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ABSTRACT 
We present TrussFab, an integrated end-to-end system that 
allows users to fabricate large scale structures that are sturdy 
enough to carry human weight. TrussFab achieves the large 
scale by complementing 3D print with plastic bottles. It does 
not use these bottles as “bricks” though, but as beams that 
form structurally sound node-link structures, also known as 
trusses, allowing it to handle the forces resulting from scale 
and load. TrussFab embodies the required engineering 
knowledge, allowing non-engineers to design such struc-
tures and to validate their design using integrated structural 
analysis. We have used TrussFab to design and fabricate ta-
bles and chairs, a 2.5 m long bridge strong enough to carry a 
human, a functional boat that seats two, and a 5 m diameter 
dome. 
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INTRODUCTION 
Personal fabrication tools, such as 3D printers have become 
popular in HCI, where they have been used for fast prototyp-
ing [20] as well as to fabricate interactive objects [9], optical 
elements [34], or kinematic characters [5]. Since 3D printers 
today are available in a desktop form factor, they have been 
able to spread to the maker community [30] and are now in-
creasingly reaching the consumer market [27]. 

In contrast, the fabrication of large objects still has remained 
a privilege of industry, which has access to specialized 
equipment, such as concrete printers that allow making 
houses [13] or robotic-arms capable of 3D printing [11]. The 
owners of the widespread desktop devices, in contrast, can-
not participate in this evolution, because the underlying tech-
nology does not scale. Even techniques that break down 

large models into printer-sized parts [16] ultimately do not 
scale, as large models consume material and time propor-
tional to their size, which quickly renders 3D printing and 
related techniques intractable for larger-than-desktop-scale 
models. 

 
Figure 1: TrussFab is a system that allows users to fabricate 

large structures sturdy enough to carry human weight. Truss-
Fab considers bottles as beams that form structurally sound 

node-link structures also known as trusses, allowing it to han-
dle the forces resulting from scale and load.  

As an alternative approach, fabrication enthusiasts have cre-
ated large objects by combining 3D print with ready-made 
objects, such as plastic bottles [39]. In their simplest form, 
such objects wrapped in 3D print can serve as 3D voxel col-
lages that approximate the volume of an object [36]. 

Going larger, however, is not only about scale and print vol-
ume. For large objects, the main design objective is typically 
to withstand large forces, as forces grow cubed with the size 
of the object. Also, large objects afford substantial external 
loads; furniture, bridges, and vehicles, for example, all must 
be engineered to hold the weight of a human. Designing for 
large forces, however, requires substantial engineering skill 
[40] from envisioning appropriate structures in the first place 
to verifying their structural integrity. 

In this paper, we present TrussFab, an integrated end-to-end 
system that allows users to design large structures that are 
sturdy enough to carry human weight (Figure 1). TrussFab 
achieves this by taking a different perspective on bottles. Un-
like previous systems that stacked bottles as if they were 
“bricks”, TrussFab considers them as beams and uses them 
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to form structurally sound node link structures based on 
closed triangles, also known as trusses. TrussFab embodies 
the required engineering knowledge, allowing non-engi-
neers to design such structures. TrussFab also allows users 
to validate their designs using integrated structural analysis 
(Figure 3). Our main contribution is this end-to-end system. 

WALKTHROUGH OF THE TRUSSFAB SYSTEM 
TrussFab allows users to create structures either by model-
ing from scratch or by converting existing 3D models. It sup-
ports an integrated workflow, which we summarize in the 
following and then discuss in detail throughout the rest of 
the paper. 

 

Figure 2: (a) TrussFab’s converter automatically turns this 
3D model of a coffee table, into (b) a sturdy tetrahedral hon-
eycomb structure, (c) which fabricated serves as a functional 

table.  

Step 1: Automatic conversion. One way to create TrussFab 
structures is to convert an existing 3D model using Truss-
Fab’s converter. As shown in Figure 2 this converts the vol-
ume of the model into a tetrahedral honeycomb structure, al-
lowing it to bear substantial load.  

 

Figure 3: TrussFab’s editor is implemented as an extension 
for SketchUp. Here the user is performing a stability check on 

the bridge from Figure 1.  

