

TrussFab: Fabricating Sturdy Large-Scale Structures
on Desktop 3D Printers

Robert Kovacs, Anna Seufert, Ludwig Wall, Hsiang-Ting Chen, Florian Meinel, Willi Müller, Si-
jing You, Maximilian Brehm, Jonathan Striebel, Yannis Kommana, Alexander Popiak,

Thomas Bläsius, and Patrick Baudisch
Hasso Plattner Institute, Potsdam, Germany
{firstname.lastname}@hpi.uni-potsdam.de

ABSTRACT
We present TrussFab, an integrated end-to-end system that
allows users to fabricate large scale structures that are sturdy
enough to carry human weight. TrussFab achieves the large
scale by complementing 3D print with plastic bottles. It does
not use these bottles as “bricks” though, but as beams that
form structurally sound node-link structures, also known as
trusses, allowing it to handle the forces resulting from scale
and load. TrussFab embodies the required engineering
knowledge, allowing non-engineers to design such struc-
tures and to validate their design using integrated structural
analysis. We have used TrussFab to design and fabricate ta-
bles and chairs, a 2.5 m long bridge strong enough to carry a
human, a functional boat that seats two, and a 5 m diameter
dome.

Author Keywords
Fabrication; 3D printing; truss structure.

ACM Classification Keywords
H5.2 [Information interfaces and presentation]: User Inter-
faces: Input Devices and Strategies, Interaction Styles.

INTRODUCTION
Personal fabrication tools, such as 3D printers have become
popular in HCI, where they have been used for fast prototyp-
ing [20] as well as to fabricate interactive objects [9], optical
elements [34], or kinematic characters [5]. Since 3D printers
today are available in a desktop form factor, they have been
able to spread to the maker community [30] and are now in-
creasingly reaching the consumer market [27].

In contrast, the fabrication of large objects still has remained
a privilege of industry, which has access to specialized
equipment, such as concrete printers that allow making
houses [13] or robotic-arms capable of 3D printing [11]. The
owners of the widespread desktop devices, in contrast, can-
not participate in this evolution, because the underlying tech-
nology does not scale. Even techniques that break down

large models into printer-sized parts [16] ultimately do not
scale, as large models consume material and time propor-
tional to their size, which quickly renders 3D printing and
related techniques intractable for larger-than-desktop-scale
models.

Figure 1: TrussFab is a system that allows users to fabricate

large structures sturdy enough to carry human weight. Truss-
Fab considers bottles as beams that form structurally sound

node-link structures also known as trusses, allowing it to han-
dle the forces resulting from scale and load.

As an alternative approach, fabrication enthusiasts have cre-
ated large objects by combining 3D print with ready-made
objects, such as plastic bottles [39]. In their simplest form,
such objects wrapped in 3D print can serve as 3D voxel col-
lages that approximate the volume of an object [36].

Going larger, however, is not only about scale and print vol-
ume. For large objects, the main design objective is typically
to withstand large forces, as forces grow cubed with the size
of the object. Also, large objects afford substantial external
loads; furniture, bridges, and vehicles, for example, all must
be engineered to hold the weight of a human. Designing for
large forces, however, requires substantial engineering skill
[40] from envisioning appropriate structures in the first place
to verifying their structural integrity.

In this paper, we present TrussFab, an integrated end-to-end
system that allows users to design large structures that are
sturdy enough to carry human weight (Figure 1). TrussFab
achieves this by taking a different perspective on bottles. Un-
like previous systems that stacked bottles as if they were
“bricks”, TrussFab considers them as beams and uses them

Authors’ copy.
Published in Proceedings of CHI '17, May 6 - 11, 2017, Denver, USA

to form structurally sound node link structures based on
closed triangles, also known as trusses. TrussFab embodies
the required engineering knowledge, allowing non-engi-
neers to design such structures. TrussFab also allows users
to validate their designs using integrated structural analysis
(Figure 3). Our main contribution is this end-to-end system.

WALKTHROUGH OF THE TRUSSFAB SYSTEM
TrussFab allows users to create structures either by model-
ing from scratch or by converting existing 3D models. It sup-
ports an integrated workflow, which we summarize in the
following and then discuss in detail throughout the rest of
the paper.

Figure 2: (a) TrussFab’s converter automatically turns this
3D model of a coffee table, into (b) a sturdy tetrahedral hon-
eycomb structure, (c) which fabricated serves as a functional

table.

Step 1: Automatic conversion. One way to create TrussFab
structures is to convert an existing 3D model using Truss-
Fab’s converter. As shown in Figure 2 this converts the vol-
ume of the model into a tetrahedral honeycomb structure, al-
lowing it to bear substantial load.

Figure 3: TrussFab’s editor is implemented as an extension
for SketchUp. Here the user is performing a stability check on

the bridge from Figure 1.

Step 2: Editing. TrussFab’s editor allows users to refine an
object created by automatic conversion (Figure 2) or to start
a new object from scratch (Figure 3). We implemented

TrussFab’s editor as an extension to the 3D modeling soft-
ware SketchUp [41]. TrussFab’s editor offers all the func-
tionalities of the original SketchUp system, plus custom
functions that help users create sturdy structures. In particu-
lar, TrussFab’s editor offers primitives that are elementary
trusses (tetrahedra and octahedra), tools that create large
beams in the form of trusses, and tools for tweaking the
shape of structures, while maintaining their truss structure.
In Figure 3, the user placed a human weight on top of the
bridge design. TrussFab’s integrated structural analysis
shows no warnings, suggesting that the bridge is structurally
sound.

Step 3: Hub generation. After designing a structure, Truss-
Fab’s hub generator generates the 3D models of all hubs.
Figure 4 shows our 3D printed hub design; the connector on
the top snaps into the bottleneck, while the bottom ones are
holding the bottles by their threaded neck. When designing
structures to carry a human weight, these hubs experience
large forces. We discuss the details of TrussFab’s hub de-
signs in section “Hubs and Members”.

