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Preface

Polarization involves the vectorial nature of light. In theoretical topics and tech-
nological applications of current interest in optical science, the electromagnetic
description of the light disturbance and polarization-related phenomena have turned
out to be crucial. In fact, they have gained importance in recent years, attracting
the attention of numerous scientists in the last decade. Photonics devices, biologi-
cal optics, optical communications, atmospheric optics, and sensor technologies are
examples of research areas where the vectorial features of light are relevant.

In practice, optical radiation exhibits randomness and spatial nonuniformity of
the polarization state. These kinds of realistic and general situations are most fre-
quently encountered in the literature, and drastically depart from the simplest model
of harmonic plane waves. Keeping in mind the framework of classical optics, this
book deals with the analytical problem of describing and characterizing the polariza-
tion and spatial structure of nonuniformly polarized fields, along with their evolution
when light propagates through optical systems. This is the aim of this work.

In particular, the scope and the contents of the book are essentially focused on
the contributions of the authors to four main issues, which correspond to approach-
ing the problem under study from different angles. Thus, in Chap. 1, after a short
introduction to the main standard representations of the polarization, we analyze in
some detail several recently proposed measurable parameters, of practical use for
characterizing, in a global way, the polarization of nonuniformly polarized beam-
like fields. Chapter 2 also proposes an overall description, but now the alternative
formalism allows a characterization of the polarization distribution and the shape of
partially polarized, partially coherent beams. A family of measurable and meaning-
ful parameters is defined, whose determination involves certain averages over the
region of the transverse profile where the beam irradiance is significant.

On the other hand, in recent years, the coherence theory, well established for
scalar beams, has been investigated with regard to partially polarized fields. It has
been shown that, for stochastic electromagnetic beams, the properties concerning
coherence and polarization features are, in general, connected with each other. Con-
sequently, fundamental concepts, such as the degree of coherence and the fringe
visibility in Young interferometers, should be revisited. This is done in some detail
in Chap. 3.
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vi Preface

Finally, Chap. 4 is devoted to nonparaxial electromagnetic fields, which arise
when light is strongly focused and the beam reaches a waist size even smaller than
the wavelength. The theoretical analysis deals with certain kinds of nonparaxial
exact solutions of the Maxwell equations. Their polarization features are discussed
and, in those cases in which the evanescent waves are significant (highly nonparaxial
regime), their field structure is also described.

Although short surveys are provided to review some basic formalisms, the
reader is assumed to be familiar with well-known concepts treated in many optics
textbooks.

The research work leading to the results reported in this book have been obtained
in collaboration with a number of researchers. We would like to acknowledge
here their fundamental contribution. We also thank Prof. H. Weber for his inter-
est, helpful suggestions and continuous kindness, which include support during
all the experimental work described in Sect. 2.4.3 and performed at the Optisches
Institut of the Technische Universität in Berlin. We are indebted to Prof. F. Gori,
Dr. M. Santarsiero and Dr. R. Borghi, at the University of Rome 3, for helpful dis-
cussions concerning partially polarized Gaussian Schell-model beams. In addition,
we are also grateful to Dr. M. Santarsiero and Profs. S. Bosch and A. Carnicer, at
Barcelona University, for their kind reading of Chaps. 3 and 4.

This work was supported by the Ministerio de Educación y Ciencia of Spain,
Project FIS2007-63396, and by the Comunidad de Madrid, Project: CCG07-
UCM/ESP-3070.
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Chapter 1
Representations of the Polarization
of Beamlike Fields

1.1 Introduction

This chapter deals with the problem of characterizing the polarization of light waves
behaving as beamlike fields, i.e., fields whose electric vector E essentially lies in
planes orthogonal to the direction of propagation. This occurs within the so-called
paraxial approach, in which the longitudinal component of E is negligible to good
accuracy. A major simplification can then be introduced to the calculations.

As will become apparent later, information about the polarization can be given
through position-dependent functions, vectors and matrices, as well as by means
of global parameters and figures of merit. The specific choice of one of these rep-
resentations depends on each particular problem, including possible experimental
limitations.

This chapter reviews such representations. Thus, in the next section, a short sur-
vey is given of several existing formalisms, extensively reported in textbooks, and
commonly used to describe the polarization of light beams. Section 1.3 introduces
the local degree of polarization but now averaged over the regions where the beam
irradiance is significant. Such a measurable figure of merit enables a simple char-
acterization of the overall polarization and its cross-sectional uniformity. This idea
also applies in Sects. 1.4 and 1.5, which consider recently proposed measurable
parameters that provide information about the transverse polarization distribution
of totally polarized fields. Finally, Sect. 1.6 studies the particular case of partially
polarized Gaussian Schell-model beams, which has received special attention in the
literature.

1.2 Standard Representations of the Polarization

In this section we will briefly summarize the main standard formalisms applied
to describe and handle the polarization of a light beam, namely, those based on
the Jones matrices, the Müller calculus and, more recently, on the so-called beam
coherence-polarization matrix (Gori, 1998a; Gori et al., 1998b). By means of vectors
or matrices, all these treatments provide information about the local polarization of

1R. Martínez-Herrero et al., Characterization of Partially Polarized Light Fields,
Springer Series in Optical Sciences 147, DOI 10.1007/978-3-642-01327-0_1,
C© Springer-Verlag Berlin Heidelberg 2009



2 1 Representations of the Polarization of Beamlike Fields

the field. This is the key conceptual difference with respect to the formalism we
will introduce in the next chapter, in which the polarization will be characterized by
means of global parameters that take into account the overall spatial structure of the
beam in the near- and the far-field regimes.

Let us also remark that, in the following, the polarization state will be repre-
sented by the electric field vector associated with the electromagnetic disturbance
(the magnetic field vector will be disregarded). This simplification should be under-
stood as a consequence of the nature of the detection process usually involved in the
experiments.

1.2.1 The Jones Calculus

To begin with, let us consider a monochromatic plane wave propagating along the
z-axis. The associated electric field vector E can then be written in the form

E =
(

Es

Ep

)
=
(

as exp [i (kz − ωt + δs)]
ap exp

[
i
(
kz − ωt + δp

)]) , (1.1)

where the subscripts s and p refer to the Cartesian components transverse to the
direction of propagation z (see Fig. 1.1), k = 2π/λ is the wavenumber of the
light field (λ being the wavelength), ω the angular frequency of the light, and the
coefficients aj, δj, j = s, p, denote the amplitudes and phases associated with the
transverse components. Note that the real (measurable) field would be given by
Ereal = 1

2 (E + E∗). We adopt, however, complex notation because, throughout this
book, linear optics is considered. Of course, no physical difference should arise if
one uses the notation exp[i(ωt – kz)] rather than its conjugate (see Eq. (1.1)). The
choice can be selected for convenience.

It should also be remarked that the monochromatic plane wave used in the
following discussions cannot be realized experimentally. The Jones formalism, how-
ever, holds also for quasi-monochromatic fields in the paraxial approach. More
specifically, the following restrictions are assumed:

Fig. 1.1 Schematic of the
Cartesian coordinate system.
The plane wave propagates
along the z-direction



1.2 Standard Representations of the Polarization 3

– spectral bandwidth << mean angular frequency,
– divergence at the far field << 1,
– ∂E/∂z << kE , where E refers to the magnitude of the field components.

As is well known in the literature (Azzam and Bashara, 1987; Born and Wolf,
1999; Brosseau, 1998; Chipman, 1994; Collett, 1992; Goldstein, 2003; Shurcliff,
1962), the so-called Jones vector that represents this field at some plane z is
defined as

E =
(

as exp (iδs)

ap exp
(
iδp
)) . (1.2)

Within the framework of the Jones calculus, the behavior of polarizing deter-
ministic optical systems can be characterized by means of 2×2 matrices (the Jones
matrices), which relate the input to the output fields travelling along the optical
element. This is expressed in the form

Eoutput = Ĵ Einput =
(

J 11 J12
J21 J22

)(
Es

Ep

)
input

(1.3)

where Jmn, m, n = 1, 2, are complex numbers, and letters with a caret will denote
matrices from now on. In general, the optical elements change the polarization
state of the incident field by modifying its amplitude and/or phase, thus altering
the components of the associated Jones vector.

It is also interesting to point out that any 2×2 matrix does not represent, in gen-
eral, a realizable Jones matrix. Conditions for physical realisability of deterministic
Jones matrices are (Brosseau, 1998)

0 ≤ Tr(ĴĴ†) ≤ 2, (1.4a)

and ∣∣∣DetĴ
∣∣∣2 � 1, (1.4b)

where Tr and Det stand for trace and determinant, respectively, and the dagger
symbolizes the adjoint (transposed conjugate) matrix.

The propagation law through cascaded optical systems follows from the product
of the successive Jones matrices, i.e.,

Eoutput = Ĵ Einput = ĴMĴM−1···Ĵ2Ĵ1Einput, (1.5)

where Ĵp, p = 1, . . ., M, denote the Jones matrices of the optical elements.
In general, a Jones matrix has two eigenvectors, Ea and Eb , which obey the

eigenvalue equations

ĴEa = aEa, (1.6a)

ĴEb = bEb. (1.6b)
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These fields should be understood as eigenpolarization states, which retain their
character after propagation through the system represented by the Jones matrix.

Let us also note that a Jones matrix can be written as a linear combination of the
Pauli spin matrices (O’Neill, 1963; Whitney, 1971):

Ĵ =
3∑

m=0

cmσ̂m, (1.7)

where σ̂0 represents the 2×2 identity matrix,

σ̂1 =
(

1 0
0 −1

)
, (1.8a)

σ̂2 =
(

0 1
1 0

)
, (1.8b)

σ̂3 =
(

0 −i
i 0

)
, (1.8c)

and the coefficients cm are complex numbers given by

cn = Tr(Ĵσ̂n)

2
. (1.9)

It is important to note that, in this introductory example, both the amplitude and
the polarization state of this field are uniform across any transverse plane. In a gen-
eral case, however, E would be a position-dependent function at each beam cross
section. Moreover, the Jones matrices can also be position dependent (see, in this
connection, Chap. 3).

To end this short survey of the Jones theory we recall that the transversality
condition for the electric vector E implies that the fields are assumed to exhibit
a typically small divergence. Precise studies demonstrate that, in this paraxial
approach, the longitudinal field component is two or three orders of magnitude
smaller than the global field amplitude itself (Mejías et al., 2002; Simon et al.,
1987). Light beams beyond the paraxial approximation will be considered later,
in Chap. 4.

A more detailed and rigorous treatment of the Jones calculus can be found, for
example, in (Brosseau, 1998).

1.2.2 Coherence-Polarization Matrices

A description of the vectorial properties of a random electromagnetic light field,
assumed to be stationary and ergodic (at least up to second-order), is provided
by four coherence matrices, whose elements are (Beran and Parrent, 1967; Perina,
1971; Wolf, 1959)
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Ejk = 〈E∗
j (r1,t)Ek (r2,t + τ)〉t, (1.10a)

Hjk = 〈H∗
j (r1,t)Hk (r2,t + τ)〉t, (1.10b)

Mjk = 〈E∗
j (r1,t)Hk (r2,t + τ)〉t, (1.10c)

Njk = 〈H∗
j (r1,t)Ek (r2,t + τ)〉t (1.10d)

where Ej and Hk , j, k = s, p, z, denote the three Cartesian components of the electric
and magnetic fields, respectively. In these equations r1 and r2 are position vectors, t
is the temporal variable, τ a time interval, and the symbol 〈 〉t represents a temporal
average. In this sense, note that, since the field is ergodic, temporal and ensemble
averages are equivalent.

The elements of the above coherence matrices give the correlations between the
components of the electric and magnetic fields at two points, r1 and r2, evaluated
at different times, t1 and t2, separated by the time interval t1 – t2 = τ . It should be
noted that the matrix elements do not depend on the time origin but only on the time
difference τ because of the stationarity assumption. In addition, since

Mkj (r1,r2,τ) = N ∗
jk (r2,r1, − τ) , (1.11)

the information contained in matrices M̂ and N̂ is equivalent, so that a set of
3×3 independent matrices would then suffice to characterize up to second order
the electromagnetic disturbance.

Let us now restrict ourselves to a electric-vector description within the transverse
approximation. In such a case, a single 2×2 matrix, �̂, is required instead of the
previous 3×3 coherence matrices. If we choose the z-axis as the effective direction
of propagation of the beamlike field, the matrix �̂ takes the form

�̂ (r1,r2,z;τ) =
(
�ss (r1,r2,z;τ) �sp (r1,r2,z;τ)
�ps (r1,r2,z;τ) �pp (r1,r2,z;τ)

)
, (1.12)

where r1 and r2 denote now position vectors lying in a transverse plane z = constant,
and

�lm (r1,r2,z;τ) = 〈E∗
l (r1,z;τ)Em (r2,z;t + τ)〉t; l,m = s,p. (1.13)

As is quite apparent from Eq. (1.12), matrix �̂ is the natural vectorial generaliza-
tion of the well-known scalar mutual coherence function

� (r1,r2,τ) = 〈E∗ (r1,t)E (r2,t + τ)〉t. (1.14)

In the present book we will focus attention on quasi-monochromatic light whose
effective spectral width is �ν (around a central frequency ν). If we further assume
that any time delay is small compared with the coherence time 1/�ν (Mandel and
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Wolf, 1995; Perina, 1971; Wolf, 2007) the matrix �̂ becomes

�̂ (r1,r2,z;τ) = Ĵ (r1,r2,z) exp (−2π iντ) , (1.15)

where

Ĵ (r1,r2,z) =
(

Jss (r1,r2,z) Jsp (r1,r2,z)
Jps (r1,r2,z) Jpp (r1,r2,z)

)
, (1.16)

is called the beam coherence-polarization (BCP) matrix (Gori, 1998a; Gori et al.,
1998b). In the above equation

Jlm (r1,r2,z) = 〈E∗
l (r1,z;t)Em (r2,z;t)〉t, l,m = s,p. (1.17)

The BCP matrix constitutes a useful tool that provides a joint description of the
polarization and spatial coherence properties of a partially polarized, partially coher-
ent beam. Its diagonal elements, Jss and Jpp, could then be understood as the mutual
intensities of the beam after propagating through ideal linear polarizers whose trans-
mission axes are the s-axis and the p-axis, respectively. Actually, Ĵ has only three
independent elements, due to the relation between its nondiagonal elements

Jsp (r1,r2,z) = J∗
ps (r2,r1,z) . (1.18)

Finally, it should be remarked that all the elements of the BCP matrix are mea-
surable functions, which can be experimentally determined, for example, through
certain Young interference experiments (Gori et al., 1998b).

1.2.3 The Stokes-Müller Calculus

The local structure of the polarization of a beam-like field can be inferred from
the BCP matrix with equal arguments r1 = r2 = r. However, from a practical
point of view, at each transverse plane z, an alternative four-parameter representation
of polarized light is given in terms of the Stokes vector S = (s0,s1,s2,s3), whose
components are the well-known Stokes parameters, defined in terms of the elements
of matrix Ĵ in the form

s0 (r) = Jss (r)+ Jpp (r) , (1.19a)

s1 (r) = Jss (r)− Jpp (r) , (1.19b)

s2 (r) = 2Re[Jsp(r)], (1.19c)

s3 (r) = 2Im
[
Jsp (r)

]
, (1.19d)
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where Re[ ] and Im[ ] denote the real and imaginary parts, respectively, and Ĵ(r)
means Ĵ(r,r). In addition, since

JssJpp − JspJps ≥ 0, (1.20)

the Stokes parameters satisfy the general relation

s2
0 (r) ≥ s2

1 (r)+ s2
2 (r)+ s2

3 (r) . (1.21)

In a similar way to that occurs for the Jones matrices, the matrix Ĵ can be written
in terms of the Pauli matrices:

Ĵ (r) = 1

2

[
s0 (r) σ̂0 + s1 (r) σ̂1 + s2 (r) σ̂2 + s3 (r) σ̂3

]
. (1.22)

Taking this into account, the two eigenvalues, αs and βs, of matrix Ĵ are written
as a combination of the Stokes parameters, namely,

αs = 1

2

[
s0 +

(
s2

1 + s2
2 + s2

3

)1/ 2
]

, (1.23a)

βs = 1

2

[
s0 −

(
s2

1 + s2
2 + s2

3

)1/ 2
]

. (1.23b)

One of the main advantages of the Stokes parameters arises from the fact of that
they are measurable quantities. To determine them at each point of the transverse
wavefront, a simple method consists of using, for example, a CCD camera placed
at the observation plane, together with a polarizer at different orientations and a
quarter-wave plate. The textbooks show that the Stokes parameters are found in
a six-step procedure from the six measured values of the irradiance for different
configurations of polarizer and retarder, namely,

s0 (r) = I0◦ (r)+ I90◦ (r) , (1.24a)

s1 (r) = I0◦ (r)− I90◦ (r) , (1.24b)

s2 (r) = I45◦ (r)− I135◦ (r) , (1.24c)

s3 (r) = Iλ/4,45◦ (r)− Iλ/4,135◦ (r) , (1.24d)

where I denotes the irradiance at each point of the beam cross-section, the sub-
scripts appearing in Eqs. (1.24a–c) refer to the angle that the transmission axis of
the polarizer makes with the s-axis, and the subscripts in Eq. (1.24d) indicate that
the beam propagates successively through a quarter-wave plate (where the fast axis
is oriented along the s-axis) and a polarizer whose transmission axis makes angles
45◦ and 135◦ with the fast axis.
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Within the framework of the Stokes parameters, the effect of an optical system
on the polarization of a light field can be represented by a 4×4 matrix M̂ (Müller
matrix), which transform the Stokes vector of the incident beam into the Stokes
vector of the output field, i.e.,

Sout = M̂Sin =

⎛
⎜⎜⎝

m00 m01 m02 m03
m10 m11 m12 m13
m20 m21 m22 m23
m30 m31 m32 m33

⎞
⎟⎟⎠

⎛
⎜⎜⎝

s0
s1
s2
s3

⎞
⎟⎟⎠

in

, (1.25)

where mij, i, j = 0, 1, 2, 3, are real valued elements, and the subscript in and out
stand for the input and output fields, respectively. The Müller matrix associated to
a sequence of cascaded instruments is given by the product of the matrices of the
individual optical devices. In addition, the most frequently encountered optical sys-
tems in practice involve polarization-altering properties which are uniform across
the beam profile. Accordingly, the elements of the conventional Müller matrices are
not position-dependent.

It is interesting to remark that, although all Jones matrices have a corresponding
Müller matrix, it cannot be established a one-to-one mapping between these two
kind of matricial representation. The correspondence relationships between matri-
ces M̂ and Ĵ can be found, for example, in (Chipman, 1994; Simon, 1982). They
provide necessary conditions for physical realizability. The interested reader can
also see, for instance, (Azzam and Bashara, 1987; Brosseau, 1998; Chipman, 1994;
Gil, 2000; Goldstein, 2003). Let us finally mention that the special and interesting
case of nonreciprocal optical systems (e.g., optical diodes, optical insulators) has
been investigated for partially polarized light in, for example, (Gevorgyan, 2003).

For illustrative purposes, Table 1.1 gives the Müller matrices associated with the
most common polarization-altering (ideal) elements (see, for example, (Goldstein,
2003; Hecht, 1998)).

1.2.4 Local Degree of Polarization

It would be useful to characterize the polarization state of a light field by means
of a single parameter or figure of merit. This is done in the literature by using
the so-called standard degree of polarization, Pst: Since the Stokes vector of any
quasimonochromatic beam can be considered as a sum of completely polarized and
completely unpolarized fields, independent each other, the standard degree of polar-
ization is usually introduced as the ratio of the irradiance of the polarized part to
the global irradiance of the light wave (Brosseau, 1998). It should be remarked
that, even for unpolarized laser beams, light becomes polarized in time intervals
approaching the resonator decay time. Consequently, it will be implicitly considered
in the experiments averaging over a time interval large compared with the internal
fluctuation time of the system.

The determination of Pst at a certain transverse plane involves measurements of
the integrated power over the full detection area. But this is of practical use only
when the light field has uniform polarization across the beam profile.
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Table 1.1 Müller matrices of basic polarization-altering (ideal) optical devices

Optical element Müller matrix

Linear polarizer (transmission axis along x) 1
2

⎛
⎜⎜⎝

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

Linear polarizer (transmission axis along y) 1
2

⎛
⎜⎜⎝

1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

Linear polarizer at +45◦ 1
2

⎛
⎜⎜⎝

1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

⎞
⎟⎟⎠

Linear polarizer at –45◦ 1
2

⎛
⎜⎜⎝

1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0

⎞
⎟⎟⎠

Quarter-wave plate (fast axis along x)

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠

Quarter-wave plate (fast axis along y)

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠

Half-wave plate

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠

In general, however, such ratio differs from one point to another across the wave-
front. In such a case, the polarization state is better described by the local degree
of polarization P(r), where r is, again, a position vector lying in a transverse plane.
It has a similar meaning to parameter Pst, but now referred to each point at the
beam cross-section. Function P(r) has been written in many equivalent forms in the
literature, for example,

P(r) =

⎧⎪⎨
⎪⎩1 − 4Det[Ĵ(r)](

Tr[Ĵ(r)]
)2

⎫⎪⎬
⎪⎭

1/2

= αs(r) − βs(r)

αs(r) + βs(r)

= [s2
1(r) + s2

2(r) + s2
3(r)]1/2

s0(r)
.

(1.26)
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Of course, P(r) is constant for fields uniformly polarized throughout the beam
profile.

Two main properties make useful this function:

(i) Its value is independent of the choice of the transverse s- and p-axis.
(ii) It satisfies

0 ≤ P (r) ≤ 1. (1.27)

In particular, the maximum value P(r) = 1, for every r, corresponds to uniformly
totally polarized beams, and the minimum value, P(r) = 0, for every r, refers to
unpolarized (natural) light.

Here we do not proceed further into the analysis of this function, which will be
extensively handled in subsequent sections and chapters.

1.3 Weighted Degree of Polarization

As we pointed out earlier, light exhibits, in general, a polarization that is a function
of the position at the beam profile. It would then be useful to handle measurable
parameters that allow to globally characterize in a simple way both, the polarization
and its uniformity across the transverse section.

Accordingly, let us introduce a parameter P̃ in the form (Piquero et al., 1999)

P̃ =
∫∫

I(x,y)P(x,y) dx dy∫∫
I(x,y) dx dy

, (1.28)

where I(x,y) is the irradiance distribution at a plane z = constant. We call P̃ the
weighted degree of polarization. Note that P̃ computes mainly those regions where
the beam irradiance is significant. Moreover, the appearance of the factor I(x,y) in
the definition of P̃ minimizes the contribution of the beam wings, thus reducing
harmful effects such as camera offset, small signal-to-noise ratio and background.
Also note that, for uniformly partially-polarized beams, the standard parameter Pst

and the weighted degree of polarization have the same value. It should also be
remarked that, in general, P̃ is not invariant upon propagation through ABCD optical
systems.

It can be shown that the above parameter P̃ satisfies the inequality

0 ≤ P̃ ≤ 1. (1.29)

Those beams whose parameter P̃ approaches 1 will be mostly totally polarized
(at least in the regions with significant irradiance), even though they have spatially
distributed polarization states. The opposite case P̃ = 0 means that the field is non-
polarized over the whole profile. Intermediate values of P̃ indicate, of course, that
the beam is partially polarized.
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Consequently, parameter P̃ allow to roughly classify the beams as totally (P̃ = 1),
partially (0 < P̃ < 1) or non-polarized (P̃ = 0) fields, and this classification scheme
applies for non-uniform polarization distributions.

The dispersion of the values of the local degree of polarization P(x,y) across
wavefront can be easily evaluated by means of the following parameter:

σ̃ 2
p =

∫∫
I(x,y)

[
P(x,y) − P̃

]2
dx dy∫∫

I(x,y) dx dy
, (1.30)

similar to the variance of P(x,y) (the irradiance I(x,y) acting as a density
function).

It can also be shown that (Piquero et al., 1999)

0 ≤ σ̃p ≤ 1/2. (1.31)

This parameter provides a simple overall characterization of the uniformity of the
local degree of polarization over the beam cross-section. For example, for radially
totally polarized fields, σ̃p = 0, which is consistent with the fact of that these beams
are totally polarized everywhere.

Let us finally remark that the above two parameters, P̃ and σ̃p, can be experi-
mentally determined following the standard procedure used to measure the Stokes
parameters, with a final CCD array to get the irradiance at each point of the
observation plane.

1.4 Linear and Circular Polarization Content of Totally
Polarized Beams

As is well known, the electric field associated to an electromagnetic disturbance
should, in general, be considered as a position-dependent stochastic process. Thus,
the equations involving the field vector should be understood in an average sense.
Note, however, that, in the present section, we will be concerned with totally polar-
ized beams, so that, for simplicity, symbols referring to the statistical character of
the field will not be explicitly shown in the notation. A description of the stochas-
tic behavior of a light field in the space-frequency domain will be studied later in
subsequent chapters.

In the present section, the attention will be focused on non-uniformly totally
polarized beams. In particular, we are here interested on the global characterization
of the so-called linear or circular polarization content at the transverse profile of this
kind of beams.
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1.4.1 Key Definitions and Physical Meaning

As customary, we represent the electric field vector, E(r), propagating essen-
tially along the z-axis, by means of the Jones vector associated to its transverse
components at a certain plane z:

E(r) =
(

Es(r)
Ep(r)

)
. (1.32)

Let us now introduce two orthogonal unitary vectors, ur = 1√
2

(
1
i

)
and

ul = 1√
2

(
1
−i

)
, where the subscripts r and l refer to right-handed and left-handed

circularly polarized fields, respectively. In terms of these unitary vectors, the field
E(r) can be written in the form

E(r) = (E · ur)ur + (E · ul)ul, (1.33)

where the dot symbolizes the inner product, i.e., a · b = axb∗
x + ayb∗

y . The vector
Er = (E · ur)ur would then represent the field at the output of an optical device that
only transmits the right-handed circularly-polarized component of the input field.
Consequently, the quantity

‖Er‖2 ≡
∫

|Er(r)|2dr, (1.34)

where the integration extends throughout the beam cross-section, can be understood
as the beam power associated to the “right-handed circular content” Er of the field.
Moreover, this quantity also reads

‖Er‖2 = 1

2

∫
s0(r)dr+1

2

∫
s3(r)dr, (1.35)

where s0 and s3 are the Stokes parameters defined earlier. On the other hand, the
total power can be written in the form

‖E‖2 ≡
∫ [

|Es(r)|2 + ∣∣Ep(r)
∣∣2] dr =

∫
s0(r)dr, (1.36)

so that the ratio between the power associated to the right-handed circular content
of the beam and its total power reads

‖Er‖2

‖E‖2
= 1

2
+ 1

2

∫
s3(r)dr∫
s0(r)dr

. (1.37)

It should be remarked that the above ratio can also be interpreted as the
percentage of the power transmitted through a right-handed circular polarizer
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(averaged over the transverse region of the beam profile where the irradiance is
significant).

Let us now introduce the following parameters, evaluated at a transverse plane z
(Martínez-Herrero et al., 2006):

ρ̃ =
∫
ρ(r)s0(r)dr∫

s0(r)dr
(1.38)

and

σρ =
∫

(ρ(r) − ρ̃)2s0(r)dr∫
s0(r)dr

, (1.39)

where

ρ(r) ≡ s3(r)

s0(r)
. (1.40)

We see that the overall parameter ρ̃ computes mainly in those regions where the
irradiance is significant enough, and ranges from –1 (pure left-handed circularly
polarized light) to +1 (pure right-handed circularly polarized light). The value ρ̃ =
0 corresponds to a pure (in general, non-uniformly) linearly polarized field.

As it is quite apparent from the definition, ρ̃ can be determined by measuring the
Stokes parameters s0 and s3 integrated over the full detection area, even though the
beam is non-uniformly polarized. This is a useful property from an experimental
point of view.

On the other hand, the parameter σρ gives the dispersion of the values of ρ(r)
across the beam section. It represents the variance of ρ(r), where the local value of
the Stokes parameter s0(r) behaves as a density function. Accordingly, this param-
eter globally characterizes the uniformity of the ratio ρ(r) over the beam profile.
In particular, the values ρ̃ = 0 = σρ , indicate that the field is linearly polarized
throughout its transverse section.

1.4.2 Application to an Example

To get further insight into the physical meaning of ρ̃, let us consider a non-uniformly
totally polarized beam whose electric field vector E at the plane z = 0 is given by
the Jones vector (Martínez-Herrero et al., 2006)

E(r) = E0exp

(
− r2

w2
0

) (
1

exp(−ig(r))

)
, (1.41)

with

g(r) = π

2
exp

[− (b r)n
]

, n = 4, (1.42)

where E0 is an amplitude factor, r denotes the radial polar coordinate, and w0 and b
are constants (w0 is proportional to the transverse dimension of the beam size, and
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Fig. 1.2 (a) Ratio Im(Es(r)/Ep(r)) versus the radial distance r to the origin. (b) Schematic diagram
of the polarization state in the range r ∈ [0,2] mm. See also (Martínez-Herrero et al., 2006)

b−1 is a measure of the width of the function g(r)). Note that the whole beam shows
a Gaussian irradiance profile, together with an abrupt transition from a circularly-
polarized state near the beam center to a 45◦-azimuth linearly-polarized state outside
this region. This is shown in Fig. 1.2a, where the ratio Im(Es(r)/Ep(r)) has been
given for the value b = 1 mm−1. A representation of the change from circular to
linear polarization is sketched in Fig 1.2b. Of course, sharper transitions can be
computed for higher values of n in Eq. (1.42).

In Fig. 1.3 the parameters ρ̃ and σρ have been plotted in terms of the ratio w0/b.
When w0/b << 1, we have ρ̃ ≈ −1 and σρ ≈ 0, so that the beam essentially behaves

ρ σρ

Fig. 1.3 Parameters ρ̃ and σρ for the field given by Eq. (1.41): (a) ρ̃ versus the ratio w0/b;
(b) σρ versus the ratio w0/b. See also (Martínez-Herrero et al., 2006)
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as a left-handed circularly-polarized field inside the region where the irradiance
takes significant values. For w0/b >> 1, we obtain ρ̃ ≈ 0 and the beam becomes
linearly polarized over the whole beam profile except over a small region close to
its center. The intermediate case w0/b = 2 gives ρ̃ = −0.41 and σρ = 0.17, and a
mixture of both states of polarization (linear and left-handed circular) appears.

1.4.3 Measurability

To check the measurability of the above parameters, we can make use of the beam
emitted by a He-Ne laser source Spectra Physics 117A (intensity and frequency-
stabilized mode), linearly (> 1000:1) and uniformly polarized.

The images are taken with a CCD camera Pulnix TM-765 and a laser beam anal-
izer from Spiricon. Further details about the experimental set-up can be found in
(Martínez-Herrero et al., 2006). For this beam, we get ρ̃ = 0.0043 and σρ = 0.0001.
In addition, when left and right-handed circularly polarized beams are synthesized
by means of a quarter-wave plate, one obtains ρ̃ = −1.008, σρ = 0.001 and
ρ̃ = 1.081, σρ = 0.001, respectively. All these measured values show a reasonable
agreement with the manufacturers’ data.

Let us now consider a second test that measures the parameters ρ̃ and σρ in a
more involved case, namely, a non-uniformly totally polarized beam generated after
propagation through a uniaxial anisotropic material. In the experiments, the He-Ne
laser beam of the previous example was used. The anisotropic medium is a calcite
crystal whose optic axis is oriented along the propagation direction (Piquero and
Vargas-Balbuena, 2004; Provenziani et al., 2002). To synthesize a nonuniformly
totally polarized (NUTP) beam, we employ a slightly convergent or divergent beam
impinging on the crystal. This can be implemented by means of a microscope objec-
tive in front of the calcite plate (see Fig. 1.4). A convergent lens is used to focus the

Computer Laser Beam
Analyzer

CCDPλ /4MO
He-Ne
Laser

P Calcite

P

L

Fig. 1.4 Experimental set-up used to measure the parameters ρ̃ and σρ at the output of a calcite
crystal. MO denotes a microscope objective, L is a convergent lens, P represents a polarizer, and
λ/4 symbolizes a quarter-wave plate. See also (Martínez-Herrero et al., 2006)
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beam into the CCD camera. We get P̃ = 1.036, ρ̃ = 0.044 and σρ = 0.22. From
the value of the weighted degree of polarization, it is concluded that the output field
essentially behaves as a totally polarized beam throughout its transverse section, as
expected. This value of parameter ρ̃ means that the average polarization is linear
over the significant region of the beam profile. In addition, since σρ clearly differs
from zero, we infer that the output beam is not uniformly polarized. It should finally
be noted that this behavior agrees with the values calculated at the output of a calcite
crystal on the basis of the Jones formalism. (Piquero and Vargas-Balbuena, 2004).

1.5 Radial and Azimuthal Polarization Content of Totally
Polarized Beams

Beams with radial or azimuthal polarization distributions have receiving increasing
attention in the literature (see, for instance, (Bomzon et al., 2002; Deng et al., 2007;
Diehl et al., 2006; Dorn et al., 2003; Gupta et al., 2007; Kozawa and Sato, 2007;
Lumer et al., 2008; Meier et al., 2007; Moshe et al., 2003, 2007; Moser et al., 2005;
Nieminen et al., 2008; Niziev and Nesterov, 1999; Oron et al., 2000; Pasilly and
Denis, 2005; Phua and Lai, 2007; Quabis et al., 2005; Qiu et al., 2009; Roth et al.,
2005; Sheppard and Choudhury, 2004; Tidwell et al., 1990; Tovar, 1998; Volpe and
Petrov, 2004; Wu et al., 2007; Yonezawa et al., 2008; Zhan, 2004) and Chap. 4 of the
present book). This is a consequence of their potential applications: For example,
it has been shown that a radially polarized field can be focused into a spot region
significantly smaller that for uniform linear polarization. This leads to interesting
possibilities in confocal microscopy, lithography, and optical trapping, as well as
optical data storage. Moreover, radially polarized light may also increase the effi-
ciency and cutting speed in material processing by laser, and this kind of beams have
even been used (see also Chap. 2) to reduce cumbersome thermally-induced effects
in solid-state lasers.

In addition, radial and azimuthal polarizers are now commercially available
(they have been implemented by using, for example, dichroic and liquid-crystal-
based devices) (Erdelyi and Bor, 2006; Erdelyi and Gajdatsy 2008; Stalder and
Schadt, 1996).

In the present section we will extend the overall characterization given in the
previous section by introducing several new global parameters, which are useful
to describe the radial and azimuthal polarization content of non-uniformly totally
polarized beams. As it will next be apparent, such figures of merit can be obtained
in terms of the Stokes parameters, and measured from the data collected at the output
of either a radial or an azimuthal dichroic polarizer, integrated throughout the beam
cross-section.

1.5.1 Key Definitions

Let us consider a paraxial beam propagating along the z-axis. Since fields will be
assumed totally polarized, for simplicity, we again disregard in the notation their
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stochastic character. The electric field vector, E, associated to a non-uniformly
totally polarized beam (at a certain transverse plane), is then written in planar polar
coordinates in the form

E(r,θ ) =
(

Es

Ep

)
=
(

f (r,θ )
g(r,θ )

)
, (1.43)

where f and g denote position-dependent functions, and r and θ are the polar coor-
dinates. Let uR and uθ be orthogonal unitary vectors in the radial and azimuthal
directions, respectively, i.e.,

uR = (cos θ , sin θ) , (1.44a)

uθ = (− sin θ , cos θ) . (1.44b)

In terms of these vectors, the electric field E reads

E(r,θ ) = ER(r,θ ) + Eθ (r,θ ), (1.45)

where

ER(r,θ ) = (E · uR)uR, (1.46a)

Eθ (r,θ ) = (E · uθ )uθ . (1.46b)

the dot symbolizing the inner product, as usual. In Eq. (1.45), the terms ER and
Eθ would represent the field at the output of an optical device that only transmits
radial or azimuthal components of the input field, respectively. Accordingly, ER

is a radially polarized field and Eθ is azimuthally polarized. At each point of the
transverse beam profile, the percentage of the (local) irradiance associated to the
radial component can be evaluated by means of the following ratio

ρR(r,θ ) = |ER(r,θ )|2
|E(r,θ )|2 , (1.47a)

and analogously for the azimuthal component,

ρθ (r,θ ) = |Eθ (r,θ )|2
|E(r,θ )|2 . (1.47b)

Therefore, the radial and azimuthal polarization content of a non-uniformly
totally polarized field could be characterized by averaging the expressions (1.47a)
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and (1.47b) over the region of the beam cross-section where the irradiance is
significant, i.e., (Martínez-Herrero et al., 2008; Lumer and Moshe, 2009)

ρ̃R =

∞∫
0

2π∫
0
ρR(r,θ ) |E(r,θ )|2 r dr dθ

∞∫
0

2π∫
0

|E(r,θ )|2 r dr dθ

=

∞∫
0

2π∫
0
ρR (r,θ) I(r,θ) r dr dθ

∞∫
0

2π∫
0

I(r,θ) rdrdθ

, (1.48a)

ρ̃θ =

∞∫
0

2π∫
0
ρθ (r,θ ) |E(r,θ )|2 r dr dθ

∞∫
0

2π∫
0

|E(r,θ )|2 r dr dθ

=

∞∫
0

2π∫
0
ρθ (r,θ) I(r,θ) r dr dθ

∞∫
0

2π∫
0

I(r,θ) r dr dθ

. (1.48b)

where I(r, θ ) denotes the irradiance at each point of the beam profile. The dispersion
of the values ρR and ρθ would then be determined from the expressions (Martínez-
Herrero et al., 2008):

σ 2
R =

∞∫
0

2π∫
0
(ρR (r,θ)− ρ̃R)

2 I(r,θ) r dr dθ

∞∫
0

2π∫
0

I(r,θ) r dr dθ

, (1.49a)

σ 2
θ =

∞∫
0

2π∫
0
(ρθ (r,θ)− ρ̃θ )

2 I(r,θ) r dr dθ

∞∫
0

2π∫
0

I(r,θ) r dr dθ

. (1.49b)

Of course, when σ 2
R (or σ 2

θ ) equals to zero means that the beam is uniformly
polarized. Also note that σ 2

R and σ 2
θ globally characterize the uniformity of the radial

and azimuthal polarization content over the wavefront. They represent the variance
of ρR and ρθ , where the local value of the irradiance behaves as a density function.

In addition, it can be shown that

0 ≤ ρ̃R ≤ 1, (1.50a)

0 ≤ ρ̃θ ≤ 1, (1.50b)

where the value 1 corresponds to a pure radial (or azimuthal) beam. Moreover, these
parameters satisfy the relation

ρ̃R + ρ̃θ = 1. (1.51)

This property implies that the radial and the azimuthal polarization content of a
beam should be understood as complementary properties. In practice, it would then
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suffice to determine one of these parameters. Let us finally remark that the above
parameters depend, in general, on the plane z we are considering.

