loss

(dB/km)

Bandwidth–distance

product

(MHz-km)

Numerical

aperture

2.4/65/190

3.3/80/200

4.0/125/250

5.5/125/250

6.6/125/250

6.6/80/200

7.8/125/250

9/125/250 or 500

50/125/250 or 500

62.5/125/250 or 500

100/140/250 or 500

110/125/250 or 500

200/230/500

400

500

630

820

1060

1300

1550

780

850

1300

1550

780

850

1300

1550

780

850

1300

1550

780

850

1300

1550

780

850

1300

1550

780

850

1300

1550

60

22

10

3.5

2

1

1

—

—

0.5–0.8

0.2–0.3

4.0–8.0

3.0–7.0

1.0–3.0

1.0–3.0

4.0–8.0

3.0–7.0

1.0–4.0

1.0–4.0

4.5–8.0

3.5–7.0

1.5–5.0

1.5–5.0

—

15.0

—

—

—

12.0

—

—

—

—

—

—

—

—

—

<800

2000

20000

4000–20000

150–700

200–800

400–1500

300–1500

100–400

100–400

200–1000

150–500

100–400

100–400

100–400

10–300

—

17

—

—

—

17

—

—

0.13

0.13

0.12

0.12

0.13

0.16

0.16

0.11

0.20

0.275

0.29

0.37

0.37



Glass Fibers

The most popular fibers are all-glass fibers, especially single-mode fibers. These fibers
are widely used because of low attentuation rates and high information-carrying
capacity. Single-mode fibers are less expensive than multimode fibers, but optoelec-
tronic elements and connectors for single-mode systems are more expensive than
those for multimode systems. The majority of single-mode fibers have a core dia-
meter of 5–10 mm and a cladding diameter of 125 mm.

Most multimode telecommunications fibers are graded-index fibers with a
cladding diameter of 125 mm. The typical core diameters with the 125 mm cladding
are 50 mm, 62.5 mm, 85 mm, and 110 mm.

The 50/125-mm diameter fiber has a low numerical aperture of 0.2 but the
highest bandwidth-distance product between MMF. The 62.5/125-mm fiber is the
most popular for multimode transmission; its higher numerical aperture means that,
this fiber provides better light-coupling efficiency and is less sensitive to micro-
bending losses. The large core diameter fibers, such as the 85/12-, 110/125-, and
100/140-mm fibers, have a good light-coupling ability, but have less bandwidth-dis-
tance product than fibers with small core diameter. Table 22.1 shows typical fiber
optical losses, numerical apertures, and bandwidth-distance products. It should be
noted that there are other fibers with larger core diameters, which find applications
in fiber sensors and medicine.

Plastic-Clad Silica (PCS)

PCS consists of a step-index silica core surrounded by a soft plastic cladding of
silicone rubber. This fiber combines the low attenuation of a glass core with a soft
plastic cladding; however, this fiber needs a buffer coating to protect the soft cladding.

Hard Clad Silica (HCS)

Hard clad silica fiber includes a step-index silica core surrounded by a hard plastic
cladding. This plastic cladding has important advantages compared to a glass clad-
ding, providing a high strength of the fiber, small bending radius, and a high resis-
tance to surface damage.

Plastic Optical Fibers (POF)

Plastic fibers have a step-index or graded-index core surrounded by a plastic clad. The
core material of POF is normally made of acrylic resin, while the cladding is made of
fluorinated polymer. The POF diameter is usually of around 1mm, which is many
times larger than a glass fiber and the light-transmission core section accounts for the
96% of the cross-sectional area. Compared with all glass fibers POFs do not suffer
from the problem of breakage. In Section 22.3.6 POFs are presented in more detail.

22.3 SPECIAL FIBERS

22.3.1 Erbium-Doped Fibers

Incorporating rare-earth elements into glass gives the resulting material new optical
properties that allow the material to perform amplification and generation of optical
light. Doping can be done both for silica and for halide glasses.
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Three commonly used rare-earth materials for silica fiber lasers are erbium,
neodymium, and ytterbium. Erbium-doped fibers have been a key element in the
transformation of modern optical communication systems. Erbium-doped fiber
amplifiers and lasers operating at a wavelength of 1.55 mm have attracted most
attention because their amplification band coincides with the least-loss region of
silica fibers used for telecommunication systems. In particular, erbium-doped fiber
amplifiers (EDFAs) are used for the amplification of lightwave signals purely in the
optical domain. They can be used as power amplifiers to boost transmitted power, as
repeaters or in-line amplifiers to increase the transmission distance, or as preampli-
fiers to enhance receiver sensitivity. Figure 22.7 shows the basic configuration of an
EDFA. The wavelength-division multiplexer (WDM) combines the light from the
high-pump power laser diode (with wavelength of 980 nm or 1480 nm) and the signal
to be amplified (in the wavelength region of 1530–1570 nm) into an Er-doped silica
fiber. The optical isolators prevent any back reflections. To adjust the gain of EDFA,
a part of the output signal is compared with the reference level. The produced
control signal goes back to the pump diode to adjust the current.

The key element in an EDFA is a short-length (5–200m) silica fiber doped with
about 200 mole ppm or erbium, which corresponds to an erbium concentration of
about 1019 ions/cm3. The gain characteristics of EDFAs depend on the pumping
scheme as well as on the various codopants (GeO2, Al2O3, and P2O5) that are
used to make the fiber core. Table 22.2 shows typical parameters of an erbium-
doped fiber (available from 3M). Efficient pumping may be obtained by using semi-
conductor lasers operating at 980 nm and 1480 nm, where the excited state absorp-
tion (ESA) – the excitation to higher levels than pump wavelength – is not present.
A broadband gain of EDFAs permits amplification of multiple optical channels in
the bandwidth that ranges from 1 to 5THz (� 40 nm).

One of the advantages of EDFA amplifiers over electronic amplifiers is that
EDFAs can amplify many signals at different wavelengths, which is used to expand
the capacity of fiber-optic communication systems. Since the optical signals are
directly amplified without conversion to electrical signals, the amplifier will work
efficiently even at higher bit rates. This is in contrast to electronic repeaters, which
work only at the fixed bit rate. A small signal gain of 40 dB can be achieved in
EDFAs, while the noise, added by the amplifier, is close to the lowest level (3–
4 dB). It should be noted also that the gain is polarization-insensitive, providing
equal amplification for all polarization states of a signal. In long transmission sys-
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tems, EDFAs are used to periodically restore the power level, after it has decreased
due to attenuation in the fiber.

22.3.2 Powerful Double-Clad Fibers

The power levels generated by conventional fiber lasers, pumped with diode sources
that couple light directly into the single-mode core, are relatively low, and currently
limited to fractions of a watt. Double-clad fibers offer a solution to increasing the
amount of pump power in a fiber laser. Double-clad fibers comprise a rare-earth-
doped single-mode core within a multimode waveguide, which enables light pumping
from a low-brightness multimode pump source such as a diode array to be efficiently
absorbed by a single mode core. The geometry of a high-power Yb3þ cladding-
pumped fiber laser is shown in Fig. 22.8. The inner rectangular silica cladding
with refractive index n ¼ 1:46 acts as a waveguide for the pump light. In Fig. 22.8
the silica rectangular waveguiding region has dimensions 360� 120 mm, and is
referred to as the pump cladding. The noncircular shape of the pump cladding
eliminates helical rays, which have poor overlap with the core. The pump-cladding
region is typically surrounded by a low-index polymer ðn ¼ 1:39Þ which acts as a
cladding for the inner cladding, providing a high numerical aperture (NA ¼ 0:48) for
the rectangular waveguide. This permits an efficient light coupling from a diode laser
into the inner cladding. A second protective polymer surrounds the low-index
polymer.

The pumping light is absorbed when optical rays cross the rare-earth-doped
single-mode core. Then the excited ions emit the light at lower frequency, which is
amplified through stimulated emission in the single-mode core with much lower
numerical aperture. Thus, pumping double-clad fiber lasers with low-brightness
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Table 22.2 Parameters of an Erbium-Doped Fiber (3M)

Pumping

wavelength

(nm)

Operating

wavelength

(nm)

Core/cladding/

jacket diameter

(mm)

Attenuation

maximum

(dB/km)

Numerical

aperture

980–1480 1530–1560 5/125/245 15 (1200 nm) 0.28

Figure 22.8 Double-clad fiber structure.



beams from a pump laser diode array may result in enhancing of the brightness by a
factor in excess of 1000. This increased brightness is the significant advantage of
double-clad fibers over both diodes and other types of fiber lasers. The necessary
feedback elements for laser operation of the doped core may be formed by Bragg
gratings directly written into the doped single-mode core, or by using mirrors depos-
ited on or attached to the fiber ends. Slope efficiency approaches 70% and, output
power is limited only by the pump power.

Different geometry has been developed for double-clad fiber lasers, some of
which are shown in Fig. 22.9. The main purpose of the proposed design is to break a
circular symmetry and to provide an efficient pump absorption in the core. Although
the core can be doped with various rare-earth ions such as Er3þ, Nd3þ, Tm3þ, Ho3þ,
the highest output power has been obtained from Yb3þ-doped single-mode core.
Using tens of meters of Yb-doped double-clad fiber, continuous wave (CW) power
of 200W has been achieved in a single-mode beam at 1064 nm (IRE-Polus Group).

Potential applications for high-power lasers are in medicine, laser cutting,
pumping other lasers, and in satellite-to-satellite communications links. Polaroid
developed a high-power double-clad Yb3þ-doped fiber laser for a printing system.
High-power lasers are also of great interest in telecommunication networks, since
they can provide the necessary pump power, for example, for the practical imple-
mentation of cascaded Raman lasers for optical amplification. Laboratory experi-
ments have demonstrated that the use of Raman gain devices can quadruple
communication system capacity. Furthermore, in medical applications high-power
2-mm fiber sources may be useful in microsurgical applications. Also, medical spec-
troscopic applications in areas such as dermatology and diagnostic imaging, should
benefit from double-clad fiber lasers.

22.3.3 Infrared Optical Fibers

In 1979 optical fibers made from silica and silica-based glasses reached their limit of
transparency. Transmission losses as low as 0.2 dB/km have been obtained. This
value almost corresponds to the ultimate inherent (intrinsic) loss value for a silica-
based fiber. However, the demand for further improvements in trasmission capacity
require the realization of ultra-low loss optical fibers with losses far below those of
the silica-based optical fibers. Moreover, fibers with low loss in mid-infrared are
required in medicine and industrial applications. The solution is in nonsilica infrared
fiber materials, which offer the possibility of an ultra-low loss of less than 10�2 dB/
km.

In principle, infrared optical fibers can be classified into two groups: dielectric
optical fibers, based on the total internal reflection in solid cores; hollow waveguides,
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whose core regions are hollow. Optical materials studied to date for infrared fibers
are halides, chalcogenides, and heavy-metal oxides.

Oxide Glass Fibers

Infrared oxide glass fibers are mainly based on heavy-metal oxides such as GeO2,
GeO2–Sb2O3, and TeO2. The minimum losses typically occur at wavelengths of
around 2–3 mm. In metal glasses, infrared absorption due to lattice vibration (Ge–
O) can be shifted toward a longer wavelength, since their constituent metals (such as
Ge) are heavier than Si in SiO2 glass. As a result, an ultra-low loss in the infrared
region is expected. Theoretical predictions give a value of 0.1 dB/km for minimum
intrinsic loss of these fibers. However, the experimentally obtained values are more
than one order of magnitude larger: in particular, losses of 4 dB/km have been
reported in GeO2–Sb2O3.

Fluoride Glass Fibers

Fluoride glasses are the most promising candidates for the ultra-low loss optical
fibers in long-distance optical communication. The initial system discovered by
Poulain and coworkers in France in 1974 were fluorozirconates, where ZrF4 was
the primary constituent (>50 mol%), BaF2 the principal modifier (� 30 mol%) and
various metal fluorides, such as ThF4 and LaF3, were tertiary constituents.
Depending on the composition, fluoride glasses have various desirable optical char-
acteristics, such as a broad transparency range extending from the mid-infrared
(� 7 mm) to near ultraviolet (0.3 mm), low refractive index and dispersion, low
Rayleigh scattering, and the potential of ultra-low absorption and ultra-low thermal
distortion. Recent progress in reducing transmission losses of fluoride fibers to less
than 1 dB/km strongly encourages the realization of ultra-low loss fibers of 0.01 dB/
km, or less. Intrinsic losses in fluoride glasses are estimated to be 0.01 dB/km at 2–
4 mm. In particular, fibers based on ZrF4–BaF2 have intrinsic losses in the vicinity of
0.01 dB/km at around 2.5 mm.

The visible refractive index of most fluoride glasses lies in the range 1.47–1.53,
which is comparable to silicates but much lower than chalcogenides and can be
tailored by varying composition. The zero of the material dispersion for fluorozir-
conates occurs in the region of 1.6–1.7 mm, as opposed to the loss minimum in the 3–
4 mm regime. Nevertheless, the magnitude of the material dispersion is small through
an extended range of wavelengths, including the minimum loss region, so that
respectable values of pulse broadening, on the order of several picoseconds per
angstrom-km are calculated for typical fluoride glasses near their loss minimum.

Chalcogenide Glass Fibers

Chalcogenides are compounds composed of chalcogen elements, i.e., S, Se, and Te,
and elements such as Zn, Cd, and Pb. They are available in a stable vitreous state
and have a wide optical transmission range. Chalcogenide glasses are advantageous
because they exhibit no increase in scattering loss due to the plastic deformation that
usually occurs in crystalline fibers. Chalcogenide glasses are divided into sulfides,
selenides, and tellurides.

Sulfide glasses are divided into arsenic-sulfur and germanium-sulfur glasses.
The optical transmission range of As-S and Ge-S glasses is almost the same, giving a
broad transmission in the mid-infrared region. Transmission loss of 0.035 dB/m has
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been achieved for an As-S glass without a cladding, while in an As-S glass fiber with
teflon FEP cladding transmission loss of 0.15 dB/m has been obtained.

Various selenide glasses have been studied mainly in order to achieve lower loss
at the wavelengths of 5.4 mm (CO laser) and 10.6 mm (CO2 laser). Selenide glasses are
divided into As-Se As-Ge-Se (As rich) glasses, Ge-Se, Ge-As-Se (Ge rich) glasses, La-
Ga-Ge-Se glasses and Ge-Sb-Se glasses. Selenide glasses have a wide transparency
region compared with sulfide glasses. They exhibit a stable vitreous state, resulting in
flexibility of the fiber and, thus, these fibers are the candidates for infrared laser
power transmission and wide-bandwidth infrared light transmission, such as in
radiometric thermometers.

Although the Se-based chalcogenide glasses have a wide transparency range,
their losses at the wavelength of 10.6 mm for CO2 laser power transmission are still
higher than the 1 dB/m required for practical use. To lower transmission loss caused
by lattice vibration, the atoms must be introduced to shift the infrared absorption
edge toward a longer wavelength. Transmission losses of 1.5 dB/m at 10.6 mm in
Ge22Se20Te58 telluride glass have been reported.

Polycrystalline Fibers

The technology of fabrication of polycrystalline fibers by extrusion has allowed the
preparation of TlBr-TlI (KRS-5) fibers with total optical loss of 120–350 dB/km.
This crystalline material is known to transmit from 0.6 to 40 mm, and has a theore-
tical transmittance loss of � 10�3 dB/km at 10.6 mm due to low intrinsic scattering
losses from Rayleigh and Brillouin mechanisms and a multiphonon edge that is
shifted to longer wavelengths. Fiber-optic waveguides made from KRS-5, however,
have optical losses at 10.6 mm that are orders of magnitude higher than those pre-
dicted by theory. In addition, the optical loss increases with time (� 6 dB/m per year)
via the mechanism of water incorporation. Transmission of a 138W (70 kW/cm2)
beam of a CO2 laser through a 0.5-mm diameter and 1.5-m length fiber made from
KRS-5 has been achieved with transmitted power of 93%.

On the other hand, polycrystalline silver halide fibers, formed by extrusion of
mixed crystals of AgClxBr1�x (0  x  1), are transparent to 10.6 mm CO2 laser
radiation. The total loss coefficient at this wavelength is in the range of 0.1 to
1 dB/m, and the fiber transmission is independent of power levels up to at least
50W total power input, which is an input power density of about 104 W/cm2. In
addition, the fibers are nontoxic, flexible and insoluble in water. They have been
successfully used in many applications such as directing high-power CO2 laser radia-
tion for surgical and industrial applications, IR spectroscopy, and radiometry.

Single-Crystalline Fibers

Single crystal fibers have the potential of eliminating all the deleterious effects of
extruded fiber, and, therefore, of having much lower loss than polycrystalline fibers.
This material possesses a wide transparent wavelength region from visible to far-
infrared, so that it is possible to transmit both visible and infrared light. Materials
for single-crystalline fibers are almost the same as those for polycrystalline fibers:
TlBr-TlI, AgBr, KCl, CsBr, and CsI have been mainly studied. The lowest losses at
the CO2 laser wavelength of 10.6 mm have been attained in thallium halide fibers
(0.3–0.4 dB/m). Also, a transmission loss of 0.3 dB/m and maximum transmitted
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power of 47W were obtained at a 10.6 mm wavelength by using a 1-mm diameter
CsBr fiber.

22.3.4 Metallic and Dielectric Hollow Waveguides

In the mid-infrared region (10.6 mm and 5 mm), hollow-core waveguides have advan-
tages over solid-core fibers in high power transmission of CO2 and CO lasers. Lower
loss and higher laser-induced-damage threshold are attainable because of the highly
transparent airy core. Various types of hollow infrared waveguides have been fab-
ricated, including cylindrical and rectangular metallic, cylindrical dielectric, and
rectangular metallic with inner dielectric coatings (Fig. 22.10).

In cylindrical hollow waveguides, transverse electric modes TE0n propagate
with the least attenuation, while hollow rectangular waveguides propagate TEm0

and TMm0 modes most efficiently because these modes interact less with the wave-
guide inner walls. Metal material in hollow waveguides provides high infrared reflec-
tivity. Transmission of more than 95%/m in straight rectangular hollow metal
waveguides has been reported. Transmission losses of dielectric-coated metallic
waveguides are expected to be low for the HE11 mode. Theory predicts that the
power loss of the HE11 mode is 3:2� 10�2 dB/m. The total transmission loss of
fabricated waveguides are always below 0.5 dB/m, in contrast to 2.5 dB/m for a metal
hollow waveguide with no dielectric layer. Metallic hollow fibers are not as flexible as
conventional optical fibers, and so they are rather restricted.

In dielectric hollow-core fibers the glass (e.g., oxide glasses such as SiO2 and
GeO2) acts as a cladding to the fiber core, which is air. To provide a condition of
total internal reflection, and thus high transmission, the glass cladding must retain a
refractive index of less than unity. This means selecting a dielectric with the anom-
alous dispersion of refractive index at an operating wavelength. Many inorganic
materials, either in vitreous (i.e., amorphous) or crystalline form exhibit strong
anomalous dispersion in the mid-infrared, providing their refractive indices are
less than unity at certain frequencies. However, it should be noted that a refractive
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index of below unity at the middle region originates from the strong absorption due
to lattice vibration and results in increase of transmission losses and limits the length
of the waveguide. A transmission loss of 0.1 dB/m at 10.6 mm is expected in a fiber
with a cladding composition of 80mol% GeO2–10 mol% ZnO–10 mol% K2O and a
bore size of 1mm. The experimental loss is about 20 times larger than the theoretical
one. It is expected that lower transmission losses can be obtained by smoothing the
inner surface.

For a given bore size, for example 1mm, metal circular waveguides will have
the highest attenuation, and this attenuation decreases significantly for those mate-
rials exhibiting anomalous dispersion. Hollow dielectric fibers with polycrystalline
hexagonal GeO2 cladding can have loss below the 0.5 dB/m generally regarded as an
acceptable loss for the CO2 laser power delivery. High-power transmission hollow
fibers are suitable for applications in laser surgery, cutting, welding, and heat treat-
ment.

Liquid-Core Fibers

Liquid-filled hollow fibers contain liquid materials in the hollow cores. These fibers
are advantageous because there are no stress effects leading to birefringence, and
wall imperfections and scattering effects are negligible. The transmission losses in the
transparent wavelength regions depend on the liquids used. Liquid bromine has been
inserted into a Teflon tube with attenuation of 0.5 dB/m at 9.6 mm. For silica glass
tubes with diameter of 125 mm filled with bromobenzene, the transmission loss of
0.14 dB/km at 0.63 mm has been reported. Although these fibers may be useful for the
intrared region, fabrication and toxicity are still serious difficulties.

22.3.5 ZBLAN Fiber Based Up-Conversion Lasers

Frequency up-conversion is a term that is associated with a variety of processes
whereby the gain medium, a trivalent rare-earth ion, in a crystal or glass host,
absorbs two or more infrared pump photons to populate high-lying electronic states.
Visible light is then produced by one-photon transitions to low-lying electronic
levels. Up-conversion lasers appear to be attractive candidates for compact, efficient
visible laser sources for applications in optical data storage, full-color displays, color
printing, and biomedical instrumentation because of the relative simplicity (the gain
and frequency conversion material are one and the same) of these devices.

In 1990 several CW, room temperature up-conversion lasers in the ZBLAN
single-mode fibers were demonstrated. Many up-conversion lasers based on doped
optical fibers have produced output wavelengths ranging from the near infrared to
the ultraviolet, but the greatest advantage offered by the optical fiber geometry is
that room temperature operation is much easier to obtain than in bulk media. In
addition to their simplicity and compactness, up-conversion fiber lasers are efficient
and tunable. Slope efficiencies (pump power to output power conversion) of up to
50% have been obtained in the two-photon 550 nm Er3þ ZBLAN fiber laser and
32% in the three-photon pumped Tm3þ ZBLAN fluoride laser. Table 22.3 shows a
summary of up-conversion fiber lasers that demonstrated generation at room tem-
perature in rare-earth-doped fluorozirconate glass. The key to up-conversion laser
operation in single-mode optical fibers has been the use of low phonon energy
(h�! < 660 cm�1) fluorozirconate glasses as hosts for the rare-earth ions.
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Because the fluorozirconate host is a disordered medium, rare-earth-doped
fibers fabricated from these glasses exhibit absorption and emission profiles that
are broad compared with those characteristic of a crystalline host. The broad emis-
sion profile has a negative impact on the stimulated emission cross section but is
more than compensated for by the advantages of the fiber laser geometry, the high
pump intensities, and the maintenance of this intensity over the entire device length.
The broad emission linewidths permit tuning continuously of the wavelength of
generation over 10 nm.

22.3.6 Plastic Optical Fibers

Copper and glass have been the traditional solutions to data communication and
they are well suited to specific applications. However, for high-speed data transmis-
sion copper is unsuitable because of its susceptibility to interference. On the other
hand, the small diameter and fragility of glass elevates a cost of installation in fast-
growing local-area networks. Plastic optical fibers (POFs) provide an alternative and
fill some of the void between copper and glass.

POF shares many of the advantages and characteristics of glass fibers. The core
material of POF is normally made of acrylic resin, while the cladding is made of
fluorinated polymer. POF diameter is usually of around 1mm, which is many times
larger than a glass fiber and the light-transmission core section accounts for 96% of
the cross-sectional area. The first POF available had a step-index profile, in which
high-speed transmission was difficult to achieve. In 1995, Mitsubishi Rayon
announced the first graded-index plastic optical fiber (GIPOF) with transmission
speeds in excess of 1Gb/s. GIPOF in conjunction with high-speed 650 nm light-
emitting diode (LED) provides an ultimate solution for high-speed, short- or mod-
erate distance, low-cost, electromagnetic-interference-free data links demanded by
desktop local-area network specifications such as asynchronous transfer-mode-local
area network (ATM-LAN) and fast ethernet.

Because of its bandwidth capability, POF is a much faster medium than cop-
per, allowing for multitasking and multimedia applications that today’s copper sup-
ports at slower, less productive speed. The advantage of plastic optical fiber over
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Table 22.3 Rare-Earth-Doped ZBLAN Up-Conversion Fiber Lasers

Rare-earth

ions

Pump wavelength

(nm)

Laser wavelength

(nm)

Slope efficiency

(%)

Er

Tm

Ho

Nd

Pr

Pr/Yb

801

970

1064, 645

1112, 1116, 1123

1114–1137

643–652

582–596

1010, 835

780–885

544, 546

455

480, 650

480

547.6–594.5

381, 412

491, 520, 605, 635

491, 520, 605, 635

15

>40

1.5

32 (480 nm)

13

36

0.5 (412 nm)

12 (491nm)

3 (491 nm)

52 (635 nm)



glass fibers is in its low total-system cost. In multimode glass fiber, a precision
technology is needed to couple the light effectively into a 62.5 mm core. The larger
diameter of plastic fiber allows relaxation of connector tolerances without sacrificing
optical coupling efficiency, which simplifies the connector design. In addition, the
plastic fiber and large core diameter permit termination procedures other than pol-
ishing, which requires an expensive tool. For quick and easy termination of plastic
fiber, a handheld hot-plate terminator is available, so that even a worker with no
installation training can terminate and assemble links within a minute. Because POF
transmission losses are higher than for silica fiber, it is not suitable for long distance,
but is, however, suitable for home and office applications. Typical losses are of the
order of 140–160 dB/km.

Applications of POF

The largest application of POF has been in digital audio interfaces for short-distance
(5m), low-speed communication between amplifiers and built-in digital-to-analog
converter and digital audio appliances such as CD/MD/DAT players and BS tuners.
The noise-immune nature of POF contributes to creating sound of high quality and
low jitter.

Because of its flexibility and immunity to factory floor noise interference,
rugged and robust POF communication links have been successfully demonstrated
in tough industrial manufacturing environment.

Lightweight and durable POF networks could link the sophisticated systems
and sensors used in automobiles, which would increase performance and overall
efficiency. Also, POF could be used to incorporate video, minicomputers, naviga-
tional equipment, and fax machines into a vehicle. Another short-haul application
for POF is home networking, where appliances, entertainment and security systems,
and computers are linked to create a smart home.

22.3.7 Fiber Bundles

A fiber bundle is made up of many fibers that are assembled together. In a flexible
bundle the separate fibers have their ends fixed and the rest of their length unat-
tached to each other. On the other hand, in a rigid or fused bundle, the fibers are
melted together into a single rod. Fused bundles have lower cost than flexible bun-
dles, but because of their rigidity they are unsuitable for some applications.

The fiber cores of the bundle must occupy as much of the surface area as
possible, in order to minimize the losses in their claddings. Thus, bundled fibers
must have thin claddings to maximize the packing fraction, i.e., the portion of the
surface occupied by fiber cores. The optics of the fiber bundles is the same as that of
a single fiber. In a good approximation, it may be assumed that a single light ray may
represent the light entering the input end of the bundle. If a light ray enters the fiber
at an angle � within the acceptance angle of the fiber, it will emerge in a ring of angles
centered on �, as shown in Fig. 22.11. It should be pointed out that in fiber bundles
formed by step-index fibers with constant-diameter cores, the light entering the fiber
emerges at roughly the same angle it entered.

If light focusing (and magnification and demagnification of objects) is needed,
a tapered fiber may be used. Figure 22.12 shows a schematic representation of a
tapered fiber. If a ray entering a fiber at an angle �1 meets criteria for total internal
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reflection, it is confined in the core. However, it meets the core–cladding boundary at
different angles on each bounce so it emerges at a different angle �2,

d1 sin �1 ¼ d2 sin �2; ð22:16Þ

where d1 is the input core diameter and d2 is the output core diameter. The same
relationship holds for the fiber’s outer diameter as long as core and outer diameter
change by the same factor d2=d1.

Bundles of step-index fibers can be used for imaging. In this case, each fiber
core of the bundle will carry some segment of the image, so that the complete image
is formed by the different segments of the fibers of the bundle. As long as the fibers
are aligned in the same way on both ends, the bundle will form an image of an object.
Typical losses of fiber bundles are around 1 dB/m. Since fiber bundles are required in
short-distance applications, such a large loss is not a limitation.

The majority of bundles are made from step-index multimode fibers, which are
easy to make and have large numerical apertures. The higher NA of these fibers
(00.4) gives large acceptance angles, which in turn decreases coupling losses.

The simplest application of optical fibers of any type is light piping, i.e., trans-
mission of light from one place to another. A flexible bundle of optical fibers, for
example, can efficiently concentrate light in a small area or deliver light around
corners to places it could not otherwise reach. Application of fiber bundles includes
illumination in various medical instruments, including endoscopes, in which they
illuminate areas inside the body.

Fiber bundles also may be used for beam-shaping by changing the cross section
of the light beam. It is possible to array the fibers in one of the ends of the bundle to
form a circle or a line as shown in Fig. 22.13. This may be important if the fibers are
being used for illumination in medical instruments, where special arrangements of
the output fibers helps in the design and may result in more uniform illumination of
the field of view.
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Figure 22.11 The light rays emerge from the fiber in a diverging ring.

Figure 22.12 Light propagation through a tapered fiber.



The other application of optical fiber bundles is for beamsplitting or beam
combining. For example, a Y-guide is formed by two fiber bundles combined into
one bundle near a sample, while they are still separated at the other ends (Fig. 22.14).
If the NA of the individual fibers is large, the light-collection efficiency (the ratio
between the input and output energy) of the Y-guide is fairly high.

In image transmission, the fibers must maintain identical relative positions on
input and output faces. These are called ordered or coherent bundles. Images can be
viewed through coherent fiber bundles by placing the bundle’s input end close or
directly on the object, or by projecting an image onto the input end. Light from the
object or the image is transmitted along the bundle, and the input image is repro-
duced on the output face. Coherent fiber bundles are very valuable in probing
otherwise inaccessible areas such as inside machinery or inside the human body.

The easiest way to make coherent fiber bundles is to fuse fibers together
throughout the length of the bundle. However, such fiber bundles are not usable
in many situations because of the lack of flexibility. In flexible coherent bundles, the
fibers are bonding together at the two ends, so they maintain their relative alignment,
but they are free to move in the middle. Individual fibers, unlike fused bundles, are
more flexible. The imaging transmission bundles are the basic building blocks of
fiberscopes and endoscopes. The purpose of a coherent fiber bundle is to transmit the
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Figure 22.13 Beam-shaping by nonordered bundles of fibers.

Figure 22.14 Y-fiber bundles.



full range of an illuminated object. Normally both the coherent and the nonordered
bundles are incorporated into an endoscope. A nonordered bundle (Fig. 22.15)
illuminates the object inside the body. The imaging bundle must then transmit the
color image of the object with adequate resolution.

22.4 FIBER OPTIC COMPONENTS

22.4.1 Optical Fiber Couplers

The optical directional fiber coupler is a waveguide equivalent of a bulk beamsplitter
and is one of the basic in-line fiber components. When two (or more) fiber cores are
placed sufficiently close to each other, the evanescent tail of an optical field in one
fiber extends to a neighboring core and induces an electric polarization in the second
core. In its turn, the polarization generates an optical field in the second core, which
also couples back to the core of the first fiber. Thus, the modes of different fibers
become coupled trough their evanescent fields, resulting in a periodical power trans-
fer from one fiber to the other. If the propagation constants of the modes of the
individual fibers are equal, then this power exchange is complete. If their propaga-
tion constants are different, then exchange of power between the fibers is still per-
iodic, but incomplete.

The basic mechanism of a directional coupler can be understood on an example
of a coupler formed by a pair of identical symmetric single-mode waveguides. The
system of two coupled waveguides can be considered as a single waveguide with two
cores. Such a system supports two modes, the fundamental being the symmetric
mode and the first excited being the antisymmetric mode. These two modes have
different propagation constants. Light launched in one waveguide excites a linear
combination of the symmetric and antisymmetric modes (Fig. 22.16) in both cores.
The interference of two modes at the input is constructive in the first waveguide and
is destructive in the second waveguide, resulting in the absence of the field in the last
one. In the coupling region the two modes propagate at different velocities, acquiring
a phase difference. When the phase difference becomes , then the superposition of
these two modal fields will result in a destructive interference in the first waveguide
and constructive in the second. Further propagation over an equal length will result
in the phase difference of 2, leading to a power transfer back to the first waveguide.
Thus, the optical power exchanges periodically between the two waveguides. By an
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Figure 22.15 Illumination and image transmission through a nonordered and coherent

bundle of fibers.



appropriate choice of the coupler length, one can fabricate couplers with an arbitrary
splitting ratio.

A power transfer ratio depends on the core spacing and interaction length. If
P1ð0Þ is the power launched into fiber 1 at z ¼ 0, then the transmitted power P1ðzÞ
and the coupled power P2ðzÞ for two nonidentical single-mode fibers are given by

P1ðzÞ
P1ð0Þ

¼ 1� k2

	2
sin2 	z;

P2ðzÞ
p1ð0Þ

¼ k2

	2
sin2 	z;

ð22:17Þ

where

	2 ¼ k2 þ 1
4
ð��Þ ð22:18Þ

and �� ¼ �1 � �2 is the difference of propagation constants of the first and the
second fiber, respectively, called also as a phase mismatch; k is the coupling coeffi-
cient, which depends on the fiber parameters, the core separation, and the wave-
length of operation. If the two fibers are separated by a distance much greater than
the mode size, then there would be no interaction between the two fibers.

In the case of two identical fibers, the phase mismatch is equal to zero and the
power oscillates between two fibers. The coupling coefficient is given by

kðdÞ ¼ 
0
2n1

U2

a2V2

K0ðW d=aÞ
K2

1 ðWÞ ; ð22:19Þ

where 
0 is the free space wavelength, n1 and n2 are the core and cladding refractive
indices, respectively, a is the fiber core radius, d is the separation between the fiber
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Figure 22.16 Symmetric and antisymmetric modes.



axes, Kv is the modified Bessel function of order v, k0 ¼ 2=
0, ne ¼ �=k0, ne is the
mode effective

U ¼ k0aðn21 � n2eÞ1=2
W ¼ k0aðn2e � n22Þ1=2
V ¼ k0aðn21 � n22Þ1=2

ð22:20Þ

index. Knowing a coupling coefficient, one can easily calculate the corresponding
coupling length.

Parameters of a Coupler

The 2� 2 coupler is shown schematically in Fig. 22.17. For an input power Pi,
transmitted power Pt, coupled power Pc, and back-coupled power Pr we can deter-
mine the main characteristics of the coupler as follows:

Power-splitting ratio Rð%Þ ¼ Pt

Pc

� 100;

Excess loss Le ðdBÞ ¼ 10 log
Pi

Pc þ Pt

� �
;

Insertion loss Li ðdBÞ ¼ 10 log
Pi

Pt

� �
;

DirectivityD ðdBÞ ¼ 10 log
Pr

Pi

� �
:

ð22:21Þ

The popular power-splitting ratios between the output ports are 50% : 50%,
90% : 10%, 95 : 5%, and 99% : 1%; however, almost any value can be achieved
on a custom basis. Excess loss in a fiber coupler is the intrinsic loss of the coupler
when not all input power emerges from the operation ports of the device. Insertion
loss is the loss of power that results from inserting a component into a previously
continuous path. Couplers should have low excess loss and high directivity.
Commercially available couplers exhibit excess loss  0:1 dB, and directivity of bet-
ter than �55 dB.

A coupler is identified by the number of input and output ports. In the N �M
coupler, N is the number of input fibers and M is the number of output fibers. The
simplest couplers are fiber-optic splitters. These devices have at least three ports but
may have more than 32 for more complex devices. In a three-port device (tee cou-
pler), one fiber is called the common fiber, while the other two fibers are called input
or output ports. A common application is to inject light into the common port and
to split it into two independent output ports.
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Figure 22.17 A 2� 2 coupler.



Fabrication of Fiber Couplers

Practical single-mode fibers have a thick cladding to isolate the light propagating in
the core. Hence, to place two cores close to each other, it is necessary to remove a
major portion of the cladding. Two methods have been developed for the fabrication
process. The first one consists of polishing the cladding on one side of the core of
both fibers, and then bringing the cores in close proximity. A technique for polishing
the cladding away consists of fixing the fibers inside grooves in glass blocks, and
polishing the whole block to remove the cladding on one side of the core (Fig.
22.18(a)). The two blocks are then brought into contact (Fig. 22.18(b)). Usually
the space between the blocks is filled with an index-matching liquid. By laterally
moving one block with respect to the other, one can change the core separation,
resulting in changes of the coupling constant k. This, in turn, changes the power-
splitting ratio. Such couplers, called tunable, permit smooth tuning of the character-
istics of a coupler.

Polished couplers exhibit excellent directivity, better than �60 dB. Their split-
ting ratio can be continuously tuned. The insertion losses of such couplers are very
low (� 0:01 dB). One of the important characteristics of couplers is sensitivity to the
polarization state of the input light. The polished couplers have the advantage of
being low polarization sensitive. The variation in splitting ratio for arbitrary input
polarization states can be less than 0.5%. The performance of such couplers can be
affected by temperature variations, because of the temperature dependence of the
refractive index of the index-matching liquid.

Fabrication of polished fiber couplers is a time-consuming operation. Hence,
more popular couplers today are fused directional couplers. Such couplers are easier
to fabricate, and the fabrication process can be automated. In this type of coupler,
two or more fibers with removed protecting coatings are twisted together and melted
in a flame. After the pulling, the fiber cores approach each other, resulting in over-
lapping of the evanescent fields of the fiber modes. The coupling ratio can be mon-
itored online as the fibers are drawn. Fused couplers exhibit low excess loss (typically
less than 0.1 dB) and directivity better than �55 dB.

22.4.2 Wavelength-Division Multiplexers

A more complex coupler is the wavelength-division multiplexer. A WDM is a passive
device that allows two or more different wavelengths of light to be split into multiple
fibers or combined onto one fiber. Let us consider a directional coupler made of two
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Figure 22.18 Polished fiber coupler.



identical fibers with coupling coefficients k1 and k2 at wavelengths 
1 and 
2, respec-
tively. As was shown above, the optical power at each wavelength exchanges peri-
odically between the two waveguides. Since a coupling coefficient depends on
wavelength, the period of oscillations at each wavelength is different. By an appro-
priate choice of the coupler’s length L the two conditions

K1L ¼ m; k2L ¼ ðm� 1
2
Þ ð22:22Þ

can be satisfied simultaneously. In this case, if the total optical power at wavelength

1 and 
2 is launched in the port 1 (Fig. 22.19), then the WDM will sort radiation at

1 and 
2 between ports 3 and 4, respectively.

Two important characteristics of WDM device are cross-talk and channel
separation. Cross-talk refers to how well the demultiplexed channels are separated.
Optical radiation at each wavelength should appear only at its intended port and not
at any other output port. Channel separation describes how well a coupler can
distinguish wavelengths. Fused WDMs are more appropriate in applications
where the wavelengths must be widely separated, for example in commercially avail-
able 980/1550-nm single-mode WDMs. Such a WDM exhibits an excess loss of
0.3 dB, an insertion loss of 0.5 dB, and a cross-talk better than 20 dB.

The communication WDM often needs a channel separation of about 1 nm. A
sharp cutoff slope of the channel transmission characteristics is also required to
achieve interchannel isolation (cross-talk) of 30 dB. The interference-filter-based
WDMs are more suitable for this application. Figure 22.20 shows a multiplexer
and demultiplexer using graded-index rod lenses and interference filters. The filter
is designed so that it passes radiation at wavelength 
2 and reflects at 
1. The GRIN-
rod lens collects the transmitted and reflected radiation into fibers.

22.4.3 Switches

Fiber-optical switches selectively reroute optical signals between different fiber
paths. The performance of a switch is characterized by an insertion loss, cross-talk
(back reflection), and speed. Figure 22.21 shows a typical 1� 2 switch which can
have an output with two positions, ‘‘on’’ (port 2) and ‘‘off ’’ (port 3). For such a
switch, the insertion loss can be determined as

Insertion loss ¼ �10 log
P2

P1

; ð22:23Þ

the cross-talk determines the isolation between the input and the ‘‘off ’’ port:

Cross-talk ¼ �10 log
P3

P1

; ð22:24Þ

802 Starodumov

Figure 22.19 Wavelength-division multiplexer (WDM).



where P1;P2; and P3 are the input power, power at the output ‘‘on,’’ and power at
the output ‘‘off,’’ respectively. Typical switches have low insertion loss (0.5 dB), and
low cross-talk (55 dB). The speed of the switch depends on mechanisms involved in
switching. Switches can be classified as optomechanical, electronic, and photonic (or
optical) switches. Optomechanical switches include a moving optical element such as
a fiber, a prism, or a lens assembly in the path of a beam to deflect the light. The
speed of operation in this case is limited by millisecond speeds, so the optomecha-
nical switches are not suitable for fast switching.

Electronic switches use an electronic-to-optical conversion technique, which
can be fast enough for communication systems. However, the complexity of electro-
nic-to-optical conversion limits the applications of electronic switching.

Photonic switching uses an integrated optic technology to operate in high-
speed regimes. Electro-optic and acousto-optic phenomena are usually used to
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Figure 22.20 Interference-filter-based wavelength-division multiplexer (WDM).

Figure 22.21 Typical 1� 2 switch.



actuate the switching. The most advanced electro-optic waveguide technology uti-
lizes LiNbO3 crystals. This material provides necessary low insertion loss, high
switching speed, and large bandwidth.

The waveguide configurations based on LiNbO3 can be classified into direc-
tional couplers (Fig. 22.22(a)), Mach–Zehnder interferometer (Fig. 22.22(b)), and
intersecting waveguides (Fig. 22.22(c)). The directional coupler (Fig. 22.22(a)) con-
sists of a pair of optical waveguides placed in close proximity. Light propagating in
one waveguide gets coupled to the second waveguide through an evanescent field.
The coupling coefficient depends on refractive indices of the waveguides. By placing
electrodes over the waveguides and varying applied voltage, the coupling coefficient
can be efficiently tuned over a relatively large range. The length of the coupler is
chosen in such a way that when no voltage is applied the switch is in the cross state
(the input and output ports are from different waveguides). With applied voltage the
switch changes to the bar state when the input and output ports are on the same
waveguide. Splitting the electrode into two sections, one can tune both the cross and
the bar states.

The Mach–Zehnder interferometer (Fig. 22.22(b)) consists of a pair of 3 dB
couplers connected by two waveguides. With no voltage applied to the electrodes,
the optical paths of the two arms are equal, so there is no phase shift between light in
the waveguides. In this case the light entered in the port 1 goes out through the port
3. By applying a voltage, a  phase difference is introduced between light in two
arms, resulting in switching of optical power from the port 3 to the port 2. These

804 Starodumov

Figure 22.22 Photonic switching configurations: (a) directional couplers; (b) Mach–

Zehnder interferometer; and (c) intersecting waveguides.



switches are typically 15–20mm long and require a phase shift voltage of 3–5V. High
cross-talk levels of 8–20 dB is a disadvantage of these switches.

The switch based on intersecting waveguides (Fig. 22.22(c)) can be considered
either as a modal interferometer or as a zero-gap directional coupler. Such a switch
offers a topological flexibility, moderate voltage requirements, and simple electrode
configurations.

In truly optical switching a control optical pulse switches a signal pulse from
one channel to the other. A control pulse changes the conditions of propagation for
a signal pulse due to nonlinear optical effects. The response time of nonlinear optical
effects (for example, the Kerr and Raman effects) in fibers and waveguides is in the
femtosecond range, providing the highest switching speeds without the need for
electronics. The insertion loss can be very low.

22.4.4 Attenuator

An optical attenuator is a passive device placed into a transmission path to control
an optical loss. Both fixed and variable attenuators are available.

In fixed attenuators an absorbing layer is inserted between two fibers. GRIN-
rod or ball lenses are used to collimate the light between fibers. In variable attenua-
tors a wedged-shaped absorber element whose position can be adjusted accurately is
placed between the fibers. Figure 22.23 shows a variable attenuator with a wedge-
shape absorber (shadowed) and a wedge-shape transparent element. The latter is
needed to avoid beam displacement.

22.4.5 Polarization Fiber Components

Polarization is a property that arises because of the vector nature of the electro-
magnetic waves. Electromagnetic light waves are represented by two vectors: the
electric field strength E and the magnetic field strength H. Since the interaction of
light with material media is mainly through the electric field strength E, the state of
polarization of light is described by this field. Polarization refers to the behavior with
time of the electric field vector E, observed at a fixed point in space. Time-harmonic
transverse plane optical waves can be represented by

Eðr; tÞ ¼ xExðx; y; z; tÞ þ yEyðx; y; z; tÞ;
Exðx; y; z; tÞ ¼ Exðx; yÞ cosð!t� kzþ �xÞ;
Eyðx; y; z; tÞ ¼ Eyðx; yÞ cosð!t� kzþ �yÞ;

ð22:25Þ
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Figure 22.23 Attenuator.



where x and y are unit vectors along the transverse direction; Ex and Ey are the
amplitudes of the waves along the transverse directions; k ð¼ 2=
Þ is the propaga-
tion constant of the wave; ! ð¼ 2�Þ is the angular frequency of the wave; and 
 and
� are the wavelength and the frequency of the light, respectively. Phase shift �x � �y
between the orthogonal components defines the polarization state of light.

Whenever a light wave of arbitrary polarization propagates through optical
media, the optical properties of such media induce changes in its polarization state.
In isotropic media, the induced polarization in the medium is parallel to the electric
field of the optical wave. In many media, however, the induced polarization depends
on the magnitude and direction of the applied field. One of the most important
consequences of this anisotropy is the phenomenon of birefringence in which the
phase velocity of an optical wave propagating in the medium depends on the direc-
tion of polarization of its vector E (i.e., kx 6¼ ky). This anisotropy changes the state of
polarization of the wave after propagating in the medium. For example, an input
linear polarization state becomes elliptically polarized after propagating by some
distance through the medium.

The ideal optical fiber is perfectly cylindrical and invariant by translation along
the propagation axis, and hence isotropic. In particular, single-mode optical fibers
have been designed for supporting only one mode. Because no real fiber has a perfect
circular symmetry (due to fabrication defects or to environmental conditions), the
fundamental mode splits into two submodes, orthogonally polarized and propagat-
ing with different velocities. This is of little consequence in applications where the
fiber transmits signals in the form of optical power with pulse-code or intensity
modulation, as the devices detecting the transmitted light are not sensitive to its
polarization state. However, in modern applications such as the fiber-optic inter-
ferometric sensor and coherent communication systems, polarization of the light is
important. In these latter cases it is necessary to be able to control polarization of
light, and compensate the changes of the polarization along the fiber. There are
various fiber-optics components that are used to control the polarization. Here,
we focus on three types of fiber polarization components: namely, polarizers, polar-
ization splitters, and polarization controllers.

22.4.6 Polarizer

A polarizer is an optical device that transmits (or reflects) a state of polarization and
that suppresses any transmission (or reflection) of the orthogonal state of polariza-
tion. An ideal linear polarizer is a device that transforms any input state of polar-
ization of light to a linear output state. A linear polarizer can also be defined as a
device whose eigenpolarizations (for example, the two orthogonal polarization
modes in a single-mode fiber) are linear with one eigenvalue (one of the orthogonal
modes) equal to zero. In optical fibers, the main method used to eliminate one of the
two orthogonal modes is a loss process, in which one of the modes is coupled
towards the outer medium or providing larger radiation loss for one mode than
the other.

There are two general classes of fiber polarizers: invasive and noninvasive.
Invasive polarizers require polishing away of a small section of fiber to expose the
core. Such polarizers can be prepared directly in the system fiber and require no
splices. These polarizers utilize the differential attenuation of transversal electric
(TE) and transversal magnetic (TM) modes. (In optical fibers the fundamental
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mode is hybrid, i.e., both modes TE and TM exist and are orthogonally polarized.)
Figure 22.24 shows a scheme of such a polarizer where a dielectric layer is deposited
on the polished half-fiber, followed by the deposition of a metallic layer. The dielec-
tric layer matches the propagation of one polarization to the TM plasmon wave
(spatial oscillations of electric charge) at the metal interface, thus providing effective
coupling to the lossy mode. An alternative design is the so-called cutoff polarizer, in
which the fiber is polished all the way down to the core and a very thin film metal is
deposited on the polished fiber.