Figure 4: (a) TrussFab generates a hub for every node in the
model. (b) The hubs are then 3D printed. Users assemble them

following embossed IDs.

Step 4: Fabrication. Users then send the 3D model files pro-
duced by the hub generator to one or more 3D printers in
order to manufacture them.

Step 5: Assembly. Users now manually assemble their struc-
tures by following unique IDs embossed into each hub
(Figure 4b).

TrussFab’s underlying structure achieves stability
The key ideas behind TrussFab are (1) to employ bottles in
their structurally most sturdy way, i.e., as beams from bot-
tom to bottleneck and (2) to afford sturdy “closed frame
structures”, also known as trusses [15].

While freestanding bottles tend to break easily (Figure 5a/b),
truss structures essentially consist of triangles. In such an ar-
rangement, it is the structure that prevents deformation, not
the individual bottle. The main strength of trusses is that they
turn lateral forces (aka bending moments) into tension and
compression forces along the length of the edges (aka mem-
bers). Bottles make great members: while they buckle easily
when pushed from the side, they are very strong when

pushed or pulled along their main axis (see section “Strength
test”). (c) The resulting structures, such as this tetrahedron,
are strong enough to bear the weight of one or more humans.
(d) TrussFab affords building trusses by combining tetrahe-
dra and octahedra into so-called tetrahedral honeycomb
structures. The table in Figure 2, for example, is cut from
such a “tetra-octa” mesh. This structure is commonly used
in truss design and provides structural stability [4].

Figure 5: (a) Large objects involve large levers, causing them
(b) to break under load. (c) TrussFab instead affords struc-
tures based on closed triangles, here forming a tetrahedron.

Such structures are particularly sturdy. (d) TrussFab extends
this concept to tetrahedron-octahedron trusses of arbitrary

size.

Alternatively, we considered using larger stable primitives
as building blocks, such as an icosahedron. We opted for the
tetrahedra and octahedra, as they are space-filling, thus pro-
vide a simpler construction grid than other geometries.

Optimized construction using “facades”
TrussFab affords creating large structures by specifically
supporting hierarchical construction. Figure 6 illustrates
this. (a) Users start by creating a load-bearing structure in the
form of trusses. (b) Users then fill in the non-load-bearing
sides as facades. The benefit of this two-stage process is that
facades are particularly efficient. First, they are single-layer,
thus require fewer bottles. Second, the hubs that form a fa-
cade are flat; this allows TrussFab to fabricate such hubs us-
ing a laser cutter, which is very fast (40x faster than 3D print,
see section “Laser-cut hubs for facades”).

Figure 6: (a) The load-bearing structure of this tipi is best
made from trusses; (b) its sides can be filled using facades.

(c) TrussFab makes 2D facade hubs quickly on a laser cutter.

To support this classic layered architecture, TrussFab com-
plements all of its truss tools with specialized facade tools.
The editor offers facade tools for filling large opening with
facades (Figure 6b). The hub generator offers the aforemen-
tioned laser-cut facade hubs. And, for object not expected to

bear a load at all, TrussFab’s surface converter turns the
outer hull into a hollow facade structure (Figure 18).

CONTRIBUTION, BENEFITS, AND LIMITATIONS
Our main contribution is the integrated end-to-end system
that allows users to fabricate large structures that are sturdy
enough to carry human weight—on desktop 3D printers. Un-
like previous systems that build on up-cycled plastic bottles
combined with 3D print, TrussFab considers bottles not as
“bricks”, but as beams that form structurally sound node link
structures also known as trusses, allowing users to handle
the forces resulting from scale and load.

TrussFab embodies the required engineering knowledge, al-
lowing non-engineers to design such structures, and allows
users to validate their designs using integrated structural
analysis. In particular, TrussFab’s editor offers primitives
that are trusses (tetrahedra and octahedra), tools that create
large beams that are trusses, and tools for tweaking the shape
of structures, while maintaining its truss structure. On the
mechanical side, we contribute the key structural elements
that allow creating trusses, i.e., the 3D-printed and laser-cut
hub design.

We have validated our system by designing and fabricating
tables and chairs, a 2.5 m bridge strong enough to carry a
human, a 5 m diameter dome consisting of 512 bottles and a
functional boat that seats two, shown in Figure 7.

Figure 7: A functional boat created using TrussFab. (a) Using
the editor, users can design their structures efficiently. (b) The
bottle-frame is simply covered by tarp. (c) The fabricated boat

seats two.

Our approach is subject to the general limitations faced by
ready-made objects. In particular, TrussFab can reproduce
neither details smaller than a bottle nor closed surfaces.

RELATED WORK
TrussFab builds on previous efforts in the following
branches: large-scale personal fabrication, design with exist-
ing objects and construction kits, and tools for creating struc-
turally sound objects.

Large-scale personal fabrication
Architects and engineers have made efforts to scale up the
additive manufacturing process for constructing large-scale
structures, such as houses or sculptures. These efforts mostly
involve a scaled-up version of the common machinery, like
concrete printers [13], or breaking down the objects into
smaller parts to print on desktop machines [16,17].

Another approach to fabricating architectural-scale objects
is the use of mobile printing robots, which move on the
ground [12] or fly [35] around the printed object. Yet another
approach is to use human assisted devices, such as Pro-
topiper [1]. Similarly, Yoshida et al. [37] proposed a com-
puter-assisted fabrication method for large-scale architecture
that combines a hand-held chopstick dispenser with a pro-
jector-based guiding system. Lafreniere et al. [14] coordi-
nate multiple workers while collaboratively fabricating a pa-
vilion.