1.5.2 Relations with the Stokes Parameters

We will next show that the degrees of radial and azimuthal polarization, ρ̃R and ρ̃θ ,
can be written in a simple way in terms of the conventional Stokes parameters. To
see this, note first that

ER(r,θ ) = (E · uR) uR = f cos θ + g sin θ , (1.52a)

Eθ (r,θ ) = (E · uθ )uθ = −f sin θ + g cos θ , (1.52b)

so that

|ER|2 = cos2 θ |f |2 + sin2 θ |g|2 + 2 sin θ cos θ Re
{
f ∗g
}

, (1.53a)

|Eθ |2 = sin2 θ |f |2 + cos2 θ |g|2 − 2 sin θ cos θ Re
{
f ∗g
}

. (1.53b)

Taking this into account, one obtains

|ER|2 = 1

2
s0 + cos2θ

2
s1 + sin2θ

2
s2, (1.54a)

|Eθ |2 = 1

2
s0 − cos2θ

2
s1 − sin2θ

2
s2, (1.54b)

where s0, s1 and s2 denote the standard Stokes parameters at each point (r,θ ) of the
beam cross-section. From their definitions, parameters ρ̃R and ρ̃θ finally read

ρ̃R = 1

2
+ 1

2 P

∞∫
0

2π∫
0

[cos (2 θ) s1 (r,θ)+ sin (2 θ) s2 (r,θ)] r dr dθ , (1.55a)

ρ̃θ = 1

2
− 1

2 P

∞∫
0

2π∫
0

[cos (2 θ) s1 (r,θ)+ sin (2 θ) s2 (r,θ)] r dr dθ , (1.55b)

with

P =
∞∫

0

2π∫
0

s0(r,θ ) r dr dθ . (1.55c)

It is clear from Eqs. (1.55) that ρ̃R and ρ̃θ do not depend on the local Stokes
parameter s3, so that no information about s3 is required to describe the radial
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or azimuthal polarization content of a beam. This behavior should physically be
expected because s3 equals zero for any radially (or azimuthally) polarized field.
This also applies for the particular but interesting case of a radially polarized beam
with vortex wavefront (see, for example, (Machavariani et al., 2007) and refer-
ences therein). In such a case, the global phase factor that defines the topological
charge does not alter the relative phase term between the transverse components
and, therefore, the parameter s3 remains equal to zero. One would naively expect
this independence on s3 because this Stokes parameter gives the “circularity” of the
polarization state: the extreme values s3 = ±1 correspond to a circularly totally
polarized beam (see Sect. 1.4).

1.5.3 Relations with the Output of Radial
and Azimuthal Polarizers

Instead of measuring and computing the local values of the Stokes parameters, it
would be of more practical use to infer the parameters ρ̃R and ρ̃θ from the inte-
grated data over the full detection area: In fact, we do not need to perform detailed
(local) detections but a global single irradiance measurement. This can be attained
in a simple way by using either a radial or an azimuthal commercially available
polarizer. To show this, note first that

ρ̃R = 1

P

∞∫
0

2π∫
0

|PR {E(r,θ )}|2 r dr dθ , (1.56)

where

PR {E(r,θ )} = (E · uR)uR (1.57)

represents the (point-dependent) output of the polarizer. We thus see that the inte-
gral in Eq. (1.56) would just give the overall irradiance (integrated throughout
the wavefront) collected at the output of the polarizer. Also note that, to imple-
ment the operation described by Eq. (1.57), the polarizer should eliminate the
azimuthal component Eθ of the input field. Accordingly, a dichroic polarizer should
be employed.

In an analogous way, ρ̃θ can be written as follows

ρ̃θ = 1

P

∞∫
0

2π∫
0

|Pθ {E(r,θ )}|2 r dr dθ , (1.58)

where now

Pθ {E(r,θ )} = (E · uθ ) uθ (1.59)
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denotes the output of an azimuthal dichroic polarizer. In this kind of devices, each
tiny area of the polarizer behaves like a linear polarizer with the transmission axis
orthogonal to the radial direction. Such dichroic polarizers are well known in the
literature, used, for example, as polarization axis finders. Let us finally recall that
both parameters, ρ̃R and ρ̃θ , satisfy Eq. (1.51).

1.5.4 Measurability

To test the measurability of parameters ρ̃R and ρ̃θ , we will employ two commercial
optical devices, namely, a conventional linear polarizer and a liquid-crystal polar-
ization converter based on a nematic liquid-crystal cell, which can be switched to
obtain either radial or azimuthal polarization distribution from a linearly polarized
input beam (Stalder and Schadt, 1996).

In all the measurements, ρ̃R and ρ̃θ are found by calculating the local Stokes
parameters. The set-up is depicted in Fig. 1.5a and b. For a more detailed description
of the experiment, the interested reader can see, for example, (Martínez-Herrero
et al., 2008).

(a)

(b)

He-Ne
Laser

P1 P2

Computer Laser Beam
Analyzer

CCD

Fig. 1.5 (a) Experimental
set-up used in the
measurements. P1 denotes
either the linear polarizer or
the liquid-crystal polarization
converter tested in the
experiments, and P2
represents the linear polarizer
handled to evaluate the Stokes
parameters. (b) Cartesian
reference axes considered in
the experiments. In all the
cases, the beam emerging
from the laser cavity is
linearly polarized along the
y-axis. To determine the
Stokes parameters, the
transmission axis of the
polarizer P2 (analizer) makes
angles α(0◦, 90◦, 45◦, 135◦)
with respect to the x-axis. See
also (Martínez-Herrero et al.,
2008)
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Fig. 1.6 Irradiance
distribution after the
polarization converter in the
radial mode, without P2 (see
the main text). After
(Martínez-Herrero et al.,
2008), with permission

I0 I90

I45 I135
Fig. 1.7 Irradiance
distributions after P2 for
several orientations of its
transmission axis (0◦, 90◦,
45◦ and 135◦). The beam
emerges from the polarization
converter operating in the
radial mode. After
(Martínez-Herrero et al.,
2008), with permission

Fig. 1.8 Irradiance
distribution after the
polarization converter in the
azimuthal mode, without P2
(see the main text). After
(Martínez-Herrero et al.,
2008), with permission
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I0 I90

I45 I135

Fig. 1.9 Irradiance
distributions after P2 for
several orientations of its
transmission axis (0◦, 90◦,
45◦ and 135◦). Now, the beam
emerges from the polarization
converter operating in the
azimuthal mode. After
(Martínez-Herrero et al.,
2008), with permission

The light source used to test the linear polarizer is a linearly polarized Gaussian
beam emitted by a Spectra Physics He-Ne laser device. The experimental result is
ρ̃R = ρ̃θ = 0.499, showing an excellent agreement with the expected theoretical
value ρ̃R = ρ̃θ = 0.5 (according with the manufacturer specifications).

In the other test, when the above He-Ne laser beam impinges on the polarization
converter switched to obtain radial polarization, we find for the output beam ρ̃R =
0.986 and ρ̃θ = 0.014, with σ 2

R = σ 2
θ = 0.009, showing good agreement with the

values ρ̃R = 1, ρ̃θ = 0, σ 2
R = σ 2

θ = 0 associated to an (ideal) pure radially polarized
beam. Figure 1.6 plots the irradiance distributions at the output of the polarization
converter, driven in the radial mode. In this figure, around to the center of symmetry
we see a small (about 400 microns) region (a central hole) with undefined liquid-
crystal orientation. This arises from the construction principle of the cell (for details,
see, for example, (Stalder and Schadt, 1996)). Note, however, that the influence of
this hole on ρ̃R and ρ̃θ is negligible for the propagation distances considered in the
experiments.

Figure 1.7 provides the irradiance distributions at the output of the linear polar-
izer P2 for different orientations of its transmittance axis (the angles 0◦, 90◦, 45◦ and
135◦ are associated to the values required to measure the Stokes parameters). In the
figures, the number and position of the lobes agree with the theoretical predictions
for the beam emerging from the polarization converter.

The experiments can also be performed in the azimuthal mode of the liquid-
crystal device. We get ρ̃R = 0.012 and ρ̃θ = 0.988, with σ 2

R = σ 2
θ = 0.007.

This shows again an excellent agreement with the values ρ̃R = 0, ρ̃θ = 1, σ 2
R =

σ 2
θ = 0 that characterize a pure (ideal) azimuthally polarized beam. For the sake of

completeness, Fig. 1.8 shows the irradiance profile (quite similar to that of Fig. 1.6)
at the output of the polarization converter, and Fig. 1.9 represents the irradiance
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distributions at the output of P2, driven in the azimuthal mode. The experimental
results confirm the measurability of the proposed global parameters.

1.6 Partially Polarized Gaussian Schell-Model Beams

The last two sections have been concerned with totally polarized fields. However,
light in nature is, in general, partially polarized. Therefore, before finishing this
chapter devoted to the representations of the polarization, it seems appropriate to
spend some time in the characterization of this kind of fields.

We will briefly analyze in the present section the so-called partially polarized
Gaussian Schell-model (PGSM) fields, which is a physically meaningful example
of partially coherent, partially polarized beam with peculiar characteristics of its
transverse section. This model of electromagnetic beams was proposed in (Gori
et al., 2001) some time ago, and since then considerable literature has been pub-
lished on this topic, including the study of the propagation through different type
of systems (e.g., turbulent atmosphere, gradient index fibers, spherically aberrated
lenses, diffractive apertures). In this connection, see, for example, (Eyyuboglu et al.,
2007; Ge et al., 2004; Gori et al., 2008; Hanson et al., 2008; Korotkova et al., 2004;
Lu and Pan, 2002; Pan and Lu, 2003; Piquero et al., 2001a, b, 2002; Roychowdhury
and Korotkova, 2005; Santarsiero, et al., 2009; Shirai, 2005a, Shirai et al. 2005b;
Wang et al., 2007; Zhao, 2006). In addition, PGSM fields represent an adequate
model to describe real beams, such as those emitted by certain class of multimode
lasers (Gori and Palma, 1978, Gori, 1980; Santis et al., 1979).

We will first recall some characteristics of Gaussian Schell-model fields in the
scalar case, and we will next continue with the study of (vectorial) PGSM beams
and the behavior of their local degree of polarization.

1.6.1 Gaussian Schell-Model Beams: Scalar Case

Within the scalar framework, Gaussian Schell-model (GSM) beams (see, for exam-
ple, (Mandel and Wolf, 1995) and references therein) have been very useful in
coherence theory, in particular, in radiometric characterization of partially coher-
ent sources. This type of fields exhibits a Gaussian irradiance distribution, but they
differ from the conventional Gaussian TEM00 beams in which they are not spa-
tially fully coherent. In fact, they can be written as an incoherent superposition of
Gaussian-Hermite laser modes. The partial coherence involves, however, an impor-
tant advantage of these beams, which arises, on the one hand, from the reduction of
speckle and ringing effects, associated to completely coherent sources, and on the
other hand, from its high directionally.

Let us now recall the mutual coherence function �(r1,r2,τ ) introduced in Eq.
(1.14). This function provides a measure of the correlation between light distur-
bances at two separated points, r1 and r2, at different times, t and t + τ , respectively.
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When the cross-correlation is evaluated at the same time (τ = 0), the resulting func-
tion is referred in the literature as the mutual intensity (Born and Wolf, 1999). In the
particular case of GSM fields, their mutual intensity, Jsc, between points r1 and r2
at some transverse plane (say, z = 0) takes the form (Wolf, 2007)

Jsc (r1,r2,0) = A0 exp

[
r2

1 + r2
2

4σ 2
− (r1 − r2)

2

2μ2

]
, (1.60)

where the subscript "sc" indicates that we are considering the scalar case, and A0 is
a constant factor. Note that the irradiance at z = 0 is

Jsc(r,r,0) = A0 exp

(
− r2

2σ 2

)
. (1.61)

Accordingly, σ represents here the width of the Gaussian irradiance profile. To
understand the physical meaning of parameter μ, let us consider the so-called com-
plex degree of coherence of the field, defined from the mutual intensity as (Mandel
and Wolf, 1995)

j (r1,r2) = J(r1,r2)

[J (r1,r1)]1/2 [J (r2,r2)]1/2
. (1.62)

For GSM beams, j (r1,r2) takes the form

j (r1,r2) = exp

[
− (r1 − r2)

2

2μ2

]
. (1.63)

We thus see that μ is a measure of the distance for which two points of the
transverse section of the beam are considered correlated. The coherence properties
of this kind of sources range from the incoherent limit (μ= 0), to the fully coherent
case (μ = ∞). In general, they behave as partially coherent.

As is well known, when a GSM beam freely propagates (in the paraxial
approach), its mutual intensity at each plane z obeys the law (Gori, 1983)

Jsc (r1,r2,z) = A0

F2 (z)
exp

[
− ik

2R(z)

(
r2

1 − r2
2

)]
×

× exp

[
− r2

1 + r2
2

4σ 2F2(z)

]
exp

[
− (r1 − r2)

2

2μ2F2(z)

]
, (1.64)
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where

F2 (z) = 1 + (λz/π)2

4σ 2

(
1

4σ 2
+ 1

4μ2

)
, (1.65a)

and

R (z) = z

(
1 + 1

F2 (z)

)
. (1.65b)

It is clear from Eq. (1.64), that such a source exhibits a Gaussian transverse
profile whose waist is placed at plane z = 0.

1.6.2 Gaussian Schell-Model Beams: Vectorial Case

The scalar approach can be applied to uniformly totally polarized beams in those
cases in which the state of polarization does no affect to the phenomena under study.
However, since beams are, in general, non-uniformly partially polarized, it seems of
interest to extend the GSM model to a vectorial framework.

This generalization was introduced in (Gori et al., 2001) by writing the elements
of the BCP matrix at plane z = 0 (assumed to be the waist plane) in a form that
closely resembles the scalar regime

Jαβ (r1,r2,z = 0) = Aαβ exp

[
− r2

1 + r2
2

4σ 2
αβ

− (r1 − r2)
2

2μ2
αβ

]
, (α,β = s,p) ,

(1.66)
where σαβ and μαβ are positive constants. In particular, σαα , μαα and Aαα ≡ Aα ,
are related, respectively, to the beam width, the transverse coherence length and the
beam power associated to each field component. From the mathematical conditions
to be satisfied by the BCP matrix, some constrains are inferred, namely, (Gori et al.,
2001, 2008)

A∗
sp = Aps; σsp = σps; μsp = μps. (1.67)

In addition, from a physical point of view, the argument of the coefficients Asp

accounts for a constant phase shift between the s- and p-components of the field.
Since such a phase difference could be readily eliminated using a suitable wave-
plate, for the sake of simplicity, the argument of Asp will be set equal to zero. In
summary, within this formalism, a partially polarized Gaussian Schell-model beam
is characterized by nine parameters.

In the following, we will be concerned with a particular type of PGSM beams,
namely, those that are undistinguishable from the scalar Gaussian Schell-model
fields when no polarizing elements are used. This means that its equivalent mutual
intensity at z = 0, Jeq, defined as

Jeq(r1,r2,0) = Jss(r1,r2,0) + Jpp(r1,r2,0), (1.68)
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is identical to that of a GSM beam in the scalar case. We then have

σss = σpp;μss = μpp, (1.69)

and the BCP matrix would be characterized by seven parameters.
The local degree of polarization P(r, z) of this kind of field can be calculated

from the elements of the BCP matrix as follows (see Sect. 1.2.4) (Gori, 1998a; Gori
et al.1998b)

P (r,z) =
√√√√
[
Jss (r,r,z)− Jpp (r,r,z)

]2 + 4 Jsp (r,r,z)2[
Jss (r,r,z)+ Jpp (r,r,z)

]2 . (1.70)

After substituting Eq. (1.66) (with the constraints (1.67) and (1.69)) into Eq.
(1.70), the local degree of polarization at the initial plane, P(r, 0), reads

P (r,0) =
√√√√(Ass − App

Ass + App

)2

+ 4A2
sp(

Ass + App
)2 exp

[
−
(

1

σ 2
sp

− 1

σ 2
ss

)
r2

]
. (1.71)

Let us now further simplify the type of PGSM fields we are considering by
making

σsp = σss = σ . (1.72)

We immediately see that these fields become uniformly partially polarized
at z=0, and their BCP matrix, characterized now by six free parameters, takes
the form

Ĵ (r1,r2,z = 0) = exp

(
− r2

1 + r2
2

4σ 2

)⎛⎜⎜⎝
As exp

(
− (r1−r2)

2

2μ2

)
Asp exp

(
− (r1−r2)

2

2μ2
sp

)

Asp exp

(
− (r1−r2)

2

2μ2
sp

)
As exp

(
− (r1−r2)

2

2μ2

)
⎞
⎟⎟⎠

(1.73)
where As = Ass, Ap = App, μss = μ, together with the constraints (Gori et al.,
2001)

A2
sp ≤ AsAp, (1.74a)

μ ≤ μsp ≤ μ

(√
AsAp

Asp

)1/2

, (1.74b)

which are derived by applying the non-negativity condition to the BCP matrix.
In order to analyze how the polarization characteristics of these beams change

upon propagation, we have to write the BCP matrix at any distance z. By applying
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to each matrix element a similar law to that used for the propagated mutual intensity
of a GSM beam in the scalar formalism, we get (Gori et al., 2001)

Jαβ (r1,r2,z) = Aαβ
F2
αβ (z)

exp

[
− ik

2Rαβ (z)

(
r2

1 − r2
2

)]
× ,

× exp

[
− r2

1 + r2
2

4σ 2F2
αβ (z)

]
exp

[
− (r1 − r2)

2

2μ2
αβF2

αβ (z)

]
,

(1.75)

where

F2
αβ (z) = 1 +

(
λz
/
π
)2

4σ 2

(
1

4σ 2
+ 1

μ2
αβ

)
, (1.76)

Rαβ (z) = z

(
1 + 1

F2
αβ (z)

)
, α,β = s, p. (1.77)

Note that Fss (z) = Fsp (z) when μss = μsp = μ.
In addition, from Eq. (1.70) we obtain at once the free propagation law for the

local degree of polarization of this type of fields:

P (r,z) =
{(

As − Ap

As + Ap

)2

+ 4A2
sp(

As + Ap
)2
[

Fss (z)

Fsp (z)

]4

exp

[
− r2

σ 2

(
1

F2
sp (z)

− 1

F2
ss (z)

)]}1/ 2

.

(1.78)

This expression shows that, for this class of PGSM beams, the degree of polar-
ization, which is uniform at the plane z = 0, will exhibit a position-dependence
(Gaussian) at any cross-section (unless either μss = μsp or Asp = 0). In partic-
ular, it can be shown that if the light field is totally polarized across the source
plane (P (r,0) = 1), then the beam keeps such behavior upon propagation. It should
also be noted that the condition P (r,z) ≤ 1 for any choice of (r,z) leads to further
limitations for the values μss and μsp.

More details about the behavior of the local degree of polarization upon free
propagation and its dependence with the parameters of the light source can be found
in (Gori et al., 2001).

1.6.3 The Van Cittert-Zernike Theorem

As is well known, within the scalar approach, the van Cittert-Zernike theorem is
one of the most important results of the theory of partial coherence (Born and Wolf,
1999; Mandel and Wolf, 1995; Perina, 1971; Wolf, 2007). It is a fundamental tool
in the study of the propagation of partially coherent fields. Moreover, the gener-
alization of this theorem to partially polarized fields could be of practical use for
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Fig. 1.10 The van
Cittert-Zernike theorem:
Notation

synthesizing the PGSM beams we have just considered. Let us then review this
theorem, written in both, the scalar and the vectorial versions.

We first consider a planar quasi-monochromatic spatially-incoherent secondary
source whose mutual intensity at a source plane S1 is given by

J
(
ρ1,ρ2

) = λ2A0
(
ρ1
)
δ
(
ρ1 − ρ2

)
(1.79)

where λ represents here the mean wavelength, ρ1 and ρ2 are two points of the
source plane, δ denotes the two-dimensional Dirac delta function and A0

(
ρ1
)

is
proportional to the irradiance at point ρ1. Equation (1.79) implies that any two arbi-
trary distinct points across the source plane are uncorrelated. For an arbitrary couple
of points (P1 and P2) at a certain transverse plane S2 (see Fig. 1.10), the mutual
intensity can be shown to read

J (r1,r2) =
∫∫
S1

A0 (ρ)
eik(R1−R2)

R1R2
cos θ1 cos θ2 dρ, (1.80)

where ρ is the position vector of a generic point Q of S1, ri, i = 1,2, denote the
position vectors of points Pi, Ri are the distances from Q to Pi, and θi are the angles
that forms QPi with the z-axis.

Equation (1.80) represents the well-known expression of the van Cittert-Zernike
theorem in the scalar case. It should be remarked that we are assuming that the
dimensions of the source are large compared with the mean wavelength. In turns, the
source size and the distance between P1 and P2 are considered to be small compared
with the distance D between S1 and S2. Taking this into account, the van Cittert-
Zernike theorem can also be written in the form (Mandel and Wolf, 1995)

J (r1,r2) =
exp

[
ik

2 D

(
r2

1 − r2
2

)]
D2

∫∫
S1

A0 (ρ) exp

[−ik

D
ρ · (r1 − r2)

]
dρ. (1.81)
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We see that Eq. (1.81) represents (a quadratic factor apart) the Fourier trans-
form of the beam irradiance at the source plane. Moreover, the complex degree of
coherence at plane S2 reads

j (r1,r2) = exp

[
ik

2D

(
r2

1 − r2
2

)]
G(r1 − r2), (1.82)

where

G(r1 − r2) =

∫∫
S1

A0 (ρ) exp
[−ik

D ρ · (r1 − r2)
]

dρ

∫∫
S1

A0 (ρ) dρ
. (1.83)

Equation (1.82) can be understood as the normalized amplitude one would
observe at P1 if a spherical wave, converging to P2, illuminates an opening with
identical shape and size as the source, and whose amplitude distribution over the
diffracting aperture is proportional to the irradiance across the source. This mean-
ingful interpretation makes of quite practical use the van Cittert-Zernike theorem
applied to instrumental-optics problems (concerning, for instance, the resolving
power in optical systems and image formation).

A second well-known consequence easily inferred from this theorem refers to
the increment of coherence of the light field upon free propagation, even though the
initial (planar) source is spatially incoherent.

In order to extend the van Cittert-Zernike theorem to the vectorial regime, some
proposals have been reported in the literature (Alonso et al., 2006; Gori et al., 2000).
Within the paraxial approach, we focus our attention to that introduced in (Gori
et al., 2000): The BCP matrix of a partially polarized spatially-incoherent source at
z = 0 is written in the form

Ĵ
(
ρ1,ρ2,0

) = λ2
(

Ass
(
ρ1
)
δ
(
ρ1 − ρ2

)
Asp

(
ρ1
)
δ
(
ρ1 − ρ2

)
Aps

(
ρ1
)
δ
(
ρ1 − ρ2

)
App

(
ρ1
)
δ
(
ρ1 − ρ2

)) . (1.84)

It can be shown that each element of the BCP in Eq. (1.84) obeys a propagation
law analogous to Eq. (1.81), i.e.,

Jαβ (r1,r2,z) =
exp

[
ik
2 z

(
r2

1 − r2
2

)]
z2

∫∫
S1

Aαβ (ρ)

exp

[−ik

z
ρ · (r1 − r2)

]
dρ; (α,β = s,p) ,

(1.85)

which generalizes the van Cittert-Zernike theorem to partially polarized beams.
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1.6.4 Experimental Synthesis of GSM fields

As we mentioned earlier, the above theorem provides a useful tool for the synthesis
of GSM beams in both the scalar and the vectorial treatments. For illustrative pur-
poses, we next briefly describe the synthesis process in the scalar case (Santis et al.,
1986) (the vectorial synthesis is a generalization of the scalar procedure).

The main goal would then be the generation of both Gaussian beam irradiance,
A(r), and Gaussian degree of coherence j(r1,r2), namely,

A (r) = A0 exp

(
r2

σ 2

)
, (1.86a)

j (r1,r2) = exp

[
(r1 − r2)

2

2μ2

]
. (1.86b)

From Eq. (1.82), it follows that j(r1, r2), given by Eq. (1.86b), can be under-
stood (quadratic phase factors apart) as the complex degree of coherence of the
field propagated (according with the van Cittert-Zernike theorem) from a planar
spatially-incoherent secondary source. Such source with a Gaussian profile can be
implemented by using the set-up shown in Fig. 1.11. We handle a TEM00 laser
beam, a microscope objective, MO, to focus the field, and a rotating ground glass,
RGG, placed at a distance d from the objective. The irradiance of the incoherent
source, just after the rotating glass, is given by

Ai (r) = A0 exp

(
r2

σ 2
i

)
, (1.87)

where A0 is a constant and σi denotes the transverse width of the beam. Note that
this size can be modified by choosing the appropriate distance d.

After freely propagating a distance D from the glass, the partially coherent field
distribution can be inferred making use of the van Cittert-Zernike theorem. In fact,
a Gaussian degree of coherence is obtained whose transverse coherence length μ is
given by

μ = D√
2

λ

π σi
. (1.88)
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In order to cancel out the quadratic factor in Eq. (1.82), a lens with focal length
D is used. The final step of the procedure consists of placing a Gaussian filter (GF)
in front of the beam. We thus obtain a secondary source with a Gaussian profile of
the required width, σ . The waist of the synthesized field is located at the GF plane.
It should also be remarked that, on varying the distance D, we could control at will
the degree of coherence of the source.

Partially polarized Gaussian Schell-model beams have been synthesized by using
a similar method, but, in this case, by applying the vectorial van Cittert-Zernike
theorem. We handle two incoherent primary sources, linearly polarized along
orthogonal axes, which are superposed through a Mach-Zehnder interferometer. For
further details, the interested reader could see (Piquero et al., 2002).
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Chapter 2
Second-Order Overall Characterization
of Non-uniformly Polarized Light Beams

2.1 Introduction

In the previous chapter, the light fields were represented in the space-time domain
by means of the BCP matrix (or through the mutual coherence function in the scalar
case). For convenience, we will now prefer to work in the space-frequency regime.
Consequently, as is well known in the Optics textbooks (Born and Wolf, 1999;
Mandel and Wolf, 1995; Perina, 1971; Wolf, 2007) the partially coherent scalar
field would then be described (up to second-order) by the so-called cross-spectral
density (CSD) W(r1, r2, z; ω), defined in the form

W (r1,r2,z;ω) = E∗ (r1,z;ω)E (r2,z;ω), (2.1)

where E denotes the wide-sense stationary random field, r1 and r2 represent two
points at the beam cross-section, orthogonal to the propagation direction z, and the
overbar symbolizes the average over the ensemble of realizations. For the sake of
simplicity, the explicit dependence on the angular frequency ω of the light beam
will be omitted from now on. Although W enables us to propagate analytically the
field through optical systems, the accurate experimental determination of the CSD
function is not a simple task, and becomes especially difficult for multimode laser
beams (for example, those emitted by high-power lasers).

Instead of such a local analysis, there are many situations in which a global char-
acterization would be of more practical use. More specifically, in the present chapter,
we are interested in a description of the spatial structure of light fields by means of
overall parameters that

(i) are valid for arbitrary beams,
(ii) are defined analytically in a rigorous way,

(iii) are measurable,
(iv) propagate through common optical systems according to simple laws.

Thus, this chapter is arranged as follows. In the next section the overall scalar
formalism is shown, and, in Sect. 2.3, a generalization to the vectorial case (i.e., to
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partially polarized beams) is provided. The generalized degree of polarization of
non-uniformly polarized fields is introduced in Sect. 2.4. Section 2.5 is devoted to
the so-called beam quality parameter of a light field, which provides a meaningful
joint description of the focusing capabilities of the beam at the near- and far-field.
Application of the above parameters to the particular but important case of partially-
polarized Gauss Schell-model beams is analyzed in Sect. 2.6. The possibility of
beam quality improvement is considered in Sect. 2.7, and the changes generated on
this parameter by different types of optical phase devices are described in Sect. 2.8.
Finally, an introductory example of global beam shaping of non-uniformly polarized
fields is briefly discussed in Sect. 2.9.

2.2 Second-Order Overall Characterization: Scalar Case

We next provide a survey of the key spatial global characteristics that are com-
monly used in the scalar framework. They are based on the so-called irradiance
moments of the field, which describe the overall spatial structure of the beam. It
should be remarked that these scalar parameters and figures of merit have been
accepted as current ISO standards for light fields (ISO, 1999, 2003, 2005). Further-
more, the scalar treatment constitutes an appropriate starting point to investigate, in
subsequent sections, the polarization behavior in the more involved vectorial case.

2.2.1 Formalism and Key Definitions

To begin with, let us first define the Wigner distribution function (WDF), which is
associated to the CSD function through a Fourier transform relationship (Bastiaans,
1989):

h (r,η,z) =
∫ +∞

−∞
W (r,s,z) exp (ik η · s) ds, (2.2)

where r = (x,y) denotes the two-dimensional position vector at a transverse plane,
kη = (ku, kv) = (kx, ky) gives the wavevector components along the Cartesian x and
y axes, and s is a vectorial variable. Accordingly, u and v would represent angles of
propagation (without taking evanescent waves into account). In Eq. (2.2) the CSD
function is expressed in terms of the variables r and s, which are related with r1 and
r2 by the formulae (see Fig. 2.1):

r = r1 + r2

2
, (2.3a)

s = r1 − r2. (2.3b)

The WDF was introduced by Wigner to describe the quantum-mechanics
phenomena in the (position-momentum) phase space. Later Walther (1968) demon-
strated the role of this function in Optics as a link between partial coherence and
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Fig. 2.1 Illustrating the
geometrical representation of
vectors r and s

traditional radiometry: The WDF can physically be understood in Optics as the
amplitude associated to a ray passing through a point along a certain direction. Some
care, however, should be taken because the WDF could reach negative values in cer-
tain cases (Friberg, 1993; Marchand and Wolf, 1974) (unlike the positiveness of the
energy content of a ray). Note that integration of h(r,η,z) over the angular variables
u and v is proportional to the beam irradiance. Moreover, integration over the spatial
variables x and y gives the directional intensity, which is a proportional to the radiant
intensity of the field (a factor cos2α apart, where α is the angle of observation with
respect to the z-axis).

In terms of the WDF, a number of parameters can be defined, which provide an
overall spatial description of the field upon propagation. Let us introduce the beam
irradiance moments in the form

〈xmynupvq〉 ≡ 1

Io

∫∫ +∞

−∞
xmynupvqh (r,η,z) dr dη, (2.4)

where m, n, p, q are integer numbers, the sharp brackets 〈 〉 are defined by Eq. (2.4)
itself, and

I0 =
∫∫ +∞

−∞
h (r,η,z) dr dη (2.5)

At each transverse plane, the four first-order beam moments, 〈x〉, 〈y〉, 〈u〉 and 〈v〉,
characterize the center of the beam profile and the mean direction of the field. For
simplicity, in what follows it will be assumed that these moments equal zero. This
is not a true restriction, since it is equivalent to a shift of the Cartesian coordinate
system. In summary, we consider that the z-axis coincides with the mean direction
of propagation, and the beam center is placed on this axis at any plane z.
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The resulting ten different second-order moments allow a global and meaningful
characterization of the spatial structure of a partially coherent quasimonochro-
matic beam. In terms of them, we may introduce the following parametrization for
scalar fields (see, for example, (Giesen and Morin, 1998; Giesen and Weber 2002;
Kudryashov et al., 2006; Laabs and Weber, 2000; Mejías et al., 1993; Morin and
Giesen, 1996; Weber et al., 1994; WLT, 2001)):

(i) 〈r2〉 = 〈x2 + y2〉: (Squared) spatial size of the beam cross-section, referred to
the region where the irradiance takes significant values. In this expression, 〈x2〉
and 〈y2〉 represent (squared) transverse beam widths along the x and y-axes,
respectively (see Fig. 2.2). In terms of the beam irradiance, I(x,y), this moment
reads

〈x2 + y2〉 =
∫∫ +∞

−∞
(
x2 + y2

)
I (x,y) dxdy∫∫ +∞

−∞ I (x,y) dxdy
. (2.6)

(ii) 〈η2〉 = 〈u2 + v2〉: (Squared) far-field divergence, which is connected with the
energy distribution associated with each spatial frequency of the beam.

(iii) 〈r · η〉 = 〈xu + yv〉: This moment provides the position of the beam waist, i.e.,
the plane where the beam width takes its minimum value (see Fig. 2.2). At the

z

I(x)

(a)

(b)

w

z

Fig. 2.2 Free propagation of
a typical (one-dimensional)
Gaussian beam (λ =
633 nm). (a) Irradiance
profiles at different planes z
= constant. (b) Parabolic
dependence of the
second-order moment 〈x2〉 on
the propagation distance z.
The value w denotes the
position of the waist plane
(minimum beam width). In
the figure, the separation
between the successive planes
is 125 mm. See also (Mejías
et al., 2002)
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waist plane, 〈xu+yv〉 vanishes. It should be remarked that a general astigmatic
beam would exhibit different minimum widths, 〈x2〉min and 〈y2〉min at different
positions along z. The global beam waist, whose position zw is given by the
condition

〈xu + yv〉 = 0, (2.7)

refers to the minimum value (under free propagation) of the global second-
order moment 〈r2〉. Note, in addition, that 〈xu〉 and 〈yv〉 are related to the
curvature radii of the beam wavefront by the formulae:

Rx = 〈x2〉
〈xu〉 , (2.8)

Ry = 〈y2〉
〈yv〉 . (2.9)

(iv) 〈xy〉: It gives the orientation (with regard to the laboratory axes) of the so-called
principal axis of the beam through the condition 〈xy〉 = 0 (Martínez-Herrero
and Mejías, 2006a, b; Serna et al., 1991, 1992a, b). It should be noticed that the
beam widths 〈x2〉1/ 2 and 〈y2〉1/ 2 reach their extreme (maximum and minimum)
values along the principal axes (see Fig. 2.3). Since, for general beams, the
transverse profile rotates as the field propagates into free space, these axes are
used to determine the orientation of the beam profile.

(v) 〈uv〉: It provides the orientation of the so-called absolute axes of the beam
(Serna et al., 1991, 1992a, b), defined by the condition 〈uv〉 = 0. Unlike the
principal axes, the absolute axes do not rotate upon free propagation, and they
constitute an absolute transverse coordinate system with respect to which the
orientation of the principal axes can be established.

(vi) 〈xv〉 − 〈yu〉: It is related with the orbital angular momentum of the global
beam (Alieva and Bastiaans, 2004; Allen et al., 2009; Bekshaev et al., 2003;
Martínez-Herrero and Mejías, 2006b; Nemes and Siegman, 1994; Vasnetsov
et al., 2003). The existence of angular momentum is a consequence of the
beam structure and is responsible for the twisting spatial behavior of certain

y

x

xpyp
Fig. 2.3 Illustrating the
second-order moment <xy>.
The contour lines of equal
irradiance (isophotes)
correspond to an astigmatic
Gaussian profile at a
transverse plane. The
principal axes are denoted by
xP,yP
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Fig. 2.4 Illustrating the
spatial behavior of a twisted
Gaussian beam (upon free
propagation). The arrows
show the propagation
direction of the beam. See
also (Mejías et al., 2002)

fields under free propagation (see Fig. 2.4). Note, in this sense, that the time-
averaged orbital angular-momentum flux, Jz , transported by a beam through a
transverse plane z reads

Jz = I0

c
(〈xv〉 − 〈yu〉) . (2.10)

where c is the speed of light in vacuum. In particular Jz equals zero for
rotationally-symmetric Gaussian fields as well as for Hermite-Gauss beams,
but it changes for twisted Gaussian fields (Gori et al., 1994; Nemes and
Siegman, 1994; Simon and Mukunda, 1993) or for certain Laguerre-Gauss
beams. The reader should realize that, in general, no plane wavefront exists
in the waist region, but two cylindrical wavefronts separated by a certain dis-
tance. Hence, in a general case, there is no common waist along the orthogonal
x- and y-axes.

It is interesting to note that, for deterministic beams represented by a well-defined
electric field amplitude E, the above physical parameters can also be directly written
in terms of E as follows:

〈r2〉 = 1

I

∫∫
r2|E(r,θ )|2 r dr dθ , (2.11a)

〈η2〉 = 1

k2I

∫∫ (∣∣∣∣∂E

∂r

∣∣∣∣
2

+ 1

r2

∣∣∣∣∂E

∂θ

∣∣∣∣
2
)

r dr dθ , (2.11b)

〈r · η〉 = 1

k I

∫∫
r Im

[
E∗ ∂E

∂r

]
r dr dθ , (2.11c)

〈xy〉 = 1

2I

∫∫
r2 sin 2θ |E(r,θ )|2 r dr dθ , (2.11d)

〈xv − yu〉 = 1

k I

∫∫
Im

[
E∗ ∂E

∂θ

]
r dr dθ , (2.11e)

〈uv〉 = 1

k2I

∫∫ {
sin 2θ

2

(∣∣∣∣∂E

∂r

∣∣∣∣
2

− 1

r2

∣∣∣∣∂E

∂θ

∣∣∣∣
2
)

+ cos 2θ

r
Re

[
∂E∗

∂r

∂E

∂θ

]}
r dr dθ

(2.11f)
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where I = ∫∫ |E|2r dr dθ is a normalization factor, proportional to the beam power.
For illustrative purposes, in these equations we have used planar polar coordinates
r and θ , frequently encountered in the literature. Alternative expressions for the
second-order moments can be found, for example, in (Alda et al., 1997; Weber,
1992). Finally, let us briefly remark that the second-order moment 〈x2〉 takes the

value w2

4 for a Gaussian amplitude exp
(
− x2

w2

)
.

In this section we have focused the attention on the mathematical definition of
the irradiance moments. Details for the practical use of the above parameters can be
found in the ISO standard 11146.

2.2.2 Propagation and Measurement of the Irradiance
Moments

To analytically handle in a compact form the second-order irradiance moments of a
scalar beam, they are usually arranged in a 4×4 symmetric matrix, M̂, defined, at a
certain transverse plane, as follows

M̂ =

⎛
⎜⎜⎝

〈x2〉 〈xy〉 〈xu〉 〈xv〉
〈xy〉 〈y2〉 〈yu〉 〈yv〉
〈xu〉 〈yu〉 〈u2〉 〈uv〉
〈xv〉 〈yv〉 〈uv〉 〈v2〉

⎞
⎟⎟⎠ . (2.12)

We immediately see that all the moments introduced in (i)–(vi) can be written
in terms of the elements of matrix M̂. The usefulness of this matrix arises from the
simple link between the values of M̂ at the output and input planes of any first-order
optical system. The general propagation law takes the form (Bastiaans, 1989; Serna
et al., 1991)

M̂out = P̂ M̂inp P̂t, (2.13)

where P̂ is the 4×4 ABCD matrix representing the optical system (Siegman, 1986),
and the subscripts out and inp refer to output and input planes, respectively.

It is also important to notice that the second-order moments are measurable quan-
tities. The measurement procedure commonly employs CCD cameras or similar
devices such as pyroelectric matrix arrays. Apart from the resolution limit defined
by the pixel size of the camera, the main experimental limitation comes from the
signal-to-noise ratio of the output signal. Defective pixels, background noise and
electronic circuitry, among other noise sources, also reduce the performance of the
measurement devices.