Another polarizer replaces the fiber cladding by a birefringent cladding with
refractive indices such that polarization-selective coupling from the fiber core occurs.
This method therefore uses the evanescent field of the guided waves that exists in the
cladding. If the refractive index of the birefringent cladding is greater than the
effective index of the guided wave for a given polarization, then this polarization
is coupled out of the fiber core. Also, if the refractive index of the birefringent
cladding as seen by the other guided polarization is lower than the effective index
of the light wave in the core, then this polarization remains guided. When both these
conditions are simultaneously achieved, one polarization radiates while the other
remains guided in the fiber. Figure 22.25 shows a device of this type.

Noninvasive fiber polarizers are made directly in the fiber. Such a polarizer can
be cut out of one fiber and spliced into devices or systems. Most noninvasive polar-
izers work by differential tunneling loss after high stress or geometrical birefringence
splits the propagation constants. Figure 22.26 shows a polarizer that uses a W-
structure index profile. In such a profile, the unfavored polarization is attenuated
when its effective index falls below the refractive index of the second cladding. A
noninvasive polarizer can also be made by bending a highly birefringent fiber. The
principle of operation is similar to that of the W-structure polarizer because bending
can be viewed as modifying the index profile. The two polarizations then suffer
differential attenuation.

22.4.7 Polarization Splitter

Polarization-sensitive couplers or polarization state splitters are usually realized
using two face-to-face half-couplers (Fig. 22.27). The coupling coefficient is adjusted
in such a way that light with one polarization state from the first half-coupler totally
propagates in the fiber of the second coupler, whereas the coupling of the light of the
other polarization state is not possible. In other words, there is a phase matching for
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Figure 22.24 Transverse section of a metal film polarizer: transversal electric (TE) and

transversal magnetic (TM) modes.



one state of polarization between the guided modes of the two fibers and there is not
for the other.

Polished directional couplers have been made with polarization-preserving
fiber to achieve both polarization-preserving and polarization-selective coupling.
In a polarization-preserving coupler, the propagation constants of the two polariza-
tions are matched across the coupler; in a polarization-selective coupler, only one of
the propagation constants is matched while the mismatch is as large as possible for
the other polarization.

22.4.8 Polarization Controller

A common problem is to transform the state of polarization in a fiber from an
arbitrary polarization state to linear polarization with a proper orientation for a
polarization-sensitive optical component. Whenever an initially isotropic fiber is
bent, with or without axial tension, it becomes linearly birefringent. This peculiarity
permits the production of phase shifters of an angle =2 or , i.e., the equivalent of a
quarter- and half-wave plates of crystalline optics. Polarization controllers are made
by bending ordinary nonbirefringent fiber in coils (Fig. 22.28). Rotating the coil is
equivalent to turning the bulk waveplate.

A section of birefringent fiber can also act as a high-order waveplate if both
polarization axes are equally excited. This property is commonly used to convert
linear polarization to elliptical polarization. The characteristics of this polarization
element are strongly dependent on temperature, pressure, and applied stresses. The
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Figure 22.25 Polarizer with oriented crystal.

Figure 22.26 Fiber polarizer with W-structure index profile.



addition of a polarizer converts such a variable waveplate into a variable in-line
attenuator. Variable waveplates separated by polarizers can also form a tunable
Lyot filter.

In an all-fiber system, the fiber itself defines the optical path and is subject to
perturbations that in conjunction with the intrinsic birefringence can affect the state
of polarization in complicated and unpredictable ways. The birefringence perturba-
tions can be originated by twisting (circular birefringence) and lateral stress (linear
birefringence). In applications such as Mach–Zehnder interferometers and fiber-
rotation sensors it is important that this birefringence is compensated.
Polarization controllers involving electromagnetically induced stress twisting have
been proposed for an accurate control of birefringence effects.

22.4.9 Fiber Bragg Gratings

Photosensitivity is a phenomenon specific to germanium-doped silica fibers in which
the exposition of the fiber core to blue-green or ultraviolet (UV) radiation induces
changes in the refractive index of the core. If the changes in the refractive index are
periodic, a grating is formed. The stronger changes occur when the fiber is exposed to
UV radiation close to the absorption peak at 240 nm of a germania-related defect.

Two widely used methods for grating fabrication are the holographic side
exposure and the phase-mask imprinting. In the holographic side exposure, two
beams from a UV laser interfere in the plane of the fiber (Fig. 22.29). The periodicity
of the interference pattern created in the plane of the fiber is determined by the angle
between the two beams and the wavelength of the UV laser. The regions of con-
structive interference cause an increase in the local refractive index of the photo-
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Figure 22.27 Linear polarization states splitter using two half-couplers.

Figure 22.28 Half- and quarter-wave phase shifter realized with fiber loops.



sensitive core, while dark regions remain unaffected, resulting in the formation of a
refractive Bragg grating.

In the phase-mask fabrication process, light from a UV source passes through
a diffractive phase mask that is in contact with the fiber (Fig. 22.30). The phase mask
has the periodicity of the desired grating. Light diffracted in orders ðþ1;�1Þ of the
mask interferes in the plane of the fiber, providing periodical modulation of the
refractive index. The phase-mask technique allows fabrication of fiber gratings
with variable spacing (chirped gratings). Fiber Bragg gratings can be routinely fab-
ricated to operate over a wide range of wavelengths, extending from the ultraviolet
to the infrared region.

22.4.10 Fiber Bragg Grating as a Reflection Filter

If a broadband radiation is coupled into the fiber, only an appropriate wavelength
matching the Bragg condition is reflected, permitting a reflection filter to be made.
The Bragg condition determines the wavelength of the reflected light 
Bragg, referred
as the Bragg wavelength, as
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Figure 22.29 Holographic side exposure method.

Figure 22.30 Fiber Bragg grating fabrication by the phase-mask method.




Bragg ¼ 2	neff ; ð22:26Þ
where neff is the refractive index of the mode and 	 is the period of the Bragg
grating. A strong reflection can be understood from the fact that at each change
in the refractive index, some light is reflected. If the reflections from points that are a
spatial period apart are in phase, then the various multiple reflections add in phase,
leading to a strong reflection. The peak reflectivity R of a grating may be calculated
as

R ¼ tanh2ð�LÞ; ð22:27Þ
where L is the length of the fiber grating, and the coupling coefficient � is defined by

� ¼ n�n�


Braggneff
; ð22:28Þ

where n is the cladding index, � is the overlap integral of the forward and backward
propagating modes over the perturbed index within the core, and �n is the magnitude
of the refractive index modulation.

The bandwidth of the reflection spectrum can be calculated as

�
 ¼ 
2Bragg
neffL

2 þ �2L2

 �1=2

: ð22:29Þ

The simplest application of fiber Bragg gratings is as reflection filters with
bandwidths of approximately 0.05–20 nm. Multiple reflection gratings may be writ-
ten into a piece of fiber to generate a number of reflections, each at different wave-
length. Fiber Bragg gratings may be used as narrow-band filters and reflectors to
stabilize semiconductor lasers or DBR lasers, narrow-band reflectors for fiber lasers,
simple broad- and narrow-band-stop reflection filters, radiation mode taps, band-
pass filters, fiber grating Fabry–Perot etalons, in dispersion compensation schemes,
narrow-linewidth dual-frequency laser sources, nonlinear pulsed sources, optical
soliton sources, and applications in sensor networks.

22.4.11 Fiber Bragg Grating-Based Multiplexer

Fiber Bragg gratings may also be used as multiplexers, demultiplexers, or as add/
drop elements. Figure 22.31 shows a simple scheme used for demultiplexing that
includes a fiber Bragg grating in conjunction with an optic circulator. The optical
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Figure 22.31 Demultiplexing of optical signals by using a fiber Bragg grating and an optic

circulator.



radiation at different wavelengths enters into the port 1 of the circulator, comes out
through the port 2, and passes through the fiber grating with the reflection peak
corresponding to the wavelength 
1. As a result, the optical signal at 
1 goes back to
the port 2 of the circulator and emerges at the port 3.

Figure 22.32 shows a scheme used for add and drop several wavelengths. It
includes three-port optic circulators with a series of electrically tunable fiber gratings
for each wavelength. The demultiplexer separates the dropped wavelengths into
individual channels and the multiplexer combines wavelengths into transmission
fiber line. In the normal state the gratings are transparent to all wavelengths. If a
grating is tuned to a specific wavelength, this signal is reflected back to port 2 of the
first circulator and exits from port 3. The signals at transmitted wavelengths enter
into port 1 of the second optic circulator and exit from port 2. To add or reinsert
wavelengths that were dropped, one injects these into port 3 of the second circulator.
They first come out of port 1 and travel toward the tuned gratings. Each grating of
the array reflects a specific wavelength back to port 1. The reflected signals exit from
port 2, where all channels are recovered.

22.4.12 Chirped Fiber Bragg Gratings

In a chirped grating the period of the modulation of the refractive index varies along
the grating length. This type of grating can be used for the compensation of the
dispersion, which occurs when an optical signal propagates through a fiber. The
dispersion associated with transmission through a Bragg grating may be used to
compensate for dispersion of the opposite sign. Figure 22.33 shows a schematic of
one of the methods used for dispersion compensation. In this method, the propaga-
tion delay through a grating is used to provide large dispersion compensation. The
chirped grating reflects each wavelength from a different point along its length. Thus,
the dispersion imparted by the grating depends on the grating length and is given by

� ¼ 2L

�g
; ð22:30Þ

where vg is the group velocity of the pulse incident on the grating. Therefore, a
grating with a linear wavelength chirp of �
 nm will have a dispersion of
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D ¼ �

�

ps=nm: ð22:31Þ

22.4.13 Fiber Connectors

A fiber connection is defined as the point where two optical fibers are joined together
to allow a light signal to propagate from one fiber to the next continuing fiber. Fiber
connection has three basic functions: precise alignment, fiber retention, and end
protection. To achieve low losses at the connection a precise alignment is required
because of extremely small size of the fiber cores. Fiber retention prevents any
misalignment or separation that may be caused by tension or manipulation of a
cable. Ends protection ensures the optical quality of fiber ends against environmental
factors such as humidity and dust.

Fiber connections generally fall into two categories: the permanent, which uses
a fiber splice; temporary (nonfixed), which uses a fiber-optic connector. Splices and
connectors are used in different places. Typical uses of splices include pigtail vault
splices, distribution breakouts, and reel ends. On the other hand, connectors are used
as interfaces between terminal on LANs, patch panels, and terminations into trans-
mitters and receivers. The quality of fiber connections whether splices or connectors
is estimated from the point of view of signal loss or attenuation.

Interconnection Losses

Interconnection loss is the loss of signal or light intensity as it travels through the
fiber joints. These losses are caused by several factors and can be classified into two
categories: extrinsic and intrinsic losses. Intrinsic losses are related to the mismatches
between fiber parameters and do not depend on applied technique as extrinsic losses
do. The differences include variations in core and/or outer diameter, NA mismatch,
and differences in the fiber’s index profile, core ellipticity, and core eccentricity (Fig.
22.34).

If the core diameter of the receiving fiber is smaller than that of the emitting
fiber, some light is lost in the cladding of the receiving fiber. The same is true for NA
mismatch. When connecting fibers having different NAs, testing will show a signifi-
cant loss when the receiving fiber’s NA is smaller than that of the emitting fiber,
because a fiber with a lower NA cannot capture all light coming out from a fiber with
a greater NA. If the core of either transmitting or receiving fiber is elliptic rather than
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circular, the collecting area of the receiving core is reduced, which results in less
captured light in the receiving fiber. Any core eccentricity variations in both fibers
also reduce the collecting area of the receiving fiber.

Extrinsic losses are due to alignment errors and poor fiber-end quality, and
depend on connection technique. Frequent causes of extrinsic losses include fiber-
end misalignment, poor quality of the fiber-end face, longitudinal separation of fiber
ends, contamination of fiber ends, and angular misalignment of bonded fibers.
Figure 22.35 shows typical extrinsic loss mechanisms. In addition, back reflection
caused by the abrupt change of refractive index at the end of each fiber also con-
tributes to connection loss.

Connectors

A connector is a demountable device used to connect and disconnect fibers. The
connector permits two fibers to be connected and disconnected hundred of times
easily. Connectors can be divided into two basic categories: expanded beam-coupled
(lens-coupled) and butt-coupled. Expanded beam coupling requires a lens system in
the connector to increase the size of the beam of light at one connector and to reduce
it at the other. In butt coupling, the connectors are mechanically positioned close
enough for the light to pass from one fiber to another.

Expanded beam connectors are frequently not used because of cost and per-
formance disadvantages: they never achieve the low losses of butt connectors. In
addition, such connectors use index-matching oil, which attracts dust and can affect
the characteristics of the connector. Thus, fabrication of the majority of expanded
beam connectors has been discontinued.

Although there are different types of butt connectors, the rigid ferrule designs
are the most popular butt connectors used today. Regardless of type and manufac-

814 Starodumov

Figure 22.34 Intrinsic losses mechanism.



turer, a rigid ferrule connector comprises five basic structural elements: ferrule,
retaining nut, backshell, boot, and cap (Fig. 22.36).

A ferrule is a rigid tube within a connector with a central hole that contains and
aligns a fiber. It can be made of different materials, such as ceramic, steel and plastic.
Ceramic ferrules offer the lowest insertion loss and the best repeatability, while steel
ferrules permit re-polishing and plastic ferrules have the advantages of low cost. In
addition, ferrules can have different shapes – straight thin cylinder, conical, or
stepped. The retaining nut provides the mechanism by which the connector is
secured to an adapter. It can be made of either steel or plastic. Retaining nuts are
threaded, bayonet, or push–pull to make a connection. The backshell is the portion
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of the connector in the back of the retaining nut for attaching the cable to the
connector. The attachment is made of metal or plastic and provides the principal
source of strength between the cable and connector. The boot is a plastic component
that slides over the cable and the backshell of the connector. It limits the radius of
curvature of the cable and relieves strains on the optical fiber. The cap is a plastic
cover that protects the end of a connector ferrule from dust contamination and
damage. In addition to these structural elements, some connectors have a crimp
ring or other mechanism for attaching the cable to the backshell.

It should be noted that most fiber-optical connectors do not use the male–
female configuration common to electronics connectors. Instead, a coupling device
called a mating (or alignment) sleeve is used to mate the connectors (Fig. 22.37).
There are two kinds of mating sleeves: the flouting style adapter to connect two
single-mode or multimode cables and the panel mount style adapter to mate fiber-
optical transmitters and receivers to the optical cable via a connector. Other coupling
devices are hybrid adapters that permit mating of different connector types.

One important criterion is connector performance. When selecting a connector,
the following characteristics should be analyzed: insertion loss (usually 0.1–0.6 dB
per connection); back reflection (�20 to �60 dB); repeatability of connection. In the
short life of fiber-optic systems, fiber-optic connectors have gone through four gen-
erations. Fiber-optic connectors developed in the first generation were mostly screw-
type (e.g., SMA 905 and SMA 906). Because of the lack of rotational alignment,
these connectors have a large amount of variation in the insertion loss as the con-
nector is unmated and remated.

Connectors of the second generation, such as bayonet type [e.g., straight tip
(ST)], biconic, and FC types, solved many problems associated with earlier connec-
tors, providing rotational alignment and greatly improving repeatability. ST is a
keyed and contact connector with low average losses (0.5 dB). ST design includes a
spring-loading twist-and-lock bayonet coupling that keeps the fiber and the ferrule
from rotating during multiple connections. However, this connector is not pull-proof.

The biconic connector is non-keyed, non-contact with rotational sensibility
and susceptible to vibrations. Originally it was developed as a multimode fiber con-
nector; later, it was the first successful single-mode connector used by the telecom-
munications industry. Actually, biconic connectors are suitable for single-mode and
multimode fibers.

In the FC connector, a new method called face contact (FC) has been intro-
duced to reduce backreflections. FC provides a flat-end face contact between joining
connectors with low average losses (0.4 dB). FC/PC is a new version of FC that
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includes a new polishing method called PC (physical contact). The PC uses a curved
polishing that dramatically reduces back reflections. PC style offers very good per-
formance for single-mode and multimode fiber connectors. They are commonly used
in analog systems (CATV) and high bit-rate systems. The majority of the connectors
of the second generation are threaded connectors. This is inconvenient and decreases
packing density.

Connectors of the third and fourth generation tend to be push–pull types. This
type of connector has shorter connection time and allows a significant increase in
packing density. Since packing density is becoming more important, fourth-genera-
tion connectors are focused on ease of use and reduced size. One of the new designs
is the LC connector. This connector offers an easy installation and high pack density
because of a reduced connector’s diameter.

Table 22.4 describes some of the widespread connector types.

Optical Fibers and Accessories 817

Table 22.4 Connector Types



22.4.14 Fiber Splicers

Splices are permanent connections between fibers. Splices are used in two situations:
mid-span splices, which connect two lengths of cable; and pigtails, at the ends of a
main cable, when rerouting of optical paths is not required or expected. Splices offer
lower attenuation, easier installation, lower backreflection, and greater physical
strength than connectors, and they are generally less expensive. In addition, splices
can fit inside cable, offer a better hermetic seal, and allow either individual or mass
splicing. There are two basic categories of splices: fusion splices and mechanical
splices.

Fusion Splicing

The most common type of splice is a fusion splice, formed by aligning and welding
the ends of two optical fibers together. Usually a fusion splicer includes an electric
arc welder to fuse the fibers, alignment mechanisms, and a camera or binocular
microscope to magnify the alignment by 50 times or more. The fusion parameters
can usually be changed to suit particular types of fibers, especially if it is necessary to
fuse two different fibers. After the splicing procedure, the previously removed plastic
coating is replaced with a protective plastic sleeve.

Fusion splicing provides the lowest connection loss, keeping losses as low as
0.05 dB. Also, fusion splices have lower consumable cost per connection than
mechanical splices. However, the capital investment in equipment to make fusion
splices is significantly higher than that for mechanical splices. Fusion splices must be
performed in a controlled environment, and should not be done in open spaces
because of dust and other contamination. In addition, fusion splices cannot be
made in an atmosphere that contains explosive gasses because of the electric arc
generated during this process.

Mechanical Splices

A mechanical splice is a small fiber connector that precisely aligns two fibers together
and then secures them by clamping them within a structure or by epoxying the fibers
together. Because tolerances are looser than in fusion splicing, this approach is used
more often with multimode fibers than single-mode fibers. Although losses tend to be
slightly higher than those of fusion splices and back reflections can be a concern,
mechanical splices are easier to perform and the requirements for the environment
are looser for mechanical splicing than those for fusion splicing. Generally, the
consumables for a mechanical splice results in a higher cost than consumables for
fusion splices; however, the equipment needed to produce a mechanical splice is
much less expensive than the equipment for fusion splices.

To prepare mechanical splices, the fibers are first stripped of all buffer material,
cleaned, and cleaved. Cleaving a fiber provides a uniform surface, which is perpen-
dicular to a fiber axis, needed for maximum light transmission to the other fiber.
Then the two ends of the fibers are inserted into a piece of hardware to obtain a good
alignment and to permanently hold the fibers’ ends. Many hardware devices have
been developed to serve these goals. The most popular devices can be divided in two
broad categories: capillary splices and V-groove splices.

Capillary splice is the simplest form of mechanical splicing. Two fiber ends are
inserted into a thin capillary tube made of glass or ceramic, as illustrated in
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Fig. 22.38. To decrease backreflections from the fiber ends, an index-matching gel is
typically used in this splice. The fibers are held together by compression or friction,
although epoxy may be used to permanently secure the fibers.

The V-groove splice is probably the oldest and still most popular method,
especially for multifiber splicing of ribbon cable. This type of splice is either crimped
or snapped to hold the fibers in place. Many types of V-groove splices have been
developed using different techniques. The simplest technique confines the two fibers
between two plates, each one containing a groove into which the fiber fits. This
approach centers the fiber core, regardless of variation in the outer diameter of
the fiber (Fig. 22.39(a)).

The popular V-groove technique uses three precision rods tightened by means
of an elastic band or shrinkable tube (Fig. 22.39(b)). The splice loss in this method
depends strongly on the fiber size (core and cladding diameter variations) and eccen-
tricity (the position of the core relative to the center of the fiber). V-groove techni-
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Figure 22.39 V-groove splice cross sections: (a) V-groove using two plates and (b) V-groove

using three rods.



ques properly carried out with multimode fibers result in splice losses of the order of
0.1 dB or less. Some of them can be applied to single-mode fibers as well.

The borderline connectors and splices is rather indefinite. One example is the
rotary mechanical splice (RMS), which is a disconnectable splice made by attaching
ferrules to the two fiber ends, joining the ferrules in a housing, and holding the
assembly together with a spring clip. The assembly can be disconnected by removing
the slip and is rated to suvive 250 mating cycles. Rotary mechanical splices provide a
simple and quick method of joining single-mode and multimode fibers with mean
losses less than 0.2 dB without the need for optical or electronic monitoring equip-
ment.

Splices, once completed, whether fusion or mechanical, are then placed into
splicing trays designed to accommodate the particular type of splice in use. On the
other hand, fiber-optic splices require protection from the environment, so they are
stored in a splice enclosure. These special boxes are available for indoors as well as
outdoor mounting. The outdoor type should be weatherproof, with a watertight seal.
Additionally, splices enclosures protect stripped fiber-optic cable and splices from
strain and help organize spliced fibers in multifiber cables.
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Isotropic Amorphous Optical Materials

LUIS EFRAIN REGALADO and DANIEL MALACARA
Centro de Investigaciones en Optica, León, Mexico

23.1 INTRODUCTION

The materials used in optical instruments and research can be characterized by many
physical and chemical properties [1, 6, 9, 18, 27, 31, 32]. The ideal material is
determined by the specific intended application. Optical materials can be crystalline
or amorphous. Crystalline materials can be isotropic or anisotropic, but amorphous
materials can only be isotropic. In this chapter some of the main isotropic amor-
phous materials used to manufacture optical elements are described.

The optical materials used to make optical elements such as lenses or prisms
have several important properties to be considered, most important of which are
described below.

23.1.1 Refractive Index and Chromatic Dispersion

The refractive index of a transparent isotropic material is defined as the ratio of the
speed of light in vacuum to the speed of light in the material. With this definition,
Snell’s law of refraction gives

n1 sin �1 ¼ n2 sin �2; ð23:1Þ

where n1 and n2 are the refractive indices in two transparent isotropic media sepa-
rated by an interface. The angles �1 and �2 are the angles between the light rays and
the normal to the interface at the point where the ray passes from one medium to the
other.

The refractive index for most materials can vary from values close to 1 to
values greater than 2, as shown in Table 23.1.
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The refractive index n of a given optical material is not the same for all colors:
the value is greater for smaller wavelengths. The refractive indices of optical materi-
als are measured at some specific wavelengths, as shown in Table 23.2.

The chromatic dispersion is determined by the principal dispersion ðnF � nCÞ.
Another quantity that determines the chromatic dispersion is the Abbe value for the
line d, given by

Vd ¼ nd � 1

nF � nC
: ð23:2Þ

The Abbe value expresses the way in which the refractive index changes with wave-
length. Optical materials are mainly determined by the value of these two constants.

Two materials with different Abbe numbers can be combined to form an
achromatic lens with the same focal length for red ðCÞ and for blue (F) light.
However, the focal length for yellow ðdÞ can be different. This is called the secondary
spectrum. The secondary spectrum produced by an optical material or glass is
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Table 23.1 Refractive Indices of Some

Materials

Material Refractive index

Air

Water

Acrylic

Crown glass

Flint glass

Diamond

1.0003

1.33

1.49

1.48–1.70

1.53–1.95

2.42

Table 23.2 Spectral Lines Used to Measure Refractive

Indices

Wavelength

(nm)

Spectral

line Color Element

1013.98

852.11

706.52

656.27

643.85

589.29

587.56

546.07

486.13

479.99

435.83

404.66

365.01

t

s

r

C

C 0

D

d

e

F

F 0

g

h

i

Infrared

Infrared

Red

Red

Red

Yellow

Yellow

Green

Blue

Blue

Blue

Violet

Ultraviolet

Hg

Cs

He

H

Cd

Na

He

Hg

H

Cd

Hg

Hg

Hg



determined by its partial dispersion. The partial dispersion Px;y for the lines x and y
is defined as

Px;y ¼
nx � ny

nF � nC
: ð23:3Þ

An achromatic lens for the lines C and F without secondary spectrum for
yellow light d can be made only if the two transparent materials being used have
different Abbe numbers Vd but the same partial dispersion number Pd;F .

23.1.2 Other Optical Characteristics

Spectral Transmission

The light transmittance through an optical material is affected by two factors, i.e.,
the Fresnel reflections at the interfaces and the transparency of the material. The
Fresnel reflections in a dielectric material like glass are a function of the angle of
incidence, the polarization state of the incident light beam, and the refractive index.
At normal incidence in air the irradiance reflectance �
 is a function of the wave-
length, thus, the irradiance transmittance TR due to the reflections at the two sur-
faces of the glass plate is

TR ¼ ½1� �2
�2: ð23:4Þ
The spectral transparency has large fluctuations among different materials and

is also a function of the wavelength. Any small impurities in a piece of glass with
concentrations as small as ten parts per billion can introduce noticeable absorptions
at some wavelengths. For example, the well-known green color of window glass is
due to ion oxides. The effect of impurities can be so high that the critical angle for
prism-shaped materials can vanish for nonoptical grade materials. High-index
glasses have a yellowish color due to absorptions in the violet and ultraviolet regions,
from the materials used to obtain the high index of refraction. At the spectral regions
where a material has absorption the refractive index is not a real number but a
complex number n� that can be written as

n� ¼ nð1� i�
Þ; ð23:5Þ
where �
 is the absorption index, which is related to an extinction coefficient �
 by

�
 ¼
4n



�
: ð23:6Þ

If �
 is the extinction coefficient for the material, the irradiance transmittance TA due
to absorption is

TA ¼ e��
t; ð23:7Þ
where t is the thickness of the sample. Figure 23.1 shows the typical variations of the
absorption index � with the wavelength for metals, semiconductors, and dielectrics.
[7] Dielectrics have two characteristic absorption bands. The absorption in the ultra-
violet band is due to the lattice structure vibrations. Metals are highly absorptive at
long wavelengths, due to their electrical conductivity, but they become transparent at
short wavelengths. The absorption band in semiconductors is around the visible
region.
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The total transmittance T
 of a sample with thickness t talking into considera-
tion surface reflections as well as internal absorption is

T
 ¼ TRTA ¼ ½1� �2
�2e��
t: ð23:8Þ

For dielectric materials far from an absorption region the refractive index n
 is
real and the irradiance reflectance � is given by

�
 ¼
n
 � 1

n
 þ 1

� �2
: ð23:9Þ

Optical Homogeneity

The degree to which the refractive index varies from point to point within a piece of
glass or a melt is a measure of its homogeneity. A typical maximum variation of the
refractive index in a melt is �1� 10�4, but more homogeneous pieces can be
obtained. For the case of optical glasses the homogeneity is specified in four different
groups, as shown in Table 23.3.
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Figure 23.1 Absorption index as a function of the wavelength for optical materials.

(Adapted from Kingery [7].)

Table 23.3 Homogeneity Groups

for Optical Glasses

Homogeneity

group

Maximum nd
variation

H1

H2

H2

H3

�2� 10�5

�5� 10�6

�2� 10�6

�1� 10�6



Stresses and Birefringence

The magnitude of the residual stresses within a piece of glass depends mainly on the
annealing of the glass. Internal stresses produce birefringence. The quality of the
optical instrument may depend very much on the residual birefringence.

Bubbles and Inclusions

Bubbles are not frequent in good-quality optical glass, but they are always present in
small quantities. When specifying bubbles and inclusions, the total percentage cov-
ered by them is estimated, counting only those � 0:05 mm. Bubble classes are defined
as in Table 23.4.

23.1.3 Physical and Chemical Characteristics

Thermal Expansion

The dimensions of most optical materials, increase with temperature. The thermal
expansion coefficient is also a function of temperature. If we plot the natural algo-
rithm of L=L0 vs. the temperature T (8C), we obtain a graph (Fig. 23.2) for glass
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Table 23.4 Bubble Classes for Optical Glasses

Bubble class Total area of bubbles (mm2)

B0

B1

B2

B3

0–0.029

0.03–0.10

0.11–0.25

0.26–0.50

Figure 23.2 Thermal expansion of glass BK7 as a function of the temperature.



BK7. Then, we can easily show that the slope of this curve at the temperature T is
equal to the thermal expansion coefficient �ðTÞ defined by

�ðTÞ ¼ 1

L

dL

dT
; ð23:10Þ

where L is the measured length at the temperature T and L0 is the length at 08C. For
the case of glass, typically the expansion coefficient is zero at 0K, increasing steadily
until near room temperature; then, the coefficient continues to increase almost lin-
early until about 700K, after which it increases very sharply.

It is customary to specify two values of the thermal expansion coefficient �ðTÞ
for two linear ranges of the plot of lnðL=L0Þ vs. T , where this coefficient remains
constant. One interval is from �30 to þ708C and the other from þ100 to þ3008C.
The transformation temperature Tg is that where the glass begins to transform from
a solid to a plastic state. The yield point AT is the temperature at which the thermal
expansion coefficient becomes zero.

Thermal expansion is nearly always very important, but for mirrors, especially
astronomical mirrors, it becomes very critical, because any thermal expansion
deforms the optical surface.

Hardness

The hardness of materials is important: hard materials are more difficult to scratch
but also more difficult to polish. The Moh scale, introduced more than 100 years ago
by Friedrich Mohs (1773–1839) is based on which materials scratch others and
ranges from 1 to 10, in unequal steps. Table 23.5 shows the materials used to define
this scale.

There are many other ways to define the hardness of a material, but another
common method used mainly for optical glasses is the Knoop scale, which is defined
by the dimensions of a small indentation produced with a diamond under a known
pressure. A rhomboidal diamond with vertex angles 172830 0 and 130800 0 with
respect to the vertical direction is used to produce a mark on the polished surface.
Then, the Knoop hardness HK is defined as

HK ¼ 1:45
FN

d2
¼ 14:23

FK

d2
; ð23:11Þ
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Table 23.5 Moh Hardness Scale

Hardness Material name Chemical compound

1

2

3

4

5

6

7

8

9

10

Talc

Gypsum

Calcite

Fluorite

Apatite

Felspar

Quartz

Topaz

Ruby

Diamond

Mg3Si4O10ðOHÞ2
CaSO4 � 2H2O

CaCO3

CaF2

Ca5ðPO4Þ3ðF;Cl;OHÞ
KAlSi3O8

SiO2

Al2SiO4ðOH;FÞ2
Al2O3

C



where FN is the force in newtons, FK is the weight (force) of 1 kg, and d is the length
of the longest diagonal of the indentation in millimeters. In glasses, a pressure of
1.9613 newtons (the weight of 200 g) is applied to the surface for 10 s. This number is
important because it indicates the sensitivity to scratches and is also directly related
to the grinding and lapping speeds.

The Rockwell hardness is defined by the depth of penetration under the load of
a steel ball or a diamond cone. This method is used for materials softer than glass,
such as metals or plastics. There are separate scales for ferrous metals, nonferrous
metals, and plastics. The most common Rockwell hardness scales are B and C for
metals: the B scale uses a ball, while the C scale uses a cone. The M and R scales are
employed for polymers: the M scale is for harder materials and the R scale is for the
softer ones.

Elasticity

Elasticity and rigidity are specified by Young’s modulus E, which is related to the
torsional rigidity modulus G and to the Poisson’s ratio �. Young’s modulus E in
glasses is measured from induced transverse vibrations of a glass rod at audio
frequencies. The torsional rigidity is calculated from torsional vibrations of the
rods. The relation between the rigidity modulus, the Poisson’s ratio, and Young’s
modulus is

� ¼ E

2G
� 1: ð23:12Þ

The Young’s modulus is directly related to the hardness of the material, as can be
seen in most glass manufacturer’s specifications. Young’s modulus is also important
when considering thermal and mechanical stresses.

Density

The density is the mass per unit volume. This quantity is quite important in many
applications: for example, in space instruments and in ophthalmic lenses. Crown
glasses are in general less dense than Flint glasses.

Chemical Properties

Resistance to stain and corrosion by acids or humidity is also important, mainly if
the optical glass is going to be used in adverse atmospheric conditions. The water
vapor present in the air can produce stains on the glass surface that cannot be wiped
out. An accelerated procedure is used to test these properties of optical materials by
exposing them to a water vapor saturated atmosphere. The temperature are alter-
nated between 458C and 558C in a cycle of about 1 hour. Then, a condensate forms
on the material during the heating phase and dries during the cooling phase. With
this test the climatic resistance of optical materials is classified in four different
classes:

. Class CR1: after 180 hours (1 week) there is no sign of deterioration of the
surface of the material.

. Class CR4: after less than 30 hours there are signs of scattering produced by
the atmospheric conditions.

. Classes CR2 and CR3 are intermediate to Classes CR1 and CR4.
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In a similar manner the resistances to acids and alkalis is tested and classified.

23.1.4 Cost

The cost of the optical material or glass to be used should also be considered when
selecting a material for an optical design. The range of prices is extremely large.
Glasses and plastics produced in large quantities are cheaper than specially produced
materials.

23.2 OPTICAL GLASSES

Glass is a material in a so-called glassy state, structurally similar to a liquid, that at
ambient temperature reacts to the impact of force with elastic deformations. Thus, it
can be considered as an extremely viscous liquid. It is always an inorganic compound
made from sand and sodium and calcium compounds. Plastics, on the other hand,
are organic. Glass can also be in natural forms, such as obsidian, found in volcanic
places. Obsidian was fashioned into knives, arrowheads, spearheads, and other
weapons in ancient times.

Glass is made by mixing silica sand (SiO2) with small quantities of some inor-
ganic materials such as soda and lime and some pieces of previously fabricated glass,
called glass cullet. This glass cullet acts as a fluxing agent that accelerates the melting
of the sand. With the silica and the soda, sodium silicate is formed, which is soluble in
water. The presence of the lime reduces the solubility of the sodium silicate. This
mixture is heated to about 15008C and then cooled at a well-controlled rate to prevent
crystallization. To release any internal stresses, the glass is cooled very slowly at the
proper speed in a process called annealing. [5] The quartz sands used to make glass
have to be quite free from iron (less than 0.001%), otherwise a greenish-colored glass
is obtained. The optical glass used for refracting optical elements such as lenses or
prisms has several important properties to be considered, the most important of
which is described here. The refractive indices vs. the wavelength for some optical
glasses are shown in Fig. 23.3. A diagram of the Abbe number Vd vs. the refractive
index nd , for Schott glasses is shown in Fig. 23.4. The glasses with a letter K at the end
of the glass type name are crown glasses and those with a letter F are flint glasses.

The chromatic variation in the refractive index of glasses for the visual spectral
range can be represented by several approximate expressions. The simplest and
probably oldest formula was proposed by Cauchy [3]:

n ¼ A0 þ
A1


2
þ A2


4
: ð23:13Þ

This formula is accurate to the third or fourth decimal place in some cases. An
empirically improved formula was proposed by Conrady [2] as

n ¼ A0 þ
A1


2
þ A2


3:5
ð23:14Þ

with an accuracy of one unit in the fifth decimal place. Better formulas have been
proposed by several authors: for example, by Herzberger.

From a series expansion of a theoretical dispersion formula, a more accurate
expression was used by Schott for many years. Recently, Schott has adopted for
glasses a more accurate expression called the Sellmeier formula [25], which is derived
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from the classical dispersion theory. This formula permits the interpolation of refrac-
tive indices in the entire range, from infrared to ultraviolet, with a precision better
than 1� 10�5, and it is written as

n2 ¼ B1

2


2 � C1

þ B2

2


2 � C2

þ B3

2


2 � C3

: ð23:15Þ

The coefficients are provided by the glass manufacturers, using the refractive indices’
values from several melt samples. The values of these coefficients for each type of
glass are supplied by the glass manufacturers.

The refractive index and the chromatic dispersion of optical materials are not
the only important factors to be considered when designing an optical instrument.
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Figure 23.3 Refractive indices as a function of the wavelength for some optical glasses.

Figure 23.4 Abbe number vs. refractive index chart for optical glasses.



There is such a large variety of optical glasses that to have a complete stock of
all types in any optical shop is impossible. Many lens designers have attempted to
reduce the list to the most important glasses, taking into consideration important
factors such as optical characteristics, availability, and price. Table 23.6 lists some of
the most commonly used optical glasses.

The location of these glasses in a diagram of the Abbe number Vd vs. the
refractive index nd , is given in Fig. 23.5. Figure 23.6 shows a plot of the partial
dispersion Pg;F vs. the Abbe number Vd for these glasses. Table 23.7 shows some
physical properties for the glasses in Table 23.6. The visible transmittance for some
optical glasses is shown in Fig. 23.7, which can be considered as an expanaion in the
visible region of Fig. 23.1.

Ophthalmic glasses are cheaper than optical glass, since their quality require-
ments are in general lower. They are produced to make spectacles. Table 23.8 lists
some of these glasses.

Finally, Table 23.9 lists some other amorphous isotropic materials used in
optical elements.

23.3 VITREOUS SILICA

Vitreous silica is a natural material formed by silicon dioxide (SiO2): it is noncrystal-
line and isotropic. It is also known as fused quartz or fused silica. This material can
be fabricated by fusion of natural crystalline quartz or synthesized by thermal
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Table 23.6 Refractive Indices for Some Optical Glasses

Schott name Vd nC nd nF ng

BaF4

BaFN10

BaK4

BaLF5

BK7

F2

K4

K5

KzFSN4

LaF2

LF5

LAK9

LLF1

PK51A

SF2

SF8

SF10

SF56A

SK6

SK16

SK18A

SSKN5

43.93

47.11

56.13

53.63

64.17

36.37

57.40

59.48

44.29

44.72

40.85

54.71

45.75

76.98

33.85

31.18

28.41

26.08

56.40

60.32

55.42

50.88

1.60153

1.66579

1.56576

1.54432

1.51432

1.61503

1.51620

1.51982

1.60924

1.73905

1.57723

1.68716

1.54457

1.52646

1.64210

1.68250

1.72085

1.77605

1.61046

1.61727

1.63505

1.65455

1.60562

1.67003

1.56883

1.54739

1.51680

1.62004

1.51895

1.52249

1.61340

1.74400

1.58144

1.69100

1.54814

1.52855

1.64769

1.68893

1.72825

1.78470

1.61375

1.62041

1.63854

1.65844

1.61532

1.68001

1.57590

1.55452

1.52238

1.63208

1.52524

1.52860

1.62309

1.75568

1.59146

1.69979

1.55655

1.53333

1.66123

1.70460

1.74648

1.80615

1.62134

1.62756

1.64657

1.66749

1.62318

1.68804

1.58146

1.56017

1.52668

1.64202

1.53017

1.53338

1.63085

1.76510

1.59964

1.70667

1.56333

1.53704

1.67249

1.71773

1.76198

1.82449

1.62731

1.63312

1.65290

1.67471



decomposition and oxidation of SiCl4. The optical properties of these types of vitr-
eous silica are similar but not identical.

The fusion of crystalline quartz can be made by direct fusion of large pieces.
This fused quartz has a low ultraviolet transmittance due to metallic impurities. On
the other hand, it has a high infrared transmittance due to its low content of hydro-
xyl. For this reason this material is frequently used for infrared windows.
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Figure 23.5 Abbe number vs. refractive index for some common optical glasses shown in

Table 23.6.

Figure 23.6 Abbe number vs. relative partial dispersion of some common optical glasses

shown in Table 23.6.
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Table 23.7 Physical Properties for Glasses in Table 23.6

Schott

name

Thermal expansion

coefficient � (1/8C)
Density �
(g/cm3)

Young’s modulus

E (N/mm2)

Knoop hardness

HK

BaF4

BaFN10

BaK4

BaLF5

BK7

F2

K4

K5

KzFSN4

LaF2

LF5

LaK9

LLF1

PK51A

SF2

SF8

SF10

SF56A

SK6

SK16

SK18A

SSKN5

7:9� 10�6

6:8� 10�6

7:0� 10�6

8:1� 10�6

7:1� 10�6

8:2� 10�6

7:3� 10�6

8:2� 10�6

4:5� 10�6

8:1� 10�6

9:1� 10�6

6:3� 10�6

8:1� 10�6

12:7� 10�6

8:4� 10�6

8:2� 10�6

7:5� 10�6

7:9� 10�6

6:2� 10�6

6:3� 10�6

6:4� 10�6

6:8� 10�6

3.50

3.76

3.10

2.95

2.51

3.61

2.63

2.59

3.20

4.34

3.22

3.51

2.94

3.96

3.86

4.22

4.28

4.92

3.60

3.58

3.64

3.71

66� 103

89� 103

77� 103

65� 103

81� 103

58� 103

71� 103

71� 103

60� 103

87� 103

59� 103

110� 103

60� 103

73� 103

55� 103

56� 103

64� 103

58� 103

79� 103

89� 103

88� 103

88� 103

400

480

470

440

520

370

460

450

380

480

410

580

390

340

350

340

370

330

450

490

470

470

Figure 23.7 Internal transmittance as a function of the wavelength for some optical glasses

(without the surface reflections), with a thickness of 5mm.



If the fusion is made with powdered quartz in the presence of chlorine gases,
the transmission in the ultraviolet region is improved, but it is worsened in the
infrared. The reason is that the water content increases.

If the hydrolysis of an organosilicon compound in the vapor phase is per-
formed, a synthetic high-purity fused silica free of metals is obtained. It has a
high transmission in the ultraviolet but the infrared transmission is low due to its
high water content. Some manufacturers have improved their processes to reduce the
water, and obtained good transparency in the ultraviolet as well as in the infrared.
These good transmission properties make this fused quartz ideal for infrared and
ultraviolet windows and for the manufacturing of optical fibers.

The transmittance of three different types of fused quartz are shown in Fig.
23.8. Table 23.10 shows the refractive indices for this material. The thermal expan-
sion of fused silica is 0:55� 10�6=8C in the range from 0 to 3008C. Below 08C this
coefficient decreases, until it reaches a minimum near �1208C.

23.4 MIRROR MATERIALS

Glasses or other materials used to make metal [26] or dielectric coated mirrors do not
need to be transparent. Instead, the prime useful characteristic is thermal stability.
The thermal expansion coefficient for mirrors has to be lower than for lenses for two
reasons: first, a change in the figure of a surface affects the refracted or reflected
wavefront four times more in reflecting surfaces than in refracting surfaces; secondly,
mirrors are frequently larger than lenses, especially in astronomical instrumentation.
Some of the materials used for mirrors are shown in Table 23.11 with the thermal
expansion coefficients plotted in Fig. 23.9. They are described below.
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Table 23.8 Refractive Indices for Some Ophthalmic Glasses

Glass type Vd nC nd nF

Density

(g/cm3)

Crown

Compatible flint

Compatible flint

Compatible flint

Compatible flint

Soft barium flint

Soft barium flint

Low-density flint

58.6

42.3

38.4

36.2

32.4

33.2

29.6

31.0

1.5204

1.5634

1.5926

1.6218

1.6656

1.6476

1.6944

1.6944

1.5231

1.5674

1.5972

1.6269

1.6716

1.6533

1.7013

1.7010

1.5293

1.5768

1.6082

1.6391

1.6863

1.6672

1.7182

1.7171

2.54

3.12

3.40

3.63

3.86

3.91

4.07

2.99

Table 23.9 Refractive Indices for Some Optical Isotropic Materials

Material Vd nC nd nF ng

Fused rock crystal

Synthetic fused silica

Fluorite

67.6

67.7

95.3

1.45646

1.45637

1.43249

1.45857

1.45847

1.43384

1.46324

1.46314

1.43704

1.46679

1.46669

1.43950



23.4.1 Low-Expansion Glasses

The most well known of these glasses are Pyrex (produced by Corning Glass Works),
Duran 50 (Schott), and E-6 (Ohara). These borosilicate glasses in which B2O3

replaces the CaO and MgO of soda-lime window glass. The softening temperature
is higher in these glasses than in normal window glass.

23.4.2 Very Low Expansion Glasses

The thermal expansion of fused silica can be lowered even more by shifting the zero
expansion point to 300K by adding 7% of titania-silica glass. This glass is a syn-
thetic amorphous silica known as Corning ULETM titanium silicate.

23.4.3 Glass Ceramics

Glass ceramic materials contain both crystalline and glass phases. They are produced
as lithia-alumina glasses where a microcrystalline structure is produced with a special
thermal procedure. As opposed to ceramic materials, glass ceramics are nonporous.
In general they are not transparent, although sometimes they could be, depending on
the size of the crystals, which is about 0.05 mm. Frequently they are turbid with an
amber color. The Pyroceram technology developed by Corning led to the production
of a glass ceramic with almost zero thermal expansion coefficient, which is manu-
factured by several companies, such as CER-VIT (produced by Owens-Illinois),
Zerodur (Schott), and Cryston-Zero (Hoya).
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Table 23.10 Refractive Indices for Fused Quartz

Material Vd nC nd nF ng

Fused silica Corning 7940 67.8 1.4564 1.4584 1.4631 1.4667

Figure 23.8 Ultraviolet and infrared transmittances for three types of vitreous silica, includ-

ing surface reflections, with a thickness of 10mm.



23.4.4 Beryllium

Beryllium is a very light and elastic metal. Aluminum, copper, or most other metal
mirrors are fabricated by casting the metal. However, for beryllium this is not
possible because cast grains are very large and brittle with little intergranular
strength. The method of producing beryllium mirrors is by direct compaction of
powder.

Hot isostatic pressing has been used in one single step for many years since the
late 1960s [21], using pressures up to 50,000 psi to obtain a green compact blank. A
multistep cold isostatic pressing in a rubber container followed by vacuum sintering
or hot isostatic pressing has also been recently used [22].

Beryllium is highly toxic in powder form. It can be machined only in specially
equipped shops using extreme precautions when grinding and polishing. In many
respects – mainly its specific weight, elasticity, and low thermal distortion – this is
the ideal material for space mirrors.

23.4.5 Aluminum

Aluminum is a very light metal than can also be easily polished and machined. Many
mirrors are being made with aluminum for many applications. Even large astronom-
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Table 23.11 Physical Properties for Some Mirror Materials

Material

Thermal expansion

coefficient � (1/8C)
Density �
(g/cm3)

Young’s modulus E

(N/cm2)

Pyrex

ULETM

Fused quartz

Zerodur

Beryllium

Aluminum

2:5� 10�6

�0:03� 10�6

0:55� 10�6

�0:05� 10�6

12:0� 10�6

24:0� 10�6

2.16

2.21

2.19

2.53

1.85

2.70

5:4� 106

6:7� 106

7:2� 106

9:1� 106

28:7� 106

6:8� 106

Figure 23.9 Thermal expansion for fused silica, ULETM titanium silicate, and Pyrex.



ical mirrors for telescopes that do not need a high image resolution have been made
with this material.

23.5 OPTICAL PLASTICS

There are a large variety of plastics, with many different properties, used to make
optical components [10, 19, 30]. Plastics have been greatly improved recently, mainly
because of the high-volume production of plastics for CD-roms [23] and spectacle
lenses [8, 28]. The most common plastics used in optics, whose properties are given in
Table 23.12 are:

(a) Methyl methacrylate, also called acrylic, is the most desirable of all plas-
tics. It is the common equivalent to crown glass. It is relatively inexpensive
and can be easily molded and polished. It also has many other advantages
such as transmission, resistance to scratch, and moisture absorption.

