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We show how suitable combinations of cascaded diffractive optical elements (DOEs) can form a combined
“moiré DOE” of adjustable refractive power and high diffraction efficiency. The optical power can be
adjusted continuously by a mutual rotation of one DOE with respect to the other. Fresnel lenses and
axicons of variable refractive power or spiral phase plates of adjustable helical charge can be realized
this way. © 2008 Optical Society of America
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1. Introduction

Diffractive optical elements (DOEs) are optical com-
ponents consisting of microscopic phase structures
in a transparentmaterial [1]. Commercially available
DOEs include lenses, arrays of lenses, or holograms
(so-called kinoforms [2]) that project specified pat-
terns, such as lines, crosshairs, or dot arrays. Each
pixel of a DOE shifts the phase of an incident light
beamwithin an interval between 0 and 2π. The trans-
mitted wave then carries the predesigned wavefront
modulation.
There exist many algorithms (e.g., kinoform algo-

rithm, Gerchberg–Saxton algorithm [3], etc.) to calcu-
late the DOEs dedicated to perform the desired tasks.
In the productionprocess of aDOE, the corresponding
phase landscapes are imprinted into a material with
techniques such as photolithography, electron beam
lithography, ormechanicalmicromachining (diamond
turning), such that each spot of the material delays
the phase of an incoming light beam by the desired
phase value. This can be achievedwith either amodu-
lated surface profile (which is, for example, etched
into a quartz plate) or by a spatially modulated index
of refraction as in, for example, a photopolymer film.

An important difference of computer-generated
DOEs, compared to normal holograms that are re-
corded by superposition of an object and a reference
wave, is the fact that DOE phase structures are
typically not harmonic; i.e., they locally correspond
to blazed gratings with a sawtooth phase profile.
As a result, the diffraction efficiency of a properly
designed DOE can reach 100%, in contrast to the
40% achieved by normal phase holograms with har-
monic grating structures.

The transmission function Tðx; yÞ of a DOE is a
“phase-only landscape” of the form Tðx; yÞ ¼
exp½iΦðx; yÞ�, where Φðx; yÞ is an array of pixels in a
range between 0 and 2π, corresponding to the phase
shift a light beam acquires when passing through the
corresponding spot. If two DOEs with transmission
functions T1ðx; yÞ ¼ exp½iΦ1ðx; yÞ� and T2ðx; yÞ ¼
exp½iΦ2ðx; yÞ� are placed directly behind each other,
then the transmission function Tjoint of the combined
DOE becomes

Tjointðx; yÞ ¼ T1ðx; yÞT2ðx; yÞ
¼ expfi½Φ1ðx; yÞ þΦ2ðx; yÞ�g: ð1Þ

The principle of our suggested system is indicated
in Fig. 1. Two DOEs are cascaded such that the re-
sulting total transmission function can be changed
continuously by a simple mutual rotation of the
two DOEs. The underlying principle is similar to
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the well-known moiré effect, where a combination of
two gratings with similar grating constants yields a
structure with a much larger spatial beating period.
Typically the moiré effect is generated with absorp-
tive rather than phase structures, and the transmis-
sion function consists of locally harmonic (i.e.,
symmetric, nonblazed) gratings, resulting in a total
diffraction efficiency that is low (<6%).
It has already been described in the literature how

to calculate fringe patterns to obtain varifocal Fresnel
lenses, with a focal length that can be changed by a
lateral shift of one element with respect to the other
[4,5] or by a mutual rotation [6]. However, a signifi-
cant disadvantage in this case is the fact that the over-
all diffraction efficiency is rather small, first because
the moiré elements are absorptive and, second, be-
cause the fringe patterns are harmonic; i.e., they
diffract a large part of the illumination light into un-
desired diffraction orders. It has also beenknown for a
long time [7] that a theoretical efficiency of 100% is
possible with a pair of DOEs consisting of blazed
phase structures. Later, the principlewas generalized
to DOEs that produce various effects, for instance, a
change in refractive power upon general geometric
transformations, such as translation, resizing, or ro-
tation of one of the DOEs with respect to the other [8].
In this work we perform a systematic investigation