Step 2: Editing. TrussFab’s editor allows users to refine an 
object created by automatic conversion (Figure 2) or to start 
a new object from scratch (Figure 3). We implemented 

TrussFab’s editor as an extension to the 3D modeling soft-
ware SketchUp [41]. TrussFab’s editor offers all the func-
tionalities of the original SketchUp system, plus custom 
functions that help users create sturdy structures. In particu-
lar, TrussFab’s editor offers primitives that are elementary 
trusses (tetrahedra and octahedra), tools that create large 
beams in the form of trusses, and tools for tweaking the 
shape of structures, while maintaining their truss structure. 
In Figure 3, the user placed a human weight on top of the 
bridge design. TrussFab’s integrated structural analysis 
shows no warnings, suggesting that the bridge is structurally 
sound. 

Step 3: Hub generation. After designing a structure, Truss-
Fab’s hub generator generates the 3D models of all hubs. 
Figure 4 shows our 3D printed hub design; the connector on 
the top snaps into the bottleneck, while the bottom ones are 
holding the bottles by their threaded neck. When designing 
structures to carry a human weight, these hubs experience 
large forces. We discuss the details of TrussFab’s hub de-
signs in section “Hubs and Members”.  

 

Figure 4: (a) TrussFab generates a hub for every node in the 
model. (b) The hubs are then 3D printed. Users assemble them 

following embossed IDs. 

Step 4: Fabrication. Users then send the 3D model files pro-
duced by the hub generator to one or more 3D printers in 
order to manufacture them. 

Step 5: Assembly. Users now manually assemble their struc-
tures by following unique IDs embossed into each hub 
(Figure 4b). 

TrussFab’s underlying structure achieves stability 
The key ideas behind TrussFab are (1) to employ bottles in 
their structurally most sturdy way, i.e., as beams from bot-
tom to bottleneck and (2) to afford sturdy “closed frame 
structures”, also known as trusses [15].  

While freestanding bottles tend to break easily (Figure 5a/b), 
truss structures essentially consist of triangles. In such an ar-
rangement, it is the structure that prevents deformation, not 
the individual bottle. The main strength of trusses is that they 
turn lateral forces (aka bending moments) into tension and 
compression forces along the length of the edges (aka mem-
bers). Bottles make great members: while they buckle easily 
when pushed from the side, they are very strong when 



 

 

pushed or pulled along their main axis (see section “Strength 
test”). (c) The resulting structures, such as this tetrahedron, 
are strong enough to bear the weight of one or more humans. 
(d) TrussFab affords building trusses by combining tetrahe-
dra and octahedra into so-called tetrahedral honeycomb 
structures. The table in Figure 2, for example, is cut from 
such a “tetra-octa” mesh. This structure is commonly used 
in truss design and provides structural stability [4]. 

 

Figure 5: (a) Large objects involve large levers, causing them 
(b) to break under load. (c) TrussFab instead affords struc-
tures based on closed triangles, here forming a tetrahedron. 

Such structures are particularly sturdy. (d) TrussFab extends 
this concept to tetrahedron-octahedron trusses of arbitrary 

size. 

Alternatively, we considered using larger stable primitives 
as building blocks, such as an icosahedron. We opted for the 
tetrahedra and octahedra, as they are space-filling, thus pro-
vide a simpler construction grid than other geometries.  

Optimized construction using “facades” 
TrussFab affords creating large structures by specifically 
supporting hierarchical construction. Figure 6 illustrates 
this. (a) Users start by creating a load-bearing structure in the 
form of trusses. (b) Users then fill in the non-load-bearing 
sides as facades. The benefit of this two-stage process is that 
facades are particularly efficient. First, they are single-layer, 
thus require fewer bottles. Second, the hubs that form a fa-
cade are flat; this allows TrussFab to fabricate such hubs us-
ing a laser cutter, which is very fast (40x faster than 3D print, 
see section “Laser-cut hubs for facades”). 

 

Figure 6: (a) The load-bearing structure of this tipi is best 
made from trusses; (b) its sides can be filled using facades. 

(c) TrussFab makes 2D facade hubs quickly on a laser cutter. 

To support this classic layered architecture, TrussFab com-
plements all of its truss tools with specialized facade tools. 
The editor offers facade tools for filling large opening with 
facades (Figure 6b). The hub generator offers the aforemen-
tioned laser-cut facade hubs. And, for object not expected to 

bear a load at all, TrussFab’s surface converter turns the 
outer hull into a hollow facade structure (Figure 18).  