The standard method used to determine the second-order moments records the
irradiance profile I(x,y,z) at different transverse planes by means of a sensor array
camera. From the data supplied by the camera (irradiance versus position), one com-
putes the purely spatial moments 〈x2〉, 〈y2〉 and 〈xy〉. Since they propagate in free
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space according to a parabolic law, by means of a fitting procedure of the exper-
imental data to the parabolic curves we obtain all moments except 〈xv〉 and 〈yu〉,
which are coupled. They can be determined through a pair of additional measure-
ments by using an auxiliary cylindrical lens. Here we do not proceed further into the
experimental procedure. Additional details can be found, for example, in (Mejías
et al., 2002).

It should also be mentioned that the above formalism based on the second-order
irradiance moments fails in certain cases (e.g., slit diffraction). The main problem
arises when one tries to analytically determine the far-field divergence. One finds
that this parameter becomes infinite. Any attempt to represent the sharp edge by
smooth functions fails too because the second-order moment 〈η2〉 takes higher val-
ues as the fit improves, and, in the limit, tends to infinite again. Although, on the
basis of the moments formalism, second-order characteristic beam parameters were
generalized for fields crossing through hard-edge openings (Martínez-Herrero and
Mejías, 1993b, Martínez-Herrero et al., 1995c; Martínez-Herrero et al., 2003b), this
is a problem whose analytical solution deserves further study in the future.

Let us finally remark that generalization of the above scalar formalism to light
pulses (nanoseconds) can be found in (Mejías and Martínez-Herrero, 1995; Encinas-
Sanz et al., 1998).

2.3 Second-Order Overall Characterization: Vectorial Case

In Chap. 1 we pointed out that partially polarized beams and polarization-altering
optical devices could be mathematically modelled by using the Stokes vectors and
Müller matrices. It was implicitly assumed, however, a uniform polarization distri-
bution across the beam profile. In the present section we will generalize the Stokes
formalism in order to characterize the overall spatial structure of a polarized light
field. The propagation laws through optical systems will also be investigated. This
formalism extends the description based on the irradiance moments, reported in the
previous section for the scalar case, to non-uniformly polarized beams.

2.3.1 The Wigner Matrix

Let us again consider an electromagnetic field propagating essentially along the z
axis. Assuming that the longitudinal component of the field is negligible, the electric
field vector reads (within the paraxial approach)

E (r,z) = (
Es (r,z) ,Ep (r,z)

)
. (2.14)

For the sake of convenience, the position vector r = (x,y) is defined in the present
section as the product of the wavenumber k by the transverse Cartesian coordinates
of the point at which the field is determined. To avoid any confusion, we will write
the dimensionless position vector kr in the form r̃ ≡ kr.
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For vectorial beamlike fields, it is customary to employ their cross-spectral den-
sity matrix (Born and Wolf, 1999; Mandel and Wolf, 1995; Perina, 1971; Wolf,
2007), namely,

Ŵ (r̃1,r̃2) = E†(r̃1,z)E(r̃2,z), (2.15)

where

E† =
(

E∗
s

E∗
p

)
. (2.16)

In terms of Ŵ, we can now introduce the so-called Wigner matrix, Ĥ, defined in
the form (Martínez-Herrero and Mejías, 1997b)

Ĥ(r̃,η,z) = 1

k2

∫∫
Ŵ
(

r̃ + s
2

,r̃ − s
2

)
exp(iη · s)ds, (2.17)

where r̃ = (r̃1+r̃2)/2 and s = r̃1−r̃2 as in the previous section. No confusion should
arise from the fact that the symbol H is also commonly used for the magnetic field,
because the Wigner matrix always appears with a caret.

Matrix Ĥ can also be written in the form

Ĥ (r̃,η,z) =
(

hss (r̃,η,z) hsp (r̃,η,z)
hps (r̃,η,z) hpp (r̃,η,z)

)
, (2.18)

where

hij (r̃,η,z) = 1

k2

∫∫
E∗

i

(
r̃ + s

2
,z
)

Ej

(
r̃ − s

2
,z
)

exp(i s · η)ds; i, j = s, p. (2.19)

It should be noted that the diagonal elements of Ĥ represent the WDF associ-
ated to each transverse component of the whole beam. In addition, the off-diagonal
elements hsp and hps accounts for the correlation between the two transverse compo-
nents of the field. In the scalar framework, only the diagonal elements of the Wigner
matrix would be considered.

2.3.2 The Stokes Matrices

Let us now define the so-called Stokes matrices in the form (Martínez-Herrero et al.,
1997b)

Ŝn =
∫∫

RtR Tr
(
σ̂nĤ(r̃,η)

)
dr̃dη, n = 0,1,2,3, (2.20)
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where

R = (r̃,η) = (x,y,u,v) (2.21)

is a 1×4 vector, σ̂0 denotes here the 2×2 identity matrix and σ̂1,σ̂2 y σ̂3 are again
the Pauli matrices. For the sake of convenience, we introduce the following notation

[αβ]ij =
∫∫

αβhij (r̃,η,z)dr̃dη; i,j = s,p; α,β = x, y, u, v, (2.22)

along with

[αβ]0 ≡ [αβ]ss + [αβ]pp , (2.23a)

[αβ]1 ≡ [αβ]ss − [αβ]pp (2.23b)

[αβ]2 ≡ [αβ]sp + [αβ]ps , (2.23c)

[αβ]3 ≡ i
(
[αβ]sp − [αβ]ps

)
, (2.23d)

where the subscripts 0, 1, 2 and 3 refer to the corresponding Stokes matrices.
As is quite apparent from Eq. (2.22), [αβ]ij are closely related with the second-

order moments of the WDF defined for scalar fields (cf. Eq. (2.4)). Moreover, the
quantities [αβ]n, n = 0, 1, 2, 3, resembles the structure of the conventional Stokes
parameters. It should also be noted that the present treatment reduces to the scalar
one for the particular case of uniformly linearly-polarized beams. In particular, the
standard Stokes parameters can be considered themselves as zero-order irradiance
moments.

Let us now write matrix Ŝ0 as follows

Ŝ0 =
(

Ŵ
2
0 �̂0

�̂
t
0 �̂

2
0

)
, (2.24)

where

Ŵ
2
0 ≡

([
x2
]

0

[
xy
]

0[
xy
]

0

[
y2
]

0

)
, (2.25a)

�̂
2
0 ≡

([
u2
]

0 [uv]0

[uv]0
[
v2
]

0

)
, (2.25b)

�̂0 ≡
(

[xu]0 [xv]0[
yu
]

0

[
yv
]

0

)
. (2.25c)

These 2×2 matrices contain the overall spatial characteristics of the beam,
namely,
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– the spatial structure of the transverse irradiance profile in the near field

(matrix Ŵ
2
0).

– the divergence of the beam (beam spread) at the far field (matrix �̂
2
0).

– the orbital angular moment of the beam (matrix �̂0).
– the averaged curvature radius (elements [xu]0,

[
yv
]

0).

In other words, matrix Ŝ0 gives, in the vectorial case, a similar information to that
provided by the beam matrix, M̂, in the scalar case. As a matter of fact, the elements
of both matrices are related through the formulae

〈x2〉 =
[
x2
]

0

4π2 k2I
; 〈y2〉 =

[
y2
]

0

4π2 k2I
, (2.26a)

〈u2〉 =
[
u2
]

0

4π2I
; 〈v2〉 =

[
v2
]

0

4π2I
, (2.26b)

〈xu〉 = [xu]0

4π2kI
; 〈yv〉 =

[
yv
]

0

4π2kI
, (2.26c)

〈xv〉 = [xv]0

4π2kI
; 〈yu〉 =

[
yu
]

0

4π2kI
, (2.26d)

〈xy〉 =
[
xy
]

0

4π2 k2I
; 〈uv〉 = [uv]0

4π2I
, (2.26e)

where

I = 1

4π2

∫∫
Tr Ĥ dr̃ dη, (2.27)

and <αβ>, α, β = x, y, u, v, are the second-order irradiance moments defined for
scalar fields in the previous section. It is important to note that, on the contrary
to that occurs concerning the dimensionless squared brackets, the spatial variables
inside the sharp brackets keep their usual dimensions (for example, <xu> exhibits
dimension of length).

Equations (2.26) allow to conclude that the spatial parameters introduced in the
scalar case can be obtained from the knowledge of the elements of the Stokes
matrix Ŝ0.

Let us finally remark the formal analogy between the well-known inequality
satisfied by the standard Stokes parameters,

s2
0 ≥ s2

1 + s2
2 + s2

3, (2.28)

and the diagonal elements of the Stokes matrices:

(
Tr Ŝ0

)2 ≥
(

Tr Ŝ1

)2 +
(

Tr Ŝ2

)2 +
(

Tr Ŝ3

)2
. (2.29)
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On the basis of this condition, a rather rough but simple classification scheme of
partially polarized beams can be outlined.

Any beam should belong to one of the following three categories:

(a) Second-order totally polarized beams.
These are beams fulfilling

(
Tr Ŝ0

)2 =
(

Tr Ŝ1

)2 +
(

Tr Ŝ2

)2 +
(

Tr Ŝ3

)2
. (2.30)

Belong to this type of fields, those uniformly totally polarized (UTP) beams
whose Cartesian components of the electric field vector are proportional, i.e.,

Es(r) = αEp(r), (2.31)

where α is a complex number.
(b) Second-order non-polarized beams.

These are beams fulfilling

Tr Ŝ1 = Tr Ŝ2 = Tr Ŝ3 = 0. (2.32)

Belong to this category those locally unpolarized beams (i.e., P(r) = 0 every-
where) whose divergences along de s- and p- directions take the same value
([η2]ss = [η2]pp). Of course, this is not the only example. We could also men-
tion, for instance, radial or azimuthally totally-polarized beams (see Chap. 1
and references therein).

(c) Second-order partially polarized beams.
These fields are defined through the inequality

(
Tr Ŝ0

)2
>
(

Tr Ŝ1

)2 +
(

Tr Ŝ2

)2 +
(

TrŜ3

)2
. (2.33)

Beams not included in the categories (a) and (b) belong to this type.

2.3.3 Propagation Laws and Measurement

Let us now report the propagation laws of the Stokes matrices through optical
systems. Attention will be focused on three kind of devices.

i. First-order optical (ABCD) systems
It can be shown that the general propagation law for the Stokes matrices, prop-

agating through first-order systems represented by 4×4 matrices P̂ =
(

Â B̂
Ĉ D̂

)
,

reads

Ŝout
n = P̂′Ŝinp

n (P̂′)t n = 0,1,2,3 , (2.34)
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which is formally identical to Eq. (2.13) for the scalar case. In this equation,
the superscripts out and inp refer to the output and input planes of the ABCD
system, and

P̂′ ≡
(

Â′ B̂′
Ĉ′ D̂′

)
(2.35)

where Â′= Â, B̂′= kB̂, Ĉ′ = 1
k Ĉ and D̂′= D̂. The changes should be introduced

because, in the Wigner-Stokes formalism, we are using dimensionless position
variables. Thus, although Â and D̂ are dimensionless, the elements of matrix B̂
are expressed in units of length and the elements of Ĉ are given in units of the
inverse of length.

Two immediate consequences can be obtained from the propagation law
(2.34):

(a) The Stokes matrices propagate through ABCD optical systems indepen-
dently each other.

(b) There are two kinds of beams that retain the same character (with regard to
the polarization) after propagation through ABCD systems:

– Uniformly totally polarized beams.
– Second-order non-polarized beams for which (Martínez-Herrero et al.,

1997b; Mejías et al., 2002)

Ŝ1 = Ŝ2 = Ŝ3 = 0. (2.36)

ii. Spatially-uniform polarization-altering (SUPA) systems
They are optical devices whose components modify the polarization state of the
light in a uniform way throughout the beam cross-section. They are described
by Müller matrices with constant elements.

In this case, the general propagation law for the Stokes matrices becomes
(Martínez-Herrero et al., 1997b)

Ŝout
n =

3∑
m=0

M̂nmŜinp
m , n,m = 0, 1, 2, 3, (2.37)

where M̂nm denote the elements of the Müller matrix. It is important to notice
that, unlike to that occurs for first-order optical systems, the Stokes matrices,
in general, do not propagate through SUPA systems independently each other:
Each Stokes matrix at the output of such kind of systems depends, in principle,
on the values of the four Stokes matrices associated to the incident beam.

iii. Mixed systems
They should be understood as the combination of first-order optical systems and
SUPA devices cascaded in an arbitrary way. This kind of systems exhibits two
analytical properties:

(a) The ABCD matrix that represents a first-order optical component com-
mutes with the Müller matrix associated to a SUPA device. Note, however,
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that two ABCD matrices, in general, does not commute. The same applies
for the Müller matrices.

(b) All the ABCD components of a mixed system, represented by the dimen-
sionless matrices P̂n, n = 1,2 . . . , N, can be reduced to an equivalent
first-order optical device whose ABCD matrix, P̂eq, is given by

P̂eq =
N∏

n=0

P̂n (2.38)

In asimilar way, all the SUPA devices of a mixed system, represented by the
Müller matrices M̂m, m =1, 2. . ., M, can be reduced to an equivalent SUPA
component whose Müller matrix M̂eq is

M̂eq =
M∏

m=0

M̂m. (2.39)

Taking the above properties into account, it can be shown that the propagation
law of the Stokes matrices of a general beam through mixed systems reads

Ŝout
p = P̂eq

⎛
⎝ 3∑

q=0

M̂eq
pq Ŝinp

q

⎞
⎠(P̂eq

)t
, p,q = 0,1,2,3, (2.40)

or, making use of the commutative property,

Ŝout
p =

3∑
q=0

M̂eq
pq

(
P̂eqŜinp

q

) (
P̂eq
)t

, p,q = 0,1,2,3. (2.41)

Let us finally remark that all the elements of the four Stokes matrices are mea-
surable quantities. The procedure to determine the Stokes matrices is based on
the well-known procedure to get the conventional Stokes parameters. Accord-
ingly, a mixed system composed of a quarter-wave plate, a free propagation
distance and a linear polarizer is used. The key of the method is to link matrix

z = 0 z = z1

Mixed
system

S0, S1, S2, S3 S0,z1

incident
beam

output 
beam

Fig. 2.5 Illustrating the basis
of the procedure employed to
determine the Stokes matrices



2.3 Second-Order Overall Characterization: Vectorial Case 51

Ŝ0 at a plane z = z1 with the Stokes matrices at the plane z = 0 where we want
to measure their values (see Fig. 2.5).
Since the elements of Ŝ0 are connected with the second-order irradiance
moments, our measurement problem reduces to obtain such moments. Here we
do not proceed further into the details of the experimental methods used to find
the Stokes matrices (see, in this connection, (Mejías et al., 2002) and references
therein).

2.3.4 Invariant Parameters

In terms of the Wigner-Stokes formalism, we are now going to introduce certain
overall parameters that remain invariant upon propagation through rotationally-
symmetric first-order optical systems. In addition, these parameters do not change
under rotation of the transverse Cartesian axes with respect to which the electric
field components are given.

To begin with, let us first define a matrix T̂ in the form

T̂ =
(

r̃ · r̃ r̃ · η

η · r̃ η · η

)
, (2.42)

where r̃ is again the dimensionless position vector. In terms of the elements of
matrix T̂ , the following 2×2 matrices can be introduced (Martínez-Herrero and
Mejías, 2007):

ζ̂n =
∫

T̂ Tr
(
σ̂nĤ

)
dr̃dη, n = 0,1,2,3, (2.43)

which are expressed in explicit form as follows:

ζ̂0 =
( [

r̃2
]

ss + [
r̃2
]

pp

[
r̃ · η

]
ss + [

r̃ · η
]

pp[
r̃ · η

]
ss + [

r̃ · η
]

pp

[
η2
]

ss + [
η2
]

pp

)
, (2.44a)

ζ̂1 =
( [

r̃2
]

ss − [
r̃2
]

pp

[
r̃ · η

]
ss − [

r̃ · η
]

pp[
r̃ · η

]
ss − [

r̃ · η
]

pp

[
η2
]

ss − [
η2
]

pp

)
, (2.44b)

ζ̂2 = 2Re

( [
r̃2
]

sp

[
r̃ · η

]
sp[

r̃ · η
]

sp

[
η2
]

sp

)
, (2.44c)

ζ̂3 = 2Im

( [
r̃2
]

sp

[
r̃ · η

]
sp[

r̃ · η
]

sp

[
η2
]

sp

)
. (2.44d)

It can be shown that ζ̂n, n = 0,1,2,3, also read

ζ̂n =
(

Tr (S11)n Tr (S12)n
Tr (S21)n Tr (S22)n

)
, (2.45)



52 2 Second-Order Overall Characterization of Non-uniformly Polarized Light Beams

where (S11)n, (S12)n, (S21)n and (S22)n denote the 2×2 matrices associated to the
4×4 Stokes matrix Ŝn, namely

Ŝn =
(
(S11)n (S12)n
(S21)n (S22)n

)
. (2.46)

For example,

(S11)0 ≡ Ŵ2
0 ≡

([
x2
]

0

[
xy
]

0[
xy
]

0

[
y2
]

0

)
≡
([

x2
]

ss + [
x2
]

pp

[
xy
]

ss + [
xy
]

pp[
xy
]

ss + [
xy
]

pp

[
y2
]

ss + [
y2
]

pp

)
, (2.47a)

(S12)0 ≡ (S21)
t
0 ≡ �̂0 ≡

(
[xu]0 [xv]0[
yu
]

0

[
yv
]

0

)
≡
(

[xu]ss + [xu]pp [xv]ss + [xv]pp[
yu
]

ss + [
yu
]

pp

[
yv
]

ss + [
yv
]

pp

)
,

(2.47b)

(S22)0 ≡ �̂2
0 ≡

([
u2
]

0 [uv]0

[uv]0
[
v2
]

0

)
≡
([

u2
]

ss + [
u2
]

pp [uv]ss + [uv]pp

[uv]ss + [uv]pp
[
v2
]

ss + [
v2
]

pp

)
, (2.47c)

and so on.
Recall that the Stokes matrices Ŝn provide an overall description of non-

uniformly partially-polarized beams through general optical systems (including
polarization-altering devices). In a complementary way, the matrices ζ̂n can be of
use to characterize such beams through rotationally-symmetric ABCD systems.

To further clarify this point, let us first report several properties of these
polarization matrices:

(i) Tr̂ ζn = Tr Ŝn. This follows at once from Eqs. (2.45) and (2.46).
(ii) For matrices ζ̂n, the propagation law through rotationally-symmetric first-order

optical systems takes the form

(
ζ̂n

)
output

= P̂′ (ζ̂n

)
input

(P̂′)t n = 0,1,2,3, (2.48)

where the 2×2 dimensionless matrix P̂′ was defined in Eq. (2.35). Note that
Eq.(2.48) is formally identical to the propagation law of the Stokes matrices
through ABCD systems.

(iii) Under rotation of the transverse Cartesian axes around the propagation direc-
tion z, the matrices ζ̂n become

ζ̂ ′
0 = ζ̂0; (2.49a)

ζ̂ ′
3 = ζ̂3, (2.49b)

ζ̂ ′
1 = cos 2θ ζ̂1 + sin 2θ ζ̂2, (2.49c)

ζ̂ ′
2 = −sin 2θ ζ̂1 + cos 2θ ζ̂2, (2.49d)
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where the primes denote the matrices after rotation, and θ is the rotation angle.
To get this result we have taken into account that the electric field components
read after rotation

E′
s = cos θ Es + sin θ Ep (2.50a)

E′
p = −sin θ Es + cos θ Ep (2.50b)

In terms of matrices ζ̂n, a number of invariant overall parameters can be
introduced:

(i) Detζ̂0 (2.51)

(ii) Detζ̂3 (2.52)

(iii) Detζ̂1 + Detζ̂2. (2.53)

It follows from the propagation law (2.48) that these three parameters remain
constant when the beam propagates along rotationally-symmetric optical systems
(which are the most frequently encountered in the literature). Accordingly, these
invariant parameters can be used as suitable labels to characterize, in an analytical
way, the spatial distribution of the polarization state of beams propagating through
this type of systems. Moreover, since the elements of the Stokes matrices are mea-
surable quantities, the same applies for these parameters. Note that they are also
invariant upon rotation of the transverse Cartesian axes.

Let us finally point out that a family of additional invariants can easily be derived
from the former ones. Here we only mention two of them:

(a) M = Detζ̂0 −
3∑

i=1

Detζ̂i, (2.54)

and
(b)

N =
2Detζ̂0

∣∣∣∣∣
3∑

i=1
Detζ̂i

∣∣∣∣∣(
Detζ̂0 +

∣∣∣∣∣
3∑

i=1
Detζ̂i

∣∣∣∣∣
)2

, (2.55)

with 0 ≤ N ≤ 1.

As is clear from the invariance properties of parameters (2.51), (2.52), and (2.53),
M and N inherit this behaviour, namely, M and N do not change upon both, propa-
gation through rotationally-symmetric ABCD systems and rotation of the transverse
coordinate axes. We do not proceed further into the applications of the invariant
parameters. This point deserves more study in the future.
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2.4 Generalized Degree of Polarization

As we pointed out earlier (see Chap. 1), when we deal with non-uniformly polarized
beams, the point-dependent information about the polarization state is provided by
the local degree of polarization, P(r), defined in Sect. 1.2. However, P(r) is not a
parameter or figure of merit, but a function.

In the following, a global parameter will be considered in order to character-
ize both the polarization state and its uniformity across the transverse profile of a
general partially polarized beam.

2.4.1 Definition and Properties of Generalized Degree
of Polarization

Within the framework of the Wigner-Stokes formalism, let us introduce the so-called
generalized degree of polarization, defined at a transverse plane in the form (Movilla
et al., 1998)

PG =

√√√√√√
(

Tr Ŝ1

)2 +
(

Tr Ŝ2

)2 +
(

Tr Ŝ3

)2

(
Tr Ŝ0

)2
=

√√√√√√
(

Tr ζ̂ 1

)2 +
(

Tr ζ̂ 2

)2 +
(

Tr ζ̂ 3

)2

(
Tr ζ̂ 0

)2
.

(2.56)
Note that the second equality follows from the property (i) of matrices ζ̂ n, n =

0,1,2,3 (see Sect. 2.3).
As is quite evident from this definition, PG exhibits a similar analytical structure

to the standard degree of polarization P. Furthermore, this formal similarity extends
to two main properties, namely,

(i) 0 ≤ PG ≤ 1, (2.57)

and
(ii) PG is independent of the choice of the Cartesian s- and p-axis. Note, in this

sense, that PG is given in terms of the traces of symmetric matrices, which are
rotationally invariant (around the z-axis).

It can also be shown that PG = 1 for second-order totally polarized beams, and
PG = 0 for second-order non-polarized beams. Moreover, it follows at once that PG
remains invariant under propagation through ABCD systems for two kind of fields,
namely, uniformly totally polarized beams, and second-order non-polarized beams
fulfilling Ŝ1 = Ŝ2 = Ŝ3 = 0.

A final property concerns the propagation of PG: this parameter satisfies the same
law that governs to the Stokes matrices, restricted to their diagonal elements.
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2.4.2 Physical Meaning and Measurement

For non-uniformly totally polarized beams, the generalized degree of polarization
provides a measure of the uniformity of the polarization over the regions of the beam
profile where the irradiance is not negligible. This can be illustrated by means of the
following example.

Let us consider a non-uniformly totally-polarized beam whose electric field
vector E at the plane z = 0 is given by the Jones vector (Movilla et al., 1998)

E(r) =
(

Es(r)
Ep(r)

)
= Eo exp

[
−
(

r

w0

)2
](

cos
[
f (r)

]
sin
[
f (r)

]
)

, (2.58)

with

f (r) = π

2
exp

[− (ar)n
]

, n = 16, (2.59)

where E0 is a constant amplitude factor, r denotes the radial polar coordinate, w0
represents the beam size at the waist plane and a–1 is a measure of the width of the
superGaussian function f(r). Thus, the beam given by Eq. (2.58) exhibits a Gaussian
irradiance profile and, at each point of its cross-section, the field is linearly polarized
whose azimuth depends on the distance to the propagation axis z.

The spatially-distributed polarization of this beam is illustrated in Fig. 2.6a and c
for three different values of the dimensionless product aw0: Inside the circle whose
radius is ≈ a–1 the beam closely behaves as a uniformly linearly polarized field with
negligible s-component. Outside such a circle, the field remains uniformly polar-
ized but now with Ep ≈ 0. The abrupt transition between both regions is a direct
consequence of the high superGaussian character (n = 16) of function f(r).

(a) (b) (c)

Fig. 2.6 Spatial distribution of the polarization state of the field E given by Eq. (2.58) at the
transverse plane z = 0. The radii of the circles are 1/a (continuous line) and w0 (dashed line). The
small segments show the local orientation of the linearly polarized field. See also (Movilla et al.,
1998)
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Fig. 2.7 Generalized degree
of polarization PG versus the
dimensionless product aw0.
See also (Movilla et al., 1998)

In Fig. 2.6a (with aw0<<1) the beam is nearly p-polarized inside the solid-line
circle, which is the region where the irradiance takes significant values. On the other
hand, in Fig. 2.6b (with aw0>>1) the beam behaves as s-polarized over the whole
transverse profile except over a small region around its center. Finally, in Fig. 2.6c
(with aw0 ≈ 1) the overall irradiance associated to the s- and p-regions are balanced.

It is illustrative to calculate the generalized degree of polarization in terms of the
product aw0. This is represented in Fig. 2.7.

Parameter PG approaches unity for the cases shown in Fig. 2.5a and b, butPG
drastically reduces (PG < 0.3) when aw0 approaches 1 (Fig. 2.5c).

In summary, we conclude for the example presented here (totally polarized field)
that values of PG nearly 1 means that the beam essentially behaves as uniformly
polarized, at least across the region of the beam profile where the irradiance is
significant. The opposite case, PG ≈ 0, would imply the lack of a global definite
polarization over such peak irradiance.

The parameter PG can be experimentally determined from the measurement of
the traces of the Stokes matrices. In the following we briefly describe two proce-
dures to determine them. Both methods involve the measurement of the total power
together with the beam width and divergence for several orientations of a polarizer
and a quarter-wave plate at an observation plane, which remains unchanged during
the procedure.

Method A
It follows four steps (Movilla et al., 2000):

Step 1
Measurement of the global power, I, (squared) beam width 〈r2〉, and

(squared) far-field divergence 〈η2〉 at the observation plane after free
propagation. Here, the measurements are performed with no use of
any polarizing element.
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Step 2
Measurement of the same parameters as before but now the beam travels

through a polarizer which accepts linear polarization in the azimuth
α = 0◦, where α indicates the orientation of the transmission axis of
the polarizer with respect to the s-axis.

Step 3
Same measurements as in step 2 but now with α = 45◦.
Step 4
Measurement of I, 〈r2〉 and 〈η2〉 after the beam propagates successively

through a quarter-wave plate (whose fast axis makes an angle 0◦ with
the s-axis) and a polarizer with α = 45◦.

In terms of the experimental data, the traces of the matrices Ŝi are given by the
following equations:

Tr S0 = 4π2
(

k2〈r2〉FP + 〈η2〉FP

)
IFP, (2.60a)

Tr S1 = 1

T1 − T2

[
8π2 I0◦

(
k2〈r2〉0◦ + 〈η2〉0◦

)
− (T1 + T2)TrŜ0

]
,

(2.60b)

Tr S2 = 1

T1 − T2

[
8π2 I45◦

(
k2〈r2〉45◦ + 〈η2〉45◦

)
− (T1 + T2)TrŜ0

]
,

(2.60c)

Tr S3= 1

T1 − T2

⎡
⎣8π2 I λ

4 ,45◦

T λ
4

(
k2〈r2〉 λ

4 ,45◦ + 〈η2〉 λ
4 ,45◦

)
−(T1 + T2)TrŜ0

⎤
⎦ ,

(2.60d)
where the subscript FP means free propagation, the coefficients T1 and
T2 are the major and minor principal transmittances of the polarizer, T λ

4
is the transmittance of the quarter-wave plate and the subscripts 0◦, 45◦,
and λ

4 ,45◦ refer to the value of α and to the presence of the quarter-
wave plate.

Method B
In this case the first steps measure the total power, the beam width and the

divergence after the beam propagates through a polarizer oriented so as
to transmit the component in the azimuths (i) α = 0◦; (ii) α = 45◦; (iii)
α = 90◦ and (iv) α = 135◦. The same parameters are then measured after
the beam travels successively through a quarter-wave plate whose fast-axis
makes an angle 0◦ with the s-axis, and a polarizer with azimuth α=45◦ and
α = 135◦; respectively. Again, the observation plane is not changed during
the process.
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The traces of the Stokes matrices now become

Tr S0 = 4π2

T1 + T2

[
I0◦
(

k2〈r2〉0◦ + 〈η2〉0◦
)

+ I90◦
(

k2〈r2〉90◦ + 〈η2〉90◦
)]

(2.61a)

Tr S1 = 4π2

T1 − T2

[
I0◦
(

k2〈r2〉0◦ + 〈η2〉0◦
)

− I90◦
(

k2〈r2〉90◦ + 〈η2〉90◦
)]

,

(2.61b)

Tr S2 = 4π2

T1 − T2

[
I45◦

(
k2〈r2〉45◦ + 〈η2〉45◦

)

−I135◦
(

k2〈r2〉135◦ + 〈η2〉135◦
)] (2.61c)

Tr S3 = 4π2

T λ
4
(T1 − T2)

[
I λ

4 ,45◦
(

k2〈r2〉 λ
4 ,45◦ + 〈η2〉 λ

4 ,45◦
)

−I λ
4 ,135◦

(
k2〈r2〉 λ

4 ,135◦ + 〈η2〉 λ
4 ,135◦

)]
.

(2.61d)

Let us finally remark that the main difference between the above methods arises
from the existence in the former case of measurements of the direct, freely prop-
agating beam, without using any polarizing elements, whereas, in method B, all
measurements involve the presence of a polarizer.

Although the procedures are analytically simple, some care, however, is required
because the optical devices are not ideal and may exhibit certain harmful effects.

For example, special attention should be taken to align the system in order that
the beam crosses through the center of the optical components. Thus, when these
components rotate, the influence of their spatial inhomogeneities on the overall irra-
diance will be strongly reduced. In an ideal configuration, note also that PG should
be independent of the angle formed by the polarization plane of the input beam
(fixed all along the experiment) and the s-axis.

Let us finally remark that the polarizer could introduce some distortion into the
beam irradiance profile. In particular, although the beam size of a uniformly polar-
ized field should not change after crossing an ideal polarizer, however, in practice,
the total irradiance reduction caused by the polarizer alters the beam width due to
the influence of background and offset noises.

2.4.3 Generalized Degree of Polarization of Beams Emerging
from Optically-Pumped Nd:YAG Rods

As an illustrative example, we will now determine the generalized degree of polar-
ization of the field at the output of an optically pumped Nd:YAG rod. We will see
that PG could be a useful tool to infer the behavior of certain parameters of the
system.
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As is well known, the active medium in high-power solid-state laser resonators
(for example, cylindrical rod in Nd:YAG lasers), involves thermal processes pro-
duced by both absorption of radiation and cooling. These thermal effects give
rise to changes in the temperature, which exhibit a spatial dependence on the
radial polar coordinate r (assuming homogeneous pumping in the laser rod).
Moreover, birefringent mechanical strains are also induced by the temperature
gradient.

In the particular case of high-power Nd:YAG lasers, the thermal processes gen-
erate a refractive index with a parabolic dependence on r. In other words, the laser
rod behaves as a thin lens (thermal lens). In addition, the rod becomes birefringent
with two values of the refractive index, nr and nφ , associated to light polarized along
radial and azimuthal directions, respectively, (Lü et al., 1995)

nr (r) = n0

(
1 − αr

2
r2
)

, (2.62)

nϕ (r) = n0

(
1 − αϕ

2
r2
)

, (2.63)

n0 being the refractive index at the center of the rod and αr and αφ being func-
tions of a number of parameters, namely, the total power absorbed by the rod, the
radius and the length of the rod, the thermal conductivity, and the photoelastic coef-
ficients associated to the radial and azimuthal components.(Hodgson and Weber,
1993; Martínez-Herrero et al., 1995b; Montmerle et al., 2006)

Assuming well-collimated beams traveling along the rod, the birefringent
medium may be modelled by a Jones matrix (referred to the Cartesian s and p axes):

Ĵ =
(

Jss(r,θ ) Jsp(r,θ )
Jsp(r,θ ) Jpp(r,θ )

)
, (2.64)

with

Jss(r,θ ) = eikLnr(r) cos2 θ + eikLnϕ(r) sin2 θ , (2.65a)

Jsp(r,θ ) =
[
eikLnr(r) − eikLnϕ(r)

]
sin θ cos θ , (2.65b)

Jpp(r,θ ) = eikLnr(r) sin2 θ + eikLnϕ(r) cos2 θ , (2.65c)

where L is the length of the rod and the angle θ is shown in Fig. 2.8.
The active medium would then modify the polarization state of the input beam

in a spatially non-uniform way. Note, however, that incident beams with radial or
azimuthal linear polarization do not alter their polarization state after propagating
through the rod.

For simplicity, let us now consider a typical linearly-polarized rotationally-
symmetric Gaussian beam whose waist coincides with the entrance plane of the
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Fig. 2.8 Geometry and
notation used to write the
Jones matrix Ĵ: r and θ
denote polar coordinates at a
plane orthogonal to the rod
axis z

active medium. The amplitude of the electric field vector associated to such beam
reads

E (r,θ) = E0 exp

(
− r2

w2
0

)(
1
0

)
, (2.66)

where E0 and w0 are constants. By assuming the rod wide enough to neglect the
border effects (diffraction and gain saturation effects are also ignored), the s- and
p- components of the field at the output plane of de rod will then be obtained by
applying the Jones matrix Ĵ to E (r,θ), and one gets

Es (r,θ) = E0

[
eikLnr(r) cos2 θ + eikLnϕ(r) sin2 θ

]
exp

(
− r2

w2
0

)
, (2.67a)

Ep (r,θ) = E0 sin θ cos θ
[
eikLnϕ (r) − eikLnr(r)

]
exp

(
− r2

w2
0

)
. (2.67b)

From these equations, after lengthy but straightforward calculations, we find the
following simple expression for the generalized degree of polarization at the output
plane of the rod:

PG = 1

2

[
1 + 1 − β

(1 − β)2

]
, (2.68)

where the constant β contains information about the optical characteristics of the
material, the beam size and the energy supplied to the medium (Movilla et al., 2000)

Equation (2.68) shows a one-to-one correspondence between PG and β. Accord-
ingly, the measurement of PG would provide the value of β. The experimental set-up
used to measure PG is shown in Fig. 2.9, and PG is plotted as a function of β in
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Fig. 2.9 Experimental setup used to measure the generalized degree of polarization, PG, of an (ini-
tial) Gaussian beam crossing a birefringent optically-pumped Nd:YAG rod. F denotes neutral filters
employed to attenuate the beam irradiance; P1 represents a polarizer that controls the azimuth of
the incident beam; M shows the presence of a magnifier 3× that increases the beam size; A1 and A2
are two apertures to avoid that the light coming from the pumping lamps enter inside the detector;
and finally λ/4 and P2 symbolize the quarter-wave plate and the polarizer, respectively, that are
used to determine the traces of the Stokes matrices. See also (Movilla et al., 2000)

Fig. 2.10. No experimental value appears in the central region of the curve because
the beam size is not large enough to allow the accurate measurement of its width.

We see from Fig. 2.10 that the field essentially behaves as a uniformly polarized
beam across its transversal section for low values of β. However, as β increases,
the pumping produces non-uniform optical anisotropies inside the rod within the
central regions, and the value of PG reduces (non-uniform polarization distribution).
Finally, PG reaches a quasi-asymptotic behaviour for high pumping power, which
means that depolarization is not complete. The same conclusion was also inferred
by other authors analyzing a similar system (Kugler et al., 1997).

Fig. 2.10 PG versus β. The
circles are the experimental
data and the continuos line
plots the theoretical curve (cf.
Eq.(2.68)) that best fits the
experimental values.
Ordinates include values
greater than 1 because the
experimental errors make PG
exceeds the limit value 1. See
also (Movilla et al., 2000)
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2.4.4 Classification Scheme of Partially Polarized Beams

The generalized degree of polarization, PG, may be considered, in a sense, com-
plementary to the parameters P̃ and σ̃ 2

p introduced in Chap. 1. To clarify this, let
us again consider, for example, a radially polarized beam, whose polarization state
is linear and oriented along radial lines from the beam axis. For these fields, P̃ =
1 and σ̃ 2

p = 0, which are identical to the values associated to uniformly totally-
polarized beams. To distinguish between both types of beams parameter PG can
be used: PG equals zero for radially polarized fields but reaches its maximum
value PG = 1 for uniformly totally polarized beams. Of course, in this example
the radial polarization content can also be inferred from the parameters introduced
in Sect. 1.5.

The triad of parameters PG, P̃ and σ̃ 2
p provide, in addition, a global para-

metric characterization of the spatial distribution of the polarization state over
the whole beam profile. On this basis, a rough but rather simple classification
scheme of general (paraxial) partially polarized beams may formally be stated.
Table 2.1 shows the sequence to be followed in order to classify a beam accord-
ing with this scheme: thus, for example, the values σ̃ 2

p = 0, P̃ = 1, PG < 1
would correspond to a non-uniformly totally polarized beam. We also see from
Table 2.1 that, in certain cases, it is not necessary to determine all the three
parameters.

Table 2.1 Classification scheme of partially polarized beams based on the parameters PG, P̃ and
σ̃ 2

p . The acronyms refer to the following types of fields: UP (uniformly polarized beams); UTP (uni-
formly totally polarized beams); UPP (uniformly partially polarized beams); NP (non-polarized
beams); NUTP (non-uniformly totally polarized beams); NUPP (non-uniformly partially polarized
beams)

p

p

UP

NUTP

NUPP

NP

UPP

UTP G

G
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2.5 Beam Quality Parameter of Partially Polarized fields

In practice, it would be useful to handle a figure of merit providing a joint descrip-
tion of the focussing and collimation capabilities of a laser beam. To this purpose,
the so-called beam quality parameter, Q, has been defined in the literature for
partially-coherent scalar fields in terms of the second-order irradiance moments
introduced in Sect. 2.2 (Lavi et al., 1988; Martínez-Herrero et al., 1992a, b;
Martínez-Herrero and Mejías 1994; Mejías et al., 2002; Serna et al., 1991; Siegman,
1990, 1993a, b; Simon et al., 1988; Weber, 1992):

Q = 〈x2 + y2〉〈u2 + v2〉 − 〈xu + yv〉2 = 〈r2〉 〈η2〉 − 〈r · η〉2, (2.69)

where, again, for simplicity, it has been assumed that 〈x〉 = 〈y〉 = 〈u〉 = 〈v〉 = 0.
Since 〈xu〉 + 〈yv〉 vanishes at the waist plane (see Sect. 2.2.1), the parameter Q can
also be written in the form

Q = 〈r2〉w〈η2〉 (2.70)

where the subscript w means that the beam size is calculated at the waist plane. We
thus see that this parameter contains simultaneous information of both the space
and the spatial-frequency domains, characterizing the overall spatial structure of the
beam at the near and at the far field. It should also be noticed that the squared root
of Q is identical, a factor k = 2π/λ apart, to the so-called beam propagation factor,
M2, introduced by Siegman (1990), namely,

M2 = k Q1/2. (2.71)

The parameter Q exhibits two outstanding and practical properties:

(i) It remains invariant upon propagation through rotationally-symmetric first-
order optical systems (even for beams without such symmetry and with
non-zero crossed moments, 〈xy〉, 〈xv〉, 〈yu〉 or 〈uv〉).