of combined DOE elements that are rotated with re-
spect to each other. This comprises varifocal Fresnel
lenses, axicons of adjustable refractive power, or spir-
al phase plates of variable helical charge. Such rota-
tionally variable elements are of practical interest
because they do not change the effective aperture
and because a mutual rotation is easy to implement
in an optical setup.
It turns out that the periodicity of the rotation im-

poses some restrictions on the performance of the
combinedmoiré diffractive optical elements (MDOEs)
thatwere notmentioned in earlier work. The problem
is that a rotation by an angle θ in one direction corre-
sponds to a rotation of 2π − θ in the other direction.
This introduces an ambiguity into the features of
the MDOE. For example, if a MDOE is designed to
produce an adjustable Fresnel lens, it actually gener-
ates two different lenses in adjacent sectors of the
MDOE. We describe how such a sector formation
can be avoided by a modification of the phase profile
structures. In this case, the MDOE can, at least in a

limited range of rotation angle, be used as an efficient
optical element.

2. Basic Principle

An interesting class of MDOEs that have almost
100% diffraction efficiency [7,8] consists of two DOEs
with a complex conjugate transmission function, i.e.,

T1ðr;φÞ ¼ exp½iΦðr;φÞ�;
T2ðr;φÞ ¼ exp½−iΦðr;φÞ�: ð2Þ

To facilitate the description of the mutual rotation,
polar coordinates r and φ are introduced, where
the radial coordinate r is measured from the center
of the DOE. If the second DOE (T2) is rotated by an
angle θ, then the joint (total) transmission function
becomes

Tjointðr;φ; θÞ ¼ expfi½Φðr;φÞ −Φðr;φ − θÞ�g: ð3Þ
The exponent can be expanded in a Taylor series in θ:

Tjointðr;φ;θÞ ¼ exp
�
i

�
∂Φðr;φÞ

∂φ θ−1
2
∂2Φðr;φÞ

∂φ2 θ2þ :::

��
:

ð4Þ
If we consider only phase functions Φ that can be
factorized into a r-dependent and a φ-dependent
contribution, i.e., Φðr;φÞ ¼ ΦrðrÞΦφðφÞ, then Eq. (4)
becomes

Tjointðr;φ;θÞ¼exp
�
iΦrðrÞ
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If one further setsΦφðφÞ ¼ φ, the Taylor series termi-
nates after the first term

Tjointðr;φ; θÞ ¼ expfiΦrðrÞθg: ð6Þ
This suggests that one can generate any freely select-
able radial profile Φr, i.e., any profile that depends
only on r, but not on φ, with a variable scaling factor
proportional to θ. Since θ can be continuously ad-
justed in an interval ½0; 2π� by rotating one DOE with
respect to the other, the scaling of the r-dependent
phase function Φr is continuously adjustable. Impor-
tant examples for radially symmetric phase func-
tions are Fresnel lenses, axicons, or combinations
of these, which will be further discussed in the
following.

For practical purposes it is advantageous that all
DOEs that have the property

Φðr;φÞ ¼ −Φðr;−φÞ ð7Þ
produce their corresponding complex conjugate
when reversed, since this operation replaces the
coordinates ðr;φÞ by ðr;−φÞ. In these cases one can
take a pair of identical DOEs, turn one of themupside
down and place it face-to-face on top of the other in

Fig. 1. Generic setup (not to scale): two diffractive optical ele-
ments (DOEs) are placed directly behind each other. They can
be mutually rotated around a central axis. This combined optical
element manipulates the wavefront of an incident light wave in a
predesigned way that changes with the mutual rotation angle.
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order to get the desired MDOE element. Note that
this condition is fulfilled for the above-mentioned
class of radially symmetric MDOEs, where ΦφðφÞ ¼
φ, with arbitrarily selectable Φr dependence.