CONTRIBUTION, BENEFITS, AND LIMITATIONS 
Our main contribution is the integrated end-to-end system 
that allows users to fabricate large structures that are sturdy 
enough to carry human weight—on desktop 3D printers. Un-
like previous systems that build on up-cycled plastic bottles 
combined with 3D print, TrussFab considers bottles not as 
“bricks”, but as beams that form structurally sound node link 
structures also known as trusses, allowing users to handle 
the forces resulting from scale and load. 

TrussFab embodies the required engineering knowledge, al-
lowing non-engineers to design such structures, and allows 
users to validate their designs using integrated structural 
analysis. In particular, TrussFab’s editor offers primitives 
that are trusses (tetrahedra and octahedra), tools that create 
large beams that are trusses, and tools for tweaking the shape 
of structures, while maintaining its truss structure. On the 
mechanical side, we contribute the key structural elements 
that allow creating trusses, i.e., the 3D-printed and laser-cut 
hub design. 

We have validated our system by designing and fabricating 
tables and chairs, a 2.5 m bridge strong enough to carry a 
human, a 5 m diameter dome consisting of 512 bottles and a 
functional boat that seats two, shown in Figure 7. 

 

Figure 7: A functional boat created using TrussFab. (a) Using 
the editor, users can design their structures efficiently. (b) The 
bottle-frame is simply covered by tarp. (c) The fabricated boat 

seats two. 

Our approach is subject to the general limitations faced by 
ready-made objects. In particular, TrussFab can reproduce 
neither details smaller than a bottle nor closed surfaces.  

RELATED WORK 
TrussFab builds on previous efforts in the following 
branches: large-scale personal fabrication, design with exist-
ing objects and construction kits, and tools for creating struc-
turally sound objects.  



 

 

Large-scale personal fabrication 
Architects and engineers have made efforts to scale up the 
additive manufacturing process for constructing large-scale 
structures, such as houses or sculptures. These efforts mostly 
involve a scaled-up version of the common machinery, like 
concrete printers [13], or breaking down the objects into 
smaller parts to print on desktop machines [16,17].  

Another approach to fabricating architectural-scale objects 
is the use of mobile printing robots, which move on the 
ground [12] or fly [35] around the printed object. Yet another 
approach is to use human assisted devices, such as Pro-
topiper [1]. Similarly, Yoshida et al. [37] proposed a com-
puter-assisted fabrication method for large-scale architecture 
that combines a hand-held chopstick dispenser with a pro-
jector-based guiding system. Lafreniere et al. [14] coordi-
nate multiple workers while collaboratively fabricating a pa-
vilion. 

Construction kits 
Construction kits are popular for fast prototyping and fabri-
cation. They offer a repertoire of prefabricated elements, 
which can be combined in various ways. Henrik and Kob-
belt [38] developed a system to accurately approximate 
complex shapes using the Zometool mathematical modeling 
kit. Skouras et al. [28] created an interactive editor to com-
putationally combine interlocking elements into a desired 
shape. 

Designing with ready-made objects 
MixFab [33], and Encore [3] allow users to integrate existing 
objects into their design. For creating objects enclosing elec-
tronic components Ashbrook et al. [2] developed an aug-
mented fabrication system. Devendorf and Ryokai [6] pro-
posed a human-assisted fabrication system that helps users 
incorporate everyday objects into 3D print. Beady [10] ap-
proximates models from beads and offers an editor for refin-
ing them. 

Gellért assembled wooden boards combined with 3D printed 
connectors in node-link structure [8]. Combining carbon 
tubes with 3D printed metal has been proposed for creating 
functional cars [40]. 

Skilled individuals have stacked or tied plastic bottles in or-
der to make art pieces, furniture, rafts or houses [39]. 
Yamada et al. [36] proposed a system for arranging ready-
made objects into 3D shapes using 3D-printed connectors. 

Tools for creating structurally sound objects 
Smith et al. [29] developed a system that automatically gen-
erates truss structures using non-linear optimization. Makris 
et al. [18] proposed a design tool that generates parametri-
cally defined, semi-automatically analyzed, and visualized 
structures. Wang et al. [32] developed an automated method 
that minimizes material cost by converting solid 3D models 
into a skin-frame structure. SketchChair [26] is an interac-
tive chair design system that allows users to validate the 
structural integrity of their design by subjecting it to the 
weight of a human rag doll. Similarly, Umentani et al. [31] 
created a system for exploring physically valid shapes in 
furniture design. 

