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Preface 

A number of bodies linked by joints form a kinematic chain. On the basis of the presence 
of loops in a mechanical structure it can be distinguished closed kinematic chains, if there 
are one or more loops so that each link and each joint is contained in at least one of 
them. A closed kinematic chain have no open attachment point. An open kinematic chain 
contains no loop. Kinematic chains design is a vital component of modem machine design 
practice. Kinematic chains are used to transmit forces and moments and to manipulate 
objects. A knowledge of the kinematic and dynamic properties of these machines is crucial 
for their design and control. A feature of this book and its main distinction from other books 
is that it presents a different method for kinematic and dynamic force analysis of kinematic 
chains. The other important feature of the approach used here is the attention given to the 
solution of the problems using the symbolical software Mathematica. Methods, algorithms 
and software packages for the solution of classical mechanical problems are presented. The 
book presents texts that are teachable and computer-oriented. 

The book will assist all those interested in the design of mechanisms, manipulators, 
building machines, textile machines, vehicles, aircraft, satellites, ships, biomechanical sys-
tems (vehicle simulators, barrier tests, human motion studies, etc.), controlled mechanical 
systems, mechatronical devices and many others. 

This book is appropriate for use as a text for undergraduate or graduate courses in 
mechanical engineering dealing with the subjects of the analysis and design of mechanisms, 
vehicle dynamics, mechatronics and multibody systems and machine components design. 
A basic knowledge of mechanics and calculus is assumed. The book may also be useful for 
practicing engineers and researchers in the fields of machine design and dynamics, and also 
biomechanics and mechatronics. 
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1.1 Introduction 

1.1.1 Vector Algebra 
Vector Terminology 
Scalars are mathematics quantities that can be fully defined by specifying their magnitude 
in suitable units of measure. The mass is a scalar and can be expressed in kilograms, the 
time is a scalar and can be expressed seconds, and the temperature can be expressed in 
degrees. 

Vectors are quantities that require the specification of magnitude, orientation, and sense. 
The characteristics of a vector are the magnitude, the orientation, and the sense. 

The magnitude of a vector is specified by a positive number and a unit having appropriate 
dimensions. No unit is stated if the dimensions are those of a pure number. The orientation 
of a vector is specified by the relationship between the vector and given reference lines 
and/or planes. The sense of a vector is specified by the order of two points on a line parallel 
to the vector. 

Orientation and sense together determine the direction of a vector. The line of action 
of a vector is a hypothetical infinite straight line coUinear with the vector. Displacement, 
velocity, and force are examples of vectors. 

To distinguish vectors from scalars it is customary to denote vectors by boldface letters. 
Thus, the vector shown in Figure 1.1.1(a) is denoted by r or r^^. The symbol |r| = r 
represents the magnitude (or module, or absolute value) of the vector r. In handwritten 
work a distinguishing mark is used for vectors, such as an arrow over the symbol, r or 
a line over the symbol, r, or an underline, r. 

The vectors are depicted by either straight or curved arrows. A vector represented by a 
straight arrow has the direction indicated by the arrow. The direction of a vector represented 
by a curved arrow is the same as the direction in which a right-handed screw moves when 
the axis of the screw is normal to the plane in which the arrow is drawn and the screw is 
rotated as indicated by the arrow. 



(a) (b) 

FIGURE 1.1.1 Vector representations: (a) straight arrow and (b) straight and curved arrows. 

Figure 1.1.1(b) shows representations of vectors. Sometimes vectors are represented by 
means of a straight or curved arrow together with a measure number. In this case the vector 
is regarded as having the direction indicated by the arrow if the measure number is positive, 
and the opposite direction if it is negative. 

A bound (or fixed) vector is a vector associated with a particular point P in space 
(Fig. 1.1.2). The point P is the point of application of the WQCior, and the line passing through 
P and parallel to the vector is the line of action of the vector. The point of application can 
be represented as the tail [Fig. 1.1.2(a)] or the head of the vector arrow [Fig. 1.1.2(b)]. 

A free vector is not associated with a particular point or Hne in space. A transmissible 
(or sliding) vector is a vector that can be moved along its line of action without change of 
meaning. 

line of action 

bound vector 

-* ^^point of application 

point of application 

line of action bound vector 

(a) (b) 

FIGURE 1.1.2 Bound or fixed vector: (a) point of application represented as the tail of the vector 
arrow and (b) point of application represented as the head of the vector arrow. 
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FIGURE 1.1.3 Transmissible vector: the force vector F can be applied anywhere along the line A. 

To move the body in Figure 1.1.3 the force vector F can be appHed anywhere along the 
line A or may be applied at specific points A, B, C. The force vector F is a transmissible 
vector because the resulting motion is the same in all cases. 

The force F applied at B will cause a different deformation of the body than the same 
force F applied at a different point C The points B and C are on the body. If one is interested 
in the deformation of the body, the force F positioned at C is a bound vector. 

The operations of vector analysis deal only with the characteristics of vectors and apply, 
therefore, to both bound and free vectors. Vector analysis is a branch of mathematics that 
deals with quantities that have both magnitude and direction. 

Vector Equality 
Two vectors a and b are said to be equal to each other when they have the same characteristics 

a = b. 

Equality does not imply physical equivalence. For instance, two forces represented by equal 
vectors do not necessarily cause identical motions of a body on which they act. 

Product of a Vector and a Scalar 
Definition 
The product of a vector v and a scalar s, sy or v^, is a vector having the following 
characteristics: 

1. Magnitude. 

\sy\ = \\s\ = \s\\\l 

where l̂ l denotes the absolute value (or magnitude, or module) of the scalar s. 
2. Orientation, ^v is parallel to v. If 5- = 0, no definite orientation is attributed to s\. 
3. Sense. If s > 0, the sense of -̂v is the same as that of v. If 5 < 0, the sense of ^v is 

opposite to that of v. If 5" = 0, no definite sense is attributed to s\. 

Zero Vectors 
Definition 
A zero vector is a vector that does not have a definite direction and whose magnitude is 
equal to zero. The symbol used to denote a zero vector is 0. 
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Unit Vectors 
Definition 
A unit vector (versor) is a vector with the magnitude equal to 1. Given a vector v, a unit 
vector u having the same direction as v is obtained by forming the quotient of v and |v|: 

V 

Vector Addition 
The sum of a vector vi and a vector V2: vi + V2 or V2 + vi is a vector whose characteristics 
are found by either graphical or analytical processes. The vectors vi and V2 add according 
to the parallelogram law: vi + V2 is equal to the diagonal of a parallelogram formed by 
the graphical representation of the vectors [(Fig. 1.1.4(a))]. The vector vi + V2 is called the 
resultant of vi and V2. The vectors can be added by moving them successively to parallel 
positions so that the head of one vector connects to the tail of the next vector. The resultant 
is the vector whose tail connects to the tail of the first vector, and whose head connects to 
the head of the last vector [(Fig. 1.1.4(b))]. 

The sum vi + (—V2) is called the difference of vi and V2 and is denoted by vi — V2 
[(Figs. L1.4(c) and 1.1.4(d))]. 

(c) (d) 

FIGURE 1.1.4 Vector addition: (a) parallelogram law, (b) moving the vectors successively to paral-
lel positions. Vector difference: (c) parallelogram law, (d) moving the vectors successively to parallel 
positions. 
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The sum of n vectors v/, / = ! , . . . , « , 

n 

Y^\i or V1+V2 + •••+¥„ 

is called the resultant of the vectors v/, / = 1, . . . , w. 
The vector addition is: 

1. Commutative. The characteristics of the resultant are independent of the order in 
which the vectors are added (commutativity): 

Vl + V 2 = V2 + V i . 

2. Associative. The characteristics of the resultant are not affected by the manner in 
which the vectors are grouped (associativity): 

Vl + (V2 + V3) = (Vi + V2) + V3. 

3. Distributive. The vector addition obeys the following laws of distributivity: 

V ^ 5/ = ^(\SiX for Si ^ 0, Si e 7 ,̂ 

n n 

^ ^ v/ = ^ ( ^ v / ) , for s ^0, s e IZ, 
/=1 i=\ 

where IZ is the set of real numbers. 

Every vector can be regarded as the sum of n vectors (n = 2,3,...) of which all but one 
can be selected arbitrarily. 

Resolution of Vectors and Components 
Let ii, 12,13 be any three unit vectors not parallel to the same plane (noncollinear vectors): 

Illl = |l2l = |l3l = l 

For a given vector v (Fig. 1.1.5), there are three unique scalars, vi, V2, V3, such that v 
can be expressed as: 

V = v i i i +V212 + V313 

The opposite action of addition of vectors is the resolution of vectors. Thus, for the given 
vector V the vectors viii, V212, and V313 sum to the original vector. The vector Vĵ iĵ  is called 
the iĵ  component of v and Vk is called the ik scalar component of v, where k = 1, 2, 3. 
A vector is often replaced by its components since the components are equivalent to the 
original vector. 
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FIGURE 1.1.5 Resolution of a vector v and components. 

^2l2 

^C 
B Vy] 

FIGURE 1.1.6 Cartesian reference frame and the orthogonal scalar components Vx, Vy, v ,̂ 

Every vector equation v = 0, where v = viii + V2I2 + V3I3, is equivalent to three scalar 
equations: vi = 0 , V2 = 0, V3 = 0. 

If the unit vectors ii, 12,13 are mutually perpendicular they form a Cartesian reference 
frame. For a Cartesian reference frame the following notation is used (Fig. 1.1.6): 

11 = 1 , 12 = J, 13 = k, 

and 

i ± j , i ± k , j ± k . 

The symbol _L denotes perpendicular. 
When a vector v is expressed in the form v = v î + v ĵ + v^k, where 1, j , k are mutually 

perpendicular unit vectors (Cartesian reference frame or orthogonal reference frame), the 
magnitude of v is given by 

M=yv2 + v2 + v: 
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The vectors v^ = v^i, v^ = v^j, and v̂  == v^k are the orthogonal or rectangular component 
vectors of the vector v. The measures Vĵ , v ,̂ v̂  are the orthogonal or rectangular scalar 
components of the vector v. 

If vi = viĵ i + viyj + vi^k and V2 = V2x^ + V2y} + V2̂ k, then the sum of the vectors is 

Vl + V2 = (Vix + V2x) 1 H- {viy + V2y) J + ( v ^ + V2z) V u k . 

Angle Between Two Vectors 
Two vectors a and b are considered. One can move either vector parallel to itself (leaving 
its sense unaltered) until their initial points (tails) coincide. The angle between a and b is 
the angle 0 in Figures 1.1.7(a) and 1.1.7(b). The angle between a and b is denoted by the 
symbols (a, b) or (b, a). Figure 1.1.7(c) represents the case (a,b) = 0, and Figure 1.1.7(d) 
represents the case (a, b) = 180°. 

The direction of a vector v = V;̂ ! + v ĵ + v^k relative to a Cartesian reference, i, j , k, 
is given by the cosines of the angles formed by the vector and the respective unit vectors. 

(a,b) = 6/ 

(a) (b) 

(a, b) = 180° 

(d) 

FIGURE 1.1.7 The angle 9 between the vectors a and h: (a) 0 < 6 < 90°, (b) 90° < 6 < 180° 
(c) 0 = 0°, and (d) 0 = 180°. 
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These are called direction cosines and are denoted as (Fig. 1.1.8): 

cos(v,i) = cos a = /; cos(v,j) = cos)S = m; cos(v,k) = cos y = n. 

The following relations exist: 

v^ = |V|COSQ:; Vy = |v|cos)S; v̂  = |v|cos}/, 

l^-\-m^ + n^ = l, (vl-\-vl + v^ = vh X ' "y ' ""z 

FIGURE 1.1.8 Direction cosines. 
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Scalar (Dot) Product of Vectors 
Definition 

The scalar (dot) product of a vector a and a vector b is 

a • b = b • a = |a| |b| cos(a, b). 

For any two vectors a and b and any scalar s 

(ssi)'h = s(a • b) = SL'ish) = ^a • b. 

If 

a = ajci + %J + cizK 

and 

h = bxi^ by] + bzK 

where i, j , k are mutually perpendicular unit vectors, then 

a • b = axbx + ayby + a^b^. 

The following relationships exist: 

1 i = j j = k k = 1, 

1 j = j k - k 1 = 0. 

Every vector v can be expressed in the form 

V = 1 v i + j • v j + k -vk . 

The vector v can always be expressed as 

\ = Vxi-\- Vy} + v^k. 

Dot multiply both sides by i 

1. V = V;ci • 1 + v^i • J + v^i • k. 

But, 

1 1 = 1 , and 1 • J = 1 • k = 0. 

Hence, 

1 • V = Vv. 

Introduction 11 



Similarly, 

y \ = Vy and k • V = v .̂ 

The associative, commutative, and distributive laws of elementary algebra are valid for the 
dot multiplication (product) of vectors. 

Vector (Cross) Product of Vectors 
Definition 
The vector (cross) product of a vector a and a vector b is the vector (Fig. 1.1.9): 

a X b = |a| |b|sin(a,b)« 

where n is a unit vector whose direction is the same as the direction of advance of a right-
handed screw rotated from a toward b, through the angle (a, b), when the axis of the screw 
is perpendicular to both a and b. 

The magnitude of a x b is given by 

| a x b | = |a| |b|sin(a,b). 

If a is parallel to b, a||b, then a x b = 0. The symbol || denotes parallel. The relation 
a X b = 0 impHes only that the product |a| |b| sin(a, b) is equal to zero, and this is the case 
whenever |a| = 0, or |b| = 0, or sin(a,b) = 0. 

For any two vectors a and b and any real scalar s, 

(so) X b = ^(a X b) = a X (^b) = ^a x b. 

a x b 

a x b J_a 

a x b l b 

FIGURE 1.1.9 Vector (cross) product of the vector a and the vector b. 
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The sense of the unit vector n which appears in the definition of a x b depends on the 
order of the factors a and b in such a way that 

b X a = —a X b. 

Vector multiplication obeys the following law of distributivity (Varignon theorem): 

n n 

a x ^ v / = ^ ( a x v/). 

The cross product is not commutative, but the associative law and the distributive law are 
valid for cross products. 

A set of mutually perpendicular unit vectors i, j , k is called right-handed if i x j = k. A 
set of mutually perpendicular unit vectors i, j , k is called left-handed if i x j = —k. 

If 

2i = ax\ + ay} + a^k, 

and 

b = Z?̂ i + by} + ^^k, 

where i, j , k are mutually perpendicular unit vectors, then a x b can be expressed in the 
following determinant form: 

a X b = 
bx by h 

The determinant can be expanded by minors of the elements of the first row: 

1 J k 
ax ay az 
bx by bz 

by bz - J ax az 
bx bz 

+ k ax ay 
bx b. 

= i(aybz - a^by) - }(axbz - a^bx) + K^xby - aybx) 

= (aybz - azby)i + (a^bx - axb^)} + {axby - aybx)k. 

Scalar Triple Product of Three Vectors 
Definition 
The scalar triple product of three vectors a, b, c is 

[a, b, c] = a ( b x c) = a • b x c. 
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It does not matter whether the dot is placed between a and b, and the cross between b and 
c, or vice versa, that is, 

[a, b, c] = a • b X c = a X b • c. 

A change in the order of the factors appearing in a scalar triple product at most changes the 
sign of the product, that is, 

[b,a,c] = -[a ,b,c] , 

and 

[b,c,a] = [a,b,c]. 

If a, b, c are parallel to the same plane, or if any two of the vectors a, b, c are parallel to 
each other, then [a, b, c] = 0. 

The scalar triple product [a, b, c] can be expressed in the following determinant form 

[a, b, c] = 

Vector Triple Product of Three Vectors 
Definition 
The vector triple product of three vectors a, b, c is the vector a x (b x c). The parentheses 
are essential because a x (b x c) is not, in general, equal to (a x b) x c. 

For any three vectors a, b, and c, 

a X (b X c) = a • cb — a • be. 

Derivative of a Vector 
The derivative of a vector is defined in exactly the same way as is the derivative of a scalar 
function. The derivative of a vector has some of the properties of the derivative of a scalar 
function. 

The derivative of the sum of two vector functions a and b is 

d Ja dh 
- ( a + b) = — + —. 
at at at 

The time derivative of the product of a scalar function/and a vector function a is 

^(fa) ^ df^ ^ da 

dt dt dt 
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1.1.2 Centroids 
Position Vector 
The position vector of a point P relative to a point M is a vector YMP having the following 
characteristics (Fig. I.l.lO): 

• magnitude (|rMp| = rup) the length of line MP\ 
• orientation parallel to line MP\ 
• sense MP (from point M to point P). 

The vector YMP is shown as an arrow connecting M to P. The position of a point P 
relative to P is a zero vector. 

Let 1, J, k be mutually perpendicular unit vectors (Cartesian reference frame) with the 
origin at O (Fig. I.l.lO). The axes of the Cartesian reference frame are x, y, z. The unit 
vectors i, j , k are parallel to x, y, z, and they have the senses of the positive x, y, z axes. 
The coordinates of the origin Oarejc = y = z = 0, i.e., 0(0, 0, 0). The coordinates of a 
point P are X = xp, y = yp, z = Zp, i.e., P(xp, yp, zp). The position vector of P relative to 
the origin O is 

rop = rp=xpi-\-yp}-\- zp k. 

The position vector of the point P relative to a point M, M ^ O of coordinates 
(XM, yu, ZM) is 

^MP = (xp -XM)i + (yp- J M ) J + (zp - ZM)k. 

M{xM,yM,ZM) 

X 

FIGURE 1.1.10 Position vector. 
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The distance d between P and M is given by 

d = \Yp- YM\ = \rMp\ = y(xp - xuf + (yp- yuf + {zp - ZM?--

First Moment 
The position vector of a point ? relative to a point O is r/> and a scalar associated with P is 
s, e.g., the mass m of a particle situated at P. The first moment of a point P with respect to 
a point O is the vector M = sYp. The scalar s is called the strength of P. 

Centroid of a Set of Points 
The set of « points Pu / = 1,2,... ,n, is [S] (Fig. I.l .ll): 

{S} = {Px,P2,^^^.Pn} = {Pi}i=\X:.,n-

The strengths of the points Pi are 5/, / = 1,2,... ,n, i.e., w scalars, all having the same 
dimensions, and each associated with one of the points of {5}. 
The centroid of the set {S} is the point C with respect to which the sum of the first moments 
of the points of [S] is equal to zero. 

The position vector of C relative to an arbitrarily selected reference point O is re 
(Fig. I.l . l l). The position vector of Pi relative to O is r .̂ The position vector of Pi rel-
ative to C is Yi — re . The sum of the first moments of the points Pi with respect to C is 
IZ/Li '̂ i('"i' ~ ^c)' If C is to be centroid of {5}, this sum is equal to zero: 

n n n 

^ SiiXi - re) = ^ SiYi - re 5 ^ Si = 0. 

C 

^Ci 

I 
\ 

s 

N 

s 

T i / ^ 

N \ 
. / '2(S2) \ 

\ 
\ 

^ 1 

V Pn[Sn) / 
\ • • 

o 
FIGURE 1.1.11 Centroid of a set of points. 

16 KINEMATIC CHAINS AND MACHINE COMPONENTS DESIGN 



The position vector re of the centroid C, relative to an arbitrarily selected reference 
point O, is given by 

If Xl/Li ^i — 0' the centroid is not defined. 
The centroid C of a set of points of given strength is a unique point, its location being 

independent of the choice of reference point O. 
The Cartesian coordinates of the centroid C{xc,yc^ zc) of a set of points Pi,i = 1 , . . . , n, 

of strengths st, i = 1 , . . . , n, are given by the expressions 

The plane of symmetry of a set is the plane where the centroid of the set lies, the points 
of the set being arranged in such a way that corresponding to every point on one side of the 
plane of symmetry there exists a point of equal strength on the other side, the two points 
being equidistant from the plane. 
A set {S^} of points is called a subset of a set {S} if every point of {S^} is a point of {5}. The 
centroid of a set {S} may be located using the method of decomposition: 

• divide the system {S} into subsets; 
• find the centroid of each subset; 
• assign to each centroid of a subset a strength proportional to the sum of the strengths of 

the points of the corresponding subset; 
• determine the centroid of this set of centroids. 

Centroid of a Curve, Surface, or Solid 
The position vector of the centroid C of a curve, surface, or solid relative to a point O is 

re = 
i r dr 

f dr 
JD 

where D is a curve, surface, or solid, r denotes the position vector of a typical point of D, 
relative to O, and dr is the length, area, or volume of a differential element of D. Each of 
the two limits in this expression is called an "integral over the domain D (curve, surface, 
or solid)." 

The integral / dr gives the total length, area, or volume of D, that is 
JD 

L dx = r. 
D 
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The position vector of the centroid is 

rc = - / rdr. 
r JD 

Let 1, J, k be mutually perpendicular unit vectors (Cartesian reference frame) with the 
origin at O. The coordinates of C are jcc, jc» zc and 

rc = xci + ya + zc^. 

It results that 

xc = - xdr, yc = - ydr, zc = - I zdr. 
T^ JD T^ JD T^ JD 

Mass Center of a Set of Particles 
The mass center of a SQt of particles [S] = {Pi,P2.- • • ,Pn} = {Pi]i=i,2,...,n is the centroid 
of the set of points at which the particles are situated with the strength of each point being 
taken equal to the mass of the corresponding particle, st = m/, / = 1,2, . . . , « . For the 
system of n particles the following relation can be written 

and the position vector of the mass center C is 

Y^miVi 

rc = — , (1.1.1) 
m 

where m is the total mass of the system. 

Mass Center of a Curve, Surface, or Solid 
The position vector of the mass center C of a continuous body D, curve, surface, or solid, 
relative to a point O is 

rc = — rp dx, 
m JD 

or using the orthogonal Cartesian coordinates 

xc = — xpdr, yc = — yp dr, zc = — zp dr, 
m JD m JD m JD 

where p is the mass density of the body: mass per unit of length if D is a curve, mass per 
unit area if D is a surface, and mass per unit of volume if D is a solid; r is the position vector 
of a typical point of D, relative to (9, dr is the length, area, or volume of a differential 
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element of D, m = / ^ p dr is the total mass of the body, and jcc, yc, zc are the coordinates 
ofC. 

If the mass density p of a body is the same at all points of the body, p = constant, the 
density, as well as the body, are said to be uniform. The mass center of a uniform body 
coincides with the centroid of the figure occupied by the body. 

The method of decomposition may be used to locate the mass center of a continuous 
body B: 

• divide the body B into a number of bodies, which may be particles, curves, surfaces, or 
solids; 

• locate the mass center of each body; 
• assign to each mass center a strength proportional to the mass of the corresponding 

body (e.g., the weight of the body); 
• locate the centroid of this set of mass centers. 

First Moment of an Area 
A planar surface of area A and a reference frame xOy in the plane of the surface are shown 
in Figure 1.1.12. The first moment of area A about the x axis is 

M, = jydA, (1.1.2) 

and the first moment about the y axis is 

M. 
JA 

dA. (1.1.3) 

The first moment of area gives information of the shape, size, and orientation of the area. 
The entire area A can be concentrated at a position C{xc-> yc)^ the centroid. The coordi-

nates xc and yc are the centroidal coordinates. To compute the centroidal coordinates the 

[ ^ 

X \ 

Xc 

c 
i 

iA 

y 

yc y 

• 

o 
FIGURE LI .12 Centroid of a planar surface of area. 
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moments of the distributed area are equated with that of the concentrated area about both 
axes: 

= / . ^yc = ydA, =^ yc = L 

-L Axc = I X dA, ==^ xc = 

ydA 
Mr 

L 
A A 

X dA 
Mv 

(1.1.4) 

(1.1.5) 

The location of the centroid of an area is independent of the reference axes employed, i.e., 
the centroid is a property only of the area itself. 

If the axes xy have their origin at the centroid, O = C, then these axes are called 
centroidal axes. The first moments about centroidal axes are zero. All axes going through 
the centroid of an area are called centroidal axes for that area, and the first moments of an 
area about any of its centroidal axes are zero. The perpendicular distance from the centroid 
to the centroidal axis must be zero. 

Figure 1.1.13 shows a plane area with the axis of symmetry collinear with the axis y. 
The area A can be considered as composed of area elements in symmetric pairs as shown in 
the figure. The first moment of such a pair about the axis of symmetry y is zero. The entire 

I Axis of symmetry 

FIGURE 1.1.13 Plane area with axis of symmetry. 
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area can be considered as composed of such symmetric pairs and the coordinate xc is 
zero: 

1 [ 
Xc = — I X dA — 0. 

Thus, the centroid of an area with one axis of symmetry must lie along the axis of symmetry. 
The axis of symmetry then is a centroidal axis, which is another indication that the first 
moment of area must be zero about the axis of symmetry. With two orthogonal axes of 
symmetry, the centroid must He at the intersection of these axes. For such areas as circles 
and rectangles, the centroid is easily determined by inspection. 

In many problems, the area of interest can be considered formed by the addition or 
subtraction of simple areas. For simple areas the centroids are known by inspection. The 
areas made up of such simple areas are composite areas. For composite areas 

XC = 

yc 

A ' 

Ei^tyci 

where xa and ya (with proper signs) are the centroidal coordinates to simple area A,, and 
where A is the total area. 

1.1.3 Moments and Couples 
Moment of a Bound Vector About a Point 
Definition 
The moment of a bound vector v about a point A is the vector 

M\=rABXx, (1.1.6) 

where r^^ is the position vector of B relative to A, and B is any point of line of action. A, 
of the vector v (Fig. 1.1.14). 

The vector M^ = 0 if and only the line of action of v passes through A or v = 0. The 
magnitude of M^ is 

| M ; | = M ; = |rABl|v|sin^, 

where 0 is the angle between VAB and v when they are placed tail to tail. The perpendicular 
distance from A to the line of action of v is 

and the magnitude of M^ is 

d= ITABI sin^. 

|M^I=M; = J|V|. 
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M ^ == r^B X V 

FIGURE 1.1.14 Moment of a bound vector about a point 

The vector M^ is perpendicular to both TAB and v: 

Ml ± TAB and M\±\. 

The vector M^ being perpendicular to r^^ and v is perpendicular to the plane containing 
TAB and v. 

The moment given by Eq. (1.1.6) does not depend on the point B of the line of action of 
V, A, where TAB intersects A. Instead of using the point B the point B' (Fig. 1.1.14) can be 
used. The position vector of B relative to A is TAB = ^AB' + ^B'B where the vector YB^B is 
parallel to v, r^/^l |v. Therefore, 

M^ = FAB X V = (VAB' + ^B'B) X V = r̂ ^^ X V + r^/^ x v = r^^' x v, 

because TB^B X V = 0. 

Moment of a Bound Vector About a Line 
Definition 
The moment M^ of a bound vector v about a line Q is the Q resolute (^ component) of 
the moment v about any point on Q (Fig. 1.1.15). 
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FIGURE LI .15 Moment of a bound vector about a line. 

The M^ is the ^ resolute of M^ 

M^ = i i . M > 

= n(r X v)n 

= [n, r, v] n, 

where n is a unit vector parallel to Q, and r is the position vector of a point on the line of 
action of v relative to a point on Q. 

The magnitude of M^ is given by 

|M^| = |[n,r,v]|. 

The moment of a vector about a line is a free vector. 
If a line Q is parallel to the line of action A of a vector v, then [n, r, v]n = 0 and M^ = 0. 
If a line Q intersects the line of action A of v, then r can be chosen in such a way that 

r = 0 and M^ = 0. 
If a line Q is perpendicular to the line of action A of a vector v, and d is the shortest 

distance between these two lines, then 

| M ^ | = J | v | . 

Moments of a System of Bound Vectors 
Definition 
The moment of a system {S} of bound vectors v/, {5} = {vi, V2,. •. ,v„} = {v/}/=i,2,...,« 
about a point A is 

Mf-E^; v/ 

/=1 
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Definition 
The moment of a system {S} of bound vectors v/, {S} = {vi, V2,..., v„} = {v/}/=i,2,...,« 
about a line Q is 

ML'̂  = EM^d. 

(51 I/Si 

The moments M^ ^ and M), ̂  of a system {5}, {S} = {v/}/=i,2,...,n, of bound vectors, v/, 
about two points A and P, are related to each other as follows: 

M f =MJf^+rAPxR, (1.1.7) 

where r^p is the position vector of P relative to A, and R is the resultant of {S}. 

Proof 
Let Bi a point on the line of action of the vector v/, TABI and rpBi the position vectors of Bi 
relative to A and P (Fig. 1.1.16). Thus, 

/=1 i=l 

n n 

= ^ ( F A P + YpBi) X \i = ^(TAP X \i + rp5/ X V/) 

= Y^rApx v/ + ^ r p 5 / X v/ 

« n 

= TAP X ̂  v/ + ^ rpBi x v/ 

n 

= rAPxR-\-J2^l 

= rAPxR + MJf^ 

If the resultant R of a system [S] of bound vectors is not equal to zero, R # 0, the points 
about which [S] has a minimum moment M^/„ lie on a line called central axis, {CA), of 
{5}, which is parallel to R and passes through a point P whose position vector r relative to 
an arbitrarily selected reference point O is given by 

RxM f̂̂  
r = ^^ 

R2 
The minimum moment Mmm is given by 

R - M ' ^ ' 
M — ^ R 
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^ABi 

FIGURE 1.1.16 Moments of a system of bound vectors. 

Couples 
Definition 
A couple is a system of bound vectors whose resultant is equal to zero and whose moment 
about some point is not equal to zero. 

A system of vectors is not a vector, therefore couples are not vectors. 

A couple consisting of only two vectors is called a simple couple. The vectors of a simple 
couple have equal magnitudes, parallel lines of action, and opposite senses. Writers use the 
word "couple" to denote the simple couple. 

The moment of a couple about a point is called the torque of the couple, M or T. The 
moment of a couple about one point is equal to the moment of the couple about any other 
point, i.e., it is unnecessary to refer to a specific point. The moment of a couple is a free 
vector. 

The torques are vectors and the magnitude of a torque of a simple couple is given by 

|M| =d\\l 

where d is the distance between the lines of action of the two vectors comprising the couple, 
and V is one of these vectors. 

Proof 
In Figure 1.1.17, the torque M is the sum of the moments of v and —v about any point. The 
moments about point A are 

M = M^ + M-"^ = r X V + 0. 
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FIGURE 1.1.17 Couple. 

Hence, 

|M| = |r X v| = |r||v| sin(r, v) = d\\\. 

The direction of the torque of a simple couple can be determined by inspection: M is 
perpendicular to the plane determined by the lines of action of the two vectors comprising 
the couple, and the sense of M is the same as that of r x v. 

The moment of a couple about a line Q is equal to the Q resolute of the torque of the 
couple. The moments of a couple about two parallel lines are equal to each other. 

Equivalence of Systems 
Definition 
Two systems {5} and [S^] of bound vectors are said to be equivalent when: 

1. The resultant of {S}, R, is equal to the resultant of {S'], R' 

R = R' 

2. There exists at least one point about which {S} and {S'} have equal moments 

exists P : MJf ̂  = MJf'\ 

Figures 1.1.18(a) and 1.1.18(b) each show a rod subjected to the action of a pair of forces. 
The two pairs of forces are equivalent, but their effects on the rod are different from each 
other. The word "equivalence" is not to be regarded as implying physical equivalence. 
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F F 
-< f) ) • 

(a) 

F 
^ ) H 

(b) 

FIGURE LI.18 Equivalent systems (not physical equivalence): (a) tension and (b) compression. 

For given a line Q and two equivalent systems [S] and {S^} of bound vectors, the sum 
of the Q resolutes of the vectors in {S} is equal to the sum of the Q resolutes of the vectors 
in {S'l 

The moments of two equivalent systems of bound vectors, about point, are equal to each 
other. 

The moments of two equivalent systems {S} and {S^} of bound vectors, about any line 
^ , are equal to each other. 

Transitivity of the equivalence relation. If {S} is equivalent to {S^}, and {S^} is equivalent 
to {S^^}, then {S} is equivalent to {5''}. 

Every system {S} of bound vectors with the resultant R can be replaced with a system 
consisting of a couple C and a single bound vector v whose line of action passes through 
an arbitrarily selected base point O. The torque M of C depends on the choice of base point 
M = M^ . The vector v is independent of the choice of base point, v = R. 

A couple C can be replaced with any system of couples, the sum of whose torque is equal 
to the torque of C 

When a system of bound vectors consists of a couple of torque M and a single vector 
parallel to M, it is called a wrench. 

Force Vector and Moment of a Force 
Force is a vector quantity, having both magnitude and direction. Force is commonly 
explained in terms of Newton's three laws of motion set forth in his Principia Mathe-
matica (1687). Newton's first principle: a body that is at rest or moving at a uniform rate in 
a straight line will remain in that state until some force is applied to it. Newton's second law 
of motion states that a particle acted on by forces whose resultant is not zero will move in 
such a way that the time rate of change of its momentum will at any instant be proportional 
to the resultant force. Newton's third law states that when one body exerts a force on another 
body, the second body exerts an equal force on the first body. This is the principle of action 
and reaction. 

Because force is a vector quantity it can be represented graphically as a directed line 
segment. The representation of forces by vectors impHes that they are concentrated either at 
a single point or along a single line. The force of gravity is invariably distributed throughout 
the volume of a body. Nonetheless, when the equilibrium of a body is the primary consider-
ation, it is generally valid as well as convenient to assume that the forces are concentrated at 
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a single point. In the case of gravitational force, the total weight of a body may be assumed 
to be concentrated at its center of gravity. 

Force is measured in newtons (N); a force of 1 N will accelerate a mass of one kilogram 
at a rate of one meter per second. The newton is a unit of the International System (SI) used 
for measuring force. 

Using the English system, the force is measured in pounds. One pound of force imparts 
to a one-pound object an acceleration of 32.17 feet per second squared. 

The force vector F can be expressed in terms of a Cartesian reference frame, with the 
unit vectors i, j , and k [Fig. 1.1.19(a)]: 

¥ = F,i + Fy^-i-F,k. (1.1.8) 

The components of the force in the x, y, and z directions are Fx, Fy, and F^. The resultant 
of two forces Fi = Fiĵ i + Fiy} + Fi^k and F2 = F2xi + F2y} + F2^k is the vector sum of 
those forces: 

R = Fi + F2 = (Fi;, + F2x)i + (Fly + F2.)j + (Fi, + F2,)k. (1.1.9) 

A moment is defined as the moment of a force about (with respect to) a point. The 
moment of the force F about the point O is the cross product vector 

M^ = r X F 

= 
1 J 
rx ry 

Fx Fy 

k 

rz 
Fz 

= {vy Fz - r^ Fy)i + (r^ Fx - rx F^)j + (rx Fy - ry Fx)k. (I.l.lO) 

where r = r;̂ i + r^j + r^k is a position vector directed from the point about which the 
moment is taken (O in this case) to any point A on the line of action of the force 
[Fig. 1.1.19(a)]. If the coordinates of O are X(9, yo, zo and the coordinates of A are x^, JA. ZA^ 
then 
r = roA = (XA — xo)i + (yA — yo)} + (ZA — zo)^ and the moment of the force F about the 
point O is 

1 J k 
XA -xo yA- yo ZA - zo M^ = roA X F : 

The magnitude of M^ is 

|M^| =Ml = rF\smOl 

where 0 = Z(r, F) is the angle between vectors r and F, and r = |r| and F = |F| are the 
magnitudes of the vectors. 

The line of action of M^ is perpendicular to the plane containing r and F (M^ _L 
r & M^ _L F) and the sense is given by the right-hand rule. 

28 KINEMATIC CHAINS AND MACHINE COMPONENTS DESIGN 



FIGURE LI .19 Moment of a force: (a) moment of a force about a point and (b) torque of the 
couple. 

The moment of the force F about another point P is 

Mp = rpA X F = 
1 J k 
XA -xp yA- yp ZA - zp 

where xp, yp, zp are the coordinates of the point P. 
The system of two forces, Fi andF2, which have equal magnitudes |Fi | = IF2I, opposite 

sensesFi = —F2, andparalleldirections(Fi||F2)isacouple.Theresultantforceof acouple 
is zero R = Fi + F2 = 0. The resultant moment M 7̂  0 about an arbitrary point is 

M = r i X Fi + r2 X F2, 
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or 

M = ri X (-F2) + r2 X F2 = (r2 - rO x F2 = r x F2, (LI.11) 

where r = r2 — ri is a vector from any point on the line of action of Fi to any point of the 
line of action of F2. The direction of the torque of the couple is perpendicular to the plane 
of the couple and the magnitude is given by [Fig. 1.1.19(b)]: 

|M| = M = rF2 I sin6>| = hF2, (1.1.12) 

where /z = r | sin ̂  | is the perpendicular distance between the lines of action. The resultant 
moment of a couple is independent of the point with respect to which moments are taken. 

Representing Systems by Equivalent Systems 
To simplify the analysis of the forces and moments acting on a given system one can 
represent the system by an equivalent, less complicated one. The actual forces and moments 
can be replaced with a total force and a total moment. 

Figure 1.1.20 shows an arbitrary system of forces and moments, {system 1}, and a 
point P. This system can be represented by a system, {system 2}, consisting of a single 
force F acting at P and a single couple of torque M. The conditions for equivalence are 

\ ^-plsystem 2} _ \ ^p{systeml} __v p _ \ ^p{systeml} 

and 

{system 1} {system 2} 

P • 

rF M ^ M ^ - r g p x F p 

FIGURE LI .20 Equivalent systems. 
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These conditions are satisfied if F equals the sum of the forces in {system 1}, and M equals 
the sum of the moments about P in {system 1}. Thus, no matter how complicated a system 
of forces and moments may be, it can be represented by a single force acting at a given 
point and a single couple. Three particular cases occur frequently in practice. 

1. Force represented by a force and a couple. A force Fp acting at a point P {system 1} 
in Figure 1.1.20 can be represented by a force F acting at a different point Q and a 
couple of torque M, {system 2}. The moment of {system 1} about point Q is 
YQP X Fp, where YQP is the vector from Q to P. The conditions for equivalence are 

^ j ^ { s y s t e m 2 ) ^ ^ j ^ { s y s t e m l ) ^ ^ ^^^^ 

and 

The systems are equivalent if the force F equals the force Fp and the couple of 
torque M^^ equals the moment of Fp about Q. 

2. Concurrent forces represented by a force. A system of concurrent forces whose lines 
of action intersect at a point P {system 1}, in Figure 1.1.21(a), can be represented by 
a single force whose line of action intersects P, {system 2}. The sums of the forces 
in the two systems are equal if 

F = F i + F 2 + --- + F„. 

The sum of the moments about P equals zero for each system, so the systems are 
equivalent if the force F equals the sum of the forces in {system 1}. 

3. Parallel forces represented by a force. A system of parallel forces whose sum is not 
zero can be represented by a single force F shown in Figure 1.1.21(b). 

4. System represented by a wrench. In general any system of forces and moments can 
be represented by a single force acting at a given point and a single couple. 
Figure 1.1.22 shows an arbitrary force F acting at a point P and an arbitrary couple 
of torque M, {system 1}. This system can be represented by a simpler one, i.e., one 
may represent the force F acting at a different point Q and the component of M that 
is parallel to F. A coordinate system is chosen so that F is along the y axis 

and M is contained in the xy plane 

M=Mjcl+My]. 

The equivalent system, {system 2}, consists of the force F acting at a point Q on the z axis 

F = Fj, 
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(a) 

{system 2} 

(b) 

FIGURE 1.1.21 System offerees: (a) concurrent forces, and (b) parallel forces. 

{system 2} 

\TPQ\ = PQ = MJF 

FIGURE 1.1.22 System represented by a wrench. 
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and the component of M parallel to F 

Mp = My]. 

The distance PQ is chosen so that |rpg| = PQ = Mx/F. The {system 1} is equivalent to 
{system 2}. The sum of the forces in each system is the same F. The sum of the moments 
about P in {system 1} is M, and the sum of the moments about P in {system 2} is 

^ j^{system2} ^ ^ ^ ^ ^ p ^ ^ ^ ^ ^ ^_pQ^^ ^ ^^^^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 

The system of the force F = Fj and the couple M^ = My} that is parallel to F is a wrench. 
A wrench is the simplest system that can be equivalent to an arbitrary system of forces and 
moments. 

The representation of a given system of forces and moments by a wrench requires the 
following steps: 

1. Choose a convenient point P and represent the system by a force F acting at P and a 
couple M [Fig. 1.1.23(a)]. 

(a) 

rpQxF = Mn 

(c) 

FIGURE 1.1.23 Steps required to represent a system of forces by a wrench. 

Introduction 33 



2. Determine the components of M parallel and normal to F [Fig. 1.1.23(b)] 

M = Mp + M„, where Mp \ |F. 

3. The wrench consists of the force F acting at a point Q and the parallel component 
Mp [Fig. 1.1.23(c)]. For equivalence, the following condition must be satisfied: 

rpQx¥ = M„, 

where M„ is the normal component of M. 

In general, the (system 1} cannot be represented by a force F alone. 

1.1.4 Equilibrium 
Equilibrium Equations 
A body is in equilibrium when it is stationary or in steady translation relative to an inertial 
reference frame. The following conditions are satisfied when a body, acted upon by a system 
of forces and moments, is in equilibrium: 

1. The sum of the forces is zero: 

^ F = 0. (1.1.13) 

2. The sum of the moments about any point is zero: 

^ M p = 0, VP. (1.1.14) 

If the sum of the forces acting on a body is zero and the sum of the moments about one 
point is zero, then the sum of the moments about every point is zero. 

Proof 
The body shown in Figure 1.1.24 is subjected to forces F^/, / = 1, . . . , w, and moments 
Mj,j= 1, . . . , m. The sum of the forces is zero. 

^F=J:F.,=O, 

and the sum of the moments about a point P is zero, 

n m 

^ M p = ^ r p A / X FA/ + Y.^J = ^' 
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FIGURE 1.1.24 Forces and moments acting on a body. 

where VpAt = PAi, i = I, ... ,n. The sum of the moments about any other point Q is 

n m 

n 

7=1 

;= i /=i 

7=1 i=\ i^\ 

= r^P X 0 + ^ r p A / X FA/ + X ^ M ; -

i=\ 7=1 

n m 

= Y^^PAi X FA/ + ; ^ M , - = ^ M p = 0. 
/=i 7=1 

A body is subjected to concurrent forces Fi, F2, . . . ,F„ and no couples. If the sum of 
the concurrent forces is zero, 

F i + F 2 + - - - + F „ = 0 , 
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the sum of the moments of the forces about the concurrent point is zero, so the sum of the 
moments about every point is zero. The only condition imposed by equilibrium on a set of 
concurrent forces is that their sum is zero. 

Free-Body Diagrams 
Free-body diagrams are used to determine forces and moments acting on simple bodies in 
equilibrium. 

The beam in Figure 1.1.25(a) has a pin support at the left end A and a roller support at 
the right end B. The beam is loaded by a force F and a moment M at C. To obtain the 
free-body diagram first the beam is isolated from its supports. Next, the reactions exerted 
on the beam by the supports are shown on the the free-body diagram [Fig. 1.1.25(b)]. Once 
the free-body diagram is obtained one can apply the equilibrium equations. 

The steps required to determine the reactions on bodies are: 

1. Draw the free-body diagram, isolating the body from its supports and showing the 
forces and the reactions. 

2. Apply the equilibrium equations to determine the reactions. 

For two-dimensional systems, the forces and moments are related by three scalar 
equilibrium equations: 

J2PX = 0, (1.1.15) 

J^Fy = 0, (1.1.16) 

J^Mp = 0, VP. (1.1.17) 

(a) 

(b) 

FIGURE 1.1.25 Free-body diagram: (a) beam with supports and (b) free-body diagram oftlie beam. 
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One can obtain more than one equation from Eq. (1.1.17) by evaluating the sum of the 
moments about more than one point. The additional equations will not be independent of 
Eqs. (1.1.15)-(1.1.17). One cannot obtain more than three independent equilibrium equations 
from a two-dimensional free-body diagram, which means one can solve for at most three 
unknown forces or moments. 

For three-dimensional systems, the forces and moments are related by six scalar 
equilibrium equations: 

Y.F, = 0 (1.1.18) 

J2Fy = 0, (1.1.19) 

^ F z = 0, (1.1.20) 

^ M ^ = 0, (1.1.21) 

J2My = 0, (1.1.22) 

^ M , = 0. (1.1.23) 

The sums of the moments about any point can be evaluated. Although one can obtain other 
equations by summing the moments about additional points, they will not be independent of 
these equations. For a three-dimensional free-body diagram, six independent equilibrium 
equations are obtained and one can solve for at most six unknown forces or moments. 

A body has redundant supports when the body has more supports than the minimum 
number necessary to maintain it in equilibrium. Redundant supports are used whenever 
possible for strength and safety. Each support added to a body results in additional reactions. 
The difference between the number of reactions and the number of independent equilibrium 
equations is called the degree of redundancy. 

A body has improper supports if it will not remain in equilibrium under the action of the 
loads exerted on it. The body with improper supports will move when the loads are applied. 

Two-force and three-force members 
A body is a two-force member if the system of forces and moments acting on the body is 
equivalent to two forces acting at different points. 

For example, a body is subjected to two forces, F^ and F^, at A and B. If the body is in 
equilibrium, the sum of the forces equals zero only if FA = —F^. Furthermore, the forces 
FA and —F^ form a couple, so the sum of the moments is not zero unless the lines of action 
of the forces lie along the line through the points A and B. Thus for equilibrium the two 
forces are equal in magnitude, are opposite in direction, and have the same line of action. 

A body is a three-force member if the system of forces and moments acting on the body is 
equivalent to three forces acting at different points. If a three-force member is in equilibrium, 
the three forces are coplanar and the three forces are either parallel or concurrent. 

Proof 
Let the forces Fi, F2, and F3 acting on the body at Ai, A2, and A3. Let ic be the plane 
containing the three points of application Ai, A2, and A3. Let A = A1A2 be the line through 
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the points of application of Fi and F2. Since the moments due to Fi and F2 about A are 
zero, the moment due to F3 about A must equal zero, 

[n • (r X F3)] n = [F3 • (n X r)] n = 0, 

where n is the unit vector of A. This equation requires that F3 be perpendicular to n x r, 
which means that F3 is contained in n. The same procedure can be used to show that Fi 
and F2 are contained in TT, SO the forces Fi, F2, and F3 are coplanar. 

If the three coplanar forces are not parallel, there will be points where their lines of 
action intersect. Suppose that the lines of action of two forces Fi and F2 intersect at a 
point P. Then the moments of Fi and F2 about P are zero. The sum of the moments about 
P is zero only if the line of action of the third force, F3, also passes through P. Therefore 
either the forces are concurrent or they are parallel. 

The analysis of a body in equilibrium can often be simplified by recognizing the two-force 
or three-force member. 

1.1.5 Dry Friction 
If a body rests on an incline plane, the friction force exerted on it by the surface prevents 
it from sliding down the incline. The question is, what is the steepest incline on which the 
body can rest? 

A body is placed on a horizontal surface. The body is pushed with a small horizontal 
force F. If the force F is sufficiently small, the body does not move. Figure 1.1.26 shows 
the free-body diagram of the body, where the force W is the weight of the body and N is 
the normal force exerted by the surface. The force F is the horizontal force, and Ff is the 
friction force exerted by the surface. Friction force arises in part from the interactions of the 
roughness, or asperities, of the contacting surfaces. The body is in equilibrium and Ff — F. 

The force F is slowly increased. As long as the body remains in equilibrium, the friction 
force Ff must increase correspondingly, since it equals the force F. The body slips on the 
surface. The friction force, after reaching the maximum value, cannot maintain the body in 
equilibrium. The force applied to keep the body moving on the surface is smaller than the 
force required to cause it to slip. Why more force is required to start the body sliding on a 

F ^ 
> ^ 

^ ^ ^ 
Ff^ > 

w 
body 

|r 

FIGURE 1.1.26 Friction force Ff exerted by a surface on a body. 
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TABLE LI .1 Typical Values of the Static Coefficient of Friction 

Materials /Xg 

metal on metal 0.15 - 0.20 
metal on wood 0.20 - 0.60 
metal on masonry 0.30 - 0.70 
wood on wood 0.25 - 0.50 
masonry on masonry 0.60 - 0.70 
rubber on concrete 0.50 - 0.90 

surface than to keep it sliding is explained in part by the necessity to break the asperities of 
the contacting surfaces before sHding can begin. 

The theory of dry friction, or Coulomb friction, predicts: 

• the maximum friction forces that can be exerted by dry, contacting surfaces that are 
stationary relative to each other; 

• the friction forces exerted by the surfaces when they are in relative motion, or sliding. 

Static Coefficient of Friction 
The magnitude of the maximum friction force, Ff, that can be exerted between two plane 
dry surfaces in contact is 

Ff = iisN, (1.1.24) 

where /x̂  is a constant, the static coefficient of friction, and N is the normal component of 
the contact force between the surfaces. The value of the static coefficient of friction, /x ,̂ 
depends on: 

• the materials of the contacting surfaces; 
• the conditions of the contacting surfaces, namely smoothness and degree of 

contamination. 

Typical values of JJLS for various materials are shown in Table 1.1.1. 
Equation (1.1.24) gives the maximum friction force that the two surfaces can exert without 

causing it to slip. If the static coefficient of friction IJLS between the body and the surface 
is known, the largest value of F one can apply to the body without causing it to slip is 
F = Ff = IXsN. Equation (1.1.24) determines the magnitude of the maximum friction force 
but not its direction. The friction force resists the impending motion. 

Kinetic Coefficient of Friction 
The magnitude of the friction force between two plane dry contacting surfaces that are in 
motion relative to each other is 

Ff = HkN, (1.1.25) 

where ixk is the kinetic coefficient of friction and A'̂  is the normal force between the surfaces. 
The value of the kinetic coefficient of friction is generally smaller than the value of the static 
coefficient of friction, iXs-
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I Ff= iikN 
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FIGURE 1.1.27 (a) Body moving on a surface and (b) free-body diagrams of the body and of tine 
surface. 

To keep the body in Figure 1.1.26 in uniform motion (sliding on the surface), the force 
exerted must be F = Ff = fikN. The friction force resists the relative motion when two 
surfaces are sliding relative to each other. 

The body RB shown in Figure 1.1.27(a) is moving on the fixed surface 0. The direction 
of motion of RB is the positive axis x. The friction force on the body RB acts in the 
direction opposite to its motion, and the friction force on the fixed surface is in the opposite 
direction as shown in Figure 1.1.27(b). 

Angles of Friction 
The angle of friction, 0, is the angle between the friction force, Ff = |F.| , and the normal 
force, Â  = |N|, to the surface Fig. (1.1.28). The magnitudes of the normal force and friction 
force, and 0 are related by 

where/?= |R| = |N + F/| . 

Ff =RsmO, 

N = RcosO, 
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FIGURE r.l .28 The angle of friction. 

The value of the angle of friction when slip is impending is called the static angle of 
friction, Os, 

tanOs = lis-

The value of the angle of friction when the surfaces are sliding relative to each other is 
called the kinetic angle of friction. Ok, 

idiXiOk = Ilk-

1.1-6 Problems 
1.1.1 (a) Find the angle made by the vector v = — lOi + 5i with the positive x-axis and 

determine the unit vector in the direction of v. (b) Determine the magnitude of the 
resultant v = vi + V2 and the angle which v makes with the positive x-axis, where 
the vectors vi and V2 are shown in Figure 1.1.29. The magnitudes of the vectors are 
|vi I = vi = 5, |V2| = V2 = 10, and the angles of the vectors with the positive x-axis 
are6>i = 30°, 6>2 = 60°. 

1.1.2 The planar vectors a, b, and c are given in xOy plane as shown in Figure 1.1.30. The 
magnitude of the vectors Sire a = P,b = 2P, and c = P V2. The angles in the figure 
are a = 45°, p = 120°, and y = 30°. Determine the magnitude of the resultant 
V = a + b + c and the angle that v makes with the positive jc-axis. 

1.1.3 The cube in Figure 1.1.31 has the sides equal to /. Find the direction cosines of the 
resultant v = vi + V2 + V3 + V4. 

1.1.4 The following spatial vectors are given: vi = —3 1 + 4 j — 3 k, V2 = 3 1 + 3 k, and 
V3 = l i + 2 j + 3k. Find the expressions Ei = vi + V2 + V3, E2 = vi + V2 — V3, 
E3 = (vi X V2) X V3, and £4 = (vi x V2) • V3. 

1.1.5 Find the angle between the vectors vi = 2 i — 4 j - f 4 k and V2 = 4 i + 2 j + 4k. 
Find the expressions vi x V2 and vi • V2. 
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FIGURE 1.1.29 Vectors for Problem 1.1.1. 

FIGURE 1.1.30 Planar vectors for Problem 1.1.2. 

1.1.6 The following vectors are given vi = 2 i + 4 j + 6k, V2 = l i + 3 j + 5k, and 
V3 = —21 + 2 k. Find the vector triple product of vi, V2, and V3, and explain the 
result. 

1.1.7 Solve the vectorial equation x x a = x x b, where a and b are two known given 
vectors. 

1.1.8 Solve the vectorial equation v = a x x, where v and a are two known given vectors. 
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FIGURE 1.1.31 Vectors for Problem 1.1.3. 

1.1.9 Solve the vectorial equation a • x = m, where a is a known given vector and m is a 
known given scalar. 

1.1.10 The forces Fi, F2, F3, and F4, shown in Figure 1.1.32, act on the sides of a cube 
(the side of the cube is /). The magnitude of the forces are Fi = F2 = F, and 
F3 = F4 = F V2. Represent the given system of forces by an equivalent system at O. 

z ' 

^ / 1 \ 
^ 7 - - , 

• / , 

1 / 

I y 1 

1 # ^ 

(̂  F 1 
3 ' 

1 ' y 
1 — — — — — — -^— — — — — 

FIGURE 1.1.32 Forces for Problem 1.1.10. 
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1.1.11 Figure 1.1.33 represents the vectors vi, V2, V3, and V4 acting on a cube with the side 
/. The magnitude of the forces are vi = V and V2 = V3 = V4 = 2 V. Find the 
equivalent system at O. 

y^ J 

FIGURE LI .33 Vectors for Problem 1.1.1 L 

1.1.12 Repeat the previous problem for Figure 1.1.34. 

^ 

^^ 

.^ O 

L i 

FIGURE 1.1.34 Vectors for Problem 1.1.12. 
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1.1.13 The parallelepiped shown in Figure 1.1.35 has the sides / = 1 m, w = 2 m, and 
h = 3m. The magnitude of the forces are Fi = F2 = 10 N, and F3 = F4 = 20 N. 
Find the equivalent wrench of the system. 

^ 

FIGURE 1.1.35 Forces for Problem 1.1.13. 

1.1.14 A uniform rectangular plate of length / and width w is held open by a cable 
(Fig. 1.1.36). The plate is hinged about an axis parallel to the plate edge of length /. 
Points A and B are at the extreme ends of this hinged edge. Points D and C are at the 
ends of the other edge of length / and are respectively adjacent to points A and B. 
Points D and C move as the plate opens. In the closed position, the plate is in a 
horizontal plane. When held open by a cable, the plate has rotated through an angle 
0 relative to the closed position. The supporting cable runs from point D to point E 
where point E is located a height h directly above the point B on the hinged edge of 
the plate. The cable tension required to hold the plate open is T. Find the projection 
of the tension force onto the diagonal axis AC of the plate. Numerical application: 
/ = 1.0 m, w = 0.5 m, 6> = 45°, h = 1.0 m, and T = 100 N. 

1.1.15 A smooth sphere of mass m is resting against a vertical surface and an inclined 
surface that makes an angle 0 with the horizontal, as shown in Figure 1.1.37. Find 
the forces exerted on the sphere by the two contacting surfaces. Numerical 
application: (a) m = 10 kg, ^ = 30°, and g = 9.8 m/s^; (b) m = 2 slugs, 0 = 60°, 
andg = 32.2 ft/sec^. 

1.1.16 The links 1 and 2 shown in Figure 1.1.38 are each connected to the ground at A and 
C, and to each other at B using frictionless pins. The length of link 1 is AB = I. The 
angle between the links is ZABC = O.A force of magnitude P is applied at the point 
D {AD = 2//3) of the link 1. The force makes an angle 0 with the horizontal. Find 
the force exerted by the lower link 2 on the upper link 1. Numerical application: (a) 
/ = 1 m, ^ = 30°, and P = 1000 N; (b) / = 2 ft, 0 = 45°, and P = 500 lb. 
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FIGURE 1.1.36 Rectangular plate for Problem 1.1.14. 

FIGURE 1.1.37 Smooth sphere for Problem L 1.15. 

1.1.17 The block of mass m rests on a rough horizontal surface and is acted upon by a 
force, F, that makes an angle 0 with the horizontal, as shown in Figure 1.1.39. 
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FIGURE 1.1.38 Two links connected for Problem I.hi 6. 

The coefficient of static friction between the surface and the block is /x .̂ Find the 
magnitude of the force F required to cause the block to begin to slide. Numerical 
application: (a) m = 2 kg, 0 = 60°, /x̂  = 0.4, and g = 9.8 m/s^; (b) m = 10 slugs, 
0 = 30°, i^s = 0.3, and g = 32.2 ft/sec^. 

.̂ 41 

FIGURE 1.1.39 Block on a rough surface for Problem 1.1.17. 

1.1.18 Find the x-coordinate of the centroid of the plane region bounded by the curves 
y = x^ and y = ^ , (x > 0). 

1.1.19 The shaft shown in Figure 1.1.40 turns in the bearings A and B. The dimensions of 
the shaft are a = 6 in. and Z? = 3 in. The forces on the gear attached to the shaft are 
Ft = 900 lb and Fr = 500 lb. The gear forces act at a radius R = 4in. from the axis 
of the shaft. Find the loads applied to the bearings. 

1.1.20 The shaft shown in Figure 1.1.41 turns in the bearings A and B. The dimensions of 
the shaft are a = 120 mm and b = 30 nmi. The forces on the gear attached to the 
shaft are Ft = 4500 N, Fr = 2500 N, and Fa = 1000 N. The gear forces act at a 
radius /? = 100 mm from the shaft axis. Determine the bearings loads. 

1.1.21 The dimensions of the shaft shown Figure 1.1.42 are <2 = 2 in. and / = 5 in. The 
force on the disk with the radius r\ = 5 in. is Fi = 600 lb and the force on the disk 
with the radius r2 = 2.5 in. is F2 = 1200 lb. Determine the forces on the bearings at 
A and B. 
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bearing A bearing B 

FIGURE 1.1.40 Shaft with gear for Problem I.h19. 

bearing A 

bearing B 

FIGURE 1.1.41 Shaft with gear for Problem 1.1.20. 

IA 22 The dimensions of the shaft shown Figure 1.1.43 are a = 50 mm and / = 120 mm. 
The force on the disk with the radius ri = 50 mm is Fi = 2000 N and the force 
on the disk with the radius r2 = 100 mm is F2 = 4000 N. Determine the bearing 
loads at A and 5. 

1.1.23 The force on the gear in Figure 1.1.44 is F = 1.5 kN and the radius of the gear 
is /? = 60 mm. The dimensions of the shaft are / = 300 mm and a = 60 mm. 
Determine the bearing loads at A and B. 
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FIGURE 1.1.42 Shaft with two disks for Problem 1.1,21. 

FIGURE 1.1.43 Shaft with two disl<s for Problem 1.1.22. 

A 

FIGURE 1.1.44 Shaft with gear for Problem 1.1.23. 
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1.2 Fundamentals 

1.2.1 Degrees of Freedom and Motion 
The number of degrees of freedom (DOF) of a system is equal to the number of independent 
parameters (measurements) that are needed to uniquely define its position in space at any 
instant of time. The number of DOF is defined with respect to a reference frame. 

Figure 1.2.1 shows a rigid body (RB) lying in a plane. The rigid body is assumed to 
be incapable of deformation and the distance between two particles on the rigid body is 
constant at any time. If this rigid body always remains in the plane, three parameters (three 
DOF) are required to completely define its position: two linear coordinates (x, y) to define 
the position of any one point on the rigid body, and one angular coordinate 0 to define the 
angle of the body with respect to the axes. The minimum number of measurements needed 
to define its position are shown in the figure as x, y, and 0. A rigid body in a plane then has 
three degrees of freedom. Note that the particular parameters chosen to define its position 
are not unique. Any alternative set of three parameters could be used. There is an infinity 
of sets of parameters possible, but in this case there must always be three parameters per 
set, such as two lengths and an angle, to define the position because a rigid body in plane 
motion has three DOF. 

Six parameters are needed to define the position of a free rigid body in a three-dimensional 
(3-D) space. One possible set of parameters which could be used are three lengths, (x, y, z), 
plus three angles (6x, Oy, 0^). Any free rigid body in 3-D space has six degrees of freedom. 

A rigid body free to move in a reference frame will, in the general case, have complex 
motion, which is simultaneously a combination of rotation and translation. For simplicity, 
only the two-dimensional (2-D) or planar case will be presented. For planar motion the 
following terms will be defined. Figure 1.2.2: 

• Pure rotation in which the body possesses one point (center of rotation) which has no 
motion with respect to a "fixed" reference frame [Fig. 1.2.2(a)]. All other points on the 
body describe arcs about that center. 

• Pure translation in which all points on the body describe parallel paths [Fig. 1.2.2(b)]. 
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rigid body (RB) 

FIGURE 1.2.1 Rigid body in planar motion with tliree DOF: translation along the x axis, translation 
along the y axis, and rotation, 6, about the z. 

• Complex motion that exhibits a simultaneous combination of rotation and translation 
[Fig. 1.2.2(c)]. With general plane motion, points on the body will travel nonparallel 
paths, and there will be, at every instant, a center of rotation, which will continuously 
change location. 

Translation and rotation represent independent motions of the body. Each can exist without 
the other. For a 2-D coordinate system, as shown in Figure 1.2.1, the jc and y terms represent 
the translation components of motion, and the 0 term represents the rotation component. 

1.2.2 Links and Joints 
Linkages are basic elements of all mechanisms. Linkages are made up of links and joints. 
A link, sometimes known as an element or a member, is an (assumed) rigid body which 
possesses nodes. Nodes are defined as points at which links can be attached. A link connected 
to its neighboring elements by s nodes is an element of degree s. A link of degree 1 is also 
called unary [Fig. L2.3(a)], of degree 2, binary [Fig. L2.3(b)], and of degree 3, ternary 
[Fig. L2.3(c)], etc. 

A joint is a connection between two or more links (at their nodes). A joint allows some 
relative motion between the connected links. Joints are also called kinematic pairs. 

The number of independent coordinates that uniquely determine the relative position of 
two constrained links is termed degree of freedom of a given joint. Alternatively the term 
joint class is introduced. Akinematic pair is of thejth class if it diminishes the relative motion 
of linked bodies by 7 degrees of freedom; i.e., j scalar constraint conditions correspond to 
the given kinematic pair. It follows that such a joint has (6 — j) independent coordinates. 
The number of DOF is the fundamental characteristic quantity of joints. One of the links 
of a system is usually considered to be the reference link, and the position of other RBs is 
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rotation 

(a) 

rectilinear translation curvilinear translation 

(b) 

general plane motion 

(c) 

FIGURE L2.2 Rigid body in motion: (a) pure rotation, (b) pure translation, and (c) general motion. 

determined in relation to this reference body. If the reference link is stationary, the term 
frame or ground is used. 

The coordinates in the definition of DOF can be linear or angular. Also the coordinates 
used can be absolute (measured with regard to the frame) or relative. Figures I.2.4-I.2.9 
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Link Schematic representation 

node node 

(a) 

node 

node 

node 

node 

(b) 

node node 
node 

node 

(c) 

FIGURE 1.2.3 Types of links: (a) unary, (b) binary, and (c) ternary elements. 

show examples of joints commonly found in mechanisms. Figures 1.2.4(a) and 1.2.4(b) 
show two forms of a planar, one DOF joint, namely a rotating pin joint and a translating 
slider joint. These are both typically referred to as full joints and are of the 5th class. The 
pin joint allows one rotational (R) DOF, and the slider joint allows one translational (T) 
DOF between the joined links. These are both special cases of another common, one DOF 
joint, the screw and nut [Fig. 1.2.5(a)]. Motion of either the nut or the screw relative to the 
other results in helical motion. If the helix angle is made zero [Fig. 1.2.5(b)], the nut rotates 
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Type of full joint Schematic representation 

ii 

(a) 

(b) 

FIGURE 1.2.4 One DOF joint, full joint (5th class): (a) pin joint, and (b) slider joint. 

without advancing and it becomes a pin joint. If the hehx angle is made 90°, the nut will 
translate along the axis of the screw, and it becomes a slider joint. 

Figure 1.2.6 shows examples of two DOF joints, which simultaneously allow two inde-
pendent, relative motions, namely translation (T) and rotation (R), between the joined 
links. A two DOF joint is usually referred to as a half joint and is of the 4th class. A half 
joint is sometimes also called a roll-slide joint because it allows both rotation (rolling) and 
translation (sliding). 

A joystick, ball-and-socket joint, or sphere joint [Fig. 1.2.7(a)], is an example of a 
three DOF joint (3rd class), which allows three independent angular motions between the 
two links that are joined. This ball joint would typically be used in a 3-D mechanism, 
one example being the ball joints used in automotive suspension systems. A plane joint 
[Fig. 1.2.7(b)] is also an example of a three DOF joint, which allows two translations and 
one rotation. 

Note that to visualize the DOF of a joint in a mechanism, it is helpful to "mentally 
disconnect" the two links that create the joint from the rest of the mechanism. It is easier 
to see how many DOF the two joined links have with respect to one another. Figure 1.2.8 
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Type of full joint 

2 

Schematic representation 

P m.. 
(a) 

kz 

a = helix angle 
p = pitch 

(b) 

FIGURE 1.2.5 (a) Screw and nut joint; (b) helical motion. 

shows an example of a 2nd class joint (cylinder on plane) and Figure 1.2.9 represents a 1st 
class joint (sphere on plane). 

The type of contact between the elements can be point (P), curve (C), or surface (S). 
The term lower joint was coined by Reuleaux to describe joints with surface contact. He 
used the term higher joint to describe joints with point or curve contact. The main practical 
advantage of lower joints over higher joints is their ability to better trap lubricant between 
their enveloping surfaces. This is especially true for the rotating pin joint. 

A closed joint is a joint that is kept together or closed by its geometry. A pin in a hole or 
a slider in a two-sided slot are forms of closed joints. A force closed joint, such as a pin in 
a half-bearing or a slider on a surface, requires some external force to keep it together or 
closed. This force could be supplied by gravity, by a spring, or by some external means. In 
linkages, closed joints are usually preferred, and are easy to accomplish. For cam-follower 
systems force closure is often preferred. 

The order of a joint is defined as the number of links joined minus one. The simplest joint 
combination of two links has order one and it is a single joint [Fig. 1.2.10(a)]. As additional 
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representation 

follower 
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. I half joint \ 
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/ 2 
gear 

(e) 

FIGURE 1.2.6 Two DO F joint, half joint (4th class): (a) general joint, (b) cylinder joint, (c) roll and 
slide disk, (d) cam-follower joint, and (e) gear joint 

links are placed on the samejoint, the order is increased on a one for one basis [Fig. 1.2.10(b)]. 
Joint order has significance in the proper determination of overall DOF for an 
assembly. 

Bodies linked by joints form a kinematic chain. Simple kinematic chains are shown in 
Figure 1.2.11. A contour or loop is a configuration described by a polygon consisting of 
links connected by joints [Fig. 1.2.11(a)]. The presence of loops in a mechanical structure 
can be used to define the following types of chains: 

• Closed kinematic chains have one or more loops so that each link and each joint is 
contained in at least one of the loops [Fig. 1.2.11(a)]. A closed kinematic chain has no 
open attachment point. 
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Schematic representation 

(a) 

(b) 

FIGURE 1.2.7 Three DOF joint (3rd class): (a) ball and socket joint, and (b) plane joint. 

FIGURE 1.2.8 Four DOF joint (2nd class) cylinder on a plane. 

• Open kinematic chains contain no closed loops [Fig. 1.2.11(b)]. A common example of 
an open kinematic chain is an industrial robot. 

• Mixed kinematic chains are a combination of closed and open kinematic 
chains. 
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FIGURE 1.2.9 Five DOF joint (1st class) sphere on a plane. 

joint of order one 
(one pin joint) 

joint of order two 
(two pin joints) 

- --.-c B' m 
1 2 3 

3-

(a) (b) 

FIGURE L2.10 Order of a joint: (a) joint of order one, and (b) joint of order two (multiple joints). 

Another classification is also useful: 

• Simple chains contain only binary elements. 
• Complex chains contain at least one element of degree 3 or higher. 

A mechanism is defined as a kinematic chain in which at least one link has been 
"grounded" or attached to the frame [Figs. 1.2.11 (a) and 1.2.12]. Using Reuleaux's definition, 
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joint 
joint 

(a) (b) 

FIGURE 1.2.11 Kinematic chains: (a) closed kinematic chain, and (b) open l<inematic chain. 

link 4 (coupler or connecting rod) link 3 (rocker) 
link 2 (coupler or 

^ ^ connecting rod) 
D ^^ ^—^ * 

link 5 (rocker) 

linkO 

link 1 (crank) 

(ground) 

FIGURE 1.2.12 Complex mechanism with five moving links. 

joint of order two (two pin joints) 
(multiple joint) 

a machine is a collection of mechanisms arranged to transmit forces and do work. He 
viewed all energy, or force-transmitting devices as machines that utilize mechanisms as 
their building blocks to provide the necessary motion constraints. 

The following terms can be defined (Fig. 1.2.12): 

• A crank is a link that makes a complete revolution about a fixed grounded pivot. 
• A rocker is a link that has oscillatory (back and forth) rotation and is fixed to a 

grounded pivot. 
• A coupler or connecting rod is a link that has complex motion and is not fixed to ground. 

Ground is defined as any link or links that are fixed (nonmoving) with respect to the reference 
frame. Note that the reference frame may in fact itself be in motion. 
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L2.3 Family and Degrees of Freedom 
The concept of number of degrees of freedom is fundamental to the analysis of mechanisms. 
It is usually necessary to be able to determine quickly the number of DOF of any collec-
tion of links and joints that may be used to solve a problem. 

The number of DOF or the mobility of a system can be defined as: 

• the number of inputs that need to be provided in order to create a predictable system 
output, or 

• the number of independent coordinates required to define the position of the system. 

The family f of a mechanism is the number of DOF that are eliminated from all the links 
of the system. Every free body in space has six degrees of freedom. A system of family 
/ consisting of n movable links has (6 —f)n degrees of freedom. Each joint of class j 
diminishes the freedom of motion of the system hyj—f degrees of freedom. Designating 
the number of joints of class ^ as ĉ :, it follows that the number of degrees of freedom of 
the particular system is 

5 

M = (6-f)n- J2(j-f)cj. (1.2.1) 

This is referred to in the literature on mechanisms as the Dobrovolski formula. 
A driver link is that part of a mechanism that causes motion. An example is a crank. The 

number of driver links is equal to the number of DOF of the mechanism. A driven link or 
follower is that part of a mechanism whose motion is affected by the motion of the driver. 

Mechanisms of family f = 1 
The family of a mechanism can be computed with the help of a mobility table (Table 1.2.1). 
Consider the mechanism, shown in Figure 1.2.13, that can be used to measure the weight of 
postal envelopes. The translation along the /-axis is denoted by T/, and the rotation about 
the /-axis is denoted by R/, where i = x,y,z. Every link in the mechanism is analyzed in 
terms of its translation and rotation about the reference frame xyz. For example the link 0 
(ground) has no translations, T/ = No, and no rotations, R̂  = No. The link 1 has a rotation 

TABLE 1.2.1 Mobility Table for the Mechanism Shown in 
Figure 1.2.13 

Link 

0 
1 
2 
3 
4 
5 

T, 

No 
No 
Yes 
No 
No 
No 

Ty 

No 
No 
Yes 
Yes 
Yes 
No 

Tz 

No 
No 
No 
No 
Yes 
No 

Rx 

No 
No 
No 
No 
Yes 
Yes 

Ry 

No 
No 
No 
No 
No 
No 

Rz 

No 
Yes 
Yes 
No 
No 
No 

No 

For all links Ry = No = ^ / = l . 
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Schematic representation 

FIGURE 1.2.13 Spatial mechanism of family f= /. 
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motion about the z-axis, R̂  = Yes. The link 2 has a planar motion (xy is the plane of motion) 
with a translation along the x-axis, Tĵ ; = Yes, a translation along the }'-axis, T^ = Yes, and 
a rotation about the z-axis, R̂  = Yes. The link 3 has a translation along y, T^ = Yes. The 
link 4 has a planar motion (yz, the plane of motion) with a translation along y, Ty = Yes, a 
translation along z, T̂  = Yes, and a rotation about x, Rx = Yes. The link 5 has a rotation 
about the x-axis, R;̂  = Yes. The results of this analysis are presented with the help of a 
mobility table (Table 1.2.1). 

From Table 1.2.1 it can be seen that Hnk /, / = 0, 1,2, 3, 4, 5, has no rotation about the 
j-axis, i.e., there is no rotation about the >'-axis for any of the links of the mechanism (Ry 
= No). The family of the mechanism i s / = 1 because there is one DOF, rotation about y, 
which is eliminated from all the links. 

There are six joints of class 5 (rotational joints) in the system at A, B, C, D, E, and 
F. The number of DOF for the mechanism in Figure 1.2.13, which is off = 1 family is 
given by 

5 

M = 5 n - ^ 0 ' - l ) 9 = 5 ^ - 4 c 5 - 3 c 4 - 2 c 3 - C 2 = 5(5) - 4(6) = 1. 

The mechanism has one DOF (one driver link). 

Mechanisms of family f = 2 
A mobility table for a mechanism of family/ = 2 (Fig. 1.2.14) is given in Table 1.2.2. 

The number of DOF for the/ = 2 family mechanism is given by 
5 

M = 4n-^(j -2)cj = 4n-3c5 -2C4-C3. 

The mechanism in Figure 1.2.14 has four moving links (n = 4), four rotational joints (A, 
B, D, E) and one screw and nut joint (C); i.e., there are five joints of class 5 (05 = 5). The 
number of DOF for this mechanism is 

M = 4n-3c5-2c4-C3 =4(4) - 3(5) = 1. 

TABLE L2.2 Mobility Table for the Mechanism Shown in 
Figure 1.2.14 

Link 

0 
1 
2 
3 
4 

T, 

No 
No 
Yes 
Yes 
No 

Ty 

No 
No 
Yes 
Yes 
No 

Tz 

No 
No 
No 
No 
No 

No 

Rx 

No 
No 
Yes 
No 
No 

Ry 

No 
No 
No 
No 
No 

No 

Rz 

No 
Yes 
Yes 
Yes 
Yes 

For all links T, = No & Rv = No = 
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D Schematic representation 

/ 4 

E 

z 
y 

^0 0 

FIGURE 1.2.14 Spatial mechanism of family f= 2. 

Mechanisms of family f=3 
The number of DOF for mechanisms of family/ = 3 is given by 

5 

M = 3n — Y~̂  (j — 3)cj = 3n — 2c5 — C4. 

For the mechanism in Figure L2.11(a) the mobihty table is given in Table 1.2.3. 
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TABLE 1.2.3 Mobility Table for the Mechanism Shown in 
Figure 1.2.11(a) 

Link 

0 
1 
2 

3 

Tx 

No 
No 
Yes 
No 

Ty 

No 
No 
Yes 
No 

Tz 

No 
No 
No 
No 

No 

Rx 

No 
No 
No 
No 

No 

Ry 

No 
No 
No 
No 

No 

Rz 

No 
Yes 
Yes 
Yes 

For all links T. = No & Rv = No & Rv :NO = 

TABLE L2.4 Mobility Table for the Mechanism Shown in 
Figure 1.2.12 

Link 

0 
1 
2 
3 
4 
5 

Tx 

No 
No 
Yes 
No 
Yes 
No 

Ty 

No 
No 
Yes 
No 
Yes 
No 

Tz 

No 
No 
No 
No 
No 
No 

No 

Rx 

No 
No 
No 
No 
No 
No 

No 

Ry 

No 
No 
No 
No 
No 
No 

No 

Rz 

No 
Yes 
Yes 
Yes 
Yes 
Yes 

For all links T, = No & R;̂  = No & Rv = No = • / = 3. 

The mechanism in Figure 1.2.11 (a) has three moving links (n = 3) and four rotational 
joints at A, B, C, and D, (cs = 4). The number of DOF for this mechanism is given by 

M = 3n-2c5-C4 = 3(3) - 2(4) = 1. 

The mobility table for the mechanism shown in Figure 1.2.12 is given in Table 1.2.4. 
There are seven joints of class 5 (cs = 7) in the system: 

• at A there is one rotational joint between link 0 and link 1; 
• at 5 there is one rotational joint between link 1 and link 2; 
• at B there is one translational joint between link 2 and link 3; 
• at C there is one rotational joint between link 0 and link 3; 
• at D there is one rotational joint between link 3 and link 4; 
• at D there is one translational joint between link 4 and link 5; 
• at A there is one rotational joint between link 5 and link 0. 

The number of moving links is five (n = 5). The number of DOF for this mechanism 
is given by 

M = 3n-2c5-C4 = 3(5) - 2(7) = 1, 

and this mechanism has one driver link. 
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Mechanisms of family f = 4 
The number of DOF for mechanisms of family/ = 4 is given by 

5 

M = 2n-^(j -4)cj = 2n-cs. 
7=5 

For the mechanism shown in Figure 1.2.15 the mobility table is given in Table 1.2.5. 
There are three translational joints of class 5 {cs = 3) in the system: 

• dXB there is one translational joint between link 0 and link 1; 
• at C there is one translational joint between link 1 and link 2; 
• at D there is one translational joint between link 2 and link 0. 

The number of DOF for this mechanism with two moving links {n — 2) is given by 

M = 2 « - C 5 = 2(2) - ( 3 ) = 1 . 

KV 

A\_ 
y 

Schematic 
representation 

^z 

FIGURE 1.2.15 Spatial mechanism of family f= 4. 

TABLE L2.5 Mobility Table for the Mechanism Shown in 
Figure 1.2.15 

Link 

0 
1 
2 

Tx 

No 
No 
Yes 

Ty 

No 
Yes 
No 

Tz 

No 
No 
No 

No 

Rx 

No 
No 
No 

No 

Ry 

No 
No 
No 

No 

Rz 

No 
No 
No 

No 

For all links T̂  = No & R̂  = No & % = No & R̂  = No = 1 ^ / = 4. 
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(a) (b) 

FIGURE 1.2.16 Spatial mechanism of family f = 5: (a) driver link with rotational motion, and 
(b) driver link with translational motion. 

Mechanisms of family f = 5 
The number of DOF for mechanisms of family/ = 5 is equal with the number of moving 
links: 

M = n. 

The driver link with rotational motion [Fig. 1.2.16(a)] and the driver link with translational 
motion [Fig. 1.2.16(b)] are in the/ = 5 category. 

1.2.4 Planar Mechanisms 
For the special case of planar mechanisms (f = 3) the Eq. (1.2.1) has the form, 

M = 3n-2c5-C4, (1.2.2) 

where n is the number of moving links, cs is the number of full joints (one DOF), and C4 
is the number of half joints (two DOF). 

There is a special significance to kinematic chains which do not change their DOF after 
being connected to an arbitrary system. Kinematic chains defined in this way are called 
system groups or fundamental kinematic chains. Connecting them to or disconnecting them 
from a given system enables given systems to be modified or structurally new systems 
to be created while maintaining the original DOF. The term system group has been intro-
duced for the classification of planar mechanisms used by Assur and further investigated 
by Artobolevski. Limited to planar systems from Eq. (1.2.2), it can be obtained 

3 n - 2 c 5 = 0 , (1.2.3) 

according to which the number of system group links n is always even. In Eq. (1.2.3) there 
are no two DOF joints because a half joint, C4, can be substituted with two full joints and 
an extra link (see Section 1.2.15). 
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1.2.5 Dyads 
The simplest fundamental kinematic chain is the binary group with two links (n = 2) and 
three full joints (cs = 3). The binary group is also called a dyad. The sets of links shown in 
Figure 1.2.17 are dyads and one can distinguish the following classical types: 

• rotation rotation rotation (dyad RRR) or dyad of type one DIO [Fig. 1.2.17(a)]; 
• rotation rotation translation (dyad RRT) or dyad of type two D20 [Fig. 1.2.17(b)]; 
• rotation translation rotation (dyad RTR) or dyad of type three D30 Fig. 1.2.17(c)]; 
• translation rotation translation (dyad TRT) or dyad of type four D40 [Fig. 1.2.17(d)]; 
• translation translation rotation (dyad TTR) or dyad of type five D50 [Fig. 1.2.17(e)]. 

(a) (b) 

RTT 

(e) 

FIGURE 1.2.17 Types of dyads: (a) RRR, (b) RRT, (c) RTR, (d) TRT, and (e) TTR. 
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D20 D21 

B 

D22 

FIGURE 1.2.18 RRT dyads. 

D23 

The advantage of the group classification of a system lies in its simplicity. The solution 
of the whole system can then be obtained by composing partial solutions. Different versions 
of dyads exist for each classical dyad [40, 41, 42]. 

For the classical dyad RRT or D20 there are three more different versions, D21, D22, 
D23, as shown in Figure 1.2.18. For the classical dyad RTR or D30 there is one different 
version, D31, as shown in Figure 1.2.19. Figure 1.2.20 shows three different versions, 
D41, D42, D43, of the dyad TRT or D40. Figure 1.2.21 shows seven different versions, 
D51,D52,... ,D57, of the dyad TTR or D50. In this way 19 dyads, Dij, can be obtained 
where / represents the type and 7 represents the version. 

FIGURE 1.2.19 RTR dyads. 
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^40 DAI 

L>42 

FIGURE 1.2.20 TRT dyads. 

D43 

1.2.6 Mechanisms with One Dyad 
One can connect a dyad to a driver link to create a mechanism with one DOR The driver hnk 
1 (link AB) can have rotational (R) or translational motion (T). The driver link is connected 
to a first dyad comprised of the links 2 and 3, and with three joints at B, C, and D. The 
driver link 1 and the last Hnk 3 are connected to the ground 0. 

The closed chain R-D42 represents a mechanism with a driver link 1, with rotational 
motion (R) and one dyad D42 [Fig. L2.22(a)]. Figure L2.22(b) shows a mechanism R-D20 
where the dyad D20 has the length I3 = 0. 

Figure 1.2.23 shows a mechanism T-D54. The mechanism has one contour with one 
rotational joint at A and three translational joints at A, 5, and C. The angles a and p are 
constant angles. From the relations 

a = (/)-{• p = constant and P = constant, 

it results in the angle 0 = constant. With 0 = constant the link 2 has a translational motion 
in plane. The mechanism has the family/ = 4 and it is a degenerate mechanism. In general, 
the planar mechanisms (Fig. 1.2.23) have the family/ = 3 with two translations and one 
rotation. The rotational joint at A is superfluous. For a closed chain to function as a family 
/ = 3 mechanism there must be at least two rotational joints for each contour. 
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B 

D50 D51 

D52 D53 

D54 D55 

D56 

FIGURE 1.2.21 TTR dyads. 

D57 

i.2.7 Mechanisms with Two Dyads 
There are also mechanisms with one driver link and two dyads. The second dyad is 
comprised of the links 4 and 5 and three joints at B', C', and D'. 
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^'- 'Cj 

R D42 

(a) 

V 

^̂  
"̂  

c,& 
\> 
-̂  

3 

\ 
////// 

J 0 

C \ 

iD 3 

R-D20 R D20 

(b) 

FIGURE 1.2.22 PlandiT mechanisms: (a) R-D42 and (b) R-D20. 

Figure 1.2.24 represents the ways the second dyad can be connected to the initial mecha-
nism with one driver and one dyad. For simphfication only rotational joints are considered 
for the following mechanism examples, R-DIO-DIO. 

Figure 1.2.24(a) shows the first link of the second dyad, link 4, connected to the driver 
link 1, and the second link of the second dyad, link 5, connected to ground 0. The 
symbolization of the dyad connection is 1 + 0. 

Figure 1.2.24(b) shows the first link of the second dyad, link 4, connected to the driver 
link 1, and the second link of the second dyad, link 5, connected to link 2 of the first dyad. 
The symbolization of the dyad connection is 1 + 2. 

Figure 1.2.24(c) shows the first link of the second dyad, link 4, connected to link 2 of 
the first dyad, and the second link of the second dyad, link 5, connected to ground 0. The 
symbolization of the dyad connection is 2 + 0. 
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a = (f)-\-f3 = consteLiit ^ /? = constant ==> 0 = constant 

T - D 5 4 

FIGURE L2.23 Planar T-D54 mechanism with f=4. 

Figure 1.2.24(d) shows the first link of the second dyad, link 4, connected to link 2 of 
the first dyad, and the second link of the second dyad, link 5, connected to link 3 of the first 
dyad. The symbolization of the dyad connection is 2 + 3. 

