GAME TIME
Proof: The area where cards are played is in an effort to prove (or disprove) the existence of a given variable. This area may consist of at least four rows of cards called Premises (lines), does not include cards played directly against a player, which are placed in front of that player.

Premises (Lines): One or four rows on the playing area (the Proof) where cards are placed.

Variable (Variable Card): One of four Variable Cards—A, B, C, or D—that represent each of the four players in a game.

Operator (Operator Card): One of three Operator Cards—AND, OR, THEN.

Tabula Rasa: A clear slate, remove any card from the Proof.

Syntax Rules: This refers to the rules for how cards may be played to the Proof (see Building The Proof, at left below).

CARD RULES
The following additional rules apply for the following cards.

NOT
Place a NOT Card in front of an existing Variable Card to negate (disprove) it. NOT can only be placed in front of variables or an opening parenthesis and applies only to the variable immediately following. Double negatives (two NOT Cards) can only be used with parentheses.

PARENTHESES
Parentheses must be played simultaneously, and cannot be left unpaired. When used wisely, they can effectively change the meaning of a given premise, and also allow for double negatives.

Tabula Rasa
To play this card, remove a card from the existing Proof and place it on the bottom of the draw pile. Any card may be removed, but at the end of the turn all syntax rules must be maintained (see Building The Proof, at left). Discard the Tabula Rasa Card after playing it. It is not returned to the draw pile and cannot be put back into play until the next round.

Revolution
To play this card, take two cards of the same type (Proof, Operator or Variable) and switch their places within the Proof. Discard the Revolution Card after playing it. It is not returned to the draw pile and cannot be put back into play until the next round.

Wild
Play this card in the place of the card you need. The Variable Card can be played as an A, B, C, or D. The Operator Card can be played as a NOT, AND, OR, or IF/THEN. Both cards should be played with the desired variable on top. Wild Cards may also be used as Proof Cards and Ergo Cards, and so can end a round.

Fallacy and Justification
The Fallacy Card is played on another player by placing it in front of them. When a Fallacy has been played on someone, that player cannot add to the Proof for three turns, or until they play a Justification Card on top of it to counter the effects. For ease of play, simply turn the Fallacy Card one side to the right for each of those three turns. If the player turns a Fallacy Card back to its normal position, which means it is discarded (placed at the bottom of the draw pile). The player then takes it back as normal.

If a player discards a Fallacy Card after those three turns, another Fallacy Card may be played on that player this round. However, once a player has played a Justification Card over a Fallacy Card, that player cannot be the target of another Fallacy Card this round. Wild Cards may also be used as a Justification Card (but never a Fallacy Card).

Operator Cards: The Order of Operations
Operator Cards are THEN, OR, and AND. The THEN Card has the strongest cohesive connection, followed by OR and then AND.

SYNTAX RULES:

When playing cards to the Proof, players must abide by the following rules (see Card Rules, at right, for additional rules that pertain to specific card types):

• The Proof can only have four Premises (or lines) of cards. If four Premises are already in the Proof, then any cards played must be the target of another Fallacy Card this round.

• Operator Cards (AND, OR, THEN) and Variable Cards (A, B, C, D) cannot be placed directly adjacent to a card of the same type.

• The Proof can only have four Premises (or lines) of cards. If four Premises are already in the Proof, then any cards played must be the target of another Fallacy Card this round.

• Parentheses must only be played in pairs (in open and close parentheses).

• Parentheses may be inserted between existing cards of the expanding Proof as long as all the rules above are maintained.

CORRECT PLACEMENT
INCORRECT PLACEMENT

ENDING A ROUND
When someone plays an Ergo Card, or when the last card is drawn from the draw pile and that player’s turn ends, the Proof stops. However, an Ergo Card cannot be played until there is at least one of each Variable Card somewhere in the Proof. Follow these rules of logic—drawing a card from the draw pile and that player’s turn ends, the Proof stops. However, an Ergo Card cannot be played until there is at least one of each Variable Card somewhere in the Proof. Follow these rules of logic—drawing a card from the draw pile and that player’s turn ends, the Proof stops. However, an Ergo Card cannot be played until there is at least one of each Variable Card somewhere in the Proof.

Winning the Game
The first player to earn 50 points wins.

Do you exist? I think therefore I am. From Socrates to Descartes, the question has dogged mankind. Now with Ergo you can prove your existence while disproving the existence of your friends!

