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Foreword 

This book brings together several different areas, which are related by the 

concept of Fresnel zones, an idea that originated in the nineteenth century. 

The concept impacts the design of radio communication links and electronic 

countermeasures equipment (terrain bounce consideration), as well as radar 

propagation and ground reflection as they affect targeting accuracy, and, finally, 

methods of improving the characteristics of zoned lenses and antennas. The 

book is unique in treating these subjects from a common basis and in bringing 

together all of the recent research on zoned lenses and antennas. 

The first W O  chapters provide a foundation of the electromagnetic wave 

description and the Fresnel-Kirchhoff diffraction theory, for use in the later 

chapters. Starting from the wave equation, the far-field solution is developed 

and consideration is given to wave polarization, amplitude and phase properties, 

radio link equations, field conditions, reflection and transmission, Snell’s law, 

the Brewster angle, interference and linear superposition of electromagnetic 

fields, and multiple reflection and transmission by a dielectric slab. Matrix 

analysis of plane wave transmission through dielectric plates is also included. 

The second chapter treats Huygens’ principle, Fresnel zones, scalar diffraction 

theory, diffraction by an aperture in an infinite plane, Fraunhofer diffraction 

by a circular aperture, Fresnel cosine and sine integrals, Fresnel diffraction by 

apertures or obstacles, and vectorial Kirchhoff diffraction theory. Throughout 

these and later chapters historical facts and information about early researchers 

arewoven into the text. The first two chapters are a highly condensed summary 

of the area of electromagnetics, almost a short book on the subject. 

The third chapter then applies this background information to radio 

communication links; line of sight propagation over various types of terrain 

including smooth, rough, knife-edge and other hill models; and refraction 

xiii 
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effects. The material applies to various systems from 30 MHz to microwaves. 

This is a detailed and lengthy treatment, much too complex to summarize in 

a few sentences. In fact, this is a hallmark of the book as a whole: it is 

very comprehensive and diversified, containing a huge amount of detail and 

exhaustive analytical treatments of the subject areas. These first three chapters 

would make an excellent student textbook in wireless communication engi- 

neering, which is currently a very popular technical subject. 

The final two chapters treat Fresnel zone plates as lenses, reflectors, and 

antenna systems. While there have been other treatments of Fresnel zone plates, 

most of them have dealt with the subject only from the “optical” point of 

view. This has to do with the configurations that are normally employed in 

set-ups at optical wavelengths. Such set-ups typically utilize focal lengths that 

are very large in terms of wavelength and in terms of the diameter of the 

zone plate lens aperture (e.g., several hundred times the diameter). These 

characteristics permit approximations in the analyses of focal region properties 

or far-field patterns that are quite different than those that are possible for the 

microwavelmillimeter-wave case, where the focal length and diameter are often 

comparable in size. While the microwave/millimeter-wave zone plate may have 

5 to 30 zones, the optical case may have 200 to 300 zones. Thus, there are 

orders of magnitude differences between the two cases. In addition, the optical 

case often deals with the Soret (half-opaque) zone plate rather than the Wood 

phase-correcting zone plate, while for reasons of better efficiency (and higher 

gain) the microwave/millimeter-wave case usually employs phase correction, 

often higher than half-wave (e.g., quarter-wave correction). Thus one cannot 

simply use the optical approximations in the microwave case, because certain 

general conclusions do not apply. 

Dr. Hristov has done an excellent job of pulling together so much 

important material, with such careful attention to collection of references and 

historical material. He is, himself, a contributing researcher who has published 

numerous outstanding papers in the Fresnel zone plate field. The book is a 

significant contribution to the field, as well as a first of its kind, and Dr. 
Hristov is to be complimented for his work. The subject material is in very 

active technical areas, and the results will be applicable in many current problems 

in wireless communications, radar, guidance, and related fields. 

James C Wiltse 

December 1999 



Preface 

About 200 years ago, the French engineer Augustin Jean Fresnel proposed a 

simple zone construction that helped him to explain and study various light- 

wave problems, from free space propagation to diffraction by a circular disk. 

Over time, Fresnel zones and zone plate devices found many different applica- 

tions in optics, acoustics, radio wave engineering, geophysics, and so on, for 

ray tracing, focusing and object imaging, spatial processing and filtering, sensing, 

and many other uses. 

This book presents in a single volume the classic electromagnetic theory 

of Fresnel zones and their applications to Kirchhoff s diffraction theory (physical 

optics), microwave propagation in wireless links, and Fresnel zone plate lenses 

and antennas. It  is based on numerous publications, both classic and up-to- 

date, and is organized in five chapters. The first two chapters are mainly 

theoretical while the rest balance theory, designs, and applications, so both 

readers who are new to the field and those who are experienced in radio wave 

electromagnetics can benefit from the book. 

Chapter 1 is an introduction and provides an overview of the basic 

electromagnetic equations for time harmonic fields. It begins with the wave 

equation for the vector potential and its far-field solution. Then follows descrip- 

tion of the wave polarization, the amplitude and phase properties of waves in 

boundless space, and the boundary field conditions at a planar interface. The 

chapter continues with the interference wave phenomena and concludes with 

a matrix analysis of plane wave transmission through multilayer dielectric plates. 

Chapter 2 contains an extensive treatment of the Kirchhoff diffraction 

theory. It starts with the original Huygens’ diffraction principle and its more 

precise formulation made by Fresnel. Considered are Fresnel zone constructions 

with spherical and planar Fresnel zones, as well as their application for finding 

xv 
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the diffraction field in many particular cases of zone obstruction. The focusing 

effect of simple Fresnel zone lens-like diffractors and of Soret’s and Wood’s 

multizone lenses or zone plates are computed. 

First, the Fresnel-Kirchhoff diffraction field is presented in a scalar form, 

and the diffraction integral is applied for two cases-(a) aperture cut in a screen 

surface enclosing the primary sources, and (b) aperture in an infinite plane 

screen placed between the source and the observation point. In the latter case, 

two radiation field regions are defined: the far or Fraunhofer region and the 

near or Fresnel region. The field in the Fraunhofer region is considered only 

for the specific case of plane wave diffraction by a circular aperture, while the 

Fresnel diffraction is discussed in detail for many particular cases of apertures 

and obstacles. At the end of the chapter, the far-field vectorial Kirchhoff integral 

for an aperture in an infinite plane is derived. 

Chapter 3 is devoted to applications of Fresnel zones to microwave wireless 

communication links. The typical paths of wave propagation over the earth 

are described, and radio wave tracing by means of Fresnel zone ellipsoids is 

considered. The significant zones for transmission and reflection are defined, 

and the equations for finding their basic dimensions are derived. The reader 

is then briefly introduced to the standard interference lines-of-sight schemes 

for radio wave propagation over smooth ground, taking into account the earth 

curvature and the troposphere refraction. 

Only the traditional, quasi-optical ray tracing by use of geometrical and 

physical optics is within this book’s scope. That is why only some basic examples 

of knife-edge diffraction models are considered in the chapter, namely, straight 

hill, sharp hill, and wide wedge-shaped hill. The influence of troposphere 

refraction on link clearance and the method for drawing so-called equivalent 

zero-level and terrain profile curves are also briefly explained. 

Fixed and mobile microwave radio communication links over hilly terrain 

can make use of constructive mountain diffraction and man-made passive 

repeaters in the form of Fresnel zone diffractors. Several designs of ring and ring- 

segment metaVdielectric antenna directors and passive repeaters are described as 

examples. 

Chapter 4 presents detailed treatment of the Fresnel zone plates. The 
discoveries of Soret, Lord Rayleigh, and Wood in the field of optical zone 

plates are recalled. A comprehensive classification by zone plate shape and 

cross-sectional structure is made. Then extensive description and analysis of 

planar Fresnel zone plates are presented. Examined are the characteristics of 

half-opened or Soret zone plates-multiple focusing action, resolution, off- 

axis and frequency aberration and frequency bandwidth, and transmission 

function for two-and one-dimensional zone plate. A tabular comparison 

between Soret zone plate and ordinary refraction lens is given. Derived are 

equations for calculations of zone plate dimensions and focusing characteristics. 
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Proper attention is paid to the phase-corrected zone plates, and the 

phase-correction mechanism, focusing efficiency, and design and technology 

considerations for dielectric phase-reversal and quarter-wave zone plates are 

examined. The chapter ends with curved Fresnel zone plates. Derived are 

equations for dimensioning and axial focusing of spherical, parabolic, and 

conical zone plates. 

Chapter 5 contains a concise presentation of theory, radiation properties, 

and typical applications of on/off-axis-fed, transmission/reflection, and planar/ 

curved zone plate antennas. 

First, planar transmission-mode zone plate antennas are described. Far- 

field equations and radiation parameters of Soret- and Wood-type antennas 

are studied in detail and many numerical examples are illustrated by graphs. 

The chapter continues with examination of the planar reflection-mode 

zone plate antennas: the usual and the printed version folded phase-reversal 

antenna, The latter has the following nomenclature: single-layer, mu1 tilayer, 

and integrated circuit antennas. 

There follows a theoretical and numerical representation of off-axis scan- 

ning properties of the planar antenna with a circular zone plate, which agrees 

well with experiments. The far-field equations for the transmission-mode offset 

antenna with elliptical zone plates are given. Different practical designs for 

DBS signal reception are also described. 

The final section of this chapter deals with curved zone plate antennas. 

They have a priority over the planar zone plate configurations because of their 

better focusing, resolving, and scanning properties, as well as the possibility of 

creating radiation patterns that are different in shape. Moreover, the curved 

Fresnel zone plate antenna is not limited to a specific surface as in the case of 

parabolic antenna, and can be made conformal to an arbitrary curvilinear 

natural or man-made formation. 

Several examples of curved zoned antenna configurations are considered- 

folded elliptical zone plate with parabolic reflector for multisatellite DBS recep- 

tion, transmission-mode cylindrical zone-plate antenna for X- band LAN sys- 

tems, and single-dielectric phase-corrected zone plates for millimeter waves 

with spherical, parabolic, conical, and other curvilinear surfaces. 

I t  is my pleasure to acknowledge the many people who contributed to 

the creation of this book. 

Let me first recall with gratitude the men who motivated and guided me 

in my younger years to the fascinating territories of wireless electromagnetics: 

Professor H. D. Shinev of the Technical University of Sofia, Bulgaria; the late 

Professor D. Taylor of the Strathclyde University, Glasgow; and Professor 

P. J. B. Clarricoats of Queen Mary College, London University. 

Without my visit to the Eindhoven University of Technology in the 

Netherlands six years ago, I may have never begun this book. I am much 
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indebted to Dr. M. H. A. J. Herben and his former students L. Leyten, L. C. 
Baggen, J. M. van Houten, and C. J. Jeronimus, who at that time had already 

made the most extensive theoretical and design study on transmission-type 

Fresnel zone plate antennas. Dr. Herben kindly invited me to join his research 

efforts in this field and provoked my interest in applications of Fresnel zones 

in wave propagation and the development of more efficient zone plate antenna 

sys tems. 

I would like to express my sincere appreciation to the manuscript reviewer, 

Professor Klaus Solbach of Gerhard-Mercator University, Duisburg, Germany, 

whose numerous precise comments, productive suggestions, and constructive 

criticisms were invaluable in the book preparation. 

I am especially grateful to Dr. J. C. Wiltse of Georgia Institute of Technol- 

ogy, Atlanta, the world-renowned expert in millimeter-wave propagation and 

radar and wireless communication systems, and the most respected researcher 

today of Fresnel zone plates and antennas, for his interest in my work, constant 

advice, and help in tracing many reference sources. My sincere thanks also go 

to him for kindly agreeing to prepare a foreword to the book. 

The text much benefited from the discussions with and computational 

help of Dr. J .  R. Urumov, Dr. G. S. Kirov, and L. P. Kamburov, and from 

the many illustrations made by Nick Grudev, K. Gatzova, and I. P. Gatzov 

of Technical University of Varna, Bulgaria. 

Thanks also are due to the Bulgarian National Research Fund for the 

financial support to the author and his research group in studying Fresnel zone 

plate antennas for mobile and satellite communications. 

Grateful acknowledgment is expressed to numerous researchers in the 

field of the book for providing me with copies of their publications: Professor 

S. K. Barton from University of Manchester, U.K.; Professors Igor and Oleg 

Minin of Institute of Applied Physical Problems, Novosibirk, Professor D. M. 
Sazonov of Moscow Power Technical University, Professor V. G. Yampolsk’i 

of Moscow Telecommunications Institute, and Professor A. V. Popov of 

IZMIRAN, Academy of Sciences, Russia; Professor M. X. Zhang of Southeast 

University, People’s Republic of China; Professor J. Yamuchi of Hosei Univer- 

sity and Professor T. Onodera of Kumamoto Institute of Technology, Japan; 

Professor S. P. Ojha and Professor K. K. Dey of Banaras Hindu University, 

India; Dr. D. N. Black, Electromagnetic Sciences, Inc., Atlanta, U.S.; Professor 

V. Cerveny, Charles University, Czech Republic; and many others. 

I wish to thank the colleagues from Department of Electromagnetic 

Systems, Denmark Technical University, Lyngby, who helped me much in 

search of references and useful discussions on zone plate antennas during my 

stay there. 

I express my sincere thanks to the Institute of Electrical and Electronics 

Engineers, New Jersey; the Institution of Electrical Engineers, London; the 
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Institute of Electronics and Communication Engineers of Japan, Tokyo; Optical 

Society of America, Washington, D.C.; Hayden Publishing, Co., New Jersey; 

Horizon House Publications, Norwood, MA; Artech House, Norwood, MA; 
John Wiley & Sons, Inc., New York; SPIE Optical Engineering Press, Belling- 

ham, WA; Cambridge University Press, Cambridge; Macmillan Publishers, 

Ltd., London; Taylor and Francis Ltd., London; Mc Graw-Hill, New York; 

Pergamon Press Ltd., Oxford; Prentice Hall, Inc., Englewood Cliffs, NJ; Holt, 

Rmehart and Winston, Inc. New York; Wiley Interscience, New York; Dover 

Publications, Inc., New York; Kluwer Academic/Plenum Publishers, New York; 
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Moscow; Radio I Svyaz, Moscow; Nauka Publishing House, Moscow; Eindho- 

ven University of Technology, The Netherlands; and ESTEC (European Space 

Agency) for their kind permission to use figures and/or text materials from 

their various publications listed in the references of this book. 

It  would not have been possible to prepare the book without the dedicated 

and friendly assistance of the editorial and production staff of Artech House, 

and in particular, Dr. Julie Lancashire, Susanna Taggart, and Mike Webb of 

the London office, and Tina Kolb, Igor Valdman, and Stephen Cartisano of 

the Norwood office. 

Finally, I express my gratitude to my family, and especially to my wife 

Tanya, for her patience, encouragement, and assistance. 

Hristo D. Hristov 
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Basic Electromagnetic Wave Equations 

1.1 Wave Equations for Time-Harmonic Fields 

W e  commence this section with a couple of basic differential Maxwell’s equa- 

tions to obtain the field radiated by a given antenna current. This is performed 

with a magnetic vector potential that satisfies the inhomogeneous wave equa- 

tion. Our  main concern is with the far antenna field, so after solving the wave 

equation for the vector potential at a very distant region we may easily derive 

the electric and magnetic field components. 

1.1.1 Wave Equation for Magnetic Vector Potential 

The basic Maxwell’s equations uames Clark Maxwell ( 183 1 - 18 58)] for time- 

harmonic electromagnetic fields are normally written as follows 

V x H = j w ~ E  + J (1.2) 

where E is the electric field strength vector, V/m; H is the magnetic field 

strength vector, A/m; J is the current source vector, A/m ; w = 27~f is the 

angular frequency, rad/s; f is the circular frequency (or frequency), Hz; p is 

the medium permeability, H/m; and E is the medium permittivity, F/m. In 

(1.1) and (1.2) the time-harmonic factor exp( jo t )  is omitted, and E, H, and 

J are complex vectors or phasors that are functions to space coordinates only. 

In general notation any arbitrary time-harmonic electromagnetic vector 

(I, + 8, H, 5, etc.) can be given in the form L(x, y, z, t )  = Lexp(jwt),  with 

2 

1 
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L E L(x, y, 2). Also, for simplicity, the medium parameters ,u and €are chosen 

here as real quantities. 

Equations (1.1) and (1.2) have to be solved for the whole space except 

for the source (antenna) volume where J + 0. For given J we shall seek a 

solution of (1.1) and (1.2) for E and H. Often, however, to make the solution 

simpler, auxiliary vector potentials are used [ 11. One  of them, the magnetic 

vector potential A is related to H as follows 

1 
H = - V x A  

,u 

The electric field is also expressed by the vector potential 

1 
V(V * A) - j w A  

(1.3) 

(1.4) 

The vector potential A, as well as field vectors E and H, satisfies the inhomoge- 

neous wave or Helmholtz equation [Herman Helmholtz (1 821-1 894)] 

(1.5) 
2 

V2A -+ /3 A = -,uJ 

2 
where p = w ,uc is the wave number or phase constant, radlm. 

Thus, if the vector potential A is found as a solution of (1.5), it is easy 

then to obtain the electric field E from (1.4) and the magnetic field H from 

(1.3). 
If the current density J is defined everywhere in the antenna volume V 

(Figure 1.1), a possible solution of (1.5) for A at the observation point P is 

wen as g ’ 

2 
where r = P’P = d r o  + r f2  - 2ror’cosa is the distance between an arbitrary 

source point P‘ and the observation point P; ro and r‘ are the distances from 

the coordinate system origin 0 to the observation point P a n d  arbitrary source 

point P’, respectively; and a is the angle between r’ and ro directions. 

The above solution of the wave equation for the magnetic vector potential 

gives the radial dependence of the amplitude, phase, and polarization of the 

outwardly traveling spherical wave in a lossless unbounded medium. The wave 
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Figure 1.1 Geometry illustrating wave equation solution. 

front is defined as an equiphase surface, normal to the wave-traveling direction. 

Each point source or elementary source volume dV’ = Ac’dy’dz’ creates a wave 

with a spherical phase front (spherical wave). 

A great distance away from the source the spherical surface is observed 

as a plane; that is, the spherical wave becomes transformed into a plane wave, 

or a wave with an equiphase plane front. If along with the phase, the field 

amplitude remains constant over the planar front, the wave is regarded as a 

uniform plane wave [transverse electromagnetic wave (TEM or T wave)]. 

1.1.2 Far-Field Solution to Wave Equation 

In wireless communications one is normally interested in the far or Fraunhofer 

region of electromagnetic waves, that is, the waves at observation points located 

far from the radiating antenna uoseff Fraunhofer (1 787-1 826)]. As shown in 

Figure 2.2, in this case we may assume parallel-ray propagation, so that the 

distance t i n  (1.6) may be approximated as follows: 1 / t  = 1 / t o  for the spherical 

wave amplitude decay, and t =: r, - r’coscy in the phase factor. 

Thus, for the far-field vector potential A we get [2, 31 

(1.7) 

It is convenient to express t’cosa by the source rectangular coordinates 

(x ’ ,  y’, 2’) and observation point angle coordinates (p, 8) 



4 Fresnel Zones in Wireless Links, Zone Plate Lenses and Antennas 

Figure 1.2 Far-field radiation of electric antenna sources. 

r’coscy = x’cospsin9 + y’sinpsin9 + z’cos9 (1.8) 

The current source vector J ( P ’ )  and the vector potential A(P) are expressed 

by their x ,  y,  zscalar components, or J ( P )  = kJ,(P‘) + ?/,(I“) + fJ,(P‘) and 

A(P) = i A , ( P )  + f A J ( P )  + iiA,(P), where k, 9, and S are the corresponding 

unit vectors. Then, the rectangular scalar components A,, Ay, and A, can be 

represented in the form 

Here, for the sake of brevity A,, stands for A,, Ay, or A,. 

and H 

At the final stage we look for the spherical far-field components of E 

El9 
E8 = -jwAa and H ,  = - 

rl 

E 

’I 
E,  = - jwA,  and H a  = 

E,. = H,.= 0 

(1.10) 

(1 .1 1) 

(1.12) 
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where 

A 8  = Axcos-9cosp + Aysinpcos-9 - A,sin9 (1.13) 

A ,  = Axsin(o + Aycosp (1.14) 

and 7 is the intrinsic or wave impedance of the propagation medium, 42) 
which in general can be a complex quantity. 

1.2 Wave Polarization 

As it was shown in Section 1.1, the antenna far field has approximately a 

character of a uniform plane electromagnetic wave (or TEM wave), with only 

TEM vectors. Since the electric and magnetic field vectors E and H are related 

by the medium intrinsic impedance 7 it is usually a convention to operate 

with the former one only. 

The total electric vector E is a vector sum of the -9 and p components 

where I E8,I and I E,,I are the magnitudes, and i+bo0 and (cl,, are the initial 

phases of the corresponding electric field components. The far-field vector 

summation is illustrated in Figure 1.2. 

The vectorial nature of the antenna far field is characterized by a unique 

property, called a wave polarization. Generally, electromagnetic waves can be 

completely polarized (or polarized), partially polarized, or unpolarized [4, 5-71. 
The man-made monochromatic or quasi-monochromatic radio waves subject 

to study in this book are polarized waves. Their transverse orthogonal compo- 

nents vary in time and space in the same manner. 

Electromagnetic waves that contain randomly polarized components are 

partially polarized. The scattered radar waves from randomly moving targets 

are examples of partially polarized waves. Natural sources of radio waves, 

the “radio stars,’’ also produce partially polarized waves. For much higher 

frequencies, in the light region, the natural sources radiate unpolarized waves. 

The wave polarization is normally determined by the orientation of the 

electric field vector as a function of the space coordinates and time. More 

precisely, the wave polarization is defined as a locus of the tip of the instanta- 

neous vector 
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Here Es, = I Ea, I eJ'80 and E,, = I E,, I are the initial complex ampli- 

tudes of two field components. The total field polarization depends on the 

magnitude and phase relationships between the electric field components. The 

polarized waves are of linear, circular, or elliptical polarization [ 1, 4-61, 
described as follows. 

1. Linear polarization (LP): This takes place for A@, = @,, - 
(clso = 0, or +T (i.e., when the two wave components have unspecified 

amplitudes and are in phase or out of phase). In this case the locus 

of the total electric vector tip is a straight line. 

2. Circular polarization (CP): This occurs for equal field amplitudes, 

or lE8,I = lE,,l, and for a phase difference A@, = (cl,, - 
@so = +?r/2. The polarization is called circular since the electric vector 

is rotating and for a time period at a point r = const., the vector's 

tip draws a circle. Depending on the phase difference sign the circular 

polarization is subdivided into two kinds: 

Right-hand polarization (RCP)-for A(clo = - @oo = -7~/2: 

When this phase condition applies the electric vector rotates to a 

clockwise or right-hand direction if the wave is viewed receding. 

Left-hand polarization (LCP)-for A@, = (cl,, - r 1 / ~ ,  = + ~ / 2 :  In 

this case, the vector E rotates in a counterclockwise or left-hand 

direction. It  is worth mentioning here that in the classical physics 

and optics the direction of vector rotation is termed in an opposite 

manner (i.e., the direction of rotation is such as viewed by an 

observer at a far point looking to the coming plane wave). 

3. Elliptical polarization: When the two orthogonal waves have optional 

amplitudes and the phase condition is - 7 / 2  < A@, < +.n/2, the locus 

of the vector's tip is an ellipse. 

From a pragmatic point of view there is not much interest in waves with 

elliptical polarization. It  is easily proven, however, that the linear and circular 

polarizations are specific practical cases of the elliptical polarization. The basic 

polarization definitions and parameters for a transmitting antenna are discussed 

in Appendix 1A. 

1.3 Amplitude and Phase Properties of Waves in Boundless 
Space 

Since in a region far enough from the radiating antenna the spherical wave 

behaves as a local plane wave we can treat it there as a uniform plane wave. 
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It is supposed also that the wave is linearly polarized and is propagating 

in a regular (homogeneous, linear, and isotropic) medium with electric-type 

losses only [l] .  The interaction of the wave with a lossy matter gives rise to 

wave attenuation and phase shifting calculated by the corresponding amplitude 

and phase constants. The data for the relative permittivity, conductivity, and 

loss tangent factor of some common media, as water and ground, given in this 

section, helps such understanding in their electric properties (Table 1.1). 

Among the basics of wireless communications are the radio link equations, 

including the famous Friis free-space equation. In this text we need them to 

describe radio links with passive repeaters and reflection/diffracrion above hilly 

earth (Chapter 3)  or to find the Fresnel zone plate antenna far field (Chapter 5 ) .  

1.3.1 Equations for Amplitude and Phase Constants 

For a complex permittivity C = E - j ( c / o )  and a real permeability p the real 

phase constant p in the wave equation is replaced by the propagation constant 

y,  a complex number given by [2] 

(1.17) 

Here a is the attenuation constant, Np/m; p is the phase constant, 

rad/m; tanS, = c / o e  = c / 2 7 ~ f i  is the electric loss tangent; and U is the 

medium conductivity, S/m. The wave constants LY and p can be calculated by 

and 

p = o&# 1 + 4 G - q  

The medium intrinsic impedance 'I, 0, is determined 

(1.18) 

(1.19) 

as follows 

(1.20) 
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The phase velocity v and wavelength A of the plane wave in a lossy 

medium are 

w 1 

and 

(1.21) 

(1.22) 

1.3.2 Some Data for Ground Media 

The common media are classified approximately as follows [7]: (1) dielectrics 

(insulators), for tanS, < 0.01; (2) quasiconductors, for 0.01 < tanS, < 100; 

and (3) conductors, for tanS, > 100. Table 1.1 lists values of the relative 

permittivity and conductivity for a number of ground media. In Figure 1.3 

the loss tangent factor tanS, = U / O E  is plotted as a function of frequency for 

fresh water, urban ground, rural ground, seawater, and copper. The  curves are 

not accurate above the microwave region since the medium constants vary 

with frequency. 

1.3.3 Basic Radio link Equations 

Consider a far field spherical electromagnetic wave with a quasi-plane phase 

front that propagates in a lossy medium along the r-direction. Its complex 

field vectors E and H are 

Table 1.1 

Values of Permittivity and Conductivity for Some Ground Media and Copper 

(After: (71, 0 1984 McGraw-Hill) 
_ _ _  - _ _  - - - - - _-_ - 

Relative Permittivity (e r )  Conductivity U (S/m) Medium - - _- - 

Sea water 80 
Fresh water 80 
Moist ground 20-30 
Dry ground 3-6 
Snow (-10°C) 1 

Ice (-10°C) 4-5 

Copper (basis for comparison) 1 

1-6 

3 x 10-3-3 x 10-2 

10-5-5 x 10-3 

10-~-1 o - ~  

1 o4 
1 o-2-1 0-’ I 

5.7 10’ 
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Figure 1.3 Electric loss tangent versus frequency for different media, log-log plot. (After: 

171, 0 1984 McGraw-Hill.) 

and 

(1.24) 

where E, = I E, I eJ40, and ? = I ?j I ej'v. Here 9 is the complex intrinsic imped- 

ance of the medium. 

Let the power radiated by the antenna at the origin of a sphere of radius 

r be P,. Over the sphere surface the average density pav of the electromagnetic 

flux is found by [3] 
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P, Gte-2ar 
P a v  = 

4 7 r 2  
(1.25) 

where G, is the directive gain of the transmitting antenna. 

the Poynting vector p = (E x H*)/2, or 

O n  the other hand, the average flux density is found as a real part of 

1 1 
P a v  = -Re(p) 2 = -&(E 2 x H*) 

Since !HI* = IEl*/) 91, (1.26) can be transformed 

( I  .26) 

into 

(1.27) 

After making pav from (1.27) equal to that from (1.25) we get the electric 

field magnitude E m  

and the complex electric field strength 

(1.28) 

(1.29) 

at a distance r from the source. 

Up to now we have assumed that the transmitting antenna radiates in a 

so-called boresight direction (6 = 0,  p = 0) (i.e., a direction in which the 

normalized antenna radiation pattern F ( S  = 0, cp = 0) is equal to unity). 

For an arbitrary direction (6, p) the electric field magnitude E m ( 6 ,  q )  
is written as 

(1.30) 

When the wave is propagating in a low-loss dielectric medium with 

p = po,  (1.18) for the attenuation factor is approximated to 
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CY = E d G t a n 6  and 7 = d a  = 1 2 0 7 ~ 1 6 .  Here E = E , € , ,  

,u0 = 4 7 ~  x 1 0-’ Hlm, and E ,  = ( 1 0 6 4  x 1 0-9 F/m. For a free-space propa- 

gation CY = 0 and 7 = 7, = 1207~i2,  and thus, (1.29) becomes 

2 

(1.31) 

or if the field vector character and angular dependence (6, p) for the free- 

space electric field are taken into account the field strength is 

where i is the electric field unit vector and G,(6 ,  p) is the antenna directive 

gain for an arbitrary direction (6, (p). For the boresight direction, where the 

radiation pattern has a maximum value, G,( 6, p) is replaced by G,. 

In (1.31) all quantities are given in SI units: Pt is in watts, W; r is in 

meters, m; and E ,  is in volts per meter, V/m. Practically, it is more convenient 

to express the radiated power in kilowatts, the distance in kilometers, and the 

electric field in millivolts per meter, so that 

(1.33) 

At the end of this paragraph, the classical radio link equation known as 

the Friis free-space equation will be discussed. For a = 0, the power flux density 

pav at the receiving point becomes 

(1.34) 

The receiving antenna is characterized by a specific parameter named 
2 2 

effective aperture A,K, m proportional to its directive gain G, and A or 

G,A2 
A& = - 

47T 

Then, the power, P,, passed from the lossless 

obtained by multiplication of Pav and A e ~ ,  given by 

tively, or 

(1.35) 

antenna to the receiver is 

(1 3 4 )  and (1.35), respec- 
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Gt G,. P,. = P,- 
4 7TrlA 

(1.36) 

This is the Friis free-space equation. 

The dominator in (1.36) describes the free-space wave diffusion losses 

between ideal isotropic transmitting and receiving antennas placed at the same 

points as the actual directive antennas-that is, this factor is independent of 

antennas used. I t  is called a spatial attenuation, L ,  (or the path loss factor) 

(1.37) 

The losses calculated by ( I  .37) differ from the dissipative losses in matter. 

In the design of radio links, it is also convenient to use the concept of transmis- 

sion losses, L ,, between the transmitting antenna and receiver input defined 

as 

(1.38) 

For isotropic antennas G, = Gr = 1. 
For practical needs the above equations are commonly expressed in loga- 

rithmic form in order to make use of the decibel notation. The reference units 

for this notation are either the appropriate SI units or some preferred arbitrary 

value. For instance, if we wish to express the power level in decibels with 

respect to 1 m W  (or 0 dBm) the Friis equation can be transformed in the 

form 

P,. = P,, dBm + G,, dB + Gr, dB - 2010g(f), MHz (1.39) 

- 2Olog(r), km - 32.45, dBm 

For example, a power level of +30 dBm corresponds to 1 W ,  and a power 

level of -30 dBm to 1pW. 

1.4 Boundary Field Conditions: Reflection and Transmission 

The differential Maxwell’s equations involve space derivatives, and therefore, 

they are valid only for electromagnetic fields at any point within a continuous 
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medium. The field of interface between two different regular media can be 

described by the Maxwell’s equations written in an integral form from which 

follow several particular equations known as electromagnetic boundary condi- 

tions. They account for the discontinuous change of the constitutive medium 

parameters E and ,U across the boundary surface separating region 1 

(€1 ,  , ~ 1 ,  al) on one side and region 2 ( € 2 ,  p2, a2) on the adjacent side. 

The real-world electromagnetic problems (e.g., antenna radiation, ground 

wave propagation, wave scattering) involve transmission, reflection, and/or 

diffraction at intermedia boundaries, and they are solved by means of specific 

initial and boundary conditions. 

1.4.1 Boundary Field Conditions 

If along the boundary between two media there are impressed electric sources 

(charges or currents) the following statements can be made regarding the electric 

and magnetic field components in the media, close to their interface: 

1. 

2. 

3.  

The tangential components of E are continuous (E,] = E72), and the 

normal components of E are discontinuous across the boundary, or 

E I E , ~  - €2En2 = ps. Here ps is the surface charge density, C/m2. If 
a2 = 00, the electromagnetic field in medium 2 disappears, so 

E,* = 0, E,1 = 0, and Enl = p S / e l .  

The tangential and normal components of H are discontinuous across 

the boundary or more specifically ,ulH,l = ,~2H,2 and 

H,1 - HT2 = J s ,  In the latter Js ,  N m ,  is the surface current density. 

For 02 = 00, Hn2 = H72 = 0; hence H,1 = 0 and H,1 = J s .  

If there is no current flow on the boundary surface/, = 0, the tangential 

components of H are also continuous in transition between the media 

or H,1 = H,2. 

1.4.2 Reflection and Transmission of Plane Electromagnetic Waves 

A plane electromagnetic wave falling to the planar interface between two 

regular semi-infinite media 1 and 2 gives rise to two plane waves: reflected 

and transmitted (or refracted). For simplicity, we shall consider here non- 

magnetic (p  = po) lossless dielectric media. The wave phenomena reflection 

and transmission are characterized by two kinds of properties: kinematic and 

dynamic [S]. The kinematic properties include well-known optical laws (Figure 

1.4) described as follows. 

1. The law of reflection, which states that the angle of reflection is 

equal to the angle of incidence ~ i ,  or 
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Figure 1.4 

2. 

Reflection and transmission by plane interface at oblique wave incidence. 

rcIi = rcIr (1.40) 

The  law of transmission or refraction (Snell's law) according to which 

P1 = 

n2 = 

(1.41) 

Here t,bt is the angle of transmission or refraction; 

27r/A1 = P o n l ,  p2 = 2 7 r l A 2  = P o n 2 ,  and nl = d x - ,  
~ E Z / E ,  are the phase constants and indices of refraction, corre- 

7 

sponding to the media 1 and 2; n2l = n2/n l  = - is called the 

relative index of refraction; and PO = 2 r / A  is the free-space phase 

constant. If the first medium is free-space, then we put € 1  = e0 and 

€ 2  = E ,  and then n = dx = &, where E ,  is the relative permittiv- 

ity of the second medium. 

4:: 

T h e  dynamic properties are referred to as the amplitude, phase, and 

polarization of the waves, reflecting from and transmitting through the media 

interface. These properties depend on the type of the polarization, the incidence 

angle, and the media electromagnetic parameters. They are determined by the 

equations for the reflection coefficient R ( R  = E r  lEi = I RI 6'") and transmis- 

sion coefficient T ( T = E ,  / E ;  = I T I  J 4 i ) .  

T h e  plane formed by the unit vector normal to the boundary interface 

and the vector in the direction of incidence is called the plane of incidence 

(plane xz). 
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In the case of the perpendicular (or electric polarization) the electric field 

vector of the incident wave is perpendicular to the plane of incidence [i.e., 

E; = E+? as shown in Figure 1.5(a)]. The reflection coefficient R1 and 

transmission coefficient T for an interface between two semi-infinite lossless 

dielectric media are found by 

1 

1 

and 

(1.42) 

(1.43) 

where 771 = 12On/& and 772 = 1207~/&. 

Having in mind that cos +r = 41 - (sin +i ln21)2) (1.42) and (1.43) can 

be rewritten as functions of + j  and n21 only 

2 
cos+; - d n i l  - sin + i  

1 R =  
COS+i + q-1 

and 

(1.44) 

Figure 1.5 Reflection and transmission at the oblique wave incidence for (a)  

perpendicular (electric) polarization and (b) parallel (magnetic) polarization. 
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(1.45) 

For the parallel (or magnetic) polarization the magnetic field vector of 

the incident wave is perpendicular to the plane of incidence (i.e., 

H i = Hiyf) ,  and the electric field vector E i is parallel to the same plane, Figure 

1.5(b). Then, the reflection and transmission coeficients R and T can be 

calculated by 

II I1 

I1 II 

and 

or as in (1.44) and (1.45) they can be expressed as follows 

(1.46) 

(1.47) 

(1.48) 

and 

2n21 cos$i 
(1.49) 

II T =  
n21 2 cos+; + 4-; 

To this point we have written formulas for the reflection and transmission 

coeficients, valid for plane waves with linear polarization. If the incident wave 

has an elliptical polarization it can be represented as a vector sum of two 

incident plane waves having orthogonal linear polarizations-for example, 

perpendicular and parallel. Then, the reflected and transmitted waves will also 

consist of perpendicular and parallel components E: and E!. found by the 

following reflection matrix equation 

(1.50) 
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It 
where E f  and E ;  are the corresponding incident field strengths. 

Similarly, the transmission matrix equation is written 

(1.51) 

For complex media with conduction, dielectric, and magnetic losses the 

equations for the reflection and transmission coefficients can be easily trans- 

formed b re lacing the real index of refraction n with a complex one, 

n = J4-e & 2 @ 2 / k l P l ,  with Cl,2  = ~ 1 , 2 ( 1  -jtanSf1,2) and @1,2 

= ,U 1,2( 1 - j t an  Sm1,2 ) .  Here tan S ,  and tan Sm accounts for the electric (con- 

duction and dielectric) losses and magnetic losses, respectively. The correspond- 

ing complex intrinsic impedances will become 1,2 = (,u0/e1,2) ''' 
= I -iI ,2lexP(j4~1,2).  

1.4.3 Some Special Cases of Reflection and Transmission 

Let a uniform plane wave with parallel polarization be incident upon the 

interface between two semi-infinite lossless dielectric media. I t  can be proven 

that for each permittivity couple (€1, €2)  there is an angle $ i ~ ,  called the 

Brewster or polarizing angle, for which the total incident wave energy is 

transmitted into the second medium (i.e., there is no reflected wave in the 

first medium). To obtain the Brewster angle we have to put R" = 0, or from 

(1.48) we have to write 

Then, from (1.52) it is easily found that the total transmission occurs at 

4: rC/iB = arctan(n21) = arctan (1.53) 

If a wave with an arbitrary polarization is incident at this angle upon a 

nonmagnetic plane boundary there will be some reflection but the reflected 

wave will be entirely of perpendicular polarization. 

Let us consider another special case, for which € 1  > € 2 ,  or n21 < 1. As 

shown in Figure 1.6, the incident wave travels from a more dense to a less 

dense medium. The Snell's refraction law in this special case requires 

sin +hi 

n2 1 
= - I 1  (1.54) 
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Figure 1.6 Surface wave resulting from total reflection at the interface boundary. 

So, there will be an angle of incidence +icy named a critical angle, for 

which sin$icln21 = 1, or 

+ic = arcsin+& (1.55) 

For waves incident at even higher angles + i  > +ic, (1.54) requires 

sin + f  > 1 , which has no meaning for real values of +hr. Therefore, this inequality 

is valid only if the angle +ht is of complex value, or 

& = 7 7.r + jSt (1.56) 

from which it is obtained that sin (2 / t  = cosh St and cos $ f  = -jsinh + f .  If cos St  
in the equations for the reflection coe6cient (1.42) and (1.46) is replaced by 

cos$, = -jsinh@,, it is found that 

and 

(1.57) 

(1.58) 

From (1.57) and (1.58) it follows that I R'J = I RI1 I = 1 , which says that 

the incident wave is entirely transferred into a reflection wave. Curiously, 

despite this conclusion it is easily proved that I T'l # 0 and I T " )  # 0. 
Physically this phenomenon is explained as follows: In the second medium 

a specific type of wave is formed with a plane phase front perpendicular to 
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the x-axis and an exponentially decreasing field amplitude in the +z direction. 

This wave is a nonuniform plane wave, called the surface or guided wave, 

which travels along the boundary plane in the +x direction. 

The exponential field decrease is not due to medium losses. Here the 

process is more complicated. The average power crossing the boundary is zero. 

The wave penetrated in the second medium travels along a short curvilinear 

trajectory and gets back (or reflects) into the first medium (Figure 1.6). 
The surface wave in medium 2 does not exist isolated from the field in 

medium 1, where it is a sum of incident and reflected waves. The resultant 

fields in the two media have different field structures but are inextricably tied 

under the boundary electromagnetic conditions. The surface wave in the second 

medium travels along the interface with a phase velocity vx = v 2  /cosh t+bt, which 

is smaller than the velocity of the plane uniform wave v2 = c/./.I2 traveling 

in unbounded dielectric medium with a relative permittivity er2. Remember 

that c = 3 x 10 m is the wave velocity in vacuum. 

The distance from the boundary at which the surface wave amplitude 

decreases e times is on the order of one wavelength. Therefore, it is very difficult 

to experimentally check the surface waves in optics, while they are easily 

registered at radio frequency bands. 

8 

1.5 Interference of Electromagnetic Waves 

The interference is based fundamentally on the principle of linear wave superpo- 

sition in space and time. Examples of electromagnetic fields in radiowave 

engineering resulting from the interference of uniform plane waves are the 

standing waves in two-wire lines, hollow waveguides, and resonators, and the 

surface wave propagating along the intermedia boundary, the field of microwave 

antenna elevated above the earth, and the field of antenna array. 

1.5.1 linear Superposition of Electromagnetic Fields 

Consider a number of N electromagnetic sources situated in a regular (or 

uniform, linear, and isotropic) medium. The total electric field E at an observa- 

tion point is equal to the vector sum of the fields El ,  E2, E3 . . . produced 

by the different sources [9] 

N 

n= 1 
E = C  E ,  (1.59) 

A similar summation is true also for the magnetic field vectors H,. 
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T o  simpliQ our discussion let us first consider two plane harmonic waves 

of same frequency ( U )  and linear polarization. Their electric field vectors can 

be written in a complex form as 

and 

where E,1, Eo2, and 4ol, 4 , 2  are the initial amplitudes and phases of the 

fields E 1 and E2, respectively; rl and 7-2 are the distances from the corresponding 

radiators to the point of summation; 41 = ~ t -  p r l  + qbOl and 

42 = ~ t -  ,Or2 + 4 , ~ .  If the phase difference A$, = - 4 , 2  is constant 

in time, the two sources and their fields are said to be mutually coherent. 

This discussion is confined to coherent radiating sources and waves. The 

resultant average power density pav at the interference point is 

1 1 

2 2 
pav = -&(E x H*) = -Re(E * E*) 

As E = El + E2 and E* = ET + ET, (1.62) becomes 

(1.62) 

(1.63) 

where A 4  = 41 - 42 = pAr  + A$, with Ar = r2 - r l ,  and 7 is the real 

intrinsic impedance. 2E,1 * Eo2cos(A4) is the so-called interference term, 

which shows that pav can be greater or less than the sum pavl + pav2 depending 

on the value of A+,  or 

(1.64) 

Since A 4  is a function of AT, periodic spatial variations in the total field 

occur. These variations form specific “standing” type interference patterns 
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(e.g., the antenna array pattern and standing wave as a sum of incident and 

reflected traveling waves). 

If the wave radiators are mutually incoherent then the phase difference, 

A 4 ,  is a random function of time, and the mean value of cos(A4) is zero. In 

this case there is no wave interference but only a simple summation, or 

(1.65) 

For example, there is no interference in summation of light waves radiated 

by two ordinary electric filament lamps or two radio transmitters unlocked in 

phase. 

The interference term also depends on the wave polarization. For two 

cross-polarized fields El - E2 = 0 there is no interference. 

1.5.2 Interference Methods 

In this section we confine our discussion to the interference of two coherent 

electromagnetic waves. 

1.5.2.1 Optical and Quasi-Optical Interference Methods 

These interference methods are typical for the optical and quasi-optical fre- 

quency bands. They are classified broadly in two groups: interference by division 

of wave front and interference by division of wave amplitude [9]. Let us consider 

some examples of interference schemes related to these methods. 

Interference by Division of Wave Front The superposition of two coherent 

light beams demonstrated by Thomas Young in 1802 [9, 101 was the first 

man-made interference experiment. The Young’s experimental scheme is a 

classical example of interference by division of a sunlight wave front. As shown 

in Figure 1.7, light passes through a pinhole Sand illuminates a nontransparent 

sheet that comprises two small holes S1 and S2. The latter act as secondary 

Huygens’ sources of spherical waves with well-defined amplitudes and a constant 

phase difference (i.e., they behave as mutually coherent point radiators). In 

other words, these radiators are fed in phase by the wave front. If a white 

screen is placed in the region beyond the secondary light sources, an interference 

pattern of bright and dark regions can be seen on it. 

Two other arrangements for producing interference phenomena using 

the division of a single-source wave front into two mutually coherent sources 

are seen as modifications of Young’s experiment. They are illustrated in Figure 

1.8. 
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Screen 

Figure 1.7 Interference by division of wave front-Young’s classical experiment. 

(After: [9], 5 1968 Holt, Rinehart & Winston.) 

P 

Figure 1.8 Other schemes of interference by division of wave front: (a) Lloyd‘s single- 

mirror arrangement and (b) Fresnel’s biprism arrangement. (After: [9], <, 1968 

Holt, Rinehart & Winston.) 

In Lloyd’s single-mirror experiment [Figure 1.8(a)], the total field a t  I’ 

is due  to  the interference of  direct and reflected wave rays. 7’he reflected ray 

also appears t o  come from 11 virtual source S’. Thus ,  the field in the region 

of t h e  screen is equivalent to that  i n  Young’s experinicnr. Fresnel’s biprism 

arrangement [Figure I .8(b)] produces nvo refracted coherent rays originating 

from 3 single source S. ‘I‘hese two rays rilso appear t o  conic from two virtual 

coherent sources S’ and S”. 
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Interference by Division of Wave Amplitude Let US first consider case 1 with 

a standing wave as the sum of incident and reflected waves. The simplest form 

of interference by amplitude division occurs when a plane electromagnetic 

wave is incident normally, or at an incidence angle $i = Oo, on the boundary 

between two semi-infinite media (Figure 1.4). The incident wave gives rise to 

two new plane waves: reflected and refracted (transmitted). 

In the first medium two coherent waves with unequal amplitudes interfere: 

the incident wave and reflected wave traveling along the z-axis in opposite 

directions. The resultant (or interference) field behaves as a standing wave, 

which can be presented in a scalar form as 

E = Ei + Er = Eo;e-Jpz + EoreJpZ (1.66) 

where E,; and E,, are the 

respectively. The amplitude 

amplitudes of the incident and reflected waves, 

of this standing wave is given by 

E, =IEI = 

Here cos(2Pz) is the 

-\IEz + E:r + ~ E ~ ~ E O ~ C O S ( ~ P Z )  

standing wave interference term. For a normal 

(1.67) 

incidence the reflection and transmission process does not depend on the 

incident wave polarization. 

In case 2, with interference in multiple reflection and transmission by 

dielectric slab, we will consider a very popular scheme of producing an infinite 

number of mutually coherent waves by division of amplitude. The division 

occurs by multiple reflection and transmission between the two parallel bound- 

ary planes of a dielectric slab (Figure 1.9). 

The total reflected and transmitted fields in this case are found as the 

infinite sum of the partial field contributions due to the process of multiple 

internal reflections. 

Our  final goal here is to derive the so-called infinite reflection coeficient 

R and transmission coefficient Tthat account for all partial field contributions. 

Let us mark the plane wave reflection and transmission coefficients at a single 

boundary by a subscript 1 (or R1 and T1) when the incident wave travels 

from air (medium 1) to dielectric (medium 2), and with subscript 2 (or R2 

and T2) in case the wave 

reflected field is [ 1 1, 121 

travels from dielectric to air medium. The total 
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Figure 1.9 Multiple 

IEEE.) 

or 

with 

and 

w 
reflection and transmission by dielectric slab. (After: 

' 2'd sin $,sin 4, p a  = e J 3 ,  

[ l l ] ,  0 1983 

(1.69) 

(1.70) 

(1.71) 

where p a  is a phase factor that takes into account the path-length difference 

between subsequent rays in the far-field region; and pd is a phase factor, 

accounting for the phase delay due to the dielectric path I = d/cos $f .  Further, 

R2 = -RI, T1 = R1 + 1, 

Then, (1.69) converges to 

we will make use of the following 

T2 = R2 + 1, 1,4~ = $ i ,  and = 

E ,  = E;R, where R is given by 

(1.72) 
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This is the final expression of the total (or infinite) reflection coefficient. 

Similarly, for the total transmission coefficient T i t  is found that 

(1.73) 

where Pt = ejplcos(6,  - . Equations (1.72) and (1.73) are true for the two 

polarizations: perpendicular and parallel. Simply said, in (1.72) and ( I  .73) RI 

is replaced by Rf”’ ,  and then R”” and T”” are found. 

1.5.2.2 Interference of Waves Radiated by Coherent Individual Sources 

In the radio frequency bands the interfering waves are normally radiated by 

mutually coherent individual elements that form an antenna or scattering 

system (or array). The classical antenna array theory, which is based on the 

interference phenomena, is well-documented in many antenna books, so we 

shall not go into detail here. 

1.6 Matrix Analysis of Plane Wave Transmission Through 
Dielectric Plates 

In this section the interface region between two dielectric media is represented by 

a two-port network and transmission matrix equation. Similarly, the multilayer 

dielectric plate is considered as a number of two-port networks connected in 

series. A generalized matrix equation relating the incident, transmitted, and 

reflected waves in the multilayer place finally results. 

1.6.1 Analogy Between Dielectric Media and Transmission lines 

The propagation of a plane wave in a homogeneous medium is analogous to 

the wave propagation along a uniform transmission line. The electromagnetic 

boundary conditions at the plane interface between two mediums are similar 

to those at the junction between two transmission lines. 

The analogy between the mediums and transmission lines is applicable 

to normal and oblique wave incidence at the interface plane. For the latter 

case, however, one must take into account the wave polarization [ 13, 141. 
Regard a linearly polarized plane wave incident at angle $1 on the 

boundary plane between two lossless dielectric media (Figure 1.10). 

The wave impedances of the two mediums are different for the perpendic- 
ular (71 1 and 7;) and parallel (71 It and 7 2 )  I1 polarization, and they are found 



26 Fresnel Zones in Wireless links, Zone Plate lenses and Antennas 

1 " t  2 

Figure 1.10 Plane wave incident on interface between two mediums. (After (131.) 

and 

(1.74) 

(1.75) 

where 7 = 1207~; fl is the free space intrinsic impedance; and are the 

relative permittivities of the mediums 1 and 2, respectively; $ 1  is the angle of 

incidence; and $2 is the angle of refraction. 

For a normal incidence $1 = +2 = 0, '11 = '11 = ql 'I = - 'I , In the 

medium 1, at a distance x = dl from the boundary plane, the input impedance 

Z d  of the equivalent transmission line with characteristic impedance 21, load 

impedance Z2, and a length d c a n  be easily determined. 

The voltage reflection coefficients R' and RI' at x = 0 are given by 

G 

(1.76) 

For further simplification it is appropriate to omit the common factor 

77, normalizing it so that for the air 7 = 7l1207.r = 1. 
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1.6.2 Transmission Through Multilayer Dielectric Plates 

In the general case of the multilayer dielectric structure with several dielectric 

media and interfaces and oblique incidence of the plane wave (Figure 1.1 1) 

the normalized wave impedances for both polarizations ij' and 7'' can be 

expressed in a matrix form 

, . . . , (1.77) 1 [ = [ cos@]. [;:I = [cos@,,& 

l/cos@ --I 1 /Gl COS @ 1 
-1 

1 
-1 

The phase constants are the same for the two polarizations, or 

1 II 27T po = po = po = -cos@, 
A 

27T 
p1 = p; = pl = T & C O S @ , '  . . . , 

En 

Wn 

ef 

d n  

(1.78) 

Figure 1.11 Transmission through multilayer dielectric plate. (After: [13].) 
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law [see (1.4 I ) ]  we can write 

Combining (1.77) and (1.79) we find that 

(1.79) 

, (1 .80)  

As the angle of refraction is related to the angle of incidence by the Snell’s 

The electric thickness (or length), in radians, of the dielectric layers can 

be written as 

(1 .81)  

Dielectric losses can be included via the complex dielectric constant 

C, = €,.(I - j t an8)  (1 .82)  

where tan6 is the dielectric loss tangent. 

Thus, the layer electric thickness becomes a complex quantity 

g = ( 2 7 r l A ) d d m  (1.83) 

If tan8 << I ,  9 reduces to 

Let us discuss now a matrix representation of the reflection and transmis- 

sion phenomena between two dielectric media [ 13, 141, illustrated in Figure 

1.12. 
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Figure 1.12 Illustration to interface (a) dielectric plate layer and (b) transmission matrix. 

A two-port network equivalent to interface region is shown in Figure 

1.12(a). Its transmission matrix equation is 

(1.85) 

where E;,  E,, E,, and E, are the electric fields of the incident, reflected, 

transmitted, and scattered waves, and EM] is a square transmission matrix 

equal to 

with matrix elements 

R1 - -  Er 

M21 = - 7-1 

(1.86) 

(1.87) 

(1.88) 

(1.89) 
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(1.90) 

In the above matrix elements R I  and T1 are the input, and Rz and Tz are 

the output interface reflection and transmission coefficients, correspondingly. 