(ii) It has a lower limit, given by the expression (uncertainty relation)

Q ≥ 1/k2, (2.72)

or, equivalently,

M2 ≥ 1, (2.73)

where the equalities are only reached by a Gaussian beam (best quality). It
should also be remarked that the beam quality improves (better capabilities of
the beam) when Q takes lower values, and, conversely, the quality deteriorates
when the numerical value of Q increases.
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These properties along with the simple measurement procedure explain why the
beam propagation factor M2 has been accepted as the current ISO beam quality
standard (ISO, 1999, 2005).

A generalization of the quality parameter for the vectorial case can be achieved
by extending, in a natural way, the former definition of Q, i.e., (Lü et al., 1995)

Q = 〈r2〉〈η2〉 − 〈r · η〉2, (2.74)

where the second-order moments of the global vectorial beam now include both
components, namely,

〈r2〉 = Is

I
〈r2〉s + Ip

I
〈r2〉p, (2.75)

〈η2〉 = Is

I
〈η2〉s + Ip

I
〈η2〉p, (2.76)

〈r · η〉 = Is

I
〈r · η〉s + Ip

I
〈r · η〉p, (2.77)

In these equations

〈αβ〉i = 1

Ii

k2

4π2

∫∫∫
αβ E∗

i (r + s/2,z)Ei (r - s/2,z) exp(iks.η)ds dr dη,

i = s, p; α,β = x,y,u,v (2.78)

denote the second-order moments associated to the respective field components

Ii = ∫∫ |Ei(r)|2 dr, i = s,p and I = Is+Ip. The presence of the factors Ii/I, i = s,
p, arises from the different normalization constants (I and Ii) of the moments asso-
ciated to the overall beam and to the field components, respectively. Note also that
we are using sharp brackets to write the irradiance moments. Accordingly, r = (x,
y) represents, as usual, the conventional position vector, with dimension of length.

As occurs in the scalar case, the parameter Q does not change when the beam
freely propagates. Moreover, for any field, Q also satisfies the inequality

Q ≥ 1/k2, (2.79)

where now the equality holds for uniformly totally-polarized Gaussian beams.
The parameter Q can also be written in terms of the beam qualities, Qs and Qp,

associated to the electric field components. We have

Q =
(

Is

I

)2

Qs +
(

Ip

I

)2

Qp +
(

IsIp

I2

)
Qsp, (2.80)
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where

Qi = 〈r2〉i〈η2〉i − 〈r · η〉2
i , i = s, p, (2.81)

and

Qsp = 〈r2〉s〈η2〉p + 〈r2〉p〈η2〉s − 2 〈r · η〉s 〈r · η〉p, (2.82)

For illustrative purposes, let us again consider the beam emerging from an opti-
cally pumped Nd:YAG rod (see the above section). It can be shown that the value
of Q at the output plane of the rod is given by the simple formula (Lü et al., 1995;
Mejías et al., 2002)

Q = 1

k2
[1 + β + ln(1 + β)] . (2.83)

Accordingly, when β grows, the beam quality deteriorates. From the analytical
expression of parameter β, it can be concluded that, in order to improve the beam
quality of the output beam:

(i) the pumping power should decrease, and/or
(ii) the radius of the rod should increase, and/or

(iii) the transverse beam size should reduce.

This example shows how the beam quality parameter of the emerging field could
be of simple practical use when designing laser devices.

2.6 Overall Parametric Characterization of PGSM Beams

We next apply the above parameters to provide a characterization of partially-
polarized Gauss-Schell model (PGSM) beams, which were introduced in Chap. 1.
More specifically, we investigate the behavior of the beam quality parameter and
the different degrees of polarization (including PG). For simplicity, the interest is
focused on a particular class of PGSM beams, namely, those generated by PGSM
sources that cannot be distinguished from ordinary GSM fields when polarization
measurements are disregarded (i.e., when no anisotropic devices are inserted across
the beam path).

Let us begin by writing the cross-spectral density matrix describing such fields
at the waist plane (which takes a similar form to the corresponding BCP matrix)

Ŵ (r1, r2) = exp

(
− r2

1 + r2
2

4σ 2

)

×

⎛
⎜⎜⎝

As exp
[
− (r1−r2)

2

2μ2

]
Asp exp

[
− (r1−r2)

2

2μ2
sp

]

Asp exp

[
− (r1−r2)

2

2μ2
sp

]
Ap exp

[
− (r1−r2)

2

2μ2

]
⎞
⎟⎟⎠

, (2.84)
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where the parameters σ , μ, μsp, As, Ap and Asp are analogous to those defined
in Sect. 1.6. It should be remarked that they are linked through certain conditions
derived from general properties of the cross-spectral density matrix (Gori et al.,
2008).

For this kind of beams, the second-order irradiance moments become

〈r2〉 = 2〈r2〉s = 2〈r2〉p = 2〈r2〉sp = 2σ 2, (2.85a)

〈η2〉 = 2〈η2〉s = 2〈η2〉p = 1

2k2σ 2χ
, (2.85b)

〈η2〉sp = 1

4k2σ 2χsp
, (2.85c)

where χand χsp are given by the expressions

1

χ
= 4σ 2

(
1

4σ 2
+ 1

μ2

)
, (2.86a)

1

χsp
= 4σ 2

(
1

4σ 2
+ 1

μ2
sp

)
, (2.86b)

along with the condition χsp ≥ χ . In Eqs. (2.85), the irradiance moments are defined
by Eqs. (2.75), (2.76), (2.77), and (2.78), and

〈r2〉sp = 1

Isp

k2

4π2

∫∫∫ (
x2 + y2

)
E∗

s (r + s/2,z)Ep (r − s/2,z) exp (ik s · η) ds dr dη,

(2.87a)

〈η2〉sp = 1

Isp

k2

4π2

∫∫∫ (
u2 + v2

)
E∗

s (r + s/2,z)Ep (r − s/2,z) exp (ik s · η)ds dr dη,

(2.87b)
where

Isp =
∫∫

Es(r)E∗
p(r)dr. (2.88)

Let us now introduce the quantity Q̃sp in the form

Q̃sp = 4〈r2〉sp〈η2〉sp, (2.89)

Note that Q̃sp involves the cross-correlation between the orthogonal s and p com-
ponents of the field. No confusion should arise with regard to the function Qsp given
by Eq. (2.82), which did not consider any cross-correlation between components.
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Both parameters, Q and Q̃sp are connected with the characteristic constants of
the beam:

Q = 1

k2χ
, (2.90a)

Q̃sp = 1

k2χsp
, (2.90b)

and satisfies Q̃sp ≤ Q (remember that χsp ≥ χ ).
On the other hand, after some algebra, it can be shown that the standard degree

of polarization of this class of fields turns out to be

Pst =
√√√√(As − Ap

As + Ap

)2

+ 4A2
sp(

As + Ap
)2 , (2.91)

and, according with the equations given in Sect. 1.6, the local degree of polarization
can be written in the form

P (r,z) =
√√√√(As − Ap

As + Ap

)2

+ 4A2
sp(

As + Ap
)2 f 2 (z) exp

[−a (z) r2
]
,

where functions f (z) and a (z) are related with the spatial parameters Q and Q̃sp by
the expressions

f (z) = 4σ 4 + z2Q

4σ 4 + z2Q̃sp
, (2.93a)

a (z) = 4σ 2

4σ 4 + z2Q

[
f (z)− 1

]
. (2.93b)

Note that function f (z) increases as the beam propagates. In addition, its
minimum value is reached at the waist plane, and we get

f (z = 0) = 1 ≤ f (z) ≤ f (z → ∞) = Q

Q̃sp
= χsp

χ
. (2.94)

With regard to the generalized degree of polarization, PG, it propagates for this
type of beams according with the formula (Martínez-Herrero et al., 2004)

PG (z) =

√√√√√
(

As − Ap

As + Ap

)2

+ 4A2
sp(

As + Ap
)2
⎛
⎝4 k2σ 4 + 1

k2χsp
+ z2

χsp

4 k2σ 4 + 1
k2χ

+ z2

χ

⎞
⎠

2

. (2.95)
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We thus see that PG decreases under free propagation, and for distances z >> λ
becomes

PG (z) =
√√√√(As − Ap

As + Ap

)2

+ 4A2
sp(

As + Ap
)2 1

f 2 (z)
. (2.96)

Close to the waist plane z = 0, the polarization parameters Pst, P(0,z) and PG are
nearly identical for typical values of the beam parameters (width and divergence).
Moreover, when z >> λ (including the far field), the following relationship applies
between the above three degrees of polarization:

[
P2

G (z)−
(

As − Ap

As + Ap

)2
][

P2 (0,z)−
(

As − Ap

As + Ap

)2
]

=
[

P2
st −

(
As − Ap

As + Ap

)2
]2

.

(2.97)
In particular, at the far-field they read

Pst (z → ∞) =
√√√√(As − Ap

As + Ap

)2

+ 4A2
sp(

As + Ap
)2 , (2.98a)

P (r,z → ∞) =
√√√√(As − Ap

As + Ap

)2

+ 4A2
sp(

As + Ap
)2
(

Q

Q̃sp

)2

exp
(−a∞r2

)
, (2.98b)

PG (z → ∞) =
√√√√(As − Ap

As + Ap

)2

+ 4A2
sp(

As + Ap
)2
(

Q̃sp

Q

)2

, (2.98c)

where a∞ represents the value of a(z) at the far field.
For illustrative purposes, Fig. 2.11 computes the degrees of polarization PG (z),

P (r = 0,z) and Pst in terms of the propagation distance z .
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Fig. 2.11 Degrees of
polarization P (r = 0,z),
PG (z) and Pst versus the
propagation distance z for a
PGSM beam with the
following characteristic
parameters: σ = 1 mm.
λ = 633 nm, As = Ap = 0.5,
Asp = 0.1, μ = 0.1 mm and
μsp = 0.2 mm. In the figure,
Pst = 0.2 (dotted line). See
also (Martínez-Herrero et al.,
2004)
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To end this short survey, let us summarize a number of general properties derived
for this class of beams:

(i) The local degree of polarization (squared) is a Gaussian function across the
transverse profile (in accordance with previous theoretical and experimental
results reported, for example, in (Gori et al., 2001; Piquero et al., 2002)).

(ii) Since the local and the generalized degree of polarization change upon free
propagation according with the function f (z), the overall polarization structure
can then be determined at any plane z from the measurements of parameters Q
and Q̃sp at the waist.

(iii) The parameters Pst, P (r = 0,z), and PG(z) are nearly identical when μsp ∼ μ.
(iv) If A2

sp = AsAp, then Pst = P (r,z) = PG (z) = 1, and the beam is uniformly
totally polarized at any transverse plane z.

(v) If Asp = 0 then Pst = P (r,z) = PG (z) = constant < 1. In other words,
the beam is uniformly partially polarized. Moreover, for the particular case
As = Ap, the three degrees of polarization,Pst, P (r,z), and PG (z), are zero:
The beam is unpolarized at every plane z.

(vi) If As = Ap = A0 (as occurs in Fig. 2.11), the degrees of polarization are related
at any plane z through the simple expression:

PG (z)P (0,z) = P2
st = A2

sp

A2
0

, (2.99)

This means that the left-hand member of this equation is invariant upon free
propagation, and it is also independent of the coherence characteristics of the field.
In addition, we have in this case

P̃ = Pst = Asp

A0
, (2.100)

and we see that the weighted degree of polarization (see Chap. 1) is independent of
z as well. In particular, in Fig. 2.11 one has P̃ = Pst = 0.2.

2.7 Beam Quality Improvement: General Considerations

Attention will now be devoted to the improvement of the beam quality parameter.
Because of the invariance property of parameter Q in the scalar case, no rotationally-
symmetric ABCD system could be employed to improve the quality of a partially
coherent scalar beam. However, as it will next be apparent, such possibility arises
when the vectorial behavior is taken into account. In the present section we will
determine, for partially polarized beams, the optimized value of the beam quality
parameter that can be attained by using rotationally-symmetric ABCD systems.

To begin with, note first that Q is invariant under rotation around the mean
propagation direction. We can then choose, for convenience, a reference coordinate



70 2 Second-Order Overall Characterization of Non-uniformly Polarized Light Beams

system with respect to which

Is = Ip (2.101)

The angle θ between the new coordinate system and the former one is

θ = 1

2

[
arctg

(
Is − Ip

2 Re
{
Isp
}
)]

, (2.102)

where Isp was defined in Eq. (2.88). In terms of this new coordinate system, the
beam quality Q reads

Q = 1

4

(
Qs + Qp + Qsp

)
. (2.103)

Without loss of generality, let us assume, for simplicity, that the s-component
reaches its waist at the plane where the irradiance moments are determined or
measured. Accordingly, we can write at such plane.

〈r · η〉s = 0, (2.104)

and Q becomes

Q=
1

4

(
Qs + Qp +

〈
r2
〉
s

〈
η2
〉
p
+
〈
r2
〉
p

〈
η2
〉
s

)
. (2.105)

Let us now introduce the following functions (Martínez-Herrero et al., 2005):

F1 = Qs +
〈
r2
〉
s

〈
η2
〉
p

, (2.106)

F2 = Qp +
〈
r2
〉
p

〈
η2
〉
s

, (2.107)

Since Qs, Qp, <r2>i and <η2>i,i = s, p, are positive quantities, we get

F1 + F2 ≥ 2
√

F1F2, (2.108)

so that

Q ≥ 1

2

√
F1F2, (2.109)

In addition, functions F1 and F2 can be written in the form

Fi = Gi + Ji, i = 1,2, (2.110)
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with

G1 = Qs, (2.111a)

J1 =
〈
r2
〉
s

〈
η2
〉
p

, (2.111b)

G2 = Qp, (2.111c)

J2 =
〈
r2
〉
p

〈
η2
〉
s

. (2.111d)

Accordingly, we have

Fi = Gi + Ji ≥ 2
√

GiJi , i = 1,2, (2.112)

and therefore

Q2 ≥ 1

4
F1F2 ≥ √

G1J1G2J2. (2.113)

Finally, since

G1J1G2J2 = QsQp

〈
r2
〉
s

〈
η2
〉
s

〈
r2
〉
p

〈
η2
〉
p

= Q2
s Qp

〈
r2
〉
p

〈
η2
〉
p

≥ Q2
s Qp

(〈
r2
〉
p

〈
η2
〉
p
− 〈r · η〉2

p

)
= Q2

s Q2
p,

(2.114)

it follows

Q2 ≥ QsQp. (2.115)

This implies that the lower bound for the Q parameter of the partially polarized
beam is the geometric mean of Qs and Qp. The equality is only reached when the
second-order moments associated to each transverse field component are identical
(recall we have chosen the coordinate system to make Is equal to Ip). This, in turns,
would imply that Qs = Qp.

We will next determine the lowest value of Q (best quality) that can be obtained
by handling separate rotationally-symmetric first-order systems acting over each s-
and p-component, along with the conditions to be fulfilled in order to optimize the
overall beam quality (Martínez-Herrero et al., 2005).

The analysis is carried out by minimizing the function (see Eq. (2.115))

S (χ ,β) = 4
[
Q −√

QsQp

]
=
(√

Qs −√
Qp

)2 + βa + χb − 2
√

QsQp , (2.116)
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where

a ≡
〈
r2
〉
s

, (2.117a)

b ≡
〈
η2
〉
s

, (2.117b)

χ ≡
〈
r2
〉
p

, (2.117c)

β ≡
〈
η2
〉
p

. (2.117d)

Note that

ab = Qs ≥ 1/k2, (2.118)

and

χβ − γ 2 = Qp ≥ 1/k2, (2.119)

where γ = 〈r · η〉p. In the calculations, we take a, b, Qs and Qp as known (measur-
able) parameters, and χ , β and γ as variables to be determined. Since they are linked
through Eq. (2.119), the optimization procedure reduces to finding the minima of the
following function

T (χ ,γ ) =
(√

Qs −√
Qp

)2 + a

χ

(
Qp + γ 2

)
+ bχ − 2

√
QsQp (2.120)

Thus, by solving the equations

∂T

∂χ
= 0, (2.121a)

∂T

∂γ
= 0, (2.121b)

we get that the critical points are given by

χc = a
√

Qp/Qs, (2.122)

γc = 0, (2.123)

where the values χc, γc can be shown to represent a minimum of the function
T (χ ,γ ). Equations (2.122) and (2.123) give the conditions to optimize the beam
quality of the field. To get more insight into their physical meaning, let us write
them in the more appropriate form

〈
r2
〉
p

=
〈
r2
〉
s

√
Qp/Qs, (2.124)

〈
η2
〉
p

=
〈
η2
〉
s

√
Qp/Qs, (2.125)
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along with

〈r · η〉p = 0. (2.126)

Note that these three equations should be fulfilled at the plane where
〈r · η〉svanishes. They provide a precise relationship between the main second-order
spatial parameters of the transverse field components. In addition, after substitution
of Eqs. (2.124), (2.125), and (2.126) into Eq. (2.106), we find the optimized value
of Q we are looking for:

(Q)optim = 1

4

(√
Qs +√

Qp

)2
. (2.127)

Moreover, it can be shown at once that (Martínez-Herrero et al., 2005):

min
{
Qs,Qp

} ≤ Qoptim ≤ max
{
Qs,Qp

}
, (2.128)

i.e., Qoptim is always an intermediate value between Qs and Qp. Accordingly, when
Qs = Qp, Q cannot be further improved: We have in such case (cf. Eqs. (2.124),
(2.125), and (2.126))

〈
r2
〉
p

=
〈
r2
〉
s

, (2.129a)
〈
η2
〉
p

=
〈
η2
〉
s

, (2.129b)
〈
r · η2

〉
p

=
〈
r · η2

〉
s
= 0, (2.129c)

along with Is = Ip (see Eq. (2.101)).
In summary, the beam quality Q of the global field can be improved by means of

rotationally-symmetric ABCD systems just to reach the value given by Eq. (2.127).
These conditions suggest a general procedure to optimize Q: the first two equali-

ties (Eqs. (2.124) and (2.125)) show that the beam waists and divergences associated
to the transverse field components should be exactly compensated, and Eq. (2.126)
indicates that the waist planes of both components should match.

Taking this into account, a possible experimental scheme would involve a Mach-
Zehnder-type (MZT) device, whose configuration resembles that of a classical
Mach-Zehnder interferometer but now with a polarizer in each arm (Movilla et al.,
2001). Thus, the field components can be controlled in a separate way in the
optimization process.

For convenience, the transmission axes of the polarizers should match the ref-
erence coordinate system with respect to which Is = Ip. Such a choice avoids
interference between the emerging beams, because the transmission axes are then
orthogonal.

To get the optimization conditions a two-step method can be followed: The initial
beam can be made to propagate through a first MZT device with free propagation
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paths in its arms in order to compensate for the different waist positions of the
transverse beam components. The output of this interferometer is then made to travel
through a second MZT arrangement that contains magnifiers to compensate for the
corresponding beam sizes. Since a magnifier behaves as an ABCD optical system
that increases the beam size, this also leads to a compensation for the difference in
Rayleigh lengths zR associated to each initial field components,

(zR)i =
[(〈

r2
〉
i

)
w〈

η2
〉
i

]1/2

, i = s,p, (2.130)

where the subscript w refers to the waist plane. It should be pointed out that, when
the waists of the field components are reached at the same plane, conditions (2.124)
and (2.125) are met simultaneously.

To go further into the meaning of the optimization conditions, let us finally
analyze two simple but general examples.

We first consider a beam whose moments associated to the s and p components
are different but whose qualities Qs and Qp are identical. For simplicity, it is also
assumed that 〈r · η〉s = 〈r · η〉p = 0. We then have

Qs =
〈
r2
〉
s

〈
η2
〉
s
=
〈
r2
〉
p

〈
η2
〉
p

= Qp (2.131)

where
〈
r2
〉
s �= 〈

r2
〉
p and

〈
η2
〉
s �= 〈

η2
〉
p. In this case, the global quality parameter Q

reads

Q = Qs

4

(
2 + q + 1

q

)
, (2.132)

where
q ≡

〈
r2
〉
s〈

r2
〉
p

=
〈
η2
〉
p〈

η2
〉
s

. (2.133)

After using suitable MZT arrangements, we reach the optimized value

Qoptim = Qs. (2.134)

Remember that, in the present case, Qs = Qp. The relative quality improvement,
ΔrelQ, defined in the form

�relQ = Q − Qoptim

Q
, (2.135)

would then take the value

�relQ = (1 − q)2

(1 + q)2
. (2.136)
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In particular, when the second-order moments are identical, q = 1 so that Δrel

Q = 0. In the limit cases q >> 1 or q << 1 (very different beam sizes at the waist),
we would get ΔrelQ ≈ 1, which means strong beam quality improvement.

As a second example of interest, let us now focus our attention on those beams
whose irradiance moments fulfil the relations

〈r2〉s = 〈r2〉p, (2.137a)

〈η2〉s �= 〈η2〉p, (2.137b)

〈r · η〉s = 〈r · η〉p = 0. (2.137c)

It follows at once that Qs �= Qp. Furthermore, the global quality parameter reads

Q = (1 + p)
Qs

2
, (2.138)

where

p ≡ 〈η2〉p

〈η2〉s
, (2.139)

and the optimized value of Q becomes

Qoptim = (1 + p + 2
√

p)
Qs

4
. (2.140)

In this case we have

�relQ = Q − Qoptim

Q
=
(
1 − √

p
)2

2 (1 + p)
. (2.141)

For identical far-field divergences of the transverse field components (i.e.,
p = 1), it follows ΔrelQ = 0, as it should be expected. When the divergences dras-
tically differ (p >> 1 or p << 1) then ΔrelQ ≈ 1/2 which is half the change attained in
the first example.

2.8 Beam Quality Improvement After Propagation Through
Optical Phase Devices

In this section we investigate the influence of several optical devices on the
quality parameter of light beams. More specifically, the possibility of beam qual-
ity improvement is examined when the field propagates through three kinds of
phase components: Anisotropic pure-phase plates, quartic phase plates and spiral
phase elements. It should be remarked that, due to the phase behavior of such
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devices, no power losses would appear (in the ideal case) at the output of these
components.

2.8.1 Propagation Through Anisotropic Pure-Phase Plates

Anisotropic pure-phase (APP) plates are analyzed in order to improve the quality
parameter of an important class of partially coherent, partially polarized beams. In
particular, we are interested on the determination of the phase transmittance of the
APP plate that the beam should travel along to get the best quality keeping the same
total power.

Within the framework of the paraxial approach, let us then consider a
beam whose cross-spectral density matrix Ŵ contains diagonal elements of
the form

Ŵii (r1,r2) = Ai (r1,r2) exp {i [αi (r2)− αi (r1)]} , i = s,p, (2.142)

where r1 and r2 are position vectors at a transverse plane, and Ai, αi, i = s,p, are
real functions, which should satisfy the relations

Ai (r1,r2) = Ai (r2,r1) , i = s,p, (2.143a)

Ai (r,r) ≥ 0, i = s,p, (2.143b)

For simplicity, we will again choose our reference coordinate system in such a
way that Is = Ip, where now

Ii =
∫∫

Ŵii(r,r)dr, i = s,p. (2.144)

The class of fields we are considering includes those beams whose amplitude
at any plane z can be written as an incoherent superposition of Hermite-Gauss
modes. In particular, partially polarized Gaussian Schell-model sources belong to
this family.

The APP plate can be represented, in the same reference system as before, by the
Jones matrix

T̂ (r) =
(

exp [i�s (r)] 0
0 exp

[
i�p (r)

]) . (2.145)

Accordingly, the diagonal elements of Ŵ at the output of the APP plate are

Ŵout
ss (r1,r2) = As (r1,r2) exp {i [ϕs (r2)− ϕs (r1)]} , (2.146a)

Ŵout
pp (r1,r2) = Ap (r1,r2) exp

{
i
[
ϕp (r2)− ϕp (r1)

]}
, (2.146b)



2.8 Beam Quality Improvement After Propagation Through Optical Phase Devices 77

where

ϕs (r) = αs (r)+�s (r) , (2.147a)

ϕp (r) = αp (r)+�p (r) . (2.147b)

Application of the definitions of the irradiance moments gives for the beam
quality parameter Qout at the output plane of the APP plate (Martínez-Herrero
et al., 2003a)

Qout = 〈r2〉 G + F, (2.148)

where
〈
r2
〉

is evaluated at the input plane,

G = 1

k2I

[∫∫ (
∂2As

∂x1∂x2
+ ∂2As

∂y1∂y2

)
x1=x2=x;y1=y2=y

dxdy+

+
∫∫ (

∂2Ap

∂x1∂x2
+ ∂2Ap

∂y1∂y2

)
x1=x2=x;y1=y2=y

dxdy

⎤
⎦ ,

(2.149)

is a function that depends only on the amplitude behavior of the input beam
(therefore, G does not change after the APP plate), and

F = 〈r2〉
k2I

(∫∫ ∣∣∣ �∇ϕs

∣∣∣2 Asdxdy +
∫∫ ∣∣∣ �∇ϕp

∣∣∣2 Apdxdy

)

−
[

1

kI

∫∫ (
r · �∇ϕs

)
Asdxdy + 1

kI

∫∫ (
r. �∇ϕp

)
Apdxdy

]2 (2.150)

It should be noted that the value of F involves information of both the phase of
the input beam and the phase delay between the s and p components introduced by
the plate. Furthermore, since the APP plate does not alter the value of G, the beam
quality parameter at the output will depend only on F, which is always nonnegative
(see (Martínez-Herrero et al., 2003a)). Accordingly, the best quality (lowest value
of Qout) will be obtained when F = 0. It can be shown (Martínez-Herrero et al.,
2003a) that this occurs when

αs (r)+�s (r) = αp (r)+�p (r) = ar2, (2.151)

where a is a real-valued constant. In other words, for the beams we have considered
here, the quality parameter would become optimized provided that either

(i) The phases of the s and p-components of the output field are identical, i.e.,
a = 0, or
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(ii) The phase of the output field shows a quadratic dependence on the radial
coordinate.

It should be noted that the quadratic phase factor a r2 can be understood as the
insertion of a lens (which does not change the quality parameter). Consequently, Eq.
(2.151) indicates that, in order to optimize the quality, we have to remove the phase
terms represented by the functions αi, i = s, p. This is consistent with the results
obtained in the previous section.

The physical meaning of Eq. (2.151) can be illustrated by means of a simple
example: Let us consider a pure uniformly totally-polarized Gaussian beam propa-
gating through a ground glass. The output field would belong to the type of beams
studied here. The quality parameter of the output beam would be drastically affected
by the action of the glass. To restore the original beam-quality value, it would obvi-
ously suffice to insert a plate that is phase conjugated with regard to the ground
glass. But this is just what (2.151) shows.

In general, when the phase terms are completely removed, the APP plate behaves
as a phase-conjugated filter (Pepper, 1985) matched to the phase transmittance of
the light field. Equation (2.151) then assures that the quality parameter of the output
field has the highest quality one can get by using pure-phase transmittances.

2.8.2 Propagation of Radially and Azimuthally Polarized Beams
Through Quartic Phase Plates

We now analyze the change suffered by the beam quality of a radially (or
azimuthally) polarized field, caused by quartic phase distortions, as occurs, for
example, in strongly pumped laser rods used in high-power solid-state lasers (see
Sect. 2.4).

For the sake of convenience, we will use planar polar coordinates, r and θ . The
transverse field would then read

E(r,θ ) = (
Es(r,θ ), Ep(r,θ )

)
, (2.152)

and the electric field amplitude of a coherent radially (or azimuthally) polarized
beam becomes

ER(r,θ ) = f (r) (cos θ , sin θ) , (2.153a)

Eθ (r,θ ) = f (r) (− sin θ , cos θ) , (2.153b)

where the subscripts R and θ stand for radial and azimuthal polarization,
respectively. For both types of fields, the powers associated with the transverse
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components are identical. Furthermore, the overall second-order moments are
given by

〈r2〉 = 1

P

∞∫
0

r2 |f (r)|2 r dr, (2.154a)

〈η2〉 = 1

k2P

∞∫
0

(∣∣∣∣df

dr

∣∣∣∣
2

+ 1

r2
|f (r)|2

)
r dr, (2.154b)

〈r · η〉 = 1

2i k P

∞∫
0

r

(
f ∗ df

dr
− f

df ∗

dr

)
r dr, (2.154c)

where

P =
∞∫

0

|f (r)|2 r dr (2.155)

Note that the above expressions do not depend on the coordinate θ . Let us
now compare these formulae with the corresponding equations for scalar fields
rotationally-symmetric around the z-axis. It should be remarked that, in the scalar
case, we have to apply the scalar definition of the beam quality parameter (Lavi
et al., 1988; Martínez-Herrero et al., 1992a, b; Siegman, 1990, 1993a, b; Simon
et al., 1988; Serna et al., 1991; Weber, 1992). It can be shown that the only but
important difference between both cases arises from the term |f |2/r2 in Eq. (2.154b).
More specifically,

Qvectorial = Qscalar + 〈r2〉 g, (2.156)

where

g = 1

k2P

∞∫
0

|f (r)|2
r2

r dr. (2.157)

We see that the second term of the right-hand side of Eq. (2.156) does not appear
in the scalar case. Since this term is positive, it then follows that the value of the
vectorial beam quality is always greater than the corresponding value of the scalar
parameter.

Let us now consider that the radially (or azimuthally) polarized beam propagates
through a strongly pumped laser rod. For the sake of simplicity, we assume in the
calculations that changes in the beam diameter along the rod are not significant (this
is the same assumption accepted in Sect. 2.4).
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We know that, at high pump power, combined thermal lensing and birefrin-
gence generate a spherically aberrated lens, or, equivalently, an induced phase plate,
exp[ik�(r)] with

�(r) = α
r2

2
+ β

r4

4
, (2.158)

where α and β are, respectively, the quadratic and quartic coefficients describing
the physical characteristics of the global process (Montmerle et al., 2006). Note
that the values of α and β depend on the polarization of the incident field (radial
or azimuthal): The low-order spherical aberration (SA) can be strongly reduced by
using non-homogeneous pumping distribution. However, when the low-order SA
vanishes, high-order spherical aberrations could rapidly increase. Consequently, in
terms of beam quality preservation, a compromise should be established between
low and high-order SA.

Here our interest is focused on the beam quality changes generated by the quartic
term of Eq. (2.158). It can be found that the increment �Q, induced by SA, is
given by

�Q = Qout − Qinp = 2β
(

A 〈r2〉 − 〈r4〉 〈r · η〉
)

+ β2
(
〈r2〉〈r6〉 − 〈r4〉2

)
, (2.159)

where the subscripts inp and out refer to the input and output values of Q before and
after crossing the rod, and

〈rn〉 = 1

P

∞∫
0

rn |f (r)|2 r dr, n = 2,4,6 (2.160)

A = i

2 k P

∞∫
0

r3
(

f
df ∗

dr
− f ∗ df

dr

)
r dr. (2.161)

The sign of �Q (i.e., degradation or improvement of the beam quality) would
depend on the spatial shape of the irradiance profile of the propagating beam. It
should also be noted that the second term of the right-hand side of Eq. (2.159)
is positive for every f(r), whereas the sign of the first term depends on both, the
transverse irradiance and the phase distribution of the output field.

Comparison between the beam quality change in the scalar and vectorial cases,
shows that �Q is the same for both, rotationally-symmetric scalar beams and radi-
ally (or azimuthally) polarized fields. It should, however, be remarked that the ratio
�Q/Q differs: In fact,

(
�Q

Q

)
vectorial

<

(
�Q

Q

)
scalar

. (2.162)
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The above analysis can be illustrated by means of two simple examples. Let
us first consider a radially or azimuthally polarized beam whose input amplitude
f(r) reads

f (r) = f0(r) exp (ikbr2), (2.163)

where b and f0 are real quantities. In particular, beams whose amplitude is written
in the form (Deng, 2006; Zhou, 2006)

f0n(r) = r L1
n

(
2r2

ω2
0

)
exp

(
− r2

ω2
0

)
, n = 1,2 . . . ., (2.164)

belong to this family (L1
n denoting the generalized Laguerre polynomials (Siegman,

1986)). For such fields we obtain (Martínez-Herrero et al., 2008)

〈r · η〉 = 2 b 〈r2〉, (2.165a)

A = 2 b 〈r4〉, (2.165b)

and �Q reduces to

�Q = β2
(
〈r2〉〈r6〉 − 〈r4〉2

)
. (2.166)

But �Q is positive. Consequently, for this kind of fields, the beam qual-
ity will always be degraded after passing through highly pumped laser rods.
Figure 2.12 illustrates that the value �Q strongly increases for high values of the
order n.

Let us finally write �Q in the form

�Q = 16

k2

(
kβ〈r2〉2

4

)2 [ 〈r6〉
〈r2〉3

−
( 〈r4〉

〈r2〉2

)2]
. (2.167)
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of radially (or azimuthally)
polarized beams whose
amplitude is given by Eq.
(2.164). The abscisses show
the order n of the generalized
Laguerre polynomials L1

n. See
also (Martínez-Herrero et al.,
2008)
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Since the factor (kβ〈r2〉2/4) closely resembles the quartic phase term, we see
that this factor explicitly shows the influence of the spherical aberration on the beam
quality degradation.

As a second example we now consider a radially (or azimuthally) polarized beam
whose incident amplitude f(r) reads

f (r) = [I(r)]1/2 exp [i kϕ(r)] , (2.168)

where

ϕ(r) = ar4

4
+ br2

2
, (2.169)

and I(r) denotes the irradiance. Equation (2.161) now becomes

A = 1

P

∫ ∞

0
r3 dϕ(r)

dr
I(r) r dr, (2.170)

along with

〈r · η〉 = 1

P

∫ ∞

0
r

dϕ(r)

dr
I(r) r dr. (2.171)

After simple calculations, we obtain

�Q =
(
〈r6〉〈r2〉 − 〈r4〉2

) (
2βa + β2

)
. (2.172)

Two conclusions can finally be derived from this expression:

(i) When a = 0 (as occurs in the above Laguerre-Gauss example), we have �Q >
0, for any b and I(r).

(ii) When a = − β, we then get �Q < 0, for any b and I(r). In other words, for this
kind of polarized beams, a quartic phase plate could improve the beam quality.

2.8.3 Propagation Through Spiral Phase Elements

Attention will now be focused on the so-called spiral phase elements (SPEs)
(Machavariani et al., 2007; Niv et al., 2005; Oemrawsingh et al., 2004; Oron et al.,
2000; Xie and Zhao, 2008). The increasing interest on this kind of optical devices
arises from their use in connection with certain depleted-center beams employed
in a number of applications (Kuga et al., 1997; McCelland and Scheinfein, 1991;
Molina-Terriza et al., 2007; Sato et al., 1994; Torner et al., 2005) such as, for
instance, trapping of microscopic particles, focusing of atomic beams, and digital
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spiral imaging, all of them well described in certain cases by means of the spiral
spectrum of the light field.

We will next provide an introductory analysis about the changes suffered by the
beam quality parameter of partially polarized, partially coherent fields travelling
along SPEs.

The so-called spiral spectrum of a beam has revealed to be a useful tool to handle
some type of situations. Let us introduce the spiral spectrum decomposition of the
vector E (R,θ) at a transverse plane (say, z = 0) in the form

E (R,θ) =
∑

n

En (R) exp (i n θ ), (2.173)

where R and θ denote the planar polar coordinates, and

En (R) = 1

2π

2π∫
0

E (R,θ) exp(−inθ )d θ . (2.174)

As in the previous section, for the sake of simplicity, we again choose the s- and
p-axis in such a way that Is = Ip = I.

By using Eq. (2.173), we get that the main second-order irradiance moments of
a light beam can be written in terms of its spiral spectrum as follows (Martínez-
Herrero and Manjavacas, 2009)

〈
r2
〉
= π

I

∑
n

∞∫
0

|En (R)|2R3dR, (2.175a)

〈
η2
〉
= π

k2I

∑
n

∞∫
0

∣∣E′
n (R)

∣∣2RdR + π

k2I

∑
n

n2

∞∫
0

|En (R)|2 1

R
dR, (2.175b)

〈r · η〉 = π

ikI

∑
n

∞∫
0

[
E′

ns (R)E∗
ns (R)− E′ ∗

ns (R)Ens (R)

+ E′
np (R)E∗

np (R)− E′ ∗
np (R)Enp (R)

]
RdR

(2.175c)

where the prime means derivation with respect to R. Application of Eq. (2.175b)
requires that the irradiance of the field on the propagation axis decays with Rm,
with m > 1. Otherwise, the far-field moment <η2 > diverges. This comes from
the singularity in the center, R = 0. It is also clear from these equations that the
second-order moments can be understood as the sum of the corresponding moments
associated to the spiral spectrum components.

Let us now assume that the light beam passes through a spiral phase element.
This device will add a spiral phase ϕ = pθ to the field amplitude. Accordingly, the
above irradiance moments at the input and output planes of the SPE are linked by
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the following equations:

〈
r2
〉
out

=
〈
r2
〉
inp

, (2.176a)

〈r · η〉out = 〈r · η〉inp , (2.176b)

〈
η2
〉
out

=
〈
η2
〉
inp

+ Mp, (2.176c)

where

Mp = π

k2I

∑
n

(
p2 + 2np

) ∞∫
0

|En (R)|2 1

R
dR. (2.177)

As expected, the beam width and the average curvature radii remain unchanged.
However, the SPE alters the far-field divergence. Moreover, since the SPE intro-
duces a change on the spiral spectrum of the field, the polarization behavior is also
modified upon free propagation.

In addition, the output quality parameter, Qout, reads

Qout = Qinp +
〈
r2
〉
inp

Mp (2.178)

Taking this into account, we finally obtain for the ratio Qout−Qinp
Qinp

the value

�Q

Qi
≡ Qout − Qinp

Qinp
=
〈
r2
〉
inp Mp

Qinp
. (2.179)

We thus conclude that, depending on the characteristics of the spiral spectrum of
the specific light field, the SPE could improve or deteriorate the beam quality param-
eter. Here we do not proceed further into this subject, which deserves more study in
the future. Application to some examples of interest can be found, for instance, in
(Martínez-Herrero and Manjavacas, 2009).

2.9 Global Beam Shaping with Non-uniformly Polarized Beams

As is well known, in a number of applications one needs to obtain a prescribed
beam profile at a certain transverse plane. Consequently, optical devices should be
designed in order to modify at will the irradiance distributions of the laser beam.
Drilling, welding, surface treatment, laser fusion experiments, information record-
ing or optical data processing are examples in which appropriate transversal profiles
are required.
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This topic, namely, the implementation of particular distributions of irradiance
(beam shaping) has been extensively investigated in the literature, and a large num-
ber of methods have been reported. They are based on refraction, reflection of
beams over prescribed surfaces, diffraction, absorption, and transmission through
pure phase plates or liquid-crystal layers, to mention only some of them. The major-
ity of these techniques have been studied within the framework of the scalar theory
of light, without taking into account its vectorial nature. Comparatively, there are
not many papers that consider the polarization properties for beam shaping. In such
cases, the techniques were focused on modifying the irradiance distribution at each
point of the transverse section of the beam.