Construction kits
Construction kits are popular for fast prototyping and fabri-
cation. They offer a repertoire of prefabricated elements,
which can be combined in various ways. Henrik and Kob-
belt [38] developed a system to accurately approximate
complex shapes using the Zometool mathematical modeling
kit. Skouras et al. [28] created an interactive editor to com-
putationally combine interlocking elements into a desired
shape.

Designing with ready-made objects
MixFab [33], and Encore [3] allow users to integrate existing
objects into their design. For creating objects enclosing elec-
tronic components Ashbrook et al. [2] developed an aug-
mented fabrication system. Devendorf and Ryokai [6] pro-
posed a human-assisted fabrication system that helps users
incorporate everyday objects into 3D print. Beady [10] ap-
proximates models from beads and offers an editor for refin-
ing them.

Gellért assembled wooden boards combined with 3D printed
connectors in node-link structure [8]. Combining carbon
tubes with 3D printed metal has been proposed for creating
functional cars [40].

Skilled individuals have stacked or tied plastic bottles in or-
der to make art pieces, furniture, rafts or houses [39].
Yamada et al. [36] proposed a system for arranging ready-
made objects into 3D shapes using 3D-printed connectors.

Tools for creating structurally sound objects
Smith et al. [29] developed a system that automatically gen-
erates truss structures using non-linear optimization. Makris
et al. [18] proposed a design tool that generates parametri-
cally defined, semi-automatically analyzed, and visualized
structures. Wang et al. [32] developed an automated method
that minimizes material cost by converting solid 3D models
into a skin-frame structure. SketchChair [26] is an interac-
tive chair design system that allows users to validate the
structural integrity of their design by subjecting it to the
weight of a human rag doll. Similarly, Umentani et al. [31]
created a system for exploring physically valid shapes in
furniture design.

Commercial tools for engineering truss structures include
SkyCiv [42], which allows users to analyze the force distri-
bution in trusses. MiTek’s PAMIR| [43] is a specialized tool
for creating timber rooftops. TrussTool [44] allows assem-
bling constructions from ready-made trusses. In contrast,
TrussFab affords creating trusses, rather than just assem-
bling them.

WALKTHROUGH OF THE TRUSSFAB EDITOR
We now zoom in on step 2 of our workflow: the TrussFab
editor. The main design rationale behind the editor is to af-
ford stable structure. It achieves this by using bottles as the
members of trusses. The key idea behind TrussFab’s editor
is to start any design with primitives that already are trusses,
i.e., tetrahedra and octahedra; additional functions then al-
low users to extend and tweak the structure while maintain-
ing the truss property at all times. Once the main truss struc-
ture has been created, users may add facades and decorative
details.

Design based on tetrahedron-octahedron primitives
In this section we demonstrate the use of the TrussFab editor
on our chair with backrest design.

(a) As illustrated by Figure 8a, we start our design by cre-
ating the base of the chair. We select the octahedron tool
from TrussFab’s drawing toolbar and click on the ground
plane of our workplace, which creates an octahedron. By de-
fault, this octahedron is made from small (half-liter) bottles.
We check its height using the standard SketchUp measure-
ment tool—it is 45cm, which is a good height for an average
person to sit on.

Figure 8: Creating a chair with backrest in TrussFab’s editor

(b) To make the backrest, we now select the tetrahedron
tool. We click on one of the sides of the base octahedron,
which attaches a tetrahedron to it. (c) We click the top sur-
face of the tetrahedron we just made, attaching one more tet-
rahedron to it. This gives us the rough shape of our chair and
its backrest.

 (d) The backrest is a little short. We select the grow tool
and click one of the three upper members of the backrest.
This elongates one of the two bottles to the next supported
size, i.e., a 1.5-liter bottle, here shown as light green. We
click again, which causes the second bottle of this member

to grow as well. (e) Repeating this on the other side scales
the backrest to the desired size.

(f) The chair is now too “laid back”. Still holding the grow
tool, we click the rear edge of the backrest until the backrest
is more vertical.

Alternatively, instead of using the discrete grow/shrink
tools, user can also use the deform tool, which allows freely
dragging individual hubs in space, while preserving the truss
nature of the model (see section “Editing larger objects effi-
ciently”). In addition to the standard member lengths gov-
erned by bottle sizes, TrussFab can implement extra-long
members and in-between sizes by extending hubs with 3D
print, as shown in Figure 9. This allows users for more free-
dom in their design.

Figure 9: TrussFab implements the extra-long members using
extra 3D print.

 We now select the pod tool and use it to add pods to the
bottom of our chair, as illustrated by Figure 10a. As dis-
cussed earlier, bottles are sturdy only when forces apply
along their main axis. This is not the case for an octahedron
directly touching the ground. If we tried to sit on it, our
weight would cause the members touching the ground to
buckle and break. The pods avoid this by propagating the
user’s weight into the truss, making the design robust.

 Finally, we select the cover tool and click the top of the
octahedron (Figure 10b). This adds a plywood plate for users
to sit on; it is supported by three upward-facing pods. Plates
will later be exported as SVG files. We tend to fabricate them
on a laser cutter.

Figure 10: (a) Adding pods to the bottom hubs and (b) a cover
to the top adds stability to our design, as any load is now

propagated through the hubs, saving members from buckling.

 To verify the chair’s ability to carry a human user, we
select the add weight tool and click on the seat plate (Figure
11). This places 10 kg weight on each of the three corners of
the plate. We click three more times, which increases the
weight in 5 kg steps, to sum up in total of 75 kg. A click at
the backrest adds another 10kg pushing load into the
backrest.

 Clicking the check stability icon causes TrussFab to
compute the effect of these weights onto the structure. This
happens in two steps. First, the software looks for flaws in
the truss structure, i.e., it searches for parts that are not com-
pletely locked in place by other members and are subject to
shearing forces (see section “Implementation”). If found, the
software would suggest placing additional stabilizing mem-
bers. Our chair, however, is rigid, so there are no warnings.