3. Varifocal Fresnel Lens

The transmission functionof a lenswith focal length f ,
or refraction power f −1, for a wavelength λ is given by
Tlens ¼ expð−iπr2=λf Þ. If the corresponding parabolic
phase profile is taken modulo-(2π), it corresponds to
a Fresnel lens, or to a so-called “kinoform” of a lens
[2]. Comparing this with Eq. (5) and (6), it turns out
that such a parabolic phase profile can be obtained
by settingΦφðφÞ ¼ φ andΦrðrÞ ¼ ar2 with a freely se-
lectable constant a, which will be shown later to be a
linear scaling factor for the optical power of the com-
bined DOE system.
In this case, the transmission functions become

T1 ¼ exp½iar2φ�;
T2 ¼ exp½−iar2φ�: ð8Þ

To produce phase plates that correspond to these
transmission functions, the complex angles (i.e.,
the arguments of the exp function) have to be taken
modulo-(2π) such that the result consists of an array
of phase values in ½0; 2π�. The corresponding phase
patterns of the two DOEs are plotted in Fig. 2.
There (and in all further DOE plots), gray values

between white and dark correspond to phase values
in the range ½0; 2π�. The two transmission functions
T1 and T2 are complex conjugates. Since they satisfy
the symmetry condition of Eq. (7), the two DOEs are
reversed images of each other. Thus, for practical
purposes, two identical DOEs with the same trans-
mission function T1, which are positioned face-to-
face, can be used.
If the second DOE, T2, is rotated by a certain angle

θ, then the total transmission function of the MDOE
element becomes

Tjoint ¼ exp½iar2φ� exp½−iar2ðφ − θÞ� ¼ exp½iaθr2�:
ð9Þ

As mentioned before, such a transmission function
corresponds to that of an ideal lens with a refractive
power f −1 of

f −1 ¼ aθλ=π: ð10Þ
Therefore, the change of the optical power depends
linearly on the mutual rotation angle θ, i.e.,
df −1=dθ ¼ aλ=π. The corresponding phase transmis-
sion function of the combined DOE system corre-
sponds to a kinoform of an ideal lens that has, due
to its asymmetric, sawtoothlike phase grating struc-
ture, almost 100% diffraction efficiency; i.e., such a
DOE element acts for the designed light wavelength
as a normal glass lens.

The corresponding phase patterns created by the
MDOE system are plotted in Fig. 3 for some positive
and negative rotation angles θ. The figure shows that
the MDOE corresponds to a Fresnel lens with a vari-
able (positive or negative) refractive power, depend-
ing on the rotational direction. The positive and
negative refractive powers can be distinguished in
the plots by the direction of the radial phase change.

However, there appears an effect that is not ex-
pected at first: in addition to the desired Fresnel lens,
a sector appears that includes another Fresnel lens
pattern with another focal length. This sector con-
sists of the area between the two radial lines at φ ¼
π and φ ¼ π þ θ. The reason for the appearance of
these sectors is the periodicity of the function in
Eq. (9), i.e., a clockwise angular rotation of jθj is in-
distinguishable from a counterclockwise rotation by
an angle of −ð2π − jθjÞ. According to Eq. (10),the two
cases correspond to two Fresnel lenses with different
refractive powers of

f −11 ¼ ajθjλ=π; f −12 ¼ −að2π − jθjÞλ=π; ð11Þ
respectively. Since the rotation angle jθj can be ad-
justed in a range between 0 and 2π, the correspond-

Fig. 2. A MDOE that acts as a Fresnel lens with a refractive
power that depends on their mutual rotation angle. Gray values
in the figure actually correspond to phase-shift values between
0 and 2π. Note that the two DOEs are identical if one of them
is reversed (i.e., flipped upside down).

Fig. 3. Superposition of the two DOEs in Fig. 2 at different mu-
tual rotation angles of (upper row) −75°, −30°, and −15°; and (lower
row) þ15°, þ30°, and þ70°. The results are perfect blazed Fresnel
lenses with different refractive powers; however, they include a
sector of an angular range that corresponds to the mutual rotation
angle that comprises a Fresnel lens of a different focal length.
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ing two focal lengths f 1 and f 2 have a different sign
and a different absolute value.
This sectoring effect can be disturbing for imaging

applications. One possible remedy is to cover the un-
desired sector by an absorbing mask but, fortunately,
it is also possible to avoid the sectoring altogether
with a modified phase profile, as will be shown below.

