
Design of optimal polarimeters: maximization of
signal-to-noise ratio and minimization of systematic error
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The relationship between system condition and signal-to-noise ratio �SNR� in reconstructed Stokes
parameter images is investigated for rotating compensator, variable retardance, and rotating analyzer
Stokes vector �SV� polarimeters. A variety of optimal configurations are presented for each class of
systems. The operation of polarimeters is discussed in terms of a four-dimensional conical vector space;
and the concept of nonorthogonal bases, frames, and tight frames is introduced to describe the operation
of SV polarimeters. Although SNR is an important consideration, performance of a polarimeter in the
presence of errors in the calibration and alignment of the optical components is also important. The
relationship between system condition and error performance is investigated, and it is shown that an
optimum system from the point of view of SNR is not always an optimum system with respect to error
performance. A detailed theory of error performance is presented, and the error of a SV polarimeter is
shown to be related to the stability and condition number of the polarization processing matrices. The
rms error is found to fall off as the inverse of the number of measurements taken. Finally, the concepts
used to optimize SV polarimeters are extended to be useful for full Mueller matrix polarimeters. © 2002
Optical Society of America
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1. Introduction

Imaging Stokes vector �SV� polarimeters have been
designed and built for many remote sensing applica-
tions including medical, atmospheric, and underwa-
ter remote sensing.1–3 Systems have been designed
for use in all portions of the optical spectrum from
visible to long-wave IR. SV sensors have been dem-
onstrated to improve target contrast, reduce clutter,
aid in target detection and identification, provide sur-
face orientation information, give information about
surface materials, and aid in the defeat of intervening
scatterers for remote sensing in turbid media.

Although polarization is a potentially powerful
tool, it can be quite difficult to measure the polariza-
tion properties of optical radiation across a scene.
Polarimetric optics typically lower system through-
put, thereby reducing the signal-to-noise ratio �SNR�,
and they are often difficult or costly to manufacture
in a broadband sense. Although the SV measure-
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ment strategies are motivated from laboratory-based
active ellipsometry,4 the practical aspects of real-
time, remotely sensed imagery limit frame integra-
tion time and necessitate simultaneous sensing at as
many as 106 pixels. Factors such as these drive im-
aging polarimeters to make as few measurements as
possible to reconstruct the desired polarization infor-
mation.

Recently, a number of studies have explored opti-
mization of polarimeters designed to measure Stokes
parameters. Ambirajan and Look,5,6 Sabatke et
al.,7,8 and Tyo9,10 analyzed the system matrices that
govern polarimeter operation and obtained optimum
configurations by minimizing various condition num-
bers of the polarization processing matrices �L1, L2,
L�, and Frobenius condition numbers�. They deter-
mined that optimum configurations are obtained
when the polarization states analyzed to determine
the SV are equally spaced throughout the Poincaré
sphere. Tyo11 examined multichannel linear pola-
rimeters and showed that optimal linear polarim-
eters have their measurements equally spaced about
the equator of the Poincaré sphere by minimizing the
correlation between successive measurements. It
was asserted initially that the effect of these optimi-
zations was to maximize SNR and minimize the effect
of systematic errors, such as miscalibrations in the
optical elements.6 It has been shown recently with
1 February 2002 � Vol. 41, No. 4 � APPLIED OPTICS 619



6

synthetic7,9,10 and experimental data8,12 that the ben-
efit of increased SNR is obtained. However, to my
knowledge, no studies have yet examined the general
effect that element miscalibration and misalignment
have on the error in the reconstructed SV.

In this paper I address two main points. In Sec-
tion 2 a new geometric description of polarization
information is derived and an underlying optimiza-
tion strategy is presented that is fundamentally re-
lated to the previous optimization studies. An
analysis in terms of the L2 condition number of the
processing matrices is developed and related to the
previous optimizations that considered a variety of
parameters. In Section 3 a detailed theory of sys-
tematic error is derived. Predictions and simula-
tions of the mean-square error as a function of system
errors are presented. The SNR optimization results
are extended to Mueller matrix polarimeters in Sec-
tion 4, and Section 5 concludes the paper.

2. Geometric Descriptions

The SV is a widely used means to fully characterize
the time-averaged polarization properties of incoher-
ent radiation.4 The SV can be expressed in terms of
canonical polarization states as

S � �
s0

s1

s2

s3

� � �
��Ex�t��2� � ��Ey�t��2�
��Ex�t��2� � ��Ey�t��2�

��E45�t��2� � ��E�45�t��2�
��Elcp�t��2� � ��Ercp�t��2�

� , (1)

where x, y, 45, and �45 denote linear polarization
directions and lcp and rcp are left- and right-circular
polarization, respectively. The Stokes parameter s0
is related to the total intensity, s1 and s2 describe the
partial linear polarization information, and s3 de-
scribes the partial circular polarization information.
It is straightforward to show that4

s1
2 � s2

2 � s3
2 � s0

2, (2)

where the equality holds only for completely polar-
ized radiation. When the equality does not hold, the
radiation is said to be partially polarized. Because
the intensities of incoherent beams of radiation add,
the SV can be decomposed as

S � Su � Sp

� �s0,u 0 0 0�T � �s0 � s0,u s1 s2 s3�
T, (3)

where Su and Sp are the SVs of the unpolarized and
completely polarized portions of the radiation.
�Note that all vectors in this paper are shown in bold.�

A common graphical method to depict the polariza-
tion state is the Poincaré sphere.4 We can obtain the
position within the Poincaré sphere by plotting s1�s0,
s2�s0, and s3�s0 along orthogonal axes in three-
dimensional �3-D� Euclidean space. The circular po-
larization axis is typically taken as the polar axis, so
the north pole represents completely left-circular po-
larization, the south pole represents completely
right-circular polarization, and the equator gives the
20 APPLIED OPTICS � Vol. 41, No. 1 � 1 February 2002
locus of all completely linearly polarized states.
Completely elliptically polarized states lie on the sur-
face of the Poincaré sphere, and partially polarized
states are in the interior.