Here we consider a different approach, based on the global parameters introduced
in this chapter. In fact, we are interested on a global shaping, which involves the con-
trol of the overall characteristics of the light field. For illustrative purposes, in the
present section we show a simple example of application. Attention will be restricted
on two parameters, the beam quality and the so-called kurtosis (Amarande, 1996;
Martínez-Herrero et al., 1995a; Martínez-Herrero and Mejías 1997a), associated
to the sharpness of the beam profile. To modify these parameters, several optical
devices have already been proposed, such as binary phase plates (Siegman, 1993b),
quartic phase plates (Martínez-Herrero et al., 1992b, Martínez-Herrero and Mejías
1993a; Siegman, 1993a), aberrated lenses (Alda et al., 1997; Piquero et al., 1994)
and axicons (Luo and Lu, 2003). Next we briefly analyze a procedure that takes the
vectorial character of light into account.

The method is essentially based on the generation of a non-uniformly totally
polarized field by means of a Mach-Zehnder-type interferometric system.

To begin with, let us assume a beamlike field propagating along the z-axis. For
the sake of simplicity, we consider in this example the two-dimensional x-z case,
i.e., we write the field components as follows

E(x,z) = (
Es(x,z),Ep(x,z)

)
. (2.180)

The so-called kurtosis parameter, K, is then defined in terms of higher-order
irradiance moments in the form (Martínez-Herrero et al., 1995a)

K =
〈
x4
〉

〈
x2
〉2 (2.181)

with

〈
xn〉 = Is

I

〈
xn〉

s + Ip

I

〈
xn〉

p ; n = 2,4, (2.182)

where Is, Ip and I were defined earlier. This parameter provides information about
the sharpness or flatness of the beam profile. As a matter of fact, any beam can be
classified as leptokurtic (K > 3), platykurtic (K < 3) or mesokurtic (K = 3). Since
the kurtosis value of a Gaussian beam equals 3, leptokurtic and platykurtic profiles
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Fig. 2.13 Plots of three kinds
of functions with regard to
their values of the kurtosis:
(1) leptokurtic (K > 3); (2)
mesokurtic (K = 3); and (3)
platykurtic (K < 3)

imply (globally) sharper and flatter beams, respectively, than the Gaussian case (see
Fig. 2.13).

Let us now consider a Mach-Zehnder-type arrangement, in which two different
amplitude filters are placed at each arm of the interferometer (see Fig. 2.14).

The transmittances of the filters are chosen to be the functions

ti(x) = exp [−gi(x)], i = 1,2, (2.183)

where gi(x), i = 1,2, denote the real-valued functions

g1(x) = 1

2
(a x)2m , (2.184a)

and

g2(x) = 1

2
(b x)2n , (2.184b)

t2(x)

P

λ/2

M
BS

M

ES

Ep

BS

t1(x)

Fig. 2.14 Interferometric
setup for global beam
shaping. ES and EP are the
field components of the beam,
orthogonal to the propagation
direction, λ/2 is a suitably
rotated half-wave plate used
to get the p-component, t1(x)
and t2(x) are the amplitude
transmittances, M denotes the
mirrors, BS indicates the
position of the beam splitters
of the Mach-Zehnder
arrangement, and P
represents the linear polarizer
that controls the parameters Q
and K of the output beam
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Fig. 2.15 Plot of a
superGaussian transmittance
(3D case) for n = 2

a and b being positive constants related to the aperture widths, and n and m are
positive integers. As is well known, when n,m > 1 the transmittances are super-
Gaussian functions. In such case, diffraction effects are expected to be negligible
enough because these filters should be considered as soft-edge apertures (see, for
example, Fig. 2.15).

If, for simplicity, the incident beam on the MZT device is assumed to be a plane
wave, linearly polarized along the s-axis, it can be shown (Ramírez-Sánchez and
Piquero, 2006) that the beam quality, Q, and the kurtosis parameter of the beam at
the output of the interferometer (just before the polarizer P) read

Q = 1

2 k2

[
ma�

(
2 − 1

2m

)
+ n b�

(
2 − 1

2n

)] [
a−3

m �
(

3
2m

)
+ b−3

n �
(

3
2n

)]
[

a−1

m �
(

1
2m

)
+ b−1

n �
(

1
2n

)]2
,

(2.185)

K =
[

a−1

2m
�

(
1

2m

)
+ b−1

2n
�

(
1

2n

)] [
a−5

m �
(

5
2m

)
+ b−5

n �
(

5
2n

)]
[

a−3

m �
(

3
2m

)
+ b−3

n �
(

3
2n

)]2
, (2.186)

where � denotes the gamma function. From these expressions, it follows that the
minimum value of Q (optimized quality) is reached when a = b and m = n, as it
should be expected. In such a case, throughout the wavefront, the output beam is
linearly polarized with azimuth 45◦.

In order to modify, in a continuous and controlled way, the parameters Q and
K, a dichroic linear polarizer can be placed at the output plane of the MZT system.
For different angles θ between the transmission axis of the polarizer and the x-axis,
a global beam shaping can be implemented. In particular, when θ is equal to 0◦
or 90◦, Q and K do not depend on the widths a and b, as expected. In such cases,
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Fig. 2.16 Ratio K/Kg after
the polarizer (at the output of
the Mach-Zehnder
arrangement) versus the angle
θ that defines the orientation
of the transmission axis of P.
See also (Ramírez-Sánchez
and Piquero, 2006)

the analytical expressions for the beam quality and the kurtosis at the output of the
polarizer take the following simple forms:

Q = n2

k2

�(3/2n)�(2 − 1/2n)

�2(1/2n)
, (2.187)

K = �(5/2n)�(1/2n)

�2(3/2n)
. (2.188)

Figure 2.16 computes the ratio K/Kg versus the angle θ , for the values n = 0.6,
m = 10 and a = b = 1 mm–1, Kg being the kurtosis of a Gaussian beam (Kg = 3).
In this figure, the ratio ranges from 0.61 to 2.17, and the kurtosis exhibits maxima
and minima. This means that the overall beam profile changes from leptokurtic to
platykurtic and viceversa, becoming sharper or flatter depending on the orientation
of the polarizer.
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Chapter 3
Polarization and Coherence of Random
Electromagnetic Fields

3.1 Introduction

In recent years, the study of the coherence properties of partially polarized elec-
tromagnetic fields is a subject of increasing interest and active research (see, for
instance, Dennis, 2007; Ellis and Dogariu, 2004; Gori, 2008; Gori et al., 2006a, b,
2007, 2009; Korotkova and Wolf, 2005a, b; Lahiri and Wolf, 2009; Li et al., 2006;
Mujat and Dogariu, 2003; Ponomarenko and Wolf, 2003; Pu et al., 2007; Réfrégier
and Goudail, 2005; Réfrégier and Roueff, 2006, 2007a, b; Réfrégier, 2008a, b;
Réfrégier and Luis, 2008; Roychowdhury and Wolf, 2005; Santarsiero and Borghi,
2006; Santarsiero, 2007; Setälä et al., 2004, 2006a, b; Tervo, 2003; Tervo et al.,
2003, 2004; Wolf, 2003; Wolf and Roychowdhury, 2005; Wolf et al., 2006; Zhao
and Wolf, 2008). As is well known, the scalar theory was clearly established many
years ago (Beran and Parrent, 1967; Born and Wolf, 1999; Mandel and Wolf, 1995;
Perina, 1971; Wolf, 2007b), and the concept of complete coherence of light was
shown to be equivalent to a factorization condition of the cross-spectral density
function of the field. Furthermore, in the scalar approach, a degree of coherence of
unit modulus means maximum fringe visibility in Young’s interference experiments.
However, such behavior is no longer so simple in the vectorial regime. Moreover, the
properties of polarization, factorization and visibility allow defining and character-
izing different types of vectorial beams. This subject will be analyzed in a detailed
way along the present chapter.

In addition, since we are interested on intrinsic coherence features of light
fields, we will concentrate throughout the chapter on the so-called reversible optical
devices, whose action can analytically be described by means of unitary matrices.
To properly define this kind of optical element and clarify its role in the topic under
study, let us briefly discuss a simple example: We consider a field linearly polar-
ized along the x-axis at one pinhole in a standard Young interferometer, and linearly
polarized along the y-axis at the other. As is explained in the textbooks, even though
these fields have the same power and are completely correlated, no fringes are
observed at the superposition plane because the field has orthogonal polarization
states at the pinholes. However, on placing a π/2 rotator at one of the pinholes,
interference fringes with unit visibility will be seen. A similar result is obtained by
covering both pinholes with linear polarizers whose transmission axis makes 45◦
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with the x-axis. There is, however, an essential difference between both procedures.
In the first case, the original polarization state of the incident beam can be restored
by means of a –π/2 rotator, but, in the second case, some fundamental information
about the field is destroyed in an unrecoverable way. We refers to the first class of
element (rotator) as reversible optical device: it generates a reversible transforma-
tion, which can be implemented by using anisotropic non-absorbing elements. The
second type of device (polarizer) produces an irreversible transformation because
certain field components are lost.

The chapter is then arranged as follows. In the next section, several important
definitions and results are briefly reported for scalar light. In Sect. 3.3, the above def-
initions and experiments are discussed for the vectorial case. A number of recently
introduced coherence parameters are considered, and some relations between them
are analyzed. Section 3.4 is devoted to the study of the maximum fringe visibil-
ity one can attain in a Young interferometer by placing reversible optical devices
at the pinholes. Sections 3.5 and 3.6 investigate two special types of random elec-
tromagnetic beams, namely, fields with position-independent stochastic behavior
(Martínez-Herrero and Mejías, 2008a, b) and the so-called mean-square coherent
light (Réfrégier, 2008b). Finally, Sect. 3.7 summarizes, in a comparative way, the
main coherence and polarization properties of several families of vectorial fields
investigated in this chapter.

3.2 Scalar Framework

Let us consider a random wide-sense stationary scalar light field, characterized by
its cross-spectral density function, W (r1,r2), defined in the usual way

W (r1,r2) = E∗ (r1)E (r2), (3.1)

where E represents realizations of the field amplitude at points r1 and r2, and the
overbar denotes again the average over the ensemble of realizations. As in the
previous chapter, the explicit dependence on the angular frequency, ω, has been
omitted.

In order to compare the scalar case with the vectorial regime, we will next intro-
duce the key definition and the main properties of the so-called spectral degree
of coherence, and we will briefly review the concept of complete coherence for
scalar fields. The relation between coherence and visibility in a Young’s interference
arrangement is also discussed within the scalar framework.

3.2.1 Spectral Degree of Coherence

As is well known in many textbooks, the coherence features in the space-frequency
domain can be inferred from the spectral degree of coherence (SDC), given by the
expression (Born and Wolf, 1999; Mandel and Wolf, 1995; Perina, 1971; Wolf,
2007b)
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μ (r1,r2) = W (r1,r2)√
W (r1,r1)W (r2,r2)

. (3.2)

This function takes complex values and exhibits the following general properties

i) μ∗ (r1,r2) = μ (r2,r1) . (3.3a)

ii) |μ (r1,r2)| ≤ 1, (3.3b)

iii) The modulus of the SDC does not change upon propagation through a deter-
ministic position-dependent complex transmittance t(r).

The particular but important case of complete coherence is defined in the scalar
case by the equality

|μ (r1,r2)| = 1. (3.4)

In other words, in the space-frequency domain, a fully coherent scalar field at a
certain spatial domain � fulfils

|W (r1,r2)| = √
W (r1,r1)W (r2,r2) at �. (3.5)

The above expressions involve two meaningful equivalent properties for com-
plete coherence:

i) The CSD is factorizable, i.e.,

W (r1,r2) = F∗ (r1)F (r2) , (3.6)

where F (r) is a deterministic function,
ii) The amplitude E (r) of the field can be written in the form

E (r) = αg (r) at �, (3.7)

where α denotes a position-independent random variable, which takes values
over the ensemble or realizations of the field, and g (r) is a deterministic function.
We thus see that, in the fully-coherent scalar case, the stochastic behaviour does
not depend on the position at the beam cross-section.

Let us finally note that the equality (3.7) should be understood in the mean-
square sense, that is, the ensemble average of the quantity |E − αg|2 equals zero at
each point r ∈ �.
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3.2.2 Young’s Interference Experiment

Let us now consider the typical Young’s interference arrangement, sketched in
Fig. 3.1. A light field, characterized by its cross-spectral density, illuminates an
opaque screen �0 that contains two pinholes at points P1 and P2. As usual, we
also understand that the pinholes are small enough to allow the field amplitude can
be assumed to be constant throughout each pinhole. In addition, the field emerging
from P1 and P2 is modelled as spherical wavefronts.

The light field at a point P of the observation plane � is then given, to a good
approximation, by the expression

E (P) = E (P1)

|R − r1| exp (−ik |R − r1|)+ E (P2)

|R − r2| exp (−ik |R − r2|) , (3.8)

where R and ri, i = 1,2, are the position vectors of points P and P i, respectively.
Accordingly, the power spectrum at P, I(P), reads

I (P) = |E (P)|2 = I (P1)

|R − r1|2
+ I (P2)

|R − r2|2

+ 2

√
I (P1) I (P2)

|R − r1| |R − r2| |μ (r1,r2)| cos [φ (r1,r2)+ δ] ,

(3.9)

where I (Pi) = |E (Pi)|2,i = 1,2, φ (r1,r2) represents the phase of the SDC, and

δ = k (|R − r1| − |R − r2|) . (3.10)

We immediately see from Eq. (3.9) that the third term of its right-hand side
vanishes (i.e., no interference is observed at �) if |μ (r1,r2)| = 0.

When the SDC differs from zero, maximum and minimum values of I will be
reached at those points of the observation plane given by the conditions (see Fig. 3.2)

 P1

  P 

 P2

incident
field

•

Π0 Π

−R r1

−R r2

Fig. 3.1 Young’s
interference arrangement:
Notation
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P1

P2

Π0 Π

I

Imin Imax

Fig. 3.2 Illustrating the
interference pattern at the
observation plane � of a
Young interference
arrangement

Imax = Ĩ (P1)+ Ĩ (P2)+ 2
√

Ĩ (P1) Ĩ (P2) |μ (r1,r2)| , (3.11a)

Imin = Ĩ (P1)+ Ĩ (P2)− 2
√

Ĩ (P1) Ĩ (P2) |μ (r1,r2)| , (3.11b)

where

Ĩ (Pi) = I (Pi)

|R − ri|2
, i = 1,2. (3.12)

The visibility of the interference fringes, namely,

V = Imax − Imin

Imax + Imin
, (3.13)

will then read

V = 2
√

Ĩ (P1) Ĩ (P2)

Ĩ (P1)+ Ĩ (P2)
|μ (r1,r2)| . (3.14)

Therefore, V is proportional to |μ| in the Young interferometer. Moreover, max-
imum visibility will be achieved by those fields whose modulus of the SDC equals
1 (fully-coherent scalar beams). In particular V = 1 when Ĩ (P1) = Ĩ (P2). It is
also interesting to note that function |μ| (and, consequently, the ability of light to
interfere) is not altered by placing deterministic transmittances at Pi, i = 1,2. This
directly follows from property iii) of the SDC.

As a final conclusion, let us remark that, according with the results reported in
this section, maximum visibility, factorization of the cross-spectral density (see Eq.
(3.6)) and position-independent stochastic behaviour are equivalent properties for
completely coherent scalar fields.
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3.3 Vectorial Framework: Key Definitions

As we pointed out in the introduction, the study of partially polarized, partially
coherent beamlike fields reveals to be more involved than the scalar case. The
effects produced by coherence and polarization features are interconnected, and
well-known scalar definitions, properties and fundamental experiments should be
revisited in the vectorial regime. Thus, we will next consider the standard Young
interferometric arrangement, and introduce a number of parameters, recently pro-
posed in the literature (Gori et al., 2007; Martínez-Herrero and Mejías, 2007a;
Réfrégier and Goudail, 2005; Setälä et al., 2004; Tervo et al., 2003; Wolf, 2003), in
order to describe the coherence of the illuminating random electromagnetic beam.
Certain analytical relations between the above parameters will also be shown. Sup-
plementary results concerning optimization of the fringe visibility in the Young
experiment will be investigated in subsequent sections.

3.3.1 Young’s Experiment Revisited

Let us consider a random wide-sense stationary electromagnetic light beam. In the
spectral domain, the field is represented by an statistical ensemble whose realiza-
tions E (r) are described by two components, Es (r) and Ep (r), which are orthogonal
to the propagation direction z (we assume again the paraxial approach). As we
pointed out in the previous chapter, the behavior of the field at some transverse
plane can be obtained from the cross-spectral density tensors (CDTs) Ŵij,i,j = 1,2,
given by

Ŵij ≡ Ŵ
(
ri,rj

) = E† (ri)E
(
rj
)
, i,j = 1,2. (3.15)

The deterministic optical devices that could modify the polarization state of the
field will be characterized by position-dependent Jones matrices. When such optical
elements are reversible (Gori et al., 2007), the Jones matrices become unitary.

Another example of unitary matrices arises from a transformation into orthogonal
curvilinear coordinate systems (for instance, the standard s- and p-field represen-
tation into radial and azimuthal components) From now on, Û (r) will symbolize
a unitary transformation, characterizing both, a reversible optical element and a
transformation into curvilinear coordinates.

It is interesting to note that the degree of polarization of the field is invariant
under this kind of operations, on the contrary to that occurs with regard to the Stokes
parameters, which are modified by unitary transformations.

Let us now revisit the Young arrangement shown in Fig. 3.3, in which two
reversible devices have been placed in front on the pinholes at P 1 and P 2. The
action of such optical elements on the incident field, E (r), is represented by the
unitary matrices Û1 and Û2.

Accordingly, the field at a point P of the superposition region, would be
given by
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P 

incident
field 

-

Π0 Π

reversible
optical devices 

Û1

Û2

Fig. 3.3 Young’s scheme in
the vectorial case

E (P) = E (P1) Û1

|R − r1| exp (−ik |R − r1|)+ E (P2) Û2

|R − r2| exp (−ik |R − r2|) , (3.16)

where E (P) and E (Pi) are the row vectors

E (P) = (
Es (P) ,Ep (P)

)
, (3.17a)

E (Pi) = (
Es (Pi) ,Ep (Pi)

)
, i = 1,2. (3.17b)

The polarization matrix Ŵ (P,P) would provide the polarization characteristics
of the field resulting from de superposition. We get

Ŵ (P,P) = Û†
1Ŵ11Û1

|R − r1|2
+ Û†

2Ŵ22Û2

|R − r2|2
+ Û†

1Ŵ12Û2eiδ

|R − r1| |R − r2| + Û†
2Ŵ12Û1e−iδ

|R − r1| |R − r2| ,

(3.18)
where δ was defined by Eq. (3.10). Consequently, the power spectrum at
P reads

I (P) = TrŴ (P,P) = Ĩ (P1)+ Ĩ (P2)

+ 2
[
Ĩ (P1) Ĩ (P2)

]1/ 2

∣∣∣Tr
(

U†
1Ŵ12U2

)∣∣∣√
TrŴ11TrŴ22

cos (φ12 + δ) ,

(3.19a)

with

Ĩ (Pi) = TrŴii

|R − ri|2
,i = 1,2, (3.19b)

and φ12 denotes the phase of Tr
(

U†
1Ŵ12U2

)
. The visibility of the interference

fringes becomes in this case
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V = 2
√

Ĩ (P1) Ĩ (P2)

Ĩ (P1)+ Ĩ (P2)

∣∣∣Tr
(

U†
1Ŵ12U2

)∣∣∣√
TrŴ11TrŴ22

. (3.20)

From this expression we see that, in the vectorial case, the visibility is propor-

tional to
∣∣∣Tr

(
U†

1Ŵ12U2

)∣∣∣. This factor depends on the stochastic behavior of the

field through Ŵ12 as well as on the deterministic reversible optical elements repre-
sented by the unitary matrices Ui,i = 1,2. The influence of these devices is crucial
in this type of interference scheme as is shown by means of the following illustrative
example.

Let us assume that the cross-spectral density tensor associated to a field that
illuminate the plane �0 is given by the matrix

Ŵij = a

(
1 0
0 0

)
,i = 1,2, (3.21)

where a is a constant. We first consider the case Û1 = Û2 = Î (no device is placed in
front of the pinholes). For those regions of the observation plane close to the z-axis,
application of Eq. (3.20) shows that V = 1, i.e., the visibility is optimized.

Let us now consider that Û1 = Î, but

Û2 =
(

0 1
−1 0

)
. (3.22)

Equation (3.20) shows that, in this case, V = 0. In other words, a reversible
optical device (anisotropic π/2-rotation phase plate) can alter substantially the vis-
ibility of the interference fringes in an standard Young experiment. In this sense,
remember that, in the scalar case, no deterministic phase transmittance can change
the visibility of this type of fringes.

3.3.2 Degrees of Coherence of Random Electromagnetic Fields

To characterize the state of coherence of a (paraxial) random electromagnetic
field by means of scalar quantities, several parameters have been proposed in the
literature as a measure for its degree of coherence.

i) Wolf’s spectral degree of coherence, μw .
It is defined as follows (Wolf, 2003)

μw = TrŴ12√
TrŴ11TrŴ22

, (3.23)

whose modulus satisfies the relation

0 ≤ |μw| ≤ 1. (3.24)
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As is quite apparent from Eq. (3.20), |μw| is directly connected with the vis-
ibility in the standard Young interference experiment when no optical devices
are placed at the pinholes (i.e., Û1 = Û2 = Î ). In addition, note that μw only
depends on the diagonal elements of matrix Ŵ12 in a given reference frame.

ii) Electromagnetic degree of coherence, μ2
STF .

It was introduced in (Setälä et al., 2004) (see also (Tervo et al., 2003)) as
follows:

μ2
STF =

Tr
(

Ŵ12Ŵ†
12

)

TrŴ11TrŴ22
, (3.25)

which takes nonnegative values. More specifically,

0 ≤ μ2
STF ≤ 1. (3.26)

From the definition, it can be shown that deterministic unitary transformations
do not alter μ2

STF .
iii) Intrinsic degrees of coherence, μS and μI .

They can be defined as the singular values of the so-called normalized cross-
spectral density matrix, M̂12 , namely,

M̂12 = Ŵ−1/2
11 Ŵ12Ŵ−1/2

22 . (3.27)

These parameters were introduced in the space-time domain (Réfrégier and
Goudail, 2005; Réfrégier and Roueff, 2007a; Réfrégier, 2008b). Here we keep
the same notation, although, in this chapter, the space-frequency formalism is
being considered.

To go further into the analytical properties of the intrinsic degrees of coherence,
note first that Ŵii, i = 1, 2, are nonnegative definite Hermitian matrices. Therefore,
there exist unitary matrices, V̂i,i = 1,2, and nonnegative numbers, αi and β i , with
αi ≥ β i, such that the following equality applies:

Ŵii = V̂†
i D̂iV̂i,i = 1,2, (3.28)

where

D̂i =
(
αi 0
0 βi

)
,i = 1,2. (3.29)

Note that, for totally polarized fields, β i = 0. Taking Eq. (3.28) into account, we
define Ŵ−1/ 2

ii in the form

Ŵ−1/ 2
ii = V̂†

i D̂−1/ 2
i V̂i,i = 1,2, (3.30)
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where, for partially polarized fields,

D̂−1/ 2
i =

(
α−1/ 2

i 0
0 β−1/ 2

i

)
,i = 1,2. (3.31)

A relation similar to Eqs. (3.24) and (3.26) is satisfied by the intrinsic degrees of
coherence:

0 ≤ μj ≤ 1,j = S,I. (3.32)

Furthermore, it can be shown that μS = μI = 1 if and only if M̂12 is a unitary
matrix.

When we consider reversible optical elements, characterized by unitary matrices
Û (r), the matrix M̂out

12 at the output of such devices becomes

M̂out
12 = Û†

1M̂12Û2, (3.33)

where M̂12 denotes the input matrix, and the subscripts 1 and 2 refer, as usual, to
the points r1 and r2. It then follows that μS and μI are invariant under this kind of
reversible elements.

Finally, as a particular but illustrative example, let us consider those fields whose
cross-spectral density tensor reads

Ŵij = f
(
ri,rj

)
φ̂,i,j = 1,2, (3.34)

where f
(
ri,rj

)
is a nonnegative definite function, with f ∗ (r1,r2) = f (r2,r1), and φ̂

denotes a nonnegative definite Hermitian matrix with constant elements. It can be
shown that, for this class of fields,

|μW |2 = μ2
S = μ2

I = |f (r1,r2)|2
f (r1,r1) f (r2,r2)

, (3.35a)

together with

μ2
STF = |μW |2 Trφ̂2

(
Trφ̂

)2
. (3.35b)

In particular, when Det φ̂ = 0 (totally polarized beams), we have

|μW |2 = μ2
STF = μ2

S = μ2
I . (3.36)

It is interesting to remark that the complex degree of coherence, μ, of a scalar
field whose CSD takes the form

W (r1,r2) = f (r1,r2) , (3.37)
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would read

|μ (r1,r2)|2 = |f (r1,r2)|2
f (r1,r1) f (r2,r2)

, (3.38)

which is completely analogous to Eq. (3.35a), obtained for random electromag-
netic beams. In other words, the visibility attained in the standard Young experiment
would take the same functional form for the fields defined by Eq. (3.34) (vectorial
case) and (3.37) (scalar case). Consequently, in a sense we could refer to the beams
given by Eq. (3.34) as pseudo-scalar fields.

3.3.3 Relation Between Degrees of Coherence of Electromagnetic
Fields

We will next see that, under some conditions, certain relationships can de estab-
lished between the degrees of coherence introduced before. More specifically,
we are going to show the following proposition for partially coherent, partially
polarized beams (Martínez-Herrero and Mejías, 2007b):

Proposition A suitable local (i.e., position-dependent) unitary transformation can
be found to get |μW |2 = 1 at points r1 and r2 if and only if

1) the degree of polarization, P, is identical at these two points, and

2) μ2
STF = 1+P2

2 , and
3) the intrinsic degrees of coherence are equal to 1.

Proof We will first show that any field with |μW |2 = 1 at r1 and r2 satisfies
conditions 1–3.

To begin with, note that the equality |μW |2 = 1 implies that

∣∣∣Tr E†
1E2

∣∣∣2 =
(

Tr E†
1E1

) (
Tr E†

2E2

)
, (3.39)

where E1 and E2 denote the value of the field at r1 and r2, respectively. In
addition, the trace of matrix Ŵij,i,j = 1,2, can be understood as the inner

product E (ri)E† (ri), i = 1,2. Consequently, application of the Cauchy-Schwarz
inequality to (3.39) yields

E (r1) = aE (r2) , (3.40)

in the mean-square sense, where a is a deterministic constant. Taking this into
account, we get

Ŵ11 = |a|2 Ŵ22, (3.41a)
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Ŵ12 = a∗Ŵ22. (3.41b)

Accordingly, we conclude

1) P(r1) = P(r2) ,

2) μ2
STF = TrŴ2

22(
TrŴ22

)2
= 1 + P2

2
, (3.42)

3) Matrix M̂12 becomes

M̂12 = a∗

|a|Ŵ−1/ 2
22 Ŵ22Ŵ−1/ 2

22 = a∗

|a| Î, (3.43)

which implies

M̂12M̂†
12 = Î, (3.44)

and, therefore, the intrinsic degrees of coherence μS and μI equals 1. The first
part (⇒) of the proof is thus completed.

Let us now demonstrate the converse part. We first recall (see Eq. (3.28)) that the
nonnegative definiteness of matrices Ŵii, i = 1,2, implies that two unitary matrices
exist, V̂i,i = 1,2, fulfilling

Ŵii = V̂†
i D̂iV̂i, i = 1,2, (3.45)

where D̂i was defined in Eq. (3.29). Let us assume that the values of the degree of
polarization of the field at r1 and r2 are identical (condition 1 of the proposition).
From the expression of P (r1) in terms of Ŵii, i = 1,2, we obtain

α1 − β1

α1 + β1
= α2 − β2

α2 + β2
, (3.46)

so that

β1

α1
= β2

α2
≡ b, with b ≤ 1. (3.47)

We can then write

Ŵ11 = α1V̂†
1 D̂V̂1, (3.48a)

Ŵ22 = α2V̂†
2 D̂V̂2, (3.48b)

where

D̂ =
(

1 0
0 b

)
. (3.49)
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Accordingly,

Ŵ22 = α2V̂†
2 V̂1V̂†

1 D̂V̂1V̂†
1 V̂2 = N̂†Ŵ11N̂, (3.50)

where

N̂ = mV̂†
1 V̂2, (3.51)

with

m =
√
α2

α1
. (3.52)

We then have TrŴ22 = m2TrŴ11. But 1+P2

2 = TrW2
11

(TrW11)
2 . Consequently,

application of condition 2 of the proposition gives

Tr
(

Ŵ12Ŵ†
12

)
= Tr

(
m2Ŵ2

11

)
. (3.53)

On the other hand, condition 3 implies (since M̂12 is unitary)

Det
(

Ŵ12Ŵ†
12

)
=
∣∣∣DetŴ12

∣∣∣2 =
∣∣∣Det

(
Ŵ1/ 2

11 M̂12Ŵ1/ 2
22

)∣∣∣2 = DetŴ11DetŴ22,

(3.54)
and, by using Eq. (3.51), we obtain

Det
(

Ŵ12Ŵ†
12

)
= Det

(
|m|2 Ŵ2

11

)
. (3.55)

We thus conclude that the determinants and the traces of the nonnegative matrices
Ŵ12Ŵ†

12,Ŵ†
12Ŵ12 and |m|2 Ŵ2

11 are identical. As a consequence, two 2×2 unitary
matrices exist, Û and V̂ , such that

Ŵ12Ŵ†
12 = |m|2 Û†Ŵ11Û, (3.56a)

Ŵ†
12Ŵ12 = |m|2 V̂†Ŵ11V̂ , (3.56b)

and one gets

Ŵ12 = mÛ†Ŵ11V̂ . (3.57)

We now place two reversible optical devices (at points r1 and r2 ) represented by
the unitary matrices R̂1 and R̂2. Moreover, in particular, we choose

R̂†
1 = Û, (3.58a)

R̂†
2 = V̂ , (3.58b)
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Û and V̂ being defined by Eqs. (3.56). The cross-spectral density tensors Ŵout
ij , i,j =

1,2 after these local transformations become

Ŵout
11 = ÛŴ11Û†, (3.59a)

Ŵout
22 = V̂Ŵ22V̂†, (3.59b)

Ŵout
12 = ÛŴ12V̂†. (3.59c)

But Eqs. (3.57) and (3.59c) implies

Ŵout
12 = mŴ11. (3.60)

Accordingly, taking Eqs. (3.50), (3.59a) and (3.59b) into account, we finally get

|μW |2 =
∣∣∣TrŴout

12

∣∣∣2
TrŴout

11 TrŴout
22

=
|m|2

(
TrŴ11

)2

|m|2
(

TrŴ11

)2
= 1, (3.61)

and the proof of the proposition is completed, Q.E.D.
To get deeper insight into the physical meaning of the proposition, let us analyze

a simple but illustrative example. We consider a random electromagnetic field whose
CDTs at points r1 and r2 are given by the matrices

Ŵii = aiÎ, i = 1,2, (3.62a)

Ŵ12 =
√

a1a2

2

(
1 1
1 −1

)
, (3.62b)

where ai, i = 1,2, are positive numbers proportional to the power. Equation (3.62a)
shows that this field is unpolarized at r1 and r2, i.e., the degree of polarization at
both points equals zero. From the above equation we also have

|μW |2 = 0, (3.63a)

μ2
STF = 1

2
, (3.63b)

μS = μI = 1. (3.63c)

In other words, direct superposition (upon free propagation) of the fields E (r1)

and E (r2) in a Young interferometer gives zero fringe visibility.
However, since this field satisfies conditions 1–3 of the proposition, we could

attain |μW |2 = 1 by propagating the field through reversible optical devices placed
at points r1 and r2. More specifically, in Eqs. (3.58) the values of matrices Û and V̂
that represent such optical elements are
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Û = Î, (3.64a)

V̂ =
√

2

2

(
1 1
1 −1

)
. (3.64b)

This means that the transformation should be applied only on the field incident on
r2. In this example, the reversible device represented by V̂ would involve a half-wave
birefringent plate along with a π

4 − rotation of the coordinate axes.
Note that the CDTs Ŵout

ij , i,j = 1,2, at the output of such device would read

Ŵout
11 = Ŵ11, (3.65a)

Ŵout
22 = Ŵ22, (3.65b)

Ŵout
12 = √

a1a2 Î, (3.65c)

so that |μW |2 = 1. Of course, since μ2
STF, μs and μI are invariant under this kind of

transformations, their values remain 1/2 and 1, respectively.

3.4 Maximum Visibility Under Unitary Transformations

Let us again consider the standard Young’s interference experiment. It was shown
in the previous section that the fringe visibility is given in terms of |μW |2, and
its value can be controlled by using appropriate reversible optical devices at the
pinholes, placed at points r1 and r2. We will next determine the maximum visibility
we can get by using unitary transformations applied on such points. The main result
is contained in the following proposition (Martínez-Herrero and Mejías, 2007a).

Proposition Given a random electromagnetic beamlike field, characterized by its
CDTs Ŵij, i,j = 1,2, the maximum fringe visibility, |μW |2max, one can obtain in a
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Young’s scheme by applying local unitary transformations at the pinholes is given by

|μW |2max = (|σ1| + |σ2|)2
TrŴ11TrŴ22

, (3.66)

where σ 2
i , i = 1,2, denote the eigenvalues (both are nonnegative) of the matrix

product Ŵ12Ŵ†
12, and |σi|, i = 1,2, are the positive square roots of σ 2

i .

Proof Let us consider a random light field, incident on a Young interferometer,
whose CDT at the pinholes is Ŵ12. From the so-called singular-value decompo-
sition of Ŵ12 (Brosseau, 1998), one can assure that there exist two unitary matrices,
Û and V̂ , such that

Ŵ12 = Û†D̂V̂ , (3.67)

with

D̂ =
( |σ1| 0

0 |σ2|
)

, (3.68)

were |σ1|, i = 1,2, were defined above. Let us now introduce two unitary matrices
Ûi, i = 1,2, representing reversible optical devices at r1 and r2. The CDT, Ŵout

12 at
the output of such devices would read

Ŵout
ij = Û†

i ŴijÛj, i,j = 1,2, (3.69)

and therefore

|μW |2 =
∣∣∣TrŴout

12

∣∣∣2
TrŴout

11 TrŴout
22

=
∣∣∣Tr

(
Ĥ†

1D̂Ĥ2

)∣∣∣2
TrŴ11TrŴ22

, (3.70)

where

Ĥ1 = ÛÛ1, (3.71a)

Ĥ2 = V̂Û2. (3.71b)

The numerator of Eq. (3.70) can also be written as follows

Tr
(

Ĥ†
1D̂Ĥ2

)
= Tr

(
Ĥ2Ĥ†

1D̂1/2 D̂1/2
)

, (3.72)

with

D̂1/2 =
(√|σ1| 0

0
√|σ2|

)
. (3.73)



3.4 Maximum Visibility Under Unitary Transformations 109

But application of the Schwarz inequality gives

∣∣∣Tr
(

Ĥ2Ĥ†
1D̂1/2 D̂1/2

)∣∣∣2 ≤ TrD̂Tr
(

Ĥ2Ĥ†
1D̂1/2 D̂1/2 Ĥ1Ĥ†

2

)
, (3.74)

and the equality is reached when

Ĥ2Ĥ†
1D̂1/2 = ηD̂1/2 , (3.75)

which implies (
Ĥ2Ĥ†

1 − ηÎ
)

D̂1/2 = 0, (3.76)

η being a complex number. We obtain that, when expression (3.74) transforms into
an equality, |μW |2 becomes maximized, which is the result we are trying to get.
Let us then assume that Det D̂1/2 differs from zero (the case Det D̂1/2 = 0 will be
analyzed below). Equation (3.75) would give

Ĥ2Ĥ†
1 = ηÎ. (3.77)

Moreover, since Ĥi, i = 1,2, are unitary matrices, we have from the above
equation

Ĥ†
1 = ηĤ†

2 , (3.78a)

Ĥ2 = ηĤ1, (3.78b)

which implies |η|2 = 1. Taking Eqs. (3.78) into account, we finally conclude that
the maximum value of |μW |2 after local unitary transformations is given by the
expression

|μW |2max =
∣∣∣Tr

(
Ĥ†

1D̂Ĥ2

)∣∣∣2
TrŴ11TrŴ22

=
(

TrD̂
)

TrŴ11TrŴ22
= (|σ1| + |σ2|)2

TrŴ11TrŴ22
, (3.79)

in agreement with Eq. (3.66).
When Det D̂1/2 = 0, one of the diagonal elements of matrix D̂1/2 vanishes.

Accordingly, by using Eq. (3.76) and the fact that the product Ĥ2Ĥ†
1 is a unitary

matrix, we again obtain Eq. (3.66), and the proof is completed, Q.E.D.
Two direct consequences can be inferred from Eq. (3.79) (i.e., from the

proposition):

i) We have seen that to reach the maximum attainable fringe visibility in a Young
arrangement, we can choose reversible optical devices whose respective unitary
matrices are

Û1 = Û†, (3.80a)

Û2 = V̂†, (3.80b)
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where Û and V̂ were introduced in Eq. (3.67). At the output of such elements
Ŵout

12 = D̂, and we conclude that this cross-spectral density tensor becomes a
diagonal matrix.

ii) Let us now recall that, since σ 2
1 and σ 2

2 are the eigenvalues of Ŵ12Ŵ†
12 we

have

Tr
(

Ŵ12Ŵ†
12

)
= σ 2

1 + σ 2
2 , (3.81a)

Det
(

Ŵ12Ŵ†
12

)
= σ 2

1 σ
2
2 . (3.81b)

Hence the quantity μ2
STF becomes (cf. Eq. (3.25))

μ2
STF = σ 2

1 + σ 2
2

TrŴ11TrŴ22
, (3.82)

and |μW|2max finally reads

|μW|2max = μ2
STF +

√
4DetŴ12W†

12

TrŴ11TrŴ22
. (3.83)

To analytically illustrate the above results, let us briefly consider two simple
examples. In the first one, the CDTs representing the field at r1 and r2 are

Ŵ11 = Î, (3.84a)

Ŵ12 =
(

1 1
1 0

)
, (3.84b)

Ŵ22 =
(

2 1
1 1

)
. (3.84c)

In this case, one getsμ2
STF = 1

/
2, μI = μS = 1, and |μW|2 = 1

/
6 without any

optical device at the pinholes. The maximum attainable visibility (using reversible
elements) is calculated from Eq. (3.83) and gives |μW|2max = 5

/
6.

In the second example, the matrices Ŵij, i = 1,2, are

Ŵ11 = Î, (3.85a)

Ŵ12 =
(

1√
2

1

1 1√
2

)
, (3.85b)

Ŵ22 =
( 3

2

√
2√

2 3
2

)
. (3.85c)
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We then obtain μ2
STF = 1

/
2, μI = μS = 1, and |μW |2 = 1

/
3, but now

|μW |2max = 2
/

3. We also see that the above fields show identical values for
μ2

STF ,μS, and μI , but their attainable maximum visibility clearly differs.
It should be noticed that, although a light field at the output of a unitary-

matrix optical device is modified, in general, with regard to its input value, the
quantity |μW |2max can, however, be understood as the intimate capability of such
field to improve their fringe visibility in a suitably designed Young interference
scheme.