Figure 1.2.24(e) shows the first link of the second dyad, link 4, connected to link 3 of 
the first dyad, and the second link of the second dyad, link 5, connected to ground 0. The 
symbolization of the dyad connection is 3 + 0. 

Figure 1.2.24(f) shows the first link of the second dyad, link 4, connected to the driver 
link 1, and the second link of the second dyad, link 5, connected to link 3 of the first dyad. 
The symbolization of the dyad connection is 1 + 3. 

Figure 1.2.25 represents mechanisms with two dyads with rotational and translational 
joints and their symbolization. Figure 1.2.25(a) shows a rotational driver link, R, connected 
to a first dyad, D21. The first link 4 of the second dyad D30 is connected to the driver link 
1 at B\ and the second link 5 of the second dyad D30 is connected to link 3 at D^ The 
symbolization of the mechanism is R-D21-D30-1+3. 

Figure 1.2.25(b) shows a rotational driver link, R, connected to a first dyad, D43. The 
first link 4 of the second dyad D50 is connected to link 2aiB\ and the second link 5 of the 
second dyad D30 is connected to ground 0 at D^ The symbolization of the mechanism is 
R-D43-D50-2+0. 

Figure 1.2.25(c) shows a mechanism R-D31-Z)20-3 + 0. The driver link 1, with rota-
tional motion is connected to the first dyad D31. The first link 4 of the second dyad D20 is 
connected to the link 3, and the second link 5 is connected to the ground 0. 

Figure 1.2.26 shows a mechanism T-D21-Z)50-2 + 0. There are two contours: 0-1-2-
3-0 and 0-1-2^-5-0 . The first contour, 0-1-2-3-0, has translational joints at A and B 
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R-DIO-DIO 
D10c\ 2 C 

FIGURE 1.2.24 Mechanism with two dyads: R-DW-D10. 

and rotational joints at C and D. The family of this contour is// = 3. The second contour, 
0-1-2-^-5-0, has translational joints at A, B, C^ and D^ and one rotational joint at B\ 

• The angle </> = constant and the angle Xi = constant. Then the angle 
a = (/) — Xi = constant. 

• The angle X2 = constant. Then the angle y = a -]- X2 = constant. 
• The angle 0 = constant and the angle X3 = constant. Then the angle 

8 = 0 -\- X3 = constant. 

With y = constant and 8 = constant, the links 2 and 4 have a translational motion 
in plane. The second contour has the family /// = 4 and the mechanism is a degenerate 
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R - L>43 - L>50 - 2 + 0 

(b) 

B,C 

R - D31 - D20 - 3 + 0 

(c) 

FIGURE 1.2.25 Mechanisms with two dyads: (a) R-D21-D30-1+3, (b) R-D43-D50-2+0, and 
(c) R-D31-D20-3+0. 
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T - D21 - D50 -2 + 0 

FIGURE 1.2.26 T-D21-D50-2+0 mechanism. 

mechanism. The closed contours that do not have a minimum of two rotational joints are 
contours of family/ = 4. 

To calculate the number of degrees of freedom for kinematic chains with different 
families the following formula is introduced [1]: 

M = (6-fa)n- J2 (J-fa)cj, 

where/^ is the apparent family. 
For the mechanism in Figure 1.2.26 with two contours, the apparent family is 

(1.2.4) 

/ . = 
/ / + / / / 3 + 4 7 

2 2 2 ' 

and the number of degrees of freedom of the degenerate mechanism is 

M = (6 -fa)n- (5 -fa)c5 = (̂ 6 - ^"j 4 - (̂ 5 - ^"j 6 = 1. (1.2.5) 

There are /i = 4 moving links (link 2 and link 4 form one moving link) and cs = 6. 

76 KINEMATIC CHAINS AND MACHINE COMPONENTS DESIGN 



1.2.8 Mechanisms with Three Dyads 
There are also mechanisms with one driver Hnk and three dyads. The second dyad is 
comprised of the Hnks 4 and 5 and three joints at B', C, and D'. The third dyad has the 
Hnks 6 and 7 and three joints at B'\ C", and D", 

Figure 1.2.27 represents some ways of connection for the the third dyad. For simpHfica-
tion, only rotational joints are considered, i.e., the mechanism R — Z)10 — DIO — DlOis 
presented. 

Figure 1.2.27(a) shows the first link of the second dyad, link 4, connected to the driver 
link 1, and the second link of the second dyad, link 5, connected to link 2. The connection 
symbolization for the second dyad is 1+2. The first link of the third dyad, link 6, is 
connected to link 4 and the second link of the third dyad, link 7, is connected to link 3. The 
connection symbolization for the third dyad is 4 + 3. The connection symbolization for the 
mechanism is 1+2—4+3. 

Figure 1.2.27(b) represents the first link of the second dyad, link 4, connected to the 
driver link 1, and the second link of the second dyad, link 5, connected to link 2. The 
connection symbolization for the second dyad is 1 + 2. The first link of the third dyad, link 

R - DIO - DIO - DIO 

1 + 2 - 4 + 3 

(a) 
1 + 2 - 4 + 0 

(b) 

2 + 0 - 2 + 4 

(c) 
2 + 0 - 2 + 5 

(d) 

FIGURE 1.2.27 Mechanism with three dyads: R-D10-D10-D10. 
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6, is connected to link 4 and the second link of the third dyad, link 7, is connected to ground 
0. The connection symbolization for the third dyad is 4+0. The connection symbolization 
for the mechanism is 1+2—4+0. 

Figure 1.2.27(c) shows the first link of the second dyad, link 4, connected to the driver 
link 2, and the second link of the second dyad, Hnk 5, connected to ground 0. The connection 
symbolization for the second dyad is 2+0. The first link of the third dyad, link 6, is connected 
to link 2 and the second link of the third dyad, link 7, is connected to link 4. The connection 
symbolization for the third dyad is 2+4. The connection symbolization for the mechanism 
is 2+0-2+4. 

Figure L2.27(d) shows the first link of the second dyad, link 4, connected to the driver 
link 2, and the second link of the second dyad, link 5, connected to ground 0. The connection 
symbolization for the second dyad is 2+0. The first link of the third dyad, link 6, is connected 
to link 2 and the second link of the third dyad, link 7, is connected to link 5. The connection 
symbolization for the third dyad is 2+5. The connection symbolization for the mechanism 
is 2+0-2+5. 

Mechanisms with three dyads with rotational and translational joints and their sym-
bolization are shown in Figure 1.2.28. Figure 1.2.28(a) shows a rotational driver Hnk, R, 
connected to a first dyad, D42. The first link 4 of the second dyad D30 is connected to 
the driver link 1, and the second link 5 of the second dyad D30 is connected to link 2. 
The first link 6 of the third dyad D21 is connected to link 4, and the second link 7 of 
the second dyad D21 is connected to ground 0. The symbolization of the mechanism is 
R-D42-Z)30-D21-l+2-4+0. 

Figure 1.2.28(b) presents a mechanism T-Z)22-Z)30-D20-1+2^+5. The slider driver 
link, T, is connected to a first dyad, D22. The first link 4 of the second dyad D30 is connected 
to the driver link 1, and the second link 5 is connected to link 2. The first link 6 of the third 
dyad D20 is connected to Hnk 4, and the second link 7 is connected to link 5. 

1.2.9 Independent Contours 
A contour is a configuration described by a polygon consisting of links connected by joints. 
A contour with at least one link that is not included in any other contour of the chain is 
called an independent contour. The number of independent contours, Â , of a kinematic 
chain can be computed as 

N = c-n, (1.2.6) 

where c is the number of joints, and n is the number of moving links. 
Planar kinematic chains are presented in Figure 1.2.29. The kinematic chain shown 

in Figure 1.2.29(a) has two moving links, 1 and 2 (n = 2), three joints (c = 3), and 
one independent contour (N = c — n = 3 — 2 = 1). This kinematic chain is a dyad. 
In Figure 1.2.29(b), a new kinematic chain is obtained by connecting the free joint of 
link 1 to the ground (link 0). In this case, the number of independent contours is also 
N = c — n = 3 — 2=1. The kinematic chain shown in Figure 1.2.29(c) has three 
moving links, 1, 2, and 3 (n = 3), four joints (c = 4), and one independent contour 
(N=:c — n = 4 — 3 = 1). A closed chain with three moving links, 1, 2, and 3 (n = 3), and 
one fixed link 0, connected by four joints (c = 4) is shown in Figure 1.2.29(d). This is a 
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'DA2 

C ^ - ' 

R - L>42 - D30 - L>21 - 1 -f 2 - 4 + 0 

(a) 

A,B,B' 

T - D22 - L>30 - L>20 - 1 + 2 - 4 + 5 

(b) 

FIGURE 1.2.28 (a) R-D42-D30-D21-1+2-4+0 mechanism and (b) T-D22-D30-D20-1+2-4+5 
mechanism. 

four-bar mechanism. In order to find the number of independent contours, only the moving 
Hnks are considered. Thus, there is one independent contour (N = c — n = 4 — 3 = 1). The 
kinematic chain presented in Figure 1.2.29(e) has four moving Hnks, 1, 2, 3, and 4(n = 4), 
and six joints (c = 6). There are three contours: 1-2-3,1-2-4, and 3-2-4. Only two contours 
are independent contours (N = 6 ~ 4 = 2). 

Spatial kinematic chains are depicted in Figure 1.2.30. The kinematic chain shown in 
Figure 1.2.30(a) has five links, 1, 2, 3, 4, and 5 (n = 5), six joints (c = 6), and one inde-
pendent contour (N = c — n = 6 - 5 = I). For the spatial chain shown in Figure 1.2.30(b), 
there are six links, 1, 2, 3, 4, 5, and 6 (n = 6), eight joints (c = 8), and three contours. 
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(a) 
(b) 

(c) (d) 

FIGURE 1.2.29 Planar kinematic chains. 

(e) 

1-2-3-4-5, 1-2-3-6, and 5-4-3-6. In this case, two of the contours are independent contours 
(N = c-n = S-6 = 2). 

1.2.10 Spatial System Groups 
The system groups for spatial mechanisms can be determined by analogy to the system 
groups for the planar mechanisms. The system groups have the degree of freedom M = 0. 
All possible system groups can be determined for each family of chains [40, 41, 43]. 
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(a) 

(b) 

FIGURE 1.2.30 Spatial kinematic chains. 

For the family/ = 0, for system groups, from Eqs. (1.2.1) and (1.2.6) the mobihty is 

M = 6n-5c5- 4c4 - 3c3 - 2c2 - ci = 0, (1.2.7) 

and the number of moving Hnks is 

n = c — N. 

From Eqs. (1.2.7) and (1.2.8) the number of joints of class 5 is 

c^ = 6N — 5ci — 4c2 — 3c3 — 2c4, 

(1.2.8) 

(1.2.9) 
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TABLE 1.2.6 The Number of Configurations of System Groups with One, Two and Three 
Independent Contours (N = 1, 2, and 3) 

w 

N= 1 

N = 2 
N = 3 

0 

5 
5 
5 

1 

18 
30 
31 

2 

22 
62 
100 

3 

23 
76 
158 

4 

23 
82 
190 

5 

23 
84 
205 

6 

23 
85 
214 

7 

23 
85 
218 

8 

23 
85 
218 

9 

23 
85 
220 

10 

23 
85 
220 

20 

23 
85 
220 

30 

23 
85 
220 

4(} 

23 
85 
220 

and the number of moving links is 

n = -N-\-ci+C2 + C3+C4 + C5. (1.2.10) 

For the family/ = 1, ci = 0 it results: 

C5 = 5N — 4c2 - 3c3 - 2c4, n = -A/̂  + C2 + C3 + C4 + C5. (1.2.11) 

For the family/ = 2, ci = 0, C2 = 0 it results: 

C5 = 4Â  - 3c3 - 2c4, « = -A^ + CB + C4 + C5. (1.2.12) 

For the family/ = 3,ci = 0, C2 = 0, C3 = 0 it results: 

C5 = 3Â  - 2c4, n = -N + C4 + C5. (1.2.13) 

For the family/ = 4, ci = 0, C2 = 0, C3 = 0, C4 = 0 it results: 

C5=2N, n = -N + C5. (1.2.14) 

Using the above conditions, all the possible solutions for spatial system groups can be 
determined. The number of joints, ci, C2, C3, and C4, are cycled from 0 to w, where w is 
a positive integer for system groups with one or more independent contours (N > 1). The 
number of joints, C5, and the number of moving links, n, are computed for each system 
group. An acceptable solution has to verify the conditions n > 0 and C5 > 0. In Table 1.2.6, 
the number of possible solutions is presented for some values of w between 0 and 40 and 
for kinematic chains with one contour (N = 1), two contours (N = 2), and three contours 
(N = 3). For N = I and w > 3, there are 23 possible solutions. For N = 2, there are 85 
solutions for w > 6, and for A'̂  = 3 there are 220 solutions for w > 9. 

1.2.11 Spatial System Groups with One Independent Contour 
The combinations of spatial system groups with one independent contour (Â  = 1) are 
presented in Table 1.2.7. The number of joints, ci, C2, C3, and C4, are cycled from 0 to 3, 
and the number of joints, C5, and the number of moving links, n, are computed. System 
groups from Table 1.2.7 are exemplified next for each of the families/ = 0, 1, 2, 3, and 4. 
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TABLE L2.7 The Configurations of System Groups with One 
Independent Contour (N = 1) 

Index f ci C2 C3 CA C5 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

2 
2 
2 
2 
3 
3 
4 

0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
1 
1 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
1 
1 
2 
0 
0 
0 
0 
0 
0 
1 
1 
0 
0 
0 
0 
1 
0 
0 
0 

0 
1 
2 
3 
0 
1 
0 
0 
1 
0 
0 
1 
2 
0 
1 
0 
0 
1 
2 
0 
0 
1 
0 

6 
4 
2 
0 
3 
1 
0 
2 
0 
1 
5 
3 
1 
2 
0 
1 
4 
2 
0 
1 
3 
1 
2 

5 
4 
3 
2 
3 
2 
1 
2 
1 
1 
4 
3 
2 
2 
1 
1 
3 
2 
1 
1 
2 
1 
1 

For the family/ = 0, four system groups are illustrated in Figure 1.2.31. The values cs 
and n are computed from Eqs. (1.2.9) and (1.2.10), respectively. A spatial system group with 
no joints of class 1, 2, 3, and 4 (ci = C2 = c^, = C4 = 0) is shown in Figure 1.2.31(a). The 
system group has sixjoints of class 5 (c5 = 6(1) = 6), and five moving links (w = —1+6 = 
5). A system group with one joint of class 4 (c4 = 1) and no joints of class 1, 2, and 3 
(c\ = C2 = C3 = 0) is shown in Figure 1.2.31(b). The system group has four joints of class 5 
(c5 = 6(1) — 2(1) = 4), and four moving links (n = —1 + 1 + 4 = 4). A system group with 
two joints of class 4 (c4 = 2) and no joints of class 1, 2, and 3 (ci = C2 = C3 = 0) is shown 
in Figure 1.2.31(c). The system group has two joints of class 5 (C5 = 6(1) — 2(2) = 2), 
and three moving links (n = — 1 + 2 + 2 = 3). A system group with one joint of class 3 
(C3 = 1) and no joints of class 1, 2, and 4 (c\ = 02 = C4 = 0) is shown in Figure 1.2.31(d). 
The system group has three joints of class 5 (05 = 6(1) — 3(1) = 3), and three moving links 
(n = - l + l + 3 = 3). 

The spatial mechanism presented in Figure 1.2.32 is built from the system group shown 
in Figure 1.2.31(b). The mechanism has one DOF {M = 6n — 5c5 — 4c4 — 3c3 — 2c2 — ci = 
6(5) - 5(5) - 4(1) = 1). The driver link is link 5. 

For the family/ = 1, three systems groups are depicted in Figure 1.2.33. The values C5 
and n are computed from Eq. (1.2.11). The missing translations and rotations with respect 
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FIGURE 1.2.31 System groups with one independent contour (N = 1) of the family f= 0. 
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FIGURE L2.32 Spatial mechanism with one independent contour and a system group of the family 
f=0. 

to the axis of the reference frame xOyz are specified further on for each system group. For 
a Cartesian reference frame xOyz the rotations about the axis are represented by R and the 
translations along the axis are represented by T. 

A spatial system group with no joints of class 1, 2, 3, and 4 {c\ = C2 = ^3 = C4 = 0) 
is shown in Figure 1.2.33(a). The system group has five joints of class 5 (C5 = 5(1) = 5), 
and four moving links (w = — 1 + 5 = 4). There are no rotations Rx (rotation about x-
axis) for the links of the system group. A system group with no joints of class 1, 2, and 
3 {c\ = C2 = C3 = 0) and one joint of class 4 (C4 = 1) is shown in Figure 1.2.33(b). 
The system group has three joints of class 5 (C5 = 5(1) — 2(1) = 3), and three moving 
links (n = —1 + 1 + 3 = 3). There are no translations T^ (translation along z-axis) for the 
links. A system group with one joint of class 3 (C3 = 1) and no joints of class 1, 2, and 4 
{c\ = C2 = C4 = 0) is shown in Figure 1.2.33(c). The system group has two joints of class 5 
(c5 = 5(1) — 3(1) = 2), and two moving links (n = — 1 + 3 = 2). There are no translations 
Ty for the links. 

For the family/ = 2, four system groups are presented in Figure 1.2.34. The values C5 
and n are computed from Eq. (1.2.12). Two spatial system groups with no joints of class 
1, 2, 3, and 4 {c\ = C2 = C3 = C4 = 0) are shown in Figures 1.2.34(a) and 1.2.34(b). 
The system groups have four joints of class 5 (C5 = 4(1) = 4), and three moving links 
(« = — 1 + 4 = 3). For the system group in Figure 1.2.34(a), there are no translations Tx 
and no rotations Ry for the links. For the system group in Figure 1.2.34(b), there are no 
translations Ty and no rotations Rx for the links. A system group with no joints of class 1, 2, 
and 3 (ci = C2 = C3 = 0) and one joint of class 4 (c4 = 1) is shown in Figure 1.2.34(c). 
The system group has two joints of class 5 (C5 = 4(1) — 2(1) = 2), and two moving 
links (n = —1 + 1 + 2 = 2). There are no translations T^ and no rotations Ry for the 
links. A system group with one joint of class 3 (C3 = 1) and no joints of class 1, 2, and 4 
(ci = C2 = C4 = 0) is shown in Figure 1.2.34(d). The system group has one joint of class 
5 (c5 = 4(1) — 3(1) = 1), and one moving link (n = —1 + 1 + 1 = 1). There are no 
translations Tx and Tz for the links. 
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FIGURE 1.2.33 System groups with one independent contour (N = 1) of the family f = 1. 
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FIGURE 1.2.34 System groups with one independent contour (N = 1) of the family f= 2. 
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FIGURE L2.35 Spatial mechanism with one independent contour and a system group of the family 
f=2. 

The spatial mechanism presented in Figure 1.2.35 is derived from the system group shown 
in Figure 1.2.33(b). The mechanism has one degree of freedom (M = 4n — 3c5 — 2c4 — cs = 
4(4) - 3(5) = 1). The Unk 4 is the driver hnk. 

For the family/ = 3, three system groups are presented in Figure 1.2.36. The values cs 
and n are computed from Eq. (1.2.13). Three system groups with no joints of class 1, 2, 3, 
and 4 (ci = C2 = C3 = C4 = 0) are shown in Figure 1.2.36. The system groups have three 
joints of class 5 (05 = 3(1) = 3), and two moving links (n = — 1 + 3 = 2). There are 
no translation Tx and no rotations Ry and R^ for the system group in Figure 1.2.36(a). For 
the system group in Figure 1.2.36(b) there are no translation Tx and no rotations Rx and 
Rz. There are no translation T^ and no rotations Rx and Ry for the system group shown in 
Figure 1.2.36(c). 

For the family/ = 4, two planar system groups with no joints of class 1, 2, 3, and 4 
(ci = C2 = C3 = C4 = 0) are shown in Figure 1.2.37. The values C5 and n are computed 
from Eq. (1.2.14) for each system group; there are two joints of class 5 (cs = 2(1) = 2), 
and one moving link (n = — 1 + 2 = 1 ) . Also, there are two planar translations for the links 
and thus the family of the system i s / = 6 — 2 = 4. 

L2-12 Spatial System Groups with Two Independent 
Contours 

There are also spatial system groups with two independent contours (N = 2). The number 
of joints, ci, C2, C3, and C4, are cycled, and the number of joints, C5, and the number of 
moving links, n, are computed. Examples of system groups with Â  = 2 are described next 
for each of the families/ = 1, 2, 3, and 4. 

For the family/ = 1, a system group is depicted in Figure 1.2.38. The system group has 
no joints of class 1, 2, 3, and 4 (ci = 02 = C3 = 04 = 0). There are ten joints of class 5 
(C5 = 5(2) = 10), and eight moving links (n = —2+ 10 = 8). There is no translation Tx 
for the links. 
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FIGURE 1.2.36 System groups with one independent contour (N = 1) of the family f= 3. 
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(a) 

(b) 

FIGURE 1.2.37 System groups with one independent contour (N = 1) of the family f= 4. 

^Rz 

T,^0 

T 

Ry 

Rx 

FIGURE 1.2.38 System group with two independent contours (N = 2) of the family f= I. 

For the family/ = 2, two system groups are illustrated in Figure 1.2.39. A system group 
with no joints of class 1, 2 and 3 (ci = C2 = 03 = 0) and one joint of class 4 (04 = 1) is 
shown in Figure 1.2.39(a). The system group has six joints of class 5 (C5 = 4(2) — 2(1) = 6), 
and five moving links (« = —2 + 1 + 6 = 5). There are no translation Tx and no rotation 
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FIGURE 1.2.39 System groups with two independent contours (N = 2) of the family f = 2. 

Rx for the links. A system group with no joints of class 1 and 2 (ci = C2 = 0), one joint of 
class 3 (c3 = 1), and one joint of class 4 (c4 = 1) is shown in Figure 1.2.39(b). The system 
group has three joints of class 5 (cs = 4(2) — 3(1) — 2(1) = 3), and three moving links 
(n = —2 + 1 + 1 + 3 = 3). There are no translations Tx and Ty for the links. 

For the family/ = 3, three system groups are presented in Figure 1.2.40. A system 
group with no joints of class 1, 2, 3, and 4 (ci = C2 = C3 = C4 = 0) is shown in 
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FIGURE L2.40 System groups with two independent contours (N = 2) of the family f= 3. 

Figure L2.40(a). The system group has six joints of class 5 (cs = 3(2) = 6), and four 
moving Hnks (n = —2 + 6 = 4). There are no translations Tx, Ty, and T̂  for the links. 
A spatial system group and a planar system group with no joints of class 1, 2, and 3 
(c\ = C2 = C3 = 0) and one joint of class 4 (c4 = 1) are shown in Figures 1.2.40(b) and 
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FIGURE 1.2.41 System group with two independent contours (N = 2) ofttie family f= 4. 

FIGURE 1.2.42 Spatial mechanism with two independent contours and a system group of the 
family f=0. 

1.2.40(c), respectively. The system groups have four joints of class 5 (c5 = 3(2) —2(1) = 4), 
and three moving links (n = — 2 + 1 + 4 = 3). There are no translations Ty, T^ and no 
rotations R^ for the spatial system in Figure 1.2.40(b). 

For the family/ = 4, a planar system group with no joints of class 1, 2, 3, and 4 
(ci = C2 = C3 = C4 = 0) is shown in Figure 1.2.41. The system group has four joints of 
class 5 (c5 = 2(2) = 4), and two moving links (« = —2 + 4 = 2). 

The spatial mechanism shown in Figure 1.2.42 contains a system group of the family 
/ = 0 that has ci = C2 = 0, 03 = I, C4 = 2, C5 = 6(2) - 3(1) - 2(2) = 5, and 
n = — 2 + 1 + 2 + 5 = 6. The mechanism has two degrees of freedom M = 6n — Scs — 
4c4 - 3c3 - 2c2 -ci= 6(8) - 5(7) - 4(2) - 3(1) = 2. The links 7 and 8 are driver links. 
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1.2.13 Spatial System Groups with Three Independent 
Contours 

There are also spatial system groups with three independent contours (Â  = 3). The number 
of joints, ci, C2, C3, and C4, are cycled and the number of joints, C5, and the number of 
moving links, n, are computed. System groups with A/̂  = 3 are exemplified for each of the 
families/ = 2, 3, and 4. 

For the family/ = 2, a spatial system group with no joints of class 1 and 2 (ci = C2 = 0), 
one joint of class 3 (03 = 1), and one joint of class 4 (04 = 1) is shown in Figure 1.2.43. 
The system group has seven joints of class 5 (C5 = 4(3) — 3(1) — 2(1) = 7), and six moving 
links (n = —3 + 1 + 1 + 7 = 6). There are no translations Tx and Tz for the links. 

For the family/ = 3, a planar system group with no joints of class 1, 2, and 3 (ci = C2 = 
C3 = 0) and one joint of class 4 (C4 = 1) is depicted in Figure 1.2.44. The system group has 
seven joints of class 5 (C5 = 3(3) — 2(1) = 7), and five moving links (n = —3 + 1 + 7 = 5). 

For the family/ = 4, a planar system group with no joints of class 1, 2, 3, and 4 
(ci = C2 = C3 = C4 = 0) is shown in Figure 1.2.45. The system group has six joints of 
class 5 (c5 = 2(3) = 6), and three moving links (n = —3 + 6 = 3). 

The spatial mechanism presented in Figure 1.2.46 contains a system group of the family 
/ = 0 that has a = C2 = 0, C3 == 3, C4 = 4, C5 = 6(3) - 3(3) - 2(4) = 1, and 
n = —3 + 3 + 4 + 1 = 5 . The mechanism has three degrees of freedom M = 6n — 5cs — 
4c4 - 3c3 - 2c2 -ci= 6(8) - 5(4) - 4(4) - 3(3) = 3. The links 6,7, and 8 are driver links. 

The method [40, 41] presented is based essentially on system group formation using 
the number of independent contours and joints as inputs. The number of joints of different 
classes are cycled for different families and several structures of spatial system groups 
with one, two, or more independent contours are obtained. For a given family, different 
configurations of system groups with the same number of independent contours can be 
obtained. Spatial mechanisms can be structured based on spatial system groups. 

no T,, T, 

^Rz 

Ry 

FIGURE 1.2.43 System group with three independent contours (N = 3) of the family f= 2. 
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FIGURE 1.2.44 System group with three independent contours (N = 3) of the family f= 3. 

FIGURE 1.2.45 System group with three independent contours (N = 3) of the family f= 4. 

^ 

^ — i 

M^ 

FIGURE 1.2.46 Spatial mechanism with three independent contours and a system group of the 
family f=0. 
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1.2.14 Decomposition of Kinematic Chains 
A planar mechanism is shown in Figure 1.2.47(a). This kinematic chain can be decomposed 
into system groups and driver Hnks. The mobihty of the mechanism will be determined 
first. The number of DOF for this mechanism is given by M = 3n — 2c5~C4 = 3n — 2c5. 

link 
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5 

connected to representation 
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FIGURE 1.2.47 Planar R-RRT-RTR mechanism. 

structural diagram 

(e) 
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The mechanism has five moving Hnks (n = 3). To find the number of cs a connectivity table 
will be used, Figure 1.2.47(b). The links are represented with bars (binary links) or triangles 
(ternary links). The one DOF joints (rotational joint or translation joint) are represented 
with a cross circle. The first column has the number of the current link, the second column 
shows the links connected to the current link, and the last column contains the graphical 
representation. The link 1 is connected to ground 0 at A and to link 2 at 5 [Fig. 1.2.47(b)]. 
Next, link 2 is connected to link 1 at B, link 3 at C, and link 4 at B. Link 2 is a ternary link 
because it is connected to three links. At B there is a multiple joint, two rotational joints, one 
joint between link 1 and link 2, and one joint between link 2 and link 4. Link 3 is connected 
to ground 0 at C and to link 2 at C. At C there is a joint between link 3 and link 0 and a joint 
between link 3 and link 2. Link 4 is connected to link 2 at 5 and to link 5 at D. The last link, 
5, is connected to link 4 at D and to ground 0 at D. In this way the table in Figure L2.47(b) is 
obtained. The structural diagram is obtained using the graphical representation of the table 
connecting all the links Figure L2.47(c). The cs joints (with cross circles), all the links, and 
the way the links are connected are all represented on the structural diagram. The number 
of one DOF joints is given by the number of cross circles. From Figure L2.47(c) it results 
C5 = 7. The number of DOF for the mechanism is M = 3 (5) — 2 (7) = L If M = 1, there 
is just one driver link. One can choose link 1 as the driver link of the mechanism. Once 
the driver link is taken away from the mechanism the remaining kinematic chain (links 2, 
3, 4, 5) has the mobility equal to zero. The dyad is the simplest system group and has two 
links and three joints. On the structural diagram one can notice that links 2 and 3 represent 
a dyad and links 4 and 5 represent another dyad. The mechanism has been decomposed into 
a driver link (link 1) and two dyads (links 2 and 3, and links 4 and 5). 

The connectivity table and the structural diagram are not unique for this mechanism. The 
new connectivity table can be obtained in Figure 1.2.47(d). Link 1 is connected to ground 
0 at A and to link 4 at B. Link 2 is connected to link 3 at C and to link 4 at B. Link 3 is 
connected to link 2 at C and to ground 0 at C The link 4 is connected to link 1 at B, to link 
2 at B, and to link 5 at D. This time link 4 is the ternary link. Link 5 is connected to link 4 
at D and to ground 0 at D. The structural diagram is shown in Figure 1.2.47(e). Using this 
structural diagram the mechanism can be decomposed into a driver Unk (link 1) and two 
dyads (links 2 and 3, and links 4 and 5). 

If the driver link is link 1, the mechanism has the same structure no matter what structural 
diagram [Fig. 1.2.47(c) or Fig. 1.2.47(e)] is used. 

Next, the driver link with rotational motion (R) and the dyads are represented as shown 
in Figure L2.48(a). The first dyad (BCC) has the length between 2 and 3 equal to zero, 
l(j(^ = 0. The second dyad (BDD) has the length between 5 and 0 equal to zero, IOD = 0. 
Figure 1.2.48(b) shows the dyads with the lengths Ice and IDD different than zero. Using 
Figure L2.48(b), the first dyad (BCC) has a rotational joint at 5(R), a rotational joint at C(R), 
and a translational joint at C(T). The first dyad (BCC) is a rotation rotation translation 
dyad (dyad RRT). Using Figure 1.2.48(b), the second dyad (BDD) has a rotational joint 
at B(R), a translational joint at D(T), and a rotational joint at D(R). The second dyad 
(BDD) is a rotation translation rotation dyad (dyad RTR). The mechanism is an R-RRT-RTR 
mechanism. 

The mechanism in Figure 1.2.49(a) is formed by a driver 1 with rotational motion 
R [Fig. 1.2.49(b)], a dyad RTR [Fig. 1.2.49(c)], and a dyad RTR [Fig. 1.2.49(d)]. The 
mechanism in Figure 1.2.49(a) is an R-RTR-RTR mechanism. The connectivity table is 
shown in Figure L2.50(a) and the structural diagram is represented in Figure 1.2.50(b). 
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FIGURE 1.2.48 Driver link and dyads for R-RRT-RTR mechanism. 

1.2.15 Linkage Transformation 
For planar mechanisms the half joints can be substituted, and in this way mechanisms 
with just full joints are obtained. The transformed mechanism has to be equivalent with the 
initial mechanism from a kinematical point of view. The number of DOF of the transformed 
mechanism has to be equal to the number of DOF of the initial mechanism. The relative 
motion of the links of the transformed mechanism has to be the same as the relative motion 
of the links of the initial mechanism. 

A half joint constrains the possibility of motion of the connected links in motion. A 
constraint equation can be written and the number of degrees of freedom of a half joint is 
M = — 1. To have the same number of degrees of freedom for a kinematic chain with n 
moving links and cs full jointS, the following equation is obtained 

M = 3n~2c5 = - 1 . (1.2.15) 
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FIGURE 1.2.49 Planar R-RTR-RTR mechanism. 

The relation between the number of full joints and the number of moving links is obtained 
from Eq. (1.2.15). 

C5 = 
3n + l 

(1.2.16) 

A half joint can be substituted with one link (n = 1) and two full joints (cs = 2). 
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FIGURE 1.2.50 Connectivity table and structural diagram for R-RTR-RTR mechanism. 

Figure 1.2.51 (a) shows a cam and follower mechanism. There is a half joint at the contact 
point C between the links 1 and 2. One can substitute the half joint at C with one link, link 
3, and two full at C and D as shown in Figure 1.2.51(b). To have the same relative motion, 
the length of link 3 has to be equal to the radius of curvature p of the cam at the contact 
point C. 

In this way the half joint at the contact point can be substituted for two full joints, C and 
D, and an extra link 3, between links 1 and 2. The mechanism still has one DOF, and the 
cam and follower system (0, 1, and 2) is in fact a four-bar mechanism (0, 1, 2, and 3) in 
another disguise. 

(a) (b) 

FIGURE 1.2.51 Transformation of cam and follower mechanism. 
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FIGURE L2.52 Transformation of two gears in contact. 

The half joint at the contact point of two gears in motion can be substituted for two full 
joints, A and B, and an extra link 3, between gears 1 and 2 (Fig. 1.2.52). The mechanism 
still has one DOF, and the two-gear system (0,1, and 2) [Fig. 1.2.52(a)] is in fact a four-bar 
mechanism (0, 1, 2, and 3) in another disguise [Fig. 1.2.52(b)]. The following relations can 
be written 

Oi02 = ^ (A^ i+A^2) , 

OiA = r\ COS0, 

O2B = r2 cos 0, 

AB=AP + PB= — ^ s m 0 + — ^ s m 0 = - (Â i + Â 2) sin</>, 

where m is the module, N is the number of teeth, r is the pitch radius, and </> is the pressure 
angle. Because m, Ni, N2, and 0 are constants, the links of the four-bar mechanism 
[Fig. 1.2.52(b)] are constant as well. 
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1.2.16 Problems 
1.2.1 Determine the number of degrees of freedom (DOF) of the planar eUpsograph 

mechanism in Figure 1.2.53. 

FIGURE L2.53 EUpsograph mechanism for Problem 1.2.1. 

1.2.2 Find the mobiUty of the planar mechanism represented in Figure 1.2.54. 

FIGURE 1.2.54 Planar mechanism for Problem 1.2.2. 
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1.2.3 Determine the family and the number of DOF for the mechanism depicted in 
Figure 1.2.55. 

X 

FIGURE 1.2.55 Mechanism for Problem 1.2.3. 

1.2 A Roller 2 of the mechanism in Figure 1.2.56 undergoes an independent rotation about 
its axis which does not influence the motion of link 3. The purpose of element 2 is to 
substitute the sliding friction with a rolling friction. From a kinematical point of 
view, roller 2 is a passive element. Find the number of DOF. 

FIGURE 1.2.56 Mechanism with cam for Problem 1.2.4. 
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1.2.5 Find the family and the number of DOF of the mechanism in Figure 1.2.57. 

Schematic representation 

O °^-' 
/ 

, / 

\V777^7!\ I 

iK 
Ik 

FIGURE L2.57 Mechanism for Problem 1.2.5. 
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1.2.6 Determine the number of DOF for the mechanism in Figure 1.2.58. 

FIGURE 1.2.58 Mechanism for Problem 1.2.6. 

1.2.7 Find the family, the number of DOF, and draw the structural diagram, and find the 
dyads for the mechanism shown in Figure 1.2.59. 

0 

^^^ 

FIGURE 1.2.59 Mechanism for Problem 1.2.7. 
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1.2.8 Determine the family and the number of DOF for the mechanism in Figure 1.2.60. 

"I 

FIGURE 1.2.60 Mechanism for Problem L2.8. 

1.2.9 Find the family and the number of DOF for the mechanism shown in Figure 1.2.61. 

FIGURE 1.2.61 Mechanism for Problem 1.2.9. 
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1.2.10 Determine the number of DOF for the cam mechanism in Figure 1.2.62. 

cam 

shaft 

FIGURE 1.2.62 Cam mechanism for Problem 1.2.10. 

1.2.11 Find the number of DOF for the planetary gear train in Figure 1.2.63. 

planet gear 

planet gear 
-ring gear 
sun gear 

planet gear 

planet gear 

FIGURE 1.2.63 Planetary gear train for Problem 1.2.11. 
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1.2.12 Determine the number of DOF for the Geneva mechanism in Figure 1.2.64. 

locking plate 

Geneva wheel 

FIGURE 1.2.64 Geneva mechanism for Problem 1.2.12. 

1.2.13 Find the number of DOF for the planetary gear train in Figure 1.2.65. 

planet gear 

sun gear r ^ 
left axle 

arm 

right axle 
^ ^ -

>=TT=^ 
planet gear 

FIGURE 1.2.65 Planetary gear train for Problem 1.2.13. 

sun gear 
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L3 Position Analysis 

1.3.1 Absolute Cartesian Method 
The position analysis of a kinematic chain requires the determination of the joint positions 
and/or the position of the center of gravity (CG) of the Hnk. A planar link with the end 
nodes A and B is considered in Figure 1.3.1. Let (XA, >'A) be the coordinates of joint A with 
respect to the reference frame xOy, and (XB, JB) be the coordinates of joint B with the same 
reference frame. Using Pythagoras the following relation can be written: 

{XB - XA? + (JB - yA? = AB^ = LIB, (1.3.1) 

where LAB is the length of the link AB. 
Let 0 be the angle of the link AB with the horizontal axis Ox. Then, the slope m of the 

link AB is defined as 

m = tan0=^ >^ -̂}^A ĵ ^^^ 
XB -XA 

Let b be the intercept of AB with the vertical axis Oy. Using the slope m and the y intercept 
b, the equation of the straight link (line), in the plane, is 

y = mx-^b, (133) 

where x and y are the coordinates of any point on this link. 
Two lines are perpendicular to each other if and only if the slope of one is the negative 

reciprocal of the slope of the other. Thus, if m and n are the slopes of two perpendicular 
lines 

1 
m = — and mn = —l. (L3.4) 

n 
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B {XB, VB) 

y 

i 

A{XA, VA 

o 
FIGURE 1.3.1 Planar link with two end nodes A and B. 

If two distinct points A(XA, JA) and B(XB, ys) are on a straight line then the equation of 
the straight line can be written in the forms 

•XA y-yA 
XB -XA yB-yA 

and 
X y \ 
XA yA 1 
XB ys 1 

= 0. (L3.5) 

Given two points P(xp, yp) and Q{XQ, yq) and a real number k, k e TZ — {—oo}, the 
coordinates of a point R{XR, yR) on the line segment PQ, whose distance from P bears to 
the distance from RioQ the ratio k (PR = kRQ), are 

The symbol G means "belongs to". 
For A: = 1 the above formulas become 

xp-\-kxQ yp + kyg 
XR = , . , and yR = l-^k 

(1.3.6) 

xp-^XQ yp-\- yg 
XR = r - ^ and yR = -—^. (1.3.7) 

These give the coordinates of the midpoint of the interval from P to Q. 
For A: > 0 the point R is interior to the segment PQ and for A: < 0 the point R is exterior 

to the segment PQ. 
For a link with a translational joint (Fig. 1.3.2) the sliding direction (A) is given by the 

equation 

X cos a -i-y sina — p = 0, (1.3.8) 

where p is the distance from the origin O to the sliding line (A). The position function for 
the joint A(XA, JA) is 

XA COS a -\-yA sina —p = ±d. (1.3.9) 
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FIGURE 1.3.2 Link with a translational joint 

where d is the distance from A to the sHding Une. The relation between the joint A and a 
point B on the sHding direction, B £ (A), is 

(XA-XB) sinyg + CvA -ys) cos^ = ±d, (1.3.10) 

7r where ^ = a -\—. 
2 lfAx-\-By-{-C = 0 is the Hnear equation of the Hne (A) then the distance d is (Fig. 1.3.2): 

\AxA-^ByA-^C\ 
d = (1.3.11) 

For a driver link in rotational motion [Fig. 1.3.3(a)] the following relations can be written: 

XB =XA+ LAB COS 0 and ys =yA^ LAB sin 0. (1.3.12) 

From Figure 1.3.3(b), for a driver link in translational motion, one can have 

XB = XA -\- s cos 0 + Li cos(0 + a), 

yB =yA+ssm(t)-\-Li sin(0 + a). (1.3.13) 

For the RRR dyad (Fig. 1.3.4) there are two quadratic equations of the form 

(xA - xcf + (JA - ycf = AC^ = Lie = LI 

(XB - xcf + (yB - ycf = BC^ = Lie = ^l (1.3.14) 

where the coordinates of the joint C, xc and yc, are the unknowns. With xc and yc 
determined, the angles 02 and 03 are computed from the relations 

, , yc-yA A . A. yc-yB 
tan 02 = and tan 03 = xc-XA Xc -XB 

(1.3.15) 
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y k 

o 

y k 

(a) 

A{XA, yA) 

O 

B {XB, VB) 

B {XB, ys) 

(b) 

FIGURE 1.3.3 Driver link: (a) in rotational motion, and (b) in translational motion. 

The following relations can be written for the RRT dyad [Fig. 1.3.5(a)]: 

(XA - xcf + iyA - ycf = AC^ = lie = LJ, 

(xc -X5)sina - (yc -yB)cosa = ±h. (1.3.16) 
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y k 

2 3 5 (XB, VB) 

A{XA, VA) 

FIGURE 1.3.4 RRR dyad. 

BD 

(a) (b) 

FIGURE 1.3.5 (a) RRT dyad; (b) RRT dyad, particular case, L3 = h = 0. 

From the two above equations the two unknowns xc and yc are computed. Figure 1.3.5(b) 
depicts the particular case for the RRT dyad when L3 = /z = 0 and the position equations are 

(XA - xcf + iyA - ycf = Lj and tan a = yc-yB 
xc -XB' 

(1.3.17) 

For the RTR dyad [Fig. 1.3.6(a)] the known data are: the positions of joints A and B, 
XA, yA, XB, yB, the angle a, and the length L2 (h = L2 sin a). There are four unknowns 
in the position of C{xc, yc) and in the equation for the sliding line ( A ) : y = mx + b. 
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â + 4 

X B {XB, VB) 

(a) 

y i 

o 

A{XA, VA 

B {XB, VB) 

(b) 

FIGURE 1.3.6 (a) RTR dyad; (b) RTR dyad, particular case, L2 = h = 0. 

The unknowns in the sUding Hne m and b are computed from the relations 

\mxA — JA + ^l 
L2 smof = . — and ys = mxB + b. (1.3.18) 

Vm^ + l 

The coordinates of joint C can be obtained using the equations 

(XA - xcf-\-(yA - ycf = Lj and yc = mxc-\-b. (1.3.19) 
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C{xc, yc) 

FIGURE 1.3.7 TRTdyad. 

In Figure 1.3.6(b), the particular case when Li = h = Ois shown, the position equation is 

yA -yB 
tan 02 = tan 03 = 

XA -XB 
(1.3.20) 

To compute coordinates of joint C for the TRT dyad (Fig. 1.3.7) two equations can be 
written: 

{xc - XA) sin ot -{yc- yA) cos of = ± d, 

{xc -XB)sinP -(yc -ys)cos)S = ± h . (1.3.21) 

The input data are JCA, JA» ^5, J5» Qf, ^, J, /z and the output data are xc.yc-
Consider the mechanism shown in Figure 1.3.8. The angle of Hnk 1 with the horizontal 

axis Ax is 0 ,0 = Z(AB, Ax), and it is known. The following dimensions are given: AB = l\, 
CD = l2,CE = I4, AD = d, and h is the distance from the slider 5 to the horizontal axis Ax. 

Next the positions of the joints and the angles of the links will be calculated. 
The origin of the system is at A, A = O, XA = yA = 0. The coordinates of the rotational 

joint at B are 

XB = h COS0 and yB = h sin0. 

The coordinates of the rotational joint at D are 

XB = d and yu = 0. 

For the dyad DBC (RTR) the angle 02 = 03 of link 2 or link 3 with the horizontal axis is 
calculated from the equation 

tan 02 = tan 03 
yB-yp _ / is in0 

XB — XD h cos (j) — d 
(1.3.22) 
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C{xc, yc) 

FIGURE 1.3.8 Planar mechanism. 

The joints C{xc, yc) and D are on link 3 (straight Hne DBC) and 

yc - yo yc 
tan 03 

Equations (1.3.22) and (1.3.23) give 

yB -yo yc - yo 

xc -XD XC -d' 

or 
/i sin 0 yc 

XB — XD XC — XD h cos (/> — d xc — d 

The length of Hnk 3 is CD = l^ (constant) and the distance from C to D is 

(xc-XDf-\-(yc-yDf = l3 or (xc-df+yl = ll 

(1.3.23) 

(1.3.24) 

(1.3.25) 

The coordinates xc and yc of joint C result from Eq. (1.3.24) and Eq. (1.3.25). 
Because of the quadratic equation, two solutions are obtained for xc and yc- For con-

tinuous motion of the mechanism there are constraint relations for choosing the correct 
solution: xc < XB < XD and yc > 0. 

For the last dyad CEE (RRT) a position function can be written for joint E (CE = 14 = 
constant) as: 

(xc-XEf + (yc-hf = ll 

It results in values XEI and XE2, and the solution XE > xc will be selected for continuous 
motion of the mechanism. 
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The angle 04 of link 4 with the horizontal axis is obtained from 

yc-yE yc-h 
tan 04 

xc -XE xc - XE 
(1.3.26) 

1.3-2 Vector Loop Method 
First the independent closed loops are identified. A vector equation corresponding to each 
independent loop is established. The vector equation gives rise to two scalar equations, one 
for the horizontal axis x, and one for the vertical axis y. 

For an open kinematic chain (Fig. 1.3.9) with general joints (pin joints, slider joints, etc.), 
a vector loop equation can be considered: 

FA + ri + • • • + r„ = FB. (1.3.27) 

or 

J2^k = rB-rA. (1.3.28) 

The vectorial Eq. (1.3.28) can be projected on the reference frame xOy: 

n n 

^ rk cos (f)k=XB- XA and ^ rk sin (t>k=yB-yA' (1.3.29) 
k=\ k=l 

RRR Dyad 
The input data are: the position of A is (xA,yA), the position ofB is (xB,yB), the length of 
AC is LAC = ^2, and the length of BC is LBC = L3 (Fig. 1.3.4). 

FIGURE 1.3.9 Kinematic chain. 
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The unknown data are: the position of C(xc,yc) and the angles 02 and 03. 
The position equation for the RRR dyad is TAC + TCB = ^B — ^A, or 

L2 cos 02 + L3 COS(03 -\-7t)=XB- XA, 

L2 sin 02 + L3 sin(03 + TT) = j ^ - yA. (1.3.30) 

The angles 02 and 03 can be computed from Eq. (1.3.30). The position of C can be computed 
using the known angle 02: 

xc =XA-^ L2 COS 02 and yc =yA-h L2 sin 02. (1.3.31) 

RRT Dyad 
The input data are: the position of A is (XA, JA). the position of B is (xB,yB), the length of 
AC is L2, the length of CD is L3, and the angles a and p are constants [Fig. 1.3.5(a)]. The 
unknown data are: the position of C(xc,yc)^ the angle 02, and the distance r = DB. 

The vectorial equation for this kinematic chain is TAC + ^CD + ^DB = ^B — ^A, or 

L2 cos 02 + L3 cos((y + ^ + jr) + r cos(Qf -\- n) = XB — XA, 

L2 sin 02 + L3 sin(a -{- fi -{- TT) -{- r sin(a + jr) = j ^ — JA- (1.3.32) 

Onecancomputerand02fromEq.(I.3.32). The position of C can be found with Eq. (1.3.31). 

Particular case I3 = 0 [Fig. 1.3.5(b)] 
In this case Eq. (1.3.32) can be written as 

L2 cos 02 + ^ COS(Qf -\- TC) = XB — XA, 

L2 sin 02 + r sin(a + jr) = j ^ - JA- (1.3.33) 

RTR Dyad 
The input data are: the position of A is (xA,yA)^ the position ofB is (XB, yB)^ the length of AC is 
L2, and the angleofis constant [Fig.I.3.6(a)].The unknown data are: thedistancer = CBand 
the angles 02 and 03. The vectorial loop equation can be written as TAC + TCB = 1*5 — TA, or 

L2 cos 02 + r cos(a + 02 + 7r) = X5 — XA, 

L2 sin 02 + r sin(Qf + 02 + TT) = };B - JA- (1.3.34) 

One can compute r and 02 from Eq. (1.3.34). The angle 03 can be written as: 

0 3 = 0 2 + 0 ! . (1.3.35) 
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Particular case L2 = 0 [Fig. 1.3.6(b)] 
In this case from Eqs. (1.3.34) and (1.3.35) one can obtain 

r cos (t)2 = XB — XA and r sin 03 = JB — >'A- (1.3.36) 

The method is illustrated through the following example. Figure 1.3.10(a) shows a four-bar 
mechanism (R-RRR mechanism) with link lengths ro, ri, r2, and r^. Find the angles 02 and 
03 as functions of the driver link angle 0 = 0i. 

The links are denoted as vectors ro, r i , r2, and r3, (|r/| = r/, / = 0,1,2,3), and the 
angles are measured counterclockwise from the x-axis [Fig. 1.3.10(b)]. For the closed loop 
ABCD, a vectorial equation can be written as: 

ro + ri + r2 + r3 = 0. (1.3.37) 

By projecting the above vectorial equation onto x and y, two scalar equations are obtained: 

ro + n cos 01 + r2 cos 02 — r^ cos 03 = 0, (1.3.38) 

and 

ri sin 01 + r2 sin 02 — r^ sin 03 = 0. (1.3.39) 

Equations (1.3.38) and (1.3.39) represent a set of nonlinear equations in two unknowns, 02 
and 03. The solution of these two equations solves the position analysis. 

Rearranging Eqs. (1.3.38) and (1.3.39): 

r2 cos 02 = (r3 cos 03 — ro) — ri cos 0i, (1.3.40) 

and 

r2 sin 02 = r3 sin 03 — ri sin 0i. (1.3.41) 

Squaring both sides of the above equations and adding 

2̂ = ^0 + ^? + ^3 ~ ^^3 COS 03(ro + ri COS 0 i ) 

— 2ri r3 sin 0i sin 03 + 2rori cos 0i, 

or 

where 

a sin 03 + Z? cos 03 = c, (1.3.42) 

a = sin 01, b = cos 0i + (ro/n), and 

c = (ro/r3)cos0i + [(rg + r? + r | - r|)/(2rir3)]. (1.3.43) 
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C[xc,yc)[ CtJ 

D{XD, VD) 

(b) 

FIGURE 1.3.10 (a) Four-bar mechanism, and (b) closed loop ABCD. 

Using the relations 

and 

sin 03 = 2tan(03/2)[l +tan^(03/2)], 

cos 03 = [1 - tan^(03/2)]/[l + tan^(03/2)], (1.3.44) 
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in Eq. (1.3.42), the following relation is obtained: 

(b + c)tan^(03/2) - 2a tan((/)3/2) + (c - ^) = 0, 

which gives 

tan(03/2) = ia± y/a^ + ^^ _ ^2)/(^ _̂  ^y (1.3.45) 

Thus, for each given value of 0i and the length of the links, two distinct values of the angle 
03 are obtained: 

03(1) = 2tan-^[(a + y/a^ -{-b^- c^)/(b + c)], 

03(2) = 2tan-i[(a - Va^+ b^ ~ c^)/(b + c)]. (1.3.46) 

The two values of 03 correspond to the two different positions of the mechanism. 
The angle 02 can be eliminated from Eqs. (1.3.38) and (1.3.39) to give 0i in a similar 

way to that just described. 

1.3.3 Examples 

EXAMPLE 1.3.1: 

Figure 1.3.11(a) shows a quick-return shaper mechanism. Given the lengths AB = 
0.20 m, AD = 0.40 m, CD = 0.70 m, CE = 0.30 m, and the input angle 0 = 0i = 
45°, obtain the positions of all the other joints. The distance from the slider 5 to the 
horizontal axis Ax is yE = 0.35 m. 

Solution The coordinates of the joint B are 

XB =AB COS0 = 0.20 sin 45° = 0.141 m, 

ys = AB sin0 = 0.20 cos 45° = 0.141 m. 

The vector diagram Figure 1.3.11(b) is drawn by representing the RTR (BBD) 
dyad. The vector equation, corresponding to this loop, is written as: 

r5 + r - rz ) = 0 or r = r/) - r^, 

where r = rso and |r| = r. Projecting the above vectorial equation onx- and>'-axis, 
two scalar equations are obtained: 

r COS(TU + 03) = XD — XB = —0.141 m, 

r sin(7r + 03) = yo-yB = -0.541 m. 

Continued 
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EXAMPLE 1.3.1: Cont'd 

E {XE, VE) 

C{xc, yc) 

D{XD, VD) 

(a) (b) 

(c) 

FIGURE 1.3.11 (a) Quick-return shaper mechanism, (b) vector diagram representing the 
RTR (BBD) dyad, and (c) vector diagram representing the RRT (CEE) dyad. 

The angle 03 is obtained by solving the system equations 

yo - yB 0.541 
tan 03 = 

XD-XB 0.141 
03 = 75.36°. 
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EXAMPLE 1.3.1: Cont'd 

The distance r is 

XD -XB 
0.56 m. 

cos(7r + 03) 

The coordinates of the joint C are 

xc = CD sin 03 = 0.17 m, 

yc = AB cos 03 - AD = 0.26 m. 

For the next dyad RRT (CEE) [Fig. 1.3.11(c)], one can write 

CE cos(7r — 04) = XE — Xc, 

CE sin(7r - 04) = yE-yC' 

Solving this system, the unknowns 04 and XE are obtained: 

04 = 165.9° and XE = -0.114 m. 

EXAMPLE L3.2: R-RTR-RRT mechanism 

The planar R-RTR-RRT mechanism is considered in Figure 1.3.12. The driver is the 
rigid link 1 (the element A5) and makes an angle 0 = 0i = 7t/6 with the horizontal. 
The length of the links are AB = 0.02 m, BC = 0.03 m, and CD = 0.06 m. The 
following dimensions are given: AE = 0.05 m and La = 0.02 m. Find the positions 
of the joints and the angles of the links. 

Solution Position of joint A: A Cartesian reference frame xOyz with the unit vectors 
[i, J, k] is selected, as shown in Figure 1.3.12. Since joint A is in the origin of the 
reference system A = O, then 

XA=yA= 0. 

Position of joint E: Then the coordinates of joint E are 

XE = —AE = —0.05 m and yE = 0. 

Position of joint B: Because joint A is fixed and the angle 0 is known, the coordinates 
of joint B are computed with 

XB = AB cos 0 = 0.02 cos 7r/6 = 0.017 m, 

yB = AB sin 0 = 0.02 sin 7r/6 = 0.010 m. 

Continued 
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EXAMPLE 13.2: R-RTR-RRT mechanism-Conrd 

FIGURE L3.12 R-RTR-RRT mechanism. 

Position of joint C: Joints £, B, and C are located on the same straight Hne, EBC. 
The slope of this straight line is 

yB -jE yc- yE 
m = — = or 

0.010 yc 
XB-XE xc-XE 0.017 - (-0.05) j cc - ( -0 .05) 

The length of the link BC is constant and a quadratic equation can be written as: 

(1.3.47) 

{xc-XBf + iyc-yBf-=BC'^ or 

(jcc - 0.017)^ + (yc - 0.01)^ = 0.03^ (1.3.48) 

Solving Eq. (1.3.47) and Eq. (1.3.48) two sets of solutions are found for the position 
of joint C. These solutions are 

jcci = -0.012 m, yci = 0.005 m, 

XC2 = 0.046 m, yc2 = 0.014 m. 

The points Ci and C2 are the intersections of the circle of radius BC (with its center 
at B), with the straight line EC, as shown in Figure 1.3.13. To determine the position 
of joint C for this position of the mechanism (0 = 7r/6), an additional constraint 
condition is needed: xc > XB. With this constraint the coordinates of joint C have 
the following numerical values: 

Xc = XC2 = 0.046 m and yc = yc2 = 0.014 m. 
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EXAMPLE 1.3.3: R-RTR-RRT mechanism-Coufd 

circle of radius BC 
with the center at B 

FIGURE 1.3.13 Position of joint C 

Position of joint D: The jc-coordinate of D is xo = La = 0.02 m. The length of the 
link CD is constant and a quadratic equation can be written: 

(xD-xcf-\-(yD-ycf = CD^ or (0.02 - 0.046)^ + (VD - 0.014)^ = 0.06^. 
(1.3.49) 

Solving Eq. (1.3.49), two sets of solutions are found for the position of the joint D. 
These solutions are 

yj)^ = -0.039 m and yD2 = 0.067 m. 

The points Di and D2 are the intersections of the circle of radius CD (with its center 
at C) with the vertical line x = La, as shown in Figure 1.3.14. To determine the 
correct position of joint D for the angle 0 = jr/6, an additional constraint condition 
is needed: yo < yc- With this constraint the coordinates of joint D are 

XD = 0.02 m and yo = yoi = -0.039 m. 

Angle 02* The angle of link 2 (or link 3) with the horizontal axis is calculated from 
the slope of the straight line EB: 

ys - yE 0.010 
02 = 03 = arctan ——— = arctan ^r^rrz—. = 0.147 rad = 8.449°. XB -XE 0.017 - (-0.050) 

Angle 04: The angle of link 4 with the horizontal axis is obtained from the slope of 
the straight line CD: 

yc-yo 0.014 + 0.039 
04 = arctan ——— = arctan = 1.104 rad = 63.261°. 

xc -XD 0.046 - 0.020 

Continued 
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EXAMPLE 1.3,2: R-RTR-RRT mechanism-Cofirc/ 

FIGURE 1.3.14 Position of joint D. 

EXAMPLE L3.3: R-TRR-RRT mechanism 

The mechanism is shown in Figure 1.3.15. The following data are given: AC = 
0.100 m, BC = 0.300 m, BD = 0.900 m, and La = 0.100 m. If the angle of link 1 
with the horizontal axis is 0 = 45°, find the positions of joint D. 

FIGURE 1.3.15 K-TRR-KRT mechanism. 
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EXAMPLE 1.3.3: R-TRR-RRT mechanism-Conrc/ 

Solution Position of joint A: A Cartesian reference frame with the origin at A is 
selected. The coordinates of the joint A are 

XA=yA = 0. 

Position of joint C: The coordinates of joint C are 

xc = AC = 0.100 m and yc = 0. 

Position of joint B: The slope of the line AB is 

tan0 = — or tan45° = —. (1.3.50) 
XB XB 

The length of the link BC is constant and the following equation can be written: 

{xB-xcf + {yB-ycf=BC^ or (x^ - 0.1)^ + j | = O.Sl (1.3.51) 

Equations (1.3.50) and (1.3.51) form a system of two equations with the unknowns 
XB and j ^ . The following numerical results are obtained: 

XB^ = —0.156 m, y^j = —0.156 m, 

XB2 = 0.256 m, yB2 = 0.256 m. 

To determine the correct position of the joint B for the angle 0 = 45°, an additional 
constraint condition is needed: XB > XC. With this constraint the coordinates of joint 
5 are 

XB = XB2 = 0.256 m and yB = yB2 = 0.256 m. 

Position of joint D: The slider 5 has a translational motion in the horizontal direction 
and yo = La. There is only one unknown, XD, for joint D. The following expression 
can be written: 

(xB-xof + iyB-yof^BD^ or (0.256-x^)^ + (0.256 - 0.1)^ = 0.9^ 

(1.3.52) 

Solving Eq. (1.3.49), two numerical values are obtained: 

XD^ = -0.630 m, XD2 = 1.142 m. (1.3.53) 

For continuous motion of the mechanism, a geometric constraint XD > XB has to be 
selected. Using this relation the coordinates of joint D are 

XD = 1.142 m and yo = 0.100 m. 
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1.3-4 Problems 
1.3.1 Find the analytical expression of any point P of the elipsograph mechanism in 

Figure 1.2.53. 

1.3.2 The following data are given for the four-bar mechanism shown in Figure 1.3.16: 
AB = CD = 0.04 m and AD = BC = 0.09 m. Find the trajectory of the point M 
located on the link BC for the case (a) BM = MC and (b) MC = 2 BM. 

FIGURE 1.3.16 Four-bar mechanism for Problem 1.3.2. 

1.3.3 The planar four-bar mechanism depicted in Figure 1.3.17 has dimensions 
AB = 0.03 m, BC = 0.065 m, CD = 0.05 m, BM == 0.09 m, and 
CM = 0.12 m. Find the trajectory described by the point M. 

FIGURE 1.3.17 Four-bar mechanism for Problem 1.3.3. 
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1.3.4 The mechanism shown in Figure 1.3.18 has dimensions AB = 0.03 m, BC 
CD = 0.12 m, DE = 0.07 m, CF = 0.17 m, Ri = 0.04 m, R4 = 0.08 m, 
La = 0.025 m, and L^ = 0.105 m. Find the trajectory of the joint C 

:0.12 m, 

FIGURE 1.3.18 Mechanism for Problem 1.3.4. 

1.3.5 The planar R-RRR-RRT mechanism considered is depicted in Figure 1.3.19. 
The driver link is the rigid link 1 (the element AB). The following data are given: 
AB = 0.150 m, BC = 0.400 m, CD = 0.370 m, CE = 0.230 m, EF = CE, 
La = 0.300 m, Lb = 0.450 m, and Lc = CD. The angle of driver link 1 with the 
horizontal axis is 0 = 0i = 45°. Find the positions of the joints and the angles of 
the links. 

1.3.6 The R-RRR-RTT mechanism is shown in Figure 1.3.20. The following data 
are given: AB = 0.080 m, BC = 0.350 m, CD = 0.150 m, CE = 0.200 m, 
La = 0.200 m, Lb = 0.350 m, Lc = 0.040 m. The angle of the driver element 
(link AB) with the horizontal axis is 0 = 135°. Determine the positions of the 
joints and the angles of the links. 

1.3.7 The mechanism shown in Figure 1.3.21 has the following dimensions: AB = 40 mm, 
AD = 150 mm, BC = 100 mm, CE = 30 mm, EF = 120 mm, and a = 90 mm. 
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FIGURE 1.3.19 R-RRR-RRT mechanism for Problem 1.3.5. 

FIGURE 1.3.20 R-RRR-RTT mechanism for Problem 1.3.6. 
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The angle of driver link 1 with the horizontal axis is 0 = 0i = 30°. Find the 
positions of the joints and the angles of the links. 

FIGURE 1.3.21 Mechanism for Problem 1.3.7. 

1.3.8 The dimensions for the mechanism shown in Figure 1.3.22 are: AB = 250 mm, 
BD = 670 mm, DE = 420 mm, AE = 640 mm, BC = 240 mm, CD = 660 mm, 
CF = 850 mm, and b = 170 mm. The angle of driver link 1 with the horizontal 
axis is 0 = 01 = 30°. Find the positions of the joints and the angles of the links. 

FIGURE 1.3.22 Mechanism for Problem 1.3.8. 

1.3.9 The mechanism in Figure 1.3.23 has the dimensions: AB = 120 mm, AC = 60 mm, 
BD = 240 mm, DE = 330 mm, EF = 190 mm. La = 300 mm, and Lb = 70 mm. 
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The angle of driver link 1 with the horizontal axis is<p = <pi = 150°. Find the 
positions of the joints and the angles of the links. 

FIGURE 1.3.23 Mechanism for Problem 1.3.9. 

1.3.10 The dimensions for the mechanism shown in Figure 1.3.24 are: AB = 100 mm, 
BC = 260 mm, AD = 240 mm, CD = 140 mm, DE = 80 mm, EF = 250 mm, and 

FIGURE 1.3.24 Mechanism for Problem 1.3.10. 
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La = 20 mm. The angle of driver link 1 with the horizontal axis is 0 = 0i = 45°. 
Find the positions of the joints and the angles of the links. 

1.3.11 The mechanism in Figure 1.3.25 has the dimensions: AB = 150 mm, AC = 450 mm, 
BD = 700 mm, L« = 100 mm, and Lt, = 200 mm. The angle of driver link 1 with 
the horizontal axis is 0 = 0i = 120°. Find the positions of the joints and the angles 
of the links. 

'A ^ 

FIGURE 1.3.25 Mechanism for Problem 1.3.11. 

1.3.12 Figure 1.3.26 shows a mechanism with the following dimensions: AB = 180 mm, 
BD = 700 mm, and La = 210 mm. The angle of the driver link 1 with the horizontal 
axis is 0 = 01 = 135°. Find the positions of the joints and the angles of the links. 

1.3.13 The mechanism in Figure 1.3.27 has the dimensions: AB = 100 mm, AC = 240 mm, 
BD = 400 mm, DE = 250 mm, EF =135 mm. La = 35 mm, and Lt, = 170 mm. 
The angle of driver link 1 with the horizontal axis is 0 = 0i = 150°. Find the 
positions of the joints and the angles of the links. 

1.3.14 Figure 1.3.28 shows a mechanism with the following dimensions: AB = 120 mm, 
BC = 450 mm, CD = DE = ISO mm, EF = 300 mm. La = 450 mm. 
Lb = 150 mm, and L^ = 140 mm. The angle of driver link 1 with the horizontal 
axis is 0 = 01 = 120°. Find the positions of the joints and the angles of the links. 

1.3.15 Figure 1.3.29 shows a mechanism with the following dimensions: AB = 140 mm, 
BC = 650 mm, CE = 250 mm, CD = 400 mm, EF = 350 mm. La = 370 mm, 
Lt, = 550 mm, and Lc = 700 mm. The angle of driver link 1 with the horizontal 
axis is 0 = 01 = 150°. Find the positions of the joints and the angles of the links. 

1.3.16 Figure 1.3.30 shows a mechanism with the following dimensions: AB = 60 mm, 
BC = 160 mm, CF = 150 mm, CD = 60 mm, DE = 180 mm, La = 210 mm. 
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FIGURE 1.3.26 Mechanism for Problem 1.3.12. 
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FIGURE 1.3.27 Mechanism for Problem 1.3.13. 

Lb = 120 mm, and Lc = 65 mm. The angle of driver link 1 with the horizontal axis 
is 0 = 01 = 30°. Find the positions of the joints and the angles of the links. 

1.3.17 Figure 1.3.31 shows a mechanism with the following dimensions: AB = 20 mm, 
BC = 50 mm, AD = 25 mm, and BE = 60 mm. The angle of driver link 1 with the 
horizontal axis is 0 = 0i = 60°. Find the positions of the joints and the angles of 
the links. 
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FIGURE 1.3.28 Mechanism for Problem 1.3.14. 

FIGURE 1.3.29 Mechanism for Problem 1.3.15. 
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FIGURE 1.3.30 Mechanism for Problem 1.3.16. 

FIGURE 1.3.31 Mechanism for Problem 1.3.17. 



1.3.18 The dimensions of the mechanism shown in Figure 1.3.32 are: AB = 150 mm, 
BC = 300 mm, BE = 600 mm, CE = 850 mm, CD = 330 nmi, EF = 1200 mm. 
La = 350 mm, Lt, = 200 mm, and L^ = 100 mm. The angle of driver link 1 with the 
horizontal axis is 0 = 0i = 120°. Find the positions of the joints and the angles of 
the links. 

FIGURE L3.32 Mechanism for Problem 1.3.18. 

1.3.19 The dimensions of the mechanism shown in Figure 1.3.33 are: AB = 150 mm, 
AC = 220 mm, CD = 280 mm, DE = 200 mm, and La = 230 mm. The angle of 
driver link 1 with the horizontal axis is 0 = 0i = 60°. Find the positions of the 
joints and the angles of the links. 

FIGURE 1.3.33 Mechanism for Problem 1.3.19. 
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1.3.20 The dimensions of the mechanism shown in Figure 1.3.34 are: AB = 200 mm, 
AC = 60 mm, CD = 200 nmi, and DE = 500 mm. The angle of driver Hnk 1 with 
the horizontal axis is 0 = 0i = 45°. Find the positions of the joints and the angles 
of the links. 

FIGURE 1.3.34 Mechanism for Problem 1.3.20. 

1.3.21 The dimensions of the mechanism shown in Figure 1.3.35 are: AB = 120 mm, 
AC = 200 mm, CD = 380 mm, and b = 450 mm. The angle of driver link 1 with 

FIGURE 1.3.35 Mechanism for Problem 1.3.21. 
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the horizontal axis is 0 
of the links. 

: 01 =: 30°. Find the positions of the joints and the angles 

1.3.22 The dimensions of the mechanism shown in Figure 1.3.36 are: AB = 160 mm, 
AC = 90 mm, and CD =160 mm. The angle of driver link 1 with the horizontal 
axis is 0 = 01 = 30°. Find the positions of the joints and the angles of the hnks. 

FIGURE 1.3.36 Mechanism for Problem 1.3.22. 

1.3.23 The dimensions of the mechanism shown in Figure 1.3.37 are: AB =100 mm, 
AC = 280 mm, BD = La = 470 mm, and DE = 220 mm. The angle of driver link 
1 with the horizontal axis is 0 = 0i = 30°. Find the positions of the joints and the 
angles of the links. 

FIGURE 1.3.37 Mechanism for Problem 1.3.23. 
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1.3.24 The dimensions of the mechanism shown in Figure 1.3.38 are: AB = 250 mm, 
AD = 700 mm, BC = 300 mm, and a = 650 mm. The angle of driver link 1 with 
the horizontal axis is 0 = 0i = 145°. Find the positions of the joints and the angles 
of the links. 

FIGURE 1.3.38 Mechanism for Problem 1.3.24. 
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1.4 Velocity and Acceleration Analysis 

1.4.1 Kinematics of the Rigid Body 
The motion of a rigid body (RB) is defined when the position vector, velocity, and acceler-
ation of all points of the rigid body are defined as functions of time with respect to a fixed 
reference frame with the origin at OQ. 

Let lo, Jô  and ko be the constant unit vectors of a fixed orthogonal Cartesian reference 
frame Ooxoyozo (primary reference frame). The unit vectors lo, Jo' ^^^ '̂ o of the primary 
reference frame are constant with respect to time. Let i,j, and k be the unit vectors of 
a mobile orthogonal Cartesian reference frame Oxyz (Fig. L4.1). A reference frame that 
moves with the rigid body is a body fixed (or mobile) reference frame. The unit vectors i, j , 
and k of the body fixed reference frame are not constant, because they rotate with the body 
fixed reference frame. The location of the point O is arbitrary. 

The position vector of a point M [M G(RB)] , with respect to the fixed reference frame 
Ooxoyozo, is denoted by ri = VOQM and, with respect to the mobile reference frame Oxyz, 
is denoted by r = TOM- The location of the origin O of the mobile reference frame, with 
respect to the fixed point OQ, is defined by the position vector VQ = TOQO' Thus the relation 
between the vectors ri , r, and ro is given by 

ri=ro-\-r = ro-\-xi-\-yi-\- zK (L4.1) 

where x, y, and z represent the projections of the vector r on the mobile reference frame. 
The magnitude of the vector r = TOM is a constant, as the distance between the points O 
and M is constant [O G(RB) and M e (RB)]. Thus, the x, y, and z components of the vector 
r, with respect to the mobile reference frame, are constant. The unit vectors i, j , and k are 
time-dependent vector functions. The vectors i, j , and k are the unit vector of an orthogonal 
Cartesian reference frame. Thus, the following relations can be written as 

1 . 1 = 1 , J-3 = 1, k . k = l , (L4.2) 

i . j = 0, j . k = 0, k - i = 0. (L4.3) 
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(RB) 

FIGURE 1.4.1 Mobile reference frame (i \, k) that moves with the rigid body (RB). 

Velocity of a Point on the Rigid Body 
The velocity of an arbitrary point M of the rigid body, with respect to the fixed reference 
frame Oxoyozo, is the derivative with respect to time of the position vector r i : 

dri , , , . , - . . . . , 
V = —— = ri = ro + r = vo + XI + 3̂J + zk + XI + j j + zk, 

at 
(1.4.4) 

where \o = ro represents the velocity of the origin of the mobile reference frame Oixiyizi 
with respect to the fixed reference frame Oxyz. Because all the points in the rigid body 
maintain their relative position, their velocity relative to the mobile reference frame Oxyz 
is zero: x = y = z = 0. The velocity of the point M is 

V = vo + x i + >'j + zk. 

The derivative of the Eqs. (1.4.2) and (1.4.3) with respect to time gives 

i . i = 0, j j = 0, k . k = 0, (1.4.5) 
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and 

i j + J i = 0, j k + k j = 0, k i + i k = 0. 

For Eq. (1.4.6) the following convention is introduced: 

i J = -J i^^z. 

k'i = —i'k = coy, 

where cox, coy and co^ can be considered as the projections of a vector co: 

(0 = COx\-\- COy} + (D^k. 

To calculate i, j , k the following formula is introduced for an arbitrary vector, d, 

d = 4 i + dy] + J,k = (d 1) 1 + (d J) J + (d k) k. 

Using Eq. (1.4.8) and the results from Eqs. (1.4.5) and (1.4.6), it results 

i = (i i ) i + ( i j ) j + (i k)k 

= (0)i + ( 6 ; , ) j - ^ ) k 

1 J k l 
a>x cOy coA—oiXi, 
1 0 o | 

J = ( j - i ) i + ( j - j ) j + ( j -k )k 

= (-a;^)i + (0)j + (ft)̂ )k 

(1.4.6) 

(1.4.7) 

• J 
= w x j , 

0 1 0 

k - ( k . i ) i + ( k . j ) j + ( k . k ) k 

1 J k 
(JOX COy COz 

0 0 1 
= (o xk. 

The relations 

i = a>xi, j = a>xj, k = co xk. 

are known as Poisson formulas. 

(1.4.8) 

(1.4.9) 

(1.4.10) 
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Using Eqs. (1.4.4) and (1.4.10), the velocity of M is 

V = vo + â> X 1 + ja> X J + zw X k = vo + a> X (xi + yj + zk), 

or 

V = vo + 0) X r. (1.4.11) 

Combining Eqs. (1.4.4) and (1.4.11), it results 

r = (oxr. (1.4.12) 

Using Eq. (1.4.11), the components of the velocity are 

Vjc = vox + zcoy - ycoz, 

Vy = voy-\- xcoz - zcox, 

Vz = yoz-^y(^x-xo)y. 

Acceleration of a Point on the Rigid Body 
The acceleration of an arbitrary point M e (RB), with respect to a fixed reference frame 
Ooxoyozo, represents the double derivative with respect to time of the position vector r i : 

.. . Jv J ^ d d d 
a = ri = ¥ = - - = —(vo + w X r) = —vo + —a> x r + w x —r 

at at dt dt dt 

= vo + ^ x r + 6>xr. (1.4.13) 

The acceleration of the point O, with respect to the fixed reference frame Ooxoyozo, is 

ao = vo = ro. (1.4.14) 

The derivative of the vector (o, with respect to the time, is the vector a given by 

a = d) = coxi + coy} + d)zk + coxi + ^^J + ŵ̂ k (1.4.15) 

= Qfjcl + Oiy] + Qf̂ k + COxO) X 1 + (Oy(0 X J + 0)^(0 X k 

= Qf;ci + %J + «^k + (y X (y = Qf;ci + oiy} + ^zk. 

where â .̂ = (i;^.,^^ = cJ)̂ , and az = 0)^. In the previous expression the Poisson formulas 
have been used. 

Using Eqs. (1.4.13), (1.4.14), and (1.4.15), the acceleration of the point M is 

a = ao + a x r + a > x ( a > x r ) . (1.4.16) 
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The components of the acceleration are 

cix = aox + {zay - yaz) + (Oy {ya)x - xcoy) + coz (xcox - xco^), 

ay = aoy + (xaz - zax) + co^ {zo)y - yojz) + cox {xcoy - yco^), 

ciz = aoz + {yoix - xay) + o)x (xcoz - zcox) + cOy {ycoz - zo)y). 

The vector (o characterizes the rotational motion of the rigid body and is called the 
angular velocity. The vector a is called the angular acceleration. 

The angular velocity can also be introduced in another way. If the orientation of a rigid 
body RB in a reference frame RFQ depends on only a single scalar variable f, there exists 
for each value of ^ a vector a> such that the derivative with respect to ^ in RF{) of every 
vector c fixed in rigid body RB is given by 

dc 
— = a > x c , (1.4.17) 
di; 

where the vector (o is the rate of change of orientation of the rigid body RB in the reference 
frame RFQ with respect to ^. The vector (o is given by 

J a dh 

c.= 4 - ^ ' (1.4.18) 

d^ 

where a and b are any two nonparallel vectors fixed in the rigid body RB. 

Proof 
The vectors a and b are fixed in the rigid body. The magnitudes a • a, b • b, and the angle 
between a and b are independent of ^ 

^ ( a - a ) ^ ^ ^ ( b - b ) ^ ^ J ( a - b ) ^ ^ 

or 

J a ^ ^ b , ^ J a , dh ^ 
— - - a ^ O , ^ . b = 0, " - - b + a . - — = 0 . 
d^ d^ d^ d^ 

Using the vector triple product of three vectors p, q, t, it results 

p x ( q x t ) = p t q — p q t , ( p x q ) x t = t p q — t q t . 
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From these expressions it follows that 

da dh /da dh\ 

d^ 

dh da 

~^"d^ d; 

da d\> dh da 
xa a - — ; a — — — 

di; di; d; di; 

di-

da da 
— • b — 
di; di; 

da 
da 

" di;' 
(1.4.19) 

and 

J a dh {d2i dh\ 
— X — — X — X b 

dsi dh dh da 

da da da 
—- b - ; - b -T" *> 

d^ di; di; 

da dh 

_ ' ~dX ~d^ _ d^ 
^ • b ~'^' 

(1.4.20) 

di; 

The following vector is defined as 

da dh 

~d^^~d^ 
(0 = da 

and the Eqs. (1.4.19) and (1.4.20) can be written as 

da dh 
— = (o X a, — = 0) X b. 
d^ di; 

In general a given vector d can be expressed as 

d = d\n\ + ^2n2 + 3̂113, 

where ni, n2, n3 are three unit vectors not parallel to the same plane, and d\, di, d^ are 
three scalars. 

Any vector c fixed in the rigid body RB can be expressed as 

c = aa + C2b + C3a x b, (1.4.21) 
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where ci, C2, and C3 are constant and independent of ^. Differentiating Eq. (1.4.21) with 
respect to ,̂ the following expression is obtained: 

do, dsL dh da db 
— = C] h c? h C3 — X b + C3a X — 
d^ d^ d^ di; di; 

= c\(o X a + C2(x> X b + C3 [(a> X a) X b + a X (a> X b)] 

= c\(o X a + QO) X b + C3 [b • a>a — b • a (y+ a • hoo — a • coh] 

= ci(o X 2i-\-C20) X b + C3 [(«>• ba — a • b(«> + a • b6) — a • wb] 

= ci(o X SL-\- C2(o X b + C3 [a> • ba — (y • ab] 

= c\(o X a + C2C«> X b + ^30) x (a x b) 

= 0) X (c\a + C2b + C3a x b) 

= (oxc. (1.4.22) 

The vector co is not associated with any particular point. With the help of (o the process of 
differentiation is replaced with that of cross multiplication. 

The vector (o can be expressed in a symmetrical relation in a and b: 

(O — 

^Ja db db dsi\ 

~ d l ^ ~dX ~dX^ ~dl 
da db 

a 

(1.4.23) 

The first derivatives of a vector p, with respect to a scalar variable ^ in two reference frames 
RFi and RFj, are related as follows: 

(i< ~ dt; 
+ 6>̂7 X p, (1.4.24) 

^•^Jp 
where w// is the rate of change of orientation of RFi in RFj with respect to < and —-— is 

the total derivative of p with respect to f in RFj. 

Proof 
The vector p can be expressed as 

where 11,12,13 are three unit vectors not parallel to the same plane fixed in RFi, and/?;̂ , Py, Pz 
are the scalar measure numbers of p. Differentiating in RFj, the following expression is 
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obtained: 

'jUp2 ^^dp2 ^Upi ^Vli Wj,2 (/V,3 

dp2 dp2 dp3 
= — 1 1 + — 1 2 + — 1 3 +Pl(Oij X 11 +/?26>y X 12 +/?3<y//- X I3 

(^V/72 ^'^dp2 ^^dp3 
= — 7 ^ 1 1 + — 7 ^ 1 2 + —77-13 + 0)ij X (pi l l +P212 +P3I3 ) 

a^ d^ d^ 
^^dp 

The angular velocity of a rigid body RB in a reference frame RFQ is the rate of change 
of orientation with respect to the time t 

(
dsL dh dh dsL\ 

^ T̂b I 2 y a b b a / 

dt dt / 

The direction of a> is related to the direction of the rotation of the rigid body through a 
right-hand rule. 

Let RFi, i = 1,2,... ,nbcn reference frames. The angular velocity of a rigid body r in 
the reference frame RFn, can be expressed as 

(Om = (Orl + 0)12 + 6>23 H h 6>r,n-l • (1.4.26) 

Proof 
Let p be any vector fixed in the rigid body. Then 

= (Ori X p 
dt 

^ P 

dt 
= (Or,i-\ X p. 

On the other hand: 

Hence, 

(Ori X p = (Or,i-l X p + a>/,/_i X p, 
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as this equation is satisfied for all p fixed in the rigid body: 

(Ori = (Or,i-l + (Oi4-l. (1.4.27) 

With / = n, Eq. (1.4.27) gives 

(Orn = (Or,n-l + OOn^n-l- (1.4.28) 

With / = n - 1, Eq. (1.4.27) gives 

(Or,n-\ = (Or,n-2 + (On-l,n-2' (1.4.29) 

Substitute Eq. (1.4.29) into Eq. (1.4.28) and 

(Om = (Or,n-2 + (On-l,n-2 + (On,n-\' 

Next use Eq. (1.4.27) with i = n — 2, then with i = n — 3, and so forth. 

Motion of a Point that Moves Relative to a Rigid Body 
Areference frame that moves with the rigid body is a body fixed reference frame. Figure 1.4.2 
shows a rigid body (RB) in motion relative to a primary reference frame with its origin at 
point Oo, OoxoyozO' The primary reference frame is a fixed reference frame or an earth fixed 
reference frame. The unit vectors lo, Jo' ^^^ ^o of the primary reference frame are constant. 

r = roA = ^1 + 2/J + zk 

FIGURE 1.4.2 Motion of a point A that moves relative to a rigid body (RB). 
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The body fixed reference frame (mobile reference frame), Oxyz, has its origin at a point 
O of the rigid body [O G (RB)], and is a moving reference frame relative to the primary 
reference. The unit vectors i, j , and k of the body fixed reference frame are not constant, 
because they rotate with the body fixed reference frame. 

The position vector of a point F of the rigid body \P e (RB)] relative to the origin O of 
the body fixed reference frame is the vector vop. The velocity of P relative to O is 

drop 
—— =(ox TOP, 

at 

where (o is the angular velocity vector of the rigid body. 
The position vector of a point A (the point A is not assumed to be a point of the rigid 

body, as shown in Fig. 1.4.2) relative to the origin OQ of the primary reference frame is 

rA = ro-\- r, 

where 

r = roA=xi + y}-\- zK 

is the position vector of A relative to the origin O of the body fixed reference frame, and 
X, y, and z are the coordinates of A in terms of the body fixed reference frame. The velocity 
of the point A is the time derivative of the position vector r^: 

dro dr 
VA = —r- + -7- = vo + VAO 

dt dt 
dx d\ dy d] dz^ dk 

= vo + —1 + X - + -f-j + j - f + —k + z—. 
at at at at at at 

Using Poisson formulas, the total derivative of the position vector r is 

^r . . . ., 
-— = r = XI + j j + zk + w X r. 
dt 

The velocity of A relative to the body fixed reference frame is a derivative in the body fixed 
reference frame: 

^^^dr dx dy dz, . . ., .. . .^ . 
^Arel = --J— = —1 + - ; J + - k = XI + >̂J + zk, (1.4.30) 

at at at at 

A general formula for the total derivative of a moving vector r can be written as 

dr ^^^Ur 
+ a>xr, (1.4.31) dt dt 

dr ^^Ur ^^^^dr 
where — = is the derivative in the fixed reference frame (0) (Ooxoyozo), and — ; — 

dt dt dt 
is the derivative in the mobile reference frame (body fixed reference frame). 
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The velocity of the point A relative to the primary reference frame is 

VA = V(9 + yArel + ^ X r, (1.4.32) 

Equation (1.4.32) expresses the velocity of a point A as the sum of three terms: 

• the velocity of a point O of the rigid body, 
• the velocity \Arei of ^ relative to the rigid body, and 
• the velocity co xr of A relative to O due to the rotation of the rigid body. 