Commercial tools for engineering truss structures include 
SkyCiv [42], which allows users to analyze the force distri-
bution in trusses. MiTek’s PAMIR| [43] is a specialized tool 
for creating timber rooftops. TrussTool [44] allows assem-
bling constructions from ready-made trusses. In contrast, 
TrussFab affords creating trusses, rather than just assem-
bling them. 

WALKTHROUGH OF THE TRUSSFAB EDITOR 
We now zoom in on step 2 of our workflow: the TrussFab 
editor. The main design rationale behind the editor is to af-
ford stable structure. It achieves this by using bottles as the 
members of trusses. The key idea behind TrussFab’s editor 
is to start any design with primitives that already are trusses, 
i.e., tetrahedra and octahedra; additional functions then al-
low users to extend and tweak the structure while maintain-
ing the truss property at all times. Once the main truss struc-
ture has been created, users may add facades and decorative 
details. 

Design based on tetrahedron-octahedron primitives 
In this section we demonstrate the use of the TrussFab editor 
on our chair with backrest design.  

(a) As illustrated by Figure 8a, we start our design by cre-
ating the base of the chair. We select the octahedron tool 
from TrussFab’s drawing toolbar and click on the ground 
plane of our workplace, which creates an octahedron. By de-
fault, this octahedron is made from small (half-liter) bottles. 
We check its height using the standard SketchUp measure-
ment tool—it is 45cm, which is a good height for an average 
person to sit on. 

 

Figure 8: Creating a chair with backrest in TrussFab’s editor 

(b)  To make the backrest, we now select the tetrahedron 
tool. We click on one of the sides of the base octahedron, 
which attaches a tetrahedron to it. (c) We click the top sur-
face of the tetrahedron we just made, attaching one more tet-
rahedron to it. This gives us the rough shape of our chair and 
its backrest. 

 (d)  The backrest is a little short. We select the grow tool 
and click one of the three upper members of the backrest. 
This elongates one of the two bottles to the next supported 
size, i.e., a 1.5-liter bottle, here shown as light green. We 
click again, which causes the second bottle of this member 



 

 

to grow as well. (e)  Repeating this on the other side scales 
the backrest to the desired size. 

(f) The chair is now too “laid back”. Still holding the grow 
tool, we click the rear edge of the backrest until the backrest 
is more vertical. 

Alternatively, instead of using the discrete grow/shrink 
tools, user can also use the deform tool, which allows freely 
dragging individual hubs in space, while preserving the truss 
nature of the model (see section “Editing larger objects effi-
ciently”). In addition to the standard member lengths gov-
erned by bottle sizes, TrussFab can implement extra-long 
members and in-between sizes by extending hubs with 3D 
print, as shown in Figure 9. This allows users for more free-
dom in their design. 

 

Figure 9: TrussFab implements the extra-long members using 
extra 3D print. 

 We now select the pod tool and use it to add pods to the 
bottom of our chair, as illustrated by Figure 10a. As dis-
cussed earlier, bottles are sturdy only when forces apply 
along their main axis. This is not the case for an octahedron 
directly touching the ground. If we tried to sit on it, our 
weight would cause the members touching the ground to 
buckle and break. The pods avoid this by propagating the 
user’s weight into the truss, making the design robust. 

 Finally, we select the cover tool and click the top of the 
octahedron (Figure 10b). This adds a plywood plate for users 
to sit on; it is supported by three upward-facing pods. Plates 
will later be exported as SVG files. We tend to fabricate them 
on a laser cutter. 

 

Figure 10: (a) Adding pods to the bottom hubs and (b) a cover 
to the top adds stability to our design, as any load is now 

propagated through the hubs, saving members from buckling. 

 To verify the chair’s ability to carry a human user, we 
select the add weight tool and click on the seat plate (Figure 
11). This places 10 kg weight on each of the three corners of 
the plate. We click three more times, which increases the 
weight in 5 kg steps, to sum up in total of 75 kg. A click at 
the backrest adds another 10kg pushing load into the 
backrest. 

 Clicking the check stability icon causes TrussFab to 
compute the effect of these weights onto the structure. This 
happens in two steps. First, the software looks for flaws in 
the truss structure, i.e., it searches for parts that are not com-
pletely locked in place by other members and are subject to 
shearing forces (see section “Implementation”). If found, the 
software would suggest placing additional stabilizing mem-
bers. Our chair, however, is rigid, so there are no warnings.  