Although the concept of the Poincaré sphere is ex-
tremely powerful, there is one major counterintuitive
property about it—orthogonal polarization states are
not represented by orthogonal vectors on the Poin-
caré sphere. Instead, orthogonal polarization states
occupy opposite ends of a single diameter of the Poin-
caré sphere. This problem can easily be remedied
when we generalize the 3-D Poincaré sphere into a
four-dimensional �4-D� Stokes cone, as is presented
below.

A. N-Dimensional Cones and Spheres

For the purposes of this paper, an N-dimensional
sphere is defined by

	
i
1

N

�i
2 � r2, N � 1, (4)

where r is the radius and �i are the coordinates. An
�N � 1�-dimensional circular cone is defined by

	
i
1

N

�i
2 � �
�0�

2, N � 1. (5)

When 
 
 1, the cone will be termed a unit cone.
Only the upper half of the cone will be considered
here, i.e., �0 � 0. An important property of circular
cones is that the cross section of an �N � 1�-
dimensional circular cone perpendicular to the �0 axis
is an N-dimensional sphere. A cross section of an
�N � 1�-dimensional circular cone that includes the �0
axis is an N-dimensional cone. These relationships
are highlighted in Fig. 1.

The Stokes parameters �s0, s1, s2, s3� define a 4-D
cone, as inequality �2� is equivalent to inequalities
�5� with 
 
 1. This cone represents all physically
realizable polarization states and is called here the
4-D Stokes cone. The s0 axis is the polar axis of
this cone, and a cross section perpendicular to the s0
axis yields the 3-D Poincaré sphere. Similarly, if a
cross section of this cone is taken perpendicular to
the s3 axis, we have a 3-D cone that represents all
partially linearly polarized states. If this 3-D cone
is now projected on a plane perpendicular to the s0
axis, a two-dimensional �2-D� sphere �circle� re-
mains that represents partial linear polarization.
This 2-D circle is equivalent to the equator of the
Poincaré sphere in three dimensions. Other cross
sections of the general 4-D cone might be useful for
other applications.15,16 Although it is difficult to
visualize the full 4-D Stokes cone, the 3-D projec-
tion for linear polarization information is presented
in Fig. 1.

Next I derive a theory concerning orthogonal direc-
tions in N-dimensional cones. The space � repre-
sents an �N � 1�-dimensional cone. The space � �
�N�1, so not all vectors x � � are guaranteed to have
an orthogonal vector y � �.



Theorem 1: Given an �N � 1�-dimensional circular
cone � with 
 � 1, for any x � � there does not exist
a nonzero vector y � � such that x � y 
 0.

Proof: Without loss of generality, we choose x to
lie in the �0–�1 plane with �1,x � 
�0,x � �0,x. Next,
we choose an arbitrary vector y � �, form the inner
product, and assume that the vectors are orthogonal
as

x � y � �0, x�0,y � �1, x�1,y � 0. (6)

Equation �6� is satisfied when

�1,y
2 � ���0, x��1, x�

2�0,y � �0,y
2. (7)

The requirement in Eq. �7� violates inequalities �5�.
Q.E.D.

Corollary 1.1: Given an �N � 1�-dimensional circu-
lar unit cone �, for x � � there exists a nonzero
vector y � � such that x � y 
 0 if and only if x lies
on the surface of �, i.e., ¥i
1

N �i
2 
 �0

2. Furthermore,
the vector y � � orthogonal to x is unique, lies on the
surface of �, and is in the same plane as x and the �0
axis.

Proof: Without loss of generality, we choose x to
lie in the first quadrant of the �0–�1 plane. For x not
on the surface of �, see Eqs. �6� and �7� above. For
x on the surface of �, �1,x 
 �0,x. A vector y is
orthogonal to x when

�1,y � ���0, x��1, x��0,y � ��0,y. (8)

Fig. 1. Schematic of the 3-D Stokes cone that represents all pos-
sible partially linearly polarized states. The three Cartesian axes
are given by s0, s1, and s2, but only states that satisfy inequality �2�
are physically realizable, resulting in the conical space. States on
the surface of the cone are completely linearly polarized. This
figure presents three cross sections. The first is parallel to the s1

and s2 axes and represents a 2-D Poincaré sphere �circle� of par-
tially linearly polarized states. This plane is the projection of the
traditional 3-D Poincaré sphere onto its equatorial plane. The
second and third projections are in the s0–s1 and s0–s2 planes.
These projections are 2-D Stokes cones that represent polarization
differences between orthogonal linear polarization states.11,13,14

The 3-D conical space is itself a projection of the 4-D Stokes cone
onto the s0–s1–s2 hyperplane.
Equation �8� is satisfied by many vectors, but inequal-
ities �5� dictate that for y � �, �2, . . . , �N 
 0.
Q.E.D.