The acceleration of the point A relative to the primary reference frame is obtained by 
taking the time derivative of Eq. (1.4.32) 

BA = ao + BAO 

= 3(9 + ^Arel + 2a> X \Arel + Of X r + CO X (a> X r ) , (1.4.33) 

where 

^^^U^r d^x (fy dh 
-A../ = - ^ ^ = ^ i + ^ j 4 - ^ k , (1.4.34) 

is the acceleration of A relative to the body fixed reference frame or relative to the rigid 
body. The term 

StCor = 2(OX \Areh 

is called the Coriolis acceleration. 
In the case of planar motion, Eq. (1.4.33) becomes 

a^ = ao + 2iArei + 2a> X yArel + a X r — a> r̂. (1.4.35) 

The velocity VA and the acceleration BA of a point A are relative to the primary reference 
frame. The terms \Arei and 2iArei are the velocity and acceleration of point A relative to 
the body fixed reference frame, i.e., they are the velocity and acceleration measured by an 
observer moving with the rigid body (Fig. 1.4.3). 

If A is a point of the rigid body, A G R B , \Arel = 0, and 2iArel = 0. 

Inertial Reference Frames 
A reference frame is inertial if Newton's second law is applied in the form XIF = ma. 
Figure 1.4.4 shows a nonaccelerating, nonrotating reference frame with the origin at OQ, 
and a secondary nonrotating, earth-centered reference frame with the origin at O. The 
nonaccelerating, nonrotating reference frame with the origin at OQ is assumed to be an 
inertial reference. The acceleration of the earth, due to the gravitational attractions of the 
sun, moon, etc., is go- The earth-centered reference frame has the acceleration go, too. 
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^Arel 

FIGURE 1.4.3 Velocity (\Arei) ^nd acceleration (siArei) of A relative to the rigid body. 

secondary nonrotating earth centered reference frame 

primary nonaccelerating, nonrotating reference frame 

FIGURE 1.4.4 Nonaccelerating, nonrotating reference frame with the origin at OQ, and a secondary 
nonrotating, earth-centered reference frame with the origin at O. 

Newton's second law for an object A of mass m, using the hypothetical nonaccelerating, 

nonrotating reference frame with the origin at OQ, can be written as 

msLA =mgA + ^ F , (1.4.36) 
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where SLA is the acceleration of A relative to Oo, gA is the resulting gravitational acceleration, 
and XI ^ is ^^^ ^^^ ^^ ^^^ other external forces acting on A. The acceleration of A relative 
to Oo is 

aA = a o + ^Areh 

where SiArel is the acceleration of A relative to the earth-centered reference frame. The 
acceleration of the origin O is equal to the gravitational acceleration of the earth 2io = %0' 
The earth-centered reference frame does not rotate {(o = 0). If the object A is on or near the 
earth, its gravitational acceleration gA due to the attraction of the sun, etc., is nearly equal 
to the gravitational acceleration of the earth go, and Eq. (1.4.36) becomes 

Ê ^ • m^Arel- (1.4.37) 

Newton's second law can be applied using a nonrotating, earth-centered reference frame 
if the object is near the earth. In most applications, Newton's second law can be applied 
using an earth-fixed reference frame. Figure 1.4.5 shows a nonrotating reference frame with 

secondary nonaccelerating, nonrotating reference frame 

primary nonrotating earth centered reference frame 

FIGURE 1.4.5 Nonrotating reference frame with tfie origin at tlie center of the earth O and a 
secondary earth-fixed reference frame with the origin at B. 

Velocity and Acceleration Analysis 153 



secondary rotating reference frame 

V B ^B 

O 

a. jf\ 

UJ f 

r^ / 

/ / 

\ \ \ \ \ 

/ 

fBA 

E F 

primary inertial reference frame 

FIGURE 1.4.6 Primary inertial reference frame with the origin at O and a secondary reference frame 
with the origin at B. 

its origin at the center of the earth O and a secondary earth-fixed reference frame with its 
origin at a point B. The earth-fixed reference frame with the origin at B can be assumed to 
be an inertial reference and J ] ^ = ^^AreU where 2iArel is the acceleration of A relative to 
the earth-fixed reference frame. 

The motion of an object A can be analyzed using a primary inertial reference frame 
with its origin at the point O (Fig. 1.4.6). A secondary reference frame with its origin at B 
undergoes an arbitrary motion with angular velocity (o and angular acceleration a. Newton's 
second law for the object A of mass m is ^ F = ma^, where RA is the acceleration of A 
relative to O. Newton's second law can be written in the form: 

^ F - m[2LB + 2(y X \Arel + a X F^A + 6> X (6> X YBA)] = mSLArel, (1.4.38) 

where SiArei is the acceleration of A relative to the secondary reference frame. The term 
as is the acceleration of the origin B of the secondary reference frame relative to the 
primary inertial reference. The term 2(o x \Arei is the CorioHs acceleration, and the term 
—2m(o X \Arei is called the CorioHs force. This is Newton's second law expressed in terms of 
a secondary reference frame undergoing an arbitrary motion relative to an inertial primary 
reference frame. 

The classical method for obtaining the velocities and/or accelerations of links and 
joints is to compute the derivatives of the positions and/or velocities with respect 
to time. 
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1.4.2 Driver Link 
For a driver link in rotational motion [see Fig. 1.3.3(a)], the following position relation can 
be written: 

XB(t) =XA-\- LAB COS 0(0, 

ysit) = JA + LAB sin 0(0- (1.4.39) 

Differentiating Eq. (1.4.39) with respect to time, the following expressions are obtained: 

dxB(t) 
VBx =XB = —,— = -LAB^ sm 0, 

at 

^By =yB = —^— = ^^^^ ^^^ ̂ - (1.4.40) 

The angular velocity of the driver link is (W = 0. The time derivative of Eq. (1.4.40) yields 

dvB(t) -2 
(^Bx =XB = = -^AB0 cos 0 - LAB(I> Sm 0, 

at 

^By =yB = —1— = -LAB(P sin 0 + LAB4> COS 0, (1.4.41) 
where a = 0 is the angular acceleration of the driver link AB. 

1.4.3 RRR Dyad 
For the RRR dyad (see Fig. 1.3.4) there are two quadratic equations of the form 

[xc(t) - XAf + \yc(t) - yAf = Lie = ^l 

[xciO - XBf + [yciO - yBf = LIC = LJ. (1.4.42) 

Solving the above system of quadratic equations, the coordinates xc(t) and yc(t) are 
obtained. 

The derivative of Eq. (1.4.42) with respect to time yields 

(xc - XA) (XC - XA) -\-(yc - yA) (yc - M) = 0, 

(xc - XB) (XC - XB) + iyc - yB) (yc - h) = 0, (1.4.43) 

From (Eq. 1.4.43) the velocity vector of the joint C, vc = [xc^ycV, is written in matrix 
form: 

Vc = Ml • V, (1.4.44) 
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where 

v = [xA,yA^XB,yBf^ 

Ml = A"^ • A2, 

Ai = 

A2 = 

xc -XA yc - yA 

xc -XB yc - yB^ 

xc-XA yc-yA 0 0 

0 0 xc-XB yc-yB 

Similarly, by differentiating Eq. (1.4.43), the following acceleration equations are obtained: 

{xc - XAf + {xc - XA) (XC - XA) 

+ (jc - Mf + {yc- yA) {yc - yA) = 0, 

{xc - XBf + {xc - XB) {XC - XB) 

+ (jc - hf + (jc - yB) {yc - h) = 0. (1.4.45) 

The acceleration vector of the joint C is obtained from the above system of equations: 

ac = [xcycY = Ml • a + M2, (1.4.46) 

where 

a = [ XA,yA,XB,yB] , 

M2 = - A - ' • A3, 

A3 = 
(xc - XAf + (yc- yA)^ 
{xc - xsf + iyc- yB9_ 

To compute the angular velocity and acceleration of the RRR dyad, the following equations 
are written for the angles 02(0 and 03(0-

yc{t) - JA + {xc{t) - XA] tan 02(0 = 0, 

yc{t) - JB + [xc{t) - XB] tan 03(0 = 0. (1.4.47) 

The derivative with respect to time of Eq. (1.4.47) yields 

yc-yA- {xc - XA) tan 02 - {xc - XA) 
1 

yc-yB- {xc - XB) tan 03 - {xc - XB) 

COS^ 02 

1 

COS^ 03 

02 = 0, 

0 3 = 0 . (1.4.48) 

156 KINEMATIC CHAINS AND MACHINE COMPONENTS DESIGN 



The angular velocity vector is computed as 

where 

(*> = [02, hf = [(^2, mf = i2i • V + 122 • vc, 

i2i = 

i?2 = 

Xc -XA Xc - XA 

Ll Ll 
0 0 

xc -XB XC - XB 

^3 ^3 J 

r xc -XA Xc -XA-^ 

Xc -XB Xc- XB 

^ 3 ^ 3 -• 

Differentiating Eq. 4.49, the angular acceleration vector a = (y is 

a = [02,03]^ = [Oil, oi3f= i^i • V + i?2 • vc + i2i • a + i?2 • ac. 

(1.4.49) 

(1.4.50) 

I A 4 RRTDyad 
For the RRT dyad [see Fig. 1.3.5(a)], the following equations can be written for position 
analysis: 

[xc(t) - XAf + [yciO - yAf = AC^ = L^c = LJ, 

[xc(t) - XB] sin a - \yc{t) - JB] COS a = ± h. (1.4.51) 

From the above system of equations, xc{t) and ycit) can be computed. The time derivative 
ofEq. (1.4.51) yields 

(xc - XA) {XC - XA) + (yc - yA) (yc - h) = 0. 

(xc - XB) sin a - (yc - h) cos a = 0. 

The solution for the velocity vector of the joint C from Eq. (1.4.52) is 

yc = [xc,yc] =M3-v, 

where 

M3 = A-1 . As 

A4 = 
xc -XA yc - yA 

sin a — cos a 

A5 = 
Xc -XA yc -yA 0 

0 sin Q: — cos a 

(1.4.52) 

(1.4.53) 

Velocity and Acceleration Analysis 157 



Differentiating Eq. (1.4.52) with respect to time 

(xc - XAf + (xc - XA) (XC - XA) 

+ (yc - hf + (jc - yA) (yc - h) = 0, 

(xc - XB) sin a -(yc- JB) COS a = 0, 

the acceleration vector ac is obtained as 

ac = \xc.ycf = M3 • a + M4, 

where 

. - 1 M4 = - A - ^ . A 6 , 

{xc - XA9 + (yc - JA? 
0 

A6 = 

The angular position of the element 2 is described by the following equation: 

ycit) -JA- [xcit) - XA\ tan 02(0 = 0. 

The time derivative of Eq. (1.4.57) yields 

yc-JA- {xc - XA) tan02 - {xc - XA)—r— 02 = 0, 

COS^ 02 

and the angular velocity of the element 2 is 

xc -XA 

(1.4.54) 

(1.4.55) 

0)2 = [(jc - yA) - {xc - XA) tan 02]. 

(1.4.56) 

(1.4.57) 

(1.4.58) 

(1.4.59) 

The angular acceleration of the element 2 is ^2 = <̂ 2-

1.4.5 RTR Dyad 
For the RTR dyad [see Fig. 1.3.6(a)] the position relations are 

[xc{t)-XAf + \yc{t)-yAf = Ll 

tana = 

yc-yB _ yc-yA 
xc - XB Xc -XA 

1 + yc -yB yc- yA 
xc -XB xc - XA 

{yc - yB){xc ~ XA) - (yc - yA){xc - XB) 

(xc - XB){XC - XA) + (yc - yB)(yc - yA)' 
(1.4.60) 
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The time derivative of Eq. (1.4.60) yields 

(xc - XA) (XC - XA) + (yc - yA) (yc - JA) = 0, 

tan a [(xc - XB)(XC - XA) + (xc - XB)(XC - XA)] 

+ tan a [(yc - yA)(yc - ys) + (yc - yA)iyc - yB)\ 

+ (yc - yA){xc - XB) + (yc - yA){xc - XB)-

(yc - hX^c - XA) -(yc- yB)(xc - XA) = 0, 

or in a matrix form 

where 

A7 = 

A8 = 

Ay • Vc = As • V, 

xc -XA yc- yA 

xc-XA yc-yA 0 0 

¥3 ¥4 75 ye 

In addition, 

n = l(xc - XB) + (xc - XA)] tan a - (yc - yB) + (yc - yA), 

72 = [(yc - yA) + (yc - ys)] tan a-(xc- XA) + (xc - XB), 

73 = (xc -XB)tma + (yc - y s ) , 

74 = (xc - XA) tana + (yc - JA), 

75 = (yc - ys) tan a + (xc - XB), 

76 = (yc - }̂ A) tanof - (xc - XA). 

The solution for the velocity vector, vc, of the joint C, from Eq. (1.4.62) is 

Vc = M5 • V, 

where 

M 5 = : A 7 ^ A 8 . 

Differentiating Eq. (1.4.62), the following relation is obtained: 

A7 • ac = Ag • a - A9, 

(1.4.61) 

(1.4.62) 

(1.4.63) 

(1.4.64) 
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where 

A9 = 
(xc - XA)^ + (yc - hf 

yi 

yi = 2(xc - XB)(XC - XA) tan a + 2(yc - JB)(JC - J A) tan a 

- 2(yc - hXxc - XA) + 2(yc - MX^C - XB). 

The acceleration vector of the joint C is 

ac = Ms • a - M6, (1.4.65) 

where 

M6 = A 7 ^ A 9 . 

To compute the angular velocities for the RTR dyad, the following equations can be written: 

yc(t) -yA = [xc(t) - XA] tan 02 

03 = 02 + «• 

The time derivative of Eq. (1.4.66) yields 

(1.4.66) 

(yc - h) = ( ic - XA) tan 02 + (xc - XA) 

03 = 02-

The angular velocities of the links 2 and 3 are 

cos^ 02 
02 

0)2 = C02 = 
COS^ 02 

XC~XA 

The angular accelerations are found to be 

[(yc - h) - (xc - XA) tan 02]. 

a2 = as = 0)2 = C03. 

(1.4.67) 

(1.4.68) 

(1.4.69) 

1.4.6 TRTDyad 
For the TRT dyad (see Fig. 1.3.7) the two position equations are 

[xc(t) - XA] sin a - {yc(t) - JA] COS a = ± d, 

\xc(t) - XB] sin ^ - \yc(t) - yB] cos ̂  = ± h. (1.4.70) 
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The derivative, with respect to time of Eq. (1.4.70), yields 

(xc - XA) sin a-(yc- M) COS a 

+ (xc — XA)oi cos a + (yc — yA)oi sin a = 0, 

(xc - XB) sin p-(yc- h) cos ^ 

+ fe - XB)P COS yS + CVC - JB))^ sin P = 0, 

or in a matrix form 

Aio • vc = All • vi, 

where 

Vl = [XA,yA^Oi,XB,yB^P] 

Aio 

QlT 

— sm Of — cos a 

sin p — cos p 

A l l = 
sin Of —cos Of ?i 0 0 0 

0 0 0 sin^ -cos)g 2̂ 

?i = (̂ A - xc) cos a + OA - Jc) sin a, 

?2 = (̂ fi - xc) cos i6 + (y^ - yc) sin p. 

The solution of Eq. (1.4.72) gives the velocity of the joint C as 

Vc = M7 • Vl, 

where 

M7 = AJQ' -All. 

Differentiating Eq. (1.4.72), with respect to time, gives 

Aio -ac = All -ai - A12, 

where 

QlT 
ai = [xA,yA,(i,XB,yB,P] , 

A12 = 

§3 = 2(xc - XA)oi cos a + 2(jc - JA))^ sin a 

- (xc - XA)O(^ sin a + (yc - JA)«^ cos a. 

(1.4.71) 

(1.4.72) 

(1.4.73) 

(1.4.74) 
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§4 = 2(xc - XB)P COS P + 2{yc - JBW sin ^ 

- {xc - XBW^ sin ^ + {yc- JB)^^ COS 6̂. 

The solution of Eq. (1.4.74) gives the acceleration vector of joint C as 

ac = Mv • a + Mg. 

where 

(1.4.75) 

M g ^ A i o -An 

1.4.7 Examples 

EXAMPLE 1.4.1: R-TRR mechanism 

The following dimensions are given for the mechanism shown in Figure 1.4.7: AC = 
a = 0.100 m and BC = 0.300 m. The angle of the driver link 1 with the horizontal 
axis is 0 = 01 = 45°. The coordinates of joint B are XB = yB = 0.256 m. The 
driver link 1 rotates with a constant speed of ni = 3 0 rpm. Find the velocities and 
the accelerations of the mechanism. 

Solution A Cartesian reference frame with the origin at A is selected. The 
coordinates of joint A are 

XA=yA= 0, 

the coordinates of joint C are 

xc = AC = 0.100 m and yc = 0, 

FIGURE 1.4.7 R-TRK mechanism for Example I A. 1. 
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EXAMPLE 1.4.1: R-TRR mechanism-Conrc/ 

and the coordinates of joint B are 

XB = 0.256 m and yB = 0.256 m. 

The position of joint B is calculated from the equations 

tan0(O = ^ and [xB{t) - xcf ^ [ysit) - ycf = BC\ 

or 

XB(t) sin 0(0 = ysit) cos 0(0, 

[xB(t) - xcf + \yB{t) - ycf = BC\ (1.4.76) 

The linear velocity of point B on link 3 or 2 is 

V5 = Vj53 = \B2 = XB^ + hh 

where 

dxB . . dys 
XB = —- and yB = -—. 

dt dt 

The velocity analysis is carried out differentiating Eq. (1.4.76): 

XB sin0 + X50 cos(p —yB cos(t> —yB^ sin0, 

XB(XB - xc) + ^5(^5 - yc) = 0, 

or 

XB sin 0 + x^ 60 cos cj) = yB cos <p — yBCo sin 0, 

i:5(-̂ 5 - -^c) + J5(j5 - yc) = 0. (1.4.77) 

The magnitude of the angular velocity of the driver link 1 is 

0. = .,=^^ = ^ = " ^ ^ ' ^ " ^ = 3.141 rad/s. (1.4.78) 
^ 30 30 ^ ^ 

The angular velocity of link 1 is 

0) = (0\ = a)k = 3.141 k rad/s. 

Continued 
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EXAMPLE 1.4.1: R-TRR mechanism-Cofirc/ 

The link 2 and the driver Hnk 1 have the same angular velocity (Oi = a>2. 
For the given numerical data Eq. (1.4.77) becomes 

XB sin45° +0.256(3.141) cos45° = j ^ cos45° - 0.256(3.141) sin45°, 

XBi0256 - 0.1) + J5(0.256 - 0) = 0. (1.4.79) 

The solution of Eq. (1.4.79) gives 

XB = -0.999 m/s and yB = 0.609 m/s. 

The velocity of B is 

YB = VB3 = \B2 = -0.9991 + 0.609 J m/s, 

|V5| = IV53I = IV52I = ^(-0.999)2 +(0.609)2 ^ 1,171 ^ / s . 

The acceleration analysis is obtained using the derivative of the velocities given by 
Eq. (1.4.77): 

XB sin (j) -{-XBCO COS (/) -\- XBCO COS (j) — XBCO sin 0 

= yB cos 0 — J5 a; sin 0 — J5 ct) sin 0 + j ^ o;̂  cos 0, 

MxB - xc) + 4 + J^te - yc) -^yl = o. (1.4.80) 

The magnitude of the angular acceleration of the driver link 1 is 

a = 0) = 0 = 0. 

Numerically, Eq. (1.4.80) gives 

XB sin 45° + 2 (-0.999) (3.141) cos45° - 0.256(3.141)^ sin 45° 

= yB cos45° -2(0.609)(3.141) sin45°+ 0.256(3.141)2 cos45°, 

3c5(0.256 - 0.1) + (-0.999)^ + 3;5(0.256) + O.6O92 = 0. (1.4.81) 

The solution of Eq. (1.4.81) is 

XB = -1.802 m/s2 and yB = -4.255 m/s^. 

The acceleration ofB on link 3 or 2 is 

^B = ^83 =^B2 =XB^ + yB5 = -1.8021-4.255J m/s^, 

la^l = \2iB,\ = la^J = ^(-1.802)2 + (-4.255)2 = 4.620 m/s2. 
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EXAMPLE 1.4.1: R-TRR mechanism-Cofirc/ 

The slope of the link 3 (the points B and C are on the straight line BC) is 

tan 03 (0= — , 
XBKt) - Xc 

or 

[xB{t) - xc\ sin 03(0 = \yBit) - yc\ cos 03(0- (1.4.82) 

The angle 03 is computed as follows: 

VD — Vn 0 256 
03 = arctan ——— = arctan '- = 1.023 rad = 58.633°. 

XB-xc 0.256-0.1 

The derivative of Eq. (1.4.82) yields 

XB sin 03 + (XB - Xc) 03 cos 03 = yB cos 03 - CVfi - yc) 03 sin 03, 

or 

XB sin 03 + (xB - Xc) (03 cos 03 = yB cos 03 - CV5 - yc) ^3 sin 03, (1.4.83) 

where 0)3 = 03. 

Numerically, Eq. (1.4.83) gives 

-0.999 sin 58.633° + (0.256 - 0A)co3 cos 58.633° 

= 0.609 cos 58.633° - 0.256 0̂ 3 sin 58.633°, 

with the solution 0)3 = 3.903 rad/s. 

The angular velocity of link 3 is 

a>3 = (̂ 3 k = 3.903 k rad/s. 

The angular acceleration of link 3, a3 = d>3 = 03, is obtained using the derivative 
of the Eq. (1.4.83): 

XB sin 03 + XB C03 cos 03 + XB C03 cos 03 

+ (XB - xc) C03 COS 03 - {XB - xc) 0)1 sin 03 

= 'JB COS 03 - yB m sin 03 - yB 0)3 sin 03 

-iyB- yc) 0)3 sin 03 - Cvfi - yc) o)j cos 03, 

Continued 
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EXAMPLE 1.4.1: R-TRR mechanism-Co/irc/ 

or 

XB sin 0 3 + 2 x 5 co^ cos 03 + (XB — xc) 0̂ 3 cos 03 — (XB — xc) (o^ ^̂ ^ ^3 

= yB cos03 - 2 J5 0)3 sin03 - Cv̂  - }^c)^3 sin03 - (y^ - yc)^^3 cos03. 

Numerically, the previous equation becomes 

- 1.802 sin58.633° + 2(-0.999)(3.903) cos58.633° 

+ (0.256 - 0.1)^3 cos58.633° - (0.256 - 0.1)(3.903)^ sin58.633° 

= -4.255 cos 58.633° - 2 (0.609) (3.903) sin 58.633° 

- 0.256 Qf3 sin 58.633° -0.256(3.903)^ cos 58.633°, 

with the solution a^ — —2.252 rad/s^. The angular acceleration of link 3 is 

0̂ 3 = a3 k = -2.252 k rad/s^. 

The velocity of the point B\ on link 1 is calculated with the expression of velocity 
field of two points (^i and A) on the same rigid body (link 1): 

Vfii = VA + 0)1 X TAB = (O\^ ^AB = 

1 J k 

0 0 coi 

XB ys 0 

1 J k 

0 0 3.141 

0.256 0.256 0 

= -0.804 1 + 0.804 J m/s. 

The velocity field of two points (Bi and B2) not situated on the same rigid body (Bi 
is on link 1 and B2 is on link 2) is calculated with 

V52 = V5i + V^̂ ^̂  =\B,+yi2i^ 

where v^ is the relative velocity of the point B2 on link 2 with respect to the point 
Bi on link 1: 

V521 = VB2 - \Br = -0.9991 + 0.609 J - (-0.804 1 + 0.804 j) 

= -0 .1951-0 .195 J m/s. 

The relation between the angular velocities of link 2 and link 3 is 

(02 = (O3 +a>23» 
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EXAMPLE 1.4.1: R-TRR mechanism-Conrc/ 

and the relative angular velocity of link 2 with respect to link 3 is 

(023 =(02-(03 = 3.141 k - 3.903 k = -0.762 k rad/s. 

The acceleration of the point Bi on link 1 is 

a^i = aA + ai X VAB - o)\ YAB = -oy{ YAB = -o)\ (XB i + y^ J) 

= -3.141^ (0.256 1 + 0.256 j) = -2.5281 - 2.528 j m/sl 

The acceleration of ^2 in terms of Bi is 

^B2 =^Bi +a^2i + 2 ^ 1 >^^B2i' 

where a^ is the relative acceleration of the point B2 on link 2 with respect to the 
point B\ on link 1 and 2 a>i x v^ is the Coriolis acceleration: 

a^2i = 2(01 X v^2i = 2(^2 X v^2i = 

1 

0 

J k 

0 coi 

""inx ^iny ^ 

1 J k 

0 0 3.141 

-0.195 -0.195 0 

1.226 1-1.226 J m/s^ 

The relative acceleration of ^2 with respect to 5i is 

5̂21 = ^B2 - a^i - a^2i 

= -1.802 1 - 4.255 J - (-2.5281 - 2.528 j) - (1.226 1 - 1.226 j) 

= -0.5 1 - 0.5 J m/s^. 

The relative angular acceleration of link 2 with respect to link 3 is 

^23 = a2 — ^3 = —CC3 = 2.252 k rad/s , 

where a2 = oti = 0 . 

EXAMPLE L4.2: R-RTR-RRT mechanism 

The mechanism shown in Figure 1.4.8 has the dimensions: AB = 0.100 m, AC = 
0.150 m, CD = 0.075 m, and DE = 0.200 m. The angle of the driver Hnk 1 with 
the horizontal axis is 0 = 01 = 45°, and the angular speed of the driver link 1 is 
CO = coi =4.712 rad/s. Find the velocities and the accelerations of the mechanism. 

Continued 
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EXAMPLE 1.4.2: R-RTR-RRT mechanism-Cofirc/ 

FIGURE 1.4.8 R-RTR-RRT mechanism for Example 1.4.2. 

Solution The origin of the fixed reference frame is at C = 0. The position of the 
fixed joint A is 

XA = 0, yA = AC = 0.150 m. 

The position of joint B is 

XB(t) = XA-{-AB cos 0(0, yB(t) = yA-^AB sin 0(0, 

and for 0 = 45°, the position is 

XB = 0-\- 0.100 cos 45° = 0.070 m, yB = 0.150 + 0.100 sin 45° = 0.220 m. 

The linear velocity vector ofB is 

Vfi =XBl-{-yBh 
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EXAMPLE 1.4.2: R-RTR-RRT mechanism-Cofirc/ 

where 

XB = = —ABg) sin0, ys = —T" =AB(p cos0. 
dt at 

With 0 = 45° and 0 = a> = 4.712 rad/s: 

XB = -0.100(4.712) sin 45° = -0.333 m/s, 

yB = 0.100(4.712) cos 45° = 0.333 m/s, 

VB = \\B\ = yjxl + yl = V'(-0.333)2 + 0.3332 ^ 0.471 m/s. 

The linear acceleration vector of B is 

afi = XBi + hh 

where 

dXB ' 2 
XB = —T~ = —AB(j) cos 0 — ABcf) sm 0, 

dt 

dyB •? 
yB = —7- = —ABcj) sm 0 + A50 cos 0. 

The angular acceleration of link 1 is 0 = (i> = 0. The numerical values for the 
acceleration ofB are 

XB = -0.100(4.712)2 cos45° ^ -1.569 m/s^, 

3̂ 5 = -0.100(4.712)2 sin45° = -1.569 m/s^, 

fl5 = la^l = ^Jxl-\-'fB = V'(-l-569)2 +(-1.569)2 = 2.220 m/s2. 

The velocity and acceleration of point B on link 1 (or on link 2) can also be calculated 
with the relations 

V5 = v^i = \B2 = VA + wi X TAB = 

1 J k 
0 0 (wi 

XB -XA yB-yA 0 

1 J k 

0 0 4.712 

0.070-0.15 0.220 0 

= -0.333 1 + 0.333 j m/s, 

a^ = afii = a52 = aA + ai x YAB - ^?rAB = -O)\YAB 

= 4.712^[(0.070 - 0.15) 1 + 0.220 j] = -1.569 1 - 1.569 j m/s^ 

where (0\ = a;i k = a> k and a\ = (0\ = 0. 
Continued 
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EXAMPLE 1.4.2: R-RTR-RRT mechamsm-ConVd 

The points B and C are located on the same straight Une BD: 

jBit) - y c - [xB(t) - xc] tan 03(0 = 0. (1.4.84) 

The angle 03 = 02 is computed as follows: 

03 = 02 = arctan , 
XB -xc 

and for 0 = 45° is obtained by 

0.22 
03 = arctan = 72.235°. 

0.07 

The derivative of Eq. (1.4.84) yields 

h - y c - (xB - xc) tan 03 - {XB - xc)—5—- 03 = 0. (1.4.85) 
COŜ  03 

The angular velocity of link 3, (03 = (02 = ^3/^^ computed as follows 

cos^ 03Lyfi - y c - (xB - xc) tan 03] 
a>3 = 0̂2 = , 

XB -XC 

and 

cos^ 72.235°(0.333 + 0.333 tan 72.235°) 
C03 = ^ = 1.807 rad/s. 

0.07 

The angular acceleration of link 3, 0̂ 3 = 0̂ 2 = 03, is computed from the time 
derivative of Eq. (1.4.85) 

h - y c - (xB - xc) tan 03 - 2(XB - xc)—r—03 
COŜ  03 

sin 03 .9 1 .. 
- 2(XB - xc) T— 03 - (XB - xc) y— 03 = 0. 

COŜ  03 COŜ  03 

The solution of the previous equation is 

oi3=oi2 = \yB-yc- (XB - Xc) tan 03 - 2(XB - xc)—T--03 
COŜ  03 

0/ ^ ^^"^^3 '2COS^(l)3 
-2{XB-Xc) T— 03] , 

COŜ  03 XB — Xc 

170 KINEMATIC CHAINS AND MACHINE COMPONENTS DESIGN 



EXAMPLE 1.4.2: R-RTR-RRT mechanism-Conrc/ 

and for the given numerical data: 

Qf3 = Qf2 = [-1.569 + 1.569 tan 72.235° + 2(0.333) 
1 

cos2 72.235° 
1.807 

sin 72.235° . cos^ 72.235° . 
2(0.07) , _ ^ _ (1.807)^1 ,-zz: = 1.020 rad/s^ 008^72.235° 0.07 

The links 2 and 3 have the same angular velocity a>3 = c<>2 = ct>3 k and the same 
angular acceleration a3 = a2 = as k. The relative angular velocity of link 2 relative 
to link 1 is 

0)21 =(02-(0i= (1.807 - 4.712) k = -2.905 k rad/s, 

and the relative angular acceleration of link 2 relative to link 1 is 

0i2\ =a2 — oi\ =ot2 = 1.020 k rad/s^. 

The velocity and acceleration of point B on link 3 are calculated with 

V53 = Vc + 6>3 X YCB = 

1 J 

0 0 1.807 

0.070 0.220 0 

1 J k 

0 0 co3\ 

XB ys 0 

k 
0.398 1 + 0.127 J m/s, 

-a)l(xBi-\-yB3) 

a^s = ac + Qf3 X rcB - ^S^CB 

J k 
0 0 Qf3 

\XB JB 0 

1 J k 

0 0 1.020 

|0.070 0.220 0 

= -0.456 1 - 0.649 j m/s^ 

1.807^(0.0701 +0.220 j) 

The velocity field of two points {B2 and ^3) not situated on the same rigid body 
{B2 is on link 2 and B^ is on link 3) is expressed by 

V52=V53+V^23' 

Continued 
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EXAMPLE 1.4.2: R-RTR-RRT mechanism-Court/ 

and 

v̂ 23 = \B2 - VB3 = -0.333 I + 0.333 j - (-0.398 i + 0.127 j) 

= 0.065 I + 0.205 J m/s. 

The expression for the Coriolis acceleration is 

a^23 = 2 W2 X v^23 = 2 &)3 X v^23 

I • J k | 
= 2 

= -0.742 1 + 0.237 j m/sl 

The relative acceleration of B2 with respect to B3 is 

^B23 ~ ^^2 ~ ^^3 ~ ^B23 

= -1.569 1 - 1.569 J - (-0.4561 - 0.649 j) - (-0.742 i + 0.237 j) 

= -0.5 1 - 0.5 J m/s^. 

The position of the joint D is given by the following quadratic equations: 

[xD(t) - xcf + \yD{t) - ycf = CD\ 

[xD(t) - xc] sin 03(0 - lyoit) - yc] cos 03(0 = 0, 

The previous equations are rewritten as follows: 

xl(t)^yl(t) = CD\ 

xoit) s in03(0—JD(0 COS03(O = O. 

For 0 = 45°, the coordinates of joint D are 

CD 0.075 

(1.4.86) 

XD = ±- = ±- = -0.023 m, 
V l + t a n 2 03 Vl+ tan2 72.235 

j ^ =xz)tan03 = -0.023 tan 72.235° = -0.071m. 

The negative value for XD was selected for this position of the mechanism. 
The velocity analysis is carried out differentiating Eq. (1.4.86) 

XDXD + yoyo = 0, 

XD sin 03 + XD COS 03 03 — JD COS 03 + yD sin 03 03 = 0. (1.4.87) 
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EXAMPLE 1.4.2: R-RTR-RRT mechanism-Cofirc/ 

For the given data, Eq. (1.4.87) becomes 

-0.023x1)-0.07 l>;z) = 0, 

0.952 iz) - 0.023(0.305)(1.807) - 0.305 JD - 0.071(0.952)( 1.807) = 0. 

The solution is 

XD = 0.129 m/s, yo = -0.041 m/s. 

The magnitude of the velocity of joint D is 

vj) = |vz)| = y/xl+yl = ^0.1292 +(-0.041)2 ^ o.l35 m/s. 

The acceleration analysis is obtained using the derivative of the velocity given by 
Eq. (1.4.87): 

xj) + XD'XD + i'l) + yoyo = 0, 

xo sin 03 + 2i:/)03 cos 03 — x/)03 sin 03 + XD03 COS 03 

- yo cos 03 + 2yo(p3 sin 03 + yz)03 cos 03 + ji)03 sin 03 = 0, 

or 

0.129^ + (-0.022)jcz) + (-0.041)2 ^ (_o.071)3;/) = 0, 

jcz) sin72.235° + 2(0.129)(1.807)cos72.235° - (-0.022)(1.807)2 sin72.235° 

+ (-0.022)( 1.020) cos 72.235° - jD cos 72.235° + 2(-0.041)(1.807) sin 72.235° 

+ (-0.071)(1.807)^ cos 72.235° + (-0.071)(1.020)2 sin 72.235° = 0. 

The solution of the previous system is 

XD = 0.147 m/s2, yo = 0.210 m/s2. 

The absolute acceleration of joint D is 

ao = |az)| = yl'xl+fj) = ^(0.150)2 +(0.212)2 = 0.256 m/s2. 

The position of joint E is determined from the following equation: 

[xE(t) - XD(t)f + te(0 - yoiOf = DE\ 

Continued 
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EXAMPLE 1.4.2: R-RTR-RRT mechanlsm-Co/ird 

and with the coordinate JE = 0: 

{xE{t)-XD{t)f+yl{t) = DE^. 

With the given numerical values Eq. (1.4.88) becomes 

(1.4.88) 

{XE + 0.023)^ + (0.071)2 ^ Q 22̂  

with the correct solution XE = 0.164 m. 

The velocity of joint E is determined by differentiating Eq. (1.4.88) as follows 

2{XE - XD)(XE - XD) + lyoyo = 0, (1.4.89) 

or 

XE -XD = — 
ypyp 

XE -XD' 

The solution of the above equation is 

. (-0.071)(-0.041) 
XE = 0.129 —-—-—;--rz— = 0.113 m/s. 

0.164 + 0.023 

The derivative of Eq. (1.4.89) yields 

(XE - XD){XE - XD) + {XE - XDf + JD + JD^D = 0, 

with the solution 

XE=XD 

or with numerical values 

yp + ypyp + fa - ^Df 
XE -XD 

.. ^ . ^ ^ (-0.041)2 + (-0.071)(0.21) + (0.112 - 0.129)^ ^ _ ^ . 
XE — 0.150 ——-——— = 0.217 m/s^. 

0.164 + 0.023 

The angle 04 is determined from the following equation: 

yE - yp(t) - [xE(t) - XD(t)] tan 04(0 = 0, (1.4.90) 

where yE = 0. The above equation can be rewritten 

-yp(t) - [xE(t) - XDim tan 04(0 = 0, (1.4.91) 
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EXAMPLE 1.4.3: R-RTR-RRT mechanism-Co/irc/ 

and the solution is 

04 = arctan | ~^^ ) = arctan f ^ . ^? ' ^^ ! ^^ . | = 20.923°. 
^ \XE-XD) V0.164 +0 .023 / 

The derivative of Eq. (1.4.91) yields 

-JD - fe - XD) tan 04 - {XE - XD)—9—-04 = 0. (1.4.92) 
COŜ  04 

Hence, 

. cos^ 04 \yD + {xE - XD) tan 04] 
0)4 = 04 = 

XE -XD 

cos^20.923°[-0.041 + (0.113 - 0.129) tan 20.923°] 

~ 0.164-(-0.022) 

= 0.221 rad/s. 

The angular acceleration of link 4 is determined by differentiating Eq. (1.4.92) as 
follows: 

-JD- (xE - XD) tan 04 - 2(XE - XD)—9--04 
COŜ  04 

sin 04 .9 1 .. 
-2(xE - XD)—T-r(l>4 - fe - ^D)—TT"^^ = 0, 

COŜ  04 COŜ  04 
or 

- 0.210 - (0.217 - 0.147) tan 20.923° - 2(0.113 - 0.129)—^-^ 0.221 
cos2 20.923° 

sin 20.923° . 1 
- 2(0.164 + 0.022)—^———0.2212 _ ^Q ^^4 ^ Q Q22)— 04 = 0, 

cos^ 20.923° cos2 20.923°^ 
The solution of the previous equation is 

0̂4 = 04 = —1.105 rad/s^. 

1.4.8 Problems 
1.4.1 The four-bar mechanism shown in Figure 1.3.16 has the dimensions: 

AB = CD = 0.04 m and AD = BC = 0.09 m. The driver link AS rotates with a 
constant angular speed of 120 rpm. Find the velocities and the accelerations of the 

Velocity and Acceleration Analysis 175 



four-bar mechanism for the case when the angle of the driver link AB with the 
horizontal axis is </> = 30°. 

1.4.2 The constant angular speed of the driver link 1 of the mechanism shown in 
Figure 1.4.9 is co = coi = 10 rad/s. The distance from link 3 to the horizontal axis 
Ax is a = 55 mm. Find the velocity and the acceleration of point C on link 3 for 
0 = 45°. 

FIGURE 1.4.9 Mechanism for Problem 1.4.2. 

1.4.3 The slider crank mechanism shown in Figure 1.4.10 has the dimensions: 
AB = 0.1 m and BC = 0.2 m. The driver link 1 rotates with a constant angular 
speed of n = 60 rpm. Find the velocity and acceleration of the slider 3 when the 
angle of the driver link with the horizontal axis is 0 = 45°. 

FIGURE 1.4.10 Mechanism for Problem 1.4.3. 
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1.4.4 The planar mechanism considered is shown in Figure 1.3.19. The following data are 
given: AB = 0.150 m, BC = 0.400 m, CD = 0.370 m, CE = 0.230 m, EF = CE, 
La = 0.300 m, Lb = 0.450 m, and Lc = CD. The constant angular speed of the 
driver Hnk 1 is 60 rpm. Find the velocities and the accelerations of the mechanism 
for 0 = 01 =30° . 

1.4.5 The R-RRR-RTT mechanism is shown in Figure 1.3.20. The following data 
are given: AB = 0.080 m, BC = 0.350 m, CE = 0.200 m, CD = 0.150 m, 
La = 0.200 m, Lb = 0.350 m, and Lc = 0.040 m. The driver link 1 rotates 
with a constant angular speed ofn = 300 rpm. Find the velocities and the 
accelerations of the mechanism when the angle of the driver link with the 
horizontal axis is 0 = 155°. 

1.4.6 The mechanism shown in Figure 1.3.21 has the following dimensions: AB = 60 mm, 
AD = 200 mm, BC = 140 mm, CE = 50 mm, EF = 170 mm, and a = 130 nrni. 
The constant angular speed of the driver link 1 is « = 300 rpm. Find the velocities 
and the accelerations of the mechanism when the angle of the driver link 1 with the 
horizontal axis is 0 = 0i = 30°. 

1.4.7 The dimensions for the mechanism shown in Figure 1.3.22 are: AB = 120 mm, 
BD = 320 mm, BC = 110 mm, CD = 300 mm, DE = 200 mm, CF = 400 mm, 
AE = 320 mm, and ^ = 80 mm. The constant angular speed of the driver link 1 is 
n = 30 rpm. Find the velocities and the accelerations of the mechanism for 
0 = 01 = 30°. 

1.4.8 The mechanism in Figure 1.3.23 has the dimensions: AB = 50 mm, AC = 25 mm, 
BD = 100 nmi, DE = 140 mm, EF = 80 mm. La = 130 mm, and Lb = 30 nam. 
Find the velocities and the accelerations of the mechanism if the constant angular 
speed of the driver link lisn = 100 rpm and for 0 = 0i = 150°. 

1.4.9 The dimensions for the mechanism shown in Figure 1.3.24 are: AB = 180 mm, 
BC = 470 mm, AD = 430 mm, CD = 270 mm, DE = ISO mm, EF = 400 mm, 
and La = 70 mm. The constant angular speed of the driver link 1 is « = 220 rpm. 
Find the velocities and the accelerations of the mechanism for 0 = 0i = 45°. 

1.4.10 The mechanism in Figure 1.3.25 has the dimensions: AB = 200 mm, AC = 600 mm, 
BD = 1000 mm. La = 150 mm, and Lb = 250 mm. The driver link 1 rotates with a 
constant angular speed of « = 60 rpm. Find the velocities and the accelerations of 
the mechanism for 0 = 0i = 120°. 

1.4.11 Figure 1.3.26 shows a mechanism with the following dimensions: AB = 250 mm, 
BD = 900 mm, and La = 300 mm. The constant angular speed of the driver link 1 is 
n = 500 rpm. Find the velocities and the accelerations of the mechanism when the 
angle of the driver link 1 with the horizontal axis is 0 = 240°. 

1.4.12 The mechanism in Figure 1.3.27 has the dimensions: AB = 150 mm, AC = 350 mm, 
BD = 530 mm, DE = 300 mm, EF = 200 mm. La = 55 mm, and Lb = 250 mm. 
The constant angular speed of the driver link 1 is n = 30 rpm. Find the velocities 
and the accelerations of the mechanism for 0 = 0i = 120°. 

1.4.13 Figure 1.3.28 shows a mechanism with the following dimensions: AB = 150 mm, 
BC = 550 mm, CD = DE = 220 mm, EF = 400 mm, La = 530 mm, and 
L^ = Lc = 180 mm. Find the velocities and the accelerations of the mechanism if 
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the constant angular speed of the driver Unk 1 is n = 1000 rpm and for 
0 = 01 = 150°. 

1.4.14 Figure 1.3.29 shows a mechanism with the following dimensions: AB = 250 mm, 
BC = 1200 mm, CE = 400 nmi, CD = 800 nmi, EF = 700 mm, La = 650 mm. 
Lb = 1000 nrni, and Lc = 1200 mm. The constant angular speed of the driver link 1 
is n = 70 rpm. Find the velocities and the accelerations of the mechanism for 
0 = 01 = 120°. 

1.4.15 Figure 1.3.30 shows a mechanism with the following dimensions: AB = 100 mm, 
BC = 270 mm, CF = 260 mm, CD = 90 nmi, DE = 300 nmi. La = 350 mm, 
Lh = 200 mm, and L^ = 120 mm. The constant angular speed of the driver link 1 is 
n = 100 rpm. Find the velocities and the accelerations of the mechanism when the 
angle of the driver link 1 with the horizontal axis is 0 = 60°. 

1.4.16 Figure 1.3.31 shows a mechanism with the following dimensions: AB = 40 mm, 
BC = 100 mm, AD = 50 mm, and BE = 110 mm. The constant angular speed of 
the driver link 1 is n = 250 rpm. Find the velocities and the accelerations of the 
mechanism if the angle of the driver link 1 with the horizontal axis is 0 = 30°. 

1.4.17 The dimensions of the mechanism shown in Figure 1.3.32 are: AB = 100 mm, 
BC = 200 mm, BE = 400 mm, CE = 600 mm, CD = 220 mm, EF = 800 mm. 
La = 250 mm, L^ = 150 mm, and Lc = 100 mm. The constant angular speed of the 
driver link 1 is w = 100 rpm. Find the velocities and the accelerations of the 
mechanism for 0 = 0i = 150°. 

1.4.18 The dimensions of the mechanism shown in Figure 1.3.33 are: AB = 200 mm, 
AC = 300 mm, CD = 500 mm, DE = 250 mm, and La = 400 mm. Find the 
positions of the joints and the angles of the links. The constant angular speed of the 
driver link 1 is « = 40 rpm. Find the velocities and the accelerations of the 
mechanism when the angle of the driver link 1 with the horizontal axis is 0 = 60°. 

1.4.19 The dimensions of the mechanism shown in Figure 1.3.34 are: AB = 160 mm, 
AC = 90 mm, CD =150 mm, and DE = 400 mm. The constant angular speed of 
the driver link 1 is « = 70 rpm. Find the velocities and the accelerations of the 
mechanism for 0 = 0i = 45°. 

1.4.20 The dimensions of the mechanism shown in Figure 1.3.35 are: AB = 150 mm, 
AC = 250 mm, and CD = 450 mm. For the distance b select a suitable value. The 
constant angular speed of the driver link 1 is n = 80 rpm. Find the velocities and the 
accelerations of the mechanism for 0 = 0i = 30°. 

1.4.21 The dimensions of the mechanism shown in Figure 1.3.36 are: AB = 180 mm, 
AC = 90 mm, and CD = 200 mm. The constant angular speed of the driver link 1 is 
n = 180 rpm. Find the velocities and the accelerations of the mechanism for 
0 = 01=60° . 

1.4.22 The dimensions of the mechanism shown in Figure 1.3.37 are: AB = 180 mm, 
AC = 500 mm, BD = La = 770 mm, and DE = 600 nmi. The constant angular 
speed of the driver link lisn = ni = 700 rpm. Find the velocities and the 
accelerations of the mechanism for 0 = 0i = 45°. 
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1.4.23 The dimensions of the mechanism shown in Figure 1.3.38 are: AB = 220 mm, 
AD = 600 mm, and BC = 250 mm. The constant angular speed of the driver link 1 
is n = 700 rpm. Find the velocities and the accelerations of the mechanism for 
0 = 01 = 120°. Select a suitable value for the distance a. 

1.4.24 Refer to Example 1.3.1. The mechanism in Figure 1.3.11(a) has the dimensions: 
AB = 0.20 m, AD = 0.40 m, CD = 0.70 m, CE = 0.30 m, and yn = 0.35 m. The 
constant angular speed of the driver link lisn = 1000 rpm. Find the velocities and 
the accelerations of the mechanism for the given input angle 0 = 0i = 60°. 

1.4.25 Refer to Example 1.3.2. The mechanism in Figure 1.3.12 has the dimensions: 
AB = 0.02 m, BC = 0.03 m, CD = 0.06 m, AE = 0.05 m, and La = 0.02 m. The 
constant angular speed of the driver link lisn = 600 rpm. Find the velocities and 
the accelerations of the mechanism for the given input angle 0 = 0i = 7t/3. 

1.4.26 Refer to Example 1.3.3. The mechanism in Figure 1.3.15 has the dimensions: 
AC = 0.100 m, BC = 0.300 m, BD = 0.900 m, and La = 0.100 m. The constant 
angular speed of the driver link I isn = 100 rpm. Find the velocities and the 
accelerations of the mechanism for 0 = 30°. 
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1.5 Contour Equations 

This chapter provides an algebraic method to compute the velocities and accelerations of any 
closed kinematic chain. The classical method for obtaining the velocities and accelerations 
involves the computation of the derivative with respect to time of the position vectors. The 
method of contour equations avoids this task and uses only algebraic equations [4, 56]. 
Using this approach, a numerical implementation is much more efficient. The method 
described here can be applied to planar and spatial mechanisms. 

Two rigid links (j) and (k) are connected by a joint (kinematic pair) at A (Fig. 1.5.1). The 
point Aj of the rigid body (j) is guided along a path prescribed in the body (k). The points 
Aj belonging to body (j) and the Ak belonging to body (k) are coincident at the instant of 
motion under consideration. The following relation exists between the velocity v̂ ^ of the 
point Aj and the velocity v^^ of the point Ak: 

VA, =VA,+V^.^, (1.5.1) 

where v^. = v^.^ indicates the velocity of Â  as seen by an observer at Ak attached to 
body k or the relative velocity of Â  with respect ioAk, allowed at the joint A. The direction 
of v^. is obviously tangent to the path prescribed in the body (k). 

From Eq. (1.5.1) the accelerations of Ay and Ajt are expressed as 

aAy=aA,+a;.^+a:^.^, (1.5.2) 

where a^ = a^.^ is known as the Coriolis acceleration and is given by 

a^.^=2(«, xv^.^, (1.5.3) 

where (Ok is the angular velocity of the body {k). 
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Point A 
' Aj on link (j) 

path 

(a) 

VA,Jltt 

(b) 

FIGURE 1.5.1 Two rigid links (j) and (k) connected by a joint at A: (a) general case, (b) slider joint 
in general motion. 

Equations (1.5.1) and (1.5.2) are useful even for coincident points belonging to two links 
that may not be directly connected. A graphical representation of Eq. (1.5.1) is shown in 
Figure 1.5.1(b) for a rotating slider joint. 

Figure 1.5.2 shows a monocontour closed kinematic chain with n rigid links. The joint 
Ai, i = 0,1,2,...,n is the connection between the links (/) and (/ - 1). The last link n is 
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Â  

O 
1+2 A, 

2+1 

I'l 

FIGURE 1.5.2 Monocontour closed kinematic chain with n rigid linl<s. 

connected with the first link 0 of the chain. For the closed kinematic chain, a path is chosen 
from link 0 to link n. At the joint At there are two instantaneously coincident points: 1) the 
point A/,/ belonging to link (/), Aij e (i), and 2) the point A/,/_i belonging to body (i — 1), 
A/,/_i € (/ - 1). 

1.5.1 Contour Velocity Equations 
The absolute angular velocity, (Ot = (Oj^o, of the rigid body (0, or the angular velocity of 
the rigid body (/) with respect to the "fixed" reference frame Oxyz is 

coi = (Oi-i +(y/ , / - i , (1.5.4) 

where a>/_i = (Ot-i^o is the absolute angular velocity of the rigid body (/ — 1) [or the angular 
velocity of the rigid body (/ — 1) with respect to the "fixed" reference frame Oxyz] and (o^-i 
is the relative angular velocity of the rigid body (/) with respect to the rigid body (/ — 1). 

For the n link closed kinematic chain the following expressions are obtained for the 
angular velocities: 

(Oi =(Oo-\- a>l,0 

(02 = (Oi -{- (02,1 

(Oi =(Oi-i +(Ou-l 

(*>0 = (*>n + WO,n- (1.5.5) 
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Summing the expressions given in Eq. (1.5.5), the following relation is obtained: 

(O\,0 + ^2,1 H h (Oo,n = 0, (1.5.6) 

which may be rewritten as 

J2^i,i-i=0. (1.5.7) 
(0 

Equation (1.5.7) represents the first vectorial equation for the angular velocities of a simple 
closed kinematic chain. 

The following relation exists between the velocity v^,, of the point A^ and the velocity 
VAM-1 of the point A,^/_I 

VA,,=VA,,_i+v;.^_^, (1.5.8) 

where v^. ._j = V^,,A//_I ^̂  ^^^ relative velocity ofA^ on link (/) with respect to A/,/_i on 
link (/ — 1). Using the velocity relation for two particles on the rigid body (/), the following 
relation exists: 

VA,+i,, = VA,,- + (Oi X rA,A,+i' (1-5.9) 

where (Oi is the absolute angular velocity of the link (/) in the reference frame Oxyz, and 
rA/A/+i is the distance vector from A/ to A/+i. Using Eqs. (1.5.8) and (1.5.9), the velocity of 
the point A/+î / € (/ + 1) is written as 

VA,+i,- = VA,.,_i + (Oi X rA,A,>i + vi,.,_i• (1-5.10) 

For the n link closed kinematic chain the following expressions are obtained: 

VA3,2=VA2,i+W2XrA2A3+V^^^^ 

VA4,3 = VA3,2 4- a>3 X rA3A4 + VA3^2 

VA,+i,- = VA,,_i + (Oi X rA,A,+i + V^. ._̂  

VA2,i = VAi,o + ^1 X rAiA2 + v̂ î o- (1.5.11) 

Summing the relations in Eq. (1.5.11): 

[a>i X rAiA2 + ^2 X rA2A3 + • • • + w/ x rA,A,+i + • • • + 6>o x FAOAI] 

+ K i + v̂ 3,2 + • • • + <t,i-i + • • • + Âo,„ + ^M,o] = 0- (1-5.12) 
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Because the reference system Oxyz is considered "fixed", the vector ^Ai^xAi is written in 
terms of the position vectors of the points A/_i and A/: 

rA,_iA/ = r^. - VA._^ , (1.5.13) 

where r^, = XQAI and ^Ai-\ = ^OAi-i • Equation (1.5.12) becomes 

[FAI X (a>i - (oo) + rA2 x (a>2 - <wi) + • • • + TAQ X (a>o - (On)] 

+ K , o + ^k. + • • • + ^A.,_, + • • • + v^o J = «• (I-5-14) 

Using Eq. (1.5.5), Eq. (1.5.14) becomes 

[FAI X a>i,o + rA2 X 002,1 + • • • + FAQ X (Oo,n] 

+ K o + v ^ . i + - - - + ^ A o J = 0 . (1.5.15) 

The previous equation is written as 

(0 (0 

Equation (1.5.16) represents the second vectorial equation for the angular velocities of a 
simple closed kinematic chain. 

Equations such as 

J26>M-i = 0 and E ^ ^ i >̂  ^M-i + E"^k i - i = ^' ^^'^-^^-^ 
(0 (0 (0 

represent the velocity equations for a simple closed kinematic chain. 

1.5.2 Contour Acceleration Equations 
The absolute angular acceleration, a/ = ai^o, of the rigid body (/) [or the angular acceleration 
of the rigid body (/) with respect to the "fixed" reference frame Oxyz] is 

at = a/_i + a/,/_i + (Ot x (Otj-u (1.5.18) 

where a/_i = a/_i,o is the absolute angular acceleration of the rigid body (/ — 1) [or the 
angular acceleration of the rigid body (/ — 1) with respect to the "fixed" reference frame 
Oxyz] and a/,/_i is the relative angular acceleration of the rigid body (/) with respect to the 
rigid body (/ — 1). 

Contour Equations 185 



For the n link closed kinematic chain the following expressions are obtained for the 
angular accelerations: 

0C2=ai-\- a2,l + 6>2 X 6>2,1 

Oi3=Ot2+ Ot3,2 + 6>3 X a>3,2 

at = a /_ i + Uij-i + (Oi X (Oij-i 

ai = ao + ai,o + a>i x (OI^Q. (1.5.19) 

Summing all the expressions in Eq. (1.5.19): 

^2,1 + ot3,2 H h ai,o + 0)2 X a>2,i H \-(0i X 0)1,0 = 0. (1.5.20) 

Equation (1.5.20) is rewritten as 

Y^ttij-i -\-Y^(OiX a>/,/_i = 0. (1.5.21) 
(0 (0 

Equation (1.5.21) represents the first vectorial equation for the angular accelerations of a 
simple closed kinematic chain. 

Using the acceleration distributions of the relative motion of two rigid bodies (/) and 
(^•-1): 

where SLA^ and SLA^-I are the linear accelerations of the points Aij and A/,/_i, and a^.. = 
^Ai iAi /_i ^̂  ^^^ relative acceleration between A/,/ on link (/) and A/,/_i on link (/ — 1). Finally, 
a^ is the Coriolis acceleration defined as 

aA,,_, =2w,_ixv^. , ._, . (1.5.23) 

Using the acceleration distribution relations for two particles on a rigid body: 

^Ai+ij = ^Au + Oti X TAiAi+i + (Oi X (O)/ X TA^A.+I), (1.5.24) 

where a/ is the angular acceleration of the link (/). From Eqs. (1.5.22) and (1.5.24): 

aA,+i,- = aA,,_i + ^Aij.i + aA,,_i + «/ x rA,A,+i + (Oi x (cot x rA^A.+i). (1.5.25) 
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Writing similar equations for all the links of the kinematic chain, the following relations 
are obtained: 

aA3,2 = ^A2,i + ^A2,i + Â2,i + ̂ 2 X rA2A3 + ̂ 2 X ((O2 X FASAS). 

aA4,3 = aA3,2 + aA3,2 + Â3,2 + ^3 X rA3A4 + ̂ 3 X ((O3 X rA3A4). 

aAi,o = aAo,„ + ^Ao,n + Âo,„ + «0 X FAoAi + 6>0 X (WQ X FAOAI), 

aA2,i = aAî o + ^Ai,o + ^Ai,o + «i X rAiA2 + wi X (a>i x rAiA2)- (1.5.26) 

Summing the expressions in Eq. (1.5.26): 

[^A,o + aA2,i + • • • + ^Ao J + [^A,,o + a^2,l + • • • + ^Ao,„] 

+ [ai X rAiA2 + a2 X rA2A3 + • • • + ao x FAQAI] + a>i X (6>I X rAiA2) 

+ a>2 X (W2 X rA2A3) H + 6>o x (a>o x FAQAI) = 0. (1.5.27) 

Using the relation TA^.IA/ = TA, - rA/_i in Eq. (1.5.27): 

[^ko + ^ A 2 , + • • • + a^o J + [^ko + ^A2,l + • • • + a^O J 

+ [FAI X (ai,o + a>i X a>i,o) H + FAQ x (ao,n + 6>o x a>o,«)] 

+ a>i X (a>i X FA1A2) + a>2 X ((̂ 2 X FA2A3) + • • • + 6>o x (a>o x FAQAI) 

= 0. (1.5.28) 

Equation (1.5.28) is rewritten as 

(0 (0 (0 

-\-J2(0iX ((Oi X FA,A,+i) = ^ (1-5.29) 
(0 

Equation (1.5.29) represents the second vectorial equation for the angular accelerations of 
a simple closed kinematic chain. Thus, 

y ^ oti^i-i + y ^ (Oi X a>/,/_i = 0 and 
(0 (0 
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(0 (0 (0 

+ ^ w,- X (a>/ X rA,A,+i) = 0. (1.5.30) 
(0 

are the acceleration equations for the case of a simple closed kinematic chain. 

Remarks 
1. For a closed kinematic chain in planar motion, simplified relations are obtained 

because 

(Oi X ((Oi X TAiAi+i) = -cofvAiAi+i and (Oi x 0)/,/-! = 0. (1.5.31) 

Equations 

y^og/,/-i = 0 and 
(0 

E ""^i ^ «M-i + E "^u-i + E ^A.,-1 - ?̂rA,A,+i = 0. (1.5.32) 
(0 (0 (0 

represent the acceleration equations for a simple closed kinematic chain in planar 
motion. 

2. The Coriolis acceleration, given by the expression 

a ,̂.._, =2a , ,_ ixv i . ,_ , (1.5.33) 

vanishes when a>/_i = 0, or v^. ._̂  = 0, or when (Oi-i is parallel to v^.._ . 

1.5.3 Independent Contour Equations 
A diagram is used to represent to a mechanism in the following way: the numbered links 
are the nodes of the diagram and are represented by circles, and the joints are represented 
by lines which connect the nodes. 

Figure 1.5.3 shows the diagram that represents a planar mechanism. The maximum 
number of independent contours is given by 

N = c — n or nc=N = c—p+l, (1.5.34) 

where c is the number of joints, n is the number of moving links, and p is the number of 
links. 

The equations for velocities and accelerations are written for any closed contour of the 
mechanism. However, it is best to write the contour equations only for the independent 
loops of the diagram representing the mechanism. 
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FIGURE L5.3 Planar mechanism and the diagram that represents the mechanism. 

Step 1. Determine the position analysis of the mechanism. 
Step 2. Draw a diagram representing the mechanism and select the independent 

contours. Determine a path for each contour. 
Step 3. For each closed loop write the contour velocity relations [Eq. (1.5.17)], and 

contour acceleration relations [Eq. (1.5.30)]. For a closed kinematic chain in 
planar motion the following equations will be used: 

^a>/, ,_i = 0 , 
(0 

(0 (0 

X)«/,/-! =0, 
(0 

(0 (0 (0 

Step 4. Project on a Cartesian reference system the velocity and acceleration 
equations. Linear algebraic equations are obtained where the unknowns are 

• the components of the relative angular velocities (Ojj-i; 

• the components of the relative angular accelerations €Cjj-i; 

• the components of the relative linear velocities v^. • j ; 

• the components of the relative linear accelerations a^ • .̂ 

Solve the algebraic system of equations and determine the unknown 
kinematic parameters. 

Contour Equations 189 



Step 5. Determine the absolute angular velocities (Oj and the absolute angular 
accelerations Uj. Compute the velocities and accelerations of the 
characteristic points and joints. 

In the following examples, the contour method is applied to determine the velocities and 
accelerations distribution for several planar mechanisms. The following notation will be 
used: 

(Oij is the relative angular velocity vector of the link / with respect to the link 7. When 
the link 7 is the ground (denoted as link 0), then coi = a>/o also denotes the absolute 
angular velocity vector of the link /. The magnitude of (Otj, is coij i.e., \(Oij \ = coij, 

v^.. is the relative linear velocity of the point A/ on link / with respect to the point Aj 
on link^'. The point A/ belonging to link7, and the point Aj, belonging to link7, are 
coincident at the instant of motion under consideration. ' 

atj is the relative angular acceleration vector of the link / with respect to the rigid body 
j . When the link j is the ground, then a, = a/o also denotes the absolute angular 
acceleration vector of the rigid body /. 

a .̂. is the relative linear acceleration vector of A/ on link / with respect to Aj on linkj. 

a .̂. is the Coriolis acceleration of A/ with respect to Aj. 

TBC denotes a vector from the joint B to the joint C 

XB,yB, ZB denote the coordinates of the point B with respect to the fixed reference frame. 

\B denotes the linear velocity vector of the point B with respect to the fixed reference 
frame. 

SiB denotes the linear acceleration vector of the point B with respect to the fixed reference 
frame. 

1.5.4 Example 
The planar mechanism considered in this example is depicted in Figure 1.5.4(a). The fol-
lowing data are given: AC = 0.100 m, BC = 0.300 m,5D = 0.900 m, and La = 0.100 m. 
The angle of the driver element (link AB) with the horizontal axis is 0 = 45°. A Cartesian 
reference frame with the origin at A (XA = JA = 0) is selected. The coordinates of joint C 
are xc = AC, yc = 0. The coordinates of joint B arcxB = 0.256 m, yB = 0.256 m. The 
coordinates of joint D 3IQXD = 1.142 m, yo = 0.100 m. The position vectors r^^, TAC^ 

and TAD are defined as follows: 

TAB =XBi-\-yB} = 0.256i + 0.256j, 
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(a) 

' II ) \ ' / ' 

(b) 

FIGURE 1.5.4 (a) Example mechanism (R-TRR-RRT), and (b) diagram that represents the 
mechanism. 

rAC = x c i + j c j = 0.100i, 

rAD =XDi-\-yD} = 1.1421 + 0.100 J. 

The angular velocity of the driver link is ni = 100 rpm, or 

(oio = 0)1= n— = 100— rad/s = 10.472 rad/s. 
30 30 

The mechanism has six links and seven full joints. Using Eq. (1.5.34), the number of 
independent loops is given by 

«^ = / - p + 1 = 7 - 6 + 1 = 2. 

This mechanism has two independent contours. The first contour / contains the links 0, 
1, 2, and 3, while the second contour // contains the links 0, 3, 4, and 5. The diagram 
representing the mechanism is given in Figure 1.5.4(b). Clockwise paths are chosen for 
each closed loop / and //. 
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First Contour 
According to Figure 1.5.5, the first contour has 

• rotational joint R between links 0 and 1 (joint A); 
• translational joint T between links 1 and 2 (joint Bj)', 
• rotational joint R between links 2 and 3 (joint J?R); 
• rotational joint R between links 3 and 0 (joint C). 

For the velocity analysis, the following equations are written using Eq. (1.5.35): 

TAB X a>32 + TAC X a>03 + v^ î = ^' (1.5.37) 

where coio = coio k = 10.47 k rad/s, (O32 = <̂ 32 k, and a>03 = C003 k. 
The relative velocity of B2 on link 2 with respect to Bi on link 1, v^^ ,̂ has 1 and j 

components: 

^̂ 21 = ^^21.»+ 5̂2iv J = 5̂21 COS 01 + vi^^ sin 0 J, 

dHrO 
^10 

aio 
known 

B 

^Bo 

^21 

f R ' V ^ 

^32 

0^32 

y R '^ 
u;o3 

<^03 

(a) 

(b) 

FIGURE 1.5.5 First contour RTRR: (a) diagram, and (b) mechanism. 
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where v^ is the magnitude of the vector v^ i.e., |v^_^2i I = ^BOI * ^^^ ^^^^ of the unknown 
relative velocities is selected as positive as shown in Figures 1.5.4(a) and 1.5.5(b). The 
numerical computation will then give the correct orientation of the unknown vectors. The 
unknowns in Eq. (1.5.37) are (̂ 32, (i)03» and v^ . Equation (1.5.37) becomes 

0)10 k + (JO32 k + 6t>03 k = 0, 

1 J k 

xc yc 0 

0 0 (O03 

1 

XB 

0 

J 

yB 

0 

k 

0 

0)32 

+ 

+ v̂ 2i COS0 1 + v̂ 2i sin0 J = 0. 

Equation (1.5.38) is projected onto the "fixed" reference frame Oxyz: 

<W10 + ^32 + 0)03 = 0, 

yB ^32 + yc < 0̂3 + V521 COS 0 = 0, 

-XB 0)32 - Xc 0)03 + V^B2i ^^^ ^ = 0 ' 

(1.5.38) 

(1.5.39) 

or numerically as 

10.472 + 0)32 + 0)03 = 0, 

0.256 ci;32 + v^2i^^s 45° = 0, 

-0.256 (i>32 - 0.100(^03 + V521 sin 45° = 0. (1.5.40) 

Equation (1.5.40) represents a system of three equations with three unknowns: 0)32, 0)03, 
and v^ . Solving the algebraic equations, the following numerical values are obtained: 
ct;32 = 2.539 rad/s, 0)03 = -13.011 rad/s, and v̂ ^̂  = -0.920 m/s. 

The absolute angular velocity of link 3 is 

(̂ 30 = —(Oo3 = 13.011 k rad/s. (1.5.41) 

The velocity of point B2 = ^3 is computed with the expression of velocity field of two 
points (^3 and C) on the same rigid body (link 3): 

V52 = VB3 = vc + (O30 X rcB = 

1 J 

0 0 13.011 

0.256-0.100 0.256 0 

where vc = 0 because joint C is grounded. 

0 

XB - xc yB 

k 

J 

0 

k 

<^30 

yc 0 

= -3.333 1 + 2.032 J m/s, 
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Link 2 and driver link 1 have the same angular velocity: 

(oio = 6>20 = 6>30 + 6>23 = 13.011k - 2.539k = 10.472k rad/s. 

The velocity of point Bi on link 1 is calculated with the expression of velocity field of two 
points (Bi and A) on the same rigid body (link 1): 

V5i = VA + (oio X TAB = (Oio x TAB = 
1 J k 
0 0 (oio 

XB yB 0 

1 J k 
0 0 10.472 

0.256 0.256 0 
= -2.6821 + 2.682 J m/s. 

Another way of calculating the velocity of the point B2 = B^ is with the help of velocity 
field of two points (Bi and B2) not situated on the same rigid body (^i is on link 1 and B2 
is on link 2): 

where v^ = v^ cos 0 1 + v^ sin 0j = —0.651 1 — 0.651 j m/s. 
For the acceleration analysis, the following equations are written using Eq. (1.5.36): 

aio + ot32 + ao3 = 0, 

TAB X a32 + TAC X ao3 + ^B2I + a^2i ~ ^IO^A^ - CO^QTBC = 0, (1.5.42) 

where aio = ^10 k = 0, a32 = 0̂ 32 k, and aoa = «03 k. 
The relative acceleration of B2 on link 2 with respect to Bi on link 1, a^ , has 1 and j 

components: 

^B2l - ^B2L * + ^B2i,J = ^21 COS 0 1 + 4^1 sin 0 J. 

The sign of the unknown relative accelerations is selected positive and then the numerical 
computation will give the correct orientation of the unknown acceleration vectors. The 
expression for the Coriolis acceleration is 

J k 

= 2 

1 

0 0 ĉ io 

v L c o s 0 v ;^s in0 0 

= -2v52i ̂ 10 sin 01 + 2v^2i ̂ 10 cos 0 j 

= -2(-0.920)(10.472) sin 45°i + 2(-0.920)( 10.472) cos 45° j 

= 13.6291-13.629 J m/sl 
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The unknowns in Eq. (1.5.42) are 0̂ 32, Qfo3. and a^^^ . Equation (1.5.42) becomes 

Qf32 k + ao3 k = 0, 

1 J k 

XB yB 0 

0 0 a32 

+ a^2i - ^10(^51 + yB j) - COIQKXC -XB)i-\-(yc- ys) j] = 0. 

+ 
1 J k 

xc yc 0 
0 0 (Y03 

+ a^ cos0i + fl^., s in0j 521 

The previous equations are projected onto the "fixed" reference frame Oxyv 

«32 + «03 = 0, 

yB oizi + yc «03 + ^̂ 21 ^^s ^ ~ ^̂ 2̂1 ̂ 10 sin 0 - (D\^XB - (A^^(xc - XB) = 0, 

-XB Oi32 - Xc ao3 + ^̂ 21 Sî  ^ + 2̂ 521 ^10 ^^^ ̂  ~ ^10>'̂  ~ 3̂oCyC " Jfi) = 0, 

or numerically as 

«32 + ^03 = 0, 

0.256 0̂ 32 + ̂ 21 cos 45° + 13.626 - (10.472)^(0.256) 

- (13.011)^(0.100 - 0.256) = 0, 

- 0.256 0̂ 32 - 0.100 ao3 + ̂ 21 ^i^"^^" " ^^'^^^ " (10.472)^(0.256) 

-(13.011)^(0-0.256) = 0. (1.5.43) 

Equation (1.5.43) represents a system of three equations with three unknowns: ^32, ao3, 
and a^ . Solving the algebraic equations, the following numerical values are obtained: 

0̂ 32 = -25.032 rad/s^, ao3 = 25.032 rad/s^, and â ^̂  = -7.865 m/s^. 
The absolute angular acceleration of link 3 is 

^30 = -Qfo3 = -25.032 k rad/s^. 

The velocity of the point B2 = B3 is computed with the expression of velocity field of 
two points (B2 and C) on the same rigid body (link 3): 

VB2 = V53 = vc + (O30 X rcB = 

1 J 

0 0 

0.256-0.100 0.256 

where vc = 0 because joint C is grounded. 

1 J k 

0 0 C030 

XB -XC ys-yc 0 

k 

13.011 

0 

= - 3 . 3 3 3 1 + 2.032 J m/s, 
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Link 2 and driver link 1 have the same angular velocity: 

(oio = (O20 = (O30 + (023 = 13.011k - 2.539 k = 10.472 k rad/s. 

The velocity of point Bi on link 1 is calculated with the expression of velocity field of two 
points (Bi and A) on the same rigid body (link 1): 

VBi = VA + (oio X TAB = ^̂ lo x VAB = 

1 J k 

0 0 com 

XB JB 0 

1 J k 

0 0 10.472 

0.256 0.256 0 

= -2.6821+ 2.682 J m/s. 

Another way of calculating the velocity of the point B2 = B3 is with the help of velocity 
field of two points (Bi and B2) not situated on the same rigid body (Bi is on link 1 and B2 
is on link 2): 

where v^ = v^ cos 0 1 + v^ î sin 0 j = —0.6511 — 0.651 j m/s. 
The angular acceleration of link 3 is: 

a3o = -ao3 = a32 = -25.032 krad/s^. 

The absolute linear acceleration of point B3 is computed as follows: 

a53 = ac + aso x TCB - CO^QVCB = -20.026 1 - 47.277 j m/s^. 

Second Contour Analysis 
According to Figure 1.5.6, the second contour is described as 

• rotational joint R between links 0 and 3 (joint C); 
• rotational joint R between links 3 and 4 (joint B); 
• rotational joint R between links 4 and 5 (joint DR); 
• translational joint T between links 5 and 0 (joint Dj). 

For the velocity analysis, the following equations are written: 

(O30 + 6>43 + <«>54 = 0 , 

rAC X (030 + TAB X (043 + TAD X 0̂ 54 + v^̂ ^ = 0. 

The relative linear velocity v^ has only one component, along the x-axis: 

(1.5.44) 
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(iyi-(iy^<iy^o^<i) R 

known from 
contour / 

^ 4 3 

<^43 

(a) 

^ 5 4 

^05 

yk 

A=0 

1 OC43 
u;43 

1 ( ^ 

cj 
/^J\ ^03 = 

0 ^ ' ^ ^03 == 

3 

- c«;3o 

- « 3 0 

known from 
contour / 

4 ^^54 

/ <^54 

> ^ 
X 

r 

^ 5 

0 

7///iV 

(b) 

FIGURE 1.5.6 Second contour RRRT: (a) diagram, and (b) mechanism. 

The unknown parameters in Eq. (1.5.44) are 0)43, 0)54, and v^ . The following numerical 
values are obtained: C043 = —15.304 rad/s, (054 = 2.292 rad/s, and v^ = 3.691 m/s. 

The angular velocity of the link BD is 

(O40 = a>3o + 0)43 = — 5̂4 = —2.292 k rad/s. 

The absolute linear velocity of the point D4 = D5 is computed as follows: 

VD4 = vz)5 = V54 + (O40 X FBZ) = -v^Q3 = -3.6911 m/s, 

where Vfi4 = ¥^3. 
For the acceleration analysis the following equations exist: 

aSO + ^43 + ^54 = 0, 

^Do5 + 1̂)05 + ^AC X aso + rA5 x a43 + TAD X a54 

<^3orc5 ~ <̂ 4or5D = 0. (1.5.45) 
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Because the slider 5 does not rotate ((05Q = 0), the CorioUs acceleration is 

The unknowns in Eq. (1.5.45) are 0̂ 43, Q;54, and a^ . The following numerical results are 

obtained: 0̂ 43 = 77.446 rad/s^, a54 = -52.414 rad/s^, and â ^̂  = 16.499 m/s^. 
The absolute angular acceleration of the link BD is 

a40 = a3o + a43 = OL^S = 52.414 k rad/s^, 

and the linear acceleration of the point D4 = D5 is 

aD4 = az)5 = aB4 + a40 x YBD - (OI^YBD = -16.4991 m/s^, 

where SLB^ = 3^3 

1.5.5 Problems 
1.5.1 The four-bar mechanism shown in Figure 1.3.10(a) has the dimensions: 

AB = 80 mm, BC = 210 nmi, CD = 120 mm, and AD = 190 mm. The driver link 
AB rotates with a constant angular speed of 200 rpm. Find the velocities and the 
accelerations of the four-bar mechanism using the contour equations method for the 
case when the angle of the driver link AB with the horizontal axis is </> = 60°. 

1.5.2 The angular speed of the driver link 1, of the mechanism shown in Figure 1.4.9, is 
a; = 0̂ 1 = 20 rad/s.The distance from link 3 to the horizontal axis AJC is a = 55 mm. 
Using the contour equations, find the velocity and the acceleration of point C on link 
3 for 0 = 30°. 

1.5.3 The slider crank mechanism shown in Figure 1.4.10 has the dimensions AB = 0.4 m 
and BC = 1 m. The driver link 1 rotates with a constant angular speed of 
n= 160 rpm. Find the velocity and acceleration of the slider 3 using the contour 
equations when the angle of the driver link with the horizontal axis is 0 = 30°. 

1.5.4 The planar mechanism considered is shown in Figure 1.3.19. The following data are 
given: AB = 0.150 m, BC = 0.400 m, CD = 0.370 m, CE = 0.230 m, EF = CE, 
La = 0.300 m. Lb = 0.450 m, and Lc = CD. The angular speed of the driver link 1 is 
constant and has the value 180 rpm. Using the contour equations method, find the 
velocities and the accelerations of the mechanism for </> = 0i = 30°. 

1.5.5 The R-RRR-RTT mechanism is shown in Figure 1.3.20. The following data are 
given: AB = 0.080 m, BC = 0.350 m, CE = 0.200 m, CD = 0.150 m, L^ = 0.200 m, 
Lt = 0.350 m, and Lc = 0.040 m. The driver link 1 rotates with a constant angular 
speed ofn = 1200 rpm. For 0 = 145° find the velocities and the accelerations of the 
mechanism with the contour equations. 

1.5.6 The mechanism shown in Figure 1.3.21 has the following dimensions: AB = 80 mm, 
AD = 250 mm, BC = ISO mm, CE = 60 mm, EF = 200 mm, and a = 170 mm. 
The constant angular speed of the driver link lisn = 400 rpm. Find the velocities 
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and the accelerations of the mechanism using the contour equations when the angle 
of the driver link 1 with the horizontal axis is 0 = 0i = 300°. 

1.5.7 The dimensions for the mechanism shown in Figure 1.3.22 are: AB = 150 mm, 
BD = 400 mm, BC = 140 mm, CD = 400 mm, DE = 250 mm, CF = 500 nmi, 
AE = 3S0 nmi, and b = 100 mm. The constant angular speed of the driver Hnk 1 is 
n = 40 rpm. Find the velocities and the accelerations of the mechanism for 
0 = 01 = 210°. Use the contour equations method. 

1.5.8 The mechanism in Figure 1.3.23 has the dimensions: AB = 200 mm, AC = 100 nmi, 
BD = 400 mm, DE = 550 mm, EF = 300 mm. La = 500 mm, and U = 100 mm. 
Using the contour equations method find the velocities and the accelerations of the 
mechanism if the constant angular speed of the driver link 1 is n = 70 rpm, and for 
0 = 01 = 210°. 

1.5.9 The dimensions for the mechanism shown in Figure 1.3.24 are: AB = 150 mm, 
BC = 400 mm, AD = 360 mm, CD = 210 mm, DE = 130 mm, EF = 400 mm, 
and La = 40 mm. The constant angular speed of the driver link lisn = 250 rpm. 
Using the contour equations find the velocities and the accelerations of the 
mechanism for 0 = 0i = 30°. 

1.5.10 The mechanism in Figure 1.3.25 has the dimensions: AB = 250 nmi, AC = 800 mm, 
BD = 1200 mm, L^ = 180 mm, and Lb = 300 mm. The driver Hnk 1 rotates with a 
constant angular speed of « = 50 rpm. Find the velocities and the accelerations of 
the mechanism for 0 = 0i = 210°. Use the contour equations method. 

1.5.11 Figure 1.3.26 shows a mechanism with the following dimensions: AB = 120 nmi, 
BD = 400 mm, and L^ = 150 mm. The constant angular speed of the driver link 1 is 
n = 600 rpm. Find the velocities and the accelerations of the mechanism, using the 
contour equations method, when the angle of the driver link 1 with the horizontal 
axis is 0 = 210°. 

1.5.12 The mechanism in Figure 1.3.27 has the dimensions: AB = 200 mm, AC = 500 mm, 
BD = 800 mm, DE = 400 mm, EF = 270 mm. La = 70 mm, and Lb = 300 mm. 
The constant angular speed of the driver link 1 is « = 40 rpm. Using the contour 
equations, find the velocities and the accelerations of the mechanism for 
0 = 01 = 300°. 

1.5.13 Figure 1.3.28 shows a mechanism with the following dimensions: AB = 200 mm, 
BC = 750 mm, CD = DE = 300 mm, EF = 500 mm. La = 750 mm, and 
Lb = Lc = 250 mm. Find the velocities and the accelerations of the mechanism, 
using the contour equations method, if the constant angular speed of the driver link 
1 is « = 1100 rpm and for 0 = 01 = 120°. 

1.5.14 Figure 1.3.29 shows a mechanism with the following dimensions: AB = 120 mm, 
BC = 550 mm, CE = ISO mm, CD = 350 mm, EF = 300 mm. La = 320 mm, 
Lb = 480 mm, and Lc = 600 mm. The constant angular speed of the driver Unk 1 is 
n= 100 rpm. Find the velocities and the accelerations of the mechanism, using the 
contour equations, for 0 = 0i = 30°. 

1.5.15 Figure 1.3.30 shows a mechanism with the following dimensions: AB = 180 mm, 
BC = 520 mm, CF = 470 mm, CD = 165 mm, DE = 540 mm, L« = 630 mm. 
Lb = 360 mm, and L^ = 210 mm. The constant angular speed of the driver link 1 is 
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n = 10 rpm. Use the contour equations to calculate the velocities and the 
accelerations of the mechanism when the angle of the driver link 1 with the 
horizontal axis is 0 = 210°. 

1.5.16 Figure 1.3.31 shows a mechanism with the following dimensions: AB = 60 mm, 
BC = 150 mm, AD = 70 mm, and BE = 170 mm. The constant angular speed of 
the driver link 1 is n = 300 rpm. Find the velocities and the accelerations of the 
mechanism, using the contour equations, if the angle of the driver link 1 with the 
horizontal axis is 0 = 210°. 

1.5.17 The dimensions of the mechanism shown in Figure 1.3.32 are: AB = 90 mm, 
BC = 240 mm, BE = 400 mm, CE = 600 mm, CD = 220 mm, EF = 900 mm. 
La = 250 mm, L^ = 150 mm, and L^ = 100 mm. The constant angular speed of the 
driver link 1 is « = 50 rpm. Employing the contour equations find the velocities and 
the accelerations of the mechanism for 0 = 0i = 210°. 

1.5.18 The dimensions of the mechanism shown in Figure 1.3.33 are: AB = 180 mm, 
AC = 300 mm, CD = 400 mm, DE = 200 nmi, and La = 360 nmi. The constant 
angular speed of the driver link 1 is ̂ z = 90 rpm. Use the contour equations to 
calculate the velocities and the accelerations of the mechanism when the angle of 
the driver link 1 with the horizontal axis is 0 = 30°. 

1.5.19 The dimensions of the mechanism shown in Figure 1.3.34 are: AB = 80 nmi, 
AC = 40 mm, CD = 100 mm, and DE = 300 mm. The constant angular speed of 
the driver link 1 is w = 60 rpm. Use the contour equations to calculate the velocities 
and the accelerations of the mechanism for 0 = 0i = 210°. 

1.5.20 The dimensions of the mechanism shown in Figure 1.3.35 are: AB = 200 mm, 
AC = 350 nmi, and CD = 600 mm. For the distance b select a suitable value. The 
constant angular speed of the driver link 1 is n = 90 rpm. Find the velocities and the 
accelerations of the mechanism for 0 = 0i = 120°. 

1.5.21 The dimensions of the mechanism shown in Figure 1.3.36 are: AB = 80 mm, 
AC = 60 mm, and CD = 70 mm. The constant angular speed of the driver link 1 is 
n = 220 rpm. Find the velocities and the accelerations of the mechanism, using the 
contour equations, for 0 = 0i = 240°. 

1.5.22 The dimensions of the mechanism shown in Figure 1.3.37 are: AB = 150 mm, 
AC = 420 mm, BD = La = 650 mm, and DE = 350 mm. The constant angular 
speed of the driver link lisn = ni = 650 rpm. Find the velocities and the 
accelerations of the mechanism, using the contour equations, for 0 = 0i = 240°. 

1.5.23 The dimensions of the mechanism shown in Figure 1.3.38 are: AB = 200 mm, 
AD = 500 mm, and BC = 250 mm. The constant angular speed of the driver link 1 
is n = 160 rpm. Use the contour equations to calculate the velocities and the 
accelerations of the mechanism for 0 = 0i = 240°. Select a suitable value for the 
distance a. 

1.5.24 The mechanism in Figure 1.3.11(a) has the dimensions: AB = 0.20 m, AD = 0.40 m, 
CD = 0.70 m, CE = 0.30 m, and yE = 0.35 m. The constant angular speed of the 
driver link 1 is n = 2600 rpm. Using the contour equations find the velocities and 
the accelerations of the mechanism for the given input angle 0 = 0i = 210°. 
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1.5.25 The mechanism in Figure 1.3.12 has the dimensions: AB = 0.03 m, BC — 0.05 m, 
CD = 0.08 m, AE = 0.07 m, and La = 0.025 m. The constant angular speed of the 
driver link 1 is n = 90 rpm. Employing the contour equations, find the velocities 
and the accelerations of the mechanism for the given input angle 0 = </>i = 7t/3. 