A. Varifocal Fresnel Lens Avoiding Sector Formation

Computer simulations show that the appearance of
the undesired sector is due to the fact that the phase
profile of the two DOEs (Eq. (8)) does not change con-
tinuously when following a circle around the origin.
Instead, there are phase jumps which are not just
integer multiples of 2π, and which appear along
the radial line at the polar angle φ ¼ π, e.g., at the
lines from the center to the left edges the DOEs in
Fig. 2. To avoid this discontinuity, the phase profile
can be slightly modified to

T1 ¼ exp½i round far2gφ�;
T2 ¼ exp½−i round far2gφ�; ð12Þ

where the round f…g operation means rounding of
the argument to the next higher integer number.
An example for the corresponding phase patterns
of the two DOEs is plotted in Fig. 4. The patterns look
very similar to those of the first method (Fig. 2) and
the two DOEs are still inversion symmetric, but the
phase edges now appear rougher. On the other hand,
the discontinuities at the radial line at the polar an-
gle φ ¼ π have disappeared.
The transmission function of the rounded MDOE

is plotted in Fig. 5 for the same rotation angles as
in Fig. 3. Obviously, there is no sector formation any-
more. The transition from negative to positive refrac-
tive powers upon changing the mutual rotation angle
is smooth, forming a blazed Fresnel lens with a well-
defined focal length for small mutual rotation angles
(as shown in the range between −30° and þ30° in
Fig. 5). For larger rotation angles (e.g., 75°), the saw-
tooth grating passes over into a corresponding binary
grating, which means that the efficiency of the com-
bined Fresnel lens decreases and that the lens be-

comes bifocal; i.e., it has two different focal lengths
simultaneously.

The reason for this behavior is again the intrinsic
ambiguity of the rotation angle between an angular
rotation of jθj and −ð2π − jθjÞ. Now the corresponding
two Fresnel lenses of different refractive powers are
not formed at different angular zones (i.e., in different
sectors) of the MDOE (Fig. 3), but instead are em-
beddedwithin one continuousphase structure.Again,
the MDOE comprises two superposed Fresnel lenses
with refractive powers of f −11 ¼ aθλ=π and f −12 ¼
−að2π − jθjÞλ=π, respectively. The relative efficiency
of the two lenses varies as a function of the mutual
rotation angle; i.e., for small angles θ there is a major
contribution of the lens term f 1 that passes over into a
dominant lens term f 2 for angles larger than π.

Figure 6 sketches the diffraction efficiency of the
two superposed lenses as a function of the mutual ro-
tation angle in a range between −2π and þ2π. The
calculations are carried out in theFresnel approxima-
tion by first multiplying the joint transmission func-
tion for each rotation angle θ with a parabolic phase
factor expðiπr2=λf 1;2Þ, where f 1;2 corresponds to the
two focal lengths of the bifocal Fresnel lens according
to Eq. (11). Then a numerical two-dimensional Four-
ier transform of the result is performed and the field
in the center of the resulting two-dimensional array
(i.e., in the focal spot) is read out.

The continuous curve corresponds to the diffrac-
tion efficiency of the first Fresnel lens termwith focal
length f 1. It has its largest efficiency at a zero rota-
tion angle (corresponding to a refractive power of 0),
and it falls off only smoothly (by less than 15%) in an
interval between −90° and þ90°. On the other hand,
the efficiency of the second superposed Fresnel lens
remains below 15% within this interval. There the
refractive power of this second, undesired lens is very
different from the first one; i.e., it is close to the max-
imal value of f −12 ¼ �2aλ, but of low efficiency. Note
that at a zero rotation angle the refractive power of

Fig. 4. MDOEs forming an adjustable Fresnel lens. TheMDOE is
similar to the one in Fig. 2; however, it is calculated according to
Eq. (12) such that there are no phase discontinuities (with the ex-
ception of 2π phase jumps) along circular paths around the center.

