
1

TRIBES
®
 Script Programming

Jacob Gohlke

I. Foreword

II. Introduction

- The Tools

- The Files

- The IDE

- The Language

- First Modification

III. Variables and Operators

- General Variable Information

- Numerical Variables

- Boolean Variables

- String Variables

- Object, Player, and Client Variables

IV. Decision and Looping Statements

- If-Else

- While Loop

- For Loop

V. Functions and Datablocks

- Functions

- Datablocks

VI. Arrays

- Arrays / Subscripted Variables

VII. Sorting and Searching

- Linear Search

- Numeric Sort

- Alphabetical / Lexicographic Sort

VIII. Bitwise

- Theory

- Bitwise Operators

- Uses for Bitwise

IX. Last Words

X. Appendices

- Function Reference

2

3

4

1.1 Intro

 TRIBES Script has been shrouded in mystery for a while

now; the general public knows it exists, however only the

elite few are extremely good at it. I’ve written this book

on basically every subject that will help you become one of

those elite few. I assume that you’ve got a basic working

knowledge of a PC and the Windows operating system, you’ve

at least played TRIBES before, and you have access to the

internet. I use Windows XP, but any version beyond Windows

98 should work fine.

 If you want to fiddle with server scripts or make the

next ‘Annihilation’, this book is for you. This is the

first edition, and there will be revisions if I find I made

a mistake somewhere. If you find any, email me at:

‘jbgohlke@yahoo.com’.

1.2 About the Author

Heh, well you probably want to know who’ll be teaching

you. I’m Jacob, or better known as Vage, and I’ve been

coding and modding TRIBES since early 2004. I’ve created

ModX and helped various coders with issues. I currently

reside in Houston, TX.

Enjoy the book!

5

6

2.1 The Tools

To begin coding, you’re going to need several things,

a few of which can be downloaded off of the internet:

1) A VOL Extraction Program

2) A VOL Complication Program

3) A Text Editor, preferably with Syntax Coloring

4) Common Sense

5) Persistence and Patience

I can help you with the first three, but the others you

have to work on by

yourself. To get a

VOL Extraction

program, you can

search for several

different ones, such

as Volumer or WinVOL.

I personally use

WinVOL for its simple

interface. When you

open WinVOL you’ll

first be presented

with a splash screen

giving credit where it is rightfully deserved. Once at the

next screen you’ll see something similar to the picture to

the right. There are three different boxes here, from left

to right: The Browser Box, The Directory Box, and the

Volume Contents Box. The Browser Box allows you to browse

trough your drives and folders to wherever you’d like to be.

The Directory Box shows all VOL files within the current

directory, and the

Volume Contents well…

displays the current

volume’s contents. You

can then select the

files you’d like to

extract and secondary-

click on them. Voila,

instant extraction!

You’ll also need a VOL

Complication program to

make your own VOLs

however. There are many

out there, but I use

VisualVT myself. On my

7

bigger projects I use a batch file and the original VT

program, but for

learning purposes

VisualVT should

work just fine. If

you care to have

your own batch file,

it’s in the ‘Code

Snippets’ section.

This is a rather

self-explanatory

interface, so I

won’t go into

detail on how to

use it. Well,

that’s 2 out of 5!

Let’s go on. Next,

you’ll need a Text

Editor of some sort. Now, Notepad will work just fine, but

you’ll find it will grind on your nerves after a while. I

personally recommend Tribal IDE. It was originally make for

Tribes 2, but it works just fine for TRIBES. The syntax

coloring will give you a great advantage over Notepad

because you’ll be able to distinguish similar parts of code

from one another. The above picture gives you a preview of

what it looks like. Well, that’s all I can help you with.

The last two are out of my hands. I recommend a self-help

book or some thing similar. Once you have all the tools,

you are ready to begin modding.

2.2 The Files

Once you have all the tools you need, and are familiar

with them, we can proceed. To start, CS files are Script

files. They are the most common of file types and will hold

all the code that you create. VOL files are basically like

a container for the CS files: They hold everything together,

instead of having lots of CS files floating around. To

start modifying the ‘base’ mod, we’re going to need to gain

access to the CS files from the ‘scripts.vol’ file. The

original script files should never be replaced, unless you

have a recent backup. You need to open the VOL extractor

you downloaded, and select the ‘scripts.vol’ file from your

TRIBES directory. Don’t see it? Well, first let’s find your

TRIBES directory. If you have a shortcut on your desktop or

start menu to TRIBES, right-click on it and look at the

target text box on the ‘Shortcut’ tab. That’s your TRIBES

8

directory. It will look something like this: ‘X:\Program

Files\Dynamix\TRIBES\’. The ‘scripts.vol’ is in the ‘base’

folder. Another alternative is to use Windows’ Search

feature. You need to now make a folder within the TRIBES

directory with your Mod Name. For learning purposes, I’m

going to use the folder name ‘test’; I recommend you do the

same. Now, go back to your extractor. Open up the

‘scripts.vol’ you copied with it, and extract everything

from the file to your newly created folder. Once the VOL

file is extracted, rename it to ‘scripts.vol.bak’. This way,

you can always restore from a messed-up mod or TRIBES. If

you leave the file as-is, any changes will be overridden.

Congratulations, you have a mod! Of course, it’s nothing

special, but we’re going to change that, right? Next up is

to create a shortcut to your mod. First, copy the existing

one from your start menu or desktop onto the desktop (Or

create a new one, depending on your circumstances). Rename

this to something along the lines of ‘TRIBES test mod’ or

whatever your mod name might be. Right-click on this

shortcut and go to the ‘Shortcut’ tab. We are going to

change the ‘target’ textbox. Because we don’t want to run

‘base’ we want to run our mod, ‘test’, we need to change

this from something like ‘X:\Program

Files\Dynamix\TRIBES\Tribes.exe’ to ‘X:\Program

Files\Dynamix\TRIBES\Tribes.exe –mod test’; Where ‘test’ is,

of course, your mod name. If you were to run TRIBES from

this shortcut, your server type would be the mod name

‘test’ with ‘base’ at the end, and it would run your mod

‘test’. If you didn’t do it correctly, you might get a

‘Game::EndFrame: Unknown command.’ Error.

2.3 The IDE

The Integrated Development Environment or IDE for

short is where you’ll be spending most of your coding

career. In the beginning of the chapter I told you to get a

Text Editor. In TRIBES Script, the terms are nearly

synonymous, In Tribal IDE, all the extras are Tribes 2 only,

but it’s still a very good editor. There are others, such

as Crimson Editor or EditPad but you must create your own

syntax grammars so they can properly highlight your code,

which at a beginner level can be nearly impossible to do.

So, I would recommend you use Tribal along with me. Play

around with the program a while, get familiar with the

interface and the various text editing tools. Once you’re

satisfied, move on.

9

2.4 The Language

The TRIBES Script language is an odd mix of PHP, Java,

and C. If you’ve got experience in any of these languages,

you should do just fine. For you others, there is a quite a

learning curve but you should manage if you persist. A

sample bit of code might look something like this:

 function Sample::Function(%msg)

 {

 echo(%msg);

}

You can probably see the similarities if you have

experience with another language and if not this is a good

first look at a language. The syntax seems straight-forward

enough, let’s analyze it. The first thing you see it

‘function’. This denotes that your starting a function

block. The next is the identifier, ‘Sample::Function’. This

tells TRIBES what your function’s name is. Then comes the

argument list encased in parentheses, ‘%msg’. This is a

list of variables that are used in the function. The rest

is the body of the function encased in brackets. We’ll

analyze the language in more detail throughout the book.

Syntax errors appear on the TRIBES console when your in-

game. To gain access to the console, click ‘~’ on your

keyboard. You should see white text overlay itself over

your game. You can type almost any script command in here.

2.4 Style and Readability

 Style and readability is different for everyone,

that’s what makes us human and makes reading other’s code

hell. So, follow my style and everything should work out

fine. If you ask others for help, say for instance on a

forum or message board, be sure to have all your formatting

issues worked out and solved. You’ll get more response that

way.