Second, the software checks whether the structure will hold 
up the weight we placed on it. Using finite element analysis, 
the software calculates the forces that apply to every member 
of the structure. As show in Figure 11a, TrussFab shades all 
members accordingly. The six vertical members of the octa-
hedron now appear in shades of red, suggesting that these are 
experiencing compression. So does the chair’s “backbone”. 
All other members are tinted blue, suggesting that these are 
subject to tension.  

 

Figure 11: (a) To verify the chair’s structural stability we add 
the load forces expected during use. The system now calcu-

lates internal compression and tension forces. Here, no forces 
are exceeding the limit; thus no warnings are displayed. (b) As 

predicted, the fabricated chair holds the human weight. 

TrussFab compares these forces with the maximal load 
members and hubs can hold (see section “Hubs and Mem-
bers”). It warns the user if the limits are exceeded. This is 
not the case here, so we now know that our chair model is 
structurally sound.  

 Finally, we click the fabricate it! button. This causes 
TrussFab to generate 3D models of all hubs and export them 
in STL format to the 3D printer. For the wooden seat cover, 
TrussFab creates a 2D line drawing in SVG format and sends 
it to a laser cutter. Users now assemble hubs and bottles 
based on the embossed hub IDs, resulting in the chair shown 
in Figure 11b. This particular design prints in 90 min per hub 
on a MakerBot 2X, and takes about 20 minutes to assemble. 

Note how the interaction we described afforded creating a 
stable structure. In particular, the octahedron we started out 
with was a truss and thus stable. We then added tetrahedra, 
which turned our initial truss into a larger truss. Tweaking 
the length of individual members, finally, did not affect the 
structure of our design, so it remained a truss at all times. 



 

 

Editing larger objects efficiently 
To create larger objects, TrussFab offers a number of tools 
that create larger trusses in a single interaction, thus resulting 
in a more efficient design process. 

The beam tool creates entire beams in one go. The bridge 
in Figure 1 and the pavilion in Figure 12 were created this 
way.  

  The block tool creates a tetra-octa plane in one go. We 
used it to create the roof of the pavilion in Figure 12. It can 
also serve, for example, as a stage. 

 The deform tool allows users to deform trusses. In Figure 
12b we applied this tool in order to obtain a curved roof. Us-
ing the tool, we grabbed a hub located in the middle of the 
roof and dragged it upwards. The tool accommodates this by 
growing and shrinking members throughout the truss (see 
section “Implementation”). 

 

Figure 12: (a) Pavilion created using the beam and block tools. 
(b) The roof is freely deformed by pulling upwards using the 

deform tool. 

Going even larger with facades 
As mentioned earlier, single-layer triangle meshes, which as 
call facades, are an efficient way to add surfaces to a struc-
ture. TrussFab’s editor offers two specific truss tools. 

 The facade tool allows filling in a facade between two 
trusses. This tool flood fills the plane in between two trusses 
with a triangle mesh.  In Figure 6, we used this tool to create 
the walls of a tipi.  

 TrussFab supports a special type of facade, namely 
domes (Figure 13). Domes are particular in that they support 
themselves by means of their own curvature, i.e., without 
any underlying truss structure. We created the shown tent by 
(a) creating a dome by selecting TrussFab’s dome tool and 
clicking on the ground. (b) We create an opening in the front 
using TrussFab’s delete brush. (c) Using the triangle and the 
line tools we add the decorative ears on top of the dome. 
(d) The resulting dome is assembled from 512 bottles, 68 
3D-printed and 63 laser cut hubs. 

 

Figure 13: (a) Dome created using the dome tool. (b) We make 
the opening using the delete tool, and (c) add decoration using 
the triangle and line tools. (d)  The resulting dome is built us-

ing 512 bottles. 

HUBS AND MEMBERS 
As mentioned earlier, TrussFab subjects hubs to loads in the 
range of a human weight, making their design crucial for 
achieving sturdy structures. 

Each hub connects two or more bottle members by their 
necks. Consequently, each hub has two or more regions that 
hold a bottle; we call these regions connectors. We have de-
signed two connector types that complement each other. 

1. Threaded connectors hold bottles by their thread, as shown 
in Figure 14. To connect, users simply screw the respective 
bottle into the connector. Unfortunately, trusses cannot be 
assembled from threaded connectors alone. The reason is 
that screwing in the last member of a closed contour un-
screws the bottle at the opposite end of that member. Truss-
Fab therefore complements threaded connectors with a sec-
ond type of connector that is not susceptible to rotation. 