1.5.26 The mechanism in Figure 1.3.15 has the dimensions: AC = 0.200 m, BC = 0.300 m, 
BD = 1.000 m, and La = 0.050 m. The constant angular speed of the driver link 1 is 
n = 1500 rpm. Use the contour equations to calculate the velocities and the 
accelerations of the mechanism for 0 = 330°. 
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1.6 Dynamic Force Analysis 

For a kinematic chain it is important to know how forces and moments are transmitted from 
the input to the output, so that the links can be properly designated. The friction effects are 
assumed to be negligible in the force analysis presented here. 

1.6.1 Equation of Motion for the Mass Center 
Consider a system of Â  particles. A particle is an object whose shape and geometrical 
dimensions are not significant to the investigation of its motion. An arbitrary collection of 
matter with total mass m can be divided into N particles, the /th particle having mass, mt 
(Fig. 1.6.1): 

m = J^mt. 

A rigid body can be considered as a collection of particles in which the number of particles 
approaches infinity and in which the distance between any two points remains constant. As 
Â  approaches infinity, each particle is treated as a differential mass element, mt -> dm, and 
the summation is replaced by integration over the body: 

-f m — j dm. 

body 

The position of the mass center of a collection of particles is defined by 

N 

re = - V m / r , - , (1.6.1) 
i=l 
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FIGURE 1.6.1 Rigid body as a collection of particles. 

where r/ is the position vector from the origin O to the /th particle. As N -^ oo, the 
summation is replaced by integration over the body: 

re m J 
body 

rdm. (1.6.2) 

where r is the vector from the origin O to differential element dm. 
The time derivative of Eq. (1.6.1) gives 

m 
dhc 
dfi mac. (1.6.3) 

where ac is the acceleration of the mass center. The acceleration of the mass center can 
be related to the external forces acting on the system. This relationship is obtained by 
applying Newton's laws to each of the individual particles in the system. Any such particle 
is acted on by two types of forces. One type is exerted by other particles that are also part 
of the system. Such forces are called internal forces (internal to the system). Additionally, a 
particle can be acted on by a force that is exerted by a particle or object not included in the 
system. Such a force is known as an external force (external to the system). Let f// be the 
internal force exerted on theyth particle by the /th particle. Newton's third law (action and 
reaction) states that thejth particle exerts a force on the /th particle of equal magnitude, and 
opposite direction, and coUinear with the force exerted by the /th particle on thejth particle 
(Fig. 1.6.1): 

^ji — ^y"' ; ^ ^ 

Newton's second law for the /th particle must include all of the internal forces exerted 
by all of the other particles in the system on the /th particle, plus the sum of any external 
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forces exerted by particles, objects outside of the system on the ith particle: 

^ f , v + F r = m , - ^ , j ^ i , (1.6.4) 

where F̂ ^̂  is the external force on the /th particle. Equation (1.6.4) is written for each particle 
in the collection of particles. Summing the resulting equations over all of the particles from 
i = ItoN the following relation is obtained: 

jm^J' + H^f-'^^c, jy^i. (1.6.5) 
i j i 

The sum of the internal forces includes pairs of equal and opposite forces. The sum of any 
such pair must be zero. The sum of all of the internal forces on the collection of particles is 
zero (Newton's third law): 

^ X ^ f ; , = 0 , j ^ i . 
I J 

The term ^ • ¥f^ is the sum of the external forces on the collection of particles: 

One can conclude that the sum of the external forces acting on a closed system equals the 
product of the mass and the acceleration of the mass center: 

mac = F. (1.6.6) 

Considering Figure 1.6.2 for a rigid body and introducing the distance q in Eq. (1.6.2) 
gives 

Yc = — I rdm = — I (re -\-q)dm = rc -\ / qdm. (I.6.'y 
m J m J m J 

••7) 

body body body 

It results 

- I qdm = 0, (1.6.8) 
m J 

body 

that is the weighed average of the displacement vector about the mass center is zero. The 
equation of motion for the differential element dm is 

aJm = JF, 
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FIGURE L6.2 Rigid body with differential element dm. 

where d¥ is the total force acting on the differential element. For the entire body: 

I a dm= j d¥ = ¥, (1.6.9) 

body body 

where F is the resultant of all forces. This resultant contains contributions only from 
the external forces, as the internal forces cancel each other. Introducing Eq. (1.6.7) into 
Eq. (1.6.9), the Newton's second law for a rigid body is obtained: 

mac = F 

The derivation of the equations of motion is valid for the general motion of a rigid body. 
These equations are equally applicable to planar and three-dimensional motions. 

Resolving the sum of the external forces into Cartesian rectangular components 

and the position vector of the mass center 

re = xc{t)i + yc(t)^ + zc(t)K 

Newton's second law for the rigid body is 

mrc = F, 

or 

mxc = Fx, myc = Fy, mic = ^z-

(1.6.10) 

(1.6.11) 
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1.6.2 Angular Momentum Principle for a System of Particles 
An arbitrary system with the mass m can be divided into Â  particles Pi, P2,... ,PN- The 
position vector of the ith particle relative to an origin point O is r/ = roPi and the mass 
of the ith particle is m/ (Fig. 1.6.3). The position of the mass center C of the system is 
vc = Xl/Li ^i^il^' The position of the particle P/ of the system relative to O is 

Yi = rc + rc/>,. (1.6.12) 

Multiplying Eq. (1.6.12) by m/, summing from 1 to Â , the following relation is 
obtained: 

^ MiYcPi = 0. (1.6.13) 

i=i 

The total angular momentum of the system about its mass center C is the sum of the 
angular momenta of the particles about C: 

Hc = E rcPi X mi\i, 
i=l 

where v/ = — is the velocity of the particle P/. 
dt 

FIGURE 1.6.3 System of particles. 

(1.6.14) 
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c / 

FIGURE L6.4 Angular momentum about the mass center for a system of particles. 

The total angular momentum of the system about O is the sum of the angular momenta 
of the particles 

Ho = ^ r / X m/v/ = ^ ( r c + rcp,) x m/V/ = re x m\c + He, (1.6.15) 
i=i i=l 

or the total angular momentum about O is the sum of the angular momentum about O due to 
the velocity vc of the mass center of the system and the total angular momentum about the 
mass center (Fig. 1.6.4). 

Newton's second law for the /th particle is 

^f,, + Fr = m,^, j^i. 

and the cross product with the position vector r/, and sum from / = 1 to Â  gives 

T.E'^''^j^+E'-^- X^f = E^^ X jS^^^i^^ j ^ ' • (1.6.16) 
I J 

The first term on the left side of Eq. (1.6.16) is the sum of the moments about O due to 
internal forces, and 

Vi X fji + r/ X fij = Yi X (f;7 + fij) = 0, 7 7̂  /. 

The term vanishes because the internal forces between each pair of particles are equal, oppo-
site, and directed along the straight line between the two particles (Fig. 1.6.1.) The second 
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term on the left side of Eq. (1.6.16), 

represents the sum of the moments about O due to external forces and couples. The term 
on the right side of Eq. (1.6.16) is 

I]^^-^^(^^-^^> = E —(r,- xmi\i)-\i xmi\i 
at at 

which represents the rate of change of the total angular momentum of the system about the 
point O. 

Equation (1.6.16) is rewritten as 

^ = E M O . (1.6.18) 

The rate of change of the angular momentum about O equals the sum of the moments about 
O due to external forces and couples. 

Using Eqs. (1.6.15) and (1.6.18), the following result is obtained: 

V M o = —(re X m\c + He) = re x mac + —7^, (1.6.19) 
'*—' at at 

where ac is the acceleration of the mass center. 
With the relation 

^ M o = ^ M c + rc x F = ^ M c + rc x mac, 

Eq. (1.6.19) becomes 

dHc 

dt 
= Y^Mc. (1.6.20) 

The rate of change of the angular momentum about the mass center equals the sum of the 
moments about the mass center. 

1.6.3 Equations of Motion for General Plane Motion 
An arbitrary rigid body with the mass m can be divided into N particles P/, / = 1,2,..., N. 
The position vector of the Pi particle is r/ = OP/ and the mass of the particle is m/. 
Figure 1.6.5(a) represents the rigid body moving with general planar motion in the (Z, Y) 
plane. The origin of the Cartesian reference frame is O. The mass center C of the rigid body 
is located in the plane of the motion, C G (X, Y). 

Let do = OZ be the axis through the fixed origin point O that is perpendicular to the 
plane of motion of the rigid body (X, Y), do J- (X, Y). Let dc = Czz be the parallel axis 
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(b) 

FIGURE 1.6.5 (a) Rigid body in general plane motion; (b) rotation about a fixed point 

through the mass center C, dc\\do. The rigid body has a general planar motion and the 
angular velocity vector is(o = cok. The unit vector of the dc = Czz axis is k. 

The velocity of the Pi particle relative to the mass center is 

dt 
= cokx Ri, 
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where R, = rcp,. The sum of the moments about O due to external forces and couples is 

V M o = ^ = ^[{rc X myc) + He], (1.6.21) 
^-^ at at 

where 

He = Yy^i ^ ^'(^^ ^ ^̂ •)]' 

is the angular momentum about dc- The magnitude of the angular momentum about dc is 

T/c = He • k = Yy^i X m{oj>^ X R/)]. k 

= ^ m / [(R/ X k) X R/)]. ko) = ^ m / [(R/ x k) • (R/ x k)](i; 

= Y ^i \^i X k|^ o; = ^ Mir^cD, (1.6.22) 

where the term |k x R/| = r/ is the perpendicular distance from dc to the Pi particle. The 
identity 

(a X b) • c = a • (b X c). 

has been used. 
The summation ^ - mtrj is replaced by integration over the body / r^ dm and is defined 

as mass moment of inertia Iczz of the body about the z-axis through C: 

^Czz = Y^'^^-

The mass moment of inertia Iczz is a constant property of the body and is a measure of the 
rotational inertia or resistance to change in angular velocity due to the radial distribution of 
the rigid body mass around z-axis through C. 

Equation (1.6.22) defines the angular momentum of the rigid body about dc (z-axis 
through C): 

He = Iczz 0) or Uc = Iczz^^ = ^Czz ^• 

Substituting this expression into Eq. (1.6.21) gives 

^ M o = —[(re X m\c) + Iczz(o] = (re x mae) + /ezz^- (1.6.23) 

The rotational equation of motion for the rigid body is 

/czza = ^ M e or /ezzak = ^ M e k . (1.6.24) 
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For general planar motion the angular acceleration is 

a = d) = Ok, (1.6.25) 

where the angle 0 describes the position, or orientation, of the rigid body about a fixed axis. 
If the rigid body is a plate moving in the plane of motion (X, 7), the mass moment of 

inertia of the rigid body about z-axis through C becomes the polar mass moment of inertia 
of the rigid body about C, Iczz = ^c- For this case the Eq. (1.6.24) gives 

Ica = Y^Mc. (1.6.26) 

A special application of Eq. (6.26) is for rotation about a fixed point. Consider the 
special case when the rigid body rotates about the fixed point O as shown in Figure 1.6.5(b). 
It follows that the acceleration of the mass center is expressed as 

ac = a X re - a/rc. (1.6.27) 

The relation between the sum of the moments of the external forces about the fixed point 
O and the product Iczz ^ is given by Eq. (1.6.23): 

^ Mo = re X mac + / t e a . (1.6.28) 

Equations (1.6.27) and (1.6.28) give 

^ M o = re X m(a X re - co^rc) + Iczz<^ 

= m re X (a X re) + Iczz^ 

= m [(re • re)a - (re • a)re] + /czz^ 

= m r^a + IczzOC = (mrl-{- Iczz)ot. (1.6.29) 

According to parallel-axis theorem 

lozz =Iczz + ^ rl 

where IQZZ denotes the mass moment of inertia of the rigid body about z-axis through O. 
For the special case of rotation about a fixed point O one can use the formula 

IozzOt = J2^0- (I-^-^^) 

The general equations of motion for a rigid body in plane motion are (Fig. 1.6.6): 

F = mae or F = mre, (1.6.31) 

J2MC=ICZZOC, (1.6.32) 
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FIGURE 1.6.6 Rigid body in plane motion. 

or using the Cartesian components: 

mxc = Y^ Fjc, myc = ^ Fy, IQZZ^ = ^MC> 

Equations (1.6.31) and (1.6.32) are interpreted in two ways: 

(1.6.33) 

1. The forces and moments are known and the equations are solved for the motion of 
the rigid body (direct dynamics). 

2. The motion of the RB is known and the equations are solved for the force and 
moments (inverse dynamics). 

The dynamic force analysis in this chapter is based on the known motion of the mechanism. 

1.6.4 D'Alembert's Principle 
Newton's second law can be writen as 

F + (-mac) = 0, or F + F/„ = 0, (1.6.34) 

where the term F/„ = —mac is the inertia force. Newton's second law can be regarded as 
an "equilibrium" equation. 
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Equation (1.6.23) relates the total moment about a fixed point O to the acceleration of 
the mass center and the angular acceleration 

^ Mo = (re X mac) + iczz^. 

or 

^ Mo + [re X (-mac)] + ( - / f ea ) = 0. (1.6.35) 

The term M/„ = —Iczz^ is the inertia moment. The sum of the moments about any point, 
including the moment due to the inertial force —ma acting at mass center and the inertial 
moment, equals zero. 

The equations of motion for a rigid body are analogous to the equations for static equi-
librium: The sum of the forces equals zero and the sum of the moments about any point 
equals zero when the inertial forces and moments are taken into account. This is called 
D 'Alembert's principle. 

The dynamic force analysis is expressed in a form similar to static force analysis: 

^ R = ^ F + F,>, = 0, (1.6.36) 

^ Tc = X^ Mc + Min = 0, (1.6.37) 

where XI ̂  î  the vector sum of all external forces (resultant of external force), and ^ Mc 
is the sum of all external moments about the center of mass C (resultant external moment). 

For a rigid body in plane motion in the xy plane, 

ac=3cc i + ycJ' a = ak , 

with all external forces in that plane, Eqs. (1.6.36) and (1.6.37) become 

J2RX = ^ /^ ;c +^mx = ^ ^ x + (-mxc) = 0, (1.6.38) 

J^Ry = E ^ y + Finy = J2^y^ ^-"^yc^ = ̂ ' (^•^•^^) 

With d'Alembert's principle the moment summation can be about any arbitrary point P: 

^ Tp = ; ^ Mp + M,>, + rpc X ¥in = 0, (1.6.41) 

where 

• J2 ̂ P is the sum of all external moments about P, 
• M/„ is the inertia moment, 
• Fin is the inertia force, and 
• rpc is a vector from P to C. 
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The dynamic analysis problem is reduced to a static force and moment balance problem 
where the inertia forces and moments are treated in the same way as external forces and 
moments. 

1.6.5 Free-Body Diagrams 
A free-body diagram is a drawing of a part of a complete system, isolated in order to 
determine the forces acting on that rigid body. 

The following force convention is defined: F// represents the force exerted by link / on 
link/ Figure 1.6.7 shows various free-body diagrams that are considered in the analysis of 
a crank slider mechanism Fig. 1.6.7(a). In Figure 1.6.7(b), the free body consists of the three 
moving links isolated from the frame 0. The forces acting on the system include a driving 
moment M, external driven force F, and the forces transmitted from the frame at joint A, 
Foi, and at joint C, F03. Figure 1.6.7(c) is a free-body diagram of the two links 1 and 2. 
Figure 1.6.7(d) is a free-body diagram of a single link. 

The force analysis can be accomplished by examining individual links or a subsystem 
of links. In this way the joint forces between links as well as the required input force or 
moment for a given output load are computed. 

1.6.6 Joint Forces Analysis Using Individual Links 
Figure 1.6.8(a) is a schematic diagram of a crank slider mechanism comprised of a crank 1, 
a connecting rod 2, and a slider 3. The center of mass of link 1 is Ci, the center of mass of 
link 2 is C2, and the center of mass of slider 3 is C. The mass of the crank is m\, the mass 
of the connecting rod is m2, and the mass of the slider is m^. The moment of inertia of link 
/ is Ici, i = 1,2,3. 

The gravitational force is G/= — m/gj, / = 1,2,3, where g = 9.81 m/s^ is the 
acceleration of gravity. 

For a given value of the crank angle 0 and a known driven force ¥ext the joint reactions and 
the drive moment M on the crank are computed using free-body diagrams of the individual 
links. 

Figures 1.6.8(b), (c), and (d) show free-body diagrams of the crank 1, the connecting rod 
2, and the slider 3. For each moving link the dynamic equilibrium equations are applied. 

For the slider 3 the vector sum of the all the forces (external forces ¥ext, gravitational 
force G3, inertia forces F/„3, joint forces F23, FQB) is zero [Fig. 1.6.8(d)]: 

J2 F̂ ^̂  = F23 + F/„3 + G3 + ¥ext + Fo3 = 0. 

Projecting this force onto x- and y-axes gives 

J2 F̂ ^̂  • 1 = ^23x + ( -^3 xc) + Fext = 0, (1.6.42) 

^ F̂ ^̂  '} = F23y-m3g + Fo3y = 0. (1.6.43) 
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(b) 

32 I 

(c) (d) 

FIGURE 1.6.7 Free-body diagrams for a crank slider meclianism. 
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FIGURE 1.6.8 (a) Crank slider mechanism; free-body diagrams: (b) crank 1, (c) connecting rod 2, and (d) slider 3.  



For the connecting rod 2 [Fig. 1.6.8(c)], two vectorial equations can be written: 

J^ F<2) = F32 + F,-„2 + G2 + F12 = 0, 

^ M ^ ^ ' = (re - re) x F32 + (rci - rs) x (F/„2 + G2) + M,„2 = 0, 

or 

J2F^^^ •i^F32, + i-mixci) + Fi2x = 0, 

^ F<2). J = F32y + (-m2 yci) -m2g + Fny = 0, 

• J k 

'•̂ c - -̂ B yc-yB 0 

^32x ^32)- 0 
+ 

• J k 

XC2 - XB yc2 -ys 0 

-m2 XC2 -m2 yc2 -m2g 0 

(1.6.44) 

(1.6.45) 

/C2a2k = 0. (1.6.46) 

For the crank 1 [Fig. 1.6.8(b)], there are two vectorial equations: 

^ F ( i ) = F 2 i + F , > , i + G i + F o i = 0 , 

^ M ^ ' ^ = rs X F21 + r c i x (F,-„i + G I ) + MMI + M = 0, 

or 

^ F ( i ) • 1 = F2U + (-mi xci) + Fou = 0, 

Y,F*'* • J = '''213, + (-mi yci)-mig + Foiy = 0, 

1 

XB 

F2IX 

J k 

yB 0 

F2ly 0 

+ 
1 J k 

^ci yci 0 

-mixci -miyc\-mig 0 

(1.6.47) 

(1.6.48) 

/ c i a i k + Mk = 0, (1.6.49) 

where M = |M| is the magnitude of the input moment on the crank. 
The eight scalar unknowns FQBJ, F23X = -^32x, ^23j = -F32y, Fnx = -F2\x, 

F\2y = —F2\y, Foix, Foiy, and M are computed from the set of eight equations (1.6.42), 
through (1.6.49). 
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1.6-7 Joint Forces Analysis Using Contour Method 
An analytical method to compute joint forces that can be applied for both planar and spatial 
mechanisms will be presented. The method is based on the decoupling of a closed kinematic 
chain and writing the dynamic equilibrium equations. The kinematic links are loaded with 
external forces and inertia forces and moments. 

A general monocontour closed kinematic chain is considered in Figure 1.6.9. The joint 
force between the links / — 1 and / (joint A/) will be determined. When these two links / — 1 
and / are separated [Fig. 1.6.9(b)] the joint forces F/_i,j and F/,/_i are introduced and 

F / -u + F,-,/-i=0. (1.6.50) 

Ai^i 

^i-i,i 

i-2 

FIGURE 1.6.9 (a) Monocontour closed kinematic chain, (b) joint at At replaced by the joint forces 
F/_i,- and Fi,i-i: F,_i,- + F,-,_i = 0. 
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TABLE 1.6.1 Joint forces for several joints 

Type of the kinematic pair 

F. i 

\ 

\ 
rotational joint 

A i 

translatioal joint 

, 
A i Y — 

1 
t 

cylindrical joint 

KL 

roll-slide joint 

\j 
r"^"" 

A 3 / 

sphere joint 

\ V 
IF ' 

j 

1 ^ 1 i_ 
J 1 ^ 

1 A 

1 ^ 

FJ 

i 
\ F , 

i ^ 
^ is 

/ 
\\ ^ 
'J ^ 

F 

J TT̂  
^ i-o; 

lA 

A2 

r 

^ ^ ^ F 

n Ja; 

A 

| F . 

1 11 fc-

}UL^^^ 
C^ 

Joint force or moment 

F ; c + F ^ = F 
F ± AA 

F ± AA 

F^ + F ^ = F 

F ± AA 

F ± AA 

F | | n 

F ; , + F 3 ; + F , = F 

Unknowns 

|F;, |=F^ 
\¥y\=Fy 

|F| = F^ 
X 

IF.I = F, 

| F , | =F^ 

| F | = F 

X 

|F^I=F;, 

\Fy\=Fy 

IF.I = F, 

Equilibrium condition 

M A = 0 

F A = 0 

F A = 0 

M A = 0 

F A = 0 

M A = 0 

M A I = 0 

MA2 = 0 

MA3 = 0 

Table 1.6.1 shows the joint forces for several joints. The foUow îng notations have been 
used: M A is the moment w îth respect to the axis A, and FA is the projection of the force 
vector F onto the axis A. 

It is helpful to "mentally disconnect" the two links (/ — 1) and /, which create the joint A/, 
from the rest of the mechanism. The joint at A/ will be replaced by the joint forces F/_i,/ and 
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(a) 

ER 'fl \DR \B. 

CR ^ - ^ CR 

(b) 

FIGURE 1.6.10 (a) Mechanism, and (b) diagram representing the mechanism. 

F/,/_i. The closed kinematic chain has been transformed into two open kinematic chains, 
and two paths / and // are associated. The two paths start from A/. 

For the path / (counterclockwise), starting at A/ and following / the first joint encountered 
is A/_i. For the link / — 1 left behind, dynamic equilibrium equations are written according 
to the type of joint at A/_i. Following the same path /, the next joint encountered is A^_2. 
For the subsystem (/ — 1 and / — 2) equilibrium conditions corresponding to the type of 
joint at A/_2 can be specified, and so on. A similar analysis is performed for the path // 
of the open kinematic chain. The number of equilibrium equations written is equal to the 
number of unknown scalars introduced by joint A/ (joint forces at this joint). For a joint, 
the number of equilibrium conditions is equal to the number of relative mobilities of the 
joint. 

The five moving link (/ = 1,2,3,4,5) mechanism shown in Figure 1.6.10(a) has the 
center of mass locations designated by Cjixq, ycj, 0). The following analysis will consider 
the relationships of the inertia forces F/„y, the inertia moments M/„y, the gravitational 
force Gj, the driven force, Fext, to the joint reactions ¥ij and the drive moment M on the 
crank 1. 

To simplify the notation the total vector force at Cj is written as Fy = F/„y + Gj and the 
inertia moment of linkj is written as M, = M/„y. The diagram representing the mechanism 
is depicted in Figure 1.6.10(b) and has two contours 0-1-2-3-0 and 0-3-4-5-0. 
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(7y^ 
Ef \ I DR 

E. 

0^.0 
••34 ••43 

path/ : Y^iCT) ^ - * { ^ 

(a) 

(b) 

FIGURE 1.6.11 Joint force F34 (a) calculation diagram, and (b) force diagram. 

Remark 
The joint at C represents a ramification point for the mechanism and the diagram, and 
the dynamic force analysis will start with this joint. The force computation starts with the 
contour 0-3-4-5-0 because the driven load ¥ext on link 5 is given. 

Contour 0-3-4-5-0 
Reaction F34 
The rotation joint at C (or CR, where the subscript R means rotation), between 3 and 4, is 
replaced with the unknown reaction (Fig. 1.6.11): 

F34 = -F43 = F34X 1 + F34y}. 

If the path / is followed [Fig. 1.6.11(a)] for the rotation joint at E (ER), a moment 
equation is written: 

J2 Mf = (re - r^) X F32 + (rc4 - r^) x F4 + M4 = 0, 
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or 

1 J k 

xc -XE yc-jE 0 

^34JC ^34y 0 

+ 

1 J k 

XCA - XE yC4 -JE 0 

FAX F4y 0 

+ M4k = 0. (1.6.51) 

Continuing on path /, the next joint is the translational joint at D {Dj). The projection 
of all the forces that act on 4 and 5 onto the sliding direction A (jc-axis) should be zero. 

= ^34x + FAX + Fsx + Fext = 0. (1.6.52) 

The system of Eqs. (1.6.51) and (1.6.52) is solved and the two unknowns 3̂4;̂  and F34J are 
obtained. 

Reaction F45 

The rotation joint at E (ER), between 4 and 5, is replaced with the unknown reaction 
(Fig. 1.6.12): 

F45 = - F 5 4 = F45X 1 + ^45); J. 

If the path / is traced [Fig. 1.6.12(a)] for the pin joint at C (CR), a moment equation is 
written: 

^ M ^ ^ ^ = (r^ - re) X F54 + (rc4 - re) x F4 + M4 = 0, 

or 

1 J k 

XE -xc jE-yc 0 

—FA5X —F45y 0 

+ 

I J k 

XC4 - Xc yc4 - yc 0 

F4x F4y 0 

+ M4k = 0. (1.6.53) 

For the path //, the slider joint at E {Ej) is encountered. The projection of all the forces 
that act on 5 onto the sliding direction A (x-axis) should be zero. 

E Â = E ^̂ '̂  • * = (^45+F5+F,,,). 

= F45X + Fsx + Fext = 0. (1.6.54) 

The unknown force components ^45;̂  and ̂ 45^ are calculated from Eqs. (1.6.53) and (1.6.54). 
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Ef 
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-̂0̂ ^̂ 7© p̂*̂^̂  ^ ^-(I>^V<D 
EF. 

(b) 

FIGURE 1.6.12 Joint force F45 (a) calculation diagram, and (b) force diagram. 

Reaction F05 
The slider joint at E (ET), between 0 and 5, is replaced with the unknown reaction 
(Fig. 1.6.13): 

Fo5 =^05>;J. 

The reaction joint introduced by the translational joint is perpendicular on the sliding 
direction F05 JL A. The application point P of force F05 is unknown. 

If the path / is followed [Fig. 1.6.13(a)] for the pin joint at E (ER), a moment equation is 
written for link 5: 

y M ;̂̂  = (rp - r^) X Fo5 = 0, 
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(a) 

(b) 

FIGURE 1.6.13 Joint force F05 (a) calculation diagram, and (b) force diagram. 

or 

X Fo5y = 0 =^ X = 0. (1.6.55) 

The application point is at E (P = E). 
Continuing on path /, the next joint is the pin joint C (CR). 

J2 M^^^^^ = (TE - re) X (Fo5 + F5 + F,^,) + (rc4 - re) x F4 + M4 = 0, 

or 

1 J k 

XE -XC yE-yc 0 

Fsx 4- Fext Fo5y 0 
+ 

1 J k 

XC4 - xc ycA -yc 0 

FAX F4y 0 

+ M4k = 0. (1.6.56) 

The joint reaction force Fosy is computed from Eq. (1.6.56). 
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D 0̂3 

(b) 

FIGURE 1.6.14 Joint force F03 (a) calculation diagram, and (b) force diagram. 

Contour 0-1-2-3-0 
For this contour the joint force F43 = — F34 at the ramification point C is considered 
as a known external force. 

Reaction F03 
The pin joint DR, between 0 and 3, is replaced with the unknown reaction force 
(Fig. 1.6.14): 

Fo3 =Fo3xi-\-Fo3yy 

If the path / is followed [Fig. 1.6.14(a)], a moment equation is written for the pin joint 
CR for link 3: 

^ M ^ ^ ^ = (YD - re) X F03 + (res - re) x F3 + M3 = 0, 
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or 

1 J k 
^D -xc yo-yc 0 

F03x Fo3y 0 
+ 

1 J k 
XC3 - xc yc3 -yc 0 

F3x F3y 0 

+ M3k = 0. (1.6.57) 

Continuing on path / , the next joint is the pin joint BR and a moment equation is written 
for links 3 and 2: 

^ M ^ ^ ^ ^ ^ = (YD - VB) X Fo3 + (rc3 - r^) x F3 + M3 + ( re - r^) x F43 

+ (rc2 - rfi) X F2 + M2 = 0, 

or 

1 J k 
XD -XB yo-ys 0 

Fo3x Fo3y 0 

+ M3k + 

1 J k 
+ \xc3 - XB yc3 -yB 0 

F3x F3y 0 

J k 
xc -XB yc -yB 0 

F43X F43y 0 

+ 
1 J k 

XC2 - XB yci -yB 0 
Fix Fly 0 

+ M2k = 0. (1.6.58) 

The two components Fo3x and Fo3j of the joint force are obtained from Eqs. (1.6.57) and 
(1.6.58). 

Reaction F23 
The pin joint CR, between 2 and 3, is replaced with the unknown reaction force (Fig. 1.6.15) 

F23 =F23xl-\-F23y}' 

If the path / is followed, as in Figure 1.6.15(a), a moment equation is written for the pin 
joint D/? for link 3: 

J2^D^ = (^c - ro) X (F23 + F43) + (rc3 - ro) x F3 + M3 = 0, 

or 

1 J k 
xc -XD yc-yu 0 

F23x + ^43x F23y + /̂ 43y 0 
+ 

1 J k 
XC3 - XD yc3 -yo 0 

F3x F3y 0 

+ M3k = 0. (1.6.59) 
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(a) 

(b) 

FIGURE 1.6.15 joint force F23 faj calculation diagram, and (b) force diagram. 

For the path / / , the first joint encountered is the pin joint BR and a moment equation is 
written for Hnk 2: 

E M^ '̂ = (re - rg) X (-F23) + (rc2 - rg) x F2 + M2 = 0, 

or 

1 J k 
xc -XB yc-yB 0 
-/^23;c -F23y 0 

+ 
1 J k 

•̂ C2 - ^5 JC2 -yB 0 
F2;c /̂ 2y 0 

+ M2k=:0 . (1.6.60) 

The two force components F23X and F23J of the joint force are obtained from Eqs. (1.6.59) 
and (1.6.60). 
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(b) 

FIGURE 1.6.16 Joint force Fu (a) calculation diagram, and (b) force diagram. 

Reaction F12 
The pin joint 5/?, between 1 and 2, is replaced with the unknown reaction force (Fig. 1.6.16): 

F12 =Fi2xl-\-Fi2y}. 

If the path / is followed, as in Figure 1.6.16(a), a moment equation is written for the pin 
joint CR for link 2: 

J2^f = (^B - re) X F12 + (rc2 - re) x F2 + M2 = 0, 

or 

1 J k 
XB -xc ys-yc 0 

Fl2x Fuy 0 
+ 

1 J k 
XC2 - xc yc2 -yc 0 

F2x F2y 0 

+ M2k = 0. (1.6.61) 
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Continuing on path / the next joint encountered is the pin joint DR, and a moment equation 
is written for Hnks 2 and 3: 

Y, Mg^^^ = (r^ - VD) X Fi2 + (rc2 - ro) x F2 + M2+ 

(re - VD) X F43 + (rc3 - ^D) X F3 + M3 = 0, 

or 

1 J k 

F\2x Fi2y 0 
+ 

1 J k 

XC2 - XD yci -yu 0 

Fix Ply 0 

+ M2k 

+ 

1 J k 

xc -XD yc-yo 0 
/̂ 43x ^43y 0 

+ 

1 J k 

xc?> - XD yc2> -yo 0 

F3x F3y 0 

+ Msk = 0. (1.6.62) 

The two components F\2x and Fi2y of the joint force are computed from Eqs. (1.6.61) 
and (1.6.62). 

Reaction Foi and driver moment M 
The pin joint AR, between 0 and 1, is replaced with the unknown reaction force 
(Fig. 1.6.17): 

Foi =Foijci-^Foiy}. 

The unknown driver moment is M = M k. If the path / is followed [Fig. 1.6.17(a)], 
a moment equation is written for the pin joint BR for link 1: 

' M ^ ^ = (FA - r^) X Foi + (rci - r^) x Fi + M i + M = 0, 

or 

1 J k 

XA -XB yA-yB 0 

Foix Foiy 0 
+ 

1 J k 

xci - XB yci -yB 0 

Fix Fly 0 

+ Mik + Mk = 0. (1.6.63) 
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FIGURE 1.6.17 joint force FQI (a) calculation diagram, and (b) force diagram. 

Continuing on path /, the next joint encountered is the pin joint CR and a moment equation 
is written for links 1 and 2: 

J2 M^c = (rA - re) X FQI + (rci - re) x Fi + Mi + M 

+ (rc2 - re) X F2 + M2 = 0. (1.6.64) 

Equation (1.6.64) is the vector sum of the moments about DR of all forces and moments that 
act on links 1, 2, and 3. 

J2 M^^^^^^^ = (FA - TD) X Foi + (rci - r^)) x Fi + Mi + M + (rc2 - r^) 

X F2 + M2 + (re - YD) X F43 + (rc3 - r^) x F3 + M3 = 0. (1.6.65) 

The components FQU, ^oij and M are computed from Eqs. (1.6.63), (1.6.64), and (1.6.65). 
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1.6.8 Joint Force Analysis Using Dyads 
RRR Dyad 
Figure 1.6.18 shows an RRR dyad with two Hnks, 2 and 3, and three pin joints, B, C, and 
D. The unknowns are the joint reaction forces: 

Fl2 = Fi2xl + Fi2y}, 

F43 = ^43x1 + ^43jJ, 

F23 = - F 3 2 = F23;cl + F23>;J. (1.6.66) 

The inertia forces and external forces Fy = Fji + Fyj, inertia moments and external 
moments My = A//k, (j = 2,3) are given. 

To determine F12 and F43, the following equations are written: 

• sum of all forces on links 2 and 3 is zero: 

J2 F^^^^^ = F12 + F2 + F3 + F43 = 0, 

or 

J2 F^^^^^ • J = Fuy + F2y + F3y + F43^ = 0. (1.6.67) 

y 
k 

FIGURE 1.6.18 Joint forces for RRR dyad. 
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or 

• sum of moments of all forces and moments on link 2 about C is zero: 

J2 Mc^ = (^B - re) X Fi2 + (rc2 - re) x F2 + M2 = 0. (1.6.68) 

• sum of moments of all forces and moments on link 3 about C is zero: 

J2 M^ = (YD - re) X F43 + (re3 - re) x F3 + M3 = 0. (1.6.69) 

The components Fi2x, Fuy, F^^x, and ^43^ are calculated from Eqs. (1.6.67), (1.6.68), 
and (1.6.69). The reaction force F32 = —F23 is computed from the sum of all forces on link 
2: 

^ F ^ ^ ^ = F i 2 + F 2 + F 3 2 = 0 , 

^ F ^ ^ ) . l = Fi2;c+/^2x+F32. = 0, 

J^ F̂ 2̂  . J = Fuy + F2y + F32, = 0. (1.6.70) 

RRT Dyad 
Figure 1.6.19 shows an RRT dyad with the unknown joint reaction forces F12, F43, and 
F23 = —F32. The joint reaction force F43 is perpendicular to the sliding direction F43 _L Aor 

F43 • A = (F43xi + F43y})' (cos Oi + sin 6>j) = 0. (1.6.71) 

In order to determine F12 and F43 the following equations are written: 

• sum of all the forces on links 2 and 3 is zero: 

J2 F^2^̂ ^ = F12 + F2 + F3 + F43 = 0, 

or 

J2 F^2^^^. J = Fny + F2y + F3y + F43^ = 0. (1.6.72) 

sum of moments of all the forces and the moments on link 2 about C is zero: 

J2 Mc^ = (r^ - re) x F12 + (re2 - re) x F2 + M2 = 0. (1.6.73) 

The components F^x, Fi2y, F42,x, and F42y are calculated from Eqs. (1.6.71), (1.6.72), 
and (1.6.73). The reaction force components F32X and F32;y; are computed from the sum 
of all the forces on link 2: 

^ F ^ 2 > = F i 2 + F 2 + F32 = 0, 
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FIGURE 1.6.19 Joint forces for RRT dyad. 

or 

^ F ^ 2 ^ . 1 = Fi2x+F2;c+F32x=0, 

(1.6.74) 

RTR Dyad 
The unknown joint reaction forces F12 and F43 are calculated from the relations (Fig. 1.6.20): 

• sum of all the forces on links 2 and 3 is zero: 

J2 F^^^^^ = F12 + F2 + F3 + F43 = 0, 

or 

J2 F(2&3) . J ^ j,^^^ ^ p^^ ^ p^^ ^ p^^^ ^ ^ (j^^ 73) 

sum of the moments of all the forces and moments on Hnks 2 and 3 about B is zero: 

^M^^^^^ = (rz) - r^) X F43 + (rc3 - r^) x F3 + M3 

+ (rc2 - YB) X F2 + M2 = 0. (1.6.76) 
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y^ 

FIGURE 1.6.20 Joint forces for RTR dyad. 

• sum of all the forces on link 2 projected onto the sliding direction A = cos Oi + sin ^j 
is zero: 

Y^ F̂ ^̂  • A = (Fi2 + F2) • (cos Oi + sin 6>j) = 0. (1.6.77) 

The components Fux, Fuy, F43X, and F433; ^̂ ^ calculated from Eqs. (1.6.75), (1.6.76), 
and (1.6.77). 

The force components F32X and Fi,2y are computed from the sum of all the forces on 
link 2: 

^ F ^ 2 ) ^ p ^ ^ ^ p ^ ^ p ^ ^ ^ Q ^ 

or 

^ F ^ 2 ^ .J = Fi2y+F2y^F32y = 0. (1.6.78) 
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1.6.9 Examples 

EXAMPLE L6.1: 

The R-RTR mechanism shown in Figure L6.21(a) has the dimensions: AB = 0.14 m, 
AC = 0.06 m, and CF = 0.2 m. The driver Hnk 1 makes an angle 0 = 0i = ^ rad 
with the horizontal axis and rotates with a constant speed of n = ni 
The position vectors of the points A, B, C, and F are 

FA = Oi + Oj m, 

30 TT rpm. 

If •-

(b) 

FIGURE 1.6.21 Joint forces for R-RTR mechanism (Example 1.6.1). 
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EXAMPLE 1.6,1: Cont'd 

y i 

c 

.-h 

(c) 

(d) 

FIGURE L6.21 Continued 

^B = rc2 = XBi + Jj5j = 0.07i + 0.121J m, 

re = xci + ya = Oi + 0.06j m, 

Vf = XFi + JFJ = 0.1501 + 0.191j m, 

where the mass center of the slider 2 is at 5 (5 = C2). The position vectors of the 
mass centers of links 1 and 3 are 

rci = -̂ cii + jcij ^ y* + yJ = ̂ '^^^^ + ̂ -̂ Ĵ "̂ ' 

rc3 = -̂ Csi + JC3J = — ^ — 1 + —-j^—J = 0.0751 + 0.125J m. 

Continued 
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EXAMPLE L6.1: Cont'd 

The total forces and moments at Cj,j= 1,2,3 are F/ = F/„j + G/ and M/ = Mtnj, 
where F/„j is the inertia force, My is the inertia moment, and Gj = —rrij ^ j is the 
gravity force with gravity acceleration g = 9.81 m/s^. 

Fi = 0.3811+ 0.437jN, Mi = Ok N • m, 

F2 = 0.5451 + 0.160J N, M2 = -0.001k N • m, 

F3 = 3.3021 - 0.539J N, M3 = -0.046k N • m. 

The external moment on link 3 is M^ext = —1000k N-m. Determine the moment 
M required for dynamic equilibrium and the joint forces for the mechanism using 
the free-body diagrams of the individual links. 

Solution For each link two vectorial equations are written: 

J2 F ; + ^inj = 0 and ^ M q + Minj = 0, (1.6.79) 

where ^ F̂  is the vector sum of all external forces (resultant of external force) on link 
j , and J2 ^Cj is the sum of all external moments on link 7 about the mass center Cj. 
The force analysis will start with link 3 because the moment M^ext is known. 

Links 
For the free-body diagram of link 3 shown in Figure L6.21(b), Eq. (1.6.79) gives 

Fo3+F, -„3+G3+F23=0, 

rc3C X Fo3 + rc^Q x F23 + M,-„3 + Msext = 0, 

or 

Fo3 + F3 + F23 = 0, 

rcsC X Fo3 + rc,Q x F23 + M3 + M3ext = 0, (1.6.80) 

where the unknowns are 

Fo3 = FQ3X 1 + Fo3y J, F23 = F23x 1 + F23y J, 

and the position vector TQ = XQI -h yq} of the application point of the joint force F23. 
Numerically, Eq. (1.6.80) becomes 

3.302+ Fo3x+F23x = 0, 

- 0.539-hFo3^+F23j = 0, 

(1.6.81) 

(1.6.82) 
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- 1000.05 + 0.065Fo3x - 0.075Fo3j + 0.125F23x - 0.075F23>; 

+ F2?>y^Q - F23xyQ = 0. (1.6.83) 

The application point Q of the joint force F23 is on the line BC: 

yi^yc^yo^y^ or 0.874-^^^-^^ = 0. (i.6.84) 
XB -Xc XQ- XC XQ 

The joint force F23 is perpendicular to the sliding direction BC: 

F23 • r^c = 0 or - 0.07F23X - 0.061F23>; = 0. (1.6.85) 

There are five scalar equations, Eqs. (1.6.81) through (1.6.85), and six unknowns, Fo3jc, 
0̂3̂ 5 ^23x. F23y, XQ, yQ. The force analysis will continue with link 2. 

Link 2 
Figure 1.6.21(c) shows the free-body diagram of link 2 and Eq. (1.6.79) gives 

Fl2+F/„2 + G 2 + F 3 2 = 0 , 

rBQ xF32 + M/„2 = 0, 

or 

F12 + F2 - F23 = 0, 

rBQ X (-F23) + M2 = 0, 

where the new unknown is introduced (the reaction of link 1 on link 2): 

F12 =Fi2xl + Fi2y}. 

Numerically, the previous equations becomes 

0 .545+ F i2x-F23x = 0, (1.6.86) 

0 .160+ F i2^-F23y = 0, (1.6.87) 

- 0.001 - 0.121 F23x + 0.07 F23y - XQ F23y + yQ F23x = 0. (1.6.88) 

Now there is a system of eight scalar equations, Eqs. (1.6.81) through (1.6.88), eight 
unknowns, and the solution is 

Fo3 = Fo3x 1 + FQ3y} = 7078.411 - 8093.7 j N, 

F23 = F23x 1 + F23y} = -7081.721 + 8094.24 J N, 

F12 =Fi2xi-\- Fi2y} = -7082.261 + 8094.08 j N, 

rQ=XQi + yQ} = 0.0691 + 0.121 j m. 
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Linkl 
Figure 1.6.21(d) shows the free-body diagram of hnk 1. The sum of all the forces for the 
driver link 1 gives 

F21 + F,-„ 1 + Gi + Foi = 0, or - F12 + Fi + FQI = 0. 

The reaction of the ground 0 on link 1 is 

Foi = F12 - Fi = -7082.261 + 8094.08 j - (0.381i + 0.437j) 

=-7082.641+ 8094.52J N. 

The sum of the moments about the mass center C\ for link 1 gives the equilibrium moment 

rciB X F21 + FQA X FOI + M = 0, 

or 

M = rci5 X F12 - rciA x FQI 

= 712.632 k + 712.671 k = 1425.303 k N • m. 

EXAMPLE 1.6.2: 

Calculate the moment M required for dynamic equilibrium and the joint forces for 
the mechanism shown in Figure 1.6.22 using the contour method. The position of 
the crank angle is 0 = ^ rad. The dimensions are AC = 0.10 m, BC = 0.30 m, 
BD = 0.90 m, and La = 0.10 m, and the external force on slider 5 is Fext = 100 N. 
The angular speed of crank 1 is ni = 100 rpm, or coi = 100 j ^ rad/s. The center 
of mass locations of links 7 = 1, 2 , . . . , 5 (with the masses my) are designated by 
Cj(xcj, ycj, 0). The position vectors of the joints and the centers of mass are 

FA = Oi + Oj m, 

rci = 0.2121 + 0.212J m, 

VB = Yd = 0.2561 + 0.256J m, 

rc3 = 0.1781+ 0.128J m, 

re = 0.100i + 0.000j m, 

rc4 = 0.6991+ 0.178J m, 

r^ = rc5 = 1.1421 + O.lOOj m. 
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FIGURE 1.6.22 (a) Mechanism, and (b) diagram representing the mechanism with two contours. 



EXAMPLE 1.6.2: Cont'd 

The total forces and moments at Cj are F/ = F/„y + Gy and M/ : 
is the inertia force, M/ is the inertia moment, and G/ = —ntj g] 
with gravity acceleration g = 9.81 m/s^. 

Fi = 5.5141+ 3.189J N, 

F2 = 0.7811+1.843J N, 

F3 = 1.2021+1.660J N, 

F4 = 6.4661 + 4.896J N, 

F5 = 0.6431 - 0.382J N, 

Ml = M 2 = M5 = 0 k N - m 

M3 = 0.023k N • m. 

M4 =-1 .274k N-m. 

Solution The diagram representing the mechanism is 
and has two contours, 0-1-2-3-0 and 0-3-4-5-0. 

shown 

= Minj, where F/„y 
is the gravity force 

in Figure 1.6.22(b) 

Contour 0-3-4-5-0 
The joint at B represents a ramification point, and the dynamic force analysis will start 
with this joint. 

Reaction F34 
The rotation joint at BR, between 3 and 4, is replaced with the unknown reaction (Fig. 1.6.23): 

F34 = -F43 = F34;c 1 + F34y}. 

If the path / is followed [Fig. 1.6.23(a)], a moment equation is written for the rotation 
joint D/?: 

J2 ^D = (^B - ro) X F34 + (rc4 - ro) x F4 + M4 = 0. (1.6.89) 

Continuing on path / the next joint is the slider joint DT, and a force equation is written. 
The projection of all the forces that act on 4 and 5 onto the sliding direction x is zero: 

^ F(4^^). 1 = (F34 + F4 + F5 + F,^,) . 1 

= F34X + F4x + Fsx + Fext = 0. (1.6.90) 
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DR \ I c. path 

0B«0 
•-34 ••43 

(a) 

EFr' 

(b) 

FIGURE 1.6.23 Joint force F34 faj calculation diagram, and (b) force diagram. 

Solving the system of Eqs. (1.6.89) and (1.6.90): 

F34x = -107.110 N and F^^y = 14.415 N. 

Reaction F45 
The pin joint at DR, between 4 and 7, is replaced with the reaction force (Fig. 1.6.24): 

F45 = -F54 = F45X 1 + ^45j J-

For the path /, shown Figure 1.6.24(a), a moment equation about BR is written for 
link 4: 

J2MR^ = (TD - VB) X F54 + (rc4 - r^) x F4 + M4 = 0. (1.6.91) 

For the path //, an equation for the forces projected onto the sliding direction of the joint 
DT is written for link 5: 

^ F ( ^ ) . 1 = ( F 4 5 + F 5 + F , ; , , ) - 1 

= FA5X + FSx + Fext = 0. (1.6.92) 
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^^ II * Y 
Dfl \C 

path/ : F,^(7) P-CT) 

path/ / : F 4 5 ( 5 ) ^̂  */o) 

F45 F5 

(b) 

FIGURE 1.6.24 Joint force F45 (a) calculation diagram, and (b) force diagram. 

The joint force F45 is obtained from the system of Eqs. (1.6.91) and (1.6.92): 

F45x = -100.643 N and ^45^ = 19.310 N. 

Reaction F05 

The reaction force F05 is perpendicular to the sliding direction of joint DT (Fig. 1.6.25): 

Fo5 =Fo5y}' 

The application point of the unknown reaction force F05 is computed from a moment 
equation about DR for link 5 (path /) [Fig. 1.6.25(a)]: 

or 

^ M ) , ^ ^ - ( r p - r z ) ) x F o 5 = 0 , 

X F05y = 0 =^ X = 0. 

(1.6.93) 

(1.6.94) 
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Q) DT(O^ 

Dr path 

0 ^ 
/ : Fo5(7) ^^-^TV 

Br 

(a) 

E Mr" 

(b) 

FIGURE 1.6.25 Joint force F05 (a) calculation diagram, and (b) force diagram. 

The application point of the reaction force F05 is at D (P = D). The magnitude of the 
reaction force Fosy is obtained from a moment equation about BR for Hnks 5 and 4 (path / ) : 

J2^B^^^ = (i-D - r^) X (Fo5 + F5 + F,,,)+ 

(rc4 - r^) X F4 + M4 = 0. (1.6.95) 

Solving the above equation: 

Fo5y =-18.928 N. 

Contour 0-1-2-3-0 
The reaction force F43 = lOT.llOi — 14.415j N is considered as an external force for 
this contour at B. 

Reaction F23 
The rotation joint at BR, between 2 and 3, is replaced with the unknown reaction force 
(Fig. 1.6.26): 

F23 = -F32 = F23x 1 + F23y}' 
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CE I II, Bj 

'•43 

F43© B, 0 path// : F3,Q \ > Q 
•^23 •-32 EFf 

(a) 

(b) 

FIGURE L6.26 Joint force F23 faj calculation diagram, and (b) force diagram. 

If the path / is followed, as in Figure 1.6.26(a), a moment equation is written for the pin 
joint CR for link 3: 

J2 Mf = (TB - re) X (F23 + F43) + (rc3 - re) x F3 + M3 = 0. (1.6.96) 

For the path //, an equation for the forces projected in the direction A, the sliding 
direction of the joint BT is written for the link 2: 

J2 F̂ ^̂  • A = (F32 + F2) • (cos 01 + sin (/>j) = 0. 

The joint force F23 is calculated from Eqs. (1.6.96) and (1.6.97): 

F23;c = -71.155 N and F23>; = 73.397 N. 

(1.6.97) 
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(a) 

(b) 

FIGURE 1.6.27 Joint force F03 (a) calculation diagram, and (b) force diagram. 

Reaction F03 
For the joint reaction force F03 at CR, there is only path /. For the pin joint BR one moment 
equation is written for link 3 (Fig. 1.6.27): 

J2 M f = (re - TB) X Fo3 + (rc3 - r^) x F3 + M3 = 0. (1.6.98) 

A force equation is written for links 3 and 2 for the slider joint BT: 

J2 F^^^^^ • A = (Fo3 + F3 + F43 + F2) • (cos 01 + sin 0j) = 0. (1.6.99) 

The components of the unknown force are obtained by solving the system of Eqs. (1.6.98) 
and (1.6.99): 

Fo3x = -37.156 N and Fo3v = -60.643 N. 
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BT 
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path/ : F i2 (2 ) ^—•^V) 
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EML̂^ V EMr^ 
•-43 

•-43 

FIGURE 1.6.28 Joint force F12 (a) calculation diagram, and (b) force diagram. 

Reaction F12 
The slider joint at BT, between 1 and 2, is replaced with the reaction force (Fig 1.6.28): 

Fi2 = -F2l = F m l + i^l2jJ. 

The reaction force F12 is perpendicular to the sliding direction A: 

F12 • A = (Fi2x 1 4- Fi2j j) • (cos 01 + sin 0j) = 

Fux cos 0 + Fuy sin 0 = 0. (1.6.100) 

The point of application of force F12 is determined from the equation (path /) 

^ M ^ ^ ^ = (VQ - VB) X F12 = 0, (1.6.101) 
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or 

xFi2 = 0 =>x = 0, (1.6.102) 

and the force F12 acts at B. 
Continuing on path /, a moment equation is written for links 2 and 3 with respect to the 

pin joint CR: 

Y,Mc^^^ = (rB - re) X (F12 + F2 + F43) 

+ (rc3 - re) X F3 + M3 = 0. (1.6.103) 

The two components of the joint force F12 are computed from Eqs. (1.6.100) and (1.6.103): 

Fi2x = -71.936 N and Fuy = 71.936 N. 

Reaction Foi and Equilibrium Moment M 
The pin joint A/?, between 0 and 1, is replaced with the unknown reaction (Fig. 1.6.29): 

Foi =Foixi-{-Foiy}. 

path / : 

CR 

^10 -foi 

©'" 0 
R\ I ) \ B "̂.(I>T|r©^ k̂<D 

CR 

(1&2)" \ ^ v^^^(l&2&3) 

F43 
EM^ 

y k 

FIGURE 1.6.29 joint force Foi (3.) calculation diagram, and (b) force diagram. 
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The unknown equilibrium moment is M = M k. If the path / is followed [Fig. 1.6.29(a)] 
for the slider joint BT, a force equation is written for link 1: 

^ F ^ i ^ • A = (Foi + F i ) . (cos01 + sin0j) = 0. (1.6.104) 

Continuing on path / the next joint encountered is the pin joint BR, and a moment equation is 
written for links 1 and 2: 

J2 M^^^^ = - r ^ X Foi + (rci - r^) x Fj + M = 0. (1.6.105) 

Equation (1.6.105) is the vector sum of the moments about CR of all forces and moments 
that acts on links 1, 2, and 3: 

^^( i&2&3) ^ _^^ ^ p^^ ^ ^^^^ _ re) X Fi + M 

+ (r^ - re) X (F2 + F43) + M3 + (res - re) x F3 = 0. (1.6.106) 

From Eqs. (1.6.104), (1.6.105), and (1.6.106) the components FQIJC, Foiy, and M are 
computed: 

Foix = -77.451 N, Foiy = 68.747 N, and M = 37.347 N • m. 

EXAMPLE 1.6.3: 

For the R-TRR-RRT mechanism in Example 1.6.2, calculate the moment M required 
for dynamic equilibrium of the mechanism and the joint forces using the dyad method. 

Solution BR DR DT dyad 

Figure 1.6.30(a) shows the last dyad BR DR DT with the unknown joint reactions F34, 
Fo5, and F45 = —F54. The joint reaction F05 is perpendicular to the sliding direction 
Fo5 -L A = 1 or 

F05=^05);J. (1.6.107) 

The following equations are written to determine F34 and F05: 

• sum of all the forces on links 4 and 5 is zero: 

J2 F^4^̂ ^ = F34 + F4 + F5 + F,^, + Fo5 = 0, 

or 

^ F(2&3) . J ^ F43y + F4y + ^5^ + Fo5y = 0. (1.6.108) 
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EXAMPLE 1.6.3: Cont'd 

(b) 

FIGURE 1.6.30 Joint reactions for the dyad BR DR DJ. 

• sum of moments of all the forces and moments on link 4 about DR is zero 

^ M^̂ ^ = (r^ - VD) X F43 + (rc4 - r/)) x F4 + M4 = 0. (1.6.109) 

From Eqs. (1.6.108) and (1.6.109) the unknown components are calculated: 

F34;c = -107.110 N, F34y = 14.415 N, and Fosy -18.928 N. 

The reaction components 5̂4;̂  and F543; are computed from the sum of all the forces 
on link 4 [Fig. 1.6.30(b)]: 

or 

^ F ( 4 ) .J ^ ^34^ + ^3^ + /734^ ^ 0, (1.6.110) 

Continued 
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EXAMPLE 1.6.3: Cont'd 

and 

F54;c = 100.643 N and FsAy = -19.310 N. 

BT BR CR dyad 
Figure 1.6.31 (a) shows the first dyad BT BR CR with the unknown joint reaction forces 
Fi2, Fo3, and F23 = —F32. The joint reaction force F12 is perpendicular to the sliding 
direction F12 X A or 

F12 • A = (Fi2;ci + Fi2y}). (cos 01 + sin 0j) = 0. (1.6.111) 

(a) 

(b) 

FIGURE 1.6.31 Joint reactions for the dyad BT BR CR. 
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EXAMPLE 1.6.3: Cont'd 

The following equations are written in order to determine the forces F12 and F03: 

• sum of all forces on links 2 and 3 is zero: 

J2 F̂ 2&3) ^ Yn + F2 + F3 + F43 + Fo3 = 0, 

or 

J2 F^^^^^ • J = Fuy + F2y + F3y + F43y + Fo3x = 0. (L6.112) 

• sum of moments of all the forces and the moments on link 3 about BR is zero: 

J2 M f = (re - r^) X F03 + (rc3 - r^) x F3 + M3 = 0. (1.6.113) 

From Eqs. (1.6.111), (1.6.112), and (1.6.113) the following components are 
obtained: 

Fi2x = -71.936 N and F^y = 71.936 N, 

Fo3x = -37.156 N and Fo3>; = -60.643 N. 

The reaction components ^23^ and JF23J are computed from the sum of all the forces 
on link 3 [Fig. 1.6.31(b)]: 

^ F ^ ^ ^ = F23 + F3 + F43 + Fo3 = 0, 

or 

^ F^^). J = F23y + F^y + F43, + Fo3, = 0, (1.6.114) 

and solving the equations 

F23x = -71.155 N and F23y = 73.397 N. 

Driver link 
A force equation for the driver can be written to determine the joint reaction FQI 
(Fig. 1.6.32): 

^ F ^ i ) = F o i + F i + F 2 i = 0 , 

^ F ( i > . i = Foi;, + Fi^+F2i ;c=0, 

X^F(^> .J = Foi, + F i , +F21, - 0, (1.6.115) 

Continued 

or 
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EXAMPLE 1.6.3: Cont'd 

FIGURE 1.6.32 joint reactions for ttie driver linl<. 

Solving the above equations gives 

Foix = -77.451 N and Foiy = 68.747 N. 

Sum of the moments about AR for link 1 gives the equilibrium moment 

J2 MA ^ = r^ X F21 + rci X Fi + M = 0, 

and M = 37.347 N-m. 

(1.6.116) 

1.6.10 Problems 
1.6.1 Figure 1.6.33 shows a uniform rod of mass m and length L. The rod is free to swing 

in a vertical plane. The rod is connected to the ground by a pin joint at the distance 
D from one end of the rod. The rod makes an angle 0(t) with the horizontal axis. 
The local acceleration of gravity is g.a). Find the differential equation or equations 
describing the motion of the rod. b). Determine the axial and shear components of 
the force exerted by the pin on the rod as the rod swings by any arbitrary position, 
c). When the rod is released from rest in the horizontal position, the initial value of 
the angular velocity is zero. Find the initial angular acceleration and the initial pin 
force components. 

1.6.2 The four-bar mechanism shown in Figure 1.3.10(a) has the dimensions: 
AB = 80 nmi, BC = 210 mm, CD = 120 mm, and AD = 190 mm. The driver link 
AB rotates with a constant angular speed of 2400 rpm. The links are homogeneous 
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FIGURE 1.6.33 Uniform rod. 

rectangular prisms made of steel with the width h = 0.010 m and the depth 
d = 0.001 m. The external moment applied on the link CD is opposed to the motion 
of the link and has the value \Mext I = 600 N-m. The density of the material is 
PSteel = 8000 kg/m^ and the gravitational acceleration is g = 9.807 m/s^. Find the 
equilibrium moment on link A5 and the joint forces for 0 = 120° using: a), 
free-body diagram of individual links; b). contour method; and c). dyads. 

1.6.3 The slider crank mechanism shown in Figure 1.4.10 has the dimensions AB = 0.4 m 
and BC = 1 m. The driver link 1 rotates with a constant angular speed of 
n = 1600 rpm. The links 1 and 2 have a rectangular shape made of steel with the 
width /z = 0.010 m and the depth d = 0.001 m. The steel slider 3 has the width 
^Slider = 0.050 m, the height hsitder = 0.020 m, and the depth d = 0.001 m. The 
external force applied on the slider 3 is opposed to the motion of the slider and has 
the value \¥ext\ = 800 N. The density of the material is psteei = 8000 kg/m^ and the 
gravitational acceleration is g = 9.807 m/s^. Find the equilibrium moment on the 
driver Hnk 1 and the joint forces for 0 = 30° using: a), free-body diagram of 
individual links; b). contour method; and c). dyads. 

1.6.4 The planar mechanism considered is shown in Figure 1.3.19 and has the following 
data: AB = 0.150 m, BC = 0.400 m, CD = 0.370 m, CE = 0.230 m, EF = CE, La = 
0.300 m, Lh = 0.450 m, and Lc = CD. The constant angular speed of the driver link 1 
is 1800 rpm. The links 1, 2, 3, and 4 are homogeneous rectangular prisms with the 
width h = 0.010 m and the depth d = 0.001 m. The slider 5 has the width wsuder = 
0.050 m, the height hsuder = 0.020 m, and the depth d = 0.001 m. The external 
force applied on the slider 5 is opposed to the motion of the slider and has the value 
\¥ext\ = 500 N. The density of the material is psteei = 8000 kg/m^ and the 
gravitational acceleration is g = 9.807 m/s^. Find the equilibrium moment on 
the driver link 1 and the joint forces for 0 = 0i = 60°. 

1.6.5 The R-RRR-RTT mechanism is shown in Figure 1.3.20. The following data are 
given: AB = 0.080 m, BC = 0.350 m, CE = 0.200 m, CD = 0.150 m, La = 0.200 m, 
Lh = 0.350 m, and Lc = 0.040 m. The driver link 1 rotates with a constant angular 
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speed ofn = 2200 rpm. The links 1, 2, 3, and 5 are homogeneous rectangular 
prisms made of aluminum with the width /z = 0.010 m and the depth d = 0.001 m. 
The aluminum sHder 4 has the width wsitder = 0.050 m, the height 
hsiider = 0.020 m, and the depth d = 0.001 m. The external force applied on 5 is 
opposed to the motion of the Hnk and has the value \¥ext\ = 1000 N. The density of 
the material is PAI =2.8 Mg/m-̂  and the gravitational acceleration is 
g =z 9.807 m/s^. For 0 = 145° find the equilibrium moment on the driver link 1 and 
the joint forces. Select suitable dimensions for the link 5. 

1.6.6 The mechanism shown in Figure 1.3.21 has the following dimensions: 
AB = 100 mm, AD = 350 mm, BC = 240 mm, CE = 70 mm, EF = 300 mm, and 
a = 240 mm. The constant angular speed of the driver link lisn= 1400 rpm. The 
links 1 and 4 are homogeneous rectangular prisms with the width h = 0.010 m and 
the depth d = 0.001 m. The Hnk 2 has the width h = 0.010 m and the depth 
d = 0.001 m. The sliders 3 and 5 have the width wsuder = 0.050 m, the height 
hsiider = 0.020 m, and the depth d = 0.001 m. The external force applied on 5 is 
opposed to the motion of the link and has the value \¥ext\ = 1200 N. The density of 
the material is piron =7.2 Mg/m^ and the gravitational acceleration is 
g = 9.807 m/s^. Find the equilibrium moment on the driver link 1 and the joint 
forces for 0 = 0i = 30°. Select a suitable dimension for link 2. 

1.6.7 The dimensions for the mechanism shown in Figure 1.3.22 are: AB = 60 mm, 
BD = 160 mm, BC = 55 mm, CD = 150 mm, DE = 100 mm, CF = 250 mm, 
AE =150 mm, and b = 40 mm. The constant angular speed of the driver link 1 is 
n = 1400 rpm. The links 1,3, and 4 are homogeneous rectangular prisms with the 
width /z = 0.010 m and the depth d = 0.001 m. The slider 5 has the width wsuder = 
0.050 m, the height hsuder = 0.020 m, and the depth d = 0.001 m. The plate 2 has 
the width /z = 0.010 m and the depth d = 0.001 m. The external force applied on 
5 is opposed to the motion of the link and has the value |F̂ ;̂ ;̂ | = 1500 N. The 
density of the material is PBwnze = 8.7 Mg/no? and the gravitational acceleration is 
g =z 9.807 m/s^. Find the equilibrium moment on the driver link 1 and the joint 
forces for 0 = 0i = 60°. 

1.6.8 The mechanism in Figure 1.3.23 has the dimensions: AB =110 mm, AC = 55 mm, 
BD = 220 mm, DE = 300 mm, EF = 175 mm, L« = 275 mm, and Lb = 65 mm. 
The links 1, 2, 4, and 5 are homogeneous rectangular prisms with the width 
/z = 0.010 m and the depth d = 0.001 m. The sHder 3 has the width 
wSlider = 0.050 m, the height hsuder = 0.020 m, and the depth d = 0.001 m. The 
constant angular speed of the driver link 1 is n = 2400 rpm. The external moment 

on 5 is opposed to the motion of the link Mext = — \Mext I , where 
1̂ 51 

\Mext\ = 600 N-m. The density of the material is psteei = 8000 kg/m-̂  and the 
gravitational acceleration is g = 9.807 m/s^. Find the equilibrium moment on the 
driver link 1 and the joint forces for 0 = 0i = 150°. 

1.6.9 The dimensions for the mechanism shown in Figure 1.3.24 are: AB = 250 mm, 
BC = 650 mm, AD = 600 mm, CD = 350 mm, DE = 200 mm, EF = 600 mm, 
and La = 100 mm. The constant angular speed of the driver link lisn = 2500 rpm. 
The links 1, 2, 3, and 4 are homogeneous rectangular prisms with the width 
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h = 0.010 m and the depth d = 0.001 m. The slider 5 has the width 
^Slider = 0.050 m, the height hsuder = 0.020 m, and the depth d = 0.001 m. The 

\F 
external force on 5 is opposed to the motion of the link ¥ext = — l^ext I . where 

|VFI 
\Yext\ = 1600 N. The density of the material is psteei = 8000 kg/m^ and the 
gravitational acceleration is g = 9.807 m/s^. Find the equilibrium moment on the 
driver Hnk 1 and the joint forces for 0 = 0i = 60°. 

1.6.10 The mechanism in Figure 1.3.25 has the dimensions: AB = 50 mm, AC = 160 mm, 
BD = 250 mm. La = 30 mm, and L^ = 60 mm. The driver link 1 rotates with a 
constant angular speed ofn= 1500 rpm. The links 1, 2, and 5 are homogeneous 
rectangular prisms with the width /i = 0.010 m and the depth d = 0.001 m. The 
sliders 3 and 4 have the width wsuder = 0.050 m, the height hsuder = 0.020 m, and 
the depth d = 0.001 m. The external moment on 5 is opposed to the motion of the 

link Mext = —\Mext\ , where IM ;̂̂ !̂ = 900 N-m. The density of the material is 
1̂ 51 

Psteei = 8000 kg/m-̂  and the gravitational acceleration is g = 9.807 m/s^. Find the 
equilibrium moment on the driver link 1 and the joint forces for cp = (pi = 130°. 
Select a suitable dimension for link 5. 

1.6.11 Figure 1.3.26 shows a mechanism with the following dimensions: AB = 150 mm, 
BD = 500 mm, and L« = 180 mm. The constant angular speed of the driver link 1 
isn = 1600 rpm. The links 1, 2, and 4 are homogeneous rectangular prisms with the 
width h = 0.010 m and the depth d = 0.001 m. The sliders 3 and 5 have the width 
^Slider = 0.050 m, the height hsuder = 0.020 m, and the depth d = 0.001 m. The 

V£) 
external force on 5 is opposed to the motion of the link Fext = —\Fext I . where 

|VDI 

\Fext\ = 2000 N. The density of the material is psteei = 8000 kg/m^ and the 
gravitational acceleration is g = 9.807 m/s^. Find the equilibrium moment on the 
driver link 1 and the joint forces for 0 = 210°. Select a suitable dimension for link 4. 

1.6.12 The mechanism in Figure 1.3.27 has the dimensions: AB = 20 mm, AC = 50 mm, 
BD =150 mm, DE = 40 mm, EF = 27 mm. La =1 mm, and L^ = 30 mm. The 
constant angular speed of the driver link I isn = 1400 rpm. The links 1, 2, 4, and 5 
are homogeneous rectangular prisms with the width h = 0.010 m and the depth 
d = 0.001 m. The slider 3 has the width wsuder = 0.050 m, the height 
hsiider = 0.020 m, and the depth d = 0.001 m. The external moment on 5 is opposed 

a>5 
to the motion of the linkM^xr = -IM^̂ ^̂ I , where |M ;̂̂ |̂ = 1500 Nm. The 

1̂ 51 
density of the material is psteei = 8000 kg/m^ and the gravitational acceleration is 
g = 9.807 m/s^. Find the equilibrium moment on the driver link 1 and the joint 
forces for cj) = cpi = 120°. 

1.6.13 Figure 1.3.28 shows a mechanism with the following dimensions: AB = 250 mm, 
BC = 940 mm, CD = DE = 380 mm, EF = 700 mm. La = 930 mm, and 
Lb = Lc = 310 mm. The driver link 1 rotates with a constant angular speed of 
n = 1500 rpm. The links 1, 2, 3, and 4 are homogeneous rectangular prisms with the 
width h = 0.010 m and the depth d = 0.001 m. The shder 5 has the width 
^Slider = 0.050 m, the height hsuder = 0.020 m, and the depth d = 0.001 m. The 

\f 
external force on 5 is opposed to the motion of the link Fext = — l^ext I :, where 

|VFI 
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\Fext\ = 2000 N. The density of the material is psteei = 8000 kg/m^ and the 
gravitational acceleration is g = 9.807 m/s^. Find the equilibrium moment on the 
driver Unk 1 and the joint forces for 0 = 0i = 120°. 

1.6.14 Figure 1.3.29 shows a mechanism with the following dimensions: AB = 200 mm, 
BC = 900 mm, CE = 300 mm, CD = 600 mm, EF = 600 mm. La = 500 mm, 
Lh = 800 mm, and L^ = 1100 mm. The constant angular speed of the driver link 1 
isn = 1000 rpm. The links 1, 2, 3, and 4 are homogeneous rectangular prisms with 
the width /z = 0.010 m and the depth d = 0.001 m. The slider 5 has the width 
y^siider = 0.050 m, the height hsuder = 0.020 m, and the depth d = 0.001 m. The 

\f 
external force on 5 is opposed to the motion of the link Fext = —\^ext\ , where 

\Fext\ = 3000 N. The density of the material is psteei = 8000 kg/m^ and the 
gravitational acceleration is g = 9.807 m/s^. Find the equilibrium moment on the 
driver link 1 and the joint forces for (p = (pi = 150°. 

1.6.15 Figure 1.3.30 shows a mechanism with the following dimensions: AB = 200 mm, 
BC = 540 nmi, CF = 520 mm, CD = 190 mm, DE = 600 mm. La = 700 mm, 
LIJ = 400 mm, and Lc = 240 mm. The constant angular speed of the driver link 1 is 
n = 1200 rpm. The links 1, 2, 3, and 4 are homogeneous rectangular prisms with the 
width /z = 0.010 m and the depth d = 0.001 m. The slider 5 has the width 
"^Slider = 0.050 m, the height hsuder = 0.020 m, and the depth d = 0.001 m. The 
external force on 5 is opposed to the motion of the link Fext = — \Fext I , where 

|F^;, |̂ = 900 N. The density of the material is psteei = 8000 kg/m^ and the 
gravitational acceleration is ^ = 9.807 m/s^. For 0 = 30° find the equilibrium 
moment on the driver link 1 and the joint forces. 

1.6.16 Figure 1.3.31 shows a mechanism with the following dimensions: AB = 80 mm, 
BC = 200 mm, AD = 90 mm, and BE = 220 mm. The constant angular speed of 
the driver link lisn = 1300 rpm. The links 1, 2, and 4 are homogeneous 
rectangular prisms with the width /z = 0.010 m and the depth d = 0.001 m. The 
sliders 3 and 5 have the width wsuder = 0.050 m, the height hsuder = 0.020 m, and 
the depth d = 0.001 m. The external force on 3 is opposed to the motion of the link 

Fext = -\Fext\—, where \Fext\ = 1900 N. The density of the material is 

pSteel = 8000 kg/w? and the gravitational acceleration is g = 9.807 m/s^. Find the 
equilibrium moment on the driver link 1 and the joint forces for 0 = 60°. 

1.6.17 The dimensions of the mechanism shown in Figure 1.3.32 are: AB = 80 mm, 
BC = 150 mm, BE = 300 mm, CE = 450 mm, CD = 170 mm, EF = 600 mm. 
La = 200 mm, L̂ , = 150 mm, and Lc = 50 mm. The constant angular speed of the 
driver link lisn= 1500 rpm. The links 1,3, and 4 are homogeneous rectangular 
prisms with the width /z = 0.010 m and the depth d = 0.001 m. The slider 5 has the 
width wSlider = 0.050 m, the height hsuder = 0.020 m, and the depth d = 0.001 m. 
The plate 2 has the width h = 0.010 m and the depth d = 0.001 m. The external 
force appHed on 5 is opposed to the motion of the link and has the value 
\Fext\ = 2000 N. The density of the material is PBwnze = 8.7 Mg/m^ and the 
gravitational acceleration is g = 9.807 m/s^. Find the equilibrium moment on the 
driver link 1 and the joint forces for 0 = 0i =210°. 
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1.6.18 The dimensions of the mechanism shown in Figure 1.3.33 are: AB = 140 mm, 
AC = 200 nrni, CD = 350 mm, DE = ISO mm, and La = 300 mm. The constant 
angular speed of the driver link lisn = 900 rpm. The links 1,3, and 4 are 
homogeneous rectangular prisms with the width h = 0.010 m and the depth 
d = 0.001 m. The sliders 2 and 5 have the width wsuder = 0.050 m, the height 
hsiider = 0.020 m, and the depth d = 0.001 m. The external force on 5 is opposed to 
the motion of the Hnk ¥ext = -\^ext I , where \Fext I = 1000 N. The density of the 

|V£| 
material is psteei = 8000 kg/m^ and the gravitational acceleration isg = 9.807 m/s^. 
Find the equilibrium moment on the driver link 1 and the joint forces for 0 = 60°. 

1.6.19 The dimensions of the mechanism shown in Figure 1.3.34 are: AB = 250 nam, 
AC =100 mm, CD = 280 mm, and DE = 800 mm. The constant angular speed of 
the driver link lisn = 1600 rpm. The links 1,3, and 4 are homogeneous 
rectangular prisms with the width /z = 0.010 m and the depth d = 0.001 m. The 
sliders 2 and 5 have the width wsuder = 0.050 m, the height hsitder = 0.020 m, and 
the depth d = 0.001 m. The external force on 5 is opposed to the motion of the link 

Yext = -\^ext\ . where \¥ext\ = 900 N. The density of the material is 

Psteei = 8000 kg/w? and the gravitational acceleration is g = 9.807 m/s^. For 
0 = 01 = 210° find the equilibrium moment on the driver link 1 and the joint forces. 

1.6.20 The dimensions of the mechanism shown in Figure 1.3.35 are: AB = 100 mm, 
AC = 200 mm, and CD = 350 mm. The constant angular speed of the driver link 1 
isn = 900 rpm. The links 1,3, and 5 are homogeneous rectangular prisms with the 
width /z = 0.010 m and the depth d = 0.001 m. The sliders 2 and 4 have the width 
^Slider = 0.050 m, the height hsuder = 0.020 m, and the depth d = 0.001 m. The 

external force on 5 is opposed to the motion of the link Fext = — l^ext I , where 
|VGI 

\Yext\ = 2500 N. The density of the material is psteel = 8000 kg/m^ and the 
gravitational acceleration is g = 9.807 m/s^. Find the equilibrium moment on the 
driver link 1 and the joint reaction forces for 0 = 0i = 45°. Select suitable 
dimensions for the link 5 and the distance b. 

1.6.21 The dimensions of the mechanism shown in Figure 1.3.36 are: AB = 140 mm, 
AC = 60 mm, and CD =140 mm. The constant angular speed of the driver link 1 
isn = 2200 rpm. The links 1,3, and 5 are homogeneous rectangular prisms with the 
width /z = 0.010 m and the depth d = 0.001 m. The sliders 2 and 4 have the width 
^Slider = 0.050 m, the height hsuder = 0.020 m, and the depth d = 0.001 m. The 
external moment on 5 is opposed to the motion of the link Mext = — l^ext I , 

1̂ 51 
where \Mext\ = 1500 Nm. The density of the material is psteei = 8000 kg/m^ and 
the gravitational acceleration is g = 9.807 m/s^. Find the equilibrium moment on 
the driver link 1 and the joint forces for 0 = 0i = 60°. Select suitable lengths for 
links 3 and 5. 

1.6.22 The dimensions of the mechanism shown in Figure 1.3.37 are: AB = 110 mm, 
AC = 260 mm, BD = La= 400 mm, 2in6.DE = 270 mm. The constant angular speed 
of the driver link \ is n = n\ = 1000 rpm. The links 1, 2, and 4 are homogeneous 
rectangular prisms with the width h = 0.010 m and the depth d = 0.001 m. 
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The sliders 3 and 5 have the width wsuder = 0.050 m, the height hsuder = 0.020 m, 
and the depth d = 0.001 m. The external force on 5 is opposed to the motion 

YE 
of the link Fext = -\^ext I , where \¥ext I = 900 N. The density of the material 

is psteei = 8000 kg/m^ and the gravitational acceleration is g = 9.807 m/s^. Find 
the equilibrium moment on the driver link 1 and the joint forces for 0 = 0i = 45°. 

1.6.23 The dimensions of the mechanism shown in Figure 1.3.38 are: AB =180 mm, 
AD = 450 mm, and BC = 200 mm. The constant angular speed of the driver link 1 
isn = 1600 rpm. The links 1, 2, and 5 are homogeneous rectangular prisms with the 
width /z = 0.010 m and the depth d = 0.001 m. The sHders 3 and 4 have the width 
^Slider = 0.050 m, the height hsuder = 0.020 m, and the depth d = 0.001 m. The 

external force on 5 is opposed to the motion of the link Fext = — IF̂ jcr I . where 
|VGI 

|F^;,̂ | = 1500 N. The density of the material is psteei = 8000 kg/m^ and the 
gravitational acceleration is g = 9.807 m/s^. Find the equilibrium moment on the 
driver link 1 and the joint forces. Select suitable lengths for the link 5 for 
0 = 01 = 135°. 

1.6.24 The mechanism in Figure 1.3.11(a) has the dimensions: AB = 0.20 m, AD = 0.40 m, 
CD = 0.70 m, CE = 0.30 m, and yE = 0.35 m. The constant angular speed of the 
driver link lisn = 2600 rpm. The links 1,3, and 4 are homogeneous rectangular 
prisms with the width /z = 0.010 m and the depth d = 0.001 m. The sliders 2 and 5 
have the width wsuder = 0.050 m, the height hsuder = 0.020 m, and the depth 
d = 0.001 m. The external force on 5 is opposed to the motion of the link 

\E 
Fext = -IF ĵc l̂ , where \Fext\ = 1500 N. The density of the material is 

psf^^i = 8000 kg/m^ and the gravitational acceleration is g = 9.807 m/s^. Find the 
equilibrium moment on the driver link 1 and the joint forces for 0 = 0i = 30°. 

1.6.25 The mechanism in Figure 1.3.12 has the dimensions: AB = 0.04 m, BC = 0.07 m, 
CD = 0.12 m, AE = 0.10 m, and La = 0.035 m. The constant angular speed of the 
driver link 1 is n = 900 rpm. The links 1, 2, and 4 are homogeneous rectangular 
prisms with the width h = 0.010 m and the depth d = 0.001 m. The sliders 3 and 5 
have the width wsuder = 0.050 m, the height hsuder = 0.020 m, and the depth 
d = 0.001 m. The external force on 5 is opposed to the motion of the link 

Vz) 
Fext = -\¥ext\:—:, where |F^;,̂ | = 1250 N. The density of the material is psteel = 

|VZ)| 

8000 kg/m^ and the gravitational acceleration is g = 9.807 m/s^. Find the 
equilibrium moment on the driver link 1 and the joint forces for 0 = 0i = 60°. 

1.6.26 The mechanism in Figure 1.3.15 has the dimensions: AC = 0.080 m, BC = 0.150 m, 
BD = 0.400 m, and La — 0.020 m. The constant angular speed of the driver 
link 1 is n = 1500 rpm. The links 1,3, and 4 are homogeneous rectangular prisms 
with the width /z = 0.010 m and the depth d = 0.001 m. The sliders 2 and 5 have the 
width wsiider = 0.050 m, the height hsuder = 0.020 m, and the depth d = 0.001 m. 

V/) 
The external force on 5 is opposed to the motion of the link Fext = — l^ext I » 

|VZ)| 

where \Fext\ = 2000 N. The density of the material is psteei = 8000 kg/m^ and the 
gravitational acceleration is g = 9.807 m/s^. Find the equilibrium moment on the 
driver link 1 and the joint forces for 0 = 0i = 60°. Select a suitable length for link 1. 
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1.7 Simulation of Kinematic Chains with 
Mathematical'^ 

A planar mechanism will be analyzed and simulated using the Mathematical^ software. 
The planar R-RTR-RTR mechanism considered is shown in Figure 1.7.1. The driver link 
is the rigid link 1 (the link AB). The following numerical data are given: AB = 0.140 m, 
AC = 0.060 m, AE = 0.250 m, CD = 0.150 m. The angle of the driver link 1 with the 
horizontal axis is 0. 

1.7.1 Position Analysis 

The Mathematical^ commands for the input data are 

AB=0.140; AC=0.060; AE=0.250; CD=0.150; 

Position Analysis for an Input Angle 
The angle of the driver link 1 with the horizontal axis 0 = 30°. The Mathematical^ 
command for the input angle is 

phi=N[Pi]/6; 

where N [expr] gives the numerical value of expr and Pi is the constant TT, with numerical 
value approximately equal to 3.14159. 

Position of joint A 
A Cartesian reference frame xOy is selected. The joint A is in the origin of the reference 
frame, that is, A = O, 

XA = 0,yA = 0. (1.7.1) 
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FIGURE 1.7.1 R-RTR-RTR mechanism. 

Position of joint C 

The coordinates of the joint C are 

xc = 0, yc=AC = 0.060 m. 

Position of joint E 

The coordinates of the joint E are 

XE = 0,yE = -AE = -0.250 m. 

The Mathematical^ commands for Eqs. (1.7.1), (1.7.2), and (1.7.3) are 

xA=0; yA=0; 

xC=0; yC=AC; 

xE=0; yE=-AE; 

(1.7.2) 

(1.7.3) 
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Position of joint B 
The unknowns are the coordinates of the joint B, XB and y^. Because the joint A is fixed 
and the angle (p is known, the coordinates of the joint B are computed from the following 
expressions 

XB = A5COS0 = 0.140 cos 30° = 0.121 m, 

yB = AB sin 0 = 0.140 sin 30° = 0.070 m. (1.7.4) 

The Mathematical^ commands for Eq. (1.7.4) are 

xB=AB Cos [phi] ; 
yB=AB Sin[phi]; 

where phi is the angle 0 in radians. 

Position of joint D 
The unknowns are the coordinates of the joint D, XD and JB- Knowing the positions of the 
joints B and C, one can compute the slope m and the intercept b of the line BC 

(yB - yc) 
m = , 

(XB - Xc) 
b = yB — mxB. (1.7.5) 

The Mathematical^ commands for Eq. (1.7.5) are 

m=(yB-yC)/(xB-xC); 
b=yB-m xB; 

The joint D is located on the line BC: 

yo — rnxD — b = 0. (1.7.6) 

Furthermore, the length of the segment CD is constant: 

(xc - xof + {yc - yof = CD\ (1.7.7) 

The Eqs. (1.7.6) and (1.7.7) with Mathematical^ commands are 

eqnDl= (xDsol -xC) '̂ 2+ (yDsol -yC) '̂ 2-CD'̂ 2==0; 
eqnD2=yDsol-m xDso1-b==0; 

The Eqs. (1.7.6) and (1.7.7) form a system from which the coordinates of the joint D can be 
computed. To solve the system of equations, a specific Mathematical^ command will be 
used. The command Sol ve [eqns, vars] attempts to solve an equation or set of equations 
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f 

FIGURE 1.7.2 Solutions for the position of the joint DforO<(p< 90° (XD < xc). 

eqns for the variables vars. For the mechanism 

soluti onD=So1ve[{eqnDl,eqnD2},{xDsol,yDso1}]; 

two sets of solutions are found for the position of the joint D: 

xDl=xDsol/.solutionD[[l]]; 
yDl=yDsol/.soluti onD[[1]]; 
xD2=xDsol/.soluti onD[[2]]; 
yD2=yDsol/.soluti onD[[2]]; 

These solutions are located at the intersection of the line BC with the circle centered in C 
and radius CD (Fig. 1.7.2), and they have the following numerical values: 

xm = -0.149 m, yoi = 0.047 m, 

XD2 = 0.149 m, yD2 = 0.072 m. 

To determine the correct position of the joint D for the mechanism, an additional condition 
is needed. For the first quadrant, 0 < 0 < 90°, the condition is xo <xc. 
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This condition with Mathematical^ is If [condition, t , f ] , that gives t if 
condi t i on evaluates to True, and f if it evaluates to False. For the considered mechanism, 
the following applies: 

If[xDl<=xC, xD=xDl;yD=yDl, xD=xD2;yD=yD2]; 

Because xc = 0m, the coordinates of the joint D are 

xj) = XD\ = —0.149 m, 

JD = JDX = 0.047 m. 