2.5 First Modification

Now we are going to make your first modification. You

ready? Good. Go to your mod directory created earlier.

Let’s open up ‘game.cs’. You’ll notice a lot of new and

foreboding things, don’t worry I’ll guide you though it.

Now, scroll down to about line 200. You should see

something similar to this:

10

$spawnBuyList[0] = LightArmor;

$spawnBuyList[1] = Blaster;

$spawnBuyList[2] = Chaingun;

$spawnBuyList[3] = Disclauncher;

$spawnBuyList[4] = RepairKit;

$spawnBuyList[5] = "";

 This is an array of items. You can probably guess what

they are by their names. Arrays are explained in a later

chapter, but just take them for what they are now. The

‘$spawnBuyList’ global variable holds items that are bought

when the player spawns or respawns. Let’s change it, shall

we? For this exercise we are going to modify the second

variable from ‘Blaster’ to ‘PlasmaGun’. Where did PlasmaGun

come from you ask? Well, It’s one of the items already

programmed into ‘base’. More details will follow in a later

chapter. Well, our final variable should look like:

$spawnBuyList[1] = PlasmaGun;

Did you do it right? If not, don’t fret, just fix it. Once

you have that done. Save the modified file and run TRIBES

from your mod shortcut. You should spawn with a Plasma Gun

instead of a Blaster. Cool, eh? Well, it’s not exactly a

remote mine or Particle Beam Cannon, but it is a start.

11

12

3.1 General Variable Information

 Variables are a basic concept of

Algebraic Mathematics, and Computer

Science. You can think of variables as

a container that can hold different

things. This is illustrated in the

image. As you can see, the variable has

an identifier and a value, or constant.

In TRIBES Script, a variable can be

anything, and changes according to what

it’s storing. This is different from

most languages where variables can only

be certain types, such as numbers or a

string of letters. Variables, in TRIBES Script, look like

this:

%variableName

To use a variable in TRIBES Script, you only have to type

it and TRIBES will create it automatically. You cannot use

a variable by itself, it must be used in a function or

operation. Operations are performed with operators, which

are explained for each variable type. To assign a value to

a variable, you might write some code that looks like:

%numberVariable = 1234;

%stringVariable = “Hello”;

This assigns ‘numberVariable’ to equal the number ‘1234’

and ‘stringVariable’ to equal “Hello”. As you see above, we

are using the ‘=’ character to assign a constant (ex. 1234)

to a variable. This character, ‘=’ is called the

‘Assignment Operator’, and can be used on any variable type

with no ill effects. This is called ‘Assignment’. You can

also assign a variable to another variable. For example:

%numberVariable = 1234;

%stringVariable = %numberVariable;

stringVariable would be equal to 1234. Cool, eh? Also,

global variables are declared like so:

$globaVariable = 0;

globalVariable can be accessed anywhere. I should mention

now that there are two types of variables, Global and Local.

These are different because of something called ‘scope’.

13

The scope of a variable depends on when TRIBES deletes it.

A local variable is only available for use in the function

it was created in, whereas a global variable, or global,

can be used anywhere.

3.2 Numerical Variables

 Numerical Variables are variables that store numbers,

or a numeric value. To create a numerical variable just

assign a number, whether it be ‘1234’ or ‘45.87983’ to a

variable. Once you have a numerical variable, you can

perform arithmetic with it. There are several operators you

can use for this type, the most basic of which I’ll list

here, assume %x = 10:

Operation Operator Example Example's Final Value

Addtion + 10 + 10 20

Subtraction - 20 - 10 10

Multiplication * 10 * 10 100

Division / 10 / 10 1

Modulous/Remainder % 10 % 4 2

Additive Assignment += %x += 10 20

Subtractive Assignment -= %x -= 10 0

Multiplicative Assignment *= %x *= 10 100

Divisive Assignment /= %x /= 10 1

These are the most basic of operations you can perform on a

variable. This is basic arithmetic and you should know it

already. A sample using these operators on variables would

look like:

%x = 10;

%y = 10;

Echo(%x + %y);

Notice that X equals 10 and Y equals 10, and you are

echoing to the console 10 + 10, or 20. Easy, eh? Well,

remember that these expressions aren’t evaluated left-to-

right as we read, there is a method by which mathematics

are processes, call the ‘Order of Operations’ or in

Computer Science, ‘Operator Precedence’. Here is an

example:

%x = 10;

%y = 10;

%z = %x + %y * %y;

Z will equal 110, not 200. Operator Precedence can be

modified with special operators called ‘Precedence

14

Modifiers’. These are parentheses, ‘()’. An example would

be:

%x = 10;

%y = 10;

%z = (%x + %y) * %y;

Z will equal 200, not 110. These operators above are called

‘Binary Operators’, Binary means that it takes two ‘things’,

or operands for it to work, whether they are constants or

variables. There is another type of operators called ‘Unary

Operators’. These are Unary because they only take one

operand to work. Here’s a list of some basic ones, assume X

is equal to 10:

Operation Operator Example %x's Final Value

Incremental Operation ++ %x++ 11

Decremental Operation -- %x-- 9

These unary operators can save you time in certain things,

and will be used later on. There are also built-in

functions that you can use. These are in the appendices.

3.3 Boolean Variables

 George Boole invented a branch of mathematics call

‘Boolean Algebra’. Unlike its number-based brethren,

Boolean Algebra used ‘true’ or ‘false’. I won’t go into

details, but boolean variables are perfect for computers

because in a computer’s CPU, there are tiny transistors

that are either ‘on’ or ‘off’, or ‘true’ or ‘false’. There

are several operations that can be done with a boolean

variable, here is a table, assume x is equal to true and y

is equal to false:

Operation Operator Example %x's Final Value

Not ! !%x false

And && %x && %y false

Or || %x || %y true

Xor None %x XOR %y true

There is no Logical Xor operator in TRIBES, but you’ll be

using XOR later on in the Bitwise chapter. Truth tables can

be a big help, I’ve created some basic ones for you on the

next page…

15

AND A B Result

TRUE TRUE TRUE

TRUE FALSE FALSE

FALSE TRUE FALSE

FALSE FALSE FALSE

OR A B Result

TRUE TRUE TRUE

TRUE FALSE TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE

XOR A B Result

TRUE TRUE FALSE

TRUE FALSE TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE

NOT A Result

TRUE FALSE

FALSE TRUE

Booleans can help you more then you think, as you’ll be

using them extensively later on.

3.4 String Variables

 You may be saying ‘What the hell is a string?’ Well,

the easiest explanation would be that it’s a bunch of

characters (ex: ‘A’) ‘strung’ together. An example of a

string would be “Hello” or ‘I’m a TRIBES Coding Master!’

You can create a string just like any other variable,

except string constants must be surrounded in double-quotes.

Example:

%x = “Hello”;

X will equal the string ‘Hello’. Strings can also be

combined, or concatenated. The concatenation operator is

‘@’ or the less commonly used ‘$+’, both do the same thing.

Example:

%x1 = “con”;

%x2 = “catenate”;

16

%x3 = %x1 @ %x2;

X3 will equal ‘concatenate’. There are also special

functions that you can use that will be explained later.

String variables don’t have a lot of built-in methods,

however. There are several in the appendix that I’ve made

myself, familiarize yourself with these as I’ll be using

them later on.

3.5 Object, Player, and Client Variables

 Objects are things that are created inside the server.

They could be a Repair Pack or a Particle Beam Weapon or a

Player wearing a Heavy Armor. They all have an ID number to

which TRIBES can locate them easily, this is what is held

in a Object variable. They may seem just like Numerical

Variables, but they can be used quite differently.

Player Variables are the same as object variables, except

that they point to the Client’s Player. This means that if

I had a player variable of Client A, I’d have the Object ID

of his current armor.

Client Variables are quite different. They point to a

special number that points to a player’s Client number.