2. Snap-fit connectors slide into the bottleneck and hold the 
bottle from the inside (Figure 14). A three-way slit in the 
connector forms a set of cantilever springs that are com-
pressed when the connector is inserted into a bottle, allowing 
the tip to slip in. When it reaches the point where the bottle 
widens, it expands and now resists being pulled out. To give 
the connector stability, users insert a pin into the connector, 
as shown in Figure 14, which locks the connector into place. 
Users can disassemble a snap-fit connector by pushing the 
pin all the way into the bottle. 



 

 

 

Figure 14: 3D printed hub with snap-fit and threaded bottle 
connectors. 

Similar to the threaded connectors, it is not generally possi-
ble to implement a TrussFab structure using snap connectors 
alone. The reason is that if two snap connectors are on the 
same hub placed opposite to each other, it is impossible to 
insert both locking pins. 

TrussFab resolves the challenge by using at least one snap 
connector per closed contour and by using threaded connect-
ors opposite to any snap connector. TrussFab’s editor re-
solves this automatically.  

By default, TrussFab creates connectors that fit the bottle-
necks of the most common bottles (PCO 28mm thread); 
other ready-made objects can be handled by loading an 
OpenSCAD description of the fitting connector design.  

Creating members from bottles 
As shown in Figure 15, TrussFab generally uses (a) long 
wood screws to connect the bottoms of two bottles or 
(b) double-ended screws, tightened by rotating the bottles in 
opposite directions. (c) In the rare case of short, single-bottle 
members, TrussFab uses bottom-to-hub wood screw con-
nectors. 

 

Figure 15: (a) Connecting bottles with a wood screw using an 
extra-long screwdriver and (b) with a double-ended screw. 

(c) Single-bottle edges require a bottom connector 

We made all objects shown in this paper from refillable plas-
tic bottles. Since these bottles are designed to be used multi-
ple times, they feature thicker walls, resulting in sturdier 
structures. 

For fabricating facades or non-load-bearing structures we 
connect bottles using 6” wide adhesive tape. This leaves the 
bottles intact, allowing us to return the bottles. It also works 
well with thinner, disposable bottles. 

Stability and safety 
Structures intended to carry a human weight need to undergo 
careful design. Before building, users should verify the sta-
bility of their particular bottle members and hubs using an 
appropriate testing procedure. 

In order to determine the maximum load that our bottle 
members can undergo, we used the mechanical break testing 
machine shown in Figure 16a. We used the 3D-printed test 
connectors shown in Figure 16b to attach the bottles to the 
machine. The machine then applied increasing tension or 
compression, until the tested element breaks, resulting in the 
strain-stress diagram shown in Figure 16c. 

 

Figure 16: (a) During break strength testing of this truss 
member (b) the machine held the member by these square 

hubs. (c) Resulting strain-stress diagram shows that the mem-
ber broke at 135 kg of tensile force. 

Table 1 shows the loads our hubs and members withstand 
under idealized conditions, i.e., indoors and without any dy-
namic loads. For our members, we were able to apply up to 
85kg of pressure (at which point the bottle buckles and col-
lapsed) or 135 kg of tension (at which point the FDM-printed 
ABS hubs tore).   

 threaded 
connector 

snap    
connector 

bottle 
member  

compression (any) (any) 85 kg 

tension 135 kg 145 kg 180 kg 

Table 1: Breaking points of our threaded and snap connectors 
and bottle members.  

Note that these measurements were obtained with refillable 
bottles—disposable bottles tend to break under smaller 
loads. Also slicer settings, print-orientations, and hub mate-
rials may lead to different results. Thus the testing procedure 
needs to be performed with the respective bottles and 3D 
printing technology at hand. 

These measured values need to be complemented with addi-
tional factors that represent the expected dynamic loads and 
in the case of outdoor deployment also factors resulting from 
environmental conditions, such wind forces, wear and 
weather decay. Finally, a substantial factor for safety should 
be applied.  



 

 

Laser-cut hubs for facades 
Figure 17 shows the laser-cut connectors we use for facades. 
We tend to fabricate them from particleboard or optionally 
plywood for extra stability. 

 

Figure 17: Laser-cut snap connectors are secured using a self-
locking wedge. 

Each laser-cut connector consists of two parts. The plate 
forms the hub itself. It is cut to accommodate the flange of 
the bottle, which prevents the bottle from moving in-and-out 
along its main axes. Inserting a wedge prevents the bottle 
from slipping out of the plane of the connector. 