(b) Polystyrene or styrene is the most common equivalent to flint glass. It is
the cheapest plastic and the easiest to mold, but it is difficult to polish. It
is frequently used for color-correction lenses.

(c) Polycarbonate has a very high impact strength as well as high temperature
stability and very low moisture absorption. However, it is expensive,
difficult to polish, and scratches quite easily.

(d) Methyl methacrylate or allyldiglycol carbonate commonly known as CR-
39 is a thermosetting material that should be casted and cured with highly
controlled conditions. It can be easily machined, molded, and polished. It
is as transparent as acrylic. Its most frequent use is in ophthalmic lenses.

Some of the most important physical characteristics of these plastics are given
in Table 23.13 and their spectral transmission is shown in Fig. 23.10. (See also Figs
23.7 and 23.8.)
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Table 23.12 Refractive Indices for Some Optical Plastics

Material Vd nC nd nF

Acrylic

Polystyrene

Polycarbonate

CR-39

57.2

30.8

30.1

60.0

1.488

1.584

1.577

1.495

1.491

1.590

1.583

1.498

1.497

1.604

1.597

1.504

Table 23.13 Physical Characteristics for Some Optical Plastics

Material

Thermal expansion

coefficient � (1/8C)
Density �
(g/cm3)

Rockwell

hardness

Acrylic

Polystyrene

Polycarbonate

CR-39

65� 10�6

80� 10�6

70� 10�6

100� 10�6

1.19

1.06

1.20

1.09

M97

M90

M70

M75



Plastic lenses [4] are very cheap compared with glass lenses if made in large
quantities. However, they cannot be used in hostile environments, where the lens is
exposed to chemicals, high temperatures, or abrasion. Their use in high-precision
optics is limited because of their physical characteristics. There is a lack of plastics
with high refractive indices; their homogeneity is not as high as in optical glasses and
this is a field needing intense investigation. Plastics have a low specific gravity and
their thermal expansion is high.

23.6 INFRARED AND ULTRAVIOLET MATERIALS

Most glasses are opaque to infrared and ultraviolet radiation. If a lens or optical
element has to be transparent at these wavelengths special materials have to be
selected.

The infrared spectral regions from red light to about 4 mm are quite impor-
tant. The research on materials that are transparent at these regions is making
them more available and better every day [11–17, 20]. Infrared materials are in
the form of glasses, semiconductors, crystals, metals, and many others. In the
case of optical glasses, the absorption bands due to absorbed water vapor need to
be avoided. Common optical glasses transmit until about 2.0 mm and their
absorption becomes very high in the water band region 2.7–3.0 mm. Special man-
ufacturing techniques are used to reduce the amount of water in glasses.
Unfortunately, these processes also introduce some scattering. An example is
the fused quartz manufactured with the name of Vycor1. Table 23.14 shows
the properties of some of the many available infrared materials in the form of
glasses or hot-pressed polycrystalline compacts (crystals and semiconductors are
excluded).

The ultraviolet region also has many interesting applications. Pellicori [24] has
described the transmittances of some optical materials for use in the ultraviolet
region, between 190 and 340 nm. In general, materials for the ultraviolet region
are more rare and expensive than those for the infrared. Table 23.15 shows some
of these materials: the first three are highly soluble in water.
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Figure 23.10 Ultraviolet and infrared transmittances of some plastics, including surface

reflections, with a thickness of 3.22mm.



Figure 23.11 shows the infrared transmittances for some other infrared
materials.

23.7 OPTICAL COATINGS AND OTHER AMORPHOUS MATERIALS

In thin-film work, the properties of materials are also very important. Most of the
materials used in the production of optical coatings, single layer or multilayers, i.e.,
mirrors, antireflective, broadband and narrow filters, edge filters, polarizers, etc.,
must be performed with a knowledge of the refractive index and the region of
transparency, hardness or resistance to abrasion, magnitude of any built-in stresses,
solubility, resistance to attack by the atmosphere, compatibility with other materials,
toxicity, price, and availability. Also, sometimes, the electrical conductivity or dielec-
tric constant or emissivity for selective materials used in solar absorption (only from
elements of groups IV, V, and VI of the periodic system) have to be known.

Most of the techniques used to prepare thin films yield amorphous or poly-
crystalline materials in a two-dimensional region, because the thickness is always of
the order of a wavelength. The most common materials used in optical coatings are
metals, oxides, fluorides, and sulfides. Their optical properties may vary because the
method of evaporation produces different density packing in thin films than in bulk
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Table 23.14 Characteristics of Some Infrared

Materials

Material nd

Wavelength cutoff

(mm)

Vycor1

Germanate

CaAl2O4

As2S3
Irtran 1 MgF2

Irtran 2 ZnS

Irtran 3 CaF2

Irtran 5 MgO

1.457

1.660

1.669

2.650

1.389

2.370

1.434

1.737

3.5

5.7

5.8

12.5

7.5

14.0

10.0

8.0

Table 23.15 Characteristics of Some Ultraviolet Materials

Material nd Vd Wavelength cutoff

(nm)

Sodium chloride

Potassium bromide

Potassium iodide

Lithium fluoride

Calcium fluoride

Fused quartz

Barium fluoride

1.544

1.560

1.667

1.392

1.434

1.458

1.474

42.8

33.4

23.2

99.3

95.1

67.8

81.8

250

210

250

110

120

220

150



materials. The dielectric function may be studied in situ or ex situ by analyzing the
spectral transmittance and reflectance and by weighing the deposited materials.

Sol–gel glasses are of high purity, but at the present stage of development there
are only applications in large thin-film coatings as heat or IR reflecting coatings on
windows or coatings on rear-view to reduce glare and reflections.

Inhomogeneous films or rugates [29] are a kind of multilayer film with sinu-
soidal or other functional refractive index profiles avoiding the presence of very
abrupt interfaces. They act as a single layer with the same properties of some multi-
layers and show no harmonic peaks in the case of optical filters. These materials are
mainly isotropic and amorphous.

Only deposits made on crystal substrates, at high substrate temperatures, with
special techniques such as Knudsen cells or molecular or liquid beam epitaxy (MBE,
LBE), produce crystalline films epitaxially, but these are extreme conditions searched
for very specific applications such as semiconductor devices, and even the lattice
parameters of the materials available are very restrictive.

23.8 CONCLUSIONS

The field of optical materials is a very active one and every day we have new
materials that permit us to make much better optical instruments.
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Anisotropic Materials

DENNIS H. GOLDSTEIN
Air Force Research Laboratory, Eglin AFB, Florida

24.1 INTRODUCTION

In this chapter, we discuss the interaction of light with anisotropic materials. An
anisotropic material has properties (thermal, mechanical, electrical, optical, etc.) that
are different in different directions. Most materials are anisotropic. This anisotropy
results from the structure of the material, and our knowledge of the nature of that
structure can help us to understand the optical properties.

The interaction of light with matter is a process that is dependent upon the
geometrical relationships of the light and matter. By its very nature, light is asym-
metrical. Considering light as a wave, it is a transverse oscillation in which the
oscillating quantity, the electric field vector, is oriented in a particular direction in
space perpendicular to the propagation direction. Light which crosses the boundary
between two materials, isotropic or not, at any angle other than normal to the
boundary, will produce an anisotropic result. The Fresnel equations illustrate this.
Once light has crossed a boundary separating materials, it experiences the bulk
properties of the material through which it is currently traversing, and we are con-
cerned with the effects of those bulk properties on the light.

The study of anisotropy in materials is important to understanding the results
of the interaction of light with matter. For example, the principle of operation of
many solid state and liquid crystal spatial light modulators is based on polarization
modulation [5]. Modulation is accomplished by altering the refractive index of the
modulator material, usually with an electric or magnetic field. Crystalline materials
are an especially important class of modulator materials because of their use in
electro-optics and in ruggedized or space-worthy systems, and also because of the
potential for putting optical systems on integrated circuit chips.

We briefly review the electromagnetics necessary to the understanding of ani-
sotropic materials, and show the source and form of the electro-optic tensor. We

847



discuss crystalline materials and their properties, and introduce the concept of the
index ellipsoid. We show how the application of electric and magnetic fields alters
the properties of materials, and give examples. Liquid crystals are also discussed.

A brief summary of electro-optic modulation modes using anisotropic materi-
als concludes the chapter.

24.2 REVIEW OF CONCEPTS FROM ELECTROMAGNETISM

Recall from electromagnetics (see, for example, [10, 19, 26]) that the electric displace-
ment vector ~DD is given by (MKS units):

~DD ¼ "~EE; ð24:1Þ
where " is the permittivity and " ¼ "0ð1þ �Þ, where "0 is the permittivity of free
space, � is the electric susceptibility, ð1þ �Þ is the dielectric constant, and n ¼ ð1þ
�Þ1=2 is the index of refraction. The electric displacement is also given by

~DD ¼ "0 ~EEþ ~PP; ð24:2Þ
but

~DD ¼ "0ð1þ �Þ~EE ¼ "0 ~EEþ "0�~EE; ð24:3Þ
so ~PP, the polarization (also called the electric polarization or polarization density) is
~PP ¼ "0�~EE.

The polarization arises because of the interaction of the electric field with
bound charges. The electric field can produce a polarization by inducing a dipole
moment, i.e., separating charges in a material, or by orienting molecules that possess
a permanent dipole moment.

For an isotropic, linear medium,

~PP ¼ "0�~EE ð24:4Þ
and � is a scalar; but note that in

~DD ¼ "0 ~EEþ ~PP ð24:5Þ
the vectors do not have to be in the same direction and, in fact, in anisotropic media,
~EE and ~PP are not in the same direction (and so ~DDand ~EE are not in the same direction).
Note that � does not have to be a scalar nor is ~PP necessarily related linearly to ~EE. If
the medium is linear but anisotropic,

Pi ¼
X

j

"0�ijEj; ð24:6Þ

where �ij is the susceptibility tensor, i.e.,

P1

P2

P3

0

@

1

A ¼ "0

�11 �12 �13
�21 �22 �23
�31 �32 �33

0

@

1

A
E1

E2

E3

0

@

1

A ð24:7Þ

and
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D1

D2

D3

0

B@

1

CA ¼ "0

1 0 0

0 1 0

0 0 1

0

B@

1

CA

E1

E2

E3

0

B@

1

CAþ "0
�11 �12 �13

�21 �22 �23

�31 �32 �33

0

B@

1

CA

E1

E2

E3

0

B@

1

CA

¼ "0

1þ �11 �12 �13

�21 1þ �22 �23

�31 �32 1þ �33

0

B@

1

CA

E1

E2

E3

0

B@

1

CA;

ð24:8Þ

where the vector indices 1, 2, 3 represent the three Cartesian directions.
This can be written

Di ¼ "ijEj; ð24:9Þ

where

"ij ¼ "0ð1þ �ijÞ ð24:10Þ

is variously called the dielectric tensor, or permittivity tensor, or dielectric permit-
tivity tensor. Equations (24.9) and (24.10) use the Einstein summation convention,
i.e., whenever repeated indices occur, it is understood that the expression is to be
summed over the repeated indices. This notation is used throughout this chapter.

The dielectric tensor is symmetric and real (assuming the medium is homoge-
neous and nonabsorbing), so that

"ij ¼ "ji; ð24:11Þ

and there are at most six independent elements.
Note that for an isotropic medium with nonlinearity (which occurs with higher

field strengths)

P ¼ "0ð�Eþ �2E2 þ �3E3 þ � � �Þ ð24:12Þ

where �2, �3, etc., are the nonlinear terms.
Returning to the discussion of a linear, homogeneous, anisotropic medium, the

susceptibility tensor

�11 �12 �13
�21 �22 �23
�31 �32 �33

0

@

1

A ¼
�11 �12 �13
�12 �22 �23
�13 �23 �33

0

@

1

A ð24:13Þ

is symmetric so that we can always find a set of coordinate axes (that is, we can
always rotate to an orientation) such that the off-diagonal terms are zero and the
tensor is diagonalized thus

� 0
11 0 0
0 � 0

22 0
0 0 � 0

33

0

@

1

A: ð24:14Þ

The coordinate axes for which this is true are called the principal axes, and these � 0

are the principal susceptibilities. The principal dielectric constants are given by
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1 0 0

0 1 0

0 0 1

0

B@

1

CAþ
�11 0 0

0 �22 0

0 0 �33

0

B@

1

CA ¼
1þ �11 0 0

0 1þ �22 0

0 0 1þ �33

0

B@

1

CA

¼
n
2
1 0 0

0 n
2
2 0

0 0 n
2
3

0

B@

1

CA

ð24:15Þ

where n1, n2, and n3 are the principal indices of refraction.

24.3 CRYSTALLINE MATERIALS AND THEIR PROPERTIES

As we have seen above, the relationship between the displacement and the field is

Di ¼ "ijEj; ð24:16Þ
where "ij is the dielectric tensor. The impermeability tensor �ij is defined as

�ij ¼ "0ð"�1Þij; ð24:17Þ
where "�1 is the inverse of the dielectric tensor. The principal indices of refraction,
n1, n2, and n3 are related to the principal values of the impermeability tensor and the
principal values of the permittivity tensor by

1

n21
¼ �ii ¼

"0
"ii

;
1

n22
¼ �jj ¼

"0
"jj

;
1

n23
¼ �kk ¼

"0
"kk

: ð24:18Þ

The properties of the crystal change in response to the force from an externally
applied electric field. In particular, the impermeability tensor is a function of the
field. The electro-optic coefficients are defined by the expression for the expansion, in
terms of the field, of the change of the impermeability tensor from zero field value,
i.e.,

�ijðEÞ � �ijð0Þ � ��ij ¼ rijkEk þ sijklEkEl þOðEnÞ; n ¼ 3; 4; . . . ; ð24:19Þ
where �ij is a function of the applied field E, rijk are the linear, or Pockels, electro-
optic tensor coefficients, and the sijkl are the quadratic, or Kerr, electro-optic tensor
coefficients. Terms higher than quadratic are typically small and are neglected.

Note that the values of the indices and the electro-optic tensor coefficients are
dependent on the frequency of light passing through the material. Any given indices
are specified at a particular frequency (or wavelength). Also note that the external
applied fields may be static or alternating fields, and the values of the tensor coeffi-
cients are weakly dependent on the frequency of the applied fields. Generally, low-
and/or high-frequency values of the tensor coefficients are given in tables. Low
frequencies are those below the fundamental frequencies of the acoustic resonances
of the sample, and high frequencies are those above. Operation of an electro-optic
modulator subject to low (high) frequencies is sometimes described as being
unclamped (clamped).

The linear electro-optic tensor is of third rank with 33 elements and the quad-
ratic electro-optic tensor is of fourth rank with 34 elements; however, symmetry
reduces the number of independent elements. If the medium is lossless and optically
inactive:
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"ij is a symmetric tensor, i.e., "ij ¼ "ji,
�ij is a symmetric tensor, i.e., �ij ¼ �ji,
rijk has symmetry where coefficients with permuted first and second indices are

equal, i.e., rijk ¼ rjik, and
sijkl has symmetry where coefficients with permuted first and second indices are

equal and coefficients with permuted third and fourth coefficients are equal,
i.e., sijkl ¼ sjikl and sijkl ¼ sijlk.

Symmetry reduces the number of linear coefficients from 27 to 18, and reduces
the number of quadratic coefficients from 81 to 36. The linear electro-optic coeffi-
cients are assigned two indices so that they are rlk where l runs from 1 to 6 and k runs
from 1 to 3. The quadratic coefficients are assigned two indices so that they become
sij where i runs from 1 to 6 and j runs from 1 to 6. For a given crystal symmetry class,
the form of the electro-optic tensor is known.

24.4 CRYSTALS

Crystals are characterized by their lattice type and symmetry. There are 14 lattice
types. As an example of three of these, a crystal which has a cubic structure can be
simple cubic, face-centered cubic, or body-centered cubic.

There are 32 point groups corresponding to 32 different symmetries. For
example, a cubic lattice has five types of symmetry. The symmetry is labeled with
point group notation, and crystals are classified in this way. A complete discussion of
crystals, lattice types, and point groups is outside the scope of the present work, and
will not be given here; there are many excellent references [13, 14, 15, 20, 24, 31, 34].
Table 24.1 gives a summary of the lattice types and point groups, and shows how
these relate to optical symmetry and the form of the dielectric tensor.

In order to understand the notation and terminology of Table 24.1, some
additional information is required which we now introduce. As we have seen in
the previous sections, there are three principal indices of refraction. There are
three types of materials: those for which the three principal indices are equal;
those where two principal indices are equal; and those where all three principal
indices are different. We will discuss these three cases in more detail in the next
section. The indices for the case where there are only two distinct values are
named the ordinary index ðnoÞ and the extraordinary index ðneÞ. These labels are
applied for historical reasons [9]. Erasmus Bartholinus, a Danish mathematician, in
1669 discovered double refraction in calcite. If the calcite crystal, split along its
natural cleavage planes, is placed on a typewritten sheet of paper, two images of
the letters will be observed. If the crystal is then rotated about an axis perpendicular
to the page, one of the two images of the letters will rotate about the other.
Bartholinus named the light rays from the letters that do not rotate the ordinary
rays, and the rays from the rotating letters he named the extraordinary rays; hence,
the indices that produce these rays are named likewise. This explains the notation in
the dielectric tensor for tetragonal, hexagonal, and trigonal crystals.

Let us consider such crystals in more detail. There is a plane in the material in
which a single index would be measured in any direction. Light that is propagating in
the direction normal to this plane with equal indices experiences the same refractive
index for any polarization (orientation of the E vector). The direction for which this
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occurs is called the optic axis. Crystals which have one optic axis are called uniaxial
crystals. Materials with three principal indices have two directions in which the E

vector experiences a single refractive index. These materials have two optic axes and
are called biaxial crystals. This is more fully explained in Section 24.4.1. Materials
that have more than one principal index of refraction are called birefringent materi-
als and are said to exhibit double refraction.

Crystals are composed of periodic arrays of atoms. The lattice of a crystal is a
set of points in space. Sets of atoms which are identical in composition, arrangement,
and orientation are attached to each lattice point. By translating the basic structure
attached to the lattice point, we can fill space with the crystal. Define vectors a, b,
and c which form three adjacent edges of a parallelepiped which spans the basic
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Table 24.1 Crystal Types, Point Groups, and the Dielectric Tensors [37]

Symmetry Crystal system Point group Dielectric tensor

Isotropic Cubic 43m

432

m3

23

m3m

" ¼ "0

n
2 0 0
0 n

2 0
0 0 n

2

0

@

1

A

Uniaxial Tetragonal 4

4

4/m

422

4mm

42m

4/mmm

Hexagonal 6

6

6/m

622

6mm

6m2

6/mmm

" ¼ "0

n
2
o 0 0
0 n

2
o 0

0 0 n
2
e

0

@

1

A

Trigonal 3

3

32

3m

3m

Biaxial Triclinic 1

1

Monoclinic 2

m

2=m

" ¼ "0

n
2
1 0 0
0 n

2
2 0

0 0 n
2
3

0

@

1

A

Orthorhombic 222

2mm

mmm



atomic structure. This parallelepiped is called a unit cell. We call the axes that lie
along these vectors the crystal axes.

We would like to be able to describe a particular plane in a crystal, since
crystals may be cut at any angle. The Miller indices are quantities which describe
the orientation of planes in a crystal. The Miller indices are defined as follows: (1)
Locate the intercepts of the plane on the crystal axes: these will be multiples of lattice
point spacing. (2) Take the reciprocals of the intercepts and form the three smallest
integers having the same ratio. For example, suppose we have a cubic crystal so that
the crystal axes are the orthogonal Cartesian axes. Suppose further that the plane we
want to describe intercepts the axes at the points 4, 3, and 2. The reciprocals of these
intercepts are 1

4
, 1
3
, and 1

2
. The Miller indices are then ð3; 4; 6Þ. This example serves to

illustrate how the Miller indices are found, but it is more usual to encounter simpler
crystal cuts. The same cubic crystal, if cut so that the intercepts are 1;1;1 (defining
a plane parallel to the yz-plane in the usual Cartesian coordinates) has Miller indices
ð1; 0; 0Þ. Likewise, if the intercepts are 1; 1;1 (diagonal to two of the axes), the
Miller indices are ð1; 1; 0Þ, and if the intercepts are 1; 1; 1 (diagonal to all three
axes), the Miller indices are ð1; 1; 1Þ.

Two important electro-optic crystal types have the point group symbols 43m
(this is a cubic crystal, e.g., CdTe and GaAs) and 42m (this is a tetragonal crystal,
e.g., AgGaS2). The linear and quadratic electro-optic tensors for these two crystal
types, as well as all the other linear and quadratic electro-optic coefficient tensors for
all crystal symmetry classes, are given in Tables 24.2 and 24.3. Note from these tables
that the linear electro-optic effect vanishes for crystals that retain symmetry under
inversion, i.e., centrosymmetric crystals, whereas the quadratic electro-optic effect
never vanishes. For further discussion of this point, see Yariv and Yeh [37].

24.4.1 The Index Ellipsoid

Light propagating in anisotropic materials experiences a refractive index and a phase
velocity that depends on the propagation direction, polarization state, and wave-
length. The refractive index for propagation (for monochromatic light of some
specified frequency) in an arbitrary direction (in Cartesian coordinates)

~aa ¼ xîiþ yĵjþ zk̂k ð24:20Þ
can be obtained from the index ellipsoid, a useful and lucid construct for visualiza-
tion and determination of the index. (Note that we now shift from indexing the
Cartesian directions with numbers to using x, y, and z.) In the principal coordinate
system the index ellipsoid is given by

x
2

n2x
þ y

2

n2y
þ z

2

n2z
¼ 1 ð24:21Þ

in the absence of an applied electric field. The lengths of the semimajor and semi-
minor axes of the ellipse formed by the intersection of this index ellipsoid and a plane
normal to the propagation direction and passing through the center of the ellipsoid
are the two principal indices of refraction for that propagation direction. Where
there are three distinct principal indices, the crystal is defined as biaxial, and the
above equation holds. If two of the three indices of the index ellipsoid are equal, the
crystal is defined to be uniaxial and the equation for the index ellipsoid is
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Table 24.2 Linear Electro-optic Tensors [37]

Crystal symmetry

class

Symmetry

group

Tensor

Centrosymmetric 1

2/m

mmm

4/m

4/mmm

3

3m

6/m

6/mmm

m3

m3m

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0

BBBBBB@

1

CCCCCCA

Triclinic 1 r11 r12 r13
r21 r22 r23
r31 r32 r33
r41 r42 r43
r51 r52 r53
r61 r62 r63

0

BBBBBB@

1

CCCCCCA

Monoclinic 2 ð2kx2Þ 0 r12 0
0 r22 0
0 r32 0
r41 0 r43
0 r52 0
r61 0 r63

0

BBBBBB@

1

CCCCCCA

2 ð2kx3Þ 0 0 r13
0 0 r23
0 0 r33
r41 r42 0
r51 r52 0
0 0 r63

0

BBBBBB@

1

CCCCCCA

m (m ? x2) r11 0 r13
r21 0 r23
r31 0 r33
0 r42 0
r51 0 r53
0 r62 0

0

BBBBBB@

1

CCCCCCA

m ðm ? x3Þ r11 r12 0
r21 r22 0
r31 r32 0
0 0 r43
0 0 r53
r61 r62 0

0

BBBBBB@

1

CCCCCCA
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Table 24.2 Linear Electro-optic Tensors [37] (contd.)

Crystal symmetry

class

Symmetry

group

Tensor

Orthorhombic 222 0 0 0
0 0 0
0 0 0
r41 0 0
0 r52 0
0 0 r63

0

BBBBBB@

1

CCCCCCA

2mm 0 0 r13
0 0 r23
0 0 r33
0 r42 0
r51 0 0
0 0 0

0

BBBBBB@

1

CCCCCCA

Tetragonal 4 0 0 r13
0 0 r13
0 0 r33
r41 r51 0
r51 r41 0
0 0 0

0

BBBBBB@

1

CCCCCCA

�44 0 0 r13
0 0 �r13
0 0 0
r41 �r51 0
r51 r41 0
0 0 r63

0

BBBBBB@

1

CCCCCCA

422 0 0 0
0 0 0
0 0 0
r41 0 0
0 �r41 0
0 0 0

0

BBBBBB@

1

CCCCCCA

4mm 0 0 r13
0 0 r13
0 0 r33
0 r51 0
r51 0 0
0 0 0

0

BBBBBB@

1

CCCCCCA

42m (2kx1Þ 0 0 0
0 0 0
0 0 0
r41 0 0
0 r41 0
0 0 r63

0

BBBBBB@

1

CCCCCCA
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Table 24.2 Linear Electro-optic Tensors [37] (contd.)

Crystal symmetry

class

Symmetry

group

Tensor

Trigonal 3 r11 �r22 r13
�r11 r22 r13

0 0 r33
r41 r51 0
r51 �r41 0

�r22 �r11 0

0

BBBBBB@

1

CCCCCCA

32 r11 0 0
�r11 0 0
0 0 0
r41 0 0
0 �r41 0
0 �r11 0

0

BBBBBB@

1

CCCCCCA

3m ðm ? x1Þ 0 �r22 r13
0 r22 r13
0 0 r33
0 r51 0
r51 0 0

�r22 0 0

0

BBBBBB@

1

CCCCCCA

3m (m ? x2) r11 0 r13
�r11 0 r13
0 0 r33
0 r51 0
r51 0 0
0 �r11 0

0

BBBBBB@

1

CCCCCCA

Hexagonal 6 0 0 r13
0 0 r13
0 0 r33
r41 r51 0
r51 �r41 0
0 0 0

0

BBBBBB@

1

CCCCCCA

6mm 0 0 r13
0 0 r13
0 0 r33
0 r51 0
r51 0 0
0 0 0

0

BBBBBB@

1

CCCCCCA

622 0 0 0
0 0 0
0 0 0
r41 0 0
0 �r41 0
0 0 0

0

BBBBBB@

1

CCCCCCA



x
2

n2o
þ y

2

n2o
þ z

2

n2e
¼ 1: ð24:22Þ

Uniaxial materials are said to be uniaxial positive when no < ne and uniaxial negative
when no > ne. When there is a single index for any direction in space, the crystal is
isotropic and the equation for the ellipsoid becomes that for a sphere,

x
2

n2
þ y

2

n2
þ z

2

n2
¼ 1: ð24:23Þ

The index ellipsoids for isotropic, uniaxial, and biaxial crystals are illustrated in Fig.
24.1.
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Table 24.2 Linear Electro-optic Tensors [37] (contd.)

Crystal symmetry

class

Symmetry

group

Tensor

Hexagonal 6 r11 �r22 0
�r11 r22 0
0 0 0
0 0 0
0 0 0

�r22 �r11 0

0

BBBBBB@

1

CCCCCCA

6m2 ðm ? x1Þ 0 �r22 0
0 r22 0
0 0 0
0 0 0
0 0 0

�r22 0 0

0

BBBBBB@

1

CCCCCCA

6m2 ðm ? x2Þ r11 0 0
�r11 0 0
0 0 0
0 0 0
0 0 0
0 �r11 0

0

BBBBBB@

1

CCCCCCA

Cubic 43m

23

0 0 0
0 0 0
0 0 0
r41 0 0
0 r41 0
0 0 r41

0

BBBBBB@

1

CCCCCCA

432 0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0

BBBBBB@

1

CCCCCCA
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Table 24.3 Quadratic Electro-optic Tensors [37]

Crystal symmetry

class

Symmetry

group

Tensor

Triclinic 1

1

s11 s12 s13 s14 s15 s16
s21 s22 s23 s24 s25 s26
s31 s32 s33 s34 s35 s36
s41 s42 s43 s44 s45 s46
s51 s52 s53 s54 s55 s56
s61 s62 s63 s64 s65 s66

0

BBBBBB@

1

CCCCCCA

Monoclinic 2

m

2=m

s11 s12 s13 0 s15 0
s21 s22 s23 0 s25 0
s31 s32 s33 0 s35 0
0 0 0 s44 0 s46
s51 s52 s53 0 s55 0
0 0 0 s64 0 s66

0

BBBBBB@

1

CCCCCCA

Orthorhombic 2mm

222

mmm

s11 s12 s13 0 0 0
s21 s22 s23 0 0 0
s31 s32 s33 0 0 0
0 0 0 s44 0 0
0 0 0 0 s55 0
0 0 0 0 0 s66

0

BBBBBB@

1

CCCCCCA

Tetragonal 4

4

4=m

s11 s12 s13 0 0 s16
s12 s11 s13 0 0 �s16
s31 s31 s33 0 0 0
0 0 0 s44 s45 0
0 0 0 �s45 s44 0
s61 �s61 0 0 0 s66

0

BBBBBB@

1

CCCCCCA

422

4mm

42m

4/mm

s11 s12 s13 0 0 0
s12 s11 s13 0 0 0
s31 s31 s33 0 0 0
0 0 0 s44 0 0
0 0 0 0 s44 0
0 0 0 0 0 s66

0

BBBBBB@

1

CCCCCCA

Trigonal 3

3

s11 s12 s13 s14 s15 �s61
s12 s11 s13 �s14 �s15 s61
s31 s31 s33 0 0 0
s41 �s41 0 s44 s45 �s51
s51 �s51 0 �s45 s44 s41
s61 �s61 0 �s15 s14

1
2
ðs11 � s12Þ

0

BBBBBB@

1

CCCCCCA

32

3m

3m

s11 s12 s13 s14 0 0
s12 s11 s13 �s14 0 0
s13 s13 s33 0 0 0
s41 �s41 0 s44 0 0
0 0 0 0 s44 s41
0 0 0 0 s14

1
2
ðs11 � s12Þ

0

BBBBBB@

1

CCCCCCA



Examples of isotropic materials are CdTe, NaCl, diamond, and GaAs.
Examples of uniaxial positive materials are quartz and ZnS. Materials that are
uniaxial negative include calcite, LiNbO3, BaTiO3, and KDP (KH2PO4).
Examples of biaxial materials are gypsum and mica.

24.4.2 Natural Birefringence

Many materials have natural birefringence, i.e., they are uniaxial or biaxial in their
natural (absence of applied fields) state. These materials are often used in passive
devices such as polarizers and retarders. Calcite is one of the most important natu-
rally birefringent materials for optics, and is used in a variety of well-known polar-
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Table 24.3 Quadratic Electro-optic Tensors [37] (contd.)

Crystal symmetry

class

Symmetry

group

Tensor

Hexagonal 6

6

6/m

s11 s12 s13 0 0 �s61
s12 s11 s13 0 0 s61
s31 s31 s33 0 0 0
0 0 0 s44 s45 0
0 0 0 �s45 s44 0
s61 �s61 0 0 0 1

2
ðs11 � s12Þ

0

BBBBBB@

1

CCCCCCA

622

6mm

6m2

6/mmm

s11 s12 s13 0 0 0
s12 s11 s13 0 0 0
s31 s31 s33 0 0 0
0 0 0 s44 0 0
0 0 0 0 s44 0
0 0 0 0 0 1

2
ðs11 � s12Þ

0

BBBBBB@

1

CCCCCCA

Cubic 23

m3

s11 s12 s13 0 0 0
s13 s11 s12 0 0 0
s12 s13 s11 0 0 0
0 0 0 s44 0 0
0 0 0 0 s44 0
0 0 0 0 0 s44

0

BBBBBB@

1

CCCCCCA

432

m3m

43m

s11 s12 s12 0 0 0
s12 s11 s12 0 0 0
s12 s12 s11 0 0 0
0 0 0 s44 0 0
0 0 0 0 s44 0
0 0 0 0 0 s44

0

BBBBBB@

1

CCCCCCA

Isotropic s11 s12 s12 0 0 0
s12 s11 s12 0 0 0
s12 s12 s11 0 0 0
0 0 0 1

2
ðs11 � s12Þ 0 0

0 0 0 0 1
2
ðs11 � s12Þ 0

0 0 0 0 0 1
2
ðs11 � s12Þ

0

BBBBBB@

1

CCCCCCA



izers, e.g., the Nichol, Wollaston, or Glan–Thompson prisms. As we shall see later,
naturally isotropic materials can be made birefringent, and materials that have
natural birefringence can be made to change that birefringence with the application
of electromagnetic fields.

24.4.3 The Wave Surface

There are two additional methods of depicting the effect of crystal anisotropy on
light. Neither is as satisfying or useful to this author as the index ellipsoid; however,
both are mentioned for the sake of completeness and in order to facilitate under-
standing of those references that use these models. They are most often used to
explain birefringence, e.g., in the operation of calcite-based devices [2, 11, 16].

The first of these is called the wave surface. As a light wave from a point source
expands through space, it forms a surface that represents the wavefront. This surface
is composed of points having equal phase. At a particular instant in time, the wave
surface is a representation of the velocity surface of a wave expanding in the med-
ium; it is a measure of the distance through which the wave has expanded from some
point over some time period. Because the wave will have expanded further (faster)
when experiencing a low refractive index and expanded less (slower) when experien-
cing a high index, the size of the wave surface is inversely proportional to the index.

To illustrate the use of the wave surface, consider a uniaxial crystal. Recall that
we have defined the optic axis of a uniaxial crystal as the direction in which the speed
of propagation is independent of polarization. The optic axes for positive and nega-
tive uniaxial crystals are shown on the index ellipsoids in Fig. 24.2, and the optic axes
for a biaxial crystal are shown on the index ellipsoid in Fig. 24.3.

The wave surfaces are now shown in Fig. 24.4 for both positive and negative
uniaxial materials. The upper diagram for each pair shows the wave surface for
polarization perpendicular to the optic axes (also perpendicular to the principal
section through the ellipsoid), and the lower diagram shows the wave surface for
polarization in the plane of the principal section. The index ellipsoid surfaces are
shown for reference. Similarly, cross sections of the wave surfaces for biaxial materi-
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Figure 24.1 Index ellipsoids.



als are shown in Fig. 24.5. In all cases, polarization perpendicular to the plane of the
page is indicated with solid circles along the rays, whereas polarization parallel to the
plane of the page is shown with short double-headed arrows along the rays.

24.4.4 The Wavevector Surface

A second method of depicting the effect of crystal anisotropy on light is the wave-
vector surface. The wavevector surface is a measure of the variation of the value of k,
the wavevector, for different propagation directions and different polarizations.
Recall that
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Figure 24.2 Optic axis on index ellipsoid for uniaxial positive and uniaxial negative crystals.

Figure 24.3 Optic axes on index ellipsoid for biaxial crystals.
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Figure 24.4 Wave surfaces for uniaxial positive and negative materials.

Figure 24.5 Wave surfaces for biaxial materials in principal planes.



k ¼ 2



¼ !n

c
; ð24:24Þ

so k / n. Wavevector surfaces for uniaxial crystals will then appear as shown in Fig.
24.6. Compare these to the wave surfaces in Fig. 24.4.

Wavevector surfaces for biaxial crystals are more complicated. Cross sections
of the wavevector surface for a biaxial crystal where nx < ny < nz are shown in Fig.
24.7. Compare these to the wave surfaces in Fig. 24.5.

24.5 APPLICATION OF ELECTRIC FIELDS: INDUCED
BIREFRINGENCE AND POLARIZATION MODULATION

When fields are applied to materials, whether isotropic or anisotropic, birefringence
can be induced or modified. This is the principle of a modulator; it is one of the most
important optical devices, since it gives control over the phase and/or amplitude of
light.

The alteration of the index ellipsoid of a crystal on application of an electric
and/or magnetic field can be used to modulate the polarization state. The equation
for the index ellipsoid of a crystal in an electric field is

�ijðEÞxixj ¼ 1 ð24:25Þ

or

ð�ijð0Þ þ��ijÞxixj ¼ 1: ð24:26Þ

This equation can be written as
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Figure 24.6 Wavevector surfaces for positive and negative uniaxial crystals.
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2 1

n2x
þ�

1

n

� �2
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 !

þ y
2 1

n2y
þ�

1

n

� �2

2

 !

þ z
2 1

n2z
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n
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 !

þ 2yz �
1

n

� �2
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 !

þ 2xz �
1

n

� �2

5

 !

þ 2xy �
1

n

� �2

6

 !

¼ 1

ð24:27Þ

or

x
2 1

n2x
þ r1kEk þ s1kE

2
k þ 2s14E2E3 þ 2s15E3E1 þ 2s16E1E2

� �

þ y
2 1

n2y
þ r2kEk þ s2kE

2
k þ 2s24E2E3 þ 2s25E3E1 þ 2s26E1E2

 !

þ z
2 1

n2z
þ r3kEk þ s3kE

2
k þ 2s34E2E3 þ 2s35E3E1 þ 2s36E1E2

� �

þ 2yz r4kEk þ s4kE
2
k þ 2s44E2E3 þ 2s45E3E1 þ 2s46E1E2


 �

þ 2zx r5kEk þ s5kE
2
k þ 2s54E2E3 þ 2s55E3E1 þ 2s56E1E2


 �

þ 2xy r6kEk þ s6kE
2
k þ 2s64E2E3 þ 2s65E3E1 þ 2s66E1E2


 � ¼ 1;

ð24:28Þ

where the Ek are components of the electric field along the principal axes and
repeated indices are summed.

If the quadratic coefficients are assumed to be small and only the linear coeffi-
cients are retained, then
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Figure 24.7 Wavevector surface cross sections for biaxial crystals.



�
1

n

� �2

l

¼
X3

k¼1

rlkEk ð24:29Þ

and k ¼ 1; 2; 3 corresponds to the principal axes x, y, and z. The equation for the
index ellipsoid becomes

x
2 1

n2x
þ r1kEk

� �
þ y

2 1

n2y
þ r2kEk

 !

þ z
2 1

n2z
þ r3kEk

� �
þ 2yzðr4kEkÞ

þ 2zxðr5kEkÞ þ 2xyðr6kEkÞ ¼ 1:

ð24:30Þ

Suppose we have a cubic crystal of point group 43m, the symmetry group of such
common materials as GaAs. Suppose further that the field is in the z-direction. Then
the index ellipsoid is

x
2

n2
þ y

2

n2
þ z

2

n2
þ 2r41Ezxy ¼ 1: ð24:31Þ

The applied electric field couples the x-polarized and y-polarized waves. If we make
the coordinate transformation

x ¼ x
0 cos 458� y

0 sin 458;
y ¼ x

0 sin 458� y
0 cos 458;

ð24:32Þ

and substitute these equations into the equation for the ellipsoid, the new equation
for the ellipsoid becomes

x
02 1

n2
þ r41Ez

� �
þ y

02 1

n2
� r41Ez

� �
þ z

2

n2
¼ 1; ð24:33Þ

and we have eliminated the cross term. We want to obtain the new principal indices.
The principal index will appear in Eq. (24.33) as 1=n2x 0 and must be equal to the
quantity in the first parenthesis of the equation for the ellipsoid, i.e.,

1

n2
x 0
¼ 1

n2
þ r41Ez: ð24:34Þ

Consider the derivative of 1=n2 with respect to n: dðn�2Þ=dn ¼ �2n�3, or, rearran-
ging, dn ¼ � 1

2
n
3dð1=n2Þ. Assume r41Ez 	 n

�2. Now dn ¼ nx 0 � n and
dð1=n2Þ ¼ ðð1=n2x 0 Þ � ð1=n2ÞÞ ¼ r41Ez and we can write nx 0 � n ¼ � 1

2
n
3
r41Ez. The

equations for the new principal indices are

nx 0 ¼ n� 1
2
n
3
r41Ez

ny 0 ¼ nþ 1
2
n
3
r41Ez

nz 0 ¼ n:

ð24:35Þ

As a similar example for another important material type, suppose we have a tetra-
gonal (point group 42m) uniaxial crystal in a field along z. The index ellipsoid
becomes

x
2

n2o
þ y

2

n2o
þ z

2

n2e
þ 2r63Ezxy ¼ 1: ð24:36Þ
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A coordinate rotation can be done to obtain the major axes of the new ellipsoid. In
the present example, this yields the new ellipsoid

1

n2o
þ r63Ez

� �
x
02 þ 1

n2o
� r63Ez

� �
y
02 þ z

2

n2e

 !

¼ 1: ð24:37Þ

As in the first example, the new and old z-axes are the same, but the new x 0 and y 0

axes are 458 from the original x- and y-axes (see Fig. 24.8).
The refractive indices along the new x- and y-axes are

n
0
x ¼ no � 1

2
n
3
or63Ez

n
0
y ¼ no þ 1

2
n
3
or63Ez

ð24:38Þ

Note that the quantity n
3
rE in these examples determines the change in refractive

index. Part of this product, n3r, depends solely on inherent material properties, and is
a figure of merit for electro-optical materials. Values for the linear and quadratic
electro-optic coefficients for selected materials are given in Tables 24.4 and 24.5,
along with values for n and, for linear materials, n3r. While much of the information
from these tables is from Yariv and Yeh [37], materials tables are also to be found in
Kaminow [13, 14]. Original sources listed in these references should be consulted on
materials of particular interest. Additional information on many of the materials
listed here, including tables of refractive index versus wavelength and dispersion
formulae, can be found in Tropf et al. [33].

For light linearly polarized at 458, the x and y components experience different
refractive indices n

0
x and n

0
y. The birefringence is defined as the index difference

n
0
y � n

0
x. Since the phase velocities of the x and y components are different, there

is a phase retardation 
 (in radians) between the x and y components of E, given by


 ¼ !

c
ðn 0

y � n
0
xÞd ¼ 2



n
3
or63Ezd; ð24:39Þ

where d is the path length of light in the crystal. The electric field of the incident light
beam is
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Figure 24.8 Rotated principal axes.



~EE ¼ 1
ffiffiffi
2

p Eðx̂xþ ŷyÞ: ð24:40Þ

After transmission through the crystal, the electric field is

1
ffiffiffi
2

p Eðei
=2x̂x 0 þ e�i
=2
ŷy
0Þ: ð24:41Þ

If the path length and birefringence are selected such that 
 ¼ , the modu-
lated crystal acts as a half-wave linear retarder and the transmitted light has field
components

1
ffiffiffi
2

p Eðei=2x̂x 0 þ e�i=2
ŷy
0Þ ¼ 1

ffiffiffi
2

p Eðei=2x̂x 0 � ei=2ŷy 0Þ

¼ E
ei=2
ffiffiffi
2

p ðx̂x 0 � ŷy
0Þ:

ð24:42Þ

The axis of linear polarization of the incident beam has been rotated by 908 by the
phase retardation of  radians or one-half wavelength. The incident linear polariza-
tion state has been rotated into the orthogonal polarization state. An analyzer at the
output end of the crystal aligned with the incident (or unmodulated) plane of polar-
ization will block the modulated beam. For an arbitrary applied voltage producing a
phase retardation of 
, the analyzer transmits a fractional intensity cos2 
. This is the
principle of the Pockels cell.

Note that the form of the equations for the indices resulting from the applica-
tion of a field is highly dependent upon the direction of the field in the crystal. For
example, Table 24.6 gives the electro-optical properties of cubic 43m crystals when
the field is perpendicular to three of the crystal planes. The new principal indices are
obtained in general by solving an eigenvalue problem. For example, for a hexagonal
material with a field perpendicular to the (111) plane, the index ellipsoid is

1

n2o
þ r13Effiffiffi

3
p

� �
x
2 þ 1

n2o
þ r13Effiffiffi

3
p

� �
y
2 þ 1

n2e
þ r33Effiffiffi

3
p

� �
z
2 þ 2yzr51

E
ffiffiffi
3

p þ 2zxr51
E
ffiffiffi
3

p ¼ 1;

ð24:43Þ

and the eigenvalue problem is

1

n2o
þ r13Effiffiffi

3
p 0

2r51Effiffiffi
3

p

0
1

n2o
þ r13Effiffiffi

3
p 2r51Effiffiffi

3
p

2r51Effiffiffi
3

p 2r51Effiffiffi
3

p 1

n2e
þ r33Effiffiffi

3
p

0

BBBBBBB@

1

CCCCCCCA

V ¼ 1

n
02 V: ð24:44Þ

The secular equation is then
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Table 24.4 Linear Electro-optic Coefficients

Substance Symmetry

Wavelength

(mm)

Electrooptic

coefficients rlk
(10�12 m/V)

Indices of

refraction

n
3
r

ð10�12 m/V)

CdTe 43m 1.0

3.39

10.6

23.35

27.95

r41 ¼ 4:5
r41 ¼ 6:8
r41 ¼ 6:8
r41 ¼ 5:47
r41 ¼ 5:04

n ¼ 2:84

n ¼ 2:60
n ¼ 2:58
n ¼ 2:53

103

120

94

82

GaAs 43m 0.9

1.15

3.39

10.6

r41 ¼ 1:1
r41 ¼ 1:43
r41 ¼ 1:24
r41 ¼ 1:51

n ¼ 3:60
n ¼ 3:43
n ¼ 3:3
n ¼ 3:3

51

58

45

54

ZnSe 43m 0.548

0.633

10.6

r41 ¼ 2:0
r41

a ¼ 2:0
r41 ¼ 2:2

n ¼ 2:66
n ¼ 2:60
n ¼ 2:39

35

ZnTe 43m 0.589

0.616

0.633

0.690

3.41

10.6

r41 ¼ 4:51
r41 ¼ 4:27
r41 ¼ 4:04
r41

a ¼ 4:3
r41 ¼ 3:97
r41 ¼ 4:2
r41 ¼ 3:9

n ¼ 3:06
n ¼ 3:01
n ¼ 2:99

n ¼ 2:93
n ¼ 2:70
n ¼ 2:70

108

83

77

Bi12SiO20 23 0.633 r41 ¼ 5:0 n ¼ 2:54 82

CdS 6mm 0.589

0.633

1.15

3.39

10.6

r51 ¼ 3:7

r51 ¼ 1:6

r31 ¼ 3:1
r33 ¼ 3:2
r51 ¼ 2:0
r13 ¼ 3:5
r33 ¼ 2:9
r51 ¼ 2:0
r13 ¼ 2:45
r33 ¼ 2:75
r51 ¼ 1:7

no ¼ 2:501
ne ¼ 2:519
no ¼ 2:460
ne ¼ 2:477
no ¼ 2:320
ne ¼ 2:336

no ¼ 2:276
ne ¼ 2:292

no ¼ 2:226
ne ¼ 2:239

CdSe 6mm 3.39 r13
a ¼ 1:8

r33 ¼ 4:3
no ¼ 2:452
ne ¼ 2:471

PLZTb

(Pb0:814La0:124
Zr0:4Ti0:6O3Þ

1m 0.546 n
3
er33 � n

3
or13 ¼

2320

no ¼ 2:55
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Table 24.4 Linear Electro-optic Coefficients (contd.)