This client number is used by the engine for various things.

If you’re doing client-side scripting, the Client ID for

the server is always 2048. The first client on a server is

always 2049 and it goes up from there.

3.6 Property Variables

 Objects, Clients, and Players all have something

called ‘Property Variables’. If you’ve ever used Visual

Basic you know what I mean. A property variable is just

like another variable, except it is ‘paired’ with another

variable. These are odd, but can become quite useful. For

example:

 %clientId.isAdmin = true;

These are frequently used by TRIBES Base to set a player to

Admin. This variable ‘isAdmin’ is used in ‘admin.cs’ of the

base mod quite a bit. You might say, ‘Well, wouldn’t a

global variable be easier?’ Well, it may be easier, but it

wouldn’t work as well. If you think that your code would

look cleaner or more readable, use property variables

instead of globals. Also, when you get into the chapter on

17

datablocks, you’ll see that they also have property

variables.

18

19

4.1 If-Else

 Do you remember the boolean variable type earlier in

the book? Well, you’ll be using them all the time when you

use statements that alter program flow. ‘What’s program

flow?’ You may be asking. Well, programs ‘flow’ or execute

top-to-bottom, unless something alters its set course. The

simplest of the statements to alter program flow is the If-

Else statement. This is used like this:

 if(%bool)

 {

 //Do Some Stuff…

}

else

{

 //Do Other Stuff…

}

%bool is a boolean variable. The if() statement checks to

see if the expression in it’s parentheses evaluates to true,

if it is, run the things inside it’s brackets, {}.

Otherwise just go on and skip everything inside the

brackets. If the expression evaluates to false program

execution hits the else statement and runs everything

inside those brackets. You could also do something like

this:

 if(%bool)

 {

 //Do Some Stuff…

}

else if(!%bool)

{

 //Do Some Stuff…

}

This is exactly the same thing as the first code block. You

can even omit the else altogether. Example:

 if(%bool)

{

 //Do Some Stuff…

}

In the above code, the else statement is nothing. It would

look like this:

20

 if(%bool)

 {

 //Do Some Stuff..

 } else {}

See? It should all be coming together now. Also, to shorten

your work up a bit, if you only want to execute one

statement if the expression is true, you can omit the

brackets entirely like so:

 if(%bool)

 //Do One Thing…

Or…

 if(%bool)

 //Do One Thing…

 else

 //Do Another Thing…

Ok, now that you know the syntax, let’s get into some more

difficult things. So far, you’ve heard the term expression

used quite a bit. The example was %bool, which is a really

easy expression, it depends entirely upon the value

of %bool. So, the expression evaluate to true if %bool is

equal to true and vice-versa. It’s not always that clear-

cut. You can use several conditional operators to construct

an expression. Here is a list, assume %x = 10 and %y = 20:

Operation Operator Example Evaluates to…

Equal Conditional == %x == %y false

Not Equal Conditional != %x != %y true

Less Than Conditional < %x < %y true

Greater Than Conditional > %x > %y false

Less Than Or Equal To Conditional <= %x <= %y true

Greater Than Or Equal To Conditional >= %x >= %y false

Also remember, that you can combine or negate expressions

with the logical AND, NOT, and OR operators that were

explained earlier. You can also use parentheses to modify

the way the expression is interpreted. Here are some

expression examples, assume %x = 10, %y = 20, and %z = 10:

 %x == %y returns false

 %x == %z returns true

 !(%x == %y) returns true

 (%x != %y) returns true

 (%x > %y) returns false

21

Here are some more complicated ones:

 (%x != %y) && (%x == %z) returns true

 (%x > %y) && (%x > (%z + 100)) returns false

Let’s examine this last expression ‘(%x > %y) && (%x > (%z

+ %y))’. We know that when you AND two expressions, they

both have to be true for the result to be true. So, if the

first expression is false, couldn’t we just stop there? We

do, and so does the computer. This is called Short-

Circuiting and makes it so if the first expression is false,

then the second is never executed or evaluated. Well, now

that we’ve got all that through, let’s go on.

4.2 While Loop

 The while structure is an incredibly useful little

thing. It allows you to repeat code any number of times,

and it’s syntax is very similar to If-Else. Example:

 while(%bool)

 {

 //Do Something…

 }

You must remember though, that the expression used must be

changed somehow in the loop, otherwise you’ll end up with

something called an Infinite Loop. This occurs when the

expression never evaluates to false so the loop can never

stop. You might do something like this:

 %i = 1;

 while(%i < 5)

 %i++;

If you go though this, it will exit eventually because you

are incrementing %i each time in the loop. Can you tell me

how many times this loop will execute? If you said 4 you’re

correct. If you said 5, that’s a common mistake so don’t

fret. If you were to do the loop by hand you’d see that is

goes from 1 to 4. When %i is equal to 5, the loop exits.

You can use any expression or boolean variable, just make

sure they it exits eventually.

4.3 For Loop

 The For Loop structure is my favorite loop, as I think

it’s the most useful. The for loop consists of 3 parts,

besides the body. These are the Initialization, Evaluation,

22

and Incremental parts. Any of these can be omitted, but if

you use none of them, you end up with an infinite loop and

you need to use the ‘break’ statement inside the loop. Here

are two examples:

 for(%i = 1; %i < 5; %i++)

 {

 //Do Some Stuff

 }

 %i = 1;

 for(;;)

 {

 if(%i < 5)

 break;

 //Do Some Stuff

 %i++;

 }

They both do the exact same thing. There is also another

special statement you can use called ‘continue’. This ends

the current execution of the loop and goes on to the

beginning again. Here is an example:

 for(%i = 1; %i < 5; %i++)

 {

 if(%i == 1)

 continue;

 //Do Some Stuff

 }

The first run of the loop, %i will equal to 1 and execution

will stop there, and go back to the beginning, and %i well

then equal to 2 and everything will go on as normal. These

special keywords can be used in any loop, whether While or

For.

23

24

5.1 Functions

 Functions are the ‘bread-and-butter’ of TRIBES Script.

Functions can call themselves, other functions, or built-in

functions. A CS file itself can hold program statements, or

call a function, but typically you only run a CS file once,

and that’s it. A function is denoted by the ‘function’

keyword, an identifier, an argument list, and a body. Here

is an example function:

 function test(%var)

 {

 %var++;

 echo(%var);

 }

As you can see, this code block has the function keyword,

an identifier, an argument list, and a body that is

surrounded with brackets. Functions can return a value with

the ‘return’ keyword. An example a return function would

be:

 function addOne(%var)

 {

 return %var + 1;

 }

When a function calls itself, it’s called a recursive

function. Here is an example of a recursive function:

 function recursive(%var)

 {

 if(%var <= 0)

 return;

 return %var + recursive(%var – 1);

 }

You may be saying ‘What the hell is all that?’ Recursive

functions are useful, but can be complicated. If you want a

good look at recursive loops go take a Computer Science

course. This recursive loop here will add all integers

starting with the value passed into it to zero. An

iterative loop of the same might look like:

25

 function addAllFrom(%var)

 {

 for(%i = %var; %i <= 0; %i--)

 {

 %tmp += %i;

 }

 return %tmp;

 }

You might be tempted to do something like this:

 function addOne(%var)

 {

 %var++;

 }

This will not do as expected, because variables are

‘copied’ from function to function. So, do NOT do this.

There are several built-in functions, you already know one

‘echo()’. Originally, ‘www.tribesplayers.com’ had a list of

most of these, but this website was shutdown quite a while

ago. Now, you can find these in various places. I’ve

included an index of all the functions I know about in the

appendix that are not in the official documents. You can

get a copy of the official documents from

‘http://www.annihilation.info/’. There is also a special

type of function called a remote function, this function

can be called from the client and executed on the server,

or vice-versa. Here is an example:

 //On Server…

 function remoteFunction(%clientId, %msg)

 {

 echo(%msg);

 }

 //Call from Client…

 remoteEval(2048, Function, “Hello World!”);

If the client called that and the remoteFunction was on the

server then “Hello World!” would be echoed on the server.