Even though hubs are flat when fabricated, assembling them 
into a curved structure, such as a dome (Figure 13), requires 
hubs to assume this curvature. TrussFab fabricates laser-cut 
connectors with play to allow for this. 

IMPLEMENTATION 
To help readers replicate out results, we now describe the 
implementation of the main components of the TrussFab 
system: TrussFab’s editor, converter, force analyzer, and 
hub generator. 

TrussFab editor 
We implemented TrussFab as an extension to the 3D editor 
SketchUp. It is written in Ruby and JavaScript. It allows us-
ers to create 3D models, verify stability, and to trigger the 
TrussFab Hub Generator. 

The grow and shrink tools affect the lengths of members and 
consequently the angles between members. TrussFab re-
stores the consistency of the 3D model by running a dynamic 
relaxation algorithm [21], i.e., neighboring members start to 
push-pull each other until they find the position that accom-
modates the change. TrussFab iterates up to 10,000 cycles or 
until 0.1 mm accuracy has been reached. 

TrussFab converter 
TrussFab’s converter offers two modes of operation: the vol-
umetric and surface conversion.  

The volumetric conversion procedure is similar to traditional 
voxelization methods. However, instead of intersecting the 
given 3D model with a regular cubical grid, TrussFab inter-
sects the model with a tetrahedral honeycomb, as shown ear-
lier on the example of a table in Figure 2. The algorithm also 
iterates to find those angles and positions that maximize the 
number of fully enclosed edges. Further elaborate space-fill-
ing algorithm can be found in Mitra et al. [19]. 

The surface conversion procedure reproduces the object’s fa-
cade as members, as illustrated by Figure 18. The main chal-
lenge here is to ensure that every edge of the 3D model either 
fits the length of one of the bottle primitives or is slightly 
longer, in which case the converter will lengthen the edge by 
extending the respective connector. 

 

Figure 18: Stanford bunny converted using the TrussFab con-
verter in facade conversion mode . 

Our surface conversion tool, inspired by Richter and Alexa’s 
Beam Meshes [24], consists of two stages: mesh simplifica-
tion and surface remeshing. In the mesh simplification stage, 
we use the quadric-based edge collapse function in MeshLab 
[45] until it reaches the desired number of edges. We pre-
serve certain features, such as the ears of the bunny in Figure 
18, by manually simplifying the 3D model using the simpli-
fication brush in Autodesk MeshMixer [46]. 

In the surface remeshing stage, we optimize the vertex posi-
tion of the model so that all edges are of the valid length of 
bottle primitives and the distortion of the final mesh is min-
imized. The energy function has two terms, where the first 
term is the minimum distance between an edge and the bottle 
primitives and the second term is the distance between the 
vertex position and the original simplified mesh. 

More specifically, the energy function is of the form 

ሻࢂሺܧ =  minሺ∑ܧ − ሻ


ୀ
 ߙ  ݏ݅ܦ ሺݒ , ሻࡿ



ୀ
  

where V are the vertices of the simplified 3D model, n and 
m are the number of vertices and edges respectively, Ei is the 
length of the edge i, B is the set of valid length for all bottle 
primitives, ݐݏ݅ܦሺݒ ,  ሻ is the distance between vertex i andࡿ
the surface S of the given 3D model. We calculate the opti-
mized vertex positions using Powell’s COBYLA optimiza-
tion routine [22]. 

The algorithm does not account for structural stability; there-
fore, optional reinforcement needs to be added manually. 
Also, physical self-intersections need to be corrected by the 
user. The converted models are exported to the TrussFab ed-
itor in the form of a JSON file. 



 

 

Finite elements 
TrussFab uses karamba3D [23] as its finite element engine. 
This method models each edge as a spring of particular stiff-
ness and calculates the displacement of the nodes under the 
given force [7]. TrussFab treats all hubs as ball joints, allow-
ing for deformations without breaking. The bottle members 
are modelled as filled cylinders, which are rigid in shear. The 
pods touching the ground are considered anchor points. 

TrussFab sends the geometry of the model together with the 
specified load forces to Karamba3D in JSON format, which 
returns the resulting compression and tension forces for each 
member. 