Second, the software checks whether the structure will hold
up the weight we placed on it. Using finite element analysis,
the software calculates the forces that apply to every member
of the structure. As show in Figure 11a, TrussFab shades all
members accordingly. The six vertical members of the octa-
hedron now appear in shades of red, suggesting that these are
experiencing compression. So does the chair’s “backbone”.
All other members are tinted blue, suggesting that these are
subject to tension.

Figure 11: (a) To verify the chair’s structural stability we add
the load forces expected during use. The system now calcu-

lates internal compression and tension forces. Here, no forces
are exceeding the limit; thus no warnings are displayed. (b) As

predicted, the fabricated chair holds the human weight.

TrussFab compares these forces with the maximal load
members and hubs can hold (see section “Hubs and Mem-
bers”). It warns the user if the limits are exceeded. This is
not the case here, so we now know that our chair model is
structurally sound.

 Finally, we click the fabricate it! button. This causes
TrussFab to generate 3D models of all hubs and export them
in STL format to the 3D printer. For the wooden seat cover,
TrussFab creates a 2D line drawing in SVG format and sends
it to a laser cutter. Users now assemble hubs and bottles
based on the embossed hub IDs, resulting in the chair shown
in Figure 11b. This particular design prints in 90 min per hub
on a MakerBot 2X, and takes about 20 minutes to assemble.

Note how the interaction we described afforded creating a
stable structure. In particular, the octahedron we started out
with was a truss and thus stable. We then added tetrahedra,
which turned our initial truss into a larger truss. Tweaking
the length of individual members, finally, did not affect the
structure of our design, so it remained a truss at all times.

Editing larger objects efficiently
To create larger objects, TrussFab offers a number of tools
that create larger trusses in a single interaction, thus resulting
in a more efficient design process.

The beam tool creates entire beams in one go. The bridge
in Figure 1 and the pavilion in Figure 12 were created this
way.

 The block tool creates a tetra-octa plane in one go. We
used it to create the roof of the pavilion in Figure 12. It can
also serve, for example, as a stage.

 The deform tool allows users to deform trusses. In Figure
12b we applied this tool in order to obtain a curved roof. Us-
ing the tool, we grabbed a hub located in the middle of the
roof and dragged it upwards. The tool accommodates this by
growing and shrinking members throughout the truss (see
section “Implementation”).

Figure 12: (a) Pavilion created using the beam and block tools.
(b) The roof is freely deformed by pulling upwards using the

deform tool.

Going even larger with facades
As mentioned earlier, single-layer triangle meshes, which as
call facades, are an efficient way to add surfaces to a struc-
ture. TrussFab’s editor offers two specific truss tools.

 The facade tool allows filling in a facade between two
trusses. This tool flood fills the plane in between two trusses
with a triangle mesh. In Figure 6, we used this tool to create
the walls of a tipi.

 TrussFab supports a special type of facade, namely
domes (Figure 13). Domes are particular in that they support
themselves by means of their own curvature, i.e., without
any underlying truss structure. We created the shown tent by
(a) creating a dome by selecting TrussFab’s dome tool and
clicking on the ground. (b) We create an opening in the front
using TrussFab’s delete brush. (c) Using the triangle and the
line tools we add the decorative ears on top of the dome.
(d) The resulting dome is assembled from 512 bottles, 68
3D-printed and 63 laser cut hubs.

Figure 13: (a) Dome created using the dome tool. (b) We make
the opening using the delete tool, and (c) add decoration using
the triangle and line tools. (d) The resulting dome is built us-

ing 512 bottles.

HUBS AND MEMBERS
As mentioned earlier, TrussFab subjects hubs to loads in the
range of a human weight, making their design crucial for
achieving sturdy structures.

Each hub connects two or more bottle members by their
necks. Consequently, each hub has two or more regions that
hold a bottle; we call these regions connectors. We have de-
signed two connector types that complement each other.

1. Threaded connectors hold bottles by their thread, as shown
in Figure 14. To connect, users simply screw the respective
bottle into the connector. Unfortunately, trusses cannot be
assembled from threaded connectors alone. The reason is
that screwing in the last member of a closed contour un-
screws the bottle at the opposite end of that member. Truss-
Fab therefore complements threaded connectors with a sec-
ond type of connector that is not susceptible to rotation.

2. Snap-fit connectors slide into the bottleneck and hold the
bottle from the inside (Figure 14). A three-way slit in the
connector forms a set of cantilever springs that are com-
pressed when the connector is inserted into a bottle, allowing
the tip to slip in. When it reaches the point where the bottle
widens, it expands and now resists being pulled out. To give
the connector stability, users insert a pin into the connector,
as shown in Figure 14, which locks the connector into place.
Users can disassemble a snap-fit connector by pushing the
pin all the way into the bottle.

Figure 14: 3D printed hub with snap-fit and threaded bottle
connectors.

Similar to the threaded connectors, it is not generally possi-
ble to implement a TrussFab structure using snap connectors
alone. The reason is that if two snap connectors are on the
same hub placed opposite to each other, it is impossible to
insert both locking pins.

TrussFab resolves the challenge by using at least one snap
connector per closed contour and by using threaded connect-
ors opposite to any snap connector. TrussFab’s editor re-
solves this automatically.

By default, TrussFab creates connectors that fit the bottle-
necks of the most common bottles (PCO 28mm thread);
other ready-made objects can be handled by loading an
OpenSCAD description of the fitting connector design.

Creating members from bottles
As shown in Figure 15, TrussFab generally uses (a) long
wood screws to connect the bottoms of two bottles or
(b) double-ended screws, tightened by rotating the bottles in
opposite directions. (c) In the rare case of short, single-bottle
members, TrussFab uses bottom-to-hub wood screw con-
nectors.

Figure 15: (a) Connecting bottles with a wood screw using an
extra-long screwdriver and (b) with a double-ended screw.