This intrinsic characteristic is analytically provided by the scalar function g12,
defined for general partially coherent, partially polarized beamlike fields at two
points, r1 and r2, in the form (Gori et al., 2007; Martínez-Herrero and Mejías, 2007a,
2008a, b)

g12 ≡ g (r1,r2) =
Tr
(

Ŵ12Ŵ21

)
+ 2

∣∣∣DetŴ12

∣∣∣
TrŴ11TrŴ22

. (3.86)

Its clear from its definition that function g12 equals |μW |2max in a Young interfer-
ometric arrangement. However, we have used a different notation to remark that g12
is a function associated with the field itself, which allow to describing its behaviour
and characteristics.

This function will again be considered in subsequent sections. Here we
restrict ourselves to give a number of significant properties (Martínez-Herrero and
Mejías, 2007a):

i) g12 remains invariant under local unitary transformations. This follows at once
from its definition.

ii) g12 = g21,

iii) 0 ≤ g12 ≤ 1 (cf. Eq. (3.24)) , (3.87)

iv) g12 = μ2
STF + 1

2
μSμI

√(
1 − P2

1

) (
1 − P2

2

)
, (3.88)

where Pi,i = 1,2 , denotes the respective degrees of polarization at r1 and r2.
To show this property, let us recall that matrix Ŵ12 can be expressed in terms
of M̂12 (see Eq. (3.27) as follows

Ŵ12 = Ŵ 1/2
11 M̂12Ŵ 1/2

22 , (3.89)

so that
∣∣∣DetŴ12

∣∣∣ = DetŴ 1/2
11 DetŴ 1/2

22

∣∣∣DetM̂12

∣∣∣ . (3.90)
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But the singular values of M̂12 are μS and μI , which satisfy

∣∣∣DetM̂12

∣∣∣ = μI μS. (3.91)

From the above equations and the definition of the degree of polarization we get

∣∣∣DetŴ12

∣∣∣ = μI μS

√
DetŴ11DetŴ22

= 1

4
μI μSTrW11TrW22

√(
1 − P2

1

) (
1 − P2

2

)
.

(3.92)

We then have
√

4DetŴ12Ŵ†
12

TrŴ11TrŴ22
= 1

2
μI μS

√(
1 − P2

1

) (
1 − P2

2

)
, (3.93)

and Eq. (3.88) is finally obtained after the application of Eq. (3.83).
v) μ2

STF = 1 , at a region �, implies g12 = 1 for each pair of points of such
region. Note, however, that the converse is not true.

To prove this, let us recall that the conditionμ2
STF = 1 implies that a deterministic

row vector exists, F (r), such that (Setälä et al., 2004)

Ŵ12 = F†
1F2, (3.94)

where Fi ≡ F (ri) , i = 1,2. As a consequence, we get P1 = P2 = 1; μS = μI = 1,
and (see Eq. (3.88)) g12 = 1.

Let us finally remark that Eq. (3.88) can also be considered as a simple analytical
and physical link between all the four quantities |μW |2max, μ2

STF , μI and μS. In this
sense, note that the role of the degree of polarization reveals to be essential. This
point will be further discussed in subsequent sections.

3.5 Position-Independent Stochastic Behavior of Random
Electromagnetic Fields

In Sect. 3.2 it was mentioned that, for scalar fields, complete coherence at a certain
region � means that

E (r) = αg (r) , r ∈ � (3.95)

where E(r) represents the stochastic process associated to the field, α is a position-
independent random variable, and g(r) is a deterministic function. It was concluded
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that, in the scalar case, complete coherence is equivalent to a position-independent
stochastic behavior throughout�. We will next investigate the generalization of this
property to vectorial fields and discuss the consequences involved.

Let us then introduce a particular kind of fields whose associated electric-field
vector is written in the form (Martínez-Herrero and Mejías, 2008a, b)

E (r) = E0f (r) Û (r) , (3.96)

where the equality should be understood in the mean-square sense. In this equation,
E0 = (α, β) is a row vector whose components take random values over the stochas-
tic ensemble, f(r) is a deterministic function, and Û(r) is a 2×2 deterministic unitary
matrix. It should be noted that the randomness of the field E is only contained in
E0, which does not depend on the location.

For convenience, we now write Â = f Û, so that

Â(r) Â†(r) = Â†(r) Â(r) = |f (r)|2 Î. (3.97)

It then follows that the CDT for this class of fields can be written in the form

Ŵ (r1,r2) = Â† (r1) φ̂ Â (r2) , (3.98)

where

φ̂ = E†
0 E0 =

(
|α|2 α∗β
αβ∗ |β|2

)
. (3.99)

Equation (3.98) provides the coherence and polarization structure of the beams
given by Eq. (3.96). A way to implement such fields would start, for example,
by considering a beam whose electric field vector takes the form E(r) = E 0 f(r),
where, as before, E 0 = (α,β) represents a stochastic vector, and f(r) denotes, for
instance, a Gaussian amplitude. The next step would be to propagate this field
through a position-dependent anisotropic nonabsorbing optical element character-
ized by a unitary matrix Û. This element should be reversible because, otherwise,
matrix Û would not be unitary. The final output beam would belong to the type of
fields defined by Eq. (3.96). Another simple example are the fields whose CDT is
factorizable, i.e., Ŵ (r1,r2) = F†(r1)F(r2), F being a row vector.

Let us now devote the remainder of the present section to report a number of
interesting properties exhibited by the beams we are considering (Martínez-Herrero
and Mejías, 2008a).

Property 1: The character of the field, expressed by Eq. (3.96), is not changed
after the application of any local unitary transformation. In the same way, the field
can be yet expressed in the form given by Eq. (3.96) after any local rotation of the
coordinate axes (as occurs in a change to curvilinear coordinates).

Property 2: It can be shown that the intrinsic degrees of coherence, μS, μI, of
this class of fields are equal to 1, but the converse is not true.
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Property3: The (local) degree of polarization, P(r), for this class of fields reads

P2 (r) = 1 − 4 Detφ̂

(Trφ̂)2
, (3.100)

where matrix φ̂ was defined above. Since the elements of φ̂ are position-
independent, we conclude that, for these fields, P is constant throughout the region
in which Eq. (3.98) applies. It should be noted that the converse property is not true.

Property 4: For the kind of fields we are analyzing, it can be shown that

μ2
STF = 1+P2

2 . Recall that any field with μ2
STF = 1 fulfils Eq. (3.98). In other words,

any factorizable cross-spectral density tensor can be written in the form given by
expression (3.98), with Detφ̂ = 0.

Property 5: It is well known that, for a general field, Ŵ(r,r) can be written in
the form Ŵ(r,r) = ŴTP(r,r) + ŴNP(r,r), where ŴTP(r,r) and ŴNP(r,r) refer to a
totally polarized field and to an unpolarized field, respectively. This important prop-
erty can be generalized for the cross-spectral density matrix Ŵ(r1,r2) of the fields
considered here.

To see this, note first that, since φ̂ is a Hermitian nonnegative definite matrix, we
have (Martínez-Herrero and Mejías, 2008a).

φ̂ =
(
φ11 φ12
φ∗

12 φ22

)
= φ̂TP + φ̂NP, (3.101)

where φ̂TP =
(

a11 a12
a∗

12 a22

)
; φ̂NP = qÎ, with Detφ̂TP = 0, and

a11 = 1

2
(φ11 − φ22) + 1

2

√
(Trφ̂)2 − 4 Detφ̂, (3.102a)

a12 = φ12, (3.102b)

a22 = 1

2
(φ22 − φ11) + 1

2

√
(Trφ̂)2 − 4 Detφ̂, (3.102c)

q = 1

2
(φ22 + φ11) − 1

2

√
(Trφ̂)2 − 4 Detφ̂. (3.102d)

Taking Eqs. (3.102) into account, the CDT of the fields characterized by
Eq. (3.98) reads

Ŵ (r1,r2) = Â† (r1) φ̂TP Â (r2)+ Â† (r1) φ̂NP Â (r2) . (3.103)

The first term of the right-hand side of Eq. (3.103) represents the CDT of a totally
polarized field, whereas the second term corresponds to an unpolarized field. It is
important to remark that expansion (3.103) is no longer valid for a general field.

Property 6: Let us assume we perform the local unitary transformations Û† (r1)
and Û† (r2) at two points r1 and r2, respectively, where Û† refers here to the matrix
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that defines the field we are considering (see Eq. (3.96)). Since Û†Û = Î, the light
field, after the transformations, becomes Eout (r i) = f(r i)E 0, i = 1, 2. Accordingly,
the resulting field, EY(R), at the observation plane of a Young’s interferometer (the
pinholes placed at r1 and r2) would read

EY (R) = Eout (r1)+ Eout (r2) exp (iδ) . (3.104)

where R gives the position of the superposition point, and δ is the path difference
between the interfering waves. It is simple to see that the fringe visibility V around
R becomes

V = Imax − Imin

Imax + Imin
= 2 |f (r1)| |f (r2)|

|f (r1)|2 + |f (r2)|2 . (3.105)

From this expression, it is clear that we would get the same visibility as that
obtained for scalar coherent fields with powers |f(r 1)|2 and |f(r 2)|2. In the particular
case |f(r 1)| = |f(r 2)|, the fringe visibility equals 1.

Let us now consider the scalar function g 12, defined in the previous section for
general partially-coherent partially-polarized beams. For the special type of fields
introduced here, we will next show that the following proposition applies (Martínez-
Herrero and Mejías, 2008b):

Proposition Function g12 equals 1 for any pair of points of a certain region Ω
if and only if the field belongs to the class of fields described by Eqs. (3.96) and
(3.98) over Ω .

Proof Let us assume that, for a certain random electromagnetic field,

g12 = 1, for any pair of points r1,r2 ∈ �. (3.106)

This implies that there exist two unitary matrices, Û1 and Û2, such that

|μW |2 =
∣∣∣TrŴout

12

∣∣∣2
TrŴ

out
11 TrŴout

22

= 1 (3.107)

where

Ŵout
ij = Û†

i ŴijÛj, i,j = 1, 2. (3.108)

As we know, matrices Û1 and Û2 could be understood as representing the action
of reversible optical devices at two pinholes in a Young arrangement. In Eq. (3.108),
Ŵij would then refer to the CDT evaluated at the pinholes, and the superscript out
would indicate the CDT associated to the field after passing through the unitary-
matrix elements. It follows from Eq. (3.107) that

∣∣∣TrŴout
12

∣∣∣2 =
∣∣∣TrEout†

1 Eout
2

∣∣∣2 = ∣∣Eout
1

∣∣2 ∣∣Eout
2

∣∣2, for any r1, r2 ∈ � (3.109)
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where

Eout
i = EiÛi, i = 1,2, (3.110)

and E i, i = 1, 2, are row vectors at the pinholes (prior to the passage through the
optical devices). But Eq. (3.109) implies that Eout

1 and Eout
2 are proportional (in the

mean square sense). Accordingly, we have

Eout(r1) = ρ(r1,r2)Eout(r2),r1,r2 ∈ �, (3.111)

where ρ is a scalar function. Applying this equation to three points in the region �,
we get

ρ12 ≡ ρ(r1,r2) = ρ(r1,r3)ρ(r3,r2) ≡ ρ13ρ32, (3.112)

and setting r 1 = r 2 one obtains

ρ12 = 1 = ρ13ρ31, (3.113)

which implies

ρab = ρ−1
ba . (3.114)

Equation (3.112) can then be written in the form

ρ12 = ρ13

ρ23
. (3.115)

But the left-hand side of this equation does not depend on r3, and therefore the
r3-dependence of the ratio ρ13

ρ23
must cancel. We then write

ρ12 = g(r1)

f (r2)
, (3.116)

where f and g denote deterministic functions. After substituting Eq. (3.116) into Eq.
(3.115), we get

ρ12 = g(r1)

f (r2)
= ρ−1

21 = f (r1)

g(r2)
, r1,r2 ∈ �, (3.117)

which implies f = g in �. Therefore,

Eout(r1) = f (r1)

f (r2)
Eout(r2) ⇒ Eout(r1)

f (r1)
= Eout(r2)

f (r2)
= . . . = E0, r1,r2 ∈ �

(3.118)
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where E0 is a random vector, and we finally obtain

Eout(r) = f (r)E0 (in the mean square sense), for any r ∈ �, (3.119)

Consequently, the CDT associated to Eout reads

Ŵout(r1,r2) = f ∗(r1)f (r2)φ̂, (3.120)

so that matrix Ŵ becomes

Ŵ (r1,r2) = f ∗(r1)f (r2)Û1 φ̂ Û†
2. (3.121)

Comparing this expression with Eq. (3.98), we conclude that the stochastic pro-
cess E(r) associated to a beam satisfying Eq. (3.106) corresponds to the kind of
fields defined by Eq. (3.96). The first part of the proof is thus demonstrated.

The converse property is simple to show: Since the CDT of any field given by
Eq. (3.96) takes the form (3.98), substitution of this expression into Eq. (3.86) gives
g12 = 1, and the proof is completed, Q.E.D.

From this general property, we also conclude that the possibility of optimizing
the fringe visibility in a Young’s interference arrangement is intimately connected
with a position-independent stochastic behavior of the field. Thus, the beams defined
by Eqs. (3.96) and (3.98) are the only fields that attain optimized visibility by using
reversible unitary optical devices at the pinholes. Accordingly, the value g12 = 1
fully characterizes this kind of fields.

Corollary For the class of fields defined by Eq. (3.96), the local degree of polariza-
tion, PS, is uniform (i.e., position-independent) across the superposition region �S

in a Young interference arrangement (Martínez-Herrero and Mejías, 2008b). This
applies once the fringe visibility has been optimized.

To show this property note first that, in terms of the CDT, the value of PS at the
superposition region reads

P2
s (R) = 1 − 4DetŴs(R,R)[

TrŴs(R,R)
]2

(3.122)

where R is the position vector of a point inside �S, and Ŵs(R,R) denotes the CDT
at R. We then have

Ŵs(R,R) = Ŵout(r1,r1)+Ŵout(r2,r2)+Ŵout(r1,r2) exp (iδ)+Ŵout(r2,r1) exp (− iδ),
(3.123)

where, as usual, r1 and r2 are the position vectors of the pinholes, Ŵout is given
by Eq. (3.120) (after passing through appropriate reversible devices) and δ =
k( |R − r2| − |R − r1| ) is the path difference in free space. For the sake of simplic-
ity, in Eq. (3.123) we have omitted the factors 1/ |R − r1| ≈ 1/ |R − r2| ≈ 1/D,
where D is the distance between the plane of the pinholes and the observation plane.
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Taking Eq. (3.120) into account, ŴS(R,R) reads

ŴS(R,R) = |f (r1) + f (r2) exp (iδ)|2 φ̂, (3.124)

and, finally,

P2
s (R) = 1 − 4Detφ̂

(Trφ̂)2
, (3.125)

which is independent of R, and the corollary is demonstrated, Q.E.D.

As a complementary conclusion, note that the value of P2
S given by Eq. (3.125)

is just the same to that of the degree of polarization of the incident field at the pin-
holes (see property 3). It should be mentioned in this connection that, in general, the
polarization of the field changes upon propagation (James, 1994). The invariance of
the polarization when light propagates is a topic that is currently being investigated
(Du and Zhao, 2008; Gori, 2008; Gori et al., 2009; Martínez-Herrero and Mejías,
2007c; Santarsiero, 2007; Wolf, 2007a; Zhao and Wolf, 2008) and deserves further
study in the future.

3.6 Mean-Square Coherent Light: Maximum Young’s Fringe
Visibility Through Reversible Devices

It was recently introduced in the literature (Réfrégier, 2008b) the so-called mean-
square coherent (MSC) field, defined as light that is able to interfere with Young’s
fringes of unit visibility, when its electromagnetic field propagates through appro-
priate nonsingular deterministic Jones matrices. In other words, the original state of
these fields could be suitably modified at the pinholes by means of certain optical
devices in order to maximize the visibility.

In this section, we are interested on this kind of light passing through reversible
optical elements (implemented by means of anisotropic nonabsorbing devices),
which are represented by unitary matrices. More specifically, we are interested on
the following problem: Given the values P1 and P2, arbitrary but fixed, of the degree
of polarization of the field at the pinholes in a Young interferometer, we will try
to find the maximum attainable visibility under unitary transformations when the
illuminating beam is mean-square coherent light.

Let us then consider a MSC field in a spatial domain �, impinging on a Young
interference arrangement where the two pinholes are placed at points r1 and r2 inside
�. Since light is mean-square coherent, it is known that the intrinsic degrees of
coherence ( μS,μI ) of the field E(r1) and E(r2) at the pinholes are equal to one.
Taking this into account, it follows at once that, for MSC fields, the parameter g12
(see Eq. (3.86) becomes

g12 = μ2
STF + 1

2

√
(1 − P2

1)(1 − P2
2), (3.126)
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where P1 and P2 denote the values of the degree of polarization at the pinholes.
As we showed in the previous section, the maximum value g12 = 1 is reached by
the set of electromagnetic fields whose random character is position-independent.
Note, in this sense, that this type of fields for which g12 = 1 constitutes a subclass
of mean-square coherent light.

Taking in mind the meaning of g12, one sees that obtaining maximum visibility at
the superposition plane (under unitary transformations at the pinholes) is equivalent
to determine the highest value of g12 for MSC fields with degrees of polarization
P(r1) = P1 and P(r2) = P2. But (see Eq. (3.126)) this problem reduces to max-
imize μ2

STF for MSC light with fixed degrees of polarization at two points. After
some calculations (see below), it can finally be shown that (Martínez-Herrero and
Mejías, 2009)

[
g(r1,r2)

]
max = 1

2

[
1 + P(r1)P(r2) +

√
(1 − P2(r1))(1 − P2(r2))

]
(3.127)

In particular,
[
g(r1,r2)

]
max equals one (optimization) when P(r1) = P(r2), as

expected. This happens, as we pointed out before, for the electromagnetic fields with
position-independent stochastic behavior (Martínez-Herrero and Mejías, 2008a, b).

Proof of Eq. (3.127) For a general MSC field in a domain �, it has recently been
shown (Réfrégier, 2008b) that its CDT can be written in the form

Ŵ(r1,r2) = λ1Ψ
†
1(r1)Ψ 1(r2) + λ2Ψ

†
2(r1)Ψ 2(r2), (3.128)

with λ1,λ2 > 0 and where Ψ 1(r) and Ψ 2(r) are nonproportional, nonzero, deter-
ministic row vectors. Moreover, it is not difficult to show that this CDT can also be
expressed in the alternative factorizable form

Ŵ(r1,r2) = Ĥ†(r1)Ĥ(r2), (3.129)

where Ĥ is a 2×2 matrix, namely,

Ĥ(r) =
(√

λ1�11(r)
√
λ1�12(r)√

λ2�21(r)
√
λ2�22(r)

)
, (3.130)

with Det Ĥ �= 0, and Ψ i = (�i1,�i2), i = 1,2. Taking into account the singular value
decomposition of matrix Ĥ we can write

Ĥ(r) = V̂†(r)D̂(r)Û(r). (3.131)
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where Û and V̂ are unitary matrices, and

D̂(r) =
(
α(r) 0

0 β(r)

)
, (3.132)

α(r) > β(r) taking nonnegative values. Furthermore, in terms of the diagonal ele-
ments, the degree of polarization of the MSC field at each point r is given by

P(r) = α2(r) − β2(r)

α2(r) + β2(r)
. (3.133)

By using Eq. (3.131), the CDT becomes

Ŵ(r1,r2) = Û†(r1)D̂(r1)V̂(r1)V̂†(r2)D̂†(r2)Û(r2). (3.134)

Then

Tr
[
Ŵ(r1,r2)Ŵ†(r1,r2)

]
= Tr

[
D̂2(r1)Ŝ(r1,r2)D̂2(r2)Ŝ†(r1,r2)

]
, (3.135)

where

Ŝ(r1,r2) = V̂(r1)V̂†(r2), (3.136)

which implies that Ŝ is unitary. Taking this into account, after some algebra we
obtain

Tr
[
Ŵ(r1,r2)Ŵ†(r1,r2)

]
=

= cos2θ
[
α2(r1)α2(r2) + β2(r1)β2(r2)

]
+ sin2θ

[
α2(r1)β2(r2) + β2(r1)α2(r2)

]
,

(3.137)
with θ (r1,r2) defined through the relations

|S11| = cosθ (r1,r2) = |S22| , (3.138a)

|S12| = sinθ (r1,r2) = |S21| , (3.138b)

where Sij , i,j = 1,2, denotes the elements of matrix Ŝ(r1,r2). Application of Eq.
(3.133) allows to write

1 + P(r1)P(r2) = 2α2(r1)α2(r2) + 2β2(r1)β2(r2)

TrŴ(r1,r1)TrŴ(r2,r2)
, (3.139)
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and

1 − P(r1)P(r2) = 2α2(r1)β2(r2) + 2β2(r1)α2(r2)

TrŴ(r1,r1)TrŴ(r2,r2)
. (3.140)

By using Eqs. (3.137), (3.139) and (3.140), we get

μ2
STF = Tr(Ŵ12Ŵ†

12)

Tr(Ŵ11)Tr(Ŵ22)
= 1

2

[
1 + P(r1)P(r2)cos2θ (r1,r2)

]
, (3.141)

so that

g(r1,r2) = 1

2

[
1 + P(r1)P(r2)cos2θ (r1,r2) +

√
(1 − P2(r1))(1 − P2(r2))

]
.

(3.142)

Equation (3.141) provides an analytical expression of μ2
STF for a general MSC

light. Moreover, Eq. (3.142) gives the value |μW |2max for this type of fields. Accord-
ingly, the maximal value of g 12 one can attain in a Young interferometer (when the
illuminating field is MSC light passing through reversible optical elements at the
pinholes) is given by the expression

[
g(r1,r2)

]
max = 1

2

[
1 + P(r1)P(r2) +

√
(1 − P2(r1))(1 − P2(r2))

]
, (3.143)

and Eq. (3.127) is shown, Q.E.D.
It should also be noted that, in Eq. (3.142), function cos2θ (r1,r2) does not depend

on the local degree of polarization.
To complete the description of the particular set of MSC fields we are consider-

ing, let us now derive a general expression for their CDT. Note first that
[
g12
]

max

is attained when θ = 0. Accordingly, Ŝ becomes a diagonal matrix:

Ŝ(r1,r2) = V̂(r1)V̂†(r2) =
(

exp i
[
ϕ(r2) − ϕ(r1)

]
0

0 expi
[
φ(r2) − φ(r1)

]) . (3.144)

Consequently, the unitary matrix V̂ can be expressed as follows

V̂(r) = M̂(r)Q̂, (3.145)

where M̂(r) represents a diagonal matrix whose nonzero elements are complex expo-
nentials, and Q̂ denotes a position-independent unitary matrix. Thus, the general
(factorizable) form of the CDT of the MSC fields that maximizes g12 reads (see Eq.
(3.134))

Ŵ(r1,r2) = Û†(r1)D̂0(r1)D̂†
0(r2)Û(r2), (3.146)
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where

D̂0(r) =
(
α(r)expiϕ(r) 0

0 β(r)expiφ(r)

)
. (3.147)

An interesting consequence of Eq. (3.146) refers to the field vector E(r)
associated with this kind of MSC light. We have (in the mean-square sense)

E(r) = E0D̂†
0(r)Û(r), (3.148)

where E0 = (u,v) is a 1×2 vector whose components take complex random values
fulfilling < |u|2 >=< |v|2 > and < u∗v >= 0. From Eq. (3.148), it follows that
E(r) can be written in the form

E(r) = ε1Ψ̃ 1(r) + ε2Ψ̃ 2(r), (3.149)

where εi, i = 1, 2, are also complex random variables satisfying < ε∗1ε2 >= 0, and

Ψ̃ 1(r) ∝ α(r)expiϕ(r) (U11(r),U12(r)) , (3.150a)

Ψ̃ 2(r) ∝ β(r)expiφ(r) (U21(r),U22(r)) , (3.150b)

the symbol ∝ denoting proportionality, and Uij, i,j = 1,2 being the matrix elements.
Since Û is unitary, we finally conclude that vectors Ψ̃ 1 and Ψ̃ 2 should be orthogonal.
This is a crucial difference with regard to general MSC light. In that case, the vectors
Ψ 1 and Ψ 2, introduced in Eq. (3.128), are nonproportional, non-orthogonal vector
fields.

3.7 Comparing Special Types of Random
Electromagnetic Fields

Let us finally summarize and compare the main characteristics of several families
of random electromagnetic fields studied in the present chapter. We remark certain
similarities and differences with regard to the attainable fringe visibility, the factor-
ization of the CDT, and the stochastic structure (in the mean-square sense) of the
associated vector field. Recall that all these properties are considered as equivalent
features of the field in the scalar approach, but they describe different classes of light
in the vectorial regime.

The sets of fields we are comparing exhibit the following coherence and
polarization characteristics in a region D:

{T} : Set of fields with μ2
STF = 1 (Setälä et al., 2004; Tervo et al., 2003).

The CDT of this kind of beams is factorizable in the form Ŵ(r1,r2) = F†(r1)F(r2),
where F is a deterministic row vector. These fields are totally polarized, with
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position-independent stochastic character and maximum attainable visibility in a
Young scheme.

{V}: Set of fields with g12 = |μW |2max = 1 (Gori et al., 2007; Martínez-
Herrero and Mejías, 2007a) (maximum attainable visibility under local uni-
tary transformations in a Young interferometer). The CDT of these fields is
factorizable in the sense expressed by Eq. (3.98) of Sect. 3.5, with position-
independent stochastic behaviour. The vector field reads (cf. Eq. (3.96) of
Sect. 3.5)

E(r) = E0f (r)Û(r), (3.151)

where E0 = (u,v) is a row vector whose components take complex random values,
f is a deterministic complex function, and Û denotes a unitary matrix.

{R} (MSC light): Set of partially polarized fields with μS = μI = 1 (Réfrégier,
2008b). The CDT of these fields is factorizable as a product of two matrices, as
shown in Eq. (3.129). The vector field reads (in the mean-square sense)

E(r) = ε1Ψ 1(r) + ε2Ψ 2(r), (3.152)

where ε1 and ε2 are complex random variables, with < ε∗1ε2 >= 0, and Ψ 1 and Ψ 2
denote deterministic vectors, which, in general, are not orthogonal.

{R∗}: Set of MSC fields that, for fixed values of the degree of polarization
at the pinholes, maximize the Young fringe visibility under unitary transforma-
tions (Martínez-Herrero and Mejías, 2009). The CDT is also factorizable as a
matricial product in the particular form given by Eq. (3.146). The vector field
becomes

{ }R

{ }R*

μS = μI = 1

[ ]
max

g12

{ }V

g12 = 1

{ }T

STF

μS = μI = 1

μ2
     = 1

Fig. 3.4 Illustrating the
relation {T} ⊂ {V} ⊂ {R∗} ⊂
{R}. See also
(Martínez-Herrero and
Mejías, 2009)
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E(r) = E0D̂†
0(r)Û(r) = ε1Ψ̃ 1(r) + ε2Ψ̃ 2(r), (3.153)

where D̂0 is a diagonal matrix, and Ψ̃ 1 and Ψ̃ 2 are orthogonal vectors.
Taking into account all these characteristics, a hierarchy between these sets of

electromagnetic fields can finally be established on the basis of inclusive relations,
namely,

{T} ⊂ {V} ⊂ {
R∗} ⊂ {R} (3.154)

This layer structure is illustrated in Fig. 3.4.
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Chapter 4
Non-Paraxial Electromagnetic Beams

4.1 Introduction

In the previous chapters, we have considered electromagnetic beams whose longitu-
dinal field component (along the propagation direction) is negligible. In other words,
the electric field vector was assumed to be transverse to the z-axis and, consequently,
it was represented by means of two components. This paraxial approach and the
subsequent quasi-transversality assumption have provided in the above chapters a
considerable simplification in both, the calculations and the characterization of this
kind of beams.

However, in high-resolution microscopy, particle trapping, high-density record-
ing and tomography, to mention only some recent applications, the light beam
is strongly-focused and raises waist sizes smaller than the wavelength. In such
cases, the paraxial approximation is no longer valid, and a non-paraxial treatment is
required. This is a topic of considerable current interest, which has been extensively
investigated in the last decade (see, for example, (Agrawal and Lax, 1983; Alonso,
2004; Alonso et al., 2006a, b; April, 2008; Belkebir et al., 2006; Borghi et al., 2002;
Borghi and Santarsiero, 2003, 2004; Chaumet, 2006; Chen et al., 2002; Ciattoni et
al., 2002; Deng, 2006; Dorn et al., 2003; Duan and Lü, 2005a, b; Hall, 1996; Lekner,
2003; Mejías et al., 2002; Mei and Zhao, 2008; Seshadri, 1998, 2008; Sheppard and
Saghafi, 1999; Sheppard, 2000; Tervo and Turunen, 2001; Varga and Török, 1996,
1998; Volpe and Petrov, 2004; Zhou, 2006, 2008)).

In the present chapter, attention will be focused on two main subjects, namely,
to get exact solutions of the Maxwell equations behaving as highly non-paraxial
beams, and to investigate the analytical structure, field magnitude and polarization
features of the associated field distributions.

Up to now, different vectorial formulations of non-paraxial electromagnetic
beams have been explored in the literature (for example, in terms of the Hertz
vectors (Varga and Török, 1996, 1998; Sheppard, 2000), or by using the complex-
source-point mode (Sheppard and Saghafi, 1999)). Among them, several types of
representations based on the angular plane-wave spectrum have been reported in
recent years (Chaumet, 2006; Guo et al., 2006; Martínez-Herrero et al., 2001, 2006;
Zhou, 2006). Such kind of decomposition has revealed to be particularly useful
because it allows separate the contribution of the propagating and evanescent waves.

127R. Martínez-Herrero et al., Characterization of Partially Polarized Light Fields,
Springer Series in Optical Sciences 147, DOI 10.1007/978-3-642-01327-0_4,
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In the next sections, we will show that, when the contribution of the evanescent
waves is negligible, the electric field solution can be written as the sum of two
terms: one of them is transverse to the propagation direction; another one exhibits a
non-zero longitudinal component and its associated magnetic field is also transverse.
This analytical structure differs from alternative proposals reported in the literature,
also based on the angular spectrum (see, for instance (Chaumet, 2006) and refer-
ences therein). Moreover, our formalism enables us to incorporate the presence of
evanescent waves (Arnoldus and Foley, 2002; Chaumet, 2006; Ciattoni et al., 2002;
Martínez-Herrero et al., 2008a, b; Petrov, 1999; Setala et al., 1999; Shchegrov and
Carney, 1999), which are receiving increasing attention due to the possibility of
subwavelength resolution, beyond the diffraction limit.

This chapter is arranged as follows. In the next section, the formalism and the key
definitions to be handled in the rest of the chapter are introduced. It will be obtained
a general expression with separate contributions of TE, TM and evanescent terms.
In Sect. 4.3, the particular but important case of radially or azimuthally polarized
fields at some transverse plane is analyzed in detail. The concept of closest field
is discussed in Sect. 4.4. The field components of the evanescent part of the field
are considered in Sect. 4.5 for several illustrative cases in which this kind of waves
are significant. Finally, some results concerning the polarization features of partially
coherent beams at the near- and far-field are reported in Sect. 4.6.

4.2 Formalism and Key Definitions

After defining the angular plane-wave spectrum of the electromagnetic field, we will
introduce a general solution of the Maxwell equations as a sum of propagating and
evanescent waves. The TE- and TM-decomposition of the propagating field are also
discussed, as well as the relative significance of the longitudinal field component
compared with the magnitude of the global field.

4.2.1 Angular Plane-Wave Spectrum

Let us consider monochromatic electromagnetic beams propagating into free space.
For the sake of simplicity, in this chapter we will consider propagation in vacuum
(the results, however, can be generalized to beams travelling along homogeneous
isotropic dielectric media, free of losses). The behavior of the field is described by
means of the Maxwell equations, which take a particularly simple form in the Gauss
system:

∇ × H + ikE = 0, (4.1a)

∇ × E − ikH = 0, (4.1b)
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∇ · E = 0, (4.1c)

∇ · H = 0, (4.1d)

where E and H contain the spatial structure of the electric and magnetic fields,
respectively. Recall that, in SI-units, Eqs. (4.1a) and (4.1b) would read ∇ × H +
iωε0E = 0 and ∇ × E − iωμ0H = 0, respectively, where ε0 and μ0 represent the
permittivity and the permeability of the vacuum.

As is well known, the fields E and H can be expressed in terms of their angular
plane-wave spectrum,

E(x,y,z) =
∫

Ẽ(u,v,z) exp
[
ik(xu + yv)

]
dudv, (4.2a)

H(x,y,z) =
∫

H̃(u,v,z) exp
[
ik(xu + yv)

]
dudv, (4.2b)

where Ẽ and H̃ denote the spatial Fourier transform of E and H, respectively.
Although x, y and z should be considered, in principle, as equivalent directions,
for simplicity, in the present chapter we choose z as the direction of propagation of
the beam (see Fig. 4.1). In terms of the angular plane-wave spectrum associated to
the electric and magnetic fields, the Maxwell equations become

L × H̃ + ikẼ = 0, (4.3a)

L × Ẽ − ikH̃ = 0, (4.3b)

L · Ẽ = 0, (4.3c)

L · H̃ = 0, (4.3d)

where

L ≡ (iku, ikv, ∂/∂z). (4.4)

z

propagation axis

transverse
plane

x

y

θ
R

Fig. 4.1 Cartesian and
cylindrical coordinate
systems: Notation
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Instead of using Cartesian coordinates, for the sake of convenience we will next
handle cylindrical coordinates R, θ and z, i.e.,

x = R cos θ , (4.5a)

y = R sin θ , (4.5b)

along with polar coordinates, ρ and φ, related to the transverse Cartesian Fourier-
transform variables u, v by the equations

u = ρ cosφ, (4.6a)

v = ρ sinφ. (4.6b)

Taking this into account, a general solution of Eqs. (4.3) can formally be written
in the form

Ẽ(ρ,φ,z) = Ẽ0(ρ,φ) exp (ikzξ ), (4.7)

with the conditions

Ẽ0xσx + Ẽ0yσy + Ẽ0zσz = 0, (4.8)

and

H̃(ρ,φ,z) = (σ × Ẽ0) exp (ikzξ ), (4.9)

where

ξ = (1 − ρ2)1/2, ρ ≤ 1, (4.10a)

ξ = i(ρ2 − 1)1/2, ρ > 1, (4.10b)

and

σ = (σx,σy,σz) = (ρ cosφ,ρ sinφ,ξ ). (4.11)

It should be remarked that condition (4.8) is a direct consequence of the Maxwell
equation ∇ · E = 0. In addition, it is clear from Eq. (4.10b) that the third compo-
nent of σ would be, in general, a complex number whose physical meaning will be
apparent later.

Based on the plane-wave spectrum given by Eq. (4.7), we obtain for the electric
field solution of the Maxwell equations the expression

E(R, θ , z) =
∞∫

0

2π∫
0

Ẽ0(ρ,φ) exp [ikρR cos (θ − φ)] exp (ikzξ )ρd ρdφ, (4.12)

where Ẽ0 should fulfil Eq. (4.8).
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4.2.2 Propagating and Evanescent Waves

To get deeper insight into this general solution, we write the field E(R, θ , z), given
by Eq. (4.12), as the sum of two terms:

E(R, θ , z) = Epr(R, θ , z) + Eev(R, θ , z), (4.13)

where

Epr(R, θ , z) =
1∫

0

2π∫
0

Ẽ0(ρ,φ) exp [ikρR cos (θ − φ)] exp (ikzξ )ρd ρdφ, (4.14a)

Eev(R, θ , z) =
∞∫

1

2π∫
0

Ẽ0(ρ,φ) exp [ikρR cos (θ − φ)] exp (ikzξ )ρd ρdφ. (4.14b)

The first term, Epr, should be understood as a superposition of plane waves with
propagation directions specified by ρ and φ. The field Epr would then represent the
contribution of the propagating waves (some authors (Sherman et al., 1976) refer
to this term as the homogeneous part of the angular spectrum). The second term of
Eq. (4.13), Eev, should be considered as a superposition of inhomogeneous waves
that decay at different rates along the longitudinal axis. In practice, the evanescent
part of the exact solution is significant enough in the highly nonparaxial case at the
neighbourhood of the initial plane (see Sect. 4.5). Otherwise, Eev is negligible. We
will next focus our attention on the propagating term of the exact solution.

4.2.3 TE- and TM-Decomposition of the Propagating Field

Let us now write the vector angular spectrum Ẽ0 of the field (recall Eq. (4.7)) in the
form (Martínez-Herrero et al., 2001)

Ẽ0(ρ,φ) = a(ρ,φ)e1(φ) + b(ρ,φ)e2(ρ,φ), (4.14c)

where e1 and e2 are unitary vectors,

e1 = ( sinφ, − cosφ,0), (4.15a)

e2 =
(√

1 − ρ2 cosφ,
√

1 − ρ2 sinφ, − ρ

)
. (4.15b)

and
a(ρ,φ) = Ẽ0 · e1, (4.16a)

b(ρ,φ) = Ẽ0 · e2, (4.16b)
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Functions a(ρ,φ) and b(ρ,φ) can be understood as the projection of Ẽ0 onto the
vectors e1 and e2, respectively. These vectors should then be considered as refer-
ence axes with respect to which the vector Ẽ0 is decomposed. In addition, for the
propagating field Epr, condition (4.8) reduces to

Ẽ0(ρ,φ) · s(ρ,φ) = 0, (4.17)

where

s(ρ,φ) =
(
ρ cosφ,ρ sinφ,

√
1 − ρ2

)
, with ρ ∈ [0,1] , (4.18)

is a unitary vector describing the propagation direction of each planewave. It can be
shown at once that s, e1 and e2 are a triad of a mutually orthogonal system of unit
vectors (see Fig. 4.2). Moreover, the choice of these three vectors characterizes the
formalism used in this chapter.

We conclude finally that the propagating electric-field solution of the Maxwell
equations can be written as follows

E(r) =
1∫

0

2π∫
0

a(ρ,φ)e1(φ) exp(iks·r)ρdρdφ+
1∫

0

2π∫
0

b(ρ,φ)e2(ρ,φ) exp(iks·r)ρd ρdφ.

(4.19)
The first term of the right-hand side of this equation, namely,

ETE(r) =
1∫

0

2π∫
0

a(ρ,φ)e1(φ) exp(iks · r)ρd ρdφ, (4.20)

represents a field transverse to the propagation axis z (in other words, the
z-component vanishes). We refer to this term as the transverse-electric field, ETE.