As discussed above, the Stokes cone of physically
realizable states, which is referred to hereafter as �,
is a 4-D subset of �4. The above theorem and corol-
lary provide a mathematical verification �and expla-
nation� for the well-known facts that a partially
polarized state has no orthogonal polarization state
and that a completely polarized state has exactly one
orthogonal polarization state.17 The completely po-
larized portion of Eq. �3� lies on the surface of � and
has an orthogonal state. When the unpolarized por-
tion of Eq. �3� is added, the total vector moves to the
interior of �.

B. Use of Polarimeters to Measure the Stokes
Parameters

At optical wavelengths, detectors often respond to
intensity only. They are usually only weakly sensi-
tive to polarization information and are almost al-
ways insensitive to relative phase information. For
this reason, it is usually impossible to measure the
Stokes parameters directly; instead, an optical sys-
tem must be designed that is polarization sensitive
and tunable. By making several observations of in-
tensity at various settings of the system parameters,
we can build up a set of linear equations that can then
be solved in a least-squares sense �assuming that N �
M, where N is the number of measurements and M is
the number of Stokes parameters to be reconstruct-
ed�. Many different strategies have been developed
to reconstruct the Stokes parameters, including ro-
tating ��4 wave-plate systems,18 general rotating re-
tarder �RR� systems,7 variable retardance �VR�
systems,19 rotating analyzer systems with mechani-
cal and electro-optical rotation,13,14,20,21 photoelastic
modulator-based systems,15 four-photodetector sys-
tems with no additional polarization-sensitive op-
tics,22 and interlaced pixel arrays.23

Regardless of the strategy employed, the concept
behind the polarimeter is the same. The optical sys-
tem is composed of polarization-sensitive elements,
each of which has a Mueller matrix that relates the
incident SV to the output SV, and the entire system
can be cascaded into a single Mueller matrix.4 Com-
mon strategies for the design of an ideal optical sys-
tem are composed of one or more ideal retarder
elements that do not affect intensity and an ideal
polarizer that extinguishes one polarization state
�usually linear� and passes the orthogonal state with-
out attenuation. With a combination of ideal retard-
ers and a single ideal analyzer, the entire polarimeter
can be thought of as an ideal elliptical diattenuator
that passes one elliptically polarized state without
modifying its intensity �the output state of the diat-
tenuator is often not the same as the input state that
passes with maximum intensity transmission� and
completely extinguishes the orthogonal elliptically
polarized state. For optical detectors that respond
only to intensity, only the s0 term of the output SV
need be calculated. We can accomplish this by tak-
1 February 2002 � Vol. 41, No. 1 � APPLIED OPTICS 621
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ing the inner product of the first row of the composite
Mueller matrix with the input SV as

s0,out
�i� � M00

�i�s0 � M01
�i�s1 � M02

�i�s2 � M03
�i�s3 � �M0

�i��T � S,
(9)

where �M0
�i�� is the first row of the composite Mueller

matrix for the ith configuration of the polarimeter.24

�Note that all matrices in this paper are shown in
bold with an underline.� By taking a set of measure-
ments, we can build up a system of linear equations
allowing a solution for the unknown Stokes parame-
ters in terms of the measured intensities. The lin-
ear system can be described as

I � A � S, S � B � I, (10)

where I is the vector of the observed intensities and B

 A�1. The ith row of A is �M0

�i��T. Here the matrix
A is termed the analysis matrix, and the matrix B is
the synthesis matrix.

Lu and Chipman25 showed that the first row of the
Mueller matrix for an ideal diattenuator is the SV of
the state that passes the diattenuator. This is
termed here the principal axis of the elliptical polar-
izer. Therefore the ith element of the vector I rep-
resents SD

�i� � S, where SD
�i� is the principal axis of the

ith configuration of the polarimeter and S is the input
SV. As the parameters of the optical system are
varied and the Mueller matrix changes, so does the
principal axis of the composite Mueller matrix. The
operation of a polarimeter is therefore equivalent to
one taking projections of S onto several different unit
vectors in �4. Because these vectors must also be
elements of �, they cannot form an orthogonal basis
if N � 2 �see Theorem 1�; and when N � M, the
decomposition is in terms of a frame rather than a
basis as discussed in Subsection 2.C.

C. Bases and Frames on the Stokes Cone

The operation of a polarimeter is suggestive of the
input SV being decomposed over a basis in �4. It is
clear from the above discussion that � is a 4-D subset
of �4; however, it is not possible to construct an or-
thogonal basis for � out of elements of �. Instead, a
nonorthogonal set must be chosen. Furthermore,
there is nothing restricting one to making only four
measurements to reconstruct the SV. Many sys-
tems have been developed that introduce redundancy
by making more measurements than are strictly nec-
essary �i.e., making five or more measurements to
reconstruct the four-element SV�, in which case the
decomposition vectors in Eq. �9� are linearly depen-
dent and cannot be a basis. The mathematical tool
of frames has been introduced to deal with such sit-
uations.

Frames and tight frames are extensions of bases
and orthogonal bases. A frame is a set of vectors
that spans a linear space, but is not necessarily lin-
early independent. There is a rich literature on
frames in the signal processing literature,26,27 and
the theory is only briefly examined here.
22 APPLIED OPTICS � Vol. 41, No. 1 � 1 February 2002
Consider the set of N basis vectors �xi�1
N in �N.