Substance Symmetry

Wavelength

(mm)

Electrooptic

coefficients rlk
(10�12 m/V)

Indices of

refraction

n
3
r

ð10�12 m/V)

LiNbO3 3m 0.633

1.15

3.39

r13 ¼ 9:6
r22 ¼ 6:8
r33 ¼ 30:9
r51 ¼ 32:6
r22 ¼ 5:4

r22 ¼ 3:1

no ¼ 2:286
ne ¼ 2:200

no ¼ 2:229
ne ¼ 2:150
no ¼ 2:136
ne ¼ 2:073

LiTaO3 3m 0.633

3.39

r13 ¼ 8:4
r33 ¼ 30:5
r22 ¼ �0:2
r33 ¼ 27

r13 ¼ 4:5
r51 ¼ 15

r22 ¼ 0:3

no ¼ 2:176
ne ¼ 2:180

no ¼ 2:060
ne ¼ 2:065

KDP

(KH2PO4Þ
42m 0.546

0.633

3.39

r41 ¼ 8:77
r63 ¼ 10:3
r41 ¼ 8

r63 ¼ 11

r63 ¼ 9:7
n
3
or63 ¼ 33

no ¼ 1:5115
ne ¼ 1:4698
no ¼ 1:5074
ne ¼ 1:4669

ADP

(NH4H2PO4Þ
42m 0.546

0.633

r41 ¼ 23:76
r63 ¼ 8:56
r63 ¼ 24:1

no ¼ 1:5079
ne ¼ 1:4683

RbHSeO4
c 0.633 13,540

BaTiO3 4mm 0.546 r51 ¼ 1640 no ¼ 2:437
ne ¼ 2:365

KTN

(KTax
Nb1�xO3Þ

4mm 0.633 r51 ¼ 8000 no ¼ 2:318
ne ¼ 2:277

AgGaS2 42m 0.633 r41 ¼ 4:0
r63 ¼ 3:0

no ¼ 2:553
ne ¼ 2:507

aThese values are for clamped (high-frequency field) operation.
bPLZT is a compound of Pb, La, Zr, Ti, and O [8, 18]. The concentration ratio of Zr to Ti is most

important to its electro-optic properties. In this case, the ratio is 40:60.
cSalvestrini et al. [29].
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Table 24.5 Quadratic Electro-optic Coefficients [37]

Substance Symmetry

Wavelength

(mm)

Electro-optic

coefficients sij
(10�18 m2=V2Þ

Index of

refraction

Temperature

(8C)

BaTiO3 m3m 0.633 s11 � s12 ¼ 2290 n ¼ 2:42 T > Tc

(Tc ¼ 1208C)

PLZTa 1m 0.550 s33 � s13 ¼ 26000=n3 n ¼ 2:450 Room

temperature

KH2PO4

(KDP)

42m 0.540 n
3
eðs33 � s13Þ ¼ 31

n
3
oðs31 � s11Þ ¼ 13:5

n
3
oðs12 � s11Þ ¼ 8:9

n
3
os66 ¼ 3:0

no ¼ 1:5115b

ne ¼ 1:4698b
Room

temperature

NH4H2PO4

(ADP)

42m 0.540 n
3
eðs33 � s13Þ ¼ 24

n
3
oðs31 � s11Þ ¼ 16:5

n
3
oðs12 � s11Þ ¼ 5:8

n
3
os66 ¼ 2

no ¼ 1:5266b

ne ¼ 1:4808b
Room

temperature

aPLZT is a compound of Pb, La, Zr, Ti, and O [8, 18]. The concentration ratio of Zr to Ti is most

important to its electro-optic properties. In this case, the ratio is 65:35.
bAt 0.546mm.

Table 24.6 Electro-optic Properties of Cubic 43m Crystals [6]

E field direction Index ellipsoid Principal indices

E perpendicular to (001)

plane:

Ex ¼ Ey ¼ 0

Ez ¼ E

x
2 þ y

2 þ z
2

n2o
þ 2r41Exy ¼ 1

n
0
x ¼ no þ 1

2
n
3
or41E

n
0
y ¼ no � 1

2
n
3
or41E

n
0
z ¼ no

E perpendicular to (110)

plane:

Ex ¼ Ey ¼ E=
ffiffiffi
2

p

Ez ¼ 0

x
2 þ y

2 þ z
2

n2o
þ

ffiffiffi
2

p
r41Eðyzþ zxÞ ¼ 1

n
0
x ¼ no þ 1

2
n
3
or41E

n
0
y ¼ no � 1

2
n
3
or41E

n
0
z ¼ no

E perpendicular to (111)

plane:

Ex ¼ Ey ¼ Ez ¼ E=
ffiffiffi
3

p

x
2 þ y

2 þ z
2

n2o
þ 2

ffiffiffi
3

p r41Eðyzþ zxþ xyÞ ¼ 1 n
0
x ¼ no þ

1

2
ffiffiffi
3

p n
3
or41E

n
0
y ¼ no �

1

2
ffiffiffi
3

p n
3
or41E

n
0
z ¼ no �

1
ffiffiffi
3

p n
3
or41E



1

n2o
þ r13Effiffiffi

3
p

� �
� 1

n
02 0

2r51Effiffiffi
3

p

0
1

n2o
þ r13Effiffiffi

3
p

� �
� 1

n
02

2r51Effiffiffi
3

p

2r51Effiffiffi
3

p 2r51Effiffiffi
3

p 1

n2o
þ r33Effiffiffi

3
p

� �
� 1

n
02

0

BBBBBBB@

1

CCCCCCCA

¼ 0 ð24:45Þ

and the roots of this equation are the new principal indices.

24.6 MAGNETO-OPTICS

When a magnetic field is applied to certain materials, the plane of incident linearly
polarized light may be rotated in passage through the material. The magneto-optic
effect linear with field strength is called the Faraday effect, and was discovered by
Michael Faraday in 1845. A magneto-optic cell is illustrated in Fig. 24.9. The field is
set up so that the field lines are along the direction of the optical beam propagation.
A linear polarizer allows light of one polarization into the cell. A second linear
polarizer is used to analyze the result.

The Faraday effect is governed by the equation

� ¼ VBd; ð24:46Þ
where V is the Verdet constant, � is the rotation angle of the electric field vector of
the linearly polarized light, B is the applied field, and d is the path length in the
medium. The rotary power �, defined in degrees per unit path length, is given by

� ¼ VB: ð24:47Þ
A table of Verdet constants for some common materials is given in Table 24.7. The
material that is often used in commercial magneto-optic-based devices is some for-
mulation of iron garnet. Data tabulations for metals, glasses, and crystals, including
many iron garnet compositions, can be found in Chen [3]. The magneto-optic effect
is the basis for magneto-optic memory devices, optical isolators, and spatial light
modulators [27, 28].

Other magneto-optic effects in addition to the Faraday effect include the
Cotton–Mouton effect, the Voigt effect, and the Kerr magneto-optic effect. The
Cotton–Mouton effect is a quadratic magneto-optic effect observed in liquids. The
Voigt effect is similar to the Cotton–Mouton effect but is observed in vapors. The
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Figure 24.9 Illustration of a setup to observe the Faraday effect.



Kerr magneto-optic effect is observed when linearly polarized light is reflected from
the face of either pole of a magnet. The reflected light becomes elliptically polarized.

24.7 LIQUID CRYSTALS

Liquid crystals are a class of substances which demonstrate that the premise that
matter exists only in solid, liquid, and vapor (and plasma) phases is a simplification.
Fluids, or liquids, generally are defined as the phase of matter which cannot maintain
any degree of order in response to a mechanical stress. The molecules of a liquid have
random orientations and the liquid is isotropic. In the period 1888–1890 Reinitzer,
and separately Lehmann, observed that certain crystals of organic compounds exhi-
bit behavior between the crystalline and liquid states [7]. As the temperature is
raised, these crystals change to a fluid substance which retains the anisotropic beha-
vior of a crystal. This type of liquid crystal is now classified as thermotropic because
the transition is effected by a temperature change, and the intermediate state is
referred to as a mesophase [25]. There are three types of mesophases: smectic,
nematic, and cholesteric. Smectic and nematic mesophases are often associated
and occur in sequence as the temperature is raised. The term smectic derives from
the Greek word for soap and is characterized by a more viscous material than the
other mesophases. Nematic is from the Greek for thread and was named because the
material exhibits a striated appearance (between crossed polaroids). The cholesteric
mesophase is a property of the cholesterol esters, hence the name.

Figure 24.10(a) illustrates the arrangement of molecules in the nematic meso-
phase. Although the centers of gravity of the molecules have no long-range order as
crystals do, there is order in the orientations of the molecules [4]. They tend to be
oriented parallel to a common axis indicated by the unit vector n̂n.

The direction of n̂n is arbitrary and is determined by some minor force such as
the guiding effect of the walls of the container. There is no distinction between a
positive and negative sign of n̂n. If the molecules carry a dipole, there are equal
numbers of dipoles pointing up as down. These molecules are not ferroelectric.
The molecules are achiral, i.e., they have no handedness, and there is no positional
order of the molecules within the fluid. Nematic liquid crystals are optically uniaxial.
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Table 24.7 Values of the Verdet Constant at 
 ¼ 5893 A
�

Material T (8C) Verdet constant (deg/G�mm)

Watera

Air (
 ¼ 5780 A
�
and 760mmHg)b

NaClb

Quartzb

CS2
a

Pa

Glass, flinta

Glass, crowna

Diamonda

20

0

16

20

20

33

18

18

20

2:18� 10�5

1:0� 10�8

6:0� 10�5

2:8� 10�5

7:05� 10�5

2:21� 10�4

5:28� 10�5

2:68� 10�5

2:0� 10�5

aYariv and Yeh [37].
bHecht [9].



The temperature range over which the nematic mesophase exists varies with the
chemical composition and mixture of the organic compounds. The range is quite
wide: for example, in one study of ultraviolet imaging with a liquid crystal light
valve, four different nematic liquid crystals were used [21]. Two of these were
MBBA (N-(p-methoxybenzylidene)-p-n butylaniline) with a nematic range of 17–
438C, and a proprietary material with a range of �20 to 518C.

There are many known electrooptical effects involving nematic liquid crystals
[22, 25, 30]. Two of the more important are field-induced birefringence, also called
deformation of aligned phases, and the twisted nematic effect, also called the
Schadt–Helfrich effect. An example of a twisted nematic cell is shown in Fig.
24.11.

Figure 24.11(a) shows the molecule orientation in a liquid crystal cell, without
and with an applied field. The liquid crystal material is placed between two elec-
trodes. The liquid crystals at the cell wall align themselves in some direction parallel
to the wall as a result of very minor influences. A cotton swab lightly stroked in one
direction over the interior surface of the wall prior to cell assembly is enough to
produce alignment of the liquid crystal [12]. The molecules align themselves with the
direction of the rubbing. The electrodes are placed at 908 to each other with respect
to the direction of rubbing. The liquid crystal molecules twist from one cell wall to
the other to match the alignments at the boundaries as illustrated, and light entering
at one cell wall with its polarization vector aligned to the crystal axis will follow the
twist and be rotated 908 by the time it exits the opposite cell wall. If the polarization
vector is restricted with a polarizer on entry and an analyzer on exit, only the light
with the 908 polarization twist will be passed through the cell. With a field applied
between the cell walls, the molecules tend to orient themselves perpendicular to the
cell walls, i.e., along the field lines. Some molecules next to the cell walls remain
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Figure 24.10 Schematic representation of liquid crystal order: (a) nematic, (b) smectic, and

(c) cholesteric.



parallel to their original orientation, but most of the molecules in the center of the
cell align themselves parallel to the electric field, destroying the twist. At the proper
strength, the electric field will cause all the light to be blocked by the analyzer.

Figure 24.11(b) shows a twisted nematic cell as might be found in a digital
watch display, gas pump, or calculator. Light enters from the left. A linear polarizer
is the first element of this device and is aligned so that its axis is along the left-hand
liquid crystal cell wall alignment direction. With no field, the polarization of the light
twists with the liquid crystal twist, 908 to the original orientation, passes through a
second polarizer with its axis aligned to the right-hand liquid crystal cell wall align-
ment direction, and is reflected from a mirror. The light polarization twists back the
way it came and leaves the cell. Regions of this liquid crystal device that are not
activated by the applied field are bright. If the field is now applied, the light does not
change polarization as it passes through the liquid crystal and will be absorbed by
the second polarizer. No light returns from the mirror, and the areas of the cell that
have been activated by the applied field are dark.

A twisted nematic cell has a voltage threshold below which the polarization
vector is not affected due to the internal elastic forces. A device 10 mm thick might
have a threshold voltage of 3V [25].

Another important nematic electro-optic effect is field-induced birefringence or
deformation of aligned phases. As with the twisted nematic cell configuration, the
liquid crystal cell is placed between crossed polarizers. However, now the molecular
axes are made to align perpendicular to the cell walls and thus parallel to the direc-
tion of light propagation. By using annealed SnO2 electrodes and materials of high
purity, Schiekel and Fahrenschon [30] found that the molecules spontaneously align
in this manner. Their cell worked well with 20 mm thick MBBA. The working mate-
rial must be one having a negative dielectric anisotropy so that when an electric field
is applied (normal to the cell electrodes) the molecules will tend to align themselves
perpendicular to the electric field. The molecules at the cell walls tends to remain in
their original orientation and the molecules within the central region will turn up to
908; this is illustrated in Fig. 24.12.
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(a)

(b)

Figure 24.11 Liquid crystal cell operation: (a) molecule orientation in a liquid crystal cell,

with no field and with field; (b) a typical nematic liquid crystal cell.



There is a threshold voltage typically in the 4–6V range [25]. Above the thresh-
old, the molecules begin to distort and becomes birefringent due to the anisotropy of
the medium. Thus with no field, no light exits the cell; at threshold voltage, light
begins to be divided into ordinary and extraordinary beams, and some light will exit
the analyzer. The birefringence can also be observed with positive dielectric aniso-
tropy when the molecules are aligned parallel to the electrodes at no field and both
electrodes have the same orientation for nematic alignment. As the applied voltage is
increased, the light transmission increases for crossed polarizers [25]. The hybrid
field-effect liquid crystal light valve relies on a combination of the twisted nematic
effect (for the off state) and induced birefringence (for the on state) [1].

Smectic liquid crystals are more ordered than the nematics. The molecules are
not only aligned, but they are also organized into layers, making a two-dimensional
fluid. This is illustrated in Fig. 24.10(b). There are three types of smectics: A, B, and
C. Smectic A is optically uniaxial; smectic C is optically biaxial; smectic B is most
ordered, since there is order within layers. Smectic C, when chiral, is ferroelectric.
Ferroelectric liquid crystals are known for their fast switching speed and bistability.

Cholesteric liquid crystal molecules are helical, and the fluid is chiral. There is
no long-range order, as in nematics, but the preferred orientation axis changes in
direction through the extent of the liquid. Cholesteric order is illustrated in Fig.
24.10(c).

For more information on liquid crystals and an extensive bibliography, see Wu
[35, 36].

24.8 MODULATION OF LIGHT

We have seen that light modulators are composed of an electro- or magneto-optical
material on which an electromagnetic field is imposed. Electro-optical modulators
may be operated in a longitudinal mode or in a transverse mode. In a longitudinal
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mode modulator, the electric field is imposed parallel to the light propagating
through the material, and in a transverse mode modulator, the electric field is
imposed perpendicular to the direction of light propagation. Either mode may be
used if the entire wavefront of the light is to be modulated equally. The longitudinal
mode is more likely to be used if a spatial pattern is to be imposed on the modula-
tion. The mode used will depend upon the material chosen for the modulator and the
application.

Figure 24.13 shows the geometry of a longitudinal electro-optic modulator.
The beam is normal to the face of the modulating material and parallel to the field
imposed on the material. Electrodes of a material which is conductive yet transpar-
ent to the wavelength to be modulated are deposited on the faces through which the
beam travels. This is the mode used for liquid crystal modulators.

Figure 24.14 shows the geometry of the transverse electro-optic modulator.
The imposed field is perpendicular to the direction of light passage through the
material. The electrodes do not need to be transparent to the beam. This is the
mode used for modulators in laser beam cavities, e.g., a CdTe modulator in a
CO2 laser cavity.

24.9 CONCLUDING REMARKS

The origin of the electro-optic tensor, the form of that tensor for various crystal
types, and the values of the tensor coefficients for specific materials have been dis-
cussed. The concepts of index ellipsoid, the wave surface, and the wavevector surface
were introduced. These are quantitative and qualitative models that aid in the under-
standing of the interaction of light with crystals. We have shown how the equation
for the index ellipsoid is found when an external field is applied, and how expressions
for the new principal indices of refraction are derived. Magnetooptics and liquid
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crystals were described. The introductory concepts of constructing an electrooptic
modulator were discussed.

While the basics of electro- and magnetooptics in bulk materials has been
covered, there is a large body of knowledge dealing with related topics which cannot
be included here. A more detailed description of electrooptic modulators is covered
in Yariv and Yeh [37]. Information on spatial light modulators may be found in
Efron [5]. Shen [32] describes the many aspects and applications of nonlinear optics,
and current work in such areas as organic nonlinear materials can be found in SPIE
Proceedings [17, 23].
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25.1 INTRODUCTION

The term ‘‘light sensitive’’ comprises a variety of materials, such as silver compounds
[1], non-silver compounds [2], ferroelectric crystals, photochromic materials, and
thermoplastics [3], and photopolymers and biopolymers [4]. Due to the scope of
the handbook and limited space we review only a fundamental description of the
three most widely used light-sensitive materials. Undoubtedly, the light-sensitive
medium that is mostly used is photographic emulsion; this is because of its high
sensitivity, resolution, availability, low cost, and familiarity with handling and pro-
cessing. Two other popular emulsions are photoresist and photopolymers.

Photographic emulsion has come a long way since its introduction in the 19th
century. Extensive research, basic and private, had led to its development. In con-
trast, photoresist began to be applied in the 1950s, when Kodak commercialized the
KPR solution. Since then, due to its application in the microelectronics industry, a
fair amount of research has been done. Finally, holographic photopolymers began to
be developed more recently (1969) and, with a few exceptions, are still in the devel-
opment stage.

Information presented in this chapter intends to provide a basic understanding
to people who are not familiar with light-sensitive materials. With this foundation it
will be possible to read and understand more detailed information. To be well
acquainted with stock products and their characteristics, the reader should contact
the manufacturers directly. We give a list of their addresses in Section 25.2.1.6.
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25.2 COMMERCIAL SILVER HALIDE EMULSIONS

25.2.1 Black-and-White Films

The earliest observations of the influence of sunlight on matter were made on plants
and on the coloring of the human skin [5]. In addition, in ancient times, people who
lived on the Mediterraean coast dyed their clothes with a yellow substance secreted
by the glands of snails. This substance (tyrian purple) develops under the influence of
sunlight into a purple-red or violet dye. This purple dyeing process deserves much
consideration in the history of photochemistry. The coloring matter of this dye was
identified as being a 6-6 00 dibromo indigo.

25.2.1.1 The Silver Halide Emulsion

The silver halide photographic emulsion [6] consists of several materials such as the
silver halide crystals, a protective colloid, and a small amount of compounds such as
sensitizers and stabilizers. Usually this emulsion is coated on some suitable support
that can be a sheet of transparent plastic (e.g., acetate) or over glass plates, depend-
ing on the application. In the photographic emulsion, the silver halide crystals could
consist of any one of silver chloride (AgCl), silver bromide (AgBr), or silver iodide
(AgI). Silver halide emulsions can contain one class of crystals or mixed crystals such
as AgClþAgBr or AgBrþAgI. Sensitivity of emulsions depends on the mixing
ratio. The protective colloid is the second most important component in the emul-
sion. It supports and interacts with the silver halide grains. During the developing
process it allows processing chemicals to penetrate, and eases the selective develop-
ment of exposed grains. Different colloids have been used for the fabrication of
photographic films; however, gelatin seems the most favorable material for emulsion
making.

25.2.1.2 Photographic Sensitivity

Sensitometry is a branch of physical science that comprises methods of finding out
how photographic emulsions respond to exposure and processing [6, 7].
Photographic sensitivity is the responsiveness of a sensitized material to electromag-
netic radiation. Measurements of sensitivity are photographic speed, contrast, and
spectral response [8].

Characteristic Curve, Gamma, and Contrast Index

After the silver halides in the emulsion have absorbed radiation, a latent image is
formed. In the development step, certain agents react with the exposed silver halide
in preference to the unexposed silver halide. In this form, the exposed silver is
reduced to tiny particles of metallic silver. The unreduced silver halide is dissolved
out in the fixing bath. The developed image can be evaluated in terms of its ability to
block the passage of light; i.e., measuring its transmittance (T) [7]. As the amount of
silver in the negative goes up, the transmittance goes down. Bearing this fact in mind,
the reciprocal of transmittance (opacity) is more directly related to the amount of
silver produced in the developing step. Although opacity increases as silver increases,
it does not do so proportionally: the quantity that does, is called the density
(density ¼ log 1=T), which is used as a measure of the responsiveness of the emulsion
[8–14].
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To quantify the amount of light that falls on the emulsion two quantities
should be considered: the irradiance (E) of the light and the time ðtÞ that the light
beam illuminates the emulsion, which are related by the exposure ðHÞ, defined by
H ¼ Et.

The responsiveness of an emulsion is represented in a graphic form that illus-
trates the relationship between photographic densities and the logarithm of the
exposures used to produce them. This graph is called the characteristic curve and
varies for different emulsions, radiation sources, kinds of developers, processing
times, and temperatures and agitation method. Published curves can be reliably
useful only if the processing conditions agree in all essentials with those under
which the data were obtained.

A typical characteristic curve for a negative photographic material [8] contains
three main sections (Fig. 25.1): the toe, the straight-line portion, and the shoulder.
Before the toe, the curve is parallel to the abscissa axis. This part of the curve
represents the film where two densities are present even if illumination has not
reached the film; they are the base density (density of the support) and the fog
density (density in the unexposed but processed emulsion), i.e., the base-plus-fog
density region. The toe represents the minimum exposure that will produce a density
just greater than the base-plus-fog density. The straight-line portion of the curve
density has a linear relationship with the logarithm of the exposure. The slope,
gamma (	), of this straight-line portion is defined as 	 ¼ �D=� logH and indicates
the inherent contrast of the photographic material. Numerically, the value of 	 is
equal to the tangent of the angle �, the angle that makes the straight-line portion of
the curve with the abscissa. It is usual that manufacturers present not only one
characeristic curve for a given material, but a family of them. Each of these curves
is obtained with a different developing time and presents a different value of 	. With
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these data, a new graph can be made by plotting 	 as a function of developing time
(Fig. 25.2).

Another quantity that can be inferred from the characteristic curve is the
contrast index [15] which is defined as the slope of the straight line drawn through
three points on the characteristic curve. It is an average slope. The straight line
makes an angle with the abscissa, and the tangent of this angle is the contrast
index. This contrast also changes with development time (Fig. 25.3).

The slope of the characteristic curve changes with the wavelength of the light
used to expose the emulsion. This behavior is evident if we plot the contrast index as
a function of recording wavelength. This dependency of contrast varies considerably
from one emulsion to another (Fig. 25.4).

Photographic Speed and Meter Setting

The speed of an emulsion [16–18] can be derived from the characteristic curve. If we
denote the speed by S, the following relation with exposure will follow: S ¼ K=H,
where K is a constant and H is the exposure required to produce a certain density
above base-plus-fog density. Because the characteristic curve depends on the spectral
characteistics of the source used to illuminate the emulsion, the speed will depend
also on this source. Therefore, indicating the exposure source when quoting speed
values is essential. Speeds applied to pictorial photography (ISO speed) are obtained
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by using the formula S ¼ 0:8=H, where H is the exposure (to daylight illumination)
that produces a density of 0.10 above the base-plus-fog density with a specified
development. Several factors affect speed adversely, such as aging, high temperature,
high humidity, and the spectral quality of the illumination.

For scientific photography, a special kind of speed value called meter setting is
used [8]. The published meter setting value is calculated using the relation M ¼ k=H,
where k is a constant equal to 8 and H is the exposure that produces a reference
density of 1.6 above base-plus-fog. This value is chosen because scientific materials
are normally used in applications that require higher contrast levels than those used
in pictorial photography. The reference density of 0.6 above base-plus-fog density is
chosen for certain spectroscopic plates.

Exposure Determination

Parameters that are important when a camera, or a related instrument, is used, are
time of exposure, lens opening, average scene luminance, and speed of the photo-
graphic material [19]. The four parameters are related by the equation t ¼ Kf =Ls,
where t is the exposure time (seconds), f is the fnumber, L is the average scene lumi-
nance, S is the ISO speed, and K is related with the spectral response and transmis-
sion losses in the optical system [16, 17]. Other equations can be used to calculate the
time of exposure [19].

Spectral Sensitivities of Silver Halide Emulsions

The response of silver halide emulsions to different wavelengths can vary. This
response is shown in spectral sensitivity plots. These curves relate the logarithm of
sensitivity as a function of the wavelength. Sensitivity is a form of radiometric speed
and is the reciprocal of the exposure required to produce a fixed density above a
base-plus-fog density [8] (Fig. 25.5).

25.2.1.3 Image Structure Characteristics

To select the best photographic emulsion for a specific application, in addition to the
sensitometric data, image structure properties should also be considered.

Granularity

When a developed photographic image is examined with a microscope, it can be seen
that the image is composed of discrete grains formed of filaments of silver [6, 8, 20–22].

Light-sensitive Materials 883

Figure 25.4 Behavior of contrast index with wavelength of the recording light.



The subjective sensation of the granular pattern is called the graininess. When a
uniformly exposed and processed emulsion is scanned with a microdensitometer
having a small aperture, a variation in density is found as a function of distance,
resulting from the discrete granular structure of the developed image. The number of
grains in a given area varies and causes density fluctuations that is called granularity.
The microdensitometer shows directly the rms (root mean square) granularity [8],
which has values ranging between 5 and 50; the lower numbers indicate finer grain.
Granularity has been studied extensively. For a more in-depth knowledge we suggest
consulting the references.

Photographic Turbidity and Resolving Power

The turbidity of a photographic emulsion results from light scattered by the silver
halide grains and light absorption by the emulsion [23, 24]. This causes a gradual
widening of the recorded image as the exposure is increased [8] (Fig. 25.6).

Resolving power is the ability of a photographic material to maintain in its
developed image the separate identity of parallel bars when their relative displace-
ment is small. Resolving power values specify the number of lines per millimeter that
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can be resolved in the photographic image of a test object, commonly named the test
chart. The test object contrast (TOC) has a direct relation to the resolving power
values that are often reported for test objcts with the low contrast of 1.6:1 and test
objects with the high contrast of 1000:1. Resolving power can be affected by factors
such as turbidity, spectral quality of the exposed radiation, developer, processing
conditions, exposure, and grain sizes.

Modulation Transfer Function, (MTF)

For light-sensitive emulsions, the MTF [6, 8, 25] is the function that relates the
distribution of incident exposure in the image formed by the camera lens to the
effective exposure of the silver halide grains within the body of the emulsion layer.
To obtain these data, patterns having a sinusoidal variation in illuminance in one
direction are exposed to the film. The ‘‘modulation’’ Mo for each pattern can be
expressed by the formula Mo ¼ ðHmax �HminÞ=ðHmax þHminÞ, where H is the expo-
sure. After development the photographic image is scanned in a microdensitometer
in terms of density. These densities of the trace are interpreted in terms of exposure,
by means of the characteristic curve, and the effective modulation of the image Mi is
calculated. The MTF (response) is the ratio Mi=Mo plotted (on a logarithmic scale)
as a function of the spatial frequency of the patterns (cycles/mm). Parameters that
should be mentioned when specifying an MTF are spatial frequency range, mean
exposure level, color of exposing light, developer type, conditions of processing and,
sometimes, the fnumber of the lenses used in making the exposures, Fig. 25.7.

Sharpness

Sometimes the size of the recorded images is larger than the inverse of the highest
spatial frequency that can be recorded in the film. However, the recorded image
shows edges that are not sharp. The subjective impression of this phenomenon is
called sharpness and the measurement of this property is the acutance. Several
methods to measure acutance have been proposed [26].

25.2.1.4 Image Effects

Reciprocity

The law of reciprocity establishes that the product of a photochemical reaction is
determined by the total exposure ðHÞ despite the range of values assumed by either
intensity or time. However, most photographic materials show some loss of sensi-
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tivity (decreased image density) when exposed to very low or very high illuminance
levels, even if the total exposure is held constant by adjusting the exposure time. This
loss in sensitivity (known as reciprocity-law failure) means more exposure time (than
normal calculations indicate) is needed at extreme levels of irradiance to produce a
given density. Reciprocity effects can be shown graphically by plotting the logH vs.
log intensity for a given density. Lines at 458 represent constant time (Fig. 25.8).
Other image effects, present at exposure time, that affect the normal behaviors of
emulsions are the following: intermittency effect, Clayden effect, Villard effect, solar-
ization, Herschel effect, and Sabattier effect [8].

Adjacency Effects in Processing

These effects are due to the lateral diffusion of developer chemicals, reaction pro-
ducts, such as bromide and iodide ions, and exhausted developer within the emulsion
layer in the border of lightly exposed and heavily exposed areas [6, 19, 21]. This
phenomenon presents itself as a faint dark line just within the high-density (high-
exposure) side of the border. This is the border effect. Related to this effect is the
Eberhard effect, Kostsinky effect, and the MTF effect.

25.2.1.5 Development

The result of the interaction of light with the emulsion is the formation of a latent
image. This image is not the cause of the reduction of the silver halide grains to silver
by means of the developer but it causes the exposed grain to develop in less time than
an underexposed grain. To form a latent image, only about 5–50 photons are needed.
The development process [6, 28, 29] will amplify these phenomena by a factor of 107.
This operation is done by the deposition of silver from the developer on the grain
and is proportional, to some extent, to the amount of light action on the grain. The
role of the developer on the emulsion has been studied widely and through many
years and yet it seems it is not completely clear what happens in the process. A
practical developing solution contains the developing agent, an alkali, a preservative,
an antifoggant, and other substances such as wetting agents. For a more detailed
information, the reader should consult the references.
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25.2.1.6 Commercial Black-and-White, Color and Holographic Films

Kodak

Kodak manufactures a multitude of photographic products such as emulsions,
books, guides, pamphlets, photographic chemicals, and processing equipment.

A partial list of Kodak photographic emulsions is given in the Kodak catalog
L-9 [30]. There are listed about 63 black-and-white films and plates, 60 color films
(color negative and reversal films). Also, are listed about 29 black-and-white and
color papers.

For the scientific and technological community publication, Kodak P-315 [8] is
highly recommended because it describes with detail the application of scientific films
and plates. (Table IV on page 6d of this reference should be consulted because it
exhibits different emulsion characteristics.) This publication is a good general refer-
ence; however, because it is old (1987), some films and plates mentioned in it are not
fabricated anymore. The reason for these discontinuities is the wide use of CCDs.
Another publication that is also useful for scientists and technicians is the Kodak
Scientific Imaging products catalog. For more information write to Eastman Kodak
Company, Information Center, 343 State Street, Rochester, NY 14650–0811.

Agfa

Agfa fabricate black-and-white, color negative, and reversal films; they do not fab-
ricate holographic films and plates anymore [31]. To request information write to
Agfa Corporation, 100 Challenge Road, Ridge Field Park, NJ 07660, USA. Tel.
(201) 440-2500. 1-800-895-6806. In Europe, contact Agfa-Gevaert NV, Septstraat 27,
B-2510 Mortsel, Antwerp, Belgium.

Fuji Film

Fuji Film fabricates black-and-white, color negative, and reversal films. Inquiries can
be addressed to Fuji Film USA Inc., 555 Taxter Rd, Elsmford, NY 10523. (914) 789-
8100, (800) 326-0800, ext 4223 (western USA).

Other manufacturers of black-and-white, color emulsion, and holographic
emulsions are Ilford Limited, Mobberly, Knutsford, Cheshire WA16 7HA, UK
and Polaroid Corp., 2 Osborn Street, Cambridge, MA 02139. Note: in 1992, Ilford
stopped the production of holographic plates.

The following company fabricates the Omnidex photopolymer holographic
film: du Pont de Nemours and Co., Imaging Systems Department, Experimental
Station Laboratory, Wilmington, Delaware 19880-0352.

A list of commercial color and black-and-white films containing not only the
main manufacturers listed above is presented in the magazine Amateur
Photographer, February 15, 1992.

Copies of ANSI/ISO standards are available from the American National
Standards Institute, 1430 Broadway, New York, NY 10018.

25.2.2 Color Films

Silver halide emulsions are primarily sensitive to ultraviolet and blue light. In 1873,
H. W. Vogel [5] working with colloidon dry plates (fabricated by S. Wortley) noted
that these plates presented a greatly increased sensitivity to the green part of the
spectrum. These plates contained a yellowish-red dye (corallin) to prevent halation.
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Vogel studied the role of several dyes in the emulsion and made the discovery of
color sensitizers that extend the sensitivity of the silver halide emulsions into the red
and near-infrared part of the spectrum [32].

Subtraction Process

Color reproduction processes can be divided into two: the direct process, in which
each point of the recorded image will show the same spectral composition as the
original image-forming light at that point; and the indirect process, in which the
original forming light is matched with a suitable combination of colors. The direct
process was invented by Gabriel Lippman in 1891 and is based on the interference of
light. However, it has not been developed sufficiently to be practical. The indirect
method to reproduce color comprises additive and subtractive processes [28]. The
former process presents difficulties and is not used now. The subtractive process is
the basis for most of the commercial products nowadays [21]. Next we describe
briefly the structure of a simple color film, hoping this will clarify the color process
recording [28].

The emulsion will be described in the sense that the light follows. Basically,
color films consists of five layers, three of which are made sensitive by dyes to a
primary color. Besides these dyes, layers contains color formers or color couplers.
The first layer protects the emulsion from mechanical damage. The second layer is
sensitive to blue light. A third layer is a yellow filter that lets pass red and green light
that react with the following layers that are red and green sensitive. Finally, a base
supports the integral tripack, as the structure containing the three light-sensitive
emulsions, the yellow filter and the protecting layer is called. Green-sensitive and
red-sensitive layers are also sensitive to blue light because no matter what additional
spectral sensitization is used emulsions are still blue sensitive.

The most common procedure in the color development process is to form
images by dye forming, a process called chromogenic development. This process
can be summarized in two steps:

developing agentþ Silver halide ! Developer oxidation products

þ Silver metalþHalide ions

then a second reaction follows:

Developer oxidation productsþ Color couplers ! Dye

The color of the dye depends mainly on the nature of the color coupler. At this
step a silver image reinforced by a dye image coexist. Then, a further step removes
the unwanted silver image and residual silver halide. In this process, there are dyes
formed of just three colors: cyan, magenta, and yellow. With combinations of these
colors the original colors in the recorded scene can be replicated.

A variety of other methods exist for the production of subtractive dye images
such as Polacolor and Cibachrome.

25.2.2.1 Sensitometry [19, 33]

Characteristic Curves

Color films can be characterized in a similar way to black-and-white films.
Sensitometric characterization of color films should consider that color films do
not contain metallic silver, as black-and-white films do, but instead, they modulate
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the light by means of the dyes contained in each of the three layers. Because the
reproduction of a given color is made by the addition of three wavelengths, D logH
plots should show three curves, one for each primary color (Fig. 25.9).

Speed for color films is defined by the relation S ¼ K=H as for black-and-white
films (see Section 25.2.1.2); however, this time, K ¼ 10 and H is the exposure to
reach a specified position on the D vs. logH curve.

Spectral Sensitivity Curves

As described above, color films comprise three emulsion layers. Each layer shows a
response to certain wavelengths, or spectral sensitivity, expressed as the reciprocal
of the exposure (in ergs/cm2) required to produce a specified density (Fig. 25.10)
[6].

25.2.2.2 Image Structure Characteristics [19]

Granularity, Resolving Power, and MTF

In the conventional color process the oxidized developing agent diffuses away from
the developing silver grain until color coupling takes place at some distance. In fact
each grain gives place to a roughly spherical dye cloud centered on the crystal and,
after all unwanted silver has been removed, only the dye colors remain. Because
these dye clouds are bigger than the developed grains, the process of dye develop-
ment yields a more grainy image. The diffuse character of color images is also
responsible for sharpness that is lower than that yielded by black-and-white devel-
opment of the same emulsion.

In Section 25.2.1.3 we mentioned the terms granularity graininess, resolving
power, and MTF for black-and-white films. These terms apply also to color films
[19].
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25.3 SILVER HALIDE EMULSIONS FOR HOLOGRAPHY

25.3.1 Introduction

The objective of a photosensitive material to be used in holography is the recording
of an interference pattern with the highest fidelity. The result of the action of light
onto the light-sensitive material can be exposed in any of the three forms: local
variations of refractive index, absorption, or thickness. At present, a variety of
materials [3] are used to record the interference patterns; however, the most popular
material is the holographic silver halide plate. This emulsion can record the high
spatial frequencies found in the holographic setups. Interference patterns for trans-
mission holograms can present spatial frequencies between a few lines/mm to about
4000 lines/mm. For reflection holograms, spatial frequencies presented by interfer-
ence patterns will range between 4500 lines/mm and 6000 lines/mm [34]. Some silver
halide holographic emulsions present maximum resolutions of 5000 lines/mm [35].

Full characterization of holographic emulsions cannot be carried out with the
D vs. logH curves (Section 25.2). In holographic emulsions, to reconstruct linearly
the object wave it is necessary that differences in amplitude transmittance should be
proportional to the differences in exposure. Next, we describe briefly two character-
izing methods based on the recoding of sinusoidal interference patterns.

25.3.2 Characterizing Methods for Holographic Emulsions

Several methods have been mentioned in the literature to characterize holographic
emulsions. Some are based on the transmittance–exposure curves [36]. These meth-
ods emphasize experimental recording parameters such as exposure, intensity ratio
of the reference and object beam, angle between recording beams, and recording
wavelength. Parameters measured are transmittance and diffraction efficiency.
Through them the optimum bias level, beam ratio, and spatial frequency of the
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interference pattern can be inferred. Also, the transfer function of the film can be
inferred.

A more general method of characterizing holographic materials that is applic-
able to all types of holograms was proposed by Lin [37]. This method supposes that a
series of sinusoidal interference patterns are recorded in the medium and later dif-
fraction efficiencies ð�Þ are measured. The material can be characterized by the
relation �

p ¼ SHV , where S is a constant (holographic sensitivity), H is the average
exposure, and V is the interference fringes visibility. For the ideal material, curves of
the �

p
as a function of H with constant V as parameter or curves of �

p
as a

function of V with H as parameter are families of straight lines. However, real
materials only show curves with a limited linear section. Through them it is possible
to know maximum attainable �, optimum exposure value, and holographic sensitiv-
ity. Also, these curves allow direct comparison of one material with another or with
the ideal one. This cannot be done with the transmittance–exposure characteristic
curves mentioned above. Two drawbacks of the �

p
vs.H or �

p
vs. V curves are that

they cannot show the spatial frequency response and the noise in reconstruction.

25.3.3 Reciprocity Failure

Failure to follow the law of reciprocity (see Section 25.2.1.4) of holographic materi-
als appears when lasers giving short pulses are employed, such as the Q-switched
lasers. These lasers release energy during a very short time, producing a very high
output peak power [38]. Contrary to this phenomenon, sometimes when continuous
wave (CW) lasers are used and show an intensity-weak output, problems are created
for interference pattern recording because of the very long exposure times needed.

25.3.4 Processing: Developing and Bleaching

Developing and bleaching processes recommended by the manufacturers have been
optimized and should be followed strictly when a general work on holography is
carried out. Much research in developing and bleaching has been done to obtain
special effects such as high-diffraction efficiency, reduced developing time, increased
emulsion speed and low noise in reconstruction, for example. It is advisable to
consult the references and find the method that best suits the experimental needs
[31]. In this last reference also a list or commercial holographic emulsions and some
of their characteristics is exhibited (p. 114).

25.4 PHOTORESIST

Methods of coloring cloth in a pattern by pretreating designed areas to resist pene-
tration by the dye are known as ‘‘resist printing’’ techniques. Batik is an example of
this. Photoresists are organic light-sensitive resins suitable for the production of
surface-relief patterns and selective stencils that protect the underlying surface
against physical, electrical, or chemical attack.

25.4.1 Types of Photoresist

Many kinds of photoresists are commercially available today. Depending on their
action, they may be divided into positive- and negative-working photoresists. In a
negative-type photoresist the exposed areas become insoluble as they absorb light so
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that upon development only the unexposed are dissolved away. In a positive-type
photoresist the exposed areas become soluble and dissolve away during the devel-
opment process.

The first negative photoresists were produced in the 1950s, and were made
possible by the evolution of the electronics industry. Kodak photoresist (KPR),
produced by the Eastman Kodak Company (Rochester, NY), was the first of a
range of high-resolution materials that polymerize under light and become insoluble
in organic developer compounds. Polymerized photoresist is resistant to ammonium
persulphate, which can be used for etching copper printed circuit boards. A higher-
resolution thin-film resist (KTFR) was developed in the 1960s. These resists are
members of two distinct families of negative photoresists: those based on an ester
solvent (KPR) and those based on a hydrocarbon solvent (KTFR). Processing solu-
tions such as developers and thinners are not interchangeable between the two
families.

Positive photoresists do not polymerise upon exposure to light, but their struc-
ture releases nitrogen and forms carboxyl groups. The solubility acquired through
the exposure enables the positive stencil to be washed out in aqueous alkali. Positive
photoresists are basically composed of three components: a photoactive compound
(inhibitor), a base resin, and a solvent. The base resin is soluble in aqueous alkaline
developers and the presence of the photoactive compound strongly inhibits its dis-
solution. The light neutralizes the photosensitive compound and increases the solu-
bility of the film. After development in such solutions, an intensity light pattern is
converted into a relief structure. The Shipley Co. Inc. (Newton, MA 02162) produces
good positive photoresists consisting of Novolak resins with naphthoquinone dia-
zodes functioning as sensitizers (AZ formulations).

Most of the available photoresists are sensitive to light in the blue and ultra-
violet regions (300–450 nm) of the spectrum, although deep UV (200–270 nm) photo-
resists are also obtainable.

The choice of photoresist for a particular application is based on a tradeoff
among sensitivity, linearity, film thickness, resolution capability, and ease of appli-
cation and processing. For instance, in holography and other optical applications,
the resolution must be better than 1000 lines/mm and a linear response is usually
desired. In microlithography one needs to fabricate line structures of micron (mm)
and even submicron dimensions and it is preferable to have a highly nonlinear
response of the material.

25.4.2 Application and Processing

Photoresist is provided in the form of a resin suitable for application on to a clean
surface. The procedure of deposition, exposure, and development of a photoresist
film can vary, depending on the particular kind of photoresist and the application.
The preferred method of depositing a photoresist film on the substrate seems to be
spin-coating. Fairly even films of photoresist, ranging in thickness from fractions of
a micron, to more than 5 mm, can be produced with such a method. For the produc-
tion of thin films, the substrate must be spun at speeds between 4000 and 7000 rpm.
For thicker films, speeds as low as 1000 rpm can be used, at the expense of film
uniformity. The quality and adhesion of the coated films to the substrate depends
critically on its cleanliness. With positive photoresist the coatings should be allowed
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to dry, typically, for a few hours and be subsequently baked to allow for the eva-
poration of the remaining solvents. After exposure, the sample is developed in a
solution of developer and water. The time and temperature of baking, the dilution
ratio of the developer, the time and temperature of development, as well as the
wavelength of the exposing light must be chosen for the particular kind of photo-
resist employed and determine its sensitivity and the linearity of its response.

25.4.3 Applications in Optics

Photoresists find their main application in the electronics industry, where they are
used in the production of microcircuits [39]. However, they also have many impor-
tant applications in optics. Among others, we can mention the fabrication of holo-
graphic gratings [40–42], holograms [43, 44], diffractive optical elements [45, 46], and
randomly rough surfaces [47, 48]. Perhaps the most common and illustrative appli-
cation of photoresist in optics is the production of the master plates for the fabrica-
tion of embossed holograms, which have become commonplace in modern life.

There is also a trend to create miniature opto-electro-mechanical instruments
and subsystems. The existing technology to fabricate integrated circuits is being
adapted to fabricate such devices and, since their manufacture is based on micro-
lithography, the use of photoresist is a must. For example, refractive microlenses
have been made by producing ‘‘islands’’ of photoresist on a substrate and baking
them in a convection oven to reshape them. Other examples include microsensors,
microactuators, and micromirrors. For a more complete picture of the development
of this area of technological research, the interested reader is referred to the
November 1994 issue of Optical Engineering (vol. 33, pp. 3504–3669).

25.5 PHOTOPOLYMER HOLOGRAPHIC RECORDING MATERIALS

25.5.1 Introduction

The principle of holography was described by Denis Gabor some 50 years ago [49].
However, because of the unavailability of monochromatic light sources exhibiting
sufficient coherence length, this principle, which was expected to open new vistas in
the field of information recording, remained dormant for some 15 years.

The laser effect obtained by Maiman in 1960 [50] from A. Kastler’s pioneering
theoretical work [51] triggered off a series of experiments that form the early refer-
ences in practical holography. Among them, the off-axis recording technique
described by Leith and Upatneiks [52] must be regarded as a key to the revival of
interest in the field of holography. About the same time, Denisyuk’s research work
[53] on volume holography opened up another fascinating way that resuscitated
Lippman’s old proposals.

The actual possibility of recording and reconstructing three-dimensional
images through a hologram brought about a recrudescence of activity in the scientific
community all around the world. Finding out and optimizing new recording materi-
als with a great variety of characteristics became the purpose of a great number of
research programs. High-energy sensitivity and resolution, broad spectral response
but also simple recording and processing procedure are considered to be indispen-
sable. Furthermore, the demand for self-processing or erasability makes the design
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of an ideal recording material a challenge for the chemists specializing in photosen-
sitive materials.

The most widely used recording material that has long been known before the
emergence of holography is silver halide emulsion. It has been thoroughly inves-
tigated for the purpose of holographic recording. In spite of the multifarious
improvements introduced during the last 30 years, the typical limitation of these
media – the high grain noise resulting in poor signal-to-noise ratio – has prompted
investigators to imagine new recording media. Their search has been focused on
materials not suffering from this limitation and that would in essence exhibit a
grainless structure.

The wide range of applications of holography is a powerful incentive for
researchers concerned with this challenge. Indeed, holographic optical elements,
holographic displays, videodiscs and scanners, integrated optic devices, optical com-
puting functions, or large-capacity optical memories using volume holography tech-
niques are, as many fields of optics, bursting with activity.

25.5.2 Fundamentals

Basically, photopolymer holographic recording systems are compositions consist-
ing of, at least, a polymerizable substance and a photoiniator, the fate of which is
to absorb the holographic photons and generate active species, radicals, or ions
capable of triggering the polymerization itself. This composition can also contain
a great variety of other structures that are not essential to the polymerization
process [54–58]. They are generally incorporated in the formulation with the
object of improving the recording properties. In this respect, it should be remem-
bered that:

. the sensitizer is used to extend the spectral range of sensitivity of the sensi-
tive material

. the binder introduces some flexibility in the viscosity of the formulation and
may exercise some influence on the diffusive movements that take place
during the recording process.

A large number of chemical structures containing either unsaturations, i.e. multiple
bonds or cycles, are known to undergo polymerization when subjected to illumina-
tion [59]. This kind of process should, theoretically, achieve fairly high efficiency
because a single initiating event can trigger a chain polymerization involving a large
number of reactive monomer molecules. When the pocess is photochemically
initiated, e.g. in holographic recording, the number of monomer units converted
per initiating species is commonly referred to as the polymerization quantum
yield. It stands to reason that the energy sensitivity of any photopolymer recording
system depends to a great extent on this quantum yield.

It is, thus, important to be fully aware of the typical values of this parameter,
that never exceeds 104 at the very best. Accordingly, as long as the process used for
recording holograms with polymerizable material involves the growth of a polymer
chain through a bimolecular-like process requiring the diffusion of a monomer to a
living macroradical, the practical values of the energy sensitivity remain far lower
than those of silver halide gelatins.
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25.5.2.1 Photopolymers and Holographic Recording

Without getting to the roots of holography, it is nevertheless important to examine
the adaptation of photopolymer materials to the different characteristics of the
recording process. In this respect, a classification of holograms based on the geo-
metry of recording, record thickness, and modulation type allows many specificities
of polymer materials to be considered in the perspective of their application to
holography.

Geometry

Basically, two different geometries are used to record holograms [60 61]. When a
record is made by interfering two beams arriving at the same side of the sensitive
layer from substantially different directions, the pattern is called an off-axis holo-
gram. The planes of interference are parallel to the bisector of the reference-to-object
beam angle. Since the volume shrinkage inherent in the polymerization appears
predominantly as a contraction of the layer thickness, it does not substantially
perturbate the periodic structure of the pattern of chemical composition of the
polymer as the recording process proceeds to completion. The polymer materials
are thus fully suitable for recording transmission holograms.