The numerical solutions for B and D are printed using Mathematical^: 

Print["xB = ", xB, " m" ]; 
Print["yB = ", yB, " m" ]; 
Print["xD = ", xD, " m" ]; 
Print["yD = ", yD, " m" ]; 

The Mathematical^ program for the input angle 0 = 30° is given in Program 1.7.1. At the 
end of the program there are commands to draw the mechanism. 

Position Analysis for a Complete Rotation 
For a complete rotation of the driver link AB, 0 < 0 < 360°, a step angle of 0 = 60° is 
selected. 

To calculate the position analysis for a complete cycle one can use the Mathematical^ 
command For [start, t e s t , i ncr, body]. It executes start, then repeatedly evaluates 
body and incr until test fails to give True. In the case of the mechanism the following 
applies 

For[phi=0, phi<=2*N[Pi], phi+=N[Pi]/3, Program block]; 

Method I 
Method I uses constraint conditions for the mechanism for each quadrant. For the 
mechanism, there are several conditions for the position of the joint D. 

For the angle 0 located in the first quadrant 0° < 0 < 90° (Fig. 1.7.2), and the 
fourth quadrant 270° < 0 < 360° (Fig. 1.7.5), the following relation exists between XD 
andxc: 

XD < Xc. 

For the angle 0 located in the second quadrant 90° < 0 < 180° (Fig. 1.7.3), and the 
third quadrant 180° < 0 < 270° (Fig. 1.7.4), the following relation exists between XD 
andxc: 

XD > xc. 
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FIGURE 1.7.3 Solutions for the position of tiie joint D for 90° < 0 < 180° (XD > xc). 

FIGURE 1.7.4 Solutions for the position of the joint D for 180° < 0 < 270° (XD > xc). 
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D = Di 

FIGURE 1.7.5 Solutions for the position of the Joint D for 270° < 0 < 360° (XD < xc). 

The following Mathematical^ commands are used to determine the correct position of 
the joint D for all four quadrants: 

l f [0 <= phi <= N[Pi]/2 II 3 N[Pi]/2 <= phi <= 2 N[Pi], 
If[xDl<=xC, xD=xDl;yD=yDl, xD=xD2;yD=yD2], 
If[xDl>=xC, xD=xDl;yD=yDl, xD=xD2;yD=yD2] 
] ; 

where | | is the logical OR function. 
The Mathematical^ program for a complete rotation of the driver link using method I 

is given in Program 1.7.2. The graph of the mechanism for a complete rotation of the driver 
link is given in Figure 1.7.6. 

Method U 
Another position analysis method for a complete rotation of the driver link uses constraint 
conditions for the initial value of the angle 0. For the mechanism, the correct position of 
the joint D is calculated using a simple function, the Euclidian distance between two points 
P and Q\ 

d = yj{xp - xqf + {yp - yg)^. (1.7.8) 
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FIGURE 1.7.6 Graph of the mechanism for a complete rotation, 0 < 0 < 360° 

In Mathematical^, the following function is introduced: 

Dist[xP ,yP_,xQ_,yQj :=Sqrt[(xP-xQ)'^2+(yP-yQ)'^2]; 

For the initial angle 0 = 0°, the constraint is XD < xc, so the first position of the joint D, 
that is, Do, is calculated for the first step D = DQ — Dk, k = 0. For the next position of the 
joint, Dk-^i, there are two solutions Z>̂ _̂ j and D^{^j,k = 0, 1, 2, . . . . In order to choose the 
correct solution of the joint, Dj^+i, it is compared to the distances between the old position, 
Dk, and each new calculated positions D[_^J and DJ^^i- The distances between the known 
solution Dk and the new solutions D^^i and D^j^_^i are dj^ and dj^^. If the distance to the first 
solution is less than the distance to the second solution, dj^ 
is Dfc+i = D^+p or else Dk+i = D^l^^ (Fig. 1.7.7). 

dl}, then the correct answer 
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FIGURE 1.7.7 Distance condition for position analysis: dl < d]^ ^ Dk+\ = ^ i + i -

The following Mathematical^ commands are used to determine the correct position of 
the joint D using a single condition for all four quadrants: 

1ncrement=0; 
For[phi=0, phi<=2*N[Pi], phi+=N[Pi]/3, 

If[increment==0, If[xDl<xC, xD=xDl;yD=yDl, xD=xD2;yD=yD2], 
distl=Dist[xDl,yDl,xDo1d,yDo1d]; 
dist2=Dist[xD2,yD2,xDo1d,yDo1d]; 
I f [d is t l<d is t2 , xD=xDl;yD=yDl, xD=xD2;yD=yD2 ] 

] ; 
xDo1d=xD; 
yDold=yD; 
increment++; 

h 

With this algorithm the correct solution is selected using just one constraint relation for the 
initial step and then, automatically, the problem is solved. In this way it is not necessary to 
have different constraints for different quadrants. 
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The Mathematical^ program for a complete rotation of the driver Hnk using the second 
method is given in Program 1.7.3. 

1.7.2 Velocity and Acceleration Analysis 
For the considered mechanism (Fig. 1.7.1) the driver link 1 is rotating with a constant 
speed of Az = 50 rpm. A Mathematical^ program for velocity and acceleration analysis is 
presented here. 

The Mathematical^ commands for the angular speed, in rad/s, are 

n=50; (* rpm *) 
omega=n*N[Pi]/30; (* rad/s *) 

The Mathematical^ commands for coordinates of the joints A, C, and E are 

xA=0; yA=0; 
xC=0; yC=AC; 
xE=0; yE=-AE; 

The coordinates of the joint B {B = B\ = B2 on the link 1 or 2) are 

XB(t) = AB cos 0(0 and ysit) = AB sin (pit). 

To calculate symboHcally the position of the joint B, the following Mathematical^ 
commands are used: 

xB=AB Cos[phi[t] ] ; 
yB=AB S in [ph i [ t ] ] ; 

where phi [t] represents the mathematical function 0(0- The function name is phi and it 
has one argument, the time t. 

To calculate numerically the position of the joint B, the symbolic variables need to be 
substituted with the input data. To apply a transformation rule to a particular expression 
expr, type expr/. 1 hs->rhs. To apply a sequence of rules on each part of the expression 
expr, typeexpr/.{lhsl->rhsl, Ihs2->rhs2, . . . } . 

For the mechanism, the transformation rule represents the initial data: 

initdata={AB->0.14, AC->0.06, AE->0.25, CD->0.15, 
phi [ t ] ->N[Pi ] /6 , phi'[t]->omega, phi" [ t ] ->0}; 

where phi ' [t] is the first derivative of phi with respect to t, and phi" [t] is the second 
derivative of the function. 

The command Pri nt [exprl, expr2, . . . ] prints the exprl, expr2, . . . , followed 
by a new line. To print the solutions of the position vector, the following commands are 
used: 

Print["xB = ", xB," = ", xB/ . ini tdata, " m" ] ; 
Print["yB = ", yB," = ", yB/ . in i tdata, " m" ] ; 
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The linear velocity vector of the joint B {B = B\ = B2) is 

where 

XB = = —AB^ sin 0 and ys = = AB^ cos 0, 
dt dt 

are the components of the velocity vector of 5. To calculate symbolically the components 
of the velocity vector using the Mathematical^ the command D [f, t ] is used, which gives 
the derivative of f with respect to t: 

vBx=D[xB,t]; 
vBy=D[yB,t]; 

nn 7r(50) 
For the mechanism 6 = co = — = rad/s = 5.235 rad/s, the numerical values are 

^ 30 30 

XB = -0.140 (5.235) sin 30° = -0.366 m/s, 

yB = 0.140 (5.235) cos 30° = 0.634 m/s. 

The solutions can be printed using Mathematical^: 

Print["vBx = ", vBx," = ", vBx/. initdata, " m/s" ] ; 
Print["vBy = ", vBy," = ", vBy/. initdata, " m/s" ] ; 

The linear acceleration vector of the joint B {B = B\ = B2) is 

SiB = XB\ + 'JBh 

where 

dXB -o 
XB = = —AB(p cos (f) — AB(j) sm 0, 

dt 
dyB -2 

yB — = —ABcj) sm 0 + A50 cos 0, 
dt 

are the components of the acceleration vector of the joint B. 
The Mathematical^ commands used to calculate symbolically the components of the 

acceleration vector are 

aBx=D[vBx,t]; 
aBy=D[YBy,t]; 
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For the considered mechanism the angular acceleration of the link 1 is 0 = (i) = 0. The 
numerical values of the acceleration of B are 

XB = -0.140 (5.235)^ cos 30° = -3.323 m/s^ 

yB = -0.140 (5.235)^ sin 30° = -1.919 m/sl 

The solutions printed with Mathematical^ are 

Print["aBx = ", aBx," = ", aBx/. initdata, " m/s'̂ 2" ] ; 
Print["aBy = ", aBy," = ", aBy/. initdata, " m/s'̂ 2" ] ; 

The coordinates of the joint D are XD and yo- The Mathematical^ commands used to 
calculate the position of D are 

mBC=(yB-yC)/(xB-xC); 
bBC=yB-mBC xB; 
eqnDl= (xDsol -xC) ^̂ 2+ (yDsol -yC) '̂ 2-CD'̂ 2==0; 
eqnD2=yDso1-mBC xDso1-nBC==0; 
soluti onD=So1ve[{eqnDl,eqnD2},{xDsol,yDsol}]; 

where mBC is the slope and bBC is the y-intercept of the line BC. 
Two sets of solutions are found for the position of the joint D that are functions of the 

angle 0(0 (i.e., functions of time): 

xDl=xDsol/.soluti onD [ [ 1 ] ] ; 
yDl=yDsol/.soluti onD[[1]]; 
xD2=xDsol/.soluti onD[[2]]; 
yD2=yDsol/.soluti onD[[2]]; 

To determine the correct position of the joint D for the mechanism, an additional condition 
is needed. For the first quadrant, 0 < 0 < 90°, the condition is XD < -^C- This condition 
using the Mathematical^ command is 

I f [xDl/ . init( lata<=xC, xD=xDl;yD=yDl, xD=xD2;yD=yD2]; 

The numerical solutions are printed using Mathematical^: 

Print["xD = ", xD/ . in i tdata, " m" ] ; 
Print["yD = ", yD/ . in i tdata , " m" ] ; 

The linear velocity vector of the joint D (D = 1)3 = D4 on Hnk 3 or link 4) is 

VD = \D3 = VD4 = XDi + yoh 

where 

dxD J . dyo 
xo = — and yo = —. 
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are the components of the velocity vector of the joint Z), respectively, on the x-axis and the 
y-axis. 

To calculate symbolically the components of this velocity vector the following 
Mathematica ^^ commands are used: 

vDx=D[xD,t]; 
vDy=D[yD,t]; 

For the considered mechanism the numerical values are 

XD = 0.067 m/s and yo = -0.814 m/s. 

The numerical solutions are printed using Mathematical^: 

Print["vDx = ", vDx/.initdata, " m/s" ]; 
Print["vDy = ", vDy/.initdata, " m/s" ] ; 

The linear acceleration vector of D = D3 = D4 is 

a/) = XDi + yoh 

where 

dxD . .. dys 
XD = —7- and yB = ——. 

at at 

To calculate symbolically the components of the acceleration vector the following 
Mathematical^ commands are used: 

aDx=D[vDx,t]; 
aDy=D[vDy,t]; 

The numerical values of the acceleration of D are 

XD = 4.617 m/s^ and jz) = -1.811 m/s^, 

and can be printed using Mathematical^: 

Print["aDx = ", aDx/.initdata, " m/s'^Z" ]; 
Print["vDy = ", vDy/.initdata, " m/s'^2" ]; 

The angle 03(0 is determined as a function of time t from the equation of the slope of 
the line BC: 

tan 03(0 = mBcit). 

The Mathematical^ function ArcTan [z] gives the arc tangent of the number z. To calculate 
symbolically the angle 03, 

phi3=ArcTan[mBC]; 
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The angular velocity cosit) is the derivative with respect to time of the angle 03(f): 

d<p3it) 

Symbolically, the angular velocity (02, is calculated using Mathematical^'. 

omega3=D[phi3,t]; 

The angular acceleration ai>{t) is the derivative with respect to time of the angular 
velocity 0^3(0: 

da)2,{t) 
asW = —7—• at 

Symbolically, using Mathematical^, the angular acceleration as is 

a1pha3=D[omegaS,t]; 

The numerical values of the angles, angular velocities, and angular accelerations for the 
links 2 and 3 are 

03 = 02 = 0.082 rad, C03 = 0̂ 2 = 5.448 rad/s, 0:3 = ^2 == 14.568 rad/s^. 

The numerical solutions are printed using Mathematical^: 

Print["phi3=phi2= " ,phi3 / . in i tdata ," rad " ] ; 
Print["omega3=oniega2= ",omega3/.initdata," rad/s"] ; 
Print["alpha3=alpha2= " ,alpha3/ . ini tdata," rad/s'^2"]; 

The angle 05(0 is determined as a function of time t from the following equation: 

tan 05(0 = —— , 
xz)(0 - XE 

and symbolically using Mathematical^: 

phi 5=ArcTan[(yD-yE)/(xD-xE)]; 

The angular velocity cos{t) is the derivative with respect to time of the angle 05(0 

J05(O 
^5 

dt 

To calculate symbolically the angular velocity 0̂ 5 using Mathematical^, the following 
command is used: 

omega5=D[phi5,t]; 
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The angular acceleration 0^5(0 is the derivative with respect to time of the angular 
velocity (i>s(t): 

, . dcosit) 
at 

and it is calculated symbolically with Mathematical^: 

a1pha5=D[omegas,t]; 

The numerical values of the angles, angular velocities, and angular accelerations for the 
link 5 and 4 are 

05 = 04 = 2.036 rad, co^ = (04 = 0.917 rad/s, as = a^ = —5.771 rad/s^. 

The numerical solutions printed with Mathematical^ are 

Print["phi5=phi4= " ,phi5 / . in i tdata ," rad " ] ; 
Print["omega5=omega4= ",omega5/.initdata," rad/s"]; 
Print["alpha5=alpha4= " ,alpha5/ . ini tdata," rad/s'^Z"]; 

The Mathematical^ program for velocity and acceleration analysis is given in 
Program 1.7.4. 

1.7.3 Contour Equations for Velocities and Accelerations 
The same planar R-RTR-RTR mechanism is considered in Figure 1.7.8(a). The driver link 
1 is rotating with a constant speed of AX = 50 rpm. A Mathematical^ program for velocity 
and acceleration analysis using the contour equations is presented here. 

The mechanism has five moving links and seven full joints. The number of independent 
contours is 

He = c — n = l — 5 = 2, 

where c is the number of joints and n is the number of moving links. 
The mechanism has two independent contours. The first contour / contains the links 0, 

1, 2, and 3, while the second contour // contains the links 0, 3, 4, and 5. The diagram of the 
mechanism is represented in Figure 1.7.8(b). Clockwise paths are chosen for each closed 
contours / and //. 

First Contour Analysis 
Figure 1.7.9(a) shows the first independent contour / with 

• rotational joint R between the links 0 and 1 (joint A); 
• rotational joint R between the links 1 and 2 (joint 5); 
• translational joint T between the links 2 and 3 (joint B); 
• rotational joint R between the links 3 and 0 (joint C). 
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FIGURE 1.7.8 (a) R-RTR-RTR mechanism; (b) contour diagram. 
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FIGURE 1.7.9 First independent contour. 

The angular velocity ô io of the driver link is known: 

507r 
co\o = coi = CO 30 

rad/s = 5.235 rad/s. 

The origin of the reference frame is the point A(0,0,0). 
For the velocity analysis, the following vectorial equations are used: 

rAB X (021 + TAC X 0)03 + V^32 = 0, (1.7.9) 
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where VAB = XBI + ysh ^AC = -^ci + ych and 

^10 = < îok, (02\ = C021K (O03 = (003K 

V532 = ^32 = V32 COS 021 + V32 sin 02J. 

The sign of the relative angular velocities is selected as positive as shown in Fig-
ures 1.7.8(a) and 1.7.9(a). The numerical computation will then give the correct orientation 
of the unknown vectors. The components of the vectors r^^ and VAC, and the angle 02 are 
already known from the position analysis of the mechanism. Equation (1.7.9) becomes 

coiok + (̂ >2ik -j- a)03k = 0, 

1 

XB 
0 

J 
yB 
0 

k 
0 

<W21 

+ 
1 J k 

xc yc 0 
0 0 CO03 

+ V32 COS 021 + V32 sin 02j = 0. (1.7.10) 

In the Mathematical^ environment, a three-dimensional vector v is written as a list of 
variables v={x, y , z}, where x, y, and z are the spatial coordinates of the vector v. The 
first component of the vector v is x=v[[ l ] ] , the second component is y=v[[2]], and 
the third component is z=v[[3]]. For the considered mechanism with Mathematical^, 
the following applies: 

rB={xB, yB, 0}; 
rC={xC, yC, 0}; 
omegalOv={0,0,omega}; 
omegaZlvSol={0,0,omegaZlSol}; 
omegaOSvSol={0,0,omegaOSSol}; 
v32vSol={v32Sol Cos[phi2],v32So1 Sin[phi2],0}; 

Equation (1.7.10) represents a system of three equations and with Mathematical^ 
commands gives 

eqlkv=(omegal0v+omega21vSol+omega03vSol)[[3]]==0; 
eqli v=(Cross[rB,omega21vSol]+Cross[rC,omega03vSol]+v32vSol)[[1]]==0; 
eqlj v=(Cross[rB,omega21vSol]+Cross[rC,omega03vSol]+Y32VSO1)[[2]]==0; 

where the command Cross [a,b] gives the vector cross product of the vectors a 
andb. 

The system of equations can be solved using the Mathematical^ commands 

so1Ive1=So1ve[{eqIkv,eqIiv,eqIjv}, {omega21So1, 
omega03Sol,v32Sol}]; 

and the following numerical solutions are obtained: 

0)21 = 0.212 rad/s, coo3 = -5.448 rad/s, and V32 = 0.313 m/s. 
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To print the numerical values, the following Mathematical^ commands are used: 

omega21v=omega21vSol/.solIvel[[1]]; 
omega03v=omega03vSo1/.solIvel[[!]]; 
V32Y=V32VSO1/.solIvel[[1]]; 
Print["omega21 = ",omega21v]; 
Print["omega03 = ",omega03v]; 
Print["v32 = ",v32v]; 
Print["v32r = ",v32Sol/.solIvel[[!]] ] ; 

The absolute angular velocities of the links 2 and 3 are 

c«>2o = (O30 = — 0̂3 = 5.448 k rad/s. 

The absolute linear velocities of the joints B and D are 

V5 = v^i = \B2 = VA + (oio X VAB = -0.3661 + 0.634 j m/s, 

VD = vz)3 = vz)4 =\c-^ 6>3o X vcD = 0.067 1 - 0.814 J m/s, 

where VA = 0 and vc = 0, because the joints A and C are grounded and 

^CD = TAD - ^AC-

The Mathematical^ commands for the absolute velocities are 

omega20v=omega30v=-omega03v; 
vBv=Cross[omegalOv,rB]; 
vDv=Cross[omega30v,(rD-rC)]; 
Print["omega20 = omega30 = ",omega20v]; 
Print["vB = ",vBv]; 
Print["vD = ",vDv]; 

For the acceleration analysis, the following vectorial equations are used: 

aio + oc2\ + ao3 = 0, 

rAB X a2i + VAC X OCOB + ^^32 + ^B32 - ^W^AB - O)IO^BC = 0. (1.7.11) 

where 

aio = Qfiok, a2i = otiiK aos = aosk, 
a^32 = a32 = ^32 cos 021 + C132 sin 02j, 

^32 = ^ 2 = 2a>20 X V32. 

The driver link has a constant angular velocity and aio = coio = 0. The acceleration vectors 
using the Mathematical^ commands are: 

alphalOv={0,0,0}; 
alpha21vSol={0,0,alpha21Sol}; 
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a1pha03vSo1={0,0,a1phaOSSol}; 
a32vSo1={a32So1 Cos[phi2],a32So1 Sin[phi2],0}; 

Equation (1.7.11) represents a system of three equations and using Mathematical^ 
commands gives 

eqlka=(alphalOv+alpha21vSol+alpha03vSol)[[3]]==0; 

eqli a=( Cross[rB,alpha21vSol]+Cross[rC,alpha03vSol] + 
a32vSo1+2Cross[omega20v,v32v]-(omegalOv.omegalOv)rB-
(omega20v.omega20v)(rC-rB) ) [[1]]==0; 

eqlja=( Cross[rB,alpha21vSol]+Cross[rC,alpha03vSol] + 
a32vSol+2Cross[omega20v,v32v]-(omegalOv.omegalOv)rB-
(omega20v.omega20v)(rC-rB) )[[2]]==0; 

The unknowns in the Eq. (1.7.18) are Qf2i, Oio3, and (232. The system of equations is solved 
using the Mathematical^ commands 

solIacc=Solve[{eqika,eqlia,eqlja}, {alpha21Sol, alpha03Sol,a32Sol}]; 

The following numerical solutions are then obtained 

^21 = 14.568 rad/s^, ofos = -14.568 rad/s^, and ^32 = -0.140 m/s^. 

To print the numerical values, the following Mathematical^ commands are used: 

alpha21v=alpha21vSol/.sollacc [ [1]]; 
alpha03v=alpha03vSol/.sollacc[[1]]; 
a32v=a32vSol/.sollacc[[1]]; 
Print["alpha21 = ",alpha21v]; 
Print["alpha03 = ",alpha03v]; 
Print["a32 = ",a32v]; 
Print["a32r = ",a32Sol/.solIacc[[l]]]; 

The absolute angular accelerations of the links 2 and 3 are 

a2o = a3o = —0̂03 = 14.568 k rad/s^. 

The absolute linear accelerations of the joints B and D are obtained from the following 
equation: 

a^ = HA + aio x r^^ - COJQAB = -3.323 1 - 1.919 j m/s^, 

aD = ac + ot30 X VCD - CO^QTCD = 4.6171 - 1.811 j m/s^, 

where HA = 0 and ac = 0, because the joints A and C are grounded. 
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To print the absolute accelerations with Mathematical^, the following relations are used 

a1pha20v=a1pha30v=-a1pha03v; 
aBv=-(omegalOv.omegalOv)rB; 
aDv=Cross[alpha30v,(rD-rC)]-(omega20v.omega20v)(rD-rC); 
Print["a1pha20 = alphaSO = ",alpha30v]; 
Print["aB = ",aBv]; 
Print["aD = ",aDv]; 

Second Contour Analysis 
Figure 1.7.10(a) depicts the second independent contour // 

• rotational joint R between the links 0 and 3 (joint C); 
• rotational joint R between the links 3 and 4 (joint D); 
• translational joint T between the links 4 and 5 (joint D); 
• rotational joint R between the links 5 and 0 (joint E). 

For the velocity analysis, the following vectorial equations are used: 

^30 + (043 + ^05 = 0, 

YAC X (O30 + rAD X a>43 + rAE X 0005 + V^54 =: 0, (1.7.12) 

where TAD = XDI + yoh ^AE = XEI + ysi, and 

^30 = <̂ 3ok, W43 = m3K (oo5 = msK 

v^54 = V54 = V54 COS 041 + V54 sin 04j. 

The sign of the relative angular velocities is selected as positive as shown in Fig-
ures 1.7.8(a) and 1.7.10(a). The numerical computation will then give the correct orientation 
of the unknown vectors. The components of the vectors TAD and VAE, and the angle 04 are 
already known from the position analysis of the mechanism. 

The unknown vectors with Mathematical^ commands are 

omega43vSol={0,0,omega43Sol}; 
omegaOSvSol={0,0,omegaOSSol}; 
v54vSol={v54Sol Cos[phi4],v54Sol Sin[phi4],0}; 

Equation (1.7.12) becomes 

a;3ok + a)43k + (005k = 0, 

I J k 
xc yc 0 
0 0 0)30 

-h V32 cos 041 4-

+ 

- V32 

1 J k 
XD yo 0 
0 0 0)43 

sin04j = 0. 

+ 
1 

XE 

0 

J 
yE 
0 

k 
0 

^ 0 5 

(1.7.13) 
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FIGURE 1.7.10 Second independent contour. 
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Equation (1.7.13) projected onto the "fixed" reference frame Oxyz gives 

yC<̂ 30 + JD<̂ 43 + yE(^05 + V54 COS 04 = 0, 

-xcrno - XDC043 - XEO)05 + V54 sin 04 = 0. (1.7.14) 

The above system of equations using the following Mathematical^ commands becomes 

eqlIkv=(omega30v+omega43vSol+omega05vSol)[[3]]==0; 

eq l I i v=(Cross[rC,omega30v]+Cross[rD,omega43vSol] + 
Cross[rE,omegaOSvSol]+v54vSol)[[!]]==0; 

eql I j v= (Cross [rC, oniega30v] +Cross [rD, omega43 vSol ] + 
Cross[rE,omegaOSvSol]+v54vSol)[[2]]==0; 

Equation (1.7.14) represents an algebraic system of three equations with three unknowns: 
<̂ 43, <̂ 05, and V54. The system is solved using the Mathematical^ commands 

sol I Ive1=Solve[{eqI Ikv,eqI I iv ,eqI I jv} , {omega43So1, 
omegaOSSol,v54So1}]; 

The following numerical solutions are obtained: 

0)43 = —4.531 rad/s, a;o5 = —0.917 rad/s, and V54 = 0.757 m/s. 

To print the numerical values with Mathematical^, the following commands are used: 

omega43v=omega43vSo1/.solIlvel[[1]]; 
oniega05v=omega05vSol / . sol 11 vel [ [1] ] ; 
v54v=v54vSo1/.sol 11vel [ [1 ] ] ; 
Print ["omega43 = ",oniega43v]; 
Print["omegaOS = ",omegaOSv]; 
Print["v54 = ",v54v]; 
Print["v54r=",v54So1/.sol I Ivel[ [ l ] ] ] ; 

The absolute angular velocities of the links 4 and 5 are 

(040 = (050 = —a>05 = 0.917 k rad/s, (1.7.15) 

and with Mathematical^ commands, they are 

omega40v=omega50v=-omega05v; 
Print["omega40 = omegaSO = ",omegaSOv]; 

For the acceleration analysis, the following vectorial equations are used: 

aso + ^43 + ao5 = 0, (1.7.16) 

YAC X aso + rAD x a43 + ^AE X aos + ^D54 + ^54 - (4o^CD - OJIQVDE = 0. 
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where 

^30 = a3ok, a43 = a43k, ao5 = ocosK 

^B54 — ^54 = <354 COS 04l + «54 sin 04j, 

a^54 = 2(̂ 40 X V54. 

The unknown acceleration vectors using the Mathematical^ commands are 

a1pha43vSol={0,0,a1pha43So1}; 
a1phaOSvSol={0,0,a1phaOSSol}; 
a54vSo1={a54So1 Cos[phi4],a54So1 Sin[phi4],0}; 

Equation (1.7.16) becomes 

a3ok + a43k + aosk = 0, 

I 

xc 
0 

J 
yc 
0 

k 
0 

"30 
+ 

I 

KD 

0 

J 
yo 
0 

k 
0 

"43 
+ 

1 J k 
XE ys 0 
0 0 ao5 

+ 054 cos 04i + 054 sin <p4j + 
I J k 
0 0 CO4Q 

V54 COS 04 V54 sin 04 0 

- ^30[fe - -^c)! + Cvz) - yc)]] 

- ^40 [ f e - ^D)I -\-(yE- yo)}] = 0. 

Equation (1.7.17) can be rewritten as 

(1.7.17) 

JC«30 + yDOi43 + yEOiOS + 3̂54 COS 04 - 20̂ 40V54 siu 04 

- (OIQ(XD - xc) - COIQ(XE - XD) = 0, 

-XcOi30 - XDO(43 - XEao5 + «54 sin 04 + 2a;4oV54 COS 04 

- o)lo(yD - yc) - (oJQiyE - yo) = 0. 

The contour acceleration equations using Mathematical^ commands are 

eqlIka=(alpha30v+alpha43vSol+alphaOSvSol)[[3]]==0; 

eqllia=( Cross[rC,alpha30v]+Cross[rD,alpha43vSo1]+ 
Cross[rE,alphaOSvSol]+a54YSol+2Cross[omega40v,v54v]-
(omega30v. oniega30v) (rD-rC) -
(oinega40v.omega40Y) (rE-rD) ) [[1]]==0; 

(1.7.18) 
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eqllja=( Cross[rC,alpha30v]+Cross[rD,alpha43vSol]+ 
Cross[rE,alphaOSvSol]+a54vSol+2Cross[omega40v,v54v]-
(omega30v.omega30v)(rD-rC)-
(omega40v.omega40v)(rE-rD) )[[2]]==0; 

The unknowns in Eq. (1.7.18) are 0̂ 43, ofos, and 2̂54. To solve the system, the following 
Mathematical^ command is used: 

so1IIacc=So1ve[{eqIIka,eqIIia,eqIIja}, {a1pha43So1, 
a1pha05So1,a54So1}]; 

The following numerical solutions are obtained: 

0̂ 43 = -20.339 rad/s^, ao5 = 5.771 rad/s^, and (254 = 3.411 m/s^. 

The Mathematical^ commands are 

alpha43v=a1pha43vSo1/.solIlacc[[1]]; 
alpha05v=a1phaOSvSol/.sol I lacc[ [1] ] ; 
a54v=a54vSol/.sol I lacc[ [1] ] ; 
Print["alpha43 = ",alpha43v]; 
Print["alphaOS = ",alpha05v ] ; 
Print["a54 = ",a54v]; 
Print["a54r=",a54Sol/.solIlacc[[1]]]; 

The absolute angular accelerations of the links 4 and 5 are 

0̂ 40 = ^50 = -otQs — —5.711 k rad/s^, 

and with Mathematical^ they are 

alpha40v=alpha50v=-alphaOSv; 
Print["alpha40 = alphaSO = ",alpha50v]; 

The Mathematical^ program for the velocity and acceleration analysis using the contour 
method is given in Program 1.7.5. 

1.7.4 Dynamic Force Analysis 
In this section the motor moment M^ required for the dynamic equilibrium of the considered 
mechanism, shown in Figure 1.7.11(a), is calculated. The joint reaction forces are also 
calculated. The widths of the links 1, 3, and 5 are AB = 0.140 m, FD = 0.400 m, and 
respectively, EG = 0.500 m. The height of the links 1, 3, and 5ish = 0.010 m. The width 
of the links 2 and 4 is wsuder = 0.050 m, and the height is hsuder = 0.020 m. All five moving 
links are rectangular prisms with the depth d = 0.001 m. The angle of the driver Hnk is 
0 = ^ rad and the angular velocity is n = 50 rpm. The external moment applied on link 5 
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FIGURE 1.7.11 Forces and moments for R-RTR-RTR mechanism. 

is opposed to the motion of the Hnk. Because (05 = 0.917 k rad/s, the external moment 
vector will be M^ = —100 k N-m. The density of the material is psteei = P = 8000 kg/m^. 
The gravitational acceleration is g = 9.807 m/s^. The center of mass locations of the links 
/ = 1, 2 , . . . , 5 are designated by Ci(xci, jC/» 0). 
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The input data are introduced using a Mathematical^ rule: 

rule={AB->0.14,AC->0.06,AE->0.25,CD->0.15,FD->0.4, 
EG->0.5,h->0.01,d->0.001,hSlider->0.02,wSlider->0.05, 
rho->8000,g->9.807,Me->-100., 

p h i [ t ] - > N [ P i ] / 6 , p h i ' [ t ] - > o m e g a , p h i " [ t ] - > 0 } ; 

where omega=n*N [Pi ] /30. 

Inertia Forces and Moments 
To calculate the inertia moment M/ and the total force F/ for the link / = 1, 2 , . . . , 5, the 
mass m/, the acceleration of the center of mass a^, the gravity force G/, and the mass 
moment of inertia IQ are needed. 

Link 1 

The mass of the link is 

m\ = p AB h d. 

The position, velocity, and acceleration for the center of mass C\ are 

rci = rfi/2, vci = V5/2, and aci = aB/2. 

The inertia force is 

Fmi = -mi aci. 

The gravitational force is 

Gi = -mi gk. 

The total force on link 1 at the mass center C\ is 

Fi = F/„i + G i . 

The mass moment of inertia is 

Ic^ = mi (AB^ -4- h^)/l2. 

The moment of inertia is 

Ml = M M = -Ic,oti. 
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To calculate and print the numerical values of the total force Fi and the moment Mi, the 
following Mathematical^ commands are used: 

ml=rho AB h d / . r u l e ; 
rCl=rB/2; vCl=vB/2; aCl=aB/2; 
Finl=-ml aCl / . r u l e ; 
Gl={0,-ml*g,0} / . r u l e ; 
Fl=(Finl+Gl) / . r u l e ; 
ICl=ml (AB'^2+h'^2)/12 / . r u l e ; 
Ml=Minl=-ICl alphal / . r u l e ; 
Print["Fl = " ,F1] ; 
Print["Ml = ",M1]; 

Link 2 
The mass of the link is 

m2 = P hsiider "^Slider d. 

The position, velocity, and acceleration for the center of mass C2 are 

rc2 = 1*5, VC2 = V5, and ac2 = a^. 

The inertia force is 

The gravitational force is 

The total force on slider 2 at 5 is 

The mass moment of inertia is 

Fm2 = -m2 2ic,. 

G2 = -mi g k. 

F2 = F,-„2 + G2. 

IC2 = m {hluaer + ^L^.rV12. 

The moment of inertia is 

M2 = Mini = -/C2a2. 

The Mathematical^ conmiands for the total force F2 and the moment M2 are 

m2=rho hSlider wSlider d /.rule; 
rC2=rB; vC2=vB; aC2=aB; 
Fin2=-m2 aC2 /.rule; 
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G2={0,-m2*g,0} / . rule; 
F2=(Fin2+G2) / . rule; 
IC2=m2 (hSlider'^2+wSlider'^2)/12 / . rule; 
M2=Min2=-IC2 alpha2 / . rule; 
Print["F2 = ",F2]; 
Print["M2 = ",M2]; 

Links 

The mass of the link is 

m^ = p FD h d. 

The position, velocity, and acceleration for the center of mass C3 are 

xc, =xc-\- (FD/2 - CD) cos03, yc^ = Jc + (FD/2 - CD) sin03, 

rc3 = ^Csi + ycsh VC3 = XC3I + JC3J, and aca = xc^i + 3̂ C3J. 

The inertia force is 

The gravitational force is 

The total force at C3 is 

The mass moment of inertia is 

Fm3 = -msSic^. 

G3 = -ms g k. 

F3=F,-„3+G3. 

/C3 = m3 (FD^ + /z^)/12. 

The total moment on link 3 is 

M3 = M/„3 = -IC3<^3' 

The force F3 and the moment M3 with Mathematical^ are 

m3=rho FD h d / . rule; 
xC3=xC+(FD/2-CD) Cos[phi3]; 
yC3=yC+(FD/2-CD) Sin[phi3]; 
rC3={xC3,yC3,0}; 
YC3=D[rC3,t]; 
aC3=D[D[rC3,t],t]; 
Fin3=-m3 aC3 / . rule; 
G3={0,-m3*g,0} / . rule; 
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F3=(Fin3+G3) / . r u l e ; 
IC3=m3 (FD'^2+h'^2)/12 / . r u l e ; 
M3=Min3=-IC3 alpha3 / . r u l e ; 
Print["F3 = " ,F3] ; 
Print["M3 = ",M3]; 

Link 4 
The mass of the hnk is 

m4 = p hsiider ^Slider d. 

The position, velocity, and acceleration for the center of mass C4 are 

rc4 = rz), VC4 = vz), and ac4 = az). 

The inertia force is 

The gravitational force is 

F/„4 = -m4ac4. 

G4 = —1714 g k. 

The total force on slider 4 at D is 

F4 = ¥in4 + G4. 

The mass moment of inertia is 

/C4=m4(4/J.r + ^L. rV12. 

The moment of inertia is 

M4 = Min4 = -IC4 ^4. 

To calculate and print the numerical values of the total force F4 and the moment M4, the 
following Mathematical^ commands are used: 

m4=rho hSlider wSlider d /.rule; 
rC4=rD; vC4=vD; aC4=aD; 
Fin4=-m4 aC4 /.rule; 
G4={0,-m4*g,0} /.rule; 
F4=(Fin4+G4) /.rule; 
IC4=m4 (hSlider'^2+wSlider'^2)/12 /.rule; 
M4=Min4=-IC4 alpha4 /.rule; 
Print["F4 = ",F4]; 
Print["M4 = ",M4]; 
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Link 5 

The mass of the link is 

m^ = p EG h d. 

The position, velocity, and acceleration for the center of mass C5 are 

xcs = (£G/2)cos05, ycs = (EG/2) sin (1)5, 

rcs = -̂ Csi + ycsh VC5 = XC5I + ycsh and ac^ = xcs^ + ycsl 

The inertia force is 

The gravitational force is 

The total force on link 5 at C5 is 

The mass moment of inertia is 

Fm5 = -ms ac5 

G5 = -ms g k. 

F5=F/„5+G5. 

/C5 =m5(EG^ + h^)/l2. 

The moment of inertia is 

M5 =M/^5 = -Ic5 0C5' 

The total force F5 and the moment M5 with Mathematical^ are 

m5=rho EG h d / . r u l e ; 
xC5=EG/2 Cos[phi 5 ] ; 
yC5=EG/2 Sin[phi5]; 
rC5={xC5,yC5,0}; 
vC5=D[rC5,t]; 
aC5=D[D[rC5,t],t]; 
Fin5=-m5 aC5 / . r u l e ; 
G5={0,-m5*g,0} / . r u l e ; 
F5=(Fin5+G5) / . r u l e ; 
IC5=m5 (EG'^2+h'^2)/12 / . r u l e ; 
M5=Min5=-IC5 alphaS / . r u l e ; 
M5e={0,0,Me} / . r u l e ; 
Print["F5 = " ,F5] ; 
Print["M5 = ",M5]; 
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The numerical values are 

Fi = O.OI81 - 0.099J N, Ml = 0 N • m, 

F2 = 0.0261 - 0.063J N, M2 = -0.00002k N • m, 

F3 = 0.0491 - 0.333J N, M3 = -0.00621k N • m, 

F4 = -0.0361 - 0.063J N, M4 = 0.00001k N • m, 

F5 = -0.0551 - 0.410J N, M5 = 0.00481k N • m. 

joint Reaction Forces 
The diagram representing the mechanism is shown in Figure 1.7.11(b). It has two contours: 
0-1-2-3-0 and 0-3-4-5-0. 

Reaction force F05 
The rotation joint ER between the links 0 and 5 is replaced with the unknown reaction force 
Fo5 (Fig. 1.7.12): 

Fo5 = ^05;cl + Fo5y}. 

With Mathematical^, the force F05 is written as 

F05Sol={F05xSol,F05ySol,0}; 

Following the path /, as shown in Figure 1.7.12, a force equation is written for the 
translation joint Dj. The projection of all forces, that act on the link 5, onto the sliding 
direction VDE is zero: 

J2 F̂ ^̂  • TDE = (F5 + F05) • VDE = 0, (1.7.19) 

where VDE = ^AE - ^AD-
Equation (1.7.19) with Mathematical^ becomes 

rDE=(rE-rD)/.rule; 
eqERl=(F5+F05Sol).rDE==0; 

where the command a. b gives the scalar product of the vectors a and b. 

Continuing on the path /, a moment equation is written for the rotation joint DR: 

J2 M^^^^ = VDE X Fo5 + VDCs X F5 + M4 + M5 + M, = 0, (1.7.20) 

where YDCS = ^ACS - ^AD-

Equation (1.7.20) with Mathematical^ gives 
rDC5=(rC5-rD)/.rule; 
eqER2=(Cross[rDE,FOSSol]+Cross[rDC5,F5]+ 

M4+M5+M5e)[[3]]==0; 
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FIGURE 1.7.12 Rotation joint ER and reaction force F05. 
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The system of two equations is solved using Mathematical^ command 

solF05=Solve[{eqERl,eqER2}, {FOSxSol,FOSySol}]; 

The following numerical solution is obtained: 

Fo5 = 268.1271+135.039jN. 

Reaction force F45 
The translation joint Dj between the links 4 and 5 is replaced with the unknown reaction 
force F45 (Fig. 1.7.13): 

F45 = -F54 = ^45x1 + 4̂5>;J-

The position of the application point P of the force F45 is unknown: 

rAP = xpi + jpj , 

where xp and yp are the plane coordinates of the point P. 
The force F45 and its point of application P with Mathematical^ is written as 

F45Sol={F45xSol,F45ySol,0}; 
rPSol={xPSol,yPSol,0}; 

Following the path / (Fig. 1.7.13), a moment equation is written for the rotation joint ER: 

^ M f = VEP X F45 + TECs X F5 + M5 + M, = 0, (1.7.21) 

where TEP = VAP - VAE, and VECS = ^ACS - ^AE-

One can write Eq. (1.7.21) using the Mathematical^ commands 

rEP=(rPSol-rE)/.rule; 
rEC5=(rC5-rE)/.rule; 
eqDTl=(Cross[rEP,F45Sol]+Cross[rEC5,F5]+ 

M5+M5e)[[3]]==0; 

Following the path // (Fig. 1.7.13), a moment equation is written for the rotation joint 
DR: 

J2 M^D = ^DP X F54 + M4 = 0, (1.7.22) 

where TDP = TAP - VAD and F54 = -F45. 
Equation (1.7.22) with Mathematical^ is 

rDP=(rPSol-rD)/.rule; 
eqDT2=(Cross[rDP,F54Sol]+M4)[[3] ] ==0; 
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FIGURE 1.7.13 Translation joint Dj and reaction force F45. 
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The direction of the unknown joint force F45 is perpendicular to the sHding direction TOE 

F45 • TDE = 0, (1.7.23) 

and using Mathematical^ command 

eqDT3=F45Sol.rDE==0; 

the appHcation point P of the force F45 is located on the direction DE, that is 

^ ^ - ^ = '-^^^. (1.7.24) 
XD -XE Xp - XE 

One can write Eq. (1.7.24) using the Mathematical^ commands 

eqDT4=((yD-yE)/(xD-xE)/.rule)== 
((yPSol-yE)/(xPSol-xE)/.rule); 

The system of four equations is solved using the Mathematical^ command 

solF45=Solve[{eqDTl,eqDT2,eqDT3,eqDT4}, 
{F45xSol,F45ySol,xPSol,yPSol}]; 

The following numerical solutions are obtained: 

F45 = -268.0721 - 134.628J N and TAP = -0.149i + 0.047j m. 

Reaction force F34 
The rotation joint Dp between the links 3 and 4 is replaced with the unknown reaction force 
F34 (Fig. 1.7.14): 

F34 = -F34 = F34xl + ^34jJ, 

and with Mathematical^ 

F34Sol={F34xSol,F34ySol,0}; 

Following the path /, a force equation can be written for the translation joint Dj. The 
projection of all forces, that act on the link 4, onto the sliding direction ED is zero: 

J2 F̂ ^̂  • ED = (F4 + F34) • TED = 0, (1.7.25) 

where TED = ^AD - ^AE-
Equation (1.7.25) using Mathematical^ gives 

rED=(rD-rE)/.rule; 
eqDRl=(F4+F34Sol).rED==0; 
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FIGURE L7.14 Rotation joint DR and reaction force F34. 
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Continuing on the path / (Fig. 1.7.14), a moment equation is written for the rotation joint 
ER: 

J2M^E^^^ = TED X F34 + TEC, X F4 + TECs X F5 + M4 + M5 + M, = 0. (1.7.26) 

where TECS = ^ACS - ^AE, and rEC4 = ^AC4 - ^AE-
Equation (1.7.26) with Mathematical^ becomes 

rEC5=(rC5-rE)/.rule; 
rEC4=(rC4-rE)/.rule; 
eqDR2=(Cross[rEC4,F4]+Cross[rEC5,F5]+ 
Cross[rED,F34Sol]+M4+M5+M5e)[[3]]==0; 

The system of two equations is solved using the Mathematical^ commands 

solF34=Solve[{eqDRl,eqDR2}, {F34xSol,F34ySol}]; 

The following numerical solution is obtained: 

F34 = -268.0351 - 134.564J N. 

Reaction force F03 
The rotation joint CR between the links 0 and 3 is replaced with the unknown reaction force 
Fo3 (Fig. 1.7.15): 

F03 = ^03x1 + Fo3y}' 

With Mathematical^ the force F03 is written as 

F03Sol={F03xSol,F03ySol,0}; 

Following the path / (Fig. 1.7.15), a force equation is written for the translation joint BT-
The projection of all forces, that act on the link 3, onto the sliding direction CD is zero: 

J2 F̂ ^̂  • rcD = (Fo3 + F43 + F3) • rcD = 0, (1.7.27) 

where YCD = ^AD - ^AC-
Equation (1.7.27) with Mathematical^ commands is 

rCD=(rD-rC)/.rule; 
eqCRl=(F03Sol+F43+F3).rCD==0; 

Continuing on the path // (Fig. 1.7.15), a moment equation is written for the rotation 
}omi BR: 

J2 M^̂ ^̂ ^ = r^cs X F3 + VBC X Fo3 + TBD X F43 + M3 + M2 = 0, (1.7.28) 

where VBCS = ^ACS - ^AB, ^BC = ^AC - ^AB, and TBD = YAD - ^AB-
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FIGURE L7.15 Rotation joint CR and reaction force F03. 

With Mathematica™ Eq. (1.7.28) gives 

rBC3=(rC3-rB)/.rule; 
rBC=(rC-rB)/.rule; 
rBD=(rD-rB)/.rule; 
eqCR2=(Cross[rBC3,F3]+Cross[rBC,F03Sol]+ 

Cross[rBD,F43]+M2+M3)[[3]]==0; 

To solve the system of two equations the Mathematical^ command is used: 

solF03=Solve[{eqCRl,eqCR2}, {F03xSol,F03ySol}]; 
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FIGURE 1.7.16 Translation joint Bj and reaction force F23. 

The following numerical solution is obtained: 

Fo3 =-256.711-272.141jN. 

Reaction force F23 
The translation joint BT between the links 2 and 3 is replaced with the unknown reaction 
force F23 (Fig. 1.7.16): 

F23 = -F32 = F23xl + ^23>;J-
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The position of the application point Q of the force F23 is unknown: 

where XQ and yg axe the plane coordinates of the point Q. 
The force F23 and its point of application Q are written in Mathematical^ as 

F34Sol={F34xSol,F34ySol,0}; 
rQSol={xQSol,yQSo1,0}; 

Following the path / (Fig. 1.7.16), a moment equation is written for the rotation joint CR: 

J2 Mc^ = rcQ X F23 + rcc3 x F3 + VCD X F43 + M3 = 0, (1.7.29) 

where VCQ = VAQ - FAC, rccg = ^ACS - ^AC, and VCD = ^AD - ^AC-
Using Mathematical^, Eq. (1.7.29) is written as 

rCQ=(rQSol-rC)/.rule; 
rCC3=(rC3-rC)/.rule; 
rCD=(rD-rC)/.rule; 
eqBTl=(Cross[rCQ,F23Sol]+Cross[rCC3,F3]+ 

Cross[rCD,F43]+M3)[[3]]==0; 

Following the path // (Fig. 1.7.16), a moment equation is written for the rotation joint 
BR: 

J2 ^f = ^BQ X F32 + M2 = 0, (1.7.30) 

where VBQ = VAQ - YAB-
Equation (1.7.30) with Mathematical^ becomes 

rBQ=(rQSol-rB)/.rule; 
eqBT2=(Cross[rBQ,F32Sol]+M2)[[3]]==0; 

The direction of the unknown joint force F23 is perpendicular to the sliding direction 
BC. The following relation is written: 

F23 • r^c = 0, 

or with Mathematical^, it is 

eqBT3=F23Sol.rBC==0; 

The application point Q of the force F23 is located on the direction BC, that is 

yc -JB yc- yQ 

Xc -XB XC - XQ 
(1.7.31) 
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Equation (1.7.31) with Mathematical^ gives 

eqBT4=((yC-yB)/(xC-xB)/.rule)== 
((yC-yQSol)/(xC-xQSol)/ .rul e ) ; 

The system of four equations is solved using the Mathematical^ command 

solF23=Solve[{eqBTl,eqBT2,eqBT3,eqBT4}, 
{F23xSol,F23ySol,xQSol,yQSol}]; 

The following numerical solutions are obtained: 

F23 = -11.3741 + 137.91J N and TAQ = 0.121i + 0.070j m. 

Reaction force F12 

The rotation joint BR between the links 1 and 2 is replaced with the unknown reaction force 
F12 (Fig. 1.7.17): 

Fi2 = -F2i=Fi2; , l + Fi2^J. 

With Mathematical^ it is written as: 

F12Sol={F12xSol,F12ySol,0}; 

Following the path / (Fig. 1.7.17), a force equation is written for the translation joint Bj. 
The projection of all forces that act on the link 2 onto the sliding direction BC is zero: 

J2 F̂ ^̂  • VBc = (F12 + F2) • VBC = 0. (1.7.32) 

Using Mathematical^ it is written as: 

rBC=(rC-rB) / . ru le ; 
eqBRl=(F12Sol+F2).rBC==0; 

Continuing on the path /, a moment equation is written for the rotation joint CR: 

Y^ M^^^^^ = rcB X F12 + rcc2 x F2 + rcc, x F3 

+ rcD X F43 + M2 + M3 = 0, (1.7.33) 

where TCB = ^AB - TAC, ^CC2 = ^AC2 - ^AC^ ^€€3 - ^AC2> - ^AC. and TCD = ^AD - ^Ac-
Using the Mathematical^ commands, Eq. (1.7.33) gives 

rCB=(rB-rC)/.rule; 
rCC2=(rC2-rC)/.rule; 
rCC3=(rC3-rC)/.rule; 
rCD=(rD-rC)/.rule; 
eqBR2=(Cross[rCB,F12Sol]+Cross[rCC2,F2]+ 

Cross[rCC3,F3]+Cross[rCD,F43]+M2+M3)[[3]]==0; 
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FIGURE 1.7.17 Rotation joint BR and reaction force F12. 

The system of two equations is solved using the Mathematical^ command: 

solF12=Solve[{eqBRl,eqBR2},{F12xSol,F12ySol}]; 

and the following numerical solution is obtained: 

Fi2 =-11.4011+137.974jN. 

The motor moment Mm 

The motor moment needed for the dynamic equilibrium of the mechanism is M^ = Mm k 
(Fig. 1.7.18) and with Mathematical^ it is 

MlmSol={0,0,MmSol}; 
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FIGURE 1.7.18 Dynamic equilibrium moment M^. 

Following the path / (Fig. 1.7.18), a moment equation is written for the rotation joint A/?: 

^ M^̂ ^ = TAB X F21 + VAC, X Fi + Ml + M^ - 0. (1.7.34) 

Equation (1.7.34) is solved using the Mathematical^ commands: 

eqMA=(Cross[rAB,F21]+Cross[rACl,Fl]+M1+ 
MlmSol)[[3]]==0; 

so1Mm=So1ve[eqMA,MmSo1]; 
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Mm=MmSol/.solMm[[l]]; 
Mlm={0,0,Mm}; 
Print ["Mm = ",Miii]; 

The numerical solution is 

M^ = 17.533 k N • m. 

Reaction force Foi 
The rotation joint A/? between the links 0 and 1 is replaced with the unknown reaction force 
Foi (Fig. 1.7.19): 

Foi = -Fio = Foixi + Foiyh 

With Mathematical^ it is written as: 

F01So1={F01xSol,F01ySol,0}; 

Following the path / (Fig. 1.7.19), a moment equation is written for the rotation joint BR: 

J2^B^ = rBA X Foi + r^ci x Fi + Mi + M^ = 0, (1.7.35) 

where TBA = -YAB, and r^Ci = TACI - "^AB-

Equation (1.7.35) using the Mathematical^ commands gives 

rBA=-rB/.rule; 
rBCl=(rCl-rB)/ .rule; 
eqARl=(Cross[rBA,FOlSol]+Cross[rBCl,Fl]+M1+ 

Mlm)[[3]]==0; 

Continuing on the path / (Fig. 1.7.19), a force equation is written for the translation joint 
BT. The projection of all forces, that act on the links 1 and 2, onto the sliding direction BC 
is zero: 

J2 F^^^^^ • rBC = (Foi + Fl + F2) • VBc = 0, (1.7.36) 

or with Mathematical^ it is 

eqAR2=(F01Sol+Fl+F2).rBC==0; 

The system of two equations is solved using the Mathematical^ command 

solF01=So1ve[{eqARl,eqAR2},{FOlxSol,FOlySol}]; 

The following numerical solution is obtained: 

Foi =-11.4191+138.073J N. 

The Mathematical^ program for the dynamic force analysis is presented in 
Program 1.7.6. 
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(a) 

(b) 

FIGURE 1.7.19 Rotation joint AR and reaction force FQI . 

1.7.5 Problems 
1.7.1 Referring to Example 1.3.1 (Fig. 1.3.11), write a Mathematical^ program for the 

position analysis of the mechanism. 

1.7.2 Referring to Example 1.3.2 (Fig. 1.3.12), write a Mathematical^ program for the 
position analysis of the mechanism. 

1.7.3 Referring to Example 1.3.3 (Fig. 1.3.15), write a Mathematical^ program for the 
position analysis of the mechanism. 

1.7.4 Referring to Problem 1.3.4 (Fig. 1.3.19), write a Mathematical^ program for the 
position analysis of the mechanism. 
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1.7.5 Referring to Problem 1.3.5 (Fig. 1.3.20), write a Mathematical^ program for the 
position analysis of the mechanism. 

1.7.6 Referring to Problem 1.3.11 (Fig. 1.3.26), write a Mathematical^ program for the 
position analysis of the mechanism. 

1.7.7 Referring to Example 1.4.1 (Fig. 1.4.7), write a Mathematical^ program for the 
velocity and acceleration analysis of the mechanism. 

1.7.8 Referring to Example 1.4.2 (Fig. 1.4.8), write a Mathematical^ program for the 
velocity and acceleration analysis of the mechanism. 

1.7.9 Referring to Problem 1.4.1 [Fig. 1.3.16(a)], write a Mathematical^ program for the 
velocity and acceleration analysis of the mechanism. 

1.7.10 Referring to Problem 1.5.1 [Fig. 1.3.16(a)], write a Mathematical^ program for the 
velocity and acceleration analysis of the mechanism using the contour equations 
method. 

1.7.11 Referring to Problem 1.4.3 (Fig. 1.4.10), write a Mathematical^ program for the 
velocity and acceleration analysis of the mechanism. 

1.7.12 Referring to Problem 1.5.3 (Fig. 1.3.10), write a Mathematical^ program for the 
velocity and acceleration analysis of the mechanism using the contour equations 
method. 

1.7.13 Referring to Problem 1.4.4 (Fig. 1.3.19), write a Mathematical^ program for the 
velocity and acceleration analysis of the mechanism. 

1.7.14 Referring to Problem 1.5.4 (Fig. 1.3.19), write a Mathematical^ program for the 
velocity and acceleration analysis of the mechanism using the contour equations 
method. 

1.7.15 Referring to Problem 1.6.3 (Fig. 1.4.10), write a Mathematical^ program for the 
equilibrium moment and the joint forces of the mechanism. 

1.7.16 Referring to Problem 1.6.16 (Fig. 1.3.31), write a Mathematical^ program for the 
equilibrium moment and the joint forces of the mechanism. 

1.7.17 Referring to Problem 1.6.18 (Fig. 1.3.33), write a Mathematical^ program for the 
equilibrium moment and the joint forces of the mechanism. 

1.7.18 Referring to Problem 1.6.24 (Fig. 1.3.11), write a Mathematical^ program for the 
equilibrium moment and the joint forces of the mechanism. 

1.7.19 Referring to Problem 1.6.25 (Fig. 1.3.12), write a Mathematical^ program for the 
equilibrium moment and the joint forces of the mechanism. 

1.7.20 Referring to Problem 1.6.26 (Fig. 1.3.15), write a Mathematical^ program for the 
equilibrium moment and the joint forces of the mechanism. 

1.7.6 Programs 
PROGRAM 1.7.1 

C' POSITION ANALYSIS - input angle phi "") 

Apply[Clear,Names["Globar*"]]; 
Off[General::spel1];; 
Off[General::spe111] 
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(* Input data *) 

AB = 0.14 ; 

AC = 0.06 ; 

AE = 0.25 ; 

CD = 0.15 ; 

(* Input angle *) 

phi = N[Pi]/6 ; 

(* Position of joint A *) 

xA = yA = 0; 

(* Position of joint C *) 

xC = 0 ; 

yC = AC ; 

(* Position of joint E *) 

xE = 0 ; 

yE = -AE ; 

(* Position of joint B *) 

xB = AB Cos[phi] ; 

yB = AB Sin[phi] ; 

(* Position of joint D *) 

(* Parameters m and n of line BC: y = m x + b *) 

m = ( yB - yC ) / ( xB - xC ) ; 

b = yB - m xB ; 

eqnOl = ( xDsol - xC )'̂ 2 + ( yDsol - yC )'̂ 2 - CD'̂ 2 == 0 ; 
eqnD2 = yDsol - m xDsol - b == 0 ; 
solutionD = Solve [ { eqnDl , eqnD2 } , { xDsol , yDsol } ] ; 

(* Two solutions for D * ) 
xDl = xDsol / . solutionD[[l]] 
yDl = yDsol / . solutionD[[l]] 
xD2 = xDsol / . solutionD[[2]] 
yD2 = yDsol / . solutionD[[2]] 

(* Select the correct position for D *) 
I f [ xDl <= xC , xD = xDl ; yD = yDl , xD = xD2 ; yD=yD2 ] ; 

{* Print the solutions for B and D *) 
Print["xB = ",xB," m"]; 
Print["yB = ",yB," m"]; 
Print["xD = ",xD," m"]; 
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Print["yD = ",yD," m"]; 

(* Graph of the mecanism *) 
markers = Table [ { 

Point [ { xA , yA } 
Point [ { xB , yB } 
Point [ { xC , yC } 
Point [ { xD , yD } 
Point [ { xE , yE } 
} ] ; 

name Table [ { 
Text [ 
Text [ 
Text [ 
Text [ 

Text [ 

} ] ; 

•A" ,{0 . 0 },{-! , 1 } 
•B" ,{xB , yB },{ 0 ,-1 } 
•C" ,{xC , yC },{ -l.-l } 
•D" ,{xD , yD }.{ 0 .-1 } 
•E" ,{xE , yE }.{ -1, 1 } 

graph = Graphics [ 
{ { RGBColor [ 1 , 0 , 0 ] , 

Line [ { {xA,yA}.{xB,yB} } ] } 
{ RGBColor [ 0 , 1 , 

Line [ { {xB.yB} , 
{ RGBColor [ 0 , 0 , 

Line [ { {xD,yD}, 
{ RGBColor [ 1 , 1 , 

PointSize [ 0.01 ] 
{ name } } ] ; 

0 ] , 
{xD,yD}} ] } 
1 ] , 

{xE,yE}} ] } , 
1 ] , 
, markers } , 

Show [ Graphics [ graph ] , 
PlotRange -> { { -.25 , .25 } , 

{ -.3 , .25 } } 
Frame -> True, 
AxesOrigin -> {xA,yA}, 
FrameLabel -> { "x " , "y " } . 
Axes -> {True,True}, 
AspectRatio -> Automatic ] ; 

xB = 0.121244 m 

yB = 0.07 m 

xD = -0.149492 m 

yD = 0.0476701 m 
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PROGRAM 1.7.2 
("̂  POSITION ANALYSIS - Complete rotation ( Method I ) '̂ ) 

Apply[Clear,Names["Globar*"]]; 
Off[General::spel1]; 
Off[General::spe111]; 

(* Input data *) 

AB = 0.14 

AC = 0.06 

AE = 0.25 

CD = 0.15 

(* Position of joint A *) 

xA = yA = 0; 

(* Position of joint C *) 

xC = 0 ; 

yC = AC ; 

(* Position of joint E *) 

xE = 0 ; 

yE = -AE ; 

increment = 0 ; 

For [ phi = 0 , phi <= 2*N[Pi] , phi += N[Pi]/3 , 
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(* Position of joint B *) 
xB = AB Cos[phi] ; 
yB = AB Sin [phi] ; 

(* Position of joint D *) 

(* Parameters m and n of line BC: y = m x + b *) 
m = ( yB - yC ) / ( xB - xC ) ; 
b - yB - m xB ; 
eqnDl = ( xDsol - xC )'2 + ( yDsol - yC )"2 - CD"2 == 0 ; 
eqnD2 = yDsol - m xDsol - b -= 0 ; 
solutionD = Solve [ { eqnDl , eqnD2 } , { xDsol , yDsol } ]; 
(* Two solutions for D *) 
xDl = xDsol /. so1utionD[[l]]; 
yDl = yDsol /. solutionD[[l]]; 
xD2 = xDsol /. solutionD[[2]]; 
yD2 = yDsol /. solutionD[[2]]; 

(* Select the correct position for D *) 
If [ 0 <= phi <= N[Pi]/2 II 3 N[Pi]/2 <= phi <= 2 N[Pi], 

If [ xDl <= xC , xD = xDl ; yD = yDl , xD = xD2 ; yD=yD2] 
If [ xDl >= xC , xD = xDl ; yD = yDl , xD = xD2 ; yD=yD2] 

] ; 

(* Print phi and the solutions for B and D *) 

Print["phi = ",phi," rad = ".phi 180/N[Pi]," deg"]; 
Print["xB = ",xB," m"] 
Print["yB = ",yB," m"] 
Print["xD = ",xD," m"] 
Print["yD = ",yD," m"] 

(* Graph of the mechanism 
markers = Table [ { 

Point [ { xA , 
Point [ { xB , 
Point [ { xC , 
Point [ { xD , 
Point [ { xE , 
} ] ; 

yA } 
yB } 
yC } 
yD } 
yE } 

name = Table [ { 
Text [ "A" 
Text [ "B" 
Text [ "C" 
Text [ "D" 
Text [ "E" 
} ] ; 

,{0 
,{xB 
.{xC 
,{xD 
.{xE 

0 } .{-l . 
yB }.{ 0 . 
yC }.{ - 1 , -
yD }.{ 0 .-
yE }.{ - 1 . 
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graph [ increment ] = Graphics [ 
{ { RGBColor [ 1 , 0 , 0 ] , 

Line [ { {xA,yA},{xB,yB} } ] } , 
{ RGBColor [ 0 , 1 , 0 ] , 

Line [ { {xB,yB} , {xD,yD}} ] } , 
{ RGBColor [ 0 , 0 , 1 ] , 

Line [ { {xD,yD}, {xE,yE}} ] } , 
{ RGBColor [ 1 , 1 , 1 ] , 

PointSize [ 0.01 ] , markers } , 
{ name } } ] ; 

Show [ Graphics [ graph [ increment ] ] , 
PlotRange -> { { -.25 , .25 } , 

{ - .3 , .25 } } , 
Frame -> True, 
AxesOrigin -> {xA,yA}, 
FrameLabel -> {"x","y"}. 
Axes -> {True,True}, 
AspectRatio -> Automatic ] ; 

increment++ ; 

] ; (* End of FOR loop *) 

phi = 0 rad = 0 deg 

xB = 0.14 m 

yB = 0 m 

xD = -0.137872 m 

yD = -0.119088 m 
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0.1 

-0.1 

-0.2 

D 

C 

~̂ '̂ ~''"----. B 
A 

E 

-0.2 -0.1 0.1 0.2 

312 KINEMATIC CHAINS AND MACHINE COMPONENTS DESIGN 



phi = 1.0472 rad = 60. deg 

xB = 0.07 m 

yB = 0.121244 m 

xD = -0.112892 m 

yD = -0.0387698 m 

0.2 

0.1 

0 

-0.1 

-0.2 

D/" 

/ 
/ / / 

B 

' / G;/ 

/ 
A 

E 

-0.2 -0.1 0 0.1 0.2 
X 

phi = 2.0944 rad = 120. deg 

xB = -0.07 m 

0.2 

0.1 

0 

-0.1 

-0.2 

B 

\ 
\ 

C 
\ \ \ 

A 

E 

^ 

-0.2 -0.1 0.1 0.2 

Simulation of Kinematic Chains with Mathematical'^ 313 



yB = 0.121244 m 

xD = 0.112892 m 

yD = -0.0387698 m 

phi = 3.14159 rad = 180. deg 

xB = -0.14 m 

yB = 1.71451 X lO'̂ ^ m 

xD = 0.137872 m 

yD = 0.119088 m 

0.2 

0.1 

0 

-0.1 

-0.2 

B..--""""" 

P--'""" 

A 

E 

D 

'''' / 1 

-0.2 -0.1 0.1 0.2 

phi = 4.18879 rad = 240. deg 

xB = -0.07 m 

yB = -0.121244 m 

xD = 0.0540425 m 

yD = 0.199926 m 
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phi = 5.23599 rad = 300. deg 

xB = 0.07 m 

yB = -0.121244 m 

xD = -0.0540425 m 

yD = 0.199926 m 

0.2 

0.1 

0 

-0.1 

-0.2 

D 

\ \ 

1 

1 
1 
\ 

C 

^ \ 

E 
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phi = 6.28319 rad = 360. deg 

xB = 0.14 m 

yB = -1.58635 x 10"^^ m 

xD = -0.137872 m 

yd = 0.119088 m 

0.2 

0.1 

0 

-0.1 

-0.2 

D 

C 

A 

E 

•̂" - . B 

-0.2 -0.1 0.1 0.2 

(* All the positions on the same graphic *) 

Show [Table[graph [i] , { i , increment-1 } ] , 
PlotRange -> { { -.25 , .25 } , 

{ -.3 , .25 } } , 
Frame -> True, 
AxesOrigin -> {xA,yA}, 
FrameLabel -> {"x","y"}. 
Axes -> {True,True}, 
AspectRatio -> Automatic ] ; 

-0.2 
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PROGRAM 1.7.3 
(* POSITION ANALYSIS - Complete rotation ( Method I I ) * ) 

Apply[Clear,Names["G1obar*"]]; 
Off[General::spell]; 
Off[General::spel11]; 

(* Euclidian distance function * ) 
Dist[xP_,yP_,xQ , y Q j :=Sqrt[(xP-xQ)'^2+(yP-yQ)'^2] ; 

(* Input data *) 

AB = 0.14 ; 

AC = 0.06 ; 

AE = 0.25 ; 

CD = 0.15 ; 

(* Position of joint A *) 

xA = yA = 0 ; 

(* Position of joint C *) 

xC = 0 ; 

yC = AC ; 

(* Position of joint E *) 

xE = 0 ; 

yE = -AE ; 

increment = 0 ; 

For [ phi = 0 , phi <= 2*N[Pi] , phi += N[Pi]/6 , 

(* Position of joint B *) 

xB = AB Cos [ phi ] ; 

yB = AB Sin [ phi ] ; 

(* Position of joint D *) 

(* Parameters m and n of line BC: y = m x + b *) 

m = ( yB - yC ) / ( xB - xC ) ; 

b = yB - m xB ; 

eqnDl = ( xDsol - xC )'̂ 2 + ( yDsol - yC )'̂ 2 - CD''2 == 0 ; 
eqnD2 = yDsol - m * xDsol - b == 0 ; 
solutionD = Solve [ { eqnDl , eqnD2 } , { xDsol , yDsol } ] ; 
(* Two solutions for D *) 
xDl = xDsol / . solut ionD[[ l ] ] ; 
yDl = yDsol / . solut ionD[[ l ] ] ; 
xD2 = xDsol / . solutionD[[2]]; 
yD2 = yDsol / . solutionD[[2]]; 
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(* Select the correct position for D *) 
lf[increment==0, If[xDl<xC, xD=xDl;yD=yDl, xD=xD2;yD=yD2], 

distl = Dist[xDl,yDl,xDo1d,yDold]; 
dist2 = Dist[xD2,yD2,xDo1d,yDo1d]; 
If[distl<dist2, xD=xDl;yD=yDl, xD=xD2;yD=yD2] 

] ; 
xDold = xD; 
yDold = yD; 

increment++; 

Print["phi 
Print["xB 
Print["yB = ",yB," m"] 
Print["xD = ",xD," m"] 
Print["yD = ",yD," m"] 

",phi," rad = ",phi 180/N[Pi]," deg"]; 
,xB," m"]; 

markers = Table [ { 
Point [ { xA , yA } 
Point [ { xB , yB } 
Point [ { xC , yC } 
Point [ { xD , yD } 
Point [ { xE , yE } 
} ] ; 

name Table [ { 
Text [ 
Text [ 
Text [ 
Text [ 
Text [ 
} ] ; 

•A" ,{0 , 0 },{-! , 1 } ] 
•B" ,{xB , yB },{ 0 ,-1 } 
•C" ,{xC , yC },{ -1,-1 } 
"D" ,{xD , yD },{ 0 ,-1 } 
•E" ,{xE , yE },{ -1, 1 } 

graph [ increment ] = Graphics [ 
{ { RGBColor [ 1 , 0 , 0 ] , 

Line [ { {xA,yA},{xB,yB} } ] } 
{ RGBColor [ 0 , 1 , 

Line [ { {xB,yB} , 
{ RGBColor [ 0 , 0 , 

Line [ { {xD,yD}, 
{ RGBColor [ 1 , 1 , 

PointSize [ 0.01 ] 
{ name } } ] ; 

0 ] , 
{xD,yD}} ] } 
1 ] . 

{xE,yE}} ] } , 
1 ] , 
, markers } , 

Show [ Graphics [ graph [ increment ] ] 
PlotRange -> { { -.25 , .25 } , 

{ -.3 , .25 } } , 
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Frame -> True, 
AxesOrigin -> {xA,yA}, 
FrameLabel -> {"x","y"}. 
Axes -> {True,True}, 
AspectRatio -> Automatic ] ; 

] ; (* End of FOR loop *) 

(* All positions on the same graphic *) 

Show [Table[graph [i] , { i , increment } ] , 
PlotRange -> { { -.25 , .25 } , 

{ -.3 , .25 } } , 
Frame -> True, 
AxesOrigin -> {xA,yA}, 
FrameLabel -> {"x","y"}, 
Axes -> {True,True}, 
AspectRatio -> Automatic ] ; 
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PROGRAM 1.7.4 
(* VELOCITY AND ACCELERATION ANALYSIS *) 

Apply [Clear, Names["Globar*"] ] ; 
Off[General::spell]; 
Off[General::spel11]; 

n = 50 ; (* rpm *) 
omega = n*N[Pi]/30 ; (* rad/s *) 
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(* Input data *) 
initdata = {AB->0.14, AC->0.06, AE->0.25, CD->0.15, phi[t]->N[Pi]/6, 
phi'[t]->omega, phi"[t]->0}; 

(* Position of joint A *) 
xA = yA = 0; 

(* Position of joint C *) 
xC = 0 ; 
yC = AC ; 

(* Position of joint E *) 
xE = 0 ; 
yE = -AE ; 

(* Position of joint B *) 
xB = AB Cos[ phi[t] ] ; 
yB = AB Sin[ phi[t] ] ; 
Print["xB = ", xB ," = ", xB/.initdata, " m" ] ; 
Print["yB = ", yB ," = ", yB/.initdata, " m" ] ; 

(* Linear velocity of joint B *) 
vBx = D[xB,t]i 
vBy = D[yB,t]i 
Print["vBx = ", vBx ," = ", vBx/.initdata, " m/s" ] ; 
Print["vBy = ", vBy ," = ", vBy/.initdata, " m/s" ] ; 

(* Linear acceleration of joint B *) 
aBx = D[vBx,t]; 
aBy = D[YBy,t]; 
Print ["aBx = ", aBx ," = ", aBx/. initdata, " m/s'^2" ]; 

Print ["aBy = ", aBy ," = ", aBy/. initdata, " m/s-'Z" ]; 

(* Position of joint D *) 

(*Parameters m and n of line BC: y = m x + b *) 

mBC = ( yB - YC ) / ( xB - xC ) ; 
bBC = yB - mBC xB ; 
eqn41 = ( xDsol - xC )'̂ 2 + ( yDsol - yC )'̂ 2 - CD^Z == 0 ; 
eqn42 = yDsol - mBC xDsol - bBC == 0 ; 
solutionD = Solve [ { eqn41 , eqn42 } , { xDsol , yDsol } ] ; 
(* Two solutions for D *) 
xDl = xDsol /. solutionD[[!]],• 
yDl = yDsol /. solutionD[[l]]; 
xD2 = xDsol /. solUtionD[[2]]; 
yD2 = yDsol /. solutionD[[2]]; 
(* Select the correct position for D *) 

320 KINEMATIC CHAINS AND MACHINE COMPONENTS DESIGN 



If [ (xDl/.initdata)<=xC , xD=xDl ; yD=yDl, xD=xD2; yD=yD2 ]; 
Print["xD = ", xD/.initdata, " m" ]; 
Print["yD = ", yD/.initdata, " m" ]; 

(* Linear velocity of joint D *) 
vDx = D[xD,t]; 
vDy = D[yD,t]; 
Print["vDx = ", vDx/.initdata, " m/s" ]; 
Print["vDy = ", vDy/.initdata, " m/s" ]; 

(* Linear acceleration of joint D *) 
aDx = D[vDx,t]; 
aDy = D[vDy,t]; 
Print ["aDx = ", aDx/.initdata, " m/s'^2" ]; 
Print ["aDy = ", aDy/.initdata, " m/s'^2" ]; 

(* Angular velocity and acceleration of the link BD *) 

phi3 = ArcTan[ mBC ] ; 
omegas = D[ phi3 , t ] ; 
alphas = D[ omegaS, t ] ; 
Print["phiS = phi2 = ", phiS/.initdata , " rad " ]; 
Print["omegaS = omega2 = ", omegaS/.initdata , " rad/s" ]; 
Print ["alphas = alpha2 = ", alphaS/.initdata , " rad/s'^2" ] ; 

(* Angular velocity and acceleration of the l ink DE *) 

phi5 = ArcTan[(yD-yE)/(xD-xE)] + N[Pi]; 
omegas = D[ phi5, t ]; 
alphas = D[ omegaS, t ]; 
Print["phis = phi4 = ", phiS/.initdata , " rad " ]; 
Print["omegaS = omega4 = ", omegaS/.initdata , " rad/s" ]; 
Print["alphaS = alpha4 = ", alphaS/.initdata , " rad/s'^2" ] ; 

xB = ABCos[phi [ t ] ] = 0.121244 m 

yB = ABS in [ph i [ t ] ] = 0.07 m 

vBx = - A B S i n [ p h i [ t ] ] p h i ' [ t ] = -0.366519 m/s 

vBy = A B C o s [ p h i [ t ] ] p h i ' [ t ] = 0.63483 m/s 

aBx = - A B C o s [ p h i [ t ] ] p h i ' [ t ] 2 - ABSin[phi [ t ] ] p h i " [ t ] = -3.32396 m/s'̂ 2 

aBy = - A B S i n [ p h i [ t ] ] p h i ' [ t ] 2 + ABCos[phi [ t ] ] p h i " [ t ] = -1.91909 m/s'̂ 2 

xD = -0.149492 m 
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yD = 0.0476701 m 

vDx = 0.0671766 m/s 

vDy = -0.814473 m/s 

aDx = 4.61708 m/s'̂ 2 

aDy = -1.81183 m/s''2 

phi3 = phi2 = 0.0822923 rad 

omega3 = omega2 = 5.44826 rad/s 

alpha3 = alpha2 = 14.5681 rad/s'^2 

phi5 = phi4 = 2.03621 rad 

omega5 = omega4 = 0.917134 rad/s 

alpha5 = alpha4 = -5.77155 rad/s'^2 

PROGRAM 1.7.5 
(* CONTOUR METHOD *) 

Apply [Clear, Names["Globar*"] ] ; 
Off[General::spell]; 
Off[General::spell 1]; 

(* Input data *) 

n = 50 ; (* rpm *) 
omega = n N[Pi]/30 ; (* rad/s *) 

AB = 0.14 
AC = 0.06 
AE = 0.25 
CD = 0.15 
phi = N[Pi]/6 ; 

(* Position analysis *) 

(* Position of joint A *) 
xA = yA = 0; 
rA = {xA, yA, 0}; 

(* Position of jo int C * ) 
xC = 0 ; 
yC = AC ; 
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rC = {xC, yC, 0}; 

(* Position of joint E *) 
xE = 0 ; 
yE = -AE ; 
rE = {xE, yE, 0}; 

(* Position, velocity and acceleration of joint B *) 
xB = AB Cos[ phi ] ; 
yB = AB Sin[ phi ] ; 
rB = {xB, yB, 0} ; 

(* Position, velocity and acceleration of joint D *) 

(* Parameters m and n of line BC: y = m x + b *) 
mBC = ( yB - yC ) / ( xB - xC ) ; 
bBC = yB - mBC xB ; 
eqn41 = ( xDsol - xC )'̂ 2 + ( yDsol - yC )'̂ 2 - CD'̂ Z == 0 ; 
eqn42 = yDsol - mBC xDsol - bBC == 0 ; 
solutionD = Solve [ { eqn41 , eqn42 } , { xDsol , yDsol } ] ; 
(* Two solutions for D *) 
xDl = xDsol /. solutionD[[l]]; 
yDl = yDsol /. solutionD[[l]]; 
xD2 = xDsol /. solutionD[[2]]; 
yD2 = yDsol /. solutionD[[2]]; 
(* Select the correct position for D *) 
If [ xB >= xC , xD = xDl ; yD = yDl , xD = xD2 ; yD = yD2 ] ; 
rD = {xD, yD, 0} ; 

phi2 = ArcTan[ mBC ] ; 
phi3 = phi2 ; 

phi4 = ArcTan[(yD-yE)/(xD-xE)] + N[Pi] ; 
phi5 = phi4 ; 

(* *) 
(* Velocities *) 
(* *) 

{* Contour I *) 
Print["Contour I"]; 

(* Relative velocities *) 

omegalOv = { 0, 0, omega } ; 
omega21vSol = { 0, 0, omega21Sol } ; 
omegaOSvSol = { 0, 0, omegaOSSol } ; 
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v32vSol = { v32Sol Cos [phi2], v32Sol Sin [phi2], 0 } ; 

eqikv = ( omegalOv + omega21vSol + omegaOSvSol )[[3]] == 0 ; 
eqliv = ( Cross[rB,omega2lYSol] + Cross[rC,omega03vSol] 

+ v32vSo1 )[[!]]== 0 ; 
eqljv = ( Cross[rB,oniega21vSol] + Cross[rC,omega03vSo1] 

+ v32vSol )[[2]] == 0 ; 

sollvel = So1ve[ { eqIkv, eqliv, eqljv }, { omega21So1, omega03So1, 
v32Sol } 3 ; 

omega21v = omega21vSol /.sollvel[[1]] ; 
omega03v = omega03vSol /.sollvel[[1]] ; 
v32v = v32vSol /.sollvel[[1]] ; 

Print[ "omega21 = ", omega21v ] ; 
Print[ "omega03 = ", oniega03v ] ; 
Print[ "v32 = ", v32v ] ; 
Print[ "v32r = ", v32Sol/ .sol Ivel[ [1]] ] ; 

(* Absolute velocities *) 

omega20v = omega30v = - omega03v ; 
vBv = Cross[omegalOv,rB] ; 
vDv = Cross[omega30v,(rD-rC)] ; 

Print[ "omega20 = omega30 = ", omega30v ] ; 
Print[ "vB = ", vBv ] ; 
Print[ "vD = ", vDv ] ; 

(* Relative accelerations *) 

alphalOv = { 0, 0, 0 } ; 
alpha21vSol = { 0, 0, alpha21Sol } ; 
alpha03vSol = { 0, 0, alpha03Sol } ; 
a32vSol = { a32Sol Cos [phi2], a32Sol Sin [phi2], 0 } ; 

eqika = ( alphalOv + alpha21vSol + alpha03vSol )[[3]] == 0 ; 
eqlia = ( Cross[rB,alpha21vSol] + Cross[rC,alpha03vSol] + a32vSol + 2 
Cross[omega20v,v32v] -
(omegalOv.omegalOv)rB-(omega20v.omega20v)(rC-rB) )[[1]] == 0 ; 
eqija = ( Cross[rB,alpha21vSol] + Cross[rC,alpha03vSol] + a32vSol + 2 
Cross[omega20v,v32v] - (omegalOv.omegalOv)rB-(omega20v.omega20v)(rC-rB)) 
[[2]] == 0 ; 

sollacc = Solve[ { eqIka, eqlia, eqIja }, { alpha21Sol, alpha03Sol, 
a32Sol } ] ; 

alpha21v = alpha21vSol / . s o l I a c c [ [ l ] ] ; 
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alphaOSv = alpha03vSol / . s o l I a c c [ [ l ] ] ; 
a32v = a32vSol / . s o l I a c c [ [ l ] ] ; 

Print[ "alpha21 = ", alpha21v ] ; 
Print[ "alphaOS = ", alpha03v ] ; 
Print[ "a32 = ", a32v ] ; 
Print[ "a32r = ", a32Sol/ .sol Iacc[[ l ] ] ] ; 

(* Absolute accelerations *) 

a1pha20v = a1pha30v = - a1pha03v ; 
aBv = -(omegalOv.omegalOv) rB ; 
aDv = Cross[alpha30v,(rD-rC)]-(omega20v.omega20v)(rD-rC) ; 

Print[ "alpha20 = alpha30 = ", alpha30v ] ; 
Print[ "aB = ", aBv ] ; 
Print[ "aD = ", aDv ] ; 

(* Contour II *) 
Print["Contour 11"]; 

(* Relative velocities *) 

omega43vSol = { 0, 0, omega43Sol } ; 
omegaOSvSol = { 0, 0, omegaOSSol } ; 
v54vSol = { v54Sol Cos [phi4], v54Sol Sin [phi4], 0 } ; 

eqllkv = ( omega30v + omega43vSol + omegaOSvSol )[[3]] == 0 ; 

eqlliv = ( Cross[rC,omega30v] + Cross[rD,omega43vSol] + 
Cross[rE,omegaOSvSol] + v54vSol )[[!]]== 0 ; 

eqlljv = ( Cross[rC,omega30v] + Cross[rD,omega43vSol] + 
Cross[rE,omegaOSvSol] + vS4vSol )[[2]] == 0 ; 

solllvel = Solve[ { eqllkv, eqlliv, eqlljv }, { omega43Sol, 
omegaOSSol, vS4Sol } ] ; 

omega43v = omega43vSol /.solllvel [[!]] ; 
omegaOSv = omegaOSvSol /.solllvel[[1]] ; 
vS4v = vS4vSol /.solllvel[[!]] ; 

Print[ "omega43 = ", omega43v ] ; 
Print[ "omegaOS = ", omegaOSv ] ; 
Print[ "vS4 = ", vS4v ] ; 
Print[ "vS4r = ", vS4Sol/.solIIvel [ [ ! ] ] ] ; 

(* Absolute velocities *) 
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omega40v = omegaSOv = - omegaOSv ; 
Print[ "omega40 = omegaSO = ", omegaSOv ] ; 

(* Relative accelerations *) 

a1pha43vSo1 = { 0, 0, a1pha43So1 } ; 
alphaOSvSol = { 0, 0, alphaOSSol } ; 
a54vSo1 = { a54So1 Cos[phi4], a54So1 Sin[phi4], 0 } ; 

eqllka = ( alphaSOv + alpha43vSol + alphaOSvSol ) [ [3]] == 0 ; 

eqllia = ( Cross[rC,alpha30v] + Cross[rD,alpha43vSol] + 
Cross[rE,alphaOSvSol] + aS4vSol + 2 Cross[omega40v,vS4v] -
(omega30v.omega30v)(rD-rC) -
(omega40v.omega40v)(rE-rD) ) [ [ ! ] ] == 0 ; 

eqlija = ( Cross[rC,alpha30v] + Cross[rD,alpha43vSol] + 
Cross[rE,alphaOSvSol] + aS4vSol + 2 Cross[omega40v,vS4v] -
(omega30v.omega30v)(rD-rC) -
(omega40v.omega40v)(rE-rD) ) [ [2]] == 0 ; 

solllacc = Solve[ { eqllka, eqllia, eqlija } , {alpha43Sol, alphaOSSol, 
aS4Sol } ] ; 

alpha43v = alpha43vSol / .solI Iacc[[ l]] ; 
alphaOSv = alphaOSvSol / .solI Iacc[[ l]] ; 
aS4v = aS4vSol / .solI Iacc[[ l]] ; 

Print[ "alpha43 = ", alpha43v ] ; 
Print[ "alphaOS = ", alphaOSv ] ; 
Print[ "aS4 = ", aS4v ] ; 
Print[ "aS4r = ", aS4Sol/.solIIacc[[l]] ] ; 