If a pair of two-port networks with transmission matrices [Ml ] and [M2 ] 
are connected in series by a transmission line with electric length 

@ = q’’ + jp ’  and matrix [ M A ] ,  the total transmission matrix [ M ]  is 

where 

(1.92) 

Similarly, in the case of a dielectric plane layer, situated between two 

media, the waves associated with the boundary planes are linked by the following 

matrix equation [see Figure 1.12(b)] 

or 

where 

[Mkl = [Mk-l,kI[Mdkl[Mk,ki-l1 

is the total transmission matrix; 

(1.94) 

(1.95) 

(1.96) 

is the input matrix (at interface k - 1, k); 
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(1.97) 

is the dielectric layer matrix with an electric length according to (1.84), or 

and 

(1.97) 

is the output matrix (at interface k, k + 1). 

matrix becomes 

After multiplying the above partial matrices, the total dielectric layer 

(1.100) 

If the k-th dielectric layer is positioned in an unbounded air medium so 

R k , k + I  = R2, Tk-l,k = T1, T k , k + I  = T2. This specific case was described in 

Section 1.5.2.1 [( 1.68)-( 1.73)]. For the n-layer dielectric plate, shown in Figure 

1.1 I ,  the incident, transmitted, reflected, and scattered waves are related by 

the next generalized matrix equation 

that Ek-1 = E o ,  Ek = E ,  and E k + l  = E o ,  then we may put R k - l , k  = R I ,  

(1.101) 
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Appendix 1A 
Antenna Polarization Parameters 

The antenna radiation field E p ( 6 ,  q) at far region observation point P can 

be expressed in the form 
1 

E p ( 6 ,  c p )  = E ( 6 ,  cp)(i!asinl + 2,cos4‘) (1A. 1) 

where E( 6, cp) is the far field vector of the transmitting antenna as a function 

of the spherical coordinates (6, p); 4‘ is the orientation angle of the linear 

polarization probe antenna; and 28 and 2, are the corresponding unit-vectors. 

For a transmitted field, linearly polarized in the y-direction, or ar 

8 = 0,  the alignment procedure leads to 9 = cp for the reference (copolarized) 

field E c o ( 6 ,  p) and 5 = 40 + 90 degrees for the cross-polarization field 

ECY(6, d. 
From ( lA. l )  it is obtained 

1. Ludwig, A. C., “The Definition ofCrosspolarization,” IEEE Trans. on Antennasand Propagat., 

Vol. AP-21, January 1973, pp. 116-1 19. 
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E p ( &  p) = &in( + E,(& po>cos( 

For the copolarization field E,(6, p = 0 

E,(& p) = &(6, p h n p  + E,(& p h s p  

and for the cross-polarization field two different cases are possible: 

1. J = p + 90 degrees, and then 

E(r (6 ,  ~ p )  = E o ( 6 ,  ( O ) C O S ~  - E,(6,  p ) s i n p  

(1A.2) 

(1A.3) 

( 1 A.4a) 

(1A.4b) 

If the transmitted field is polarized in the x-direction the angle p is 

replaced by p + 90 degrees, which results in modifications of the above equa- 

tions. 

With Ea,  E,, E,, and E,, determined, the CO- and cross-polar radiation 

pattern, co-polar gain, cross-polar isolation, polarization ratio, and other 

antenna polarization parameters can be easily calculated. 2 

1. Normalized co-polar field pattern Fco (a), ,=conSt. , in decibels: 

p=const. 
E,(6 = 0") 

Fco(6)  = 20 log 

2. Cross-polar field pattern Fcr( S), (P=const., in decibels: 

3. CO-polar gain pattern, in decibels: 

-i 

(1A.5) 

( 1 A.6) 

(p = cons t . 

(1A.7) 

2. Mott, H., Antennas f o r  Radar and Communications: A Polarimetric Approach, New York: 

Wiley-Interscience, 1992. 
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4. Cross-polar gain pattern, in decibels: 

5. Total gain pattern, in decibels: 

6. Cross-poiar isolation I (  9), in decibels: 

(1A.8) 

(1A.9) 

(ZA. 10) 

7. Linear polarization ratio P ( 9 )  (complex ratio of linear transverse 

components): 

(1A. 1 1) 



Fresnel-Kirchhoff Diffraction Theory 

2.1 Huygens’ Principle 

In his famous treatise [ l ]  published more than 300 years ago, Christiaan 

Huygens (1629-1695) proposed a new mechanism for light propagation known 

today as Huygens’ principle. In an analogy with sound, light was considered 

to travel as a wave motion in a certain kind of fictitious matter, called ether, 

that was supposed to fill the entire space including the space intervals between 

matter particles. Each particle of the ether set in vibration by the wave was 

viewed as a source of new waves. The principle of Huygens is illustrated in 

Figure 2.1. The initial spherical wave originating from a point source is partially 

obscured by an infinite screen S. 
Let us observe the motion of the wave with a velocity v in the cone 

limited by the screen aperture So. Suppose at time t the spherical wave front 

U is situated inside the aperture. The wave front is considered to consist of 

equiphase particles (sources) a, b, and c, radiating secondary spherical wavelets 

so that backward the wavelets cancel while ahead they persist. At a later instant 

t + A t  a new wave front U‘ is formed as an envelope of outgoing spherical 

wavelets with radii pa = pb = pr = . . . = v A t ,  which, in turn, produces a 

new generation of wavelets with the envelope U ” ,  and so on. In this way, the 

wave front is advancing in a forward direction [2-4]. 

According to Huygens, the wave fronts are normal to the straight optical 

rays, and the wave propagation in the uniform cone space (or lit region) goes 

along a.  rectilinear path. This phenomenon is known as the optical law of 

rectilinear propagation. 

35 
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Figure 2.1 Classical construction illustrating Huygens’ principle. 

It is also assumed that the regions outside the cone generants (or shadow 

boundaries) are not lighted up by the rectilinearly propagating waves; they are 

called shadow or diffraction regions. 

The Huygens’ principle is used also for proving the laws of plane wave 

reflection and refraction [3-51. For example, let us demonstrate this possibility 

for the refraction law (Figure 2.2). Here the incident and refraction (or transmis- 

sion) angles are marked with +, and + f ,  respectively. Suppose a point A from 

the plane wave front AB is reaching at time t = 0 the refraction medium 2 (at 

point 0). The secondary wave radiated from point 0 has a spherical radius 

00’ = vZAt, where v2 is the phase velocity in the medium 2 and A t  is the 

time interval for which the wave travels from point 0 to point 0’. For the 

same interval the wavelet from point 0 3  is reaching point 0; so that its path 

length is 030$ = v l A t .  Here vl is the phase velocity in medium 1. From 

the two right triangles O 0 3 0 ;  and OO’O;, with a common hypotenuse 00; 

i t  is not difficult to write 030;/00’ = sin+,/sin+i, or 

sin+, vl 

sin +i - v2 
- - -  
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Figure2.2 Proof of refraction law by use of Huygens’ principle. 

Thus, using the wave mechanism proposed by Huygens, the refraction 

or Snell’s law is obtained. 

In its initial form the principle of Huygens is relevant only to geometric 

optics. I t  is valid for extremely small wavelengths and is inadequate for explana- 

tion of all wave phenomena-for instance, the deviation (diffraction) of wave 

from a rectilinear ray propagation when it passes the edges of objects or through 

small slits. 

Although Huygens created his mechanism of light motion using the ideas 

about secondary wavelets and their summation to form a new wave front, he 

was not aware of the periodic nature of light and the fact that this periodicity 

is tied to space and time. Most unfortunately, Huygens’ wave mechanism of 

propagation fell into oblivion [2], and for a long time only Newton’s corpuscular 

model of light propagation was at the root of optics [Isaac Newton (1642- 

1727)j. 

ered the principle of ray interference (see Section 1.5) and explained qualitatively 

what occurs when two light rays combine. H e  regarded the periodic properties 

of light as a result of combining rays with positive and negative magnitudes [4] .  
Later, though independently, Augustin Fresnel (1 788-1 827) revived Huygens’ 

principle to establish the wave theory of light. 

More than a century after Huygens, Thomas Young (1 773-1 829) d’ ISCOV- 

2.2 Fresnel Zones 

Fresnel completed Huygens’ deductive wave mechanism by taking into account 

the space and time periodicity of light waves, mutual interference, and polariza- 
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tion effects. Due to Fresnel, the wave front acquired a clear physical meaning 

as a surface on which secondary wavelets with given amplitudes and directions 

of radiation interfere. The modified and perfected Huygens’ principle was 

renamed the Huygens’-Fresnel’s principle. It  became a fundamental method 

for solving wave diffraction problems. 

Before applying Huygens’-Fresnel’s principle to study diffraction effects 

we will use it to describe wave propagation in free space [ 3 ,  5-71. Then we 

will examine the geometry of spherical and plane Fresnel zone constructions 

and apply them to approximately solve the diffraction field integral. Finally, 

we will describe briefly the focusing properties of single and double zone 

focusing elements (or lens-like diffractors) and multizone Soret and Wood 

zone lenses. 

2.2.1 Fresnel Formulation of Huygens’ Principle 

Let us surround the source point P1 by a closed surface with an arbitrary shape, 

and let P2 be an observation point out of S (Figure 2.3). 

Given the current density J 1  in a space volume dV’ (point PI) the 

elementary electric field dE(P2) can be found directly using, for instance, the 

vector potential method described in Section 1.1 

where 

Figure 2.3 Huygens’ secondary wave surface enclosing the primary current source. 
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Here we shall consider another, indirect method for finding the field at Pl 
that resulted from the Huygens’-Fresnel’s principle. I t  is assumed that after 

finding the field on the surface S we remove the wave source J 1  from PI. S 
is viewed as Huygens’ source surface radiating secondary waves, and the total 

field at P2 is found as a sum of all secondary waves. 

Each element ds’ of the imaginary radiating surface contributes elemen- 

tary field with a scalar complex intensity dE(P2) 

(2.4) 

where Es(Q’) and *s(Q’) are respectively the amplitude and the phase of a 

scalar component of the electric field vector Es(Q’) at Q’ (or at a’), and 

I ( 6 )  is the inclination factor depending on the angle between the unit normal 

ii and the direction to the observation point. I t  corresponds to the so-called 

Huygens source radiation pattern (see Section 2.3.2 and Appendix 2A). 

According to Fresnel, it is assumed that for 6 = 0, Z(0) = Imax. With the 

increase of 6, I (  6) decreases monotonically and becomes zero for 8 L ~ / 2 .  

As will be shown in Section 2.3, Fresnel’s assumption was not quite correct. 

P2 is found by integration of (2.4) over the whole The total field at 

closed surface S 

(2.5) 

In accordance with Fresnel, let us simplify the problem by replacing the 

arbitrary radiating surface with a sphere with an origin at P1 and a radius po 

[i.e., with a spherical surface that coincides with the primary source wave front 

(Figure 2.4)]. 

The complex surface field Es( Q’) eiqs(Q’) at point 

Q’(p’ = po, $’, 4’) is set equal to a far field component of the incident 

spherical wave A 1 - , radiated by a point source or isotropic radiator located 

at P1 (an isotropic radiator is defined as a hypothetical antenna having equal 

radiation in all directions). Here A1 is the amplitude at a unit distance 

-jPpo 

PO 

( p ,  = 1) from the source. 

With the above equality in mind (2.5) becomes 
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P 

Figure 2.4 Geometv of Fresnel zone construction on spherical surface. 

2.2.2 Fresnel Zone Construction 

The first problem studied by Fresnel after perfecting Huygens’ principle was 

to prove more precisely the rectilinear propagation of light. He solved this 

problem by considering the mutual interference of the secondary waves at P2. 
For computation of the total observation field he applied an outstanding 

approach known as the Fresnel zone method or construction. 

2.2.2.1 Spherical Fresnel Zones 

For a simple evaluation of (2.6) we shall use the famous Fresnel zone con- 

struction [4, 81. With a center at P2 let us draw spheres of radii 

r0, r l ,  r2, . . . , Y , ,  so that rl - r, = 7-2 - rl = . . . = Y ,  - r , - l  = A / 2 ,  

where ra = QoP2, Qa is the point of intersection of PI P2 with S (Figure 2.4). 

The spheres divide the wave front surface S into a number of zones 

Z1, 22, 23, . . . , 2, called Fresnel zones. While the first zone is in the shape 

of a spherical segment, all others are spherical annuli. As long as the path 

difference r n  - Y,- 1 for each couple of adjacent Fresnel zones 2, and 2,- 1 is 

A / 2  they will radiate out of phase. 

The radius of the first Fresnel zone 61 is easily found by solving the 

Pythagorean relationships in the right triangles P1 Q1 Q{ and PI Q2 Q i  shown 

in Figure 2.5 

(2.7) 
2 

6: = po - ( po - Q 1 0)2 = ( ro + - ( r0 + Q 1 0)2 
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Figure 

Here 

2.5 Geometry for calculation of spherical Fresnel zone dimensions. 

61 = Q10, r, = 02'2 and po is the radius of sphere S. 

2.5 Geometry for calculation of spherical Fresnel zone dimensions. 

61 = Q10, r, = 02'2 and po is the radius of sphere S. 

Expressing QlO from (2.7) gives 

r0A + ( A / 2 ) 2  

Q1O = 2(p0 + T o )  

Since ro and po are much bigger than A (2.8) 

(2.8) 

is approximated, or 

(2.9) 

and then, a rough expression for the radius of the first zone 61 is found 

where Fe is the equivalent focal length given by 

(2.10) 

(2.1 

By analogy, the n-th zone radius 6, is approximately determined by 
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Comparison 

approximate ratio 

If PO = To = 

6 ,  = dnA Fe (2.12) 

of (2.12) with (2.10) shows that there is a very simple 

between the zone radii 6 ,  and 61 

F,, Fp = FJ2 (2.12) becomes 

(2.13) 

6 ,  = (2.14) 

For r0 = 00 and po = Fo = Fe/2 the n-th Fresnel zone radius 6 ,  is calculated 

by 

(2.15) 

The first (central) Fresnel zone has the shape of a spherical segment, and 

its area S1 , as known from the stereometry, is given by 

(2.16) 

The second zone is of a spherical annular shape, and its area is 

S? = 2n;00(Ql 42). As a first approximation it can be found that S? =. S1. 

Moreover, for an n that is not very large, it is obtained that all Fresnel zones 

are almost equal in area, or 

and each of them can also be calculated by (2.16). 

2.2.2.2 Plane Fresnel Zones 

(2.17) 

We shall apply here the Fresnel zone construction to the simplest of shape 

surface-the infinite plane, normal to the direct propagation path PIP2 as 

illustrated in Figure 2.6. First, we will find an approximate equation for the 

rz-th Fresnel zone radius 6,. From the right triangle PI OQ, we could write 
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Figure 2.6 Geometry for calculation of plane Fresnel zone dimensions. 

PO 
or 

62, 
P n  PO + - 

2P0 

(2.18) 

(2.19) 

Similarly, from the triangle OP2 Q,, for 6, << ro, it is found that 

(2.20) 

The Fresnel condition for the concentric zones on S requires that 

P n  + Yn differs by A / 2  from pn-l + r , - l ,  and by nA/2 from po + r,, or 

6; 6; A 
Pn + ?- ,GPO + ro + -  + -  = P O  + ro + n -  

2Po 2ro 2 
(2.21) 



44 Fresnel Zones in Wireless Links, Zone Plate Lenses and Antennas 

The radius 6, is then easily expressed by 

(2.22) 

where Fe is the equivalent focal length given by (2.1 1 ) .  

As in Section 2.2.2.1, ifp, = ro = F, and Fe = F,/2 (2.22) is transformed 

to 

6 ,  = {.A$ 

Finally, for ro = 00 and po = Fe = F, it becomes 

(2.23) 

(2.24) 

The  comparison between (2.12), (2.14), and (2.15) and (2.22),  (2.23),  

and (2.24) shows that the Fresnel zone radius is calculated by one and the 

same equation, regardless of whether the surface shape is plane or spherical. 

Similar considerations are true for the spherical and plane Fresnel zone 

areas. Suppose po + ro = const. From (2.24) it follows that the smaller the 

wavelength A the bigger the number of the essential Fresnel zones. 

If plane S is moved along the line of sight PI F'l (Figure 2.7) the Fresnel 

zone boundaries will outline sections of rotational surfaces as far as 

(2.25) 
! /  

p,, + r n  = p N  + rn = . . . = po + T,  = nA/2 = const. 

Figure 2.7 Definition of space Fresnel zone. 
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In fact, (2.25) determines a rotational ellipsoid around the z axis with 

foci in points PI and P2. The volume within the first Fresnel ellipsoid or 

between any two adjacent ellipsoids is called a space Fresnel zone (Fresnel zone 

volume or 3-D Fresnel zone). 

For quasi-optical and optical wavelengths (or for A + 0) all ellipsoids 

are transformed into a narrow channel (or physical wave ray) from the source 

point PI to the receiver point P2. In other words, the Fresnel volumes are 

very thin and are highly concentrated to the mathematical ray. 

Let us illustrate the above statement with the following numerical example. 

Find the radius and the area of the first Fresnel zone of a spherical wave with 

wavelength A = 1.5 mm (millimeter-wave band) and pO = rO = 500m. After 

placing the data in (2.10) and (2.16) we find the first zone radius 

61 = 0.27m and the first zone area S1 z 0.24m . Thus, the propagation of 

millimeter waves is bounded in a very narrow channel that is said to be formed 

by mathematical paraxial rays. 

2 

2.2.3 Field Determination by Means of Fresnel Zone Construction 

The field contributed by the n-th spherical Fresnel zone at point P2 (Figure 

2.4) is found in accordance with (2.6), or 

- r(s)# (2.26) 

where &’ = p:sin@‘d@’d#’. 

It  is supposed that pO and rO >> A .  From the triangle P1 P2 Q’ it is written 

(2.27) 
2 2  2 

r = P O  + ( P ,  + rO) - 2pO(p0 + rO)cos@’ 

The differential of (2.27) z ( r 2 ) d r  a - - [ p O  a 2  + ( p O  + T O )  2 
- a@ 

- 2pO(p0 + r,)cos@’]d@’ gives rdr = pO(pO + rO)sin@’d@’, or sin$’d@’ 

= rdr / [p, (p,  + r O ) ] .  Thus, the element area aS’ can be expressed in the form 

a Y  = &rdrd+’ 
PO + TO 

(2.28) 

Here 4’ is the azimuth angle in the spherical coordinate system 

(pO,  @’, 4’) with a center at PI. 
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Over the n-th zone the inclination factor I ( 6 )  may be replaced approxi- 

mately by an average value I,. After completing integration in (2.26) over the 

n-th zone its radiated field is found to be 

E,(P2) = -j2A(-1)n+1b'0(l'2)1n (2.29) 

where 

(2.30) 

is the field of free-space spherical wave at point P2 traveling along the straight 

ray PI  P2. 

The factor (-l),+' in (2.29) shows that the field contributions of the 

successive Fresnel zones are alternately positive or negative. 

The field radiated by the first zone only is 

The total field at the observation point is a sum of all zone fields 

N 

E(P2) = - j 2 A E 0 ( P 2 ) x  ( - l )n+l ln  (2.32) 

n =  1 

where N is the total number of Fresnel zones. 

The series in (2.32) can be expanded as follows 

N 
N +  1 

(-l)n+lln = I1 - 1 2  + 13 - . . . 4- (-1) I N  
n =  1 

and presented in the form 

+(+- Z # + & )  2 + . . .  

N -  odd 

N -  even 

(2.33) 

(2.34) 
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The inclination factor Z( S) decreases monotonically with increase 

of angle 6, or Zl > Z2 > Z3 . . . Zn-l > I n  > In+l . . . and Zn  z 
(Zn-l + In+l ) /2 .  Also, for very large N ,  I N S  0. Thus, in (2.33) the sums in 

parentheses are essentially zero, and the total sum is given by the following 

approximation 

N c ( - l y + l Z n  2 - 1 1  
3 

(2.35) 
L. 

n= 1 

Therefore, with the above approximation in mind, after placing (2.34) into 

(2.35) the total field will be found to be 

More precise theoretical analysis gives the value of the complex coefkient 

I1 = j /A = (I/A)exp(j?r/2) as a product of two factors: the amplitude factor 

l / A  and the phase factor e x p ( j ~ / 2 ) .  The amplitude factor is a ratio between 

the secondary wave amplitude and the primary wave amplitude, and the phase 

factor shows that each secondary wave is ?r/2 in phase behind the primary 

wave. 

After putting I1 = j / A  into (2.31) it is obtained that 

In the same way, from (2.36), the total field will be expressed as 

According to (2.38) the total field at point P2 radiated by the source (or 

re-radiated by all Fresnel zones) is half of the field due to the first (central) 

Fresnel zone, or as it is produced by the first half (or first subzone) of this 

Fresnel zone only. Since the wave power density at some point is given by the 

average value of the Poynting vector, or according to (1.26) 
1 4 

1 1 
Pav = ---Re@' * E*) = -Re) E2 I, it is seen that pav is proportional to the 

2 7  2 7  
squared field strength. Here, we assume propagation in a lossless medium, or 

7 = I I. Thus, the equation for the power (or energy) density can be written 

as follows 
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(2.39) 

Equation (2.39) shows that the total power density at point P2 due to 

all Fresnel zones is one-fourth of the power density produced by the first 

Fresnel zone solely. The approximate field series summation in (2.34) can also 

be represented in a graphical form as shown in Figure 2.8. If the size of the 

opening (or number of zones that fit within the opening) is increased, the 

total interference field at P2 is fluctuating and converging to E,  for n -+ 00. 

As long as the series is converging with the increase of the zone number the 

resultant field at the observation point may be imagined as created by the 

secondary wave sources located within the first several zones only. The conclu- 

sions we have reached for the spherical Fresnel zone construction are also true 

for the field produced by the planar Fresnel zones. 

2.2.4 Particular Cases of Fresnel Zone Obstruction 

Suppose some of the Fresnel zones are covered by a screen (or absorber) that 

coincides with the zone surface S. Now, the total field at P2 is due to the 

waves radiated only by zones (or subzones) not obstructed by the spherical 

screen (i.e., by zones that fit in the opening). 

Consider several specific cases of obstruction. 

Only the inner subzone of first zone is open (not obstructed): The  

field at the observation point P2 is 

4 .fc 

E, 
Q 

0 1 2 3 4 5 6 7 8 9 1 0 n  

Zone number 

Figure 2.8 Total field calculated as sum of Fresnel zone fields versus the zone number 
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This particular case was discussed in Section 2.2.3 in detail. 

The first zone is open, and the rest are screened: 

which means that the total field at point P2 is two times larger than 

if the screen was absent (point El in Figure 2.8). 

Both the first and second zones are open: Now, for N = 2 (2.32) gives 

E(P2) = - j 2 E , x  ( - l )n+l In  = - j2AE0(I l  - 1 2 )  z 0 (2.42) 

2 

n=l  

since I1 E 12.  This case corresponds to point E2 in Figure 2.8. 

First n - 1 zones are obstructed: If a circular concentric screen is 

obstructing the first n - 1 zones (Figure 2.9), the resultant field at 

the receiving point produced by all not clear zones is found in accor- 

dance with (2.32) 

E(P2) = -j2A E,(P2) (2.43) 

- + T -  In+l +-  1 n + 2 )  + ("- 2 In+3 +*) + . . . _L. 2 (" 2 

1st half of n-th zone - 

Figure 2.9 First n - 1 Fresnel zones obstructed by concentric disk obstacle. 



50 Fresnel Zones in Wireless Links, Zone Plate Lenses and Antennas 

All Fresnel zones (or subzones) are almost equal in area so that 

From (2.44) two very curious conclusions are made: 

The total field at the receiving point is equal to the field produced 

by the inner n-th open subzone only. 
The field at the receiving point equals the field at the same point 

when there is no screen at all. In the early days of the physical 

optics this was a very surprising invention that confirmed the wave 

nature of light. 

2.2.5 Focusing Properties of Simple Fresnel Zone lens-like Diff ractors: 
Multizone lenses of Soret and Wood 

I t  was proved above that the circular aperture in a screen, equal to the first 

Fresnel zone, can be regarded as a focusing element (lens-like diffractor). I t  is 

sketched in Figure 2.10(a). The focusing properties can be expressed by the 

focusing coefficient Gf(or focusing gain). defined as a squared ratio of the 

focused field E(P2) and free-space field E,(P2) at the receiving point P2, or 

or in decibel notation 

(2.45) 

Figure 2.10 Single Fresnel zone focusing diffractor: (a) with first zone open and (b) with 

second zone open. 
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(2.46) 

Thus, the focusing coefficient of the first Fresnel zone according to (2.4 l ) ,  

(2.45), and (2.46) is G f =  4 (or 6 dB). 

Recall that the focusing aperture is illuminated by a spherical wave from 

a point source at PI. Commonly, the points PI and P2 are located on the lens 

axis that coincides with the z-axis, at distances po and r, from the xy plane 

(or aperture plane in the case of a flat screen) and are called focal points (or 

foci). 

The next in size single-zone lens has only the second Fresnel zone open 

[Figure 2.1O(b)]. Assuming an equality in zone areas (S2 z S,)  and in inclina- 

tion factor values ((2 E ZI) the field at the receiving focus is easily obtained 

and the focusing coefficient is again equal to 4 (or 6 dB). Thus, the smallest 

in size single-zone lenses have roughly equal focusing properties. The next in 

focusing capability is the single-zone ring-obstructing (reflecting or absorbing) 

wave transmission through the second zone only [Figure 2.11 (a)]. The ring is 

complementary to the second zone annular slot shown in Figure 2.1O(b) (see 

more about complementary screen structures in Section 2.4.5). 
For a single-ring lens-like diffractor the field focused at P2 is found as 

I 
I 

I 

t 
\ 

3 

G,=9.5 dB 

Figure 2.11 Other simple Fresnel zone focusing diffractors: (a) single-zone ring diffractor 

obstructing second Fresnel zone and (b) double-zone ring diffractor 

obstructing second and fourth Fresnel zones. 
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(2.48) 

and its focusing coefficient is 

G ~ E  9 (or 9.5 dB) (2.49) 

Here, the following approximations also took place: S3 z S2 z S1, 

1 3  z 1 2  z 11, and IE3(P2)1 z IE2(P2)( 
The zone Iens shown in Figure 2.1 l(b) consists of two open zones (the 

first and third zones) cut in an infinite screen. The two zones are radiating in 

phase. If again, the above area and the inclination factor approximations are 

understood then the field localized at point P2 is given by 

IEl(P2)I.  

and the focusing coefficient of the double annular slot lens is G ~ z  16 (or 

12 dB). Following the above reasonings and increasing further the number of 

open Fresnel zones cut in a thin screen plate (odd or even), Soret created in 

1875 the optical multizone plate [9]. It  is illustrated in Figure 2.12, where in 

(a) the zone-plate lens has odd zones open, and in (b) it has even zones open. 

In other words, the Soret zone plate comprises a set of plane concentric Fresnel 

zone rings that are alternatively open (transparent) and opaque (reflecting or 

absorbing). 

Remember that Fresnel zone lenses in Figure 2.12 are cut in infinite 

plane screen or absorber. Thus, the total field at focal point P2 is obtained as 

a sum of partial fields produced by No open zones, or for No z N/2. 

Figure2.12 Soret’s multizone plate cut in infinite planar screen with (a)  odd zones open 

and (b) even zones open. 
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(2.5 1) 

with n = 1, 3, 5, . . . . for the zone plate in Figure 2.12(a), and 

(2.52) 

with n = 2, 4, 6, . . . for the zone plate in Figure 2.12(b). The inclination 

factor Z(6)  for N > >  1 decreases faster and El(P2) > E2(P2) > 

Imagine that in Figure 2.12(a), for example, the screen left out of the 

zone area is removed. Then the field intensity at P2 will be slightly less than 

E(P2) given by (2.51), or according to (2.44) it is found that 

. . . > EN(P2). 

for odd clear zones. N is the total number of zones (open and closed). 

If for simplicity we still assume that El(P2) E E3(P2) - - - . . . G E N ( P ~ )  z 2E0(P2) the total field for N G  2 N ,  is approximately found 

by 

for N odd, and the focusing coefficient is simply found as a squared number 

of all open zones, or 

(2.55) 

or in decibels it is calculated by 20logN,. 

If N ,  = 7, for example, G z 49, (or 16.9 dB). 
Since only half of the zone-plate lens area, the open one, is used in the 

focusing process, the Soret zone plate has a low focusing efficiency. In order 

to improve the zone-plate lens focusing effect Wood [ 10, 1 I ]  developed at 
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optical wavelengths a similar zone plate with opaque zones that are replaced 

by transmitting phase-reversing rings. 

In contrast with ordinary lenses, the Fresnel zone lens does not smoothly 

transform the incoming spherical wave into an outgoing spherical (or plane) 

wave. It  is a stepwise phase transformer, and the maximum phase error in the 

lens aperture equals 72. So, the focusing efficiency of the Fresnel zone plates 

is inherently smaller than the efficiency of the ordinary lenses. 

2.3 Scalar Kirchhoffs Diffraction Theory 

O n  the basis of the Huygens’-Fresnel’s principle Gustav Kirchhoff (1 824-1 887) 

proposed an approximate diffraction method and a corresponding theory that 

is essentially equivalent to Fresnel’s formulation but gives in addition an accurate 

expression for the inclination factor [6]. 

Kirchhoff’s diffraction theory (physical optics) is presented here in a 

scalar form, which means that the electromagnetic field polarization is neglected 

or that all contributions to the total diffraction field are assumed to be of the 

same polarization. In this section Kirchhoff’s diffraction integrals are applied 

for (1) a diffraction aperture cut in a screen (absorbing) surface enclosing the 

primary sources and (2) a diffraction aperture in an infinite plane screen 

(absorber) placed between the source and the observation point. 

In the antenna theory the following space regions are normally defined: 

the near-field region, the Fresnel region, and the far-field or Fraunhofer region. 

As an example, the Fraunhofer diffraction by a circular aperture is studied at 

the end of this section. 

2.3.1 Scalar Form of the Kirchhoff Diffraction Integral 

Starting from the Helmholtz wave equation (1.5) and the second Green theorem 

[George Green (1 793-1 84 l)] Kirchhoff derived an electromagnetic theorem 

for the observation point field [6-81. In accordance with Figure 2.13 this 

theorem can be written in the following scalar form 

Here fi is the unit vector normal to the surface element a’, E(P2) is 
the scalar component of the electric field at the observation point P2, E( Q’) and 

dE( Q’)ldn are respectively the electric field component and its first derivative at 

a surface element point Q’, and @ ( r )  = e -Jpy / r  is a spherical wave function. 
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Figure 2.13 Geometry for derivation of Fresnel’s-Kirchhoffs diffraction integral. 

The first- and second-order derivatives of E( Q’) and @( r )  are continuous 

in the volume Vand on the surface S. Also, both E(Q’) and @ ( r )  satisfy the 

following scalar Helmhotz (or wave) equations 

(2.57) 

Suppose that two surface portions form the closed surface of integration 

S in (2.56): (1) the open portion So, and (2) the screened portion S,. For 

solving (2.56) we need to know the functions E(Q’) and dE(Q’)/dn on 

S = So + S,, but, unfortunately, it is impossible to find them exactly. The real 

physical aperture influences the incident wave. It is partially transmitted through 

and partially reflected, absorbed, and scattered (diffracted) by the aperture. 

The combination of all these phenomena makes the problem too complicated, 

and to contend with this Kirchhoff replaced the exact boundary conditions 

on S by the so-called approximate (or Kirchhoff s) boundary conditions 

E(Q’) = 0 and dE(Q’)/dn = O on S, (2.58) 

and 

E(Q’) = Ei(Q’) and dE(Q’)/dn = dEi(Q’)/dn on So (2.59) 

where 
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(2.60) 

represents incident spherical wave radiated by the source at PI. The distance 

p = P1 Q’ is much bigger than the wavelength, or Q’ is viewed as a point in 

the far-field region of the source. 

The Kirchhoff s aperture boundary conditions have clear physical mean- 

ing: Incident field over the aperture is identical to field without screen, while 

outside field over the screen portion is zero, as if ideally absorbed inside screen. 

In fact, these conditions express in mathematical form the classical Huygens’ 

principle. 

and therefore we can write 

Let us simplify (2.56). The gradient of E(Q’) is in the direction of 

-jPP 

P 
-jpAl-cos(n, p )  

where 1 lp is neglected compared to p = 27r/A, and the angle ( n ,  p )  depends 

on the integration surface curvature. 

Similarly, for the other derivative we find 

(2.62) 

with r much larger compared to the aperture size and wavelength, or 

/3 = 27rIA >> l l r .  

Placing (2.61) and (2.62) into (2.56) gives 

or 

-jP(p + r )  

[cos(n, p )  - cos(n, r)]dS’ (2.64) 
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In Figure 2.13, 6’ is the angle between the normal unit vector A and 

radial unit vector 8. The above equations are known as Kirchhoff s diffraction 

integrals. 

If we put cos(n, r )  = cos( 7~ - 6) = -cos 8, cos(n, p )  = cos 6’ and 

1 

2 
Z(6,  6’) = -(cos6’ + cos6)  

(2.63) and (2.64) can be rewritten as follows 

- jPr  
E&) = I,k E;( Q’) - Z( 8, 6’) &’ 

A r 

and 

(2.65) 

(2.66) 

(2.67) 

If we choose the integration surface to be a sphere with a radius 

p = po, we come to the special case studied by Fresnel in introducing his zone- 

construction mechanism of wave propagation (see Section 2.2.1). In this case 

6’ = 0, cos 6’ = 1, and then (2.64) becomes 

(2.68) 

where 

1 
F h ( 8 )  = Z(6, 6’ = 0) = -(1 2 + cos6)  (2.69) 

Now the inclination factor Z(6, 6’ = 0) is a cardioid function equal to 

the radiation pattern f h ( 6 )  of the so-called Huygens’ source (2A. 14). For the 

first Fresnel zone center 6 = 0 we get (f,j,6) = 1 ,  which is in agreement with 

the amplitude assumption of Fresnel, but for 6 = 7 ~ / 2 ,  fh( 6) is not equal to 

zero as Fresnel supposed. 

If Q’ is a far-field point of the primary source at PI, the incident wave 

Ei(Q’) is treated as a quasi-plane wave, at least within the aperture So. Thus, 
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in this special case the spherical surface is viewed as a quasi-plane surface with 

an aperture in it. Now, c o s 8  is again equal to 1 and thus (2.68) and (2.69) 

are also approximately valid for the quasi-plane aperture case. Kirchhoff s 

analysis can easily be extended to waves with a more general shape of wave 

front. 

As it was supposed, the Kirchhoff diffraction solution cannot be expected 

to be accurate at distances from the aperture that are larger than the wavelength. 

The solution does not reproduce the approximate fields given by (2.58) and 

(2.59) or the real fields in the immediate neighborhood of screens and obstacles. 

In these cases, more exact analytical and numerical boundary-value methods 

have to be employed. 

2.3.2 Diffraction by Aperture in Infinite Plane Screen 

Let us apply the Fresnel-Kirchhoff diffraction integral (2.64) to the special 

case of the infinite plane screen with an arbitrarily shaped aperture (Figure 

2.14). 

When the distances dl and d2 from Pl(x1, y1, z = d l )  and 

Pz(x2, y2, 2 2  = d2) to the aperture are much larger than its maximum size, 

the inclination factor ((6, 6’ = 0”) varies a little over the aperture, and we 

may take it out in front of the integral. Also, if points P1 and P2 are not far 

from the z-axis, we may treat them on an equal footing with Q’ and expand 

p and r around dl and d2, accordingly. 

Let us first expand p around d l .  From the geometry in Figure 2.14 we 

write 

(2.70) 

Here x’ and x’ are the coordinates of secondary source point Q’. 

From the above assumptions it follows that (XI - ~ ’ ) ~ / d :  << 1, 

( y l  - y’) ld l  << 1, and therefore, applying the binomial approximation 
2 2  

41 + x z 1 + 0 . 5 ~  when x << 1 to (2.70) we find that 

(2.71) 

In a like manner we expand raround d2 
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Figure 2.14 Fresnel diffraction by aperture in plane infinite screen. 

(2.72) 

Then we find the wave path from P1 through Q’ to P2 as 

After some algebraic manipulations (2.73) is transformed to 

(2.74) 

where 
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(2.75) 

is an approximate expression for the distance between points PI and P2, 

is the equivalent focal length and [2] 

(2.76) 

(2.77) 

determines in matrix form the coordinates x ,  and y ,  of the aperture point 

Qo(xo, y o ,  0). Note, that the points PI, Qo, and P2 are collinear. 

Let us transform the Kirchhoff diffraction integral (2.67) into a form 

appropriate for solving real-world diffraction problems. For the conditions that 

are assumed in this section the inclination factor 1(6, 6’) = 0” = F h ( 6 )  is 

almost constant and (2.67) becomes 

The slowly varying amplitude factor 1 lpr  in (2.78) is replaced by 1 ldl dZ 

and approximated as follows 

(2.79) 

where 

P i p 2 2  dl + d2 (2.80) 

The phase exponential in (2.78) is rapidly oscillating, and we shall replace 

p + r by the approximation (2.81). Thus, the diffraction integral takes the 

form 

(2.8 1) 
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where [2, 81 

1 2 
fb’, y’) = -Kx’ - x , )  + (y’ - yo)2]  

2Fe 

x ,  ’ 1 ’ 2 ’ 2  1 2 2  
+ y ) + -(x, + y , )  y o  ’ + -(x - _- 

- Fex - Ey 2Fe 2 4  

is the exponential phase function, and 

(2.82) 

(2.83) 

is the field at P2 of a free-space spherical wave radiated at PI and propagating 

along the straight path PI P2. 

In the phase equation (2.82) there are two types of terms: linear and 

quadratic. The quadratic terms characterize the spherical wave-front curvature. 

If we neglect them, (2.82) becomes 

f (x’ ,  y’) = px’ + qy’ (2.84) 

where p = -x,/Fe and q = -y,/F,. 
In this special case, it is customary to speak of Fraunhofer or far-field 

diffraction. It  occurs in practice when both the incident and diffracted waves 

are effectively plane (i.e., when the source point P1 and the receiver point P2 

are both far enough from the diffraction aperture). If this condition is not 

valid, the quadratic terms predominate in (2.82) and we may speak of Fresnel 

diffraction. 

When the points PI and P2 lie on the z-axis x ,  = y,  = 0, and then (2.82) 

becomes a pure quadratic equation, or 

f (x ’ ,  y’) = - (XI2  1 + yI2) 
2Fe 

(2.85) 

We may call this particular case of Fresnel diffraction a pure Fresnel 

diffraction. There is no sharp line of distinction between Fraunhofer and 

Fresnel regions. The division of space into two wave areas is only typical for 

the light diffraction theory. In radio antenna theory, the space surrounding 

the antenna is normally subdivided into three regions [ 121: 

1 .  Near or inductive field region: In this case, the distance d2 from the 

diffraction (or antenna) aperture to a receiver point P2 within the 
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region is commonly assumed to be less than 0.64=, where 

L,, is the largest dimension of the aperture and A is the wavelength. 

The most important feature of this space is that here the reactive 

electromagnetic energy predominates. 

2. Radiation near-field (or Fresnel) region: The size of this space region 

is determined by the inequality 0 . 6 4 G  I d1 I 2Lk,lA. Here 

we find complex electromagnetic energy consisting of active and reac- 

tive components. 

3. Far-field (or Fraunhofer) region: This is the so-called antenna far- 

field or radiation region for which each observation point is at a 

distance d2 much larger than the wavelength and the aperture size, 

2.3.3 Fraunhofer Diffraction by Circular Aperture 

As mentioned in the former section, the Fraunhofer diffraction is the foundation 

of the approximate theory of the aperture antennas, and therefore, it is examined 

in detail in antenna textbooks. Here we will describe briefly only one specific 

case-the Fraunhofer diffraction by a circular aperture. 

Placing f (x ’ ,  y’) from (2.84) into the diffraction integral (2.81), we 

obtain 

(2.86) 

Without loss of generality we suppose here that the aperture plane is 

normal to the line PI Q, or X I  = y1 = 0. In accordance with Figure 2.15 the 

rectangular coordinates (x’, y’) of Q’ can be replaced by aperture polar coordi- 

nates ( r ’ ,  p’), and the exponent in the integrand of (2.86) becomes 

jpr’s in  t9cos(p - p’). Also, &’ = a!x’dy’ = r’dr’dq’. 
Now, the integral equation (2.86) for the far diffraction field can be 

presented in the form 

where a, is the aperture radius. 
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Figure 2.15 Circular aperture in infinite plane screen. 

After integration with respect to r’ and doing some replacements, it is 

found that 

(2.88) 

where f( 6) denotes the total diffraction (or radiation) pattern of the circular 

aperture with a geometrical area So = n a o ,  given by 
2 

1 + cos 6 2/1 (baosin 19) 
baosin 8 = Fh(6)F,(-9) 

2 
F ( 6 )  = (2.89) 

- j h  

PO 
Ei( p,) = A 1 - =: C0nst.e -jpPo is an effective plane wave incident normally 

to the aperture. 

1 
F h ( 6 )  = $1 + cos@ 

is the elementary surface (or Huygens’ source) radiation pattern, and 

(2.90) 

(2.9 1) 
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is the aperture point array radiation pattern, which does not take into account 

the directive properties of the element dS’. 
The integration in (2.87) was performed using the following equations 

for the Bessel functions: Jo(z) = 

jo(z) and / I  ( z )  are the Bessel functions of zero and first order, respectively. 

The diffraction case considered here corresponds to the far-field study 

of a circular aperture antenna with a constant amplitude-phase distribution. 

The far-field diffraction (or radiation) patterns I Fh( 6) 1, I Fa( 8) I and I F( 6) I 
are plotted for 2a01A = 3 in Figure 2.16, with dashed, thick solid, and thin 

solid lines, respectively. 

2.4 Fresnel Diffraction 

At this point, we introduce dimensionless variables in the diffraction integrals, 

which depend on the wavelength and positions of the source point PI, observa- 

tion point P2, and aperture point Q’. Then, expressions of the Fresnel diffrac- 

tion factors for different rectangular and circular apertures are worked out. 

The Fresnel diffraction field of a screen structure and its complementary 

aperture diffraction field are related by the Babinet’s principle. This relation 

is demonstrated by comparative calculations and plots for diffraction factors 

of particular apertures with circular symmetry and their complementary screens. 

‘-n- 

I 

0 0  

Degrees 

36 -54 72 90 

Figure 2.16 Far-field diffraction (radiation) patterns versus observation angle for 2a,lA = 

3.0: (a)  elementary (Huygens’) source pattern (dashed line), (b) aperture point 

array pattern (thin solid line), and (c) total pattern (thick solid line). 
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2.4.1 Dimension I ess Va ri a b I es 

The coordinates x' and y' can be expressed in the scale of the first Fresnel 

zone radius 61 = -\lhFe as follows 

= f i b 1  

= G y 6 1  

(2.72) 

(2.93) 

where n, and ny are the Fresnel zone numbers fit along x' and y', respectively. 

Next, we introduce dimensionless variables U and v defined as [2] 

If the source and observation points are on the aperture axis z, or if 
X I  = x2 = 0 and y1 = y2 = 0, then x ,  = y o  = 0,  and (2.94) is simplified to 

(2.75) 

With these new variables the aperture So(x', y') is transformed into a 

domain A , ( u ,  v ) ,  and (2.81) becomes [2] 

where for the time being Fh(  8) is neglected. 

Equation (2.96) can be written also in the form 

where 

(2.76) 

(2.97) 

(2.98) 
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is called the Fresnel diffraction factor. It determines the change in free-space 

wave intensity, E,(Pz), due to the diffraction phenomenon. 

2.4.2 Diffraction by Rectangular Aperture 

Figure 2.17 shows a rectangular aperture in the xy-plane, which is cut in an 

infinite screen S. The aperture limits are determined as follows 

The corresponding dimensionless limits are found from (2.94) 

(2.100) 

Here U and z! integrations are mutually independent and the surface 

integral (2.98) becomes a product of two separate linear integrals [2,  81 

Figure 2.17 Rectangular diffraction aperture in infinite plane screen. 
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where Fd(u, v )  is the total Fresnel diffraction factor that is a product of the 

partial diffraction factors Fd( U )  and Fd( v)  

(2.102) 

(2.103) 

With (2.102) and (2.103) in mind, (2.97) for the diffracted field at point P2 

becomes 

(2.104) 

2.4.3 Fresnel Cosine and Sine Integrals 

The Fresnel diffraction factors can be more easily analyzed and calculated by 

introducing the Fresnel cosine and sine integrals. The integrals in (2,102) and 

(2.103) can be expressed in the form 

= [I, u2 cos(;u’)du - j l  uz sin(;u2)du] 

- [b U1 c o s ( f u ’ ) d u - j l  UI sin(;u2)du 

(2.105) 

and 
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where, for convenience, the Fresnel cosine and sine integrals [ 131, 

S( T), correspondingly, are used as follows 

7, 

C(7;) = cos(f72)d7 

with 7 = [ :] and ~i = [:;I, for i = 1 or 2. 

Let us list some important relations for the Fresnel 

C(7) = -C(7), S(7 )  = --s(T), C(j7) = -jC(T), S( j 4  
C(+=) = S(+w) = 0.5, C(-=) = S(-=) = -0.5, C(0) = S(0) = 0. 

C ( r )  and 

(2.107) 

(2.108) 

integrals: 

= - jS(r ) ,  

The Fresnel integrals C( T) and S( T) are plotted in Figure 2.18, and their 

behavior can be illustrated also by means of the so-called Cornu spiral (Figure 

2.19) where S ( T )  is drawn versus C(T) in a complex coordinate plane. The 

variable r is equal to the spiral length and is marked over the curve. The spiral 

coils from point -0.5 - j0.5 (for r = --) to point 0.5 + j0.5 (for 7 = +-). 

By use of the Fresnel cosine and sine integrals the diffraction factors for 

the rectangular aperture (2.102) and (2.103) become 

and 
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Figure 2.18 Plots of Fresnel integrals: C ( T )  represents the cosine Fresnel integral (thick 

solid line) and S ( T )  represents the sine Fresnel integral (thick solid line). 

-1 

t -1:4 

Figure 2.19 Plot of S( 7) versus C( T), or Cornu spiral. 

2.4.4 Particular Cases of Diffraction by Rectangular Aperture 

Here the diffraction theory of rectangular aperture, worked out in Section 

2.4.2, is utilized for studying Fresnel diffraction by some particular aperture 
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configurations: rectangular aperture of infinite size, semi-infinite screen, and 

infinite slit. 

2.4.4.1 

Using Fresnel cosine and sine integrals the field strength in case of Fresnel 

diffraction by a rectangular aperture can be obtained by 

Diffraction by Rectangular Aperture With Infinite Dimensions 

Consider a rectangular aperture with infinite dimensions, or 

w1 = hl = --oo and w2 = h2 = +-. In this specific case, there is no obstruction 

to the incident wave, or this is a free-space propagation. The limits of the 

aperture in the uv domain are ul = vl = --oo and 242 = v2 = +-. Therefore, 

in case of an infinite-in-size rectangular aperture the field at the observation 

point P2 is easily calculated from (2.11 1) 

This result confirms the free-space propagation effect for an infinite 

rectangular aperture and proves the right choice of the constant j l A .  

2.4.4.2 Diffraction by Straight Edge of Semi-infinite Screen 

Using Figure 2.17, the semi-infinite screen can be defined: (1) along the x-axis 

the screen is infinite in size, so --oo 5 x’ 5 +w, and (2) along the y-axis the 

illuminated region runs from y’ = hl to y’ = 00, or the inequality 

hl 5 y’ i. +- is taking place. 

Thus, for the corresponding dimensionless variables it is written: -- I U I +-oo and v 1  I v 5 +=, where vl  = -\127AF,(hl - y o ) ,  and in the 

present case the field at the observation point P2 is found 

(2.1 13) 



Fresnel-Kirchhof Dipaction Theory 71 

or 

The Fresnel diffraction by a straight infinite edge based on krchhoff’s 

scalar approximation is illustrated in Figure 2.20 where the Fresnel diffraction 

factor F( v )  3 I Fd(v )  I = I E(Pz)/Eo(P*) I versus v is plotted for y o  = 0 in the 

equation v = d W ( h 1  - yo) .  Two different regions can be specified in this 

chart: (1) shadow region ( v  > 0) and (2) illuminated region ( v  < 0). 

In the shadow region, the diffraction factor F( v )  decreases monotonously 

from a value of 0.5 at the edge ( v  = 0) toward zero when v -+ +w. In the 

illuminated region, however, it oscillates and tends to one when v -+ -w. 

It  is seen also that the maximum value of F ( v )  is not at the edge of the 

geometrical shadow but in the illuminated region, slightly away from the edge. 

For some heights of the screen edge the diffracted field E(P2) was found to 

be bigger or lesser than the free-space field Eo(P2).  This means that depending 

y’v t 

-5 -3 -1 0 1 3 5 

Dimensionless variable, v 

Figure 2.20 Diffraction factor of semi-infinite screen. 
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on the edge height the semi-infinite screen is acting as a passive field “amplifier” 

or ‘latenuator.” 

2.4.4.3 Diffract ion by Slit 

Using Figure 2.17, an infinite slit cut along the x-axis, for instance, can be 

intersecting, with --oo I x’ 2 +-oo (or --oo I U 5 +-oo) and hl I y’ I h2 (or 

vl  I VI v2), where v1 = d W j ( h 1  - y o )  and v 2  = dW(h2  - y o ) .  

In this limiting case the Fresnel diffraction factor becomes 

(2.1 15) 

or 

Depending on the dimensionless slit width S v  = v2 - vl the following 

two particular types of slits are commonly examined: (1) the narrow slit, when 

Sv E 1 and (2) the wide slit, when Sv >> 1. These two cases are illustrated 

in Figure 2.21 wherein the Fresnel diffraction pattern IFd(v) I for Sv = 1 (thick 

line) and Sv = 10 (thin line), respectively, is plotted. As it is seen, the appearance 

of the diffraction pattern is quite sensitive to the slit width. The limiting case 

Sv -+ 0 corresponds to the Fraunhofer (far-field) diffraction. 

2.4.5 Fresnel Diffraction by Apertures of Circular Symmetry 

In Figure 2.14 let the source point PI lie on the z-axis, or XI = y1 = 0 and 

the diffraction aperture So is of circular shape (Figure 2.22). The Fresnel 

diffraction field equation (2.81) at point P2 may be written now in the form 

(2.1 17) 
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Figure 2.21 Fresnel diffraction patterns of infinite slits: (a)  narrow slit with S v  = 1 (thick 

line) and (b) wide slit with 6 v =  10 (thin line). 

Figure 2.22 Geometry for Fresnel diffraction by circular aperture in infinite screen (or 

absorber), with the source point located on the z-axis and the observation 

point in the z = d2 plane. 
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where the rectangular coordinates (x’ ,  y’) are replaced by polar coordinates 

( T ’ ,  P’) using the relationships: x’ = r’cosq’ and y’ = r’sinq’. Also, it is 

assumed that the observation point P2 is not far from the z-axis and that 

The phase function f ( r’, p’) may be found starting from (2.82) wherein 

F h ( 8 )  z 1. 

the second order x, and y, terms are neglected 

where 

and 

‘2 
r -r’cosp’ x2 - Y2 -r’sinp‘ 

d2 
f(r’, p’) z - - 

2F, d2 

Introduce a dimensionless radius ,y related to r’ by 

(2.1 18) 

(2.119) 

Then r’dr’dq’ becomes 0.5 b:,ydXdp’ and pf ( r ’ ,  9’) is transformed to 

(2.120) 

(2.121) 

(2.122) 

In the above equations we set 9, = arctan(x2/d2) and 

6, = arctan(x2/d2), as shown in Figure 2.22. Now, the diffraction equation 

(2.117) takes the form 

where 

(2.123) 
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.- 

(2.124) 

Suppose that point P2 lies in the xz plane (or y2 = 0), put k ,  = k and 

complete the p’ integration 

eJkxxcosp’dpr = 2.rr j , (kXx)  r 
and (2.123) takes the form 

(2.125) 

(2.126) 

where 

with 

and 

(2.128) 

(2.129) 

Here C(k,  xo) and S ( k ,  x,) may be considered as more general cosine and 

sine Fresnel integrals. 

For the particular case of x2 = y2 = 0 the observation point P2 is placed 

on the z-axis, and because k = 0, Jo(kx) = 1, and (2.127) becomes 

(2.130) 
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(2.131) 

2 2 2  
where <p = ( r /2) ,y  , d@ = r,yd,,y, Q0 = ( r /2) ,yo = a o ( r / A ) F e .  

In the limiting case of diffraction by infinite circular aperture a ,  = 00 

and a, = 00, and as expected, Fd(@)  = j / #  e-j@d@ = 1 and 

Figure 2.23 illustrates the Fresnel diffraction pattern I Fd( 6) I of a circular 

aperture calculated according to (2.127) at the xz plane. It  is drawn versus the 

observation angle, 6 = 6, = arctan(q/d*) ,  in degrees, for an aperture radius 

a,  equal to: (1) the first Fresnel zone radius 61 = 7.07h (solid line), (2) the 

second Fresnel zone radius 6 2  (dashed line), and (3) the third Fresnel zone 

radius 63 (dotted line). For 6 = 0, the diffraction graph confirms the results 

obtained by the Fresnel zone construction (see Section 2.2.2). Here the focal 

distances dl and d2 are chosen equal to 1OOA.  

Figure 2.24 helps us to compare the Fresnel zone diffraction pattern 

I Fd( 6) I of a circular aperture calculated from (2.127) (dashed line), for 

W 

= E0(1)3). 
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Figure 2.23 Fresnel diffraction pattern by circular aperture versus observation angle for 

a, = b l  (solid line), a, = b2 (dashed line), and a, = b3 (dotted line). 
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Figure 2.24 Comparison of radiation patterns of circular aperture for the Fresnel 

diffraction (a, = 61 = 15.8A and dl = d2 = 500A, dashed line) and the 

Fraunhofer diffraction (a ,  = bl = 15.8A and dl = d2 + M, solid line). 

a, = 61 = 15.8A, dl = d2 = 500A, and the far-field (or Fraunhofer) diffraction 

pattern (solid line). The latter is calculated from (2.91) for the same size 

aperture and scaled to reach a maximum of 2 as in the Fresnel diffraction 

pattern. Note that the aperture dimensionless radius x, is equal to ./z and 

ku = 27rbl tan9/-@. 