(c) Single-bottle edges require a bottom connector

We made all objects shown in this paper from refillable plas-
tic bottles. Since these bottles are designed to be used multi-
ple times, they feature thicker walls, resulting in sturdier
structures.

For fabricating facades or non-load-bearing structures we
connect bottles using 6” wide adhesive tape. This leaves the
bottles intact, allowing us to return the bottles. It also works
well with thinner, disposable bottles.

Stability and safety
Structures intended to carry a human weight need to undergo
careful design. Before building, users should verify the sta-
bility of their particular bottle members and hubs using an
appropriate testing procedure.

In order to determine the maximum load that our bottle
members can undergo, we used the mechanical break testing
machine shown in Figure 16a. We used the 3D-printed test
connectors shown in Figure 16b to attach the bottles to the
machine. The machine then applied increasing tension or
compression, until the tested element breaks, resulting in the
strain-stress diagram shown in Figure 16c.

Figure 16: (a) During break strength testing of this truss
member (b) the machine held the member by these square

hubs. (c) Resulting strain-stress diagram shows that the mem-
ber broke at 135 kg of tensile force.

Table 1 shows the loads our hubs and members withstand
under idealized conditions, i.e., indoors and without any dy-
namic loads. For our members, we were able to apply up to
85kg of pressure (at which point the bottle buckles and col-
lapsed) or 135 kg of tension (at which point the FDM-printed
ABS hubs tore).

 threaded
connector

snap
connector

bottle
member

compression (any) (any) 85 kg

tension 135 kg 145 kg 180 kg

Table 1: Breaking points of our threaded and snap connectors
and bottle members.

Note that these measurements were obtained with refillable
bottles—disposable bottles tend to break under smaller
loads. Also slicer settings, print-orientations, and hub mate-
rials may lead to different results. Thus the testing procedure
needs to be performed with the respective bottles and 3D
printing technology at hand.

These measured values need to be complemented with addi-
tional factors that represent the expected dynamic loads and
in the case of outdoor deployment also factors resulting from
environmental conditions, such wind forces, wear and
weather decay. Finally, a substantial factor for safety should
be applied.

Laser-cut hubs for facades
Figure 17 shows the laser-cut connectors we use for facades.
We tend to fabricate them from particleboard or optionally
plywood for extra stability.

Figure 17: Laser-cut snap connectors are secured using a self-
locking wedge.

Each laser-cut connector consists of two parts. The plate
forms the hub itself. It is cut to accommodate the flange of
the bottle, which prevents the bottle from moving in-and-out
along its main axes. Inserting a wedge prevents the bottle
from slipping out of the plane of the connector.

Even though hubs are flat when fabricated, assembling them
into a curved structure, such as a dome (Figure 13), requires
hubs to assume this curvature. TrussFab fabricates laser-cut
connectors with play to allow for this.

IMPLEMENTATION
To help readers replicate out results, we now describe the
implementation of the main components of the TrussFab
system: TrussFab’s editor, converter, force analyzer, and
hub generator.

TrussFab editor
We implemented TrussFab as an extension to the 3D editor
SketchUp. It is written in Ruby and JavaScript. It allows us-
ers to create 3D models, verify stability, and to trigger the
TrussFab Hub Generator.

The grow and shrink tools affect the lengths of members and
consequently the angles between members. TrussFab re-
stores the consistency of the 3D model by running a dynamic
relaxation algorithm [21], i.e., neighboring members start to
push-pull each other until they find the position that accom-
modates the change. TrussFab iterates up to 10,000 cycles or
until 0.1 mm accuracy has been reached.

TrussFab converter
TrussFab’s converter offers two modes of operation: the vol-
umetric and surface conversion.

The volumetric conversion procedure is similar to traditional
voxelization methods. However, instead of intersecting the
given 3D model with a regular cubical grid, TrussFab inter-
sects the model with a tetrahedral honeycomb, as shown ear-
lier on the example of a table in Figure 2. The algorithm also
iterates to find those angles and positions that maximize the
number of fully enclosed edges. Further elaborate space-fill-
ing algorithm can be found in Mitra et al. [19].

The surface conversion procedure reproduces the object’s fa-
cade as members, as illustrated by Figure 18. The main chal-
lenge here is to ensure that every edge of the 3D model either
fits the length of one of the bottle primitives or is slightly
longer, in which case the converter will lengthen the edge by
extending the respective connector.

Figure 18: Stanford bunny converted using the TrussFab con-
verter in facade conversion mode .

Our surface conversion tool, inspired by Richter and Alexa’s
Beam Meshes [24], consists of two stages: mesh simplifica-
tion and surface remeshing. In the mesh simplification stage,
we use the quadric-based edge collapse function in MeshLab
[45] until it reaches the desired number of edges. We pre-
serve certain features, such as the ears of the bunny in Figure
18, by manually simplifying the 3D model using the simpli-
fication brush in Autodesk MeshMixer [46].

In the surface remeshing stage, we optimize the vertex posi-
tion of the model so that all edges are of the valid length of
bottle primitives and the distortion of the final mesh is min-
imized. The energy function has two terms, where the first
term is the minimum distance between an edge and the bottle
primitives and the second term is the distance between the
vertex position and the original simplified mesh.

More specifically, the energy function is of the form

ሻࢂሺܧ = minሺ∑ܧ − ሻ

ୀ
 ߙ ݏ݅ܦ ሺݒ , ሻࡿ

ୀ

where V are the vertices of the simplified 3D model, n and
m are the number of vertices and edges respectively, Ei is the
length of the edge i, B is the set of valid length for all bottle
primitives, ݐݏ݅ܦሺݒ , ሻ is the distance between vertex i andࡿ
the surface S of the given 3D model. We calculate the opti-
mized vertex positions using Powell’s COBYLA optimiza-
tion routine [22].