On the contrary, when a hologram is recorded by interfering two beams travel-
ing in opposite direction, i.e., the Lippman or Denisyuk configuration, the interfer-
ence planes are essentially parallel to the recording layer. Therefore, the shrinkage
may cause their spacing to decrease, thus impairing the hologram quality.
Consequently, the problem of volume shrinkage must be considered with great
care in the formulation of photopolymerizable systems used to record reflection
holograms.

Thickness

Holograms can be recorded either as thin or thick holograms, depending on the
thickness of the recording medium and the recorded fringe width. In a simplified
approach, these two types of hologram can be distinguished by the Q-factor defined
as [62]:

Q ¼ 2
d=n	2;

where 
 is the holographic wavelength, n is the refractive index, d is the thickness of
the medium, and 	 is the fringe spacing. A hologram is generally considered thick
when Q 
 10, and considered thin otherwise.

The suitability of photopolymer materials for recording both thin and thick
holograms must be examined with respect to the absorbancy of the corresponding
layer at the holographic wavelength and the scattering that depends on the signal-to-
noise ratio. As regards the absorbance parameter, it is related to the extinction
coefficient of the initiator or the sensitizer. With a value of this coefficient in the
order of 104 M

�1:cm�1, a concentration of 0.5 M, and an absorbance of at least 0.2 (a
set of experimental parameters that corresponds to extreme conditions), the mini-
mum attainable value of the film thickness is about 1 mm. Ultimately, the maximum
thickness is limited by the inverse exponential character of the absorbed amplitude
profile in the recording material: the thicker the sample is, the more the absorbancy
has to be reduced. Although there is no limitation to this homographic interdepen-
dence between the thickness and the absorbance parameters, the maximum values
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are determined by the overall absorptivity that determines the photonic yield
(absorbed to incident intensity ratio) and, correspondingly, by the energetic sensi-
tivity. In addition, the impurities, the microheterogeneities as well as the submicro-
scopic grain structure of the glassy photopolymer material, ultimately introduce a
practical limitation of a few millimeters.

Type of Modulation

Holograms are also classified according to the type of modulation they impose on a
reconstructing wavefront depending on the change incurred by the recording med-
ium during the holographic illumination. If the incident pattern is recorded by virtue
of a density variation of the sensitive layer that modulates the amplitude of the
reconstruction wave, the record is known as an amplitude hologram. If the informa-
tion is stored as a density and/or thickness variation, the phase of the reading beam
is modulated and the record is termed a phase hologram [60].

As a general rule, the photoconversion of a monomer to the corresponding
polymer does not go along with any spectral change in the wavelength range used to
play back holograms. Thus, polymerizable systems apart from some exotic formula-
tions do not lend themselves to the recording of amplitude holograms. On the other
hand, the differences in polarizability caused by different degrees of polymerization
in the dark and the bright regions of recorded fringe patterns and differences in
refractive index resulting therefrom, can be used for the storage of optical informa-
tion.

25.5.2.2 The Different Models of Polymer Recording Materials

Without indulging in the details of macromolecular chemistry, it is important to
clarify what is meant by a polymerizable substance in the composition of a recording
medium. Depending on the mechanism of the polymerization process, three different
meanings that support a classification in three broad categories have to be distin-
guished: (1) single monomer systems; (2) two-monomer systems; and (3) polymer
systems. In addition, depending on the number of reactive functions carried by the
various monomers, the different systems undergo either linear or crosslinking poly-
merization.

The Single-Monomer Linear Polymerization

Only one polymerizable monofunctional monomer is present in the sensitive formu-
lation and gives rise to a linear polymerization. In this case, the recording process
involves a spatially inhomogeneous degree of conversion of this monomer that
images the amplitude distribution in the holographic field. A refractive index mod-
ulation ð�nÞ parallels, then, this distribution, the amplitude of which depends both
on the exposure, the contrast of the fringes in the incident pattern, and the index
change between the monomer and the corresponding polymer. If the recording layer
has a free surface, a thickness modulation may also be created as the result of a
spatially inhomogeneous degree of shrinkage. In spite of the large �n that are
attainable ð� 0:1Þ, these systems are of little value, since they are essentially unstable
and cannot lend themselves to a fixing procedure.

If, however, a neutral substance, i.e., non-chemically reactive, is added to such
a monofunctional monomer, photopolymerization may interfere constructively with
diffusion. Due to the gradient of the conversion rate resulting from the spatially
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inhomogeneous illumination, the photoconverted monomers accumulate in the
bright fringes. Simultaneously, the neutral substance is driven off to the regions
corresponding to the dark fringes. This coupled reaction–diffusion process can be
maintained up to complete conversion of the monomer molecules. The segregation
induced by the diffusion of the neutral substance results in a modulation of refractive
index, the amplitude of which depends only on the difference in refractive index
between this substance and the polymer. Values exceeding 0.2 are theoretically pos-
sible. In practice, the essential limitation is due to the solubility of the lost molecule
in the monomer–polymer system.

Reactive formulations in which the neutral substance is a polymer binder have
also been described. Such systems present the advantage of a highly viscous consis-
tency that simplifies the coating procedure and facilitates the storage. In addition,
the polymer structure of this binder often increases the compatibility with the record-
ing monomer–polymer system. The price to pay for these improvements is a slowing
down of the two-way diffusion process and, consequently, a decrease in energy
sensitivity of the recording formulation.

Two Two-Monomer Linear Polymerization

In contrast with the previously described single-monomer polymerizable systems, it
was surmised that using a mixture of monomers with different reactivity parameters
and refractive indexes and, occasionally, diffusivity, shrinkage, and solubility para-
meters, could be advantageous. The mechanism of a hologram formation in the two-
monomer systems (or by extension multicomponent systems) involves a linear
photocopolymerization process leading to a different composition of the macromo-
lecule, depending on the local rate of initiation that is, itself, controlled by the
incident amplitude. The higher rate of polymerization in light-struck areas compared
with dark regions associated with very different copolymerization ratios of the two
monomers causes the more reactive one to be preferentially converted in the bright
fringes, hence a gradual change in the average composition of the copolymer over the
interfringe.

Compared with single-monomer/polymer binder systems, the multicomponent
systems turn the coupling between diffusion and photochemical reactions to advan-
tage, with an increased compatibility of the components that is related to the copo-
lymer structure and without impairing the sensitivity.

The Single-Monomer Crosslinking Polymerization

The simplest system that works according to this model contains a single multi-
functional monomer. When subjected to a normal exposure with a pattern of inter-
ference fringes, the monomer polymerizes, with the local rate of initiation and
polymerization being a function of the illumination.

Consequently, a modulation of refractive index parallels the spatial distribu-
tion of the degree of conversion, which allows optical information to be recorded.
This system suffers, however, from the same drawbacks as the single monomer
system. When the conversion is carried out until the system vitrifies, both the
light-struck and the non-light-struck regions of the record should finally reach the
same maximum conversion. A careful examination of the polymer structure leads,
however, to a less clear-cut conclusion. Indeed, the number of living macroradicals
depends on the rate of initiation; hence, the indirect influence on the local value of
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the average length of the crosslinks and the architecture of the tridimensional net-
work. Unfortunately, the amplitude of the refractive index resulting from such
structural heterogeneities is too small (< 10�4) to open up real vistas for practical
use.

The Multicomponent Crosslinking Polymerization

Basically, the principle that governs the building up of the index modulation in these
systems shows great similarity to that described in the two-monomer linear poly-
merization. The only difference is the self-processing character that arises from the
use of crosslinking monomers. In fact, substituting monofunctional monomers for a
multicomponent mixture containing at least one polyfunctional monomer leads to
the fast building up of a tridimensional network that converts the initial liquid
system into a gel. This gel behaves, then, like a spongy structure in the holes and
channels of which the less-reactive monomers are able to diffuse almost freely –
hence a more pronounced effect of the transfer phenomena through diffusion pro-
cesses. In addition to that very advantageous feature, the presence of crosslinking
agents results in an entanglement of the polymer structure that finally annihilates the
diffusion of unreacted species. The living macroradicals are, then, occluded in the
structure; the record becomes insensitive to the holographic wavelength and can then
be played back in situ without any degeneration of the hologram quality. Chemical
development of a latent image, fixing, and repositioning are, therefore, not required.
This can be most beneficial for real-time applications such as interferometry or
information storage.

Photocrosslinking Polymers

These systems are another major class of recording materials that has been thor-
oughly studied by many research groups. On exposure to an appropriate pattern of
light distribution, active species are created that trigger, in the end, the geminate
attachment of two linear polymer chains, thus generating a crosslinked material.
Since they basically involve a starting material that is a linear polymer, most of
the systems developed to date from this concept are used in the form of dry films.

Several variations of chemical structure and composition have been described.
The chemical function used to crosslink the linear polymer chain can be part of this
chain (residual unsaturtion or reactive pending group). In such a case, the coupling
of the chain is more or less a static process that does not involve important changes
of configuration or long-range migration, a feature that goes hand in hand with high-
energy sensitivity. In return, since it is impossible to fix the record, the hologram has
to be played back under inactinic conditions.

In a different approach, the crosslinking process may involve at least one
component that is independent of the polymer chains and is, thus, able to diffuse
freely in the matrix. In this case, the record can be made completely insensitive to the
recording wavelength by chemical fixing. Systems can also be designed so as to
obtain self-processing properties.

25.5.3 The Early History of Photopolymer Recording Materials

In 1969, Close et al. [63, 64] were the very first to report on the use of photopoly-
merizable materials for hologram recording. Their pioneering experiment involved a
mixture of metal acrylates, the polymerization of which was initiated by the methy-
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lene blue/sodium p-toluene sulfinate system. The holographic source was a ruby laser
ð
 ¼ 694:3 nmÞ, and energy sensitivities of several hundreds of mJ/cm2 with a dif-
fraction efficiency of about 40% were reported. The holograms required a post-
exposure to a mercury arc lamp to consume the unreacted sensitizer up to complete
bleaching and, thus, prevent them from interacting with the reconstructing beam
that could result in degeneration of the record.

Jenney et al. [65–68] carried out detailed experiments on the same material and
investigated the influence of many optical photonic and chemical parameters. Energy
sensitivities lower than 1mJ/cm2 were achieved on materials sensitized to both the
red and green spectral range with various sensitizers. Many fixing methods were
proposed, such as the flash lamp, thermal treatment or long-term storage in the dark.

The original materials devloped by E. I. Du Pont de Nemours & Co date also
from the early 1970s [69–71]. They were based on acrylate monomers associated with
a cellulose binder and a broadband sensitizing system (sensitive both to UV and
blue-green light). These materials were reported to be able to record transmission
gratings with 90% efficiency; compared with Jenney’s formulation, they exhibited a
relatively flat MTF up to 3000 lines/mm and 6–8 months shelf life when stored in a
cool atmosphere.

Several authors investigated the mechanism of hologram formation [72, 73].
Although not completely understood, a complicated process involving both poly-
merization and monomer diffusion was assumed to account for the density changes
and, thus, the refractive index variations that gradually convert the polymerizable
layer into a hologram.

As possible substitutes for acrylate monomers, Van Renesse [74], and
Sukagawara et al. [75, 76] and Martin et al. [77] used mixtures of acrylamides
and bisacrylamides sensitized to red wavelengths by methylene blue. These systems,
which exhibited fairly high energy sensitivity ð5mJ=cm2Þ, were observed to suffer a
pronounced reciprocity failure. From these new formulations, Sadlej and
Smolinksa [78] introduced a series of variations intended to improve the shelf
life of the recording layers and the dark stability of the hologram. Polymer binders
such as polyvinylacetate and derivatives, polyvinyl alcohol, methyl cellulose, and
gelatin were tested with various results. Besides an improved stability, the polymer
binders were repsorted to induce transmission and sensitivity inhomogeneities. If
one restricts the review of the early ages of photopolymer recording materials to
the years previous to 1975, one cannot afford to ignore Tomlinson’s research work
on polymethylmethacrylate (PMMA) [79, 80]. Three-dimensional gratings were,
thus, recorded in very thick PMMA samples (about 2mm) by interfering two
UV laser beams at 325 nm. Spatial frequencies up to 5000 lines/mm with diffrac-
tion efficiencies as large as 96% were reported.

The mechanism of hologram formation in PMMA was assigned to the cross-
linking of homopolymer fragments by free radicals produced through photocleavage
of peroxide or hydroperoxide groups present in the polymer structure as the result of
its auto-oxidation during the polymerization of the starting material itself. It was
also postulated that the local increase in density may be due to polymerization of
small amounts of unreacted monomer trapped in the PMMA structure. No evidence,
however, was offered in support of these statements. The most obvious disadvantage
of this material was the very poor reproducibility of the holographic characteristics
and the great difficulty of extenting its sensitivity to the visible range.
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In conclusion, it is worthy of note that the foundations used nowadays to
formulate polymerizable systems and to describe the mechanism of hologram for-
mation have been laid from the mid-1970s. The improvements introduced since then
are essentially concerned with the adaptability of the systems, their stability, the
amplitude and the shape of the modulation of the refractive index and/or the thick-
ness, and the signal-to-noise ratio.

25.5.4 The State of the Art

A great number of state-of-the-art reviews [81–91] on recording materials have been
documented in detail over the past decades. Most of these reviews classify photo-
polymers in categories based either on the mechanism of the photochemical process
taking place when holographic irradiation takes place or on the composition of the
sensitive layer. Most frequently, they are divided into (i) photopolymerizable sys-
tems, (ii) photocrosslinking systems, and (iii) doped polymer systems. Another dis-
tinctive feature that is also taken into account to arrange them in categories is the
state of the polymer formulation: i.e., (i) liquid composition and (ii) dry films. As will
be discussed later, such classifications do not fully account for the specificities of all
the physicochemical mechanisms used to record optical information in polymer
materials.

Indeed, all the investigators concur in the belief that hologram formation is a
complicated process involving both photopolymerization and mass transport by
diffusion. Consequently, the distinction introduced between linear and crosslinking
polymerization or copolymerization is hardly justifiable since it does not reflect
basically different behaviors of the materials in terms of photoconversion or diffu-
sion rates. Likewise, the subtle distinction between liquid and dry formulation inso-
far as this refers to the flowing or nonsticky character of a material is quite
inappropriate, since it does not give any indication as regards the possibility of
undergoing mass transport through diffusive movements. In fact, a dry system con-
sisting of a crosslinked copolymer that contains a substantial percentage of residual
monomers may well be the seat of faster liquid–liquid diffusive processes than a
homogeneous liquid formulation with very high viscosity.

In the background of the statements developed in the second paragraph of the
present review, the various recording systems that are in the process of development
in the university research groups and those few ones that are commercially available
can be arranged in three classes: (1) systems requiring development, (2) self-proces-
sing materials, and (3) dichromated gelatin mimetic systems. This classification does
not take into account the physical state of the material before exposition. It puts
forward the recording mechanism and its interrelation with the development and the
processing step.

25.5.4.1 Systems Requiring Post-Treatment

As described earlier, the recording mechanism in photopolymers involves, with
only a few exceptions, the coupling between a photoconversion process and a
diffusion mechanism. On initiation of the polymerization in the region illuminated
by a bright fringe, the monomer converts to polymer. As a result of several kinds
of forcing functions (e.g., gradient of concentration or gradient of solubility),
additional monomer diffuses to these regions from non-light-struck areas while
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the large size of the living polymer chains or elements of polymer network inhibits
their diffusion. When the reactive mixture contains a binder, its solubility in the
monomer may also decrease as the conversion proceeds. Consequently, there may
be some net migration of binder away from the bright areas. This process con-
tinues until no monomer capable of migrating is left and/or until its mobility in the
polymer network becomes negligible. At this stage, the information is recorded in
the polymer layer as a modulation of the refractive index. The diffusive process
may, yet, continue until any remaining monomer is present. In addition, the index
modulation resulting from the partial segregation of the component of the mixture
is often modest.

Several post-treatments aimed at increasing this modulation and/or at cancel-
ing any remaining photosensitivity were described. The following systems exemplify
these different development, fixing, or enhancement treatments (Table 25.1).

du Pont’s Omnidex System

This material, which is endowed with several outstanding features, is one of the most
attractive photopolymers for holographic recording. Various formulations based on
mixtures of aromatic aliphatic acrylates and polymer binders such as cellulose acet-
ate–butyrate are available. These materials that can be sensitized either in the red or
the blue-green wavelength range can record holograms of almost 100% efficiency
with exposure energies down to 50–100mJ/cm2 [92–98].

When imaging such polymerizable formulations, the hologram builds up in
real time, the film vitrifies, and finally the conversion stops. The resulting hologram
is, then, stable on further illumination, and modulations of the refractive index in the
order of 0.01 are typically attained.

A subsequent thermal processing by stoving at 80–1208C for 1–3 hours induces
an important increase of �n (a maximum of 0.073 has been achieved) while the
tuning wavelength changes very little (a few nanometers). Polymer holograms can
also be processed by immersing them in organic liquids that swell the coating or
extract some elements of it. This treatment results in a shift of the playback wave-
length and a bandwidth increase, so that reflection holograms reconstructed with
white light appear brighter to the eye.
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Table 25.1 Characteristics of the Recording Systems Requiring Development

Reference Conditioning

Thickness

(mm)

Recording

wavelength

(nm)

Sensitivity

(mJ/cm2)

Resolution

(lines/mm)

Diffraction

efficiency

(%)

Dupont

Omnidex

Coated on

plastic film

5–100 488–633 10–100 6000 >99

Polaroid

DMP-128

Coated on

plastic film

1–30 442–647 5–30 5000 80–95

PMMA/

titanocene

PMMA block 500–3000 514 4000 — � 100

Acrylamide Coated on

glass

100 633 100 3000 80



Polaroid’s DMP-128 System

Another example of a polymer recording material with specially attractive features
was developed at the Polaroid Corporation. This formulation was based, among
others, on a mixture of acrylates, difunctional acrylamide, and a polyvinylpyrroli-
done binder. The sequential processing steps include: an incubation in a humid
environment prior to exposure; a holographic illumination with a 5–30mJ/cm2 expo-
sure, depending on the type of hologram recorded; a uniform white light illumina-
tion for a few minutes; an incubation in a liquid developer/fixer; a rinse removing the
processing chemicals; and, finally, a careful drying [99–107].

One of the outstanding characteristics of the holograms recorded with these
materials is their insensitivity under high humidity environments (no significant
alteration of the diffractive properties after 9 months incubation at 95% relative
humidity at room temperature). In DMP-128, before chemical processing, the holo-
grams formed shows a diffraction efficiency lower than 0.1%. The immersion in a
developer/fixer bath removes soluble components and produces differential swelling
and shrinkage that greatly amplify the modulation of the refractive index and cause
very bright high diffraction efficiency holograms to appear.

Systems with Thermal or Photochemical Repolymerization

An original polymer material based on an advanced formulation that contains a
variety of monomers (e.g., acrylate, methacrylate, vinylcarbazole), a binder, radical
precursors, solvents, and a sensitizer was developed by Zhang et al. [108]. The fixing
procedure of the holograms recorded with this material involves the overcoating of
the record with a polymerizable liquid formulation, then its annealing and, finally,
the curing of the layer by either a thermal or a photochemical treatment. Since the
peak reflection wavelength depends on the condition of the post-treatment, these
materials were used to fabricate trichromatic filters or pseudocolor reflection holo-
grams.

PMMA/Titanocene Dichloride Systems

Thick PMMA samples containing various amounts of residual MMA and titanocene
dichloride were also investigated for holographic recording in the blue-green wave-
length range [109]. The recording mechanism was assumed to be due to a complex
photoprocess in which photodegradation of the homopolymer chain, photopolymer-
ization of residual monomers, as well as crosslinking of photogenerated fragments
cannot be discriminated. This material presents the outstanding advantage of allow-
ing the superposition of a large number of volume holograms without significant
intertalk.

The Latent Imaging Polymers

A latent imaging polymer was described a few years ago [80]. It was based on a
microporous glass substrate with a nanometric pore diameter on the surface of
which a photosensitive molecule generating radicals was chemisorbed. The
recording process involves: (1) illumination by a pattern of interference fringes,
(2) filling the pores with a polymerizable formulation and, then, (3) uniform
overall exposure.
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25.5.4.2 Self-processing Materials

In spite of their very attractive features, the recording systems described above do
not permit immediate and in-situ reconstruction. Since this property is a prerequisite
to the use of a recording material for applications such as real-time holographic
interferometry, a great deal of work has been devoted to the development of materi-
als, a step that could dispense with any further processing after holographic illumi-
nation. The basic concept underlying the common approach developed by all the
scientists involved in that field is the use of a formulation undergoing both cross-
linking copolymerization and segregation of the polymerizable monomer units. The
full self-processing and fixing character is achieved when the polymerization process
terminates (due to the overall vitrification of the recording sample) just as the ampli-
tude of the refractive index modulation resulting from microsyneresis and differences
in the microscopic composition of the crosslinked polymer chains passes through its
maximum.

A large number of materials developed according to this principle are described
in the literature. They are generally liquid compositions that specially favor the
diffusive motions in the early stages of the recording process. Since the initial visc-
osity of the formulation is a key factor, the major differences are in the choice of
polymerizable structures that allows this parameter to be adjusted. The different
systems are arranged in two categories: (1) the diluent þ oligomer systems and (2)
the prepolymerized multicomponent systems (Table 25.2).

Diluent and Oligomer Systems

These formulations, very popular in the former Soviet Union, were based mainly on
oligourethane-, oligocarbonate-, and oligoether-acrylates and multiacrylates [110].
In some cases, inert components with high refractive indexes were also incorporated.
These compositions are sensitive over the 300–500 nm spectral range, with a max-
imum resolution in the order of 2500 lines/mm. Similar materials sensitive to the He–
Ne wavelength were also developed using acrylamide derivatives as the reactive
monomers, several additives, and the methylene blue/amine system as a sensitizer.
An efficiency of 60% was reported at 633 nm with an energy sensitivity of about
50mJ/cm2 [111–115].
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Table 25.2 Characteristics for the Systems with Self-Processing Properties

Reference Conditioning

Thickness

(mm)

Recording

wavelength

(nm)

Sensitivity

(mJ/cm2)

Resolution

(lines/mm)

Diffraction

efficiency

(%)

Diluent +

oligomers

(FPK-488)

Liquid between

glass plates

20 300–500 20 1500–6000 80

Diluent +

oligomers

(FPK-488)

Liquid between

glass plates

20 633 50 — 60

Pre polymerized

multicomponents

(PHG###)

Liquid between

glass plates

20–100 450–800 100–500 >3000 80



A dry acrylamide–polyvinylalcohol formulation based on the same approach
was also used for optical information storage. This polymeric material exhibits a self-
processing and fixing character, the completion of which requires a fairly long expo-
sure. The records can, however, be played back with an attenuated reading beam
power (200 mW=cm2) before reaching complete inertness. It can also be fixed by
illumination with the 365-nm line of a mercury arc, which terminates the polymer-
ization [116, 117].

The Prepolymerized Multicomponent Systems

The mechanism of hologram formation in these multicomponent systems involves a
differential crosslinking copolymerization between the areas of higher and lower
intensity. Because of the different reactivity parameters, the rates of incorporation
of the monomer structures are different, and a modulation of the chemical composi-
tion of the final fully polymerized material is created. The novelty of these materials
consists in the use of a formulation containing, among others, a highly multifunc-
tional acrylate monomer with such a high reactivity that on preilluminating the layer
with a homogeneously distributed beam, it forms almost instantaneously a sponge-
like structure in the channels and cavities of which the various remaining monomers
diffuse freely during the subsequent holographic illumination. The presence of this
network since the very beginning of the recording process allows the coupling
between photochemical conversion and transport to be more efficient in the sense
that it simultaneously presents the advantage of a liquid formulation over diffusion
taking place and that of solid layers over the shrinkage and the resulting hydrody-
namical strain therefrom. Finally, the refractive index modulation arising from the
modulation of the microscopic chemical composition is much larger than the one
paralleling a modulation of segment density or crosslinking average length.

A series of materials (called PHG-###), formulated according to these general
lines and having sensitivities from 450 to 800 nm, were proposed [118–127]. The
sponge-forming monomer was typically a multifunctional acrylate monomer (pen-
taerythritol tri- or tetra-acrylate, dipentaerythritol pentracrylate). It was associated
with various low functionality acrylates, a xanthene or polymethine dye sensitizer, an
amine cosynergist and, occasionally, specific additives or transfer agents that
improved the recording characteristics. Diffraction efficiencies of about 90% were
achieved with an almost flat frequency response from 500 to 2500 lines/mm. The
application fields such as holographic interferometry (both real-time and time-aver-
age) [121, 126], holographic images [123], computer-generated holograms [124], mul-
tiple holograms, and recording in chopped mode [119] can be quoted in illustration.

25.5.4.3 Photocrosslinkable Polymers

Photocrosslinkable materials are another important class of polymer recording
materials that include two categories of systems: (1) polymers undergoing crosslink-
ing through intercalation of monomer units or by simple coupling of the linear
polymer chain and (2) polymers undergoing crosslinking through a complexation
process involving a metal ion (Table 25.3).

The Monomer/Polymer System

An attractive example of such systems uses poly N-vinylcarbazole as the base poly-
mer, a carbonyl initiator, and a sensitizer. The mechanism of recording involves,
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first, a holographic exposure that induces photocrosslinking to the polymer base in
proportion to the illumination received by every part of the recording layer. A
modulation of density is thus created, and a hologram is recorded. This record is
then pretreated with a good solvent of the initiator–sensitizer system, to remove
these components. The next step consists in swelling the record in a good solvent
of the polymer base; the final treatment involves the deswelling, by dipping in a bad
solvent of the polymer base. This swelling–deswelling treatment causes the cross-
linked regions to reconfigurate, shrink, and finally partially crystallize.
Consequently, the attainable modulation of refractive index exceeds by far the values
reported in other systems (up to 0.32). Several practical applications were developed
with this class of materials, the main feature of which is an almost infinite durability
under extreme environmental conditions (at 708C and 95% RH) [128].

Another system that held the attention of several groups used the photoini-
tiated coupling of linear PMMA. A radical initiator capable of abstracting hydrogen
atoms creates macroradical sites on the polymer backbone, that decay by geminate
recombination. The pattern of interference fringes is thus transferred as a pattern of
crosslinking density. Typically, such systems exhibit a poor energy sensitivity (several
J/cm2) but their angular discrimination capability is excellent over a spatial fre-
quency range extending from 100 to 2000 lines/mm [129].

The Metal Ion/Polymer Systems

All the systems categorized under this title were developed on the model of dichro-
mated gelatine (DCG). Although the base component of this type of material that
has been used as a recording medium ever since 1968 [130] is a biopolymer, it is
generally listed and described under a specific heading in the reviews dealing with
holographic recording. The recording mechanism prevailing in DCG implies the
crosslinking of the gelatin backbone by Cr(III) ions photogenerated through the
reduction of dichromate [Cr(VI)] centers. As the result of a chemical post-treatment
under carefully controlled conditions, a large refractive index modulation can be
achieved (0.08), thus making it possible to record both transmission and reflection
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Table 25.3 Characteristics of the Recording Systems Involving the Crosslinking of a

Polymer Structure

Reference Conditioning

Thickness

(mm)

Recording

wavelength

(nm)

Sensitivity

(mJ/cm2)

Resolution

(lines/mm)

Diffraction

efficiency

(%)

p-Vinylcarbazole Solid film on

glass

2.5–7 488 50–500 800–2500 80

PMMA Solid film on

glass

100–200 488 7000 2000 � 100

DCPVA Solid film on

glass

30–60 488 500 3000 � 70

DCPAA Solid film on

glass

60 488 200 3000 � 65

FePVA Solid film on

glass

60 488 >15 000 3000 80



volume phase holograms with near-ideal diffraction efficiencies. DCG is, besides,
endowed with specially desirable properties, such as uniform spatial frequency
response over a broad range of frequencies (from 100 to about 6000 lines/mm)
and reprocessing capacity [131–134].

In spite of these outstanding advantages, DCG suffers from some typical draw-
backs that may temper the enthusiasm of the holographers. Among others, the
fluctuation of many characteristic parameters from batch to batch, the need for a
fine-tuning of the prehardening treatment, the complex procedure of development
and fixing that requries a specially accomplished know-how, and the sensitivity of
the record to environmental factors are not of lesser importance. In addition to
these, DCG needs to be sensitized by incorporation of a suitable blue dye to allow
extension of its sensitivity to the red. A fair amount of research has been carried out
with regard to the optimization and characterization of these sensitized systems as
well as to their use in various applications such as holographic elements, head-up
display, laser scanning systems, fiber-optic couplers, optical interconnects, and
dichoric filters [135–140]. Since the basic mechanism of the phototransformation
of gelatin is still a controversial question and owing to its typical shortcomings,
several DCG-mimetic systems likely to bring about significant improvements were
studied.

Polyvinylalcohol/Cr(III) Systems (DCPVA)

One of the most popular systems uses polyvinylalcohol (PVA) as the polymer base
and Cr(III) as the crosslinking agent [141]. It has received continuous attention from
many research groups who studied various aspects of its holographic recording
performance: exposure energy, beam ratio, polarization, MTF, angular selectivity,
acidity of the medium, effect of electron donors, effect of plasticizing substances, and
molecular weight of the polymer base. Even though this material exhibits a high real-
time diffraction efficiency (� 65% for an exposure of about 1 J/cm2) several chemical
developing methods allow the final efficiency to be improved (up to 70% for an
exposure level of 200 mJ/cm2) [142, 143]. In a continuing effort to penetrate the
secrets of the recording mechanism of the PVA/Cr(III) systems, many physicochem-
ical studies were carried out. They suggest, convergingly, the intermediacy of Cr(V)
in the photoreduction of Cr(VI) to Cr(III). Such systems were also reported to lend
themselves to sensitization in the red by incorporation of a blue dye (e.g., methylene
blue) [144–154].

Polyacrylic Acid/Cr(III) (DCPAA)

Polyacrylic acid (PAA) was also used as a possible substitute for gelatin to record
volume holograms. Although much less work has been devoted to the optimization
of this material, a great similarity with DCPVA was found. Efficiencies exceeding
65% at an exposure of 200 J/cm2 were obtained [152, 154].

Polyvinylalcohol/Fe(II) (FePVA)

As a continuation of the ongoing search for DCG-mimetic systems, the feasability of
substituting Fe(II) for Cr(III) in PVA-based materials was examined. After optimi-
zation of the initial Fe(III) content, the electron donor structure, and the recording
conditions, a diffraction efficiency of about 80% at an exposure of 25 J/cm2 was
achieved [147].
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25.5.5 Doped Polymer Materials

During the recording step, all of the materials described in this review are the seat of
transformations involving the creation of chemical bonds between monomer or
polymer structures. In essence, the recording process is thus a nonreversible process.
The possibility of obtaining erasable and reusable polymer materials capable of
recording a large number of write/read/erase (WRE) cycles was examined by several
research groups. Several approaches were proposed that employ matrixes of homo-
polymers or copolymers (linear or weakly crosslinked) and dye dopants. The selec-
tion of the dye dopant is essentially dependent on its photochromic character and on
its photostability. Materials doped with azo dyes or spiropyran derivatives were thus
reported to be suitable for real-time reversible amplitude or phase hologram record-
ing. Some of the corresponding systems are capable of more than 104 cycles without
noticeable fatigue, with thermal self-erasing times of a few seconds. Efforts were also
made at developing similar materials where the photochromic active molecule is
chemically intercalated in the polymer structure or bound to a side group. Since
linearly polarized light induces optical anisotropy in the sensitive film due to reor-
ientation and alignment of the absorbing molecules, these doped materials were
mainly used for polarization holographic recording [155–158].

A similar approach was used by several authors who formulated recording
materials in doping PVA with bacteriohodopsin (Table 25.4). This structure is a
protein transducer involved in the mechanism of mammalian vision. Upon absorp-
tion of light energy, this purple ground state sensitizer passes through several inter-
mediate states to a blue light absorbing photoproduct that under standard biological
conditions thermally reverts to the ground state material within a decay time of
about 10ms. This back-process can be drastically slowed down by addition of che-
mical agents. This product was used as a dopant in holographic recording media that
can be read out at wavelengths between 620 and 700 nm in some interesting applica-
tions such as dynamic filtering with a spatial light modulator or optical pattern
recognition (159–162].

25.5.6 Spectral Hole Burning

Hole burning is a phenomenon that takes places when molecules undergoing a
photoreaction generating photoproducts absorbing at different spectral positions
are excited by a sharply monochromatic light. With such assumptions, a ‘‘hole’’ is
left in the inhomogeneously broadened absorption band. If this operation is repeated
at different wavelengths within the absorption band, every hole can be associated
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Table 25.4 Holographic Characteristics of the Dye-Doped Recording Systems

Reference Conditioning

Thickness

(mm)

Recording

wavelength

(nm)

Sensitivity

(mJ/cm2)

Resolution

(lines/mm)

Diffraction

efficiency

(%)

Methyl orange/

PVA

Solid film on

glass

15–30 442–488 >300 500–4000 35

Bacteriorhodopsin Membrane 150–500 360–600 — >5000 11



with a bit of information and a high storage capacity becomes available. The feasa-
bility of this concept was demonstrated using an oxazine dye in a polyvinylbutyral
matrix at 4.1K [163, 164].

25.6 CONCLUSION

The present review takes stock of all the different approaches reported in the spe-
cialized literature to formulate polymer or polymerizable classes of materials for
holographic recording. The time to achieve an ideal holographic recording material
is, no doubt, still a long way off but, in some degree, several existing formulations,
nevertheless, meet some of the required properties needed for application.

Even though polymer materials will never excel silver halides in terms of energy
sensitivity owing to intrinsic limitations, their high storage capability, rapid access,
excellent signal-to-noise ratio and, occasionally, self-processing character, open up
new vistas.

Whatever directions in which attempts at perfecting these materials are carried
out by multidisciplinary research groups, it must be kept in mind that the key
question in designing new polymerizable systems for holographic recording is not
concerned with the tailoring of more or less exotic initiator or monomer structures
likely to undergo faster curing. It is of paramount importance to realize that the
main issue to be dealt with is definitely to gain a fuller insight into the coupling
between photochemically induced monomer conversion, shrinkage, and mass trans-
fer. In this respect, the ongoing activity devoted to their improvement from a thor-
ough investigation of the recording mechanism is a cheerful omen.

ACKNOWLEDGMENTS

We would like to thank Eugenio R. Mendez (CICESE, Ensenada, c.p. 22860,
Mexico) for writing the section devoted to photoresist.

S. Calixto would like to acknowledge Z. Malacara and M. Scholl for fruitful
discussions. Thanks are given to Raymundo Mendoza for the drawings.

REFERENCES

1. Mees, C. E. K. and T. H. James, eds, The Theory of the Photographic Process, 3rd Edn,

Macmillan, New York, 1966.

2. Kosar, J., Light Sensitive Systems: Chemistry and Applications of Non-Silver Halide

Photographic Processes,’’ John Wiley, New York, 1965.

3. Smith, H. M., ‘‘Holographic Recording Materials,’’ in Topics in Applied Physics, Vol.

20, Springer-Verlag, New York, 1977.

4. Bazhenov, V., S. Yu Marat, V. B. Taranenko, and M. V. Vasnetsov, ‘‘Biopolymers for

Real Time Optical Processing,’’ in Optical Processing and Computing, H. H. Arsenault,

T. Zoplik, and Macukow, eds, Academic Press, San Deigo, 1989, pp. 103–144.

5. Eder, J. M., History of Photography, Dover, New York, 1978, Chapters 1, 2 and 64.

6. Carrol, B. H., G. C. Higgins, and T. H. James, Introduction to Photographic Theory. The

Silver Halide Process, John Wiley and Sons, New York, 1980.

7. Todd, H. N., Photographic Sensitometry a Self Teaching Text, John Wiley, New York,

1976.

908 Calixto and Lougnot



8. Scientific Imaging with Kodak Films and Plates, Publication P-315, Eastman Kodak,

Rochester, New York, 1987.

9. ANSI PH 2.16 – 1984, ‘‘Photographic Density: Terms, Symbols and Notation.’’

10. ANSI PH 2.19 – 1986, ‘‘Photographic Density Part 2: Geometric Conditions for

Transmission Density Measurements.’’

11. ISO 5/1 – 1984, ‘‘Photographic Density: Terms, Symbols and Notation.’’

12. ISO 5/2 – 1984, ‘‘Photographic Density Part 2: Geometric Conditions for Transmission

Density Measurements.’’

13. ISO 5/3 – 1984, ‘‘Photographic Density, Part 3: Spectral Conditions for Transmission

Density Measurements.’’

14. Swing, R. E., ‘‘Microdensitometry,’’ SPIE Press, MS 111 (1995).

15. Niederpruem, C. J., C. N. Nelson, and J. A. C. Yule, ‘‘Contrast Index,’’ Phot. Sci. Eng.,

10, 35–41 (1966).

16. ISO 6 – 1975, ‘‘Determination of Speed Monochrome, Continuous-Tone Photographic

Negative Materials for Still Photography.’’

17. ANSI PH 2.5 – 1979, ‘‘Determination of Speed Monochrome, Continuous-Tone

Photographic Negative Materials for Still Photography.’’

18. ANSI PH 3.49 – 1971, R1987.

19. Thomas, W., SPSE Handbook of Photographic Science and Engineering, Wiley, New

York, 1973.

20. ANSI PH 2.40 – 1985, R1991.

21. Altman, J. H., ‘‘Photographic Films,’’ in Handbook of Optics, Michel Bass, ed.,

McGraw-Hill, New York, 1994.

22. Dainty, J. C. and R. Shaw, Image Science, Academic Press, London, 1974.

23. ISO PH 6328 – 1982, ‘‘Method for Determining the Resolving Power of Photographic

Materials.’’

24. ANSI Ph 2.33 – 1983, ‘‘Method for Determining the Resolving Power of Photographic

Materials.’’

25. ANSI PH 2.39 – 1984, ‘‘Method of Measuring the Modulation Transfer Function of

Continuous-Tone Photographic Films.’’

26. Crane, E. M., ‘‘Acutance and Graunlance,’’ Proc. Soc. Photo-Opt. Instrum. Eng.., 310,

125–130 (1981).

27. Bachman, P. L., ‘‘Silver Halide Photography,’’ in Handbook of Optical Holography,

Caulfield, J., ed., Academic Press, London, 1979, pp. 89–125.

28. Walls, H. J. and G. G. Attridge, Basic Photoscience, How Photography Works, Focal

Press, London, 1977.

29. Grant Haist, Modern Photographic Processing, Wiley Interscience, New York, 1979,

Chapter 6, pp. 284, 324.

30. 1994 Kodak Professional Catalog, Publication L-9, Eastman Kodak, Rochester, New

York, 1994.

31. Bjelkhagen, H. I., Silver-Halide Recording Materials for Holography and Their

Processing, Springer-Verlag, New York, 1993.

32. Gibson, H. Lou, ‘‘Photographic Film,’’ in The Infrared and Electrooptical Systems

Handbook, Acetta, J. S. and D. L. Shumaker, eds, Spie Optical Engineering Press,

Washington, 1992, pp. 519–539.

33. Kodak Color Films, Publication E-77, Eastman Kodak, Rochester, New York, 1977.

34. Collier, R. J., C. Burckhardt, and L. H. Lin, Optical Holography, Academic Press, New

York, 1971, Chapter 10, p. 271.

35. Agfa-Gevaert N.V., B-2510, Mortsel, Belgique, 1983. Holographic Materials. Technical

Bulletin.

36. Friesem, A. A., A. Kozma, and G. F. Adams, ‘‘Recording Parameters of Spatially

Modulated Coherent Wavefronts,’’ Appl. Opt., 6, 851–856 (1967).

Light-sensitive Materials 909



37. Lin, L. H., ‘‘Method of Characterizing Hologram – Recording Materials,’’ J. Opt. Soc.

Am., 61, 203–208 (1971).

38. Nassenstein, H., H. J. Metz, H. E. Rieck, and D. Schultze, ‘‘Physical Properties of

Holographic Materials,’’ Phot. Sci. Eng., 13, 194–199 (1969).

39. Horne, D. F., ‘‘Microcircuit Production Technology,’’ Adam Hilger, Bristol, 1986, pp.

13–19.

40. Hutley, M. C., Diffraction Gratings, Academic Press, London, 1982, Chapter 4.

41. Popov, E. K., L. V. Tsonev, and M. L. Sabeva, ‘‘Technological Problems in

Holographic Recording of Plane Gratings,’’ Opt. Eng., 31, 2168–2173 (1992).

42. Mello, B. A., I. F. da Costa, C. R. A. Lima, and L. Cescato, ‘‘Developed Profile of

Holographically Exposed Photoresist Gratings,’’ Appl. Opt., 34, 597–603 (1995).

43. Bartolini, R. A., ‘‘Characteristics of Relief Phase Holograms Recorded in

Photoresists,’’ Appl. Opt., 13, 129–139 (1974).

44. Bartolini, R. A., ‘‘Photoresists,’’ inHolographic Recording Materials, Smith, H. M., ed.,

Springer-Verlag, New York, 1977, pp. 209–227.

45. Haidner, H., P. Kipfer, J. T. Sheridan, et al., ‘‘Polarizing Reflection Grating

Beamsplitter for the 10.6-mm Wavelength,’’ Opt. Eng., 32, 1860–1865 (1993).

46. Habraken, S., O. Michaux, Y. Renotte, and Y. Lion, ‘‘Polarizing Holographic Beam

Splitter on a Photoresist,’’ Opt. Lett., 20, 2348–2350 (1995).

47. O’Donnell, K. A. and E. R. Méndez, ‘‘Experimental Study of Scattering from

Characterized Random Surfaces,’’ J. Opt. Soc. Am., A4, 1194–1205 (1987).

48. Méndez, E. R., M. A. Ponce, V. Ruiz-Cortés, and Zu-Han Gu, ‘‘Photofabrication of

One-Dimensional Rough Surfaces for Light Scattering Experiments,’’ Appl. Opt., 30,

4103–4112 (1991).

49. Gabor, D., Nature, 161, 777 (1948).

50. Maiman, T. H., Nature, 187, 493 (1960).

51. Kastler, A., J. Phys. Rad., 11, 255 (1950).

52. Leith, E. N. and J. Upatneiks, J. Opt. Soc. Am., 52, 1123 (1962).

53. Denisyuk, Y. N., Soviet Phys-Doklady, 7, 543 (1963).

54. Allen, N. S., ed., Photopolymerization and Photoimaging Science and Technology,

Elsevier, New York, 1989.

55. Fouassier, J. P., Makormol. Chem., Makromol. Symp., 18, 157 (1988).

56. Decker, C., Coating Technology, 59(751), 97 (1987).

57. Crivello, J. V. and J. W. H. Lam, Macromolecules, 10, 1307 (1977).

58. Lougnot, D. J., in Techniques d’utilisation des photons, DOPEE ed., p. 245–334 Paris

(1992).

59. Decker, C., in Fouassier, J. P. and J. F. Rabek (eds) Radiation Curing in Polymer

Science and Technology, Elsevier Applied Science, 1973.

60. Hariharan, P., Optical Holography: Principle, Technology and Applications, Cambridge

University Press, Cambridge, 1984, pp. 88–115.

61. Francon, M., Holographie, Masson Ed., Paris, 1969.

62. Kogelnik, H., Bell. Syst. Tech. J., 48, 2909 (1969).

63. Margerum, J. D., Polymer Preprints for the 160th ACS Meeting, 1970, p. 634.

64. Close, D. H., A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, Appl.

Phys. Lett., 14, 159 (1969).

65. Jenney, J. A., J. Opt. Soc. Am., 60, 1155 (1970).

66. Jenney, J. A., Appl. Opt., 11, 1371 (1972).

67. Jenney, J. A., J. Opt. Soc. Am., 61, 116 (1971).

68. Jenney, J. A., ‘‘Recent Developments in Photopolymer Holography,’’ Proc. SPIE, 25,

105 (1971).

69. Booth, B. L., Appl. Opt., 11, 2994 (1972).

70. Haugh, E. F., US Patent 3 658 526 (1972) assigned to E. I. Dupont de Nemours and Co.

910 Calixto and Lougnot



71. Baum, M. D. and C. P. Henry, US Patent 3 652 275 (1972) assigned to E. I. Dupont de

Nemours and Co.

72. Colburn, W. S. and K. A. Haines, Appl. Opt., 10, 1636 (1971).

73. Wopschall, R. H. and T. R. Pampalone, Appl. Opt., 11, 2096 (1972).

74. Van Renesse, R. L., Opt. Laser Tech., 4, 24 (1972).

75. Sukegawa, K., S. Sugawara, and K. Murase, Electron. Commun. Jap., 58, 132 (1975).

76. Sukegawa, K., S. Sugawara, and K. Murase, Rev. Electr. Commn. Labs., 25, 580 (1977).

77. Sukegawara, S. and K. Murase, Appl. Opt., 14, 378 (1975).

78. Sadlej, N. and B. Smolinksa, Opt. Laser Techn., 7, 175 (1975).

79. Tomlinson, W. J., I. P. Kaminow, E. A. Chandross, R. L. Fork, and W. T. Silfvast,

Appl. Phys. Lett., 16, 486 (1970).

80. Chandross, E. A., J. Tomlinson, and G. D. Aumiller, Appl. Opt., 17, 566 (1978).

81. Colburn, W. S., R. G. Zech, and L. M. Ralston, Holographic Optical Elements, Tech.

Report AFAL, TYR-72-409 (1973).

82. Verber, C. M., R. E. Schwerzel, P. J. Perry, and R. A. Craig, Holographic Recording

Materials Development, N.T.I.S. Rep. N76-23544 (1976).

83. Collier, R. J., C. B. Burckhardt, and L. H. Lin, Optical Holography, Academic Press,

New York, 1971, pp. 265–336.

84. Peredereeva, S. I., V. M. Kozenkov, and P. P. Kisilitsa, Photopolymers Holography,

Moscow, 1978, p. 51.

85. Smith, H. M., Holographic Recording Materials, Springer-Verlag, Berlin, 1977.

86. Gladden, W. and R. D. Leighty, ‘‘Recording Media,’’ in Handbook of Optical

Holography, H. J. Caulfield, ed., Academic Press, New York, 1979, pp. 277–298.

87. Solymar, L. and D. J. Cooke, Volume Holography and Volume Gratings, Academic

Press, New York, 1981, pp. 254–304.

88. Delzenne, G. A., ‘‘Organic Photochemical Imaging Systems,’’ in Advances in

Photochemistry, Pitts, J. N., Jr., G. S. Hammond, and K Gollnick, eds, Wiley-

Interscience, New York, 1980, Vol. 11, pp. 1–103.

89. Tomlinson, W. J. and E. A. Chandross, ‘‘Organic Photochemical Refractive-Index

Image Recording Systems,’’ in Advances in Photochemistry, Pitts, J. N., Jr., G. S.

Hammond, and K. Gollnick, eds, Wiley-Interscience, New York, 1980, Vol. 12, pp.

201–281.

90. Monroe, B. M. and W. K. Smothers, ‘‘Photopolymers for Holography and Wave-

Guide Applications,’’ in Polymers for Lightwave and Integrated Optics: Technology

and Applications, Hornak, L. A., ed., Marcel Dekker, New York, 1992, pp. 145–169.

91. Monroe, B. M., ‘‘Photopolymers, Radiation Curable Imaging Systems,’’ in Radiation

Curing: Science and Technology, Pappas, S. P., ed., Plenum Press, New York, 1992, pp.

399–434.

92. Lougnot, D. J., ‘‘Photopolymer and Holography,’’ in Radiation Curing Polymer Science

and Technology, Vol. 3, Polymerization Mechanism, Fousassier, J. P. and J. F. Rabek,

eds, Chapman and Hall, Andover, 1993, pp. 65–100.