Fig. 5. Result of the superposition of the two DOEs of Fig. 4 at
different mutual rotation angles of (upper row:) −75°, −30°, and
−15°; and (lower row:) þ15°, þ30°, and þ70°. A sector formation
like that in Fig. 3 is now avoided.
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the second lens jumps from f −12 ¼ þ2aλ to f −12 ¼ −2aλ,
but at this angular position the efficiency of the cor-
responding lens in fact vanishes, such that the jump
does not appear as a physically observable disconti-
nuity. It is also interesting that this efficiency depen-
dence on the rotation angle is different from that of
the “simple” Fresnel MDOEs that are calculated ac-
cording to Eq. (8). There, the efficiency of the two
superposed lenses just changes linearly between 0
and 100% with the rotation angle; i.e., there the ef-
ficiency ratio is just determined by ratio of the sector
areas in which the two different Fresnel lenses are
displayed. The nonlinear (cosinelike) dependence ob-
tained for the Fresnel MDOEs with avoided sector
formation in Fig. 6 has the advantage that a change
of the refractive power around its minimal value
produces only a second-order change in the corres-
ponding efficiency.
If one of the two DOEs is continuously rotated with

constant speed with respect to the other, the corre-
sponding Fresnel lens is periodically scanning within
an adjustable range of focal lengths. This may have
applications in imaging systems (inspection cameras)
and beam scanning systems.

B. Practical Considerations

The maximally adjustable focal range for θ ∈

ð−2π; 2πÞ is given in Eq. (10), i.e., f −1 ¼ aθλ=π. There
is, however, a limitation on the maximal value of the
constant a that is imposed by the resolution of the
physical DOE. To resolve a grating that is printed
as a pixel array, the maximal phase shift between
two adjacent pixels has to be smaller than π, i.e.

dΦ
dr

<
π
p

and
dΦ
rdφ <

π
p
; ð13Þ

where p is the size of one DOEpixel. The first and sec-
ond conditions determine the radial and tangential

phase resolution, respectively. For DOEs generating
Fresnel lenses it turns out that the first condition is
always more restrictive than the second one [9], thus,
in the following it can be considered alone.

Since the DOEs have the transmission functions
T1;2 ¼ exp½�iar2φ�, one has Φ ¼ �iar2φ. Together
with Eq. (13), this yields the condition

2armaxφmax < π=p; ð14Þ
where rmax is the maximal radius of the DOE and
φmax is the maximal polar angle. Since φ is limited
to a range between −π and π, φmax corresponds to
π, and the condition becomes

a < 1=2prmax; i:e:; amax ¼ ð1=2prmaxÞ: ð15Þ
Thus, the maximal a value for a certain DOE de-
pends on both its pixel resolution and the desired
maximal radius.

According to Eq. (10), the refraction power of
the MDOE lens with such a amax value is f −1 ¼
amaxθλ=π. In the previous section, it was shown that
for getting an efficiency of>85%, the rotational range
of θ should be limited to an interval between −π=2 and
þπ=2. Thus, by inserting θ ¼ �π=2 altogether, one
derives the limitation

− f −1min < f −1 < þf −1min; ð16Þ
where

fmin ¼ 4prmax=λ ð17Þ
is the smallest focal length of theMDOE that still has
a diffraction efficiency of over 85%, and which is actu-
ally achieved at a mutual rotational angle of π=2. As
a practical example, a DOE with a typical pixel size
of p ¼ 1 μmand a diameter of 2rmax ¼ 10mmhas a re-
fraction power adjustable in a range between −25 and
þ25 diopters (corresponding to a focal length range
between �4 cm and �∞) at a wavelength of 500nm.

A further point of practical importance is the ro-
bustness of the method against misalignment, which
may arise if the two adjacent DOEs are not centered
perfectly. At first glance, it might be assumed that
such a misaligned pair loses its intended function.
Figure 7 showsa simulation for the joint transmission
function of two misaligned DOE types (left two col-
umns: Fresnel lens MDOE according to Eq. (8); right
two columns: Fresnel lens with avoided sector forma-
tion according to Eq. (12)). TheMDOEs are simulated
for two different mutual rotation angles of 10° and
30°. From the top to the lowest row, the simulated
misalignment (i.e., the decentering of the rotation
axis from the DOE center) changes from 1pixel to
5 and 10pixels. Since the MDOEs have a size of
512pixels × 512pixels, this corresponds to a mutual
decentering of 0.2%, 1%, and 2% of the twoDOEswith
respect to their diameter.