From Figure 2.24 it is easily concluded that the far-field diffraction 

pattern has clearly outlined main lobe and side lobes while the Fresnel region 

diffraction pattern is a continuous function, without distinctly defined pattern 

lobes. 

Using the above analysis for circular aperture it is not difficult to find 

the diffraction field produced by an annular slot of inner radius a1 and outer 

radius a2, Figure 2.1O(b). Equation (2.127) for the Fresnel diffraction factor 

can be applied here in the form 

(2.132) 
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2.4.6 Fresnel Diffraction by Obstacles 

A complementary diffraction screen is obtained by replacing the aperture S, 

by an obstacle replica S,l and vice versa. Simple examples of complementary 

screens are the circular aperture in infinite screen and the same size opaque 

disk in free space. 

According to Babinet’s principle [ 141, formulated for scalar optical fields, 

the sum of the fields diffracted by the complementary screens is equal to the 

incident wave field in the absence of screens. 

Using our notations let us express the Babinet’s principle for scalar electro- 

magnetic components at the observation point P2 as follows 

(2.133) 

where E!) (P2) F y )  (P2) is the field diffracted by the aperture S o ,  E t )  (P2) is 

the field diffracted by the obstacle S,l complementary to the aperture, and 

E,(P2) is the incident wave field. Here the superscripts (a) and ( 0 )  stand for 

aperture and obstacle, correspondingly. 

After eliminating E,(P2) in (2.133) the diffraction factor F$‘) (P2) of the 

complementary obstacle is found by 

where F y )  (P2) is the diffraction factor of the aperture. 

Let us illustrate the behavior of the fields diffracted by a circular aperture 

and its complementary disk. In Figure 2.25 the diffraction 

pattern I Fp’ ( x )  I of a circular a erture (curve 1) is compared to the diffrac- 

ture (curve 2). They are drawn versus the dimensionless quantity 

,y = 4 ( a O / 6 l ) .  Curve 1 oscillates in a typical Fresnel zone-type manner with 

maxima at a, = 61, 63, 65,  . . . around unity, or normalized free-space ampli- 

tude (for odd Fresnel zone radii), and with minima at a, = 62, 64,  66, . . . 
(for even Fresnel zone radii). Curve 2 illustrates the shadowing effect of the 

disk obstacle with increase of its radius, for A = const. and F, = const. 

Figure 2.26 shows the diffraction patterns of a circular aperture (thick 

line) and its complementary disk (thin line) at the focal plane 22 = d2 as a 

function of x2, or the corresponding angle 6 = arctan(x2/d2), in degrees, 

calculated for a, = 61 = 15.8A and dl = d2 = 10OA. As was expected, for 

6 = 0 degrees the diffraction pattern of circular aperture has a value of two, 

and the disk pattern is equal to the free-space value of one. The latter value 

tion pattern I Fj’) ( x )  I = I 1 - Fd pa, ( x )  1 of a disk, complementary to the aper- 
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Figure 2.25 Diffraction patterns of circular aperture (curve 1) and complementary disk 

(curve 2) drawn versus dimensionless quantity x. 
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Figure 2.26 Diffraction patterns of circular aperture (thick line) and its complementary 

disk (thin line) in focal plane 22 = d2 as a function of 9, in degrees, 

calculated for a, = b ,  = 15.8A and d ,  = d2 = 1OOA. 

corresponds to the so-called Poisson’s bright spot predicted by Fresnel in his 

study of light diffraction by disk obstacle. This means that the field amplitude 

at the center of the diffraction pattern of a circular obstacle equals the field 

amplitude when there is no obstacle. 
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2.5 Vectorial Kirchhoff Diffraction Theory 

The Kirchhoff diffraction theory is normally applied to scalar electromagnetic 

fields. Scalar wave problems are typical in acoustics and for many practical 

examples in optics. At radio wave frequencies, however, when one also accounts 

for the polarization of the diffracted fields, appropriate vectorial modifications 

of the Kirchhoff diffraction theory have to be accomplished. 

Let us rewrite the scalar Kirchhoff’s 

vectorial form 

theorem (2.56) in a similar but 

Each of the components of vectors E(P2) and E(Q’), Ex,y,Z(P2) and 

E,x,~y~z( Q’), satisfies the scalar wave equation (2.57). Note that the only coordi- 

nate system for which this is true is the rectangular Cartesian system. 

Vectorial equation (2.135) is applicable for a space without sources 

bounded by a surface of integration S, which is arbitrary in shape and totally 

closed. When the surface is open, or has an aperture So, as in Figure 2.13, 

for instance, a more complicated vectorial equation derived by Kottler is used 

~ 4 1  

In Kottler’s equation two line integrals around the aperture edge L are 

added to the IGrchhoff’s diffraction theorem. With these field corrections the 

diffraction solution satisfies Maxwell’s equations, which the approximate scalar 

solutions in Section 2.3 and Section 2.4 do not. 

Another very important special case of vectorial Kirchhoff’s diffraction 

is the circumstance in which the surface S is an infinite plane screen with 

apertures. Following [ 141 we will give here a brief derivation of a vectorial 

diffraction equation similar to the scalar Kirchhoff diffraction integral. 

Consider an incident wave traveling to the screen in the +z direction, 

with a tangential electric component E;(Q’) at the aperture point Q’ (Figure 

2.27). O n  basis of the surface-equivalence principle [ 121 the vector aperture 

field Ei(Q’) can be replaced by a surface magnetic current given by 
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Figure 2.27 Geometry for derivation of the vectorial Kirchhoff diffraction integral. 

O n  the screen out of the aperture this equivalent current is set to be 

The electric vector potential A’ (see Appendix 2A) in the region z > 0 

zero. 

is written as follows 

where Jj”) is a magnetic current density over the aperture So. 

In our case JJm) is replaced by Jlm)(Q’)  so it is found 

(2.138) 

(2.139) 

By definition, the electric field E(P2) at P2 is expressed by A’(P2) in the 

form [I21 

(2.140) 
1 

E(P2) = -;V x F(P2) 

or after putting (2.139) into (2.140) a vectorial equation for the diffracted 

field Ed E(P2) in the front half-space (or for z > 0) is obtained 
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In the region z < 0 the field E ( P 3 )  at a point P3 is found as a sum of 

three components: incident Ei(P3), reflected E r ( P 3 ) ,  and diffracted E d ( P 3 ) ,  

or 

The diffracted field at far region observation points is found by the far- 

field approximation, or r = ro - cosa’ for the field phase, and l / ro  = I / r  for 

the field amplitude. 

For a smooth integration surface and with the above far-field approxima- 

tion in mind (2.141) becomes 

where 3 is the unit vector pointing in rdirection and f 
normal to the plane aperture. 

fi is the unit vector 
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Ap endix2A 
Elementary S d c e  or Huygens’ Source 

Each point on the wave front can be represented as an infinite small radiating 

element of area dS‘ = du‘dy’ called in the antenna theory a surface radiating 

element or Huygens’ source. 

Figure 2A. 1 shows a surface element ak’dy’ of a uniform plane wavefront, 

which is incident in the +z direction, normally to xy plane. At z = 0, the wave 

has an electric vector E, and a magnetic field vector Ho.  

1 

From the equivalence theorem it follows 

JI‘) = 2 x H, (2A. 1) 

and 

JI”’ = -2 x E, (2A.2) 

where 2 is the unit vector in the zdirection, and J I e )  and JI”’  are the equivalent 

surface electric and magnetic current densities, respectively. 

From (2A. 1) and (2A.2) the scalar components of the currents are written 

(2A. 3) 

1. Jordan, E. C., and K. G. Balmain, Electromagnetic Waves and Radiating Systems (2d ed), 

New Jersey: Prentice-Hall, 1968. 
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Figure 2A.1 Huygens’ source. 

Here the medium intrinsic impedance can be determined as a ratio of 

the transverse electric and magnetic components, or rl = Eo,/H,. 
The Huygens’ element ds’ is replaced by a couple of electric and magnetic 

current sheets. The electric current sheet is (]!‘)dy’)dU’ and the magnetic 

current sheet is (jjm)&’)dy’. With these current sources computed, it is not 

difficult to determine their radiated field using, for instance, the far-field vector 

potential expressions (I.!))-( 1.14). O n  the basis of (1.9) the vector potential 

corresponding to the elementary electric-current sheet can be written 

(2A. 4)  

Then, the elementary components of the electric far field are easily found 

dE$) =-jwdAa (2A. 5 )  

and 

(2A.6) 

with dA8 = d x c o s 6 c o s ~ a n d  dA, = -&,sincp. 
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In an analogy to the elementary magnetic vector potential dA, a so-called 

electric vector potential dA’ corresponding to the elementary magnetic-current 

sheet is defined, with the y-component given by 

(2A. 7) 

Then, the corresponding elementary far-field components are given by 

d E 9 )  =-jwvdA,’ (2A. 8) 

with &,‘ = &;cosp and dA = -&;sin pcos 8. 
Usually we are interested in the electric field only. The total elementary 

electric fields are due to both electric-current and magnetic-current sources, 

or 

where 

1 
F&, 8) = -cosp(l  2 + CO&) (2A. 1 1) 

and 

with 

1 

2 
Fp(p, 8) = -sinv(I + cos9) (2A. 13) 
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W- 
180" 

Fa((o, S) and F,(p,  6) are the so-called 9 and (o partial radiation 

180" 

patterns of the Huygens' 

The total radiation 

source. 

pattern F ( p ,  6) is calculated as follows 

1 
= d F i ( p ,  6) + F2,(p, 6) = $1 + cos 6) 

(2A. 1 4)  

which has the shape of rotational cardioid, Figure 2A.2(b). The planar pattern 

is a cardioidal line as shown in Figure 2A.2(a). It is called a unidirectional- 

type of pattern, because for 6 = 0 degrees, F ( 8 )  = 1 and for 

9 = 180 degrees, F(S) = 0. 

Figure2A.2 Polar radiation pattern of Huygens' source: (a)  planar or 20 pattern and (b) 

space or 30 pattern. 
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3.1 Fresnel Zones and Radio Wave Propagation 

Fresnel zone regions have found various practical applications to radio wave 

propagation, particularly for estimating hilly terrain obstruction, reflection by 

a rough earth or ionosphere, and transmission through layered ground or 

atmosphere environment. This section briefly describes the typical paths of 

wave propagation over the earth and considers radio wave tracing by means 

of Fresnel zone ellipsoids. The significant zones for transmission and reflection 

are defined, and the equations for finding their basic dimensions are derived. 

The reader is then briefly introduced to the standard interference line-of-sight 

schemes for radio wave propagation over smooth ground, taking into account 

also the earth curvature and troposphere refraction. One and the same terrain 

with hills may be considered as a smooth earth surface for long and medium 

waves, while for short waves and microwaves the hills must be regarded as 

sizable obstacles to ground-wave propagation. 

Radio wave propagation over hilly terrain is a very complicated matter 

and may be treated with a combination of different rigorous and approximate 

methods of reflection, transmission, and diffraction. Within the scope of this 

book we shall confine ourselves to the classical, quasi-optical ray tracing over 

hills using geometrical optics (GO) and physical optics (PO) models, based 

on the approximate knife-edge Fresnel diffraction theory considered in Section 

2.4.5.2. 

Supplemented by the other high-frequency diffraction methods, such as 

the geometrical theory of diffraction (GTD), the physical theory of diffraction 

87 
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(PTD), and the parabolic equation (PE) method, PO has been successfully 

applied for finding the field attenuation at VHF and UHF over terrain profiles 

of arbitrary shapes and in solving one- and two-dimensional rural and urban 

propagation problems [ 1-10]. 

Some basic examples of knife-edge diffraction models are considered, 

namely, straight hill, sharp hill, and wide wedge-shaped hill. Also, we examine 

a four-ray model of a sharp hill, where in addition to the direct incident and 

diffracted rays, reflected rays from earth areas in front of and in back of the 

hill are included. The troposphere refraction influence on link clearance and 

the method for drawing so-called equivalent zero-level and terrain profile curves 

are briefly explained. 

3.1.1 Ground-Wave Propagation Paths 

The radio waves may propagate in different ways and reach the receiving point 

over various wave paths. In this text we shall consider only propagation paths 

in the low-Earth atmosphere or so-called ground-wave paths. 

The most typical propagation paths in the earth’s atmosphere are illus- 

trated in Figure 3.1. They correspond to the following propagation modes 

[ l l ] :  

1. A surface wave guided along the earth’s surface (path 1); 

2. Ground-space waves that include the direct wave (path 2), ground- 

reflected wave (path 3 ) ,  and wave diffracted by an earth obstacle (path 

4) ;  

I o n o s p h e r e  

0 

# - - - - - -  

E a r t h  

Figure 3.1 Ground-wave propagation paths. (Affec [ l l ] ,  0 1968 Prentice-Hall.) 
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3. Tropospheric waves produced by scattering from space irregularities 

4. Sky waves reflected (scattered) from the ionosphere (path 6) .  

(path 5 )  or by refraction in the troposphere; 

Since the atmosphere refractivity is neglected, all wave paths are drawn 

as rectilinear rays. As we shall see, for some of the ground-wave propagation 

modes the field at the receiving point can be easily evaluated by use of the 

Fresnel zone mechanism. 

3.1.2 Fresnel Zone Regions Important to Free-Space Propagation 

In a homogeneous infinite space the various Fresnel zones have different influ- 

ences on the propagation process; mainly, the first several Fresnel zones produce 

the field at the receiving point. 

In accordance with the definition given in Section 2.2.2 and Figure 3.2 

the n-th space Fresnel zone is the volume between the n-th and (n - 1)-th 

ellipsoids with PI P2 being a free-space (or direct) ray over the earth’s surface. 

In practice, a free-space propagation or clear direct path means that there 

is no obstruction or reflection in the space bounded by the first several zones, 

the most important of which is the first one. 

The radius 6, of the n-th Fresnel zone is approximately calculated by 

2 Propagation plane I c 

c Earth surface 

b X 

Figure 3.2 Fresnel zones in direct wave propagation. 
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6 ,  = -\lnAe (3.1) 

where Fe = poro/ (po + ro) is the equivalent focal length. 

In the radio link design procedures there are different criteria for the size 

of the zone space securing nearly free-space propagation. This size is measured 

by the Fresnel zone radius, which for constant h and Fe depends only on the 

zone number n. Usually, the direct path is regarded as reasonably clear inside 

the first Fresnel zone ( n  = I) ,  with a zone radius 61 

More 

practice as 

generally, the so-called significant propagation region is defined in 

much larger than the first Fresnel zone. If we mark with 6, the 

radius of such a region, it is normally calculated by choosing n = 8 + 12 

[ 12, 131. If n = 8 ,  for instance, 6 ,  is given by 

In this case, the error in calculation of the field at the receiving point 

using the Fresnel zone construction does not surpass 16%. 

Sometimes, the so-called minimum Fresnel propagation region is 

introduced [12, 141. It  is obtained for n = 1/3, or when ( p ,  + r,) - 
( p o  + ro) = h/6 ,  and the corresponding minimum zone radius 6min is given 

by 

Naturally, in the last case there is no good clearance along the propagation 

path, and the received signal may not be adequate. 

Up to this point and in Section 3.1.3, all reasonings are based on the 

assumption that the antenna acts as a point source and that the antenna 

directivity is neglected. 

3.1.3 Fresnel Zones in Case of Reflection 

Fresnel zones in case of reflection from plane earth serve to estimate the shape 

and size of ground region that is most significant for the reflected radio waves. 

These are elliptical zones with dimensions that for a given wavelength depend 

on the distance between the transmitter and receiver and the heights of their 

antennas. 
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3.1.3.1 Fresnel Zones and Significant Earth Region in Reflection 

In case of radio wave reflection from a plane earth surface it is a common 

practice to introduce auxiliary image antennas. This is illustrated in Figure 3.3 
where P{(O, 0, -hl) is an image of the actual antenna point PI(0, 0 ,  +hl). 

Thus, the ground-reflected field at the receiving point Pz can be found as 

radiated by the virtual image antenna at P[ with a distance PIQo  to the 

reflection point Q o ( x o ,  yo ,  0) equal to PI Qo. 
The wave path P{Qo is related to a set of confocal ellipsoids of revolution. 

The intersection curves of these ellipsoids with the earth plane are ellipses with 

an origin at point Qon(x , , ,  0, 0) known as Fresnel zones for reflection. 

Let us derive the Fresnel zone equations. Each point Q,(x,, y,, 0) of 

the n-th ellipse is a point of reflection with a phase equal to n v .  The Fresnel 

zone condition for reflection may be written as 

where 

p n  = 4- 

Propagation plane 

4 0 -  

(3.5) 

(3.6) 

P X 

Figure 3.3 Geometry for studying Fresnel zones for reflection. (After: [15].) 
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and 

r, = d ( O L 2  - x i )  + y i  + hi (3.7) 

with y, << x,. 

Denote the distance between the transmitter and receiver by d or 

d = OL and assume that h l ,  h2 << d. Equation (3.5) can be transformed into 

[IS,  161 

2 hi + By, + Cx, + D = 0 

where 

2h,(hl + h2) + nh 

D = ,(do + n;)b: - - C2 

1 6d2 

with do = po + r,. 

The center point Qon has a coordinate x,, given by 

1 + h2 - hl 

2hl 

1 

(hl + h d 2  
1 +  

nA(d, + n i )  - 

(3 .8)  

(3.9) 

(3.10) 

(3.1 1) 

(3.12) 

with x ,  = hl cot 7 ,  where y is the grazing angle measured by the earth plane. 

The major semi-axis a, and the minor semi-axis 6 ,  of the n-th ellipse are 

calculated by the following equations [ 151 
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A 
do + n? 

L 

an = An Qon = 

2[ ,(do + n:) + (hl + hi)'] 

(3.13) 

b n  = BnQon  = an A d n A ( d o  + n a )  + (hl + h2)2 (3.14) 

do + n -  
2 

Assume that the first several elliptical zones (say n = 8 - 12) form the 

so-called significant Fresnel region for reflection, and depending on antenna 

heights over the ground plane consider the following particular cases. 

Case 1 (hl << h2): In this specific case (3.12)-(3.14) can be approxi- 

mated, and the center coordinate x,, of the n-th ellipse measured 

from the coordinate origin 0 and its semi-axes a, and 6, can be 

calculated by 

x,, G hl c o t y  1 + ~ (3.15) ( 2/71 !in y )  

(3.16) 

6, z ansin y (3.17) 

From (3.15) and (3.16) it can be proved that for hl << h2, 
x,, z a,, and therefore, the n-th reflection significant Fresnel region 

is located near to the transmitting antenna base, stretched toward the 

receiving point. 

Case 2 (hl >> h2): Now the coordinate x,, and the semi-axes a, and 

b ,  are given by equations similar to (3.15)-(3.17), with only hl replaced 

by h2, Of 

nA 
x,, G h2coty 1 + ~ ( 2 h2 sin y )  

(3.18) 
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(3.19) 

6, z ansin y (3.20) 

Now the significant Fresnel ,region is located close to the receiving 

antenna and is drawn out toward the transmitter. 

Case 3 (hl E h2 E h):  In this occasion (3.12)-(3.14) become 

x,, E hcoty (3.2 1) 

a, z -4- I nhh 

siny 2s iny  
(3.22) 

6, G a,siny (3.23) 

From the equations for a, and 6, it is clearly seen that the ellipses 

become longer (or more eccentric) with decrease of the grazing angle 

y.  Normally hl + h2 << d,  and in the general case hl # h2. Thus, 

the grazing angle is approximately found from 

hl -I- h2 
d 

t a n y  E s iny  z - (3.24) 

3.1.3.2 Special Features of Radio Wave Reflection From Flat Earth 

For VLF, LF, and MF bands (or for radio frequencies from 3 KHz to 3 MHz) 

it is common to assume that hl = 0 and h2 = 0, and under these circumstances 

the whole wave path on the earth plane becomes equal to the significant Fresnel 

region length. In such a situation there is an immediate influence of the ground 

on the field strength because of the surface wave phenomenon, and the ground 

reflection waves are not possible. However, the idea of a significant Fresnel 

zone region may be applied again in evaluating the surface wave propagation 

Wl. 
For UHF and SHF bands (or for frequencies from 30 MHz to 30 Hz) 

the size of the significant Fresnel region is tens of kilometers in length and 

tens of meters only in width. In case of wave reflection from the earth most 

important are its reflective properties within the first Fresnel zone. Even for a 

smooth earth surface the reflection coefficient R may vary considerably within 

the limits of this zone depending on the electric homogeneity of reflecting 

ground and/or the change in grazing angle y. 
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To find out the limits of the assumption of homogeneous reflection 

across the Fresnel zone, consider a wave reflected from a homogeneous ground 

plane. Let the coordinate x, of reflection point Qo (Figure 3.3) vary within 

the first Fresnel zone ( n  = l),  from point A,  = A1 to point A; = A;.  So we 

can write Ax << A * A  { = 2al .  Examine the change of the reflection coefficient 

R along the x-axis within zone length 2al [ 151 

(3.25) 

Consider a small change AR of the reflection coefficient R within the 

first Fresnel zone, or to be more specific 

(3.26) 

Ax is not a small quantity compared to the distance between the transmitter 

and receiver, which is true for small grazing angles. 

The reflection coefficient for parallel (or vertical) polarization changes 

faster than the corresponding coefficient for perpendicular (or horizontal) 

polarization, or 

(3.27) 

and therefore, it is adequate to examine only the former of the two wave 

polarizations. In accordance with (1.48), for @; = 7 ~ / 2  - y and n21 = &, 
R"(y)  is given by 

2 
&,sin? - 4 g r  - cos y 

RI'( y )  = I (3.28) 

Here 6, = &/co = [ e  - j ( u / u ) ] / c 0  is the complex relative permittivity. 
2 

For small grazing angles (say y << 7~12 or cos =: l ) ,  (3.28) becomes 

(3.29) 

and then 
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(3.30) 

Assume that hl << h2 and h2 >> A .  According to (3.19)) the length of 

the first Fresnel zone on the ground plane is 

A 

sin y 
2a1 z 2 

Then calculate aylax,  for x = x, .  From Figure 3.3 it is found that 

h2 - h2 x,=--- 
tan y - sin y 

Thus, 

2 
h2 sin y 

x = x o  XO 

Placing (3.29), (3.30)) and (3.33) into (3.26) gives 

As I RI'( E 1 and I AR"1 << 1 it follows that 

(3.3 1) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

This inequality is the condition under which AR << 1 so that the earth 

reflection is constant across the Fresnel zone. Thus, the concept of earth 

reflection wave, and therefore, the corresponding two-wave interference scheme 

is valid. 

I f  I € , (  -+ 00, or if the ground surface behaves as an ideal screen, the 

expression I ( 2 g r & T ) / (  &,sin t,b + d g ) 2  I tends to zero, and the interfer- 

ence scheme becomes true for all antenna heights. 
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3.1.4 line-of-Sight Interference Schemes for Radio Wave Propagation 
Over Smooth Earth 

If the transmitting and receiving antennas are elevated over a flat earth the 

field at the receiving point is obtained by use of a simple two-ray interference 

scheme. The field analysis in this case is based on many practical assumptions, 

and results in an approximate equation for the field interference factor. This 

equation is then modified if the earth curvature and troposphere refraction 

cannot be ignored. 

3.1.4.1 Interference Scheme With Antennas Elevated Over Flat Earth 

The simplest interference scheme for space wave propagation over the ground 

is the flat-earth scheme (Figure 3.4). The transmitting and receiving antennas 

are at such a distance apart that the earth curvature and tropospheric refraction 

may be ignored. It  is supposed that the antennas are elevated over a flat surface, 

so that hl , h2 >> A .  The earth surface is also assumed smooth, uniform, and 

imperfectly conducting. 

The total (or interference) field at the receiving point P2 is 

(3.36) 

where 

Free Space 

p2 

Figure 3.4 Interference arrangement for flat ground surface. 
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is the direct field vector, and 

(3.37) 

(3.38) 

is the reflected field vector. 

Here P, is the power radiated by the transmitting antenna; G1 and G2 

are the antenna gains in directions from PI to P2 and Qo, respectively; 

rl = PIP2 and r2 = PIQo + QoP2; IRI is the absolute value and 9~ is the 

argument of the complex reflection coefficient R = I RI eJBR; and 21 and 2 2  are 

unit vectors of the direct and reflected electric wave fields, respectively. 

In practice, the antennas are so far apart and the grazing angle is so 

small that the following approximations take place: rl z r2 z d(for  the field 

"" (for the field phase difference), amplitude), 

G,1 z Gt2 E G,, R" s R' s R, and E'i(P2) 5 E;f-(P2) and 

E!(P2) G Ei(P2). Also, 61 = 2 2  2, or El and E2 are considered collinear 

field vectors. 

*d A r  = r2 - rl E 

With these approximations in mind the interference field becomes 

where 

27T 47Thl h2 
A@ = - A r  + 9~ =- + OR A Ad 

(3.37) 

(3.40) 

is the phase difference between the direct and reflected waves at the receiving 

point. The amplitude of the interference field is 

(3.4 1 )  

where 
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or 

(3.42) 

(3.43) 

is called the field interference factor. 

Interference maxima take place at distances d,. for which the field compo- 

nents EI(P2)  and E2(1)2) are summed in phase, or A@ = 27rm’, 
m’ = 1, 2, 3, . . . (Figure 3.5). For these distances the interference factor is 

equal to I Firnil = ( 1  + I Rmfl )  > 1 ,  where the reflection coeficient R d  is found 

for a grazing angle y d  corresponding to dd. 

By analogy, interference minima are obtained at distances dfl for which 

the field components E l ( P 2 )  and E2(P2) are summed out of phase, or 

A@ = (2772’’ + l ) ~ ,  m” = 1, 2, 3, . . . , and in these cases the value of the 

interference factor is IF;,.) = (1 - IRmffl) < 1, with reflection coefficient R,. 

calculated for a grazing angle Ym”. 

The last maximum corresponds to m’ = 1 (or to a distance dims), for 

which A@ = 27r. For a fixed terrestrial line-of-sight communication link the 

receiver is normally located at or near to 

For d > dim=, the interference factor is monotonically decreasing or 

behaving as a typical attenuation (or loss) factor. 

Figure 3.5 Interference attenuation factor versus distance between transmitter and 

receiver for antennas elevated over flat earth. (Afiec [17].) 
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3.1.4.2 Rayleigh's Criterion for Roughness of the Earth's Surface 

In radio wave propagation the earth's roughness is a relative parameter that 

depends on the size of the ground irregularities compared to the wavelength 

used. At very low radio frequencies a ground terrain with hills hundreds of 

meters in height may be considered a smooth surface while for the higher 

microwave frequencies even field with grass may be viewed as a rough surface. 

The roughness of a reflecting ground can be determined by the Rayleigh's 

criterion, which is well-known in optics. T o  simplify the problem let us assume 

that all earth irregularities 

surface may be assumed to 

are of the same average height Ha". The earth's 

be a smooth plane if [ 131 

A 

l6sin y H a v  - (3.44) 

where is the grazing angle. It is derived from the condition that the phase 

delay between two reflections be less than ~ / 4 .  
Equation (3.44) is called Rayleigh's criterion for mirror reflection. Though 

this criterion does not account for wave polarization, ground electrical parame- 

ters, earth curvature, or the shape of the surface irregularities, it is normally 

used for estimation of the initial earth roughness. If the condition (3.44) is 

not fulfilled, a scattering instead of reflection occurs and then one speaks about 

scattered or diffused radio waves. 

3.1.4.3 Application of Fresnel Zones to Reflection and Diffraction of 
Radio Waves Near Seaside 

Figure 3.6 illustrates a coastal radar site near a shoreline 1181. T o  calculate 

reflection from the sea and diffraction at a shoreline, a system of elliptical 

Fresnel zones for each antenna pattern lobe is projected onto the sea surface. 

The main lobe 1 forms Fresnel zones on the sea surface, far out from 

the shore, and is essentially reflected by the corresponding significant zone area 

surrounding point A. Close to the shore, a higher angle lobe (or first sidelobe, 

marked by 2) is pointing down to the sea (point B) .  The effect of the reflecting 

surface may be represented by an image antenna located in the earth under 

the radar antenna at a depth hl below the surface SS'. The shoreline may then 

be considered as a diffracting knife-edge (point C) for rays coming from the 

image antenna. 

Assume that BC is equal to the semi-axis a2 of the second elliptical Fresnel 

zone [see (3.13)]. In this special case, the reflected wave is mainly due to 

reflections by the first two Fresnel zones that are out of phase, and thus, it 

will be too weak. If the first Fresnel zone is only uncut by the shoreline (or 

BC = a l )  the reflected wave may become undesirably strong. 
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Figure3.6 Fresnel zones on sea surface important for reflection and diffraction of coast 

radar signals. (After: [18], 0 1968 Academic Press.) 

The second sidelobe (marked by 3) pointing to the rough land is diffused 

rather than reflected from the point D area. The diffused field in a particular 

direction is relatively small and may be neglected in the interference pattern. 

3.1.4.4 Accounting for Earth Curvature and Tropospheric Refractivity 

For a large distance between the transmitter and receiver point the wave 

refraction in the low troposphere and the earth curvature must be also taken 

into account. The tropospheric wave rays are rather bent because of laterally 

varying low atmosphere refractivity, and the space Fresnel zones are no longer 

represented by ellipsoids of revolution. In such propagation conditions, the 

Fresnel zone volume is bounded by a curved-in-shape closed surface shown in 

Figure 3.7 [19]. 

The earth’s curvature is taken into account by introducing new antenna 

heights h; and h i  above the plane AB tangent at reflection point Qo (Figure 

3.8), and a wave divergence factor D ,  into (3.43) for the flat-earth interference 

factor. In other words, the propagation over a smooth spherical earth is trans- 

formed into a straight ray interference scheme over a fictitious flat earth AB, 

and the curvilinear (refracted) rays rl and r2 traveling over the actual earth 

with a radius a, = 6370 km are replaced by rectilinear rays r ;  and r; over a 

fictitious spherical earth with an equivalent radius a, given by [ 1 1, 131 

a0 
a,=- = a  k 

1 - 0 
a O e  

P 

(3.45) 
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Figure 3.7 Curvilinear tropospheric ray and its corresponding Fresnel zone volume. 

(After: [19], 0 1992 Geophysics Press.) 

Figure 3.8 Equivalent interference ray scheme accounting for earth curvature and 

refraction in the troposphere. 
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so that 

1 
k, = - 

a0 
1 -- 

(3.46) 

PC 

Here pr is the radius of the actual ray curvature given by 

2 
(3.47) 

where gr = dE,./dh is the rate of change (or gradient) of the relative tropospheric 

permittivity E,. with height h. The index of troposphere refraction 

n = & 5 1 + ( E , .  + 1) /2 is of value 1.00026 + 1.00046 at the earth’s surface. 

For the so-called standard atmosphere g, = -8.10- l /m,  the ray curvature 

radius is pr = 4a, = 25,000 km, k ,  = 4/3 ,  and the effective radius is 

a, = 8,500 km. 
The heights h{ and h i  are less than the actual antenna heights hl and 

h2, and are calculated by the following approximate expressions [ 1 1, 171 

8 

and 

(3.48) 

(3.47) 

The wave reflected from a spherical earth is diverged by the convex 

reflection surface that means the reflected field at the receiving point will be 

weaker than for a flat earth. This effect may be taken into account by multiplying 

the plane earth reflection coefficient I RI by the divergence factor D, given by 

[121 

1 
D , =  , (3.50) 

2d2 h {2 hi2 

a,(h{ + 
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With the above quantities accounting for the earth's curvature and tropo- 

spheric refraction the interference equation (3.43) for the flat-earth scheme is 

transformed into 

1 + ( I R ( 0 J 2  + 2(RID,cos 

Interference interpretation of the field in a refractive troposphere for 

elevated antennas over smooth spherical earth is valid only for grazing angles 

subject to the following inequality [ 121 

(3.52) 

T o  estimate reflectivity of a rough spherical earth, it is necessary to check 

it by means of Rayleigh's criterion within the reflection Fresnel zone area on 

the tangent plane AB. The position coordinate x,, of the n-th zone and its 

dimensions 2a, and 26, are calculated by (3.12)-(3.14). For the so-called 

minimum Fresnel zone of reflection n = 1/3 these equations become [ 121 

dAd(Ad + l2h;h;) 
2am,, = d 

Ad + 3(h{ + 
(3.54) 

(3.55) 

In the absence of troposphere refraction g, = 0, a< = a,, and all above 

equations become valid for the interference scheme with rectilinear rays over 

a smooth spherical earth. 

3.1.5 Radio Wave Propagation Over Hilly Terrain 

In this section propagation in microwave links over hilly earth is analyzed as the 

basis of Fresnel-Kirchhoff (or physical optics) diffraction theory. The equations 

presented here were set up long ago in engineering practice for designing 
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fixed wireless links (e.g., radio broadcasting, radio relay, and radar) and also 

for modeling of urban and rural mobile communication channels. 

3.1.5.1 Terrain Profile and Link Clearance 

The terrain profile in the plane of propagation is normally drawn using a 

parabolic scale. In Cartesian coordinates the profile is built in regard to ground 

zero (or sea) level (Figure 3.9) by means of the following parabolic equation 

for the equivalent height y of the ground level contour 

(3.56) 

where a, is the earth radius in absence of refraction in the troposphere (or for 

gt = dc,/db = 0). 

According to (3.56) the distance z is laid off on the horizontal axis instead 

of along the earth's curvature, and the heights are laid off on the vertical axis 

instead of to the earth's surface, as would be customary. 

Considering radio wave propagation over hilly terrain, the link designer 

has to choose the antenna sites and heights in such a way that the significant 

Fresnel region will pass clear of the hilltops [12, 13, 18, 201. As shown in 

Figure 3.9 for zero refraction the direct rectilinear ray between antennas at PI 

I - 1  

Figure3.9 Terrain profile built in reference to ground zero level. 
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and P2 is passing at height h, above the highest hill (or -bo),  measured from 

the line PIP?. This height determines the link clearance for securing an open 

link, and it has to be chosen so that it is not less the radius bmin of the 

minimum Fresnel zone (or lh,] 2 6mjn) calculated by (3.4). If b, = 0, the 

direct ray is tangential to the hill’s top. Finally, when h, > 0 (subject to level 

PIPZ), the hill cuts across the direct ray, and one may speak of a closed link. 

3.1.5.2 Radio Wave Diffraction by a Straight Sharp Hill Modeled as 

Single Knife-Edge Screen 

A terrain diffraction problem arises when UHF/microwave radio waves propa- 

gate over narrow hills, steep mountains, or high buildings. A hill with a narrow 

profile in the propagation plane and a straight ridge (Figure 3.10 [14]) may 

be modeled as a single knife-edge screen [ 141, if 

(3.57) 

where wl + w2 is the total width of the hill. 
In Figure 3.1 1 two schemes of wave propagation across a knife-edge hill 

are presented. H ,  is the height of the knife-edge hill, and h, is the link clearance 

defined as a distance between the top point Q and intersection point Q’ of 

the line of sight PI P2 with y-axis. In Figure 3.11 (a) the hill cuts the line PI P2, 

the point P2 is in the shadow region, and the clearance h, is given a plus sign. 

Figure 3.10 Geometry for defining shape of hill. (After: [14].) 
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Figure 3.11 Wave propagation in presence of a knife-edge hill. 

(Note that the choice of the sign for the closed link condition might appear 

misleading to the reader, but it is made in correspondence with the designation 

made in Section 2.4 [Figures 2.17 and 2.201.) The field at the receiving point 

will be produced as a result of wave diffraction by the knife-edge hill. Figure 

3.1 1 (b) illustrates the line-of-sight (or open-link) situation. Now the hill does 

not obstruct the line PlP2. The clearance h, has a minus sign; the receiving 
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point is positioned in the illuminated region; and the field is a result of two 

interfering wave rays: direct P1 Q’P2 and diffracted P1 QP2. In the actual radio 

wave links it is customary that d l ,  d2 >> hl ,  h2, H ,  and that 

hi ,  h2, H ,  >> A .  

As it was pointed out, the knife-edge hill diffraction may be studied quite 

successfully by means of Fresnel-Kirchhoff diffraction theory for a straight edge 

of semi-infinite screen (Section 2.4.5.2). From (2.1 14) the absolute value of 

the diffraction factor Fd(v,) is written as 

where 

with 

(3.58) 

(3.59) 

(3.60) 

Here 61 = ddldz(d1 + d2) is the first Fresnel zone radius, and 

dlh2 + d2hl 

d l + d 2  - y o  = 

and v ,  = O and (2) for hl = h2 = 0,  y o  = 0, and v o  = -\IzHo/61. 
Two special cases can be considered: (1) for hi = h2 = H,, y o  = H,, 

The diffraction factor (or knife-edge loss) in logarithmic form is calculated 

by 

1 
Fd = ~ o l o g { ~ ~  [0.5 - C(v,)]2 + [0.5 - S(v0) I2}  (3.61) 

3.1.5.3 Approximation of Straight Knife-Edge Problem by Means of 
Significant Diffraction Segment 

A simple engineering solution of the Fresnel diffraction integral was proposed 

in [2 11. A concept of significant diffraction segment was introduced and applied 

for working out a lot of basic diffraction problems: single and multiple knife- 

edge diffraction, diffraction by rectangular and circular apertures, and many 

others. 
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Let us define first the significant diffraction segment in a dimensionless 

coordinate plane uv (see Section 2.4), as illustrated in Figure 3.12. The wave 

diffraction semi-infinite (or knife-edge) screen is of edge height v o  , calculated 

by (3.60). Here P1 and P 2  lay on the z-axis and y o  = 0. 

The first Fresnel zone is divided into two equal-in-area subzones: inner 

( n  = 1/2) and outer ( n  = 1) with radii 6112 and 61, respectively. As it was 

proven in Section 2.2.2 in absence of screen, the total field at point P2 equals 

the field produced solely by the inner subzone. However, in Figure 3.12 only 

a part of this significant subzone is open-the shaded segment ABCDA, called 

the significant diffraction segment. It is described by the following dimensionless 

quantities [2 11 

X I 1 2  = l/m 

.12 
U 1 1 2  = 2 

(3.62) 

(3.63) 

(3.64) 

Figure 3.12 Definition of the significant diffraction segment. (After [21].) 
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(3.65) 

where ,y1/2 = 4 ( 6 1 / 2 / 6 1 ) ,  Av1/2 = OD - OCand 24112 are the dimensionless 

radius, chord height, and chord half-length of the first subzone, respectively. 

t 9 * /2  is the angle opposite to the half-chord. 

From (3.64) it follows that the dimensionless chord of the significant 

segment is equal to ./z and does not depend on the height of the edge and 

wavelength. O n  the other hand, in Section 2.4.4.2 it was shown that the 

diffraction integral along the infinite screen edge is of value 

(3.66) 

or it exactly equals the segment chord leng,h (224112 = @). O n  this basis, the 

solution of the Fresnel-Kirchhoff diffraction integral could be much simplified 

by restriction of the integration procedure within the sector EOF instead of 

over the whole semi-infinite aperture (--00 I U I +-00 and v o  I v I +-00). 

Leaving out the explicit theory derived in [21 J we shall confine ourselves 

here to the ultimate diffraction equations. Consider the following cases: 

Case 1-Diffraction field in the shadow region: The field at the 

receiving point is given by 

J W 2 )  = E,(~2)Fd'(~o) (3.67) 

where E,(P2) is the field when the screen is absent, and Fi(v,) is the 

field diffraction factor valid for the shadow region only. In general, 

Fi(v,) is a complex expression written in the form 

where 

1 1 
I FJ(v,) I = ;arctan- 

4 v o  

(3.68) 

(3.69) 

and 
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@ j ( v , )  = : [ ( d G  - v , ) ~  - v: - 0.51 (3.70) 

Here v ,  is also calculated by (3.60). 

Case 2-Diffraction field in the illuminated region: Now the diffrac- 

tion factor is written as 

so that 

(3.72) 

and 

Here I F'z(v,) I and @ j ( v , )  are found by equations (3.69) and (3.70). 

In Figure 3.13 a diffraction factor plot FA, in decibels, versus the dimen- 
sionless edge height U, is drawn. It was computed from the exact equation 

1 
-1 
-3 
-5 
-7 
-9 

-1 1 
-13 
-15 
-17 
-19 
-2 1 
-23 
-25 

-4 -3 -2 -1 0 1 2 3 4 
Dimensionless edge height, v 

Figure 3.13 Comparison between exact and approximate equations: knife-edge diffraction 

factor versus dimensionless height drawn by exact equation (dashed line) 

and approximate equations (solid line). 
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(3.6 l) ,  dashed line, and from the approximate, significant segment equations 

(3.69) and (3.70), solid line. 

I t  is seen that the two curves for Fdrun extremely close. The calculations 

show a maximum error in using the significant segment equations of less than 

5%. 

3.1.5.4 Four-Ray Diffraction by a Straight Sharp Hill 

Often, the knife-edge diffraction scheme includes in addition a reflected ray 

from smooth earth areas in front and back of the hill of height H,. In this 

case, the so-called four-ray diffraction scheme is considered (Figure 3.14) 

[13, 171. 

The total diffraction field at the receiving point P2 is obtained as a sum 

of four field components 

(3.74) 

where I E!j’-3)(P2) I, I E(,1-4)(P2) I, I Ek2-3’(P2) 1, and I E(,2-4’(P2) I would be the 

field amplitudes at point P2 if 1-3, 1-4,2-3, and 2 4  were free-space propaga- 

tion paths; Fd3(vo), Fd4(v,), Fd3#(v0),  and Fd4t(v0) are the corresponding 

diffraction factor values due to the incident direct and reflected rays 1 and 2, 

Figure 3.14 Four-ray knife-edge diffraction scheme for narrow hill. (After: [13], 0 1987 

Prentice-Hall.) 
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and R(Q,) and R(Q,') are the reflection coeficients at earth points Qo and 

For certain amplitude and phase conditions in the described four-ray 

diffraction arrangement a so-called obstacle gain is possible. This effect may 

occur if diffraction losses are not very high and the reflection coefficients have 

values near to -1 .  These assumptions are feasible for small grazing angles y 

and y'. 

In case of approximately equal incident and diffraction ray paths, or if 
rl E r2 and r3 2 rq 

Q;* 

For certain favorable relationships between hl , h2, H,, dl , and d2, 
Fd(v,) + 1 ,  and the total field at the receiving point will be about four times 

the free-space field, or E(P2) E 4E,(P2). 

For long radio link paths, even in the absence of diffraction obstacles, 

the receiving point will be in deep shadow, and the field attenuation due to 

diffraction around the earth will be extremely high. However, the presence of 

diffraction obstacles can give, in certain circumstances, considerable rise in the 

field at the receiving point. 

3.1.5.5 Radio Wave Diffraction by Sharp Hill With a Round Ridge Section 

Consider now a narrow but not straight hill, with a height H t h a t  varies along 

the hill's ridge (Figure 3.15). In that case it would be normal to expect a 

certain relationship between the field diffracted by the hill and the ridge profile 

function H ( x ) .  The Fresnel diffraction factor by such a hill is found in the 

form [2] 

(3.76) 

where 61 = ddl d2(dl + d2) is the first Fresnel zone radius. 

Commonly, the ridge height change A H i s  much smaller than the ridge 

height. After denoting with Hav the average value of the ridge profile function 
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Figure 3.15 Modeling of hill with variable ridge profile by semi-infinite plane. (After: 121.) 

H ( x )  and taking into account that A H < <  Hav = const. (3.76) can be worked 

over in the following form 

(3.77) 

where 

with 

(3.79) 

The Fresnel diffraction integral, and thus, the diffraction factor is reaching 

maximum value when the exponential power expression in (3.77) becomes 

independent of x ,  or 

x2 + ~ ~ ( x >  = const. (3.80) 

This is an equation of a circle. Denote with H ,  the value of H ( x )  for 

x = 0 and then (3.80) becomes 
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x2 + H2(x)  = H: (3.8 1) 

Thus, when the ridge profile is a round section in the shape of a circular 

segment ABC of radius H ,  and width L (Figure 3.16 [2]), the complex diffrac- 

tion factor can be found approximately by 

We can neglect the field due to diffraction by the ridge topology outside 

of the first Fresnel zone segment (or I, dxz iL,2dx~ 0) and then for 

(3.82) we find that 

- Ll2 +oo 

with an absolute value 

If the segment width equals the first Fresnel zone diameter (or if 

L = 261) then 

This is the optimum-in-size round ridge for which the diffraction field 

at the receiving point is twice the field due to the diffraction by the straight- 

# Y Circular segment 

Ridge of hill 

0 

Figure 3.16 Hill with round-shaped ridge segment. (After; [2].) 
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ridge hill with a height Ha, that corresponds to an increase in power at the 

receiving point by 6 dB. 

3.1.5.6 Radio Wave Diffraction by Hill Modeled as Multiple Knife-Edge 
Screen Configuration 

For a wide, wedge-shaped straight hill, the widths wl and w2 do not satisfy 

(3.57), and in this situation the straight ridge may be modeled as a multiple 

knife-edge screen configuration. In most cases, the three-screen configuration 

describes very well the wedge-type wide hill (Figure 3.17 [2]). 

The total attenuation (diffraction) factor Fd of the above configuration 

is calculated by [2, 141 

or in decibels 

where 

(3.86) 

(3.87) 

(3.88) 

Figure 3.17 Modeling of wedge-shaped wide hill by three knife-edge configuration. 

(After: [14].) 
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are the partial (or single knife-edge) attenuation factors, corresponding to 

i = 1, 2, 3, with 

(3.89) 

(3.90) 

(3.91) 

Here d = dll + d12 + d23 + d22. 

The partial attenuation factors FA( v l )  and Fd( v3) correspond to diffrac- 

tion loss due to the side knife-edge screens 1 and 3, if the receiving antenna 

is situated at point Q2, or at the top of the middle knife-edge screen 2. Fd(v2) 
is the attenuation factor corresponding to a diffraction by the middle knife- 

edge screen in case the radiating antenna is elevated at point P{ and the 

receiving antenna at point Pi. 

3.1.5.7 Influence of Refraction in Troposphere on Link Clearance 

The influence of the tropospheric refraction is equivalent to a change in the 

terrain profile and link clearance. For drawing the zero level line when 

gr + 0 the earth radius a, in (3.56) is replaced by the equivalent earth radius 

a, = aJ(1  + a,g,/2) and then (3.56) becomes 

(3.92) 

All heights in the terrain topology will be changed by A j  = y T j’ ,  and 

the link clearance will be altered by I A l l ,  or [ 141 

Here dl , d2, and dare  taken more or less the same as in the case of zero 

refraction (gt = 0). 

For a positive refraction g, < 0, and the link clearance becomes higher, 

or I L ,  I = I h, I + I A l l ,  This example is illustrated in Figure 3.18 where dashed 
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Figure 3.18 Actual zero-level curve terrain profile (solid lines) and equivalent zero-level 

and terrain profile curves for positive refraction (dashed lines). (After: (141.) 

lines plot the equivalent zero-level and terrain profile curves while the solid 

lines show the actual zero-level and profile curves. 

For a negative refraction gt > 0, the link clearance becomes smaller, or 

lLol = lh,l - IALI. 

3.2 Fresnel Zone Diffractors in Radio Relay Links 

Not long ago the ground line-of-sight radio relay links were the most widespread 

and reliable means for the long-distance transmission of microwave signals. 

Today they give way to satellite, optical, and mobile communication systems. 

Nevertheless, radio relay links are still serving as important chains of local and 

global communication networks. 

Microwave radio relay links over hilly terrain often make use of construc- 

tive mountain diffraction and of man-made passive repeaters. The most efficient 

and cheaper radio repeaters are the diffractive constructions or so-called radio 

diffractors. They are placed in front of antennas or on the mountains that 

shade the line-of-sight paths between radio relay stations. In the former case, 

the diffractor is named an antenna director, while in the latter one it is called 

a passive repeater. 

Figure 3.19 [22] sketches a section of radio relay link. It  comprises two 

ring-shaped antenna directors D 1 and 0 2  and a single passive repeater, PR, 

placed between two radio relay stations, with antennas A1 and A2 [22]. 

The application of diffractors in radio relay communication links enables 

a significant increase in distance between the active stations, or a more than 
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Figure3.19 Section of radio relay link wi th two ring directors and a single passive 

repeater elevated over a mountain. (After [22].) 

25-35-dB rise in power level at the receiver point without wave path length 

reduction. The diffractors have a simpler structure and a larger aperture effi- 

ciency and may be constructed more economically not only compared to active 

microwave repeaters, but also to periscopic or double-dish passive repeaters. 

In the present section, we describe metal and dielectric ring-shaped antenna 

directors and ring segment passive repeaters elevated over mountains. 

3.2.1 Metal Ring as Antenna Director 

Microwave antennas with a high gain and large aperture efficiency are conven- 

tional requisites of radio communication systems. h s e  in gain of aperture 

antennas is normally attained by enlargement of operative antenna dimensions 

and a suitable feed design. In addition, low material and fabrication costs are 

desirable goals. The price of a reflector antenna, for instance, is multiplied 

eight to nine times in doubling its aperture diameter. 

In ground radio communication systems the gain of the antenna can be 

notably increased by adding in front of its radiation aperture a simple focusing 

diffractor in the shape of a metal ring known as an opaque antenna director 

[ 14, 20-261. The metal ring director covers the second Fresnel zone so that 

its destructive (or out-of-phase) field is cut off, and the total field at the 

receiving point becomes much stronger. Another important advantage of the 

antenna director over the reflector antenna is that its efficiency does not depend 

substantially on the manufacturing precision. 

The directive properties of the antenna system can be determined on the 

basis of the approximate Fresnel zone theory and more precisely by use of the 

Fresnel-krchhoff diffraction integral (Chapter 2). It was supposed there that 

the ring was illuminated by a point source of spherical wave. The field at the 
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focal point was found three times higher by virtue of the ring director only, 

that is equivalent to a 9.5-dB increase in gain. 

The diffraction pattern of a metal ring obstacle illuminated by a uniform 

spherical wave source can be determined by means of the Babinet’s principle 

[Section 2.4.7, (2.133)]. I t  is formally valid for ideal complementary screens. 

Normally, the real reflector is a metal screen that has some (though very small) 

wave transitivity. It depends on the wave frequency and angle of incidence, 

screen material, thickness, and solidity. Thus, for a real screen (2.133) is not 

strictly valid and can be expressed approximately as follows 

(3.95) 

where R,,, is the screen reflection coefficient whose value is less but near to 

one, and E0(P2)  = - 
W f e - j p d  

, with r = d = dl + dz, and G, = 1. 
d 

Therefore, with this assumption in mind we can write for the diffraction 
(rn.ring) 

factor F d  of the metal ring the following 

where F>slot is the diffraction factor of the ring’s complementary annular slot 

cut in an infinite ideal screen. For the second Fresnel zone slot F>slot is found 

by (2.132) for a1 = 61 and a2 = 62 = 6 1 4 .  
In case of Fresnel zone slot with radii 6,-1 and 6n9 (2.132) may be 

rewritten in the form 

(3.97) 

However, if the point source is replaced by a directive antenna A,  as in 

practice, the ring will be illuminated unevenly and will produce a smaller 

increase in gain. 

Let dl and d2 be the distances from the ring director to the transmitting 

antenna and to the receiving point P2, respectively. For a known normalized 
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antenna radiation pattern Fa(+) the field taper in the ring plane will depend 

on distance dl .  For d2 >> d l ,  dl may be chosen according to the following 

relation [21] 

(3.98) 

Here @0.7 and @0.9 are the angles satisfying the equations 

Fa(@0.7) = 0.7 and Fa($o.9) = 0.9, respectively. 

An antenna system comprising a primary antenna and a circular ring 

director D is sketched in Figure 3.20(a). An exemplary design of a ring director 

drawn after [22] is shown in Figure 3.20(b). It  is made of metal mesh that 

greatly blocks the destructive second Fresnel zone. 

Let us examine now the directive properties of this antenna system in 

the case of an axially symmetric idealized antenna gain pattern G,(@) given 

by the following expression [27] 

where @ is the illumination angle, 

(3.99) 

Figure 3.20 Ring-shaped antenna director: (a) sketch of antenna system consisting of 

primary antenna and metal ring director, and (b)  design of ring director made 

of metal mesh. (After: 1221.) 
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is the maximum antenna gain, and m = 1, 2, 3, . . . is a positive integer. 

The corresponding normalized antenna field pattern Fa( @) is 

or from (3.99), (3.100), and (3.101) we find that 

(3.10 1) 

(3.102) 

In decibels, the gain radiation pattern Ga(@)  is calculated as 

G,(@) = 10logG,o + 2010gF,(@) (3.103) 

A geometry comprising a primary antenna A situated at point PI and a 

second zone ring director D placed at a distance dl in front of the antenna is 

shown in Figure 3.21 [20]. Here $1 and @2 are the opening angles correspond- 

ing to the inner and outer ring edges. 

The electric field at the receiving point P2(x2,0, d2) is found in accordance 

with (3.96) 

Figure 3.21 Geometry of antenna system consisting of antenna and director. (After [20].) 
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E(P2) z RscrF~m*"ng)E,(P~) = I?,,,( 1 - F$""")E,(P2) (3.104) 

where from (1.31), for transmitting antenna gain G, = G,, it is written 

(3.105) 

with d = dl + d2. 

If d2 >> dl , and x2 << d2, we may put $2 6 = arcran( E), that is 

particularly true for small observation angles (for example, for 

6 < 15 degrees + 20 degrees). 