Also, there are special functions that allow you to run a

function from a string, or run a function in the near

future. Here are some examples:

26

 eval(“function();”);

 schedule(“function();”, 1);

The first statement will run function() just as if you were

directly calling it. The second statement will call

function() 1 second from now.

5.2 Datablocks

 Datablocks are basically Object Descriptions, or Items,

Weapons, Armors, etc. You can find various examples of

datablocks inside the base mod scripts. A sample datablock

for a plant object might look like this:

 StaticShapeData Plant

 {

 shapeFile = "plant1";

 debrisId = defaultDebrisSmall;

 maxDamage = 0.4;

 description = "Plant";

 };

There are many properties and such that I can’t list them

all here, but if you look at existing objects, items, and

such you should get a pretty good idea on how to construct

your own.

27

28

6.1 Arrays / Subscripted Variables

 Arrays and Subscripted Variables are essentially the

same. However, one is shorter than the other so I’ll be

using ‘Arrays’. An Array in TRIBES is a bit different then

a conventional programming language’s idea of an array. In

TRIBES, an array is basically just an add-on to the

variable’s identifier. Here is an example:

 $Array[0] = “Hello”;

 $Array0 = “World”;

You may say, ‘The first variable is “Hello” and the second

is “World”.’ In a different language this would be true,

but in TRIBES, this isn’t the case; they both equal “World”.

You aren’t restricted to only using numerical values, you

can also use Booleans, Strings, or Datablock names. Here is

another few examples:

 $Array[true] = 0;

 $Arraytrue = 1;

 //Both equal to 1

 $Array[“Hey”] = 0;

 $ArrayHey = 1;

 //Both equal to 1

 $Array[Blaster] = 0;

 $ArrayBlaster = 1;

 //Both equal to 1

Awesome stuff! Also, you can use variables as the subscript.

Example:

 %var = 0;

 $Array[%var] = 1;

 $Array0 = 0;

 //Both equal to 0

Now, I should also mention that these ‘arrays’ are not true

arrays. The obvious difference is that you can use

subscripts other then integers and they aren’t sequential.

The less-than obvious reason is that they don’t share

sequential memory addresses.

6.2 Array Techniques

 Arrays are very powerful and can be used for a

database, or just for storing variables in a neat fashion.

29

To loop though an array correctly, you need to use numbers,

as these are the easiest to work with. Here is an example:

 for(%i = 0; $Array[%i] != “”; %i++)

 {

 echo($Array[%i]);

 }

This will loop though the entire Array variable and echo

every element to the server. As a little tip, when ever a

variable is not initialized, but used in an expression, it

is either 0, “”, or false, depending on the expression. As

an improvement to the above code, you could do:

 for(%i = 0; (%current = $Array[%i]) != “”; %i++)

 {

 echo(%current);

 }

This adds a little assignment operation into the loop,

so %current always contains the value of the current array

element. You can also loop backwards, only you need to know

where to start. Let’s assume that $Array has 30 elements.

 for(%i = 30; %i >= 0; %i++)

 {

 echo(%current);

 }

Instead of looping forward like the first examples, if you

know the length, you can also do something like this:

 for(%i = 0; %i <= 30; %i++)

 {

 echo(%current);

 }

There are also some sorting and searching techniques…

30

31

7.1 Linear Search

 The linear search is probably the easiest of searches

to perform. Here is the code for a linear search:

 function linearSearch(%search)

 {

 %found = -1;

 for(%i = 0; (%current = $Array[%i]) != “”; %i++)

 {

 if(%current == %search)

 %found = %i;

 }

 return %found;

 }

This will work well enough, but there is a problem: the

function will loop though every element, even if it’s

already found what it’s looking for. That’s like saying

‘Well, I found my car keys under the sofa, but I better

look in the bathroom incase they are there.’! Doesn’t make

sense does it? Well let’s fix it:

 function linearSearch(%search)

 {

 for(%i = 0; (%current = $Array[%i]) != “”; %i++)

 {

 if(%current == %search)

 return %i;

 }

 return -1;

 }

As you can see, this returns the value as soon as it’s

found, giving a good-sized efficiency bonus.

7.2 Numeric Sorting

 To sort an array, you first must be able to swap an

array’s variables. Here is a sample function that I’ll be

using:

 function swap(%x, %y)

 {

 %tmp = $Array[%x];

 $Array[%x] = $Array[%y];

 $Array[%y] = %tmp;

 }

32

Simple, right? Ok, now that we have our swap function, we

need to make the sort function. Here is an example:

function numberSort()

{

 for(%i = 0; $Array[%i] != “”; %i++)

 {

 %swap = %i;

 for(%j = 0; (%compare = $Array[%j]) != “”; %j++)

 {

 if ($Array[%swap] > %compare)

 {

 %swap = %j;

 }

 }

 swap(%i, %swap);

 }

}

Now, this may look unwieldy, but its actually quite simple!

This type of sort is called a ‘Bubble Sort’. What it does

is run though the entire array once, and then each time

checking if the current value of the array element ‘%swap’

is greater than the ‘%compare’ element. If it is, set it to

be swapped, otherwise continue on. When the second for loop

has finished, it swaps the values and goes on. This can

become very CPU intensive as you might have guessed, so

there are better ways to sort. But, I’m not going to go

into them, if you want some further study, you can look up

some Java tutorials or join a class.

7.3 Alphabetic/Lexicographic Sorting

 Well, we can sort numbers, great! However, what if we

want to sort a list of player names? Well, we would use the

same algorithm, but instead of checking if the two

variables are greater than each other, we are going to

check to see if the string itself is ‘above’ or ‘below’ the

other string. I’ve included my own method for this in the

appendix. Here is some sample code of the sort:

function alphaSort()

{

 for(%i = 0; $Array[%i] != “”; %i++)

 {

 %swap = %i;

 for(%j = 0; (%compare = $Array[%j]) != “”; %j++)

 {

33

 if(String::IsGreaterThan($Array[%swap], %compare))

 {

 %swap = %j;

 }

 }

 swap(%i, %swap);

 }

}

34

35

8.1 Bitwise Theory

 I’ve gained a lot of this information from experience

and some very good tutorials over at www.gamedev.net. If

there are similarities it is because I used these to help

me write this section, as I’m not a teacher. A number is a

very abstract thing. Unlike physical objects, which are

easily recognizable, a number can be represented in any

number of ways. The representation we are use is called

decimal, or base 10. The first term is pretty familiar, but

if you're reading this theory, the second term may be new

to you. To see why we use the term "base 10", let's take a

look at a number, say 4232. Read aloud, this is ‘four

thousand, two hundred, thirty-two’. We hear numbers like

that so often that it's not immediately obvious, but this

sounds a lot like a formula:

4232 = (4 * 1000) + (2 * 100) + (3 * 10) + (2 * 1)

Or, if we write it another way, we see that a decimal

number is actually the sum of its digits multiplied by

successive powers of 10:

4232 = (4 * 103) + (2 * 102) + (3 * 101) + (2 * 100)

Do you now see why the term "base 10" is used to describe

the way we usually write numbers? The obvious question to

ask now is, "Why do we have to use 10 as the base?" We

don't! Any positive integer greater than two can be used as

the base. Of course, if we tried to use a "base 1" number

system, the only thing we could write would be strings of

zeroes. So to analyze further, if we take our last formula,

and replace the 10 with a generic base B, then we have the

representation for a number in any base. Now, computers

deal with binary, or base 2. This is because of the nature

of CPUs, the transistors inside them are either ‘On’ or

‘Off’, ‘0’ or ‘1’. For example, consider the binary number

100101. The value of this number is:

100101 = (1 * 25) + (0 * 24) + (0 * 23) + (1 * 22) + (0 * 21)

+ (1 * 20) = 32 + 4 + 1 = 37

The hexadecimal number system uses base 16, which means

that there are sixteen digits that can be used. Of course,

we are accustomed to having ten, 0 through 9. In

hexadecimal, however, the character A has a value of 10, B

has a value of 11, and so on to F, which has a value of 15.