Our simulations show that such a misalignment
leads to lens errors, such as astigmatism, and the ori-
ginally spherical Fresnel lens becomes elongated in

Fig. 6. (Color online) Diffraction efficiency and refractive power
of the Fresnel lenses in Fig. 5 as a function of the mutual rotation
angle between the two DOEs. The joint DOE corresponds to a bi-
focal Fresnel lens with two refractive powers (red and blue curves),
the relative efficiencies of which depend on the rotation angle.
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the direction of the lateral displacement. The relative
lens error (as compared to the curvature of the lens)
seems to become smaller for larger rotation angles,
which indicates that the lens deformation stays con-
stant, whereas the refractive power increaseswith in-
creasing rotation angle. Further simulations of the
point spread function of the distorted lenses (not pre-
sented here) indicate that they do not lose their func-
tionality of focusing light near the precalculated focal
plane. The simulations showa smooth gradual depen-
dence of the introduced lens errors on the misalign-
ment; i.e., for small decentering there is no abrupt
failure of the MDOE performance. Thus, a pixel-by-
pixel transverse alignment is a desirable, but not
an indispensable, prerequisite.
There exists a physical restriction for the maxi-

mally allowed axial distance between the two DOEs.
To assure that the light diffracted from one pixel of
the first DOE passes through the correct pixel of the
second DOE, the distance between the two DOEs
should be at least a factor of 2 smaller than the Tal-
bot length LTalbot ¼ 2p2=λ, since at this distance a
grating replicates with a π-shifted phase. According
to this criterion (at a wavelength of λ ¼ 500nm), the
axial distance between two DOEs with a pixel size of
p ¼ 1 μm should be smaller than 2 μm, whereas a lar-
ger pixel size of 4 μm allows for an axial distance of
approximately 32 μm. Concerning the robustness of
method with respect to lateral displacements, it
may be expected that also a larger axial distance will
not automatically lead to an abrupt functionality loss
of the element.

C. Advantageous Modifications

In many cases, it is not desired to change the refrac-
tion power of a lens symmetrically around zero

power, but instead around a certain offset value. This
might be achieved by placing the combined DOE ele-
ment directly behind a “normal” glass lens that acts
as an offset. However, this can be also achieved with-
out an external glass lens, by multiplying the trans-
mission functions of each of the two DOEs with an
offset lens term, each supplied with half of the
required refraction power f −1offset, i.e.,

T1 ¼ exp½i roundfar2gφ� expðiπr2=2f offsetλÞ;
T2 ¼ exp½−i roundfar2gφ� expðiπr2=2f offsetλÞ: ð18Þ
In this case, the MDOE changes its focal length as a
function of the mutual rotation angle as before (see
Fig. 6), but now around an offset focal length, f offset.
The balanced distribution of the offset factor among
the transmission functions has the advantage that
they still fulfill the symmetry condition of Eq. (7),
such that an upside-down flip of one DOE generates
the other. An example of two DOEs according to
Eq. (18) is shown in Fig. 8.

4. Axicons with Variable Refraction Power

The above considerations can be generalized to pro-
duce all kinds of MDOE elements for any radially
symmetric phase transmission function. One impor-
tant member of this class is an axicon, defined by
its transmission function Taxicon ¼ expðiarÞ. Such ax-
icons produce so-called Bessel beams, which are cir-
cularly symmetric beams with an axially elongated
focal region, which are applied, for example, in laser
cutting systems, optical tweezers, or for fiber cou-
pling. In analogy with the construction of the Fresnel
lens, an axicon is obtained by setting ΦφðφÞ ¼ φ
and ΦrðrÞ ¼ ar, where a is again a constant that
can be chosen.

The transmission functions of the two DOEs gen-
erating an axicon become

T1 ¼ exp½iarφ�;
T2 ¼ exp½−iarφ�: ð19Þ

An example for such a transmission function is
plotted in Fig. 9(a). If such a DOE is rotated by an an-
gle of 25° with respect to its (reversed) counterpart,

Fig. 7. Sensitivity of MDOEs to transverse misalignment:
MDOEs generating a Fresnel lens (left two columns), and a Fres-
nel lens with avoided sector formation (right two columns), are
plotted for two mutual rotation angles of 10° and 30°, and for three
different decentering values of 1pixel (upper row), 5pixels (middle
row), and 10pixels (lowest row). The total size of each MDOE is
512pixels × 512pixels. The misalignment introduces lens defor-
mations but it does not completely destroy the performance of
the element.