An arbitrary vector y � �N can be represented as

y � 	
i
1

N

�x̃i � y�xi, (11)

where �x̃i�1
N is the dual basis of �xi�1

N, such that x̃i �
xj 
 �ij, and �ij is the Kronecker delta. When
�xi�1

N is orthonormal, x̃i 
 xi. The dual basis in Eq.
�11� serves as the analysis tool; i.e., it gives the
amount of each of the basis vectors that is needed to
reconstruct y. For a frame, the number of unit vec-
tors might be larger than the dimensionality of the
space. In some cases, a minimum-energy decompo-
sition of the form of Eq. �11� can still be written.
When such a decomposition exists, a Parseval-like
relation exists27:

A�y � y� � 	
i
1

N

�x̃i � y�2 � B�y � y�, (12)

where N is the number of unit vectors in the frame
and 0 � A � B � �. For tight frames A 
 B, and for
orthogonal bases A 
 B 
 1. Note that in the struc-
ture of Eq. �10� the dual basis contains the principal
axes of the polarimeter.

As an example that can be visualized, consider the
decomposition of the linear polarization information
contained in s0, s1, and s2 by a system composed of
only linear polarization-sensitive elements. The
3-D cone in Fig. 2 represents all possible partially
linearly polarized states. The set of three measure-
ments that forms the optimum polarimeter �unique
to a rotation of all three measurements by a constant
angle� occurs when three linearly polarized measure-
ments are made at � 
 0°, � 
 60°, and � 
 120°.11

Fig. 2. Schematic of the 3-D Stokes cone with some important
bases and frames. The basis formed by the vectors marked 0°,
60°, and 120° form the optimum three-measurement system.11

The vectors marked 0°, 45°, and 90° form a second common basis
that was shown to be suboptimal.11 This basis, along with the
fourth vector marked 135°, forms a four-element frame, the opti-
mal system for N 
 4, as proposed by Walraven.20
1 2 3



This set of vectors is depicted in Fig. 2. A second
common basis set where �1 
 0°, �2 
 45°, and �3 

90° is also depicted in Fig. 2. The former case forms
a frame with

A � 0.5625, B � 0.75. (13)

The latter case makes a frame with

A � 0.25, B � 0.8536. (14)

The first set is the optimum configuration for three
measurements in 3-D polarization space.11 An ex-
planation of how this optimization is obtained is pre-
sented in Subsection 2.D. It should be noted that
the reconstruction bases for both of these cases are
formed of vectors that are not elements of �. If more
than three measurements are made, as done by Wal-
raven20 and others, then the optimal configuration is
to space the linear polarization measurements out
evenly between 0° and 180°.11

D. Optimization of Stokes Vector Polarimeters

Sabatke et al.7,8 and Tyo9 have shown that the SNR in
reconstructed Stokes parameter images is maximized
and equalized when the various condition numbers of
the analysis and synthesis matrices defined in Eqs.
�10� are minimized.28 The condition number of a
matrix is defined in terms of the matrix norms as

��A� � �A� �A�1�. (15)

The choice of matrix norm is left to the user,29 but the
one used here is the L2 norm:

�A�2 � sup
x

�A � x�2

�x�2
, (16)

where �x�2 is the Euclidean length of the vector x.
The reasons for this choice of norm are discussed in
detail by Tyo,9 and a detailed discussion of the rela-
tive merits of various norms is given by Sabatke et
al.8

Optimum configurations for 4-D systems to make
four measurements were obtained when the un-
known input SV was analyzed with four elliptical
diattenuators whose principal directions form a reg-
ular tetrahedron on the Poincaré sphere.30 The ef-
fect of such an optimization is demonstrated by Tyo9

with simulated data and by Sabatke et al.8 and Tyo
and Turner19 with experimental data. Not all polar-
imeter configurations can produce a global optimum,
and the optimum configuration for a particular po-
larimeter strategy might not be unique.9 For rotat-
ing compensator systems,7 the retardance of the
compensator is fixed, and various fast-axis orienta-
tions are chosen to construct the system matrices A
and B. For a given retardance, the condition num-
ber can be minimized, and the minimum condition
number is presented as a function of retardance in
Fig. 3. There is a unique global optimum retardance
at � 
 0.3661�,7 and at this retardance there are two
sets of angles that achieve the optimal condition. It
is clear from Eqs. �15� and �16� that a matrix with a
small L2 norm will map the small vector due to ob-
servation noise into a small error vector upon recon-
struction. Because both the analysis and the
synthesis matrices influence �2�A�, the matrix must
be well conditioned with respect to inversion.

For VR systems, the orientations of two retarders
are fixed, and sets of retardance values are chosen to
construct A and B.19,31 For each pair of retarder
orientation angles, the system can be optimized when
we choose the best four pairs of retardance values.
These results are presented in Fig. 4. As can be seen
from Fig. 4, the VR system has many more possible
optimum configurations, and this is related to the
extra degree of freedom that is available in the design
of a VR system as opposed to a RR system. A wider
range of elliptical diattenuators can be synthesized
with a VR system than a RR system, providing access
to more of the Poincaré sphere. If the RR system
were changed to a rotating variable retarder �adding
a degree of freedom�, similar coverage of the Poincaré
sphere could be realized. A similar optimization can
be performed for linear polarimeters. These devices
make three �or more� measurements to reconstruct
the first three Stokes parameters. The 2 three-
measurement systems described in Eqs. �13� and �14�
have condition numbers of �2 and 1 � �2, respec-
tively. It can be seen that the tighter frame is the
better conditioned system.