Rigidity check 
To check rigidity [25], TrussFab represents the 3D model as 
a node-link diagram. From this graph ܩ TrussFab forms a 
rigidity matrix. If the rank of this matrix is equal 3݊ − 6 
where ݊ is the number of vertices in ܩ TrussFab considers 
the structure rigid. 

To shortly explain this, consider a movement of the vertices 
given by specifying a velocity ߤሺݐሻ for each vertex ݒ at 
every point in time ݐ.  Let   be the initial position of ݒ. 
Then the movement preserves the length of an edge ݒݒ, if 
and only if  

ቀߤሺݐሻ − ሻቁݐሺߤ  ∙ ൫ − ൯ = 0 

holds for every point in time. Thus, to check ܩ for rigidity, 
we can instead test whether velocities satisfying this equa-
tion for every edge exist. As each equation is linear, we ob-
tain a system of linear equations. This system can be written 
as ߤܣ = 0 where ߤ is the vector of all velocities and each 
row of the matrix A corresponds to one equation. The matrix 
 has ߤ is the above mentioned rigidity matrix.  Note that ܣ
dimension 3݊ as we have one velocity for each vertex and 
each velocity is 3-dimensional.  Thus, if ݇݊ܽݎሺܣሻ = 3݊ − 6 
then the solution space of ߤܣ = 0 is 6-dimensional, which 
covers exactly the trivial movements of rotating (in three di-
mensions) and translating (in three dimensions) the whole 
graph.  Hence, if ݇݊ܽݎሺܣሻ = 3݊ − 6, no other edge-length 
preserving movement can exist, i.e. ܩ is rigid. 

TrussFab Hub Generator 
The TrussFab Hub Generator generates the 3D models of the 
hubs using the mathematical solid modeling tool 
OpenSCAD [47].  

The TrussFab Hub Generator receives its input from the 
TrussFab editor in OpenSCAD script file format (.scad). 
(1) For 3D printed hubs, this data file describes each con-
nector using a direction vector for each connection, anno-
tated with connector type, elongation, and ID. (2) For laser-
cut hubs, the plug-in projects the connections onto a plane 
before exporting the hub as a 2D geometry. 

TrussFab Hub Generator generates hubs by arranging the in-
dividual connector primitives around a sphere. The con-
nector geometry is loaded from separate modular files, al-
lowing users to include their own, custom connector types 
for using different ready-made objects in the design. 

Fabrication and assembly 
We fabricated the 3D hubs of all models shown in this paper 
on MakerBot 2X desktop FDM printers. Each hub consumed 
about 50-150 g of filament, resulting in $2-5 cost. One aver-
age hub printed in about 1.5-2.5 h, using a 0.5 mm nozzle. 
We mostly printed ABS, but also included recycled PET ma-
terials. The laser cut hubs are made from 5 mm parti-
cleboard, which took about 3 minutes to cut on a Universal 
UL 150D laser cutter. 

Table 2 summarizes the bottle/hub count, printing and as-
sembly time for all presented objects. The refillable bottles 
were acquired for their deposit value ($0.15/piece). 

 
number 

of bottles 
number 
of hubs 

printing 
time 

assembly 
time 

chair 36 8 ~16 h ~10 min 

table 48 10 ~20 h ~20 min 

boat 124 31 ~62 h ~2 h 

dome 512 
68 (3D) 
63 (2D) 

~136 h 
~3 h 

~8 h 
(2 person) 

bridge 174 30 ~60 h ~4 h 

Table 2: Summary of bottle/hub count, printing and assembly 
time per example object.  

CONCLUSION 
TrussFab is an integrated end-to-end system that allows us-
ers to fabricate large structures that are sturdy enough to 
carry human weight on desktop 3D printers. Unlike previous 
systems that built on up-cycled plastic bottles combined with 
3D print, TrussFab considers bottles not as “bricks”, but as 
beams that form structurally sound node link structures also 
known as trusses, allowing users to handle the forces result-
ing from scale and load. TrussFab embodies the required en-
gineering knowledge, allowing non-engineers to design such 
structures and allows users to validate their designs using in-
tegrated structural analysis.  

Personal fabrication of large-scale objects opens up a range 
of new challenges. Unlike for desktop-scale objects, soft-
ware systems need to consider how to (1) assure structural 
integrity to guarantee safety. (2) Consider dynamic forces, 
such as human movements and wind forces. (3) Use material 
consciously. (4) Optimize fabrication time. (5) Take into ac-
count the effect of environmental factors on longevity, such 
as temperature, weather, UV light, etc. 
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