I play therefore I am!

A deck of 52 Ergo contains everything you need to prove you exist.

4 of each Variable Card (A, B, C, or D)
4 of each Operator Card (AND, OR, THEN)
8 NOT Cards
6 Parenthesis Cards
3 Fallacy Cards
3 Justification Cards
1 Tabula Rasa Card
1 Revolution Card
2 Wild Cards (1 Variable wild and 1 Operator wild)
3 Ergo Cards

Assign one of 4 variables to each player: A, B, C or D. Players may wish to write down their assigned variable so they don’t forget if during game play, shuffle all cards, then deal five cards to each player. You’re ready to begin!

Sample Round
The following is a sample round. Player 1 is A, Player 2 is B. Player 3 is C, and no one is D.

Player 1 draws two cards. He then plays an A and discards a parenthesis.

Player 2 draws two cards and then plays an OR and a B.

Player 3 draws two cards and then adds a new Premise (line) by laying down a NOT and a C.

Player 4 draws two cards and then plays a THEN and a C.

Player 5 draws two cards and then plays two Parenthesis Cards.

Player 6 draws two cards and then plays a Fallacy Card on Player 2 while discarding a card.

Player 7 draws two cards and then plays a Fallacy Card on Player 2 while discarding a card.

Player 8 draws two cards and adds a new Variable Card (D) while discarding a card.

Player 9 draws two cards and then plays a NOT and a D.

The premise should read

No parentheses are used.

Players are dealt their five cards.

Player 1 draws two cards. He places them in order and discards a parenthesis.

Player 2 draws two cards and then plays an OR and a B.

Player 3 draws two cards and then adds a new Premise (line) by laying down a NOT and a C.

Player 4 draws two cards and then plays a THEN and a C.

Player 5 draws two cards and then plays two Parenthesis Cards.

Player 6 draws two cards and then plays a Fallacy Card on Player 2 while discarding a card.

Player 7 draws two cards and then plays a Fallacy Card on Player 2 while discarding a card.

Player 8 draws two cards and then plays a D while discarding a card.

Player 9 draws two cards and then plays a NOT and a D.

NOTE: There are now four Premises (lines), so no more lines may be added. All four variables are in the Proof, so the game may end at any time.

Player 1 draws two cards and then plays a Tabula Rasa Card to remove a NOT from Premise (line) 3 and then a Ergo Card, and ends the round. A and D are the only proven variables (there isn’t a paradox), and so A receives 11 points. For each card in the Proof. If there was a 0 player, they would receive the 12 points.

The premise reads

No parentheses are used.
RULES OF LOGIC

The following classical rules of logic determine if variables are proven true (or not) from the Proof. The names of some shortcuts are in Latin (with English translations in parentheses).

INVOLUTION

If something is “Not True,” it can be considered false. If something is “Not False,” it can be considered true.

\[\sim (\neg B) \]

Then you can conclude “B.”

IDEMPOTENCE

In both instances you can conclude “A.”

\[A \lor A \]

\[A \land A \]

BIVALENCE

If something is “Not True,” it can be considered false. If something is “Not False,” it can be considered true.

\[\sim (A \lor A) \]

This can be considered true, but doesn’t prove anything.

NON-CONTRADICTION

If something is “Not True,” it can be considered false. If something is “Not False,” it can be considered true.

\[\sim (A \land A) \]

This can be considered true, but doesn’t prove anything.

ABSORPTION

In both instances you can conclude “A.”

\[A \lor (A \land B) \]

\[A \land (A \lor B) \]

MODUS PONENS

(MODE THAT AFFIRMS BY AFFIRMING)

Then you can conclude “B.”

\[A \Rightarrow B \]

MODUS TOLLENS

(THE WAY THAT DENIES BY DENYING)

Then you can conclude not “A.”

\[A \Rightarrow B \]

\[\neg B \]

HYPOTHETICAL SYLLOGISM

(THEORY OF CONSEQUENCES)

You can conclude “A” “THEN” “C.”

\[A \Rightarrow B \]

\[B \Rightarrow C \]

DISJUNCTIVE SYLLOGISM

(SIMPLE ARGUMENT FORM)

Then you can conclude “B.”

\[A \lor B \]

\[\sim A \]

DEMORGANS LAWS

\[\sim (A \land B) \]

\[\sim A \lor \sim B \]

\[\sim (A \lor B) \]

\[\sim A \land \sim B \]