Here E,(P2) is the electric field at the receiving point created by the 

antenna with the ring removed, and P, is the antenna radiated power. Now, 

for a directive ring illumination, by means of (3.76)) (3.77), and (3.78), the 

metal-ring diffraction factor F$'*ri"g) versus the observation angle 6 can be 

settled as follows 

(3.106) 

Here, we shall recall that 

(3.107) 
4 x =  -r' 
61 

and therefore xl(r '= 61) = 4, ,y2(r'= 62) = 4 6 2 / 6 1 ,  with 61 = ./nF, 
being the first Fresnel zone radius, and Fe = dl d2 / (d l  + d2) being the equiva- 

lent focal length. 

Also 

(3.108) 

According to Figure 3.21, the illumination angle fi can be replaced by 

the dimensionless radius x ,  or 
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+ = atan(-$) = a t a n ( a x )  61 
(3.109) 

and with 6 z t+b the normalized field illumination pattern (3.101) becomes 

(3.1 10) 

or (3.106) can be also written in the form 

(3.1 1 1 )  

F ( 6 )  expresses the total radiation pattern of the antenna system consisting of 

antenna and director. 

In an analogy with (3.103) the total antenna gain pattern G ( 6 )  can be 

also expressed in decibel form, or 

G(6) = lOlogG,, + 2010gF(S) (3.1 12) 

In [22] the total field radiation pattern is given in a simplified form as 

follows 

where Fa( 8) is again the normalized primary antenna pattern, and Fdir( 6) is 
the normalized diffraction pattern of the director, given by 

(3.1 14) 

27T 27T 

A A 
Here ul = -61sin.9 and 242 = -6zsin6. 

functions of zero and first order, respectively. At 
Fdir(79) + -, but it was proved that for ul + 
0.202 exp ( j  12 1 degrees). 

J0 and 1 1  are the Bessel 

first sight, for ul -+ 7.59 

7.59, Fdir(G) is equal to 
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The primary, axially symmetric gain pattern G,( a), calculated from 

(3.102) for t+b G 6, and m = 6,000 is drawn with a dashed line in Figure 3.22. 

Its maximum value is Ga0 = G,(O degrees) = 40.8 dB. Figure 3.22 compares 

the exact system gain pattern (solid line), (3.106) for R,,, = 1, and the approxi- 

mate system gain pattern (dotted line), (3.1 13), both calculated for a frequency 

of 8 GHz, dl = 400m, d2 = 25,00Om, 61 = 3.84m, and 6 2  = 5.43m. As it is 

seen, due to the metal ring director there is a sharp increase in gain close to 

6 = 0 degrees, and a very narrow main lobe is formed. 

From Figure 3.22 it is concluded that the approximated radiation pattern 

agrees well with the exact one, especially for small observation angles. The 

maximum gain of the antenna system is G(O degrees) z 49.3 dB, or the gain 

enhancement due to the metal director is 8.4 dB. So, this value is 1.1 dB less 

than the gain increase given by the uniformly illuminated metal director [or 

9.5 dB, according to (2.48) and (3.112) for R,,, = 1 and F,(6)  = 11. 

The experimental radiation pattern of the above antenna system, for the 

same frequency and dimensions, is plotted with a solid line in Figure 3.23 

[22]. It is compared to the experimental radiation pattern of a primary horn 

antenna (dashed line). For a small angle of observation the experimental pattern 

of the antenna system is similar to the calculated radiation pattern shown in 

Figure 3.22. 

As a result of reflection from the metal director the back lobes of the 

radiation pattern become intolerably high (around -10 + - 15 dB). Also, there 

is an increase of sidelobes off the main lobe over a wide angular range. The 

0 0.5 1 1.5 2 2.5 3 
Degrees 

Figure 3.22 Primary antenna pattern of antenna (dashed line) and antenna system 

pattern: exact (solid line) and approximate (dotted line). 
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~ 

-90 -60 -30 0 30 60 90 

Degrees 

Figure 3.23 Experimental radiation pattern of horn antenna without director (dashed line) 

and with metal ring director (solid line). 

experiments show that the back lobes could be lessened to -25 + -35 dB 
down by a small inclination of the ring or to much lower levels using dielectric 

ring directors. 

3.2.2 Dielectric Ring as Antenna Director 

As it was said, the metal ring director cuts off the destructive field of the 

second Fresnel zone and acts as passive amplifying element. O n  the other hand, 

however, the director area is lost for the reradiation process, so the ring aperture 

radiation efficiency is decreased. 

Instead, if the second zone field is not obstructed but reversed in phase 

by any means, this will give a bigger total field and, hence, a higher antenna 

system gain. Practically, such means may be any kind of 7~ radians phase shifter 

in shape of transmissive ring replacing the metal ring director. The ideal 7~ 

radians phase shifter is one that has a transmission coefficient T =  -1. 

In the simplest case the phase-reversing director is a ring cut out by a 

solid dielectric plate with thickness t ,  corresponding to a phase lag of 7~ radians 

compared to the wave passing through the open aperture and found by 

(3.1 16) 

where E,.  is the relative permittivity. 
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If an ideal dielectric director is illuminated by a very distant point source, 

or almost uniformly, its maximum possible gain is about 25 (or 14 dB). 

However, the actual dielectric director has a smaller gain as a result of dielectric 

loss and mismatch with the surrounding free space. 

The transmission loss L ,  in a dielectric plate of thickness t ,  is 

(3.117) 

where tanS, is the electric loss tangent. 

by D 5 ,  261 

The transmission loss L d  causes a gain decrease A G calculated in decibels 

A G =  2O10g { - ;[ 1 + e --I} ~(6,- 1) 

(3.1 18) 

The mismatch between the phase-reversing dielectric plate of thickness 

t ,  and the free space may be characterized by its power transmission coefficient 

I T12 [261 

(3.1 13) 

Analysis of (3.119) shows that I TdI2 = 1 for a number of E ,  but the 

most suitable is about 4.0. With this value put in (3.1 IS) the gain decrease 

AG is less than 0.2 if tanS, does not exceed 0.01 5. 
The diffraction pattern of a dielectric ring obstacle illuminated by a 

uniform spherical wave source can be found starting from (3.96), rewritten 

here for R,,, = 1 as follows 

(d.ring) 
The diffraction factor F d  

the corresponding metal ring), may be expressed as follows 

of dielectric ring director (same in radial size as 

where Td is the complex transmission coefficient of the dielectric ring. 
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For the ideal 7.r-phase shifting ring we put in (3.12 1) Td = 1 and therefore 

The total field E at the receiving point P2 radiated by the system of 

antenna with an axially symmetric pattern Fa( -9) and a phase-reversing dielectric 

ring director may be expressed in the form 

(3.123) 

Figure 3.24 shows the gain pattern of the antenna system with a dielectric 

ring director located in front of the primary antenna at a distance 

dl = 400m (solid line). It  is compared to the radiation pattern of the antenna 

with a metal ring director (dotted line) and the primary antenna pattern (dashed 

line). The two antenna systems, with metal and dielectric ring directors, were 

studied for one and the same parameters given in Section 3.2.1. Calculations 

show that replacing the metal ring director by phase reversing the dielectric 

one gives a total antenna system gain of 53.4 dB or 4.1 dB higher than the 

60 
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Figure 3.24 Gain diffraction pattern of an antenna system with a dielectric ring director 

(solid line) compared to the gain diffraction pattern of an antenna system 

with a metal director (dotted line) and a primary antenna radiation pattern 

(dashed line). 
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gain of the antenna system with the metal director. The gain increase over the 

gain of the primary antenna is 12.6 dB (remember that for a uniformly 

illuminated phase-reversing ring the gain increase is about 14 dB). 
Up to this point, we have examined only solid dielectric ring directors. 

There are many other dielectric or dielectric-like plate designs that can be 

utilized in the manufacture of directors or passive repeaters. Examples include 

multilayered dielectric plates, metal grid reinforced dielectrics, or dielectric- 

like (or phase-delay) metal structures. Theory and specific constructions of 
complex dielectric and dielectric-like plate structures will be considered in 

Chapters 4 and 5 in connection with designing and manufacturing zone plate 

lenses or antennas. 

3.2.3 Ring Segment Diffractor as Passive Radio Wave Repeater 

A segment of Fresnel zone opaque ring SF raised over a hill shading the receiver 

point P2 (Figure 3.25 [20]) may serve as an efficient passive repeater. It  screens 

only a part of an arbitrary Fresnel zone and forms a broad secondary radiation 

(diffraction) pattern in the vertical plane, and thus, the receiver point becomes 

illuminated. The geometry of such a segment ring diffractor is shown in Figure 

3.26. Here the segment diffractor fits into a fraction of the first Fresnel zone 

with zone radii 6, = .I.nF, and 6 2  = m. 
The principal dimensions of the ring sector repeater are its length 2 land  

width 86, in addition to its curvature parameter c. They can be calculated by 

the following relations [2O, 221 

A 

2 sin 6, 
Sb,,, = 6 2  - 61 S- (3.124) 

(3.125) 

Figure 3.25 Passive repeater over hill between two radio stations. (After: [22].) 
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Figure 3.26 Ring segment diffractor as passive repeater: (a) geometry 

(b) design of passive repeater. (After [ZO].) 
of diffractor and 

(3.126) 

the directions of 
. _  

where U, is the earth's radius, and a0 is the angle between 

the incident ray A1 Q and diffracted ray QA2 pointing to the receiving point 

(see Figure 3.25 [22]). Depending on the link length and terrain profile, this 

angle may reach 15 degrees + 25 degrees. 

In (3.126) I' is a normalized diffractor length, expressed as 

- 21 
L =- (3.127) 

-d=e 

For long-haul links, 6, << 1 and the next approximations become true: 

sin6-,  a O ,  p d l ,  and p d l .  Also 
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(3.128) 

p + r  H - h l  H - h 2  

2% P Y 
6, = - +-+- (3.129) 

T o  make radio diffractors lighter, cheaper, and wind-resistant, they are 

made in practice as nonsolid structures. As an example we shall describe briefly 

a parallel wire grid. 
This structure is polarization-anisotropic, and it is a good reflector only 

for the incident wave with an electric field vector parallel to the wires. If we 

mark with dw the interwire distance, with p the wire radius and with @ the 

wave incidence angle measured from the grid normal, the complex reflection 

coefficient R,,, for a dense parallel wire grid is found 

mate equation [22] 

- 1 

which is used for d/A < 0.15 + 0.25. 

In an analogy with the dielectric ring director 

by the following approxi- 

(3.130) 

the efficiency of the ring 

segment repeater can be increased by 6 dB (in theory) if it acts as a r-radians 

phase shifter made of dielectric plate. While the screen-type diffractor cuts off 

the wave component out of phase to the received field, the dielectric-type 

diffractor will transform this component into an in-phase one, and thus, it 

will strengthen the signal at the receiver point. 

Other advantages of the dielectric-type passive repeater over the equal in 

size screen-type one are [25, 261: (1) a twice-reduced aperture for the same 

gain, (2) broader frequency characteristics, and (3) much smaller back lobes 

in the diffraction pattern. 

The dielectric-type passive repeaters also have some constructive and 

manufacturing disadvantages, such as bigger thickness and weight and higher 

cost. All other explanations and equations presented above for the ring-shape 

dielectric director are also entirely valid for the dielectric passive repeater. 

Now we shall provide some additional data on the dielectric materials 

suitable for manufacturing of passive diffractors. Except to make proper phase 

shifting, the diffractor plate has to satisfy a lot of structural, electrical, and 

environmental requirements. In the foregoing discussion, it was pointed out 

that for the solid phase-reversing dielectric plate, the most appropriate value 



132 Fresnel Zones in Wireless Links, Zone Plate Lenses and Antennas 

of its permittivity E ,  is about 4.0. Along with this, it has to be made by high- 

frequency (or low-loss) dielectric, with a loss tangent less than 0.01. 

In [25] it was reported that the first dielectric-type diffractors were fabri- 

cated by polyester or silicone resin reinforced with glass fiber. At a carrier 

frequency of 11 GHz a permittivity of 3.9-4.1 was obtained for a resin plate 

with a thickness between 13.25-14.20 mm. 

Today, a great selection of rubberized fabrics and other high-quality 

dielectric-type materials much better for the manufacture of dielectric diffractors 

are available. 

A further increase in efficiency can be achieved by making a repeater in 

the form of a vertical grating consisting of several ring segment elements [Figure 

3.27(a)] [20]. In principle, the grating is acting as a Soret's type Fresnel plate 

lens, consisting not of whole zone rings, but only of zone ring segments [Figure 

3.27(b)]. Therefore, the widths and spacings of ring segments are easily found 

---I --I 

d -  + ------ 

---------- 

Figure 3.27 Design of passive grating repeater of ring segment elements: (a) construction 

of passive repeater comprising four ring segment diffractors (After: [20]), and 

(b) geometry of Fresnel zone segment array. 
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by the Fresnel zone size equations and the equations (3.124)-(3.129) for a 

passive repeater in the form of a single ring segment. 

The Fresnel diffraction pattern of the ring segment repeater can be 

calculated by analogy with (3.1 12), with integration over p' within the angular 

sector 24, [Figure 3.25(a)]. Thus, the segment diffraction factor F$m."p' may 

be expressed as 

(3.131) 

However, instead of dealing with the complicated (3.13 l ) ,  which com- 

prises a double integral in calculating the segment diffraction pattern, we can 

use the next simplified diffraction expressions, taken from [2O]. 
The overall diffraction pattern of the ring-segment repeater is found in 

the following approximate form 

where 

and 

(3.132) 

(3.133) 

(3.134) 

U - 
are complex integrals with 51,2 = Lq,  7 -, q ,  = d m ,  ~l = 6/6,, 

U = -\IZF,lhsinp. Here p and 6 are the observation angles to point P2 in the 

horizontal plane and vertical plane, respectively. The ray QPZ has angular 

coordinates p = 0 degrees and 6 = a,, as shown in Figure 3.25. 

4 v  
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The vertical diffraction pattern is calculated from (3.132) for 

p = 0 degrees, and the horizontal diffraction pattern is also calculated from 

(3.132) for U = 1 (or 6 = 6,). In the latter case (3.132) may be simplified 

further to become 

(3.135) 

This is the well-known expression for the radiation pattern of an antenna 

with uniform aperture field. 

The vertical diffraction pattern of the passive repeater grating consisting 

of N ring segment elements can be calculated approximately using the well- 

known antenna pattern multiplication equation valid for equidistant arrays 

where N is the number of grating elements, ,6 = 27r/A is the free-space phase 

constant, dav z 266,, is the average array distance found by the mean value 

fo r m ula 

(3.137) 

and Fd[v(6), ~ ( p ) ]  is the element diffraction pattern as given by (3.131). 

Let us now illustrate the directive properties of the ring segment repeaters 

with the following numerical example. The ring segment repeater is mounted 

over a hill at a height H = 350m above the ground-zero level. The radio-relay 

station antennas are lifted at heights hl = l5Om and hl = 120m, and their 

distances to the passive repeater footing are dl = 35,000m and 

d2 = 50,00Om, respectively (Figure 3.25). The signal carrier frequency is 

10 GHz. For these link dimensions and this frequency the following segment 

dimensions were computed: 21 = 21.1 m, S b = 0.88m, and SH = 0.16m. The 

angle 6, for this long-haul radio link was found equal to 0.97 degrees. 

In Figure 3.28 the normalized vertical diffraction pattern of the ring 

segment passive repeater (solid line) is compared to the corresponding patterns 
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Degrees 

Figure3.28 Vertical diffraction pattern of (a) a one-segment repeater (solid line) and (b) a 

two-segment repeater grating (dashed line). 

of the two-element grating (dashed line) and three-element grating (dotted 

line). It  is seen that the field amplitude of the wave ray pointing toward the 

receiver is only 3-4 dB less than the maximum level in the zero direction. 

Though the absolute field value at the receiving point produced by the 

three-element grating is much bigger than the field in the case of the single 

element repeater, we should remember that it is created by a very narrow 

sidelobe. This makes the radio communication between the two stations very 

unstable in case of a big change in troposphere refraction conditions with time. 

As the horizontal segment size is much larger than the vertical, it is natural to 

expect a very narrow diffraction pattern in the horizontal plane. For the link 

and segment parameters given above, the horizontal diffraction pattern has a 

3-dB beamwidth equal to 0.08 degrees and a first sidelobe level of -13 dB 
(Figure 3.29). 

0 
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0 *e -18 
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Figure 3.29 Horizontal diffraction pattern of a one-segment passive repeater 
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Fresnel Zone Plates 

4.1 Introduction 

Here we recall the story of the Fresnel zone plates following mainly [ 1-61. 

The idea behind the zone plate consisting of alternate transparent and opaque 

annuli originated from the Fresnel zone principle and construction and was 

developed and first described by Soret [7]. Lord Rayleigh noted that the power 

intensity at the zone plate focus could be increased four times if the opaque 

zones were made transparent but constructive with a further retardation of 

h/2.  It was Wood, however, who proposed several ways for realizing Lord 

Rayleigh’s idea. H e  further studied the Soret zone plate and created the so- 

called phase-reversal zone plate [ l ,  81. In the Wood zone plate designs the 

alternate zones are retarded or advanced by 7~ radians in such a way that all 

zones are productive. 

Soret’s invention was briefly described by Wood in the very beginning 

of his paper on phase-reversal zone plates and diffraction telescopes [ 11: “In a 

paper published in Poggendorffs Annalen (1 875) Soret showed that if we 

describe a number of small concentric circles on a glass plate, with radii 

proportional to the square roots of the natural numbers, and blacken the spaces 

between the alternate rings, the plate will have the property of bringing parallel 

rays of light to a focus, like a condensing-lens.” Several lines below Wood 

continued: “He (Soret) showed that such a plate forms real images of luminous 

objects and could be used as the objective of a telescope or as the eyepiece. 

H e  also showed that in addition to acting as a condensing lens, the zone plate 

acted as a concave or dispersing lens. Moreover, he pointed out that the plate 

has multiple foci at distances a2 /A ,  a2/3A,  a2 /5A ,  where a is the radius of the 

central circle.” 

139 
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After this fair recognition of Soret’s remarkable achievement Wood goes 

on to point out Lord Rayleigh’s merit and his own work for creation of the 

phase-reversal zone plate: “It has been pointed out by Lord Rayleigh that if 
it were possible to provide that the light stopped alternate zones were replaced by 

phase-reversal, a fourfold effect would be produced. After some experimenting I 
have succeeded in producing such a zone plate, perfectly transparent over its 

entire extent.” Next Wood reports about the first ever practical application of 

the Fresnel zone plate: “Using one of the new plates as the objective of a 

telescope in connection with a low-power eyepiece, I have distinctly seen the 

lunar craters and have constructed telescopes in which both objective and 

eyepiece were zone-plates.” 

As the operation principle of the electromagnetic zone plate is valid at 

any wavelength it is applicable not only as an optical lens-like device [ 2 4 ,  

9-24], but also at the RF, microwave, and millimeter-wave ranges. 

Developments and applications in zoned plate lenses, similar to those in 

optics, have also been made in acoustics [25-281. Curiously, the acoustical 

Fresnel zones are occasionally called Huygens’ zones [28]. 

The first Fresnel zone plate used at microwaves was patented in 1936 

[29]. In the next three decades extensive experimental study on several zone 

plate varieties was carried out at frequencies from the X to the K band [30-33, 

Sanyal and Singh, Selected Bibliography]. The initial millimeter-wave study 

of the phase-reversal zone plate lenses started during the late 195Os, and the 

basic results were published in 1961-62 [34, 351. 
From the very beginning the main efforts in studying microwave/millime- 

ter-wave Fresnel zone plates have been exerted toward increasing their focusing 

efficiency. This has been achieved with the following techniques: 

The usage of a reflector behind the zone plate [29, 32, 36, 371; 

The division of each full-wave zone into a number of subzones covered 

by phase-shifting ring elements [5, 38-52]; 

The usage of three-dimensional plate lenses (e.g., spherical, parabolic, 

conical) instead of planar ones [9, 37, 53-60]. 

4.2 Classification of Fresnel Zone Plates 

The process of face-view and cross-sectional alteration of the Fresnel zone plate 

to improve its lens-like properties and to expand its diverse applications begins 

with the classical Soret zone plate. Then it goes through all varieties of the 

Wood zone plate to the modulated and curvilinearly patterned zone plate 

structures. Today there is a great number of Fresnel zone plates differing in 
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their zone shapes, transmission cross structure, and technological features. 

Therefore, some kind of Fresnel zone plate sorting is necessary, and we shall 

try to proceed here mainly from the point of view of the Fresnel zone plate 

microwave/millimeter-wave practice. 

Depending on the mode of wave propagation through the plate structure 

we may divide the Fresnel zone plates into two basic configurations: transmission 

Fresnel zone plates and reflection Fresnel zone plates, which are similar in their 

zonal surfaces and cross-view structures. According to their geometry, the 

Fresnel zone plates are shaped as planar and curved configurations. 

4.2.1 Classification According to Shape of Zonal Surface 

Fresnel zone plates can be manufactured on different surfaces-planar or curvi- 

linear. Here we propose an exemplary classification of zone plate configurations 

depending on the shape and illumination manner. 

4.2.1.1 Planar Fresnel Zone Plates 

From a practical point of view the planar in form zone plates are most popular. 

It is not by chance that the original Fresnel, Soret, and Wood zone plates were 

plane constructions remarkable for their simplicity, small size, and weight. 

Figure 4.l(a) illustrates a planar zone plate with circular Fresnel zones. 

If a plane wave is incident normally to the Fresnel zone plate surface, it is 

transformed into a spherical wave focused at some axial point. A spherical 

wave illuminating the Fresnel zone plate can be converted into a spherical 

't 't 

Figure4.1 Planar Fresnel zone plates: (a) Soret or Wood zone plate and (b) symmetric 

linear zone plate. 
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wave focused at another axial point, or into a plane wave “focused” to the 

infinity. 

If a plane or cylindrical wave is to be converged along a focal line, this 

can be done, for example, by a Fresnel zone plate of parallel and symmetric 

straight strips [Figure 4.1 (b)], with widths corresponding to the Fresnel zone 

path-difference condition [ G l ] .  Such a Fresnel zone plate may be specified as 

a linear (or one-dimensional) zone plate. 

Two identical linear zone plates crossed at right angles form the so-called 

Fresnel zone plate linear cross [Figure 4.2(a)]. More complicated Fresnel zone 

planar patterns have also been investigated in optics. For example, two orthogo- 

nal sets of zone patterns, designed in accord with hyperbolic transmission 

function, form a two-dimensional hyperbolic zone plate, sketched in Figure 

4.2(b) [24]. In case of oblique wave incidence the planar Fresnel zone plate 

is composed of elliptical Fresnel zones, as shown in Figure 4.3(a), or of parallel 

but asymmetric straight zones [Figure 4.3(b)]. 
Normally, the Fresnel zone plate focalizes free space waves. About twenty 

years ago, a planar zone plate that focuses guided (or surface) optical or quasi- 

optical waves was manufactured [ 18-1 91. Figure 4.4 illustrates the so-called 

step-index (SI) planar Fresnel zone plate, which is converging the plane-guided 

wave to the focal point P. The SI zone plate consists of metal or dielectric 

strip-type Fresnel zone elements that are fabricated via routine microelectronic 

technologies. 

4.2.1.2 Curved Fresnel Zone Plates 

To improve the focusing and resolving properties of the Fresnel zone plate it 

can be made as a curved thin plate or shell. In general, we may imagine a 

zonal plate, whose surface has no specific shape (Figure 4.5). The zones on 

(a) (b) 

Figure4.2 (a)  Planar cross and (b) hyperbolic zone plates. 
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't 
I 

4 

Figure 4.3 Asymmetric Fresnel zone plates: ( a )  Fresnel zone plate of elliptical zones and 

(b)  Fresnel zone plate of straight linear zones. 

Figure 4.4 SI planar zone plate focusing guided wave. 

the curved surface are drawn according to the Fresnel zone ray-difference 

condition. However, in practice, the most convenient are the zone plates with 

rotational silhouettes. 

Figure 4.6 illustrates a spherical Fresnel zone plate of a radius R, with a 

convex face, turned to a plane-incident wave. The focal point is marked by P 
and the sphere center by C. 

Along with the planar and spherical zone plates the next most simple in 

appearance are the conical and cylindrical zone plates. The conical zone plate, for 
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Opaque Fresnel 

Arbitrary 
shape 

surface 

I Open Fresnel 
zone 

Figure 4.5 Fresnel zone plate of arbitrary shape. 

Spherical 't s u r t t  

wave 

Figure 4.6 Spherical Fresnel zone plate, convex side turned to incident plane wave. 

example, is particularly suitable for making collapsing, umbrella-like microwave/ 

millimeter-wave antennas. A conical zone plate, convex side facing a normally 

incident plane wave, is shown in Figure 4.7(a). Fresnel circles can be approxi- 

mated by their inscribed or circumscribed polygons, and thus the conical 

Fresnel zone plate can be changed into a pyramidal Fresnel zone plate. Figure 

4.7(b) is a view of a hexagonal pyramidal zone plate. 

The cylindrical Fresnel zone plates take one of the next two basic arrange- 

ments: ring-type and strip-type. The arrangement shown in Figure 4.8(a) 

consists of circular Fresnel zone rings. It focuses the normally incident plane 

wave at the primary focal point P. 
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Figure4.7 (a) Conical and (b) pyramidal zone plates, convex side facing a plane incident 

wave. 

The second cylindrical zone plate design is made of parallel Fresnel zone 

strips, instead of rings, as illustrated in Figure 4.8(b). The strip-type Fresnel 

zone plate is a linear configuration. Unlike the previous cylindrical zone plate 

it focuses the plane wave not at a point but along the focal line P'P''. It seems 

that the first curved RF/microwave Fresnel zone plate and antenna were just 

the strip-type cylindrical ones proposed in the late 1930s by Bruce [30]. 

If only the upper half of the ring-type cylindrical Fresnel zone plate is taken 

and put on a planar screen, a nonsymmetrical Fresnel zone plate configuration is 

formed [Figure 4.9(a) J .  
Finally, if the ring- and strip-type cylindrical zone plates are laid one on 

top of the other, they form a particular zone configuration-a cylindrical Fresnel 

zone plate cross, which is shown in Figure 4.9(b). 
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(a) (b) 

Figure 4.8 (a)  Ring-type and (b) strip-type cylindrical Fresnel zone plates. 

Screen 

Figure 4.9 (a)  Nonsymmetrical and (b) cross-type cylindrical Fresnel zone plate. 

4.2.2 Classification According to Cross-Sectional Structure 

4.2.2.1 Transmission (Lens-like) Fresnel Zone Plates 

Subdivision of the Fresnel zone plates can be done according to their cross- 

sectional structure and materials used for phase corrections. In this section we 

summarize different varieties of the two basic types of zone plates-transmission 

and reflection. 

Soret Zone Plates Figure 4.10 shows the transverse section of four half-open 

or Soret zone plate configurations consisting of open and opaque Fresnel zone 

annuli. In the classical microwave Soret zone plate the opaque zone elements 

are thin metal rings. Depending on which Fresnel zones are open, with a 

positive or negative phase, the Soret zone plate is sometimes named a positive 
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Figure 4.10 Cross-sectional view of Soret zone plates: (a )  metal-ring positive Soret zone 

plate, (b) metal-ring negative Soret zone plate, (c)  Soret zone plate with 

metal rings fixed on thin dielectric plate, and (d) double-element Soret zone 

plate array. 

Soret zone plate [Figure 4.10(a)] or a negative Fresnel zone plate [Figure 

4.1O(b)]. The metal elements are usually fixed on a thin dielectric plate or 

substrate if the zone plate is made by printed microstrip technology [Figure 

4.10(c)]. 

The focusing of the Soret zone plate is a result of two wave phenomena: 

diffraction by the open zone apertures and interference of diffracted waves at 

the focal region. Almost half of the electromagnetic energy illuminating the 

Soret zone plate is blocked by the opaque zones, and the phase in the open 

apertures is not constant. In radial direction it varies smoothly from zero to 

7~ radians. Thus, compared to the ordinary refraction lens with a constant 

aperture phase the Soret zone plate has very low focusing efficiency (about 10 

times lower). Two successive Soret zone plate elements fixed apart at a distance 

w form a Soret zone plate array [62], which may have better transmission 

focusing properties than the single Soret zone plate element if w is properly 

chosen [Figure 4.10(d)]. 

Wood Zone Plates The original half-wave Wood zone plate is almost entirely 

transmissive for the incident light or microwave plane front. It is obtained by 

making the Soret zone plate opaque zones transmissive and phase-reversing 

for the waves going through them. More precisely, in each Wood zone plate 
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aperture the phase is also varying from zero to i r ; ~  radians as in the Soret zone 

plate. 

The Wood zone plate for optical or microwave/millimeter waves origi- 

nated as a single-dielectric phase-reversing transmission zone plate [Figure 

4.11 (a), (b)]. The phase reversing is made by means of Fresnel zone annular 

grooves cut in a dieicctric flat plate with a permittivity E transmissive for the 

light or microwaves. As a result, each groove is alternated by a dielectric rib. 

By the elementary wave theory of the Fresnel zones the focusing efficiency 

of the Wood zone plate is found four times higher than the Soret zone plate 

efficiency but still two and a half times smaller than that of the conventional 

lens. In return, the Wood zone plate has much reduced thickness, weight, and 

dielectric losses compared to the traditional dielectric lens. 

Bilaterally planar microwave varieties of Wood phase-reversal Fresnel 

zone plates are shown in Figure 4.1 1 (c-e). They are made as a two-dielectric 

combination of Fresnel zone concentric rings of equal thickness. The aperture 

phase varies in radial direction as in the classical Soret zone plate and Wood 

zone plate. Therefore, these planar Wood zone plate varieties have the same 

focusing quality as the original Wood zone plate. They were proposed by 

Wiltse in 1976 as Fresnel zone plates suitable for microwaves/millimeter waves, 

but he reported them in detail about 10 years later [52].  

In the special case where €1 = E , ,  the two-dielectric Wood-Wiltse zone 

plate has the simplest structure [Figure 4. I l(c)], with an optimum width of 

Figure 4.11 Wood zone plates with (a )  negative-phase grooves, (b) positive-phase 

grooves, ( c )  solid rings alternated by air regions, (d) three-layer sandwich 

structure, and (e) t w o  kinds of solid rings ( E ,  rings alternated by €2 rings). 



Fresnel Zone Plates 149 

h / 2  for €2  = 4 ~ , .  However, in this case some technique for steady ring fixing 

is necessary. This can be done, for example, by using a three-layered, sandwich- 

type structure as shown in Figure 4.11(d). This zone plate construction is 

stable, bilaterally planar, and completely encapsulated. In return, the thin 

dielectric slabs slightly reduce the wave transmission through the air zones 

Finally, if the two types of rings are made of solid dielectrics with permittiv- 

ities €1 and €2 the bilaterally planar dielectric Fresnel zone plate is a self- 

supporting solid structure, shown in Figure 4.1 1 (e). 

WI. 

Multiple Phase-Corrected Zone Plates For making the zone plate competi- 

tive in focusing efficiency to the ordinary lens, different multiple phase-correct- 

ing techniques have been employed. As will be shown later in this chapter, 

most frequently half-wave and quarter-wave corrections are made in practice. 

In the quarter-wave Fresnel zone plate each full-wave zone, which incorporates 

two Fresnel zones, is subdivided into four quarter-wave subzones. Different 

phases in the subzones were first realized by cutting stepped, annular grooves 

in a flat dielectric plate, as shown in Figure 4.12(a). 

Instead as a four-level single-dielectric arrangement the quarter-wave zone 

plate can be made as a four-dielectric ring structure [Figure 4.12(b)]. Its central 

quarter-wave subzone is left open (or € 1  = E ~ ) ,  and the next three subzones 

are covered by three concentric dielectric rings with different permittivities 

but equal thicknesses [49]. The next full-wave Fresnel zones have the same 

Figure4.12 (a, b) Quarter-wave zone plates, (c)  Fresnel zone lens, and (d) ordinary plane- 

convex lens. 
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arrangement. Figure 4.12(d) shows the cross section of the ordinary plane- 

hyperbolic lens. Compared to the zone plate lenses it is much thicker and 

more weighty. This disadvantage can be overcome by zone-stepping the lens 

thickness. 

The stepped hyperbolic lens, shown in Figure 4.12(c), is done by intersec- 

tion of confocal hyperbolic surfaces with a plane normal to the lens axis. The 

phase increment caused by two adjacent steps is 2A radians, which corresponds 

to the Fresnel full wave-zone path-difference. That is why the stepped hyperbolic 

lens is called a Fresnel zone lens. The Fresnel zone lens can be seen as a limiting 

case of the multiple-step Fresnel zone plate lens. With an increase in the 

number of steps, the zone plate profile closely approaches that of the Fresnel 

zone lens. 

4.2.2.2 Fresnel Zone Plate Reflectors 

By placing a plane screen A14 behind the classic Soret zone plate the incident 

wave is brought back in antiphase, and the combination screen-Soret zone 

plate is functioning as a zone plate reflector (or folded Soret zone plate). Its 

cross-sectional view is sketched in Figure 4.13(a). In addition, a spacing low- 

permittivity material (or spacer) is necessary to support the Soret zone plate 

metallic rings. 

An alternative Soret zone plate reflector is sketched in Figure 4.13(b), 

where a metal sheet is shaped in zig-zag manner to assure the required phase 

steps. A cross-sectional view of a metal quarter-wave-stepped plate is shown 

in Figure 4.13(c). These two Soret zone plate reflector structures can be encased 

in dielectric foam or honeycomb [63]. 

The first printed millimeter-wave design of a Soret zone plate reflector 

was developed by Huder and Menzel [36]. As shown in Figure 4.13(d), it is 

fabricated by use of printed technology and consists of a ground plane disk 

reflector and Soret zone plate rings etched on a dielectric substrate Ad14 in 

thickness. 

In like fashion, a multilayer phase-correcting Fresnel zone plate reflector 

was constructed by Guo and Barton [43-45] and applied in variety of phase- 

correcting Fresnel zone plates and antennas for DBS reception. Figure 4.13(e) 

is a cross section of such a quarter-wave, multilayer zone plate. I t  consists of 

a metallic ground and three layers of concentric rings separated by three 

dielectric substrates. 

A similar, reflector-like action may be achieved on the basis of the phase- 

reversal dielectric zone plate shown in Figure 4.11 (c). For this purpose, the 

dielectric rings are made two times thinner (or w / 2 )  and are backed by a metal 

disk reflector [Figure 4.13(f)]. In this way, the half-wave Fresnel zones in the 

Wood zone plate aperture move into phase. 
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Figure 4.13 Fresnel zone plate reflectors: (a) Soret zone plate in front of reflector or folded Soret zone plate, (b) folded Soret zone plate in 
shape of zigzag reflector, (c) quarter-wave stepped zone plate reflector, (d) folded Soret zone plate printed on dielectric 
substrate, (e) multilayer zone plate reflector, (f) Wood-type zone plate reflector, (9) step-grooved dielectric zone plate with 
quarter-wave phase corrections, and (h) quarter wave-zone plate reflector wi th multi-dielectric ring configuration. 



152 Fresnel Zones in Wireless Links, Zone Plate Lenses and Antennas 

In a similar manner the transmission-type quarter-wave zone plate can 

be transformed into a reflection-type zone plate. Figure 4.13(g) shows such a 

step-grooved dielectric zone plate with a planar metal reflector. Here all grooves 

are twice as small in depth compared to that in the transmissive quarter-wave 

stepped Wood zone plate. Figure 4.13(h) illustrates another version of the 

quarter-wave zone plate reflector-the multidielectric one that is a modification 

of the zone plate construction, shown in Figure 4.12(b). 

4.2.2.3 Phase-Correcting Structures of Composite Metal-Dielectrics 

Compared to ordinary lenses, the dielectric Fresnel zone plates are much thinner 

and lighter structures. Further decrease of their thickness and weight is possible 

by implementing composite metal-dielectric media. They can be fabricated as 

one-layer or multilayer metal gratings of small metal elements imbedded in 

air or lightweight, low-permittivity host material [Figure 4.14(a)]. 

Often the metal-dielectric media are frequency-selective structures (FSS) 

made as grid layers of metallic obstacles or slots. Usually, the metallic elements 

are printed metallic dipoles, disks, rings, squares, ordinary and Jerusalem crosses, 

and so on, and form planar FSS grids. Figure 4.14(b) also illustrates the face 

view and cross-section of a phase-shifting array of double-square metal elements 

printed on a dielectric substrate. 

Figure 4.14 Metal-dielectric phase-correcting plate structures: (a) metal grid embedded 

in dielectric slab and (b, c )  printed grating of double-square metal elements. 
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4.3 Planar Fresnel Zone Plates 

In this section we consider the working mechanism, theory, and design of 

planar Fresnel zone plates at microwaves and millimeter waves. They come 

naturally from the optical Soret and Wood zone plates and have nearly the 

same physical and theoretical background. But together with that, they differ 

substantially in construction, technology, and application, requiring specific 

design equations and methods of analysis. 

4.3.1 Soret Zone Plate 

W e  start our more detailed study on the Soret zone plate with the intention 

of specifying its focusing mechanism, diffraction theory, design considerations, 

and equations for microwaves and millimeter waves. 

4.3.1.1 Multiple Focusing Action 

The classical Soret zone plate consists of concentric circular regions, alternately 

open and opaque. They just coincide with the Fresnel zones, whose radii are 

determined approximately by (2.22). To better understand the Soret zone plate 

focusing action let us consider the elementary diffraction theory for the case 

of plane wave incidence (Figure 2.6). 

For this special case po = 00 and Fe = ro = F, and the approximate paraxial 

equation (2.22) for the n-th zone radius can be rewritten in the form 

(4.1) 6, = b1&, ( n =  1 ,  2, 3 , .  . .) 

where 

Here F is the primary focal length, such that F>> 6, >> A (paraxial 

condition). The Soret zone plate built according to (4.1) is sometimes called 

the paraxial one. With regards to (2.132), the field produced by the n-th open 

Fresnel zone at axial point P c a n  be found as 

(4.3) 

where E,(P) is the field of the incident plane wave at the same point P if the 

zone plate is absent; n = 1, 3, 5 ,  . . . for odd (or positive phase) open zones, 



154 Fresnel Zones in Wireless Links, Zone Plate Lenses and Antennas 

and n = 2, 4,  6, . . . for even (or negative phase) open zones; ,y = T’$XG, 
,yn-l = 6,-14?G, and ,yn = b n 4 H Z ;  here z is the axial coordinate of 

the observation point P and 6,-1 z d m ;  and 6 ,  z -\I/\.. are the 

( n  - 1)-th and n-th Fresnel zone radii. 

If the Soret zone plate comprises No odd open Fresnel zones the total 

field at point P is easily found 

E(P)  = cNo E#) 
n=l  

(4.4) 

The equation for the total diffraction field can be approximated, and the 

field intensity I(w) along the plate axis, proportional to squared E ( P ) ,  can be 

expressed as a simple trigonometric equation [ 101 

1 - cos(2N0w) 

w (1 + cosw) 
I(w) = c (4.5) 

where C i s  an undetermined constant, and w = .nF/z. 

values of w 
An examination of (4.5) shows that I ( w )  has maxima for the following 

w = + ( 2 k  + l ) ~ ,  for k = 0, 1, 2, . . . (4.6) 

These maxima are termed zone plate foci. 

For k = 0, w = +T, and z = +dl;  for k = 1, w = +37r, and z = +d1/3; 
and for k = 2, w = +_5.n, and z = +dl /5 ;  and so forth. The plus sign of w 
corresponds to real foci PI, P3, P5, . . . , located on the zone plate axis at 

positive z coordinates. In this case, the zone plate behaves as a multifocal 

converging lens. O n  the contrary, the minus sign of w relates to foci 

P;, P i ,  P{, . . . , which are images of the real foci. These are virtual foci, and 

they correspond to diverging rays. Thus, the Soret zone plate acts as two 

multifocal lenses: ray-converging and ray-diverging (Figure 4.1 5 ) .  
The points PI and P{ are first-order or primary foci, P3 and Pi are 

third-order foci, and so on. In principle, they are infinite in number. Note 

that these are odd foci. The half-open zone plate has no foci of even order 

because the fields radiated by the even zones cancel along the axis. 

The primary focus z = +dl is that for which the zone plate has been 

designed. It  occurs when each annulus is exactly equal to one Fresnel zone. 

The high-order foci correspond to 3, 5, 7, etc. Fresnel zones, which fit into 

each clear zone. 
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Figure 4.15 Converging and diverging diffraction properties of multifocal zone plate. 

For instance, consider the creation mechanism of the third-order focus 

at z = +dl/3.  Now, (4.1) becomes 6, = d#Ad1/3,  and therefore, each open 

ring aperture contains three half-wave zones, of which the first two cancel, 

leaving only the third one to contribute to point P3. 
The normalized intensity function was calculated for N o  = 7 and drawn 

in Figure 4.16 versus the real focus number. It  is evident that the high-order 

foci ( w  = +3v, or no. 3, w = + 5 ~ ,  or no. 5, and so on) are much less intensive 

than the primary one ( w  = +T, or no. l) ,  or more specific, / ( w  = T) :  

I(w = 3 7 ~ ) :  I ( w  = 5 ~ )  . . . = 1:1/9:1/25 . . . 
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Figure4.16 Normalized intensity of zone plate versus number of real focus (in direction 

to Fresnel zone plate), calculated for No = 7 (number of open zones). 
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The focusing intensity at the primary focus of the paraxial Soret zone plate 

is I / 7;r times smaller than the focusing intensity of the ordinary condensing lens 

(see Section 4.3.1.4). It  is curious to quote at this place the physical explanation 

of the multiple focusing phenomenon as made for the first time by Wood [ 11: 

2 

We may regard the zone plate as a circular grating in which the 

grating space becomes less and less as we proceed outward from 

the centre, consequently the bending or deviation of the diffracted 

ray from the normal becomes greater as we near the edge, and the 

change in the grating is such as to bring all the deviated rays of a 

single colour together in point. The principal real focus of the plate 

corresponds to the superimposed spectra of the first order; the 

second order spectra being bent more come together at a point 

nearer the plate, forming a second focus, and so on-the different 

foci corresponding to spectra of different orders. There are also 

spectra of the first order bent outwards, or away from the centre, 

and these rays projected backwards behind the plate will meet, 

forming a virtual focus in a position corresponding to that of the 

real focus on the opposite side of the plate; the second order spectra 

are bent out more, consequently the virtual focus of these rays is 

nearer to the plate, and we thus see, that for every real focus on 

the one side of the plate, there is a corresponding virtual focus on 

the other. 

Now, let us consider more particularly the focusing operation of the 

microwave and millimeter-wave Soret zone plate. I t  is normally built as a grating 

of concentric metal rings at which transmission, reflection, and diffraction (or 

bent) waves arise. O n  the illumination side, the reflected and diffracted waves 

correspond to the so-called reflection zone plate mode with an infinite number 

of virtual (image) foci. O n  the other side the transmitted and diffracted waves 

form the transmission zone plate mode with an infinite number of real foci. 

If the fields at two principal foci, the one for transmission (at 

z = + d l )  and another for reflection (at z = -d l ) ,  are received and brought 

together in antiphase, the focusing efficiency (or focusing gain) of the Soret 

zone plate will be increased almost twice. This can be done by one of the 

following techniques: 

1. Feed-line power combining, by use of two feed antennas, feed lines, 

a phase shifter, and a power combiner; 

2. Free-space power combining, by means of plane metal reflector located 

behind the Soret zone plate that brings back the wave transmitted 
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through the open zones. The two waves, the one reflected from the 

Soret zone plate and another reflected from the metal reflector, are 

focused and interfere in phase at the principal focus for reflection. 

The Soret zone plate constructed in this manner was shown in Figure 

4.13(a) and is known as zone plate reflector or simply a folded zone 

plate. (Its working mechanism is better illustrated in Chapter 5 ,  in 

Figure 5.35.) 

4.3.1.2 Resolution 

The resolution power (or simply resolution) of the circular lens, illuminated 

normally by a plane wave, is defined as an angle between the lens axis and 

direction to the first minimum in the focal plane field pattern. For optical 

planar zone plates, it was studied in several publications [2, 16, 17, 221. 

For illustration we shall use here Figure 2.22. Since the zone plate ampli- 

tude-phase distribution is almost constant and circularly symmetric, without 

loss of generality we may assume that the observation point Pz lies in the z -  

plane, or 6, = 0 and 6 = OY. Let us then mark the angle measuring the 

resolution with 6,. According to [2] it is approximated as 

x 
2a0 

6, = A,- (4.7) 

where A, = 1.22 is called a resolution coefficient, and 2a, is the zone plate 

diameter. The same resolution equation is found for a circular aperture or 

ordinary lens illuminated normally by a plane wave. 

More precise analysis shows, however, that this approximation is valid 

for a very large number of Fresnel zones (say, for zone plates with a total number 

of zones Nhigher than 200). This is a typical case for optical wavelengths, but 

not for microwave/millimeter wavelengths, where N is usually less than 

15 + 20. The resolution coefficient A, differs from 1.22 by an amount that 

depends on N .  This is well-illustrated in Figure 4.17, taken from [ 171. 

Figure 4.17(a) is referred to the primary focal plane at z = d2 and shows 

the resolution coefficient A, versus the number of zones N ,  for three different 

Fresnel zone plates: positive Soret zone plate (dashed line), negative Soret zone 

plate (dotted line), and phase-reversal or Wood zone plate (solid line). It is 

seen that for a small number of zones the negative Soret zone plate has a 

slightly better resolution (A, < 1.22) while the positive Soret zone plate has a 

slightly worse resolution (A, > 1.22) compared to the ordinary lens resolution. 

The resolution performance of the Wood zone plate is essentially identical to 

that of an ordinary lens once there are more than a few zones. 
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(dashed line), negative Soret zone plate (dotted line), and phase-reversal 

Soret zone plate (solid line). (After: 1171, 0 1989 OSA Press.) 

Similar graphs are plotted in Figure 4.17(b), but they are referred to as 

the third-order focal plane at z = dl /3 .  Here the curve for the negative Soret 

zone plate is essentially unchanged but the curves for positive Soret zone plate 

and Wood zone plate show a resolution reduction below about 20 zones. 

4.3.1.3 Aberrations 

In optics and microwavelmillimeter wave quasi-optics the lenses are commonly 

considered under the following ideal conditions: 

The waves are incident onto the lens plane as a bundle of paraxial 

rays, normally or at small angles toward the lens axis. 
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Lenses are transforming the incident wave front from one to another 

form. For example, the front of a spherical diverging wave can be changed 

into a spherical converging wave front. In practice, after passing throughout 

the real lens the waves become aberrated. The Gaussian or paraxial optics and 

quasi-optics are no longer valid, and such departures from the ideal Gaussian 

behavior are known as lens aberrations. 

There are many kinds of wave aberrations, but in discussing the Fresnel 

zone plate-focusing properties we will restrict ourselves to three cases only: on- 

axis or axial spherical aberration, off-axis aberrations, and chromatic aberration, 

following mainly [4] .  

Axial Spherical Aberration Consider a Soret zone plate that transforms a 

monochromatic plane wave into a spherical wave converging to an axial point 

P (Figure 4.18). Expand the ray path difference (RPD) RPD = r -  F in a 

binomial power series 

According to Huygens’ principle the peripheral point Q,* on the zone 

plate is a source of a secondary spherical wave, with a wave-front radius r, 

while the central point 0 is viewed as a source of another spherical wave with 

Figure 4.18 Illustration of axial spherical aberration due to peripheral and axial ray path 

difference. (After [4], 0 1972 OSA Press.) 
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a wave-front radius F <  r. Thus, the two spherical waves are not in phase, and 

their front surfaces S a n d  S' are intersecting the zone axis at different points 

P (paraxial focus) and I" (peripheral focus), respectively. This means that the 

two secondary spherical waves are focused at different points, or there is no 

common focal point but a linear focal region. 

This phenomenon is called an axial spherical aberration, and it corresponds 

to the term 6,/8F in the power series (4.8). Geometrically it is measured by 

the linear segment PP'. The spherical aberration in optics and quasi-optics 

becomes essential when PP' > A/4 and therefore we may set 

4 3  

A 6; 
p p  = - = - 

4 8F3 

From (4.1) and (4.9) we get 

(4.9) 

(4.10) 

where na is the largest number of all Fresnel zones (open and blocked) in a 

zone plate with a negligible axial spherical aberration. In practice, however, a 

few wavelengths of axial spherical aberration are often acceptable. This might 

be the typical case for the so-called short-focal microwave zone plates and 

antennas. 

Off-Axis Aberrations Whenever a plane wave is incident obliquely on a zone 

plate higher-order wave aberrations occur. Let # i  be the angle of incidence, 

measured between an incident ray and zone plate axis z (Figure 4.19). The 

RPD can be expressed now by (4.11) [4] 

' 'me plate 

Figure 4.19 Off-axis aberration for oblique plane-wave incidence. (After: [17], 0 1989 OSA 

Press.) 
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RPD = b,sin$i + F 41 + (tan@i-- %f - F d m  (4.11) 

If we approximate the square roots by their binomial expressions and 

sin$i and tancl/i by their respective power series, we may write 

(4.12) 

The terms in the above RPD approximate expression have a different 

aberration interpretation: 

1 .  

2. 

3. 

4. 

The first term 6:/2F is equal to nA/2 and is a first order, paraxial 

or aberration-free approximation. 

The second term 6, /8F , as it was shown above, determines the axial 

spherical aberration. 

The third term b,@i/2F describes in optics the coma lens aberration. 

In this case the image of a point source is not a focal point but a 

transverse focal segment. 

The fourth term 3 6:& 14 F corresponds both to astigmatism and field 

curvature. These two aberrations are closely related. The lens astigma- 

tism means that the image of a point source consists of two transverse 

mutually perpendicular (or crossed) line segments. The astigmatism 

disappears when the focal region is located not on plane but on a 

single curved surface known as the Petzwal surface. This corresponds 

to a so-called curved field (Le., a field on the above curved surface). 

4 3  

3 2 

It is still possible to calculate the maximum incidence angle (I/imax for which 

the off-axis aberrations are negligible and good-focusing with the following 

inequality [9] 

Here N i s  the number of all open zones in the Soret zone plate. 

Frequency Aberration As it is seen from (4.1) and (4.2) the focal length of 

a given Fresnel zone plate is inversely proportional to the wavelength, or 
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2 
F ( A )  = bn / # A .  Therefore, the zone plate focusing quality is frequency-depen- 

dent, and this sets bounds to its frequency bandwidth. Consider a zone plate 

designed for a particular wavelength A ,, for which RPD = r - F (Figure 4.18) 
is exactly equal to nA,/2, n = 1, 2, 3, . . . 

In optics it is assumed that the frequency (chromatic) aberration is not 

substantial to some other wavelength A for which RPD = NA,/2 k A/4, or  

N l w ,  = N / w  k 1/2w, where w ,  = 27rc/Ao, w = 2 v c I A .  Thus, we may write 

1 

2w 
(4.14) 

Denote with 2Aw = I w ,  - wl the radian frequency band of the zone 

plate. W e  easily find that it depends directly on the total zone number N 

2Aw 1 
- = - 100,~/0 
w ,  - N  

or 

WO NE- 
2Aw 

(4.15) 

(4.16) 

As an example, let us consider a zone plate with N = 10 Fresnel zones. 

Such a zone plate will have a relative frequency bandwidth roughly equal to 

10%. 
The frequency bandwidth of the microwave zone plates and antennas is 

limited by a variety of electromagnetic characteristics: focusing and resolution 

quality, polarization degradation, impedance matching, and so on. Therefore, 

the above relation for the zone plate bandwidth has to be viewed as initial 

approximation. In Section 4.3.1.4, we will give a relation that determines more 

precisely the Soret zone plate frequency bandwidth. 

The zone plate frequency bandwidth can be increased by making a doublet 

of two coaxial Soret zone plate elements, separated by a distance d [4]. For a 

given wavelength bandwidth 2AA = A - A’ the zone plate doublet can be 

designed as follows: The focal length of the first element is F1 = 6 i 1  / n  1 A at 

one extreme wavelength A ,  and F{ = b,, / n  1 A ’ at the other extreme wavelength 

A’, while the corresponding focal lengths of the second zone plate element 

are F2 = bn2/n2A at A and F i  = bn,/nzA’. Evidently, the two zone plate 

elements are different in zone number and zone radii (n l  # n2, and 

b n l  bn2)- 

2 

2 2 
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Requiring the total transmission power at A to equal that at A', the 

equivalent focal length Fe of the doublet can be expressed in terms of F1, F2, 

and d a s  follows 

(4.17) 

The zone plate doublet is achromatized (to the first order) in the wave- 

length bandwidth 2AA = A - A' if the distance between the two elements is 

taken as 

Fl + F2 
1 + AIA' 

d =  (4.18) 

There is another, simpler configuration for achromatizing the zone plate 

doublet at two wavelengths, say A 1 and A 2  [9]. The first doublet element 

adjoins the other one, so we may assume that the two elements have the same 

focal distances F1 = F2 = F, and are sized as follows: 6,2(A1) = nFAl and 

6,2(A2) = nFA2. Now n takes all values between 0 and 1, 2 and 3 ,  4 ,  and 5, 
and so on, for odd open zones, or between 1 and 2, 3 and 4, 5, and 6, and 

so on, for even open zones. It is clear that the lens doublet will have annular 

diaphragms smaller in area than the half-wave Fresnel zones. Thus, the increase 

of the frequency bandwidth of the doublet comes to the expense of its focusing 

quality, compared to the single zone plate element. 

4.3.1.4 Transmission Function 

The transmission function of zone plates describes the variation of transmission 

coefficients within the zone plate aperture. It  determines the amplitude and 

phase distribution of aperture field, and thus, the focusing properties of the 

zone plate. 