On the other hand, associated to the second term of Eq. (4.19)

x

y

z

s

e2

e1 

Fig. 4.2 Mutually-orthogonal
unitary vectors s, e1 and e2.
This figure illustrates that
vector e1 is contained in the
transverse plane x-y and is
orthogonal to the plane
formed by vectors e2 and s,
which, in turns, contains the
z-axis (note that these two
vectors have longitudinal
components)
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ETM(r) =
1∫

0

2π∫
0

b(ρ,φ)e2(ρ,φ)exp (iks · r)ρd ρdφ. (4.21)

We call ETM the transverse-magnetic term of the field solution (4.19). In a similar
way, the TE- and TM-terms associated to the global magnetic field H = HTE + HTM
are given by (see Eq. (4.9))

HTE(R, θ , z) =
1∫

0

2π∫
0

a(ρ,φ)e2(ρ,φ)

exp [ikRρ cos (φ − θ )] exp

[
ikz
√

1 − ρ2

]
ρd ρdφ,

(4.22)

HTM(R, θ , z) =
1∫

0

2π∫
0

b(ρ,φ)e1(φ) exp [ikRρ cos (φ − θ )] exp

[
ikz
√

1 − ρ2

]
ρd ρdφ.

(4.23)
where, for the sake of clarity, we have expanded the exponential function inside the
integrals. Note first that HTM is transverse to the z-axis. In addition, orthogonality
between e1 and e2 implies that ETE and ETM are orthogonal at the far field. It should
finally be remarked that the well-known paraxial approximation follows from the
substitutions (Fresnel approach)

exp

[
ikz
√

1 − ρ2

]
≈ exp (ikz) exp

[
−ikz

(
ρ2

2

)]
, (4.24)

e2 ≈ ( cosφ, sinφ,0), (4.25)

in the corresponding expressions.
Let us finally consider the behavior of the electric field at a point defined by the

coordinates R, θ , z (z > 0) in the far zone, i.e., far away from the initial plane z = 0.
The observation direction is given by the unit vector u = (ux, uy, uz), where

ux = R cos θ

L
, (4.26a)

uy = R sin θ

L
, (4.26b)

uz = z

L
, (4.26c)



134 4 Non-Paraxial Electromagnetic Beams

and

L2 = R2 + z2. (4.27)

The asymptotic behavior kL → ∞ of the integral that appear in Eqs. (4.20)
and (4.21), for a fixed direction u, can be obtained by using the procedure stated
in Mandel and Wolf (1995) and Wolf and Foley (1998). We finally arrive to the
following expressions for TE- and TM-fields at the far zone:

ETE(R, θ , z) ≈ −2π i

k

z

L
a

(
R

L
,θ

)
exp (ikL)

L
e1(φ), (4.28a)

ETM(R, θ , z) ≈ −2π i

k

z

L
b

(
R

L
,θ

)
exp (ikL)

L
e2

(
R

L
,φ

)
, (4.28b)

where, for simplicity, a quadratic-phase factor has been disregarded. We see that
ETE and ETM are orthogonal at the far field, as expected. In addition, these fields
exhibit non-uniform polarization distributions. The global field, E = ETE + ETM,
can then be written as follows

E(R, θ , z) ≈ −2π i

k

z

L

exp (ikL)

L

[
a

(
R

L
,θ

)
e1(φ) + b

(
R

L
,θ

)
e2

(
R

L
,φ

)]
. (4.29)

Since e1 and e2 are mutually orthogonal, the polarization features at the far field
are determined by the amplitude and the phase of functions a and b. In general,
the field would be elliptically polarized, with the characteristic parameters of the
polarization ellipse depending on the chosen observation direction.

4.2.4 Significance of the Longitudinal Field Component

It could be useful to quantify the relative significance of the TM-component of
a field with regard to the global field E. A simple parameter would be given by
the ratio

ηTM =

∞∫
0

2π∫
0

|ETM|2 RdRdθ

∞∫
0

2π∫
0

|E|2 RdRdθ

, (4.30)

where, as before, E represents the global field. It is not difficult to show that ηTM
takes the same value at any transverse plane z. In terms of the functions a and b,
ηTM reads
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ηTM =

1∫
0

2π∫
0

|b|2 ρd ρdφ

1∫
0

2π∫
0

(|a|2 + |b|2) ρd ρdφ

, (4.31)

It is clear that

0 ≤ ηTM ≤ 1, (4.32)

with the values η TM = 0 for a pure TE-field, and η TM = 1 for a pure TM-field.
This parameter is also related with the relative weight of the longitudinal component
of the field, Ez, namely,

Ez(R, θ , z) = −
1∫

0

2π∫
0

ρb(ρ,φ) exp [ikRρ cos (φ − θ )] exp

[
ikz
√

1 − ρ2

]
ρd ρdφ.

(4.33)
Analytically, the significance of Ez can be described in a similar way to that used

concerning the TM-component. Thus, a parameter ηz could be introduced in the
form

ηz =

∞∫
0

2π∫
0

|Ez|2 RdRdθ

∞∫
0

2π∫
0

|E|2 RdRdθ

, (4.34)

which, in terms of functions a and b, becomes

ηz =

1∫
0

2π∫
0

|b|2 ρ3dρdφ

1∫
0

2π∫
0

(|a|2 + |b|2) ρd ρdφ

. (4.35)

From Eq. (4.31), it follows at once

ηz =<ρ2>b ηTM , (4.36)

where

<ρ2>b=

1∫
0

2π∫
0

|b|2 ρ3dρdφ

1∫
0

2π∫
0

|b|2 ρd ρdφ

(4.37)
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characterizes the size of the region where |b(ρ,φ)|2 is important. Since we are
assuming that the evanescent waves are negligible, the value of <ρ2>b would be
less than 1. Equation (4.36) establishes a link between the relative significance of
Ez and ETM compared with the global field. In those cases in which the quantity
<ρ2>b is small, the longitudinal component will be small as well, and we are con-
cerned with the paraxial regime. On the contrary, higher values of ηz occur for pure
TM-fields (η TM = 1) and <ρ2>b approaching 1 (highly non-paraxial case).

4.3 Propagation of Non-paraxial Beams with Radial or
Azimuthal Polarization Distribution at a Transverse Plane

The interest will now be focused on a particular kind of beams, namely, those
fields whose polarization distribution at a certain transverse plane is either radial
or azimuthal. As was pointed out in the first two chapters, radially and azimuthally
polarized light beams have attained considerable interest during the last years (see,
for example, (Deng, 2006; Deng and Guo, 2007; Diehl et al., 2006; Dorn et al., 2003;
Machavariani et al., 2008; Martínez-Herrero and Mejías, 2008; Nesterov et al.,
1999; Niu et al., 2005; Yan and Yao, 2008; Yew and Sheppard, 2007; Zhang et al.,
2008) and the references also quoted in Chaps. 1 and 2). The intrinsic non-uniform
character of the polarization distribution over the beam cross-section forces to apply
a vectorial treatment. Here we will use the formalism proposed before, based on the
angular plane-wave spectrum of the light beam, and we will express the field in
cylindrical coordinates, in which the electric field vector is decomposed into radial,
azimuthal and longitudinal (along z) components. This is the most natural choice
because of the peculiar polarization structure of this class of fields.

We will investigate along the subsequent sections how they propagate into
free space. The final Sect. 4.3.6 will be devoted to the interesting case of radi-
ally polarized fields that retain this character at any transverse plane under free
propagation.

4.3.1 Radial and Azimuthal Components

It was obtained in Sect. 4.2 that, in the absence of evanescent waves, the electric-
field solution of the Maxwell equations can be written in terms of the angular
spectrum as follows

E(R, θ , z) =
1∫

0

2π∫
0

[a(ρ,φ)e1(φ) + b(ρ,φ)e2(ρ,φ)]×

exp [ikRρ cos (φ − θ )] exp

[
ikz
√

1 − ρ2

]
ρd ρdφ.

(4.38)
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Fig. 4.3 Notation used to
introduce the radial and
azimuthal field components
in terms of the Cartesian
components (cf. Eqs. (4.39)).
The z-axis is orthogonal to
the plane of the figure

For the sake of convenience, at each point of a transverse plane z = constant,
instead of using Cartesian components, Ex and Ey, (defined with respect to some
laboratory axes), we will consider the radial and azimuthal components of the field,
ER and Eθ, given by (see Fig. 4.3)

ER(R, θ , z) = cos θ Ex(R, θ , z) + sin θ Ey(R, θ , z), (4.39a)

Eθ(R, θ , z) = − sin θ Ex(R, θ , z) + cos θ Ey(R, θ , z), (4.39b)

and the longitudinal component Ez remaining unaltered. By using Eqs. (4.38)
and (4.39), general expressions for the radial and azimuthal components of any
free-propagating field can be obtained, namely (Martínez-Herrero and Mejías,
2008)

ER(R, θ , z) =
1∫

0

2π∫
0

[
−a(ρ,φ) sin (θ − φ) + b̃(ρ,φ) cos (θ − φ)

]
×

exp [ikρR cos (θ − φ)] exp

(
ikz
√

1 − ρ2

)
ρd ρdφ,

(4.40a)

and

Eθ (R, θ , z) = −
1∫

0

2π∫
0

[
a(ρ,φ) cos (θ − φ) + b̃(ρ,φ) sin (θ − φ)

]
×

exp [ikρR cos (θ − φ)] exp

(
ikz
√

1 − ρ2

)
ρd ρdφ,

(4.40b)
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where

b̃(ρ,φ) ≡ b(ρ,φ)
√

1 − ρ2. (4.41)

Taking the above equations into account, a radially (azimuthally) polarized field
at some transverse plane is then defined as that field whose Eθ (ER) component
equals zero at such plane. We will next study these two cases separately.

4.3.2 Radial Case: Free-Space Propagation

Let us analyze the propagation into free space of a field with radially polarized
structure at the transverse plane z = 0. To begin with, recall that the component Eθ

of the radially polarized field (RPF) should vanish at z = 0, so that (cf. Eq. (4.40b))

1∫
0

2π∫
0

[ a(ρ,φ) cos (θ − φ) + b̃(ρ,φ) sin (θ − φ) ]

exp [ikρR cos (θ − φ)] ρd ρdφ = 0,

(4.42)

which can also be expressed in the form

2π∫
0

dφ

1∫
0

a(ρ,φ)
∂

∂ρ
{exp [ikRρ cos (θ − φ)]} ρdρ+

1∫
0

dρ

2π∫
0

b̃(ρ,φ)
∂

∂φ
{exp [ikRρ cos (θ − φ)]} dφ = 0.

(4.43)

After elementary integration, the first term of Eq. (4.43) (we refer to it as I1)
becomes

I1 =
2π∫

0

dφ
{[
ρa exp [ikRρ cos (θ − φ)]

]}ρ=1
ρ=0

−
2π∫

0

1∫
0

[
∂ρa

∂ρ

]
exp [ikRρ cos (θ − φ)] dρdφ.

(4.44)

Since we have assumed that the contribution of the evanescent waves is negli-
gible, the function a(ρ = 1,φ) should be equal to zero, for any φ. Otherwise, the
limit ρ = 1 of the integration interval for the evanescent wave would contribute in a
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significant way to the global field. Accordingly, Eq. (4.44) reduces to

I1 = −
2π∫

0

1∫
0

[
∂ρa

∂ρ

]
exp [ikRρ cos (θ − φ)] dρdφ. (4.45)

In an analogous way, the second term, I2, of the left-hand side of Eq. (4.43) can
be written in the form

I2 = −
2π∫

0

1∫
0

[
∂ b̃

∂φ

]
exp [ikRρ cos (θ − φ)] dρdφ, (4.46)

and Eq. (4.42) reads

2π∫
0

1∫
0

[
∂ρa

∂ρ
+ ∂ b̃

∂φ

]
exp [ikRρ cos (θ − φ)] dρdφ = 0. (4.47)

This equation would then be fulfilled provided functions a(ρ,φ) and b̃(ρ,φ)
satisfies the condition

∂ρa

∂ρ
+ ∂ b̃

∂φ
= 0. (4.48)

The general solution to this equation would be given by writing functions a and
b̃ in the form

a(ρ,φ) = − 1

ρ

∂F(ρ,φ)

∂φ
, (4.49)

b̃(ρ,φ) = ∂F(ρ,φ)

∂ρ
, (4.50)

where F represents any mathematically well-behaved function in the region we
are considering. Taking Eqs. (4.38) and (4.50) into account, a general propagation
expression is obtained for a field with radially polarized structure at plane z = 0
(Martínez-Herrero and Mejías, 2008):

Erad(R, θ , z) =
1∫

0

2π∫
0

[
− 1

ρ

∂F(ρ,φ)

∂φ
e1(φ) + 1√

1 − ρ2

∂F(ρ,φ)

∂ρ
e2(ρ,θ )

]
×

exp [ikRρ cos (θ − φ)] exp

(
ikz
√

1 − ρ2

)
ρd ρdφ.

(4.51)
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To go further into the analysis of this equation, let us now consider the following
Fourier series expansion of function F(ρ,φ)

F(ρ,φ) =
∑

m

exp (imφ)fm(ρ), m = 0, ± 1, ± 2, . . . (4.52)

where

fm(ρ) = 1

2π

2π∫
0

F(ρ,φ) exp ( − imφ)dφ, (4.53)

From Eqs. (4.51), (4.52) and (4.53), it can be shown after some algebra that the
Cartesian components of the field Erad can be expressed as follows

(Erad) x (R, θ , z) =
∑

m

i exp (im θ ) [Am(R,z) cos θ + iBm(R,z) sin θ], (4.54a)

(Erad) y (R, θ , z) =
∑

m

exp (im θ ) [Bm(R,z) cos θ + iAm(R,z) sin θ ], (4.54b)

(Erad) z (R, θ , z) =
∑

m

exp (im θ )Cm(R,z), (4.54c)

where

Am(R,z) = π

( − i)m

1∫
0

exp

(
ikz
√

1 − ρ2

)
×

{−mfm(ρ)
[
Jm−1(kRρ) + Jm+1(kRρ)

]+ ρf ′
m(ρ)

[
Jm+1(kRρ) − Jm−1(kRρ)

]}
dρ,

(4.55a)

Bm(R,z) = π

( − i)m

1∫
0

exp

(
ikz
√

1 − ρ2

)
×

{
mfm(ρ)

[
Jm−1(kRρ) − Jm+1(kRρ)

]+ ρf ′
m(ρ)

[
Jm+1(kRρ) + Jm−1(kRρ)

]}
dρ,

(4.55b)

Cm(R,z) = −2π

( − i)m

1∫
0

ρ2f ′
m(ρ)√

1 − ρ2
Jm(kRρ) exp

(
ikz
√

1 − ρ2

)
dρ, (4.55c)

Jm being the Bessel function of order m, and the prime denoting derivation
with respect to ρ. Equations (4.54) can finally be rearranged in a physically more
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Fig. 4.4 Mutually
orthogonal unitary vectors
uR, uθ and uz. Note that uR
and uθ are contained in a
plane transverse to the
propagation axis z

understandable and compact form (Martínez-Herrero and Mejías, 2008)

Erad(R, θ , z) =
[∑

m

i exp (im θ )Am(R,z)

]
uR(θ ) +

[∑
m

exp (im θ )Bm(R,z)

]
uθ (θ )+

+
[∑

m

exp (im θ )Cm(R,z)

]
uz

(4.56)
where uR and uθ are unitary vectors in the radial and azimuthal directions (see
Fig. 4.4), i.e.,

uR = ( cos θ , sin θ ,0), (4.57a)

uθ = ( − sin θ , cos θ ,0), (4.57b)

uz = (0,0,1). (4.57c)

Equation (4.56) shows how propagates into free space a field whose vectorial
structure is radially polarized at some initial transverse plane z (this is consistent
with the fact of that Bm(R,z = 0) = 0, for any m). Furthermore, since the function
Bm depends, in general, on the propagation distance z, the azimuthal content (second
term of the right-hand side of Eq. (4.56)) does not vanish, and the field will not, in
general, retain its radially-polarized character upon propagation.

A number of properties of this kind of fields can be inferred immediately from
Eq. (4.56). More specifically, on the propagation axis z (R = 0), the field components
reduce to

(Erad)x(0,z) = iA1(0,z) + iA−1(0,z), (4.58a)



142 4 Non-Paraxial Electromagnetic Beams

(Erad)y(0,z) = −A1(0,z) + A−1(0,z), (4.58b)

(Erad)z(0,z) = −2π

1∫
0

f ′
m=0(ρ)√
1 − ρ2

ρ2 exp

(
ikz
√

1 − ρ2

)
dρ, (4.58c)

and the following conclusions are easily obtained:

i) The transverse field of this type of beams is zero at the origin (R = 0, z = 0).
ii) Those fields with fm=0 = 0 in the expansion (4.52) do not exhibit longitudinal

component on the z-axis.
iii) When fm=1 = fm=–1 = 0, the transverse field vanishes at any axial point.
iv) When fm=1 = 0 and fm=–1 �= 0 (or vice versa), the transverse field is circularly

polarized on the propagation axis z.

Let us finally discuss the special but important case of RPFs whose function
F(ρ,φ) does not depend on the coordinate φ. This implies a(ρ,φ) = 0 (in accor-
dance with Eq. (4.49)), and fm(ρ) = δm0f0(ρ) (δ m0 denotes here the Kronecker’s
delta). In addition, it follows from Eq. (4.55) that B0(R,z) equals zero for such fields.
Taking all this into account, one concludes that this class of fields are radially polar-
ized not only at the initial plane z = 0 but also at any other transverse plane z =
constant. In other words, these fields retain their radially-polarized character upon
free propagation. Furthermore, since a(ρ,φ) vanishes, they are pure TM fields, in
the sense described in Sect. 4.2 of this chapter. Moreover, since function b̃ does not
depend on φ, the angular plane-wave spectrum of these fields is independent of φ as
well. It should be remarked that these results are in agreement with previous works
(Pääkkönen et al., 2002; Tervo, 2003). Note finally that the longitudinal component
of this kind of beams differs from zero on the z-axis, in contrast with the fields sat-
isfying fm=0 = 0 and behaving as radially polarized only at plane z = 0, for which
Ez vanishes at the origin (R = z = 0).

4.3.3 Azimuthal Case: Free-Space Propagation

In this section we are going to analyze the free-space propagation of a field Eazim
with azimuthally-polarized structure at some initial plane z = 0. Now the radial
component ER should vanish (see Eq. (4.39a)), and we can write

1∫
0

2π∫
0

[
−a(ρ,φ) sin (θ − φ) + b̃(ρ,φ) cos (θ − φ)

]

exp [ikρR cos (θ − φ)] ρd ρdφ = 0.

(4.59)
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From this equation, by following a similar procedure to that used for RPFs
(see Eqs. (4.43), (4.44), (4.45), (4.46), (4.47) and (4.48)), we obtain after some
calculations (compare with Eq. (4.48)).

∂a

∂φ
− ∂ρb̃

∂ρ
= 0, (4.60)

whose solution can be given in the form

a(ρ,φ) = ∂G

∂ρ
, (4.61a)

b̃(ρ,φ) = 1

ρ

∂G

∂φ
, (4.61b)

where G(ρ,φ) denotes any function with the appropriate mathematical requirements.
Substitution of Eq. (4.61) into Eq. (4.38), gives the propagation law

Eazim(R, θ , z) =
1∫

0

2π∫
0

[
∂G

∂ρ
e1(φ) + 1

ρ

1√
1 − ρ2

∂G

∂φ
e2(ρ,θ )

]
×

exp [ikRρ cos (θ − φ)] exp

(
ikz
√

1 − ρ2

)
ρd ρdφ.

(4.62)

Following a parallel method to that applied in the radially polarized case, we
write G(ρ,φ) in series form

G(ρ,φ) =
∑

m

exp (imφ)gm(ρ), (4.63)

and Eq. (4.62) is transformed into the expression (Martínez-Herrero and Mejías,
2008):

Eazim(R, θ , z) =
[∑

m

exp (im θ )Um(R,z)

]
uR(θ ) +

[∑
m

i exp (im θ )Vm(R,z)

]
uθ (θ )+

+
[∑

m

exp (im θ )Wm(R,z)

]
uz,

(4.64)
where

Um(R,z) = π

( − i)m

1∫
0

exp

(
ikz
√

1 − ρ2

)
×

{
ρg′

m(ρ)
[
Jm−1(kRρ) + Jm+1(kRρ)

]+ mgm(ρ)
[
Jm−1(kRρ) − Jm+1(kRρ)

]}
dρ,

(4.65a)
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Vm(R,z) = π

( − i)m

1∫
0

exp

(
ikz
√

1 − ρ2

)
×

{
ρg′

m(ρ)
[
Jm+1(kRρ) − Jm−1(kRρ)

]− mgm(ρ)
[
Jm−1(kRρ) + Jm+1(kRρ)

]}
dρ,

(4.65b)

Wm(R,z) = −2mπ

( − i)m−1

1∫
0

ρ2gm(ρ)√
1 − ρ2

Jm(kRρ) exp

(
ikz
√

1 − ρ2

)
dρ, (4.65c)

the prime denoting again derivation with respect to ρ. Equation (4.64) provides a
general propagating law for the vector E associated to azimuthally polarized fields
(APFs). It should be remarked that, in spite of Um(R,0) = 0, the field Eazim would
not retain, in general, its azimuthally-polarized character upon propagation: Um(R,z)
does not vanish when z �= 0, and a radial field-component would also contribute.

A number of properties follow at once from Eq. (4.64). They should be under-
stood as the azimuthal analogy of the properties exhibited by RPFs. We get on the
z-axis

(Eazim)x(0,z) = U1(0,z) + U−1(0,z), (4.66a)

(Eazim)y(0,z) = iU1(0,z) − iU−1(0,z), (4.66b)

(Eazim)z(0,z) = 0. (4.66c)

The third equation explicitly shows that, for any APF, the longitudinal component
equals zero on the propagation axis. Moreover, Eqs. (4.66a) and (4.66b) imply that
any APF is zero along the z-axis if g1 = g–1 = 0. In addition, when gm=1 = 0 and
gm–1 �= 0 (or vice versa), the APF is circularly polarized on the z-axis.

To end this section, let us consider those fields that remain azimuthally polarized
at any transverse plane after propagation. It can be shown that, when G(ρ,φ) does
not depend on φ, the field Eazim becomes

Eazim(R, θ , z) = V0(R,z)uθ (θ ), (4.67)

where

V0(R,z) = 2π i

1∫
0

dG(ρ)

dρ
J1(kRρ) exp

(
ikz
√

1 − ρ2

)
ρdρ. (4.68)

It follows at once from Eq. (4.67) that this class of field remains azimuthally
polarized upon free propagation. Moreover, it is a pure TE-field (the longitudinal
component is zero everywhere), and the function a(ρ,φ), characterizing its angular
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spectrum, does nor depend on φ. This recovers earlier results reported, for example,
in Tervo (2003) (see also references therein).

It should finally be remarked that the longitudinal components of the fields
behaving as azimuthally polarized only at a plane (say, z = 0) do not vanish when
R �= 0 (see Eq. (4.64)). This characteristic reveals an important difference with
respect to the APFs given by Eq. (4.67).

4.3.4 Application to a Particular Set of Fields

We will next study a certain kind of fields whose radial and azimuthal components
are given by simple analytical functions. This makes easier the application of the
results derived before.

Let us then consider a particular example of function F introduced in Eqs. (4.49)
and (4.50) (Martínez-Herrero and Mejías, 2008):

F(ρ,φ) = δ(ρ − a) exp (ipφ), a ∈ (0,1), (4.69)

where now δ denotes the Dirac delta function, a is a dimensionless constant, and
p = 1, 2, 3,. . . These two parameters, a and p, generate the beams belonging to
this family, which provides radially polarized fields at the initial plane z = 0. After
substituting Eq. (4.69) into the general propagation law for RPFs (Eq. (4.56)), we
get the amplitude of the radial and azimuthal components at any transverse plane z

ER ∝ −
[

R̃Jp(R̃) + iz̃
dJp

dR̃

]
exp

(
ikz
√

1 − a2
)

exp (ipθ ), (4.70a)

Eθ ∝ pz̃
Jp(R̃)

R̃
exp

(
ikz
√

1 − a2
)

exp (ipθ ), (4.70b)

where the symbol ∝ means proportionality, and R̃ and z̃ are dimensionless variables,

R̃ = kaR, (4.71a)

z̃ = ka2

√
1 − a2

z. (4.71b)

Both expressions (4.70a) and (4.70b) involve the same value of the propor-
tionality constant. As is quite apparent from Eq. (4.58), the case p = 1 gives a
purely-transverse circularly polarized field on the propagation axis. On the other
hand, when p �= 1, the transverse components Ex and Ey vanish. The field is purely
longitudinal on the z-axis (it should be noted that, on such axis, to speak about radial
or azimuthal components of a field does not make sense).

Figure 4.5 illustrates the squared modulus of this class of fields at the initial plane
z = 0 for the values p = 1, 2 and 3.
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Fig. 4.5 Squared modulus of
the radial component of the
field defined by Eqs. (4.69)
and (4.70) in terms of R̃ at the
transverse plane z = 0.
Continuous line: p = 1;
dotted line: p = 2; dashed
line: p = 3. Ordinates are
given in arbitrary units. Note
that, at plane z = 0, the
azimuthal component Eθ

vanishes. After
Martínez-Herrero and Mejías
(2008), with permission

It is also clear from Eqs. (4.70) that this set of fields does not retain the radially-
polarized character under free propagation. However, the existence of zeros of
functions Jp(R̃) implies the appearance of concentric circular dark rings around the
z-axis: the azimuthal field component vanishes along these circumferences.

Figures 4.6 and 4.7 show the magnitude of the radial and azimuthal-components
at a transverse plane for two distances of propagation: z = 2 λ and z = 40 λ from
the initial plane. In both cases a = 1/2 and p = 1. It is clear from the figures that
the propagated field behaves essentially as radially polarized except within a small
region around the z-axis whose radius approaches λ, in which the magnitude of the
azimuthal component is similar to that of the radial one (Fig. 4.6) or even higher
(Fig. 4.7) for longer propagation distances. Furthermore, Fig. 4.7 also shows the
existence of circular dark rings, associated with negligible radial field component.

Fig. 4.6 Squared modulus of the radial field component, |ER|2 (dotted line), and azimuthal com-
ponent, |Eθ |2 (continuous line) in terms of R̃, at plane z = 2 λ. The curves are computed for
p = 1. It should be remarked that, on the propagation axis, the field is circularly polarized, which
implies |ER|2 = |Eθ |2 at R̃ = 0, in agreement with the behavior shown in the figure. After
Martínez-Herrero and Mejías (2008), with permission
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Fig. 4.7 The same as in Fig.
4.6, but now computed at the
transverse plane z = 40 λ.
After Martínez-Herrero and
Mejías (2008), with
permission

To compare the relative importance of the radial and azimuthal components of
the field upon propagation, we represent in Fig. 4.8 the ratio (Martínez-Herrero and
Mejías, 2008)

q = |Eθ |2
|ER|2 + |Eθ |2

, (4.72)

computed far away from the initial plane (in other words, we consider z → ∞).
Peaks indicate the presence of a pure azimuthally-polarized field at certain rings,
whereas, in the valleys (q = 0), the field is radially polarized. It should also be noted
that the size of all the above rings increases for higher values of parameter p.

Figures 4.9 and 4.10 plot the radial and azimuthal field components at the same
transverse plane to that of Figs. 4.6 and 4.7, but now for the value p = 2. The main
qualitative difference with regard to the case p = 1 appears on the propagation axis

Fig. 4.8 Ordinates plot the
ratio q in terms of R̃ in the
limit z→ ∞. The curves
correspond to the cases p = 1
(continuous line); p = 2
(dotted line); and p = 3
(dashed line). Note that, from
the definition (4.72), we
always have 0 ≤ q ≤ 1. After
Martínez-Herrero and Mejías
(2008), with permission
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Fig. 4.9 The same as in
Fig. 4.6 but now with p = 2.
On the axis ( R̃ = 0) the
transverse field components
vanish, and the field only
exhibits a longitudinal
component. After
Martínez-Herrero and Mejías
(2008), with permission

Fig. 4.10 The same as in
Fig. 4.9 but now computed at
plane z = 40 λ. Again, the
transverse components of the
field vanish on the
propagation axis. After
Martínez-Herrero and Mejías
(2008), with permission

( R̃ = 0): the transverse components vanish and the field is now purely longitudinal,
as expected from Eq. (4.70a).

4.3.5 Radially-Polarized Fields at Any Transverse Plane

Let us now consider radially-polarized fields that retain this character at any
transverse plane upon propagation. In short, we refer to them as RPM fields
(radially-polarized-maintained fields). It is interesting to mention that doughnut-like
beams with radial polarization are relevant as light sources used in superresolu-
tion processes. Possible applications include microfluidics and improved capacity
of DVD systems.

It was shown at the end of Sect. 4.3.2 that functions a(ρ,φ) and b(ρ,φ) become
for RPM fields

a(ρ,φ) = 0, (4.73)
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b(ρ,φ) = b(ρ). (4.74)

By taking this into account, we get from Eq. (4.56) the following general
propagation law for this kind of fields (Martínez-Herrero et al., 2008a)

E(R, θ , z) = iA0(R,z)uR + C0(R,z)uz, (4.75)

where uR and uz have been defined before (see Eq. (4.24) and (4.25)), and

A0(R,z) = 2π

1∫
0

b(ρ)
√

1 − ρ2J1(kRρ) exp

(
ikz
√

1 − ρ2

)
ρdρ, (4.76a)

C0(R,z) = −2π

1∫
0

ρb(ρ)J0(kRρ) exp

(
ikz
√

1 − ρ2

)
ρdρ, (4.76b)

J0 and J1 being the Bessel functions of the first kind of order 0 and 1, respectively.
Equations (4.74), (4.75), and (4.76) allow us to determine the vector amplitude of
this type of fields at any z. Note that functions A0(R, z) and C0(R, z) are given
in terms of the angular plane-wave spectrum b(ρ) that characterizes the particular
RPM field. Furthermore, from Eqs. (4.75) and (4.76), a number of simple but general
consequences can be obtained at once:

i) The transverse part of a RPM field is radially polarized at any plane transverse
to the propagation direction z (as expected).

ii) On the axis z (R = 0), any RPM field only has longitudinal component (i.e., the
field is linearly polarized along z). This agrees with the rotationally-symmetric
polarization structure of the RPM beams.

iii) When R �= 0, the ellipse that describes the electric field vector associated to a
RPM field is contained in the plane defined by uR and the z axis.

iv) The characteristics of the polarization ellipse depend on R and z, but are
independent of θ .

It should be remarked that the general propagation law (4.75) is valid for non-
paraxial fields as well as for paraxial beams. Let us compare both cases.

In Sect. 4.2, we pointed out that the paraxial regime analytically follows from the
Fresnel approximation (see Eqs. (4.24) and (4.25)). However, to get deeper insight
into the physical meaning of this approach, it would now be better to consider
directly the angular spectrum that characterizes an RPM field. Let us then introduce
the (squared) width of the angular spectrum, ψ2, in the form
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ψ2 =
∫

(u2 + v2)
∣∣∣Ẽ
∣∣∣2 dudv

∫ ∣∣∣Ẽ∣∣∣2 dudv
, (4.77)

where Ẽ represents again the spatial Fourier transform of the field E. Note that ψ2

does not depend on z. In the particular case of RPM fields, it can be shown that ψ2

becomes

ψ2 =

1∫
0

|b(ρ)|2 ρ3dρ

1∫
0

|b(ρ)|2 ρdρ

=<ρ2>b , (4.78)

where <ρ2 >b was defined in Eq. (4.37) (it estimates the size of the region where
|b(ρ)|2 is significant). We see that the parameter ψ2 gives the (squared) width of the
function |b(ρ)|2 and, consequently, could be understood as a measure of the size of
the angular spectrum (far field). Therefore, its value is inversely proportional to the
size σ (measured in λ-units) of the region at a transverse (near field) plane z where
|E|2 is important. As expected, paraxiality is then related with small values of ψ2,
whereas greater ψ2 refers to the non-paraxial case.

Let us finally evaluate the significance of the longitudinal field component
Ez with respect to the total field ER. This can be done by calculating the ratio
(cf. Eq. (4.34))

(ηz)R =

∞∫
0

2π∫
0

|Ez|2 RdRdθ

∞∫
0

2π∫
0

|ER|2 RdRdθ

, (4.79)

It can be shown that (ηz)R and ψ2 are related through the equation (Martínez-
Herrero et al., 2008a)

(ηz)R = ψ2

1 − ψ2
. (4.80)

The quantity (ηz)R can then be considered as a measure (averaged over the trans-
verse cross-section) of the squared ratio between the major and the minor axes of
the polarization ellipse. Accordingly, since ψ2 drastically reduces in the paraxial
case, such ellipse would closely resemble a segment along the radial (transverse)
direction. This behavior will be illustrated in the examples shown in the next section.

We will finally apply the propagation equation (4.75) to a kind of fields whose
angular spectrum is confined on a ring and is defined by the functions (Martínez-
Herrero et al., 2008a)
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a(ρ,φ) = 0, (4.81a)

b(ρ) = B δ(ρ − q), (4.81b)

where B and q are constants (q < 1), and δ(.) denotes the Dirac delta function. In
this case, A0 and C0 are proportional to simple analytical functions:

A0(R,z) ∝ J1(kRρ) exp

(
ikz
√

1 − q2

)
, (4.82a)

C0(R,z) ∝ J0(kRρ) exp

(
ikz
√

1 − q2

)
. (4.82b)

After substituting these expressions into Eq. (4.75), several special features of
the polarization structure of these fields can be obtained (apart from the general
characteristics of RPM fields derived above):

i) The polarization state does not depend on the transverse plane z, so that, for a
fixed radial distance, it remains invariant upon free propagation. This result is
consistent with the invariance properties of this kind of beams.

ii) The longitudinal component of the field equals zero for distances Rm = jm0/qk,
where jm0 denotes the zeros of J0.

iii) The transverse field vanishes (i.e., the field only exhibits longitudinal compo-
nent) for radial distances Rn = jn1/qk, where jn1 are the zeros of J1.

4.4 Closest Field

We will next introduce the concept of (exact) field solutions closest (in an alge-
braic sense) to a vector function at a certain plane (Martínez-Herrero et al.,
2001). In particular, we study, in a detailed way, the field magnitude and the
transverse polarization structure of the closest field associated to the well-known
uniformly totally-polarized Gaussian model. Other examples will also be analyzed
in Sect. 4.4.4.

4.4.1 Definition and Meaning

Let us assume that we try to represent a certain field at a plane, say, z = 0, by means
of an easy-to-use vectorial function f(x, y). This could be inferred, for instance,
either from a theoretical analysis or from experimental data. We define the so-called
closest solution to f as the electric-field solution of the Maxwell equations that is
best fitted, in an algebraic sense, to the vector f. To understand what this means let
us first write f in terms of its angular plane-wave spectrum, f̃ , namely
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f (x,y) =
1∫

0

2π∫
0

f̃ (ρ,φ) exp
[
ikρ(x cosφ + y sinφ)

]
ρdρdφ. (4.83)

where the evanescent waves have again been neglected. Function f, given by Eq.
(4.83), would then represent an electric field solution at plane z = 0 provided its
associated vectorial spectrum belongs to the (two-dimensional) subspace A gen-
erated by e1 and e2. It should be remarked that, in general, an arbitrary function
f̃ (ρ,φ) does not fulfil this condition. From an algebraic point of view, the vector
v(ρ,φ) (belonging to A) closest to f̃ (ρ,φ) is given by

v(ρ,φ) = (f̃ · e1)e1 + (f̃ · e2)e2. (4.84)

Accordingly, we define the electric-field vector, Ef, solution of the Maxwell
equations, closest to f at the initial plane as

Ef(r) =
1∫

0

2π∫
0

[
(f̃ · e1)e1 + (f̃ · e2)e2

]
exp (ikr · s)ρdρdφ, (4.85)

where r = (x, y, z) is again the position vector, and s was defined in Eq. (4.18).
It is clear from this equation that the first (second) term inside the integral would
represent the TE (TM) contribution of the field closest to f(x, y).

Moreover, the associated magnetic field closest to f takes the form (see
Eqs. (4.22) and (4.23))

Hf(r) =
1∫

0

2π∫
0

[
(f̃ · e1)e2 − (f̃ · e2)e1

]
exp (ikr · s)ρdρdφ. (4.86)

4.4.2 Application to the Uniformly-Polarized Gaussian Model

To illustrate the concept of closest field, let us now consider a typical uniformly
totally polarized Gaussian beam, which is the most widely-used model of a paraxial
electromagnetic field. At the initial plane z = 0, the electric-field vector, E G (x,y),
would take the form

EG(x,y) = G(x,y)E0 = G(x,y)(a,ib,0). (4.87)

where the (real) constants a and b describe the transverse polarization state and
G(x,y) represents the Gaussian field amplitude at z = 0. The values a = 1, b = 0 and
a = b = 1 correspond, respectively, to the linearly and circularly polarized cases.
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It is important to note that, in this paraxial model, the longitudinal field component
along the z-axis vanishes.

In terms of the angular spectrum, G̃ (u,v), the function G(x,y) can be written as
follows

G(x,y) =
∫

G̃(u,v) exp
[
ik(xu + yv)

]
dudv =

= C

1∫
0

2π∫
0

exp

(
− ρ

2

D2

)
exp

[
ik(xρ cosφ + yρ sinφ)

]
ρdρdφ

(4.88)

where C is a proportionality constant, and D is another constant (proportional to
the divergence at the far field) closely connected with a parameter ω0 through the
relation D = 1/kω0. Recall that, according with the current ISO standard that char-
acterizes the transverse size of the field at the waist (ISO, 2005), the diameter of the
irradiance profile of the present beam would be 4ω0. Note also that, in this model,
the contribution of the evanescent waves is assumed to be negligible.

Under free propagation, the field represented by Eq. (4.87) does not satisfy the
condition ∇·EG = 0, so it cannot be considered as an exact solution of the complete
Maxwell equations. It can, however, be useful to get exact solutions through its
associated closest solution.

To see this, let us first note that function f̃ (ρ,φ) introduced above (see Eq. (4.83))
reads now

f̃ (ρ,φ) = C exp

(
− ρ

2

D2

)
(a,ib,0). (4.89)

Accordingly, the field closest to this Gaussian model will be obtained after
applying (4.85), and we get

Eclosest = (ETE)G + (ETM)G (4.90)

where

(ETE)G = C
∫ 1

0

∫ 2π

0
(a sinφ − ib cosφ) exp

(
− ρ

2

D2

)
e1 exp (ikr · s)ρdρdφ,

(4.91a)

(ETM)G = C
∫ 1

0

∫ 2π

0
(a cosφ+ib sinφ)

√
1 − ρ2 exp

(
− ρ

2

D2

)
e2 exp (ikr·s)ρdρdφ.

(4.91b)
It is important to remark that Eclosest, (ETE)G and (ETM)G are three free-

propagating electric-field exact solutions of the Maxwell equations (without taking
the evanescent waves into account). Proceeding in a similar way for the magnetic
field we have

Hclosest = (HTE)G + (HTM)G, (4.92)



154 4 Non-Paraxial Electromagnetic Beams

where
(HTE)G = C

∫ 1

0

∫ 2π

0
(a sinφ − ib cosφ) exp

(
− ρ

2

D2

)
e2 exp (ikr · s)ρdρdφ,

(4.93a)

(HTM)G = − C
∫ 1

0

∫ 2π

0
(a cosφ + ib sinφ)

√
1 − ρ2

exp

(
− ρ

2

D2

)
e1 exp (ikr · s)ρdρdφ.