Let's see an example of this:

36

3FC = (3 * 162) + (F * 161) + (C * 160) = (3 * 162) + (15 *

161) + (12 * 160) = 768 + 240 + 12 = 1020

The reason hexadecimal is so frequently used in programming

is that it's very easy to translate between hexadecimal and

binary. Not so when converting from decimal to binary. The

reason it's so easy to convert between base 16 and base 2

is because 16 is a power of two. 16 = 24. Why is this

significant? Well, a group of four binary digits can take

exactly 24 values, which means that each hexadecimal digit

corresponds to exactly four binary digits. Since ten is not

a power of two, the conversion is harder in decimal. So

when programmers want to use a specific binary number, they

write it in hexadecimal. In TRIBES Script, you can

recognize a hexadecimal number because it is always

prefixed by "0x". For example, this statement assigns the

value 1020 to a variable, by using its hexadecimal

equivalent:

 %hexValue = 0x3FC;

There is no such prefix that will allow you to write a

binary number directly, which is why hexadecimal is used.

The following table shows the binary equivalents for each

of the sixteen hex digits.

Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Hexadecimal 0 1 2 3 4 5 6 7 8 9 A B C D E F

Binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

We can use this table to show a quick example, finding the

binary equivalent of the hex number 3FC. Simply convert

each hex digit to its binary equivalent, and you're all

done:

3FC = 0011 1111 1100 = 1111111100

In binary, we can drop leading zeros just like in base 10.

Onto the operators!

8.2 Bitwise Operations

 Bitwise has almost the same operations as boolean

variables, except they are slightly different. Instead of

two expressions, it’s two bits. Here are the truth tables:

37

AND A B Result

0 0 0

0 1 1

1 0 1

1 1 1

OR A B Result

0 0 0

0 1 0

1 0 0

1 1 1

XOR A B Result

0 0 1

0 1 0

1 0 0

1 1 1

These all have a operator for their respective operation,

here is a list:

Operation Operator

Bitwise AND &

Bitwise OR |

Bitwise XOR ^

Bitwise Complement ~

Bitwise AND Assignment &=

Bitwise OR Assignment |=

There are also something called bitwise shifts, these are

useful because you can ‘shift’ all the bits in a number

left or right a certain number of times. Shifting left N

times is the same as multiplication by 2 to the power of N.

The opposite goes for shifting right, where shifting right

N times is the same as division by 2 to the power of N.

This is illustrated below:

%x = %y * 8;

%x = %y << 3;

%x = %y * 64;

%x = %y << 6;

%x = %y * 32768;

%x = %y << 15;

38

Pretty cool, isn't it? This is a fast way to accomplish

multiplication by powers of two, using only a bitwise shift.

For reference, here is a list of all shift operators:

Operation Operator

Shift Left <<

Shift Right >>

Shift Left Assignment <<=

Shift Right Assignment >>=

Well, now that all that is out of the way, let’s look at

what we can use this for!

8.3 Uses for Bitwise

 The most common use for bitwise is to only use one

variable for an almost infinite amount of ‘attributes’.

Here is an example:

 $Expert = 1 << 1; //2

 $Admin = 1 << 2; //4

 $Banned = 1 << 3; //8

 $Coder = 1 << 4; //16

 function isPlayer(%property)

 {

 return (($PlayerProp & %property) > 0);

 }

 function addProperty(%property)

 {

 $PlayerProp |= %property;

 }

 function removeProperty(%property)

 {

 $PlayerProp ^= %property;

 }

 addProperty($Expert | $Coder);

 addProperty($Admin);

 if(isPlayer($Coder))

 echo(“Player is a coder.”);

 else

 echo(“Player is not a coder.”);

If you were to run this code snippet, you’d find that

‘Player is a coder.’ would be displayed on the console.

39

Really cool, eh? ModX uses this system to store info about

it’s player’s profiles, and I’m sure you can think of other

uses for this.

40

41

9.1 Last Words

 Well, I hope I have enlightened you to the ways of the

TRIBES Script Coder. However, don’t consider this the only

thing you should ever read. Computer Science books and

tutorials are great. Should you need more help, you can

always go to great sites like http://www.annihilation.info/,

http://modx.ath.cx:1337/, or even http://www.gamedev.net/.

Remember, if you ask questions on a forum, make the post

intelligible and list what you’ve done, and what you need.

42

43

Appendix

 The following pages contain various functions that I

encourage you to use in your own modifications. Of course,

remember to put a side-note mentioning who you learned to

code from ;)

44

function String::IsWhiteSpace(%string)
{
 %slen = String::Len(%string);
 %IsWhiteSpace = true;

for(%i = 0; %i < %slen; %i++)
{

 //
 if(String::getSubStr(%string, %i, 1) == " ")
 %IsWhiteSpace = true;
 else
 %IsWhiteSpace = false;
 }

 return %IsWhiteSpace;
}

function String::IsGreaterThan(%string, %compare)
{
 %slen = String::Len(%string);
 %clen = String::Len(%compare);

 %string = String::MakeCaps(%string);
 %compare = String::MakeCaps(%compare);

for(%i = 0; %i < %slen; %i++)
{

if(%clen <= %i)
return false;

if(String::CharacterValue(String::charAt(%string, %i)) <
String::CharacterValue(String::charAt(%compare, %i)))

return true;
if(String::CharacterValue(String::charAt(%string, %i)) >

String::CharacterValue(String::charAt(%compare, %i)))
continue;

if(String::CharacterValue(String::charAt(%string, %i)) ==
String::CharacterValue(String::charAt(%compare, %i)))

continue;
}
return false;

}

function String::IsLessThan(%string, %compare)
{
 return !String::IsGreaterThan(%string, %compare);
}

function String::Reverse(%string)
{
 %slen = String::Len(%string);
 %outString = "";
 for(%i = %slen + 1; %i >= 0; %i--)
 {
 %outString = %outString @ String::CharAt(%string, %i);
 }
 return %outString;
}

function String::MakeCaps(%string)
{
 %norm = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ";

45

 %capp = "ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ";
 for(%i = 0; %i < 52; %i++)
 {
 %rem = String::getSubStr(%norm, %i, 1);
 %new = String::getSubStr(%capp, %i, 1);
 %string = String::Replace(%string, %rem, %new);
 }
 return %string;
}

function String::MakeLower(%string)
{
 %norm = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ";
 %low = "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz";
 for(%i = 0; %i < 52; %i++)
 {
 %rem = String::getSubStr(%norm, %i, 1);
 %new = String::getSubStr(%low, %i, 1);
 %string = String::Replace(%string, %rem, %new);
 }
 return %string;
}

function String::IsAlpha(%string)
{
 %norm = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ";
 %slen = String::Len(%string);
 for(%i = 0; %i < %slen; %i++)
 {
 %ch = String::CharAt(%i);
 for(%f = 0; %f < 52; %f++)
 {
 if(%ch == String::CharAt(%f))
 {
 %out = %out @ %ch;
 }
 }
 }
 return (%string == %out);
}

function String::Len(%string)
{

while(String::getSubStr(%string, %len, 1) != "")
%len++;

return %len;
}

function String::Replace(%string, %search, %replace)
{

%len = String::Len(%search);
for (%i = 0; (%char = String::getSubStr(%string, %i, %len)) != "";

%i++)
{

if (%char @ "s" == %search @ "s")
%string = String::getSubStr(%string, 0, %i) @ %replace

@ String::getSubStr(%string, %i + %len, 255);
}
return %string;

}

46

function String::Contains(%string, %search)
{

%len = String::Len(%search);
for (%i = 0; (%char = String::getSubStr(%string, %i, %len)) != "";

%i++)
{

if (%char @ "s" == %search @ "s")
return true;

}
return false;