Transmission Function of Circular Soret Zone Plate Consider a plane wave 

incident normally into a circular aperture of radius a, (Figure 2.22). The 

Fresnel diffraction field at an axial point was expressed in the form 

(4.19) 

where x = T'@G, x ,  = a,d%-, and with a, was marked the circular 

aperture radius. Then, suppose a circular plane-convex lens with a focal length 
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z = F located in the aperture. This will cause a replacement of the integrand 

in (4.19) by the expression Xexp (-j ?rx2/2) exp ( j n;y2/2), and then the diffrac- 

tion field will be given by [61] 

2 

E ( F )  = j-E. = j-E. (4.20) 
W O  ra0 

2 A F  

The focusing gain at the primary focal point can be expressed by 

Gf = 

From (4.19) and (4.20) 

lens brings to the inclusion 

exp ( rx2/2), which cancels 

= c0s(?rX2/2) - jsin(r,y2/2). 

(4.2 1) 

we conclude that the usual converging 

in the diffraction integrand the factor 

its complex conjugate exp (-j r x 2 / 2 )  

A similar result can be achieved, if the negative parts of the function 

cos(c/r~ 12) or sin(r,y 12) are canceled, by making certain Fresnel zones in 

the diffraction aperture opaque (i.e., by putting a positive Soret zone plate 

[Figure 4.2(a)] in the aperture with the following transmission function) 

2 2 

2 
Replacing x with (2/A F )  rr2 the transmission function equation is rewrit- 

ten in the form given in [51] 

1, for cos(?rrt2/2cr2) 2 o 
0,  for cos(?rrt2/2a2) < o 

(4.23) 

where is a rectangular unit function, 

cr = 4- = 61 /.\/21T is a parameter characterizing the zone plate, 61 is 

the first Fresnel zone radius, and F1 is the primary focal length. 

Let the total number of open zones be N,’ and let them be limited in 

the radial interval b,-l I r’ 5 b,, with n = 1, 3, 5 ,  . . . , No,  (odd or positive 

phase zones). The open zones are alternated by Nr opaque zones 

( n  = 2, 4, 6 ,  . . . , Nr, even or negative phase zones). 
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As shown in Figure 4.20(a) its transmission function T(r') is of rect- 

angular or binary shape. It was calculated for A = 1 cm, F =  40 cm, and 

No = N,' = N,' = 12. 

The radius of the last clear ring 6~ is found by 

It can be proved [61] that the diffraction field at the primary focus is 

(4.25) 

From (4.2 1 )  and (4.25) the equation for the focusing gain can be rewritten 

in the form 

(4.26) 

Now, we can compare the focusing properties of the plane wave-illumi- 

nated Soret zone plate and ordinary lens that occupy the same aperture and 

have the same focal length (Fl = F )  and wavelength. The relation between 

the focusing gain expressions (4.26) and (4.21) gives a relative focusing intensity 

or gain exactly equal to 1 / r 2 .  Here we proved the value given in Table 4. I .  

From (4.26) the number of the open zones No is expressed as follows 

c 1  

2 0.6 

t 0.2 
.Q 

E 
3 -0.6 

0 .- 

f 
c 

.a -0.2 

t- -1 

v )  

Radius, cm 

(a) 

Radius, cm 

(b) 

Figure 4.20 Rectangular or binary-type transmission function of the Soret zone plate 

calculated for A = 1 cm, F =  40 cm, and No = 12 in case of (a)  odd zones 

open and (b) even zones open. 
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(4.27) 

where 61 = fl is the radius of the first Fresnel zone. 

Another, complementary Soret zone plate configuration can be formed 

by interchanging the positions of the open and opaque zones. The transmission 

function of this zone plate is found simply by altering the sign in front 

of the argument of the rectangular unit function U, or 

T( r’) = U[-cos( ~ r ’ ~ / 2 a ~ ) J .  The latter was calculated for the same parameters 

( A  = 1 cm, F =  40 cm, and No = 12) and plotted in Figure 4.20(b). 

Transmission Function of Soret Zone Plate With Straight Fresnel Zones Let 

us consider first an infinite slit cut along the x-axis (see Section 2.4.4.3). In 

this case, if hl = h2 = h the focal Fresnel diffraction field at a distance z from 

the slit plane can be determined by 

-j?ruj2 E +h . T X ’  +U 

(4.28) j E = 5 E , l v  e * dv’ = j ( 1  - j)--“ 

where 2h is the slit width, v l  = v2 = v = hd%, and U’ = ~’4%. 
Then assume an ordinary plane-convex lens with a focal length z = F 

located in the slit aperture. This is equivalent to replacing the integrand in 

(4.28) with the expression exp(-jpxj2/A z )  exp( jvX’’IA z). Therefore, the 

diffraction field by the slit comprising an ordinary kind of lens is given by the 

following simple expression [61] 

2 
rxo r a ,  

2 A F  
E(F)  = j -  E ,  = j- E,  (4.29) 

From (4.29), we may easily find the focusing gain of a slit covered by 

an ordinary cylindrical lens 

(4.30) 

In an analogy with the classical Soret zone plate, the transmission function 

of the parallel straight-line Soret-type zone plate [Figure 4.1 (b), positive zones 

open], also depends only on one coordinate (the rectangular coordinate y’) 

and may be written like (4.23) 
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1 ,  for cos( 7Ty’2/2u2) 2 o 
T(y’) = U[ms($ ) ]  = I 0, for c0s(7Ty’2/2u2) < o 

(4.3 1 )  

where y’ I h and again u2 = A F/27~.  

line of the straight-strip zone is given by 

As it is shown in [61], the diffraction field plate on the primary focal 

(4.32) 

Here with No we denote the number of the straight open zones in the 

From (4.32) the zone plate focusing gain is found as 

Soret-type zone plate. 

4h2 

AF 
G f = 2 ( 2 N 0 -  1 )  = -  (4.33) 

In addition, the number of the open zones may be expressed as 

No = h 2 / A F +  1/2. 

Frequency Bandwidth: Further Discussion Let us consider now the spectral 

characteristics of a paraxial Soret zone plate on the basis of its transmission 

function. For a given zonal geometry u = 4XZG is a constant because the 

focal length is inversely proportional to the wavelength A ,  or 

F ( A )  = b$/NA, where 6~ = a, is the Soret zone plate aperture radius. 

The pulse response tp of the paraxial Soret zone plate is given by (4.34) 

~ 4 1  

A F  
tp G 2.44- 

2 4  
(4.34) 

If a, is taken as constant and A F  is an invariant product, a much 

unexpected conclusion follows: The paraxial Soret zone plate has a broadband 

transmission function. 

Consider next a nonparaxial Soret zone plate (a short-focal Fresnel zone 

plate, for example) illuminated by a plane wave. Now its zone aperture radius 

bN is calculated by a more complicated equation from which the primary focal 

length can be written in the form: F = b$/NA - NA/4 [see (4.46)]. From the 

latter expression it is evident that the increase in wavelength leads to significant 
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diminishing of the first (paraxial) term or the zone plate paraxiality is getting 

worse. As it is shown in [64] the condition for a good Soret zone plate paraxiality 

or small frequency dependence is given as 

2a, 1.856 
-2- 

F 
(4.35) 

I t  is easily calculated from (4.35) that for 2a, > 100A, 2a, /F + 0.3, or 

to keep good frequency bandwidth for the large aperture Soret zone plate a 

long-focal length is necessary, or F 2 ba,. 

determined as follows 

With the above criterion in mind, the 

Equat on (4.36) is more precise than (4.1 

not only N, but a, and F, as well. 

frequency bandwidth can be 

) because it takes 

(4.36) 

nto account 

The relative frequency bandwidth (in percent) of a Soret zone plate versus 

the ratio between the aperture and focal length a,/Fwas calculated from (4.36) 
and drawn in Figure 4.21, with a solid line for N = 10 and a dashed line for 

N = 30. It is evident that for a small number of zones and a big focal length, 

the Soret zone plate is a paraxial lens, and its bandwidth becomes too large- 

more than 15-20°/o. O n  the other hand, with the increase in the number of 

zones (or zone plate diameter) the frequency bandwidth is only a few percent. 

24 

3 18 
n Q 

0 

Aperture radius vs. focal length 

Figure4.21 Frequency bandwidth of Soret zone plate versus ratio a,lF. 
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4.3.1.5 Illumination by Spherical Wave and Comparison With Ordinary 
Lens 

In the more general case, where a spherical wave front of radius dl is transformed 

by the Fresnel zone plate into spherical wave of radii d2n, n = 1, 2,  3,  . . . , 
we may rewrite (2.1 1 )  in the following form (for po and ro replaced by dl and 

d2, respectively) 

The ordinary thin con ierging lens is described b 
so-called lensmaker’s formula [ 14, 151 

where 

r a similar eqi 

(4.37) 

tion, the 

(4.38) 

(4.39) 

In (4.39) E,. is the relative permittivity of the lens, and RI and RI are 

the radii of its refracting surfaces. 

From (4.37)-(4.39) we reach a conclusion that the zone plate has focusing 

properties similar to those of the ordinary converging lens, except for the 

multiple values of E 
The Soret zone plate is designed for plane wave incidence but is illumi- 

nated by a spherical wave. To maintain good-focusing quality of the zone plate 

the maximum number of the open zones must not exceed nm, [2] ,  or 

dl (4.40) 
nmax 4- 

I t  is seen from (4.40) that if the incident wave is not spherical, but plane 

one, then dl = -, and nm, < -, or the number of zones, is theoretically 

unlimited. This is, however true, if the Fresnel zone plate is designed according 

to the exact formula for 6,, not to (4.3.1). Table 4.1 summarizes the basic 

properties of circular condensing lens and Soret zone plate [2, 31. 
The most specific features of the Soret zone plate are listed as follows: 
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Table 4.1 
Comparison Between Ordinary Converging Lens and Soret Zone Plate 

Properties Converging Lens Soret Zone Plate 

Focusing mechanism Refraction plus interference Diffraction plus interference 
High-order foci None 

Lensmaker's equation 

Odd foci (3, 5, 7 . . .) 

1 1 1  - - _  1 1 1  
F - d l  '6 F n - d l  'G 
- - _  

Focal length 1 1 1  1 2 n t 1  
- , n = O ,  1,2 , . . .  _ -  F - ( & - l ) ( F - T )  1 2  Fn 

Thickness Big 

Relative focusing intensity 1 

Small 

1/r2 (at primary focus) 

Resolution A A 
tYo = 1.22-, radians rYo E 1.22-, radians 

2a0 2a0 

Chromatism Present Pronounced 

Multiple diffraction foci; 

ZT- times smaller focusing power intensity (at  the primary focus) coni- 

pnred to that of the same diameter ordinary condensing lens; 

A p p rox  i mate1 y t he sa m e a n g U 1 ii r reso 1 11 t i o 11. 

7 

4.3.1.6 Dimensioning of Circular Soret Zone Plate 

At niicrowave/millimcter-wa~~e frequencies more exact equations for Fresnel 

zone radii and areas are required, especially for short-focal and large-aperture 

zone plates. Here we shall derive such more precise equations for the Fresnel 

zone radii, areas, and widths. 

Figure 4.22(a) is a geometry for dimensioning of the half-wave planar 

zone plate and, in particular, the planar Sorer zone plate if ii spherical wave 

radiated from a point source a t  PI (0, 0, z = -d ,  ) is focuscd by the Soret zone 

plate a t  the obsenation point P:(O, 0, z = +d-,). 

For the Soret zone plate the half-wave RPD has to  be applied, o r  

where b,, is the u-th Fresnel zone circle radius ( U  = 1, 2, 3,  . . . , N, with N 
the total number of  the Fresnel zones). 
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F 

Figure 4.22 Geometry for deriving zone radii equation for Soret zone plate, illuminated by 

(a)  spherical and (b) plane wave front. 

Equation (4.41) can be solved for 6, as follows. Using the factorization 

ex ression for the difference of two squares, we can write 

p - Y = ( p -  r ) ( p  + Y), or 
2 p 2  

As p - r is equal to 

from (4.41) and (4.43) we find that 

(4.43) 

(4.44) 

From (4.44) it is not difficult to obtain 6,) or 

(dl + d2 + 7~A12)~  + ( d l  +dir +d!A12)’ - 2 ( d f  + d t )  

(4.45) 

If the Soret zone plate is illuminated by a plane wave, or if dl + 00, 

and d2 = F i s  the zone plate focal length, (4.45) becomes 
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(4.46) 

Finally, for the paraxial case, which is typical for optical and quasi-optical 

Soret zone plates, F >> A ,  (nA /2)2 << nAF, and thus, the known approxima- 

tion (2.24) for 6, is found again, or 6, E I,/=. 

Computations for the Fresnel zone radius 6, as a function of the zone 

number n are illustrated in Figure 4.23. They were performed for the case of 

plane incident wave by use of (4.45), solid line, and the approximated one, 

or (2.24)) dashed line, for a constant focal length F = 40 cm. 

Figure 4.23(a) is relevant to a microwave Soret zone plate ( A  = 3 cm) 

and Figure 4.23(b) to a submillimeter Soret zone plate (A  = 0.3 mm). In the 

former case, the Soret zone plate works under nonparaxial conditions, and 

(2.24) and (4.45) for 6, give different results, especially for large n. The error 

curve, drawn with a dotted line, shows a relative error of 15%, for n = 0. In 

the latter or paraxial case, however, the two formulas offer almost the same 

accuracy (the solid and dashed curves are merged, and the error is less than 

0.25% for n = 20). 

Figure 4.24(a) shows the Fresnel zones of a circular half-wave zone plate 

illuminated by a spherical wave [Figure 4.21(a)]. The zones are bounded in a 

square with sides of 60 cm. The calculations were made by (4.45) for 

A = 3.2 cm, dl = 40 cm, and d2 = 60 cm. 

5 

5 
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w 
Y 
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5 3  

a 1  
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8 0  
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(b) 

Figure 4.23 Fresnel zone radius versus zone number, for F = 40 cm, computed from exact 

(solid line) and approximate {dashed line) equations: (a) A = 3 cm and 

(b) A = 0.3 mm (dash-dot line)-approximation error in percent. 
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Figure4.24 Fresnel zone patterns of a 3-cm circular Soret zone plate for two shapes of 

incident wave front: (a)  spherical, with d ,  = 40 cm and d2 = 60 cm, and (b) 
plane, with F =  60 cm. 

Similar calculations were performed by (4.46) for a plane wave incidence, 

A = 3.2 cm and d2 = F = 60 cm. The zones for this case are contoured in 

Figure 4.24(b). 

It is evident that the two zone patterns are rather different. While the 

Soret zone plate illuminated by a plane wave comprises four wide Fresnel zones 

in total, the Soret zone plate lighted by a spherical wave has eleven much 

narrower zones. For better clearness, the closed zones are blackened. 

The zone radius (solid line) and zone area (dashed line) variation versus 

zone number for the above exemplary zone plate is illustrated in Figure 

4.25(a, b), for spherical and plane wave incidence, respectively. The radius and 

area curves in the two cases are quite similar in shape, but correspond to very 

different values. From the area plots it is concluded that the Fresnel zones of 

the microwave Soret zone plate are not equal in area. This is an assumption 

for paraxial optical and quasi-optical zone plates that comprise hundreds or 

thousands more Fresnel zones. Instead, the zone area versus zone number 

increases almost linearly. 

4.3.1.7 Focusing Properties of the Soret Zone Plate 

For calculation of the Soret zone plate focusing characteristics, we apply the 

Fresnel-Kirchhoff diffraction theory for apertures with circular symmetry dis- 

cussed in Section 2.4.6. Off-axis and on-axis field analysis are considered 

separately. Also discussed are the optimization of focal length and frequency 

bandwidth of the zone plate. 

Off-Axis Field Analysis Let us consider a similar coordinate geometry as that 

given in Figure 2.22 and suppose that a point source (or isotropic radiating 
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Figure425 Zone radius (solid line) and zone area (dashed line) versus number of zones 

for: (a) spherical wave incidence ( d ,  = 40 cm, d2 = 60 cm, and A = 3.2 cm) 

and (b) plane wave incidence (d2 = F = 60 cm and A = 3.2 cm). 

antenna) is located at point PI(0, 0, 4 1 ) .  The observation point 

Pz(x2, 0, d2) is placed in the xz-plane. 

We shall examine here the Soret zone plate field amplitude variation with 

x2 coordinate, in the transverse plane z = d2 = const. We did a similar analysis 

in Section 2.4.6 for a single annular slot and in Section 3.2.1 for a metal ring 

director. 

Suppose a positive Soret zone plate with a first Fresnel zone open. The 

complex field produced by the zone plate at the observation point can be 

written as a sum of all odd open zones, or 

(4.47) 

where n = 1, 3, 5 ,  . . . , N, and N is the number of the outer open zone, 

bordering the last opaque zone (metal or absorbing ring). Note that in (4.47) 

the inclination factor I( 19) is neglected. 

As it was explained in Section 2.2.4, the second term in the above equation 

represents half of the diffraction field created by the outer open zone. This is 

a correction field term, which is accurate only for the field at axial point 

Pl(0, 0,  d2). Therefore, it may give a proper correction only for a small off- 

axial deviation. 
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As in Chapters 1-3, the inclination factor I (  8) = OS( 1 + cos 8) is taken 

to be constant and equal to unity because the calculations are usually made 

for small diffraction angles. For example, if 6 = 15 degrees, I ( 6 )  = 0.983. 

Remember that since X n , n - l  = 4 6 n , n - l / 6 1 ,  and the zone radii 61, 6,  
and 6,-l are calculated by (4.45). The equivalent focal length is 

The focusing gain Gf of the zone plate is calculated in decibels from 

F, = dld2/ (d l  + d2). 

(4.477, or 

As a computational example for spherical wave illumination, we took the 

same X band Soret zone plate, whose Fresnel zones were dimensioned and 

plotted in Figure 4.24(a). From all eleven zones, six were considered open, 

and five opaque. The focusing gain pattern Gf, in decibels, was plotted by a 

solid line in the transverse plane z = d2 versus the observation angle 8 (Figure 

4.26). The maximum focusing gain is on the zone plate axis 

(6 = 0 degrees) and has a value of 17.3 dB. 
If the Soret zone plate is illuminated by a plane wave front we may use 

the same field equation as for the spherical wave illumination, or (4.47), 

provided that dl 00, d2 = F, and the zone radii are calculated by (4.46). 

2 

0 
-12-10-8 -6 -4 -2 0 2 4 6 8 10 12 

Observation angle, degrees 

Figure426 Focusing gain pattern of Soret zone plate as a function of the observation 

angle for spherical (solid line) and plane (dashed line) wave illumination. 
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Figure 4.26 plots also, with a dashed line, the focusing gain pattern of 

the Soret zone plate in case of plane wave illumination. From all Fresnel zones 

bounded in the 60-cm aperture, two and a half were taken in the summation 

procedure. Actually, this zone plate consists of only two opaque rings and has 

a maximum focusing gain of 13.8 dB. 
As it was expected, the focusing gain of the M O  Soret zone plates depends 

mainly on the number of the open rings. Though the above two configurations 

are bounded in the same size aperture, they have much different focusing 

powers. 

On-Axis Field Analysis for Plane Wave Incidence The analysis here closely 

follows [55 ,  561. The geometry in Figure 4.27 is a section of the Soret zone 

plate with a primary focal point P(0, 0, F )  and a current point 

P’(0, 0, 2’). 

The Fresnel-Kirchhoff diffraction field contribution of an elementary 

circular strip (dr’ in width) toward the total field at P’ is given by 

- j P  

(4.48) j 
dE(P)  = -E0(P)I(8)-& A r 

where I (  S) = 0.5( 1 + cos 8) = 0.5( 1 + z / r )  is the Huygens’ source inclination 

factor, &’ = r’dr’dp’, with p’ current azimuth angle. 

The integral field at P’ due to the n-th Fresnel zone will be 

(4.49) 

Figure 4.27 Geometry of Soret zone plate section. (After: [551.) 
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Integration with respect to the radial coordinate r’ may be replaced with 

integration with respect to the ray coordinate r, as r’dr’ = rdr, and because of 

the angular symmetry p’, integration gives 2 7 .  Therefore, (4.49) will be 

changed by the following one-dimensional integral 

(4.50) 

where 

with b n  calculated by (4.46). 

The total field at the current axial point is 

by all the open Fresnel zones, odd, for example, or 

(4.5 1) 

a sum of the fields produced 

(4.52) 

Figure 4.28 illustrates the axial focusing gain or field intensity distribution 

along the zone plate axis for two sizes of the plane wave-illuminated Soret 

zone plate, with a same focal length F =  40 cm and for a wavelength 

A = 3 cm. The solid line curve refers to a Soret zone plate with five zones 

open, and the dashed line curve to a Soret zone plate with one and a half 

5 10 15 20 25 30 35 40 45 so % 
Distance from zone plate, cm 

Figure4.28 Focusing gain as function of axial distance from the Soret zone plate (with 

the solid line indicating that five zones are open and with the dashed line 

indicating that one and a half zones are open); F =  40 cm, A = 3 cm. 
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zones open. The latter is actually a single opaque ring, illuminated by a normally 

incident plane wave. 

Focal Length Optimization In [65] the focal length of an X-band Soret zone 

plate model was optimized to obtain maximum field intensity for two types 

of wave illumination: plane and spherical. The theoretical study was made in 

two steps: first, by calculation of the zone radii 6, for different focal lengths, and 

second, by computation for each focal length of the respective field amplitude at 

the primary focus. Figure 4.29 shows the variation of the relative field intensity 

with the focal length. 

In the two cases, plane and spherical wave incidence, the field oscillates 

with the focal length. It  is too low for small focal lengths (let us say smaller than 

2-3 wavelengths). With the growth of the focal length, the field progressively 

increases, reaching asymptotically a medium relative value of about 0.8 for 

focal length around 10 wavelengths. It  was concluded that for the plane wave 

of 3.2 cm in wavelength an optimized zone plate could be designed with focal 

length 32 cm. 

A similar behavior of the field versus focal length was found for the 

spherical wave illumination with the only difference that after reaching field 

intensity maxima, the values go on decreasing much more slowly with a further 

increase in focal length. The optimum focal length was determined to be 25.4 

cm for the same wavelength and a source distance of 60 cm. 

Frequency Bandwidth of Microwave Soret Zone Plate (Experimental 
Study) The effect of the variation of frequency in X-band on the field intensity 
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Figure4.29 Variation of field intensity with focal length for plane (solid line) and 

spherical (dashed line) wave incidence. (After: [65].) 
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at the primary focal point of the Soret zone plate was studied theoretically and 

experimentally in [65],  for both the plane and spherical wave incidence. The 

results of the study are seen in Figure 4.30. 

For the two wave fronts, there is very good agreement between theory 

and experiment. It  is evident that the curve for the spherical wave front is 

sharper, which indicates a smaller frequency bandwidth. This effect is easily 

explained with the higher number of Fresnel zones in the case of spherical 

wave incidence. 

4.3.2 Phase-Corrected Zone Plates 

The microwave/millimeter-wave phase-corrected or Wood-type zone plate finds 

much larger application compared to the Soret-type zone plate because of its 

enhanced focusing characteristics. This is attained, however, at the expense of 

more complicated zone plate designs and methods of analysis. 

Here we explain visually the phase correction mechanism of the phase- 

reversal and quarter-wave zone plates and summarize their phase correction 

theory. Also studied are the focusing efficiency and focusing gain of the phase- 

corrected zone plate. Examined in detail are practical and theoretical design 

considerations for different zone plate constructions and zonal phase-shifters. 

4.3.2.1 Phase Correction Mechanism 

In principle, the Fresnel zone plates do not make as smooth a transformation 

from spherical to spherical or plane wave front (or vice versa) as do the ordinary 

lens and reflector focusing devices. Instead, the zoned plate is a stepwise phase 
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Spherical 0 . 0  - - 
$0.8 
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Figure 4.30 Frequency response of the X-band Soret zone plate model. (After: [65].) 
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front converter, where each full-wave Fresnel zone is divided into half-wave, 

quarter-wave, eighth-wave subzones, and so on. 

Consider first the phase correction procedure for the half-wave or Wood's 

phase-reversal zone plate. Suppose the plate is illuminated by a spherical wave 

front from a point source at a distance F. The radial phase variation (or phase 

error) in the plane of the zone plate is described by a quadratic equation, which 

can be expressed as a function of Fresnel zone number as follows 

(4.53) 

where 6, is the Fresnel zone radius, calculated for given F a n d  A by (4.46). 
The calculated quadratic function of n is drawn in Figure 4.31 as a dash- 

dotted (dadot) line. 

The conversion of the spherical phase front into a plane one makes zero 

phase error in the aperture. Ideally, this is attained by an ordinary, convex- 

plane dielectric lens, for example, which creates a phase-reversed quadratic 

function @2(n)  = - @ l ( n ) ,  with a graph shown in Figure 4.31 (dashed line). 

Therefore, the sum of the initial phase function and the lens phase correction 

function will be zero, and thus the spherical phase error in the lens aperture 

will be totally compensated. 

Number of Fresnel zones 

Figure 4.31 Illustration of stepwise phase-front transformation in Wood zone plate: 

spherical phase-error curve (dadot line), ideal compensation curve (dashed 

line), 180-degree staircase compensation curve (dotted line), and resultant 

tooth-type phase front (solid line). 
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Zoned plates, however, make partial phase compensation. In the phase- 

reversal zone plate or Wood zone plate, for example, an approximate, staircase 

compensation function (dotted line) with steps of 180 degrees each is created 

by the 180-degree phase-shifting transparent structures that replace the opaque 

zones in the Soret zone plate. The algebraic summation of the spherical phase- 

error function and staircase compensation function give the resultant tooth- 

type phase error function in the zone plate aperture, which vary within each 

Fresnel zone from 0 to -180 degrees. A similar explanation is valid for the 

quarter-wave-zoned plate, and it is illustrated graphically in Figure 4.32, where 

it is seen that within each subzone the resultant aperture phase error does not 

exceed -90 degrees. 

4.3.2.2 Focusing Efficiency and Focusing Gain 

The overall focusing efficiency of the real zone plate depends on amplitude, 

phase, polarization, and other factors. However, in the case of the idealized 

stepwise phase-corrected Fresnel zone plate illuminated by a point source, the 

focusing efficiency ep depends only on the phase increment in the staircase 

compensation function. It is normally defined as a ratio between its focused 

intensity I or squared focused field amplitude ] E l 2 )  and that of the ideal lens 

IL  (or I EL I ) at the primary focal point, so that 
1 
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Figure 4.32 Illustration of stepwise phase-front transformation in quarter-wave zone 

plate: spherical phase-error curve (dadot line), ideal compensation curve 

(dashed line), 90-degree staircase compensation curve (dotted line), and 

resultant tooth-type quasi-plane phase front (solid line). 
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or, in decibels, ep = lOlog(l/ZL), dB, for a plane wave illumination and the 

same focal distance F. 
There are different approaches in the phase efficiency analysis, but we 

quote here only the following simple expression for planar phase-corrected 

zone plates taken from [6] 

sin2(A@/2) 

(AW2) 
ep = (4.55) 

where A@ is the increment of the staircase phase correction function. 

A plot of the above efficiency function versus the phase increment 

in degrees is shown in Figure 4.33. The phase-reversal zone plate 

A@ = 180 degrees, and this corresponds to an effciency of 40.5%. The focus- 

ing efficiency of the quarter-wave zone plate (A@ = 90 degrees) is 8 l % ,  and 

that of the eighth-wave zone plate (A@ = 45 degrees) reaches 95%. If 

A@ -+ 0, the zone plate efficiency tends to unity [66]. For microwavelmillime- 

ter-wave frequencies, the zone plates, however, are normally made with phase 

corrections equal to or bigger than 45 degrees. Except for the focusing efficiency, 

the focusing action is measured by the focusing gain. 

Focusing gain expressions and graphical illustrations for the Wood’s 

phase-reversal zone plate as a function of the zone number and frequency were 

published in [39]. For a working frequency w ,  not equal to the design frequency 

w, ,  and total Fresnel zone number N, the focusing gain Gffor plane wave 

illumination is expressed as 
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Figure 4.33 Efficiency of phase-corrected zone plate as function of phase increment. 

(After: [6].) 
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- [ 2GIv(v)] j 
+ ( x r l A ( n ) {  [ 2 G I V ( q  + l)]sin( n:) 

(4.56) 

where G I V ( F )  is the largest integer that is less than or equal to 

( n  - 1)/2, and the coefficients A ( n )  are given by 

8F/A,  + (2n - 1) 

8 F / A ,  + 2(2n - 1) 
A ( n )  = 

Equation (4.56) is greatly simplified if f = f,, or 

N 8 F l A ,  + (2n - 1) 

G f ' 4 ( C  n = l 8 F l A ,  + 2(2n - 1) 

(4.57) 

(4.58) 

and finally, for FlA,  >> N, the following rough approximation applies: 

G f ( N )  z 4 N  . Because N 2  z Gfszp, where with Gfszp we denote the focus- 

ing gain of the Soret zone plate, it follows that G f g  4Gfszp, and 

2 

(4.59) i N 8F/A,  + (2n - 1) 

GJSZP = (c n = 1 8 F / A ,  + 2(2n - 1) 

The calculated focusing gain in decibels versus frequency is illustrated in 

Figure 4.34. The two curves correspond to the phase-reversal zone plate (dashed 

line) with half-wave zones, and quarter-wave (solid line) zone plate with quarter- 

wave zones. The focal length of the two zone plates equals 50 wavelengths at 

medium frequency U,. The deep minima in the frequency characteristics 

suggest that the zone plate can be applied as a frequency filter. In addition, it 

is seen that a quarter-wave zone plate designed for the frequency w ,  acts as a 

half-period plate at the second harmonic. 

A near-field axial intensity distribution (or relative gain), in decibels of 

a phase-reversal or Wood zone plate, is plotted after [67] in Figure 4.35 (solid 
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Figure4.34 Frequency characteristic of zone plate of quarter-wave zone plate with 48 

zones (solid curve) and phase-reversal zone plate with 24 zones (dashed 

curve), for F = 50A. (After [39], C 1987 IEEE.) 
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Figure 4.35 Near-field intensity distribution along focal axis of Wood zone plate (solid 

line), odd zone Soret zone plate (dashed line), and even zone Soret zone 

plate (dotted line). Experimental values for odd Soret zone plate are marked 

by 0's. (After: f671.1 
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line). The zone plate is designed for 7,375 MHz and consists of six Fresnel 

zones. It has a focal length of 4 cm (or 1.25A, short-focal zone plate) and 

maximum zone radius of 13 cm (or 1.25A). This plot is compared to two 

other plots for the same-in-size Soret zone plate with odd zones open (positive 

Soret zone plate, dashed line) or even zones open (negative Soret zone plate, 

dotted line). 

The axial field intensity contribution of each Fresnel zone is computed 

by (4.60), a near-field equation [67] similar to (4.50) 

The zone plate coordinate geometry is the same as in Figure 4.26. The total 

field due to the odd or positive zones, E+(P),  or that due to the even or 

negative zones only, E-(P), is calculated as 

respectively. In this case the zone plate comprises in total six Fresnel zones. 

sum of E+(P) and eJTE-(P), or 

The field E(P)  radiated by the phase-reversal zone plate is found as a 

E(P) = E+(P) + ejTE-(P) (4.62) 

From Figure 4.35 it is concluded that there is a significant difference 

between the near-field relative gains at primary focus of the odd zone Soret 

zone plate (7.4 dB) and even zone Soret zone plate (7.0 dB). The focal gain 

of the phase reversal zone plate is much higher (14 dB). 
The dielectric zone plates have been studied here without taking into 

account the complicated diffraction phenomena inside the solid phase-correct- 

ing ring. Such studies were accomplished by Van Houten and Herben [46] 

using a modified GTD approach, and by Popov, Kopilov, and Vinogradov 

[68],  who simulated diffraction fields on the basis of the parabolic equation 

(PE) diffraction method. 

4.3.2.3 Phase Correction Theory of Zone Plate 

Until a short time ago, the phase correction in the zone plates was executed 

based on simple physical considerations as it was done by Wood a hundred years 

ago. T o  the author’s knowledge the only comprehensive theoretical treatment on 
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the phase correction of the electromagnetic Fresnel zone plates was published 

by Guo and Barton in 1993 [43]; it will be summarized here. 

The total field at the primary focal point P 
Fresnel zone plate, for plane wave illumination, is 

the Kirchhoffs diffraction integral in the form 

produced by all zones of 

expressed on the basis of 

(4.63) 

where r’ is the current radial coordinate, F is the focal distance, 

r = d m  is the ray distance from a current point on the zone plate to 

the axial focal point P, @(r’)  is a phase-correction function, and p = 27/A is 

the wave number. 

The k-th zone radius satisfies the full-wave zone RPD equation 

4 7 ’  + 6 k -  F = k A , ( k = O ,  1 , 2 , . .  . , K )  (4.64) 

Equation (4.63) is then approximated to become 

(4.65) 

Next, a closed form of this equation is derived 

(4.66) 

where 

O = p ( d m -  - [ F -  (k - 1)A]), (6k-1 5 r’ I 6 k )  (4.67) 

and @’( 0) = @[ r’( O)]. 
The contributions from different full-wave zones with the same phase- 

correction function @’( 0) differ only with the multiplier 
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1 + F / [ F  + (k  - A/2)], which is an approximate expression of the Huygens' 

i ncl i na t i o n factor . 
For the ideally phase-corrected zone plate W(8) - 8 = 0, since for this 

condition (4.66) gives maximum field at P, or 

(4.68) 

The ideal smooth phase-correcting function in the r' domain is 

In practice instead of a smooth phase-error-compensation, a discrete 

(stepwise) subzone phase-correction is employed, as illustrated in Section 

4.3.2. I .  The subzone phase correction techniques make use of discrete phase 

shifters in each full-wave zone in order to realize a stepwise phase-correcting 

function approximating aopt ( r ' ) .  

Maximum of I E(P)  I is found for the following discrete conditions 

@km = 2?rq/Q, and = 2 q 7 ~ / Q  + a ,  ( q  = 1 ,  2, 3, . . . , Q )  
(4.70) 

where k is the full-wave zone number, q is the subzone number, and CY is an 

arbitrary initial phase, which must be the same for all 

From (4.67) and (4.70) the equation for finding 

q-th subzone in the k-th full-wave zone is obtained 

d m '  = F + [(k- 1) + g /Q]h ,  

full-wave zones. 

the outer radius of the 

(4.71) 

f o r k =  1, 2 , .  , . , K; q =  1, 2 , .  . . , Q 

Using (4.67) and (4.71) two requirements have to be taken into account: 

( 1 )  Q subzones must be equally divided in the 8 domain, and (2) the phase 

difference between two adjacent phase shifiers must be 2 T /  Q. 

Figure 4.36 illustrates two types of stepwise level approximation (quantiza- 

tion) in the quarter-wave zone plate ( Q  = 4 )  of the optimum quadratic phase 

function (dotted line), completed for different values of the initial phase angle 

a: first, for a = 0 (solid line), and second, for CY = 45 degrees (dashed line). 

In the latter case the mean square quantization error is zero. To this point, 

we have discussed the case in which the number of subzones and the staircase 
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Figure4.36 Ideal phase-correcting function (dotted line) for zone plate with F =  20A and 

its two equivalent stepwise approximations for: (a) CY = 0 (solid line) and (b) 

(Y = 45 degrees (dashed line). (After: 143)). 

approximation function are the same in each full-wave zone. In other words, 

this is the case of a periodic phase correction mechanism. 

However, for a big number of zones in the zoned plate the widths of 

the outermost full-wave zones become too small. Practically, it is not possible 

to place the same number of phase shifters in the outer full-wave zones as in 

the inner ones. The problem can be solved by a compromise. For example, 

we can make a quarter-wave phase correction in the inner full-wave zones and 

a half-wave phase correction in the outer ones. This phase-correction technique, 

named aperiodic, was also described and studied theoretically in [43]. 

4.3.2.4 Design Considerations for Dielectric Phase-Reversal and 
Quarter-Wave Zone Plates 

In this section we discuss practical experience and theoretical relations for 

designing phase-corrected zone plates as focusing elements in Fresnel zone 

plate antennas. Equations are given for the dimensions of phase-reversal and 

quarter-wave zone plates. Discussed are numerical examples for the transmission 

coefficients of solid, multilayer, and composite (metal-dielectric) phase-shifting 

plates provided they are infinite in extension. Finally, the equivalent-circuit 

transmission theory of circular ring array printed on a dielectric plate is 

considered. 
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Design of Single-Dielectric Zone Plates Consider first the basic points in 

designing the classical single-dielectric zone plate. Two possible profiles of the 

zone plate were shown in Figure 4.11 (a, b). In Figure 4.37 [39], a millimeter- 

wave Wood zone plate is compared visually with two conventional plano- 

convex lenses for use at 140 GHz. The lenses and zone plates are of the same 

diameter, but the hyperbolic lens and the lens with spherical surface are much 

thicker than the Wood zone plate, about eight and eleven rimes, respectively. 

They are also much heavier, lossier, and more difficult to manufacture. Also, 

the Wood zone plate’s focusing efficiency is only two and a half times smaller 

than the focusing efficiency of the hyperboloid lens. 

From (4.71) we can obtain the following simple formula for calculation 

of the outer radius 6, of the n-th zone in a Fresnel zone plate with Q subzones 

in each full-wave zone 

6 ,  = { -  (4.72) 

where Q = 2 for the half-wave Soret and Wood zone plates. In this particular 

case, (4.72) reduces to (4.46). Q = 4, 8,  . . . for the quarter-wave, eighth-wave, 

and so on zone plates, respectively. The equation for zone radii is derived on 

the assumption that the zone plate has a negligibly small thickness that is true 

for the Soret zone plate. However, this is not the case for the dielectric Wood 

Wood 
tone plate 

(b) 

200 

Figure 4.37 Comparison of polystyrene zone plate and lenses with 200-mm focal length 

designed for use at 140 GHz. (After: [39], 0 1987 IEEE.) 
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zone plate-type zone plate, whose thickness is commensurate with the wave- 

length. If the focal length measured from the focus to the inside plate boundary 

is marked with r;l the corresponding distance to the outside plate boundary 

will be F + w ,  where w is the plate thickness. For this focal length, (4.72) has 

to be rewritten, or 6,(F + w )  = 4 2 n A ( F  + w ) / Q  + (nA/Q)*. Therefore, the 

following equation for 6, might be a good compromise for calculating the 

Wood zone plate zone radii [49] 

2nA(F + w / 2 )  
h,={ Q 

As we have discussed, the phase-reversing effect in 

(4.73) 

the initial Wood zone 

plate is realized by forming annular grooves in-a flat plate of low-loss dielectric 

material, such as polystyrene or teflon. The cross-section geometry of the Wood 
zone plate is shown in Figure 4.38, where the plane incident wave is focused 

at point P. The zone plate grooves have an equal depth w that can be found by 

taking into account that the rays from points A and B have to meet in phase 

at point P, or ( 2 7 r / A ) ( & - t  + B’P) - ( 2 7 r / A ) [ ( t -  w)&~ + w + A’P] = 

2 7T. 

However, from the half-wave Fresnel zone condition 

(B’P - A”P) = A D ,  and thus, w is easily found as 

Figure4.38 Geometry for finding depth of grooves and shadowed part in Wood zone 

plate. (After: (391, 0 1987 IEEE.) 
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A 

2&- 1 
w =  (4.74) 

which is strictly valid only for a normal plane wave incidence. Nevertheless, 
in the nonparaxial zone plates, there are also rays coming to the plate obliquely, 
under an incidence angle $i. For tahng into account the influence of the 
incidence angle on the plate thickness, ray-tracing analysis through a dielectric 
phase-shifting plate was completed in [49 and Hristov, Selected Bibliography]. 
It gives the following more general formula for the plate thickness 

A 

= 2 4 m  - C O S 9 ;  

(4.75) 

For t,bi = 0, (4.75) reduces to (4.74). 
The thickness of a zone plate calculated by (4.75) for several values of 

the incidence angle is given in Table 4.2. The zone plate comprises dielectric 
phase-reversing rings with er = 4 and is designed for A = 5 mm. 

If the zone plate half-opening angle is (Glimax, the thickness w can be 
calculated by (4.75) for an average incidence angle which is equal to 
$jm,/2. The total thickness t of the classical Wood zone plate is bigger than 
the depth w of grooves. 

For the quarter-wave dielectric zone plate, 0-, 30-, 270-, and 360-degree 
phase steps in each full-wave zone (staircase curve in Figure 4.3 1) are produced 
by successive zone grooves that are 0,  w‘, 2wf, and 3w’ in depth, correspond- 
ingly, where w‘ is given by 

I A w =  
4 G r -  1 

(4.76) 

More precise ray tracing through the flat structure of the Wood zone 
plate requires knowledge of the multiple complex transmission and reflection 
coefficients, given by (1.72) and (1.73), which are valid for oblique wave 
incidence and different polarizations. 

Table 4.2 
Zone Plate Thickness for Different Incident Angles 

1.60 
Angle of incidence I++; (degrees) 0 20 40 60 
Zone plate thickness w (mm) 2.50 2.42 2.22 1.92 
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Let us consider next the effect of ray shadowing in the Wood zone plate. 

Figure 4.38 also illustrates the geometry of the shadowing situation. It shows 

that rays passing through the odd zones will be shadowed by the even zones. 

The percentage of the total plate that is shadowed is given by [39] 

GIV[ (n- 1)/2] 

(4.77) 
2 

Percentage shadowed = C r w t a n  @2n+l  / A  
n = O  

where A is the total zone plate area. 

Design of Multidielectric Zone Plates In another method, by grooves in a 

single-dielectric plate, the phase correcting can be done by allocating within the 

zones concentric dielectric rings having equal thickness but different, properly 

chosen permittivity. In this way, a bilaterally planar multiple-dielectric zone 

plate is obtained. 

These totally-flat zone plates have several considerable advantages com- 

pared to the grooved single-dielectric ones: (1) no accumulation of rain, snow, 

and dirt; (2) an aerodynamically smooth structure; and (3) lower spurious 

sidelobes because there are no edges in the zone structure. 

The necessity of using two or more solid dielectrics with rather distinct 

permittivities and heat-expansion coefficients is the main disadvantage of the 

flat zone plates. In addition, the multiple-dielectric zone plates are heavier and 

more difficult to manufacture. 

The thickness w" of the double-dielectric zone plate is found with an 

equation similar to (4.74), or 

(4.78) 

where erl and er2 are the relative permittivities of the two dielectrics. Indeed, 

if the second dielectric is air, er1 = 1 and (4.78) reduces to (4.74). 

A family of graphs for selecting the thickness of the double-dielectric 

zone plate, in inches, is given by Black and Wietse in Figure 4.39 [39]. 
The thickness is plotted versus frequency, in gigahertz, for different material 

combinations. For example, a 35-GHz zone plate with a Rexolite/foam combi- 

nation will be 7.1 1 mm in thickness. 

We consider next some design considerations for the four-dielectric, 

quarter-wave zone plate, whose cross-section is sketched in Figure 4.12(b). 

Here, the central subzone of the first full-wave zone is open, and the other 

three subzones are filled up by solid dielectric rings with different permittivities. 

The next full-wave zones have a similar arrangement. 
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Figure 4.39 Double-dielectric zone plate thickness versus frequency for different 

dielectric combinations. (After: [39], 0 1987 IEEE.) 

T o  accomplish a quarter-wave step correction in this zone plate construc- 

tion, or phase shift values in the four zone apertures AD1 = 0, 

AQ2 = 90 degrees, A@j = 180 degrees, and AD1 = 270 degrees (or -70 

degrees), the relative permittivities of the corresponding rings were found as 

follows [49 and Hristov, Selected Bibliography]: erl = 1, eY2 = 6.25, 
EY3 = 4, and er4 = 2.25. Note that this is a special case, where one of the four 

ring permittivities is deliberatley chosen to be 4, or the value for which the 

“ideal” phase-reversing is obtained ( T  = -l), and the plate thickness is exactly 

A 12. 

The ring with er = 2.25 has good amplitude and phase transmission 

characteristics, while the ring with er  = 6.25 makes proper phase shifting but 
transmits only about 50% of the normally incident power. This shortcoming 

could be removed by replacing all solid rings having eY = 6.25 with three- 

layered sandwich-type rings designed for I T I =: 1 and $ T  = 90 degrees 

[5  11. 

Solid (or Single-Layer) Phase-Shifting Dielectric Plate In the single- or 

multiple-dielectric zone plates, the planar dielectric steps or rings operate as 
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electromagnetic phase shifters. It is supposed here that their reflection and 

transmission properties do not much differ from those of the infinite dielectric 

plate. The lossless phase-reversing dielectric phase-shifter has a transmission 

coefficient T =  -1, which is obtained for a normal plane wave incidence 

( $ i  = 0 degrees), E ,  = 4, and the plate thickness is A/2. The increase of the 

dielectric constant leads to a rapid fall in the transmission coefficient magnitude, 

and the phase-shifting effect also changes for the worse. Here, this phenomenon 

is demonstrated graphically only for a normal wave incidence (Figure 4.40)) 
for frequency of 12.1 GHz, E ,  = 4,  and tan6 = 0.015. If er is less than 4, the 

phase-reversal zone plate becomes too thick and heavy. O n  the other hand, 

from Figure 4.40(a), it is seen that for E ,  bigger than 5-6 the amplitude- 

transmission coefficient is less than 0.75, or for such values of E ,  the plate 

phase shifter will reflect more than 50% of the incident power. 

Relative permittivity 

(a) 

140 4 I 

0 5 10 15 20 25 30 

Relative permittivity 

Figure 4.40 Transmission coefficients versus relative dielectric constant for phase 

reversing single-layer dielectric plate ( f =  12.1 GHz, er  = 4, tans  = 0.015, 

normal plane wave incidence): (a) amplitude-transmission coefficient and (b) 
phase-transmission coefficient. 
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Next, we show the variation of the complex transmission coefficient as 

a function of the incidence angle (Figure 4.41). The dielectric plate has a 

thickness equal to 12.4 mm and the same frequency, permittivity, and loss 

tangent as in Figure 4.40. The wave transmission through the dielectric plate 

is characterized not only by magnitude and phase changes. Another phenome- 

non is the alteration in the wave polarization. The incident plane electromag- 

netic wave with linear polarization can be resolved into two orthogonal in- 

phase components-electric or perpendicular (solid line) and magnetic or 

parallel (dashed line). 

For a normal incidence, the zone plate does not changesthe wave polariza- 

tion. However, as it is seen from Figure 4.41 for angles of incidence bigger 

than 45 degrees, the transmitted electric (solid line) and magnetic (dashed line) 

OS2 t 
0 -  45 - 60 - 75 

Degrees 

804 : : : : : : : : : 4 

0 15 30 45 60 75 
Degrees 

Figure 4.41 (a) Amplitude and (b) phase transmission coefficients versus incidence angle 

for phase-reversing single-layer dielectric plate ( f = 12.1 GHz, er  = 4, 

t a n 8  = O.OOO1, and plate thickness of 12.4 mm). Electric polarization is 

represented by a solid line and magnetic polarization is represented by a 

dashed line. 
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polarization components obviously have different magnitudes and phases, and 

thus, the resultant outgoing wave will be elliptically polarized. 

The single-layer phase shifter designed for 12.1 GHz shows very good 

amplitude-transmission and phase-reversing characteristics for the whole 

1 1.7-1 2.5-GHz DBS frequency band, for angles of incidence 0-45 degrees. 

Polarization change of the transmitted wave is expected to be too small because 

the phase difference between the two orthogonal components does not exceed 

r / l O  up to an incidence angle of 60 degrees. 

The influence of the dielectric losses on the transmission characteristics 

is negligible for tan S I 0.001. It  is concluded that the amplitude of the transmit- 

ted wave depends mostly on the dielectric loss tangent. 

Multilayer Phase-Shifting Dielectric Plate The electromagnetic properties 

of the high-frequency multilayered structures are well examined in the electro- 

magnetic theory of the microwave/millimeter-wave antenna radomes [69-7 I 1. 
The radomes have to satis+ specific aerodynamic, structural, and electro- 

magnetic requirements. The electromagnetic characteristics could call for certain 

limits to transmission loss, polarization, pattern distortion, and so forth. While 

most of the radome electromagnetic characteristics are similar to those of the 

Fresnel dielectric plates (transmission losses, reflection levels, depolarization 

properties), the transmission phase shift demands are different. For both 

radomes and zone plates, it is important to have small and constant phase 

differences between the two orthogonal polarizations in the whole range of 

the incidence angles or frequencies. The transmission phase shift in radomes 

has to be small, while there may be significant prescribed values for the Fresnel 

zone plate. 

As an example of a multiple-layer phase shifter, we consider here a phase- 

reversing plate with two skin layers and one core layer (or a sandwich-type 

plate). For a frequency of 12.1 GHz the following optimum parameters are 

obtained: a skin-layer’s thickness and permittivities of 4.2 and 2.4 mm, and 

a core-layer thickness and permittivity of 6.2 mm and 5, respectively. 

The dielectric loss tangent is chosen to be 0.001. The calculated ampli- 

tude- and phase-transmission coefficients are very good in the entire frequency 

region 1 1.7-12.5 GHz. Figure 4.42 shows the amplitude- and phase-transmis- 

sion coefficients calculated as functions of the incidence angle of this three- 

layer plate, at the medium frequency 12.1 GHz. 

The three-layer phase-shifting plate is thicker than the single-layer one 

(14.6 mm versus 12.4 mm, calculated for the above medium frequency), but 

it is lighter due to the sandwich combination of two dielectrics with different 

specific gravity. In some cases, the three-layer structure may be preferred as it 

has a higher strength-to-weight ratio and a wider bandwidth. 
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Figure 4.42 (a) Amplitude-transmission and (b) phase-transmission coefficient of the 

three-layer plate versus incident angle ( f = 12.1 GHz, skin-layer thickness = 

4.2 mm, core-layer thickness = 6.2 mm, skin-layer permittivity = 2.4, core-layer 

permittivity = 5.0, and loss tangent = 0.001). 

Gridded Phase-Shifting Dielectric Plate The gridded phase-shifter is made 

as a single or multilayer metal grid of small metal elements imbedded in or 

printed on a high-frequency dielectric plate. From a polarization point of view 

the ideal grid structure plate has to be axially isotropic. This is not possible 

in practice but many grid arrangements have satisfactory polarization symmetry 

(e.g., circular ring array, square or double-square array, and Jerusalem cross 

array). 

The circular ring array in the form of an equilateral triangular grid, shown 

in Figure 4.43(a), is usually printed on a dielectric substrate. It is an example 

of a transmissive phase shifter. If the substrate is taken to be A/(4/&) in 

thickness, and the ring grid is backed by a metal screen a reflective-type phase 
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100 
50 d=15 

Figure4.43 Reflective planar phase shifter made by printed circular ring array: (a) ring 

array configuration and (b) phase shift change as function of medium ring 

radius for different distances d between rings. (After: 1451, 0 1993 IEE.) 

shifter is realized [45]. In Figure 4.43(b) the phase shift of the reflective phase 

shifter versus the medium ring radius r = (rl + r2)/2 is plotted, for three 

different distances between ring centers, d = 7, 8, and 16 mm. Note that the 

substrate thickness and ring width is fixed. The phase shift is mainly determined 

by the ring circumference. Small rings are capacitive and large ones are inductive. 

With the distance d = 16 mm, a phase shift in the range 0 to 3 ~ / 2  can be 

obtained by adjusting the ring radii. The phase-shifter grids can be examined 

by use of approximate equivalent-circuit models [72-751 or by application of 

analytical and numerical wave diffraction methods [69, 70, 76, 771. 
An equivalent circuit model for a transmissive grid of square loops, shown 

in Figure 4.44(a) was proposed in [73]. The square-loop grid is assumed to 

be derivative of two parallel orthogonal grids of thin wires and is represented 

by a single series LC circuit [Figure 4.44(c)] shunted across a transmission line 

of admittance Yo equal to the free-space admittance, or Yo = l/Zo, where 

2, = 1 2 O ~ ,  1R. Though the equivalent circuit model is simple, it has enough 

accuracy for the practical design procedure. 

Values for L and C in the equivalent circuit can be determined using 

the following equations [73]. Consider a plane wave polarized parallel to the 

strip incident obliquely on an infinite grid of narrow, perfectly conducting 

strips. The equivalent shunt reactance, normalized to 

2, of the grid, is given by 

the free space impedance 

+ G(p,  5, A)] (4.79) 
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Figure 4.44 Planar phase-shifting arrays of single squares (a) and double squares (b). 

With (c) is marked equivalent circuit of single square element. (After [74), 

0 1982 IEE.) 

where cG/i is the angle of incidence and 

2 
1 

G ( p ,  5, A )  = - 
(1 - ~ ~ ) ~ [ ( 1  - v2/4)(A+ + A - )  + 4 v  A+A-]  

6 2 (1 - Y 2 / 4 )  + Y2(1 + Y2/2 - v4/8)(A+ + A-)  + 2 v  A+A- 

with 

and U = s i n ( n ~ ) / 2 n .  

grid has a normalized capacitive susceptance given by 

If the incident wave is polarized perpendicular to the conductors, the 

where g is the width of the gap between the conducting strips. 

reactance X L  of the inductance L is found from 

For the square-loop grid, shown in Figure 4.44(a), the normalized 

- d  
X L  = -F(p ,  25, A )  

P 
(4.8 1) 
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where XL is reduced by a factor d/p due to the conductor not being continuous. 

The susceptance B c  of the capacitance C is 

(4.82) 

Denote with Bg = B g L ~  + Bs the total grid-circuit susceptance. For the 

resonance frequency, the grid is totally transmissive (Bg = 0) or totally reflective 

(Bg = -) to an incident wave. In the two cases, the grid is acting as a frequency 

selective surface or FSS. For known grid inductance L and capacitance C, the 

resonance frequency f, of the FSS is easily calculated by means of the resonant 

circuit equation fo = 1/(2nl/LC). For example, the square-loop grid config- 

uration of dimensions p = 5.25 mm, s = 0.47 mm, d =  5 mm, and 

g = 0.25 mm has a resonance frequency of 15.2 GHz [73]. The double-square 

grid shown in Figure 4.44(b) has a larger bandwidth and better phase-shifting 

characteristic. 