93. Monroe, B. M., W. K. Smothers, D. E. Keys, et al., J. Imag. Sci., 35, 19 (1991).

94. Monroe, B. M., Eur. Patent 0 324 480 (1989) assigned to E. I. Dupont de Nemours and

Co.

95. Keys, D. E., Eur. Patent 0 324 482 (1989) assigned to E. I. Dupont de Nemours and Co.

96. Monroe, B. M., J. Imag. Sci., 35, 25 (1991).

97. ‘‘Heat is on with New Dupont Photopolymers,’’ Holographic International, Winter, 26

(1989).

98. Monroe, B. M., US Patent 4,917,977 (1990), assigned to E. I. Dupont de Nemours and

Co.

99. Fielding, H. L. and R. T. Ingwall, US Patent 4,588,664 (1986), assigned to Polaroid

Corp.

Light-sensitive Materials 911



100. Ingwall, R. T. and M. Troll, Opt. Eng., 28, 86 (1989).

101. Ingwall, R. T. and M. Troll, ‘‘Holographic Optics: Design and Applications,’’ Proc.

SPIE, 883, 94 (1998).

102. Ingwall, R. T., M. Troll, and W. T. Vetterling, ‘‘Practical Holography II,’’ Proc. SPIE,

747, 67 (1987).

103. Fielding, H. L. and R. T. Ingwall, US patent 4 588 664 (1986) assigned to Polaroid

Corp.

104. Fielding, H. L. and R. T. Ingwall, US patent 4 535 041 (1985) assigned to Polaroid

Corp.

105. Ingwall, R. T. and M. A. Troll, US patent 4,970,129 (1990), assigned to Polaroid Corp.

106. Withney, D. H. and R. T. Ingwall, in ‘‘Photopolymer Device Physics, Chemistry, and

Applications,’’ Proc. SPIE, 1213(1), 8–26 (1990).

107. Ingwall, R. T. and H. L. Fielding, Opt. Eng., 24, 808 (1985).

108. Zhang, C., M. Yu, Y. Yang, and S. Feng, J. Photopolymer Sci. Tech., 4, 139 (1991).

109. Luckemeyer, T. and H. Franke, Appl. Phys. Lett., B46, 181 (1988).

110. Mikaelian, A. L. and V. A. Barachevsky, ‘‘Photopolymer Device Physics, Chemistry

and Applications 11,’’ Proc. SPIE, 1559, 246 (1991).

111. Boiko, Y. and E. A. Tikhonov, Sov. J. Quantum Electron., 11, 492 (1981).

112. Boiko, Y., V. M. Granchak, I. I. Dilung, V. S. Solojev, I. N. Sisakian, and V. A. Sojfer,

Proc. SPIE, 1238, 253 (1990).

113. Boiko, Y., V. M. Granchak, I. I. Dilung, and V. Y. Mironchenko, Proc. SPIE, 69, 109

(1990).

114. Gyulnazarov, E. S., V. V. Obukhovskii, and T. N. Smirnova, Opt. Spectrosc., 69, 109

(1990).

115. Gyulnazarov, E. S., V. V. Obukhovskii, and T. N. Smirnova, Opt. Spectrosc., 67, 99

(1990).

116. Calixto, S., Appl. Opt., 26, 3904 (1987).

117. Boiko, Y., V. S. Solojev, S. Calixto, and D. J. Lougnot, Appl. Opt., 33, 797 (1994).

118. Lougnot, D. J. and C. Turck, Pure Appl. Opt., 1, 251 (1992).

119. Lougnot, D. J. and C. Turck, Pure Appl. Opt., 1, 269 (1992).

120. Carre, C. and D. J. Lougnot, J. Optics, 21, 147 (1990).

121. Carre, C., D. J. Lougnot, Y. Renotte, P. Leclere, and Y. Lion, J. Optics, 23, 73 (1992).

122. Lougnot, D. J., Proc. OPTO’92, 99 (1992).

123. Carre, C. and D. J. Lougnot, Proc. OPTO’91, 317 (1991).

124. Carre, C., C. Maissiat, and P. Ambs, Proc. OPTO’92, 165 (1992).

125. Carre, C. and D. J. Lougnot, Proc. OPTO’90, 541 (1990).

126. Noiret-Roumier, N., D. J. Lougnot, and I. Petitbon, Proc. OPTO’92, 104 (1992).

127. Baniasz, I., D. J. Loungot, and C. Turck, ‘‘Holographic Recording Material,’’ Proc.

SPIE, 2405 (1995).

128. Yamagishi, Y., T. Ishizuka, T. Yagashita, K. Ikegami, and H. Okuyama, ‘‘Progress in

Holographic Applications,’’ Proc. SPIE, 600, 14 (1985).

129. Matsumoto, K., T. Kuwayama, M. Matsumoto, and N. Taniguchi, ‘‘Progress in

Holographic Applications,’’ Proc. SPIE, 600, 9 (1985).

130. Shankoff, T. A., Appl. Opt., 7, 2101 (1968).

131. Chang, B. J. and C. D. Leonard, Appl. Opt., 18, 2407 (1979).

132. Meyerhofer, D., RCA Review, 33, 270 (1976).

133. Chang, B. J., Opt. Commun., 17, 270 (1976).

134. Changkakoti, R. and S. V. Pappu, Appl. Opt., 28, 340 (1989).

135. Pappu, S. V. and R. Changkakoti, ‘‘Photopolymer Device Physics, Chemistry and

Applications,’’ Proc. SPIE, 1223, 39 (1990).

136. Cappola, and N. and R. A. Lessard, ‘‘Microelectronic Interconnects and Packages:

Optical and Electrical Technologies,’’ Proc. SPIE, 1389, 612 (1990).

912 Calixto and Lougnot



137. Cappola, N., R. A. Lessard, C. Carre, and D. J. Lougnot, Appl. Phys., B52, 326 (1991).

138. Calixto, S. and R. A. Lessrad, Appl. Opt., 23, 1989 (1984).

139. Horner, J. L. and J. E. Ludman, ‘‘Recent Advances in Holography,’’ Proc. SPIE, 215,

46 (1980).

140. Wang, M. R., G. J. Sonek, R. T. Chen, and T. Jannson, Appl. Opt., 31, 236 (1992).

141. Zipping, F., Z. Juging, and H. Dahsiung, Optica Acta Sinica, 4, 1101 (1984).

142. Lelievre, S. and J. J. A. Couture, Appl. Opt., 29, 4384 (1990).

143. Lelievre, S., ‘‘Holographie de Polarisation au Moyen de Films de PVA Bichromate,’’
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26.1 INTRODUCTION

The goal of most optical engineering is to develop hardware that uses optics, and
invariably optical components such as lenses, prisms, mirrors, and windows. The
purpose of this chapter is to summarize the principles and technologies used to
manufacture these components to help the optical engineer understand the relation-
ships between fabrication issues and specifications. For detailed information on how
to actually make the optics, we provide references to other books and articles that
give a more complete treatment.

26.1.1 Background

The field of optical fabrication covers the manufacture of optical elements, typically
from glass, but also from other materials. Glass is used for nearly all optical elements
because it is highly stable and transparent for light in the visible range of wave-
lengths. Glass optics can be economically manufactured to high quality in large
quantities. Glass also can be processed to give a near-perfect surface, which trans-
mits light with minimal wavefront degradation or scattering.

Additional materials besides glass are also frequently used for optics. Plastic
optics have become increasingly common for small (<25mm) lenses and for irregu-
larly shaped optics with reduced accuracy requirements. Metal mirrors are used for
numerous applications, especially those with stringent dynamic requirements. Optics
made from crystals are used for special purpose lenses as well as prisms.

The optical engineer who is specifying optics needs to understand how the size
and quantity affect the manufacturing process and thus the final parts. Special
tooling is required for large and difficult parts, which drives the cost up. However,

915



special tooling can also lead to an efficient process, reducing the per-item cost for
parts made in large quantities. Like any industrial process, optical fabrication has
significant economy of scale, meaning that items can be mass-produced much more
efficiently than they can be made one at a time. The key item here is the tradeoff
between the improved efficiency and cost of the tooling. (We define tooling here to be
special equipment used for manufacturing an item. Tooling is not used up in the
process so it can be used repeatedly.) If only a few elements are needed, then it does
not make sense to spend more on tooling than it would cost to make the few parts by
a less efficient method.

The most difficult aspect for many optical components comes from the tight
tolerances specified for optics. These tolerances need to be assigned by the system
engineer to balance what is good enough for the design with what can be made in the
shop. The tolerances relate to uncertainties in the final parts, which affect the system
performance analysis, so the engineer wants to make sure the tolerances are tight
enough but not unnecessarily so. For a particular project, the fabrication process is
usually selected to achieve the specified tolerances and, nearly always, parts with
tighter requirements are more expensive and take longer.

The ability to fabricate optics to extreme accuracy is usually limited by the ability
to measure the part to sufficient accuracy. Also, much optical testing is done in the
shop as part of the fabrication process, so the fields of optical fabrication and optical
testing are coupled. For information an optical testing, even as it relates to optical
fabrication, we refer the reader to the other chapters in this book, and to the com-
prehensive reference on this topic, Optical Shop Testing, edited by D. Malacara [32].

26.1.2 Overview of this Chapter

The field of optical fabrication is much too broad to be covered completely, even in
summary, in this one chapter. Instead, our goal is to assist the optical engineer in
understanding fabrication issues by providing:

1. a description of the common procedures that are used for making optics
2. a list of references for more detailed study
3. insight into the relationships between quantity, quality, tolerances, mate-

rial properties, and cost for fabrication of optical elements.

It is a general goal of this chapter to help the optical design engineer under-
stand enough of the fabrication issues to make good design decisions. More impor-
tant, we hope to educate the optical system engineer about the general
manufacturing issues, so he knows to discuss particular issues of the project with
the optician. It is only through the communication between the designer and the
fabricator that optimal specifications can be developed and implemented.

This chapter is divided into four sections, including this introduction, giving
the basics of traditional fabrication, followed by special, and more modern methods,
and concluding with a discussion on important fabrication issues that should be
considered by the system designer. The purpose of this chapter is not to enable the
engineer to make good designs that he can throw over a wall to the fabricator, but to
provide information to help the engineer initiate a dialog with the fabricator so they
can jointly work out an optimal set of specifications.
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In Section 26.2, we give an overview of the traditional methods of optical
fabrication. The steps for manufacturing common optical elements are outlined
and some of the key issues are described. Modern shop practices build on the rich
heritage for fabricating optical elements from glass. Modern shops use numerous
process improvements that take advantage of new machines and materials to give
better performance and lower cost, but the same basic principles are used that have
been developed over generations.

Section 26.3 discusses fabrication of aspheric surfaces and introduces some
advanced fabrication methods that have been developed in the past few decades,
which are now readily available for production parts. Here we describe common
methods for making optical components that do not follow the more traditional
approach given in the Section 26.2. This section on advanced fabrication methods
discusses molded optics of glass and plastic, single-point diamond turning, compu-
ter-controlled surfacing, and replication.

Section 26.4 summarizes some of the relationships between fabrication meth-
ods and cost. It is impossible to establish any absolute quantitative rules about how
specifications, tolerances, materials, size, and quantity affect cost. We do offer some
rules of thumb, which serve as helpful starting points for getting at the real relation-
ships. Here again, this serves as a starting point for discussions between the fabri-
cator and the designer.

26.1.3 General References

Despite the variety and the economic importance of optical manufacturing, there is
very little published about this field. Most of the workers in an optics shop were
trained on the job as an apprentice under a more skilled master optician. The basic
operations required for making most optics have changed little in the past 100 years.
However, improved materials and machine tools have allowed these steps to be
performed more economically, relying less on the optician’s craft.

There are a few excellent references available on the topic of optical fabrica-
tion. Hank Karow’s book Fabrication Methods for Precision Optics [27] is the most
modern and complete, and provides an excellent reference for most common tech-
niques and equipment. Outstanding review articles are given as chapters in Applied
Optics and Optical Engineering by Parks [40] and Scott [50].

Some classic books in this field that have good descriptions of the basics for
hands-on-work are Amateur Telescope Making, Volumes 1–3, by Ingalls [24], Prism
and Lens Making by Twyman [56], and How To Make A Telescope by Texereau [55].
A large number of interesting solutions to tough fabrication problems are given in
The Optics Cooke Book, edited by S. Fontane [13].

Also, there are some other excellent references, now out of print, which you
may find in the library. A classic German reference by Zschommler Precision Optical
Glassworking has been translated to English [62]. This book gives complete step-by-
step instructions for manufacturing some common optics. Optical Production
Technology by Horne [22] includes aspects of setting up a production shop with a
good overview of optical manufacturing technologies in the production shop.
Generation of Optical Surfaces by Kumanin [30] gives an excellent reference on the
machining and grinding of glass.
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26.2 TRADITIONAL METHODS OF OPTICAL FABRICATION

26.2.1 Introduction

Current optical fabrication methods are a curious blend of the very old, dating back
several centuries when the use of pitch for polishing was introduced, and the modern,
particularly through the application of computer control, laser based interferometry,
and advanced materials. There is still a considerable ‘‘art’’ component to these
methods in most optical shops, especially in the custom optics area requiring a
high level of expertise that takes years to develop. However, with the recent wide
application of computer controls to fabrication machines and the development of
more deterministic shaping methods and processes, a revolution is well underway in
their application to both custom optics and production optics in terms of efficiency
and value.

The optician’s expertise must now include computer literacy, a requirement
now shared by many industries. Research has led to a greater understanding of the
ground and polished surface and in the ways of producing them. Diamond-turning
and grinding technology in combination with computer-controlled machines has had
a large impact in both glass and metal fabrication methods. Pitch polishing is no
longer tha only way to finish a high-quality optical surface. A great deal of work and
progress continues to be made in the production of aspheric optics, utilizing
advances in all areas of fabrication. The direct milling of glass and other brittle
materials is now accomplished not only with diamonds but also with streams of
ions. We must note that much of the progress has resulted from various new or
improved testing methods, particularly computer-controlled interferometry and pro-
filometry. The advanced measurement techniques, along with developments in fab-
rication described here, have made the production of optical surfaces possible for
optics that cover virtually the entire electromagnetic spectrum.

The explosion of new materials and processes available to the engineer and
the fabricator has fragmented the industry to a large extent. Expertise is no
longer to be found in a single ‘‘optics house’’ for all optics needs. Neither can
a single chapter begin to review all the existing methods and materials. The scope
of this section will, therefore be limited to a discussion of some of the more
common methods used in the fabrication of glass optics. In the next section,
we summarize some manufacturing methods for other materials. We present
here only a summary of optical fabrication methods and issues, and provide
references for more detail.

Generally, there are a few steps common for making most optical elements,
although each step will be done differently depending on the optic and the quantity:

. Rough shaping: The initial blank is manufactured, typically to within a few
millimeters of final dimensions.

. Support: The optic must be held for the subsequent operations. Much of the
difficulty in fabrication comes from the requirements of the support.

. Generating: The blank is machined, typically with diamond tools, to within
0.1–1.0 mm of finished dimensions.

. Fining: The optical surfaces are ground to eliminate the layer of damaged
glass from generating and to bring the surface within 1–5 mm from the
finished shape.
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. Polishing: The optical surfaces are polished, providing a specular surface,
accurate to within 0.1 mm. Through repeated cycles of polishing, guided by
accurate measurements, surfaces can be attained with 0.005 mm accuracy.

. Centering and Edging: The optic is aligned on a spindle and the outer edge is
cut.

. Cleaning: The finished elements are cleaned and prepared for coating.

. Bonding: Frequently, lenses and prisms are cemented to form doublets (two
lenses) or triplets (three lenses).

Subsequent coating and mounting are usually handled by a different group of people
and are not generally considered part of optical fabrication.

Surface size, quantity, form, and finish are probably the four most important
factors in determining the methods to be used in the fabrication of common optics.
In this section we summarize some of the methods used in fabricating optics in three
basic size ranges: from 5 to 50mm in diameter; from 50 to 500mm; and > 500mm.
These choices are somewhat arbitrary, but methods and available machinery favor
these basic sizes. We will also look at how the vast variety of ‘‘off-the-shelf’’ optics
are produced economically as well as the very great influence quality has on both the
choice of methods and the cost of fabrication.

Most fabrication methods deal with the production of spherical surfaces. Since
a sphere has no optical axis but only a radius (or, equivalently, a center of curvature)
that defines its shape, any section of that sphere looks like any other section (of the
same size), as shown in Fig. 26.1. This fact has important consequences in how these
surfaces are produced. The basic idea is that when two surfaces of nearly equal size
are rubbed together two spherical surfaces result, having opposite curvatures. Note
that a flat surface is simply a surface having infinite radius. Aspheric surfaces, on the
other hand, lack this symmetry, as described in the next section, making these
surfaces much more difficult to fabricate. Off-axis aspherics have no rotational
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symmetry and are perhaps the most difficult to fabricate. Note also that there is no
such thing as an ‘‘off-axis sphere,’’ just one that is tilted.

26.2.2 Initial Fabrication of the Blank

Optical materials can be procured in many forms. The initial piece of material that
has roughly the correct shape is called the blank. In subsequent processing steps,
material is removed from the blank to yield the finished optic. The choice of material
is obviously dictated by the final application, but the initial form of the blank
depends on the fabrication method.

Glass is purchased in several forms – rolled plate, blocks, strips, pressings,
gobs, slabs, and rods. The choice of the bulk glass is made according to the fabrica-
tion plan and the material specifications. In general, glass for mass-produced optics
is supplied in the near net shape to minimize the cost of additional processing. Glass
blanks for production lenses and prisms are produced in large quantities as pressings
oversized and irregular by about 1 mm. Precision pressings are available at higher
cost, requiring as little as 0.1 mm glass to be removed to shape the part. These are
shown in Fig. 26(a).

Glass for very high-performance systems must be carefully selected to get the
highest quality. Glass with tight requirements on internal quality is provided in
blocks, shown in Fig. 26.2(b). These blocks are then polished on two or more
surfaces and are inspected and graded for inclusions, striae, birefringence, and
refractive index variation. The blanks for the optics are then shaped from the
glass blocks by a combination of sawing, cutting, and generating.

26.2.3 Support Methods for Fabrication

Most optical fabrication processes begin with the extremely important consideration
of the method of holding on to the part during subsequent fabrication steps. The
support method must be chosen with numerous factors to consider, including part
size, thickness, shape, expansion coefficient, direction, and magnitude of applied
forces. The general notion is to hold on to the part with the least amount of defor-
mation to the part so that when the part is finished and unmounted (or ‘‘deblocked’’)
a minimum amount of ‘‘springing’’ or change in shape results. However, the part
must be held with enough rigidity to resist the forces of the various surfacing meth-
ods. Many times the support will be changed as the part progresses to reflect chan-
ging requirements on the precision of the surface. Here, we discuss several of the
more common methods of blocking both small and large parts. More detailed ana-
lysis and discussion of these and other methods can be found in the references
provided.

Most modern fabrication begins with fixed diamond abrasive on high-speed
spindles as discussed in Karow [27] and Piscotty et al. [42]. The lateral forces can be
large, so the part must be held quite firmly to a rigid plate or fixture. This plate,
usually called the blocking body, or simple ‘‘block,’’ can be made of various materi-
als, but is usually aluminum, steel, cast iron, or glass, with rigidity being the most
important factor. The two principal methods for holding the part to the block are to
use adhesives or mechanical attachments at the edge.

The ideal adhesive for blocking glass to the block would provide a rigid bond
with little stress, and should allow the part to be easily removed. Most adhesives
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cannot achieve all three requirements equally well, so choices must be made by the
optician, depending on which is most critical for any particular process. For the
generation processes, using high-speed diamond tools, rigidity and ease of removal
are usually the dominant criteria, with higher stress being allowed. The effects of this
stress are then removed in the subsequent processes of grinding and polishing, where
a less stressful blocking method is employed.

Blocking of plano and spherical parts up to around 100 mm in diameter is
commonly done with a variety of waxes, both natural and synthetic. These are
heated to a liquid before applying to the block, or applied, then heated by the
block itself. The glass parts are then warmed and placed on the waxed block. For
heat-sensitive materials the wax can be dissolved in solvent before applying to the
block. The great advantage of waxes is that they hold the glass quite firmly and are
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Figure 26.2 Optical glass is commonly procured in (a) pressings or (b) blocks. (a) Pressings,

hot molded an annealed: may have rough or fire-polished surfaces. (b) Block glass, with two

opposite faces polished for test purposes. Other common forms are slabs (six worked surfaces),

rods, strips and rolled sheet (unworked surfaces, cut to length), and gobs (roughly cylindrical).

(Source: Schott Glass Technologies, Inc.)
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also easily removable by dissolving them in common liquid or vapor solvents. Most
waxes, however, due to their shrinkage, impart large stresses, requiring parts to be
deblocked after generating and subsequently reblocked with a less stressful substance
for grinding and polishing.

Pitch remains the blocking material of choice when the parts cannot be highly
stressed. Pitch is an outstanding material, and is used in the optics shop both for
blocking, and for facing polishing tools. Brown gives an excellent reference on
properties of pitch [8]. Pitch is a viscoelastic material that will flow when stress is
applied, even at room temperatures, so parts blocked with pitch will become stress-
relieved if left long enough for the pitch to flow.

Cements such as epoxies and RTVs bond very well, but are extremely difficult
to deblock and remove. There also some UV-curable cements that can provide low-
stress blocking and can be removed with hot water. More information about the
cements is available from the manufacturers.

An old and interesting blocking method that is still used when the surface to be
blocked needs to be held in close reference to the block to maintain a particular
wedge or angle as in the production or assembly of windows or prisms is the optical
contact method. The block is usually made from the same material as the part, and
the mating surfaces must be polished and cleaned. When the two surfaces that have
are brought close together (with a little finger pressure to force out the air) they will
pull each other together in a very close bond due to molecular forces. This blocking
method can be used with very thin or thick parts but is quite difficult to apply,
particularly to large surfaces dues to the required cleanliness.

In production optics, where many parts with the same radius of curvature need
to be produced, a number of the parts are blocked together, as shown in Fig. 26.3(a).
Many times the block is very carefully machined so that each part can be loaded into
it, sometimes automatically under computer control, to a very precise position rela-
tive to the block’s center. This type of block is called a spot block and has gained
widespread use in production shops. These spots can be machined directly into the
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Figure 26.3 Multiple parts may be made on the same block (a) or a spot black (b) by

adhering them to a common spherical block using some type of adhesive. A more accurate

and repeatable method is to use a spot block where premachined holes are provided for the

lens blanks. The usual method for working the block is to have the block rotating while a

matching spherical tool is stroked across it. This can also be inverted.
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block, as shown in Fig. 26.3(b), or separate lens seats can be machined that are
screwed onto the block. The spot blocks are costly to make but they can be used
efficiently for making numerous runs of the same lens.

Block size limitations are based both on machine size limitations and on the
radius of curvature. Most generators and grinding/polishing machines cannot easily
handle anything beyond a hemisphere, which limits the number of parts to a block.
Plano parts have no theoretical limitation based on their radius but only on the
capacity of the machines in the shop. Literally hundreds of small plano parts can be
fabricated on a single block.

Aspherics cannot be fabricated on blocks because, unlike spherical surfaces,
the aspheric surface has a particular optical axis. This implies that only a part that is
centered to the machine spindle can be turned into an asphere. This is one reason
aspherics are more expensive than spherical surfaces. Note, however, that off-axis
aspherics can be made as a block! This is, in fact, how most off-axis aspheres are
made: by making a block, called the parent, that is large enough to encompass the
required off-axis section pieces. The parent is then aspherized in a symmetric way (as
discussed below), after which the completed parts are removed from the correct
position on the block. Usually the parent is manufactured into a single piece of
glass and the off-axis sections are cut from the parent after aspherizing, but if
many are required a spot-type blocking methods can be utilized.

The blocking techniques mentioned are used for production optics or where a
relatively large number of parts are to be made. Even if only one part is required it is
usually wise to block many together so that spares are available. It generally doesn’t
pay to make just one spherical part of it is small, say less than 100 mm. Indeed, the
designers should always try to use off-the-shelf optics for optics in this size range.

Most optics larger than this are generally supported mechanically without the
use of adhesives of any sort. Mechanical supports for larger optics have the same
requirements as their adhesive counterparts in that they must hold the part firmly
while introducing little stress. As with smaller optics, large optics can be supported
differently for different fabrication processes where the conflicting requirements of
high rigidity and low stress are considered relatively more or less important.

Mechanical supports during diamond generating must be quite rigid, as the
forces placed on the part by the high-speed diamond tools are large. The generating
support can, however, allow larger distortions, which will be corrected later in
grinding and polishing. Most generating machines have turntables that incorporate
either magnetic or vacuum systems to hold moderately sized (up to about 500mm)
parts firmly on the table or support ring. A magnetic system, commonly found on
Blanchard-type machines, uses steel plates that are placed around the periphery of
the part. The electromagnetic turntable is switched on, firmly holding the steel plates
and thus the part in position. In vacuum systems, the part is held on a shallow cup
having an ‘‘O’’ ring seal. A vacuum is pulled on the cup and the part is held in place
by friction against the turntable.

For larger optics the part may rest on a three or more multipoint support
system that is adjustable in tilt, and held laterally by three adjustable points at the
edge of the part. These support systems can introduce rather large figure errors that
need to be eliminated in subsequent grinding and polishing. Some machine turn-
tables are turned to be extremely flat, even diamond turned in some cases, to reduce
the amount of induced deformation.
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During grinding and polishing, large parts are again commonly supported
axially using pitch or other viscoelastic materials (such as or Silly Putty) depending
on the stiffness of the part. This type of support can flow to eliminate any induced
stresses in the part. There are also several methods of achieving a well-defined set of
axial forces where the part is supported at a number of discrete points. Hindle type
(or ‘‘whiffle-tree’’) supports or hydrostatic supports use mechanics or hydraulics to
provide a unique, well-defined, set of support forces. [61]. The number and arrange-
ment of the support points required can be accurately predicted using finite-element
analysis so that the deformation between support points can be reduced to an
acceptable amount. To resist the lateral forces of grinding and polishing the part
is generally held either with tape for smaller parts or with three mechanical blocks or
tangent rods for larger.

26.2.4 Diamond Machining and Generating

The initial fabrication step following the blocking is generally machining the part
using a variety of diamond-impregnanted tools to rapidly bring the part to its near-
final shape, thickness, and curvature with the optical surface at least smooth enough
for fine grinding or even direct polishing. These tools have exposed diamond parti-
cles that basically chip away at the glass on scales of tens of microns (micrometers,
mm). Additional information on specific aspects of generating is provided in the
references [42, 36, 53, 22.]

Most tools have a steel body, onto which is bonded a layer of material impreg-
nated with diamond particles of a particular size distribution. The size is usually
specified as a mesh number, which is approximately equal to 12mm divided by the
average diamond size (Fig. 26.4). A 600 mesh wheel has 20 mm diamonds. The
specifications for the absolute sizes of the diamonds and their distribution are not
standard and should be obtained from the vendor.

There are two basic configurations for diamond tooling, as shown in Fig. 26.5:
a peripheral tool, where the diamond is bonded to the outer circumference of the
tool; and a cup tool, where the diamond is bonded to the bottom of the tool in a ring.
Peripheral wheels are generally used for shaping operations on the edge of the part
such as edging, sawing, and beveling, while cup wheels are generally used for work-
ing on the surface of the part, such as cutting holes and for generating curvature.

A small optic (<20 cm) or block of lenses is usually generated using a cup
wheel wheel where the axis of rotation of the wheel is tilted with respect to the part,
so that it passes through the desired center of curvature (Fig. 26.6). If the axis of
rotation does pass through the center of curvature of the part it will cut a perfectly
spherical shape into the part or block. Since all the parts on a block of lenses share
the same center of curvature, they will all be cut to the same radius and thickness if
properly blocked. This fact is key to the production of large quantities of smaller
optics blocked together.

Plano optics are generated using a Blanchard-type geometry. Here a cup wheel
is used with the axis of rotation aligned to be perpendicular to the linear axis of a
tool bed. The parts are translated under the spinning diamond wheel and are ground
flat to high precision. Multiple operations of this type must be performed for the
different faces of prisms, and the relative orientation of the different cuts determines
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Figure 26.4 Correlation between mesh sizes and micron sizes. (From Ref. 27.)

Figure 26.5 Diamond generating wheels. There are two basic types of diamond tooling used

for cutting and generating depending onwhere the diamond is placed: on the face or on the edge.

The cup wheel and core drill are the most common face wheels used in cutting radii and drilling

holes. The peripheral wheels having diamond on their edges are used to edge and to saw cut.



the accuracy of the prism (Fig. 26.7). Precision blocks having accurately machined
surfaces can be used for this purpose.

Diamond tools are also quite versatile and are used for many different opera-
tions. For example, a simple perpheral wheel can be used to cut the curvature into a
part. The tool can be moved slowly across a spinning part. The shape of the cut is
determined by the tool motion, which can be run on a numerically controlled (NC)
machine, or it can be driven to follow a template attached to the machine.

A large emphasis has been placed on progress in both diamond tooling and in
the machines that use them because accurately cut fine surfaces reduces the time
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Figure 26.6 Generating with cups tools. Spherical surfaces are cut by tilting the axis of the

cutting wheel so it intersects the axis of rotation of the part. This will cut a spherical surface

with center of curvature at this intersection. Plane parts are milled by translating the optic in a

direction perpendicular to the cup wheel.

Figure 26.7 Generating a prism profile with two mill heads. (Courtesy Karow [27], Fig.

5.38.)



spent in the traditional loose abrasive grinding step that follows. Machining of the
part on high-speed machines is very rapid, with removal rates up to several cubic
inches per minute, two orders of magnitude faster than even very coarse loose
abrasive grinding.

Unfortunately, generating tends to create significant damage to the glass under
the surface, which must be removed in subsequent grinding and polishing opera-
tions. One current area of interest is investigating how to perform diamond generat-
ing to produce finer surfaces and more accurate shapes. Any type of abrasive action
on glass occurs due to small fractures that form when an abrasive particle is pushed
against it with enough force. When enough fractures intersect, small pieces of glass
pop out, leaving small pits. Underneath the pits are larger fractures that continue
some distance depending on the materials. This is called subsurface damage and it
must be removed in subsequent processing steps. The structure of glass as it is
typically abraded is shown in Fig. 26.8. Generally, the smaller the diamond and
the softer the matrix material the less damage will be imparted to the surface.
However, the finer the diamond the lower the removal rate and a softer matrix
allows greater tool wear, which can reduce accuracy.

Most diamond surfacing methods use at least two if not three different dia-
mond wheels to rapidly produce a fine surface. Using a computer-controlled
machine, flat, spherical, and even aspherical parts can be rapidly surfaced. If the
find diamond tool and machine have sufficient accuracy the tool can be brought to
bear on the surface with a low enough force that the glass does not fracture but
material is removed by plastic flow with no subsurface damage introduced and the
surfaces produced are specular. This process is called micromachining or ductile
regime machining. [6,16–19] Currently, surfaces capable of being polished directly
can be routinely produced on production machines bypassing all loose-abrasive
grinding. Most of these machines produce optics less than 100mm in diameter,
however. With larger parts, fine diamond machining is only performed on a few
specialized machines limited primarily by both the stiffness in the machine and of the
mount. Microgrinding is just beginning to gain more widespread use in industry and
the combination of numerically controlled machines and diamond tooling will
undoubtedly have a large impact on fabrication methods of the future.
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Figure 26.8 An abraded optical surface consists of two components: the surface damage

layer and a subsurface damaged (cracked) layer. For loose-abrasive ground surfaces the

surface damage layer is about the size of the grit size and the maximum subsurface damage

is about twice that. Diamond-generated surfaces typically have less surface damage but a large

subsurface component.



Another application of fixed diamond abrasive is in pel grinding of generated
surfaces. [52]. This operation generates the surface using a large tool with bound
diamond in cylindrical pellet form. The tool is made to match the shape to be
generated, and is then driven at high speeds. The fine diamonds generate the surface
directly, leaving little subsurface damage, allowing polishing without any subsequent
fining operations.

The pellets are bonded to a curved tool having the proper radius of curvature
inverse to that of the part, as shown in Fig. 26.9. The tool is rapidly rotated while the
part is stroked over the tool in the same fashion as loose-abrasive grinding only with
higher speed and with higher pressure, which very quickly grinds the surface smooth
enough for polishing. This method is very efficient for the high-speed production of
thousands of the same part but costly to set up, as a new tool is required for each
radius. Hence, more traditional loose abrasive grinding, described below, is
employed for low-volume production to bring a generated surface to the polishing
stage.

26.2.5 Fining

As described above, the typical diamond machined surface has a rather smooth
surface, below which is a layer of material riddled with fractures. These fractures,
if left in the final polished part, are quite visible under bright illumination and cause
the surface to scatter light. Since these fractures can extend quite deeply, up to 100
microns or so depending on the process used to generate, sufficient material must be
removed to reduce them to only a few microns, which can be taken out in polishing
[46, 47]. As we have seen, the use of fine diamonds on high-quality machines can
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Figure 26.9 Typical configuration for using a pel grinder for working convex surfaces.

(Courtesy Karow [27], Fig. 5.62).



accomplish this quickly. However, the high cost of these machines and tools limits
their use.

The more traditional and less costly method of bringing a surface to the pol-
ishing stage is through loose abrasive grinding. In this method, the part and the tool
are rubbed together while an abrasive powder, usually in an aqueous solution, is
maintained between them. The abrasive particles cause tiny fractures in the glass,
which results in material removal as the fractures intersect. This abrasive action itself
causes subsurface damage but the sizes of the particles are chosen to reduce the
amount of damage in a series of steps, generally reducing the damage by a factor
of 2 with each grade. A rule of thumb for loose abrasive grinding would be that the
maximum surface pits left after grinding will be on the order of the size of the grain,
while the maximum subsurface fractures extend to about twice that. A typical
sequence might be to diamond generate, then remove 100 microns with a 40 micron
abrasive, then remove 50 microns with a 25 micron abrasive, followed with the
removal of 25 microns with a 9 micron abrasive. This surface can be polished, but
up 20 microns of materials needs to be polished off to eliminate the remaining
damage.

It would be possible to remove all of the generating subsurface damage by
polishing directly, skipping the step of loose abrasive grinding. It would, however,
take an unacceptably long time to remove 100 microns of material by polishing.
It only makes sense to polish a surface with a few microns of surface damage
remaining.

Other factors that contribute to the amount of damage produced include the
hardness of the abrasive, the material being ground, and the tool, and to some extent
the shape of the abrasive grains. Harder abrasive grains or tools will remove material
more rapidly material at the price of imparting more damage. The more plate-like
grains found in modern aluminum oxides appear to produce less damage than their
blockier counterparts like garnet.

Tool materials for loose abrasive grinding range from cast iron, which is quite
hard, to brass, glass, and aluminum on the softer side. The harder tools will grind
faster and retain their form somewhat longer than the softer tools but at the cost of
more subsurface damage. Most production tools are made from cast iron because
they keep their shape so well.

Loose abrasive grinding is almost always used for fining large optical surfaces,
and build-up or layered tools are the rule. Tools for larger optics are usually made
from some soft, workable material such as aluminum, wood, or plaster. The curva-
ture of the tool is either machined or cast into the tool that is then faced with ceramic
or glass tiles that are bonded to the tool’s surface. When the ceramic layer grinds
down it is simply replaced with another layer or a fresh layer is bonded to the first.

The point at which grinding stops and polishing begins depends on a number
of factors. While glass surfaces can be ground to a very fine finish, to perhaps 1
micron grit size, which minimizes subsurface damage and speeds polishing, other
factors generally limit the final grit size to around 5 microns. For very small particle
size, the intimacy between the part surface and the tool can cause the tool to seize on
the part, which makes the two virtually inseparable without major forces being
applied that will end up damaging the part. The larger or more costly the part,
the more this risk becomes unacceptable. Also, the risk of scratching the surface
increases with small grit, especially when using very hard tools such as cast iron or
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steel. On many surfaces it is a good compromise to perform the final grinding with a
softer tool material such as brass, aluminum, or glass, and use a slightly larger grit
size. The softer tool material will result in less damage and reduce the risks.

Compared with generating with bound abrasive wheels, loose abrasive grinding
is performed at much lower speeds. Very small parts are ground at a few hundred
rpm whereas large parts are ground at only a few rpm. This lower speed largely
accounts for the tremendous removal rate difference between the two methods. At
much higher speeds, the loose abrasive slurry mixture would be simply flung off the
tool or part.

26.2.6 Polishing

The aim of polishing an optical surface is to bring its surface figure or form into
compliance with a specification depending on its intended use, at the same time as its
finish or microroughness is also reduced to an acceptable value. Polishing is a see-
mingly magical process, which uses a combination of mechanical motion and chem-
istry to produce surfaces smooth to molecular levels [21].

Most high-quality optical surfaces are polished with a tool, or lap, similar to
the grinding tool except that it is faced with viscoelastic pitch or polyurethane. This
tool is stroked over the surface with an aqueous slurry of polishing compound. In a
region a few microns thick that includes the glass surface, the lap surface, and the
slurry in-between, a complicated interaction occurs involving chemical and mechan-
ical effects that produces a polished surface. Polishing is partially a chemical process,
so different substances must be used to polish different materials: no one substance is
ideal for all materials. Some polishing compounds for common optical materials are
cerium oxide, zirconium oxide, alumina, and colloidal silica. These are available in
proprietary mixtures from several suppliers.

Pitch laps are frequently used for high-quality surfaces. Pitch is a generic term
describing a group of substances made from the distillation of tar derived from wood
or petroleum. It is very soft compared with glass so it will not scratch, and has a low
melting temperature of about 50–1008C. Its viscosity, usually in the range of 108–
1011 poise, allows the pitch to slowly flow near room temperature so that it takes the
shape of the part being polished and remains in very close contact.

Pitch laps usually give the best performance, but they require considerable
maintenance. Production parts are usually polished using laps faced with polishing
pads made of polyurethane. These synthetic pads works well with particular polish-
ing compounds that have been optimized for use with the pad. Laps faced with these
polishing pads are extremely stable and they can be run at higher pressures than
pitch laps, so they polish more quickly. However, unlike pitch, these laps do not
naturally flow to conform to the shape of the optic, so the pads must be applied to a
precision machined surface. Again, this special tooling is highly efficient, but will
only work for a particular radius of curvature.

Metals, plastics, and crystals can be polished the same was as glass, but using
different polishing pads and compounds. Metals are polished best with cloth
polishers and polishing compound with very fine chrome oxide or diamond [10].
The quality of the finish depends on the hardness, porosity, and inclusions of the
metal substrate. Plastic optics such as acrylics are polished with aluminum or tin
oxide with soft synthetic polishing pads. Most crystals are polished using synthetic
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pads with a compound of colloidal silica, find diamond, or alumina (aluminum
oxide).

The macrotopography or surface figure, and microtopography or surface fin-
ish, are generally the two most difficult specifications to meet in the fabrication
process and are typically the biggest cost drivers. The figure of the surface is com-
monly specified as an average (rms) or absolute value (peak–valley) height difference
between the actual surface height and the ideal theoretical surface. This difference is
usually specified in units of waves, or fraction of a wave, at the wavelength at which
it is used or tested. Typical figure tolerances are in the 0.05–0.2 waves rms at the
widely used measurement wavelength of the He–Ne laser at 632.8 nm.

Control of the figure comes from the geometry of the polisher – how the lap is
stroked and the table is rotated. High-quality parts are time consuming to make
because they require the optician to measure the part, usually with interferometry,
then to adjust the fabrication process to correct the errors in the surface. The cost of
the optic will depend on the efficiency of the optician to converge on the final
specification, and the ultimate accuracy will depend on both the residual errors
that the optician measures and any errors in the optical test.

Surface figure specifications are usually made as peak-to-valley (P–V) or rms
departure of the surface from ideal. Peak-to-valley specifications are becoming less
popular (particularly to the fabricators) since they relate only to very local regions of
a surface. This specification makes sense for optical surfaces measured by inspection
with a test plate. In this case, the optician evaluates the large-scale distortions of the
interferogram and gives a limit to the irregularity that he sees, defining this as the P–
V distortion in the surface.

For the case of computerized phase-measuring methods, however, the P–V
error is strictly the difference between the maximum point and the minimum point
in the data. The high resolution of these instruments will provide surface maps with
30,000 points, so any two points are not statistically significant. In fact, the minimum
and maximum of the data will usually be driven only by measurement noise. It is not
uncommon to relate a P–V specifications to an equivalent rms value by applying a
simple rule of thumb – the allowable rms figure can be estimated by dividing the P–V
specification by a factor of 5. Nonetheless, P–V specifications in the 1

2
to 1/20 wave

are still common.
Clearly, higher-quality surfaces require more time to make and are more

expensive to produce. Flats and spheres can be produced by conventional methods
down to 0.01 waves rms or better, perhaps to 0.002 waves rms using special methods
and depending on the size and surface shape. Aspheres are considerably more diffi-
cult to figure and will be discussed in the next section.

The surface finish is the local roughness of a surface compared with a perfectly
smooth surface and is usually specified as an average (rms) surface height irregularity
over spatial scales of a few tens of microns. Unlike the figure, the surface finish
comes from the process itself – the type of lap, polishing compound, pressures,
and speeds. These processes are derived before starting the production parts, so
the optician does not typically adjust the polishing based on measured results, as
he does for the figure.

Interferometric techniques are now generally used to measure both the figure
and finish of optical surfaces to very high precision. Using computer-controlled
phase-measuring interferometric methods, surface figures can be measured to a
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few nanometers and surface finish to a few tenths of a nanometer. The ability to
precisely measure these quantities has resulted in improved polishing processes with
correspondingly better surfaces. However, the understanding of the polishing pro-
cess, particularly of glass, remains mired in its great complexity.

High-quality optical surfaces will generally be finished less than 20 angstroms
(2 nm) rms, down to a few angstroms rms. For most optics, the standard pitch
polish, giving about 10 angstrom rms roughness is more than adequate. Special
applications require superpolished surfaces, with roughness below 2 angstroms
rms. Special effort is required to produce such surfaces, and very few fabricators
have developed this capability.

Producing a high-quality optical figure is perhaps the most cost-sensitive aspect
of fabrication. Various methods have been developed to create high-quality surfaces
on different types of surface shapes. Here, we describe some of the methods used to
produce flat surfaces, spherical surfaces, and aspheric surfaces, looking at both tried
and true methods still widely used, as well as some more modern methods being
developed.

Polishing of Spherical Surfaces

Spherical surfaces are probably the simplest of all to fabricate because of their
symmetry. The grinding process tends to produce spherical surfaces. The fact that
the tool and the workpiece are not full spheres, but are segments, allows variations in
wear across the surfaces that can be used to change their radius of curvature. This
basic method has been used for literally thousands of years to produce spherical
surfaces, and spheres are by far the most commonly used optical surface shape. Most
optical system designs utilize optics with all spherical surfaces due to the relative ease
of manufacture over aspherical ones, although from a design perspective an asphe-
rical surface would simplify the optical design.

Conventional methods for grinding and polishing spheres use one surface,
usually the optic, to rotate on a turntable and the other usually the lap, to move
over it, always remaining in close contact. Overarm machines, shown in Fig. 26.10,
stroke the tool over the part using an arm that attaches to the tool through a ball
joint. Also, the roles can be reversed and the block with the optics can be attached to
the arm and driven over a rotating tool. By adjusting the length of the stroke and the
relative speeds of the rotation vs. the stroke as well as the length of the stroke, the
radius of the two surfaces can be made to move longer or shorter in radius or stay
the same. With operator skill, the figure can be brought spherical to very high
accuracy with very low surface roughness.

As mentioned, various blocking methods can be utilized to increase production
volume, such as the use of spot blocks or other multiple element blocking, as shown
in Fig. 26.11. Simply running the machine faster using highly controlled slurry feeds
dramatically increases production rates. Finally, using high pressure between the
tool and block in conjunction with materials that work well at high pressures such
as diamond pellet tools for grinding and polyurethane pads for polishing, very high
production volume can be achieved. Fabrication of spherical surfaces where the
process parameters have been fine tuned to produce predictable results have resulted
in very high yield rates and efficient production. Most catalog items fall into this
category of production optics and make them the designer’s first choice when design-
ing an optical system.
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When custom optics are desired the story changes dramatically. Individual
parts must be blocked individually and tools and test plates must be fabricated for
each surface. Many optics houses keep a large range of both tools and test plates
used in prior work to minimize the initial expenses. If catalog optics cannot be used
in a design it is always cost-effective to choose radii for the spherical surfaces that are
in the test plate inventory of a manufacturer. These lists are usually supplied as a
data base.

Large spherical surfaces (>100mm) are produced in the same way as small
ones. The tooling and machines become proportionally larger but the basic method
of rubbing two spheres together is the same. However, controlling the shape becomes
increasingly difficult as the part diameter becomes larger. It is also increasingly
difficult to handle the very large tools. Generally, it is necessary to use a large
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tool (large meaning 60–100% of the part diameter) initially after the part has been
generated with a diamond tool to smooth out large surface errors. Following large
tool work, smaller diameter tools are usually used to figure the surface to high
accuracy. The use of smaller tools, however, can have some effect on the surface
slope errors since a small tool is working locally and usually leaves behind local wear
patterns. This becomes increasingly important as the tools get smaller. With skill and
experience an optician can keep these errors very small by not dwelling too long at
any one location on the surface.

Polishing of Flats

The production of a flat surface used to be difficult due to the fact that the tolerance
on the radius of the surface is usually the same as the tolerance on the irregularity,
i.e., power in the surface is an error to be polished out. This changed with the
development of what is usually referred to as a continuous polishing (CP) machine
(Fig. 26.12). A continuous polisher is just that: it is a large lap (at least three times
the size of the part) in the shape of an annulus, that turns continuously, onto which
smaller parts are placed. The parts are carried in holders (usually called septums)
that are fixed in place on the annulus and are driven so that they cause the part to
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Figure 26.11 Numerous small parts with the same radius of curvature can be blocked

together and processed simultaneously. (Courtesy Newport Corp.)



turn in synchronous motion with the lap. It can be shown that if the part is in
synchronous rotation with the lap and always remains in full contact with the lap,
then the wear experienced by the part’s surface will be uniform across the surface. If
the wear is uniform and the lap is flat, then parts that are not initially flat very
rapidly become so.

The lap of the continuous polisher is kept flat by the use of a large flat called a
conditioner or bruiser, having a diameter as big as the radius of the lap. The con-
ditioner rides continuously on the lap and is caused to rotate at a more or less
synchronous rate. By adjusting the conditioner’s raidal position the lap can be
brought to a very flat condition and remain there for long periods. Slight adjust-
ments in its position are made as parts are found to be slightly convex or concave.
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Figure 26.12 The continuous polishing (CP) machine can polish both flats and long radius

spheres to very high surface figure quality and surface finish. As long as the parts do not pass

over the edge of the lap and are rotated synchronously with the lap, they will experience

uniform wear. The conditioner is a large disk that keeps the lap flat and also rotates synchro-

nously with the lap.



Since these machines run continuously 24 hours a day, their throughput can be very
large. Careful attention must be paid to environmental control and slurry control to
maintain consistent results. Because the contact between lap and part is exception-
ally good on these machines, they routinely can produce excellent surfaces with very
little roll at the edge.

The fact that there is uniform wear is not dependent on the part’s shape. This
means that plano parts with highly unusual shapes can be fabricated to high quality
right to their edges or corners. The only other variable that needs to be controlled to
produce uniform wear is the pressure. Some parts with large thickness variations and
low stiffness need to have additional weights added so that the pressure is nearly
uniform across the part. If the figure is seen to be astigmatic, weights can be dis-
tributed on the back of the part to counteract any regions of decreased wear.