(* Absolute accelerations *) 

alpha40v = alphaSOv = - alphaOSv ; 

Print[ "alpha40 = alphaSO = ", alphaSOv ] ; 

Contour I 

omegaZl = {0, 0, 0.21227} 

omega03 = {0, 0, -5.44826} 

v32 = (0.312037, 0.0257363, 0} 

v32r = 0.313096 
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omega20 = omegaSO = {0, 0, 5.44826} 

vB = {-0.366519. 0.63483, 0.} 

vD = {0.0671766, -0.814473, 0.} 

alpha21 = {0, 0, 14,5681} 

alpha03 = {0, 0, -14.5681} 

a32 = {-0.140218, -0.11565, 0} 

a32r = -0.140694 

alpha20 = alpha30 = {0, 0, 14.5681} 

aB = {-3.32396. -1.91909. 0} 

aD = {4.61708, -1,81183, 0.} 

Contour II 

omega43 = {0, 0, -4.53112} 

omega05 = {0, 0, -0.917134} 

v54 = {-0.34018, 0.677368, 0} 

v54r = 0.757991 

oniega40 = omega50 = {0, 0, 0.917134} 

alpha43 = {0, 0, -20.3397} 

alpha05 = {0, 0, 5.77155} 

a54 = {-1.53085, 3.04823, 0} 

a54r = 3.41104 

alpha40 = alpha50 = {0. 0, -5.77155} 

PROGRAM 1.7.6 
( * DYNAMIC FORCE ANALYSIS * ) 

Apply [Clear, Names["Globar*"] ] ; 
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Off[General::spell]; 
Off[General::spel11]; 

(* Input data *) 

n = 50 ; (* rpm *) 

omega = n N[Pi]/30 ; (* rad/s *) 

rule = {AB->0.14, AC->0.06, AE->0.25, CD->0.15, FD->0.4, EG->0.5, 

h->0.01, d->0.001, 

hSlider->0.02, wSlider->0.05, rho->8000, g->9.807, Me->-100., 
ph i [ t ] ->N[Pi ] /6 , 

phi'[t]->omega, phi"[t ] ->0} ; 

(* Position analysis *) 

(* Position of joint A *) 

xA = yA = 0; 
rA = { xA, yA, 0}; 

(* Position of joint C *) 

xC = 0 ; 

yC = AC ; 

rC = { xC, yC, 0} ; 

(* Position of joint E *) 

xE = 0 ; 

yE = -AE ; 

rE = { xE, yE, 0}; 

(* Position, velocity and acceleration of joint B *) 

xB = AB Cos [ phi [ t ] ] ; 
yB = AB Sin [ phi [ t ] ] ; 
rB = { xB, yB, 0} ; 
vB = D[rB,t] ; 
aB = D[D[rB,t ] , t ] ; 

(* Position, velocity and acceleration of jo int D * ) 

(* Parameters m and n of l ine BC: y = m x + b * ) 
mBC = ( yB - yC ) / ( xB - xC ) ; 
bBC = yB - mBC xB ; 
eqn41 = ( xDsol - xC )'̂ 2 + ( yDsol - yC )'̂ 2 - CD''2 == 0 ; 
eqn42 = yDsol - mBC xDsol - bBC == 0 ; 
solutionD = Solve [ { eqn41 , eqn42 } , { xDsol , yDsol } ] ; 
(* Two solutions for D *) 
xDl = xDsol / . solutionD[[ l ] ] ; 
yDl = yDsol / . solutionD[[l]] 
xD2 = xDsol / . solutionD[[2]] 
yD2 = yDsol / . solutionD[[2]] 
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(* Select the correct position for D *) 
I f [ (xDl/.rule)<=xC, xD=xDl; yD=yDl, xD=xD2; yD=yD2 ] ; 
rD = { xD, yD, 0} ; 
vD = D[rD,t] ; 
aD = D[D[rD,t],t] ; 

(* Angular velocity and acceleration of the link 1 *) 
alphal = {0, 0, phi"[t]} ; 

(* Angular velocity and acceleration of the link 2 and link 3 *) 
phi 2 = ArcTan[ mBC ] ; 
alpha2 = {0, 0, D[D[phi2,t],t]} ; 
phi3 = phi2 ; 
alphas = alpha2 ; 

(* Angular velocity and acceleration of the link 4 and link 5 *) 

phi4 = ArcTan[(yD-yE)/(xD-xE)] + N[Pi] ; 
alpha4 = {0, 0, D[D[phi4,t],t]} ; 
phi5 = phi4 ; 
alphas = alpha4 ; 

(* *) 
(* Inertia forces and moments *) 

(* - *) 

(* Link 1 *) 
ml = rho AB h d /.rule ; 
rCl = rB/2 ; 
vCl = vB/2 ; 
aCl = aB/2 ; 
Finl = - ml aCl / .rule ; 
Gl = {0, -ml*g, 0} / .rule ; 
Fl = ( Finl + Gl ) / .rule ; 
ICl = ml (AB'̂ 2+h'̂ 2)/12 /.rule ; 
Ml = Mini = - ICl alphal / .rule ; 
Print["Fl = ", Fl] ; 
Print["Ml = ", Ml] ; 

(* Link 2 *) 
m2 = rho hSlider wSlider d / .rule ; 
rC2 = rB ; 
vC2 = vB ; 
aC2 = aB ; 
Fin2 = - m2 aC2 /.rule ; 
G2 = {0, -m2*g, 0} / .rule ; 
F2 = ( Fin2 + G2 ) / .rule ; 
IC2 = m2 (hSlider'^2+wSlider'^2)/12 /.rule ; 
M2 = Min2 = - IC2 alpha2 /.rule ; 
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Print["F2 = ", F2] ; 
Print["M2 = ", M2] ; 

(* Link 3 *) 
m3 = rho FD h d / .rule ; 
xC3 = xC + (FD/2-CD) Cos [ phi3 ] ; 
yC3 = yC + (FD/2-CD) Sin [ phi3 ] ; 
rC3 = { xC3. yC3, 0 } ; 
vC3 = D[rC3,t] ; 
aC3 = D[D[rC3,t],t] ; 
Fin3 = - m3 aC3 / . ru le ; 
G3 = {0, -m3*g, 0} / . ru le ; 
F3 = ( Fin3 + G3 ) / .rule ; 
IC3 = m3 (FD~2+h~2)/12 /.rule ; 
M3 = Min3 = - IC3 alpha3 / .rule ; 
Print["F3 = ", F3] ; 
Print["M3 = ", M3] ; 

(* Link 4 *) 
m4 = rho hSlider wSlider d /.rule ; 
rC4 = rD ; 
vC4 = vD ; 
aC4 = aD ; 
Fin4 = - m4 aC4 /.rule ; 
G4 = {0, -m4*g, 0} / .rule ; 
F4 = ( Fin4 + G4 ) / .rule ; 
IC4 = m4 (hSlider"2+wSlider"2)/12 /.rule 
M4 = Min4 = - IC4 alpha4 / .rule ; 
Print["F4 = ", F4] ; 
Print["M4 = ", M4] ; 

(* Link 5 *) 
m5 = rho EG h d / .rule ; 
xC5 = EG/2 Cos [ phis ] ; 
yC5 = EG/2 Sin [ phi5 ] ; 
rC5 = { xC5, yC5, 0} ; 
vC5 = D[rC5,t] ; 
aC5 = D[D[rC5,t],t] ; 
FinS = - m5 aC5 /.rule ; 
G5 = {0, -m5*g, 0} / .rule ; 
F5 = ( Fin5 + G5 ) / .rule ; 
IC5 = m5 (EG"2+h"2)/12 / .rule ; 
M5 = MinS = - IC5 alphaS / .rule ; 
M5e = { 0, 0, Me } / .rule ; 
Print["F5 = ", FS] ; 
Print["M5 = ", M5] ; 
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(* *) 
(* Joint reactions *) 

(* *) 

(*** Contour 0-3-4-5-0 ***) 

(* Joint E_R *) 

F05So1 = { FOBxSol. FOSySol, 0 } ; 

{* J2 f for 5 *) 
rDE = ( rE - rD ) /.rule ; 
eqERl = (F5+F05Sol).rDE == 0 ; 

(* Yl M_D for 4&5 *) 
rDC5 = ( rC5 - rD ) / . ru le ; 
eqER2 = (Cross[rDE,F05Sol]+Cross[rDC5,F5]+M4+M5+M5e)[[3]] == 0 ; 

solFOS = Solve[{eqERl,eqER2},{F05xSol,FOSySol}] ; 
F05x = FOSxSol /.solF05[[l]] ; 
F05y = FOSySol /.solF05[[l]] ; 
FOS = { FOSx, FOSy, 0 } ; 
Print["F05 = ", FOS] ; 

(* Joint D_T *) 

F45Sol = { F4SxSol, F45ySol, 0 } ; 
FS4Sol = - F4SSol ; 
rPSol = { xPSol, yPSol, 0 } ; 

(* X; M_E for S *) 
rEP = ( rPSol - rE ) / .rule ; 
rECS = ( rCS - rE ) / .rule ; 
eqDTl = (Cross[rEP,F45Sol]+Cross[rEC5,F5]+M5+M5e)[[3]] == 0 ; 

(* J2 M_D for 4 *) 
rDP = (rPSol - rD ) / . ru le ; 
eqDT2 = (Cross[rDP,FS4Sol]+M4)[t3]] == 0 ; 

eqDT3 = F45Sol.rDE == 0 ; 
eqDT4 = ( (yD-yE)/(xD-xE)/.rule ) == ( (yPSol-yE)/(xPSol-xE)/.rule ) ; 

solF4S = Solve[{eqDTl,eqDT2,eqDT3,eqDT4},{F45xSol,F4SySo1,xPSol, 
yPSol}] ; 

F45x = F4SxSol/.solF4S[[l]] ; 
F4Sy = F4SySol/.solF4S[[l]] ; 
F4S = { F4Sx, F4Sy, 0 } ; 
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F54 = - F45 ; 
xP = xPSol/.solF45[[l]] ; 
yP = yPSol/.solF45[[l]] ; 
rP = { xP, yP, 0 } ; 
Print["F45 = ", F45] ; 
Print["rP = ", rP] ; 

(* Joint D_R *) 

F34So1 = { F34xSo1, F34ySol, 0 } ; 
F43Sol = - F34Sol ; 

(* ^ F for 4 *) 
rED = ( rD - rE ) / .rule ; 
eqDRl = (F4+F34Sol).rED == 0 ; 

(* ^ ME for 4&5 *) 
rEC5 = ( rC5 - rE ) / .rule ; 
rEC4 = ( rC4 - rE ) / .rule ; 
eqDR2 = (Cross[rEC4,F4]+Cross[rEC5,F5]+Cross[rED,F34Sol]+M4+M5+M5e) [[3]] 

== 0 ; 

S01F34 = Solve[{eqDRl,eqDR2},{F34xSol,F34ySol}] ; 
F34x = F34xSol/.solF34[[l]] ; 
F34y = F34ySol/.solF34[[l]] ; 
F34 = { F34x, F34y, 0 } ; 
F43 = - F34 ; 
Print["F34 = ", F34] ; 

(*** Contour 0-1-2-3-0 ***) 

(* Joint C_R *) 

F03Sol = { F03xSol, F03ySol, 0 } ; 

(* ^ F for 3 *) 
rCD = ( rD - rC ) / .rule ; 
eqCRl = (F03Sol+F43+F3).rCD == 0 ; 

(* J^ MB for 3&2 *) 
rBC3 = ( rC3 - rS ) / .rule ; 
rBC = ( rC - rB ) / .rule ; 
rBD = ( rD - rB ) / .rule ; 
eqCR2 = (Cross[rBC3,F3]+Cross[rBC,F03Sol]+Cross[rBD,F43]+M2+M3)[[3]] 

== 0 ; 

S01F03 = Solve[{eqCRl,eqCR2},{F03xSol,F03ySol}] ; 
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F03x = F03xSo1/.so1F03[[l]] ; 
FOSy = F03ySol/.solF03[[l]] ; 
F03 = { F03x, F03y, 0 } ; 
Print["F03 = ", F03] ; 

(* Joint B_T *) 

F23Sol = { F23xSo1, F23ySol, 0 } ; 
F32Sol = - F23Sol ; 
rQSol = { xQSol, yQSol, 0 } ; 

(* ^ M_C for 3 *) 
rCQ = ( rQSol - rC ) / . rule ; 
rCC3 = ( rC3 - rC ) / . rule ; 
rCD = ( rD - rC ) / . rule ; 
eqBTl = (Cross[rCQ,F23Sol]+Cross[rCC3,F3]+Cross[rCD,F43]+M3)[[3]] 

== 0 ; 

(* Yl M_B for 2 *) 
rBQ = ( rQSol - rB ) / . ru le ; 
eqBT2 = (Cross[rBQ,F32Sol]+M2)[[3]] == 0 ; 
eqBT3 = F23Sol.rBC == 0 ; 
eqBT4 = ( (yC-yB)/(xC-xB)/.rule ) == ( (yC-yQSol)/(xC-xQSol)/.rule ) ; 

solF23 = Solve[{eqBTl,eqBT2,eqBT3,eqBT4},{F23xSol,F23ySol,xQSol, 
yQSol}] ; 

F23x = F23xSol/.solF23[[l]] ; 
F23y = F23ySol/.solF23[[l]] ; 
F23 = { F23x, F23y. 0 } ; 
F32 = - F23 ; 
xQ = xQSol/.solF23[[l]] ; 
yQ = yQSol/.solF23[[l]] ; 
rQ = { xQ, yQ, 0 } ; 
Print["F23 = ", F23] ; 
Print["rQ = ", rQ] ; 

(* Joint BR *) 

F12Sol = { F12xSol, F12ySol, 0 } ; 
F21Sol = - F12Sol ; 

(* 1] F for 2 *) 
rBC = ( rC - rB ) /.rule ; 
eqBRl = (F12Sol+F2).rBC == 0 ; 

(* J2 M_C for 2&3 *) 
rCB = ( rB - rC ) / . ru le ; 
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rCC2 = ( rC2 - rC ) / . ru le ; 
rCC3 = ( rC3 - rC ) / . ru le ; 
rCD = ( rD - rC ) / . ru le ; 
eqBR2 = (Cross[rCB,F12So1]+Cross[rCC2,F2]+Cross[rCC3,F3]+ 

Cross[rCD,F43]+M2+M3)[[3]] == 0 ; 

S0IFI2 = So1ve[{eqBRl,eqBR2},{F12xSo1,F12ySo1}] ; 
F12x = F12xSol/.solF12[[l]] ; 
F12y = F12ySo1/.solF12[[l]] ; 
F12 = { F12x, F12y, 0 } ; 
F21 = - F12 ; 
Print["F12 = ", F12] ; 

(* ^ MA for 1 *) 

MlmSol = { 0, 0, MmSol }; 

rAB = rB / . ru le ; 

rACl = rCl / . ru le ; 
eqMA = (Cross[rAB,F21]+Cross[rACl,Fl]+Ml+MlmSol)[[3]] == 0 ; 
sol Mm = Solve[eqMA,MmSol] ; 
Mm = MmSol/.solMm[[1]] ; 
Mlm = { 0, 0, Mm } ; 
Print["Mm = ", Mlm] ; 

(* Joint A_R *) 

FOlSol = { FOlxSol, FOlySol, 0 } ; 

(* Y, M_B for 1 *) 

rBA = -rB / . ru le ; 
rBCl = ( rCl - rB ) / . ru le ; 
eqARl = (Cross[rBA,F01Sol]+Cross[rBCl,Fl]+Ml+Mlm)[[3]] == 0 ; 

(* X; F for 1&2 *) 

eqAR2 = (F01Sol+Fl+F2).rBC == 0 ; 
solFOl = Solve[{eqARl,eqAR2},{FOlxSol,FOlySol}] ; 
FOlx = FOlxSol/.solF01[[l]] ; 
FOly = FOlySol/.solF01[[l]] ; 
FOl = { FOlx, FOly, 0 } ; 
Print["FOl = ", FOl] ; 

Fl = {0.0186142, -0.0990915, 0} 

Ml = {0, 0, 0} 
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F2 = (0.0265917, -0.0631033, 0} 

M2 = {0, 0, -0.000028165} 

F3 = {0.0492489, -0.033315, 0} 

M3 = {0, 0, -0.00621962} 

F4 = {-0.0369367, -0.0639614, 0} 

M4 = {0, 0, 0.0000111583} 

F5 = {-0.0553516, -0.410666, 0} 

M5 = {0, 0, 0.00481155} 

F05 = (268.127, 135.039, 0} 

F45 = (-268.072, -134.628, 0} 

rP = (-0.149492, 0.0476701, 0} 

F34 = (-268.035, -134.564, 0} 

F03 = (-256.71, -272.141, 0} 

F23 = (-11.3747, 137.91, 0} 

rQ = (0.121243, 0.07, 0} 

F12 = (-11.4013, 137.974, 0} 

Mm = (0, 0, 17.5332} 

FOl = {-11.4199, 138.073, 0} 
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1-8 Packages for Kinematic Chains 

1.8.1 Driver Link 
Packages can be used to calculate the position, velocity, and acceleration of a driver link in 
rotational motion [Fig. 1.8.1 .(a)]. For the position analysis, the input data are the coordinates 
(xA,yA) of the start joint A with respect to the reference frame xOyz, the length of the link 
AB, and the angle 0 with the horizontal axis. For the velocity and the acceleration analysis, 
the angular velocity co = ^ and the angular acceleration a = 0 are considered. The output 
data are the position, velocity, and acceleration of the end point B. 

The position equations for the driver link are 

XB = XA + AB cos 0, 

yB=yA-\-ABsm(l), (1.8.1) 

where XB and yB are the coordinates of the point B. 
The velocity equations for the driver link are 

VBX = —ABo) sin 0, 

VBy = ABco cos 0, (1.8.2) 

where VBX and VBy are the velocity components of the point B on the x- and j-axes. 
The acceleration equations for the driver link are 

aBx = —ABo/ cos 0 — ABa sin 0, 

GBy = —ABo? sin 0 + ABa cos 0, (1.8.3) 

where QBX and aBy are the acceleration components of the point B on the x- and j-axes. 
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FIGURE 1.8.1 Driver link. 

(b) 

In order to compute the position, velocity, and acceleration of the joint B, using Mathe-
matical^, the necessary commands can be can collected in a function. The name of the 
function is Driver. 

Driver[xA__,yA_,AB_,phi_,omega_,alpha_] : = 
Block[{ xB, yB, vBx, vBy, aBx, aBy } , 
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xB = xA + AB Cos[phi] ; 
yB = yA + AB Sin[phi] ; 
vBx = - AB omega Sin [phi] ; 
vBy = AB omega Cos[phi] ; 
aBx = - AB omega'^Z Cos [phi] - AB alpha Sin [phi] 
aBy = - AB omega'^Z Sin [phi] + AB alpha Cos [phi] 
Return[{ xB, yB, vBx, vBy, aBx, aBy } ] ; 

] ; 

The input data, the variable parts of the computation, and the output data are defined as 
parameters to this function. 

All the variables local to Dri ver [] are declared in the Bl ock [] statement to isolate them 
from any values they might have globally. The Mathematical^ command Block[{x, y, 
. . . } , expr] specifies that expr is to be evaluated with local values for the symbols x, 
y, . . . . In our case, the local variables are xB, yB, vBx, vBy, aBx, aBy, and expr is 
the body of the function. 

The Mathematical^ command Return [expr] returns the value expr from a function. 
For the driver, expr represents the output data and it is a vector that contains the elements 
xB, yB, vBx, vBy, aBx,and aBy. 

The mechanism that Mathematical^ provides for keeping the variables used in a package 
different from those used in the main session is called context. As each symbol is read from 
the terminal or from a file. Mathematical^ checks to see whether this symbol has already 
been used before. If it has been encountered before, the new instance is made to refer to that 
previously read symbol. If the symbol has not been encountered before, a new entry in the 
symbol table is created. Each symbol belongs to a certain context. Within one context the 
names of the symbols are unique, but the same name can occur in two different contexts. 
For the driver the proper context is 

Driver::usage = "Driver[xA,yA,AB,phi,omega,alpha] 
computes the driver l ink position, 
velocity and acceleration vectors." 

Begin["Private'"] 
Driver[xA_,yA_,AB_,phi_,omega_,alpha_]:= 
Block[ { xB, yB, vBx, vBy, aBx, aBy } , 
xB = xA + AB Cos[phi] ; 
yB = yA + AB Sin[phi] ; 
vBx = - AB omega Sin [phi] ; 
vBy = AB omega Cos[phi] ; 
aBx = - AB omega'̂ Z Cos [phi] - AB alpha Sin [phi] ; 
aBy = - AB omega'̂ Z Sin [phi] + AB alpha Cos [phi] ; 
Return[ { xB, yB, vBx, vBy, aBx, aBy } ] ; 

] 
End[ ] 

The local variables xB, yB, vBx, vBy, aBx, and aBy are now created in the context 
Private' which is not searched when one types a variable name later on. 
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The usage message defined for the symbol Dr i ver is there to provide documentation for 
the function and to make sure that Driver is defined in the current context. If it had not 
been defined before entering the context Private', it would not be found later on. 

The Mathematical^ command End [] returns the present context and reverts to the 
previous one. 

The functions that the package provides are put into a separate context which must 
be visible to be able to use the functions later on. This can be done using the pair of 
Mathematical^ commands BeginPackage[] and EndPackage[]. Thus, the following 
Mathematical^ package is introduced: 

Begi nPackage["Dri ver'"] 
Driver::usage = "Driver[xA_,yA_,AB_,phi_,omega_,alphaJ 

computes the driver position, velocity and acceleration vectors." 
Begin["'Private'"] 
Driver[xA_,yA_,AB_,phi_,omega_,alphaJ:= 
Block[ { xB, yB, vBx, vBy, aBx, aBy } , 
xB = xA + AB Cos[phi] ; 
yB = yA + AB Sin[phi] ; 
vBx = - AB omega Sin[phi] ; 
vBy = AB omega Cos[phi] ; 
aBx = - AB omega'̂ Z Cos [phi] - AB alpha Sin [phi] ; 
aBy = - AB omega'̂ Z Sin [phi] + AB alpha Cos [phi] ; 
Return[ { xB, yB, vBx, vBy, aBx, aBy } ] ; 
] 
End[ ] 
EndPackage[ ] 

The command Begi nPackage ["Dri ver'"] sets Driver' to be the current context, 
and the command EndPackage[] ends the package, prepending Driver' to the context 
search path. 

Note the initial backquote in the context name inside the conmiand Beg in["'Private'"]. 
This establishes 'Private' as a subcontext of the context Driver' (so its full name is 
Driver'Private'). 

The name of the source file for the Mathematical^ package Driver is Dri ver. m, as 
shown in Program 1.8.1. 

Example 
Adriverlinkis shown in Figure 1.8.1(b). The input data are A5 = 0.20 m, the angle between 
the driver link AB and the horizontal axis, 0 = 30°, and the angular velocity, co = 5 rad/s. 
Calculate the position, velocity, and acceleration components of the joint B. The Cartesian 
reference frame xOyz is chosen with A = 0. 

The Mathematical^ package Dri ver is loaded in the main Mathematical^ session using 
the command 

«Driver.m ; 

To compute the numerical values of the position, velocity, and acceleration components for 
the joint 5, the Mathematical^ function Driver is used. 
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Position Analysis 
Since the joint A is the origin of the reference frame xAyz, the coordinates of the joint A are 

XA=yA= 0. 

The coordinates of the joint B are 

XB = XA + A 5 C O S 0 = 0.173 m, 

yB=yA-\- AB sin 0 = 0.10 m. (1.8.4) 

The coordinates XB and ys are the first and, respectively, the second component of the 
vector returned by the function Driver: 

xB = Driver[xA,yA,AB,phi,omega,a1pha][[1]] ; 
yB = Driver[xA,yA,AB,phi,omega,alpha][[2]] ; 

Velocity Analysis 
The components v^^ on the jc-axis and VBy on the j-axis of the velocity for the joint B are 

v̂ ;̂ ; = —ABco sin 0 = —0.50 m/s, 

VBy = ABco cos 0 = 0.866 m/s. (1.8.5) 

The components v^^ and VBy are the third and, respectively, the fourth component of the 
vector returned by the function Driver: 

vBx = Driver[xA,yA,AB,phi,omega,alpha][[3]] ; 
vBy = Driver[xA,yA,AB,phi,omega,alpha][[4]] ; 

Acceleration Analysis 
The components GBX on the x-axis and aBy on the y-axis of the velocity for the joint B are 

GBx = —ABo? cos 0 — ABa sin 0 = —4.330 m/s^, 

UBy = -ABa? sin 0 + ABa cos 0 = -2.50 m/s^. (1.8.6) 

The components GBX and aBy are the fifth and, respectively, the sixth component of the 
vector returned by the function Driver: 

aBx = Driver[xA,yA,AB,phi,omega,alpha][[5]] ; 
aBy = Driver[xA,yA,AB,phi,omega,alpha][[6]] ; 

The Mathematical^ program and the numerical results are shown in Program 1.8.2. 
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1.8.2 Position Analysis 
RRR Dyad 
The RRR dyad is shown in Figure L8.2(a). The input data are the coordinates of the joint 
^(xM,yM)^ the coordinates of the joint N(XN, yN)^ and the lengths of the segments MP and 
NP. The output data are the coordinates of the joint P(xp, yp). 

The position equations for the RRR dyad are 

(XM - xpf + (jM - ypf = MP^, 

(XM - xpf + (jiv - ypf = NP\ (1.8.7) 

where the unknowns are the coordinates xp and yp of the joint P. There are two solutions 
for the position of the joint P: (xpi, ypi) and (xp2, yp2)' 

The Mathematical^ function for the positions ofxp^, yp^, xp2, yp^ is 

PosRRR::usage = "PosRRR[xM,yM,xN,yN,MP,NP] 
Computes the position vectors for RRR dyad" 

Begin["'Private'"] 
PosRRR[xM ,yM_,xN_,yN_,MP_,NPj:= 
B1ock[ 
{xPSol,yPSol,xPl,yPl,xP2,yP2,eqRRRl,eqRRR2,solRRR}, 
eqRRRl = (xM-xPSoU'^Z + (yM-yPSol)'^2 == MP-'Z 
eqRRR2 = (xN-xPSol)'^2 + (yN-yPSol)'^2 == NP'̂ 2 
solRRR = Solve[{eqRRRl,eqRRR2},{xPSol,yPSol}]; 
xPl = xPSol/.solRRR[[l]] ; 
yPl = yPSol/.solRRR[[l]] ; 
xP2 = xPSol/.solRRR[[2]] ; 
yP2 = yPSol/.solRRR[[2]] ; 
Return[xPl, yPl , xP2, yP2] ; 

] 
End[ ] 

RRT Dyad 
The RRT dyad is shown in Figure 1.8.2(b). The input data are the coordinates of the joint 
M(XM, yu)^ the coordinates of the point N(xi^, y^) on the sliding direction, the length of the 
segment MP, and the value of the angle 0. The output data are the coordinates of the joint 
P(xp,ypy 

The position equations for the RRT dyad are 

{xM - xpf + (JM - ypf = MP^ 

tan6> = -^^~-^^, (1.8.8) 
Xp — XN 

where the unknowns are the coordinates xp and yp of the joint P. There are two solutions 
for the position of the joint F, those are (xpi,ypi) and (xp2,yp2)' 
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FIGURE 1.8.2 (a) RRR dyad and (b) RRT dyad. 
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If the value of the angle 6 is 90° or 180°, then xp = x^ and the following equation is 
used to find the coordinate yp of the point P: 

(XM - XNf + (yM- ypf = MP\ (1.8.9) 

The Mathematical^ function for the position analysis is 

PosRRT::usage = "PosRRT[xM,yM,xN,yN,MP,theta] 
Computes the position vectors for RRT dyad" 

Begin["'Private'"] 
PosRRT[xM_,yM_,xN_,yN_,MP_,theta_]:= 
B1ock[ 
{xPSol, yPSol, xPl, yPl,xP2, yP2. eqRRT, solRRT, eqRRTl, eqRRT2 }, 
If[ {theta==Pi/2)|j(theta==3*Pi/2), 
xPl = xP2 = xN ; 
eqRRT = (xM-xN)"2 + (yM-yPSol)"2 == MP"2 ; 
solRRT = Solve[ eqRRT, yPSol ] ; 
yPl = yPSol/.solRRT[[l]] ; 
yP2 = yPSo1/.solRRT[[2]] , 
eqRRTl = (xM-xPSol)"2 + (yM-yPSol)"2 == MP"2 ; 
eqRRT2 = Tan[theta] == (yPSol-yN)/(xPSo1-xN) ; 
solRRT = Solve[{eqRRTl,eqRRT2},{xPSol,yPSol}] ; 
xPl = xPSol/.solRRT[[l]] 
yPl = yPSol/.solRRT[[l]] 
xP2 = xPSol/.solRRT[[2]] 
yP2 = yPSol/.solRRT[[2]] 
] : 
Return[ { xPl, yPl, xP2, yP2 } ] ; 
] 
End[ ] 

The functions PosRRR and PosRRT are included in the Mathematical'^ package 
Position. The name of the source file for the package is Position.m and is given in 
Program 1.8.3. 

R-RTR-RRT Mechanism 
The planar R-RTR-RRT mechanism considered is shown in Figure 1.8.3(a). Given the input 
data AB = 0.20 m, AD = 0.40 m, CD = 0.70 m, CE = 0.30 m, the angle of the driver link 
AB with the horizontal axis, (/> = 45°, and the angular velocity, w = 5 rad/s, calculate the 
positions of the joints. The distance from the slider 5 to the horizontal axis Ox is ys = 0.35 
m. The Cartesian reference frame xOyz is chosen with A = 0. 

The Mathematical'^ packages Driver and Position are loaded in the main program 
using the commands 

•«Driver.in ; 
«Position.m : 
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FIGURE 1.8.3 (a) R-RTR-RRT mechanism, (b) RTR (BBD) dyad, and (c) RRT (CEE) dyad. 

Position of the joint A 
Since the joint A is the origin of the reference frame x4yz, the coordinates of the joint A are 

XA=yA= 0. 
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Position of the joint B 
The coordinates of the joint B are 

XB = XA -f A 5 C O S 0 = 0.141 m, 

ys = yA +A5s in0 = 0.141 m. (1.8.10) 

The numerical values for the coordinates of the joint B are obtained using the Mathemat-
ical^ function Driver: 

xB = Driver[xA,yA,AB,phi,omega,alpha][[1]] ; 
yB = Driver[xA,xB,AB,phi,omega,alpha][[2]] ; 

The RTR (BBD) dyad is represented in Figure 1.8.3(b). 

Position of the joint D 

The coordinates of the joint D are 

xo = 0,yD = -AD = -0.400 m. 

The angle 03 is 

03 = arctan ^l^2R = 7535°. 
XB -XD 

The next dyad RRT (CEE) is represented in Figure 1.8.3(c). 

Position of the joint C 
The coordinates of the joint C are 

xc = XD + CD cos 03 = 0.176 m, 

yc=yD + CD sin 03 = 0.277 m. 

Position of the joint E 

In this particular case, the coordinate yE of the joint E is constant: 

yE = 0.350m. 

The coordinate XE of the joint E is calculated using the equation 

(xc - XEf + (yc - yEf = CE\ (1.8.11) 

There are two solutions for XE'-

XEI = —0.114 m, and JC£:2 = 0.467 m. 
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The correct solution for XE is selected using the condition XE < ^C-

XE = -0 .114 m. 

The numerical solution for XE is obtained using the Mathematical^ function PosRRT 

xEl = PosRRT[xC,yC,0,yE,CE,phi5][[l]] ; 
xE2 = PosRRT[xC,yC,0,yE,CE,phi5][[3]] ; 
(* Choose the correct solution * ) 
I f [ (xEKxC), xE=xEl, xE=xE2 ] ; 

The input data are the coordinates of the joint C{xc,yc)^ the coordinates of the point 
P{0,yE) located on the sliding direction, the length of the link CE, and the angle between 
the sliding direction and the horizontal axis Ox, phi5 = 180°. 

The output data are the first and the third element of the vector returned by the function 
PosRRT, which are the x-coordinates of the joint E. The second and the fourth element are 
constant and equal to the >'-coordinate of the joint E. 

The numerical values are printed using the Mathematical^ commands: 

Print["rB = ",{xB,yB,0}," [m]" ] ; 
Print["rC = ",{xC,yC,0}," [m]" ] ; 
Print["rE = ",{xE,yE,0}," [m]" ] ; 

The Mathematical^ program and the numerical results are shown in Program 1.8.4. 

R-RRR-RRT Mechanism 
The planar R-RRR-RRT mechanism considered is shown in Figure 1.8.4(a). Given the input 
data A5 = 0.15 m, 5C = 0.40 m, CD = 0.37 m, CE = 0.23 m, EE = CE,La = 0.30 m, 
Lb = 0.45 m, Lc = CD, and the angle of the driver link AB with the horizontal axis, 
0 = 45°, calculate the positions of the joints. The distance from the slider 5 to the horizontal 
axis Ox is yE = 0.35 m. The Cartesian reference frame xOyz is chosen, with A = 0. 

The Mathematical^ packages Driver and Position are loaded in the main program 
using the commands: 

«Driver.m ; 
«Position.m ; 

Position of the joint A 
Since the joint A is the origin of the reference frame xAyz, the coordinates of the joint A are 

XA=yA= 0. 

Position of the joint B 
The coordinates of the joint B are 

X5 = XA + AB cos 0 = 0.106 m, 

ys = yA +A5s in0 = 0.106 m. (1.8.12) 
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FIGURE 1.8.4 (a) R-RRR-RRT mechanism, (b) RRR (BCD) dyad, and (c) RRT (CEE) dyad. 

The numerical values for the coordinates of the joint B are obtained using the 
Mathematical^ function Driver: 

xB = Driver[xA,yA,AB,phi,omega,alpha][[1]] ; 
yB = Driver[xA,xB,AB,phi,omega,alpha][[2]] ; 

The RRR (BCD) dyad is represented in Figure L8.4(b). 
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Position of the joint D 

The coordinates of the joint D are 

xo=La = 0.300 m, yo = Lb = 0.450 m. 

Position of the joint C 

The coordinates xc and yc of the joint C are calculated using the equations 
(xB-xcf + (yB-ycf=BC\ 

(XD - xcf + (yo - ycf = CD\ (1.8.13) 

There are two solutions for the coordinates of the joint C: 

xci = -0.069 m, yci = 0.465 m, 

XC2 = 0.504 m, yc2 = 0.141 m. 

The correct solution is selected using the condition yc > ys-

xc\ = -0.069 m, yci = 0.465 m. 

The numerical solutions for the coordinates of the joint C using the Mathematical^ 
commands are 

xCl = PosRRR[xB,yB,xD,yD,BC,CD][[l]] 
yCl = PosRRR[xB,yB,xD,yD,BC,CD][[2]] 
xC2 = PosRRR[xB,yB,xD,yD,BC,CD][[3]] 
yC2 = PosRRR[xB,yB,xD,yD,BC,CD][[4]] 
(* Choose the correct solution *) 
If[ (yCl>yB), xC=xCl;yC=yCl, xC=xC2;yC=yC2 ] ; 

The input data are the coordinates of the joint B(xB,yB)^ the coordinates of the joint 
L>(xD,yD), and the lengths of the links BC and CD. The output data are the four elements 
of the vector returned by the function PosRRR, which are the coordinates of the joint C. 

The angle 03 between the link 3 and the horizontal axis Ox is 

03 = arctan ^£ZlR -\-n = 3.099 rad. 
xc -XD 

Position of the joint E 
The coordinates of the joint E are 

x^ = Xc -h CE cos 03 = —0.299 m, 

yE =yc + CE sin 03 = 0.474 m. 

The next dyad RRT {CEE) is represented in Figure 1.8.4(c). 
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Position of the joint F 

In this particular case, the jc-coordinate xp of the joint F is constant: 

Xf = -Lc = -0.370 m. 

The y-coordinate yf of the joint F is calculated using the equation 

(XE - xpf -^(ys- ypf = EF\ (1.8.14) 

There are two solutions for yp: 

yfi = 0.256 m, and yf2 = 0.693 m. 

The correct solution for yf is chosen using the condition yf < yf: 

yf = 0.256 m. 

The numerical solutions for yf using the Mathematical^ commands are 

yFl = PosRRT[xE,yE,-Lc,0,EF,phi5][[2]] ; 
yF2 = PosRRT[xE,yE,-Lc,0,EF,phi5][[4]] ; 
(* Choose the correct solution *) 
I f [ (yFKyE), yF=yFl, yF=yF2 ] ; 

The input data are the coordinates of the joint E(xE,yE), the coordinates of the point 
P(—Lc,0) on the sliding direction, the length of the link EF, and the angle between the 
sliding direction and the horizontal axis Ox, phi 5=90°. The output data are the second and 
the fourth element of the vector returned by the function PosRRT, which are the j-coordinates 
of the joint F. The first and third elements are constant and equal to the x-coordinate of the 
joint F. The numerical values are printed using the Mathematical^ commands: 

Print["rB = ",{xB,yB,0}," [m]" ] 
Print["rC = ",{xC,yC,0}," [m]" ] 
Print["rE = ",{xE,yE,0}," [m]" ] 
Print["rF = " ,{xF,yF,0}," [m]" ] 

The angle 02 between the link 2 and the horizontal axis Ox is 

02 = arctan ^£^l2l -\-jt = 2.025 rad. 
xc -XB 

The angle 04 between the link 4 and the horizontal axis Ox is 

04 = arctan ^iSZlL = 1.259 rad. 
Xf -Xf 

The Mathematical^ program and the numerical results are shown in Program 1.8.5. 
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A = 0 

FIGURE 1.8.5 R-RRT mechanism. 

R-RRT Mechanism 
The planar R-RRT mechanism considered is shown in Figure 1.8.5. Given the input data 
AC = 0.10 m, BC = 0.30 m, AP = 0.50 m, and the angle of the driver Unk AB with 
the horizontal axis, 0 = 45°, calculate the positions of the joints. The Cartesian reference 
frame xOyz is chosen with A = 0. 

The Mathematical^ packages Driver and Position are loaded in the main program 
using the commands 

«Driver.m ; 
«Position.m ; 

Position of the joint A 
Since the joint A is the origin of the reference frame xAyz, the coordinates of the joint A are 

XA=yA= 0. 

Position of the joint B 
In order to calculate the position of the point B, the position of the point P located on the 
driver link AB is calculated with 

xp = XA-\- AP cos 0 = 0.353 m, 

yp =yA-\- AP sin 0 = 0.353 m. (1.8.15) 
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The numerical values for the coordinates of the point P are obtained using the Mathemat-
ical^ function Driver: 

xP = Driver[xA,yA,AP,phi,omega,alpha][[1]] ; 
yP = Driver[xA,xB,AP,phi,omega,alpha][[2]] ; 

The coordinates of the point B are calculated using the equations 

XB -Xp 

There are two solutions for the coordinates of the point B: 

XBI = —0.156 m, yBi = —0.156 m, 

XB2 = 0.256 m, yB2 = 0.256 m. 

The correct solution is selected using the condition yB > yc = 0: 

yB = yBi = 0.256 m. 

The numerical solutions for the coordinates of the point B are obtained using the 
Mathematical^ commands 

xBl = PosRRT[xC,yC,xP,yP,BC,phi][[l]] ; 
yBl = PosRRT[xC,yC,xP,yP,BC,phi][[2]] ; 
xB2 = PosRRT[xC,yC,xP,yP,BC,phi][[3]] ; 
yB2 = PosRRT[xC,yC,xP,yP,BC,phi][[4]] ; 
{* Choose the correct solution *) 
If[ (yBl>yC), xB=xBl;yB=yBl, xB=xB2;yB=yB2 ] ; 

The numerical values are printed using the Mathematical^ command 

Print["rB = ",{xB,yB,0}," [m]" ] ; 

The Mathematical^ program and the numerical results are shown in Program 1.8.6. 

1.8.3 Velocity and Acceleration Analysis 
RRR Dyad 
The input data are the coordinates XM,yM,XM,yN,xp,yp of the joints M,N, and P, the 
velocities XM,yM,XM,yN, and the accelerations XM,yM,XN, yN of the joints M and Â . The 
output data are the velocities xp, yp and acceleration components xp and yp of the joint P. 
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The velocity equations for the RRR dyad are obtained taking the derivative of the position 
equations 

{xM - xp)(xM - xp) + iyM - yp){yM - yp) = 0, 

(XN - xp)(xN - Xp) + (jN - yp)(yN - yp) = 0, (1.8.16) 

where the unknowns are the velocity components xp and yp of the joint P. 
The acceleration equations for the RRR dyad are obtained taking the derivative of the 

velocity equations 

(XM - Xp)(XM - Xp) + {XM - Xpf + (VM - J/>)(jM " yp) + (ju - ypf = 0, 

(̂ Â  - xp)(xN - xp) + (xN - Xpf + iyN - yp)(yN - yp) + G'iv - yp)^ = o, (1.8.17) 

where the unknowns are the acceleration components xp and yp of the joint P. 
The Mathematical^ function for the velocity and acceleration analysis is 

YelAccRRR::usage = "YelAccRRR[xM,yM,xN,yN,xP,yP, 
vMx,vMy,vNx,vNy,aMx,aMy,aNx,aNy] computes the velocity 
and acceleration vectors for RRR dyad" 

Begin["'Private'"] 
YelAccRRR [xM_,yM_,xN^,yN_,xP_,yP_,vMx^,vMy_,vNx_,vNy_, 

aMx_,aMy_, aNx_,aNy_]:= 
Block[ 
{ vPxSol, vPySol, aPxSol, aPySol, vPx, vPy, aPx, aPy, 

eqRRRlv, eqRRR2v, solRRRv, eqRRRla, eqRRR2a, solRRRa }, 
(* Yelocities *) 
eqRRRlv=(xM-xP) (vMx-vPxSol)+(yM-yP) (vMy-vPySol)==0; 
eqRRR2v=(xN-xP) (vNx-vPxSol)+(yN-yP) (vNy-vPySol)==0; 
solRRRv=Solve[{eqRRRlv, eqRRR2v},{vPxSol, vPySol}]; 
vPx = vPxSol/.solRRRv[[l]] ; 
vPy = vPySol/.solRRRv[[l]] ; 
(* Accelerations *) 
eqRRRla = (xM-xP) (aMx-aPxSol) + (vMx-vPx)'̂ 2 + 

(yM-yP) (aMy-aPySol) + (vMy-vPy)^2 == 0 ; 
eqRRR2a = (xN-xP) (aNx-aPxSol) + (vNx-vPx)'̂ 2 + 

(yN-yP) (aNy-aPySol) + (vNy-vPy)'̂ 2 == 0 ; 
solRRRa=Solve[{eqRRRla, eqRRR2a},{aPxSol, aPySol}]; 
aPx = aPxSol/.solRRRa[[l]] ; 
aPy = aPySol/.solRRRa[[l]] ; 
Return[ { vPx, vPy, aPx, aPy } ] ; ] 
End[ ] 

RRT Dyad 
The input data are the coordinates XM,yM,X]s^,yjs^,xp,yp of the joints M,N and P, the 
velocities XM, yM,XN,yN, the accelerations XM, yM,XM, yN of the joints M and Â , the angle 
0, the angular velocity and acceleration 0 and 0. The output data are the velocities xp,yp, 
and accelerations xp, yp of the joint P. 
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The velocity equations for the RRT dyad are obtained taking the derivative of the position 
equations 

(xM - xp)(xM - xp) + (yM - yp)(yM - yp) = 0, 

(xp — XM) sin 0 + 6(xp — XN) COS 0 — (yp — y^) cos 0 + 0(yp — y^) sin ̂  = 0, (1.8.18) 

where the unknowns are the velocity components xp and yp of the joint P. 
The acceleration equations for the RRT dyad are obtained taking the derivative of the 

velocity equations 

(xM - xp)(xM - xp) + {XM - xpf + (yu - yp)(yM - yp) + (JM - yp)^ = 0, 

(xp — XN) sin 0 — (yp — y^) cos 0 + [2(xp — x^) cos 0 — 0(xp ~ x^) sin 0 

+ 2(yp - JN) sin 0 + 6(yp - yN) cos 0]0 + [(xp - XN) COS 0 -\-(yp - y^) sin 0]0 = 0, 
(1.8.19) 

where the unknowns are the acceleration components xp and yp of the joint P. 
The Mathematical^ function for the velocity and acceleration analysis is 

VelAccRRT::usage = "YelAccRRT[xM,yM,xN,yN,xP,yP, 
vMx,vMy,vNx,vNy,aMx,aMy,aNx,aNy,theta,omega,alpha] 
computes the velocity and acceleration vectors for 
RRT dyad" 

Begin["'Private'"] 
YelAccRRT[xM_,yM_,xN_,yN_,xP_,yP_,vMx_,vMy_^,vNx ,vNy , 

aMx_,aMy_,aNx_,aNy_,theta_,omega_,alpha_]:= 
B1ock[ 
{ vPxSol, vPySol, aPxSol, aPySol, vPx, vPy, aPx, aPy, eqRRTv, eqRRTa, 

eqRRTlv, eqRRT2v, solRRTv , eqRRRla, eqRRR2a, solRRRa } , 
(* Velocity * ) 
eqRRTlv=(xM-xP) (vMx-vPxSol)+(yM-yP) (vMy-vPySol)==0; 
eqRRT2v = Sin[theta] (vPxSol-vNx) + 

Cos[theta] omega (xP-xN) - Cos[theta] (vPySol-vNy) + 
Sin[theta] omega (yP-yN) == 0 ; 

solRRTv=Solve[{eqRRTlv, eqRRT2v},{vPxSol, vPySol}] ; 
vPx = vPxSol/.solRRTv[[l]] ; 
vPy = vPySol/.solRRTv[[l]] ; 
(* Acceleration * ) 
eqRRTla = (xM-xP) (aMx-aPxSol) + (vMx-vPx)'^2 + 

(yM-yP) (aMy-aPySol) + (vMy-vPy)'^2 == 0 ; 
eqRRT2a = Sin[theta] (aPxSol-aNx) -

Cos[theta] (aPySol-aNy) + ( 2 Cos[theta] (vPx-vNx) -
Sin[theta] dtheta (xP-xN) + 2 Sin[theta] (vPy-vNy) + 
Cos[theta] dtheta (yP-yN)) dtheta + 
(Cos[theta] (xP-xN) + Sin[theta] (yP-yN)) ddtheta == 0; 
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solRRTa=Solve[{eqRRTla, eqRRT2a},{aPxSol, aPySol}]; 
aPx = aPxSol/.solRRTa[[l]] ; 
aPy = aPySol/.solRRTa[[l]] ; 
Return[ { vPx, vPy, aPx, aPy } ] ; ] 
End[ ] 

Angular Velocities and Accelerations 
A Mathematical^ function is used to compute the angular velocity and acceleration of a 
link. The input data are the coordinates XM^yM^^N^yN, the velocities x^, JM.-^A^. W. the 
accelerations XM/yM/xN,yN of two points M and N located on the link direction, and the 
angle 0 between the link direction and the horizontal axis. The output data are the angular 
velocity co = 0 and the angular acceleration a = 0 of the link. 

The slope of the line MN is 

tan6' = •^^~^^ . (1.8.20) 
XM -XN 

The derivative with respect to time of Eq. (1.8.20) is 

liyM - W) sin 0 -\-(xM - XN) cos0]co = (vMy - VNy) cos 0 - {vMx - VNx) siu 6>. (1.8.21) 

The angular velocity co is calculated from Eq. (1.8.21). The derivative with respect to 
time ofEq. (1.8.21) is 

[(xM - XN) COS 0 -h(yM - w ) sin 0]a - {auy - a^y) cos 6> - {aux - ^NX) sin 0 

— [{yu — yN)^ cos 6 + 2(vMy — VNy) siu 0 — {XM — XN)O) sin 6 + 2(VMX — v^x) cos 0]a). 
(1.8.22) 

Solving Eq. (1.8.22), the angular acceleration a is obtained. 
The Mathematical^ function for the angular velocity and acceleration analysis is 

AngVelAce::usage = "AngVelAcc[xM,yM,xN,yN,vMx,vMy, 
vNx,vNy,aMx,aMy,aNx,aNy,theta] computes the angular velocity and 
acceleration of a l ink ." 

Begin["'Private "] 
AngVelAce[xM_,yM_,xN_,yN_,vMx_,vMy_,vNx_,vNy_,aMx_,aMy_, 

aNx_,aNy_,theta_]:= 
Block[ 
{ dtheta, ddtheta } , 
dtheta = ( Cos[theta] (vMy-vNy) - Sin[theta] (vMx-vNx))/ 

( Sin[theta] (yM-yN) + Cos[theta] (xM-xN) ) ; 
ddtheta=(Cos[theta] (aMy-aNy) -Sin[theta] (aMx-aNx) -

(Cos[theta] dtheta (yM-yN) + 2 Sin[theta] (vMy-vNy) -
Sin[theta] dtheta (xM-xN) +2Cos[theta] (vMx-vNx)) dtheta) / 
( Cos[theta] (xM-xN) + Sin[theta] (yM-yN) ) ; 

Return[ { dtheta, ddtheta } ] ; ] 
End[ ] 

Packages for Kinematic Chains 355 



Absolute Velocities and Accelerations 
A function is used to compute the velocity and acceleration of the point Â , knowing the 
velocity and acceleration of the point M, both points N and M are located on a rigid link. 
The input data are the coordinates XM, JM» ^A ,̂ and y^ of the points M and N, the velocity 
and acceleration components XM, yM, XM, JM of the point M, and the angular velocity 
and acceleration 9 and a of the link. The output data are the velocity and acceleration 
components x^, yN^ XN, yN of the point N. 

The following vectorial equation between the velocities VÂ  and \M of the points N and 
M exists as 

Viv = VM + a> X VMN, (1.8.23) 

where VÂ  = XNI + WJ, \M = XMI + JMJ, (O = cok, and YMN = (^N - ^M)I + CViV - yM)y 
Equation (1.8.23) is projected on the i and j directions to find the velocity components 

of the point N: 

XN =XM - CO(yN - yM), 

W = JM + (̂̂ A^ - XM). (1.8.24) 

The following vectorial equation between the accelerations â r and SLM of the points Â  
and M can be written as 

aiv = aM + a X VMN - O?YMN, (1.8.25) 

where â r = XN\ + 'JNh ^M = % i + JMJ, and ct = ak. 
The acceleration components of the point Â  are obtained from Eq. (1.8.25): 

XN =XM - OiiyN - yM) - 0?{XN - XM), 

yN =yM + oc(xN - XM) - op-iyN - JM)- (1.8.26) 

The Mathematical^ function for the absolute velocity and acceleration analysis is 

AbsVelAce::usage = "AbsYelAcc[xM,yM,xN,yN,YMx,vMy, 
aMx,aMy, dtheta,ddtheta] computes the absolute velocity and 
acceleration vectors." 

Begin["'Private'"] 
AbsYelAcc[xM_,yM_,xN_^,yN_^,vMx_,vMy_,aMx_,aMy_^,dtheta_,ddthetaJ: = 
B1ock[ 
{ vNx, vNy, aNx, aNy } , 
vNx = vMx - dtheta (yN-yM) ; 
vNy = vMy + dtheta (xN-xM) ; 
aNx = aMx - ddtheta (yN-yM) - dtheta'^2 (xN-xM) ; 
aNy = aMy + ddtheta (xN-xM) - dtheta'^Z (yN-yM) ; 
Return[ { vNx, vNy, aNx, aNy } ] ; ] 
End[ ] 
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Thefunctions VelAccRRR, VelAccRRT, AngVelAcc, and AbsVel Ace are included in the 
Mathematical^ package Yel Ace. The name of the source file for the package is Yel Aec.m 
and is given in Program 1.8.7. 

R-RRR-RRT Mechanism 
The position analysis of the planar R-RRR-RRT mechanism considered [see Fig 1.8.4(a)] is 
presented in Subsection 1.8.2. Given the angular velocity a> = 0 = 3.14 rad/s, calculate the 
velocities and the accelerations of the joints and the angular velocities and the accelerations 
of the links. 

The Mathematical^ packages Driver, PosVee, and Yel Ace are loaded in the main 
program using the commands 

«Driver.m ; 
«PosYec.m ; 
«YelAec.m ; 

The angular velocity of the driver link is zero: 

a = 4> = 0. 

Velocity and acceleration of the joint A 
Since the joint A is the origin of the reference frame xAyz, the velocity and acceleration of 
the joint A are 

\A=SiA= 0. 

Velocity and acceleration of the joint B 
The velocity and acceleration components of the joint B are 

VBX = —ABco sin (f) = — l.llOm/s, 

v^^ = ABco cos (f) = 1.110 m/s, 

aBx = —ABo? cos (j) —ABasincj) = —11.631 m/s^, 

aBy = —ABa/ sin (p -{-ABacoscp = —11.631 m/s^. 

The numerical values for the velocity and acceleration components of the joint B are 
obtained using the Mathematical^ function Driver: 

vBx = Driver[xA,yA,AB,phi,omega,alpha][[3]] 
vBy = Driver[xA,yA,AB,phi,omega,alpha][[4]] 
aBx = Driver[xA,yA,AB,phi,omega,alpha][[5]] 
aBy = Driver[xA,yA,AB,phi,omega,alpha][[6]] 
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Velocity and acceleration of the joint D 
The velocity and acceleration of the joint D are 

vz) = az) = 0. 

Velocity and acceleration of the joint C 
To calculate the velocity components vcx and vcy of the joint C, the following equations 
are used: 

{XB - Xc)(VBx - VCx) + (yB- ycX^By " VCy) = 0, 

(XD - Xc)(VDx - VCx) + (yo - ycXVDy - VCy) = 0. (1.8.27) 

The acceleration components acx and acy of the joint C are calculated from the 
equations 

(XB - Xc)(aBx - ClCx) + iyBx " VCxf + (jB " yc){ciBy - acy) + iVBy - VCyf = 0, 

(XD - XcXaOx - aCx) + {VDx - VCxf + (JD - yc){ciDy " «Cy) + i^Dy - VCyf = 0. 

(1.8.28) 

The numerical solutions for the velocity and acceleration components of the joint C 
using the Mathematical^ function Vel AccRRR are 

vCx=VelAccRRR[xB,yB,xD,yD,xC,yC,vBx,vBy,vDx,vDy,aBx,aBy,aDx,aDy][[1]]; 
vCy=VelAccRRR[xB,yB,xD,yD,xC,yC,vBx,vBy,vDx,vDy,aBx,aBy,aDx,aDy][[2]]; 
aCx=VelAccRRR[xB,yB,xD,yD,xC,yC,vBx,vBy,vDx,vDy,aBx,aBy,aDx,aDy][[3]]; 
aCy=YelAccRRR[xB,yB,xD,yD,xC,yC,vBx,vBy,vDx,vDy,aBx,aBy,aDx,aDy][[4]]; 

The input data are the coordinates of the joints B, D, and C, and the velocities and 
acceleration components of the joints B and D. The output data are the four elements of 
the vector returned by the function Vel AccRRR, which are the velocity and acceleration 
components of the joint C. 

Velocity and acceleration of the joint E 
The numerical values for the angular velocity and acceleration of the link 3 using the 
Mathematical^ function AngYel Ace are 

0mega3=AngYelAcc[xC,yC,xD,yD,vCx,vCy,vDx,vDy,aCx,aCy, 
aDx,aDy,phi3][[ l ] ] ; 

alpha3=AngYelAcc[xC,yC,xD,yD,vCx,vCy,vDx,vDy,aCx,aCy, 
aDx,aDy,phi3][[2]]; 

The input data are the coordinates, velocities, and accelerations of the joints C and D, and 
the angle 03. The output data are the two components of the vector returned by the function 
AngYel Ace. 
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The velocity and the acceleration of the joint E are calculated with 

v^ = a>3 X YDE and a^ = as x YDE - O?YDE-

The numerical solutions for the velocity and acceleration components of the joint E are 
obtained using the Mathematical^ function AbsYel Ace: 

vEx=AbsYe1Acc[xD,yD,xE,yE,vDx,vDy,aDx,aDy,omega3,a1pha3][[1]] 
vEy=AbsVelAce[xD,yD,xE,yE,vDx,vDy,aDx,aDy,omega3,alphas][[2]] 
aEx=AbsVelAce[xD,yD,xE,yE,vDx,vDy,aDx,aDy,oinega3,alphas][[3]] 
aEy=AbsVelAcc[xD,yD,xE,yE,vDx,vDy,aDx,aDy,omega3,alpha3][[4]] 

The input data are the coordinates of the joints D and E, and the velocity and acceleration 
components of the joint D. The output data are the four elements of the vector returned 
by the function AbsVelAcc, which are the velocity and acceleration components of the 
joint E. 

Velocity and acceleration of the joint F 
In this particular case, the angular velocity and acceleration of the link 5 are zero: 

(05=Ct5 = 0. 

The velocity and the acceleration of the point P(—Lc,0), on the shding direction, are 
zero: 

\p = 2lp = 0. 

The velocity and acceleration components of the joint F are calculated using the 
Mathematical^ function VelAccRRT: 

vFx=VelAccRRT[xE,yE,xP,yP,xF,yF,vEx,vEy,vPx,vPy, 
aEx,aEy,aPx,aPy,phi5,omegas,alphas][[1]]; 

vFy=VelAccRRT[xE,yE,xP,yP,xF,yF,vEx,vEy,vPx,vPy, 
aEx,aEy,aPx,aPy,phis,omegas,alphas][[2]]; 

aFx=VelAccRRT[xE,yE,xP,yP,xF,yF,vEx,vEy,vPx,vPy, 
aEx,aEy,aPx,aPy,phis,omegas,alphas][[3]]; 

aFy=VelAccRRT[xE,yE,xP,yP,xF,yF,vEx,vEy,vPx,vPy, 
aEx,aEy,aPx,aPy, phiS,omegaS,alphaS][[4]]; 

The input data are the coordinates of the joints £", P, and F, the velocities and accele-
ration components of the joints E and P, the angle 05, the angular velocity cos, and the 
angular acceleration a^. The output data are the four elements of the vector returned 
by the function VelAccRRT, which are the velocity and acceleration components of the 
joint F. 
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The numerical values for the angular velocity 002 and the angular acceleration 0̂2 of the 
link 2 using the Mathematical^ function AngVel Ace are 

0inega2=AngYelAcc[xB,yB,xC,yC,vBx,vBy,vCx,vCy,aBx,aBy, 
aCx,aCy,phi2][[l]]; 

alpha2=AngYelAcc[xB,yB,xC,yC,vBx,vBy,vCx,vCy,aBx,aBy, 
aCx,aCy,phi2][[2]]; 

The input data are the coordinates, velocities, and accelerations of the joints B and C, and 
the angle 02- The numerical values for the angular velocity co^ and the angular acceleration 
^4 of the link 4 are calculated with the Mathematical^ function AngVel Ace: 

0mega4=AngYelAcc[xE,yE,xF,yF,vEx,vEy,vFx,vFy,aEx,aEy, 
aFx,aFy,phi4][[l]]; 

alpha4=AngYelAee[xE,yE,xF,yF,vEx,vEy,vFx,vFy,aEx,aEy, 
aFx,aFy,phi4][[2]]; 

The input data are the coordinates, velocities, and accelerations of the joints E and F, 
and the angle 04. The output data are the two components of the vector returned by the 
function AngVel Ace. 

The Mathematical^ program and the numerical results are shown in Program 1.8.8. 

R-RRT Mechanism 
The position analysis of the planar R-RRT mechanism considered (Fig. 1.8.5) has been 
presented in Subsection 1.8.2. Given the angular velocity co = 3.141 rad/s, calculate the 
velocities and accelerations of the joints and the angular velocities and accelerations of 
the links. 

The Mathematical^ packages Driver, Position, and VelAcc are loaded in the main 
program using the commands 

«Driver.m ; 
«Position.m ; 
«VelAcc.m ; 

The angular velocity of the driver link is zero: 

a = 0 = 0. 

Velocity and acceleration of the joint A 
Since the joint A is the origin of the reference frame xAyz, the velocity and acceleration of 
the joint A are 

VA = aA = 0. 

The velocity and the acceleration of the point C are zero: 
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Velocity and acceleration of the joint B 
In order to calculate the velocity and acceleration of the point B, you need to calculate the 
velocity and acceleration of the point P, located on the driver link AB: 

vpx = —AP sin (l)co = —1.110 m/s, 

vpy = AP cos 0ct) = 1.110 m/s, 

apx = —APo/ cos 0 - APa sin 0 = —3.489 m/s^, 

apy = -APo? sin 0 + APa cos 0 = -3.489 m/s^. 

The numerical values for the velocity and acceleration components of the point P using 
the Mathematical^ function Driver are 

vPx = DrTver[xA,yA,AP,phi,omega,alpha][[3]] 
vPy = Driver[xA,yA,AP,phi,omega,alpha][[4]] 
aPx = Driver[xA,yA,AP,phi,omega,alpha][[5]] 
aPy = Driver[xA,yA,AP,phi,omega,alpha][[6]] 

The velocity components VBX and VBy of the point B are calculated using the equations 

{XC - XB)(VCX - VBx) + (yc - yB)(vCy " ^By) = 0, 

(vBx - vpx) sin 0 + CO(XB - xp) cos 0 - {vBy - vpy) COS 0 + coiyB - yp) sin 0 = 0. 
(1.8.29) 

The acceleration components aBx and aBy of the point B are calculated using the equations 

(xc - XB)(acx - ClBx) + (VCX - VBxf + ( jC " j 5 ) ( ^ C j " ^By) + {vcy - VByf = 0, 

(aBx - ciPx) sin 0 + a)(vBx - vpx) cos 0 - (a^^ - apy) cos 0 + o)(vBy - vpy) sin 0 

+ [(XB - Xp) COS 0 + (j5 - yp) sin 0]a + ((VBX - vpx) cos 0 - CO(XB - xp) sin 0 

+ (vfij — vpy) sin 0 + ^CVB — yp) cos 0)(W = 0. (1.8.30) 

The solutions for the velocity and acceleration components of the joint F are obtained 
using the Mathematical^ function Yel AccRRT: 

vBx=YelAccRRT[xC,yC,xP,yP,xB,yB,vCx,vCy,vPx,vPy, 
aCx,aCy,aPx,aPy,phi,omega,alpha][[1]]; 

vBy=VelAccRRT[xC,yC,xP,yP,xB,yB,vCx,vCy,vPx,vPy, 
aCx,aCy,aPx,aPy,phi,omega,alpha][[2]]; 

aBx=VelAccRRT[xC,yC,xP,yP,xB,yB,vCx,vCy,YPx,vPy, 
aCx,aCy,aPx,aPy,phi,omega,alpha][[3]]; 

aBy=YelAccRRT[xC,yC,xP,yP,xB,yB,vCx,vCy,vPx,vPy, 
aCx,aCy,aPx,aPy,phi,omega,alpha][[4]]; 

The input data are the coordinates of the points C, P, and B, the velocities and acceleration 
components of the points C and P, the angle 0, the angular velocity co, and the angular 
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acceleration a. The output data are the four elements of the vector returned by the function 
Vel AccRRT, which are the velocity and acceleration components of the point B. 

The Mathematical^ program and the numerical results are shown in Program 1.8.9. 

R-RTR-RTR Mechanism 
The planar R-RTR-RTR mechanism considered is shown in Figure 1.8.6. Given the input 
data A5 = 0.14 m, AC = 0.06 m, AE = 0.25 m, CD = 0.15 m, the angle of the driver link 
A5 and the horizontal axis 0 = 30°, and the angular velocity 6L) = 0 = 5.235 rad/s, calculate 
the velocities and accelerations of the joints and the angular velocities and accelerations of 
the links. The Cartesian reference frame xOyz is chosen, A = 0. 

The Mathematical^ packages Dr i ver and Vel Ace are loaded in the main program using 
the commands 

«Driver.m ; 
«Ve1Acc.m : 

FIGURE L8.6 R-RTR-RTR mechanism. 
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Position analysis 
Position of the joint A, Since the joint A is the origin of the reference frame xAyz, the 
coordinates of the joint A are zero: 

XA=yA= 0. 

Position of the joint B, The coordinates of the joint B are 

XB = XA -\-AB COS (j) = 0.121 m, 

yB=yA-\- AB sin 0 = 0.070 m. (1.8.31) 

The coordinates of the joint B are obtained using the Mathematical^ function Driver: 

xB = Driver[xA,yA,AB,phi,omega,alpha][[1]] ; 
yB = Driver[xA,xB,AB,phi,omega,alpha][[2]] ; 

Position of the joint C, The coordinates of the joint C are 

xc =Om,yc=AC = 0.06 m. 

The angle 03 between the link 3 and the horizontal axis Ox is 

, , yB-yc 03 = arctan . 

XB -XC 

Position of the joint D, The coordinates of the joint D are 

XD = Xc — CD COS 03 = —0.149 m, 

yD=yc- CD sin 03 = 0.047 m. (1.8.32) 

Position of the joint E. The coordinates of the joint E are 

XE = 0 m, yE = —AE = —0.25 m. 

The angle 05 between the link 3 and the horizontal axis Ox is 

yo -yE 
XD -XE 

05 = TT + arctan • 

Velocity and acceleration analysis 
The angular velocity of the driver link is zero: 

a = 0 = 0. 

Velocity and acceleration of the joint A, Since the joint A is the origin of the reference 
frame xAyz, the velocity and acceleration of the joint A are zero: 

\A=^A= 0. 
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Velocity and acceleration of the joint B. The velocity and acceleration components of the 
joint B are 

VBX = —ABco sine/) = —0.366 m/s, 

VBy = ABco cos (/) = 0.634 m/s, 

aBx = —ABo? cos 0 — ABa sin 0 = —3.323 m/s^, 

aBy = -ABa? sin (l)-\-ABa cos (f) = -1.919m/s^. 

The velocity and acceleration components of the joint B using the Mathematical^ function 
Driver are 

vBx = Driver[xA,yA,AB,phi,omega,alpha][[3]] 
vBy = Driver[xA,yA,AB,phi,omega,alpha][[4]] 
aBx = Driver[xA,yA,AB,phi,omega,alpha][[5]] 
aBy = Driver[xA,yA,AB,phi,omega,alpha][[6]] 

Velocity and acceleration of the joint C. The velocity and acceleration of the joint C are 
zero: 

vc = ac = 0. 

Velocity and acceleration of the joint D. The angular velocity C03 and angular acceleration 
0̂ 3 of the link 3 are obtained using the Mathematical^ function AngVel Ace: 

0mega3=AngVelAcc[xB,yB,xC,yC,vBx,vBy,vCx,vCy,aBx,aBy, 
aCx,aCy,phi3][[l]]; 

alpha3=AngVelAcc[xB,yB,xC,yC,vBx,vBy,vCx,vCy,aBx,aBy, 
aCx,aCy,phi3][[2]]; 

The input data are the coordinates, velocities, and accelerations of the joints B and C, and 
the angle 03. The output data are the two components of the vector returned by the function 
AngVel Ace. To obtain the numerical values for the velocity and acceleration components 
of the joint D, the Mathematical^ function AbsYel Ace is used: 

vDx=AbsVelAec[xC,yC,xD,yD,YCx,vCy,aCx,aCy,omega3,alpha3][[1]] 
vDy=AbsYelAec[xC,yC,xD,yD,YCx,vCy,aCx,aCy,omega3,alpha3][[2]] 
aDx=AbsYelAce[xC,yC,xD,yD,vCx,vCy,aCx,aCy,omega3,alpha3][[3]] 
aDy=AbsVelAce[xC,yC,xD,yD,vCx,vCy,aCx,aCy,omega3,alpha3][[4]] 

The input data are the coordinates of the joints C and D, the velocity and acceleration 
components of the joint C, and the angular velocity and acceleration of the link 3. The 
output data are the four components of the vector returned by the function AbsYel Ace. 
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Velocity and acceleration of the joint E. The velocity and acceleration of the joint E are 
zero 

The numerical values for the angular velocity cos and angular acceleration 0̂5 of the link 5 
using the Mathematical^ function AngVel Ace are given by the commands 

0mega5=AngYe1Acc[xD,yD,xE,yE,vDx,vDy,vEx,vEy, 
aDx,aDy,aEx,aEy,phi5][[1]]; 

alpha5=AngYelAcc[xD,yD,xE,yE,vDx,vDy,vEx,vEy, 
aDx,aDy,aEx,aEy,phi5] [ [2] ] ; 

The input data are the coordinates, velocities, and accelerations of the joints D and E, 
and the angle 05. The output data are the two components of the vector returned by the 
function AngVel Ace. 

The Mathematical^ program and the numerical results are shown in Program 1.8.10. 

1.8.4 Force Analysis 
Force and Moment 
A rigid Hnk is shown in Figure 1.8.7. The input data are the mass m, the acceleration vector 
of the center of mass SLCM, the mass moment of inertia I CM, and the angular acceleration a 
of the link. The output data are the total force F and the moment of inertia M of the link. 

The total force F is 

F = Fin + G, 

where F/„ = —macM is the inertia force, G = —mg is the gravitational force, and 
g = —9.807k m/s^ is the gravitational acceleration. 

The moment of inertia M of the link is 

M = -IcMOt, 

where ot = ak. 
The Mathematical^ function ForeeMomentum for the force analysis is 

ForceMomentum::usage="ForeeMomentum[m,aCM,ICM,ddtheta] 
eomputes the total foree and moment of a rigid link." 

Begin ["'Private'"] 
ForeeMomentum[m_,aCM_,ICM_,ddtheta_]:= 
Bloek[ 
g. Fin, G, F, M , 
g = 9.807 ; 
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FIGURE 1.8.7 Rigid link. 

Fin = - m aCM ; 
G = { 0, -m g, 0 } ; 
F = Fin + G ; 
M = - KM { 0, 0, ddtheta } ; 
Return[ { F, M } ] ; ] 
End[ ] 

joint Force Computation 
RRR dyad 
Figure 1.8.8 shows an RRR dyad with two links 2 and 3, and three pin joints M, N, and P. 
The input data are the total forces F2, F3 and the moments M2, M3 on the links 2 and 3, 
the position vectors TM, TÂ , rp of the joints M, N, P, and position vectors vci, rc3 of the 
centers of mass of the links 2 and 3. The output data are the joint reaction forces F12, F43, 
andF32. 

The unknown joint reaction forces are 

F12 = Fi2xl + Fi2y}, 

F43 = F43xl + F43yh 

F23 = -F32 = ^23x1 + F23yy (1.8.33) 
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FIGURE 1.8.8 RRR dyad. 

To determine F12 and F43, the following equations are written: 

• sum of all forces on links 2 and 3 is zero 

Y, F^^^^^ = F12 + F2 + F3 + F43 = 0, 

or 

^ F<2&3) . , = /7,2^ + 77^ + p^^ + F43;, - 0, 

^ F(2&3) . J = Fuy + F2y + F^y + FAiy = 0. 

• sum of moments of all forces and moments on link 2 about P is zero 

J ] M*,̂ ^ = (FM - rp) X Fi2 + (rc2 - rp) x F2 + M2 = 0. 

• sum of moments of all forces and moments on link 3 about P is zero 

^ M^̂ ^ = {TN - rp) X F43 + (rc3 - rp) x F3 + M3 = 0. 

(1.8.34) 

(1.8.35) 

(1.8.36) 
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The components Fi2x, Fuy, F43X, and ^43^ are calculated from Eqs. (1.8.34), (1.8.35), 
and (1.8.36). 

The reaction force F32 = —F23 is computed from the sum of all forces on the link 2: 

^ F ^ 2 > = F i 2 + F 2 + F 3 2 = 0 , 

or 

^F^2> • 1 = F12. + F 2 . + F32. = 0, 

J2 F̂ ^̂  • J = ^12y + ^2j + F32y = 0. (1.8.37) 

The Mathematical^ function ForceRRR for the RRR dyad joint force analysis is 

ForceRRR::usage = "ForceRRR[F2,M2,F3,M3,rM,rN,rP,rC2,rC3] 
computes the jo int reactions for the RRR dyad." 

Begin ["^Private'"] 
ForceRRR[F2_,M2_,F3^,M3_,rM ,rN_,rP_,rC2_^,rC3j : = 
Block[ 
{ F12, FI2S0I, F12xSol, F12ySol, F43, F43Sol, F43xSol, 

F43ySol, rPC2, rPC3, rPM, rPN, F32, eqRRRl, eqRRR2, eqRRR3, 
eqRRR4, solRRR}, 

F12So1 = { F12xSo1, F12ySol, 0 } ; 
F43Sol = { F43xSol, F43ySol, 0 } ; 
rPC2 = rC2 - rP ; 
rPC3 = rC3 - rP ; 
rPM = rM - rP ; 
rPN = rN - rP ; 
eqRRRl=(FI2S0I+F43Sol+F2+F3)[[1]]==0; 
eqRRR2=(FI2S0I+F43So1+F2+F3)[[2]]==0; 
eqRRR3=(Cross[rPC2,F2]+Cross[rPM,F12Sol]+M2)[[3]]==0; 
eqRRR4=(Cross[rPC3,F3]+Cross[rPN,F43Sol]+M3)[[3]]==0; 
solRRR = So1ve[ {eqRRRl, eqRRR2, eqRRR3, eqRRR4}, 

{F12xSol,F12ySol,F43xSol,F43ySol} ] ; 
F12 = F12Sol/.solRRR[[l]] ; 
F43 = F43Sol/.solRRR[[l]] ; 
F32 = - F2 - F12 ; 
Return[ { F12, F43, F23 } ] ; 
] 
End[ ] 

RRTDyad 
Figure 1.8.9 shows an RRT dyad with two Hnks 2 and 3, two pin joints M and P, and 
one slider joint P. The input data are the total forces F2, F3 and moments M2, M3 on 
the links 2 and 3, the position vectors r^ , I^N, ^P of the joints M,N,P, and the position 
vector of the center of mass rc2 of the link 2. The output data are the joint reaction forces 
F12, F43, F23 = —F32 and the position vector VQ of the application point of the joint 
reaction force F43. 
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FIGURE 1.8.9 RRTdyad. 

The joint reaction F43 is perpendicular to the sliding direction vp^ or 

F43 • rpN = {F43xl + ^43>^j) • [(XN " Xp)l + (jiV - yp)}] = 0. 

In order to determine F12 and F43, the following equations are written: 

sum of all the forces on links 2 and 3 is zero 

or 

J2 F̂ 2&3) ^ p^^ + F2 + F3 + F43 = 0, 

(1.8.38) 

(1.8.39) 
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or 

• sum of moments of all forces and moments on link 2 about P is zero 

Y, ^f = (i-M - rp) X Fi2 + (rc2 - rp) x F2 + M2 = 0. (1.8.40) 

The components Fi2x, Fuy, F43X, and F43y are calculated from Eqs. (1.8.38), (1.8.39), 
and (1.8.40). 

The reaction force components F32X and F32y are computed from the sum of all the 
forces on the link 2: 

^ F ( 2 ) = F i 2 + F 2 + F 3 2 = 0 , 

^ F ^ ^ ^ . 1 = Fi2x+F2x-^F32x = 0, 

J2 F̂ ^̂  • J = 1̂2̂  + ^2, + F32y = 0. (1.8.41) 

To determine the application point Qixg^yg) of the reaction force F43, one can write 
sum of moments of all the forces and the moments on the link 3 about C3 = P is zero: 

J2 M f = (r^ - rp) X F43 + M3 = 0. (1.8.42) 

If M3 = 0, then P is identical to Q(P = Q). 
If M3 7̂  0, an equation regarding the location of the point Q on the sHding direction r /̂p 

is written as 

jQ-yp _yN-yp 

XQ — xp XN — xp 
(1.8.43) 

From Eqs. (1.8.42) and (1.8.43) the coordinates XQ and yQ of the point Q are calculated. 
The Mathematical^ function ForceRRT for the RRT dyad joint force analysis is 

ForceRRT::usage = "ForceRRT[F2,M2,F3,M3,rM,rN,rP,rC2] 
computes the jo int reactions for the RRR dyad." 

Begin ["Pr iva te" ] 
ForceRRT [F2_,M2_,F3,M3_,rM_,rN_,rP_,rC2j: = 
B1ock[ 
{ F12, F12Sol, F12xSol, F12ySol, F43, F43Sol, F43xSol, 

F43ySol, F32, eqRRTl, eqRRT2, eqRRT3, eqRRT4, solRRT, rNC2, 
rNM, rNP, rNQ, rQP, rQ, rQSol, xQSol, yQSol, eqRRTQl, eqRRTQ2, 
solRRTQ } , 

FI2S0I = { F12xSol, F12ySol, 0 } ; 
F43Sol = { F43xSol, F43ySol, 0 } ; 
rPC2 = rC2 - rP ; 
rPM = rM - rP ; 
rPN = rN - rP ; 
eqRRTl = (F12So1+F43So1+F2+F3)[[1]] == 0 ; 
eqRRT2 = (F12Sol+F43Sol+F2+F3)[[2]] == 0 ; 
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eqRRTS = (F43Sol.rPN) == 0 ; 
eqRRT4 = (Cross[rNC2,F2]+Cross[rNM,F12Sol]+M2)[[3]]==0; 
solRRT = Solve[ {eqRRTl, eqRRT2, eqRRT3, eqRRT4}, 

{F12xSol,F12ySol,F43xSol,F43ySol} ] ; 
F12 = F12Sol/.solRRT[[l]] ; 
F43 = F43Sol/.solRRT[[l]] ; 
F32 = - F2 - F12 ; 
F23 = - F32 ; 
I f [ M3[[3]]==0 , rQ = rP , 
rQSol = { xQSol, yQSol, 0 } ; 
rQP = rP - rQSol ; 
eqRRTQl = rPQ[[2]] /rPQ[[ l ] ] - rPN[[2]] /rPN[[ l ] ]==0; 
eqRRTQ2 = Cross[rPQ,F43] + M3 == 0 ; 
solRRTQ = Solve[ eqRRTQl, eqRRTQ2 , xQSol,yQSol ] ; 
rQ = rQSol/.solRRTQ[[1]] ; ] ; 
Return[ { F12, F43, F23, rQ } ] ; 

] 
End[ ] 

RTR Dyad 
Figure 1.8.10 shows an RTR dyad with two Unks 2 and 3, and one pin joint M, one slider 
joint P, and one pin joint P. The input data are the total forces F2, F3 and moments M2, M3 
of the Hnks 2 and 3, the position vectors FM, I^N, rp of the joints M,N, and the position 
vector of the center of mass rc2 of the link 2. The output data are the joint reaction forces 
F12, F43, F23 = —F32 and the position vector YQ of the appHcation point of the joint 
reaction force F23. 

The unknown joint reaction forces F12 and F43 are calculated from the relations: 

• sum of all the forces on links 2 and 3 is zero 

J2 F̂ 2&3) ^ p^2 + F2 + F3 + F43 = 0, 

or 

^ F ( 2 & 3 ) . 1 ^ ^ J ^ + ^ ^ + ^3^ + ^43^ ^ 0, 

J2 ^^^^^^ • J = Fi2y + F2y + F3y + ^43^ = 0. (1.8.44) 

• sum of the moments of all forces and moments on links 2 and 3 about M is zero 

J2 M^^^^ = (rp - VM) X (F3 + F43) + (rc2 - TM) X F2 + M2 + M3 = 0. (1.8.45) 

• sum of all the forces on link 2 projected onto the sliding direction YMP is zero 

F2 • VMP = (F43xi + F43y]) • [(xp - XM)\ + {jp " JM)J] = 0. (1.8.46) 

The components F\2x, F\2y, F^^x, and ^43^ are calculated from Eqs. (1.8.44), (1.8.45), 
and (1.8.46). 
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FIGURE 1.8.10 RTRdyad. 

The force components F32X and F32y are computed from the sum of all the forces on 
link 2: 

5^F(2)^p^^^p^^p^^^Q^ 

or 

J2¥^^^-l = Fi2, + F2,+F32x = 0, 

J2^^^^'}=Fuy+F2y+F32y = 0. (1.8.47) 
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To determine the application point QixQ^yg) of the reaction force F23, one can write 
sum of moments of all the forces and the moments on the link 3 about C3 = P is zero: 

J2 Mp ^ = (VQ - vp) X F23 + M3 = 0. (1.8.48) 

If M3 = 0, then P is identical io Q(P = Q). 
If M3 7̂  0, an equation regarding the location of the point Q on the sliding direction r^p 

is written as 

XQ -XM XM - xp 

From Eqs. (1.8.48) and (1.8.49) the coordinates XQ and JQ of the point Q are calculated. 

The Mathematical^ function ForceRTR for the RTR dyad joint force analysis is 

ForceRTR::usage = "ForceRTR[F2,M2,F3,M3,rM,rP,rC2] 
computes the jo int reactions for the RTR dyad." 

Begin["'Private'"] 
ForceRTR[F2_,M2_,F3_,M3_,rM_,rP , r C 2 j : = 
B1ock[ 
{ rC3, F12, F12Sol, F12xSol, F12ySol, F43, F43So1, F43xSol, 

F43ySol, F32, eqRTRl, eqRTR2, eqRTR3, eqRTR4, solRTR, rMC2, 
rMP, rPQ, rQ, rQSol, xQSol, yQSol, eqRTRQl, eqRTRQ2, 
solRTRQ } , 

F12Sol = { F12xSo1, F12ySo1, 0 } ; 
F43Sol = { F43xSol, F43ySol, 0 } ; 
rMC2 = rC2 - rM ; 
rMP = rP - rM ; 
eqRTRl = (F12Sol +F43Sol +F2+F3) [ [1] ] == 0; 
eqRTR2= (F12Sol+F43Sol+F2+F3)[[2]] ==0; 
eqRTR3 = (F12Sol +F2).rMP == 0; 
eqRTR4= (Cross[rMC2,F2]+Cross[rMP, (F3+F43Sol)]+M2+M3) [ [3] ] ==0; 
solRTR = Solve[{ eqRTRl, eqRTR2, eqRTR3, eqRTR4 } , 

{ F12xSol, F12ySol, F43xSol, F43ySol } ] ; 
F12 = F12Sol/.solRTR[[l]]; 
F43 = F43Sol/.solRTR[[l]]; 
F32 = - F2 - F12 ; 
F23 = - F32 ; 
I f [ M3[[3]]==0 , rQ = rP , 
rQSol = { xQSol, yQSol, 0 } ; 
rMQ = rQSol - rM ; 
rPQ = rQSol - rP ; 
eqRRTQl = rMQ[[2]]/rMQ[[1]] - rMP[[2]]/rMP[[1]] ==0; 
eqRRTQ2 = Cross[rPQ,F23] + M3 ==0; 
solRTRQ = Solve[{eqRTRQl, eqRTRQ2}, {xQSol,yQSol}]; 
rQ = rQSol/.solRTRQ[[1]]; 
] ; 
Return[ { F12, F43, F23, rQ } ] ; 
] 
End[ ] 
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FIGURE 1.8.11 Driver link. 

Driver link 
A driver link mechanism is shown in Figure 1.8.11. The input data are the total force Fi 
and moment Mi on the driver link, the joint reaction force F21, the position vectors TA, r^ 
of the joints A, B, and the position vector of the center of mass rci of the driver link. The 
output data are the joint reaction force FQI , and the moment of the motor M^ (equilibrium 
moment). 

A force equation for the driver link is written to determine the joint reaction FQI : 

^ F ( 1 ) = F O I + F I + F 2 I = 0 , 

or 

^ F ^ i > . 1 = Fou + Fi^ + F21X = 0, 

^ F(i>. J = F013; + Fly + F2iy = 0. (1.8.50) 

The sum of the moments about AR for link 1 gives the equilibrium moment M^: 

^ M ^ ^ ^ = (r^ - FA) X F21 + (rci - r^) x Fi + M^ = 0. (1.8.51) 

The Mathematical^ function FMDri ver for the driver link joint force analysis is 

FMDriver::usage = "FMDriver[Fl,Ml,F21,rA,rB,rCl] 
computes the joint reaction and torque of the motor." 

Begin["'Private'"] 
FMDriver[Fl_,Ml_,F21_,rA^,rB_,rCl ]:= 
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B1ock[ 
{ FOl, rACl, rAB, Mm } , 
FOl = - Fl - F21 ; 
rACl = rCl - rA ; 
rAB = rB - rA ; 
Mm = - Cross[rACl,Fl] - Cross[rAB,F21] - Ml ; 
Return[ { FOl, Mm } ] ; 
] 
End[ 3 

The functions ForceMomentum, ForceRRR, ForceRRT, ForceRTR, and FMDriver are 
included in the Mathematical^ package Force. The name of the source file for the package 
is Force.m and is given in Program 1.8.11. 