}

function String::indexOf(%string, %search)
{

%len = String::Len(%search);
for (%i = 0; (%char = String::getSubStr(%string, %i, %len)) != "";

%i++)
{

if (%char @ "s" == %search @ "s")
return %i;

}
return -1;

}

function String::Left(%string, %start)
{

%len = 1;
 %stringFinal = "";

for (%i = 0 + %start; (%char = String::getSubStr(%string, %i, %
len)) != ""; %i++)

{
 %stringTemp = %stringFinal;
 %stringFinal = %stringTemp @ %char;
 }

 if(%stringFinal != "")
 return %stringFinal;

 return -1;
}

function String::Right(%string, %start)
{

%len = 1;
 %stringFinal = "";

for (%i = 0 + %start; (%char = String::getSubStr(%string, %i, %
len)) != ""; %i--)

{
 %stringTemp = %stringFinal;
 %stringFinal = %char @ %stringTemp;
 }

 if(%stringFinal != "")
 return %stringFinal;

 return -1;
}

function String::Mid(%string, %start, %stop)
{
 return String::getSubStr(%string, %start, %stop);
}

47

function String::ParseIP(%address)
{

if(String::getSubStr(%address,0,8) == "LOOPBACK")
return "LOOPBACK";

%ipCut = String::getSubStr(%address,3,20);
while(String::getSubStr(%ipCut,%len,1) != ":" && %len < 20)

%len++;
%sub = String::getSubStr(%ipCut,0,%len);
return %sub;

}

$OmitList[0] = "a";
$OmitList[1] = "b";
$OmitList[2] = "c";
$OmitList[3] = "d";
$OmitList[4] = "e";
$OmitList[5] = "f";
$OmitList[6] = "g";
$OmitList[7] = "h";
$OmitList[8] = "i";
$OmitList[9] = "j";
$OmitList[10] = "k";
$OmitList[11] = "l";
$OmitList[12] = "m";
$OmitList[13] = "n";
$OmitList[14] = "o";
$OmitList[15] = "p";
$OmitList[16] = "q";
$OmitList[17] = "r";
$OmitList[18] = "s";
$OmitList[19] = "t";
$OmitList[20] = "u";
$OmitList[21] = "v";
$OmitList[22] = "w";
$OmitList[23] = "x";
$OmitList[24] = "y";
$OmitList[25] = "z";

$OmitList[26] = "A";
$OmitList[27] = "B";
$OmitList[28] = "C";
$OmitList[29] = "D";
$OmitList[30] = "E";
$OmitList[31] = "F";
$OmitList[32] = "G";
$OmitList[33] = "H";
$OmitList[34] = "I";
$OmitList[35] = "J";
$OmitList[36] = "K";
$OmitList[37] = "L";
$OmitList[38] = "M";
$OmitList[39] = "N";
$OmitList[40] = "O";
$OmitList[41] = "P";
$OmitList[42] = "Q";
$OmitList[43] = "R";
$OmitList[44] = "S";
$OmitList[45] = "T";
$OmitList[46] = "U";
$OmitList[47] = "V";

48

$OmitList[48] = "W";
$OmitList[49] = "X";
$OmitList[50] = "Y";
$OmitList[51] = "Z";

$OmitList[52] = "~";
$OmitList[53] = "`";
$OmitList[54] = "!";
$OmitList[55] = "@";
$OmitList[56] = "#";
$OmitList[57] = "$";
$OmitList[58] = "%";
$OmitList[59] = "^";
$OmitList[60] = "&";
$OmitList[61] = "*";
$OmitList[62] = "(";
$OmitList[63] = ")";
$OmitList[64] = " "; // -
$OmitList[65] = "_";
$OmitList[66] = "=";
$OmitList[67] = "+";
$OmitList[68] = "[";
$OmitList[69] = "{";
$OmitList[70] = "]";
$OmitList[71] = "}";
$OmitList[72] = "\\";
$OmitList[73] = "|";
$OmitList[74] = "/";
$OmitList[75] = "?";
$OmitList[76] = " "; // .
$OmitList[77] = ">";
$OmitList[78] = ",";
$OmitList[79] = "<";
$OmitList[80] = " ";

function String::NumericParse(%string)
{
 %replace = "";
 %len = 1;
 for (%j = 0; (%search = $OmitList[%j]) != "" && %j < 100; %j++)

{
 for (%i = 0; (%char = String::getSubStr(%string, %i, %len)) != ""
&& %i < 300; %i++)
 {
 if (%search @ "s" == %char @ "s")
 %string = String::getSubStr(%string, 0, %i) @ %replace
@ String::getSubStr(%string, %i + %len, 255);
 }
 }
 return %string;
}

function String::Occurances(%string, %search)
{

%len = String::Len(%search);
 %o = 0;
 for (%i = 0; (%char = String::getSubStr(%string, %i, %len)) != ""; %
i++)

{
if (%char @ "s" == %search @ "s")

%o++;

49

}
return %o;

}

function String::CheckHexCrash(%string) //TRUE = Something is wrong!
{
 %size = 0;

 %slen = String::Len(%string);
 %xoc = String::Occurances(escapeString(%string), "\\x");
 %toc = String::Occurances(%string, "\n");
 %noc = String::Occurances(%string, "\t");

 %size += (%slen - (%xoc + %toc + %noc));
 %size += (%xoc * 4);
 %size += (%toc * 4);
 %size += (%noc * 4);
 if(%size > 510)
 {
 return true;
 }
 return false;
}

$CharacterList[0] = "\x00";
$CharacterList[1] = "\x01";
$CharacterList[2] = "\x02";
$CharacterList[3] = "\x03";
$CharacterList[4] = "\x04";
$CharacterList[5] = "\x05";
$CharacterList[6] = "\x06";
$CharacterList[7] = "\x07";
$CharacterList[8] = "\x08";
$CharacterList[9] = "\x09";
$CharacterList[10] = "\x0A";
$CharacterList[11] = "\x0B";
$CharacterList[12] = "\x0C";
$CharacterList[13] = "\x0D";
$CharacterList[14] = "\x0E";
$CharacterList[15] = "\x0F";
$CharacterList[16] = "\x10";
$CharacterList[17] = "\x11";
$CharacterList[18] = "\x12";
$CharacterList[19] = "\x13";
$CharacterList[20] = "\x14";
$CharacterList[21] = "\x15";
$CharacterList[22] = "\x16";
$CharacterList[23] = "\x17";
$CharacterList[24] = "\x18";
$CharacterList[25] = "\x19";
$CharacterList[26] = "\x1A";
$CharacterList[27] = "\x1B";
$CharacterList[28] = "\x1C";
$CharacterList[29] = "\x1D";
$CharacterList[30] = "\x1E";
$CharacterList[31] = "\x1F";
$CharacterList[32] = "\x20";
$CharacterList[33] = "\x21";
$CharacterList[34] = "\x22";
$CharacterList[35] = "\x23";
$CharacterList[36] = "\x24";