The algorithm does not account for structural stability; there-
fore, optional reinforcement needs to be added manually.
Also, physical self-intersections need to be corrected by the
user. The converted models are exported to the TrussFab ed-
itor in the form of a JSON file.

Finite elements
TrussFab uses karamba3D [23] as its finite element engine.
This method models each edge as a spring of particular stiff-
ness and calculates the displacement of the nodes under the
given force [7]. TrussFab treats all hubs as ball joints, allow-
ing for deformations without breaking. The bottle members
are modelled as filled cylinders, which are rigid in shear. The
pods touching the ground are considered anchor points.

TrussFab sends the geometry of the model together with the
specified load forces to Karamba3D in JSON format, which
returns the resulting compression and tension forces for each
member.

Rigidity check
To check rigidity [25], TrussFab represents the 3D model as
a node-link diagram. From this graph ܩ TrussFab forms a
rigidity matrix. If the rank of this matrix is equal 3݊ − 6
where ݊ is the number of vertices in ܩ TrussFab considers
the structure rigid.

To shortly explain this, consider a movement of the vertices
given by specifying a velocity ߤሺݐሻ for each vertex ݒ at
every point in time ݐ. Let be the initial position of ݒ.
Then the movement preserves the length of an edge ݒݒ, if
and only if

ቀߤሺݐሻ − ሻቁݐሺߤ ∙ ൫ − ൯ = 0

holds for every point in time. Thus, to check ܩ for rigidity,
we can instead test whether velocities satisfying this equa-
tion for every edge exist. As each equation is linear, we ob-
tain a system of linear equations. This system can be written
as ߤܣ = 0 where ߤ is the vector of all velocities and each
row of the matrix A corresponds to one equation. The matrix
 has ߤ is the above mentioned rigidity matrix. Note that ܣ
dimension 3݊ as we have one velocity for each vertex and
each velocity is 3-dimensional. Thus, if ݇݊ܽݎሺܣሻ = 3݊ − 6
then the solution space of ߤܣ = 0 is 6-dimensional, which
covers exactly the trivial movements of rotating (in three di-
mensions) and translating (in three dimensions) the whole
graph. Hence, if ݇݊ܽݎሺܣሻ = 3݊ − 6, no other edge-length
preserving movement can exist, i.e. ܩ is rigid.

TrussFab Hub Generator
The TrussFab Hub Generator generates the 3D models of the
hubs using the mathematical solid modeling tool
OpenSCAD [47].

The TrussFab Hub Generator receives its input from the
TrussFab editor in OpenSCAD script file format (.scad).
(1) For 3D printed hubs, this data file describes each con-
nector using a direction vector for each connection, anno-
tated with connector type, elongation, and ID. (2) For laser-
cut hubs, the plug-in projects the connections onto a plane
before exporting the hub as a 2D geometry.

TrussFab Hub Generator generates hubs by arranging the in-
dividual connector primitives around a sphere. The con-
nector geometry is loaded from separate modular files, al-
lowing users to include their own, custom connector types
for using different ready-made objects in the design.

Fabrication and assembly
We fabricated the 3D hubs of all models shown in this paper
on MakerBot 2X desktop FDM printers. Each hub consumed
about 50-150 g of filament, resulting in $2-5 cost. One aver-
age hub printed in about 1.5-2.5 h, using a 0.5 mm nozzle.
We mostly printed ABS, but also included recycled PET ma-
terials. The laser cut hubs are made from 5 mm parti-
cleboard, which took about 3 minutes to cut on a Universal
UL 150D laser cutter.

Table 2 summarizes the bottle/hub count, printing and as-
sembly time for all presented objects. The refillable bottles
were acquired for their deposit value ($0.15/piece).

number

of bottles
number
of hubs

printing
time

assembly
time

chair 36 8 ~16 h ~10 min

table 48 10 ~20 h ~20 min

boat 124 31 ~62 h ~2 h

dome 512
68 (3D)
63 (2D)

~136 h
~3 h

~8 h
(2 person)

bridge 174 30 ~60 h ~4 h

Table 2: Summary of bottle/hub count, printing and assembly
time per example object.

CONCLUSION
TrussFab is an integrated end-to-end system that allows us-
ers to fabricate large structures that are sturdy enough to
carry human weight on desktop 3D printers. Unlike previous
systems that built on up-cycled plastic bottles combined with
3D print, TrussFab considers bottles not as “bricks”, but as
beams that form structurally sound node link structures also
known as trusses, allowing users to handle the forces result-
ing from scale and load. TrussFab embodies the required en-
gineering knowledge, allowing non-engineers to design such
structures and allows users to validate their designs using in-
tegrated structural analysis.

Personal fabrication of large-scale objects opens up a range
of new challenges. Unlike for desktop-scale objects, soft-
ware systems need to consider how to (1) assure structural
integrity to guarantee safety. (2) Consider dynamic forces,
such as human movements and wind forces. (3) Use material
consciously. (4) Optimize fabrication time. (5) Take into ac-
count the effect of environmental factors on longevity, such
as temperature, weather, UV light, etc.

ACKNOWLEDGEMENTS
We would like to thank Ivan Mitkov Ivanov for fracture test-
ing the hubs and members and Doga Yüksel for his help
assembling the example objects.