Continuous grinding is also performed on these types of machines where brass
or other metal or ceramic surfaces are used in place of the pitch. Sometimes, poly-
urethan or other types of pads are substituted for, or are set on top of the pitch to
polish different types of materials. Pad polishers do not require as much maintenance
as a pitch lap and can produce excellent surfaces with the proper materials and
conditions.

This technique has been extended to parts having two polished parallel faces
such as semiconductor wafers and various types of optical windows, by fabricating
both faces at the same time on what are called twin polishers. In this case there is a
lap on top and bottom with the parts riding in septums in between. These machines
can rapidly grind and polish windows to very high flatness, low wedge, and critical
thickness.

Spherical parts can also be fabricated on a continuous polisher by cutting a
radius into the lap and maintaining the radius with a spherical conditioner. In this
way parts all have exactly the same radius can be manufactured very economically.
This works well with a part whose radius is long compared with its diameter, i.e.,
parts with large focal ratios. If the focal ratio becomes too small, the uniform wear
condition is invalid due to an uncompensated angular velocity term in the wear
equation. This term would cause a small amount of spherical aberration to be
maintained in the part which must be removed through pressure variation or
some other means.

Continuous polishing machines have been built up to almost 4m in diameter
capable of producing flats 1m or somewhat larger in diameter. To produce flats
larger than this a more conventional polishing machine is used such as a Draper
type, overarm type, or swing-arm type [28]. In this case, the situation is reversed from
a CP where the smaller part rides on top of the much larger lap. Here, the mirror is
placed on a suitable support on the turntable of the polishing machine and ground
and polished with laps that a smaller than the part; this is a more conventional
process, but one where it is difficult to achieve the smoothness and surface figure
quality that the CP provides.

26.2.7 Centering and Edging

After polishing both sides of lenses, the edges are cut to provide an outer cylinder
and protective bevels. The lens are aligned on a rotary axis so both optical surfaces
spin true, meaning that the centers of curvature of the spherical surfaces lie on the

936 Anderson and Burge



axis of rotation. This line, through the centers of curvature, defines the true optical
axis of the lens. When the lens is rotated about the optical axis, the edge is cut with a
peripherial diamond wheel. This insures that the newly cut edge cylinder, which now
defines the mechanical axis of the part, is nominally aligned to the optical axis.

There are two common centering methods shown in Fig. 26.13 – one optical
and the other mechanical. The lens can be mounted onto a spindle that allows light
to go through the center. As the lens is rotated, any misalignment in the lens will
show up as wobble for an image projected through the lens. The lens is centered by
sliding the optic in its mount and watching the wobble. When the wobble is no longer
discernable, the part is centered and can be waxed into place for edging.

Also, the centering can be automated using two coaxial cups that squeeze the
lens. Here, the lens will naturally slide to the position where both cups are making
full ring contact on the surface and will thus be aligned (at least as good as the
alignment of the two cups). This method of bell chucking is self-centering so it is
naturally adapted to automatic machines. It is important that the edges of the
chucks are rounded true, polished, and clean so they will not scratch the glass
surfaces.

When the optical element is centered and rotated about its optical axis, the
outer edge is cut to the final diameter with a diamond wheel. This operation can be
guided by hand, with micrometer measurements of the part, and it can also be
performed automatically using numerically controlled machines.
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Figure 26.13 Centering the edging of lenses. The lens can be centered on the chuck (a)

optically by moving the element to null wobble of the image, or (b) automatically using a bell

chuck. Once centered on the spindle, the edge and bevels are cut with diamond wheels. (From

Ref. 27, Figs. 5.126 and 5.128.)
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When cutting the edge, a protective bevel should always be added to protect
the corners from breakage. A sharp, nonbeveled edge is easily damaged and the chips
may extend well into the clear aperture of the part. A good rule of thumb for small
optics is that bevels should be nominally 458 with face width of 1% of the part
diameter.

Large optics, which are made one at a time, are frequently manufactured
differently. The blanks are edged first, then the optical surfaces are ground and
polished, maintaining the alignment of the optical axis with the mechanical axis.
Also, optics with loose tolerance for wedge can be edged first, then processed as
described above.

26.2.8 Cleaning

The finished parts must be cleaned thoroughly to remove any residue of pitch, wax,
and polishing compounds. The optics are typically cleaned in solvent baths with
methyl alcohol or acetone. Optics can be cleaned one at a time by carefully wiping
with solvent-soaked tissues, or they can be cleaned in batches in large vapor decreas-
ing units followed up with ultrasonic bath in solvent. Parts that were not edged after
polishing tend to have stained bevels and edges from the polishing process. This can
be difficult to clean and this residual compound can contaminate the coating cham-
bers.

26.2.9 Cementing

Lenses and prisms are commonly bonded to make doublets or complex prisms. The
bonded interface works extremely well optically as long as the cement layer is thin
and nearly matches the refractive index of the glasses. The bonded surface allows
two glasses to be used to compensate chromatic effects, and this interface introduces
negligible reflection or scattering.

Most cementing of optics is performed using a synthetic resin, typically cured
with UV light. The procedure for cementing lenses is first to clean all dust from the
surfaces. Then the cement is mixed and outgassed, and a small amount is dispensed
into the concave surface. The mating convex surface is then gently brought into press
the cement out. Any air bubbles are forced to the edge and a jig is used to align the
edges or the optical surfaces to center the lenses with respect to each other. Excess
cement is cleaned from the edge using a suitable solvent. When the lens is aligned, the
cement is cured by illuminating with UV light, such as from a mercury lamp.

26.2.10 Current Trends in Optical Fabrication

Through the use of various types of motors, sensors, switching devices, and compu-
ters, automation has begun to have a major impact on the productivity of fabrication
equipment. Numerically controlled machining has made the fabrication of tooling
and the shaping of parts much more rapid and less costly. Generating has become
more automated with the application of position encoders and radius measuring
hardware and software integrated with the machine. Grinding/polishing machines
are slowly having most of their subsystems automated, although the basic process
has remained as described above. For most precision optics made today the opti-
cian’s skill in the operation of the polishing machine still has a large impact on the

938 Anderson and Burge



results. However, automation is currently making large strides in making the fabri-
cation process much less skill dependent and more deterministic, the often used buzz
word of modern optical fabricators.

Machines are currently being developed that use a somewhat different
approach to fabricating custom optics that may become so efficient that they
eventually will outperform current production methods for spherical optics [44].
These machines such as the OPTICAM (Optics Automation and Management)
being developed at the Center for Optics Manufacturing at the University of
Rochester, (on the World Wide Web at www.opticam.rochester.edu) apply
advanced NC machining technology to the fabrication of small optics. The idea
is to have a single, high-precision machine very rapidly generate, grind, polish, and
shape a single lens at a time. Metrology for each stage is integrated to the machine
and corrections are applied automatically. Very stiff, high-precision spindles allow
for precise generation of curves and the production of surfaces with low subsurface
damage using fixed diamond abrasive wheels, operating down to very shallow cut
depths that allow the rapid production of polished surfaces. Ring tool polishers are
utilized to bring the surfaces to final figure and finish. Although the machines are
currently expensive compared with conventional labor-intensive methods, the
future of production optics clearly lies in this direction. The development of
these machines has driven a wide range of deeper investigations into the grinding
and polishing of glass that will inevitably lead to further developments in the
automation of optics production.

26.3 FABRICATION OF ASPHERES AND NONTRADITIONAL
MANUFACTURING METHODS

In the previous section, we give the basic steps for making spherical and plano optics
by following the conventional processes, although frequently these steps are made
with advanced machinery. In this section we describe the fabrication of aspheric
surfaces and introduce a variety of methods that are in practice for making non-
classical optics.

Aspheric optical surfaces, literally any surfaces that are not spherical, are much
more difficult to produce than the spheres and flats above. Since these nonspherical
surfaces lack the symmetry of the spheres, the method of rubbing one surface against
another simply does not converge to the desired shape. Aspheric surfaces can be
polished, but with difficulty, and one at a time. The difficulty of making aspherics
greatly limits their use, which is unfortunate since a single aspheric surface can often
replace a number of spherical surfaces in an optical system.

26.3.1 Definitions for Common Aspheric Surfaces

Many aspheric surfaces can be approximated as conic sections of revolution,
although some are manufactured as off-axis pieces from the ideal parent. Conic
sections are generally easier to test than a general asphere (there are geometrical
null tests for conics). The general shape for a conic aspheric surface is

zðrÞ ¼ r2

Rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � ðK þ 1Þr2

p ð26:1Þ
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zðrÞ ¼ surface height

r ¼ radial position ðr2 ¼ x2 þ y2Þ
R ¼ radius of curvature

K ¼ conic constant ðK ¼ �e2 where e is eccentricity).

The types of conic surfaces, determined by the conic constant, are as follows,
and are shown in Fig. 26.14:

K < �1 Hyperboloid

K ¼ �1 Paraboloid

�1 < K < 0 Prolate ellipsoid (rotated about its major axis)

K ¼ 0 Sphere

K > 0 Oblate ellipsoid (rotated about its minor axis).

Equation (26.1) gives the sag, which is equivalent to deviation of the optical
surface from a plane. But, in optical fabrication, we are concerned with the deviation
of this surface from spherical. Using a Taylor expansion, the aspheric departure is
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Figure 26.14 Common aspherical surfaces, defined as comic sections of revolution: (a)

paraboloidal surface (K ¼ �1); (b) hyperboloidal surface (K < �1Þ; (c) ellipsoidal surfaces

ðK :0, or 0<K<�1); (d) off-axis paraboloid.



given in Eq. (26.2) (sometimes optics are given additional aspheric polynomial coef-
ficients, which would add the coefficients on r2; r4, . . .):

SðrÞ ¼ Kr4

8R3
þ 1:3½ðK þ 1Þ2 � 1�r6

233!R5
þ 1 � 3 � 5½ðK þ 1Þ3 � 1�r8

244!R7
þ . . . : ð26:2Þ

Although many aspherics are specified as conic surfaces and polynomial aspherics,
there are some other common aspheric surfaces:

. Toroids – These surfaces are part of a torus, having a different radius of
curvature for two orthogonal directions on the optical surface. They are
used for astigmatism correction in eyeglasses, and are used at grazing inci-
dence for focusing high-energy radiation. Toroids are made with special
generators, and polished with a variation of the process for making spherical
optics.

. Axicons – These surfaces are basically cones, generated by a tilted line
rotated about an optical axis. Axicons, which are used in unstable resonator
laser cavities and for special alignment tooling, are nearly always made by
molding or single-point diamond tooling.

26.3.2 Conventional Methods for Fabricating Aspherics

There is tremendous experience behind the traditional fabrication methods that were
presented in Section 26.2. These methods can be applied for making aspheric sur-
faces, with a few adjustments. Since the methods work best for spheres, we define the
difficulty of an asphere by its aspheric departure, or the difference between the
aspheric shape and a close fitting sphere.

The Difficulty with Aspherics

Spherical surfaces are used for most optics because they are easy to describe, easy to
manufacture, and easy to test. The spherical surface can be specified by a single
parameter – its radius of curvature R. The spherical surface is the easiest to make
because of its symmetry. The lap and the part tend to wear on the high spots, and
since both are in constant motion about several axes, they will both tend to be
spherical. Any other shape would present a misfit, which would tend to be worn
down. Testing of spherical surfaces also takes advantage of the symmetry. (Testing is
described elsewhere in this handbook.)

When figuring optical surfaces by lapping, the optician uses two different
effects to control the surface – natural smoothing and directed figuring. Small-
scale features, much smaller than the lap, tend to be removed by natural smoothing.
This is the same process as using a sanding block to get a smooth texture in wood. As
long as the block is rigid, any bumps in the wood will see large forces and will be
quickly removed. This effect, for polishing and sanding, is diminished for features
larger than the tool, or for the case where the tool is not rigid and easily conforms to
the surface. Using good shop practices and large, rigid tools, optics can be finished
spherical to about 0.2 mm of ideal, using only natural smoothing. The symmetry of
the spherical surface insures that the tool will fit the surface well everywhere.

Features on optical surfaces larger than the polishing tools can be shaped using
directed figuring. This is simply controlling the process based on surface measure-
ments to target the high areas on the optic and hit them directly. In its simplest form,
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an optician will use directed figuring by making a small tool and running it on the
high regions of the optic, as determined by an optical test. In polishing, any combi-
nation of speed, dwell times, and pressure variation may be used, but the premise is
the same.

Aspherizing

The traditional steps for making an aspheric surface are to first generate and grind to
a spherical surface using the methods described in the previous section. Then the
surface is ‘‘aspherized’’ by grinding or polishing with a specially designed tool,
stroke, or machine [41]. For small departures, say a few tens of microns, this can
be polished in; otherwise it is generally ground into the surface and the entire surface
is polished with small or flexible tools.

There are a variety of methods for aspherizing. Full-size compliant tools can be
used which have petals defined in the working area to give the desired removal as the
part rotated underneath. Full-size metal tools with the inverse aspheric curve are
used for ‘‘plunge grinding’’ of small parts. Most commonly, smaller laps are used
and the dwell is adjusted based on the aspheric curve to be ground in. The aspheriz-
ing process is usually monitored with mechanical measurements such as spherometry
or profilometry.

Polishing

Once the part has been aspherized, it is polished and figured using a combination of
large, semi-compliant tools and small tools. The optical test is critical for this pro-
cess, as the optician will work the part based only on the measurement. Unlike
making spheres, there is no tendency for the process to give the correct shape.
The optician iteratively measures the surface and works the surface until it meets
the specification.

Mild aspheres have surface slopes that are only a few microns over the dia-
meter of the part. In that instance, large tools can still be used to produce the asphere
and very smooth aspheric surfaces can be made. When slopes become larger, say tens
of microns over the part diameter, a single large tool cannot be used and small tools
become the rule. For fast aspherics, where local slopes can become greater than
several microns per millimeter, very small tools or other methods must be employed.
The usual result from using a tool that is too large to fit the local surface is that the
tool wears in a restricted region and produces ripples or zones in the surface. These
zones can become very sharp and are often very difficult to get rid of once acquired.
Zones can be prevented or removed by using a properly sized tool or by making the
tool flexible enough to bend into the global shape of the surface but still retain some
local stiffness. Much experience and hard-gained knowledge has traditionally been
required to produce high-quality aspheres; however, more deterministic methods are
currently being developed and are discussed below.

Tools for Working Aspherics

The difficulty in polishing aspheric surfaces is due to the fact that a large rigid tool
cannot fit everywhere on the surface. If the tool fits one place, it will not fit at a
different position or orientation, and will lose the ability for natural smoothing.
Opticians deal with this in two ways, both at the expense of large-scale natural
smoothing – they can make the tool smaller, until the misfit is no longer important,
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or they can make the tool compliant, so it will always fit. In fact, most opticians will
use a combination of both types of tools for any single asphere.

For analysis of the tool misfit, we treat the case shown in Fig. 26.15, with a
circular lap, diameter 2a, a distance b from the optical axis of the parent asphere.
The misfit of the lap can be represented in several modes, which take the same
form as optical aberrations. Power corresponds to a radius of curvature mismatch.
Astigmatism gives the curvature difference in the two principal directions. Coma
has a cubic form and spherical aberration (SA) has a quartic dependence on
position.

We give the lap misfit for a few common conditions (Table 26.1):

1. Lap fits a spherical surface with radius of curvature R
2. Lap is revolving
3. Lap is rotated a small amount ��
4. Lap is translated a small amount �b

Note that the spherical aberration term has no effect for the real cases (2; 3; 4).
This is because the spherical aberration of the asphere is constant on the lap for any
position. It is only the change of suface aberrations that affects polishing. Also, most
of the terms for the aberrations in Table 26.1 can be neglected for two common
cases: for a large tool with a small stroke near the axis, the coma term dominates;
and for a small tool, off axis by an amount much larger than the tool size, the
astigmatism and power terms dominate. The astigmatism and power are coupled,
so the P–V misfit for the case of the stroking tool will be equal to the sum of the
power and astigmatism terms.

The relationships in Table 26.1 giving lap misfit are used to design the equip-
ment for grinding and polishing. In grinding, the shape errors should be less than the
size of the grit in the grinding compound, and in polishing, the lap should fit to a few
microns. (The better the lap fit, the better the finish.) The laps designed for aspheric
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surfaces use a combination of small size, small stroke, and compliance to maintain
the intimate contact required.

26.3.3 Computer-Controlled Polishing

Most aspheric surfaces are still produced using small tools by highly skilled opticians
using conventional machinery. There are, however, a number of methods being
developed that integrate computer technology with radically different polishing
methods that can rapidly produce aspheric surfaces. The first of these is the com-
puter-controlled polishing (CCP) method [4,25,26]. This is essentially a traditional
small tool method where the tool is driven in an orbital motion producing, on
average, a known wear profile. This wear profile is applied to the measured errors
in a surface to produce a tool path that essentially rubs longer on the high areas and
less on the low areas, but in a precise relative way that can rapidly improve the
figure. Sophisticated optimal machine proprietary computer algorithms are used to
determine the motions from the surface measurement and removal function.

Another method that radically departs from traditional polishing methods is
the ion figuring method [1,34]. Here, the already polished surface is bombarded by
ions from an ion gun to remove material in a very deterministic way. The removal
function of the ion gun is well established prior to use. Just like the CCP process, a
tool path is developed from the measured surface errors to produce a dwell time
function for the surface. The surface figure can be rapidly improved due to the
relatively high removal rate of the ion gun verses polishing. The process is highly
deterministic, so many parts can be finished with a single run in the ion mill. Ion
figuring is only used to remove about a micron from the surface, because it can
degrade surface finish.

A figuring process that utilizes the etching of glass is the PACE or plasma
assisted chemical etching method [7]. This is also a small tool, dwell time dependent
figuring method with an unusual removal mechanism. Here a small confined plasma,
which is reactive with the glass substrate, is moved over the surface and material is
removed proportional to dwell time. By choosing a suitable tool path as in CCP
figuring, the surface can be figured without introducing high spatial frequency errors
into the surface. The tool size can be adjusted to produce the most appropriate
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Table 26.1 P–V Lap Misfit for the Cases Described

Power Astig Coma SA

1. Spherical lap
Ka4

8R3
þ Ka2b2

2R3

Ka2b2

2R3

Ka3b

3R3

Ka4

32R3

2. Revolving lap 0
Ka2b2

R3

2Ka3b

3R3
0

3. Small rotation �� 0
Ka2b2

R3
��

Ka3b

3R3
�� 0

4. Small translation �b
Ka2b

R3
�b

Ka2b

R3
�b

Ka3

3R3
�b 0



removal profiles for the particular surface error. As with ion figuring, this method
also demonstrates very high removal rates and excellent figure convergence.

Another deterministic polishing method has been developed and is used for
small aspheres that uses a lap made with a magnetorheological substance [18]. This
tool gives a well-defined removal profile, which can be modulated with a magnetic
field. The parts are rotated under the lap and the magnetic field is adjusted under
computer control according to the measured surface.

The finishing of optics with such computer-controlled methods has been lim-
ited to large companies or research groups. These techniques provide excellent
results when everything is worked out correctly. However, it takes many hours to
polish a large optic with a small tool and, if something goes wrong in this process,
the polisher can drive a small low region into the part. If this happens, the entire
surface must be driven down to meet this low spot, so one must have confidence in
the process to use small tool figuring on production parts. Also, these methods rely
on good, computer-acquired data which is mapped carefully to the surface. If the
polishing run is shifted slightly, relative to ideal, the polisher can drive low spots
right next to the high spot it was intending to hit. Even with these difficulties, the
large optics companies have developed excellent processes and equipment for com-
puter-controlled polishing.

Large-tool polishing is also possible for aspheric surfaces if the tool itself is
controlled by computer. Several groups have developed large active polishing
tools that polish aspheric surfaces under computer control by changing the lap
shape or force. The stressed lap polisher [35,57] uses a large, rigid polishing tool
that is actively bent under computer control to take the shape of the aspheric
surface. This retains the advantage of large tools to provide passive smoothing,
even on steep aspheres. [11]. A different concept has been demonstrated that uses
a membrane lap with the polishing force dynamically controlled by computer [29].
This allows the use of a large tool, although there is little gain by passive
smoothing.

One last semi-conventional method for making aspheres is the bend and
polish technique [12,31]. Here the substrate itself is carefully distorted by applying
external forces or moments. The distortion is controlled and the part is polished
spherical in its distorted state. The optic should then relax into the desired aspheric
shape.

26.3.4 New Methods of Asphere Fabrication

In this section we study the new methods that have been developed for the fabrica-
tion of aspherical optical surfaces.

Molding

Many small aspheric lenses, such as camera lenses, are made by the direct molding of
glass or plastic into an aspheric mold. The molds have the exact opposite shape of
the finished asphere and are made from materials that can withstand the required
elevated temperature. These optics are readily mass-produced by the million with
astonishingly good quality. [2]

Small lenses are directly molded in glass using a method call precision glass
molding (PGM) [43]. The lenses are directly formed into the final shape by being
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pressed into a die at high temperature. This method economically produces small
(<25mm) spherical and aspherical optics in a variety of glasses with diffraction
limited performance and with excellent surface finish. These lenses are used in
high-volume goods such as optical disk drives and pocket cameras. Larger condenser
lenses, which have reduced requirements, for projectors are also made this way.

High-quality plastics optics are mass-produced by the process of injection
molding [20]. Liquid plastic is forced into a heated mold cavity at high pressures.
The plastic solidifies to take the inverse shape of the mold. By carefully controlling
the pressure and temperature profiles, high-quality lenses up to 50mm can be pro-
duced. The tooling to produce these lenses is quite expensive, but it enables a low-
cost process that produces lenses by the thousand. Plastic optics find use in the same
type of applications as the molded glass lenses. Advantages to plastic optics are the
reduced weight and the ability to have complex mounting features integrated into the
optic.

Replicating

In addition to molding, optical surfaces are created by replicating against a master.
Compression molding of plastics is used to make large, flat optics such as Fresnel
lenses [39]. A thermoplastic blank is pressed between two platens and heated. Parts
as large as 1.5m have been made using this method.

Optical surfaces, especially gratings, are often replicated into epoxy. Typically,
the epoxy is cast between two glass surfaces – the master and the final substrate. A
release is applied to the master surface, so the result is a replicated inverse of this
master, held fast to the final substrate. Diffraction–limited accuracy can be obtained
for parts made using a carefully controlled process.

Metal optics are electroformed against precision mandrels to make good,
smooth optics. [14] Electroforming is simply electroplating on to a surface with a
suitable release. After completion, the thin metal ‘‘electroplate’’ can be removed and
used as a reflective optic. Reflectors for high-power light sources are made by elec-
troforming a thin reflective layer of nickel or rhodium on to a convex mandrel. Then,
several millimeters of copper is electroformed on top to give the part structural
rigidity. These optics are quite smooth, but can have larger figure errors.

Single-Point Diamond Turning

In recent years, high-performance machines have been produced that use sharp
diamond tools to turn optical surfaces directly to finished tolerances. These machines
use accurate motions and rigid mounts to cut the optical surface with a single
diamond point, just as one would machine the part on a lathe. This has the obvious
advantage that aspheric surfaces can be cut directly into the surface, without the
need for special laps or metrology. In fact, some optical surfaces, such as axicons,
would be nearly impossible with conventional processes. Single-point diamond turn-
ing (SPDT) is, in fact not new, but only in recent years has it become economical for
production parts. Some references on the subject are in Arnold et al., [3], Gerchman
[15], Rhorer and Evans [45], and Sanger [48].

A variety of materials have been fabricated using SPDT. The best results are
for ductile metals like aluminum, copper, nickel, and gold. Crystalline materials used
for infrared applications such as ZnSe, ZnS, and germanium are also diamond
turned with excellent results. Diamond turning does not work well for glass materials
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because they are brittle, although under carefully controlled conditions, glass can be
cut in a ductile mode [6].

The surface structure obtained from diamond turning is different from con-
ventional processes. Polished optics have no systematic structure in them, and they
can be made perfect to a few angstroms. Diamond-turned surfaces always have
residual grooves from the diamond tool. These can be made quite small (10 nm)
by making a final light cut with fine pitch. The surface scattering from these grooves
limits the application of most diamond-turned optics to infrared applications, which
are not sensitive to such surface effects. In some cases it is possible to post-polish the
diamond-turned part to smooth out these grooves [5].

There are two common configurations for diamond-turning machines – as a
precise lathe with the part spinning and the diamond bit carefully controlled and as a
fly cutter with the part fixed and the diamond bit moving on a rotating arm. The
lathe-type machines produce both axisymmetric surfaces and off-axis optics (by
mounting the optic off the axis of rotation). The fly cutter geometry is used to
produce flats, especially for crystals that are difficult to polish and for multifaceted
prisms where the relative angle from one facet to the next can be controlled.

26.4 FABRICATION ISSUES FOR THE OPTICAL DESIGNER

When the optical designer is first developing the system concept, he should ask the
question: ‘‘How is this going to be made?’’ It makes no sense to design with compo-
nents that cannot be manufactured accurately enough to meet the technical specifi-
cations or economically enough to meet the cost goals. This section discusses some of
the fabrication issues that face optical designers. Different manufacturing methods,
and commonly different shops, are used depending on whether the order is for
thousands of optics, or only a few. Tolerances on the components can drive the
fabrication methods, so these must be carefully thought out. Size also plays an
important role in deciding the fabrication methods and the reasonable specifications.
The choice of material for the optics can also limit the choices for fabrication
methods.

26.4.1 Fabrication issues Related to Quantity

As part of the overall system design and optimization, the optical engineer must
decide how the components will be fabricated. The previous sections describe com-
mon fabrication methods employed by many shops. Quantity is the most important
parameter for defining which techniques make sense and which shop to use. Some
optics will necessarily be expensive because they are one-off items that require special
attention. At the other end of the spectrum, considerable savings can be made for
large production runs by taking advantage of the technologies that reduce the reli-
ance on highly skilled labor.

Since a large portion of the cost for fabricating optics is in the setup and
tooling, one should always start by finding what optics are already in production
and attempting to use them, rather than setting up a new line with optics only
slightly different. The optical designers frequently have flexibility to push the designs
around to work with existing lenses. The lens catalogs for the largest suppliers are
included in the optical design software libraries for this reason.
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Plastic optics, replicated by injection molding provide the lowest cost option
for large quantities of small lenses. Also, small molded glass optics are produced at
high volume for low cost per part. So the designer for a system in mass production
should think first about plastic, then molded aspheres, then, if necessary, conven-
tional glass optics. The rest of this discussion is limited to the care of custom-man-
ufactured glass optics.

Ordering the Glass

The first step in fabrication is to order the glass. For most cases, it is far better to
specify the optics, along with glass requirements, to the fabricator and have them
order the glass, rather than to purchase and supply the glass yourself. The fabrica-
tors are used to dealing with the glass companies and they will know best what form
the material should come in. The fabricator will know how much glass to buy to
cover samples for setup, tooling, process development, etc., as well as the inevitable
losses due to parts outside of tolerances. By letting the fabricator purchase the glass,
you also reduce the number of interfaces for the project. The fabricators will take
seriously their responsibility for the performance of the optic, including the glass. If
you supply the glass yourself, the tendency for the fabricator is to treat the optic as a
set of surfaces being made on a substrate, which they have no control over.

The selection of the material is driven by the quantities to be made and by the
required quality. For large numbers of lenses or prisms, the blanks can be supplied as
pressings, which are molded to about 1mm over the final dimensions. These can be
blocked and processed by going straight to grinding, skipping the rough shaping
step. For large orders, the glass company can supply these blanks with tighter con-
trol on the variability of the refractive index from one part to another.

Glass supplied in pressings will usually be of high quality, but it is impossible to
inspect, due to the rough surface. The glass for low-volume, high-performance optics
is specified in blocks so the internal quality can be assessed. The glass is melted,
annealed, cut into blocks, polished for inspection, then graded according to the
measured quality. This gives the customer data showing each piece of glass, and
premium prices are paid for the highest-quality glass. It is interesting that when you
buy standard quality glass that has not been graded, you know only that the process
results in good material, and you may have excellent substrates. However, if you buy
standard glass that has been inspected, you know exactly what you have and you can
be assured that you do not have excellent quality material. It has been identified and
sold at a higher price.

The glass will be supplied with a melt sheet, which gives the pedigree of the
material. The refractive index will be measured for samples from each melt and
interferograms will be provided for glass with high-quality refractive index homo-
geneity. If there is any variability for different melts, it is important to develop a
good system to track lenses through fabrication, so it is known which finished parts
came from which melt. They all look the same.

Support for Fabrication

Traditionally, optics are blocked to the support with pitch or wax. This can be a
labor-intensive process and requires skill and experience to be done correctly.
However, this type of support does not require special tooling, so it makes sense
for low-volume production.
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One of the largest cost savings for volume production parts comes from the use
of spot blocks, described in Section 26.2.3. These allow the blanks to be inserted
directly into machined holders on the block, which does not need the highly skilled
expertise of an optician. The spot blocks are expensive to make, but they can be used
repeatedly for parts with the same radii. The cost per part obviously decreases with
the number of parts per block and the number of times the block is used. The
breakeven point for the spot blocks depends on the particular shop practices, but
it is fair to say that spot blocks are economical for the case where numerous (rather
than a few) blocks of the same element will be made.

Rough Shaping and Generating

As described above, volume optics can be supplied as pressings with sufficient accu-
racy that no roughshaping is required. For odd-shaped optics that require initial
shaping, cost savings can be made using automated NC machines.

The generating of optics in low volume uses careful alignment of the diamond
cup wheel with the part. The optician controls the radius by measuring the optic (or
block of optics) with a spherometer, then adjusting the tilt of the wheel to give the
desired curve. The thickness of the parts must be monitored separately. This type of
generating works well, but it requires a highly skilled operator.

Optics made in large quantities can skip the generating directly, and be worked
with pel grinders, which are rigid grinding tools, faced with diamond pellets. These
high-speed diamond tools work the surface quickly from the rough shape, to a fine
grind, ready for polish. The radii of the parts are controlled simply by maintaining
the radius of the tool. Here again, the tooling is expensive, but can be used for
multiple blocks of the same radius.

Polishing

Pitch tools are used for high-precision optics and for runs of small quantities. The
pitch tools require skilled labor to make and maintain, but they do not require
any expensive or difficult machining. Optics made in large numbers are frequently
polished using pads of special fabric or textured polyurethane. These tools can be
expensive because they must be carefully manufactured so the radius of the tool
matches the ground surface to be polished. Once this is achieved, however, the
tool can be used repeatedly for multiple blocks of lenses. Also, the polishing
speeds and pressures can be increased for these synthetic laps to speed up
polishing.

26.4.2 Relationships Between Tolerances and Fabrication Issues

The importance of effective tolerancing for optical components cannot be over-
stated. It is in the specification of the tolerances that the optical engineer must
know something about the fabrication. A tendency for optical designers is to
come up with a lens design that performs well according to simulations, then to
expect the real optics to behave as the ideal ones do in the computer. The tolerances
for the system are often assigned as an afterthought to the design and they tend to be
tight. A better way to design is to anticipate the fabrication limitations in the design
of the lens. This way the designer balances sensitivity to expected errors as part of the
optical system design.
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The optimal value for the tolerances can only be found by communication
between the fabricator and the designer. The designer always wants tighter toler-
ances because they will give improved performance. These come at a cost, however,
because the fabricator must work harder to meet these tolerances. So how good is
‘‘good enough’’? The designer cannot decide this on his own because it depends on
the incremental fabrication costs. The fabricator cannot define this, because he does
not have sufficient information to know how the manufacturing errors affect the
system performance.

To perform system tolerance analysis, the engineer will assume some tolerances
and perturb the simulation of the optical system to determine the effect of each
parameter (such as radius of curvature or lens thickness) being at the edge of toler-
ance. The overall performance is estimated by combining the effect of all of the terms
as a root sum square. Here is where the fun begins. Usually, the optical designer finds
one of two things from this exercise – either the system has excellent performance, in
which case the assumed tolerances are too tight, or the performance is not accep-
table, in which case the assumed tolerances must be tightened. Now the designer
should go to the fabricator and discuss which tolerances to adjust to give acceptable
performance without driving up manufacturing costs.

Because the effects of the separate tolerances are uncorrelated and added as
RSS, only the few largest terms contribute to the total. If the designer looks carefully
at the individual terms, tolerances that do not affect the performance can be made
looser than would be otherwise. Also, only a few critical parameters will need to be
controlled to high accuracy.

The key to good tolerancing is to know the relationships between tolerances
and cost. Unfortunately, this information is hard to get and it can vary significantly
from one shop to the other and over time. This relationship depends on two things –
how much extra work is required to achieve the tolerance and whether special
equipment is required.

A simple example is the angle for a prism. using standard shop practices, and
paying no particular attention, the angle will be good to about 5 arc min. If the
optician takes special care using common tools, the angle can be controlled to 1 arc
min. The added expense here is only the additional time required by the optician to
measure the angle and adjust the process. To get to accuracy of 10 arc secs, the
optician will need more sophisticated measuring equipment and it will take more
iterations of the measure – adjust cycle. Now if the angle must be made to 1 arc sec,
only an experienced optician with very good metrology can spend a lot of time to get
there. Optics with requirement of 0.1 arc sec will require a research effort to come up
with a way of both making this part and validating it, so the cost may be extremely
high and the delivery time quite long.

In some cases the cost curves do not change with tolerance until the capacity of
a machine is exceeded. A good example here is machining with NC machines. A
good machine will give 10 mm accuracy over small distances, independent of the
tolerance assigned by the designer. There would be no cost savings for assigning a
looser tolerance. There would, however, be a sharp cost increase if a 9 mm tolerance
is assigned and the machine is certified to 10 mm. This would drive the fabricator to
another method, which may cost several times more. It is important to feel these
things out with your fabricator.
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We provide some rules of thumb for tolerancing optics (Tables 26.2–26.4). Like
any rules of thumb, these serve as useful guidelines, but the particular circumstances
may be well outside these assumptions. Many of the numbers come from some
excellent articles on this subject [37,38,51,58,59,60].

We define several classes of tolerances:

. base – this is what the manufacturing process gives, without any special
effort

. precision – most shops can do this, at a cost increase of roughly 25% for that
operation

. high precision – at the limit for most shops, cost could increase 100% for
that operation.

26.4.3 Size Effects for Fabrication

The effects of size on optical fabrication are quite interesting. There are numerous
methods and plenty of shops that make production lenses to 50mm. Optics in the
range of 50–500mm are not uncommon, but they require special tooling and they are
usually made as one-off parts [with the exception of flats processed on a continuous
polisher (CP)]. Optics greater than 500mm nearly always mirrors, are in a class by
themselves and there are only a few places with equipment and expertise to handle
these.

The advantage of using optics smaller than 50mm is that there are so many of
them! There are large numbers of companies set up to make these optics to high
quality at good prices. The parts are small enough that many optics can be processed
economically on a common block. The infrastructure is in place for grinding, polish-
ing, edging, cleaning, and coating optics of this size. In fact much of the processing
can be totally automated.

Things get more difficult for larger optics. The market has not supported the
development of efficient tools and processes for mass-producing optics in the 50–
500mm range. In fact, each new part in this range will need a special polishing
support and set of polishing tools. These parts need to be processed one at a time,
so they require significantly more labor than the small parts. The size of these parts is

Optical Fabrication 951

Table 26.2 Rules of Thumb for Optical Element Tolerances

Parameter Base Precision High precision

Lens diameter 100 mm 12 mm 6 mm
Lens thickness 200 mm 50 mm 10 mm
Radius of curvature (tolerance on sag) 20 mm 1.3 mm 0.5 mm
Wedge (light deviation) 6 arc min 1 arc min 15 arc sec

Surface irregularity 5 fringes 1 fringe 0.25 fringe

Surface finish 50 Å rms 20 Å rms 5 Å rms

Scratch/dig 160/100 60/40 20/10

Dimension tolerances for complex elements 200 mm 50 mm 10 mm
Angular tolerances for complex elements 6 arc min 1 arc min 15 arc sec

Bevels (0.2 to 0.5mm typical) �0.2mm �0.1mm �0.02mm



such that they can usually be simply supported, either on a few defining points or on
a compliant pad.

In addition, the metrology for these larger optics can drive the cost up. Small
optics are easily measured with test plates. The larger optics may need to use aux-
iliary optics for testing. The testing is not just for qualification, but it is an integral
part of the fabrication sequence. The optician works these optics according to the
results from the optical test.

Large optics (>50 cm) are almost always mirrors, and have other unique
difficulties due to their size, and often due to the surface requirements. (For the
same optical performance, a mirror surface must be four times better than a refrac-
tive surface.) For large optics, each processing and handling operation requires
custom tooling. The support for large optics becomes difficult and extremely sensi-
tive. Often, separate supports must be used for holding the optics during polishing
than can be used for testing. The polishing forces from large laps can be substantial
and must be resisted by the support. The self-weight deflection of large mirrors alone
will quickly dominate the shape if it is not accommodated in the support.
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Table 26.4 Optical Material Tolerances

Parameter Base Precision High precision

Refractive index departure from

nominal

�0:001
(Standard)

�0:0005
(Grade 3)

�0:0002
(Grade 1)

Refractive index measurement �3� 10�5

(Standard)

�1� 10�5

(Precision)

�0:5� 10�5

(Extra Precision)

Dispersion departure from

nominal

�0:8%
(Standard)

�0:5%
(Grade 3)

�0:2%
(Grade 1)

Refractive index homogeneity �1� 10�4

(Standard)

�5� 10�6

(H2)

�1� 10�6

(H4)

Stress birefringence

(depends strongly on glass)

20 nm/cm 10 nm/cm 4 nm/cm

Bubbles/inclusions � ð> 50mm)

(Area of bubbles per 100 cm3)

0.5mm2

(class B3)

0.1mm2

(class B1)

0.029mm2

(class B0)

Striae (based on shadow graph

test)

Normal quality

(has fine striae)

Precision quality

(no detectable

striae)

Precision quality

(no detectable

striae)

Reference: Schott glass catalog.

Table 26.3 Rules of Thumb for Optical Element Mounting Tolerances

Parameter Base Precision High precision

Spacing (manual machined bores or spacers) 200 mm 25 mm 6mm
Spacing (NC machined bores or spacers) 50 mm 12 mm 2.5mm
Concentricity (if part must be removed from chuck

between cuts)

200 mm 100 mm 25 mm

Concentricity (cuts made without de-chucking part) 200 mm 25 mm 5mm



The shear size of large mirrors presents a challenge. Opticians may need to
climb out on to the optical surface to clean and inspect a large mirror. Every hand-
ling operation must be carefully thought out and all of the tooling must be tested
before it can be safely used. Unlike picking up small optics, large optics can be
extremely heavy, so the forces are large, and the parts are extremely valuable, so
all efforts to make sure every operation is 100% safe are justified.

It is much more difficult to estimate the costs for large optics than for small
ones because of the difficulties with large optics and the fact that each one is special.
Large optics are only processed in a limited number of shops, so the costs will often
depend on the current workload in the shop as much as it will on the technical
difficulties. The best advice here is to plan ahead and design for optics that are
identical to others already in production. Much of the cost for large optics is in
the equipment, so considerable savings can be made by using existing tooling. A
good example is the lightweight mirrors made at the University of arizona. Fig. 26.16
shows a primary mirror blank that is 8.4m across, which will be used as one of the
twin telescopes in the Large Binocular Telescope. A large fraction of the cost of this
mirror is due to the engineering and fabrication of all the equipment to process and
handle this glass. Much of this equipment is specifically designed for this mirror and
could not be used for an optic with a different shape.

26.4.4 Fabrication Issues Relating to Material Properties

The choice of material clearly influences the method of fabrication and the selection
of the appropriate shop. There is not a wide variation for fabricating most of the
optical glasses. Some glasses stain, and require specific polishing compounds, and
others are relatively hard and require more time for processing. But these are not
large issues. The choice of glass will mostly affect cost directly, by the price of the
glass itself.

The big differences come from more exotic materials, such as crystals and
special metals. Some of these materials are extremely useful in optical systems, but
their material properties make them difficult and expensive to fabricate [35,54]. The
most important material properties for the fabricator are:

. CTE coefficient of thermal expansion, which will drive blocking and thermal
requirements

. Thermal conductivity (or diffusivity) which will define the thermal time
constant and potential for thermal shock

. hardness or softness, which will define polishing methods

. solubility, which can limit the polishing and cleaning solutions

. ductility, which will define whether the material can be diamond turned.

The best advice for difficult materials is to find a shop that specializes in processing
that type of optic. Again, it is important to talk to the potential fabricator early in
the design phase because some materials will impose hard size or quality con-
straints that need to be folded in from the start. Also, you may be pleasantly
surprised to find that there are better alternatives to the material or process you
originally assumed.
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There are steep cost curves for fabricating difficult materials that depend lar-
gely on equipment and the state of the market. Like large optics, these markets are
not large enough to have a wide selection of vendors competing for your business.
The expertise for fabricating optics from less common materials tends to be with
small companies that have developed particular specialities.

A different issue is the choice of substrate material for reflective optics. The
light does not care what substrate the mirror is made of, because it reflects off a
coating on the surface and never goes through the mirror. So the mirror substrate
can be chosen according to the operating environment. Frequently, mirrors are made
from low-expansion glass because this takes an excellent polish and it minimizes the
sensitivity to thermal effects. Mirror substrates can be procured as lightweighted
structures to reduce the self-weight deformation.
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Figure 26.16 An 8.4-m diameter, f =1:1 primary mirror blank for the Large Binocular

Telescope. This optic, the largest in the world, requires considerable engineering and tooling

to support each operation in the shop. This image shows the backside of the honeycomb

mirror as it is supported vertically in the shop. (Photo by Lori Stiles, University of Arizona).



26.5 CONCLUSION

This chapter has given a summary of the most common fabrication methods in use
today. Most optics are made by modern variants on classical methods, but the
highest performance optics rely on more advanced techniques. Clearly, there are
numerous fabrication methods for speciality optics that lie outside the scope of
what has been presented here.