Fig. 8. Two DOEs calculated according to Eq. (18) produce a com-
bined DOE acting as a varifocal Fresnel lens with an offset refrac-
tion power; i.e., at a zero mutual rotation angle, the focal length is
f offset.
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the joint transmission function shown in Fig. 9(d) re-
sults. Similar to the last section, the refractive power
of the axicon formed by the combination of these two
DOEs is proportional to the constant a and to themu-
tual rotation angle θ.
Obviously, there is again the effect that an unde-

sired sector forms that contains an axicon with a dif-
ferent refractive power. Similar to the last section,
the formation of such a sector can be avoided by in-
cluding a rounding operation, i.e.,

T1 ¼ exp½i roundfargφ�;
T2 ¼ exp½−i roundfargφ�: ð20Þ

An example for such a transmission function is
plotted in Fig. 9(b) and the result of the MDOE for
a mutual rotation angle of 25° in shown in Fig. 9(e).
In analogy to the last section, the combined transmis-
sion function corresponds to that of two superposed
axicons of different refractive powers. As before, the
relative efficiency of the second axicon structure is
again below 15%, as long as themutual rotation angle
is limited to the interval between −90° and þ90°.
Finally, it might be desirable to produce an axicon

lens, i.e., an axicon with a variable refractive power
that is superposed by a normal focusing or diverging
Fresnel lens of a fixed focal power f offset. The corre-
sponding formula for getting such an element is

T1 ¼ exp½i roundfargφ� expðiπr2=2f offsetλÞ;
T2 ¼ exp½−i roundfargφ� expðiπr2=2f offsetλÞ; ð21Þ

and an example for a corresponding MDOE is plotted
in 9(c).
Such a structure can, for example, produce a ring-

shaped light intensity distribution from an incoming
plane light wave that focuses at a certain distance be-
hind the element. Rotating one of the DOEs with re-
spect to the other leads to a changing radius of the
focused light ring. The DOE structure has the advan-
tage that the desired axicon-shaped light field has a
different divergence compared to residual nondif-
fracted light,which corresponds to the zero diffraction
order of the combined DOE. Such residual light may
appear if the DOE is not realized perfectly, e.g., if the
calculated phase values are not properly recon-
structed in the physical DOE structure. Because of
the different divergences of the desired axiconlike dif-
fracted light and the undesired nondiffracted light,
the two components can easily be separated, as with
an aperture stop directly in the focal plane of the zero-
order light.
Another interesting transmission function which

is radially symmetric and which can therefore be pro-
duced by the above mentioned method is that of a
pure phase shifter, i.e., Tshifter ¼ expðiaθÞ, where θ
is again the mutual rotation angle. According to
the above considerations, this can be produced by
combining two DOEs with transmission functions
of T1;2 ¼ expð�iaφÞ. Using such a MDOE as a phase

shifter in interferometers has the advantage that the
phase is changing continuously by just keeping up
the rotation of one DOE with respect to the other.
The integer constant a acts as a gear factor that
translates rotational angles into phase shifts.

5. Spiral Phase Element with a Variable Helical Index

In the following, an example is investigated that is
not radially symmetric and which, therefore, cannot
be generated as before, i.e., by just settingΦφðφÞ ¼ φ
and ΦrðrÞ to the desired r-dependent function. The
desired transmission function is now given by
Tspiral ¼ expðiℓφÞ, which corresponds to a spiral
phase plate [10,11] with a helical charge of ℓ.