After finding the total normalized grid susceptance, which is a purely 

imaginary admittance, j Z  , the next step is to obtain the grid’s phase-shifting 

quality. The phase shift dg as a function of Bg is then disclosed by means of 

the simple circuit theory or more rigorous wave transmission concept. In terms 

of the circuit elements, the total normal normalized admittance of the grid 

equivalent circuit I Ye may be found simply by adding to the normalized grid 

susceptance - Bg = - Bg/Y,  the - purely real normalized admittance of the free 

space Y,  = 1, or Yc = 1 + jB,. 
- 0  

The complex transmission coefficient Tof the single layer grid in terms 

of the admittance Bg is [401 

1 
T =  1 (4.83) 

and the corresponding phase-shift is found as 

Q,, = arctan( T )  = -arctan(Bg/2) (4.84) 

The phase shift has a positive sign if the grid susceptance is negative and 

vice versa. The practical single-layer grid phase shifter has an intolerably big 

reflection and an overly small phase shifi (less than 45 degrees). These imperfec- 

tions can be greatly avoided by using multilayer phase-shifting grids. 
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For a two-layer structure comprising only two equal planar grids with a 

susceptance Bg each stacked A/4 apart, (4.85), a simple formula for the phase 

shift, is derived in [40] 

Finally let us consider a simple example of a thin gridded plate in regard 

to its phase-shifting - properties. Metallic grid is represented by an equivalent 

susceptance B,, which is supposed to be constant with the change of the 

incident angle and wave polarization. 

Regard a thin-gridded, one-layer dielectric phase-shifter. Its structure is 

the same as that shown in Figure 4A.l(a), with a grid imbedded in the 

middle of the dielectric plate. Using the matrix transmission theory and more 

particularly the expressions given in Appendix 4A, a thin, 45-degree phase- 

shifting gridded plate for parallel (magnetic) polarization was designed. Its total 

thickness is 2 mm or 0.08A for the optimum frequency f = 12.1 GHz. The 

calculated amplitude and phase transmission coefficients of this gridded dielec- 

tric plate structure for a permittivity E = 2.5 and grid normalized susceptance 

B, = -j2.2 are drawn in Figure 4.45. 
It is seen that the magnitude and phase of the transmission coefficient 

are almost one and -45 degrees, respectively, for an angle of incidence in the 

range between 0 and 45 degrees. Several layers of this basic structure can be 

used in designing a phase shifter with a larger phase shift. 

- 

4.4 Curved Fresnel Zone Plates 

Fresnel zone patterns are made not only on a planar plate. If the half-wave 

ray-path difference condition is applied to a curvilinear surface, the so-called 

curved zone plates (or shells) can be constructed. 

Here we give equations for Fresnel zone radii of three types of axially 

symmetric convex/concave zone plates-spherical, parabolic, and conical. Their 

axial focusing properties for zone plates the same in zone number or aperture 

diameter are studied and compared to those of the corresponding planar zone 

plates. In a similar way we could examine zone plates of arbitrary axially 

symmetric surface shapes (e.g., elliptical, hyperbolic). 

4.4.1 Introduction 

It  is hard to say exactly when the thought of introducing curved instead of 

planar zone plates arose. However, already in the Huygens’ and Fresnel’s studies 
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Figure 4.45 Amplitude- and phase-transmission coefficients of gridded plate: (a) 

amplitude and (b) phase shift versus angle of incidence. 

the secondary diffraction sources and zone construction were supposed on the 

surface of the spherical wave front. Fresnel zones on a sphere are considered 

in Section 2.2.2.1, only for the specific cases in which the point source and 

center of the sphere coincide. 

As far as we know, the first publication that describes spherical zone 

plates for optical wavelengths was put out by Raiski in 1952 [9]. To make Fresnel 

zones wider, he proposed a reflective spherical zone plate, whose geometry is 

shown in Figure 4.46(a). An aluminum zone plate model with a source distance 

dl = 100 cm, observation point distance d2 = 98 cm, and sphere radius 

R = 100 cm was manufactured and studied experimentally for the visible light. 

For a diameter of 10 cm this spherical zone plate had only 100 broad zones 

while the planar Soret zone plate had 100 times more Fresnel zones, or 10,000. 
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(a) 

Figure 4.46 Spherical reflective 

U 

(b) 

and transmissive Soret zone plate. (After: 191.) 

Again in [9], a transmissive zone plate working in combination with a 

convex-concave lens was proposed and examined. The Fresnel zones were cut 

on the spherical concave surface of a silver-plated glass lens [Figure 4.46(b)]. 

In the microwave region, the first curvilinear zone plate was probably 

the cylindrical one with straight parallel zones [Figure 4.8(b)] patented by 

Bruce [30] in 1936. 

However, real advancement in the field of the curved zone plates was 

made in the early 1970s with the theoretical investigations of Dey and Khastgir 

[53-55, 57, 581. They and their research associates proposed the spherical 

and parabolic Fresnel zone plates for microwave frequencies. They created a 

comprehensive theory for dimensioning of the curved zone plates, studied their 

focusing properties, and compared them with the planar zone plate. In the 

course of their investigation, the focusing superiority of curved zone plates 

over plane ones was convincingly proven. 

Microwave/millimeter-wave curved zone plates were developed mainly 

as elements of lens or reflector aperture antennas [37, 59, 78, 791, which will 

be considered in Chapter 5. 

4.4.2 Dimensions of Curved Fresnel Zone Plates 

W e  give here equations for the zone radii and zone areas of curved Fresnel 

zones projected on a plane. The projection plane is transverse to the zone plate 

focal axis. 

4.4.2.1 Dimensions of the Spherical Zone Plate 

Figure 4.47(a) is a cross-sectional geometry of a spherical zone plate of a radius 

R and sphere center at point C illuminated by a diverging spherical wave. Let 



204 Fresnel Zones in Wireless Links, Zone Plate Lenses and Antennas 

Figure4.47 Geometry of spherical zone plate, (a) convex side or (b) concave side facing 

the spherical incident wave. 

the zone plate be of a Soret type, with positive or negative zones blocked by 

reflecting or absorbing elements. If the zone plate is turned to the incident 

wave by its convex side, we will call it a convex zone plate. 

The first task in zone plate design is to find an equation for the zone 

radii. Its derivation is based on the half-wave RPD condition [53, 541. The 

spherical wave radiated by a point source Pl(0, 0,  z = 4 1 )  is converged by 

the spherical zone plate to the principal diffraction maximum at point 

P2(0, 0, z = +d2). For the zone plate under consideration the RPD condition 

is expressed as 

A 
p n  + rn = dl + d2 + n- 

2 

where 

(4.86) 

(4.87) 

and 

rn  = 4 [ d 2  - ( R -  4=)l2 + 6; (4.88) 

If 62, << R 2 ,  4- 2 R - 6 ; f 2 R ,  the following approximations of 

(4.87) and (4.88) are taking place 

(4.89) 
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and 

After placing (4.87) and (4.90) into (4.86) the RPD zone plate condition 

becomes 

(4.7 1) 

The solution of (4.71) for 6, gives 

where 

d ,  = 

A ,  = 

B ,  = 

dl + d2 + nAI2 

4 4 R 2 ( d l  + d2)2 + n2A2(R- d2)(dl + R) + B ,  

The general arrangement considered up to this point may be reduced to 

the following specific examples: 

1. Convex spherical zone plate illuminated by a plane wave: The zone 

radii 6, in this case may be calculated from (4.92) after setting 

dl + 00 (plane wave front) and d2 = F, or from another expression 

derived from a geometry of the spherical zone section illuminated by 
a plane wave. In the latter approach the equation for the Fresnel zone 

radii is found as [54] 

where 

(4.73) 

nA 
+ d R 2  + nA(R- F )  

y = - 2  
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2. 

3. 

4. 

If the wave is focused exactly at the center C of the sphere, or  

R = F, (4.93) becomes very simple and similar to that for the planar 

zone plate, illuminated by a plane wave (4.46) 

For a paraxial arrangement, nA R >> (nh /2 )2  

(4.94) 

(4.94) becomes equal 

to (4.46) Thus, in the  case of paraxial plane wave incidence, the 

parabolic and planar zone plates will have identical zone patterns, for 

same focal distance. 

Convex spherical zone plate transforming a spherical incident wave 

into a plane wave: For this specific case, the zone radii could be also 

found by (4.92) if one lets d2 + W. 

Planar zone plate focusing a spherical incident wave at point P2. 
Equation (4.92) reduces to (4.45) if R -+ 00 (planar zone plate) and 

Plane incident wave transformed by a planar zone plate into a spherical 

wave: Equation (4.92) becomes the same as (4.46), if dl + 00 (plane 

wave), R + 00 (planar zone plate), and d2 = E Imagine that the zone 

plate is turned by its concave side to the incident spherical wave. Such 

a zone plate may be specified as a concave zone plate. The equation 

for the zone radii is obtained simply by interchanging dl with d2, 
and d2 with dl in (4.91), as illustrated in Figure 4.47(b). Thus, for 

the zone plate radii in the present arrangement we obtain 

d2 = F. 

dn = dl + d2 + nhl2 

A,  = 4 4 R 2 ( d l  + d2)2 + n2A2(R-  dl)(d2 + R )  + B n  

(4.95) 

The limiting arrangement, where dl + 00 and d2 = F, corresponds 

to the spherical zone plate, concave side facing a plane incident wave. 

Now, (4.95) for 6 ,  is easily reduced to 

A n  ] - 4 F ( F +  R) 6 ,  =-{C', 1 + e [ F +  R + - -  nA 
2 + 2R 2 1 6 ( F + 2 R )  

(4.96) 
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where 

A ,  = 4[2(F + R)(F + R + nA 12) - B,] 

B n  = 4 4 R 4  - n2A2R(R + F )  - 4nh(R3 + F2 + 2FR2) 

Cn = -4nA(F + R + nAI4) 

The areas of the spherical segments s, and sn-1 bounded by the n-th 

and ( n  - I)-th Fresnel zone circles are found by 

s, = 2 n R [ R -  d m ]  ands,-l = ~ T R [ R -  q-],cor- 

respondingly. Thus, the area Sn of the n-th Fresnel zone is calculated 

as a segment area difference Sn = s n  - s,-1. 

It is important to note that the projections of the actual curved 

zones in the focal plane z = F, or in some other aperture plane, are 

planar circular rings that have the same radii 6, but different areas 

Figure 4.48(a) illustrates the projection view of the Fresnel zone 

pattern in the case of a spherical zone plate, convex side turned to a 

spherical incident wave. The zone plate distances and sphere radius 

are chosen as dl = 40 cm, d2 = 60 cm, and R = d2 = 60 cm [more 

correctly, R E  d2, because of the singularity in (4.92) and (4.95)]. 
The design wavelength is A = 3.2 cm. The Fresnel zones are bounded 

within a square, which determines a zone plate of 60 cm in diameter. 

The source and observation point distances dl and d2, wavelength, 

and aperture diameter are purposely taken to be the same as those 

2 2  
S,l, or S,l = r ( b n  - 6,) + S,. 
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Figure4.48 Fresnel zone patterns of spherical half-wave zone plate of radius 

R = d2 = 60 cm for two shapes of incident wave: (a) spherical, dl = 40 cm 
and d2 = 60 cm, and (b) plane, for d2 = F =  60 cm. 
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for the planar zone plate, whose zone patterns were shown in Figure 

4.24. Ten Fresnel zones are numbered within the 60-cm aperture, 

one less than in the planar zone plate, illuminated by a spherical wave. 

Five of them are open and five are blocked (the blackened ones). 

The Fresnel zone pattern for the specific case of the plane wave 

illuminating the same spherical zone plate ( R  s d2 = 60.1 cm and 

d2 = F = 60 cm) is drawn in Figure 4.48(b). The 60-cm aperture 

boundary contains five wide Fresnel zones, one more than in the 

planar zone plate, illuminated by a plane wave. 

4.4.2.2 Dimensions of the Paraboloidal Zone Plate 

The cross-sectional geometry of the paraboloidal zone plate illuminated by a 

spherical wave is shown in Figure 4.49. All points and dimensions have the 

same meaning as those in the Figure 4.47(a) for the spherical zone plate. Of 

course, the curvature of the parabolic surface is characterized by its focal length, 

marked here by fp. Let us find first an equation for the Fresnel zone radii 

using the half-wave RPD condition [ 5 5 ] ,  or 

h 

2 
P n  + rn  = dl + d2 + n- (4.97) 

where 

Figure 4.49 Geometry of a paraboloidal zone plate, convex side facing spherical incident 

wave. 
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The solution of (4.97) with respect to bn gives 

(4.98) 

where 

As in the case of the spherical zone plate, the general equation for the 

zone radii (4.98) can be reduced to several specific arrangements. Consider 

only one of them-the convex paraboloidal zone plate, illuminated by a plane 

wave, or if dl + 
simple, or [ 561 

For F = f p  

- and d;! = F. For this arrangement, (4.98) becomes very 

(4.99) 

(4.100) 

Equation (4.100) is exactly the same as that for the zone radii of a paraxial 

planar zone plate, or (2.15). However, the latter is an opticallquasi-optical 

approximation while (4.100) is an exact one. If in (4.99) nA/4 is much less 

than F and fp, it again reduces to (4. loo), but now approximately. 

Figure 4.50(a) is a projection view of the zone pattern in the case of a 

paraboloidal zone plate turned by its convex side to a spherical incident wave 

for the specific case, where dl = 40 cm, d2 = R = 60 cm, and A = 3.2 cm. 

The Fresnel zones are bounded within an aperture of 60 cm in diameter. The 

source and observation point distances dl and d2, wavelength, and aperture 

diameter are chosen in the same manner as those for the planar and spherical 

zone plates, whose zone patterns were drawn in Figures 4.24 and 4.48, respec- 
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Figure4.50 Fresnel zone pattern of a convex paraboloidal half-wave zone plate with 

focal length f p  = 60 cm for two shapes of incident wave: (a) spherical wave 

( d ,  = 40 cm and d2 = 60 cm) or (b) plane wave ( d ,  -+ 00, d2 = F =  60 cm); 

the design wavelength is A = 3.2 cm. 

tively. Eleven Fresnel zones totally are numbered within the 60-cm aperture, 

six of them open. 

The zone areas S ,  can be calculated by use of the following relation [56] 

The Fresnel zone pattern for the specific case of plane wave illuminating 

the same paraboloidal zone plate is drawn in Figure 4.50(b). The 60-cm 

aperture boundary contains six Fresnel zones, open and closed, one more than 

in the spherical zone plate illuminated by a plane wave. 

4.4.2.3 Dimensions of the Conical Zone Plate 

The cross-section of a conical zone plate, convex side opposing the spherical 

wave produced at point PI, is shown in Figure 4.5 1. Here the specific parameter 

that determines the conical surface is the opening half-angle 

a = arctan(b,/OQ). 

Let us find an equation for the zone radii of the conical zone plate using 

the half-wave RPD condition for the reinforcement of diffraction rays at the 

primary focal point Pz 

(4.102) 
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S’ 

Figure4.51 Geometry of conical zone plate, convex side looking at a spherical incident 

wave. 

The solution of (4.102) with respect to bn gives 

+ d2) + 16dld2nA + A , ]  + A n }  

(4.103) 

where 

dn = dl + d2 + nAI2 

4(dl + dz)’ + 2nA(dl + d2) + 

2 
tan a 

8[1 + tan a -  (dl + d2) Id,] 

4(d2 - di) [ 
tan CY 

2 2 2  

(di + 

B ,  = 

c, = 1 -  
dz, 

If the convex conical zone plate is illuminated by a plane wave front the 

following simple equation for the zone radii is found 

(4.104) 
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where 6LP') = 4- marks the planar zone radius expression, given 

by (4.46). Sure enough, if a = n/2 ,  6, = 6ip'), or the conical zone plate is 

converted to a planar zone plate. 

The areas of the Fresnel zones on the conical surface can be easily calculated 

by the next expression 

tan'cx Y 

The projection view of the zone pattern in the case of the convex conical 

zone plate illuminated by a spherical wave of wavelength A = 3.2 cm is drawn 

in Figure 4.52(a). Here again dl = 40 cm and d2 = 60 cm. The Fresnel zones 

are also bounded within an aperture of 60 cm in diameter. Ten Fresnel zones 

are numbered now within the 60-cm aperture, five open and five closed (the 

blackened ones). When a plane wave is illuminating the convex conical zone 

plate totally, six zones are produced, three of them open, as seen from Figure 

4.52(b). 

Figure 4.53 shows the variation of the zone radius versus the zone number 

for the four discussed zone plate configurations: planar (solid line), spherical 

(dotted line), parabolic (dadot line), and conical (dashed line) convex zone 

plates. All zone plates are lighted by a 9.375-GHz-plane wave and are designed 

for a same diffraction focal length of 60 cm. The spherical zone plate has a 
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Figure4.52 Fresnel zone pattern of convex conical half-wave zone plate with opening 

half-angle a = d 4 ,  illuminated by: (a) spherical (dl  = 40 cm and d2 = 60 cm) 

or (b) plane ( d ,  -+ =, d2 = F =  60 cm). Design wavelength is A = 3.2 cm. 
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Figure 4.53 Zone radius versus zone number for plane (solid line), spherical (dot line), 

parabolic (dadot line), and conical (dash line) zone plate illuminated by plane 

wave-front. 

radius equal to the focal length (or R = F = 60 cm), while the parabolic surface 

has a focal length for reflection fp = 15 cm. The conical opening half-angle is 

chosen to be a = 45 degrees. 

4.4.3 Focusing Properties of Curved Zone Plates 

The axial lens-like focusing action of the spherical and paraboloidal zone plates 

was originally studied in the early 1970s [53-561. Later, a comparative study 

of the planar and paraboloidal zone plate was carried out in respect to off-axis 

field variation on a transverse plane [ 58,781. Here we will confine our discussion 

to the axial focusing properties of some spherical, parabolic, and conic zone 

plates. 

4.4.3.1 Axial Focusing of the Spherical Zone Plate 

The cross-sectional geometry of a Soret-type spherical zone plate of radius R, 
convex side facing a spherical or plane incident wave, is shown in Figure 4.54. 
We will give here the theory for the axial-focusing action of the convex spherical 

zone plate following [ 5 5 ]  and the Kirchhoff diffraction theory as described in 

Section 2.3. The elementary field amplitude at a point P(0, 0, 2’) may be 

expressed in the form 

(4.106) 
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Ei ( Q‘) = 

Figure 4.54 Geometry for studying the axial field distribution of a spherical zone plate. 

- jPp  

P (4.107) 
4-  for spherical incident wave 

A 1 e -iP(dl +’) for plane incident wave 

where &’ is the area of the elementary circular strip included between the 

rays r and r + dr, which can be expressed as &’ = 27~Rrdr/(R - 2’); 

Placing aS’ in (4.106) gives 

27rR 
‘ dr 

dE(P’) = ;IE( i Q’)I( 6, 8’) e-Jpr- 

R -  2 
(4.108) 

The inclination factor is approximated in the form: 

I ( 8 ,  8’) z I(+’) = (1 + cos@’)/2, with cos#’ = (2’ - d’)/r. The distance d’ 
is found as d’ = ( r 2  - zl2)/2(R - 2’) and for cos#’ we obtain 

2’ - ( r 2  - d2)/2(R - 2’) 2Rz’ - r2 - zr2 
cos+‘ = 

r - 2 4 R -  2’) 

Consider first an axially symmetric spherical zone plate illuminated by 
a plane wave. After substituting the above expressions for I (  #’) and E( Q’) in 

(4.108) the field contribution of the whole n-th zone at point P’ is found as 
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where 

and the integration limits rn and m - 1  can be calculated by 

(4.1 10) 

If the zone plate is illuminated by a spherical wave, produced at point 

PI, the field radiated by the n-th zone of the spherical zone plate is given by 

I + + [ dl  + ( 2(R r2 - - 2’2 2’) )I2 
I ( r ,  z‘)dr 

(4.1 12) 

where Z(r, z’) is the inclination function given by (4.1 10). 

The total field at point P‘ produced by all open zones is 

for n = 1, 3, 5 ,  . . . (odd zones) or n = 2, 4, 6 ,  . . . (even zones). 

The numerical computations performed by Dey and Khastir [53] proved 

the focusing superiority of the spherical over plane zone plate. They considered 

a spherical zone plate with dimensions dl = 60 cm, d2 = 10 cm, and 

R = 40 cm and a plane zone plate with a focal length F = 10 cm. The two 

plates were designed for a spherical wave incidence, at wavelength equal to 3.2 

cm and had a total of 12 Fresnel zones. The axial field amplitude variations 

for the two zone plates are plotted in Figure 4.55 (dashed line representing 

the planar zone plate and solid line representing the spherical zone plate). 
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Figure 4.55 Axial variation of relative amplitude for spherical zone plate (solid line) and 

plane zone plate (dashed line) zone plates (12 zones, spherical wave 

incidence). (After: (531, 0 1973 Taylor 81 Francis.) 

The axial variation of the relative amplitude for spherical and planar zone 

plates illuminated by a plane wave of wavelength A = 3.2 cm is given in Figure 

4.56. The zone plate dimensions in this case are d2 = 15 cm and 

R = 50 cm, for the spherical, and F = 15 cm, for the planar zone plate. 

I - Spherical zone plate 
1 : : : . : : : : 4  

7 9 11 13 15 17 19 21 23 25 
Distance along axes in centimretres 

Figure 4.56 Axial variation of relative amplitude for spherical zone plate (solid line) and 

planar zone plate (dashed line), (12 zones each, plane wave incidence). 

(After: 1531, 0 1973 Taylor & Francis.) 
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From Figures 4.55 and 4.56 the domination of the spherical zone plate 

with respect to focusing is evident. The computations also show that the 

spherical zone plate retains its lens-like focusing quality almost irrespective of 

the source position. 

4.4.3.2 Axial Focusing of a Curved Zone Plate: Universal Approximate 
Solution for Plane Wave Incidence 

W e  describe next a general focusing theory valid for any axially symmetric 

curvilinear zone plate with a specified profile function. Let us consider the 

half-section geometry of a zone plate illuminated by a plane wave front (Figure 

4.57). All open zone arcs are approximated by their adjacent chords as it is 

shown for the n-th zone. The curvature function may be generalized as y(z);  

P(z,) is an axial running point, illuminated by the total elementary areas 

& = y(z)&(dz/cosa,). The plane wave is traveling in the z direction and 

its electric field at point Q is defined as E ( Q )  = E,exp(-jpz), where 

E,  = E(z = 0). 

According to the diffraction theory, the field produced by the n-th zone 

at point P c a n  be written as 

(4.114) 

Figure 4.57 Geometry for the derivation of an approximate universal axial focusing 

theory. 
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where the inclination factor Z ( G n ,  8,') is approximated here as for the planar 

zone plate, or we assume that Z ( G n ,  8,') E ( 1  +  COS^,)/^, p = 2 r / A ,  and 

~ ( z )  is given by 

T ( Z )  = 4 ( z p  - 2)2 + y2(2) (4.1 15)  

From geometrical considerations the angles 8 n ,  $ n ,  v n ,  and an are 

related as follows 

a n  = @ n -  v n  (4.1 16) 

where 

and 

Also, dzldl= COS a n  = sin v n .  

The total field at point P is found as a surface integral, which after 

integration with respect to the coordinate of rotation 4~ reduces to the following 

linear integral 

where the integration limits zn and zn-1 are calculated by the RPD condition 

2 
numerically or if the approximation 6,,n-1 << ( z p  - zn ,n-1)  is valid, (4.1 18) 

is solved, and 

zn,n-1 = z p -  bn,n-l + d ( n ,  n - l ) A b n , n - l  - b;,n-l (4.119) 

where bn,n-l can be calculated in advance for each specific zone plate profile. 
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The total field at point I )  is created by all open zones, odd or even, by 

The profile curve function y(z )  of the three curved zone plates, discussed 

the sum equation (4.1 13). 

in this section, are given by the following equations: 

For the spherical zone plate 

y(2)  = d m '  

For the paraboloidal zone plate 

(4.120) 

(4.121) 

For the conical zone plate 

y(z )  = z t a n a  (4.122) 

where a = an = const. The planar zone plate can be defined as a limiting case 

of the conical zone plate, where a + v / 2 .  

The universal approximate equation (4.1 17) was applied for numerical 

computations and comparison between the planar, spherical, paraboloidal, and 

conical convex zone plates concerning their axial focusing characteristics. 

Two different examples are considered: 

1. Zone plates with the same number of odd open zones: The calculations 

are performed for n = 1 ,  3, . . . , 13, or for seven open zones. Also, 

all zone plates are chosen with an equal primary focal length 

zp = F = 60 cm. The radius of the spherical zone surface is 

R = 60.1 cm, the focal length of the parabolic zone surface is 

f p =  1 5  cm, and the opening half-angle of the conical zone plate is 

a = v / 4 .  The zone plate was studied on the base of the conical zone 

plate after setting a = 7 / 2  - 0.001. The zone plates are designed for 

A = 3.2 cm. Figure 4.58 shows curves of the focusing gain Gfversus 

axial distancefp, drawn with different lines: solid line corresponds to 

the conical zone plate (Gy = 23.2 dB at fp = 60 cm), dashed line to 

the spherical zone plate (Gy = 23.4 dB at fp = 59 cm), dotted line to 

the paraboloidal zone plate (Gf  = 23.8 dB at fp = 59 cm), and dadot 

line to the plane zone plate (Gf  = 22.3 dB at fp = 60 cm). 

2. Zone plates with same-size apertures (26, = 60 cm): We take the 

same zone plate dimensions and wavelength as those in the previous 
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25 T 

Axial distance, cm 

Figure 4.58 Focusing gain versus axial distance plotted for conical (solid line), spherical 

(dashed line), paraboloidal (dotted line), and planar (dadot line). 

example. Two open zones are taken for the planar zone plate aperture, 

Figure 4.24, while the curved zone plate apertures contain three open 

zones, Figures 4.48(b), 4.50(b), and 4.52(b). Figure 4.59 shows curves 

of the focusing gain Gf versus the axial distance fp’ drawn with 

different lines: The dashed line corresponds to the conical zone plate 

(Gf  = 16.9 dB at fp = 60 cm), the dotted line to the spherical zone 

plate (Gf  = 16.8 dB at& = 58 cm), the dadot line to the paraboloidal 

zone plate (Gy = 17.1 dB at fp = 59 cm), and the solid line to the 

plane zone plate (Gf  = 1 1.9 dB at fp = 60 cm). 

The numerical examples lead to the following basic conclusions: 

30 36 42 48 54 60 66 72 70 84 90 
Axiil distance, cm 

Figure 4.59 Focusing gain versus axial distance plotted for planar (solid line), spherical 

(dotted line), paraboloidal (dadot line), and conical (dotted line). 
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The axial focusing gain of the curved zone plate illuminated by a plane 

wave depends mainly on the number of open zones and a little on 

the zonal surface curvature. 

For same-size apertures the focusing superiority of the curved zone 

plates over the planar ones is very well manifested, and again, there 

is not much difference in focusing gain between the curved zone plates. 
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Appendix 4A= 
Transmission Through Dielectric Plate With Metal Grid 

Here we apply the theory from Section 1.6.2 for the transmission through a 

dielectric plate with a planar metal grid (or a gridded plate), which can be 

examined as a three-layer sandwich (Figure 4A. I ) .  The wave transmission 

through such a structure is accompanied with multiple reflections and transmis- 

sions and higher order spatial modes generated by the discontinuity at the 

conducting grid [70, 751. 
Using a simple - equivalent circuit of the grid it can be treated as a reactive 

two-port element Zg = kjTg connected in parallel to the equivalent transmis- 

sion line. This simplified approach gives reasonably accurate predictions of the 

electromagnetic transmissionlreflection characteristics. 

The inductive grid increases the phase shift of the dielectric plate, and 

in this sense it has dielectric-like behavior. O n  the contrary, the capacitive grid 

reduces the total phase shift, and if the grid phase shift is equal to the dielectric 

phase shift the gridded slab gets compensated, or its resultant phase shift turns 

to zero. 

The equivalent cascaded two-port transmission network of the gridded 

dielectric plate is shown in Figure 4A.2, and in accordance with (1.101) it is 

described by the following matrix equation 
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Figure 4A.1 Dielectric plate with metal grid. (After: [70].) 

Figure 4A.2 Equivalent network of dielectric plate with metal grid. 

(4A. 1) 

Mg21 and Mg22 are the grid matrix elements, and M;1, M;2, M2/1 and M52 

are the total matrix elements. The thickness of the grid is assumed to be zero. 

Tl,  T2, and R1 are the relevant transmission and reflection coefficients, for 

which the following relations are valid: T'l = 1 + R1 and T2 = 1 - RI. 
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According to (1.80) the normalized wave impedances are given by 

(4A. 2)  

Denote with R,, and Rg2 = Rgl the reflection coefficients referred to as 

the grid two-port circuit input and output, respectively, and with T'1 the 
grid's transmission coefficient for a matched output. The coefficients Rgl and 
Tgl can be expressed by 71 and Zg as follows 

-2 
r l l  

Rg1 = --2 
r l l  + 2 % Z g  

(4A. 3) 

Tgl = 1 + Rgl (4A.4) 

and from (1.87)-(1.90) the grid matrix elements are found as 

- 
1 rl l  Mgll = - =1+: 

2zg 

(4A.5) 

(4A. 6) 

(4A.7) 

(4A. 8) 

The total transmission coefficient T o f  the gridded plate is found after 
placing (4A.5-4A.8) into (4A. 1) 

1 
T =  - 

M ;  1 
(4A. 9) 

For 

dielectric 
the specific case of metal grid situated in the middle of a lossless 
plate d2 = dl , q 2  = qp1, and then 
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- 
or for Zg = j X g  it is obtained that 

where 

(4A. 1 1) 

(4A. 12) 

- - 
2 rll 2 rll 

+ j [ ( l  + Rl)sin2p1 - ~ ( 1  + R1)cos2p1 + It1.=- 
2xg xg 

For a given qg, er ,  and plate dimensions, it is not dificult to calculate 

the reflection and transmission coefficients. 

The problem can be posed in a reverse manner: to find out Zg for given 

dielectric plate characteristics and reflection (or transmission) coeficien t. In 

[70] the problem is solved approximately using the transmission line equivalent 

circuit of the gridded plate structure, and the following expression for Zg is 

found 

- 
where fl = r To and p l , 2  = P1,2dl,24-#. 

71 
All equations in Appendix 4A are valid for both polarizations: perpendicu- 

lar and parallel. 
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Fr-esnel Zone Plate Antennas 

5.1 Introduction 

The Fresnel zone plate antenna is essentially a lens or reflector antenna, which 

consists of two basic elements-a transmission or reflection zone plate, respec- 

tively, and a feed. The feed (e.g., open waveguide, horn, dipole) is normally 

placed at the primary focus of the zone plate. The Fresnel zone plate converts 

the spherical wave radiated by the feed into a plane wave (transmitting antenna), 

or the sideways incident plane wave into a spherical wave focused at the 

feed (receiving antenna). Depending on the zone plate construction we may 

distinguish two different types of zone plate antennas: ( 1) the Soret-type antenna 

with a zone plate lens of open and blocked Fresnel zones and (2) the Wood- 

type antenna with a zone plate lens of phase-corrected zones. 

The transmission zone plate antenna originated directly from the optical 

Soret- and Wood-type lenses, and it was hardly by chance that in radiowave 

engineering it was mostly applied to millimeter/submillimeter-wave systems 

[l-71. As a radio antenna element, designed at 1.5 GHz, the reflection zone 

plate was first proposed in 1932 by Clavier and Darbord [8]. About thirty 

years later, Van Buskirk and Hendrix [9, 101 developed and studied an X-band 

reflector antenna, termed by them a folded or grounded zone plate antenna. 

It was then adjusted to the millimeter wave region [4, 7, 11-14]. Nevertheless, 

the applications of the reflection zone plate antennas are still mainly associated 

with the broadcast satellite reception at centimeter waves [ 15-23]. 

Both the transmission and reflection zone plate antennas can be also fed 

in an offset manner. The feed offsetting is usually made in the reflector antennas 

for beam scanning purposes and for avoiding the shading effect of the feed 

[21, 24-29]. 

23 1 
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O n  the base of the curvilinear zone-plate lenses effective and conformal 

antennas have already been studied and applied [21, 24, 30-331. 

The scope of this chapter is the concise presentation of theory, properties, 

and typical applications of axially and offset-fed, transmission and reflector, 

planar, and curved zone plate antennas. 

5.2 Planar Zone Plate Antennas: Transmission Versions 

As the transmission zone plates are diffraction lenses the corresponding zone- 

plate antenna versions are actually lens antennas. Thus, the theoretical and 

design considerations that have to be taken into account are similar to those 

for the classical lens antennas. Here we deal with the far-field scalar/vector 

theory and the basic numerical and measured antenna characteristics: co-polar 

and cross-polar radiation patterns, directive gain, aperture efficiency, cross- 

polarization, and bandwidth of axially-fed, transmission-type planar zone plate 

antennas. 

5.2.1 Soret Zone Plate Antenna 

5.2.1.1 Far-Field Equations Based on Scalar Kirchhoff Diffraction Theory 

Boivin [40] first obtained accurate expressions for the far-field of the half-open 

or  Soret zone plate illuminated by a point source using the Lommel functions. 

While these expressions are completely suitable for optics where the zone plate 

focal length is very big compared to the zone plate diameter, they are not 

precise for the microwave and millimeter-wave region. 

It  is a common practice to express the aperture antenna far field as a 

function of the complex aperture field distribution. If the antenna aperture is 

placed at xyplane (as in Figure 2.22), the elementary Huygens area surrounding 

the running point Q’(x’, y’) can be given as a!S = ak’dy’. For a known aperture 

field E(x’, y’), the far field is easily obtained by the following Fresnel-Kirchhoff 

integral 

where 8 ,  9, and ro are spherical coordinates of a far-field point, and 

p = 27r/A is the free-space phase constant. 
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Using a similar far-field approximation Black and Wiltse [4 1 J expressed 

the far field of the n-th ring-shaped aperture with an axially symmetric field 

function f(r’) in the form 

where a, is the phase, and 6,-1 and 6 ,  are the radii of the n-th Fresnel 

Jo is the zero order Bessel function. 

The aperture distribution depends on the feed radiation pattern. 

point feed source it is easily expressed 

e -jp+T7 

(5.2) 

zone; 

For a 

(5.3) 

where F is the primary zone plate focal length. 

In the case of a directive feed source with a normalized axially symmetric 

radiation pattern similar to that of (3.99) we can modify the feed function in 

the following form 

where p is the power number determining the amplitude feed pattern directivity. 

5.2.1.2 Vectorial Far Field Equations Derived From the Kirchhoff 
Diffraction Theory 

During the period 1991-1994 an extensive study of transmissive zone plate 

antennas for direct broadcast satellite (DBS) reception was carried out at the 

Eindhoven University of Technology by Herben and his graduate students 

Leyten, Baggen, Van Houten, et al. First, a vectorial far field theory for the 

Soret zone plate antenna was completed and published in [ 19, 421. Since this 

theory will, from this point forward, often be used in its original or modified 

form, we shall summarize it in detail. Figure 5.1 illustrates the derivation 

procedure. 

Let the feed gain pattern have an axially symmetric shape and be modeled 

by the cosine equation (3.99). Assume also that beside the axial radiation 

symmetry the antenna feed has Huygens’ source polarization properties and 
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Figure 5.1 Geometry of a Soret zone plate antenna illuminated by an axially symmetric 

feed field. (After: (421.) 

that the field at the zone plate plane xy has an electric vector, expressed as 

1431 

where the amplitude constant C'/. is 

( 5 . 5 )  

and the polarization unit vector i f ($ ,  6)  is written as 

In (5.6) P,  is the feed radiation power, qo  = 1207~,  and fl is the free- 

F ro m geometrical co ns i dc  ra t i o n s 

space wave impedance. 

p ( $ )  = - 
cos II, 

( 5 . 8 )  

Next, let us find equations for the far field starting from the vectorial 

Kirchhoff diffraction integral given by (2.141), for an aperture in an infinite 
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screen (Figure 2.28). For a zone plate illuminated by the electric vector field 

Ef(@, 6, m) expressed by (5 .5 ) ,  (2.141) can be transformed to give [19, 42, 
441. 

where 

(5.10) 

A A  

and the normal unit-vector C is oriented along the z-axis (i.e., tz  = e,). 

for short in the following matrix form 

The unit polarization vector 2f( @, 6) has rectangular coordinates given 

2 
-cos &OS@ - sin 8 

if($, 6) = ( s in tcossg  - cos;)) 

and the vector product t3 x if($, 6) yields 

(cos @ - 1) sin (cos @ 

(5.11) 

(5.12) 

The unit-vector 6,( p, 6)points to the far-field region, and its rectangular 

components are given by 

sin &OS p 

6,.(p, 6) = sin6sinp ( cos6  ) (5.13) 

The vector r’ defines the position of the elementary area &’ point on 

the zone plate plane and can be written as 
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Ftan @cos @ 

The aperture elementary area dli' is easily found 

&d@ 
F2 tan $ 

&' = - 
cos2 rl/ 

(5.14) 

(5.15) 

The scalar product in the phase factor exp(jp( i r  * r')) is given by 

Gr * r' = Fsin .iStan@cos(p - 6) (5.16) 

Afier substituting (5.10-5.16) into (5.9) and carrying out the 

&integration in a closed form, only $-integral remains. Finally, the components 

E0 and E, of the total far-field vector are obtained 

and 

where 

(5.19) 

M(@)  = -jPF/cosrl/ (5.20) 

( I / n  = arctan ($) (5.21) 
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The summation is made over the open Fresnel zones, odd 

The electric far-field vector is expressed as 

( n  = 1,  3, 5, . . .) or even ( n  = 2, 4 ,  6, . . .). 

and the antenna directive gain pattern is calculated by 

(5.24) 

(5.25) 

For the transmitting antenna with an electric field polarized along the 

x-axis, the copolar and cross-polar field components can be defined as follows 

(see Appendix 1A) 

(5.26) 

5.2.1.3 Numerical Results 

The antenna radiation pattern depends on the arrangement of the open zones 

in the Soret zone plate. In principle, the open zones can be odd (positive) or 

even (negative). W e  calculated the gain radiation patterns for the two alternative 

zone dispositions and the results were illustrated graphically (Figure 5.2). With 

a solid line is drawn the copolar or E-plane gain pattern of the Soret zone 

plate antenna with an aperture diameter D = I m  and a focal length 

F = 2m. The antenna is designed for a frequency f = 11.1 GHz. There is a 

notable difference between the two patterns, especially in their sidelobe regions. 

The antenna with odd open zones has a 0.6 dB higher maximum gain, 

while that with even open zones has a narrower beamwidth and lower near 

sidelobes. The positive zone plate has a central zone open that ensures a 

minimum reflection from the plate to the feed, or better feed matching and 

larger frequency bandwidth. 

Figure 5.2 also shows the gain radiation pattern of the same size phase- 

reversal or Wood zone plate antenna (dotted line). I t  has a 5.7 dB higher 
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Figure 5.2 Gain radiation patterns of Soret zone plate antenna, for odd zones open (solid 

line) and even zones open (dashed line). Also shown for comparison is a gain 

pattern of same-size phase-reversal or Wood zone plate antenna (dotted 

line), ( f =  11.1 GHz, D = lm ,  f = 2m). 

maximum gain compared to the gain of the Soret zone plate antenna with 

odd zones open. 

Numerical study on the influence of the total full-wave zone number NI 
on the sidelobe performance of the positive and negative zone plates was 

completed by Guo and Barton [45]. Their analysis was based on the Kirchhoff 

scalar diffraction integral for a feed illumination pattern given by (3.99). Figure 

5.3 shows the normalized radiation patterns of (a) positive and (b) negative 

Soret zone plate antennas for four different values of NI :NI = 3 (solid line), 

NI = 5 (dotted line), NI = 7 (dashed line), and NI = 3 (dadot line). The 

antennas are designed at 12 GHz for an aperture diameter of 0.75m and an 

edge illumination of -1 1 dB. I t  is found that when NI is increased from 3 
to 9 the focal distance to aperture diameter ratio FID is reduced from 1.2 to 

0.27, and the sidelobe level is significantly decreased. This means that with a 

given zone plate diameter and a constant edge amplitude taper, a small FID 

is favorable to obtain low close-in sidelobes. 

If it is not explicitly specified, we normally have in mind Soret zone plate 

antennas with odd open zones. Numerical comparison between two Soret zone 

plate antennas (SZPA-1 and SZPA-2) with odd zones open and a parabolic 

reflector antenna (PRA) designed for the reception of DBS signals is given in 

[25]. The antennas are chosen with approximately the same diameter of l m  

and a focal length of 0.5m for the PRA and SZPA-1, and of 2m for the 

SZPA-2. The antenna design is f = 1 1.1 GHz. Though with the same aperture 

size the two Soret zone plate antennas have very distinct numbers of open 
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Figure 5.3 Far-field patterns for (a) positive and (b) negative Soret zone plate antennas of 
diameter 0.75111. EIL = -11  dB, and varying full-wave Fresnel zone number N I :  
N1 = 3 (solid line), N1 = 5 (dotted line), N1 = 7 (dash line), and NI = 9 (dadot 
line). (After: [451, 0 1992 IEEE.) 

Fresnel zones: eight in the SZPA-1 and three in the SZPA-2, due to the big 
difference in their focal lengths. The feed illumination for all antennas is shaped 
according to (3.99) in a way that the same edge taper of -10 dB is kept. 

The gain radiation patterns of these antennas are plotted in Figure 5.4 
with a solid line for the PRA, a dashed line for SZPA-1, and a dadot line for 
SZPA-2 [19]. The radiation parameters of the three antennas are compared 

C 

-10.. 

-20.. 

-30. : : : : : : : : : + 
0 2 4 6 8 10 12 14 16 18 20 

Angle, degrees 

Figure 5.4 Theoretical gain radiation patterns of PRA (solid line), SZPA-1 (dotted line), 
and SZPA-2 (dashed line). The angle refers to 6 in degrees, p = 0 (E-plane). 

(After: 1191.) 
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in Table 5.1 [19]. The PRA has 9.3 and 6.7 times greater efficiency and 9.8 
and 7.85 dB higher gain, respectively, than the SZPA-1 and SZPA-2. 

The calculated normalized copolar and cross-polar gain patterns of the 
PRA and SZPA-1 are drawn in Figure 5.5 [26]. In principle, the parabolic 
antenna has much better sidelobe and cross-polar performance than the Soret 
zone plate antennas. In particular, the maximum cross-polar level of the studied 
PRA, calculated at 40 = 45 degrees is -54 dB, while that of the Soret zone 
plate antenna-1 is -30 dB. 

However, the SZPA-2's cross polar level is -51 dB, or commensurable 
with that of the PRA. O n  the other hand, the SZPA-2 has very high near 
sidelobe level (-13.8 dB, as seen in Table 5.1). It is interesting to compare 
the copolar radiation patterns of the Soret zone plate antennas for the two 
main planes: p = 0 degrees or E-plane (solid line), and 40 = 90 degrees or 
H-plane (dotted line), drawn in Figure 5.6 [26]. These are theoretical radiation 
patterns of the SZPA- 1. Though the feed pattern is axially symmetric, there 

Table 5.1 
Comparison of Soret Zone Plate Antennas With Parabolic Reflector Antennas 

I 

Aperture 3-dB 
Focal Directive Efficiency Bearnwidth Maximum 

Antenna Distance (rn) Gain (dBi) (%) (degrees) Sidelobe (dB) 

~ PRA 0.5 40.4 81.9 1.9 -24.3 
0.5 30.6 8.8 1.9 -21.3 

32.6 12.2 1.9 -1 3.8 

0 
$j -10 
6 -20 
.$ -30 

-40 
.- N -50 
3 -60 
E -70 
z" -80 z" -80 

-90 
0 4 8 12 16 20 -'OO 4 8 12 16 20 

Angle, degrees Angle, degrees 

(a) (b) 

Figure 5.5 Theoretical normalized copolar (solid line) and cross-polar (dotted line) gain 
patterns of (a) PRA and (b) SZPA-1. (Affec (261.) 
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FZPA with F = 0.5 m - E-plane, phi = 0 degrees 
- - H-plane, phi = 90 degrees 

-404 : : :  : :  : ;  : : : 
0 2 4 6 8 10 12 14 16 18 20 

Angle, degrees 

Figure 5.6 Copolar radiation patterns SZPA-1 for the two main planes: p = 0 degrees or 
E-plane (solid line), and p = 90 degrees or H-plane (dotted line). (After: [261.) 

is some shape difference between the two orthogonal patterns due to the 
diffraction polarization anisotropy. 

The partial and overall aperture efficiencies of the zone plate antenna are 
usually calculated for illumination by the already adopted axially symmetric 
feed pattern. On  the base of antenna efficiency definitions, suitable equations 
were derived in [25, 26, 411. In contrast with the parabolic reflector antenna, 
the most prominent characteristic of the Fresnel zone plate antenna is its phase 
efficiency. 

Figure 5.7 plots the calculated overall and three partial efficiency curves 
(spillover, amplitude-taper, and phase ones) as functions of the primary focal 
distance F, for the Soret zone plate antenna with a diameter D = l m  and 
design frequency of 11.1 GHz [46]. 

As is seen from the efficiency curves, the overall efficiency Y is too small, 
only about 10%. It depends mainly on the product of phase efficiency 
( vph = 40%) and taper or illumination efficiency ( vtp = 25-30%). Because the 
spillover efficiency vp is higher than 90%, it does not significantly influence 
the overall efficiency. 

Looking at curves in Figure 5.7 local extremes of the efficiency curves 
are detected. To better illustrate them the overall efficiency graph v(F) is 
drawn magnified in Figure 5.8. It is seen that efficiency maxima are obtained 
for specific values of the focal distance, corresponding to some optimum power 
numbers m of the feed radiation pattern [46]. 

Actually, maximum efficiency is found for all cases in which the outer 
aperture zone is open, so that the number of the closed Fresnel zones is one 
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..................................................................................... 
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Spillover efficiency 

80 

Figure 5.7 Efficiency curves of Soret zone plate antenna versus focal distance for 

aperture diameter of l m  and design frequency of 11.1 GHz. Curve traces: Solid 

line represents overall efficiency; dashed line represents phase efficiency; 

dadot line represents taper efficiency; and dotted line represents spillover 

efficiency. (After: 1461.1 

%!4 0,s 0,8 i 1:2 1:4 1:s 1I8 2 

Focal distance, m 

Figure 5.8 Magnified overall efficiency curve versus focal distance. (After: [46].) 

less than the open zone number. In contrast, minimum efficiency and gain 

values occur at some focal distances for which the outer aperture zone is 

blocked. The theoretical curves of the total antenna gain G, feed gain Gfi and 

additional gain G a d  = G -  Gfof the Soret zone plate antenna, designed for 
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f= 11.1 GHz, D = 1, and EIL = -10 dB, are plotted versus the focal length 

F i n  Figure 5.9, with solid, dotted, and dashed lines, correspondingly [26]. 

Figure 5.10 shows the antenna gain (solid line) and the aperture efficiency 

(dashed line), drawn as functions of the edge illumination level (EIL) [47]. 

The antenna is designed for an aperture diameter D = 0.9m, a focal distance 

of F =  0.6m, and a frequency of f=  10 GHz. The maximum antenna gain 

40 t Gain of antenna "1- = 6.4 m = 14 

30 6 
m = 38.4 m 5 82 

54 
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

Focal distance, m 

Figure 5.9 Gain versus focal length of Soret zone plate antenna with aperture diameter 

of l m  and design frequency of 11.1 GHz: Total antenna gain (solid line), feed 

gain (dotted line), and additional gain (dashed line). (After: [26].) 

30 t 

0 -5 -1 0 -1 5 -20 

EIL, dB 

Figure 5.10 Gain (solid line) and aperture efficiency (dashed line) of Soret zone plate 

antenna as function of EIL, for D = 0.9m, F =  0.6m, and f =  10 GHz. (After: 

[47], 0 1994 IEEE.) 
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appears when the EIL is within -9 + -12 dB. I t  differs from the optimum 

EIL for the parabolic reflector antenna due to the distinction in the free-space 

loss L and imperfect phase-front transformation by the zone plate antenna. 

The next numerical analysis is made for four Soret zone plate antenna 

models with different zone numbers N = 3, 5 ,  7, and 9, all designed for a 

frequency f= 1 1.1 dB, focal distance F = 0.54m) and EIL = -1 0 dB. Figure 

5.1 1 shows (a) the gain feed patterns calculated according to (3.99), and (b) 
the antenna gain patterns of antennas [48].  

Suppose that the feed of the same antenna models is moved along the 

axis from F = 15A to F = 50A. For the design focal length F = 20A each model 

has a maximum gain while with the change of the focal length other extremes 

occur (Figure 5.12). 

If the feed of the antenna model with seven Fresnel zones is located at 

the focal point Flma = 36A) which corresponds to the first secondary maximum 

on the right, the antenna radiation pattern takes the form shown in Figure 

5.13(a). The main lobe is again pointing to the zero direction, but the gain 

is about 11.5 dB less, and the sidelobes are very high compared to the antenna 

with a feed at the primary focal point. 

Another interesting numerical simulation takes place when the feed of 

the same SZPA is put at the axial point &,in = 29A, which corresponds to 

the first right minimum. Now the main lobe of the gain pattern becomes split, 

with a minimum at zero degrees as seen from Figure 5.13(b). Such a pattern 
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Figure511 (a)  Feed radiation patterns and (b) antenna radiation patterns of four designs 

with three (solid line), five (dashed line), seven (dotted line), and nine (dadot 

line) half-wave Fresnel zones ( f = 11.1 d6, f = 20A = 0.54m, EIL = -10 dB, 

cp = 45 degrees) [48]. 
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Figure 5.12 Gain patterns of four antenna models versus variation of feed position for the 

four antenna models depicted in Figure 5.11 [48]. 
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(a) (b) 

Figure 5.13 Radiation pattern of Soret zone plate antenna with seven (dotted line) Fresnel 

zones in case of feed disposition at: (a) second right maximum (Figure 5.11, 

Flmax = 36A) and (b) first right minimum (Figure 5.11, Fimin = 29A) [481. 

shape might be useful for radio tracking purposes. Note that the minimum 

becomes deeper when the zone number increases. 

The gain of Soret zone plate antenna can be raised by use of a specially 

shaped feed radiation pattern having deep minima in direction to the closed 

zones. In fact, this is an amplitude instead of phase correction. 

In [49] the amplitude-correction technique is applied to a plate comprising 

three zones only. The feed radiation pattern is modeled by the following 

function 
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(5.28) 

where A is calculated by the condition Gf;(+)sin+d+ = 2, and 

pi = A 1 IAj is a ratio between the field maximum A1 in the first (central) open 

zone and the field maximum Ai in the i-th open zone. 

The numerical analysis of a three-zone amplitude-corrected zone plate 

was completed for a frequency of 11.1 GHz and focal distance of 0.5m. The 

diameter of the third Fresnel zone, which is also an equivalent diameter of the 

zone plate is found to be 0.41m. The feed gain pattern calculated by (5.28), 

for pi = 3.1 and EIL = -10 dB, is drawn by a solid line in Figure 5.14(a). 

Also in Figure 5.14(a), the feed gain pattern calculated by (3.99) is plotted 

(dashed line) for an EIL = -10 dB. Figure 5.14(b) shows the copolar and 

cross-polar gain patterns for the two feed illumination functions. Again a solid 

line is used for the amplitude-corrected zone plate antenna and a dashed line 

for the antenna with an ordinary feed pattern. The comparison between the 

radiation characteristics of the two antenna versions shows that the amplitude 

correction technique leads to a gain increase of 2 dB. O n  the other hand, the 

maximum cross-polar level is worsened by 4 dB. 
Next we examine the frequency bandwidth of the Soret zone plate antenna 

designed at 30 GHz for an edge illumination level of -11 dB and a focal 

length of 26.4 cm. Figure 5.15 plots the (a) computed gain and (b) eficiency 

as functions of frequency for SZP antennas of different zone number N (open 
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Figure 5.14 Gain patterns for usual (dash line) and amplitude-corrected (solid line) three 

zone plate antenna: (a) feed gain patterns and (b) antenna gain patterns. 

(After: 1491.) 
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Figure 5.15 (a) Gain and (b) efficiency versus frequency of Soret zone plate antenna for 

N = 8 (solid line), N = 12 (dashed line), and N = 16 (dotted line). 

and blocked): N = 8 (solid line), N = 12 (dashed line), and N = 16 (dotted 

line). The antenna size and parameters are given in more detail in Table 5.2. 

From Figure 5.15 and Table 5.2 we may conclude that for a constant 

focal length and EIL the increase in the zone number (or aperture diameter) 

leads to a growth in antenna gain and to a reduction of its aperture efficiency 

and bandwidth. 

Because the zone plate is acting as a diffraction array of discrete elements 

(the zone rings) with almost the same areas, its interference radiation pattern 

Table 5.2 
Antenna Diameter and Radiation Parameters 

Soret Zone Plate Aperture Directive Aperture 3-dB Gain 
Antenna With: Diameter (cm) Gain (dB) Efficiency (%) Bandwidth (%) 

18 zones 30 30.1 11.5 19.5 
12 zones 37.5 31.5 10.2 13.3 

16 zones 44.6 32.6 9.5 10.7 i 
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has a periodical spectral behavior. This phenomenon is illustrated in Figure 

5.16 for a Soret zone plate antenna designed for a frequency of 

fo = 30 GHz, a focal length of F =  264 mm,  an aperture diameter of 

D = 301.5 mm,  and EIL = -10 dB. In Figure 5.16 the curves correspond to 

the gain (solid line) and aperture efficiency (dashed line) plotted as functions 

of the frequency. 