R-RRT Mechanism 
The position, velocity, and acceleration analysis of the planar R-RRT mechanism con-
sidered are presented in Subsections 1.8.2 and 1.8.3. Given the external moment Mext = 
— 100 sign(cD3) k Nm, applied on the link 3, calculate the motor moment M^ required for 
the dynamic equilibrium of the mechanism [Fig. 1.8.12(a)]. All three links are rectangular 
prisms with the depth d = 0.001 m and the mass density p = 8000 Kg/m^. The height 
of the links 1 and 3 is h = 0.01 m. The link 2 has the height hs = 0.02 m, and the 
width ws = 0.05 m. The center of mass location of the links / = 1, 2, 3 are designated by 
Ci(xci,yci,0). 

The Mathematical^ packages Dri ver, Posi t i on, Yel Ace, and Force are loaded in the 
main program using the commands 

«Driver.m ; 
«Position.m ; 
«VelAcc.m ; 
«Force.m ; 

Force and moment analysis 
Link 1, The mass mi, the acceleration of the center of mass aci, and the mass moment of 
inertia Ici of the link 1 are 

m\ = p AP h d, 

aci = (aA + a/>)/2, 

Id =mi(AP^-j-h^)/l2. 

The total force Fi and moment Mi of the link 1 are calculated using the Mathematical^ 
function ForceMomentum: 

Fl=ForceMomentum[ml,aCl,ICI,a1pha] [ [1 ] ] ; 
Ml=ForceMomentum[ml,aCl,ICI,a1pha][[2]]; 

The input data are the mass ml, the acceleration vector of the center of mass aCl, the 
mass moment of inertia ICI, and the angular acceleration al pha of the link 1. The output 
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FIGURE 1.8.12 (a) R-RRT mechanism, (b) RRT (CBB) dyad, and (c) driver link. 
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data are the two elements of the vector returned by the function ForceMomentum, which are 
the total force Fl and moment of inertia Ml of the link 1. 

Link 2. The mass m2, the acceleration of the center of mass ac2, and the mass moment of 
inertia Ici of the link 2 are 

m2 = pws hs d, 

Ic2 = m2(wl + /i|)/12. 

The total force F2 and moment M2 of the link 2 are computed using the Mathematical^ 
function ForceMomentum: 

F2=ForceMomentum[m2,aC2,IC2,alpha][[1]]; 
Ml=ForceMomentum[m2,aC2,IC2,a1pha][[2]]; 

The input data are the mass m2, the acceleration vector of the center of mass aC2, the 
mass moment of inertia IC2, and the angular acceleration al pha2 of the link 2. The output 
data are the two elements of the vector returned by the function ForceMomentum, which are 
the total force F2 and moment of inertia M2 of the link 2. 

Link 3, The mass m^, the acceleration of the center of mass ac3, and the mass moment of 
inertia Ic3 of the link 3 are 

m^ = p BC h d, 

ac3 = (a^ + ac)/2, 

Ic3=m3iAB^^h^)n2. 

The total force F3 and moment M3 of the link 3 are calculated using the Mathematical^ 
function ForceMomentum: 

F3=ForceMoment[m3,aC3,IC3,a1pha3][[l]]; 
M3=ForceMoment[m3,aC3,IC3,alpha3][[2]]; 

The input data are the mass m3, the acceleration vector of the center of mass aC3, the 
mass moment of inertia IC3, and the angular acceleration al pha3 of the link 3. The output 
data are the two elements of the vector returned by the function ForceMomentum, which are 
the total force F3 and moment of inertia M3 of the link 3. 

Joint reactions 
The joint reactions for the dyad RRT (CBB) [Fig. 1.8.12(b)] are computed using the 
Mathematical^ function ForceRRT: 

F03=ForceRRT[F3,M3+Mext,F2,M2,rC,rB,rA,rC3][[l]3; 
F12=ForceRRT[F3,M3+Mext,F2,M2,rC,rB,rA,rC3][[2]]; 
F23=ForceRRT[F3,M3+Mext,F2,M2,rC,rB,rA,rC33[[3]]; 
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The input data are the total force F3 and moment M3+Mext of the link 3, the total force F2 
and moment M2 of the link 2, the position vectors rC, rB, rA, rC3 of the joints C, B, A, 
and the center of mass C3 of the link 3. The output data are the three elements of the vector 
returned by the function ForceMomentum, which are the joint reactions FOB, F12, and F23. 

The position vector of the application point Q of the joint reaction F23 can be also 
computed using the Mathematical^ function ForceRRT: 

rQ=ForceRRT[F3,M3+Mext,F2,M2,rC,rB,rA,rC3][[4]]; 

The joint reaction and the moment of the motor [Fig. 1.8.12(c)] are calculated using the 
Mathematical^ function FMDriver: 

F01=FMDriver[Fl,Ml,F21,rA,rB,rCl][[l]]; 
Mm=FMDriver[Fl,Ml,F21,rA,rB,rCl][[2]]; 

The input data are the total force Fl and moment Ml of the link 1, the joint reaction 
F21=-F12, the position vectors rA, rB, rCl of the joints A, 5, and the center of mass Ci 
of the link 1. The output data are the two elements of the vector returned by the function 
FMDri ver, which are the joint reaction FOl and moment Mm of the motor. 

The Mathematical^ program and the numerical results are shown in Program 1.8.12. 

R-RTR-RTR Mechanism 
The position, velocity, and acceleration analysis of the planar R-RTR-RTR mechanism 
considered (see Figures 1.8.6 and 1.8.13) are presented in Subsection 1.8.3. Given the external 
moment Mext = —100 sign(ct>5) k N-m, applied on the link 5, calculate the motor moment 
M^ required for the dynamic equilibrium of the mechanism. All five links are rectangular 
prisms with the depth d = 0.001 m and the mass density p = 8000 Kg/m^. The heights of 
the links 1, 3, and 5 are /z = 0.01 m. The link 2 has the height hs = 0.02 m, and the width 
ws = 0.05 m. The center of mass location of the links / = 1, 2, 3 , . . . , 5 are designated by 
Ci{xci,yci.O). 

The Mathematical^ packages Driver, YelAcc, and Force are loaded in the main 
program using the commands 

«Driver.m ; 
«YelAcc.m ; 
«Force.m ; 

Force and moment analysis 
Link 1. The mass mi, the acceleration of the center of mass aci, and the mass moment of 
inertia Ic\ of the link 1 are 

m\ — p AB h d, 

aci = (aA + aB)/2, 

Ici=mi(AB^-^h^)n2, 
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FIGURE 1.8.13 R-RTR-RTR mechanism: forces and moments. 

The total force Fi and moment Mi of the Hnk 1 are computed using the Mathematical^ 
function ForceMomentum: 

Fl=ForceMomentum[ml,aCl,ICl,alpha][[1]]; 
Ml=ForceMomentum[ml,aCl,ICl,alpha][[2]]; 

The input data are the mass ml, the acceleration vector of the center of mass aCl, the 
mass moment of inertia I CI, and the angular acceleration al pha of the link 1. The output 
data are the two elements of the vector returned by the function ForceMomentum, which are 
the total force Fl and moment of inertia Ml of the Hnk 1. 

Link 2. The mass m2, the acceleration of the center of mass ac2, and the mass moment of 
inertia Ic2 of the link 2 are 

m2 = pws hs d, 

Ic2 = m2(wl + hj)/!!. 
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The total force F2 and moment M2 of the Hnk 2 are calculated using the Mathematical^ 
function ForceMomentum: 

F2=ForceMomentum[m2,aC2,1C2,a1pha2][[1]]; 
Ml=ForceMomentum[m2,aC2,IC2,a1pha2][[2]]; 

The input data are the mass m2, the acceleration vector of the center of mass aC2, the 
mass moment of inertia IC2, and the angular acceleration al pha2 of the link 2. The output 
data are the two elements of the vector returned by the function ForceMomentum, which are 
the total force F2 and moment of inertia M2 of the link 2. 

Link 3, The coordinates of the center of mass C3 of the link 3 are 

xc3 = xc -\- (DF/2 — CD) cos 03, 

yc3 =yc + (DF/2 - CD) sin 03-

The acceleration components of the center of mass of the link 3 are computed using the 
Mathematical^ function AbsYel Ace: 

aC3x=AbsYelAcc[xC,yC,xC3,yC3,vCx,vCy,aCx,aCy, 
omegaS,alphaS][[3]]; 

aC3y=AbsYelAcc[xC,yC,xC3,yC3,vCx,vCy,aCx,aCy, 
omega3,alpha3][[4]]; 

The mass m^ and the mass moment of inertia Ic3 of the Hnk 3 are 

m3 = p DF h d, 

Ic3 =m3(DF^-\-h^)/l2. 

The total force F3 and moment M3 of the link 3 using the Mathematical^ function 
ForceMomentum are 

F3=ForceMoment[m3,aC3,IC3,alpha3][[1]]; 
M3=ForceMoment[m3,aC3,IC3,alpha3][[2]]; 

The input data are the mass m3, the acceleration vector of the center of mass aC3, the 
mass moment of inertia IC3, and the angular acceleration al pha3 of the link 3. The output 
data are the two elements of the vector returned by the function ForceMomentum, which are 
the total force F3 and moment of inertia M3 of the link 3. 

Link 4, The mass m^, the acceleration of the center of mass ac4, and the mass moment of 
inertia Ic4 of the link 4 are 

m4 = pws hs d, 

ac4 = az), 

Ic4 = m4(w^ + hj)/l2. 
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The total force F4 and moment M4 of the link 4 using the Mathematical^ function 
ForceMomentum are 

F4=ForceMomentum[m4,aC4,IC4,alpha4][[1]]; 
M4=ForceMomentum[ni4,aC4,IC4,alpha4] [ [ 2 ] ] ; 

The input data are the mass m4, the acceleration vector of the center of mass aC4, the 
mass moment of inertia IC4, and the angular acceleration al pha4 of the link 4. The output 
data are the two elements of the vector returned by the function ForceMomentum, which are 
the total force F4 and moment of inertia M4 of the link 4. 

Link 5. The coordinates of the center of mass C5 of the link 5 are 

XC5 =XE-^ EG/2 COS 05, 

yc5 =y£+£G/2s in05 . 

The acceleration components of the center of mass of the link 3 using the Mathematical^ 
function AbsVel Ace are 

aC5x=AbsVelAcc[xE,yE,xC5,yC5,vEx,vEy,aEx,aEy, 
omegaS,alpha5] [ [ 3 ] ] ; 

aC5y=AbsVelAcc[xE,yE,xC5,yC5,vEx,vEy,aEx,aEy, 
omegas,alphaS][[4]]; 

The mass ms and the mass moment of inertia Ics of the link 5 are 

ms = p EG h d, 

Ic5=m5(EG^ + h^)n2. 

The total force F5 and moment M5 of the link 5 using the Mathematical^ function 
ForceMomentum are 

F5=ForceMomentum[m5,aC5,ICS,alphas][[1]]; 
MS=ForceMomentum[mS,aCS,ICS,alphaS][[2]]; 

The input data are the mass mS, the acceleration vector of the center of mass aCS, the 
mass moment of inertia ICS, and the angular acceleration al phaS of the link 5. The output 
data are the two elements of the vector returned by the function ForceMomentum, which are 
the total force FS and moment of inertia MS of the link 5. 

Joint reactions 
The joint reactions for the dyad RTR {EDD) [Fig. 1.8.14(a)] are computed using the 
Mathematical^ function ForceRTR: 

F0S=ForceRTR[FS,MS+Mext,F4,M4,rE,rD,rCS][[l]] 
F34=ForceRTR[FS,MS+Mext,F4,M4,rE,rD,rCS][[2]] 
FS4=ForceRTR[FS,MS+Mext,F4,M4,rE,rD,rCS][[3]] 
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(a) 

(b) 

(c) Fi F21 

FIGURE 1.8.14 Joint reactions for: (a) RTR (EDD) dyad, (b) RTR (CBB) dyad, and (c) driver link. 

The input data are the total force F5 and moment M5+Mext of the link 5, the total force 
F4 and momentum M4 of the link 4, the position vectors rE, rD, rC5 of the joints £", D, 
and the center of mass C5 of the link 5. The output data are the three elements of the vector 
returned by the function ForceMomentum, which are the joint reactions F05, F34, and F45. 
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The position vector of the appHcation point P of the joint reaction F45 can be also 
computed using the Mathematical^ function ForceRTR: 

rP=ForceRTR[F5,M5+Mext,F4,M4,rE,rD,rC5][[4]]; 

Next, consider the dyad RTR (CBB), shown in Figure 1.8.14(b). The reaction force F43 
acting at point D can be moved to a parallel position at point C3 by adding the corresponding 
couple 

M43 = rc^D X F43. 

The joint reactions for the dyad RTR (CBB) using the Mathematical^ function 
ForceRTR are 

F03=ForceRTR[F3+F43,M3+M43,F2,M2,rC,rB,rC3][[l]]; 
F12=ForceRTR[F3+F43,M3+M43,F2,M2,rC,rB,rC3][[2]]; 
F32=ForceRTR[F3+F43,M3+M43,F2,M2,rC,rB,rC3][[3]]; 

The input data are the force F3+F43 and moment M3+M43 of the link 3, the total force F2 
and moment M2 of the link 2, the position vectors rC, rB, rC3 of the joints C, B, and the 
center of mass C3 of the link 3. The output data are the three elements of the vector returned 
by the function ForceMomentum, which are the joint reactions F03, F12, and F23. 

The position vector of the application point Q of the joint reaction F12 can be also 
computed using the Mathematical^ function ForceRTR: 

rQ=ForceRTR[F3+F43,M3+M43,F2,M2,rC,rB,rC3][[4]]; 

The joint reaction and the moment of the motor [Fig. 1.8.14(c)] are computed using the 
Mathematical^ function FMDriver: 

F01=FMDriver[Fl,Ml,F21,rA,rB,rCl][[l]]; 
Mm=FMDriver[Fl,Ml,F21,rA,rB,rCl][[2]]; 

The input data are the total force Fl and moment Ml of the link 1, the joint reaction 
F21=-F12, the position vectors rA, rB, rCl of the joints A, B, and center of mass Ci 
of the link 1. The output data are the two elements of the vector returned by the function 
FMDri ver, which are the joint reaction FOl and moment Mm of the motor. 

The Mathematical^ program and the numerical results are shown in Program 1.8.13. 

Remark: All the packages must be placed in the Mathematical^ folder for PC. 
For Macintosh OS X the packages must be placed in Home, Library, Mathematica, 
Applications. 

L8.5 Problems 
1.8.1 Referring to Problem 1.3.5 (Fig. 1.3.20), write a Mathematical^ program using 

packages for the position analysis of the mechanism. 
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1.8.2 Referring to Problem 1.3.7 (Fig. 1.3.22), write a Mathematical^ program using 
packages for the position analysis of the mechanism. 

1.8.3 Referring to Problem 1.3.8 (Fig. 1.3.23), write a Mathematical^ program using 
packages for the position analysis of the mechanism. 

1.8.4 Referring to Problem 1.3.13 (Fig. 1.3.28), write a Mathematical^ program using 
packages for the position analysis of the mechanism. 

1.8.5 Referring to Problem 1.3.14 (Fig. 1.3.29), write a Mathematical^ program using 
packages for the position analysis of the mechanism. 

1.8.6 Referring to Problem 1.4.1 (Fig. 1.3.16), write a Mathematical^ program using 
packages for the velocity and acceleration analysis of the mechanism. 

1.8.7 Referring to Problem 1.4.3 (Fig. 1.4.10), write a Mathematical^ program using 
packages for the velocity and acceleration analysis of the mechanism. 

1.8.8 Referring to Problem 1.6.4 (Fig. 1.3.19), write a Mathematical^ program using 
packages for the equilibrium moment and the joint forces of the mechanism. 

1.8.9 Referring to Problem 1.6.16 (Fig. 1.3.31), write a Mathematical^ program using 
packages for the equilibrium moment and the joint forces of the mechanism. 

1.8.10 Referring to Problem 1.6.18 (Fig. 1.3.33), write a Mathematical^ program using 
packages for the equilibrium moment and the joint forces of the mechanism. 

L8.6 Programs 
PROGRAM 1.8.1 

Begi nPackage["Dri ver^"] 

Driver::usage = 
"Driver[xA,yA,AB,phi,omega,alpha] computes the driver l ink 
position, velocity and acceleration 

Begin["^Private'"] 

Driver[xA_,yA_,AB_,phi_,omega_,alpha_]:= 

Block[ { xB, yB ,vBx, vBy, aBx, aBy } , 

xB = xA + AB Cos[phi] ; 
yB = yA + AB Sin[phi] ; 

vBx = - AB omega Sin [phi] ; 
vBy = AB omega Cos[phi] ; 

aBx = - AB omega'̂ Z Cos [phi] - AB alpha Sin [phi] ; 
aBy = - AB omega'̂ Z Sin [phi] + AB alpha Cos [phi] ; 
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Return[ { xB, yB, vBx, vBy, aBx, aBy } ] ; 

] 

End[ ] 

EndPackage[ ] 

Driver^ 

Driver[xA,yA,AB,phi,omega,alpha] computes 
the d r i ve r l i n k pos i t i on , ve loc i t y and accelerat ion vectors. 

Driver^Private^ 
DriverTrivate^ 

PROGRAM 1.8.2 
(* Driver mechanism *) 

App1y[Clear,Names["Globar*"]] ; 
Off[General::spell]; 
Off[General::spel11]; 

«Driver.m ; 

(* Input data *) 
AB = 0.20 ; (* m *) 
phi = Pi/6 
omega = 5, 
alpha = 0. 

(* rad *) 
(* rad/s *) 
(* rad/s-̂ Z *) 

(* Position of jo int A *) 
xA = yA = 0 ; 

(* Position of jo int B *) 
xB = Driver[xA,yA,AB,phi,omega,alpha][[1]] ; 
yB = Driver[xA,yA,AB,phi,omega,alpha][[2]] ; 

(* Velocity of jo int B * ) 
vBx = Driver[xA,yA,AB,phi,omega,alpha][[3]] ; 
vBy = Driver[xA,yA,AB,phi,omega,alpha][[4]] ; 

(* Acceleration of jo int B *) 
aBx = Driver[xA,yA,AB,phi,omega,alpha][[5]] ; 
aBy = Driver[xA,yA,AB,phi,omega,alpha][[6]] ; 

Print["rB = ",{xB,yB,0}," [m]"]; 
Print["vB = ",{vBx,vBy,0}," [m/s]"]; 
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Print["aB = ".{aBx.aBy.O}," [m/s"2]"]; 

rB = {0.173205, 0 . 1 , 0} [m] 

vB = { -0 .5 . 0.866025, 0} [m/s] 

aB = {-4.33013, -2 .5 , 0} [ni/s"2] 

PROGRAM 1.8.3 
BeginPackage["Pos1tion'"] 

PosRRR::usage = 
"PosRRR[xM,yM,xN,yN,MP,NP] computes the position vectors for RRR dyad" 

Begin["'Private'"] 

PosRRR[xM_,yM_,xN_,yN_,MP,NP ] := 
Block[ 

{ xPSol, yPSol, xPl, yPl , xP2, yP2, eqRRRl, eqRRR2, solRRR } , 

eqRRRl = (xM-xPSol)"2 + (yM-yPSo1)"2 == MP"2 ; 
eqRRR2 = (xN-xPSol)"2 + (yN-yPSol)"2 == NP"2 ; 

solRRR = So1ve[ { eqRRRl , eqRRR2 } , { xPSol, yPSol } ] ; 

xPl = xPSol/.solRRR[[l]] 
yPl = yPSol/.solRRR[[l]] 
xP2 = xPSol/.so1RRR[[2]] 
yP2 = yPSol/.solRRR[[2]] 

Return[ { xPl, yPl , xP2, yP2 } ] ; 

] 

End[ ] (* PosRRR * ) 

PosRRT::usage = 
"PosRRT[xM,yM,xN,yN,MP,theta] computes the position vectors for RRT \ 

dyad" 

Beg1n["-Private~"] 

PosRRT[xM ,yM_,xN_,yN_,MP_,theta_]:= 
B1ock[ 

{ xPSol, yPSol, xPl, yPl , xP2, yP2, eqRRT, solRRT, eqRRTl, eqRRT2 } , 

I f [ (theta==P1/2)||(theta==3*Pi/2), 

xPl = xP2 = xN ; 
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eqRRT = (xM-xN)'^2 + (yM-yPSol)'^2 == MP'̂ 2 ; 
solRRT = Solve[ eqRRT, yPSol ] ; 
yPl = yPSol/.solRRT[[l]] ; 
yP2 = yPSol/.solRRT[[2]] , 

eqRRTl = (xM-xPSol)'^2 + (yM-yPSo1)'^2 == MP'̂ 2 ; 
eqRRT2 = Tan[theta] == (yPSol-yN)/(xPSo1-xN) ; 
solRRT = Solve[ { eqRRTl , eqRRT2 } , { xPSol , yPSol } ] ; 
xPl = xPSol/.solRRT[[l]] 
yPl = yPSol/.solRRT[[l]] 
xP2 = xPSol/.solRRT[[2]] 
yP2 = yPSol/.solRRT[[2]] 

] 

Return[ { xPl, yPl , xP2, yP2 } ] ; 

] 

End[ ] (* PosRRT *) 
EndPackage[ ] 

Position'' 

PosRRR[xM,yM,xN,yN,MP,NP] computes the pos i t ion vectors fo r RRR dyad 

Pos i t i onT r i va te^ 

Posi t ion^Private^ 

PosRRT[xM,yM,xN,yN,MP,theta] computes the pos i t ion vectors fo r RRT dyad 

Posi t ion^Private^ 

Pos i t i onT r i va te^ 

PROGRAM 1.8,4 
(* R-RTR-RRT mechanism *) 

Apply[Clear,Names["Globar*"]] ; 
Off[General::spel 1 ] ; 
Off[General::spel 11]; 

«Driver.m ; 
«Position.m ; 

(* Input data *) 

AB = 0.20 ; (* m *) 
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AD = 0.40 ; (* m *) 
CD = 0.70 ; (* m *) 
CE = 0.30 ; (* m *) 
yE = 0.35 ; (* m *) 
phi = Pi/4 
omega = 5. 
alpha = 0. 

(* rad *) 
(* rad/s *) 
(* rad/s'Z *) 

(* Position Vectors *) 

xA = yA = 0 ; 

xB = Driver[xA,yA,AB,phi,omega,alpha] [[1]] ; 
yB = Driver[xA,yA,AB,phi,omega,alpha][[2]] ; 

xD = 0 ; 
yD = -AD ; 

phi3 = ArcTan[(yB-yD)/(xB-xD)] ; 

xC = xD + CD Cos[phi3] ; 
yC = yD + CD Sin[phi3] ; 

phi5 = Pi ; 

(* xP=0; yP=yE; *) 

xEl = PosRRT[xC,yC,0,yE,CE,phi5][[l]] ; 
xE2 = PosRRT[xC,yC,0,yE,CE,phi5][[3]] ; 

(* Choose the correct solution *) 
I f [ (xEKxC), xE=xEl, xE=xE2 ] ; 

Print["rB = ",{xB,yB,0}," [m]" ] ; 
Print["phi3 = ",phi3*180/N[Pi]," [deg]"]; 
Print["rC = ",{xC,yC,0}," [m]" ] ; 
Print["rE = ",{xE,yE,0}," [m]" ] ; 

rB = {0.141421, 0.141421, 0} [m] 

phi3 = 75.3612 [deg] 

rC = {0.176907, 0.277277, 0} [m] 

rE = {-0.114145, 0.35, 0} [m] 

PROGRAM 1.8.5 
(* R-RRR-RRT mechanism *) 

Apply [ Clear , Names [ "Globar*" ] ] ; 
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0ff[6enera1::spell]; 
Off[General::spe111]; 

«Driver.m ; 
«Position.m ; 

(* Input data *) 

AB 
BC 
CD 
CE 
EF 
La 
Lb 
Lc 

0.15 
0.40 
0.37 
0.23 
CE ; 
0.30 : 
0.45 ; 
CD ; 

phi = Pi/4 ; 
omega = N[Pi] 
alpha = 0. ; 

m *) 
m *) 
m *) 

;* m * ) 
;* m * ) 
(* m *) 
f* m *) 

m *) 
rad *) 
rad/s *) 
rad/s"2 *) 

(* Position Vectors *) 

xA = yA = 0 ; 

xB = Driver[xA,yA,AB,phi,omega,alpha][[1]] 
yB = Driver[xA,yA,AB,phi,omega,alpha][[2]] 

xD = La ; 
yD = Lb ; 

xCl = PosRRR[xB,yB,xD,yD,BC,CD][[l]] 
yCl = PosRRR[xB,yB,xD,yD,BC,CD][[2]] 
xC2 = PosRRR[xB,yB,xD,yD,BC,CD][[3]] 
yC2 = PosRRR[xB,yB,xD,yD,BC,CD][[4]] 

(* Choose the correct solution *) 
If[ (yCl>yB), xC=xCl;yC=yCl, xC=xC2;yC=yC2 ] ; 

phi 3 = ArcTan[(yC-yD)/(xC-xD)] + Pi ; 

xE = xC + CE Cos[phi3] ; 
yE = yC + CE Sin[phi3] ; 

xF = - Lc ; 

phi5 = Pi/2 ; 
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yFl = PosRRT[xE,yE,-Lc,0,EF,phi5][[2]] ; 
yF2 = PosRRT[xE,yE,-Lc,0.EF,phi5][[4]] ; 

(* Choose the correct solution *) 
I f [ (yFKyE), yF=yFl. yF=yF2 ] ; 

Print["Positions"]; 
Print["rB = ",{xB,yB,0}," [m]" ] ; 
Print["rC = ",{xC,yC,0}," [m]" ] ; 
Print["rE = ".{xE.yE.O}," [m]" ] ; 
Print["rF = ".{xF.yF.O}," [m]" ] ; 

phi2 = ArcTan[(yC-yB)/(xC-xB)] + Pi ; 
phi4 = ArcTan[(yE-yF)/(xE-xF)] ; 

Print["Angles"]; 
Print["phi = ",phi," [rad]"]; 
Print["phi2 = ",phi2," [rad]"] 
Print["phi3 = ",phi3," [rad]"] 
Print ["phi 4 = ".phi 4," [rad]"] 

Positions 

rB = {0.106066, 0.106066, 0} [m] 

rC = {-0.0696798, 0.46539, 0} [m] 

rE = {-0.299481, 0.474956, 0} [m] 

rF = {-0.37, 0.256034, 0} [m] 

Angles 

phi = - [rad] 

phi2 = 2.02569 [rad] 

phi3 = 3.09999 [rad] 

phi4 = 1.25917 [rad] 

PROGRAM 1.8.6 
(* R-RRT mechanism *) 

Apply [ Clear , Names [ "Global'*" ] ] ; 
Off[General::spell]; 
Off[General::spel11]; 
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«Driver.m ; 
«Position.m ; 

(* Input data *) 

AC = 0.10 
BC = 0.30 
AP = 0.50 

(* m *) 
(* m *) 
(* m *) 

phi = Pi/4 ; (* rad *) 
n = 30 ; (* rpm *) 
omega = N[Pi]*n/30 ; (* rad/s *) 
alpha = 0. ; (* rad/ŝ Ẑ *) 

(* Position Vectors *) 

xA = yA = 0 ; 

xC = AC ; 
yC = 0 ; 

xP = Driver[xA,yA,AP,phi,omega,alpha][[1]] ; 
yP = Driver[xA,yA,AP,phi,omega,alpha][[2]] ; 

xBl = PosRRT[xC,yC,xP,yP,BC,phi][[l]] 
yBl = PosRRT[xC,yC,xP,yP,BC,phi][[2]] 
xB2 = PosRRT[xC,yC,xP,yP,BC,phi][[3]] 
yB2 = PosRRT[xC,yC,xP,yP,BC,phi][[4]] 

(* Choose the correct solution *) 
I f [ (yBl>yC), xB=xBl;yB=yBl, xB=xB2;yB=yB2 ] ; 

Print["rB = ",{xB,yB,0}," [m]"]; 

rB = {0.256155, 0.256155, 0} [m] 

PROGRAM 1.8.7 
BeginPackage["VelAcc^"] 

Ye1AccRRR::usage = 
"YelAccRRR[xM,yM,xN,yN,xP,yP,vMx,YMy,vNx,vNy,aMx,aMy,aNx,aNy] 

computes the velocity 

Begin["^Private^"] 

Ye1AccRRR[xM_,yM_,xN_,yN_,xP_,yP_,vMx_,vMy_,vNx_,vNy_,aMx_,aMy_, 
aNx_,aNyJ: = 
B1ock[ 
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{ vPxSol, vPySol, aPxSol, aPySol, vPx, vPy, aPx, aPy, eqRRRlv, 
eqRRR2v, solRRRv, eqRRRla, eqRRRZa, solRRRa }, 

(* Velocity *) 

eqRRRlv = (xM-xP) (vMx-vPxSol) + (yM-yP) (vMy-vPySol) == 0 ; 
eqRRR2v = (xN-xP) (vNx-vPxSol) + (yN-yP) (vNy-vPySol) == 0 ; 

solRRRv = Solve[ { eqRRRlv , eqRRRZv } , { vPxSol, vPySol } ] ; 

vPx = vPxSol/.so1RRRv[[l]] ; 
vPy = vPySol/.so1RRRv[[l]] ; 

(* Acceleration * ) 

eqRRRla = (xM-xP) (aMx-aPxSol) + (vMx-vPx)'^2 + (yM-yP) (aMy-aPySol) 
+ (vMy-vPy)'^2 == 0 ; 
eqRRRZa = (xN-xP) (aNx-aPxSol) + (vNx-vPx)'^2 + (yN-yP) (aNy-aPySol) 
+ (vNy-vPy)'^2 == 0 ; 

solRRRa = So1ve[ { eqRRRla , eqRRR2a } , { aPxSol, aPySol } ] ; 

aPx = aPxSol/.solRRRa[[1]] ; 
aPy = aPySol/.solRRRa[[l]] ; 

Return[ { vPx, vPy, aPx, aPy } ] ; 

] 

End[ ] (* YelAccRRR *) 

YelAccRRT::usage = 
"YelAccRRT[xM,yM,xN,yN,xP,yP,vMx,vMy,vNx,vNy,aMx,aMy,aNx,aNy, 

theta,dtheta,ddtheta] 

Begin["^Private^"] 

YelAccRRT[xM_^,yM_,xN^,yN_,xP_,yP_,vMx_,vMy_,vNx_,vNy_,aMx_,aMy_,aNx_^, 
aNy_,theta_,dtheta_, 
Block[ 

{ vPxSol, vPySol, aPxSol, aPySol, vPx, vPy, aPx, aPy, 

eqRRTv, eqRRTa, eqRRTlv, eqRRT2v, solRRTv , eqRRRla, eqRRR2a, solRRRa }, 

(* Velocity *) 

eqRRTlv = (xM-xP) (vMx-vPxSol) + (yM-yP) (vMy-vPySol) == 0 ; 
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eqRRT2v = Sin[theta] (vPxSol-vNx) + Cos[theta] dtheta (xP-xN) 
- Cos[theta] (vPySol-vNy) + Sin[theta] dtheta (yP-yN) == 0 ; 

solRRTv = Solve[ { eqRRTlv , eqRRT2v }, { vPxSol , vPySol } ] ; 

vPx = vPxSol/.solRRTv[[l]] ; 
vPy = vPySol/.so1RRTv[[l]] ; 

(* Acceleration *) 

eqRRTla = (xM-xP) (aMx-aPxSol) + (vMx-vPx)'̂ 2 + (yM-yP) (aMy-aPySol) 
+ (vMy-vPy)'̂ 2 == 0 ; 
eqRRT2a = 
+ Sin[theta] (aPxSol-aNx) - Cos[theta] (aPySol-aNy) 
+ ( 2 Cos[theta] (vPx-vNx) - Sin[theta] dtheta (xP-xN) 
+ 2 Sin[theta] (vPy-vNy) + Cos[theta] dtheta (yP-yN) ) dtheta 
+ ( Cos[theta] (xP-xN) + Sin[theta] (yP-yN) ) ddtheta == 0 ; 

solRRTa = Solve[ { eqRRTla , eqRRT2a }, { aPxSol , aPySol } ] ; 

aPx = aPxSo1/.solRRTa[[l]] ; 
aPy = aPySo1/.solRRTa[[l]] ; 

Return[ { vPx, vPy, aPx, aPy } ] ; 
] 

End[ ] (* YelAccRRT *) 

AngYelAce::usage = 
"AngYelAcc[xM,yM,xN,yN,vMx,vMy,YNx,vNy,aMx,aMy,aNx,aNy,theta] 

computes the angular velocity and 

Begin["^Private*^"] 

AngYelAce[xM_,yM_,xN_,yN_,vMx_,vMy_,vNx_,vNy_,aMx_,aMy_,aNx_,aNy_, 
thetaj : = 

Block[ 

{ dtheta, ddtheta }, 

dtheta = 
( Cos[theta] (vMy-vNy) - Sin[theta] (vMx-vNx) ) 
/ ( Sin[theta] (yM-yN) + Cos[theta] (xM-xN) ) ; 
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ddtheta = 
( Cos[theta] (aMy-aNy) - Sin[theta] (aMx-aNx) -
( Cos[theta] dtheta (yM-yN) + 2 Sin[theta] (vMy-vNy) 
- Sin[theta] dtheta (xM-xN) + 2 Cos[theta] (vMx-vNx) ) dtheta ) 
/ { Cos[theta] (xM-xN) + Sin[theta] (yM-yN) ) ; 

Return[ { dtheta, ddtheta } ] ; 
1 

End[ ] (* AngVelAcc * ) 

AbsYelAce::usage = 
"AbsYelAce[xM,yM,xN,yN,vMx,vMy,aMx,aMy,dtheta,ddtheta] computes 

the absolute velocity and acceleration 

Begin["^Private^"] 

AbsYel Ace [xM_,yM_^,xN_,yN_,vMx_,vMy_,aMx_,aMy_,dtheta_,ddthetaJ: = 
B1oek[ 

{ vNx, vNy, aNx, aNy }, 

vNx = vMx - dtheta (yN-yM) ; 
vNy = vMy + dtheta (xN-xM) ; 

aNx = aMx - ddtheta (yN-yM) - dtheta'^2 (xN-xM) ; 
aNy = aMy + ddtheta (xN-xM) - dtheta'^2 (yN-yM) ; 

Return[ { vNx, vNy, aNx, aNy } ] ; 
] 

End[ ] (* AbsYelAce *) 

EndPackage[ ] 

VelAcc^ 

VelAccRRR[xM,yM,xN,yN,xP,yP,vMx,vMy,vNx,vNy,aMx,aMy,aNx, 
aNy] computes the velocity and acceleration vectors for RRR dyad 

VelAccTrivate^ 

VelAccTrivate^ 

VelAccRRT[xM,yM,xN,yN,xP,yP,vMx,vMy,vNx,vNy,aMx,aMy,aNx,aNy,theta, 
dtheta, ddtheta] computes the velocity and acceleration vectors for 
RRT dyad 

VelAccTrivate^ 
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VelAccTrivate^ 

AngVelAcc[xM,yM,xN,yN,vMx,vMy,vNx,vNy,aMx,aMy,aNx,aNy, 
theta] computes the angular velocity and acceleration of a l ink. 

VelAcc^Private^ 

VelAccTrivate^ 

AbsVelAcc[xM,yM,xN,yN,vMx,vMy,aMx,aMy,dtheta, 
ddtheta] computes the absolute velocity and acceleration vectors, 

VelAcc^Private^ 

VelAccTrivate^ 

PROGRAM 1.8.8 
(* R-RRR-RRT mechanism *) 

Apply [ Clear , Names [ "Globar*" ] ] ; 
Off[General::spel1]; 
Off[General::spell 1 ] ; 

«Driver.m ; 
«Position.m ; 
«YelAcc.m ; 

(* Input data * ) 

AB = 0.15 
BC = 0.40 
CD = 0.37 
CE = 0.23 
EF = CE ; 
La = 0.30 ; 
Lb = 0.45 ; 
Lc = CD ; 
phi = Pi/4 ; 
omega = N[Pi]*100/30 ; 
alpha = 0. ; 

(* Position Vectors *) 

xA = yA = 0 ; 

* m *) 
* m *) 

[* m *) 
(* m *) 
;* m *) 
* m *) 

m *) 
m *) 
rad *) 
rad/s * ) 
rad/s-^Z * ) 

xB = Driver[xA,yA,AB,phi,omega,alpha][[1]] ; 
yB = Driver[xA,yA,AB,phi,omega,alpha][[2]] ; 

xD 
yD 

La ; 
Lb ; 
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xCl = PosRRR[xB,yB,xD.yD,BC,CD][[l]] 
yCl = PosRRR[xB,yB,xD,yD,BC,CD][[2]] 
xC2 = PosRRR[xB,yB,xD,yD,BC,CD][[3]] 
yC2 = PosRRR[xB,yB,xD.yD,BC,CD][[4]] 

(* Choose the correct solution *) 
If[ (yCl>yB), xC=xCl;yC=yCl, xC=xC2;yC=yC2 ] ; 

phi 3 = ArcTan[(yC-yD)/(xC-xD)] + Pi ; 

xE = xC + CE Cos[phi3] ; 
yE = yC + CE Sin[phi3] ; 

xF Lc ; 

phi5 = Pi/2 ; 

xP = - Lc ; 
yP = 0 ; 

yFl = PosRRT[xE,yE.xP,yP,EF,phi5][[2]] 
yF2 = PosRRT[xE,yE.xP.yP.EF,phi5][[4]] 

(* Choose the correct solution *) 
I f [ (yFKyE), yF=yFl. yF=yF2 ] ; 

phi2 = ArcTan[(yC-yB)/(xC-xB)] + Pi ; 

phi 4 = ArcTan[(yE-yF)/(xE-xF)] ; 

Print 
Print 
Print 
Print 
Print 

Print 
Print 
Print 
Print 
Print 

'Positions"]; 
•rB = ".{xB.yB.O}." [m]"]; 
•rC = ",{xC,yC,0}," [m]"]; 
•rE = ".{xE.yE.O}," [m]"]; 
•rF = ".{xF.yF.O}," [m]"]; 

•Angles"]; 
•phi = ",phi." [rad]"]; 
•phi2 = ",phi2," [rad]"] 
•phi3 = ",phi3," [rad]"] 
•phi4 = ",phi4," [rad]"] 

(* Velocity and acceleration vectors *) 

vBx = Driver[xA,yA,AB,phi,omega,alpha][[3]] 
vBy = Driver[xA,yA,AB,phi,omega,alpha][[4]] 
aBx = Driver[xA,yA,AB,phi,omega,alpha][[5]] 
aBy = Driver[xA,yA,AB,phi,omega,alpha][[6]] 
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vDx = 0 ; vDy = 0 ; 
aDx = 0 ; aDy = 0 ; 

vCx = 
YelAccRRR[xB,yB,xD,yD,xC,yC,vBx,vBy,vDx,YDy,aBx,aBy,aDx,aDy][[l]] 
vCy = 
VelAccRRR[xB,yB,xD,yD,xC,yC,vBx,vBy,vDx,vDy,aBx,aBy,aDx,aDy][[2]] 
aCx = 
Ve1AccRRR[xB,yB,xD,yD,xC,yC,vBx,vBy,vDx,vDy,aBx,aBy,aDx,aDy][[3]] 
aCy = 
Ye1AccRRR[xB,yB,xD,yD,xC,yC,vBx,vBy,vDx,vDy,aBx,aBy,aDx,aDy][[4]] 

omegaS = 
AngVelAcc[xC,yC,xD,yD,vCx,vCy,vDx,vDy,aCx,aCy,aDx,aDy,ph13][[l]] ; 

alphas = 
AngVelAcc[xC,yC,xD,yD,vCx,vCy,vDx,vDy,aCx,aCy,aDx,aDy,phi3][[2]] ; 

vEx = AbsYelAcc[xD,yD,xE,yE,vDx,vDy,aDx,aDy,omegas,alphas][[1]] ; 
vEy = AbsVe1Acc[xD,yD,xE,yE,vDx,vDy,aDx,aDy,omegas,alphas][[2]] ; 

aEx = AbsYe1Acc[xD,yD,xE,yE,vDx,vDy,aDx,aDy,omegaS,a1phaS][[S]] ; 
aEy = AbsYelAce[xD,yD,xE,yE,vDx,vDy,aDx,aDy,omegaS,alphas][[4]] ; 

vPx = vPy = 0 ; 
aPx = aPy = 0 ; 

omegaS = alphaS = 0 ; 

vFx = 
YelAccRRT[xE,yE,xP,yP,xF,yF,vEx,vEy,vPx,vPy,aEx,aEy,aPx,aPy,phi5, 
omegaS,a1phaS] [ [1]] ; 
vFy = 
YelAccRRT[xE,yE,xP,yP,xF,yF,vEx,vEy,vPx,vPy,aEx,aEy,aPx,aPy,phi5, 
omegaS,a1phaS][[2]] ; 
aFx = 
YelAccRRT[xE,yE,xP,yP,xF,yF,vEx,vEy,vPx,vPy,aEx,aEy,aPx,aPy,phiS, 
omegas,alpha5][[S]] ; 
aFy = 
Ye1AccRRT[xE,yE,xP,yP,xF,yF,vEx,vEy,vPx,vPy,aEx,aEy,aPx,aPy,phi5, 
omegaS,a1phaS][[4]] ; 

Print["Yelocities"]; 
Print["vB = ",{vBx,vBy,0}," [m/s]"]; 
Pnnt["vC = ",{vCx,vCy,0}," [m/s]"]; 
Pnnt["YE = ",{vEx,vEy,0}," [m/s]"]; 
Print["vF = ",{vFx,vFy,0}," [m/s]"]; 

Pri nt["Accelerati ons"]; 
Print["aB = ",{aBx,aBy,0}," [m/s'^2]"]; 
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Print["aC = ",{aCx,aCy,0}," [m/s-Z]"]; 
Print["aE = ".{aEx.aEy.O}," [iii/s"2]"]; 
Print["aF = ",{aFx,aFy,0}." [ni/s"2]"]; 

omega2 = 
AngVe1Acc[xB,yB,xC,yC,vBx,vBy,vCx,vCy,aBx,aBy,aCx,aCy,phi2][[l]] ; 

a1pha2 = 
AngVelAcc[xB,yB,xC,yC,vBx,vBy,vCx,vCy,aBx,aBy,aCx,aCy,phi2][[2]] ; 

omega4 = 
AngVelAcc[xE,yE,xF,yF,vEx,vEy,vFx,vFy,aEx,aEy,aFx,aFy,phi4][[l]] ; 

a1pha4 = 
AngVe1Acc[xE,yE,xF,yF,vEx,vEy,vFx,vFy,aEx,aEy,aFx,aFy,phi4][[2]] ; 

Print["Angular velocities"]; 
Print["omega = ",{0,0,omega}," [rad/s]"]; 
Print["omega2 = ",{0,0,omega2}," [rad/s]"]; 
Print["omega3 = ",{0,0,omega3}," [rad/s]"]; 
Print["omega4 = ",{0,0,omega4}," [rad/s]"]; 

Pri nt["Angular accelerati ons"]; 
Print["alpha = ",{0,0,alpha}," [rad/s-2]"]; 
Print["alpha2 = ",{0,0,alpha2}," [rad/s''2]"] 
Print["alpha3 = ",{0,0,alpha3}," [rad/s''2]"] 
Print["alpha4 = ",{0,0,alpha4}," [rad/s"2]"] 

Positions 

rB = {0.106066, 0.106066. 0} [m] 

rC = {-0.0696798, 0.46539, 0} [m] 

rE = {-0.299481, 0.474956, 0} [m] 

rP = {-0.37, 0.256034, 0} [m] 

Angles 

phi = f [rad] 

phi2 = 2.02569 [rad] 

phi3 = 3.09999 [rad] 

phi 4 = 1.25917 [rad] 
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Velocities 

vB = {-1.11072, 1.11072, 0} [m/s] 

vC = {0.0702851, 1.68835, 0} [m/s] 

vE = {0.113976, 2.73787, 0} [m/s] 

vF = { 0 . , 2.77458, 0} [m/s] 

Accelerations 

aB = {-11.6314, -11.6314, 0} [m/s'^2] 

aC = {7.42779, -7.11978, 0} [m/s'^2] 

aE = {12.0451, -11.5456, 0} [m/s'^2] 

aF = { 0 . , -7.60013, 0} [m/s'^2] 

Angular ve loc i t i es 

omega = {0, 0, 10.472} [ rad/s] 

omega2 = {0, 0, -3.28675} [ rad/s] 

omega3 = {0, 0, -4.56707} [ rad/s] 

omega4 = {0 , 0, -0.520622} [ rad/s] 

Angular accelerat ions 

alpha = {0, 0, 0.} [rad/s'^2] 

alpha2 = {0, 0, -47.7584} [rad/s'^2] 

alpha3 = {0 , 0, 18.391} [rad/s'^2] 

alpha4 = {0, 0, -55.1071} [rad/s'^2] 

PROGRAM 1.8.9 
(* R-RRT mechanism *) 

Apply [ Clear , Names [ "Globar*" ] ] ; 

Off[General::spell]; 

Off[General::spel11]; 

«Driver.m ; 
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«Position.m ; 
«VelAcc.m ; 

(* Input data *) 

AC = 0.10 ; (* m *) 
BC = 0.30 ; (* m *) 
AP = 0.50 ; (* m *) 
phi = Pi/4 ; (* rad *) 
n = 30 ; (* rpm *) 
omega = N[Pi]*n/30 ; (* rad/s *) 
alpha = 0. ; (* rad/s-̂ Z *) 

(* Position Vectors *) 

xA = yA = 0 ; 

xC = AC ; 
yC = 0 ; 

xP = Driver[xA,yA,AP,phi,omega,alpha][[1]] ; 
yP = Driver[xA,yA,AP,phi,omega,alpha][[2]] ; 

xBl = PosRRT[xC,yC,xP,yP,BC,phi][[l]] ; 
yBl = PosRRT[xC,yC,xP,yP,BC,phi][[2]] ; 
xB2 = PosRRT[xC,yC,xP,yP,BC,phi][[3]] ; 
yB2 = PosRRT[xC,yC,xP,yP,BC,phi][[4]] ; 

(* Choose the correct solution *) 
If[ (yBl>yC), xB=xBl;yB=yBl, xB=xB2;yB=yB2 ] ; 

Print["Positions"]; 

Print["rB = ",{xB,yB,0}," [m]"]; 

(* Velocity and acceleration vectors *) 

vPx = Driver[xA,yA,AP,phi,omega,alpha][[3]] 
vPy = Driver[xA,yA,AP,phi,omega,alpha][[4]] 
aPx = Driver[xA,yA,AP,phi,omega,alpha][[5]] 
aPy = Driver[xA,yA,AP,phi,omega,alpha][[6]] 
vCx = 0 ; vCy = 0 ; 
aCx = 0 ; aCy = 0 ; 

vBx = 
VelAccRRT[xC,yC,xP,yP,xB,yB,YCx,vCy,vPx,vPy,aCx,aCy,aPx,aPy,phi, 
omega,alpha][[l]] ; 
vBy = 
VelAccRRT[xC,yC,xP,yP,xB,yB,YCx,YCy,vPx,YPy,aCx,aCy,aPx,aPy,phi, 
omega,alpha][[2]] ; 
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aBx = 
VelAccRRT[xC,yC,xP,yP,xB,yB,vCx,vCy,vPx,vPy,aCx,aCy,aPx,aPy,phi, 
omega,a1pha][[3]] ; 
aBy = 
Ye1AccRRT[xC,yC,xP,yP,xB,yB,vCx,vCy,vPx,vPy,aCx,aCy,aPx,aPy,phi, 
omega,alpha][[4]] ; 

Print["Yelocities"]; 
Print["vB = ",{vBx,vBy,0}," [m/s]"]; 

Print["Accelerations"]; 

Print["aB = ",{aBx,aBy,0}," [m/s'^2]"]; 

phi3 = ArcTan[(yB-yC)/(xB-xC)] ; 

omega3 = AngYelAcc[xB,yB,xC,yC, vBx,vBy,vCx,vCy,aBx,aBy,aCx,aCy] [[1]] ; 

alpha3 = AngYelAcc[xB,yB,xC,yC, vBx,vBy,vCx,vCy,aBx,aBy,aCx,aCy] [[2]] ; 

Pri nt["Angular veloci ties"]; 
Print["omega3 = ",{0,0,omega3}," [rad/s]"]; 
Print["Angular accelerations"]; 
Print["alpha3 = ",{0,0,alpha3}," [rad/s-^Z]"]; 

Positions 

rB = {0.256155, 0.256155, 0} [m] 

Velocities 

vB = {-0.999913, 0.609559, 0} [m/s] 

Accelerations 

aB = {-1.80234, -4.25501, 0} [m/s'^2] 

Angular velocities 

omega3 = {0, 0, 3.90354} [rad/s] 

Angular accelerations 

alpha3 = {0, 0, -2.25292} [rad/s'^2] 

PROGRAM 1.8.10 
(* R-RTR-RTR mechanism *) 

Apply [ Clear , Names [ "Globar*" ] ] ; 
Off[General::spell]; 
Off[General::spel11]; 
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«Driver.m ; 

«VelAcc.m ; 

(* Input data *) 

AB = 0.14 . 

AC = 0.06 

AE = 0.25 , 

CD = 0.15 , 

phi = Pi/6 ; ( 

n = 50 ; ( 

omega = n*N[Pi]/30 ; ( 

alpha = 0. 9 

[* m * ) 
* m *) 
* m *) 

* m *) 

* rad *) 

* rpm *) 

* rad/s *) 

[* rad/s"2 *) 

(* Position Vectors *) 

xA = yA = 0 ; 

xB = Driver[xA,yA,AB,phi,omega,alpha][[1]] ; 
yB = Driver[xA,yA,AB,phi,omega,alpha][[2]] ; 

xC = 0 ; 
yC = AC ; 

phi3 = ArcTan[(yB-yC)/(xB-xC)] ; 

xD = xC - CD Cos[phi3] ; 

yD = yC - CD Sin[phi3] ; 

xE = 0 ; 
yE = -AE ; 

phi 5 = Pi + ArcTan[(yD-yE)/(xD-xE)] ; 

(* Velocity and acceleration vectors * ) 

vBx = Driver[xA,yA,AB,phi,omega,alpha][[3]] 

vBy = Driver[xA,yA,AB,phi,omega,alpha][[4]] 
aBx = Driver[xA,yA,AB,phi,omega,alpha][[5]] 
aBy = Driver[xA,yA,AB,phi,omega,alpha][[6]] 

vCx = vCy = 0 ; 

aCx = aCy = 0 ; 

omega3 = 

AngVelAcc[xB,yB,xC,yC, vBx,vBy,vCx,vCy,aBx,aBy,aCx,aCy,phi3][[1]] ; 
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alphas = 
AngYelAcc[xB,yB,xC,yC, vBx,vBy,vCx,vCy,aBx,aBy,aCx,aCy,phi3][[2]] 

vDx = AbsVelAcc[xC,yC,xD,yD,vCx,vCy,aCx,aCy,omega3,alphas][[1]] 
vDy = AbsYelAcc[xC,yC,xD,yD,vCx,YCy,aCx,aCy,omegas,alphas][[2]] 
aDx = AbsYelAcc[xC,yC,xD,yD,vCx,vCy,aCx,aCy,omegas,alphas][[S]] 
aDy = AbsYelAcc[xC,yC,xD,yD,vCx,vCy,aCx,aCy,omegas,alphas][[4]] 

vEx = vEy = 0 ; 
aEx = aEy = 0 ; 

omegaS = 
AngVelAcc[xD,yD,xE,yE, vDx,vDy,YEx,vEy,aDx,aDy,aEx,aEy,phi5][[1]] 

alphas = 
AngYelAcc[xD,yD,xE,yE, vDx,vDy,vEx,YEy,aDx,aDy,aEx,aEy,phi5][[2]] 

P r i n t [ " P o s i t i o n s " ] ; 
P r i n t [ " rB = " , { xB ,yB ,0 } , " [ m ] " ] ; 
P r i n t [ " rD = " , { xD,yD,0 } , " [ m ] " ] ; 

P r i n t [ " V e l o c i t i e s " ] ; 
Pr in t [ "vB = " , {vBx ,vBy ,0 } , " [ m / s ] " ] ; 
Pr in t [ "vD = " , {vDx,vDy,0} , " [ m / s ] " ] ; 

Pri n t [ "Acce le ra t i ons " ] ; 
Pr in t [ "aB = " , {aBx,aBy,0} , " [m/s '^2]" ] ; 
Pr int [ "aD = " , {aDx,aDy,0} , " [m/s '^2]" ] ; 

P r i n t [ "Ang les " ] ; 
P r i n t [ "ph i = " , p h i , " [ r a d ] " ] ; 
Pr in t [ "ph iS = " , p h i S , " [ r a d ] " ] ; 
P r in t [ "ph i5 = " , p h i 5 , " [ r a d ] " ] ; 

Pr in t [ "Angular v e l o c i t i e s " ] ; 
Print["omega = " , {0,0,omega}," [ r a d / s ] " ] ; 
Print["omegaS = ",{0,0,omegaS}," [ r a d / s ] " ] ; 
Print["omegas = ",{0,0,omegaS}," [ r a d / s ] " ] ; 

Pr in t [ "Angular acce le ra t ions " ] ; 
Pr in t [ "a lpha = " , { 0 , 0 , a l p h a } , " [ rad /s ' ^2 ] " ] ; 
Pr int ["a lphaS = " , {0 ,0 ,a lphaS} , " [ rad /s ' ^2 ] " ] ; 
Pr int [ "a lphaS = " , { 0 , 0 , a l p h a s } , " [ rad /s ' ^2 ] " ] ; 

Posit ions 

rB = {0.121244, 0.07, 0} [m] 

rD = {-0.149492, 0.0476701, 0} [m] 
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Velocities 

vB = {-0.366519, 0.63483, 0} [m/s] 

vD = {0.0671766, -0.814473, 0} [m/s] 

Accelerations 

aB = {-3.32396, -1.91909, 0} [m/s'^2] 

aD = {4.61708, -1.81183, 0} [m/s'^2] 

Angles 

phi = I [rad] 

phi3 = 0.0822923 [rad] 

phi5 = 2.03621 [rad] 

Angular velocities 

omega = {0, 0, 5.23599} [rad/s] 

omega3 = {0, 0, 5.44826} [rad/s] 

omega5 = {0, 0, 0.917134} [rad/s] 

Angular accelerations 

alpha = {0, 0, 0.} [rad/s'^2] 

alpha3 = {0, 0, 14.5681} [rad/s'^2] 

alpha5 = {0, 0, -5.77155} [rad/s'^2] 

PROGRAM 1.8.11 
Begi nPackage["Force^"] 

ForceMomentum::usage = 
"ForceMomentum[m,aCM,ICM,ddtheta] computes the total force and 

moment of a rigid link." 

Begin["^Private "] 

ForceMomentum[m_,aCM_,ICM_,ddthetaj:= 
B1ock[ 
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{ g. Fin, G, F, M }, 

g = 9.807 ; 

Fin = - m aCM ; 

G = { 0, -m g, 0 } ; 

F = Fin + G ; 

M = - K M { 0, 0, ddtheta } ; 

Return[ { F, M } ] ; 

] 

End[ ] (* ForceMomentum *) 

ForceRRR::usage = 

"ForceRRR[F2,M2,F3,M3,rM,rN,rP,rC2,rC3] computes the joint 

reactions for the RRR dyad." 

Begin["^Private^"] 

ForceRRR[F2 ,M2_,F3 ,M3_,rM ,rN_,rP_,rC2 , r C 3 j : = 
B1ock[ 

{ F12, F12Sol, F12xSo1, F12ySol, F43, F43Sol, F43xSol, F43ySol, 
rPC2, rPC3, rPM, rPN, F32, eqRRRl, eqRRR2, eqRRR3, eqRRR4, solRRR } , 

F12So1 = { F12xSol, F12ySol, 0 } ; 
F43Sol = { F43xSol, F43ySol, 0 } ; 

rPC2 = rC2 - rP ; 
rPC3 = rC3 - rP ; 
rPM = rM - rP ; 
rPN = rN - rP ; 

eqRRRl = (F12Sol+F43Sol+F2+F3)[[1]] == 0 ; 
eqRRR2 = (F12Sol+F43Sol+F2+F3)[[2]] == 0 ; 
eqRRR3 = (Cross[rPC2,F2]+Cross[rPM,F12Sol]+M2)[[3]] == 0 ; 
eqRRR4 = (Cross[rPC3,F3]+Cross[rPN,F43Sol]+M3)[[3]] == 0 ; 

solRRR = So1ve[ {eqRRRl, eqRRR2, eqRRR3, eqRRR4}, 
{F12xSo1,F12ySo1,F43xSol,F43ySol} ] ; 

F12 = F12So1/.solRRR[[l]] ; 
F43 = F43Sol/.solRRR[[l]] ; 

F32 = - F2 - F12 ; 
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Return[ { F12, F43, F23 } ] ; 

] 

End[ ] (* ForceRRR *) 

ForceRRT::usage = 
"ForceRRT[F2,M2,F3,M3,rM,rN,rP,rC2] computes the joint reactions 

for the RRR dyad." 

Begin ["'Private'"] 

ForceRRT[F2_,M2_,F3_,M3_,rM_,rN_,rP_,rC2_]:= 
B1ock[ 

{ F12, F12So1, F12xSol, F12ySol, F43, F43Sol, F43xSol, 
F43ySo1, F32, eqRRTl, eqRRT2, eqRRT3, eqRRT4, solRRT, rNC2, rNM, 
rNP, rNQ. rQP, rQ, rQSol, xQSol, yQSol, eqRRTQl, eqRRTQ2, solRRTQ }, 

F12Sol = { F12xSol, F12ySol, 0 } ; 
F43Sol = { F43xSol, F43ySo1, 0 } ; 

rPC2 = rC2 - rP ; 
rPM = rM - rP ; 
rPN = rN - rP ; 

eqRRTl = (F12So1+F43So1+F2+F3)[[1]] == 0 ; 
eqRRT2 = (F12Sol+F43Sol+F2+F3)[[2]] == 0 ; 
eqRRT3 = (F43Sol.rPN) == 0 ; 
eqRRT4 = (Cross[rPC2,F2]+Cross[rPM,F12Sol]+M2)[[3]] == 0 ; 

solRRT = Solve[ {eqRRTl, eqRRT2, eqRRT3, eqRRT4}, 
{F12xSo1,F12ySo1,F43xSo1,F43ySol} ] ; 

F12 = F12Sol/.so1RRT[[l]] ; 
F43 = F43Sol/.solRRT[[l]] ; 

F32 = - F2 - F12 ; 
F23 = - F32 ; 

I f [ M3[[3]]==0 , rQ = rP . 

rQSol = { xQSol, yQSol, 0 } ; 
rPQ = rQSol - rP ; 

eqRRTQl = rPQ[[2]] /rPQ[[ l ] ] - rPN[[2] ] / rPN[[ l ] ] == 0 ; 
eqRRTQ2 = (Cross[rPQ.F43]+M3)[[3]] == 0 ; 
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solRRTQ = Solve[ {eqRRTQl, eqRRTQZ} , {xQSol,yQSol} ] ; 
rQ = rQSol/.solRRTQ[[l]] ; 
] ; 

Return[ { F12, F43, F23, rQ } ] ; 

] 

End[ ] (* ForceRRT *) 

ForceRTR::usage = 
"ForceRTR[F2,M2,F3,M3,rM,rP,rC2] computes the joint reactions 

for the RTR dyad." 

Begin["^Private^"] 

ForceRTR[F2_,M2 ,F3_,M3_,rM_,rP_,rC2 ] := 
B1ock[ 

{ rC3, F12, F12Sol, F12xSol, F12ySol, F43, F43Sol, F43xSol, F43ySol, 
F32, eqRTRl, eqRTR2, eqRTR3, eqRTR4, solRTR, rMC2, rMP, rPQ, rQ, 
rQSol, xQSol, yQSol, eqRTRQl, eqRTRQ2, solRTRQ } , 

F12Sol = { F12xSol, F12ySol, 0 } ; 
F43Sol = { F43xSol, F43ySol, 0 } ; 

rMC2 = rC2 - rM ; 
rMP = rP - rM ; 

eqRTRl = (F12Sol+F43Sol+F2+F3)[[1]] == 0 ; 
eqRTR2 = (F12Sol+F43Sol+F2+F3)[[2]] == 0 ; 
eqRTR3 = (F12Sol+F2).rMP == 0 ; 
eqRTR4 = (Cross[rMC2,F2]+Cross[rMP,(F3+F43Sol)]+M2+M3)[[3]] == 0 ; 

solRTR = Solve[ {eqRTRl, eqRTR2, eqRTR3, eqRTR4}, 
{F12xSol,F12ySol,F43xSol,F43ySol} ] ; 

F12 = F12Sol/.solRTR[[l]] ; 
F43 = F43Sol/.solRTR[[l]] ; 

F32 = - F2 - F12 ; 
F23 = - F32 ; 

If[ M3[[3]]==0 , rQ = rP , 

rQSol = { xQSol, yQSol, 0 } ; 
rMQ = rQSol - rM ; 
rPQ = rQSol - rP ; 
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eqRTRQl = rMQ[[2]]/rMQ[[l]] - rMP[[2]] /rMP[[l]] == 0 ; 
eqRTRQZ = (Cross[rPQ,F23]+M3)[[3]] == 0 ; 
solRTRQ = So1ve[ {eqRTRQl, eqRTRQ2} , {xQSol,yQSo1} ] ; 
rQ = rQSol/.solRTRQ[[l]] ; 
] ; 

Return[ { F12, F43, F23, rQ } ] ; 
1 

End[ ] (* ForceRTR *) 

FMDriver::usage = 
"FMDriver[Fl,Ml,F21,rA,rB,rCl] computes the joint reaction and 

torque of the motor." 

Begin["^Private^"] 

FMDriver[Fl_,Ml,F21_,rA ,rB ,rClJ:= 
B1ock[ 

{ FOl, rACl, rAB, Mm }, 

FOl = - Fl - F21 ; 

rACl = rCl - rA ; 
rAB = rB - rA ; 
Mm = - Cross[rACl,Fl] - Cross[rAB,F21] - Ml ; 

Return[ { FOl, Mm } ] ; 
] 

End[ ] (* FMDriver *) 

EndPackage[ ] 

Force^ 

ForceMomentum[m,aCM,ICM,ddtheta] computes the total force and moment 
of a rigid link. 

Force^Private^ 

ForceTrivate^ 

ForceRRR[F2,M2,F3,M3,rM,rN,rP,rC2,rC3] computes the joint reactions 
for the RRR dyad. 

Force^Private^ 
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ForceTrivate" 

ForceRRT[F2,M2,F3,M3,rM,rN,rP,rC2] computes the joint reactions for 
the RRR dyad. 

Force^Private^ 

ForceTrivate^ 

ForceRTR[F2,M2,F3,M3,rM,rP,rC2] computes the joint reactions for the 
RTR dyad. 

ForceTrivate^ 

ForceTrivate^ 

FMDriver[Fl,Ml,F21,rA,rB,rCl] computes the joint reaction and torque 
of the motor. 

Force^Private^ 

ForceTrivate^ 

PROGRAM 1.8.12 
(* R-RRT mechanism *) 

Apply [ Clear , Names [ "Globar*" ] ] ; 
Off[General::spell]; 
Off[General::spel11]; 

«Driver.m ; 
«Position.m ; 
«YelAcc.m ; 
«Force.m ; 

(* Input data *) 

AC = 0.10 
BC = 0.30 
AP = 0.50 
wS = 0.05 
hS = 0.02 
phi = Pi/4 ; 
n = 30 ; 
omega = N[Pi]*n/30 ; 
alpha = 0. ; 
g = 9.807 ; 

m *) 
;* m *) 
;* m *) 
;* m *) 
;* m *) 
(* rad *) 
(* rpm *) 
(* rad/s *) 

rad/s-̂ Z *) 
m/s-̂ Z *) 
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rho = 8000 ; (* Kg/m-̂ S *) 

d = 0.001 ; (* m *) 

h = 0.01 ; (* m *) 

Mext = {0, 0, -100} ; (* Nm *) 

(* Position Vectors *) 

xA = yA = 0 ; 

xC = AC ; 

yC = 0 ; 

xP = Driver[xA,yA,AP,phi,omega,alpha][[1]] ; 
yP = Driver[xA,yA,AP,phi,omega,alpha][[2]] ; 

xBl = PosRRT[xC,yC,xP,yP,BC,phi][[l]] 
yBl = PosRRT[xC,yC,xP,yP,BC,phi][[2]] 
xB2 = PosRRT[xC,yC,xP,yP,BC,phi][[3]] 
yB2 = PosRRT[xC,yC,xP,yP,BC,phi][[4]] 

(* Choose the correct solution *) 

If[ (yBl>yC), xB=xBl;yB=yBl, xB=xB2;yB=yB2 ] ; 

Print["Positions"]; 

Print["rB = ",{xB,yB,0}," [m]"]; 

(* Velocity and acceleration vectors *) 

vPx = Driver[xA,yA,AP,phi,omega,alpha][[3]] 

vPy = Driver[xA,yA,AP,phi,omega,alpha][[4]] 
aPx = Driver[xA,yA,AP,phi,omega,alpha][[5]] 
aPy = Driver[xA,yA,AP,phi,omega,alpha][[6]] 
vCx = 0 ; vCy = 0 ; 
aCx = 0 ; aCy = 0 ; 

vBx = VelAccRRT[xC,yC,xP,yP,xB,yB,vCx,vCy,vPx,vPy,aCx,aCy,aPx, 
aPy,phi,omega,alpha][[l]] ; 
vBy = VelAccRRT[xC,yC,xP,yP,xB,yB,vCx,vCy,vPx,vPy,aCx,aCy,aPx, 
aPy,phi,omega,alpha][[2]] ; 

aBx = VelAccRRT[xC,yC,xP,yP,xB,yB,vCx,vCy,vPx,vPy,aCx,aCy,aPx,aPy, 

ph i,omega,alpha][[3]] ; 
aBy = VelAccRRT[xC,yC,xP,yP,xB,yB,vCx,vCy,vPx,vPy,aCx,aCy,aPx,aPy, 
phi,omega,alpha][[4]] ; 

Print["Velocit ies"]; 
Print["vB = ",{vBx,vBy,0}," [m/s]"]; 
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Print["Accelerations"]; 

Print["aB = ",{aBx,aBy,0}," [m/s'^2]"]; 

phi3 = ArcTan[(yB-yC)/(xB-xC)] ; 

omegas = AngVelAcc[xB,yB,xC,yC, vBx,vBy,vCx,vCy,aBx,aBy,aCx,aCy][[1]] ; 

alphas = AngYelAcc[xB,yB,xC,yC, vBx,vBy,vCx,vCy,aBx,aBy,aCx,aCy][[2]] ; 

Print["Angular velocities"]; 
Print["omegas = ",{0,0,omegaS}," [rad/s]"]; 
Print["Angular accelerations"]; 
Print["alphaS = ",{0,0,alphaS}," [rad/s-^Z]"]; 

aA = { 0, 0, 0 } ; 
aB = {aBx, aBy, 0 } ; 
aC = {0, 0, 0 } ; 
aP = {aPx, aPy, 0} ; 

(* Forces and moments *) 

ml = rho AP h d ; 
aCl = (aA+aP)/2 ; 
ICl = ml (AP'^2+h'^2)/12 ; 
Fl = ForceMomentum[ml,aCl,ICl,alpha][[l]] ; 
Ml = ForceMomentum[ml,aCl,ICl,alpha][[2]] ; 

m2 = rho wS hS d ; 
aC2 = aB ; 
IC2 = m2 (wS'^2+hS'^2)/12 ; 
F2 = ForceMomentum[m2,aC2,IC2,alpha][[l]] ; 
M2 = ForceMomentum[m2,aC2,IC2,alpha][[2]] ; 

mS = rho BC h d ; 
aCS = (aB+aC)/2 ; 
ICS = ml (BC'̂ 2+h'̂ 2)/12 ; 
FS = ForceMomentum[ml,aCl,ICl,alphaS][[l]] ; 
MS = ForceMomentum[ml,aCl,ICl,alphaS][[2]] ; 

Print["Forces and moments of links"]; 
Print["Fl = " ,F1," [N]"]; 
Print["Ml = ",M1," [Nm]"]; 
Print["F2 = ",F2," [N]"]; 
Print["M2 = ",M2," [Nm]"]; 
Print["FS = ",FS," [N]"]; 
Print["MS = ",MS," [Nm]"]; 
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rA = {xA, yA, 0} 
rB = {xB, yB, 0} 
rC = {xC, yC, 0} 
rP = {xP, yP, 0} 

rC3 = (rB+rC)/2 ; 
F03 = ForceRRT[F3,M3+Mext.F2,M2,rC,rA,rB,rC3][[l]] 
F12 = ForceRRT[F3.M3+Mext,F2,M2,rC,rA,rB,rC3][[2]] 
F23 = ForceRRT[F3,M3+Mext,F2,M2,rC,rA,rB,rC3][[3]] 

rQ = ForceRRT[F3,M3+Mext,F2,M2,rC,rA,rB,rC3][[4]] ; 

F21 = - F12 ; 
rCl = {rA+rP)/2 ; 
FOl = FMDriver[Fl,Ml,F21,rA,rB,rCl][[l]] ; 
Mm = FMDriver[Fl,Ml,F21,rA,rB,rCl][[2]] ; 

Print["Joint reactions"]; 
Print["F03 = ",F03," [N]"]; 
Print["F12 = ",F12," [N]"]; 
Print["F23 = ",F23," [N]"]; 
Print["rQ = ",rQ," [m]"]; 
Print["F01 = ",F01," [N]"]; 
Print["Mm = ",Mm," [N]"]; 

Positions 

rB = {0.256155, 0.256155, 0} [m] 

Velocities 

vB = {-0.999913, 0.609559, 0} [m/s] 

Accelerations 

aB = {-1.80234, -4.25501, 0} [m/s"2] 

Angular velocities 

omegas = {0, 0, 0.256155} [rad/s] 

Angular accelerations 

alphas = {0, 0, 0.256155} [rad/s"2] 

Forces and moments of links 

Fl = {0.0697886, -0.322491, 0} [N] 

Ml = {0, 0, 0.} [Nm] 
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F2 = {0.0144187, -0.044416, 0} [N] 

M2 = {0, 0, 0.} [Nm] 

F3 = {0.0697886, -0.322491, 0} [N] 

MS = {0, 0, -0.000213548} [Nm] 

Joint reactions 

F03 = {242.56, -242.278, 0} [N] 

F12 = {-242.645, 242.645, 0} [N] 

F23 = {242.63, -242.6, 0} [N] 

rQ = {0.256155, 0.256155, 0} [m] 

FOl = {-242.714, 242.967, 0} [N] 

Mm = {0 . , 0. , 124.379} [N] 

PROGRAM 1.8.13 
(* R-RTR-RTR mechanism *) 

Apply [ Clear , Names [ "Globar*" ] ] ; 
Off[General::spell]; 
Off[General::spel11]; 

«Driver.m ; 
«VelAccra ; 
«Force.m ; 

(* Input data *) 

AB = 0.14 
DF = 0.40 
EG = 0.50 
CD = 0.15 
AC = 0.06 
AE = 0.25 
wS = 0.05 
hS = 0.02 
phi = Pi76 
n = 50 ; 

; (* m *) 
; (* m *) 
; (* m *) 
; (* m *) 
; (* m *) 
; (* m *) 
; (* m *) 
; (* m *) 
; (* rad *) 

(* rpm *) 
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* rad/s *) 
* rad/s'^2 *) 
* m/s-̂ Z *) 
* Kg/m-̂ a *) 
* m * ) 
* m *) 
* Nm *) 

omega = n*N[Pi]/30 ; 
alpha = 0. ; 
g = 9.807 ; 
rho = 8000 ; 
d = 0.001 ; 
h = 0.01 ; 
Mext = {0, 0, -100} ; 

(* Position Vectors *) 

xA = yA = 0 ; 

xB = Driver[xA,yA,AB,phi,omega,alpha][[1]] ; 
yB = Driver[xA,yA,AB,phi,omega,alpha][[2]] ; 

xC = 0 ; 
yC = AC ; 

phi2 = phi3 = ArcTan[(yB-yC)/(xB-xC)] ; 

xD = xC - CD Cos [phi3] ; 
yD = yC - CD Sin[phi3] ; 

xE = 0 ; 
yE = -AE ; 

xF = xC+(DF-CD)Cos[phi3] ; 
yF = yC+(DF-CD)Sin[phi3] ; 

xG = xE + EG Cos [phi 5] ; 
yG = yE + EG Sin[phi5] ; 

{* Velocity and acceleration vectors *) 

vBx = Driver[xA,yA,AB,phi,omega,alpha][[3]] 
vBy = Driver[xA,yA,AB,phi,omega,alpha][[4]] 
aBx = Driver[xA,yA,AB,phi,omega,alpha][[5]] 
aBy = Driver[xA,yA,AB,phi,omega,alpha][[6]] 

vCx = vCy = 0 ; 
aCx = aCy = 0 ; 

omega2 = omega3 = AngVelAcc[xB,yB,xC,yC, vBx,vBy,vCx,YCy,aBx,aBy,aCx, 
aCy,phi3][ [ l ] ] ; 

alpha2 = alpha3 = AngVelAcc[xB,yB,xC,yC, vBx,vBy,vCx,vCy,aBx,aBy,aCx, 
aCy,phi3][[2]] ; 
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vDx = AbsYelAcc[xC,yC,xD,yD,vCx,vCy,aCx,aCy,omega3,alphas] [ [1] ] 
vDy = AbsVelAce[xC,yC,xD,yD,vCx,vCy,aCx,aCy,omega3,alphas][[2]] 
aDx = AbsVelAcc[xC,yC,xD,yD,vCx,vCy,aCx,aCy,omega3,alphas][[3]] 
aDy = AbsYelAce[xC,yC,xD,yD,vCx,vCy,aCx,aCy,omega3,alphas][[4]] 

vEx = vEy = 0 ; 
aEx = aEy = 0 ; 

phi4 = phi5 = Pi + ArcTan[(yD-yE)/(xD-xE)] ; 

omega4 = omegaS = AngVelAcc[xD,yD,xE,yE, vDx,vDy,vEx,vEy,aDx,aDy,aEx, 
aEy,phi5][ [ l ] ] ; 

alpha4 = alphaS = AngYelAcc[xD,yD,xE,yE, vDx,vDy,vEx,vEy,aDx,aDy,aEx, 
aEy,phi5][[2]] ; 

aA = { 0, 0, 0 } ; 
aB = {aBx, aBy, 0 } 
aC = {aCx, aCy, 0 } 
aD = {aDx, aDy, 0 } 
aE = {aEx, aEy, 0 } 

(* Forces and moments *) 

ml = rho AB h d ; 
aCl = (aA+aB)/2 ; 
ICl = ml (AB'^2+h'^2)/12 ; 
Fl = ForceMomentum[ml,aCl,ICl,alpha][[1]] ; 
Ml = ForceMomentum[ml,aCl,ICl,alpha][[2]] ; 

m2 = rho wS hS d ; 
aC2 = aB ; 
IC2 = m2 (wS'^2+hS'^2)/12 ; 
F2 = ForceMomentum[m2,aC2,IC2,alpha2][[1]] ; 
M2 = ForceMomentum[m2,aC2,IC2,alpha2][[2]] ; 

m3 = rho DF h d ; 
xC3 = xC+(DF/2-CD)Cos[phi3] ; 
yC3 = yC+(DF/2-CD)Sin[phi3] ; 
aC3x = AbsVelAcc[xC,yC,xC3,yC3,vCx,vCy,aCx,aCy,omegas,alphas][[S]] 
aCSy = AbsVelAcc[xC,yC,xCS,yCS,vCx,vCy,aCx,aCy,omegas,alphas][[4]] 
aCS = {aCSx, aCSy, 0} ; 
ICS = mS (DF'̂ 2+h-^2)712 ; 
FS = ForceMomentum[mS,aCS,ICS,alphaS][[l]] ; 
MS = ForceMomentum[mS,aCS,ICS,alphas][[2]] ; 

m4 = rho wS hS d ; 
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aC4 = aD ; 
IC4 = m4 (wS'̂ 2+hS'̂ 2)/12 ; 
F4 = ForceMomentum[m4,aC4,IC4,alpha4][[l]] 
M4 = ForceMomentum[m4,aC4,IC4,a1pha4][[2]] 

m5 = rho EG h d ; 
xC5 = xE + EG/2 Cos [phi 5] ; 
yC5 = yE + EG/2 Sin [phi5] ; 
aC5x = AbsYe1Acc[xE,yE,xC5,yC5,vEx,vEy,aEx,aEy,omegas,a1pha5][[3]] 
aC5y = AbsYe1Acc[xE,yE,xC5,yC5,vEx,vEy,aEx,aEy,omegas,alphas][[4]] 
aCS = {aCSx, aCSy, 0} ; 

ICS = mS (EG'̂ 2+h'̂ 2)/12 ; 

PS = ForceMomentum[mS,aCS,ICS,a1phaS][[1]] ; 
MS = ForceMomentum[mS,aCS,ICS,alphas][[2]] ; 

Print["Forces and moments of links"]; 

Print["Fl = 
Print["Ml = 
Print["F2 = 
Print["M2 = 
Print["F3 = 
Print ["M3 = 
Print["F4 = 
Print["M4 = 
Print ["F5 = 
Print["M5 = 

".Fl." 
•.Ml," 
•.F2." 
•,M2," 
•.F3," 
•,M3," 
',F4," 
•.M4," 
•,F5," 
•.M5," 

[N]"]; 
[Nm]"] 
[N]"]; 
[Nm]"] 
[N]"]; 
[Nm]"] 
[N]"]; 
[Nm]"] 
[N]"]; 
[Nm]"] 

(* Joint reactions *) 

rA = {xA, yA, 0} ; 
rB = {xB, yB, 0} ; 
rC = {xC, yC, 0} ; 
rD = {xD, yD, 0} ; 
rE = {xE, yE, 0} ; 
rF = {xF, yF, 0} ; 

rG = {x6, y6, 0} ; 

rC5 = {xC5,yC5,0} ; 

FOB = ForceRTR[F5,M5+Mext,F4,M4,rE,rD,rC5][[l]] 
F34 = ForceRTR[F5,M5+Mext,F4,M4,rE,rD,rC5][[2]] 
F45 = ForceRTR[F5,M5+Mext,F4,M4,rE,rD,rC5][[3]] 
rP = ForceRTR[F5,M5+Mext,F4,M4,rE,rD,rC5][[4]] ; 

F43 = - F34 ; 

rC3 = {xC3,yC3,0} ; 

rC3D = rD-rC3 ; 

M43 = Cross[rC3D,F43] 
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F03 = ForceRTR[F3+F43,M3+M43,F2,M2,rC,rB.rC3][[l]] 
F12 = ForceRTR[F3+F43,M3+M43,F2,M2,rC,rB,rC3][[2]] 
F23 = ForceRTR[F3+F43,M3+M43.F2,M2,rC,rB,rC3][[3]] 
rQ = ForceRTR[F3+F43,M3+M43,F2,M2,rC,rB,rC3][[4]] ; 

F21 = - F12 ; 
rCl = (rA+rB)/2 ; 
FOl = FMDriver[Fl,Ml,F21,rA,rB,rCl][[l]] ; 
Mm = FMDriver[Fl,Ml,F21,rA,rB,rCl][[2]] ; 

Print["Joint reactions"]; 
Print["F05 = ",F05," [N]"]; 
Print["F34 = ",F34," [N]"]; 
Print["F45 = ",F45," [N]"]; 
Print["rP = ",rP," [m]"]; 
Print["F03 = ",F03," [N]"]; 
Print["F12 = ",F12," [N]"]; 
Print["F23 = ",F23," [N]"]; 
Print["rQ = ",rQ," [m]"]; 
Print["FOl = ",F01," [N]"]; 
Print["Mm = ",Mm," [Nm]"]; 

Forces and moments of l inks 

Fl = {0.0186142, -0.0990915, 0} [N] 

Ml = {0, 0, 0.} [Nm] 

F2 = {0.0265917, -0.0631033. 0} [N] 

M2 = {0, 0, -0.000028165} [Nm] 

F3 = {0.0492489, -0.33315, 0} [N] 

M3 = {0, 0, -0.00621962} [Nm] 

F4 = {-0.0369367, -0.0639614, 0} [N] 

M4 = {0, 0, 0.0000111583} [Nm] 

F5 = {-0.0553516, -0.410666, 0} [N] 

M5 = {0, 0, 0.00481155} [Nm] 

Joint reactions 

F05 = {268.165, 135.057, 0} [N] 
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F34 = {-268.072, -134.583, 0} [N] 

F45 = {268.109, 134.647, 0} [N] 

rP = {-0.149492, 0.0476701, 0} [m] 

F03 = {-256.745, -272.179, 0} [N] 

F12 = {-11.4028, 137.993, 0} [N] 

F23 = {11.3762, -137.93, 0} [N] 

rQ = {0.121243, 0.07, 0} [m] 

FOl = {-11.4214, 138.092. 0} [N] 

Mm = {0. , 0. , 17.5356} [Nm] 
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1.9 Simulation of Kinematic Chains with 
Working Model 

This section serves as a tutorial to simulate the planar mechanism R-RTR shown in 
Figure 1.9.1 by using Working Model. The mechanism has three links: the driver Hnk 
(link 1), the slider (link 2), and the rocker (link 3). 

Step 1: Opening Working Model 
1. Click on the Working Model program icon to start the program. 

2. Create a new Working Model document by selecting "New" from the "File" menu. 

Toolbars create links, joints, and mechanism actuators. 

3. Specify the units for the simulation. 

4. Set up the workspace. 
In the "View" menu: select "Workspace", check Coordinates and X,Y Axes from the 

Navigation box, and check all the objects from the Toolbars box except Simple; turn off 
Grid Snap and turn on Object Snap; select "Numbers and Units" and change the Unit System 
to SI (degrees); select "View Size" and choose the objects on the screen to be 1.0 times 
actual size. 

Step 2: Creating the Links 
This step creates the three moving links of the mechanism. The background serves as the 
fixed frame link (ground). 

1. Create the driver link. Click on the rectangle tool in the toolbar to sketch out a 
rectangular body. Position the mouse at the first comer, click once, then move the 
mouse to the location of the opposite comer and click again. Four black boxes 

419 



(f) = 7r/6 
AB = 0.1 m 
AC = 0.05 m 
CD = 0.15 m 
n = 50 rpm 
g = 9.807 m/s2 

appear around the link indicating that it has been selected. Modify its dimensions at 
the bottom of the screen accordingly to the height /i = 0.1 m, and the width 
w = 0.01 m (Fig. 1.9.2). 

2. Create the slider and the rocker Click on the "Rectangle" tool in the toolbar. The 
tool is now selected and it can be used multiple times. Sketch out two rectangular 
bodies: the rocker and the slider. Choose the widths w = 0.15 m for the rocker and 
w = 0.040 m for the slider. The height of the rocker ish = 0.010 m and the height of 
the slider is h = 0.020 m. 
The depth of all objects in Working Model isd = 0.001 m by default. 

3. Change the properties of the links. Press the Shift key and click on the driver link, 
rocker, and slider, respectively. Select "Properties" in the "Window" menu and 
change the material to Steel, the coefficients of static and kinetic friction to 0.0 (no 
friction), the coefficient of restitution to 1.0 (perfect elastic), and the charge to 0.0 
(no charge) as shown in Figure 1.9.3. 

Remark 
The commands Zoom in and Zoom out can be used by clicking on the icons at the top of 
the screen in order to make the objects clearly visible. 

Step 3: Connecting the Slider and the Rocker 
1. Move the slider over the rocker. 
2. Select the horizontal "Keyed Slot joint" icon at the left of the screen. The icon 

appears as a rectangle riding over a horizontal slot. 
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3. Move the cursor over the snap point at the center of the slider and chck the mouse 
button. The screen should look like Figure 1.9.4. 

Step 4: Adding a Motor to the Driver link 
Similar to a pin joint, a motor has two attachment points. A motor automatically connects 
the top two bodies. If only one body were to lay beneath the motor, the motor would join 
the body to the background. The motor then applies a torque between the two bodies to 
which it is pinned. 

1. Click on the "Motor" tool in the toolbox. This tool appears as a circle, sitting on a 
base with a point in its center. The cursor should now look like a small motor. 

2. Place the cursor over the "snap point" on the center of axis and click the mouse 
button. 

3. Click on the "Split" button in the toolbar. Click on the pin joint and drag it to the 
snap point at the bottom of the driver link. 

4. Click on the "Join" button in the toolbar. Since the motor is fixed to the ground, the 
driver link moves in place. 

5. Click on the driver link and change the value of the angle 0 at the bottom of the 
screen to -45° (Fig. 1.9.5). 

Step 5: Connecting the Driver Link and the Slider 
1. Select the anchor tool. 
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2. Click on the driver link to anchor the link down. The anchor fixes the body to the 
ground during construction. 