50

$CharacterList[37] = "\x25";
$CharacterList[38] = "\x26";
$CharacterList[39] = "\x27";
$CharacterList[40] = "\x28";
$CharacterList[41] = "\x29";
$CharacterList[42] = "\x2A";
$CharacterList[43] = "\x2B";
$CharacterList[44] = "\x2C";
$CharacterList[45] = "\x2D";
$CharacterList[46] = "\x2E";
$CharacterList[47] = "\x2F";
$CharacterList[48] = "\x30";
$CharacterList[49] = "\x31";
$CharacterList[50] = "\x32";
$CharacterList[51] = "\x33";
$CharacterList[52] = "\x34";
$CharacterList[53] = "\x35";
$CharacterList[54] = "\x36";
$CharacterList[55] = "\x37";
$CharacterList[56] = "\x38";
$CharacterList[57] = "\x39";
$CharacterList[58] = "\x3A";
$CharacterList[59] = "\x3B";
$CharacterList[60] = "\x3C";
$CharacterList[61] = "\x3D";
$CharacterList[62] = "\x3E";
$CharacterList[63] = "\x3F";
$CharacterList[64] = "\x40";
$CharacterList[65] = "\x41";
$CharacterList[66] = "\x42";
$CharacterList[67] = "\x43";
$CharacterList[68] = "\x44";
$CharacterList[69] = "\x45";
$CharacterList[70] = "\x46";
$CharacterList[71] = "\x47";
$CharacterList[72] = "\x48";
$CharacterList[73] = "\x49";
$CharacterList[74] = "\x4A";
$CharacterList[75] = "\x4B";
$CharacterList[76] = "\x4C";
$CharacterList[77] = "\x4D";
$CharacterList[78] = "\x4E";
$CharacterList[79] = "\x4F";
$CharacterList[80] = "\x50";
$CharacterList[81] = "\x51";
$CharacterList[82] = "\x52";
$CharacterList[83] = "\x53";
$CharacterList[84] = "\x54";
$CharacterList[85] = "\x55";
$CharacterList[86] = "\x56";
$CharacterList[87] = "\x57";
$CharacterList[88] = "\x58";
$CharacterList[89] = "\x59";
$CharacterList[90] = "\x5A";
$CharacterList[91] = "\x5B";
$CharacterList[92] = "\x5C";
$CharacterList[93] = "\x5D";
$CharacterList[94] = "\x5E";
$CharacterList[95] = "\x5F";
$CharacterList[96] = "\x60";
$CharacterList[97] = "\x61";

51

$CharacterList[98] = "\x62";
$CharacterList[99] = "\x63";
$CharacterList[100] = "\x64";
$CharacterList[101] = "\x65";
$CharacterList[102] = "\x66";
$CharacterList[103] = "\x67";
$CharacterList[104] = "\x68";
$CharacterList[105] = "\x69";
$CharacterList[106] = "\x6A";
$CharacterList[107] = "\x6B";
$CharacterList[108] = "\x6C";
$CharacterList[109] = "\x6D";
$CharacterList[110] = "\x6E";
$CharacterList[111] = "\x6F";
$CharacterList[112] = "\x70";
$CharacterList[113] = "\x71";
$CharacterList[114] = "\x72";
$CharacterList[115] = "\x73";
$CharacterList[116] = "\x74";
$CharacterList[117] = "\x75";
$CharacterList[118] = "\x76";
$CharacterList[119] = "\x77";
$CharacterList[120] = "\x78";
$CharacterList[121] = "\x79";
$CharacterList[122] = "\x7A";
$CharacterList[123] = "\x7B";
$CharacterList[124] = "\x7C";
$CharacterList[125] = "\x7D";
$CharacterList[126] = "\x7E";
$CharacterList[127] = "\x7F";
$CharacterList[128] = "\x80";
$CharacterList[129] = "\x81";
$CharacterList[130] = "\x82";
$CharacterList[131] = "\x83";
$CharacterList[132] = "\x84";
$CharacterList[133] = "\x85";
$CharacterList[134] = "\x86";
$CharacterList[135] = "\x87";
$CharacterList[136] = "\x88";
$CharacterList[137] = "\x89";
$CharacterList[138] = "\x8A";
$CharacterList[139] = "\x8B";
$CharacterList[140] = "\x8C";
$CharacterList[141] = "\x8D";
$CharacterList[142] = "\x8E";
$CharacterList[143] = "\x8F";
$CharacterList[144] = "\x90";
$CharacterList[145] = "\x91";
$CharacterList[146] = "\x92";
$CharacterList[147] = "\x93";
$CharacterList[148] = "\x94";
$CharacterList[149] = "\x95";
$CharacterList[150] = "\x96";
$CharacterList[151] = "\x97";
$CharacterList[152] = "\x98";
$CharacterList[153] = "\x99";
$CharacterList[154] = "\x9A";
$CharacterList[155] = "\x9B";
$CharacterList[156] = "\x9C";
$CharacterList[157] = "\x9D";
$CharacterList[158] = "\x9E";

52

$CharacterList[159] = "\x9F";
$CharacterList[160] = "\xA0";
$CharacterList[161] = "\xA1";
$CharacterList[162] = "\xA2";
$CharacterList[163] = "\xA3";
$CharacterList[164] = "\xA4";
$CharacterList[165] = "\xA5";
$CharacterList[166] = "\xA6";
$CharacterList[167] = "\xA7";
$CharacterList[168] = "\xA8";
$CharacterList[169] = "\xA9";
$CharacterList[170] = "\xAA";
$CharacterList[171] = "\xAB";
$CharacterList[172] = "\xAC";
$CharacterList[173] = "\xAD";
$CharacterList[174] = "\xAE";
$CharacterList[175] = "\xAF";
$CharacterList[176] = "\xB0";
$CharacterList[177] = "\xB1";
$CharacterList[178] = "\xB2";
$CharacterList[179] = "\xB3";
$CharacterList[180] = "\xB4";
$CharacterList[181] = "\xB5";
$CharacterList[182] = "\xB6";
$CharacterList[183] = "\xB7";
$CharacterList[184] = "\xB8";
$CharacterList[185] = "\xB9";
$CharacterList[186] = "\xBA";
$CharacterList[187] = "\xBB";
$CharacterList[188] = "\xBC";
$CharacterList[189] = "\xBD";
$CharacterList[190] = "\xBE";
$CharacterList[191] = "\xBF";
$CharacterList[192] = "\xC0";
$CharacterList[193] = "\xC1";
$CharacterList[194] = "\xC2";
$CharacterList[195] = "\xC3";
$CharacterList[196] = "\xC4";
$CharacterList[197] = "\xC5";
$CharacterList[198] = "\xC6";
$CharacterList[199] = "\xC7";
$CharacterList[200] = "\xC8";
$CharacterList[201] = "\xC9";
$CharacterList[202] = "\xCA";
$CharacterList[203] = "\xCB";
$CharacterList[204] = "\xCC";
$CharacterList[205] = "\xCD";
$CharacterList[206] = "\xCE";
$CharacterList[207] = "\xCF";
$CharacterList[208] = "\xD0";
$CharacterList[209] = "\xD1";
$CharacterList[210] = "\xD2";
$CharacterList[211] = "\xD3";
$CharacterList[212] = "\xD4";
$CharacterList[213] = "\xD5";
$CharacterList[214] = "\xD6";
$CharacterList[215] = "\xD7";
$CharacterList[216] = "\xD8";
$CharacterList[217] = "\xD9";
$CharacterList[218] = "\xDA";
$CharacterList[219] = "\xDB";

53

$CharacterList[220] = "\xDC";
$CharacterList[221] = "\xDD";
$CharacterList[222] = "\xDE";
$CharacterList[223] = "\xDF";
$CharacterList[224] = "\xE0";
$CharacterList[225] = "\xE1";
$CharacterList[226] = "\xE2";
$CharacterList[227] = "\xE3";
$CharacterList[228] = "\xE4";
$CharacterList[229] = "\xE5";
$CharacterList[230] = "\xE6";
$CharacterList[231] = "\xE7";
$CharacterList[232] = "\xE8";
$CharacterList[233] = "\xE9";
$CharacterList[234] = "\xEA";
$CharacterList[235] = "\xEB";
$CharacterList[236] = "\xEC";
$CharacterList[237] = "\xED";
$CharacterList[238] = "\xEE";
$CharacterList[239] = "\xEF";
$CharacterList[240] = "\xF0";
$CharacterList[241] = "\xF1";
$CharacterList[242] = "\xF2";
$CharacterList[243] = "\xF3";
$CharacterList[244] = "\xF4";
$CharacterList[245] = "\xF5";
$CharacterList[246] = "\xF6";
$CharacterList[247] = "\xF7";
$CharacterList[248] = "\xF8";
$CharacterList[249] = "\xF9";
$CharacterList[250] = "\xFA";
$CharacterList[251] = "\xFB";
$CharacterList[252] = "\xFC";
$CharacterList[253] = "\xFD";
$CharacterList[254] = "\xFE";
$CharacterList[255] = "\xFF";
$CharacterList[256] = "\t";
$CharacterList[257] = "\n";
$CharacterList[258] = "END";

function String::CharacterValue(%char)
{
 %len = String::Len(%char);
 for (%j = 0; (%search = $CharacterList[%j]) != "END"; %j++)