Systems are often developed that make more than
N 
 4 measurements to introduce redundancy and
make the system less sensitive to errors and noise. I
show in Section 3 that making more measurements
can decrease the susceptibility of the polarimeter to
errors such as random angular positioning errors in a
RR system. Because of the improvement in error
performance realized by an increase in N, the opti-
mum angles for N 
 4, 6, and 8 measurements in a

Fig. 3. Optimal condition number for four-measurement rotating
compensator systems. There is a clear optimum at � 
 0.3661�.
I obtained the optimization by minimizing the L2 condition number
of the system matrices, but achieved the same result as Sabatke et
al.,7 where the equal-weighted variance—equivalent to the Frobe-
nius condition number of the system matrices—was minimized.
1 February 2002 � Vol. 41, No. 1 � APPLIED OPTICS 623
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RR polarimeter were calculated and are presented in
Table 1. These optimum configurations were all re-
alized with � 
 0.3661�.

An interesting feature of Figs. 3 and 4 and Table 1
is the actual value of the optimum condition number.
For both VR and RR systems, the absolute minimum
condition number obtained numerically is approxi-
mately �3. Furthermore, the optimal condition
number for the 3-D rotating analyzer systems was
�2. It is shown in Appendix A that the minimum
L2 condition number of the system matrices is
�M � 1�1�2, where M is the number of reconstructed
Stokes parameters. In Appendix B, relationships for
the frame bounds in inequality �12� for optimized sys-
tems are derived.

Fig. 4. Optimal condition number for VR systems showing the
lowest possible condition number for a VR polarimeter with the
given fast-axis orientation values of �1 and �2. The jaggedness of
the contours is due to coarse sampling in �1 and �2, but that should
not detract from the overall message. All �1–�2 pairs inside the
lowest contour have a continuum of optimal configurations.9 Al-
though the condition number of all optimal configurations is the
same, the best set of angles is �1 
 45°, �2 
 0°. This point is the
geometric center of the optimal region and provides access to the
entire Poincaré sphere. For a detailed description of this optimi-
zation, see Tyo.10

Table 1. Optimum Retarder Positioning Angles

N ���i

4 ��15.12°, �51.69°� ��74.88°, �38.31°�
6 ��10.06°, �36.76°, �59.63°� �30.37°, �
8 ��12.40°, �36.14°, �49.66°, �72.07°� �

aThe two sets of angles are complements of each other. The thir
for each N with � 
 0.3661�, each of which is approximately �3.
when the N measurements are equally spaced between 0° and 180
path traced out on the surface of the Poincaré sphere is more com
24 APPLIED OPTICS � Vol. 41, No. 1 � 1 February 2002
3. Relationship between System Condition and
Systematic Errors

To this point, the optimization has been in terms of
SNR with respect to additive noise that is due to the
detection process. Additional sources of errors in
polarimeters are element misalignment and miscali-
bration.4,32 In this section, expressions describing
the sensitivity to such errors are derived, and the
relationship between system condition and error
minimization is discussed.

A. Theoretical Formulation

The theory developed here is applicable to a polarim-
eter with any number of parameters. The specific
example of a one-parameter system, a RR polarime-
ter, is examined for simplicity. The process to ana-
lyze an unknown SV with an imperfect polarimeter to
make N measurements and reconstruct an estimate
of the SV is

S� � BA� � S, (17)

where A� is the perturbed analysis matrix �N � 4�
when we consider errors in the parameters of the
system �e.g., azimuthal settings of the retarder in a
RR system�, and B is the ideal synthesis matrix �4 �
N�. If A� 
 A � �, then

� � S� � S � �BA� � I�S � B� � S (18)

is the 4-D vector representing the error in the recon-
structed SV, with I the 4 � 4 identity matrix. For a
RR polarimeter, when we assume only errors in
alignment,

�ij � �A� � A�ij

� �i�M0j��i � �i� � M0j��i�

�i
	


 �i

�M0j���

��
�

�i

, (19)

where �i is the nominal azimuthal setting of the re-
tarder for the ith measurement, �i is the angular
position error, and M is the composite Mueller matrix
of the system. The approximation in Eq. �19�, which
is the first term of a Taylor-series expansion of A
about the nominal settings, is good when the angular
position error is small �compared with � radians�.
Note that �i0 
 0, as M01 
 1�2 for all ideal elliptical

ur-, Six-, and Eight-Measurement RR Systemsa

CN

1.7321
°, �79.94°� 1.7321
98°, �40.34°, �53.86°, �77.60°� 1.7322

umn gives the condition number �CN� of the optimal configuration
rotating analyzer systems, the optimum configuration is obtained
or RR systems, the optimum angles are not equally spaced, as the
ted than in rotating analyzer systems.
for Fo


1
N

53.24
�17.

d col
For

°. F
plica



diattenuators. When errors exist in responsivity
calibration, �i0 � 0. If this is the case, then Eq. �19�
should be modified. To extend this theory to a po-
larimeter with more than one parameter �e.g., a VR
system with two variable parameters, the retardance
of the two retarders�, the Taylor series in Eq. �19�
should be generalized to a multivariable Taylor se-
ries.