Figure 5.16 confirms the expected frequency periodicity in the gain and 

efficiency curves. Equal gain and much different efficiency maxima occur at 

frequencies 30, 90, or 150 GHz, or the Soret zone plate antenna behaves as 

a multiple or frequency-selective antenna with a multiple frequency ratio 

1 :3:9, . . , . The  latter is equal to the multiple focal-length ratio characterizing 

focusing action of the SZP along its axis (see for comparison Figure 4.16). 

The  antenna aperture efficiency is 1 1.5% ar the design frequency of 30 GHz 

32 T 
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Frequency, GHz 

Frequency, GHz 
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Figure 5.16 Gain and aperture efficiency of Soret zone plate antenna plotted versus 

frequency ( f ,  = 30 GHz, F = 264 mm, 0 = 301.5 rnm, EIL = -10 dB). 
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(a typical efficiency value for Soret zone plate antenna), only 1.28% at 

30 GHz, and 0.46% at 150 GHz.  

Zhang and others (see [ 501 and Selected Bibliography) proposed varieties 

of the classical Soret zone plate-a double-layer and multiple-layer one, which 

have much better focusing efficiency. The  double-layer zone plate was analyzed 

as a receiving antenna using the spectral domain technique (SDT) based on 

the vector Hankel transform. 

At the primary focus a gain growth of 2 + 2.5 dB over the gain of the 

single-layer zone plate was found in a 30% frequency bandwidth, for a distance 

between the two layers of about (2m + l ) A / 4 ,  m = 0, 1 ,  2. However, the 

double-layer configuration has a relatively high back-lobe level (BLL) of 

-7 dB compared to the main lobe maximum. These numerical results were 

verified experimentally. 

A four-layer zone plate was also developed and studied by means of the 

same SDT. As a result of a layer positioning optimization, the four-layer zone 

plate was designed with a gain increase of 3.1 dB over the single-layer zone 

plate. Besides, the BLL was decreased to -14 dB. 

5.2.1.4 Some Experimental Designs and Measurements 

Experimental verification of the radiation characteristics calculated on the basis 

of the Kirchhoff diffraction integral was reported by Hull in 1949 [ 5  11, Sanyal 

and Singh in 1368 [52]. 

Van Buskirk and Hendrix from the Michelson Laboratory, U.S. Naval 

Ordnance Test Station were among the pioneers who studied the Soret zone 

plate as a radio-frequency lens [9]. Using the Huygens’ principle they derived 

simple gain equations for the zone plate with odd or even zones open. They 

pointed out that any metallic zone plate had a primary foci for transmission 

and for reflection. The  latter corresponds to the first virtual focus in the optical 

zone plate. 

O n  the basis of this zone plate effect they suggested two practical radio- 

frequency antenna constructions of doubled aperture efficiency: 

A zone plate antenna with two feeds, the first put at the focus for 

A zone plate with a ground plane or so-called folded zone plate 

transmission and the second at the focus for reflection; 

[3, 101. 

The authors designed and studied an experimentally usual X-band zone 

plate with one, two, and three open Fresnel zones. Two types of feeds, a half- 

wave dipole and a turnstile, were used. 
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Figure 5.17 plots the measured 0-degree + 360-degree radiation pattern 

of the zone plate of 16.6 wavelengths in diameter and three zones open. The 

pattern consists of a forward (0-degree - 180-degree) or transmission and of 

a backward (1 80-degree - 360-degree) or reflection fragments with almost 

equal maxima [9]. 

The 3-dB width of each beam is about 4 degrees, which is nearly identical 

to that of a reflector parabolic antenna of the same diameter. However, the 

gain of the zone plate is 15 + 20 dB down. The authors stress that where a 

narrow beamwidth is required and the overall gain can be increased by active 

amplification, it is feasible to use the zone plate. This would be valid if there 

is no special signal to noise requirement in the radio wave system because the 

pattern side lobes of the usual half-open zone plate antenna are too high. 

Ye and Zhang [47] give a comparison between the theoretical (solid line) 

and experimental (dotted line) (a) E-plane and (b) H-plane radiation patterns 

of the Soret zone plate antenna shown in Figure 5.18. The calculated curves 

are obtained through the Kirchhoff integral method. The zone plate is designed 

at a frequency of 9,375 MHz as a 50 cm x 50 cm square transmissive structure 

with four full-wave zones, a focal distance F = 20 cm, and EIL = -10.5 dB. 
The antenna feed is an E-plane sectoral horn, whose average of E- and H-plane 

phase centers coincides with the primary focus. 

The comparison between the theoretical and experimental patterns shows 

that the main lobes coincide very well and that the near sidelobes are close. 

As the authors state, a bigger difference arises mainly in the more distant sidelobe 

regions because (1) the Kirchhoff diffraction theory neglects the contribution of 

the edge diffraction from the zones that become important for the zone width 
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Figure 5.17 Zone-plate patterns showing transmission and reflection maxima. (After: [9].) 
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E-plane 

Angle, degrees Angle, degrees 

Figure 5.18 Radiation theoretical (solid lines) and experimental patterns (dotted line) of 

Soret zone plate antenna fed by E-plane sectoral horn: (a) E-plane patterns 

and (b) H-plane patterns. (After: [471, 0 1994 IEEE.) 

less than one wavelength, (2) the incomplete zones at the four corners of the 

square plate are not taken into account in numerical calculations, and (3) 
measurement errors. 

More exact electromagnetic modeling of Soret zone plate antenna by 

combination of the Kirchhoff diffraction theory, for the main lobe region, and 

the uniform theory of diffraction (UTD) [53], for the sidelobes, leads to much 

closer theoretical and experimental results [25,46, 53-54]. This is well validated 

in [59] for an X-band SZPA with an aperture diameter D = 1.12r-n and focal 

distance F = 0.71 m. The antenna is designed at 11.5 GHz and fed by a dual- 

mode conical Potter horn. In Figure 5.19, the measured E-plane field pattern 

(solid line) is compared with the computed one (dotted line). The latter is 

based on the UTD supplemented with the Kirchhoff diffraction theory for 

obtaining the pattern in the main lobe region [ S S ] .  

In [56] the theoretical gain versus frequency behavior is checked experi- 

mentally for the Soret zone plate antenna with an aperture diameter of 1.12m 

and a focal length of 0.71m. The antenna is designed at a frequency of 

11.5 GHz. Figure 5.20 shows the theoretical (solid line) and measured (dots) 

antenna gain as a function of frequency. It is evident that the experimental 

gain values are scattered close to the computed graph [56]. 

For a strong DBS signal even the low effective Soret zone plate antenna can 

be successfully applied for normal TV and radio program reception. Such lens 

antennas were designed and manufactured in the late 1980s by the Mawzones 

Ltd., UK. Mawzones Ltd. proposed a zone-plate matrix, a modular, flush- 

mounted flat reflector plate, which permits the construction of large, high-gain 
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Figure 5.19 Experimental (solid line) and theoretical (dotted line) €-plane field pattern of 

Soret zone plate antenna with a diameter of 1.12m and a focal distance of 
0.71111 at 11.5 GHz. (After: 1551.1 
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Figure 5.20 Gain of Soret zone plate antenna as function of frequency: theoretical (solid 
line) and measured (dots). (After: 1561.) 

microwave antennas on the flat roofs of buildings without raising environmental 
objections [57]. Very large UHF modular zone plate antennas could be easily 
transported and erected in remote areas. 

A metallic zone plate using a planar lens configuration was constructed 
for use in the aperture of an X-band and H-plane sectoral horn [58] .  The 
dimensions of the sectoral horn aperture with the zone plate is 
9.13A0 x 0.852/\,. Here, A, is the free space wavelength at the zone plate 
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The Mawzones Matrix 

Figure 5.21 Mawzones modular matrix for constuction of very large zone plate reflectors 

on flat roofs and remote areas. (After: [57], 0 Mawzones.) 

design frequency. The focal length of the zone plate is 6.84A0. Quarter-wave 

phase correction at a depth of 1.56A0 is achieved by placing machined metal 

steps into the sectoral horn. In production, these steps would be machined 

from the body of the horn. The step for the 90 degree correction zone is 

0.894A wide and 0.192A high. For the 180 degree zone, the step is 0.708A 

wide and 0.276A high, and for the 270 degree zone, the step is 0.61 5 A  wide 

and 0.319A0 high. The 0 degree zones do not require correction steps. 

The 3 dB gain bandwidth of the zone plate is around 9.5%. The measured 

reflection coefficient of the horn with the zone plate in place is around 

-15 dB. The close in sidelobes is about 13 dB down as expected for the 

uniform illumination of a rectangular aperture. The resulting gain is around 

1.2 dB below the gain achieved using a classical dielectric lens in the same 

sectoral horn. The 3 dB beamwidth ranges from 6 to 7 degrees over the band. 

This value is about 0.3 degrees wider than the dielectric lens case and is 

consistent with the measured gain numbers, which are about 0.3 dB below 

prediction. 

5.2.2 Phase-Corrected (Wood-Type) Zone Plate Antennas 

5.2.2.1 Double-Dielectric Phase-Reversal Zone Plate Antenna 

W e  will extend here the design considerations for the double-dielectric zone 

plate [59, 601 discussed in Section 4.3.2.4 and will apply them to a numerical 

analysis and optimization of the corresponding transmissive zone plate antenna. 

The Soret zone plate sketched in Figure 5.1 can be modified into a phase- 

reversal one simply by replacing the metal/absorbing rings by phase-reversing 

dielectric or dielectric-like rings. As a result, each full-wave zone will consist 
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of a free-space inner half-wave zone (erl = I ) ,  and a solid dielectric ring with 

6,. = E,.Z = 4 filling the outer half-wave zone. In this case, the zone plate has 

a half-wave thickness that is easily checked by (4.74). 
Another, more general configuration can be built by using two solid 

dielectrics of relative permittivities €,.I and er2. Given the two permittivities 

and the wavelength the zone plate thickness d can be calculated by (4.78) or 

d = A/2(& - G). Alternatively, given the one permittivity, say €,.I, it 

is practical to find the optimum plate thickness d a n d  the second permittivity 

E r - 2 .  

For a normal incidence, the dielectric plate with a permittivity €,.I becomes 

fully transparent for 

(5.29) 

where k = 1, 2, 3, . . . accounts for the number of standing half-waves in the 

dielectric medium. 

From (5.29) it is obtained that de,.I = kA/2d. Placing the latter expres- 

sion into (4.78) gives 

(k  + 1)A 

d =  2& 
(5.30) 

From (5.29) and (5.30) a relationship between er2 and E , ]  is easily found 

[481 

(5.3 1) 

Let us next analyze the aperture field distribution and far-field equations 

of the phase-reversal zone plate. Suppose again a feed of axially symmetric 

pattern modeled by (3.99). The incident free-space ray p ( $ )  associated with 

the feed spherical wave extends through the phase-correcting dielectric ring as 

a refraction ray. The focal distance-to-aperture diameter ratio is assumed to 

be large enough that we can treat the incident spherical wave as a local plane 

wave. Ray tracing through the Fresnel zone plate comprising solid-dielectric 

and air-transparent zones is illustrated in Figure 5.22. 

The transmission through the dielectric ring for the linear orthogonal 

polarizations is characterized by the multiple complex transmission coefficients: 
7-11 = I 7-11 I J4 = - TM (for parallel or magnetic polarization) and 
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I' II' 

Figure 5.22 Ray tracing through solid-dielectriclair-transparent zone plate. (Source: [651.) 

T' = I T1( d4' TE (for perpendicular or electric polarization). The vectorial 

field at the input plane I -  I' (point Q') is given by (5.5).  At point Q' in 

the output or aperture plane I I -  ZI' the refracted ray gives rise to an electric 

field E d ( @ ,  6, m), which can be expressed as [25, 61-63] 

or 

where 

(5.33) 

If the multiple reflection transmission coefficient of a dielectric ring is 

approximately assumed to be the same as that of the infinite dielectric plate, 

it is computed according to (1.73), which may be rewritten in the form 
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(5.35) 

where R'I and R: are calculated by (1.44) and (1.48), respectively. For a 

dielectric medium, these equations are easily simplified to become 

(5.36) 

and 

2 
, cos+ - dEr - sin + 

Rf = 

cos+ + &3&+ 
(5.37) 

The phase factors, p a ,  p d ,  and p t  are given by (1.70), (1.71), and (1.73), 

correspondingly. 

The dielectric phase shifters are designed by (5.35-5.37) for 

@ = t,br = 0 degrees. If in addition, the zone plate thickness is chosen equal to 

A / 2 ,  the transmission coefficient formula (5.35) is greatly simplified, or 

(5.38) 

The phase difference between two adjacent Fresnel zones or subzones is 

For a chosen E r , j ,  the solution of this equation gives c r , i - l .  Equation 

The amplitude divergence factor 1 lp"( +) may be approximated as [66] 

(5.31) is a special case of (5.39). 

(5.40) 
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Putting p ( @ )  and p"(@) from (5.8) and (5.40), respectively, into (5.32) 
we find 

Equation (5.41) gives the vector field distribution over the dielectric- 

zone apertures. I t  accounts for the amplitude, phase, and polarization changes 

due to the multiple transmission (refraction) process. 

Referring to Figure 5.21 and (5.2) a similar expression can be written 

for the vector field over the air-zone apertures 

For the far-field vector radiated by a dielectric ring aperture (Figure 5.1)  
we may write an equation similar to (5.9), or 

The vector product fi x Pd(@, 6) projected in a rectangular coordinate 

system can be represented in matrix form as 

(5.44) 

The unit-vector Sr (4p ,  a), the vector r', the aperture elementary surface 

After setting 

dS' and the phase factor exp(j'8, r') are the same as in Section 5.2.1.2. 

Nd(6, @) = ksin0 (5.46) 
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(5.47) 

and performing (-integration in a closed form, the spherical components of 

the far-field vector E d ( q ,  8) due to all dielectric-zone apertures are 

n J @ " - ,  

(5.48) 

where 

and 

The far-field components radiated by the air-transparent apertures are 

Finally, the total far-field scalar components Ea(p, 8) and E,(p, 8) 
given by (5.17-5.23), with only F replaced by F + d. 

are found 

or in a vectorial form, the far-field intensity can be written as follows 
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5.2.2.2 Four-Dielectric Quarter-Wave Zone Plate Antenna 

Consider a transmissive Fresnel zone plate antenna comprising the phase- 

corrected quarter-wave zone plate described in Section 4.3.2.4. In Figure 5.23, 
the geometry of such a four-dielectric zone plate antenna is illustrated [61, 62, 
64, 651. The 8- and p-components of the far field of the quarter-wave zone 

plate antenna can be calculated also by means of (5.52) and (5.53), respectively. 

For the case of odd zones open the zone number n runs as follows: 

n = 0, 4,  8 ,  . . . for the first quarter-wave subzones, n = 1, 5, 9, . . . for the 

second quarter-wave subzones, n = 2,  6,  10, . . . for the third quarter-wave 

subzones, and n = 3, 7 ,  1 1 ,  . . . for the fourth quarter-wave subzones. 

5.2.2.3 Numerical Results for  Quarter-Wave and Phase-Reversal 
Dielectric Zone Plate Antennas 

As a first illustration, we shall examine numerically a quarter-wave and phase- 

reversal zone plate antenna, with an ideal phase shifting element. In this case, 

the total far field of the quarter-wave zone plate antenna, for example, can be 

expressed as a sum of the partial fields radiated by all quarter-wave odd subzones, 

or 
3 n r  

where E ,  is the field created by the n-th quarter-wave subzone, with 

n = n l = 1 , 5  , . . . ,  n = n 2 = 2 , 6  , . . . ,  n = n 3 = 3 , 7  , . . . ,  and 

n = 724 = 4,  8 , .  . . . 

Figure 5.23 Geometry of four-dielectric quarter-wave zone plate antenna. 
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'I'he real phase-corrected zone plate antennas differ from the ideal ones. 

l ' hc  real zone phase shifters do not produce the exact phase-difference ratio 

0 : r / 2  : r: 3 r / 2 ,  for the quarter-wave antenna, and 0 : r, for the phase-reversal 

an ten n ~ i .  

Figure 5.24 shows the gain rridiation piitterns of  (a) phase-reversal and 

(b) quarter-wave zone-plate antennas, ideal (dashed line), and real (solid line). 

The  ideal pattern curves were taken from [ 4 6 ] ,  and the real patterns were 

computed by the author. The  computations were based on the far-field Kirch- 

hoff diffraction equations given in Sections 5.2.1 .2, 5.2.2.1, and 5.2.2.2 for 

the following design parameters: f '=  1 1 . 1  (;HI, I )  = 1111, EII< = -1 1 ciH, and 

I=  = 0.58m and 0.52117 for the phase-reversal and the quarter-wave, rcspectivel>~. 
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Figure 5.24 Gain patterns of (a) phase-reversal and (b)  quarter-wave zone plate 

antennas, with ideal (dashed line) and real (solid line). Ideal curves are 

redrawn from (461. 
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The loss tangent of the real-dielectric zone plate antenna was chosen as 0.001. 
Table 5.3 gives the values of antenna gain and efficiency, for the ideal and 
real phase-reversal and quarter-wave zone plate antennas. 

As seen in Figure 5.24 and Table 5.3 the parameters of the ideal and 
real phase-reversal antenna are very close (AG = Gihul - G,i = 0.3 dB) 
because the half-wave-in-thickness dielectric rings have a permittivity E ,  = 4 
and behave as ideal T phase-shifiers. Therefore, the difference in gain AG is 
due to the losses only in the real plate. 

It is not the same for the quarter-wave antenna, where the phase-rin s 
with E ,  = 6.25 and 2.25 have an amplitude-transmission coefficient I T"' E, 
less than 1. This leads to a much bigger gain difference AG equal to 0.9. 

Next we make a numerical comparison between three antenna models- 
Soret-type, phase-reversal, and quarter-wave-for design parameters 
fo = 30 GHz, F =  150 mm, D = 180 mm, FID = 1.2, EIL = -10 dB, and 
N = 10. If the zone plate thickness is equal to A/2, and two of the dielectrics 
are taken with permittivities equal to 1 (free space) and 4 (ideal phase-reversing 
plate), the other two permittivities are easily calculated by (5.39). Note that 
four different sequences of permittivities are possible for the quarter-wave zone 
plate (antenna models Al, A2, A3, and A4), and two for the phase-reversal 
zone plate (A5 and A6). The values of the relative permittivities and calculated 
antenna parameters-directive gain, maximum sidelobe level (SLL), and aper- 
ture efficiency-are given in Table 5.4. All dielectrics are taken with a loss 
tangent equal to 0.001. For comparison, Table 5.4 also adds the same parameters 
of the Soret zone plate antenna (A7) with odd zones open. Figure 5.25 plots 
the normalized radiation patterns of the three antenna models, A3, A5, and 
A7. 

From Table 5.3 and Figure 5.25, we may conclude the following: 

There is no substantial difference between the parameters of the four 
quarter-wave antenna models (Al-A4). The A3 has slightly better gain 
(32.4 dB) and efficiency (53.3%), while A4 holds a lower sidelobe 
level (-28.4 dB). A more precise comparison between the four antenna 

Table 5.3 
Gain and Efficiency of Ideal and Real Fresnel Zone Plate Antennas 

Ideal Quarter- Ideal Phase- Real Quarter- Real Phase. 
Antennas Parameters Wave Reversal Wave Reversal 

Antenna gain (dBI 39.1 36.5 38.2 
Aperture efficiency (%) 60 33.3 44.5 

36.2 
28 
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Table 5.4 

Comparison Between Quarter-Wave, Phase-Reversal, and Soret-Type Antennas 

Zone Plate Antenna Models Gain (dB) Max. SLL (dB) Efficiency (O/O) 

Quarter-wave A l :  E ,  = 1, 6.25, 4, 2.25 32.2 -26 51 
(Lens I in Figure 5.25) 

A2: E ,  = 6.25, 4, 2.25, 1 32 -24 48.7 

A41 er = 2.25, 1, 6.25, 4 32.3 -28.4 52.6 

Phase-reversal A5: E ,  = 1, 4 30.3 -19.7 33 
A6: E ,  = 4, 1 30.2 -19.5 32 

A3: er = 4, 2.25, 1, 6.25 32.4 -27.8 53.3 

Soret-type A7: odd zones open 26.1 -13.7 12.6 

0 4 8 12 16 20 24 28 32 36 40 

Angle, degrees 

Figure 5.25 Radiation patterns of quarter-wave (A3, solid line), phase-reversal (A5, 

dashed line), and Soret-type (A3, dotted line) zone plate antennas 

( f o  = 30 GHz, F =  150 mm, D = 180 mm, FID = 1.2, EIL = -10 dB, N = 10). 

configurations requires knowledge about their polarization and feed- 

match i n g pro pert i es . 

Similar conclusions are valid for the two phase-reversal antenna models 

(A5 and A6). In comparison with the quarter-wave versions, phase- 

reversal ones have at least a 2 dR lower gain and a much higher sidelobe 

level. 

T h e  radiation patterns of all antenna models listed in Table 5.4 have 

almost the same beamwidth of about 3.8 degrees + 4 degrees. 
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The half-wave-in-thickness plate-type phase shifters made of dielectrics 

with relative permittivities of 4 and 2.25 have amplitude-transmission coeffi- 

cients very near to one, while for a permittivity value of 6.25 the dielectric 

phase-shifter transmits only about 50% of the normally incident power. This 

undesirable effect decreases gain of the quarter-wave zone plate antenna and 

can be removed by replacing all 6.25-permittivity rings with multilayer dielectric 

structures. A three-layer, B-type sandwich plate according to the radome wall 

classification (lens I1 in Figure 5.26), with two skin layers ( E ,  = 2.25, 

d,  = 2.4 mm) and one core layer ( E ,  = 10 and d ,  = 7.6 mm), has an ampli- 

tude-transmission coefficient very close to one and a phase-transmission coeffi- 

cient of nearly 90 degrees at all angles of incidence [64]. 

The calculations proved that for design parameters fo = 30 GHz, 

F = 150 mm, D = 180 mm, FID = 1.2, EIL = -10 dB, and N = 10, theaper- 

ture efficiency of the quarter-wave antenna with lens I1 almost reached 60%. 

Figure 5.26 Three types of planar dielectric lenses of quarter-wave configuration: lens I 

(with air and solid rings), lens II (with air, solid, and sandwich-type rings), 

and lens Ill (with air and sandwich-type rings). (After: [64], 0 1996 IEEE.) 
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Lens I1 is a modification of lens I that is used in the antenna model A l .  As 

Table 5.3 shows, the antenna A1 has around a 10% smaller aperture efficiency. 

Another, more practical and technological B-type sandwich zone plate is 

sketched in Figure 5.26 and marked as lens 111. T h e  lens is packed by two 

thin disk-plate skin layers of thickness d,/2 = 1.2 m m  and a permittivity of 

2.25 each. T h e  lens core rings are equal in thickness (d, = 7.6 mm) but have 

different permittivities E,.  = I ,  10, 5.8, and 2.25 as shown in lens 111. The 
antenna made of sandwich-type lens 111 has an efficiency of about 55%. In 

addition, it has a smaller weight, higher strength, and wider frequency band- 

width compared to the antennas made of lenses I and 11. 
We also examined numerically another model of phase-reversal antenna 

that comprises only solid dielectric rings-the double-ring or Wood-Wiltse 

zone-plate [59]. If we chose a value of 2.25 for the first ring permittivity e r ] ,  

the permittivity er2 and the plate thickness d of the second ring is easily 

calculated from (5.31). 

Figure 5.27 plots the theoretical antenna gain as a function of the second 

permittivity ~ , . 2 ,  for E,.]  = 2.25 and zone number Nequal to three (solid line), 

five (dashed line), and seven (dotted line). The  other design parameters are: 

f= 1 l.GHz, F = 0.54m, and EIL = -10 dB [48] .  

There are maxima in the gain curves for k = 1 ,  2, 3 ,  . . . . For k = 1 ,  

d = 9 mm,  and ~ , 2  = 9, which corresponds to the last, broadest gain maxima 

shown in Figure 5.27. With these optimum zone plats parameters the gain 

radiation patterns of three- (solid line), five- (dashed line), and seven- (dotted 

line) phase-reversal zone plate antennas were calculated and plotted in Figure 

5.28: (a) feed patterns and (b) antenna patterns. T h e  corresponding aperture 

diameters of these antennas are 0.42m, 0.54m, and 0.64m. 
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Relative permittivity, 

Figure 5.27 Gain as function of second permittivity er2, for e,.1 = 2.25 and N = 3 (solid 

line), 5 (dashed line), and 7 (dotted line). (Source: [48].) 
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Figure5.28 (a) Feed gain patterns and (b) antenna gain patterns for three antenna zone 

plate configurations with three zones (solid line), five zones (dashed line), 

and seven zones (dotted line). (Source: [48].) 

The  gain and efficiency periodicity of the phase-reversal and quarter- 

wave zone plate antennas within a broad frequency band was studied for design 

parametersf= 30 GHz,  F = 264 mm, D = 301.5 mm,  and EIL = -10 dB, o r  

the same as for the Soret zone plate antenna described at the end of Section 

5.2.1.3. The  frequency curves of the (a) gain and (b) efficiency are drawn in 

Figure 5.29, with solid lines for the phase-reversal antenna and dashed lines 

for the quarter-wave antenna. Almost equal gain and different efficiency maxima 

occur at frequencies 30, 90, 150, and so on gigahertz for the phase-reversal 

zone plate antennas, or the antenna multiple-frequency ratio is again 

1:3:9, . . . as in the case of Soret zone plate antennas. The  efficiency at  

30 G H z  is 38.2%, and for 90 G H z  only 4.1%. 
Quite different is the frequency behavior of the quarter-wave zone plate 

antenna, where the first group of three gain maxima take place at 30 G H z  

(37.3 dB), 60 G H z  (41.3 dB), and 90 G H z  (37.2 dB). This determines a local 

multiple-frequency ratio 1 :2:3. T h e  next group of similar three maxima happen 

at 150 GHz,  180 G H z  (40.1 dB), and 210 GHz,  or the next local multiple 

ratio is 5:6:7. T h e  antenna has an efficiency of about 60% at 30 G H z  and of 

37.3% at 60 GHz.  

5.2.2.4 Some Designs and Applications of Transmission Phase- 
Corrected Zone Plates and Antennas 

In 1958 Brandt and others [66] used two equal-in-size zone plates of 5-6 
Fresnel zones each as transmitting and receiving lens antennas A and B for 
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Figure 5.29 (a )  Gain and (b)  efficiency versus frequency of phase-reversal (solid line) and 

quarter-wave (dashed line), for f = 30 GHz, F =  264 mm, D = 301.5 mm, and 

E l l  = -10 dB. 

~ h i c \ ~ i n g  a plane uniform field i n  the dielectric measurement system shown 

in  Figure 5.30. 

I n  196 1 Sobel, Wcnnvorrh, and Wilrsc reported about the feasibility 

of using riiilliriietcr-~vavt. phase-corrected zone plates as antennas in wireless 

transmission systems :ind intereferonietcr lenses [ 1 1 .  Several zone plates were 

ni :ic h i n c d fro m p o I ?rs t y r c n c s h ce t s t o c k ;I n d success fu I 1 y t cs red a t fr eq Lie n c i es 

of  140, 2 10, and 280 (;Hz. '1'0 hcilitate the development of millimeter-wave 

components and to  permit iiieasiirenicnts of different properties of materials 

at  frequencies froni 1 OO to  300 (;Hz, a modified version of the Michelson 

interferometcr was constructed (Figure 5.3 1 ). The  permittivities arid loss tan- 

gents of a number of plastics have been nieasured with the intereferomerer, and 

a method of frequency filtering b y  zone plate focal isolation was demonstrated. 
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Zone plate 
antennas 

A Sample B 

Figure 5.30 System for measurement of complex dielectric permittivity comprising 

transmitting and receiving zone plate antennas. (After: [66].) 

Figure 5.31 M illi mete r-w ave M i c helson interferometer with polystyrene phase - c o rrected 

zone plates about 0.5 cm thick and 20 cm in diameter. (Source: [l] ,  0 1961 

I EEE.) 

A 2 1 -inch (in diameter) single-dielectric quarter-wave zone plate antenna 

was used in the Norden millimeter-wave radio transceiver, Series 3800 [67]. 

At 37.8 GHz, the antenna, pictured in Figure 5.32 has the following parameters: 

gain of 41.5 dB, 3-dB beamwidth of 1.1 degrees, and sidelobes more than 

24 dB below peak. 
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Figure 5.32 Norden millimeter-wave radio transceiver. (Source: [67], 0 Norden Systems.) 

A polyethylene phase-reversal zone plate antenna fed by a rectangular 

horn integrated in a 33- and 66-GHz low-cost homodyne Doppler radar (Figure 

5.33) was designed and studied by Lazarus et al. [2, 31. The plate lens designed 

for 33 GHz had the following dimensions: a thickness of 9 mm, a focal length 

of 180 mm, and an aperture diameter of 300 mm. 

A compact single-ring phase-reversal zone plate antenna, termed as a ring- 

shaped dielectric antenna, was proposed and examined by Hristov, Urumov, and 

Semov [68]. Figure 5.34(a) is a sketch of a 10-GHz antenna model that consists 

of a second zone phase-reversing dielectric ring of rectangular cross-section (1)) 

a waveguide-dielectric primary feed (2, 4, 5)) and four metal struts (3). With 

an outer ring diameter of 120 mm, a focal length of 140 mm, and a relative 

permittivity of 2.6 the antenna has a 3-dB beamwidth of about 11 degrees in 

the E- and H-planes and a gain of 22 dB. The theoretical (dashed line) and 

experimental (solid line) E-plane radiation patterns are drawn in Figure 5.34(b). 
The ring-shaped dielectric antenna has a simple and chip construction with a 

small wind resistance. It has a radiation pattern with a good axial symmetry 

and high gain for relatively small dimensions and weight. 

5.3 Planar Zone Plate Antennas: Reflection Versions 

The reflection versions of the planar zone plate antenna resemble the classical 

reflector antenna, but they have a planar instead of curved (dish) reflector. We 

summarize below the state-of-art in the reflection Fresnel zone antennas with 
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Figure 5.33 Doppler radar schematics and horn-fed phase-reversal dielectric lens. (After: 

[2], Hayden Press.) 

5 4 3  2 1  

0 15 30 45 60 75 90 
Degrees 

(b) 

Figure 5.34 (a) Ring-shaped dielectric antenna and (b)  €-plane radiation patterns, drawn 

with solid line (experiment) and dashed line (theory). (Source: [68].) 
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air-grounded (folded) or printed single layer and multilayer zone plate reflectors 

for microwave and millimeter wavelengths. 

5.3.1 Folded Phase-Reversal Zone Plate Antenna 

The classical or Soret zone plate with metallic rings is a simple but ineffective 

lens. As we already emphasized, the zone plate has two principal foci: one for 

transmission, at point P2 [Figure 5.35(a)] and one for reflection, at point PI 
[Figure 5.35(b)]. The latter corresponds to the so-called virtual focus, where 

the backward diffraction rays interfere in phase. 

By placing a plane reflector quarter-wavelength behind the metal zone 

plate the incident plane wave transmitted through the open zones is turned 

Zone plate 

I 

I 

Zone plate 

w 

Reflector 

z4 
Figure 5.35 Illustrations concerning folded zone plate antenna: (a)  focusing by 

transmission, (b) focusing by reflection, and (c) reflector or folded zone plate 

antenna. (After: [13], 0 1992 IEEE.) 
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back and interferes constructively at the receiving point PI (the focus for 

reflection) as illustrated in Figure 5.35(c). Essentially, this technique brings 

two foci in coincidence and leads to a doubling of signal amplitude in the 

receiving feed antenna. Thus, the reflector-type or folded Soret zone plate 

construction acts as a phase-reversal zone plate antenna. I t  was described by 

Van Buskirk and Hendrix in 1961 [9], and in 1965 was patented by the first 

of two authors [lO]. 

They experimented a folded X-band metal antenna of three zones open 

and proposed a possible configuration of a simple and cheap radio telescope 

based on the folded zone plate system, an artistic view of which is shown in 

Figure 5.36. It consists of a metal zone plate fixed at a quarter wavelength 

above the ground plane and a feed antenna that is moved over an arch up to 

about +2O degrees away from the zenith. 

A simple scalar expression of the far field of the folded zone plate antenna 

derived from the Kirchhoff diffraction integral is given in [69, 701 

(5.56) 

where according to Figure 5.35(b), p = d m  and 

F / p  = F / d m  = cos@ is the radiation pattern of a dipole feed; J o  is the 

first kind, zero-order Bessel function. 

To obtain a vectorial solution E = E 8 9  + E&J for the far field of the 

folded zone plate antenna we may use (5.17) and (5.18) in a slightly modified 

A 

form 

Feed 
\ 
\ 

Zone 
plate 

Reflector 

Figure 5.36 Artistic view of fixed radio telescope based on folded zone plate. (After 191, 

0 1961 IEEE.) 
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(5.57) 

and 

with n = 1, 2, 3, . . . N. 

Application of the folded Soret zone plate (SZP) to an endfire-type 

antenna as a reflector or ground-plane was proposed by Yamauchi, Nakano, 

et al. [69, 711. More specifically, they investigated the influence of the Soret 

zone plate structure to a couple of radiating helices: the backfire helical antenna 

(BHA) and the axial-mode or endfire helical antenna (AHA). The antennas 

are designed for a frequency of 9.375 GHz (A = 32 mm). 

Figure 5.37 shows a folded zone plate fed by a monofilar BHA with the 

following design parameters: pitch angle cy = 26 degrees, circumference of the 

helical cylinder C = 0.833/\, number of turns N = 6, and ground plane of 

diameter D1 = 7.9 mm. The zone plate has a focal length F = 40 mm and a 

diameter D = 260 mm, or FID = 0.154. 

The radiation pattern of BHA is shown in Figure 5.38 for three cases: 

(a) with a folded zone plate and (b) and (c) without the zone plate, or with 

a ground-plane disk only at a distance z = 40 mm and z = 165 mm from the 

BHA center, respectively. The values of the gain, 3-dB beamwidth, front to 

back ratio, VSWR and polarization axial ratio at the design frequency are given 

Figure 5.37 Configuration of folded zone plate fed by monofilar BHA. (After [69].) 
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Figure 5.38 Radiation pattern of BHA with folded zone plate: (a) BHA with folded zone 

plate, (b) BHA with disk-reflector only, or zone plate removed, distance from 
BHA to  disk z = 40 mm, and (c)  BHA with disk-reflector only, or zone plate 
removed, z = 165 mm. (After: 1691.) 

in Table 5.5. Since the BHA operates over a wide band of frequencies, the 
proposed antenna system is broadbanded as well. It has an absolute gain of 
21 dB at 9.375 GHz, and a gain greater than 20 dB is measured over a 
frequency range from 9 GHz to 9.8 GHz. The axial ratio is less than 1,5, and 
the VSWR is less than 1.6 over the same frequency range. 

The second version of helix and folded zone plate combination is illus- 
trated in Figure 5.39(a). The first Fresnel zone is a metal disk that serves as 
a ground plane of a two-turn AHA. The next odd zones (#3 and #5> are 
covered by metal rings. A disk reflector of about 175 mm is located at a 
distance of AI4  behind the zone plate by means of a styrofoam spacer with 
E ,  z I ,  which determines a distance value of about 8 mm. Of course, it can 
be made thinner if the folded zone plate reflector is manufactured through a 
microstrip printed technology on a solid substrate as shown in the next section. 

Table 5.5 
Parameters of Helical Antennas With or Without Folded Fresnel Zone Plate 