We present this information to the optical engineer to give some understanding
of limitations and alternatives in the shop. An engineer who knows the basic issues
can work directly with the fabricator to design cost-effective systems. Clearly, the
system cannot be optimized for either performance or cost if the fabricator is not
involved in the decisions. Remember, without the fabricator, the optical engineer
would have nothing but a pile of computer printouts and some sand!
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Index

Abbe number, 165, 197, 828, 835, 837

Abbe prism, 133

Aberrations, 29, 32

astigmatism, 29, 31, 142, 354

chromatic difference of magnification,

32

coma, 29, 31, 142, 354

compensation, 102

distortion, 31

field curvature, 31

fifth order, 32

longitudinal color, 32

of the normals, 150

primary, 30

Seidel, 30

spherical, 29, 31, 142, 354

third order, 30, 31

Absorption, 265, 781

band, 829

coefficient, 666

filters, 267, 757

index, 829, 830

two photons, 82

AC interferometer, 444

Achromatic diffractive elements, 165

Achromatic doublet, 197, 199

Achromatic lenses, 198

Acoustical holography, 537

Acousto-optical devices, 595, 643

Acousto-optical tunable filters, 267, 296

Acousto-optic filters, 296, 760

Acousto-optic modulation, 595, 643

Acousto-optic modulator, 644

Acrylic, 842

Active mode-locking, 110, 112

Active optics, 236

Adaptive optics, 236

Admittance of free space, 745

Afocal system, 198, 200, 201, 220

Air-spaced doubled, 199

Airy disk, 208

Airy function, 290

Algorithm, Schwider-Hariharan, 392

Allyldiglycol carbonate, 842

Aluminum, 154, 841

Amici prism, 128

Amplitude, 339

division, 57

filter, 566

Anastigmatic surface, 149

Angle, 669

of deflection, 136

measurement, 453, 448, 458

replication in polygons, 450
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Angular magnification, 6, 193, 202, 203

Angular measurements, 446, 455

Angular resolution, 242

Anisotropic materials, 847, 853

Anisotropic media, 72

Anisotropy, 637

Antireflection coatings, 757, 769, 771, 769,

772

Anti-Stokes lines, 85

Aperture, 750

size, 249

Aplanatic surfaces, 16

Apostilb, 665

Apparent surface area, 666

Ar+ lasers, 721

Arabic-Chinese training set, 578

Arc, 701

mercury lamps, 707

sources, 706

Asphere fabrication, 945

Aspheric lenses, 142

Aspheric optical surface, 142

Aspheric surface, 142, 331, 939, 940

Aspheric wavefront testing, 417

Aspherizing, 942

Astigmatism, 29, 31, 142, 151, 195, 354

Asymmetrical arrangement, 504

Asymmetric mounts, 276

Astronomical telescope, 233

Atmospheric effects, 235

Attenuator, 805

Autocollimator, 435, 448, 450

Autoset level, 452

Axial chromatic aberration, 197

Axial gradient index, 144

Axial gradient, 144

Axial modes, 729

Axial or longitudinal modes, 729

Axicon, 185, 941

Back focal length, 140, 199

Bandpass filter, 748, 767

Bandwidth of the quadrature filter, 388

Bandwidth-distance product, 784

Bar spherometer, 432

Basic wave optics, 39

Beam divergence, 734

Beam-scanning laser printer, 647

Beam shaping, 184

Beam splitter, 155, 748

Beam splitting prisms, 134

Beryllium, 841

Bessel function, 511

Biaxial crystals, 852, 857, 861, 862, 864

Bidirectional reflectivity distribution

function, 693

Binary optical elements, 169

Binary optics, 159, 179

Binocular beam splitting system, 135

Biological processes, 118

Biopolymers, 879

Biorthogonality constraints, 580

Bipolar semiconductor junctions, 598

Birefringence, 83, 831

Blackbody radiation, 264, 686, 687, 719

Black films, 880

holographic, 887

Blanchard-type geometry, 926

Blazing ruling, 279

Blondel, 665

Boolean logic functions, 585

Bound abrasive wheels, 930

Bouwers camera, 224

Bragg grating, 810

Brewster angle, 72

Brillouin Raman effect, 82

Broad spectral filtering, 563

Broken-contact achromatic doublet, 199

Bubbles in optical glasses, 831

Bull’s-eye pattern, 284, 285

Bundle of fibers, 798

Burch interferometer, 356

Buried channel, 615

Burrus LED, 715

C6+ laser, 721

Candela, 664, 665

Capillary splice, 819

Cardinal points, 8

Carrier frequency fringe patterns, 396, 397,

400

Carrier lifetime, 599

Cassegrainian telescope, 142

Casting, 176

Cat’s-eye reflector, 301

Catadioptric telescope, 222, 230

Cathode-ray tube (CRT), 617

Caustic, 2

coordinates, 331

surface, 1, 21, 22

CCD structure, 613

Cementing, 938

Centering, 919, 937

and edging, 936
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Centers of curvature, 138

Central obstruction, 224

Centrosymmetric crystal, 83

CH3F lasers, 721

Chalcogenides, 790

glass fibers, 790

Characteristic admittance, 744

Characteristic curve of photographic film,

880, 881, 888

Characteristic function, 8

Characterizing holographic emulsions,

890

Charge-coupled detectors, 573

Charge-coupled imagers, 609

Chemical properties, 833

Chief ray, 25

Chirped fiber Bragg gratings, 812

Chirp-Z transform, 592

Christiansen filters, 267, 268, 758

Chromatic dispersion, 125, 827, 828, 835

prisms, 134

CIE-standard photometric observer, 661

Circular pupil, 753

Circular variable filters, 270

Cladding, 785

Classical dispersion theory, 835

Cleaning, 919, 938

CO2 lasers, 721

Coaxial arrangement, 503

Coddington equations, 21

Coherence, 66, 340, 342, 561

length, 67, 340

spatial, 53, 67

time, 67

Coherent illumination, 555

Coherent interactions, 107

Coherent processing, 554, 564

Coherent scattering, 91

Coherent spot projection system, 483

Collectors, 675

Colliding-pulse mode-locking, 115

Collimator, 197, 198, 751

Collinear AOTF, 197

Color center laser, 292

Color CRT, 619

Color films, 887, 889

Color holograms, 532

Color rendering index, 702

Color reproduction processes, 888

Color temperature, 702, 705

Colored filter glasses, 757

Colorimetry, 264

Coma, 29, 31, 142, 354

function, 277

Common path interferometers, 356

Compensated interferometer, 347

Completely incoherent illumination, 556

Complex amplitude, 556

transmittance, 558

Compression, pulse, 107

Computer-controlled polishing, 944

Computer-generated holograms, 182, 533

Computing with optics, 584

Concave mirror, 148

Condensing lens, 203

Confocal-planar resonator, 729

Confocal resonator, 435, 729

Conic constant, 143, 150

Conic sections, 940

Conic surfaces, 143

Conjugate planes, 5

Connector, 814, 815

Constant deviation prism, 128, 136

Constant 458 deflecting prism, 130

Constructive interference, 50, 339

Continuous lasers, 111

Continuous polishing machine, 935

Continuous wave laser, 722

Contrast index, 880

Contrast of the fringes, 50

Convolution integral, 552

Convolution methods, 380

Core-cladding index difference, 778

Correlated color temperature, 702

Cost, 834

functional, 382

Cotton-Mouton effect, 871

Couple-wave analysis, 165

CPM laser, 107, 112

CR-39, 842

Critical angle, 125

CRT and imaging tubes, 617

Crystal, 84, 85, 851, 930

centrosymmetric, 83

system, 852

types, 852

Crystalline materials, 827, 850

Crystalline quartz, 837

Cube corner prism, 128, 131

Cubic crystal system, 852

Curie point, 634

Curvature, 10, 31

measurements, 431, 434, 435, 456

sensing, 416
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Cut-off frequency, 600

CW dye laser, 107

Cyclic interferometers, 367, 368

Cylindrical hollow waveguides, 792

Czerny-Turner mount, 280

Dammann grating, 169

Daughter wavelets, 579

DC interferometer, 443, 444

Deflecting prism, 125, 128

Defocussing, 354

Demultiplexing of optical signals, 811

Density, 833

Depletion layer, 610

Descartes, 14

Destructive interference, 50, 339

Development, 886

Diamond generating wheels, 925

Diamond generating, 924

Diamond machining, 924

Diamond tools, 926

Diaphragm, 25

Dichromated gelatine, 167

Dielectric films, 155

Dielectric hollow waveguides, 792

Dielectric hollow-core fibers, 792

Dielectric layer, 764

Dielectric materials, 830

Dielectric tensor, 850, 852

Differential angle, 670

Differential solid angle, 673

Differential vibrometer, 481

Diffracting elements, 178

Diffraction, 39, 758

blur, 235

Fraunhofer, 41, 46, 55

Fresnel, 41, 42

grating, 169, 758

integral, 42

limited, 26

spot, 752

losses, 727

spot, 209

theory, 277

of imaging, 208

Diffractive elements, 158, 176

Diffractive lens, 159

Diffractive microlenses, 178

Diffractive optical components, 157

Diffractive optical elements, 158, 182

Diffractive phase elements, 159

Digital EO deflector, 632

Digital holographic interferometry, 500

Digital holography, 501

Digital recording and numerical

reconstruction, 543

Diluted aperture telescope, 251

Diode lasers, 115

Diopters, 195

Dipolar moment, 81

Direct phase detection system, 477

Directional coupler, 798, 804

Directional radiator, 684

Directivity, 800

Direct-writing techniques, 171

Discharge lamps, 708

Discrete cosine transform, 592

Discrete Hilbert transform, 592

Discrete sine transform, 592

Dispersing prism, 136

Dispersion compensation, 813

Dispersion, 274

fiber bandwidth, 782

flattened optical fiber, 784

formula, 834

shifted fibers, 783

Display holograms, 540

Distance measurement, 438, 444, 459

interferometer, 445

Distortion, 31

correction theorem, 102

Divided circles, 446

Division of amplitude, 57

Division of wavefront interferometers, 53

Doped polymer materials, 907

Doppler anemometry, 466

Doppler broadened transition, 726

Doppler broadening, 93, 94

Doppler differential mode, 471

Doppler effect, 467

Doppler signal processing, 472, 473

Doppler width, 93, 94

Double beam principle, 300

Double clad fibers, 788

Double modulation system, 479

Double pass Littrow spectrometer, 300

Doublet, 197

Dove prism, 131

du Pont’s omnidex system, 901

Dye, 880

laser, 114, 292

Dynamic-focus lenses, 178

Dynodes, 607

Dyson system, 153
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Eagle mounting, 281

Eccentricity, 143

Edging, 919, 937

Effective focal length, 140, 199

Effective point source, 751

Efficacy curves, 661

Eikonal, 8, 12

Elasticity, 833

Electric displacement vector, 848

Electric field, 863

Electric polarization, 848

Electric-field operator, 77

Electro-hole pair, 597

Electromagnetic spectrum, 649, 650

Electromagnetism, 848

Electron-beam lithography, 170

Electronic speckle pattern interferometry,

501, 503

shearing, 511

Electro-optical devices, 595

Electro-optical materials, 176

Electro-optic constants, 623

Electro-optic devices, 624

Electro-optic effect, 83, 622

Electro-optic modulation, 595, 622

Electro-optic properties of cubic crystals,

870

Ellipsoid, 143

Ellipsoidal mirrors, 151

Ellipsoidal surfaces, 940

Emetropic eye, 196

Emission, 265

spectra for mercury and xenon arc lamps,

708

Energy level diagrams, 92

Entrance pupil, 25, 192

EO modulators, 634

Equal thickness fringes, 348

Equilateral prism, 134

Equilateral triangle prism, 132

Erbium-doped fibers, 786, 788

amplifier, 878

Erfle eyepiece, 166

Euler equations, 9

Exitance, 655, 656, 664, 686

Exit pupil, 25, 192

Exposure determination, 883

Extended range, 408

fringe pattern analysis, 408

External transmittance, 698

Extinction coefficient, 829

Extrinsic losses mechanism, 815

Extrinsic optical nonlinearity, 81

Eyepiece

design, 166

Huygens, 220

illuminating, 448

Kellner, 220

Ramsden, 220

f/number, 26, 266, 655

Fabricating aspherics, 941

Fabricating spheres, 932

Fabrication

of aspheres, 939

of fiber couplers, 801

issues, 947, 950

Fabry-Perot interferometer, 270, 364,

365

Fabry-Perot spectrometers, 289

Fan-shaped broadband filter, 563

Far field holography, 524

Faraday effect, 82, 871

Faraday rotator, 96

Fastie-Ebert mount, 280

FEL laser, 720

Femtosecond pulses, 115

Fermat’s principle, 9

Fermi level, 610

Ferroelectric crystals, 879

Fiber bandwidith, 784

Fiber Bragg grating, 809–811

Fiber bundles, 795

Fiber connectors, 813

Fiber loops, 809

Fiber modes, 778

Fiber optic components, 798

Fiber optical connectors, 816

Fiber parameters, 778, 785

Fiber polarizer, 808

Fiber splicers, 818

Fiber structure, 776

Fiber waveguides, 778

Field curvature, 148

Field effects, 637

Field emission, 707

Field lenses, 200, 201

Field of view, 672

Field stop, 750

Fifth Order, 32

Filament, 703

Filled-aperture telescope, 247

Filling gas, 704

Filter wheels, 267
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Filters, 267, 743, 773

absorption, 267

acousto-optical, 296

tunable, 267, 296

Christiansen, 267, 268

circular variable, 270

interference, 267, 269

linear variable, 272

Lyot, 267

Lyot-Ohman, 268, 296

narrowband, 769

Reststrahlen, 267, 268

Rougate, 773

spectrometers, 266

transmission, 270

wheels, 267

Filter spectrometers, 266

Filter transmission, 270

Finesse, 65, 266

First-order equations, 23, 29

Fizeau fringes, 62

Fizeau interferometer, 62, 349

Flash lamps, 710

Flash tube impedance, 711

Flow velocity, 475

Fluorescence, 265

lamps, 701, 711

characteristics, 713

lifetime, 726

lighting, 712

phosphor, 713

Fluoride glass fibers, 790

Fluoride glasses, 790

Focal length

back, 199

effective, 140

front, 5, 199

measurement, 431, 440

paraxial, 150

rear, 5

Focal plane array, 672

Focusing lenses, 177

Foot-candle, 665

Foot-Lambert, 664, 665

Foucault test, 311, 316, 364

Foucaultgram simulations, 312

Fourier domain, 568, 579

filter, 556, 557

processing, 556

wavelets, 580

Fourier method, 463

Fourier optics, 551

Fourier plane, 316

Fourier transform, 41, 47, 277, 396, 551,

553

by a lens, 553

holograms, 529

spectrometer, 282, 284

Four-step phase stepping interferometry,

390

Four-wave mixing, 83, 101, 103, 106

Fraunhofer diffraction pattern, 41, 528

Fraunhofer diffraction, 46, 55

Fraunhofer holograms, 528

Fraunhofer holography, 524

Fraunhofer lines, 264

Free electron lasers, 721

Free spectral range, 266

Frenet–Serret equations, 9

Frequency detection system, 478

Frequency generation of sum and

difference, 82

Frequency response low-pass regularized

filters, 384

Frequency response, 384

Frequency shifting by diffraction grating,

470

Frequency shifting, 467

Frequency spacing, 730

Frequency, 265, 654

Fresnel, 143

approximation, 41

diffraction patterns, 41

diffraction, 41, 42

integrals, 44

lenses, 143, 203

lenslet, 169

losses, 694

microlenses, 179

reflections, 829

zone, 169

Fresnel-Kirchhoff theory, 551

Fringe

analysis methods, 419

contrast, 50, 340

equal thickness, 60, 63, 348

finesse, 65

localized, 347

numbering, 377

pattern, 375

analysis, 373

projection, 493, 495

visibility, 50

Front focal length, 5, 199
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Fundus camera, 201

Fusion splicing, 818

Gabor transform, 578

Galilean telescopes, 219, 220

Gamma of photographic film, 880

Gas lasers, 720, 721

Gas-filled phototubes, 607

Gated holography, 543

Gauss, 2, 23, 29

Gaussian beam, 101, 102, 733, 745, 747, 751

Gaussian curve, 94

Gaussian function, 579

Gaussian laser beam, 734

Gaussian line shape, 726

Gaussian noise, 560

Gaussian optics, 2, 29

Gaussian profile, 755

Gaussian window function, 579

Generating a prism, 926

Geometrical optics, 1, 210

Germanium, 698

filter, 757

Germicidal lamps, 713

Giant pulse lasers, 110

Girard grille, 295

Glan-Thompson prism, 860

Glass, 948

ceramics, 840

cladding, 785

envelope, 704

fibers, 786

Golay multislit spectrometer, 293

Gold, 155

Goniometer, 446, 447

Graded-index fibers, 777, 786

Gradient index, 144

medium, 9

Gradient measurement, 408

Gradient test, 329

Granularity, 883, 884, 889

Gratings, 264

equation, 162

interferogram, 517

interferometry, 494, 514

monochromator, 759

object, 437

operation, 279

spectrometers, 276

structures, 179

Gray-tone masks, 171

Green’s functions, 332

Gregorian configuration, 246

Grid method, 515

Grid projection, 494

GsAs laser, 721

Haddamard spectrometer, 294

Half-and quarter-wave phase shifter, 809

Half-turn rotating prism, 132

Hamilton’s characteristic equations, 12

Hamilton’s characteristic function, 12

Hamming window, 397

Hanbury-Brown and Twiss, 79

Hard clad silica (HCS), 786

Hardness, 832

Harmonic signal rejection, 388

Harmonic wave, 744, 745

Hartmann screen, 414

Hartmann test, 311, 325, 327, 329, 414

Hartmanngram evaluation, 327, 415

Heisenberg electric-field operator, 77

Heisenberg’s uncertainty relation, 78

Helium-neon laser, 340, 341, 350

Helmholtz equation, 332

Hemispherical lenslet, 179

Hermite polynomials, 731

Herschelian telescope, 222

Hexagonal crystal system, 852

High-intensity discharge lamps, 708

High-intensity sodium lamps, 709

High-power lasers, 789

High-pressure sodium lamps, 709

High-resolution imaging, 103

High-resolution telescope, 217

Hilbert integral, 13

Hilbert transform, 592

Hollow waveguides, 792

Hologram copying and embossing, 536

Hologram, 157, 501

Holography, 523, 890, 893

correction of aberration, 539

interferometry, 494, 497, 501, 534

memory devices, 184

multiplexing, 538

optical elements, 157, 537

recording, 167

Homogeneity groups for optical glasses,

830

Homogeneously broadened line, 726

Hopfield model, 573, 574, 575, 577

Hopfield neural network, 573

Hot isostatic pressing, 841

Hot-embossing, 176
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Hubble telescope, 142, 234, 237, 243,

Human visual system, 650

Huygens eyepieces, 220

Huygens principle, 12, 26, 29, 39

Huygens wavelet, 40, 53

Hydrid diffractive, 166

Hyperboloid, 143

of revolution, 142

surface, 940

Hypermetropia, 195

Illuminance, 660, 664, 665

Illuminated eyepieces, 448

Illuminating system, 203

Image displacement, 126

Image effects, 885

Image formation, 140

Image intensifiers, 621

Image orientation, 125

Image plane holograms, 529

Image processing, 551, 564

Image structure characteristics, 883, 889

Image subtraction, 568

Imaging lenses, 201

Impermeability tensor, 850

Incidence, 125, 655

Inclusions, 831

Incoherent illumination, 555

Incoherent light sources, 701

Incoherent processing, 554

Incoherent spot projection system, 482

Index ellipsoid, 853, 857, 865

Indirect ophthalmoscope, 201, 202

Induced and inherent losses, 780

Induced birefringence, 863

Induced opacity, 83

Induced reflectivity, 82

Information storage and processing, 541

Infrared materials, 843, 844

Infrared optical fibers, 789

Infrared oxide glass, 790

Infrared photocathodes, 606

Infrared spectral regions, 843

Infrared telescope, 245

Infrared transmittance

for several materials, 845

for vitreous silica, 840

Inhomogeneous films or rugates, 845

Inhomogeneous layer, 773

Initial fabrication of the blank, 920

In-line Fraunhofer holography, 528

In-plane grid and moiré methods, 514

Insertion loss, 800

Intensity, 556, 657

Intensity-dependent refraction index, 83

Interconnection losses, 813

Interference, 49, 761

constructive, 50, 339

destructive, 50, 339

filter, 267, 269, 765

thin-film, 67

fringes, 339

multiple beam, 266

Interferogram, 373

Burch, 356

Interferometers, 339

common path, 356

compensated, 347

cyclic, 367, 368

distance measurement, 445

Fabry-Perot, 270, 364, 365

Fizeau, 62, 349, 350

laser, 350, 460

Fizeau, 350

Twyman-Green, 354

lateral shear, 358, 359, 362, 458

Mach-Zehnder, 62, 355, 357, 804

Michelson, 283, 346, 347, 352

mock, 295

multiple reflection, 364

Murty, 356

Newton, 351

point diffraction, 358, 359

Sagnac, 369, 370

scattering, 357

Shack-Fizeau, 350, 351

spherical Fabry-Perot, 302

stellar Michelson, 344

Talbot, 361

triangular cyclic, 369

Twyman-Green, 62, 63, 284, 352, 353

unequal path Twyman-Green, 356

Young, 344

Interferometric angular measurement, 457

Interferometric methods, 442, 457, 931

metrology, 373

Interferometry, 104, 373

electronic speckle pattern, 503

holographic, 494, 497

laser speckle, 458

lateral shearing, 412

multiple wavelength, 445

phase stepping, 385

speckle, 494
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Intermodal dispersion, 782

Internal angle, 125

Internal reflection, 125

Internal transmittance, 698, 699, 838

Interpattern association, 574

Interpattern neural network, 574

Intersecting waveguides, 804

Intrinsic contribution, 32

Intrinsic losses mechanism, 814

Intrinsic optical nonlinearity, 82

Inverse Faraday effect, 82

Inverse power square law, 678

Inverse Raman effect, 82

Inversion, 125

Inverting, 131

Ion lasers, 115

Ionization coefficients for silicon, 602

Irradiance function, 339

Irradiance transport equation, 332

Irradiance, 340, 654, 655, 664, 745

Isotropic amorphous optical materials, 827

Isotropic crystals, 857

system, 852

Isotropic materials, 125

Isotropic, linear medium, 848

Keck telescope, 250

Kellner eyepieces, 220

Kepler, 14, 29

Keplerian telescope, 208, 217

Kerr cell, 89, 634

Kerr effect, 83

Kerr magneto-optic, 871

Kerr medium, 116

Kerr modulator, 633

Kinoforms, 159, 169, 178

Kirchhoff’s integral, 552

Knife edge test, 31, 312

Knudsen cells, 845

KrF lasers, 721

Lagrange invariant, 26

Laguerre polynomials, 731, 732

Laguerre-Gaussian beam, 185

Lambert, 665

Lambert’s law, 684

Lambertain emitter, 714

Lambertain radiance, 689

Lambertain radiator, 685, 686, 688, 690

Lambertain reflector, 664

Lambertain surface, 752

Lamp electrodes, 710

Large-distance optical measurements, 428

Lasers, 82, 719

Ar+, 721

applications, 735, 736

C6+, 721

CH3F, 721

CO2, 721

continuous wave, 722

dye, 107

CPM, 107, 112

Doppler displacement interferometer, 457

Doppler velocimetry, 466, 735

Doppler vibrometers, 480

dye, 114

FEL, 720

Fizeau interferometer, 350

free electron, 721

gas, 720, 721

GsAs, 721

helium-neon, 340

He-Ne gas, 350

instruments, 735

interferometer, 350, 460

KrF, 721

liquid, 720, 721

longitudinal modes, 108

medium, 722

mode-locked, 109, 722

N2
+, 721

Nd glass, 107, 112, 113

Nd-YLF, 113

Ne-He, 721

oscillator, 103

plasma, 720, 721

POCI4, 721

pulsed dye, 107

pulsed, 722

Q-switched, 722

resonator, 102

modes, 109

Rh6G, 721

semiconductor, 720

solid, 720

sources, 720

speckle interferometry, 458

speckle photography, 461, 462

spectrometers, 291

spectroscopy, 106

thermometry, 736

TTF, 721

Twyman-Green interferometer, 354

wide-gain bandwidth, 108
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Latent imaging polymers, 902

Lateral color, 32

Lateral magnification, 5

Lateral shear interferometer, 359, 362,

458

Lateral shearing interferometers, 358, 412

Lattice type, 851

LCD display, 639

Leman prism, 133

Lenses, 138

aspheric, 142

optical devices, 191

thick, 139

thin, 138

Wollaston, 196

Lensless imaging, 103

Lenslet arrays, 179

Level, 453

adjustment, 451

measurements, 451

LIDAR, 735

Light distribution, 1

Light scattering, 85, 692

Light source, 340, 701

Light-collecting area, 220

Light-emitting diodes, 701, 714

Light-guiding effects, 775

Light-scattering processes, 87

Light-sensitive materials, 879

Line shape function, 722, 725

Linear circular gratings, 456

Linear distance measurements, 428

Linear electro-optic coefficients, 868

Linear electro-optic tensor, 850

Linear gratings, 410, 436

Linear polarizers, 71

Linear susceptibility, 81

Linear system, 553

Linear variable filters, 272

Linearly polarized modes, 778

Linewidth, 725

Liquid crystals, 872, 873

Liquid laser, 720, 721

Liquid level measurement, 439

Liquid-core fibers, 793

Liquid-crystal light valve, 635

Littrow mount, 275

Local reference beam holography, 527

Localized fringes, 347

Logic-based computing, 585

Long-discharge lamps, 709

Longitudinal mode modulator, 876

Longitudinal modes, 108, 341

Long-wave pass, 757

Loose abrasive grinding, 930

Lorentzian curve, 94

Lorentzian line shapes, 94, 725, 726

function, 725

Low-expansion glasses, 840

Low-intensity arcs, 707

Low-pass convolution low-pass filter,

400

Low-pressure discharge lamps, 709

Lumen, 664

Luminance, 664, 665

conversion factors, 665

efficacy, 659, 660, 702

function, 660, 663

energy, 662

exitance, 660, 664

flux, 660

density, 664

intensity, 660, 664

irradiance, 664

power density, 664

radiance, 664

Lux, 665

Lyot filter, 267, 760

Lyot-Ohman filter, 268, 296

Mach-Zehnder interferometer, 62, 63, 302,

355, 357, 631, 804

Magneto-optics, 871, 876

Magnification, 5, 193

lateral 5

Magnifiers, 193

Maiman, 81

Manguin mirror, 152

Manufacture of optical elements, 915

Marginal rays, 25

Maser, 82

Mask fabrication, 169

Master hologram, 533, 536

Material dispersion, 782

Material properties, 953

Matrix-matrix multiplier, 589

Matrix-matrix processors, 588

Matrix-vector processors, 588

Maxwell, 2, 14

Maxwell equations, 12, 75

Maxwell model, 8

Maxwell’s fish eye, 11

Mayer’s wavelet, 580

Mechanical splices, 818
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Mercury lamps, 707, 709

Meridional plane, 21

Meridional ray, 21

Meridional rays, 191

Mesh sizes, 925

Metal films, 155, 764

polarizer, 807

Metal halide, 709

lamps, 708

Metal ion/polymer systems, 905

Metal layers, 768

Metallic hollow waveguides, 792

Metals, 763, 930

Meter setting, 882

Methyl methacrylate, 842

Metrology, 427

Michelson interferometer, 283, 346, 347,

352, 460

Micro-electro-mechanical technology, 180

Microlenses

binary optics, 179

diffractive, 178

Fresnel, 179

refractive, 178

Micro-optical devices, 176, 178

Microwave holography, 537

Miller indices, 853

Millilambert, 665

Milliphot, 665

Mirrors, 147

concave, 148

spherical, 147

materials, 839

systems, 152

Mock interferometer, 295

Mode-locked, 108, 109, 110

laser, 722

output, 109

pulses, 108

Mode-locking, synchronous, 114

Modulated Ronchi ruling, 411

Modulation of light, 875

Modulation transfer function, 212, 214

Modulation transfer function, 885

Moh hardness scale, 832

Moiré deflectometry, 361, 411

Moiré effect, 438

Moiré interferometry, 517

Moiré methods, 453

Moiré patterns, 436, 440, 454, 516

Moiré techniques, 434, 484

Molding, 946

Molecular lasers, 292

Molecular vibrations, 107

Monoclinic cr crystal system, 852

Monolithic holograms, 177

Monomer/polymer system, 904

Moon ranging experiment, 430

MOS capacitor, 610

Mother wavelet, 579

Movie projectors, 203

MTF, 889

Multilayer coatings, 764

Multimode fibers, 776, 777, 786

Multiphoton ionization, 97

Multiphoton processes, 91, 93

Multiphoton spectroscopy, 97

Multiphoton transitions, 94

Multiple reflected beam, 64

Multiple reflection interferometers, 364, 365

Multiple-beam interference, 63, 66, 266

Multiple-channel grating interferometric

systems, 519

Multiple-mirror telescope, 250

Multiple-wavelength interferometry, 445

Multiplexer, 811

Murty interferometer, 356

Murty lateral shear interferometer, 361

Myopia, 195

N2
+ lasers, 721

Narrowband filter, 767, 769

Narrow-spectral-band filters, 563

Nasmyth arrangement, 233

Natural birefringence, 859

Nd glass laser, 107, 113

Nd3+:glass lasers, 719

Nd3+:YAG lasers, 719

Nd-YLF laser, 113

Negative photoresists, 892

Ne-He lasers, 721

Nematic liquid crystals, 636

Neodymium lasers, 112

Neumann boundary conditions, 335

Neural networks, 571, 572, 574, 576

Neurons, 572

Newton interferometer, 351

Newton rings, 60, 62

Newton’s formula, 6

Newtonian telescope, 142, 222

Nichol prism, 860

Nodal points, 6, 140

Noise rejection, 388

Noncolinear AOTF, 297
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Noncollinear acousto-optic filter, 761

Nondiffractive lenses, 177

Noninterferometric methods, 446

Nonlinear gratings, 455

Nonlinear laser spectroscopy, 105

Nonlinear medium, 100

Nonlinear optical coefficients, 83, 84, 85

Nonlinear optical interactions, 81

Nonlinear optics, 80

ultrafast, 108

Nonlinear phenomena, 83

Nonlinear susceptibilities, 105

Nonordered and coherent fibers, 798

Nonordered bundles of fibers, 797

Nontraditional manufacturing methods,

939

Normal congruence, 19

Null Hartmann test, 329

Null tests, 329

Numerical aperture, 26, 266

Objective speckles, 502

Oblate spheroid, 143

Off-axis beams in a Michelson

interferometer, 284

Off-axis holography, 525

reconstruction, 525

recording, 525

Off-axis paraboloid, 940

Offner system, 153

One-mirror telescope, 222

Ophthalmic glasses, 836

Ophthalmic lenses, 194

Ophthalmoscope, 202

Optical activity, 72

Optical admittance, 772

Optical alignment, 456

Optical axis, 138

Optical collimation, 456

Optical designer, 947

Optical disk memory, 180

Optical efficiency, 169

Optical element tolerances, 951, 952

Optical fabrication, 915, 938

Optical fibers, 775, 776, 785

bandwidth, 784

couplers, 798

Optical glasses, 834

Optical holographic interferometry, 497

Optical homogeneity, 830

Optical interconnects, 180

Optical joint transform correlator, 558

Optical Kerr effect, 83

Optical level, 456

Optical losses (attenuation), 780

Optical materials, 72

tolerances, 952

Optical matrix-vector multiplier, 589

Optical measuring systems, 378

Optical metrology

of diffuse objects, 493

with full-field methods, 493

Optical neural net architectures, 572

Optical nonlinearity

extrinsic, 81

intrinsic, 82

Optical path difference, 340, 342

Optical plastics, 842

Optical processing system, 554

Optical pulses, ultrashort, 105

Optical radar, 428

Optical resonators, 101, 102, 727

Optical scanning holography, 543

Optical surface, 19

aspherical, 142

Optical switching, 805

Optical system, resolution, 50

Optical transfer function, 214, 217

Optical vibrometers, 475

Optics circulator, 811

Optics, Gaussian, 2

Optics, paraxial, 2

Orhotomic system, 1, 19

Out-of-plane moiré, 494

Output diffraction, 560

Overarm polishing machine, 933

Overhead projectors, 203

Oxide glass fibers, 790

Paraboloid, 143, 148

mirrors, 150

surface, 940

Parallelism measurements, 451, 453

Parameters of a coupler, 800

Parametric amplification, 82, 100

Parametric oscillation, 82

Paraxial approximation, 22, 55

Paraxial focal length, 150

Paraxial optics, 2

Paraxial rays, 22

Partial dispersion, 829

Particle image velocimetry, 461, 462

Passive mode-locking, 110, 112, 115

Pellin-Broca, 136
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Pentaprism, 129

Periscope, 200, 201

Perpendicularity measurements, 453

Petzval curvature, 148

Petzval sum, 201

Petzval surface, 148

Phase compensation, third order, 107

Phase conjugation, 102

mirror, 104, 106

optics, 99, 102

reflectors, 101

waves, 100

Phase contrast microscopy, 754

Phase difference, 50, 339

Phase extrapolation, 377

Phase filter, 566

Phase modulator, 627

Phase retrieval, 408

Phase shifting, 393

methods, 388

Phase stepping interferometry, 386

Phase-tracking technique, 404

Phase unwrapping, 377, 404

Photoablation, 172

Photochromic materials, 879

Photoconductivity, 595

Photoconductor circuit, 596

Photoconductors, 595

Photocurrent, 598

Photodetection, 595

Photodetectors, 472

Photodiode circuit, 599

Photodiode dark current, 598

Photodiodes, 597, 598

Photoelectric fringe counting, 438

Photoelectric, 438

Photoelectron, 609

Photoflash laps, 705

Photographic emulsion, 879

Photographic flash lamps, 705, 710, 711

Photographic sensitivity, 880

Photographic speed, 882

Photographic turbidity, 884

Photolamps, 705

Photolithography, 103, 171

Photometric brightness, 664

Photometric quantities, 660

units, 659

Photometric terminology, 650

Photomultiplier, 607

tube, 608

Photon exitance, 659

Photon flux, 658

Photon incidence, 658

Photon intensity, 659

Photon optics, 75

Photon spectral exitance, 659

Photon spectral incidence, 659

Photon-based radiometric quantities, 658

Photon-phonon collision, 645

Photopic and scotopic vision, 661

Photopic vision, 663

Photopolymers, 879

holographic recording materials, 893, 898

recording, 895

Photoresist medium, 536

Photoresist, 879, 891

Phototransistor, 603

Photovoltaic detector, 597

Physical and chemical characteristics, 831

Physical characteristics for optical plastic,

842

Physical properties for glasses, 838

Physical properties for some mirror

materials, 841

Picosecond laser pulses, 107

Picosecond pulses, 111

Pinhole holograms, 531

Piston term, 354

Pitch laps, 930

Planck, 75

Planck’s radiation law, 666

Plane mirrors, 125

Plane of incidence, 16

Plane parallel resonator, 728

Plane wave, 744

Plane-parallel glass block, 127

Plasma laser, 720, 721

Plastic cladding, 785

Plastic-clad silica (PCS), 786

Plastic lenses, 843

Plastic optics, 176, 948

fibers, 786, 794

Platzeck-Gaviola test, 311, 329

PMMA/titanocene dichloride systems, 902

POCI4 lasers, 721

Pockels constants, 622

Pockels EO amplitude modulator, 625

Point diffraction interferometer, 358, 359

Point groups, 852

Point methods in metrology, 427

Point of incidence, 17

Poisson equation, 335

Poisson ratio, 833
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Poissonian probability, 509

Polarization, 71, 93, 744, 759

controller, 808

density, 848

fiber components, 805

modulation, 863

-sensitive couplers, 807

splitter, 807

Polarizers, 806

linear, 71

Polarizing beamsplitters, 155, 183

Polarizing components, 164

Polarizing elements, 71, 182

Polaroid DMP-128 system, 902

Polished and diffuse surface, 691

Polished directional couplers, 808

Polished fiber coupler, 801

Polishing of flats, 934

Polishing of spherical surfaces, 932

Polishing, 919, 930, 942, 949

Polyacrylic acid/Cr (III) (DCPAA), 906

Polycarbonate, 842

Polycrystalline fibers, 791

Polymer recording materials, 896

Polymerization, 898

Polystyrene, 842

Polyvinylalcohol/cr (III) systems, 906

Porro prism, 130, 133

Positive and negative uniaxial crystals, 863

Positive photoresists, 892

Post-treatment, 900

Power, 652, 751, 660

of radiation, 651

-splitting ratio, 800

transfer

across a boundary, 691

equation in integral form, 679, 680

ratio, 799

Prepolymerized multicomponent systems,

904

Primary aberrations, 30

Principal axes, 866

Principal centers of curvature, 2

Principal curvature, 2

Principal directions, 19

Principal plane, 5, 140, 141

Principal point, 5

Principal ray, 25, 191

Principal surface, 148, 150

Principle of linear superposition, 745

Prisms, 125

Abbe, 133

[Prisms]

Amici, 128

angle error, 451

beamsplitting, 134

binocular, 135

chromatic dispersing, 134

constant 458 deflecting, 130
constant derivation, 128, 136

cube corner, 128, 131

deflecting, 125, 128

deflector, 632

deviation, 273

dispersing, 136

dove, 131

equilateral, 132, 134

half-turn rotating, 132

inverting, 131

Leman, 133

measurement, 448

monochromator, 758

orientation, 128

Pellin-Broca, 136

pentaprism, 129

Porro, 130

retroreflecting, 130

reverting, 131

right angle, 128

rotating, 132

spectrometers, 264, 272

layout, 273

triangular dispersing, 135

Wollaston, 129

Processing with incoherent light, 569

Processing, developing and bleaching, 891

Projected area, 666, 668

Projected light line, 442

Projected solid angle, 669, 674, 675

Projection lamps, 706

Projection linear grating, 442

Projection moiré contouring technique, 441

Projection optics, 706

Projectors, 203

Prolate spheroid, 143

Properties continuous wave lasers, 723

Pulse

compression, 107, 115

ultrashort pulse, 107

width, 107

Pulsed laser, 722

dye, 107

Pupil

entrance, 25, 192
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[Pupil]

exit, 25, 192

Q-switched laser, 722

system, 635

Q-switching, 81, 89

Quadrature bandpass filter, 397

Quadrature filter, 389

Quadrature linear filters, 393

Quantum optics, 75

Quarter-wave stack, 756, 772

Quartz halogen lamps, 704

Radial gradient, 144

index, 145

Radiance, 654, 656, 657, 679, 681, 686, 751

Radiant energy, 654

Radiant exitance, 654

Radiant flux, 660

Radiant intensity, 654

Radiant power, 654

Radiation, 649, 695

absorbed 697

scattered 695

Radiative lifetime, 722

Radiative power, 655, 675, 678

transfer, 666

Radiometric quantities, 651, 658

Radiometric terms, 654

Radiometry, 649

Radius of curvature, 199

Rainbow holograms, 532

Rainbow holographic recording, 533

Raman effect, 84

Brillouin, 82

inverse, 82

Raman emission, 88

Raman media, 89

Raman scattering, 82, 84, 85, 88

cross sections, 88

Raman Stokes scattering, 87

Raman-Nath grating, 646

Ramsden eyepieces, 220

Range compensators, 429

Range finders, 428

Rare-earth materials, 787

Rays, 1, 10

chief, 25

marginal, 25

meridional, 21

paraxial, 22

principal, 25

Rayleigh distance, 733

Rayleigh resolution criterion, 210

Rayleigh scattering, 82, 89

Rayleigh-Wing scattering, 90

Ray tracing, 15

generalized, 19

Read-write magneto disk heads, 183

Real image, 200

Real-time vibration measurement, 510

Rear focal length, 5

Reciprocity failure, 891

Reciprocity law, 885

Reciprocity-law failure, 886

Recording systems requiring development,

901

Recording wavelength, 890

Rectification, 82

Reference grating, 437

Reference wavelength, 756

Reflectance, 756

of an inhomogeneous layer, 772

Reflecting surface, 128

Reflecting telescopes, 220

Reflection filter, 810

Reflection transformation, 126

Reflective coating, 153

Reflective optical components, 147

Refraction, 17, 758

equation, 16

operation, 17

Refractive eyepiece, 166

Refractive index, 827, 828, 835, 837

for fused quartz, 840

for materials, 828

for ophthalmic glasses, 839

for optical isotropic materials, 839

for optical plastics, 842

Refractive microlenses, 178

Refractive optical components, 125

Refractory telescopes, 217

Refrangibility, 264

Regularization methods, 381

Regularization, 382

problem, 376

Regularized cost function, 413

Regularized phase-tracking technique, 377,

402, 406

Regularizing methods, 393

Relative (or normalized) index difference,

779

Relative intensity for some LEDs, 716

Relative partial dispersion, 837
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Relative photopic luminous efficiency

function, 660

Relay lenses, 200

Relay systems, 200

Replicating, 946

Replication techniques, 172

Resolution, 251, 278

and resolving power, 265

in an optical system, 50

of a telescope, 208

Resolving power, 278, 884, 889

Resonance frequency, 730

Resonator modes. 109

Resonator parameters, 727

Resonator quality parameter, 732

Resonator types, 727, 728

Resonators and laser beam, 727

Reststrahlen filters, 267, 268

Retrieval equations, 573

Retroreflecting prism, 130

Reverse-biased p-i-n photodiode, 600

Reverse-biased p-n junction, 602

Reversibility principle, 57

Reversion, 125

Reverting prisms, 131

Rh6G lasers, 721

Right angle prism, 128

Ring spherometer, 433

Ritchey test, 316

Ritchey-Chretién telescope, 142, 222, 228

Robust quadrature filters, 400

Robustness to detuning, 388

Rockwell hardness, 833

Roddier method, 332

Ronchi ruling, 319

Ronchi test, 311, 319, 329, 361, 363, 410

Ronchigram, 319

evaluations, 322

simulations, 320

Rotating multislit spectrometer, 295

Rotating prisms, 132

Rough shaping, 918

and generating, 949

Rowland mounting, 280, 281

Rugates, 845

filters, 773

Sagittal, 149

astigmatism, 148

coma, 151

Sagnac interferometer, 369, 370

Saturable absorber, 111

Saturable gain coefficient, 726

Saunders method, 360

Scalar diffraction theory, 162

Scanning, vibrometer, 481

Scattering, 758, 781

cross section, 90

coherent, 91

interferometer, 357

Raman, 82, 84, 85

Rayleigh, 82, 89

Rayleigh-Wing, 90

Schadt-Helfrich effect, 873

Schlieren techniques, 364, 325

Schmidt camera, 222

Schmidt telescope, 142, 224

Schmidt-Pechan prism, 133

Schwatzschild configuration, 228

Schwider-Hariharan algorithm, 392

Scotopic and photopic vision, 662, 663

Screen-testing methods, 4087

Secondary emission, 707

Second-harmonic generation, 82, 83, 100

Second-order nonlinear process, 82, 100

Seeing, 209, 235, 236

Seidel, 29

aberrations, 30

Eikonal, 32

Self-processing materials, 903

Semiconductors, 595, 763, 829

depletion, 615

devices, 598

junction, 597

laser, 292, 719, 720

Sensitivity, 266, 288

Sensitometry, 880, 888

Shack interferometers, 350

Shack-Fizeau interferometer, 351

Shack-Hartmann test, 311

Shadow-casting logic, 585

Sharpness, 885

Shearography, 494, 512

Short arc lamps, 707

Signal-to-noise-ratio, 266

Silica fiber lasers, 787

Silicon dioxide, 836

Silver, 154

Silver halide emulsions, 879, 880, 883, 890

Silver-based narrowband filter, 768

Simple magnifier, 194

Sinc function, 277

Sine plate, 447

Single crystal fibers, 791
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Single-crystalline, 791

Single-mode fibers, 776, 779, 801

Single-mode optical fiber, 115

Single-monomer crosslinking

polymerization, 897

Single-monomer linear polymerization,

896

Single-multimode fibers, 776

Single-pass Littrow spectrometer, 300

Single-point diamond turning, 946

Single quarter-wave layer, 769

Single thin lenses, 138

Sinusoidal–shaped filter, 413

Skewness, 12

Slide projectors, 203

Slope, 456

measurements, 311

Small distance measurement, 442

Smith-Helmholtz invariant, 24, 26

Smoothing techniques, 377

Snell’s law, 8

Solc filter, 760

Sol-gel glasses, 845

Solid angle, 654, 660, 669, 670, 673, 684

Solid laser, 720

Solid-state lasers, 719

Solid-state photodetectors, 606

Solution mode-locking, 117

Some ultraviolet materials, 844

Sources, 675

coordinates, 681

Space telescope, 207, 243

Space-charge effects, 606

Spatial and spectral filtering, 743, 747

Spatial carrier phase shifting method, 398

Spatial coherence, 53, 67

function, 555

Spatial domain processing, 556

Spatial filters, 748, 750

and filtering, 562, 750

Spatial heterodyning, 377

Spatial impulse response, 552, 563

Spatial light modulator, 557, 635, 638

Spatial phase-measuring methods, 395

Special fibers, 786

Speckle

angle measurement, 459

interferometry, 494

objective, 502

patterns, 509

photography, 494

subjective, 502

Spectral

exitance, 656, 688

filter, 757, 758

hole burning, 907

incidence, 656

line, 265, 340, 828

linewidth, 93

low pressure lamps, 710

luminous efficiency, 662

functions, 661

photon flux, 658

radiance, 688

range, 292

sensitivities, 883

sensitivity curves, 889

transmission, 829

transparency, 829

variables, 265

Spectrometers, 263

configurations, 299

descriptions, 264

lasers, 292

properties, 306

Spectroscopy, 264

laser, 106

nonlinear laser, 105

Spectrum, 263

Spherical aberration, 29, 31, 142, 197, 354

Spherical Fabry-Perot interferometer, 302

Spherical gradient, 144

Spherical mirror, 147

Spherometers, 431

Spontaneous Raman emission, 86, 88

Spot projection system, 482, 483

Square vibrating membrane, 511

Squeezed states, 78

Stability, 727

condition, 727

diagram, 728

and systems, 128

Stadia range finder, 428

Standard human observer, 661, 662

Standard lamps, 704

Standard photometric observer, 662

Standard type A source, 705

Stellar Michelson interferometer, 344

Step-index profile, 777

Steradian, 673

Stereoscopic ophthalmoscope, 202

Stilb, 665

Stimulated radiation, 701

Stimulated Raman scattering, 88
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Stimulated transition cross section, 722

Stokes components, 85

Stokes lines, 85

Stokes relations, 65, 348

Stokes reversibility principle, 57

Stop, 25, 192

Strehl ratio, 245

Stresses, 831

Stroboscopic holographic interferometry,

499

Stroboscopic lamps, 459

Styrene, 842

Subcarrier systems, 476

Subjective speckle, 502

Sub-Nyquist analysis, 417

Subpicosecond dynamics, 117

Subtraction process, 888

Sulfide glasses, 790

Sun, 688

Superposition of waves in an FTS, 287

Support methods for fabrication, 920

Support, 918

Supporting bases, 704

Surfaces

aspherical, 142

best definition, 149, 151

constant phase, 19

figure, 931

losses, 694

optical 19

Susceptibility

linear, 81

tensor, 848

Swan bands, 264

Sweat model, 162

Switch, 802, 803

Switched optical elements, 177

Symmetric and antisymmetric modes, 799

Symmetric mounts, 276

Symmetrical arrangement, 506

Symmetrical concentric resonator, 729

Symmetrical confocal resonator, 728

Symmetrical five-step PSI, 391

Symmetry, 852

Synchronous mode-locking, 114

Synchronous pumping, 112

Synchronous spatial phase detection, 400

Systems

of lenses, 139

with photochemical repolymerization,

902

with thermal repolymerization, 902

Systolic processing, 589

Systolic processor, 590

Talbot effect, 439, 362, 440, 455

Talbot interferometry, 361, 363, 448

Tangential surfaces, 149

Tapered fiber, 796

Telescopes, 207

astronomical, 233

Cassegrainian, 142

catadioptric, 230

diluted-aperture, 251

Galilean, 219, 220

Herschelian, 222

high resolution, 217

Hubble, 142, 234, 237

Keck, 250

Keplerian, 208, 217

multiple-mirror, 250

Nasmyth, 233

Newtonian, 142, 222

objectives, 198

one-mirror, 222

refractory, 217

resolution, 208, 251

Ritchey-Chrétien, 142, 222, 228

Schmidt, 142, 224

space, 207, 243

terrestrial, 207, 219

three-mirror, 231

transmissive, 207, 217

two mirror, 226

Television projectors, 205

Templates, 431, 432

Temporal coherence, 66, 562

Temporal heterodyning, 377

Temporal laser operation, 721

Temporal phase unwrapping, 407

Temporal phase-measuring methods, 385

Temporal spatial phase shifting, 377

Terrestrial telescope, 207, 219

Tests

Foucault, 311, 316

gradient, 329

Hartmann test, 311, 327, 329, 414

knife edge, 311, 312

null Hartmann, 329

optical surfaces, 311

plates, 431

Platzeck-Gaviola, 311, 329

Ronchi, 311, 329, 362

Schlieren, 325
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[Tests]

Shack-Hartmann, 311

of spheric wavefront, 417

Tetragonal crystal system, 852

Theodolites, 448

Thermal electron emission by a hot

cathode, 706

Thermal expansion, 831, 832

for fused silica, 841

Thermoplastics, 879

Thick lens, 139, 140, 141

Thickness measurements, 441

Thin films, 762

interference filters, 67

Third-harmonic generation, 82

Third order aberration, 30

Third-order contributions, 31

Third order phase compensation, 107

Three-channel system for moiré

interferometry, 519

Three-mirror telescope, 231

Three-step PSI, 388

Threshold gain coefficient, 725

Threshold population inversion, 725

Throughput, 266, 272, 279, 288

Tilt, wavefront, 354, 454

Time-average holographic interferometry,

499

Tin oxide, 764

Tolerances, 950

Tools

manufacturing 942

working aspherics, 942

Toroids, 941

Total internal refraction, 778

Train of pulses, 109

Transfer operation, 17

Transition probability, 93

Transmission, 265

multiple beam, 66

Transmissive telescopes, 207, 217

Transmittance, 829, 830

Transparent conductors, 764

Transparent grating layout, 278

Transversal spot size, 733

Transverse EO amplitude modulator, 628

Transverse field distribution, 730

Transverse modes, 730

modulator, 877

patterns, 731, 732

Traveling microscope, 434

Triangular cyclic interferometer, 369

Triangular dispersing prism, 135

Triangulation principle, 495

Triclinic crystal system, 852

Trigonal crystal system, 852

Tscherning ellipses, 196

TF lasers, 721

Tunable grating filters, 812

Tungsten filament sources, 702

Tungsten lamp, 702

Two-beam interference, 283

Two crossed ronchigrams, 325

Two-mirror telescopes, 226

Two-monomer linear polymerization, 897

Two photons absorption, 82, 92, 93, 94

Two separated thin lenses, 141

Two’s complement representation, 592

Two-step recording process, 532

Twyman-Green interferometer, 62, 63, 284,

352, 353

Types of holograms, 524

Ultrafast nonlinear optics, 108, 118

Ultra-resolution, 224

Ultrashort pulses, 107

laser pulses, 105, 107

optical pulses, 108, 117

Ultraviolet materials, 843, 844

Ultraviolet region, 843

Ultraviolet transmittance of some plastics,

843

Ultraviolet transmittances for vitreous

silica, 840

Umbilical point, 19

Uncertainty relation, 78

Unequal path Twyman-Green

interferometer, 356

Uniaxial crystals, 857

system, 852

Uniaxial materials, 857

Uniaxial positive, 862

Unit vectors, 93

Unmodulated Ronchi ruling, 411

Unsaturated gain

coefficient, 722

per unit length, 722

Unstable resonators, 755

Unwrapping, phase, 405

Up-conversion lasers, 793

fiber, 794

Vacuum photodiode, 607

van Cittert-Zernike theorem, 68, 555, 561
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Van der Lugt correlator, 557

Vector diffraction theory, 163

Velocimetry, laser doppler, 466

Velocity measurement, 458, 459

Verdet constant, 871, 872

Vertex plane, 17

Very low expansion glasses, 840

Vibration

analysis, 484

measurement, 458

Vibrometer, 480

Video signal subtraction or addition, 508

Virtual object, 200

Visibility of fringes, 50

Visible radiation, 649

Vitreous silica, 836

Voigt effect, 871

Wadsworth mounting, 276, 281, 282

Wave equations, 40

Wave surfaces, 860, 862

Wavefront, 1, 2

analysis, 412, 414, 416

distortion, 148

division, 53

slope, 311, 360

analysis, 410

[Wavefront]

train, 2

Waveguide dispersion, 782

Wavelength, 265, 654

-division multiplexer, 801, 802, 803

Wavelet transform, 578

Wavenumber, 654

Wavevector surface, 861, 863, 864

Westinghouse AOTF imaging

spectrometer, 299

White films, 880

holographic films, 887

Wide-angle camera, 752

Wide-gain bandwidth, 108

Wire stems, 703

Wire test, 316

Wollaston lens, 196

Wollaston prism, 129, 860

Working aspherics, 942

Xenon arc lamps, 708, 711

Y-fiber bundles, 797

Young double slit interferometer, 53, 54,

76, 341, 342, 344, 463

Young modulus, 833
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