The error metric computed here is

���2
2 � �B� � S�2

2 � 	
i
0

3

�B� � S�i
2, (20)

where the 2 norm was chosen arbitrarily, and Eq. �20�
corresponds to the mean-square Euclidean length of
the reconstruction error vector. The azimuthal po-
sitioning error of the retarder is assumed to be inde-
pendent and identically distributed, i.e., E��i�j� 

�2�ij, where �ij is the Kronecker delta, � is the rms
error in azimuthal position �in radians�, and E ��� is an
expectation. Forming �B� � S�i

2 and taking the ex-
pected value over the error, we obtain

E���B�S�i
2� � �	

j
Bij�j��j1s1 � �j2s2 � �j3s3�	

� �	
k

Bik�k��k1s1 � �k2s2 � �k3s3�	
� 	

j
	

k
BijBik��j1s1 � �j2s2 � �j3s3�

� ��k1s1 � �k2s2 � �k3s3� E��j�k�

� �2 	
j
0

3

�Bij�
2���j1�

2s1
2 � ��j2�

2s2
2

� ��j3�
2s3

2 � 2�j1�j2s1 s2 � 2�j1�j3s1 s3

� �j2�j3s2 s3�. (21)

The relationship �j0 
 0 is used to simplify Eq. �21�.
When the error is not independent and identically
distributed, Eq. �21� will be more complicated.

Equation �21� can be further simplified when we
assume that the input polarization states are uni-
formly distributed over the Poincaré sphere. In that
case, E�sisj� 
 �1�3��ij with i, j � 0.33 Taking the
expectation of �B� � S�i

2 over the Poincaré sphere, we
obtain

E��B� � S�i
2� �

�2

3 	
j
0

3

�Bij�
2���j1�

2 � ��j2�
2 � ��j3�

2�.

(22)

Summing over i yields

E����2
2� � E��B� � S�2

2� �
�2

3 	
i
0

3

	
j
0

3

�Bij�
2 	

k
0

3

��jk�
2.

(23)
A straightforward calculation can be used to show
that

�2

3 	
i
0

3

	
j
0

3

�Bij�
2 	

k
0

3

��jk�
2 � E��B��F

2�, (24)

where

�A�F
2 � 	

ij
�Aij�2 (25)

is the Frobenius norm of the matrix A.29 The impli-
cations of Eqs. �23� and �24� are discussed in Subsec-
tion 3.B.

B. Numerical Simulation

A Monte Carlo simulation was prepared to test the
above results for rotating compensator systems.
The retardance of the rotating compensator was
taken to be between 0 and ��2. For each retardance,
the system was designed with the optimum angles
given in Table 1 for N 
 4, and 50 realizations of the
system were generated with rms azimuthal error �.
Each system operated on 106 randomly generated
SVs that were uniformly distributed over the surface
of the Poincaré sphere, and the Euclidean length of
the reconstructed error was computed. The rms er-
ror was them computed for several values of �, and
the results are presented in Fig. 5 along with the
predictions from Eq. �23�.

The analytic predictions closely match the com-
puted values of error from the simulation. There is
a broad optimum that occurs from a retardance value
of 0.22� to 0.38� where the rms error is within 20% of
the optimum value. This is in contrast to the SNR
optimization presented in Fig. 3 where the condition
number increases rapidly away from the optimum.

Fig. 5. Numerical simulation and analytic prediction of rms
error in the reconstructed SV for RR systems. I calculated the
rms error by generating 106 random polarization states and
simulating the polarimeter operation with 50 different realiza-
tions of error in the angular setting of the compensator. The
error was generated by use of normal statistics with a standard
deviation of �. Analytic curves were generated with Eq. �23�.
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Furthermore, the retardance that produces the abso-
lute minimum rms error is at � 
 0.3073�, which is
noticeably different from the optimum of � 
 0.3661�
used to maximize SNR.

It is somewhat counterintuitive that the system
with the minimum condition number would not pro-
duce the minimum rms error. The reason for this
can be discovered when we reexamine Eqs. �17�–�25�.
The expected value of the error vector is controlled by
both the synthesis matrix B and the perturbation
matrix �. Equations �15� and �16� indicate that ma-
trices with low L2 norms will map small offset vectors
into small error vectors. However, a well-
conditioned matrix is not necessarily stationary with
respect to the system parameters. The expected
length of the error in the I measurements in Eqs. �10�
is determined solely by the variance of the noise. In
contrast, the error in I in Eq. �18� is determined solely
by the matrix �. Even when B is well conditioned,
the size of the reconstruction error ���2 can be large if
���F is large.

The perturbation matrix is a measure of how sen-
sitive the principal direction of the Mueller matrix
�and hence the analysis matrix A� is to changes in
the system parameters. As a measure of this sen-
sitivity, ���F is plotted as a function of retardance in
Fig. 6. At small values of retardance, ���F is small;
as the retarder has little or no retardance, it does
not significantly modify the polarization state of the
radiation. As the retardance increases, so does
���F, implying that the principal direction of the
polarimeter is changing more rapidly. The trajec-
tories traced on the Poincaré sphere as a retarder is
rotated in front of an analyzer are presented in Fig.
7. The smaller the retardance, the shorter the to-
tal path length, and hence the principal direction is
less sensitive to azimuthal error. The sensitivity

Fig. 6. Frobenius norm of the perturbation matrix � as a function
of retardance of the rotating compensator. � was computed for
N 
 4, 6, and 8 at the optimum angles given in Table 1 and divided
by the number of measurements. Note that at � 
 0.3661� where
the condition number of A and B is minimized, ���F is relatively
large.
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effect is balanced by the fact that, at small �or large�
retardances, the system is highly ill-conditioned,
hence the optimum retardance for minimization of
rms error is somewhat less than for maximization of
SNR, representing a compromise between the two
effects.