(4.93b)

The vector solution given by Eq. (4.91a) represents a field orthogonal to the
propagation direction. Consequently, (ETE) G is a non-paraxial field whose polar-
ization is always transverse to the z-axis upon free propagation. The other field
solution, (ETM) G , is not transverse and exhibits a longitudinal component, but its
associated magnetic field, (HTM)G, is orthogonal to the z-axis. Although the third
non-paraxial solution, Eclosest has been obtained from the combination of the above
fields, (ETE)G+(ETM)G, its irradiance and polarization structure clearly differs from
the other two solutions, as we will see later.

The integrals appearing in Eq. (4.91) are not, in general, analytically solvable,
but they provide, however, a suitable procedure to numerically propagate this class
of non-paraxial electromagnetic fields. Furthermore, to obtain other families of
solutions associated to an arbitrary amplitude f(x,y) at the initial plane, it would
suffice to replace the function exp(-ρ2/D2), inside the integrals in Eq. (4.91), by the
corresponding angular spectrum associated with f(x,y).

As we pointed out before, Eq. (4.91) do not include the contribution of the
evanescent part of spectrum. In highly non-paraxial regimes, in which ω0 is a frac-
tion of λ, this type of waves could play a significant role (see Sect. 4.5). However, in
the present section we will consider beams whose diameters at the waist are greater
than 4λ (in other words, ω0 ≥ λ). Moreover, the irradiance and the polarization dis-
tributions associated to the exact vector solutions will be calculated for propagation
distances longer than d =ω0

2/λ, which is the so-called diffraction length (Ciattoni et
al., 2002). Accordingly, for the beam size and the propagation distances considered
in the computations, the influence of the evanescent waves would be negligible. It
should also be mentioned that the solution given by Eqs. (4.90) and (4.91) is similar
to the Gaussian vectorial wave proposed in Varga and Török (1996).

Let us now investigate the relative magnitude of the Cartesian components of the
non-paraxial electric fields obtained from the Gaussian model. More specifically,
we consider the ratios (Martínez-Herrero et al., 2006)

εi

εj
=
∫ |Ei|2 dr∫ ∣∣Ej

∣∣2 dr
, i,j = x,y,z, (4.94)

where the integrals extend throughout the beam cross-section. In Eq. (4.94), E
represents either the combination (ETE)G + (ETM)G (Fig. 4.11a) or (ETE)G and
(ETM)G (Fig. 4.11b). It should be noticed that the above ratios do not change upon
free propagation. Consequently, they have the same value at any transverse plane.
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(a)

(b)

Fig. 4.11 Ratio |Ei|2
|Ej|2 , i,j =

x,y,z (integrated across the
transverse beam profile)
associated with the Cartesian
components of the global
field (ETE)G + (ETM)G (Fig.
4.11a); and (ETE)G and
(ETM)G (Fig. 4.11b). The
abcises are given in terms of
the parameter ω0 (in units of
λ). After Martínez-Herrero
et al. (2006), with permission

Furthermore, although Fig. 4.11 computes the cases a = 1, b = 0 (linearly polar-
ized) and a = b = 1 (circularly polarized), the conclusions can, however, be applied
in a straightforward way to the general elliptically polarized case.

From Figs. 4.11a and 4.11b, we see that the integrated magnitude of the lon-
gitudinal component, ε z , is almost negligible with respect to εx (as occurs in the
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paraxial regime) for ω0 higher than, say, 4λ. This behavior is valid in the two cases
we are considering (linear and circularly polarized). In general, the vectorial (non-
paraxial) effects are always enhanced for small enough values of ω0. This enables
us to establish an approximate limit for the paraxial approach. In fact, the value ω0
≈ 4λ could be selected as a tentative limit for the validity of the paraxial Gaussian
model. This value of the initial beam size agrees with that obtained in Simon et al.
(1987) by using a completely different formalism.

We now compare the ratio εx / εy in Fig. 4.11a (it refers to the combined field
(ETE)G + (ETM)G) with the corresponding values in Fig. 4.11b for the vector fields
ETE and E TM. We see in the figure that the ratio εx / εy is nearly 3 for both, the TE-
and the TM-solution, and for any ω0 (remember that here we are considering the
linearly polarized case a = 1, b = 0).

The combination (ETE)G + (ETM)G shows, however, a quite different behavior:
the ratio εx / εy strongly increases with ω0 and, in the paraxial regime (i.e., ω0 > 4λ),
εy is negligible compared with εx, as expected. This means that the phases of the
y-components of ETE and ETM cause a destructive interference for this component
of the global field (ETE)G + (ETM)G. On the contrary, the phases associated to the
x-components of the vector fields ETE and ETM are arranged in such a way that pro-
duce a constructive superposition of these field amplitudes, which, in turn, generates
higher values of εx for the combined field. Also note that these phase interference
effects increase as ω0 approaches the paraxial limit.

Let us finally consider the spatial distributions associated to the squared modulus
of the fields ETE, ETM and (ETE)G + (ETM)G at the transverse plane z = λ, which
correspond to the diffraction length d. It should be remarked that the conclusions
would remain valid, a scale factor apart, at any transverse plane.

Figures 4.12a and 4.12b show (the hachures in the curves show descents from
the contours), that the bell-shaped rotationally-symmetric structure of the transverse
profile of a Gaussian beam is no longer valid for the ETE and ETM fields in the case
a = 1, b = 0. Note also that, although Fig. 4.12a is qualitatively similar to the
distribution plotted in Fig. 4.12b, their contour lines and numerical values are not
the same.

On the other hand, the transverse profile of the global field (ETE)G + (ETM)G
resembles the bell-shaped distribution of a Gaussian field, and behaves almost
rotationally-symmetric close to the center (see Fig. 4.12c). We therefore conclude
that both terms, ETE and ETM, should be combined in order that the profile of the
resulting exact solution looks like the Gaussian model at a transverse plane.

The behavior of the transverse x-y profile clearly differs in the case a =
b = 1 (circularly polarized Gaussian model). The three exact solutions, ETE, ETM,
(ETE)G + (ETM)G, always exhibit a bell-shaped rotationally-symmetric structure,
which closely resembles a typical Gaussian profile around the peak. We thus
conclude that this family of exact fields would provide a good fit to the spatial
cross-section of the Gaussian model.

Figure 4.13 plots finally the spatial structure of the longitudinal component. It
shows a two-lobe shape for a = 1, b = 0 (see Fig. 4.13a), but the shape corresponds
to a doughnut-type distribution in the case a = b = 1 (see Fig. 4.13b). It should be
noted that, in this example, εz would be negligible for ω0 higher than 4λ.
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Fig. 4.12 The curves give
the square root of the spatial
profile at plane z = λ

associated with the transverse
components of the
electric-field solutions: (a)[
|(ETE)x|2 + ∣∣(ETE)y

∣∣2]1/2
;

(b)
[
|(ETM)x|2 + ∣∣(ETM)y

∣∣2]1/2
;

(c)
[
|(ETE)x + (ETM)x|2 + ∣∣(ETE)y + (ETM)y

∣∣2]1/2
.

After Martínez-Herrero et al.
(2006), with permission

4.4.3 Transverse Polarization Structure of the Closest Field
Associated to the Gaussian Model

To complete the study of the closest field associated to the Gaussian model, we
will next spatially describe the transverse polarization distribution at a plane z =
constant.
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Fig. 4.13 Squared root of the
spatial profile at plane z = λ,
associated with the
longitudinal z-component in
the case a = 1, b = 0 (Fig.
4.13a) and a = b = 1 (Fig.
4.13b). It has been considered
the value ω0 = λ, and the
sides of the figures are given
in units of λ. The hachures in
Fig. 4.13b indicate a
doughnut-type spatial shape
of the z-component profile.
After Martínez-Herrero et al.
(2006), with permission

Let us first consider the x- and y-components of the closest field at plane z = λ ,
i.e., for very short propagation distances. Recall that (ETM)G and (ETE)G + (ETM)G
have the same longitudinal z-component.

From the application of Eq. (4.91), one obtains the spatial distributions we are
looking for. They are plotted in Figs. 4.14 and 4.15 for the cases a = 1, b = 0
and a = b = 1, respectively. We see that the polarization diagrams of the TE- and
TM-solutions exhibit a non-uniform spatial structure. The diagrams associated with
(ETE)G + (ETM)G have not been represented because the polarization states across
the central region of plane z = λ are almost identical to those of a typical uniformly
totally-polarized Gaussian field. This occurs when ω0 ≈ 4λ, in agreement with the
paraxial limit adopted on the basis of the ratio (4.94).
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Fig. 4.14 Spatial distribution of the transverse polarization across the beam profile of ETE
(Fig. 4.14a) and ETM (Fig. 4.14b) in the case a = 1, b = 0. The diagrams are represented at
plane z = λ for ω0 = λ. The sides of the figures range from –4λ to +4λ. After Martínez-Herrero et
al. (2006), with permission

Fig. 4.15 The same as in Fig. 4.14 but now for the values a = b = 1. After Martínez-Herrero et
al. (2006), with permission

The behavior of the transverse polarization associated with the fields ETE and
ETM is plotted in Figs. 4.16 and 4.17, calculated at the transverse plane z = 500 λ.
Note first a “curl-like” structure close to the center in Fig. 4.17a (it also appears in
Fig. 4.17b). The right- or left-handed shape of this central region depends on the
associate values b = ±1 in Eq. (4.87). Another characteristic refers to the nearly
identical polarization structure outside the central region for both cases, a = 1,
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Fig. 4.16 Spatial distributions of the transverse polarization across the beam profile associated to
ETE (Fig. 4.16a) and ETM (Fig. 4.16b) in the case a = 1, b = 0. The diagrams are now plotted
at plane z = 500λ. Again, ω0 = λ. The sides of the figures range from –128λ to +128λ. After
Martínez-Herrero et al. (2006), with permission

b = 0 and a = b = 1. This is closely related with the transverse polarization of
any TE- and TM-beam far away from the initial plane z = 0 (see Fig. 4.18): the
local polarization states are always linear and show a rotationally-symmetric spatial
distribution. This behavior appears for shorter distances when we move away from
the paraxial approximation).

Fig. 4.17 The same as in Fig. 4.16 but now for the values a = b = 1. After Martínez-Herrero et
al. (2006), with permission
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Fig. 4.18 Far-field spatial distribution of the transverse polarization of a TE-field (Fig. 4.18a) and
a TM-field (Fig. 4.18b). After Martínez-Herrero et al. (2006), with permission

Summarizing the above results, we conclude that the combination (ETE)G +
(ETM)G (global closest field) exhibits a transverse part that closely resembles the
beam profile and the transverse polarization distribution of the typical uniformly
totally-polarized Gaussian model. Accordingly, the field (ETE)G + (ETM)G offers an
alternative exact solution instead of the (approximate) Gaussian field. The price to
be paid is the contribution of a (usually small) longitudinal z-component.

4.4.4 Other Examples

We are now interested on the closest field associated to a vector f(x,y) whose trans-
verse components are zero, i.e., f only has longitudinal component z. Accordingly,
the corresponding Fourier-transform would read

f̃ (ρ,φ) = (0,0,f0(ρ,φ)). (4.95)

In addition,

f̃ · e1 = 0, (4.96)

and therefore the closest field is a pure TM-beam whose electric and magnetic vector
take the form

(ETM)closest = −
1∫

0

2π∫
0

ρf0(ρ,φ)e2 exp (ikr · s)ρdρdφ, (4.97a)
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(HTM)closest = −
1∫

0

2π∫
0

ρf0(ρ,φ)e1 exp (ikr · s)ρdρdφ, (4.97b)

In the particular but interesting case in which f0(ρ,φ) is independent of φ, i.e.,
f0(ρ,φ) = f0(ρ), the field ETM transforms into the expression

ETM(R, θ , z) = iFR(R,z)uR(θ ) + Fz(R,z)uz, (4.98)

where, for convenience, we have used cylindrical coordinates, and uR and uz are
again the unit vectors in the radial and longitudinal directions, respectively. In the
above equation,

FR(R,z) = −2π

1∫
0

ρf0(ρ)
√

1 − ρ2J1(kRρ) exp

(
ikz
√

1 − ρ2

)
ρdρ, (4.99a)

Fz(R,z) = 2π

1∫
0

ρ2f0(ρ)J0(kRρ) exp

(
ikz
√

1 − ρ2

)
ρdρ, (4.99b)

We readily conclude from Eq. (4.98) that, in the present case, the closest
field (ETM)closest exhibits rotational symmetry around the z-axis (as expected), and
the polarization at any beam cross-section is always radial. Furthermore, on the
propagation axis z (R = 0), the closest field reduces to

(ETM)closest(R = 0,z) = Fz(0,z)uz, (4.100)

and the electric field only shows a longitudinal component.
As a final example, let us now consider a vectorial function whose angular

spectrum is

f̃ = ρL1
n

(
2ρ2

D2

)
exp

(
− ρ

2

D2

)
( cosφ, sinφ,0), (4.101)

where L1
n denotes the generalized Laguerre polynomials (Siegman, 1986), D =

1/kω0 is again a constant proportional to the far-field divergence of the beam, and
ω0 is the 1/e irradiance beam radius of the Gaussian factor at the near field. More
specifically, we now focus our attention on vector fields closest (best fitted) to the
vectorial function f̃ defined by Eq. (4.101). We have (Martínez-Herrero et al., 2008a)

a (ρ,φ) = f̃ · e1 = 0, (4.102a)

b(ρ,φ) = f̃ · e2 = ρ

√
1 − ρ2L1

n

(
2ρ2

D2

)
exp

(
− ρ

2

D2

)
. (4.102b)
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Fig. 4.19 Squared modulus of the electric field at a plane z = 10λ for the beam given by Eq.
(4.102), with ω0 = 0.3λ and n = 1. In abcises, the radial distance R is represented in units of λ.
Ordinates are plotted in logarithmic scale (the value on the z-axis is normalised to unity). The
continuous line shows the global field, the dashed line plots the radial component (along uR),
and the dotted line plots the longitudinal component (along uz). The longitudinal component Ez
predominates for two ranges of radial distances, R << λ and R >> λ. However, for intermediate
distances, R ≈ 10 λ, the modulus of the radial and the longitudinal components of the field takes
almost identical values. The inset of this figure illustrates the polarization ellipse that describes
the electric field at a radial distance R = 0.2 λ: Abcises and ordinates represent the radial and the
longitudinal components, respectively. After Martínez-Herrero et al. (2008a), with permission

From these equations, we see that this beam is a RPM field. In addition, by
using Eq. (4.75), the beam defined by Eq. (4.102) can be calculated at different
transverse planes upon free propagation. Figure 4.19 shows the vectorial structure
of these fields in the non-paraxial regime (ω0 less than λ). It can be summarized as
follows:

i) At radial distances close enough to the axis z, the longitudinal field component
E z predominates.

ii) At radial distances far enough from the z-axis, the polarization is essentially
longitudinal.

iii) In comparison with the case of Gaussian-model non-paraxial beams, analyzed
in the previous section, the longitudinal component E z has revealed to be much
more significant for these RPM fields.

iv) The above general characteristics are also valid for longer propagation dis-
tances z.
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Fig. 4.20 The same as in
Fig. 4.19 but now with z = λ.
In the inset the polarization
ellipse corresponds to a radial
distance R = 0.3 λ. After
Martínez-Herrero et al.
(2008a) with permission.

An example of the polarization ellipse close to the z-axis (R ∼ 0) is plotted in the
inset of Fig. 4.19.

Figure 4.20 (very short propagation distances) exhibits a similar polarization
behavior to that observed in the case plotted in Fig. 4.19. Figure 4.21 illustrates the
highly non-paraxial case ω0 = 0.1 λ: The general characteristics shown in Fig. 4.19
are also preserved, in a qualitative way, in the present case.
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Fig. 4.21 The same as in
Fig. 4.19 but now with ω0 =
0.1λ. In the inset the
polarization ellipse has been
plotted for R = 10 λ. After
Martínez-Herrero et al.
(2008a), with permission
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Fig. 4.22 The same as in Fig.
4.19 but now with ω0 = λ.
Continuous and dashed lines
are indistinguishable. In the
inset the polarization ellipse
has been shown for R = 10 λ.
After Martínez-Herrero et al.
(2008a), with permission

Figure 4.22 considers the paraxial regime (ω0 = 5 λ). At each point of the trans-
verse plane, the polarization ellipse essentially behaves as a line along the radial
direction, perpendicular to the z-axis. Accordingly, compared with the non-paraxial
regime, the magnitude of the longitudinal component, |Ez|, is now negligible (as
expected).

4.5 Evanescent Waves Associated to Highly
Non-paraxial Beams

In Sect. 4.2 the field was decomposed into propagating and evanescent waves (cf.
Eqs. (4.13) and (4.14)).Attention will now be devoted to the study of the spatial and
vectorial structure of the evanescent field in those cases in which the evanescent term
is not negligible. Thus, after introducing the key equations to be used in the rest of
this section, a number of numerical examples are shown. They could be considered
as the generalization, including the evanescent wave, of the closest field associated
to the typical paraxial Gaussian model.

4.5.1 Formalism

Let us extend the formalism handled in Sect. 4.2. We first write the field solution
associated to the evanescent term in the alternative equivalent form (see Eqs. (4.13)
and (4.14b))



166 4 Non-Paraxial Electromagnetic Beams

Eev =
∞∫

1

2π∫
0

[a(ρ,φ)e1(φ) + bev(ρ,φ)eev(ρ,φ)] exp [ iksev · r)] ρdρdφ, (4.103)

where the unit vector e1 was defined earlier, and (Martínez-Herrero et al., 2008b)

eev = 1√
2ρ2 − 1

(i(ρ2 − 1)1/ 2 cosφ, i(ρ2 − 1)1/ 2 sinφ, − ρ) (4.104a)

sev = (ρ cosφ, ρ sinφ, i
√

(ρ2 − 1)), with ρ ∈ [1,∞] , (4.104b)

are formally vectors with complex components. The structure of sev assures the
fulfilment of condition (4.8) when ρ ∈ [1,∞]. For this range of values of ρ, vectors
e1 and eev are now the two-dimensional reference basis. It should be remarked that
the choice of vectors e1, e2 and eev characterizes, in fact, the formalism considered
in the present chapter. Concerning the notation used to denote inner products when
vectors eev and sev are involved, recall that a · b should be understood as axb∗

x +
ayb∗

y + azb∗
z (cf. Chap. 1).

The global field E(R, θ , z) would then read

E(R, θ , z) =
1∫

0

2π∫
0

a(ρ,φ)e1(φ) exp [iks · r)]ρdρdφ

+
1∫

0

2π∫
0

b(ρ,φ)e2(ρ,φ) exp [iks · r)]ρdρdφ

+
∞∫

1

2π∫
0

[a(ρ,φ)e1(φ) + bev(ρ,φ)eev(ρ,φ)] exp [iksev · r)]ρdρdφ.

(4.105)
We see that functions a(ρ, φ), b(ρ, φ) and bev(ρ, φ) contain the complete infor-

mation about the Fourier spectrum of the E(R, θ , z) (see Eq. (4.7)). In fact, these
functions can be easily obtained from Ẽ0 as follows:

a(ρ,φ) = Ẽ0 · e1, (4.106a)

b(ρ,φ) = Ẽ0 · e2, (4.106b)

bev(ρ,φ) = Ẽ0 · eev. (4.106c)

In particular, the evanescent part reveals to be a superposition of inhomogeneous
waves whose constant phase surfaces are planes orthogonal to the (non-unitary)
transverse vector s0, namely,
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s0 = (ρ cosφ,ρ sinφ,0), (4.107)

and whose constant-amplitude planes are perpendicular to the z-axis. We see that
the formal structure of the evanescent term of our global field solution is similar to
that of the propagating wave.

In summary, Eq. (4.105) gives a general exact solution of the Maxwell equations,
which is valid for both, paraxial and highly-focused beams. The angular spectrum
Ẽ0 at some initial plane defines each particular field. Furthermore, the magnitude
and the polarization features of the transverse profile of any vectorial beam could be
calculated from this equation. In particular, its third term provides a simple but gen-
eral way to determine the evanescent field associated to the exact solution. It should
also be noted that the separate contribution of TE-, TM- and evanescent parts of the
electric field enables to compare the relative weight of these terms (for instance, by
comparing the respective square modulus, integrated throughout the beam profile).
This can be used to find the ranges of the propagation distance and of the beam
size for which the evanescent waves are significant. Recall that the evanescent term
involves the sum (Ẽ0 ·e1)e1+(Ẽ0 ·eev)eev, which can be understood as the projection
vector Ẽ0 onto the subspace generated by e1 and eev. A similar interpretation led to
the concept of “closest” field to a given vector solution, introduced in the previous
section for the propagating term Epr of the global solution.

4.5.2 Numerical Examples

We will next analyze the evanescent structure of the vectorial field closest (in the
algebraic sense) to the polarized Gaussian field. Again, we consider the vector
plane-wave spectrum associated to a pure-transverse linearly-polarized Gaussian
beam, namely,

f̃ (ρ,φ) = C exp

(
− ρ

2

D2

)
(1,0,0), (4.108)

where C and D were introduced in Sect. 4.4. To obtain an exact non-paraxial solution
based on the paraxial Gaussian model, alternative procedures have been reported
in the literature. For example (see, Chaumet, 2006), one may consider that the
x- and y-components of the field at the initial plane z = 0 exhibits a Gaussian struc-
ture. The angular spectrum associated to each transverse component would then be
determined by using the inverse Fourier transform, and the plane-wave spectrum
of the longitudinal component Ez would analytically be derived from the condition
(4.8). The global E(r) = (Ex, Ey, Ez) (including the evanescent part) would finally
propagate into the z > 0 half-space according with well-known integral expressions
(Chaumet, 2006). The transverse components of such a solution would therefore
show a Gaussian profile at plane z = 0.

Here we use another procedure: We start from the Gaussian spectrum given by
Eq. (4.108) and write the inner products f̃ · e1 = a(ρ,φ); f̃ · e2 = b(ρ,φ); and
f̃ · eev = bev(ρ,φ). We have (Martínez-Herrero et al., 2008b)
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a(ρ,φ) = C sinφ exp ( − ρ2/D2), (4.109a)

b(ρ,φ) = C cosφ
√

1 − ρ2 exp ( − ρ2/D2), (4.109b)

bev(ρ,φ) = − i√
2ρ2 − 1

C cosφ(ρ2 − 1)1/ 2 exp ( − ρ2/D2). (4.109c)

Consequently, an exact field solution is derived by substituting functions a, b and
bev into Eq. (4.105). The resulting expression should be understood as the general-
ization, including the evanescent term, of the closest field associated to the (paraxial)
Gaussian field. Also note that, although we have considered the Gaussian case, the
procedure can immediately be extended to a general function f̃ (ρ,φ).

Since in the present section, however, the interest is focused on the evanescent
field, we have to choose parametric values for which the evanescent contribution is
significant.

Figure 4.23 allows us to evaluate this point. In the figure we represent the ratio

Δ =
∣∣Ipr − Iev

∣∣
Ipr

(4.110)

for the highly non-paraxial case ω0 = 0.1λ at different propagation distances (in
units of λ) from the initial plane z = 0, where

Ipr =
1∫

0

2π∫
0

[
|a(ρ,φ)|2 + |b(ρ,φ)|2

]
ρdρdφ, (4.111a)

Fig. 4.23 Ratio Δ in terms of the propagation distance z for the field defined by Eq. (4.108), with
ω0 = 0.1λ (highly non-paraxial case). After Martínez-Herrero et al. (2008a), with permission
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Iev =
∞∫

1

2π∫
0

[
|a(ρ,φ)|2 + |bev(ρ,φ)|2

]
exp

(
−2kz

√
ρ2 − 1

)
ρdρdφ, (4.111b)

Therefore, Ipr and Iev provide the (integrated) squared modulus of the propa-
gating and evanescent electric fields, respectively. Accordingly, the ratio Δ gives
direct information about the importance of the propagating-field solution: Δ ranges
from 0.3(Iev ≈ 0.7Ipr) to 1 (the evanescent wave vanishes). For the present example,
the evanescent field is significant enough for propagation distances not longer than,
say, 0.5 λ. Of course, if the waist size ω0 increases, the relative weight of Eev would
drastically reduce, as expected. For instance, when ω0 approaches 0.2λ, the distance
for noticeable evanescent field does not exceed 0.1λ.

Let us now describe the evanescent spatial structure involved in the closest-field
solution associated to the Gaussian model (Martínez-Herrero et al., 2008b).

Figures 4.24, 4.25 and 4.26 plot the transverse distributions of the squared mod-
ulus of the electric field components of (i) propagating waves (Fig. 4.24); (ii)
evanescent waves (Fig. 4.25); and (iii) global field (Fig. 4.26).

In all the cases the angular spectrum is defined by Eqs. (4.109), and we have
chosen the values ω0 = 0.1λ and z = 0.1λ. Abcises and ordinates are associated to

a

c d

b

Fig. 4.24 Transverse distributions (pseudocolor) of the squared modulus of the propagating waves
for the field defined by Eqs. (4.109). In the figure, ω0 = 0.1λ and the field magnitude is calculated
after propagating a distance z = 0.1λ. Abcises are parallel to the lines of writing and ordinates are
orthogonal to them. (a) plot of (|Ex|2)pr; (b) (|Ey|2)pr; (c) (|Ez|2)pr; (d) (|Ex|2 + |Ey|2 + |Ez|2)pr .
Integration throughout the transverse plane gives the values (a) 0.69; (b) 0.035; (c) 0.085; (d) 0.81.
These values have been normalised with respect to that of Fig. 4.26d (see below). After Martínez-
Herrero et al. (2008a), with permission
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Fig. 4.25 The same as in
Fig. 4.24 but now referred to
the evanescent waves: (a) plot

of
(|Ex|2

)
ev; (b)

(∣∣Ey
∣∣2)

ev
;

(c)
(|Ez|2

)
ev;

(d)
(
|Ex|2 + ∣∣Ey

∣∣2 + |Ez|2
)

ev
.

After integrating throughout
the transverse plane, we get
the values (a) 0.14; (b) 0.025;
(c) 0.025; (d) 0.19. After
Martínez-Herrero et al.
(2008a), with permission

the conventional Cartesian axes x and y, respectively. The length of the side of each
square frame is 8 λ. The center of the figures always exhibit peak values. Moreover,
integration over the entire plane has been normalised to 1 in Fig. 4.26d. The rest of
the plots are then calculated with respect to this value. For instance, in Fig. 4.25d
the integration gives the value 0.19. This means that the overall evanescent field

Fig. 4.26 The same as in Fig.
4.24 but now referred to the
global field (propagating +
evanescent waves): (a) plot of(|Ex|2

)
pr+ev;

(b)
(∣∣Ey

∣∣2)
pr+ev

;

(c)
(|Ez|2

)
pr+ev;

(d)
(
|Ex|2 + ∣∣Ey

∣∣2 + |Ez|2
)

pr+ev
.

After integrating throughout
the transverse plane, we
obtain the values (a) 0.83; (b)
0.06; (c) 0.11; (d) 1. After
Martínez-Herrero et al.
(2008a), with permission
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contributes to the global field (propagating + evanescent waves) in a percentage of
19% (and similarly for the rest of figures).

In addition, Fig. 4.24a shows that
(|Ex|2

)
pr is important on a region whose trans-

verse size along the x-axis is nearly λ. This value reduces to 0.5λ for
(|Ex|2

)
ev in

Fig. 4.25a. Consequently, it should be expected that the size of the region over which
is significant enough the squared modulus of the x-component of the global field
approaches the intermediate value 0.7λ, in agreement with Fig. 4.26a. An analogous
conclusion is derived for the other figures.

From the comparison of Figs. 4.24 and 4.25, a qualitative similarity (a scale
factor apart) is also observed between the spatial distributions of the propagating and
evanescent fields. Note that no approach has been used to evaluate the electric-field
solution represented in the above figures.

For comparative purposes, let us finally consider the closest field associated to a
typical circularly-polarized Gaussian beam. In such a case, instead of Eq. (4.108),
the vector function f̃ (ρ,φ) should be

f̃ (ρ,φ) = C exp

(
− ρ

2

D2

)
(1,i,0). (4.112)

The features of the associated closest-field solution are plotted in Figs. 4.27, 4.28
and 4.29 (Martínez-Herrero et al., 2008b). In the figures, all the graphics (c) and (d)
exhibit rotational symmetry, as expected. It should be remarked the different spatial
structure shown by the evanescent part with respect to the former case, illustrated
in Figs. 4.25 and 4.28. Note also the similar contributions (percentages) involved in
the linear and circular cases, associated to the longitudinal z-components (figures
(c)) and to the global waves (figures (d)).

a

c d

b
Fig. 4.27 The same as in
Fig. 4.24 but now for the
closest field associated to a
circularly polarized Gaussian
beam (cf. Eq. (4.112)).
Integration over the complete
transverse plane has been
normalised with respect to the
value of Fig. 4.29d (see
below). (a) plot of

(|Ex|2
)

pr;

(b)
(∣∣Ey

∣∣2)
pr

; (c)
(|Ez|2

)
pr;

(d)
(
|Ex|2 + ∣∣Ey

∣∣2 + |Ez|2
)

pr
.

After integrating throughout
the transverse plane, we get
the values (a) 0.362;
(b) 0.362; (c) 0.085; (d) 0.81.
After Martínez-Herrero et al.
(2008a), with permission



172 4 Non-Paraxial Electromagnetic Beams

a

c d

bFig. 4.28 The same as in
Fig. 4.27 but now referred to
the evanescent waves: (a) plot
of (|Ex|2)ev; (b) (|Ey|2)ev;
(c) (|Ez|2)ev;
(d) (|Ex|2 + |Ey|2 + |Ez|2)ev.
After integrating throughout
the transverse plane, we
obtain the values (a) 0.082;
(b) 0.082; (c) 0.025; (d) 0.19.
After Martínez-Herrero et al.
(2008a), with permission

a

c d

bFig. 4.29 The same as in
Fig. 4.27 but now referred to
the combined field
(propagating + evanescent
waves): (a) plot of
(|Ex|2)pr+ev; (b) (|Ey|2)pr+ev;
(c) (|Ez|2)pr+ev; (d) (|Ex|2 +
|Ey|2 + |Ez|2)pr+ev. After
integrating throughout the
transverse plane, we get the
values (a) 0.445; (b) 0.445;
(c) 0.11; (d) 1. After
Martínez-Herrero et al.
(2008a), with permission

4.6 Partially Coherent Electromagnetic TE-Fields

The last section of this chapter examines non-paraxial fields with a partially coherent
behavior. Previous studies (see, for example Tervo (2003)) have extended the vecto-
rial case to cover partially coherent fields. In those papers, the field was propagated
from a source plane, and changes in the degree of polarization were analyzed upon
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propagation. Here we restrict ourselves to non-paraxial TE-fields, and the attention
will be devoted to investigate the connection between their polarization and coher-
ence features. Note that, in general, the polarization state would involve the three
field components. It should then be expected that a pure transversal character will
play a significant role in the polarization behavior of a non-paraxial field.

To begin with, let us first recall that the longitudinal component of TE-fields (in
the sense defined in Sect. 4.2) should vanish, and their spectral density tensor (SDT)
reduces to a 2×2 matrix, Ŵ(r, r). We then have

Wij (r,r) = E∗
i (r)Ej (r), i,j = s,p. (4.113)

Neglecting the contribution of the evanescent waves, the SDT of a non-paraxial
partially coherent TE-field would be written at a transverse plane z in the form
(Martínez-Herrero and Moreu, 2006)

ŴTE (R, θ , z) =
1∫

0

1∫
0

2π∫
0

2π∫
0

�TE (ρ1,ρ2,φ1,φ2) et
1 (φ1) e1 (φ2) ×

× exp {ikR [ρ2 cos (θ − φ2)− ρ1 cos (θ − φ1)]} ×
× exp

{
ikz

[(
1−ρ2

2

)1/ 2 −
(

1−ρ2
2

)1/ 2
]}
ρ1ρ2dρ1dρ2dφ1dφ2

(4.114)

where R, θ , z are the cylindrical coordinates that give the position of a point at the
transverse plane, the superscript t denotes the transposed vector, and

�TE (ρ1,ρ2,φ1,φ2) = a∗ (ρ1,φ1) a (ρ2,φ2). (4.115)

In Eq. (4.115) a(ρ,φ) represents a stochastic process, which is related to the field
ETE through the equality (in the mean square sense)

ETE =
1∫

0

2π∫
0

a (ρ,φ) e1 (φ) exp (ikr · s) ρd ρdφ. (4.116)

Associated to the plane-wave spectrum of the field, the SDT would read

(ŴTE)pw = |a (ρ,φ)|2et
1 (φ) e1 (φ) , (4.117)

where the subscript pw refers to the plane-wave spectrum. By recalling the
expression that gives the local degree of polarization in terms of Ŵ, namely,

P (r) =
⎛
⎜⎝1 − 4DetŴ(r, r)(

TrŴ(r, r)
)2

⎞
⎟⎠

1/ 2

, (4.118)
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Fig. 4.30 Polarization
diagram associated to the
plane-wave spectrum of a TE
field. Every point on the
sphere represents a direction
characterized by its ρ and φ
coordinates. The segments
illustrate directions of
polarization for some
(ρ,φ) values. After
Martínez-Herrero and Moreu
(2006), with permission

one sees that matrix (ŴTE)pw, involves a non-uniformly totally polarized behavior.
This is illustrated in Fig. 4.30.

Let us now consider the spatial distribution of the polarization state at a transverse
plane z (near field). We first assume rotational symmetry of the function �TE, i.e.,

�TE ( ρ1,ρ2,φ1,φ2 ) = �0 (ρ1,ρ2) (4.119)

where �0 (ρ1, ρ2 ) is an integrable function in the region [0,1]×[0,1]. Making use
of this expression, we get after substitution into Eq. (4.114)

ŴTE (R, θ , z) = et
0 (θ) e0 (θ) f (R, z) (4.120)

where e0 denotes the two-dimensional unit vector,

e0 (θ) = (sin θ , − cos θ) (4.121)

and

f (R,z) = − 4π2

1∫
0

1∫
0

�0 (ρ1,ρ2) J1 (kRρ1)J1 (kRρ2)×

× exp

{
ikz

[(
1 − ρ2

2

)1/ 2 −
(

1 − ρ2
1

)1/ 2
]}
ρ1ρ2dρ1dρ2,

(4.122)

J1 being, as usual, the first-order Bessel function. Thus, rotational symmetry of
function �TE involves a (non-uniformly) totally polarized behavior (azimuthally
polarized) at the near field.
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As a second case of interest, we now assume that �TE is factorizable and takes
the form

�TE (ρ1,ρ2,φ1,φ2) = A∗ (ρ1,φ1)A (ρ2,φ2) (4.123)

so that matrix ŴTE becomes

ŴTE (R, θ , z) = F† (R, θ , z)F (R, θ , z) (4.124)

where the deterministic vector F (R, θ , z) is given by the expression

F (R, θ , z) =
1∫

0

2π∫
0

A (ρ,φ)e1 (φ) exp [ikRρ cos (θ − φ)]

exp

[
ikz
(

1 − ρ2
)1/ 2

]
dρdφ.

(4.125)

Since ŴTE is factorizable, the local degree of polarization equals 1 at any
transverse plane z.

Let us now consider the other extreme case, i.e., we assume that function �TE
reads

�TE (ρ1,ρ2,φ1,φ2) = I (ρ1,φ1) δ (ρ1 − ρ2) δ (φ1 − φ2) , (4.126)

where the symbol δ denotes again the Dirac delta function and I (ρ,φ) is propor-
tional to the beam irradiance associated to each plane-wave spectral component.
One obtains that the SDT is constant (independent on coordinates R, θ and z), and
takes the form

ŴTE =
1∫

0

2π∫
0

I (ρ,φ)et
1 (φ) e1 (φ) ρdρdφ. (4.127)

Accordingly, the local degree of polarization is also constant, and satisfies

0 ≤ P < 1. (4.128)

In order to show that P cannot be equal to 1, it would suffice to note that
the following inequality occurs between the elements of a matrix ŴTE given by
Eq. (4.127):

∣∣∣(ŴTE

)
12

∣∣∣2 < (
ŴTE

)
11

(
ŴTE

)
22

, for any I (ρ,φ) . (4.129)

In the case we are analysing, the field, at any transverse plane, could be either
uniformly partially polarized or unpolarized. This second type of behavior arises
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when function I is independent of the coordinate φ (note that e1 does not depend
on ρ).

To study an intermediate case, let us use the following modal expansion of
function �TE (Martínez-Herrero, 1979)

�TE (ρ1,ρ2,φ1,φ2) =
∑

n

λ2
nA∗

n (ρ1,φ1)An (ρ2,φ2) (4.130)

where An(ρ,φ) represents a set of integrable mutually-orthonormal functions in the
region ρ ∈ [0,1], φ ∈ [0,2π ], and λn

2 are non-negative numbers.
The SDT becomes in this case (Martínez-Herrero and Moreu, 2006)

ŴTE (R, θ , z) =
∑

n

λ2
n F†

n (R, θ , z)Fn (R, θ , z) , (4.131)

where

Fn (R, θ , z) =
1∫

0

2π∫
0

An (ρ,φ)e1 (φ) exp [ikRρ cos (θ − φ)]

exp

[
ikz
(

1 − ρ2
)1/ 2

]
ρdρdφ,

(4.132)

and one observes, in general, non-uniform partial polarization at the near field.
This result can be illustrated in a simple way by considering a field defined by

the following function �TE:

�TE (ρ1,ρ2,φ1,φ2) = exp
[
−D2

(
ρ2

1 + ρ2
2

)]
cos (φ1 − φ2) . (4.133)

By using Eqs. (4.131), (4.132), and (4.133), it can be shown that the local degree
of polarization becomes (Martínez-Herrero and Moreu, 2006)

P (R,z) =
{

4I0 (R,z) I2 (R,z)

[I0 (R,z)+ I2 (R,z)]2

}1/ 2

, (4.134)

where

In (R,z) = π2

∣∣∣∣∣∣
1∫

0

exp ( − ρ2D)Jn (kRρ) exp

[
ikz
(

1 − ρ2
)1/ 2

]
ρd ρ

∣∣∣∣∣∣
2

, n = 0,2,

(4.135)

J0J2 being the zero and second-order Bessel functions, respectively. The trans-
verse behavior of P at plane z = 0 is plotted in Fig. 4.31.
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Fig. 4.31 Local degree of
polarization (continuous line)
at plane z = 0, for a field
given by Eq (4.133), with
D = 1. The ordinates scale of
the right-hand side of this
figure refers to the normalized
squared modulus of the
TE-field (dotted line). After
Martínez-Herrero and Moreu
(2006), with permission

From this figure, it is clear the non-uniformly partially-polarized behavior at
the initial plane. Moreover, P does not depend on θ , and reaches maximum and
minimum values at certain distances from the z-axis.

Note finally that, in this example, function �TE (ρ,ρ,φ,φ) is rotationally symmet-
ric, even though �TE (ρ1,ρ2,φ1,φ2) is not.
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