REFERENCES
1. Harshit Agrawal, Udayan Umapathi, Robert Kovacs,

Johannes Frohnhofen, Hsiang-Ting Chen, Stefanie
Mueller, and Patrick Baudisch. 2015. Protopiper:
Physically Sketching Room-Sized Objects at Actual
Scale. In Proceedings of the 28th Annual ACM
Symposium on User Interface Software & Technology

(UIST ’15), ACM, New York, NY, USA, 427–436.
http://doi.org/10.1145/2807442.2807505

2. Daniel Ashbrook, Shitao Guo, and Alan Lambie. 2016.
Towards Augmented Fabrication: Combining
Fabricated and Existing Objects. In Proceedings of the
2016 CHI Conference Extended Abstracts on Human
Factors in Computing Systems (CHI EA ’16), ACM,
New York, NY, USA, 1510–1518.
http://doi.org/10.1145/2851581.2892509

3. Xiang “Anthony” Chen, Stelian Coros, Jennifer
Mankoff, and Scott E. Hudson. 2015. Encore: 3D
Printed Augmentation of Everyday Objects with
Printed-Over, Affixed and Interlocked Attachments. In
Proceedings of the 28th Annual ACM Symposium on
User Interface Software & Technology (UIST ’15),
ACM, New York, NY, USA, 73–82.
http://doi.org/10.1145/2807442.2807498

4. Kenneth C Cheung and Neil Gershenfeld. 2013.
Reversibly Assembled Cellular Composite Materials.
Science 341, 6151: 1219–1221.
http://doi.org/10.1177/0892705714554493

5. Stelian Coros, Bernhard Thomaszewski, Gioacchino
Noris, Shinjiro Sueda, Moira Forberg, Robert W.
Sumner, Wojciech Matusik, and Bernd Bickel. 2013.
Computational Design of Mechanical Characters. ACM
Transactions on Graphics 32, 4: 1.
http://doi.org/10.1145/2461912.2461953

6. Laura Devendorf and Kimiko Ryokai. 2015. Being the
Machine: Reconfiguring Agency and Control in
Hybrid Fabrication. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing
Systems (CHI ’15), ACM, New York, NY, USA,
2477–2486. http://doi.org/10.1145/2702123.2702547

7. Jacob Fish and Ted Belytschko. 2007. A first course in
finite elements. Wiley New York.

8. Ollé Gellért. Print To Build, 3D printed joint
collection. Retrieved September 15, 2016 from
https://www.behance.net/gallery/27812109/Print-To-
Build-3D-printed-joint-collection

9. Scott E. Hudson. 2014. Printing Teddy Bears. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’14), ACM, New
York, NY, USA, 459–468.
http://doi.org/10.1145/2556288.2557338

10. Yuki Igarashi, Takeo Igarashi, and Jun Mitani. 2012.
Beady: interactive beadwork design and construction.
ACM Transactions on Graphics (TOG) 31, c: 49.
http://doi.org/10.1145/2185520.2185545

11. Sasa Jokic and Petar Novikov. Mataerial - A Radical
New 3D Printing Method. Retrieved September 15,
2016 from http://www.mataerial.com/

12. Sasa Jokic, Petr Novikov, Shihui Jin, Stuart Maggs,
Cristina Nan, and Dori Sadan. Minibuilders: Robots

for 3D printing in construction and design. Retrieved
September 15, 2016 from http://robots.iaac.net/

13. Behrokh Khoshnevis. 2004. Automated Construction
by Contour Crafting—Related Robotics and
Information Technologies. Automation in Construction
13, 1: 5–19.
http://doi.org/10.1016/j.autcon.2003.08.012

14. Benjamin Lafreniere, Marcelo H. Coelho, Nicholas
Cote, Steven Li, Andy Nogueira, Long Nguyen, Tobias
Schwinn, James Stoddart, David Thomasson, Ray
Wang, Thomas White, Tovi Grossman, David
Benjamin, Maurice Conti, Achim Menges, George
Fitzmaurice, Fraser Anderson, Justin Matejka, Heather
Kerrick, Danil Nagy, Lauren Vasey, Evan Atherton,
and Nicholas Beirne. 2016. Crowdsourced Fabrication.
In Proceedings of the 29th Annual ACM Symposium on
User Interface Software & Technology (UIST ’16), 15–
28. http://doi.org/10.1145/2984511.2984553

15. Tien T. Lan. 2005. Structural Engineering Handbook -
Space Frame Structures. CRC Press.

16. Manfred Lau, Akira Ohgawara, Jun Mitani, and Takeo
Igarashi. 2011. Converting 3D Furniture Models to
Fabricatable Parts and Connectors. ACM Transactions
on Graphics 30, 212: 1–6.
http://doi.org/10.1145/1964921.1964980

17. Linjie Luo, Ilya Baran, Szymon Rusinkiewicz, and
Wojciech Matusik. 2012. Chopper: Partitioning
Models into 3D-Printable Parts. ACM Transactions on
Graphics 31, 6: 1.
http://doi.org/10.1145/2366145.2366148

18. Michael Makris, David Gerber, Anders Carlson, and
Doug Noble. 2013. Informing Design through
Parametric Integrated Structural Simulation. In
eCAADe 2013: Computation and Performance–
Proceedings of the 31st International Conference on
Education and research in Computer Aided
Architectural Design in Europe, Delft University of
Technology, 69–77.

19. Niloy J Mitra and Mark Pauly. 2009. Shadow art. ACM
Transactions on Graphics 28, 5: 1.
http://doi.org/10.1145/1618452.1618502

20. Stefanie Mueller, Sangha Im, Serafima Gurevich,
Alexander Teibrich, Lisa Pfisterer, François
Guimbretière, and Patrick Baudisch. 2014. WirePrint:
3D Printed Previews for Fast Prototyping. In
Proceedings of the 27th Annual ACM Symposium on
User Interface Software & Technology (UIST ’14),
ACM, New York, NY, USA, 273–280.
http://doi.org/10.1145/2642918.2647359

21. Joseph Reuben Harry Otter, Alfred Carlo Cassell, and
Roger Edwin Hobbs. 1966. Dynamic Relaxation. In
Proceedings of the Institution of Civil Engineers 35, 4:
633–656. http://doi.org/10.1680/iicep.1966.8604

22. Michael J. D. Powell. 1964. An Efficient Method for

Finding the Minimum of a Function of Several
Variables without Calculating Derivatives. The
computer journal: 155–162.
http://doi.org/10.1093/comjnl/7.2.155