C. Overdetermined Systems

Many polarimeter systems have been designed to
overspecify the SV by making more than four mea-
surements to reconstruct the full SV. This was done
to help minimize the effects of noise and error on any
one measurement. Sabatke et al.7 demonstrated
that SNR could be reduced without increasing com-
plexity by taking the extra time that would be nec-
essary to make more than M measurements to simply
increase the integration time at each of the M set-
tings of the polarimeter. If SNR were the only con-
sideration, there would be no need to make more than
M measurements. However, Eq. �23� can be used to
predict the benefit in reduced rms error that can be
realized when we add redundancy to the polarimeter.
Figure 8 shows analytic and Monte Carlo results for
the rms error vector length when the SV is recon-
structed from optimal four-, six-, and eight-
measurement RR systems. The overall shape of the
contours is similar, but the addition of redundancy
enhances the rms error of the polarimeter. Figure 9
shows the predicted rms error for an optimum RR
polarimeter �� 
 0.3661�� as a function of the number
of measurements. The data fall almost exactly on a

Fig. 7. Trajectories traced out on the surface of the Poincaré
sphere for RR polarimeters as the retarder angle is altered. After
Sabatke et al.,7 Fig. 1. For � 
 0.125�, the condition number is
high, but the total trajectory length is small as the retarder rotates.
For � 
 0.37�, the condition number is minimized, but the trajec-
tory on the Poincaré sphere is longer, hence ���F is large.



line in log–log space, and a least-squares fit to the
data reveals that, for optimized systems,

���2 �
b0

N
, (26)

where N is the number of measurements made in the
RR polarimeter, and those measurements are made
at the optimal angles for that particular N. The
parameter b0 will depend on the rms error in azi-
muthal position. As expected, when we add addi-
tional, redundant measurements, the rms error
performance improves for the same amount of azi-
muthal error in the parameter settings.

Fig. 8. Predicted and simulated rms error for the optimum RR
system with N 
 4, 6, and 8. Data were generated with the same
procedures as in Fig. 5 with system parameters as given in Table
1.

Fig. 9. Predicted rms error for optimum RR system �� 
 0.3661��
as a function of the number of measurements made. At large N,
the optimization is slow, and it is not always possible to find an
optimum where the condition number of A is �3. However, in all
cases the condition number used to generate this figure was within
0.1% of �3.
4. Optimization of Mueller Matrix Polarimeters

Design of a Mueller matrix imaging polarimeter is
more complicated than the design of a SV polarime-
ter. The Mueller matrix at each pixel in an image
reveals how the scattering process at that pixel
changes the polarization state of light. The Mueller
matrix is 4 � 4, all 16 elements of which are typically
independent when no assumptions can be made
about the nature of the target.4 Laboratory-based
nonimaging32 and imaging34 Mueller matrix polarim-
eters have been developed that use Fourier methods
to reconstruct the Mueller matrix from the harmonics
generated in the intensity signal as the polarization
generator and analyzer sections are altered periodi-
cally. For imaging devices, as many as 80 intensity
images have been stored to reconstruct the underly-
ing Mueller matrix images.34 For real-time systems
with typical image sizes �of the order of 640 � 480�,
the time and storage required to capture a Mueller
matrix image can be prohibitive. Even if parallel
methods are used, the spatiotemporal resolution is
beyond what is currently available for near-real-time
imagery. Because of the huge additional storage
and processing needed to form a Mueller matrix im-
age, there is an even greater push to make as few
measurements as possible to reconstruct the Mueller
matrix on a pixel-by-pixel basis.

Here it is assumed that reconstruction of all 16
elements of the Mueller matrix is desired and that
the reconstruction will be made from only 16 mea-
surements. If either the number of desired ele-
ments or the number of measurements change, then
the method is still applicable, but matrix inverses
may need to be replaced with pseudoinverses, as so-
lutions are obtained in a least-squares sense. Be-
cause M is the unknown, at least four different pairs
of Si and So must be used. This results in the ex-
pression

M � Si � So, with (27)

Si � �Si
�1� Si

�2� Si
�3� Si

�4��, (28)

So � �So
�1� So

�2� So
�3� So

�4��, (29)

where Si
� j� is the jth input SV. The unknown Muel-

ler matrix can be determined from Eq. �27� by

M � So � Si
�1, (30)

where the inverse operation is replaced by the appro-
priate pseudoinverse when Si is not full rank. It is
clear from the discussion above that the SNR in the
reconstructed Mueller matrix images is maximized
and equalized when the condition number of Si is
minimized. This implies that SNR is maximized
when four input states are generated that form a
regular tetrahedron on the Poincaré sphere, and each
of the output states is analyzed through four elliptical
diattenuators that form a regular tetrahedron on the
Poincaré sphere. Available a priori information
about M can be used to help select the appropriate
input and output states to use. It should be noted
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that SNR is only one consideration. There might be
operational restrictions that make a choice of subop-
timal input and output polarization states more de-
sirable, such as ease of implementation; systematic
error is not addressed here.

5. Conclusion

In this paper several considerations in polarimeter
design have been presented. The relationship be-
tween condition number and optimization of SNR in
a SV polarimeter were reviewed7,9; and optimal con-
figurations for RR, VR, and rotating analyzer sys-
tems were presented in Figs. 3 and 4 for a wide range
of system parameters. A detailed theory was devel-
oped linking system design to error performance, and
it was found that two items affect error propagation
in a system: �1� condition number of the system
matrices A and B and �2� sensitivity of the analysis
matrix A to changes in the system parameters. Fi-
nally, the extension of the ideas of optimization from
SV polarimeters to full Mueller matrix polarimeters
was discussed.