{
 if (%search @ "s" == String::charAt(%char, 0) @ "s")
 {
 return %j;
 }
 }
 return -1;
}

function String::fromCharCode(%code)
{
 for (%j = 0; (%search = $CharacterList[%j]) != "END"; %j++)

{
 if (%j == %code)
 return %search;
 }
 return "";

54

}

function String::charAt(%string, %index)
{
 return String::getSubStr(%string, %index, 1);
}

function String::charValueAt(%string, %index)
{
 return String::CharacterValue(String::charAt(%string, %index));
}

function String::trim(%string)
{
 if(String::Replace(%string, " ", "") == "")
 return "";
 %slen = String::Len(%string);
 for(%i = 0; %i < %slen; %i++)
 {
 if(String::charAt(%string, %i) == " ")
 %ftrim++;
 else
 break;
 }
 for(%i = %slen - 1; %i >= 0; %i--)
 {
 if(String::charAt(%string, %i) == " ")
 %btrim++;
 else
 break;
 }
 return String::Mid(%string, %ftrim, %slen - %btrim);
}

55

$Math::PI = "3.14159265358979323";

function Math::rad2deg(%radians)
{
 return %radians * (180 / $Math::PI);
}

function Math::deg2rad(%degrees)
{
 return %degrees * ($Math::PI / 180);
}

function Math::roundDown(%delta)
{
 return floor(%delta - 0.01);
}

function Math::roundUp(%delta)
{
 return ceil(%delta + 0.01);
}

function Math::randomInt(%max)
{
 return floor(getRandom() * (%max - 0.01));
}

function Math::sin(%theta)
{
 if(%theta == "NaN")
 return;

return (%theta - (pow(%theta,3)/6) + (pow(%theta,5)/120) - (pow(%
theta,7)/5040) + (pow(%theta,9)/362880) - (pow(%theta,11)/39916800));
}

function Math::cos(%theta)
{
 if(%theta == "NaN")
 return;

return (1 - (pow(%theta,2)/2) + (pow(%theta,4)/24) - (pow(%
theta,6)/720) + (pow(%theta,8)/40320) - (pow(%theta,10)/3628800));
}

function Math::tan(%theta)
{
 if(%theta == "NaN")
 return;
 return Sin(%theta) / Cos(%theta);
}

function Math::absolute(%delta)
{
 return sqrt(pow(%delta,2));
}

function Math::isNaN(%number)
{
 if(%number == "NaN" || String::NumericParse(%number) != %number)
 return true;
 return false;
}

56

function Vector::rotate(%vec,%rot)
{

%pi = $Math::PI;
%rot3= getWord(%rot,2);
for(%i = 0; %rot3 >= %pi*2; %i++) %rot3 = %rot3 - %pi*2;
if (%rot3 > %pi) %rot3 = %rot3 - %pi*2;

%vec1= getWord(%vec,0);
%vec2= getWord(%vec,1);
%vc = %vec2;
%vec3= getWord(%vec,2);

%ray = %vec1;

%vec1 = %ray*Math::cos(%rot3);
%vec2 = %ray*Math::sin(%rot3);
%vec = %vec1 @" "@ %vec2 @" "@ %vec3;
%vec = Vector::add(%vec,Vector::getFromRot(%rot,%vc,0));
return %vec;

}

function Vector::multiply(%vec1, %vec2)
{
 %vec1X = getWord(%vec1, 0);
 %vec1Y = getWord(%vec1, 1);
 %vec1Z = getWord(%vec1, 2);

 %vec2X = getWord(%vec2, 0);
 %vec2Y = getWord(%vec2, 1);
 %vec2Z = getWord(%vec2, 2);

 %vec3X = %vec1X * %vec2X;
 %vec3Y = %vec1Y * %vec2Y;
 %vec3Z = %vec1Z * %vec2Z;

 return %vec3X @ " " @ %vec3Y @ " " @ %vec3Z;
}

function Vector::divide(%vec1, %vec2)
{
 %vec1X = getWord(%vec1, 0);
 %vec1Y = getWord(%vec1, 1);
 %vec1Z = getWord(%vec1, 2);

 %vec2X = getWord(%vec2, 0);
 %vec2Y = getWord(%vec2, 1);
 %vec2Z = getWord(%vec2, 2);

 %vec3X = %vec1X / %vec2X;
 %vec3Y = %vec1Y / %vec2Y;
 %vec3Z = %vec1Z / %vec2Z;

 return %vec3X @ " " @ %vec3Y @ " " @ %vec3Z;
}

function GameBase::getMass(%obj)
{
 %mass = (GameBase::getDataName(%obj).Mass);
 if (getObjectType(%obj) == "Flyer")
 %mass += %obj.PassengerMass;

57

 return %mass;
}

function GameBase::getMuzzlePosition(%player)
{
 %trans = GameBase::getMuzzleTransform(%player);
 %vec6 = getWord(%trans,9);
 %vec7 = getWord(%trans,10);
 %vec8 = getWord(%trans,11);
 return %vec6@" "@%vec7@" "@%vec8;
}

function GameBase::getNormalRotation(%pos, %pos2)
{
 return Vector::Normalize(Vector::Sub(%pos, %pos2));
}

58

function EncryptionSystem::Encipher(%str, %key)
{
 %key = EncryptionSystem::GetKey(%key);
 %str = String::Reverse(%str);
 %slen = String::Len(%str);

 if(%slen > 64) //Too long, it'll get cut off
 return -1;

 for(%i = 0; %i < %slen; %i++)
 %sp = %sp @ " " @ String::charValueAt(%str, %i);

 %sp = String::trim(%sp);

 for(%i = 0; (%w = getWord(%sp, %i)) != -1; %i++)
 %enc = %enc @ "*" @ (%w ^ %key) << 2;

 return String::Mid(%enc, 1, String::Len(%enc));
}

function EncryptionSystem::Decipher(%str, %key)
{
 %key = EncryptionSystem::GetKey(%key);
 %str = String::Replace(%str, "*", " ");

 for(%i = 0; (%n = getWord(%str, %i)) != -1; %i++)
 %sp = %sp @ " " @ (%n >> 2 ^ %key);

 for(%i = 0; (%w = getWord(%sp, %i)) != -1; %i++)
 %final = %final @ String::fromCharCode(%w);

 return String::Reverse(%final);
}

function EncryptionSystem::GetKey(%str)
{
 %slen = String::Len(%str);

 for(%i = 0; %i < %slen; %i++)
 %n += String::charValueAt(%str, %i);

 return 2 >> %n;
}

59

@ECHO OFF

TITLE VOL Compile Batch

ECHO (-) Deleting Old 'Scripts.vol'...

TITLE VOL Compile Batch: Deleting Old 'Scripts.vol'

DEL scripts.vol

ECHO (-) Creating New 'Scripts.vol'...

TITLE VOL Compile Batch: Creating New 'Scripts.vol'

ECHO (-) Archiving Files...

TITLE VOL Compile Batch: Archiving Files

FOR %%f IN (*.cs) DO (

vt -q scripts.vol %%f

ECHO %%f

TITLE VOL Compile Batch: Archiving %%f

)

ECHO (-) Done...

TITLE VOL Compile Batch: Done

60

	TRIBES Script Programming
	Table of Contents
	Chapter 1: Foreword
	Chapter 2: Introduction
	Chapter 3: Variables and Operators
	Chapter 4: Decision and Looping Statements
	Chapter 5: Functions and Datablocks
	Chapter 6: Arrays
	Chapter 7: Sorting and Searching
	Chapter 8: Bitwise
	Chapter 9: Closing Words
	Appendices and References