23. Clemens Preisinger. Karamba3D - Parametric
Structural Modeling. Retrieved March 15, 2016 from
http://www.karamba3d.com/

24. Ronald Richter and Marc Alexa. 2015. Beam Meshes.
Computers & Graphics, 1: 1–8.
http://doi.org/10.1016/j.cag.2015.08.007

25. B. Roth. 1981. Rigid and Flexible Frameworks.
Mathematical Association of America 88, 1: 6–21.

26. Greg Saul, Manfred Lau, Jun Mitani, and Takeo
Igarashi. 2011. SketchChair: An All-in-one Chair
Design System for End Users. In Proceedings of the
fifth international conference on Tangible, embedded,
and embodied interaction (TEI ’11), ACM, New York,
NY, USA, 73.
http://doi.org/10.1145/1935701.1935717

27. Rita Shewbridge, Amy Hurst, and Shaun K. Kane.
2014. Everyday Making. In Proceedings of the 2014
conference on Designing interactive systems (DIS ’14),
ACM, New York, NY, USA, 815–824.
http://doi.org/10.1145/2598510.2598544

28. Melina Skouras, Stelian Coros, Eitan Grinspun, and
Bernhard Thomaszewski. 2015. Interactive Surface
Design with Interlocking Elements. ACM Transactions
on Graphics 34, 6: 224.
http://doi.org/10.1145/2816795.2818128

29. Jeffrey Smith, Jessica Hodgins, Irving Oppenheim, and
Andrew Witkin. 2002. Creating Models of Truss
Structures with Optimization. ACM Transactions on
Graphics. 21, 3: 295–301.
http://doi.org/10.1145/566654.566580

30. Joshua G. Tanenbaum, Amanda M. Williams, Audrey
Desjardins, and Karen Tanenbaum. 2013.
Democratizing Technology: Pleasure, Utility and
Expressiveness in DIY and Maker Practice. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’13): 2603–2612.
http://doi.org/10.1145/2470654.2481360

31. Nobuyuki Umetani, Takeo Igarashi, and Niloy J.
Mitra. 2012. Guided exploration of physically valid
shapes for furniture design. ACM Transactions on
Graphics 31, 4: 1–11.
http://doi.org/10.1145/2185520.2335437

32. Weiming Wang, Tuanfeng Y. Wang, Zhouwang Yang,
Ligang Liu, Xin Tong, Weihua Tong, Jiansong Deng,
Falai Chen, and Xiuping Liu. 2013. Cost-effective
Printing of 3D Objects with Skin-frame Structures.
ACM Transactions on Graphics 32, 6: 1–10.
http://doi.org/10.1145/2508363.2508382

33. Christian Weichel, Manfred Lau, David Kim, Nicolas

Villar, Hans W. Gellersen, Christian Weichel, Manfred
Lau, David Kim, Nicolas Villar, and Hans W.
Gellersen. 2014. MixFab: A Mixed-reality
Environment for Personal Fabrication. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’14), 3855–3864.
http://doi.org/10.1145/2556288.2557090

34. Karl Willis, Eric Brockmeyer, Scott Hudson, and Ivan
Poupyrev. 2012. Printed Optics. In Proceedings of the
25th annual ACM symposium on User interface
software and technology (UIST ’12), 589.
http://doi.org/10.1145/2380116.2380190

35. Jan Willmann, Federico Augugliaro, Thomas
Cadalbert, Raffaello D’Andrea, Fabio Gramazio, and
Matthias Kohler. 2012. Aerial Robotic Construction
Towards a New Field of Architectural Research.
International Journal of Architectural Computing 10,
3: 439–460. http://doi.org/10.1260/1478-0771.10.3.439

36. Suguru Yamada, Hironao Morishige, Hiroki Nozaki,
Masaki Ogawa, Takuro Yonezawa, and Hideyuki
Tokuda. 2016. ReFabricator: Integrating Everyday
Objects for Digital Fabrication. In Proceedings of the
2016 CHI Conference Extended Abstracts on Human
Factors in Computing Systems (CHI EA ’16), ACM,
New York, NY, USA, 3804–3807.
http://doi.org/10.1145/2851581.2890237

37. Hironori Yoshida, Syunsuke Igarashi, Takeo Igarashi,
Yusuke Obuchi, Yosuke Takami, Jun Sato, Mika
Araki, Masaaki Miki, Kosuke Nagata, Kazuhide Sakai,
Kyungeun Sung, and Tim Cooper. 2015. Architecture-
scale Human-assisted Additive Manufacturing. ACM
Transactions on Graphics 34, 4: 88:1-88:8.
http://doi.org/10.1145/2766951

38. Henrik Zimmer and Leif Kobbelt. 2014. Zometool
Rationalization of Freeform Surfaces. IEEE
Transactions on Visualization and Computer Graphics
20, 10: 1461–1473.
http://doi.org/10.1109/TVCG.2014.2307885

39. Homes Made from Plastic Bottles. Retrieved
September 15, 2016 from
http://www.inspirationgreen.com/plastic-bottle-homes

40. Divergent3D: The World First 3D Printed Super Car.
Retrieved September 15, 2016 from
http://www.divergent3d.com/

41. Trimble SketchUp. Retrieved March 15, 2016 from
http://www.sketchup.com/

42. SkyCiv cloud engineering software. Retrieved
December 16, 2016 from https://skyciv.com/

43. MiTek-PAMIR Software. Retrieved December 16,
2016 from http://www.mitek.co.uk/PAMIR/

44. GlobalTruss TRUSSTOOL. Retrieved December 16,
2016 from https://trusstool.com/

45. MeshLab. Retrieved December 16, 2016 from
http://meshlab.sourceforge.net

46. Autodesk - MeshMixer. Retrieved December 16, 2016
from http://meshmixer.com

47. Open SCAD. Retrieved December 16, 2016 from
http://openscad.org