Beamwidth Front/Back Axial 

~~~ 

Parameters/Antennas Gain (dB) (degrees) Ratio (dB) VSWR Ratio (dB) 

AHA with folded FZP 12.2 31 25 1.25 1.5 
(disk without FZP) (8.7) (69) (23) 1.2 
BHA with folded FZP 21 9 28 4 . 5  1.3 
(disk without FZP) (6) 

~~ ~ 

- 

- - - - 
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Figure 5.39 (a) Configuration and ( b )  radiation pattern of two-turn AHA with zoned ground 

plane solid line is zoned ground plane and dashed line is nonzoned disk 

ground plane. (After: [69].) 

The radiation pattern of the AHA is drawn in Figure 5.39(b) by a solid 
line for AHA with a zoned ground plane and by a dashed line for AHA with 

a nonzoned ground plane. It is seen from Figure 5.39 that the zoning increases 

the gain by 3.5 dB. Other basic parameters are given in Table 5.5. The AHA 
with a zoned ground plane is also designed for a frequency of 9.375 GHz. 

5.3.2 Printed Reflector Zone Plate Antennas 

5.3.2.1 Single-Layer Zone Plate Construction 

In 1988, Huder and Menzel [4] described a millimeter-wave folded zone plate 

configuration manufactured with a standard microstrip technology. It seems 

that this was the first printed reflector zone plate. Figure 5.40 shows a cross- 
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2 3 

I 1' 

Figure 5.40 Cross-section of single-layer-printed reflector zone plate for millimeter waves. 
Ground plate is marked by (1). Fresnel zone metal rings by (2). and dielectric 
substrate by (3). (After: 141.) 

sectional view of the reflector zone plate consisting of a ground plane (1) of 
diameter D, = 125 mm, and a number of etched Fresnel-zone metal rings 
(2) spaced from the ground plane by the dielectric substrate (3) of thickness 
d = A0/4&. For a design frequency of 94 GHz and er = 2.2 (RTIDuroid 
5850), the substrate thickness is of 0.508 mm. The antenna is fed by an open- 
ended waveguide WR-10 with an aperture placed at a focal distance of 
80 mm. The calculated and measured antenna parameters for an amplitude 
edge taper of about -10 dB are listed in Table 5.6. The reflection losses 
measured at the input of the open ended waveguide feed are -1  5 dB. 

Remarkable research and development results for printed reflector zone 
plate antennas have been achieved at the University of Bradford by Guo and 
Barton in collaboration with Wright and others of Flat Antenna Company 
Ltd. (former Mawzones Ltd.), UK (see, for example, [17, 18, 28, 73-78]). 

A novel planar phase correcting technique based on printed reflective 
phase shifters was introduced in [72, 731. This technique has been applied for 
development of a single-layer zone plate incorporating printed resonators in 
the form of circular rings and several models of reflector zone plate antennas 
for DBS reception and receive-only VSAT. (Some printed phase-shifting config- 
urations and the equivalent-circuit shifter-design procedure were described in 
Section 4.3.2.4.) 

Table 5.6 
Calculated and Measured Parameters of Printed Reflection Zone Plate (After: 141) 

Antenna Data Calculated Measured 

Gain (dB) 41 35 
Half-power beamwidth (degrees) 1.5 1.6 
Sidelobe level (dB) -19 <-19 

< -25 Cross polarization level (dB) - 
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The microstrip resonator-type circuitry printed on a dielectric substrate 

behaves as a frequency selective surface (FSS) or electromagnetic wave filter. 

Figure 5.41 illustrates the transmission line model (right above) of the reflective 

phase shifter, where Z i s  the intrinsic wave impedance of the free-space (equiva- 

lent to an infinite two-wire line) and 21 is the wave impedance of the short- 

ended two-wire line (equivalent circuit of the dielectric substrate) [72]. B is 

the shunt reactance of the free-standing FSS. If the substrate is without a 

ground plane, the FSS will act as a transmissive phase shifter, and if it is 

grounded the FSS becomes a reflective phase shifter. With a fixed operating 

frequency, any given phase shift can be achieved by adjusting the geometry of 

resonators or, equivalently, the reactance B. Figure 5.41 also shows the phase 

shift curves as functions of the normalized reactance BIZ of an examplary 

reflective phase shifters, for a substrate permittivity of 2 and three different 

values of the normalized substrate thickness #/A, ,  where A $  z A/&. The 

solid, dashed, and dotted lines correspond to t / A J  = 0.225, 0.25, and 0.275, 

respectively. As it is seen from the graphs, a change of BIZfrom -4 to 4 gives 

a more than 300-degree phase shift. 

Two experimental reflective zone plate prototypes, a quarter-wave (marked 

as QW-1) and a phase-reversal (SR) are designed and tested [72]. Both QW-1 

and SR zone plates are made equal to the first full-wave zone. To obtain the 

needed four phase shift values (O-degree, 90-degree, 180-degree) and 

270-degree) in the QW-1 zone plate, the first quarter-wave subzone is left 

blank, the whole third subzone (with a 180-degree phase shift) is covered by 
a metal ring, and the second and fourth subzones are overlaid by printed arrays 

of small ring resonators of different radii. The SR zone plate consists of two- 

half-wave zones; the first is left blank while the second is blocked by metal 

ring. The basic zone plate antenna dimensions and parameters are given in 

Table 5.7. A similar quarter-wave zone plate reflector, marked as QW-2, is 

Figure 5.41 

- 4 - 3 - 2 - 1  0 1 2  3 4 
B / Z  

Transmission line model of reflective phase shifter (right above) and phase 

shift variation versus normalized reactance BIZ of free-standing phase-shift 

structure. (After [72].) 



Fresnel Zone Plate Antennas 277 

Table 5.7 
Parameters of Reflector Zone Plate Antennas for DBS Reception of TV Signals (After: [20, 23, 29, 72, 731) 

Parameters 
Antennas 

Aperture Focal Aperture Frequency Frequency 
Diameter (mm) Distance (mm) Gain (dB) Efficiency (%) (GHz) Bandwidth ("0) 

Phase-reversal, SR 332 462 -27 -38 10.4 -1 2 
Quarter-wave, QW-1 332 462 29.2 65 10.4 -1 2 
Quarter-wave, QW-3 594 475.2 33.4 43 11.4 >10 
Quarter-wave, QW-4 600 400 34.7 -55 11.8 13 
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reported in [73]. As seen in Figure 5.42, the ring arrangement there is different: 

The first three subzones are topped by arrays of different sized ring resonators, 

and the last one is left blank. The two quarter-wave reflectors, QW-1 and 

QW-2,  and the SR reflector are illuminated by a same helical feed antenna, 

with 3 dB beamwidth of 39 degrees. 

Another quarter-wave zone reflector antenna that is about the size of the 

parabolic dish for DBS application in part of Europe was designed and tested 

by the same authors [23, 291. The reflector zone plate, labeled as QW-3, 
comprises three full-wave zones and one quarter-wave subzone. The reflector 

antenna utilizing this reflective zone plate is pictured in Figure 5.43, where 

the printout of the quarter-wave ring-resonator structures is shown. 

The QW-3  dielectric substrate has thickness of 5 mm and permittivity 

of 2.08 (the same substrates employ QW- 1, QW-2,  and SR zone plate reflec- 

tors). The antenna is fed by a conical corrugated horn with a 47-mm aperture 

diameter. The other main antenna dimensions and radiation parameters are 

given in Table 5.7. Figure 5.44 draws the measured E-plane radiation pattern 

of the antenna at 11.2 GHz. 

Figure 5.42 Ring arrangement of quarter-wave Fresnel zone plate reflector QW-2. 

(Source: [73], 0 1993 IEEE.) 
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Figure 5.43 Reflector antenna utilizing reflector zone plate QW-3. (Source: [23], 0 1995 

IEEE.) 

5.3.2.2 Multilayer Zone Plate Construction 

Beside the quarter-wave reflector consisting of printed single-layer zonal phase- 

shifters, Guo, Barton, and Wright studied another, very efficient phase-correct- 

ing arrangement-the multilayered zone plate reflector [2O, 771. Let us label 

it for convenience as QW-4. It has a plane ground and three layers of concentric 

metal rings separated by three dielectric substrates, as seen in Figure 5.45.The 

rings are located at different interfaces. The substrate thickness is so determined 

that a normally incident wave experiences 2 7;r/ Q phase delay after transmission 

and reflection in it, or 

(5.59) 
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Figure 5.44 Experimental €-plane radiation pattern a t  11.2 G H z  (a )  and gain bandwidth. 

(After: [23], 0 1995 IEEE.) 

Figure 5.45 Printed three-layer zone plate reflector (QW-4): (a) front view and (b) sectional 

view and phase correction stepwise function. (After: 1771, 0 1992 IEEE.) 
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where Q is the number of subzones in each full-wave zone. For the quarter- 

wave zone plate Q = 4 and d = A / 8 G ,  and there are four constant phase 

shifts in each full-wave zone: 0, ~ / 2 ,  T and 3 ~ / 2 .  

The reflector antenna developed on the basis of the printed three-layer 

zone plate has a polyrod feed with a 43-degree beamwidth, which yields about 

- 1 1  dB edge illumination level. The measured antenna gain in the DBS 
frequency band is plotted in Figure 5.46. A maximum gain of 34.75 dB occurs 

at 11.8 GHz and the 3-dB bandwidth estimated from the gain curve is about 

13%. Table 5.7 summarizes the main dimensions and measured radiation 

parameters of antennas comprising the printed zone plate reflectors SR, Q W -  1, 

QW-2 or QW-4. 
From Table 5.7, we may conclude the following. 

1. The first two antennas, with reflectors SR and QW-1, and 

FID =: 1.3 have rather high gain and effkiency. This is typical for all 

relatively small-in-aperture FZP antennas, where mainly the feed deter- 

mines the antenna gain. 

2. Although having approximately the same apertures the multilayer zone 

plate antenna (with QW-4) surpasses in gain and efficiency the single- 

layer one (with QW-3). However, the single-layer antenna is lighter, 

cheaper, and simpler to manufacture. 

5.3.2.3 Integrated-Circuit Antenna for Millimeter Waves Based on 
Fresnel Zone Plate 

A new type of millimeter-wave integrated-circuit (IC) antenna system was 

proposed and studied in detail by Gouker and Smith [ 1 1-13]. I t  is composed 

35 + 

34 

.- r' 33 
d 

32 

11.2 11.6 12 12.4 
Frequency, GHz 

Figure 5.46 Measured antenna gain of versus frequency. (After: [77], 0 1992 IEEE.) 
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of a Soret zone plate on one side of a dielectric substrate with a strip dipole 

at the focal point of the zone plate on the opposite side of the substrate as 

shown in Figure 5.47. The energy collected by the resonant dipole antenna 

at the focus is then detected by a bismuth bolometer at the terminals of the 

dipole. 

All components are made using a simple fabrication technique for ICs: 

thin-film metal depositions on planar dielectric substrates. Another feature of 

this design is the small focal length F to aperture diameter D ratio ( F / D  ranges 

from 0.1 to 0.5). The antenna models described are designed for a frequency 

of 230 GHz (A E 1.3 mm). 

The authors developed a theory for predicting the antenna radiation 

parameters. First, the far field of the dipole, which is assumed infinitesimal, 

is determined within the substrate. This field is then used to obtain the current 

on the zone plate rings and reflector. Finally, the fields of the physical optics 

current is expressed as a plane wave spectrum and transformed through the 

substrate to the far-field region where it is combined with the field radiated 

directly by the dipole. 

In Figure 5.48, the theoretical (a) E-plane and (b) H-plane gain patterns 

(solid line) of the IC zone plate antenna are compared with the measured ones 

(dotted line). There is good agreement on the main beam of the calculated 

and experimental patterns and on the on-axis gains. The measurements are 

made for an antenna system with a focal length of 10 mm and a zone plate 

diameter of 21.4 mm. The average experimental gain is found to be 23.3 dB, the 

E-plane 3-dB beamwidth to be 4.2 degrees, and the H-plane 3-dB beamwidth to 

be 3 degrees. 

5.4 Off-Axis Scanning in Planar Antenna With Circular Zone 
Plate 

A satisfactory off-axis signal is received (transmitted) for a small angle feed 

displacing (defocusing) instead of rotating the whole antenna system. In this 

Figure 5.47 Cross-sectional v iew of IC zone plate antenna. (After: [12], 0 1991 IEEE.) 
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Figure 5.48 €-plane (a) and H-plane (b )  theoretical (solid line) and measured (dashed 

line) gain radiation patterns. (After: [13], c %  1992 IEEE.) 

case, it is assumed that the Fresnel zones i n  the planar zone plate are kept circular. 

‘I-he main beam is :ipproxiniatcl!~ sca~itied :it the angle of feed defocusing. 

First in this section are reviewed the experimental studies of off-axis scanning 

properties of sonic transmission and reflection zone plate antennas. T h e  scan- 

ning feed trajecron, and the t:,ir-field gain eqiiation of defocused transmission 

zonc-plate a~ i t enna  arc given. At the end, the off-axis scanning theory is illus- 

trated by nie:i~is of  gain versus scan angle graphs and radiation patterns for 

different angles of  feed defocusing. 

5.4.1 Some Experimental Studies 

A concise summary of the scanning perforniance of the Fresnel zone plates 

was produced b!, Wilcockson in ii report on flat reflectors prepared for thc 

European Space Agenc!~ [ 781. -1’11~ focusing iibcrrarions charxterizing the Sorer 

zone plate whenever a plnnc W;I\Y is incident along iui off-axis direction were 

studied theoretically b!r Young, ;ind his results were shortly summarized in 

Section 4.3. I .3. Scanning properties of the folded zone plate were discussed 

b>r Van I3uskirk and Hendrix in 

should riot exceed +2O degrees. 

Sanyal and Singh obtained 

the on- arid off-axial intensity var 

nients of the lateral focal pittern 

They reported signal loss less th;  

91, where they supposed that the scan angles 

11 number of experimental results describing 

ation i n  :it1 X-band zone plate [ 52).  Mcasure- 

;it 140 ( ; H I  are described in [6, 41,  79, 801. 

i 6 d H  to  scan ;ingles l ip  t o  k2O degrees and 

co 11 c I u d ed t h a t rii 11 1 t i p 1 c feed c o r i  fig u ra t ion s kve r e rea 1 1 y p oss i b 1 e . 
T h e  f;rst application of a Fresnel lens a~iterinii for ground-based satellite 

‘I’V reception w a s  believed to  be that of Shuter, et al. from the University of 

British Columbia [ 151. ’I’hey cicscribed :i 4-t;Hz 12 ft x 12 ft zone plare with 

;I feed horn that is scanned + 15 degrees off-axis, and after refocusing the 
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measured signal, loss was not more than 1 dB. The authors concluded that 

satellites up to f 1 0  degrees off antenna axis could be received by the plate 

with circular zones merely by moving the feed horn. They pointed out also 

the possibility of receiving signals from two or more satellites simultaneously 

by means of separate feed horns and low noise converters. 

An experimental verification of the scanning and multifocal properties 

of reflector zone plate antennas was reported by Wright and Wilcockson in 

[74]. A set of zone plates each 0.95-m square and having offset angles of 

0 degrees, 15 degrees, 30 degrees, 45 degrees, and 60 degrees were manufac- 

tured, and variations in strength of the received signals from the main European 

Ku-band satellites were recorded. A multiple feed configuration was investigated 

for a 1.2-m prime focus unit having a gain of 40 dB and a focal length of 

0.84m using signals from Eutelsat satellites at 7 degrees, 10 degrees, 13 degrees, 

and 16 degrees E. The antenna azimuth and elevation were set correspondingly 

to the mid-value (1 1.5 degrees E) and in all cases good pictures were obtained 

with 1.2 dB LNBs. In conclusion, the authors state that the Ku-band-measured 

and -computed results predict significantly improved scanning performance 

compared to a similar in size conventional parabolic reflector. 

5.4.2 Scanning Feed Trajectory 

A comprehensive theoretical study comparing the scan performance of the 

Soret zone plate antenna and parabolic reflector antenna was completed by 

Baggen, Jeronimus, and Herben [27, 461. The feed is moved over a particular 

scan surface so that the gain of the antenna is as large as possible. Scanning 

as illustrated in Figure 5.49 means receiving signals from different satellites by 

displacing the feed instead of rotating the whole antenna system. For simplicity, 

Figure 5.49 Defocused zone plate antenna system used for satellite scan purposes. 

(After: [46].) 
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if the feed is displaced in the xz-plane only the scan surface is transformed to 

scan curve, as shown in Figure 5.50. 
The scan surface of the parabolic reflector antenna is the Petzval curve 

that is given by the parabolic equation 

2 

z - F = -  
X 

2F 
(5.60) 

The scan curve of the Soret zone plate antenna is approximated by a 

circle expressed as 

x2 + z2 = F2 (5.61) 

5.4.3 Far-Field Gain Patterns 

The scalar far-field gain equation of the Soret zone plate antenna, derived for 

the xz-plane (or 9 = 0 degrees), is found given in the form [27] 

where 

g(p’, r’) = E&.f[cosl? + ( t3  * s^’)]Y’ 

curve 

Zone plate antenna Parabolic antenna 

(5.62) 

(5.63) 

Figure 5.50 Scan curves of Soret zone plate antenna and parabolic reflector antenna. 

(After: [46].) 
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with 

(F - r’sin ucos p’) 

(F’* + rr2 - 2r’F’sino~osp’)‘”’~)’~ 

A F’cos o 

EJ&d = 

n‘ - S‘ = 

1/Ff2 + r f2  - 2r‘Fsinucosp’ 

and 

h(p’, r’) = Nd1 - WcosCp’ + Ucosp‘ 

N = p 7  (5.64) 

2 r‘F’ sin U 
W =  

U = r’sint9 

N2 

Here the summation sequence n = 1, 3,  5, . . . determines the odd open 

zones, and rn is the power integer to the cosine feed function, given by equation 

Gf(fi’, m)  = 2(m + l)cosm$’. Figure 5.51 illustrates the solution for the far- 

field and directive gain. 

5.4.4 Numerical Results 

In Figure 5.52, the gain patterns of two ll .l-CHz, 1-m in diameter Soret 

zone plate, and parabolic reflector antennas are plotted. The upper two curves 

Figure 5.51 Geometry of defocused zone plate antenna. (After: (271.) 
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45 1 Parabolic 

antenna F=l.9 m 

0 2 4 6 8 10 12 14 16 18 
Scan angle, degrees 

Figure552 Antenna gain as function of scan angle of Soret zone plate antenna and 

PRA. (After: [27].) 

are for the parabolic antenna and the lower curves are for the Soret zone plate 

antenna. Solid lines correspond to a focal length of about 0.5m, while the 

dashed line corresponds to a focal length of about 1.9m. From Figure 5.52, 

it is seen that the scan loss increases in case the focal distance decreases. 

Figure 5.53 shows the computed radiation patterns of an on-axis and 

off-axis focused 1-m in diameter Soret zone plate antenna with F 1.9m and 

f= 11.1 GHz. It can be seen that if the satellite spacing is 6 degrees, the 

isolation due to this antenna between the signals from two adjacent satellites 

is approximately 15 dB. This rather poor beam isolation can be improved by 

using a zone plate lens with phase-correcting zones. 

Figure553 Patterns of on-axis focused ( F , )  and off-axis focused (F2, 5, and F4) Soret 

zone plate antenna. (After: [271). 
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5.5 Planar Offset Antenna -With El!Iptical Zone Plate 

For realizing more efficiency in a larger sector off-axis scanning we need to 

redesign the zone plate construction. Such a zone plate will comprise a set of 

elliptical zones and the corresponding antenna is termed here an offset antenna 

with elliptical zone plate. YVe begin with the design equations of elliptical 

zones and then wegive the equations for the far field components of transmission 

zone plate antenna. The section ends with a review of a number of offset 

antenna zone plate designs for DBS TV signal reception from one or more 

than m e  satellite. 

5.5.1 Geometry-Formulation and Design of Eliiptice! Zones 

As we discussed in Section 3.1.4.1, the wave path is related to a set of confocai 

e!!ipsoids of revolution. The intersection curves of these ellipsoids with the 

antenna plane inclined to the propagation path are ellipses, and the zone plate 

comprises a set of elliptical zones. Several publications deal with the theory of 

the offset plate antennas with elliptical zones [25, 75, 76, 81. 821 but here we 

shall mostly summarize the problem on the basis of a study completed by Vzn 

Houten and Herben [25, 811. 

Figure 5.54 is a geometry illustrating che far-field solution for such an 

elliptical zone plate. The antenna aperture is defined in the xy-plane. Its axis 

lies in the xz-p!me, points through the origin 0 of the coordinate system 

(xyz), and is tilted with respect to z-axis. The feed is located at poinr S a t  a 

focal distance Ffrom the origin. A feed-fixed (x’, y’, z’) coordinate system is 

Figure 5.54 Geometry illustrating far-field of solution offset elliptical zone plate. 
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introduced which appears when the (xyz) system is rotated over the offset angle 

8, around the x-axis. The accompanying spherical coordinates are p,  @, and 

5- 
Two orthogonal polarization patterns of the feed will be considered, 

namely those of a linearly X I -  and y’-polarized Huygens source with unit 

polarization vectors written as 

A 

f,. = -&cos6 + &sin[ (5.65) 

1;. = &sin( + &cos[ (5.66) 

The gain function of the feed is again assumed to be cosine-shaped. 

Let the major semi-axis of the n-th Fresnel elliptical zone be specified 

by A , ,  and the minor semi-axis by B,, and let C,  be the distance from the 

center of the ellipse to the origin. The equation of the elliptical zones can be 

expressed as 

(5.67) 

Given n, A ,  F, and 8, the dimensions A , ,  B ,  and C, can be found by 

-\lnA (Fcos’ 8, + nA J4) 

2 
A ,  = 

cos 8, 
(5.68) 

B ,  = (cos8,(An (5.67) 

mA sin 8, 
Cn = 2 

2cos 8, 
(5.70) 

5.5.2 Far-Field Analysis of Offset Elliptic Zone Plate Antenna: 
Transmission Case 

The far field is found by means of the Kirchhoff diffraction integral. In case 

of x’-polarized feed the 6- and p-components of the field radiated by a single 

open zone are given by [81] 
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where 

2 2 
Wxr = (COS [COS #COS 8, - costsin [sin 8, + sin [COS 8,) COS p 

+ sin[cos[sinp(cos# - 1) 

2 2 
Wxj2 = -(sin [COS 8, + COS [COS&OS 8, - sin[cos[sin 8,) sin pcos 6 

+ s i n ~ c o s ~ c o s p c o s 6 ( c o s #  - 1) 

In case of y’-polarized feed similar component equations are obtained 

where 

Wrrl = -(sin&os[cos8,(cos# - 1) - sin~sin#cos8,)cosp 

- sin p (cos @sin2 5 + cos2 6) 

Wvt2 = ((cos # - 1) sin [cos&os 8, - sin [sin #sin 8,) cos 6sin p 

2 2 - cos6cosp(cos#sin # + cos #) 

A specific, nondirect procedure is used for solving the double integral. 

Because of the elliptic shape of zone borders the integration limits of p’ depends 

on p’. This means that the p’ integration has to be carried out from pn-l  ((p’) 

to p, (p ’ ) ,  and 9’-integration from 0 to 27r. Finally, the total field at the far- 

field observation point is easily obtained by summing the contributions from 

all open zones ( n  = 1, 3, 5, . . . for odd zones open). 

5.5.3 Offset Antenna Designs: Numerical and Experimental 
Characteristics 

The early studies on offset reflector zone plates were aimed mainly toward 

development and fabrication of antennas for strong signal DBS TV reception 

comparable in eficiency to the classical parabolic reflector antennas. Years ago 

the Mawzones specialized in production of cheap and simple Fresnel zone plate 

antennas giving a very good reception of the strong-signal Astra satellite and 

some other European satellites transmitting weaker signals. Well-known are 
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their numerous concepts of such antennas and real constructions for domestic 

use. For example, a possible application of the Soret-type plate made of metal 

(foil) zone rings attached to a window or rolled up when not in use is illustrated 

in Figure 5.55 [57]. A reflective type of Mawzones’ offset zone plate antenna 

made of a sheer material similar to the corrugated plastics sandwich used for 

estate agents’ placards, with the ring pattern on one side and a metallized 

backing on the reverse, is shown in Figure 5.56 [57, 731. 
Sazonov reported for a simple 1.5m x 1.5m offset antenna with a phase- 

reversing zone plate that was named a reflect-type holographic antenna [83] 

(Figure 5.57). The antenna receives 12.5-GHz DBS signals with the same 

quality as a standard 1.2-m parabolic dish. 

The Mawzones Sheet 

Figure 5.55 Artistic view of attached to window transmissive offset zone plate intended 

for direct computer satellite link. (Source: [57], 0 Mawzones.) 

Zone 

Figure 5.56 Mawzones’ reflective offset zone plate antenna. (After: (571, 0 M a wzones. ) 
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Figure557 Reflective offset zone plate antenna for 12.5 GHz DBS TV reception for 

outside installation. (Source: (831, 0 1999 IEEE.) 

Using the far-field theory Houten and Herben [81] investigated numeri- 

cally an offset elliptical antenna for a satellite TV reception at 11.1 GHz. The 

antenna focal distance was chosen as 1 m and the maximum (or vertical) antenna 

size 2Am, was initially restricted to about lm.  For offset angles of 10 degrees 

and 30 degrees, the maximum size 2Am, and the minimum (or horizontal) 

size 2Bm,were numerically specified to 2Am, = 1.0325m and 1.0357m, and 

2 B m ,  = 1.017 and 0.897m, respectively. From the numerical results for linear 

feed polarization and 8 = 90 degrees it is concluded that: (1) for x’-polarization 

the copolar gain decreases from 31.3 dB to 31.1 dB, and the maximum cross- 

polar radiation increases from -38 dB to -31 dB for offset angles 10 degrees 

and 30 degrees, correspondingly; (2) for y’-polarization the cross-polar level is 

much higher (-2 dB and +8 dB for offset angles 10 degrees and 30 degrees, 

respectively). In case of circular polarization, both the copolar and cross-polar 

pattern shifts, and the cross-polar pattern lies between the patterns for linear 

X I -  and y’-polarization. 

Guo and Burton studied both the transmission and reflection offset zone 

plate antennas [75, 761. For reflection mode, the zone plate is taken as a flat 

phase-correcting mirror, and the main beam is on the same side of the plate 

with the same angle from the normal. In this case, the authors change the 

coordinate system so that the z-axis is pointed to the direction of maximum 

radiation and the origin is at the focal point. 

Beside theory, they produced many experiments with offset zone plate 

antennas. For example, an experimental prototype of offset phase-reversal zone 

plate reflector with a focal length of 85 cm and an offset angle of 30 degrees, 

operating at 11.85 GHz, was fabricated [75]. The antenna feed with almost 
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symmetric E- and H-plane symmetric feed pattern gave about -10-dB edge 
illumination level. The reflector plate aperture contained four full-wave zones. 

Figure 5.58 shows the experimental and theoretical E-plane radiation 
patterns of the antenna prototype. As expected, the main beam is tilted at the 
design angle (30 degrees). There is a good agreement for the main beam and 
close-in sidelobes. 

A very effective X-band four-layer offset construction was designed and 
measured by Guo, Sassi, and Barton [28]. Figure 5.59 shows the front and 
sectional view of this antenna. It produces five phase shifts (Q-5) in each full- 
wave zone; 0 degrees, 72 degrees, 144 degrees, 216 degrees, and 288 degrees. 
The thickness of the substrate layer, is calculated by 

(5.73) 

The measured prototype of the four-layer offset reflector antenna was 
designed to operate at 10.39 GHz. The reflector had a 0.32-m by 0.34-111 
elliptical aperture, a 20-degree offset angle, and a 0.19-m focal length. The 
substrate permittivity and loss tangent were E ,  = 2.1 and tan6 = 0.0069. A 
pyramidal horn with aperture dimension 4.1 cm by 2.8 cm was used as the 
feed. 

-60 4 
0 50 

Angle, degrees 

Figure 5.58 €-plane radiation patterns of offset phase-reversal zone plate antenna: 
theoretical (solid line) and measured (dotted line). (After: [75H 
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Figure 5.59 Illustration of multilayer offset zone plate reflector: (a)  front view and (b) 

sectional view. (Source: [28], 0 1994 IEEE.) 

Figure 5.60 shows the measured E-plane (dashed line) and H-plane (solid 

line) patterns of the antenna at the design frequency. The patterns are very 

close, with a sidelobe level below -20 dB. The antenna has an efficiency of 

6 l % ,  which is a very good value for such a complicated design. 

A design method for an offset Fresnel zone-plate reflector intended for 

DBS reception was proposed by Onodera and Hoashi [82]. Figure 5.61(a) 

-80 -60 -40 -20 0 20 40 60 80 
Angle, degrees 

Figure5.60 E- (dashed line) and H-plane (solid line) patterns of four-layer offset zone- 

plate reflector antenna at 10.39 G H z .  (After: [28], 0 1994 IEEE.) 
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Figure 5.61 Reflector offset antenna: (a)  geometry and (b)  level of received power 

calculated as function of offset angle. (Source: [82], 0 1999 IEEE.) 

illustrates the geometry for the offset antenna model analysis. The coordinates 

( X I ,  y1, 0) determine any point on the zone plate aperture. By means of 

Kirchhoff diffraction integral the authors determine the power flux density 

(PFD) at a point (X2,  Y2, 2 2 )  on the feed horn aperture in the form 

where Ai and B;  are real quantities found from the following integrals 

and 

(5.75) 

(5.76) 

2 
with R = d ( x 1  - x2)' + (yl - ~ 2 ) ~  + z2 

The phase of the complex field amplitude at the same point is given by 

(5.77) 
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If the phase distribution oi‘er the feed horn aperture is taken constant, 

the po\ver receiircd is given b!~ 

(5.78) 

where 1’ is the horn aperture efficient!,, and 5’2 is the aperture 3rc;i. 

I3ascd on the iibove equations ii method for designing and optiniizntion 

of  the phase-reversal offset zone plate iintenna \vas developed. Four Fresnel 

zone plate retlectors with a OO-degree offset nnglc (here the authors call 2 0  :in 

offset angle) and focal lengths = O.3rn, 0.4m, O.5m, and 0.6ni  wert’ built and 

rneasured. Aluriiinum foil ivas used as retlecting rnatcrial iirid a n  acr>dic sheet 

4-mrn-thick WRS put as :i spiicer benvcen the zone plate arid retlector. A 

commercial conical horn of 68 nini in diameter uid A frcqiiency converter 

ivith A gain of 55.45 dB were used for receiving ‘I’V signals at 1 1.02 (;Hz. 
Figure 5.61 (b)  shows calculated powcr level in the feed horn as ii function 

of the offset angle. From Figure 5.61, it is scen that the received power keeps 

almost cotistarit up t o  2 0  = 120 degrees. 

’I’he authors conclude that in comparison with the ofhet paraboloidd 

reflector, the o f k t  Frcsncl zone plate reflector shows better o f k t  and oblique 

i n c i den ce c h n rac t e r i s t i cs . ’I’h e s t lid i ed a n  t e n n a has a n ape r t 11 re e ffi c i e n c>r of 

24%, which is a typical value for the phase-reversal zone plate anterim. 

’I‘he proposed design method was used also for building a multibeam 

offset zone plate iintenna with three receivers for receiving simultaneously three 

IIRS satellites. Sonic calculated and nieiisured data taken from [ 821 :ire included 

in  FI’:ible 5.8. 

5.6 Curved Zone Plate Antennas 

’I’he microwave plannr zone plate antennri has the advantage of being of flat 

construction that is ctieiip, light, and easy to Iiianufiictiire. With the piirpose 

Table 5.8 

Received Power and Horn Position in Offset Zone Plate Reflector Antenna for Different 

Focal Lengths 

Focal length, m 0.3 0.4 0.5 0.6 

Power, dBmW, calculated -92.6 -91.5 -90.7 -90.0 

Position of horn, m, calculated 0.31 0.41 0.51 0.62 

(measured) (0.27) (0.40) (0.51) (0.62) 

(measured) (-94.3) (-93.5) (-92.8) (-92.0) 
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of maintaining the beauty of the urban environment, a flat antenna that 

conforms to a building wall can be used instead of a classical parabolic one. 

However, to increase the focusing, resolving, and scanning properties and 

to create differently shaped radiation patterns the Fresnel zone plate and antenna 

can be assembled on a curved, commonly rotational 3D surface. Moreover, 

the curved Fresnel zone plate antenna is not limited to a specific surface as in 

the case of a parabolic antenna and can be made conformal to a curvilinear 

natural or man-made formation. 

The main disadvantage, both of planar and curved zone plate antenna, 

is that compared to the parabolic reflector antenna, it is frequency-sensitive 

and has lower radiation efficiency. The microwave/millimeter-wave curved zone 

plate antenna is still little-known in practice, and it is no a wonder that there 

is no more than a score or so publications on the subject [5, 21, 24, 30-39, 

48, 84-91]. 

The lens-like properties of the curved zone plates were discussed briefly 

in Section 4.1.2, and after that were studied in Section 4.4.3. 
Here we consider in more detail first X-band elliptical zone plate backed 

by a parabolic reflector and cylindrical zone plate antenna, and after that we 

summarize briefly some results of millimeter-wave antennas with curved single- 

dielectric zone plates. 

5.6.1 Paraboloidal Zone Plate Antenna 

A new, three-dimensional antenna comprising a rotational parabolic reflector 

and zone plate of concentric metal rings arranged on a parabolic surface in 

parallel at a quarter-wavelength above the reflector was proposed and studied 

by Delmas and others [21, 24, 891, Figure 5.62(a). In principle, this configura- 

tion acts as a single-layer phase-reversal zone plate antenna with a calculated 

aperture efficiency of 27% (measured at about 20%). The three-layered metal 

zone plate backed by a parabolic reflector [Figure 5.62(b)] has more than twice 

higher efficiency (56%). 
A paraboloidal zone plate was designed to provide two symmetrical diffrac- 

tion focal points F1 and F2 with an angular spacing of about 40 degrees. An 

antenna prototype was built and used for a simultaneous reception of TV 
programs from two different geostationary satellites: TDF 1 /2 

(19.2 degrees 0) and Astra (1  9.2 degrees E), Figure 5.62(c). The basic antenna 

dimensions and parameters of a 12-GHz single-layer zone plate with a parabolic 

reflector of 30 cm in diameter are: focal distance of the parabolic surface = 

29 cm, lateral focal length of the diffraction foci = 62 cm, number of zones = 

10, zone elevation above the reflector = 6.25 mm, gain = 35 dB, 3-dB beam- 

width = 2 degrees, sidelobe level = -20 dB, and crosspolar level = -22 dB. 
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Figure 5.62 Zone plate antenna with parabolic reflector: (a) single-layer configuration, (b) 

three-layer configuration, and (c) simultaneous reception of TV programs 

from two different geostationary satellites. (After [86].) 

5.6.2 Cylindrical Zone Plate Antenna 

Recently, J i  and Fujita proposed a cylindrical Fresnel zone plate antenna with 

an omnidirectional radiation pattern [87]. This is a low-efficiency, half-open 

(or Soret-type) zone plate antenna with a zone lens consisting of alternate open 

and opaque half-wave Fresnel zones. In the proposed construction the opaque 

zones are actually made as circular metal rings, and the feed is a strip dipole 

located at the midpoint 0, Figure 5.63(a). 

In case of vertical cylindrical zone plate (Figure 5.64), the antenna has 

a vertical field polarization and omnidirectional horizontal radiation pattern. 

Thus, it might be quite suitable as a base station and mobile antenna in the 

wireless communication and broadcasting systems. 

The cylindrical zone plate antenna is designed for 9 GHz and is fabricated 

by bonding eight metal zone rings on cardboard, which is then bent into a 

cylinder with radius of 40 mm. The vertical (E-plane) pattern is directive as 

shown in Figure 5.63(a). The sidelobe discrepancy between the measured (solid 
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Figure 5.63 Geometry of half-open cylindrical zone plate antenna. (A f te r  [87], 0 1996 

IEEE.) 
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Figure 5.64 Measured (solid line) and calculated (dashed line) vertical radiation pattern 

of cylindrical zone plate at 9 GHz: (a) feed dipole centered a t  point U and (b) 

feed dipole moved axially 20 mm apart from point 0. (Af ter  [87], 0 1996 

IEEE.) 

line) and computed (dashed line) radiation patterns the authors explain by the 

multiple diffraction and reflection from the inner sides of the metal rings. 

Moving in some extent the dipole axially leads to a main beam scanning in 

the vertical plane [Figure 5.63(b)]. 
Based on the above antenna configuration we considered several varieties 

(symmetrical and nonsymmetrical) of cylindrical zone plate antennas with 

much enhanced aperture efficiency [48, 911. As in the planar zone plate this 

is done by replacing the half-open zone plates with phase correcting ones (half- 
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wave or quarter wave) and by optimizing the antenna dimensions and radiation 

feed pattern. 

In the phase-reversal zone plate, the metal rings are replaced by dielectric 

rings with permittivity E ,  = 4. In the quarter-wave zone plate each half-wave 

zone is divided into two subzones and covered by dielectric 90-degree phase 

rings with equal thicknesses but different permittivities: = 1, ~ , 2  = 6.25, 

~ , 3  = 4 ,  and 

The far field of the zone plate antenna with 2N ring zones totally (open 

and opaque) is found following the physical optics approach used in [50]. The 

Kirchhoffs integral equation for the far field in the xy-plane (Figure 5.63) is 
rewritten here in a more general form 

= 2.25 [Figure 5.65(a)]. 

- n-I2 

where U is the radius of the circular cylinder equal to the lens focal distance 

E;, Gfis the feed directive gain, Pfis the power radiated by the feed, 'I is the 

Degrees 

Figure 5.65 (a) Dielectric quarter-wave cylindrical zone plate antenna and (b) radiation 

pattern for: half-open zone plate (solid line), phase-reversal (dashed line), and 

quarter-wave (dadot line). (Source: [91], 0 1999 IEEE.) 
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medium intrinsic impedance, T( +) is the dielectric ring transmission coeffi- 

cient, and F(+) is the feed radiation pattern. Transmission through a dielectric 

ring may be calculated approximately using the equations for the dielectric 

plate multiple reflection/transmission coefficients. 

In the symmetrical cylindrical zone plate antenna the ring zones are in 

number twice that in the planar Fresnel zone plate ( N  above and N below the 

xz-plane of symmetry). Thus, the vertical level y n  of the n-th ring circle may 

be calculated by the formula for the circular zone radii in the planar FZP, or 

y n  = f(naA + The (+) sign is for the upper, and the (-) sign for 

the lower Fresnel zones. The illumination angle k+n that corresponds to the 

f n - t h  zone is found by the trigonometric relation + n  = arctg(y,/a). 

Thus, the total far field radiated by all open Fresnel zones can be calculated 

as follows 

E = C E ' ,  + C E , ,  (5.80) 
n n 

We first calculated the radiation pattern and directive gain of the three 

symmetrical zone plate antennas, half-open (solid line), phase-reversal (dashed 

line), and quarter-wave (dadot line). The same frequency and antenna dimen- 

sions were used as those chosen in [87], and the total number of zones, N, 

was 4 or 8. The half-wave dipole centered at point 0 was also chosen as a feed. 

For the half-open zone plate antenna, we obtained results very similar to those 

displayed in [87]. 

The calculated vertical patterns of these antenna versions for N = 8 are 

shown in Figure 5.64(b). The directive gain at 3 GHz is given in Table 5.9 
for two zone numbers, N =  4 and N =  8, and three different radii: 

a = 4 cm, 8 cm, and 12 cm. The gain increase for the phase-reversal and 

quarter-wave antennas was found to be considerable: 1.5 dB and 3.2 dB higher 

in comparison with the gain of the initial Ji and Fujita's half-open zone plate 

Table 5.9 
Gain of Various Cylindrical Zone Plate Antennas 

Radius: a (cm) 4 8 12 
I 

Half-open: 5.1 6.3 6.5 
N = 4 (or 8) 

Phase-reversal: 6.4 8.1 8.6 
(5.3) (6.7) (7.0) 

Gain of cylindrical zone 
plate antenna, dB 

f = 9 G H z  
N = 4 (or 8) (6.8) (8.8) (9.7) 
Quarter-wave: 7.7 9.5 10.2 
N = 4 (or 8) (8.5) ( 10.5) (11) 
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antenna (see the column for a = 4 in Table 5.9). The calculations also show 

a gain rise for the cylindrical zone plates of bigger radii: a = 8 cm and 

a = 12 cm. Another way to further increase antenna gain is to replace the half- 

wave dipole by a feed with a broader radiation pattern. 

We proposed another version of the cylindrical zone plate-the nonsym- 

metrical one [91], shown in Figure 5.66(a). The radiation patterns of three 

nonsymmetrical antenna varieties fed by A /4-monopole radiator M, half-open 

(solid line), phase-reversal (dashed line), and quarter-wave (dadot line), are 

plotted in Figure 5.66(b). For this antenna model, the total far field was 

computed by summing the far fields of the upper rim zones only. It  is seen 

that the nonsymmetric zone plate has an asymmetric vertical pattern, slightly 

tilted above the horizon. 

5.6.3 Millimeter-Wave Antennas With Curved Single-Dielectric 
Zone Plate 

The most substantial practical progress in antennas with curved dielectric zone 

plates was made at the Novosibirsk Institute of Applied Physics Problems, 

Russia, by Minin and Minin [5, 38, 39, 85, 88-90]. They developed and 

studied experimentally a whole nomenclature of curvilinear Fresnel zone plates 

and antennas: spherical, parabolic, conical, and so forth. 

The authors considered the millimeter-wave zone plate lens as specific 

case of the so-called quasioptical diffraction elements (QDE). They proposed 

and studied a lot of attractive practical applications of the millimeter-wave 

zone plate lenses, as for example, in plasma diagnostics, quasioptical holography 

Screen 

...I,.. 
-6040-20 0 20 40 60 

Degrees 

Figure 5.66 Half-open nonsymmetrical zone plate antenna with two metal rings and fed 

by monopole radiator (a)  and radiation pattern (b) for three nonsymmetrical 

antenna versions: half-open (solid line), phase-reversal (dashed line), and 

quarter-wave (dadot line). (Source: [91], 0 1999 IEEE.) 
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(“radiovision”), shock-wave focusing, measurement instrumentation, and zone 

plate antennas. 

The authors designed and examined experimentally various prototypes 

of millimeter-wave antennas with curved single-dielectric zone plates in the 

frequency range 40-95 GHz. Most of them were made as polystyrene shells 

with phase-reversing or quarter-wave phase grooves machined on their surface. 

One  of the antenna constructions has a half-wave parabolic zone plate 

lens with D/A = 16 and DIF = 0.9, where D is the aperture diameter and F 

is the lens focal length. The antenna measurement shows a gain 

G = 27.5 dB, and sidelobe levels less than -18 + -20 dB. Off-axis source 

defocusing of about f 2 5  degrees does not diminish the antenna gain more 

than 2.5 dB. 
Another antenna prototype comprises a spherical half-wave zone plate 

with D/A = 36 and D/F = 1.48 or 0.98. The authors claim a measured antenna 

gain of about 34 dB, and sidelobe levels less than -28 dB in the H-plane and 

-18 dB in the E-plane. 
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systems, 121, 122 

transmission losses, 12 

See aho Radiation patterns 

cylindrical zone plate, 301 

diffraction pattern, 128 

directive pattern, 237 

as hnction of scan angle, 287 

in ground radio systems, 119 

rise in. 119 

259 

Antenna gain, 98 

I ~- 

plate, 253-58 Soret zone plate, 245, 252 

boundary condition, 56 

elevated over flat earth, 97-99 

folded phase-reversal zone plate, 
Aperture 

270-74 circular, 62-64, 72-77 

313 
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distribution, 233 

efficiency, 119, 248-49, 299 

elementary area, 236 

in infinite plane screen, 58-62 

rectangular, 66-67, 69-72 

Asymmetric Fresnel zone plates, 142, 143 

Attenuation factors, 116-17 

Axial field distribution, 2 14 

Axial focusing, 2 13-2 1 

approximate universal theory, 2 17 
of curved zone plate, 2 17-2 1 

gain, 221 

of spherical zone plate, 2 13- 17 

Axial-mode helical antenna (AHA), 272 

configuration, 274 

radiation pattern, 274 

defined, 160 

illustrated, 159 

wavelengths, 160 

See also Aberrations 

Axial variation, 215, 216 

Axial spherical aberration, 159-60 

Babinet’s principle, 64, 78  

Backfire helical antenna (BHA), 272 

frequency operation, 273 

radiation pattern, 272, 273 

See aho Anrenna(s) 

Back-lobe amplitude (BLL), 249 

Bessel functions, 64  

Boundary conditions 

aperture, 56 

approximate, 55 
field, 13 

Brewster angle, 17 

Circular apertures, 62-64 

Fresnel diffraction by, 72-77 

Fresnel diffraction patterns, 76, 78, 79 

infinite, 76 

radiation pattern comparison, 77 
Circular polarization, 6 

Conical zone plates, 144, 145 
convex, 21 1 

cross-section, 2 10 

dimensions of, 2 10- 13 

Fresnel zone pattern, 212 

geometry, 21 1 

profile curve function, 219 

zone radii equation, 21 1 

zone radius vs. zone number, 213 

See alro Curved Fresnel zone plates 

CO-polar gain pattern, 33 

Cross-polar field pattern, 33 

Cross-polar gain pattern, 34 

Cross-polar isolation, 34  

Curved Fresnel zone plates, 142-46, 

201-21 

arbitrary, 144 

axial focusing, 2 13-2 1 

conical, 144, 145, 210-13 

cylindrical, 144-46 

dimensions of, 203- 1 3 
focusing properties, 2 13-2 1 

introduction, 201-3 

paraboloidal, 208-10 

profile curve function, 2 19 

pyramidal, 144, 145 

spherical, 143-44, 202, 203-6 

See alro Fresnel zone plates 

Curved zone plate antennas, 296-303 

cylindrical, 298-302 

disadvantage, 297 

millimeter-wave, 302-3 

paraboloidal, 297-98 

spherical half-wave, 303 

See alro Antenna(s); Fresnel zone plate 

antennas 

aperture efficiency, 279 

arrangements, 144 

cross-type, 145, 146 

nonsymmetrical, 145, 146 
ring-type, 145, 146 

strip-type, 145, 146 

See alro Fresnel zone plates 

fabrication, 298 

far field, 300 

gain, 301 

geometry, 299 
nonsymmetrical, 302 

quarter-wave, 300 

radiation pattern, 299, 301 

symmetrical, 30 1 

vertical zone plate, 298 

See also Antenna(s); Curved zone plate 

antennas 

Cylindrical Fresnel zone plates, 144-46 

Cylindrical zone plate antenna, 298-302 
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Defocused zone plate antennas 

defined, 284 

geometry, 286 

illustrated, 284 

Design, 188-20 1 

gridded phase-shifting dielectric plate, 

multidielectric zone plates, 192-93 

multilayer phase-shifting dielectric 

single-dielectric zone plate, 189-92 

solid phase-shifting dielectric plate, 

See alru Phase-corrected zone plates 

Dielectric layers 

electric thickness of, 28 

matrix, 31 

197-20 1 

plate, 196-97 

193-96 

Dielectric losses, 28 

Dielectric plate 

n-layer, 31 

phase-reversing, 127, 13 1 

structures, 129 

transmission loss, 127 

complex transmission coefficient, 127 

diffraction factor, 127 

diffraction pattern, 127 

phase-reversing, 128 

See alru Anrenna(s) 

by aperture in infinite plane screen, 

58-62 

by rectangular aperture, 66-67 

factor, 120, 123, 127 

far-field, 6 4  

Fraunhofer, by circular aperture, 62-64 

Fresnel, 64-79 

Kirchhoff (scalar), 54-64 
Kirchhoff (vectorial), 80-82 

knife-edge, 88, 11 1-13 

multifocal zone plate properties, 155 
pattern, 120, 127, 134, 135 

physical theory of (PTD), 87-88 

radio wave, 106-8, 113-17 

aperture efficiency, 119 

dielectric-type, 132 

focusing aperture, 5 I 

Dielectric ring, 126-29 

Diffraction 

Di ffractors 

focusing properties, 50-54 

Fresnel zone, 118-35 

illustrated, 50, 51 

ring segment, 129-35 

single-ring lens-like, 5 1 

of conical zone plate, 2 10-1 3 

of paraboloidal zone plate, 208-1 0 

of spherical zone plate, 203-8 

See aLu Curved Fresnel zone plates 

Doppler radar schematics, 269 

Double-dielectric phase-reversal zone plate 

Dimensions, 203-1 3 

antenna, 253-58 

amplitude divergence factor, 256 

configuration, 254 

dielectric phase shifters, 256 

far-field vector, 258 

feed gain patterns, 265 

focal distance-to-aperture diameter 

ratio, 254 

numerical results, 259-65 

radiation pattern, 262 

ray tracing, 255 

solid dielectric rings, 264 

total far-field scalar components, 258 

See aLo Phase-corrected zone plate 

antennas 

Earth curvature 

accounting for, 10 1-4 

antenna heights and, 101 

interference ray scheme and, 102 

Electric field, 81, 123 

elementary, 85 

magnitude, 10 

strength, 10 

vectors, 2, 5, 20, 81 

Electromagnetic fields, linear superposition 

Electromagnetic waves, interference of, 

Elliptical polarization, 6 

Elliptical zones 

of, 19-21 

19-25 

geometry formulation and design of, 

major semi-axis, 289 

288-89 

Far-field 

approximation, 82 
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defined, 6 2  

diffraction, 64  

elementary components, 85 

radiation of electric antenna sources, 4 

vector potential, 3 

wave equation solution, 3-5 
Feed-line power combining, 156 

Flat-earth scheme, 97-99 

Focal length 

gain vs., 243 

optimization, 178 

Focusing efficiency 

dependent elements, 18 1 

Fresnel zone plate, 54, 140 

as function of phase increment, 182 

phase-corrected zone plate, 18 1-85 

axial, 177, 221 

axial distance vs., 220 

calculated, I83 

phase-corrected zone plate, 18 1-85 

Soret plate, 175, 176 

for Wood’s phase-reversal zone plate, 

Focusing gain, 165, 167 

182 

Focusing properties 

curved Fresnel zone plate, 213-21 

diffractor, 50-54 

Soret zone plate, 173-79 

Folded phase-reversal zone plate antenna, 

270-74 

AHA, 272, 274 

BHA, 272, 273 

configuration, 272 

defined, 270-7 1 

focusing illustration, 270 

parameters, 273 

Soret zone plate (SZP), 272 

Set alro Antenna(s); Planar zone plate 

antennas 

antenna, 259 

Four-dielectric quarter-wave zone plate 

feed gain patterns, 265 

gain patterns, 260 

geometry, 259 

numerical results, 259-65 

planar dielectric lenses, 263 

radiation pattern, 262 

See alro Phase-corrected zone plate 

an ten nas 

Four-ray diffraction, 1 12-1 3 
Fraunhofer diffraction, 62-64 

Free-space power combining, 156-57 

Frequency aberration, 161-63 

Frequency bandwidth, 167-68 

determining, 168 

microwave Soret zone plate, 178-79 

ratio vs., 168 

relative, 168 

Soret zone plate antenna, 246-47 

Frequency-selective structures (FSS), 1 52, 

Fresnel, Augustin, 37 

Fresnel diffraction, 64-79 

276 

by aperture in plane infinite screen, 59 

by circular aperture, 72-77 

dimensionless variables, 65-66 

factors, 67, 77, 113 

field, 64 

by obstacles, 78-79 

patterns, 73, 133 
pure, 61 

by rectangular aperture, 66-67 
by slit, 72  

by straight edge of semi-infinite screen, 

70-72 

Fresnel integrals, 67-69 

cosine, 67-68, 75 

plots, 69 

sine, 67-68, 75 
F resnel- Ki rc h hoff diffraction theory, 

3 5-86 

derivation geometry, 55, 69-72 

integral, 58 

knife-edge hill diffraction and, 108 

Fresnel’s biprism arrangement, 22 

Fresnel zone(s), 37-54 

applied to radio communication links, 

axial field intensity contribution, 185 

boundaries, 44 
construction, 40-45 

construction geometry, 40 

defined, 40 

diffractor focusing properties, 50-54 

in direct wave propagation, 83 

equal, 50 

field determination, 45-48 

87-135 



fields, sum of, 48 

focusing coefficient, 5 1 

length of, 96 

lenses, 52, 54 
n-th space, 89 

obstructed by concentric disk obstacle, 

49 

obstruction, 48-50 

on sea surface, 100, 101 

patterns, 173, 207, 208, 209, 210, 212 

plane, 42-45 

radio wave propagation and, 87-1 18 

radius, 65, 89, 172 

reflection and, 90-96 

rings, 52 

space, 44, 101 

spherical, 40-42 

total number of, 46 

curved, 296-303 

defined, 231 

gain and efficiency, 261 

introduction, 23 1-32 

millimeter-wave receiver with, 268 

planar, 232-96 

reflection, 23 1 

transmission, 23  1 

Fresnel zone plates, 139-22 1 

arbitrary shape, 144 

asymmetric, 142, 143 

classification by cross-sectional 

structure, 1 4 6 5 2  

classification by shape of zonal surface, 

141-46 

curved, 142-46, 201-21 

cylindrical, 144-46 

first, 140 

focusing efficiency, 54, 140 

frequency bandwidth, 162 

introduction, 139-40 

linear, 141, 142 

multiple phase-corrected, 149-50 

phase-corrected, 179-20 1 

planar, 14 1-42 

polystyrene, 189 

pyramidal, 144, 145 

quarter-wave, 149, 184 

reflectors, 150-52 

Fresnel zone plate antennas, 231-303 

short-focal microwave, 160 

SI, 142, 143 

Soret, 132, 141, 1 4 6 4 7 ,  153-79 

spherical, 143-44 

thickness, 19 1 

transmission, 1 4 6 5 0  

transmission function, 163 

types of, 140-52 

Wood, 147-49, 157 

Fresnel zone regions 

applications, 87 

free-space propagation and, 89-90 

significant, 93, 94 

application, 100- 10 1 

geometry, 91 

homogeneous, 95  

significant earth region and, 91-94 

Fresnel zones in reflection, 90-96 

Friis free-space equation, 1 1 , 12 

Geometrical optics (GO), 87  

Geometrical theory of diffraction (GTD),  

Green theorem, 54 
Gridded phase-shifting dielectric plate, 

87 

197-20 1 

ampli tudelphase-transmission 

coefficients, 202 

circular ring array, 197 

complex transmission coefficient, 200 

defined, 197 

of double squares, 199 

illustrated, 198 

phase shift, 200 

resonance frequency, 200 

of single squares, 199 

total grid-circuit susceptance, 200 

transmission grid equivalent circuit 

model, 198 

Ground media, 8 

Ground-wave propagation paths, 88-89 

illustrated, 88 

propagation modes, 88-89 

See alro Radio wave propagation 

Helmholz wave equation, 54 
Hilly terrain propagation, 87, 104-1 8 

four-ray diffraction, 1 12-1 3 

shape geometry, 106 
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straight knife-edge approximation, 

terrain profile and link clearance, 

troposphere refraction influence, 

wave diffraction, 106-8, 1 13- 17 

See also Radio wave propagation 

108-12 

105-6 

117-18 

Huygen, Christiaan, 35, 37 
Huygens’ element, 84 

Huygens’-Fresnel’s principle, 38-39 

Huygen’s principle, 35-37 

classical construction illustration, 36 

defined, 35 
refraction law proof, 37 

uses, 36 
Huygen’s source, 57, 63, 83-86 

defined, 8 3  

illustrated, 84 

polar radiation pattern of, 86 

Hyperbolic lens, 150 

Illumination angle, 123 

Inclination factor, 47 

Integrated-circuit antenna, 28 1-82 

component fabrication, 282 

cross-sectional view, 282 

defined, 281-82 

gain radiation patterns, 283 

See alro Antenna(s) 

Interference, 19-25 

amplitude, 98  

arrangement for flat ground surface, 97  

attenuation factor, 99 
basis, 19 

by coherent individual source, 25 

by division of wave amplitude, 23-25 

by division of wave front, 21-22 

classical antenna array theory and, 25 

factor, 99 

line-of-sight schemes, 97- 104 

maxima, 99 

methods, 21-25 

optical/quasi-optica1 methods, 2 1-25 

scheme with antenna elevated, 97-99 

standing type patterns, 20-2 1 

in summation, 21 

term, 20, 21 

Isotropic antennas, 12 

Kirchhoff, Gustav, 54 
Kirchhoffs diffraction theory, 54-64 

far-field equations based on, 232-33 

integral, 54-58, 60, 186 

scalar, 54-64 

solution, 58 

vectorial, 80-82 

vectorial far field equations derived 

from, 233-37 

Knife-edge diffraction, 107 

factor, 111 

four-ray, 1 12-1 3 

models, 88 

total field, I12 

See alro Diffraction 

Knife-edge hill, 106-8 

geometry, 106 

multiple, 116-17 

problem approximation, 108-12 

wave propagation, 107 

See alro Hilly terrain 

Knife-edge loss, 108 

Kottler’s equation, 80  

Lenses 

converging, 169-70 

Fresnel zone, 52, 54 

hyperbolic, 150 

Soret zone plate comparison, 170 

Lensmaker’s formula, 169 

Linear Fresnel zone plates, 141, 142 

Linear polarization, 6 

orthogonal, 16 

ratio, 34 

Link clearance, 105-6 

for negative refraction, 1 18 

troposphere refraction influence on, 

117-18 

Lommel functions, 232 

Mawzones offset zone plate antenna, 291 

Maxwell’s equations, 1, 13 

Metal-dielectric phase-correcting plate 

Metal grid 

structures, 152 

capacitive, 226 

illustrated, 227 

inductive, 226 

matrix elements, 228 
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transmission through dielectric plate 

with, 226-29 

diffraction factor, 120, 123 

diffraction pattern, 120 

illustrated, 12 1 

See also Antenna(s) 

Metal ring, 119-26 

Millimeter-wave antennas, 302-3 

Millimeter-wave Michelson interferometer, 

Minimum Fresnel propagation region, 90 

Multidielectric zone plates, 192-93 

frequency vs. thickness, 193 

thickness, 192 

196-97 

196, 197 

267 

Multilayer phase-shifting dielectric plate, 

amplitude/transmission coefficients, 

example, 197 

thickness, 196 

279-8 1 

Multilayer zone plate construction, 

Near field region, 61-62 

Normalized co-polar field pattern, 33 

Normalized intensity function, 155 

Off-axis aberrations, 160-6 1 

illustrated, 160 

RPD, 160-61 

See alro Aberrations 

Off-axis field analysis, 173-76 

Off-axis scanning, 282-87 

defocused zone plate antenna system, 

experimental studies, 283-84 

far-field gain patterns, 285-86 

feed trajectory, 284-85 

numerical results, 286-87 

284 

Offset elliptical zone plate antenna, 

288-96 

far-field analysis, 289-90 

geometry formulation and design, 

multilayer, 294 

numerical/experimental characteristics, 

phase-reversal , 293 

reflective, 292 

288-89 

290-96 

transmission, 289-96 

See also Antenna(s); Planar zone plate 

antennas 

On-axis field analysis, 176-78 

Parabolic equation (PE) method, 88  

Parabolic reflector antenna, 285 

Paraboloidal zone plate, 208-10 

convex, 209 

Fresnel zone pattern, 209, 210 

geometry, 208 

profile curve function, 219 

See also Curved Fresnel zone plates 

Paraboloidal zone plate antenna, 297-98 

defined, 237 

dimensions/parameters, 297 

illustrated, 298 

See also Antenna(s); Curved zone plate 

antennas 

Passive repeaters 

dielectric-type, 13 1 

grating, 132 

illustrated, 129 

ring segment diffractor as, 129-35 

Petzval curve, 285 

Phase, 14 

equations, 7-8 

function, 74 

ground media data, 8 

partial, compensation, 18 1 

properties in boundless space, 6-1 2 

radio link equations, 8-12 

Phase-corrected zone plate antennas, 

designs/appl icat ions, 265-68 

double-dielectric phase reversal, 253-58 

four-dielectric quarter-wave, 259 

numerical results, 259-65 

See also Antenna(s); Planar zone plate 

253-68 

antennas 

Phase-corrected zone plates, 179-20 1 

design considerations, 188-201 

focusing efficiency, 18 1-85 

focusing gain, 181-85 

gridded phase-shifting dielectric, 

197-20 I 

multidielectric, 192-93 

multilayer phase-shifting dielectric, 

196-97 
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phase correction mechanism, 179-8 1 

single-dielectric, 189-92 

solid phase-shifting dielectric, 193-96 

subzone technique, 187 

theory, 185-88 

thickness, 19 1 

See alro Fresnel zone plates 

Phase-correcting structures, 152 

Phase-reversing director, 126 

Physical optics (PO), 87 

Physical theory of diffraction (PTD), 

Planar Fresnel zone plates, 14 1-42, 

87-88 

153-20 1 

asymmetric, 142, 143 

cross, 142 

dielectric permittivity measurement, 

267 

focusing optical wave, 142 

hyperbolic, 142 

illustrated, 141 

linear, 141, 142 

phase-corrected, 179-20 1 

SI, 142, 143 

Soret, 141, 153-79 

See alro Fresnel zone plates 

for direct broadcast satellite (DBS), 

233 

disadvantage, 297 

folded phase-reversal, 270-74 

off-axis scanning in, 282-87 

offset, with elliptical zone plate, 

phase-corrected, 2 5 3-68 

printed reflector, 274-82 

reflection versions, 268-82 

Soret, 232-53 

transmission versions, 232-68 

Sec alro Antenna(s) 

Plane Fresnel zones, 42-45 

boundaries, 44 

calculation geometry, 43 

concentric, 43 

defined, 42 

radius, 42, 44 

See alru Fresnel zone(s> 

Planar zone plate antennas, 232-96 

288-96 

Plane of incidence, 14 

Plane waves 

incident on interface between 

propagation of, 25 

transmission matrix analysis, 25-3 1 

Poisson’s bright spot, 79 

Polarization. See Wave polarization 

Polarization unit vector, 234, 235 

Power density 

average, 20 

total, 48 

mediums, 26 

Power flux density (PFD), 295 

Poynting vector, 10, 47 

Primary focal plane, I57 

Printed reflector zone plate antennas, 

274-82 

integrated-circuit, 28 1-82 

multilayer construction, 279-8 1 

parameters, 275, 277 

quarter-wave zone plate reflector, 

single-layer construction, 274-79 

See also Antenna(s); Planar zone plate 

276-78 

antennas 

Profile curve function, 2 19 

Propagation. See Radio wave propagation 

Pyramidal zone plates, 144, 145 

Quarter-wave zone plate reflector, 276-78 

ring arrangement, 278 

zone plate, 278 

Quarter-wave zone plates, 149 

design considerations, 188-20 1 

frequency characteristic, 184 

Quasioptical diffraction elements (QDE), 

302 

Radiation near-field region, 62 

Radiation patterns, 12 1 

approximated, 125 

axial-mode helical antenna, 274 

backfire helical antenna, 272, 273 

cylindrical zone plate antenna, 299, 

30 1 

E-plane, 280 

experimental, 126 

integrated-circuit antenna, 283 

multiplication equation, 134 

off-axis antenna, 287 
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on-axis antenna, 287 

phase-reversal antenna, 262 

primary, 124, 125 

quarter-wave antenna, 262 

in Soret zone plate antenna, 237, 238, 

244, 245, 251, 262 

for uniform aperture field, 134 

See aho Antenna(s) 

Fresnel zone diffractors in, 1 18-35 

over hilly terrain, 118 

section illustration, 119 

Radio wave diffraction 

four-ray, 1 12- 13 

by hill modeled as multiple knife-edge, 

knife-edge, 108 

by sharp hill with round ridge section, 

significant segment, 108-1 2 

by straight sharp hill, 106-8 

See aho Diffraction 

Fresnel zone regions important to, 

Fresnel zones and, 87-1 18 

ground-wave paths, 88-89 

over hilly terrain, 87, 104-18 

knife-edge hill, 107 

Radio relay links 

116-17 

113-16 

Radio wave propagation 

89-90 

Rayleigh, Lord, 139-40 

Rayleigh’s criterion, 100 

Rectangular aperture, 66-67 

diffraction by, 69-72 

with infinite dimensions, 70 

with semi-infinite screen, 70-72 

features, from flat earth, 94-96 

Fresnel zones and, 70-96 

law of, 13 

matrix equation, 16- 17 

multiple, by dielectric slab, 24 

at oblique wave incidence, 15 

of plane electromagnetic waves, 13-1 7 
at plane interface, 14 

Rayleigh’s criterion for, 100 

of rough spherical earth, 104 

special cases of, 17-19 

total, surface wave resulting from, 18 

Reflection 

wave, 18 

See also Transmission 

calculation, 16 

earth plane, 103 

for smooth earth surface, 94 

total, 25 

voltage, 26 

Reflection coefficient, 15, 18, 99, 227 

Reflector offset antenna, 295 

Resonance frequency, 200 

Ring segment diffractor, 129-35 

Fresnel diffraction pattern, 133 

geometry, 130 

horizontal diffraction pattern, 135 

mounting, 134 

normalized length, 130 

ring segment widthdspacings, 132-33 

vertical diffraction pattern, 134, 135 

See also Diffractors 

Ring-shaped dielectric antenna, 269 

Roughness 

Rayleigh’s criterion for, 100 

reflectivity estimation, 104 

Scalar components, 4 

Scan curves, 285 

Semi-infinite screen, 70-72 

defined, 70 

diffraction factor of, 71 

Sharp hill diffraction, 113-16 

round-shaped ridge segment, 1 15 

variable ridge profile, 1 14 

See alro Hilly terrain SI Fresnel zone 

Significant diffraction segment, 108-1 2 

plates, 142, 143 

defined, 109 

dimensionless chord, 1 10 

illustrated, 109 

Significant propagation region, 90 

Single-dielectric zone plates, 189-92 

profiles, 189 

thickness, 19 1 

See also Fresnel zone plates 

Single-layer zone plate construction, 

Snell’s law, 14, 17 

Solid phase-shifting dielectric plate, 

274-79 

193-96 

amplitude vs. incidence angle, 195 
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transmission coefficients vs. incidence 

angle, 195 

transmission coefficients vs. relative 

dielectric constant, 194 

Sorer zone plate antenna, 232-53 

amplitude-corrected, 246 

antenna gain as function of scan angle, 

aperture eficiency, 248-49 

comparison with PRAs, 240 

coplanar radiation patterns, 24 1 

directive antenna gain, 243 

efficiency curves, 24 1, 242 

efficiency curve vs. focal distance, 242 

experimental designs/measurements, 

experimental/theoretical E-plane field 

pattern, 252 

far-field equations, 232-33 

far-field patterns, 239 

feed radiation patterns, 244 

folded, 272 

frequency bandwidth, 246-47 

frequency design, 237 

gain, 245, 252 

gain radiation pattern, 238, 239, 246 

gain vs. focal length, 243 

geometry, 234 

numerical results, 237-49 

off-axis, 287 

on-axis, 287 

radiation pattern, 237, 244, 245, 251 

scan curves, 285 

theoretical/experimental patterns, 25 1 

vectorial far field equations, 233-37 

See alro Antenna(s); Planar zone plate 

287 

249-53 

an ten nas 

Sorer zone plates, 146-47 

aberrations, 158-63 

axial focusing gain, 177 

circular, dimensioning of, 170-73 

classical, 140, 146 
concentric circular regions, 153 

cross-sectional geometry, 2 13 

cross-sectional view, 147 

field intensity distribution, 177 

focal length optimization, 178 

focusing, 147 

focusing gain, 175, 176 

focusing intensity, 156 

focusing operation, 156 

focusing properties, 173-79 

frequency bandwidth, 167-68, 178-79 

half-wave RPD, 170 

illumination by spherical wave, 169-70 

millimeter-wave, 156 
multiple focusing action, 153-57 

multizone plate, 52 

negative, 157 

nonparaxial, 167 

off-axis field analysis, 173-76 

on-axis field analysis, 176-78 

paraxial, 153, 156 

positive, 157, 174 

reflector, 150 

resolution, 157-58 

section geometry, 176 

transmission function, 163-68 

zone radii equation, 171 

See also Fresnel zone plates 

Spatial attenuation, 12 

Spectral domain technique (SDT), 249 

Spherical Fresnel zones, 40-42 

calculation geometry, 4 1 

radius, 40, 42 

See also Fresnel zone(s) 

n-th, 45 

Spherical half-wave zone plate antenna, 

Spherical zone plates, 143-44 

axial focusing, 2 13-1 7 

convex, 205-6 

dimensions, 203-6 

Fresnel zone patterns of, 207 

geometry, 204 

for optical wavelengths, 202 

profile curve function, 219 

reflective and transmissive, 203 

zone radii equation, 209 

See alro Curved Fresnel zone plates 

Subzone phase correction techniques, 187 

Time-harmonic fields, wave equations, 1-5 
Total gain pattern, 34 

Transmission 

303 

through dielectric plate with metal 

grid, 226-29 
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law of, 14 

lines, 25-26 

through multilayer dielectric plates, 

multiple, by dielectric slab, 24-25 

at oblique wave incidence, 15 

of plane electromagnetic waves, 13-17 

at plane interface, 14 

special cases, 17-19 

See also Reflection 

Transmission coefficient, 15 

calculation, 16 

of gridded plate, 202, 228 

incidence angle vs., 195 

multiple reflection, 255 

relative dielectric constant vs., 194 

of single layer grid, 200 

of three-layer plate vs. incident angle, 

total, 25 

Transmission Fresnel zone plates, 146-50 

antenna, 231 

multiple phase-corrected, 149-50 

quarter-wave, 149, 184 

Soret, 146-47 

Wood, 147-49, 157 

See also Fresnel zone plates 

binary-type, 165 

of circular Soret zone plate, 163-66 

defined, 163 

equation, 164 

of Soret zone plate with straight 

27-3 1 

197 

Transmission function, 163-68 

Fresnel zones, 166-67 

Transmission losses, 12 

dielectric plate, 127 

isotropic antenna, 12 

Transmission matrix 

analysis, 25-3 1 

elements, 29-30 

equation, 17, 30 

input, 30-31 

square, 29 

total, 30 

two-port network, 30 

Troposphere refraction, 88 

absence of, 104 

accounting for, 101-4 

index, 103 

influence on link clearance, 117-18 

interference interpretation, 104 

interference ray scheme and, 102 

Tropospheric ray, 102 

Unidirectional pattern, 86 

Uniform theory of diffraction (UTD), 25 1 

Universal approximate equation, 2 19-2 1 

Vector potential 

electric field, 2 

far-field, 3 
wave equation for, 1-3 

Wave equations 

far-field solution to, 3-5 
for magnetic vector potential, 1-3 

solution geometry, 3 
for time-harmonic fields, 1-5 

Wave polarization, 5-6, 14 

arbitrary, 17 

circular, 6 
defined, 5 
elliptical, 6 
linear, 6,  16, 34 

Wedge-shaped wide hill, 116-17 

Wood zone plates, 147-49, 157 

aperture phase, 147-48 

cross-section geometry, 190 

depth of grooves geometry, 190 

focusing gain, 182 

half-wave, 147 

illustrated, 148 

near-field intensity distribution, 184 

origination, 148 

phase-reversal, 148 ' 

ray shadowing, 192 

ray tracing, 191 

ring types, 149 

stepwise phase-front transformation, 

Wood-Wiltse, 148-49 

See also Fresnel zone plates 
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Young, Thomas, 21-22, 37 



This page intentionally left blank 