Spiral phase elements have important applica-
tions in beam shaping for generating doughnut
beams, which are used for optical trapping [12,13]
in laser tweezers, for transferring angular momen-
tum to microscopic particles [14,15], for digital spiral
imaging [16], for spiral phase contrast imaging in mi-
croscopy [17,18] and interferometry [19], or for STED
microscopy [20]. Here we design a set of two succes-
sive DOEs that can act as a spiral phase element
with a continuously adjustable helical charge. The
basic transmission functions of the corresponding
DOEs are given by

T1 ¼ exp½iaφ2�;
T2 ¼ exp½−iaφ2�; ð22Þ

where a is a constant that determines the change in
the helical index of the combined DOE as a function
of the rotation angle. An example for a set of DOEs
with the transmission functions according to Eq. (22)
is shown in Fig. 10. Note that now the symmetry

Fig. 9. Calculated DOEs for creating an axicon with a refractive
power that depends on the mutual rotation angle. All DOEs in (a),
(b), and (c) have to be combined with a secondDOE that is identical
to the first one, but flipped upside down. The DOE in (a) is calcu-
lated according to Eq. (19) and produces a perfect blazed axicon
with, however, an undesired sector [see example (d)] for a mutual
rotation angle of 25°). The DOE in (b) is calculated according to
Eq. (20) and produces axicons without the undesired sector forma-
tion [see example (e)]. The DOE in (c) is calculated according to
Eq. (21) and produces an axicon with a variable refractive power
that is superposed by a Fresnel lens with a constant focal length.
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condition of Eq. (7) is not satisfied anymore, which
means that the two DOEs are not just mirror images
of each other. Therefore, for this specific task two dif-
ferent DOEs have to be produced individually.
The transmission function of the combined DOE at

a mutual rotation angle of θ now becomes

Tjoint ¼ expðiaφ2Þ exp½−iaðφ − θÞ2�
¼ expði2aθφÞ expð−iaθ2Þ: ð23Þ

The first factor corresponds to the transmission func-
tion of a spiral phase plate with a helical index of ℓ ¼
2aθ and the second factor to a spatially uniform phase
shift by an amount of −aθ2. If such a combined DOE is
used as amode converter, the helicity of the joint spir-
al phase element can be linearly adjusted by the mu-
tual rotation angle θ, whereas the associated uniform
phase shift does not play a role. The transmission
functions of the MDOE element are shown in Fig. 11
for various rotation angles.
Because of the mentioned phase ambiguity, the

combined spiral phase element contains two helical
indices of ℓ1 ¼ 2aθ and ℓ2 ¼ −2að2π − θÞ in two
different sectors, respectively. Using T1;2 ¼ exp
½i roundfaφgφ�, in analogy to the modifications men-
tioned before, turns out to be less useful here than

in the radially symmetric cases that were treated be-
fore, becausewith thismodification, as before, the two
spiral phase plates are superposed (instead of being
confined to individual sectors), thus giving rise to a
second-order moiré effect due to the beating of two
helical structures on top of each other, which leads
to unwanted effects for some angles.

Nevertheless, Fig. 11 shows that it is possible to
design DOE elements according to Eq. (23), with a
large a-factor, that generate a considerable change
of the helical charge at a rather small mutual rota-
tion angle, such that the area of the undesired sector
is sufficiently small for many practical applications,
such as the transformation of a Gaussian laser beam
into a doughnut mode of an adjustable helical index.

6. Discussion and Conclusions

Combined DOE elements with variable optical prop-
ertiesmay have applications inmany fields of applied
optics, e.g.. in cameras, production surveillance sys-
tems, laser scanners, beam shapers, fiber optic cou-
plers, or as flexible tools in prototyping and
scientific applications. The principle can be down-
scaled for, for example, x-ray optical systems, or up-
scaled to build large optical components, such as
flexible collimation lenses for overhead projectors.
The important class of radially symmetric compo-
nents, such as Fresnel lenses and axicons, has the ad-
vantageous feature that the combined MDOE is
composed of two identical DOEs, one of them just
flipped upside down and placed on top of the other.
If the DOEs are properly designed for the desired wa-
velength, then the obtainable efficiency is close to
100%. For practical applications, optical mounts have
to be used that allow the rotation of one element with
respect to the other without eccentric displacements.
However, even a noncentered DOE pair does not lose
its functionality but just acquires lens errors, similar
to a misaligned glass lens. Although the principle of
combining DOEs to produce new elements has been
known for a long time [7], it has not yet led to many
practical applications. This might now change, since
today industrial methods to produce high-resolution
DOEs are readily available. Once a DOE “master” is
produced, mass production of cheap copies is possible
with embossingmethods. Thus, the methodmay help
to produce inexpensive adjustable optical systems.
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