Optimizing polarimeters by use of SVs that in-
scribe a regular tetrahedron in the Poincaré sphere is
not a new concept. Azzam et al.22 introduced the
concept for choosing the optimal set of four SVs to
calibrate their four-detector photopolarimeter. Am-
birajan and Look6 used the concept to propose a best
possible arrangement of principal directions for a SV
polarimeter, although they were not able to show that
such a configuration was necessarily optimal. Sa-
batke et al.7 demonstrated that there are exactly two
possible ways to inscribe a regular tetrahedron in the
Poincaré sphere using a RR polarimeter, and Tyo9

showed that a VR system can have many possible
optimal configurations, a property that might make
VR systems more desirable in some applications.
Previously, Tyo11 demonstrated that linear polarim-
eters with the measurements made at equally spaced
intervals between 0° and 180° were optimal. Al-
though that analysis was done in terms of measure-
ment correlation, not system condition, it is
straightforward to show that such a system has the
lowest condition number for its analysis matrix.
Walraven20 may have been the first to employ such a
strategy for a linear polarimeter, as he used four
linear polarizers oriented at 0°, 45°, 90°, and 135°,
although this was done primarily for ease of compu-
tation.

All the above analysis methods have come to fun-
damentally identical results for all classes of SV po-
larimeters so far investigated. The reason for this is
as follows. Describing a polarimeter as a device that
makes a linear decomposition of an unknown 4-D
input vector onto the optimal N-element frame en-
compases all the above techniques. Such a system is
by definition the best conditioned,27 the projections
have the least possible correlation between them, and
the resulting reconstructed images can be expected to
have the optimal input SNR. Only the issue of error
performance as discussed here cannot be easily un-
derstood solely by the concept of frames on the Stokes
28 APPLIED OPTICS � Vol. 41, No. 1 � 1 February 2002
cone. Ambirajan and Look5 proposed that the pri-
mary benefit to minimizing the system condition is to
use an optimally conditioned system to minimize the
effect of such errors; however, the results presented
here and by Sabatke et al.7 and Tyo9 make it clear
that the primary benefit of to minimizing the system
condition is the reduction of SNR that is due to noise
introduced during the detection process, and that
sensitivity of the system to changes in the parame-
ters is equally important in rms error performance.

Appendix A

The L2 condition number of a matrix is equal to the
ratio of the largest and smallest singular values of the
matrix.29 The singular value decomposition of a
N � M matrix A is

A � USVT, (A1)

where U is an N � N unitary matrix, V is a M � M
unitary matrix, and S is an N � M diagonal matrix of
singular values. Each of the vectors �columns� of V
represents a direction in �M that maps into the cor-
responding column of U �set of intensity measure-
ments� in �N with lengths related by the
corresponding singular value. Columns of U greater
than M in index are not in the range of A.

Recall that the rows of A are the principal axes of
the successive Mueller matrices used to decompose
the unknown input. When A is optimized, these
vectors are uniformly spread out on the surface of the
Stokes cone. Regardless of the configuration of the
polarimeter, the first entry in the principal axis vec-
tor �M00

�i�� is always 1�2 when the diattenuator is
ideal. Operation on the unpolarized SV Su 

�1 0 0 0�T produces

A � Su � �1�2 . . . 1�2�T � u1. (A2)

When the system is optimized, the 2nd–Mth col-
umns of each row of A form a vector in �M�1 that is
on the surface of the �M�1�-dimensional space nor-
mal to Su. It was shown that this space is a �M�1�-
dimensional sphere, corresponding to the Poincaré
sphere when M 
 4. The 2nd–Mth columns of each
row also correspond to the principal axes of the ellip-
tical diattenuators, which are equally spaced in
�M�1. Because there are more axes �N� than dimen-
sions �M–1� and the system is optimal, these vectors
form a tight frame in �M�1,27 and the frame bounds
in inequality �12� are equal to the redundancy ratio
times the square length of the vectors, e.g., N vectors
in �M�1�-dimensional space27 multiplied by �M00�2

�see inequality �12��. Because all vectors in �M�1

have the same transformed length, and this space is
orthogonal Su, they form the principal spaces
spanned by the matrix A with one singular value,

�1 �
�A � Su�2

�S �
�

�N
2

, (A3)

u 2



and three remaining singular values,

�j �
�N

2�M � 1�1�2 � j � 1�, (A4)

which yields for the condition number

�2�A� � �1��M � �M � 1�1�2. (A5)

Equation �A5� indicates that the minimum condition
number for the processing matrices of a polarimeter
is equal to �M � 1�1�2, where M is the dimensionality
of the SV to be reconstructed. This result is inde-
pendent of the number of measurements N that are
made to reconstruct the M Stokes parameters and is
in agreement with the results presented above for
RR, VR, and rotating analyzer systems with various
values of N.

Appendix B

A second relationship can also be developed that links
the frame bounds A and B in inequality �12� to the
singular values of the processing matrices for opti-
mized systems. It has already been shown that an
optimal SV polarimeter has its decomposition basis
spaced out equally along the surface of �. The vec-
tor Su representing unpolarized radiation can be
shown to be the vector that satisfies the upper frame
bound.35 In that case,

�A � Su�2
2

�Su�2
2 � �1

2 � N�4. (B1)

A completely polarized vector can be shown to satisfy
the lower frame bound �from among allowed SVs�,
and

�A � Sp�2
2

�Sp�2
2 �

1
2

��1
2 � �M

2� �
1
8 
N �

N
M � 1� . (B2)

Substitution verifies Eqs. �B1� and �B2� for the cases
considered above.
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