3. Click on the "Pin joint" tool. 
4. Place the cursor over the upper end of the driver link. When an "X" appears around 

the pointer, click the mouse button. 
5. Click on the "Split" button in the toolbar. Working Model creates two connected 

overlapping pin joints. 
6. With the pointer tool selected, click on the pin joint and drag it to the snap point at 

the center of the slider (Fig. 1.9.6). 
7. Click on the "Join" button in the toolbar. Working Model merges the two pin joints 

into a single one, moving the unanchored link into place. 
8. Click on the driver link. Select the "Move to front" option in the "Object" menu. 

This places the link in front of the rocker, making it visible, as shown in Figure 1.9.7. 

Step 6: Connecting the Rocker to the Ground 
1. Click on the "Point element" in the toolbox. Place the cursor at any point on the 

ground and click the mouse button. 
2. Modify the coordinates of the point accordingly to jc = 0.05 m and y = 0. 
3. Click on the "Pin joint" in the toolbox. Place the cursor on top of the point and click 

the mouse button. The pin joint is now fixed to the ground. 
4. Using "Split" and "Join", connect the rocker to the pin joint. 
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5. Select the anchor, used to keep the driver Unk in position during building, and press 
the Delete key to remove it. The screen should look like that shown in Figure 1.9.8. 

Step 7: Adding an External Torque 
1. Click on the "Torque" tool from the toolbox and then click on the rocker. This will 

apply an external torque to the rocker. 
2. Select the torque and modify its value to Mext = 100 N-m in the "Properties" 

menu. 

Step 8: Measuring Positions^ Velocities, Accelerations, Torques, 
and Forces 

1. Select the driver link, then go to "Measure" menu and "Position" submenu. Apply 
the command "Rotation graph" to measure the rotation angle of the driver. 

2. Click on the "Point element" from the toolbox and then click on the end point of the 
rocker. The point is now attached to the rocker. Go to "Measure" menu and apply the 
commands "Position", "Velocity", and "Acceleration" to measure the position, 
velocity, and acceleration of the point. Click on the arrow in the right upper comer 
of the measurement window to change it from graphic to numerical. 

3. Select the motor, then go to "Measure" menu and apply the command "Torque 
Transmitted" to measure the torque of the motor. 
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4. Select the pin joint that connects the driver link to the ground. Go to "Measure" and 
apply the command "Force" to measure the reaction force between the ground and 
the driver. 

5. Select the rigid keyed slot joint that connects the slider to the rocker. Go to 
"Measure" and apply the command "Force" to measure the reaction force between 
the slider and the rocker. 

6. Select the pin joint that connects the rocker to the ground. Go to "Measure" and 
apply the command "Force" to measure the reaction force between the ground and 
the rocker. 

7. Select the pin joint that connects the driver link to the slider. Go to "Measure" and 
apply the command "Force" to measure the reaction force between the sHder and the 
driver. 

Remark 
When you select a joint to create a meter to measure the reaction force, the meter measures 
the forces exerted on the body located at the top when the joint was created. The components 
of the forces are given in terms of the local coordinate system. In order to measure the 
components of the pin joint forces in terms of the global coordinate systems, the angles of 
the two points that compose the pin joint are set to the value 0. The two points that compose 
a pin joint are seen by selecting the joint and opening the "Properties" window. 

An example is shown in Figure 1.9.9. The pin joint between the driver link and the slider 
(Fig. 1.9.6), denoted by Constraint [17], is composed of the two points Point [15] and 
Point[16]. Select Point[15] from the window "Properties" and change its angle to the 

Mimmmmmm^sm %3Bte £dft Wotfd lew Q^m B̂ »ne l^um ^ip£ ĵ indow Help ___^ ^ 
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value 0. Then select Poi nt [16] and change its angle to 0. Now the components of the pin 
joint forces are measured in terms of the global coordinate system. 

Step 9: Running the Simulation 
1. With the pointer tool selected, select all the bodies. Select the "Do Not Collide" 

option in the "Object" menu. 
2. Select "Numbers and Units" in the "View" menu. Select More Options and change 

the Rotational Velocity to Revs/min. 
3. Double-click on the motor to open the "Properties" box. Modify the velocity of the 

motor to —50 rpm, as shown in Figure 1.9.9. 
4. Click on each graph and modify its label from "Window" menu and "Appearance" 

submenu. 
5. Click on "Run" in the toolbar. 

Tape controls, which are used to run and view simulations, are located at the bottom of 
the screen. 

6. Click on "Reset" in the toolbar. The simulation resets to the initial frame 0. 

Remark 
To increase the Simulation Accuracy, select "Accuracy" from the "World" menu and 
change the Animation Step to a larger value and the Integration Error to a smaller value. 
The screen should look like that shown in Figure 1.9.10. 
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Results 
For the R-RTR mechanism (Fig. 1.9.1), the following results are obtained: the motor torque 
isMmot = —147.651 N-m; the position of the pointDisr/) = 0.139i+0.121jm, the velocity 
ofthe point D is v/) = 0.936i—0.685jm/s; the acceleration of the point D is a/) = —1.077i— 
10.324j m/s^; the reaction force of the ground on the driver Unk is FQI = 1302i — 953j N; 
the reaction force of the slider on the driver Hnk is F21 = -1302.128i + 953.180j N; the 
reaction force between the rocker and the slider is F23 = 1613.764 N; the reaction force of 
the ground on the rocker is F03 = -1302.15i + 953.29Ij N. 
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11.1 stress and Deflection 

.1.1 stress 
In the design process, an important problem is to ensure that the strength of the mechanical 
element to be designed always exceeds the stress due to any load exerted on it. 

Uniform distribution of stresses is an assumption that is frequently considered in the 
design process. Depending upon the way the force is applied to an element, the result is 
called pure tension (compression) or pure shear, respectively. 

A tension load F is applied to the ends of a bar. If the bar is cut at a section remote 
from the ends and one piece is removed, the effect of the removed part can be replaced 
by applying a uniformly distributed force of magnitude a A to the cut end, where a is the 
normal stress and A the cross section area of the bar. The stress cr is given by the following 
expression: 

F 
- . (II.1.1) 
A 

This uniform stress distribution requires that 

• the bar be straight and made of a homogeneous material, and 
• the line of action of the force contains the centroid of the section. 

Equation (II. 1.1) and the previous assumptions also hold for pure compression. 
If a body is in shear (uniform stress distribution), the following equation can be used: 

t = y , (II.1.2) 
A 

where r is the shear stress. 
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(a) (b) 

FIGURE 11.1.1 Stress element: (a) three-dimensional case; (b) planar case. 

Stress Components 
A general three-dimensional stress element is illustrated in Figure 11.1.1 (a). Three normal 
positive stresses, Ox.cfy, and a ,̂ and six positive shear stresses, r^y, Xyx, % , r^j, r^, and 
Xxz, are shown. Static equilibrium requires 

t-xy ^yxf (II.1.3) 

The normal stresses Ox, Oy, and a^ are called tension or tensile stresses and considered 
positive if they are oriented in the direction shown in the figure. Shear stresses on a positive 
face of an element are positive if they act in the positive direction of the reference axis. The 
first subscript of any shear stress component denotes the axis to which it is perpendicular. 
The second subscript denotes the axis to which the shear stress component is parallel. 

A general two-dimensional stress element is shown in Figure II. 1.1(b). The two normal 
stresses, Ox and Gy, respectively, are in the positive direction. Shear stresses are pos-
itive when they are in the clockwise (cw) direction and negative when they are in the 
counterclockwise (ccw) direction. Thus, Xyx is positive (cw) and Xxy is negative (ccw). 

Mohr's Circle 
The element in Figure II. 1.1(b) is considered cut by an obHque plane at angle 0 as shown 
in Figure II. 1.2. The stresses a and r act on this oblique plane. The stresses a and r can be 
calculated with the formulas 

Ox + Cfy Gx 
G = r—^ H 2 

COS 20 + Txy sin 20, 

sin 20 + Txy cos 20. 

(II.1.4) 

(II. 1.5) 
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FIGURE ILl .2 Normal and shear stresses on a planar surface. 

Differentiating Eq. (II. 1.4) with respect to the angle 0 and setting the result equal to zero 
yields 

tan 20 = 
2r: xy (11.1.6) 

The solution of Eq. (II. 1.6) gives two values for the angle 20 defining the maximum normal 
stress a\ and the minimum normal stress (J2. These minimum and maximum normal stresses 
are called the principal stresses. The corresponding directions are called the principal 
directions. The angle between the principal directions is 90°. 

Similarly, differentiating Eq. (II. 1.5) and setting the result to zero will result in the 
following relation: 

tan 20 = - -
2r 

(II. 1.7) 
xy 

The solutions of Eq. (11.1.7) define the angles 20 at which the shear stress r reaches extreme 
values. 

Equation (II. 1.6) can be rewritten as 

Izxy COS 20 = (ax — cTy) sin 20, 

or 

sin 20 = 
IXxy COS 20 

Of r — (TM 

(II.1.8) 
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Substituting Eq. (11.1.8) into Eq. (II. 1.5) gives 

ĵc"~ <̂v 2rrv COS 20 
r = —^--—^ - ^ ^ + r;,3;Cos20 = O. (II.1.9) 

2 CTx-CTy 

From Eq. (II. 1.9) it results that the shear stress associated with both principal directions 
is zero. 

Substituting sin 20 from Eq. (11.1.7) into Eq. (II. 1.4) yields 

^x + <̂v 
a = ^ y - ^ . (II.1.10) 

The Eq. (II. 1.10) states that the two normal stresses associated with the directions of the 
two maximum shear stresses are equal. 

The analytical expressions for the two principal stresses can be obtained by manipulating 
Eqs.(II.1.6)and(II.1.4): 

au^2 = ̂ ^±l^^)\r2^. (11.1.11) 

Similarly, the maximum and minimum values of the shear stresses are obtained: 

= / ( ^ ruT2 = ±J[^hr^] +^^. (n.1.12) 

The Mohr's circle diagram (Fig. II. 1.3) is a graphical method to visualize the stress state. 
The normal stresses are plotted along the abscissa axis of the coordinate system and the 
shear stresses along the ordinate axis. Tensile normal stresses are considered positive (CTX 
and Oy are positive in Fig. II. 1.3) and compressive normal stresses are negative. Clockwise 
(cw) shear stresses are considered positive, while counterclockwise (ccw) shear stresses are 
negative. 

The following notation is used: OA as ax, AB as Txy, OC as cry, and CD as Zyx^ The center 
of the Mohr's circle is at point E on the a-axis. Point B has the stress coordinates ax, r̂ y on 
the jc-faces and point D the stress coordinates ay, Tyx on the y-faces. The angle 20 between 
EB and ED is 180°, hence the angle between x and y on the stress element is 0 = 90°. The 
maximum principal normal stress is ai at point F, and the minimum principal normal stress 
is (72 at point G. The two extreme values of the shear stresses are plotted at points / and if, 
respectively. Thus, the Mohr's diagram is a circle of center E and diameter BD. 

For three-dimensional stress elements it is considered a particular orientation when all 
shear stress components are zero. The principal directions are the normals to the faces for 
this particular orientation. Since the stress element is three-dimensional, there are three 
principal directions and three principal stresses, ai, a2 and a^, associated with the principal 
directions. In three dimensions, only six components of stress are required to specify the 
stress state, namely, ax, ay, a^, Txy, Xy^, and r^. 

To plot Mohr's circles for triaxial stress, the principal normal stresses are ordered so 
that ai > (72 > ^3. The result is shown in Figure 11.1.4(a). The three principal shear 
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I (ccw) 

FIGURE II.1.3 Mohr's circle. 

stresses, ri/2,12/3 and ri/3, are also shown in Figure 11.1.4(a). Each of these shear stresses 
occurs on two planes, one of the planes being shown in Figure II. 1.4(b). The principal shear 
stresses are 

cri -cri 02- (73 a\ - (J3 
T̂ i/2 = — T — ; r2/3 = — - — ; ri/3 = — - — . (II. 1.13) 

If '^max = Ti/3, then ai > 0-2 > a^. 
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(a) 

(b) 

FIGURE 11.1.4 Mohr's circle application: (a) Mohr's circle diagram; (b) principal stresses. 
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Elastic Strain 
If a tensile load is applied to a straight bar, it becomes longer. The amount of elongation 
is called the total strain. The elongation per unit length of the bar e is called strain. The 
strain is 

€ = y, (II.1.14) 

where S is the total elongation (total strain) of the bar of length /. 
Shear strain y is the change in a right angle of an element subjected to pure shear stresses. 
Elasticity is a property of materials that allows them to regain the original geometry 

when the load is removed. The elasticity of a material can be expressed in terms of Hooke's 
law: the stress in a material is proportional to the strain that produced it, within certain 
limits 

a=E€, r = Gy, (II.1.15) 

where E and G are constants of proportionality. The constant E is called the modulus 
of elasticity and the constant G is called the shear modulus of elasticity or the modulus 
of rigidity. A material that obeys Hooke's law is called elastic. 

Substituting a = El A and 6 = 611 into Eq. (11.1.15), the expression for the total 
deformation 5 of a bar loaded in axial tension or compression is 

El 
S = -—. (IL1.16) 

A E 

When a tension load is applied to an elastic body, not only does an axial strain occur, 
but also a lateral strain occurs and the two strains are proportional to each other. This 
proportionality constant is called Poisson 's ratio and is given by 

lateral strain 
v = ——-—. (II.1.17) 

axial stram 

The elastic constants are related by the following expression: 

E = 2G(l^v). (II.1.18) 

The principal strains are defined as the strains in the direction of the principal stresses. 
The shear strains are zero on the faces of an element aligned along the principal directions. 
Table II. 1.1 lists the relationships for all types of stress. The values of Poisson's ratio v for 
various materials are listed in Table II. 1.2. 

Shear and Moment 
A beam supported by the reactions Ri and R2 and loaded by the transversal forces Fi, F2 
is shown in Figure II. 1.5(a). The reactions Ri and R2 are considered positive since they act 
in the positive direction of the } -̂axis. The concentrated forces Fi and F2 are considered 
negative since they act in the negative _y-direction. A cut is considered at a section located 
at X. Only the left-hand part of the beam with respect to the cut is taken as a free body. 
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TABLE l l . l . l Elastic stress-strain relations 

Type of Stress 

Uniaxial 

Biaxial 

Triaxial 

Principal strains 

'' = -E 
€2 = -V€l 
f3 = -v€i 

a\ VG2 

(72 V(7l 

VG\ Va2 

o\ va2 

''= E E 

02 va\ 

(73 vai 

''= E E 

V02, 

E 

vers 

V(72 

E 

Principal stresses 

G\ = Ee\ 

(72 = 0 

C73 = 0 

E{e\ + v€2) 

1 — v^ 

E(e2 + v€i) 

1 — v^ 

(73 = 0 

£61(1 - V) + v£(62 + 63) 
'^' = l - v - 2 v 2 

£62(1 - v) + v£(ei + 63) 
•̂ 2 = i _ , _ 2 v 2 

£ € 3 ( l - v ) + v£ (e i+€2) 
^• = l - v - 2 v 2 

Source: J. E. Shigley and C. R. Mischke, Mechanical Engineering Design, McGraw-Hill, New York, 1989. 
Reprinted with permission of McGraw-Hill. 

TABLE n.1.2 Physical constants of materials 

Material 

Aluminum (all alloy) 
Beryllium copper 
Brass 
Carbon steel 
Cast iron, gray 
Copper 
Douglas fir 
Glass 
Inconel 
Lead 
Magnesium 

Molybdenum 

Monel metal 
Nickel silver 
Nickel steel 
Phosphor bronze 

Stainless steel (18-8) 

Modulus of 
Elasticity E 

Mpsi 

10.3 
18.0 
15.4 
30.0 
14.5 
17.2 

1.6 
6.7 

31.0 
5.3 
6.5 

48.0 
26.0 
18.5 
30.0 
16.1 

27.6 

GPa 

71.0 
124.0 
106.0 
207.0 
100.0 
119.0 

11.0 
46.2 

214.0 
36.5 
44.8 

331.0 
179.0 
127.0 
207.0 
111.0 

190.0 

Modulus of 
Rigidity G 

Mpsi 

3.80 
7.0 
5.82 

11.5 
6.0 
6.49 
0.6 
2.7 

11.0 
1.9 
2.4 

17.0 
9.5 
7.0 

11.5 
6.0 

10.6 

GPa 

26.2 
48.3 
40.1 
79.3 
41.4 
44.7 

4.1 
18.6 
75.8 
13.1 

16.5 
117.0 
65.5 
48.3 
79.3 
41.4 

73.1 

Poisson 's 
ratio 

V 

0.334 
0.285 
0.324 
0.292 
0.211 
0.326 
0.33 
0.245 
0.290 
0.425 

0.350 
0.307 

0.320 
0.322 
0.291 

0.349 
0.305 

Unit weight w 

Ib/in^ 

0.098 
0.297 
0.309 
0.282 
0.260 
0.322 
0.016 
0.094 
0.307 
0.411 
0.065 

0.368 

0.319 
0.316 
0.280 
0.295 

0.280 

Ib/f^ 

169 
513 
534 
487 
450 
556 

28 
162 
530 
710 
112 
636 

551 
546 
484 

510 
484 

kN/m' 

26.6 
80.6 
83.8 
76.5 
70.6 
87.3 
4.3 

25.4 
83.3 

111.5 
17.6 

100.0 
86.6 
85.8 

76.0 
80.1 

76.0 

Source: J. E. Shigley and C. R. Mischke, Mechanical Engineering Design, McGraw-Hill, New York, 1989. Reprinted 
with permission of McGraw-Hill. 
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FIGURE n.1.5 (a) Simply supported beam loaded by concentrated forces and (b) free-body 
diagram of the left-hand part of the beam. 

To ensure equilibrium, an internal shear force V and an internal bending moment M must 
act on the cut surface [Fig. 11.1.5(b)]. The shear force is obtained by summing the forces 
to the left of the cut section. The bending moment is obtained by summing the moments of 
the forces to the left of the section with respect to an axis through the section. The shear 
force and the bending moment are related by the following expression: 

V = 
dM 

dx 
(II.1.19) 

If bending is caused by a uniformly distributed load w (acting downward), then the relation 
between shear force and bending moment is 

dV _ d^M 

dx dx^ 
(II. 1.20) 

The units for w are units of force per unit of length. A general force distribution called 
load intensity can be expressed as 

q = lim . 
AJC^O AJC 

Integrating Eqs. (II. 1.19) and (II. 1.20) between two points on the beam of coordinates XA 
and XB yields 

/ dV= qdx = VB-VA. 
JVA JXA 

(II.1.21) 

The above equation states that the changes in shear force from A to 5 are equal to the area 
of the loading diagram between XA and XB. Similarly, 

pMs pXB 

/ dM = 
J MA JXA 

Vdx = MB-MA, (II. 1.22) 
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which states that the changes in moment from A to 5 are equal to the area of the shear force 
diagram between XA and XB-

Table II. 1.3 lists a set of five singularity functions that are useful in developing the 
general expressions for the shear force and the bending moment in a beam when it is loaded 
by concentrated forces or moments. 

Normal Stresses in Pure Bending 
The relationships for the normal stresses in beams are derived by considering that the beam 
is subjected to pure bending, the material is isotropic and homogeneous and obeys Hooke's 
law, the beam is initially straight with a constant cross section throughout the length, the 
beam axis of symmetry is in the plane of bending, and the beam cross sections remain 
plane during bending. 

Figure II. 1.6 shows a part of a beam on which a positive bending moment M^ = Mk 
(k being the unit vector associated with z-axis) is applied. A neutral plane is a plane that is 
coincident with the elements of the beam of zero strain. The xz plane is considered as the 
neutral plane. The jc-axis is coincident with the neutral axis of the section and the 3̂ -axis is 
coincident with the axis of symmetry of the section. 

Applying a positive moment on the beam, the upper surface will bend downward and, 
therefore, the neutral axis will also bend downward (Fig. II. 1.6). Because of this fact, the 
section PQ initially parallel to RS will rotate through the angle J 0 with respect to P'(^^ In 
Figure II. 1.6, p is the radius of curvature of the neutral axis, ds is the length of a differential 
element of the neutral axis, and 0 is the angle between the two adjacent sides, RS and P'Q^ 
The definition of the curvature is 

1 dd 
- = -r-' (II. 1.23) 
p ds 

The deformation of the beam at distance y from the neutral axis is 

dx = yd(t), (II. 1.24) 

and the strain is 

6 = - — , (II.1.25) 
SD ^ 

where the negative sign suggests that the beam is in compression. Equations (II. 1.23), 
(II.1.24), and (II. 1.25) give 

€ = - ^ . (II.1.26) 

Since a = Ee, the expression for stress is 

Ey 
cr = - ^ . (II.1.27) 
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TABLE 11.1.3 Singularity functions 

Function Graph offn(x) Meaning 

Concentrated moment 
(unit doublet) 

{x — a) 

6^ 
floo^x - a)-^dx = {x-aY 

{x — a)^ = ±00 X = a 

Concentrated force 
(unit impulse) 

-a)-' 

a 
L ^ 

A 

A 

— • ! 

{x — a) ^ = 0 X ^ a 

fl^{x-a)-'dx={x-af 

{x — a)~^ =-\-oo x = a 

{X — a) 

Unit step 

U— a —^ 

I 

' 
1 

r 

floo^x - afdx = {x-a}^ 

(0 X < a 
X > a 

Ramp 

{x-ay 

J 

{x-a)' = \ 
[x — a X > a 

f-oo(^-^)^dx = 
{x-aV 

Parabolic 

{x - af 
{x-af = 

0 X < a 
{x — a)^ X > a 

{x-af 

Source: J. E. Shigley and C. R. Mischke, Mechanical Engineering Design, McGraw-Hill, New York, 1989. Reprinted 
with permission of McGraw-Hill. 
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Q Q' 

FIGURE 11.1.6 Normal stress in flexure. 

The force acting on an element of area dA is adA and integrating this force 

fadA = - - fydA = 0. (11.1.28) 

Since the jc-axis is the neutral axis, Eq. (II. 1.28) states that the moment of the area about 
the neutral axis is zero. Thus, Eq. (II. 1.28) defines the location of the neutral axis, that is, 
the neutral axis passes through the centroid of the cross-sectional area. 

For equilibrium, the internal bending moment created by the stress a must be the same 
as the external moment M^ = Mk, namely 

M= f yadA=- f y^ dA, (II.1.29) 

where the second integral is the second moment of area / about the z-axis, 

/ = fy^dA. (11.1.30) 
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Compression 

Tension 

FIGURE n.1.7 Bending stress in flexure. 

From Eqs. (11.1.29) and (II. 1.30) 

1 _ M 

~P~YV 
(II.1.31) 

is obtained. Eliminating p from Eqs. (II. 1.27) and (II. 1.31) yields 

My 
(II. 1.32) 

Equation (II. 1.32) states that the stress a is directly proportional to the bending moment M 
and the distance y from the neutral axis (Fig. II. 1.7). The maximum stress is 

Mc 
(II. 1.33) 

where c = ymax- Equation (II. 1.33) can also be written in the following two forms 

_ M _M 
(II. 1.34) 

where Z = lie is called the section modulus. 
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M, P- " X Z 

FIGURE ll.l .8 Normal stress of asymmetrical section beam. 

Normal Stresses in Beams with Asymmetrical Sections 
If the plane of bending coincides with one of the two principal axes of the section, the 
results of the previous section can be applied to beams with asymmetrical sections. 

From Eq. (11.1.28), the stress at a distance y from the neutral axis is 

Ey 
(II. 1.35) 

The force on the element of area dA shown in Figure II. 1.8 is 

Ey 
dF = adA = — - d A . 

P 

The moment of this force about the j-axis gives 

M. = f zdF= f azdA = - - fyzdA, (II.1.36) 

where the integral is across the section. The last integral in Eq. (II. 1.36) is the product of 
inertia lyz- If the bending moment on the beam is in the plane of one of the principal axes 
then 

^yz -f yz dA = 0. (II. 1.37) 

Hence, the relations developed in the preceding section can be applied to beams having 
asymmetrical sections only if lyz = 0. 

Shear Stresses in Beams 
In the general case, beams have both shear forces and bending moments acting upon them. 
A beam of constant cross section subjected to a shear force V = Vj and a bending moment 
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FIGURE 11.1.9 Shear stresses. 

Mz = Mk (j and k are the unit vectors corresponding to the y- and z-axes) is considered in 
Figure 11.1.9. The relationship between V and M is 

V = 
dM 

dx 
(11.1.38) 

An element of length dx located at a distance yi above the neutral axis is considered. 
Because of the shear force, the bending moment is not constant along the x-axis. The 
bending moment M on the beginning side of the section produces the normal stress a and 
the bending moment M + dM on the end side of the section produces the normal stress 
or -\-da. The normal stress a generates the force Ft, = Ft,! and the the normal stress a -\-da 
generates the force F^ = —Fe i. Since Fe > F^, the resultant of these forces would cause the 
element to slide in the —x direction. To ensure equilibrium, the resultant must be balanced 
by a shear force acting in the -\-x direction on the bottom of the section. A shear stress r 
generates the shear force F^ = Fsi. 

The force on the beginning side is 

Fb dA, (II. 1.39) 
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where the integration is from the bottom of the element y = yito the topy = c and dA is a 
My 

small element of area on the face. Using the expression cr = — , Eq. (II. 1.39) yields 

M r 
Fb = - ydA. (II.1.40) 

^ Jyi 

The force acting on the end face is calculated in a similar way: 

f^ M + dM C^ 
Fe= (a + dcr) dA = / y dA. (II.1.41) 

Jyi I Jyi 

The force on the bottom face is 

Fs^xhdx, (II. 1.42) 

where h is the width of the element and h dx is the area of the bottom face. 
The sum of all the forces on x direction gives 

Y^F, = Fb-Fe + Fs = 0, (II.1.43) 

or 

M + dM r Mr dM r 
Fs = Fe-Fb = / ydA-- I ydA=— ydA. (II.1.44) 

Jyi ^ Jyi ^ Jyi 

Substituting Eq. (II. 1.42) for Fe and solving for shear stress gives 

dM 1 r 

dx lb Jy^ 

Using Eq. (II. 1.38), the shear stress formula becomes 

V r 
r = - ydA. (II.1.46) 

Ibjy^ 

The integral 

Q= f ydA (II. 1.47) 
Jyi 

is the first moment of area of the vertical face about the neutral axis. Therefore, Eq. (II. 1.46) 
can be rewritten as 

VQ 
T = - ^ , (II.1.48) 

lb 
where / is the second moment of area of the section about the neutral axis. 
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FIGURE 11.1.10 Stresses in beam with rectangular cross section: (a) side view; (b) cross-section 
view. 

Figure II. 1.10 shows a part of a beam with a rectangular cross section. A shear force 
V = y J and a bending moment M^ = Mk act on the beam. Due to the bending moment, a 
normal stress a is produced on a cross section of the beam, such as A — A. The beam is in 
compression above the neutral axis and in tension below. An element of area dA located at 
a distance y above the neutral axis is considered. With dA = b dy, Eq. (II. 1.47) becomes 

r by^ 
ydA = b ydy=—-

Jyi ^ yi 
= \ic'-y\y (II. 1.49) 

Substituting Eq. (II. 1.49) into Eq. (II. 1.48) gives 

T = —{C •y\y (II. 1.50) 

Equation (II. 1.50) represents the general equation for shear stress in a beam of rectangular 
cross section. The expression for the second moment of area / for a rectangular section is 

bh^ 
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V 
TABLE IL1.4 Variation of shear stress r = C— 

A 

Distance y\ 

Factor C 

0 

1.50 

0.2c 

1.44 

0.4c 

1.26 

0.6c 

0.96 

0.8c 

0.54 

c 

0 

Source: J. E. Shigley and C. R. Mischke, Mechanical Engineering Design, 
McGraw-Hill, New York, 1989. Reprinted with permission of McGraw-Hill. 

and, substituting h = 2c and A = bh = 2bc, the expression for / becomes 

Ac^ 
/ = — . (11.1.51) 

Substituting Eq. (II. 1.51) into Eq. (II. 1.50) yields 

The values C versus j i are Hsted in Table II. 1.4 [20]. The maximum shear stress is obtained 
for yi = 0, that is 

3V 
Tmax = ^ , (11.1.53) 

and the zero shear stress is obtained at the outer surface where >̂ i = c. Formulas for the 
maximum flexural shear stress for the most commonly used shapes are listed in Table II. 1.5. 

Torsion 
A torque vector is a moment vector coUinear with an axis of a mechanical element, causing 
the element to twist about that axis. A torque Tx = T\ applied to a solid round bar is shown 
in Figure II. 1.11. The angle of twist is given by the following relation: 

Tl 
0 = — , (11.1.54) 

UJ 

where T is the torque, / the length, G the modulus of rigidity, and / the polar second 
moment of area. Since the shear stress is zero at the center and maximum at the surface for 
a solid round bar, the shear stress is proportional to the radius p, namely 

T = —. (II. 1.55) 

If r is the radius to the outer surface, then 

tm.x = ^ . (11.1.56) 
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TABLE 11.1.5 Formulas for maximum shear 
stress due to bending 

Beam shape Formula 

Rectangular 

O 
Circular 

3V 

2A 

4V 

3A 

2V 
Hollow round 

Web 

Structural ^web 

Source: J. E. Shigley and C. R. Mischke, Mechanical 

Engineering Design, McGraw-Hill, New York, 1989. 

Reprinted with permission of McGraw-Hill. 

FIGURE 11.1.11 Bar in torsion. 
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For a solid round section with the diameter d, the polar second moment of area is 

_ 7 r j 4 

32 ' 

and for a hollow round section with the outside diameter do and inside diameter di, it is 

^_7tidi-df) 

32 • 

For a rotating shaft, the torque T can be expressed in terms of power and speed: 

^ ~ 33000(12) ~ 33000 ~ 63000' ^^^'^' ^^ 

where H is the power in hp, T is the torque in Ib-in, n is the shaft speed in rpm, F is the 
force in lb, and V is the velocity in ft/min. For SI units the power is 

H = Ta), (11.1.58) 

where H is the power in W, T is the torque in N-m, and co is the angular velocity in rad/s. 
The torque T can be approximated by 

T = 9 .55 - , (II. 1.59) 
n 

where / / is in W and n is in rpm. 
For rectangular sections, the following approximate formula applies [20]: 

Tmax = ^ ( ^ + l-S-), (II.1.60) 

where w and t are the width and the thickness of the bar, respectively (t < w). 

11.1.2 Deflection 
A rigid element does not bend, deflect, or twist when an external force or moment is exerted 
on it. Conversely, SL flexible element changes its geometry when an external force, moment, 
or torque is applied. Therefore, rigidity and flexibility are terms that apply to particular 
situations. 

The property of a material that enables it to regain its original geometry after having 
been deformed is called elasticity. A straight beam of length /, which is simply supported 
at the ends and loaded by the transversal force F, is considered in Figure 11.1.12(a). If the 
elastic limit of the material is not exceeded (as indicated by the graph), the deflection y of 
the beam is linearly related to the force and, therefore, the beam can be described as a linear 
spring. 

The case of a straight beam supported by two cylinders is illustrated in Figure 11.1.12(b). 
As the force F is applied to the beam, the length between the supports decreases and, 
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A^ y j ^^^ 

(b) 

Source: J. E. Shigley, and C. R. Mischke, Mechanical 
Engineering Design^ McGraw-Hill, Inc., 1989. 

FIGURE n.1.12 Beam described as a (a) linear spring; (b) nonlinear stiffening spring. Reprinted 
witii permission of McCraw-f-lill. 

therefore, a larger force is needed to deflect a short beam than that required for a long one. 
Hence, the more this beam is deflected, the stiffer it becomes. The force is not linearly 
related to the deflection, and, therefore, the beam can be described as a nonlinear stiffening 
spring. 

The spring rate is defined as 

k{y)= lim -—- = — , 
Aŷ O Ay dy 

(IL1.61) 
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where y is measured at the point of appHcation of F in the direction ofF[F = F(y)]. For a 
linear spring, /r is a constant called the spring constant, and Eq. (11.1.61) becomes 

k=-. (11.1.62) 
y 

The total extension or deformation of a uniform bar is 

Fl 
8 = — , (II.1.63) 

AE 

where F is the force applied on the bar, / the length of the bar, A the cross-section area, 
and E the modulus of elasticity. From Eqs. (II. 1.62) and (II. 1.63), the spring constant of an 
axially loaded bar is obtained: 

AE 
k=—. (II. 1.64) 

If a uniform round bar is subjected to a torque T, the angular deflection is 

Tl 
0 = --, (11.1.65) 

LrJ 

where T is the torque, / the length of the bar, G the modulus of rigidity, and / the polar 
moment of area. Multiplying Eq. (II. 1.65) by 180/:7r and substituting / = nd^l^l (for a 
solid round bar), the expression for 0 becomes 

583.67/ 
0 = ^ ^ , (II.1.66) 

where 0 is in degrees and d is the diameter of the round cross section. The torsional spring 
rate is defined as 

T GJ 

' = -e=T- ^''-'-''^ 
If a beam is subjected to a positive bending moment M, the beam will deflect downward. 

The relationship between the curvature of the beam and the external moment M is 

'- = % mm 
p EI 

where p is the radius of curvature, E the modulus of elasticity, and / the second moment of 
area. The curvature of a plane curve is 

1 d^y/dx 
p [l + (jyjjc)2]3/2' 

,2 

(II. 1.69) 
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where y is the deflection of the beam at any point of coordinate x along its length. The slope 
of the beam at point x is 

dy 

ax 
(II. 1.70) 

If the slope is very small, that is, ^ ^ 0, then the denominator of Eq. (II. 1.69) is expressed 
as 

1 + 
3/2 

= [l+6>2j3/2 

Hence, Eq. (II. 1.68) yields 

Differentiating successively Eq. (II. 1.71) two times gives 

M 

EI ~ 

(f-y 
dx^ 

[) two times 

V 

EI " 

q 
EI 

d^y 

' dx^' 

d'^y 

' dx^' 

where q is the load intensity and V the shear force: 

_dM dV _ d^M 

dx dx dx^ 

The above relations can be arranged as follows: 

EI 

V 

Yl 
M 

Tl 

dx' 

y =fix). 

d^ 

d?' 
d^y 

dx^' 

d^ 

d^' 

(II. 1.71) 

(II. 1.72) 

(II. 1.73) 

(II. 1.74) 

(II. 1.75) 

(II. 1.76) 

(II. 1.77) 

(n.1.78) 

Figure II. 1.13 shows a beam of length / = 10 in. loaded by the uniform load w = 10 lb/in. 
All quantities are positive if upward and negative if downward. Figure II. 1.13 also shows the 
shear force, bending moment, slope and deflection diagrams. The values of these quantities 
at the ends of the beam, that is at A: = 0 and ;«: = /, are called boundary values. For example, 
the bending moment and the deflection are zero at each end because the beam is simply 
supported. 
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i 
/ = 10in \ 

R2 

•X Ri = R2 
wl 

+50 lb 

Ely 

e 
FIGURE 11.1.13 Uniformly loaded beam. 

Deflections Analysis Using Singularity Functions 
A simply supported beam acted upon by a concentrated load at the distance a from the 
origin of the xy coordinate system is shown in Figure II. 1.14. The analytical expression for 
the deflection of the beam will be calculated using the singularity functions. The deflection 
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FIGURE I l . l .14 Simply supported beam loaded by a concentrated force. 

of the beam in between the supports (0 < JC < /) will be determined. Thus, Eq. (II. 1.74) 
yields 

(II. 1.79) 
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Due to the range chosen for x, the reactions Ri and R2 do not appear in the above equation. 
Integrating from 0 to x Eq. (11.1.79) and using Eq. (II. 1.75) gives 

EI-4 = V = -F(x - af + Ci, (II.1.80) 

where C\ is an integration constant. Using Eq. (II. 1.76) and integrating again we obtain 

EI-^ =M = -F{x - a)^ + Cix + C2, (II.1.81) 

where C2 is also an integration constant. We can determine the constants Ci and C2 by 
considering two boundary conditions. The boundary condition can be M = 0 at jc = 0 
applied to Eq. (II.1.81) which gives C2 = 0 andM = 0 at jc = / also applied to Eq. (II.1.81) 
which gives 

F(l-a) Fb 

^' = —r- = T' 
Substituting Ci and C2 in Eq. (II. 1.81) gives 

d^y Fbx 1 
EI—^ =M=—--F{x-a)\ (11.1.82) 

dx"^ I 

Integrating Eq. (II. 1.82) twice accordingly to Eqs. (II. 1.77) and (II. 1.78) yields 

dy Fbx^ Fix - af 
El-f =EIO = — ^ — ^ + C3, (IL1.83) 

dx 21 2 

Fbx^ F{x - a)^ 
Ely = —- ^ + C3X + C4. (II.1.84) 

0/ o 

The integration constants C3 and C4 in the above equations can be evaluated by considering 
the boundary conditions j = 0 at JC = 0 and y = 0 aXx = l. Substituting the first boundary 
condition in Eq. (II. 1.84) yields C4 = 0. The second condition substituted in Eq. (II. 1.84) 
yields 

^ Fbfi Fb^ ^ , 
0 = — 7- + <^3/, 

o o 
or 

Fb ^ 0 

0/ 

Substituting C3 and C4 in Eq. (II. 1.84), the analytical expression for the deflection y is 
obtained: 

F Jl . i,2 i2x 1. ^\3i 
6EII 

The shear force and bending moment diagrams are shown in Figure II. 1.14. 
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(a) (b) 

FIGURE 11.1.15 Strain energy due to: (a) direct shear; (b) bending. 

Strain energy 
The work done by the external forces on a deforming elastic member is transformed into 
strain, or potential energy. Ify is the distance a member is deformed, then the strain energy is 

F F^ 
U = -y= —. 

T Ik 
(II. 1.86) 

where y = |-. In the above equation, F can be a force, moment or torque. 
For tension (compression) and torsion, the potential energy is, respectively. 

U 
FH_ 

2AE' 

and 

U = 
2GJ' 

(11.1.87) 

(II. 1.88) 

Figure 11.1.15(a) shows an element with one side fixed. The force F places the element 
in pure shear and the work done is U = F8/2. The shear strain is y = 8/1 = r/G = F/AG. 
Therefore, the strain energy due to shear is 

U = 
FH 

2AG' 
(II. 1.89) 

The expression for the strain energy due to bending can be developed by considering a 
section of a beam as shown in Figure 11.1.15(b). The section PQ of the elastic curve has 
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the length ds and the radius of curvature p. The strain energy is dU — (M/2)d6. Since 
pdO = ds, the strain energy becomes 

Mds 
dU=: . (II. 1.90) 

2p 

Considering Eq. (II. 1.68), p can be eliminated in Eq. (II. 1.90) and 

M^ds 
dU= . (II.1.91) 

2EI ^ 

The strain energy due to bending for the whole beam can be obtained by integrating 
Eq. (II. 1.91) and considering that ds ^ dx for small deflections of the beam, that is 

- / 

M^dx 
. (II. 1.92) 

2EI ^ ' 

The strain energy stored in a unit volume u can be obtained by dividing Eqs. (II. 1.87), 
(II. 1.88), and (II. 1.89) by the total volume lA 

^ ' • . 
M = — tension and compression, 

IE ^ 
u— — direct shear, 

2G 

u = -^^^ torsion. 
4G 

Even if shear is present and the beam is not very short, Eq. (II. 1.92) still gives good results. 
The expression of the strain energy due to shear loading of a beam can be approximated by 
considering Eq. (11.1.89) multiplied by a correction factor C. The values of C depend upon 
the shape of the cross section of the beam. Thus, the strain energy due to shear in bending is 

-f - ' ^ . 

where V is the shear force. Table II. 1.6 lists the values of the correction factor C for various 
cross sections. 

Castigliano's theorem provides an approach to deflection analysis. 

Castigliano's theorem: When forces act on a systems subject to small elastic displacements, 
the displacement corresponding to any force, coUinear with the force, is equal to the partial 
derivative of the total strain energy with respect to that force. 

Castigliano's theorem can be written as 

du 
8i = — , (II.1.94) 

aJhi 
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TABLE 11.1.6 Strain energy correction factors for shear 

Beam cross-sectional shape Factor C 

Rectangular 1.50 
Circular 1.33 
Tubular, round 2.00 
Box sections 1.00 
Structural sections 1.00 

Source: A. P. Boresi, O. M. Sidebottom, F. B. Seely, and J. O. 
Smith, Advanced Mechanics of Materials, 3rd ed., John Wiley & 
Sons, New York, 1978, p. 173. Reprinted with permission of John 
Wiley & Sons, Inc. 

where 5/ is the displacement of the point of appUcation of the force F/ in the direction of 
Fi and U is the strain energy. For example, applying Castigliano's theorem for the cases of 
axial and torsional deflections and considering the expressions for the strain energy given 
by Eqs. (II. 1.87) and (II. 1.88), the following relations are obtained: 

~ aF \2AE) ~ 
Fl 
— . (11.1.95) 
AE 
Tl 

- . (n.1.96) 

Even though no force or moment act at a point, Castigliano's theorem can be used to 
determine the deflection: 

• Consider a fictitious force or moment Pi at the point of interest and calculate the 
expression of the strain energy including the energy due to that dummy force or 
moment. 

• Find the expression for the deflection using Eq. (II. 1.96) where the differentiation will 
be performed with respect to the fictitious force or moment P/, that is, 

du 
.,. = - . (II.1.97) 

• Solve Eq. (II. 1.97) and set Pi = 0, since Pi is a fictitious force or moment. 

Compression 
The analysis and design of compression members depend upon whether these members are 
loaded in tension or in torsion. The term column is applied to those members for which 
failure is not produced because of pure compression. Columns are classified according to 
their length and to whether the loading is central or eccentric. The problem of compression 
members is to find the critical load that produces the failure of the member. Next, the 
approach presented by Shigley and Mischke will be presented [20]. 

1. Long columns with central loading 
Figure II. 1.16 shows long columns of length / having applied an axial load P and 
various end conditions. The load P is applied along the vertical symmetry axis of 
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B 

/77777 

(a) (b) (c) (d) 

Source : J. E. Shigley, and C. R. Mischke, Mechanical Engineering Design^ 
McGraw-Hill, Inc., 1989. 

FIGURE 11.1.16 Long columns: (a) both round ends column; (b) both fixed ends column; (c) one 
free end and one fixed end column; (d) one rounded end and one fixed end column. Reprinted with 
permission of McGraw-Hill. 

the column. The end conditions shown in Figure II. 1.16 are: 

• rounded (or pivoted) — rounded ends [Fig. II. 1.16(a)] 

• fixed — fixed ends [Fig. II. 1.16(b)] 

• free — fixed ends [Fig. II. 1.16(c)] 

• rounded — fixed ends [Fig. II. 1.16)(d)]. 
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To develop the relationship between the critical load Per and the column material 
and geometry, the situation shown in Figure 11.1.16(a) is considered. The figure 
shows that the bar is bent in the positive y direction and, thus, a negative moment is 
required: 

M = -Py. (11.1.98) 

Equations (II. 1.76) and (II. 1.98) give 

d^y P 

5? = -n^- <"•'"> 
or 

with the solution 

dh P 
^ + - , = 0, (n.1.100) 

P P 
y = A sin J—jc + 5coS J — x , (II. 1.101) 
^ M EI y EI ^ ^ 

where A and B are constants of integration which can be determined by considering 
the boundary conditions j = 0 at jc = 0 and y = Oatx = I. Substituting the two 
boundary conditions inEq. (II. 1.101), results inB = 0 and 

0 = A s i n J — / . (II.1.102) 
y EI ^ ^ 

If A = 0 is considered into Eq. (II. 1.102), the trivial solution of no buckling is 
obtained. 

If A # 0, then 

smJyl = 0, (II.1.103) 

which is satisfied if I = nn, where n = 1.2,3 

The critical load associated with n = lis called the first critical load and is given 
by the following expression: 

TT^EI 
Per = - ^ . (II.1.104) 

Equation (II. 1.104) is called Euler column formula and applied only for colunms 
with rounded ends. Substituting Eq. (II. 1.104) into Eq. (II. 1.101), the equation of the 
deflection curve is obtained: 

> ' = A s i n — . (II.1.105) 

The minimum critical load occurs forn = 1. 
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Consider the relation / = Ak^ for the second moment of area /, where A is the cross-
section area and k the radius of gyration. Equation (II. 1.104) can be rewritten as 

Per ^^E 

where the ratio l/k is called the slendemess ratio and Pcrl^ is the critical unit load. 
The critical unit load is the load per unit area which can place the column in unstable 
equilibrium. Equation (II. 1.106) shows that the critical unit load depends only upon 
the modulus of elasticity and the slendemess ratio. 

Figure 11.1.16(b) depicts a column with both ends fixed. The inflection points are 
at A and B located at a distance IIA from the ends. The distance AB is the same curve 
as for a colunm with rounded ends. Substituting the length / by 111 in Eq. (II. 1.104), 
the expression for the first critical load is 

Figure 11.1.16(c) shows a column with one end free and the other one fixed. The 
curve of the free-fixed ends column is equivalent to half of the curve for columns 
with rounded ends. Therefore, if 2/ is substituted in Eq. (II. 1.104) for /, then the 
critical load for this case is obtained: 

n^EI n^EI 

Figure 11.1.16(d) shows a column with one end fixed and the other one rounded. 
The inflection point is the point A located at a distance of 0.707/ from the rounded 
end. Therefore, 

The above situations can be summarized by writing the Euler equation in the 
following forms: 

^'' - fi A - m?' ^ ^ ^ ^ 

where C is called the end-condition constant. It can have one of the values listed in 
Table 11.1.7. 

Figure II. 1.17 shows the unit load Perl A as a function of the slendemess ratio Ilk. 
The curve PQR is obtained. The quantity Sy corresponds to point Q and represents 
the yield strength of the material. From the graph it results that any compression 
member having the Ilk value less than (llk)Q should be treated as a pure com-
pression member, while all others can be treated as Euler columns. In practice, this 
fact is not tme. Several tests showed the failure of columns with the slendemess 
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TABLE n.1.7 End condition constants for Euler columns 

Column end 
conditions 

Fixed-free 

Rounded-rounded 

Fixed-rounded 

Fixed-fixed 

Theoretical 
value 

\IA 

1 

2 
4 

End-condition constant C 

Conservative 
value 

1/4 

1 

1 

1 

Recommended 
value * 

1/4 

1 

1.2 

1.2 

* To be used only with liberal factors of safety when the column load is accurately known. 
Source: J. E. Shigley and C. R. Mischke, Mechanical Engineering Design, 5th ed., New York, 
McGraw-Hill, 1989, p. 123. Reprinted with permission of McGraw-Hill. 

o 

a 
P 

Slenderness ratio 

Source: J. E. Shigley, and C. R. Mischke, Mechanical Engineering Design, 
McGraw-Hill, Inc., 1989. 

FIGURE 11.1.17 Euler's curve. Reprinted with permission of McGraw-Hill. 

ratio below or very close to point Q. For this reason, neither simple compression 
methods nor the Euler column equation should be used when the slenderness ratio is 
near (l/k)Q. The solution in this case is to consider a point T on the Euler curve of 
Figure II. 1.17 such that, if the slenderness ratio corresponding to T is (l/k)i, the 

Stress and Deflection 467 



Euler equation should be used only when the actual slendemess ratio of the column 
is greater than (l/k)i. Point T can be selected such that Pcr^A = Sy/2. 
From Eq. (11.1.110), 
the slendemess ratio (l/k)i is obtained: 

U A " V Sy 
— \ . (ILl.lll) 

2. Intermediate-length columns with central loading 
When the actual slendemess ratio Ilk is less than {llk)\ (the region in Fig. 11.1.17 
where the Euler formula is not suitable), ih^ parabolic or /. B. Johnson formula 
can be used: 

T ^ - K O ' - •"•'"'' 
where a and b are constants that can be obtained by fitting a parabola to the Euler 
curve in Figure II. 1.17 (the dashed line ending at T). The constants are 

a = Sy, (II.1.113) 

and 

, 2 

CE 

Substituting Eqs. (IL1.113) and (II.1.114) into Eq. (II.1.112) yields 

\27t) CE 
(II. 1.114) 

\2nk) CE' 
^^=5,-f;^|V—, (II.1.115) 

which can be applied if | < (11 . 

3. Columns with eccentric loading 
Figure 11.1.18(a) shows a column acted upon by a force P that is applied at a 
distance e, 
also called eccentricity, from the centroidal axis of the column. The free-body 
diagram is shown in Figure 11.1.18(b). Equating the sum of moments about the 
origin O to zero gives 

^ M o = M + P^ + Py = 0. (II.1.116) 

Substituting M from Eq. (II. 1.116) into Eq. (II. 1.76), a nonhomogeneous second 
order differential equation is obtained: 

(fy P Pe 
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(a) (b) 

FIGURE II.1.18 (a) Eccentric loaded column and (b) free-body diagram. 

Considering the following boundary conditions 

X = 0, >' = 0, 

2' dx 

and substituting x = 1/2 in the resulting solution, the maximum deflection 8 and the 
maximum bending moment Mmax ^^ obtained: 

8 = e sec I - J — — 1 
\2y EI 

(II.1.118) 
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Umax = -P{e-\-8) = -PesQcl^^l— 1 . (11.1.119) 

At X = 1/2, the compressive stress a^ is maximum and can be calculated by 
adding the axial component produced by the load P and the bending component 
produced by the bending moment M^ax^ that is 

P Mc P Mc 

^^ = -A-T = -A-W- ^''-'-'''^ 
Substituting Eq. (11.1.119) into Eq. (11.1.120) yields 

P 
Or — — 

A 
(II.1.121) 

Considering the yield strength Sy of the column material as GC and manipulating 
Eq. (II. 1.121) gives 

P S. yc 

A 1 + (ec/k^) SQc[il/2kWP/AE]' 
(II. 1.122) 

This equation is called the secant column formula and the term ec/k^ is the 
eccentricity ratio. Since Eq. (II. 1.122) cannot be solved explicitly for the load P, 
root-finding techniques using numerical methods can be appHed. 

4. Short compression member 
A short compression member is illustrated in Figure II. 1.19. At point D of coordinate 
y, the compressive stress in the x-direction has two components, one due to the axial 
load P which is equal to P/A and the other due to the bending moment which is 
equal to My/I. The compressive stress is 

P My P 
A I A lA 

= ^ ( n - g ) , (II.1.123) 

where k = {I/A)^'^ is the radius of gyration, y the coordinate of point D, and e the 
eccentricity of loading. Setting a^ = 0 and solving, the j-coordinate of a line 
parallel to the jc-axis along which the normal stress is zero is obtained: 

y = . (II.1.124) 
e 

If J = c at point B in Figure 11.1.19, the largest compressive stress is obtained. 
Hence, substitutingy = cinEq. (II. 1.123) gives 

For design or analysis, Eq. (II. 1.125) can be used only if the range of lengths for 
which the equation is valid is known. For a strut, it is desired that the effect of 
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FIGURE n.l.19 Short compression member. 

bending deflection be within a certain small percentage of eccentricity. If the 
limiting percentage is 1% of e, then the slendemess ratio is bounded by 

ai--(̂  \ 1/2 

(11.1.126) 

Therefore, the limiting slendemess ratio for using Eq. (II. 1.125) is given by 
Eq.(II.1.126). 

Stress and Deflection 471 



11.1.3 Examples 

EXAMPLE 11.1,1: 

For a stress element having o^ — 100 MPa and t̂ y = 60 MPa (cw), find the 
principal stresses and directions on a stress element with respect to the xy system. 
Plot the maximum and minimum shear stresses x\ and r2, and find the corresponding 
normal stresses on another stress element. The stress components that are not given 
are taken as zero. 

Solution First, the Mohr's circle diagram corresponding to the given data will 
be constructed. Then, using the diagram the stress components will be calculated. 
Finally, the stress components will be drawn. 

The first step to construct Mohr's diagram is to draw the a- and r-axes 
[Fig. 11.1.20(a)] and locate the points A of CT;, = 100 MPa and C of a3; = 0 MPa on 
the a-axis. 

Then, Zxy = 60 MPa is represented in the cw direction and Xyx = 60 MPa in the 
ccw direction. Hence, point B has the coordinates aĵ  = 100 MPa, r̂ y = 60 MPa 
and point D has the coordinates ax = 0 MPa, tyx = —60 MPa. The line BD is 
the diameter and point £"(0,50) the center of the Mohr's circle. The intersections of 
the circle with the cr-axis give the principal stresses ai and (72 at points F and G, 
respectively. 

The jc-axis of the stress elements is line EB and the j-axis line ED. The segments 
BA and AE have the length of 60 and 50 MPa, respectively. The length of segment 
BE is 

BE = HE = Ti= ^(60)2 + (50)2 ^ 73 j ^ p ^ . 

Since the intersection E is 50 MPa from the origin, the principal stresses are 

ai = 50 + 78.1 = 128.1 MPa, a2 = 50 - 78.1 = -28.1 MPa. 

The angle 20 with respect to the jc-axis cw to ai is 

20 = tan - 1 60 

50 
50.2°. 

For the first stress element, the x- and j-axes are parallel to the original axes as 
shown in Figure 11.1.20(b). The angle 0 is in the same direction as the angle 20 in 
the Mohr's circle diagram. Thus, measuring 25.1° (half of 50.2°) clockwise from 
jc-axis, (71-axis is located. The a2-axis will be at 90° with respect with the (7i-axis, 
as shown in Figure 11.1.20(b). 

For the second stress element, the two extreme shear stresses occur at the points 
H and / in Figure 11.1.20(a). The two normal stresses corresponding to these shear 
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EXAMPLE 11.1.1: Cont'd 

stresses are equal each to 50 MPa. Point H is 39.8° ccw from point B in the Mohr's 
circle diagram. Therefore, the stress element is oriented 19.9° (half of 39.8°) ccw 
from X as shown in Figure 11.1.20(c). 

stress element 

stress element 

FIGURE 11.1.20 Mohr's circle application for Example 11.1.1. 

Stress and Deflection 473 



EXAMPLE 11.1.2: 

Develop the expressions for the load, the shear force, and the bending moment for 
the beam in Figure II. 1.21. 

Solution The beam shown in Figure II. 1.21 is loaded with the concentrated forces 
Fi and F2. The reactions Ri and R2 are also concentrated loads. Thus, using 
Table II. 1.3, the load intensity has the following expression: 

q(x) = Riix)-^ -Fi{x- / i)-i - F2{x - h)'^ + R2{x - l)-\ 

The shear force i s y = 0atjc = —00. Hence, 

V{x) = [ q{x) dx = Ri {xf -Fi{x- hf - Fiix - hf + Riix - if. 
J—00 

A second integration yields 

M(x) = i V(x)dx = Ri{x)^-Fi(x-li)^-F2(x-l2)^-{-R2{x-l)\ 
J—00 

To calculate the reactions Ri and R2 the functions V(x) and M(x) are evaluated at 
X slightly larger than /. At that point, both shear force and bending moment must be 
zero. Therefore, V(x) = 0 at jc slightly larger than /, that is, 

V = Ri-Fi-F2-\-R2 = 0. 

Similarly, the moment equation yields 

M = Ril- Fi(l - h) - F2(l - h) = 0. 

The preceding two equations can be solved to obtain the reaction forces Ri and R2. 

y 

o 

R^ 

[ 

IM 

1̂ 

^1 

h 

r 

F2 

l__ 

^ 

] 

• J 
Ro 

FIGURE n.l .21 Free-body diagram for simply supported beam loaded by concentrated 
forces in Example 11.1.2. 
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EXAMPLE 11.1.3: 

A cantilever beam with a uniformly distributed load w is shown in Figure II. 1.22. 
The load w acts on the portion a < x < l. Determine the expressions of the shear 
force and the bending moment. 

Solution The moment Mi and the force Ri are the support reactions. Using 
Table II. 1.2, the load intensity function is 

q(x) = -Ml {x)~^ + Ri (jc>-̂  - w(x - af. 

Integrating successively two times gives 

V(x)= / q(x)dx = -Mi{x)-^-^Ri(x)^-w{x-a)\ 
J —00 

V(x) dx = -Miixf -\-Ri{x)^ - -(x-af. 
-oo 2 

The reactions can be calculated by evaluating V(x) and M(x) at x slightly larger than 
/ and observing that both V and M are zero in this region. Shear force equation yields 

-Ml O + Ri -w(l-a) = 0, 

which can be solved to obtain the reaction Ri. The moment equations give 

w 
-Ml +Ril (l-a) = 0, 

which can be solved to obtain the moment Mi. 

FIGURE 11.1.22 Free-body diagram for cantilever beam with a uniformly distributed 
load in Example 11.1.3. 
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EXAMPLE 11.1.4: 

Determine the diameter of a solid round shaft OC, shown in Figure II. 1.23, such that 
the bending stress does not exceed 10 kpsi. The transversal loads are FA = 800 lb 
and FB = 300 lb. The length of the shaft is / = 36 in., a=\2 in., and b =\6 in. 

y 

°' 

V 

0 

I 1 1 

FA FB 

a 

^ 

i A 

\^0 

600 

M 

b 

^ 1 
B 

(a) 

200 

(b) 

ck 1 

500 

\RC 

X 

\ LJ • • jb \ 

(c) 

FIGURE n.l .23 Loading diagram for Example II. 1.4: (a) free-body diagram; (b) shear force 

\ ^'^l ̂ram; (c) bending mon lent diagram. 
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EXAMPLE 11.1.4: Cont'd 

Solution The moment equation for the shaft about C yields 

Y^Mc = -IRo + (/ - a)FA -\-(l-a- b)FB = -36Ro + 24(800) + 8(300) = 0. 

This equation gives RQ = 600 lb. 
The force equation for the shaft with respect to the y-axis is 

J2Fy=Ro-FA-FB-\-Rc=Ro- 800 - 300-\-Re, 

yielding Re = 500 lb. 
The shear force and the bending moment diagrams are shown in Figure 11.1.23(b) 

and (c). 
The maximum bending moment is 

M = 600(12) = 7200 lb • in. 

The section modulus is 

l = '^=0.09S2d\ 
c 32 

Then, the bending stress is 

M 7200 
I/c 0.0982J3 • 

Considering a = 10 000 psi and solving for d, it results: 

J 7200 _ 1 Q4 • 
~ V 0.0982(10000) " * ^ '̂ 

EXAMPLE 11.1.5: 

Figure II. 1.24 [20] shows the link 1 with the length / = 4 in., the width w = 1.25 in., 
and the thickness t = 0.25 in. The link is loaded by the force F = 1000 lb. at the 
distance a = 1 in. This force causes the twisting and bending of a shaft 2 with the 
diameter D = 0.75 in. and the length L = 5 in. Find: (a) the force, the moment, 
and the torque at the origin A and (b) the maximum torsional stress and the bending 
stress in the arm BC. 

Solution The free-body diagrams of links 1 and 2 are shown in Figure II. 1.25. 
The force and torque at point C are 

F = -lOOOj lb, T = - 1000k lb • in. 
Continued 
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EXAMPLE 11.1.5: Cont'd 

Source : J. E. Shigley, and C. R. Mischke, Mechanical Engineering Design, McGraw-Hill, 
Inc.,1989. 

FIGURE n.1.24 Crank mechanism for Example 11.1.5. Reprinted with permission of 
McGraw-Hill. 

The force, moment, and torque at the end B of the arm BC are 

F = lOOOj lb, M = 40001 lb • in., T = 1000k lb • in. 

The force, moment, and torque at the end B of the shaft AB are 

F = - lOOOj lb, T = -40001 lb in, M = - 1000k lb • in. 

The force, moment, and torque at the end A of the shaft AB are 

F = lOOOj lb, M = 6000k lb • in., T = 4000i lb • in. 

For the arm BC, the bending stress will reach a maximum near the shaft at B. The 
bending stress for the rectangular cross section of the arm is 

M 6M 6(4000) ^ , 

He bh^ 0.25(1.25)2 

The torsional stress is 

wv ( - - i ) - 1000 / 0.25 \ 
^ 3 + 1.8 = 43008 psi. 

25(0.25)2 V 1.25/ ^ 
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EXAMPLE 11.1.5: Cont'd 

Source : J. E. Shigley, and C. R. Mischke, Mechanical Engineering Design, McGraw-Hill, 
Inc., 1989. 

FIGURE n.1.25 Free-body diagrams of the crank mechanism for Example II. 1.5. Reprinted 
with permission of McGraw-Hill. 

EXAMPLE 11.1.6: 

Figure 11.1.26 shows a beam AC loaded by the uniform distributed force w between 
B and C. Find the analytical expression for the deflection y as a function of x. 

Continued 
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EXAMPLE 11.1.6: Cont'd 

B C 

^ ^ ^ ^ ^ ^ 

FIGURE II.1.26 Cantilever beam loaded by a uniformly distributed force at the free end for 
Example II. 1.6. 

Solution The loading equation for x in the range 0 < x < / is 

q = Rg{x — a)~^ — w{x — a)^, (II.1.127) 

where RB is the reaction at B. Integrating this equation four times accordingly to 
Eqs. (11.1.74)-(II. 1.78) yields 

V = RB{X - af - w(x - a)^ + Cu 
1 W o 

M = RB{X -ay - -{X- ay + C\x + C2, 

Eie = -^{x -af--(x- ay + -^x^ + C2X + C3, 
2 6 2 

RB Ci C2 
Ely ^ —{x-ay -—{x- ay + —x" + —x"- + Czx + C4. 

0 24 6 2 

(II. 1.128) 

(II.1.129) 

(II. 1.130) 

(II.1.131) 

The integration constants Ci to C4 are found using the boundary conditions. 
At jc = 0 both Eie = 0 and Ely = 0. This gives C3 = 0 and C4 = 0. 
At ;c = 0 the shear force is equal to the reaction at A. Therefore, Eq. (II. 1.128) 

gives V(0) = 7?A = Ci. 
The deflection must be zero at;c = a. Thus, Eq. (II.1.131) yields 

^a^ + —a^ = Q or C i - + C2 = 0. 
6 2 3 

(II. 1.132) 

At the free end, at ;c = /, the moment must be zero. For this boundary condition 
Eq. (II. 1.129) gives 

w. 
RB(1 -a)- - ( / - ay + Cil + C2 = 0, 
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EXAMPLE IL1.6: Cont'd 
and using the notation l — a = b,the equation resulted from the sum of the forces in 
the y direction, namely RB = RA -^ ^t> = —Ci -j- wb, 

Cia + C2 = . (11.1.133) 

Solving Eqs. (11.1.132) and (II. 1.133) simultaneously for Ci and C2 gives 

3wb^ _ wb^ 

Therefore, the reaction Rg is obtained: 

CX=RA = - — . C2 = —-. 
Aa 4 

wb 
RB = -RA -\-wb= —{Aa + 3b\ 

Aa 

Equation (II. 1.129) for jc = 0 gives 

wb^ 
M(0) = MA = C2 = - - . 

A 

The analytical expression for the deflection curve is obtained by substituting the 
expressions for RB and the constants Ci, C2, C3, and C4 in Eq. (II.1.131), that is 

Ely = --(Aa + 3b){x -af--{x- af - — — + - — , 
lAa 24 m 8 

EXAMPLE 11.1,7: 
Consider a simply supported beam of length / and rectangular cross section as shown 
in Figure II. 1.27. A uniformly distributed load w is applied to the beam. Find the 
strain energy due to shear. 

Solution The shear force at an arbitrary distance x from the origin is 

wl 
V = Ri — wx = wx. 

The strain energy given by Eq. (II. 1.93) with C = 1.5 (see Table II. 1.1) is 

1.5 f^ fwl V 
2AGJO \2 J 

3vv¥ 

48AG* 
Continued 
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EXAMPLE 11.1.7: Cont'd 

w 

Ri 

FIGURE 11.1.27 Simply supported beam for Example II. 1.7. 

| m _ m _ m | 
R2 

EXAMPLE IL1.8: 

A concentrated load F is applied to the end of a cantilever beam (Fig. II. 1.28). Find 
the strain energy by neglecting the shear. 

Solution The bending moment at any point x along the beam has the expression 
M = —Fx. Substituting M into Eq. (II. 1.92), the strain energy is 

/ T72J1 

6 0 • 

y 

1 
FIGURE 11.1.28 Cantilever beam for Example II. 1.8. 
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EXAMPLE 11.1.9: 

A cantilever of length / is loaded by a transversal force F at a distance a as shown in 
Figure 11.1.29. Find the maximum deflection of the cantilever if shear is neglected. 

Solution The maximum deflection of the cantilever will be at its free end. To apply 
Castigliano's theorem, a fictitious force Q is considered at that point. The bending 
moments corresponding to the segments OA and AB are, respectively, 

MoA=Fix-a) + Q(x-l) 

MAB = Q(x - /). 

The total strain energy is obtained: 

Jo 2EI J a 2EI 

Applying Castigliano's theorem, the deflection is 

f 
Jo 

92 Ja 
IMoA dx + I IMAB - - dx 

ae 

Since 

^MQA _ dMAB 
dQ " dQ 

the expression for the deflection becomes 

= X — I, 

y = Yi\j [^(^-^) + e(^-o](^-/)^^+/ [Qix-i)](x-i)dx\. f 
Ja 

\0 A 

FIGURE n.l.29 Cantilever beam for Example II. 1.9. 
Continued 
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EXAMPLE 11.1.9: Cont'd 

Since 2 is a dummy force, setting Q = Oin the previous equation gives 

a\3l - a) F r a){x — I) dx = 
6EI 

11.1.4 Problems 
II. 1.1 Find the total elongation of a straight bar of length L if a tensile load F is applied at 

the ends of the bar. The cross section of the bar is A and the modulus of elasticity 
is E. 

II. 1.2 The bar in Figure II. 1.30 has a constant cross section and is held rigidly between 
the walls. An axial load F is appHed to the bar at a distance a from the left end. 
The length of the bar is /. Find the reactions of the walls upon the bar. 

VM 
a 

T" - ^ ^ ^ ^ M 
F ^ 

• -M 
I — a 

• ! 

FIGURE II.1.30 Bar for Problem 11.1.2. 

II. 1.3 Consider a straight bar of uniform cross-section A loaded with the axial load F. Find 
(a) the normal and shearing stress intensities on a plane inclined at an angle 0 to the 
axis of the bar and (b) the magnitude and direction of the maximum shearing stress. 

II. 1.4 A straight bar with the uniform cross section of 1.2 in.^ is acted upon by an axial 
force of 14000 lb at each end. Determine (a) the normal and shearing stress 
intensities on a plane inclined at an angle 45° to the axis of the bar and (b) the 
maximum shearing stress. 

II. 1.5 A plane element in a body is subjected to a normal stress in the x-direction of 
ax = 12000 Ib/in.-^, as well as shearing stress (cw) of r^y = 4000 Ib/in.-^ Determine 
(a) the normal and shearing stress intensities on a plane inclined at an angle 30° to 
the normal stress and (b) the maximum shearing stress on the inclined plane. 

II. 1.6 A plane element in a body is subjected to a normal compressive stress in the 
jc-direction of (x<: = —12 000 Ib/in^, as well as shearing stress (ccw) of Zxy = 
—4000 Ib/in.^ Determine (a) the normal and shearing stress intensities on a plane 
inclined at an angle 30° to the normal stress and (b) the maximum shearing stress 
on the inclined plane. 

II. 1.7 A plane element in a body is subjected to a normal stress in the jc-direction of 
cfx = 12 000 Ib/in.^, a normal stress in the y-direction of CTJC = 15 000 Ib/in.^, 
as well as shearing stress (cw) of r̂ y = 8000 Ib/in."^ Determine (a) the principal 
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stresses and their directions and (b) the maximum shearing stresses and the 
directions of the planes on which they occur. 

11.1.8 A plane element in a body is subjected to a normal compressive stress in the 
jc-direction of cxx = —12 000 Ib/in^, a normal stress in the j-direction of GX = 
15 000 Ib/in.^, as well as shearing stress (ccw) of Xxy = —8000 Ib/in.^ Determine 
(a) the principal stresses and their directions and (b) the maximum shearing stresses 
and the directions of the planes on which they occur. 

II. 1.9 A bolted joint is shown in Figure II. 1.31. The diameter of the bolt is 0.75 in. and the 
force is F = 8000 lb. Determine the average shearing stress across either of the 
planes a — a or b — b. 

FIGURE 11.1.31 Bolted join for Problem II. 1.9. 

II. 1.10 Two plates are joined by a single rivet of 1-in. diameter as shown in Figure II. 1.32. 
The load is F = 9000 lb and the rivet holes are 1/16 in. larger in diameter than the 
rivet. The rivet fills the hole completely. Find the average shearing stress developed 
in the rivet. 

FIGURE 11.1.32 Plates joined by a rivet for Problem II. 1.10. 

II. 1.11 The fillet weld is a common type of weld used for joining two plates as shown in 
Figure II. 1.33. The dimensions in Figure II. 1.33 are a = 8 in., b = 1 in., and 

FIGURE 11.1.33 Fillet weld for Problem 11.1.11. 
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h = 0.5 in. The throat of the weld is /. The allowable working stress for shear 
loading is 11000 Ib/in.-̂  Determine the allowable tensile force F that is applied 
midway between the two welds. Only shearing stresses are considered in the weld. 

11.1.12 The shafts and gears are usually fastened together by means of a key, as shown in 
Figure II. 1.34. Consider the gear with the radius R = 10 in. subject to a force F of 
1000 lb. The shaft has a radius r = 1 in. The dimensions of the key are 
t = b = 1/2 in. and L = 3 in. Determine the shear stress on a horizontal plane 
through the key. 

A- A 

FIGURE 11.1.34 Gear with key for Problem II. 1.12. 

II. 1.13 Consider the simply supported beam, shown in Figure II. 1.35, subjected to a 
concentrated moment M. Find the equation of the deflection curve. 

FIGURE ILI .35 Simply supported beam for Problem II. 1.13. 
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II. 1.14 Consider a simply supported beam subjected to a uniform load distributed, w, over 
a portion of its length as indicated in Figure II. 1.36. Determine the equation of the 
deflection curve. 

O 

w 

FIGURE 11.1.36 Simply supported beam for Problem II. 1.14. 

II. 1.15 Consider the cantilever beam of Figure II. 1.37, subjected to a uniform load 
distributed, w, over a portion of its length. Find the equation of the deflection curve. 

/ 

• M 

w 

i 
FIGURE 11.1.37 Cantilever beam for Problem II. 1.15. 

II. 1.16 A sphere of weight W is falling freely through a height h above a cantilever beam 
as shown in Figure II. 1.38. The beam is struck at its tip by the sphere. Determine 
the total deflection of the tip. Neglect the weight of the beam. 

II. 1.17 Consider the simply supported beam, shown in Figure II. 1.39, loaded by a 
concentrated moment M at the left end. Find the equation of the deflection curve 
and the slope at the left end using Castigliano's theorem. 

11.1.18 The overhanging beam of Figure II. 1.40 is loaded by two equal forces F. Find the 
deflection at the left end using Castigliano's theorem. 
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FIGURE n.l .38 Cantilever beam with weigtit for Problem II. 1.16. 

FIGURE 11.1.39 Simply supported beam for Problem II. 1.17. 

FIGURE 11.1.40 Overhanging beam for Problem II. 1.18. 
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11.1.19 Determine the slendemess ratio for a wood column 10 x 10 in. in cross section and 
30 ft. long. 

II. 1.20 A steel bar with the rectangular cross section of 2x2 in. and pined at each end 
is subjected to axial compression. The critical unit load of the material is 
33 000 lb/in.2 and £ = 30 x 10^ Ib/in.^ Find (a) the minimum length for which 
Euler's equation may be used to determine the buckling load and (b) the critical 
load if the bar is 75 in. long. 
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1.2 Fatigue 

A periodic stress oscillating between some limits applied to a machine member is called 
repeated, alternating, ov fluctuating stress. The failure of the machine members under the 
action of these stresses is called fatigue failure. A small crack is enough to initiate the fatigue 
failure. The crack progresses rapidly since the stress concentration effect becomes greater 
around it. If the stressed area decreases in size, the stress increases in magnitude and if the 
remaining area is small, the member can fail. A member failed because of fatigue shows 
two distinct regions. The first one is due to the progressive development of the crack, while 
the other one is due to the sudden fracture. 

11.2.1 Endurance Limit 
The strength of materials acted upon by fatigue loads can be determined by performing 
a fatigue test provided by R. R. Moore's high-speed rotating beam machine (Fig. II.2.1). 
During the test, the specimen is subjected to pure bending by using weights and rotated 
with constant velocity. For a particular magnitude of the weights, one records the number 
of revolutions at which the specimen fails. Then, a second test is performed for a specimen 
identical with the first one, but the magnitude of the weight is reduced. Again, the number 
of revolutions at which the fatigue failure occurs is recorded. The process is repeated 
several times. The intensity of the reversed stress causing failure after a given number of 
cycles is the fatigue strength corresponding to that number of loading cycles. Finally, the 
fatigue strengths considered for each test are plotted against the corresponding number of 
revolutions. The resulting chart is called the S-N diagram. The S-N curves are plotted on 
log-log coordinates. 

Numerous tests have established that the ferrous materials have an endurance limit 
defined as the highest level of alternating stress that can be withstood indefinitely by a test 
specimen without failure. The symbol for endurance limit is 5^. The endurance limit can be 
related to the tensile strength through some relationships. For example, for steel, Mischke 

491 



Revolution 
counter 

Weights 

Source: R. C. Juvinall and K. M. Marshek, "Fundamentals of Machine 
Component Design", John Wiley k Sons, Inc., 1991. 

FIGURE II.2.1 Rotating beam fatigue testing macliine. Reprinted with permission of John Wiley & 
Sons, Inc. 

predicted the following relationships [11]: 

f 0.50 Sut, Sut < 200 kpsi (1400 MPa) 

100 kpsi, Sut > 200 kpsi (II.2.1) 

[700 MPa, Sut > 1400 MPa 
Se=\ 

where Sut (or Su) is the ultimate strength in tension. Table II.2.1 lists the values of the 
endurance limit for various classes of cast iron that is polished or machined. The symbol S^^ 
refers to the endurance limit of the test specimen that can be significantly different from the 
endurance limit Se of any machine element subjected to any kind of loads. The endurance 
limit Se can be affected by several factors called modifying factors. Some of these factors 
are the surface factor ks, the gradient (size) factor kc, or the load factor ki. Thus, the 
endurance limit of a member can be related to the endurance limit of the test specimen by 
the following relationship: 

TABLE n.2.1 Endurance Lim 

Tensile 

ASTM* ''''''^'^ 
number ^ut,kpsi 

20 22 
25 26 
30 31 
35 36.5 
40 42.5 
50 52.5 
60 62.5 

Compressive 
strength 

Sue, kpsi 

83 
97 
109 
124 
140 
164 

187.5 

Se = ks ko ki S'^. 

it for Various Classes of Cast Iron (Polished or 

Shear modulus 
of Rupture 

Ssu, kpsi 

26 
32 
40 

48.5 
57 
73 

88.5 

Modulus of 
elasticity, Mpsi 

Tension Torsion 

9.6-14 3.9-5.6 
11.5-14.8 4.6-6.0 
13-16.4 5.2-6.6 

14.5-17.2 5.8-6.9 
16-20 6.4-7.8 

18.8-22.8 7.2-8.0 
20.4-23.5 7.8-8.5 

Endurance 
limit 

Se, kpsi 

10 
11.5 
14 
16 

18.5 
21.5 
24.5 

(II.2.2) 

Machined) 

Brinell 
hardness 

HB 

156 
174 
201 
212 
235 
262 
302 

Fatigue stress 
concentration 

factor Kf 

1.00 
1.05 
1.10 
1.15 
1.25 
1.35 
1.50 

*ASTM, American Society for Testing Materials. 
Source: J. E. Shigley and C. R. Mischke, Mechanical Engineering Design, 5th ed., New York, McGraw-Hill, 1989. 
Reprinted with permission of McGraw-Hill. 
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TABLE n.2.2 Surface Finish Factors 
Surface Factor a 
finish kpsi MPa 

Exponent 
b 

Ground 1.34 1.58 -0.085 
Machined or cold-drawn 2.70 4.51 -0.256 
Hot-rolled 14.4 57.7 -0.718 
As forged 39.9 272.0 -0.995 

Source: J. E. Shigley and C. R. Mischke, Mechanical Engineering 
Design, New York, McGraw-Hill, 1989. Reprinted with permission 
of McGraw-Hill. 

Surface factor ks. 
The influence of the surface of the specimen is described by the modification factor ks 
which depends upon the quaHty of the finishing. The following formula describes the 
surface factor [20]: 

ks = aSl,, (IL2.3) 

where Sut is the ultimate tensile strength. Some values for a and b are listed in Table II.2.2. 

Gradient (size) factor kc-
The results of the tests performed to evaluate the size factor in the case of bending and 
torsion are as follows [20]: 

ko 

V7:62J 

•0.1133 

in. 0.11 < J < 2in. 

(IL2.4) 
-0.1133 

mm 2 . 7 9 < J < 5 1 m m , 

where d is the diameter of the test bar. To apply Eq. (IL2.4) for a nonrotating round bar in 
bending or for a noncircular cross section, an effective dimension, de, is introduced [20]. 
This dimension is obtained by considering the volume of material stressed at and above 
95% of the maximum stress and a similar volume in the rotating beam specimen. When 
these two volumes are equated, the lengths cancel each other out and only the areas have 
to be considered. 

Some recommended values for ko are given in reference [27]: 

• for bending and torsion: 

J < 8 mm kc = 1, 

8 mm < J < 250 mm ko = 1.189 d'^'^^'^, (11.2.5) 

d > 250 mm 0.6 < kc < 0.75, 

• for axial loading: kc = I. 
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TABLE 11.2.3 Summary of Modifying Factors for Bending, Axial Loading, and Torsion of Ductile 
Materials 

10^-cycle strength 
Bending loads: S = 0.9 Su 
Axial loads: S = 0.75 Su 
Torsional loads: S = 0.9 Sus, Sus ^ 0.85^ for steel; Sus ^ 0.1 Su for other ductile materials 

10^-cycle strength (endurance limit) 
Se = kskckiS'^, where S'^ is the specimen endurance limit 

5g = 0.55M for steel, lacking better data 

Surface factor, ks 

Load factor, ki 

Gradient factor, kc 
diameter < (0.4 in. or 10 mm) 

(see Fig. II.2.2) 

bending axial 
1 1 

1 0.7-0.9 

torsion 
0.58 

1 

(0.4 in. or 10 mm) < diameter < (2 in. or 50 mm) 0.9 0.7 - 0.9 0.9 

for (2 in. or 50 mm) < diameter < (4 in. or 100 nmi) reduce the factors by about 0.1 
for (4 in. or 100 mm) < diameter < (6 in. or 150 mm) reduce the factors by about 0.2 

Source: R. C. Juvinall and K. M. Marshek, Fundamentals of Machine Component Design, New York, John Wiley & Sons, 
1991. Reprinted with permission of John Wiley & Sons, Inc. 

Load factor ki* 
Tests revealed that the load factor has the following values [20]: 

0.923, axial loading, Sut < 220 kpsi (1520 MPa), 

1, axial loading, Sut > 220 kpsi (1520 MPa), 
kL = 

1, bending, 

0.577 torsion and shear. 

(IL2.6) 

Juvinall and Marshek present a summary of all modifying factors for bending, axial 
loading, and torsion used for fatigue of ductile materials and listed in Table 11.2.3 [7]. 

.2.2 Fluctuating Stresses 
In design problems the stress frequently fluctuates without passing through zero. The com-
ponents of the stresses are depicted in Figure IL2.3(a), where cxmm is minimum stress, cfmax 
the maximum stress, a^ the stress amplitude or the alternating stress, am the midrange or 
the mean stress, a^ the stress range. The steady stress or static stress, a ,̂ can have any 
value between cfmin and a^ax and exists because of a fixed load. It is usually independent 
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Source: R. C. Juvinall and K. M. Marshek, "Fundamentals of 
Machine Component Design", John Wiley & Sons, Inc., 1991. 

FIGURE 11.2.2 Surface factor ks. Reprinted with permission of John Wiley & Sons, Inc. 

of the varying portion of the load. The following relations between the stress components 
exist as 

CTm = 
^max I CT] max 1̂  ^min 

(^max ^min 

(IL2.7) 

(11.2.8) 

The fluctuating stresses are described by the stress ratios 

R=: A = (11.2.9) 
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FIGURE 11.2.3 Time varying stresses: (a) sinusoidal fluctuating stress; (b) repeated stress; (c) 
reversed sinusoidal stress. 
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A fluctuating stress is a combination of static plus completely reversed stress. Figure IL2.3(a) 
shows a sinusoidal fluctuating stress, Figure IL2.3(b) represents a repeated stress, and 
Figure 11.2.3(c) is a completely reversed sinusoidal stress. 

11.2.3 Constant Life Fatigue Diagram 
Figure II.2.4 illustrates the graphical representation of various combinations of mean and 
alternating stress in relation to yielding and various fatigue life [7]. This diagram is called 
the constant life fatigue diagram because it has lines corresponding to a constant 10^ cycle 
or "infinite" life, constant 10^ cycle, constant 10^ cycle, and so forth. The horizontal 
axis {aa = 0) corresponds to static loading. The point A(a^ = Sy,aa = 0) represents 
the yield strength. For ductile materials the point A\—Sy,0) represents the compressive 
yield strength. The point B(Su,0) represents the ultimate tensile strength. At the point 
A^XcTfn = 0,aa = Sy) the stress fluctuates between -hSy and —Sy. The points on line AA^^ 
correspond to fluctuations having a tensile peak of Sy. The points on line A^A^^ correspond 
to fluctuations having a compressive peak of Sy. Within the triangle AA^A^^ there are all the 
combinations with no yielding. The points C, D, E, and F correspond to (7^ = 0 for various 
values of fatigue life and are obtained from the S-N diagram. The lines CB, DB, EB, and 
FB are the estimated lines of constant life. These lines are called the Goodman lines. 

The area A^HCGA corresponds to a life of at least 10^ cycles and no yielding. For a life 
of at least 10^ cycles and yielding, in addition to the area A^HCGA, the area AGB and the 

A'^ 

H' 

10^-

/ 
/ 

10^-

10^-

10^- / 

/ 

/ 
/E 

0 

F 

by 

/ 
/ ^ 

D 

C 

Se 

Ca 

a 

\.^ 

AX, 
\ y ^ 

; ^ Values from S-N curve 

\^^ 

G ^ ^ X ^ ^ ^ 

X 4 ^ ^ ^ 
-am (compression) O am (tension) 

Source: R. C. Juvinall and K. M. Marshek, "Fundamentals of Machine Component Design", 
John Wiley & Sons, Inc., 1991. 

FIGURE 11.2.4 Constant life fatigue diagram. Reprinted with permission of John Wiley & Sons, Inc. 
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area to the left of the Hne A!H may be used. The area HCGA"H corresponds to less than 
10^ cycles of life and no yielding. 

11.2.4 Fatigue Life for Randomly Varying Loads 
For most mechanical parts acted upon by randomly varying stresses, the prediction of 
fatigue life is not an easy task. Instead of a single reversed stress a for n cycles, a part is 
subjected to a\ for n\ cycles, ai for ni cycles, and so forth, and the problem is to estimate the 
fatigue life of the part. The procedure for dealing with this situation is the linear cumulative 
damage rule (or Miner's rule) and can be expressed by the following equation [7, 20]: 

n\ no nk \—v «/ 
-^ + - ^ + - + -f = l or Y^ = \ (II.2.10) 

7=1 -̂  

where ni,n2," - ,nk represent the number of cycles at specific overstress levels 
ai,(72, • • • ,crk and Ni,N2," - ,Nk represent the life (in cycles) at these overstress levels, 
as taken from the appropriate S-N curve. Fatigue failure is predicted when Eq. (II.2.10) 
holds. 

IL2.5 Variable Loading Failure Theories 
There are various techniques for plotting the results of the fatigue failure test of a part 
subjected to fluctuating stress. One of them is called the modified Goodman diagram and is 
shown in Figure II.2.5 [20]. For this diagram the mean stress a^ is plotted on the abscissa and 
the other stress components (Se, Sy, Su) on the ordinate (tension is the positive direction). 
The mean stress line makes a 45° angle with the abscissa from the origin to the tensile 
strength. Lines are constructed to Se (above the origin) and to —Se (below the origin) as 
shown in Figure II.2.5. Yielding can be considered as a criterion of failure if <J^^ > Sy. 

Another way to display the results is shown in Figure 11.2.6 using the strengths [20]. The 
fatigue limit Se (or the finite life strength Sf) is plotted on the ordinate. The tensile yield 
strength Syt is plotted on both coordinate axes. The ultimate tensile strength Sut is plotted 
on the abscissa. The alternating strength is Sa as a limiting value of a^ and is plotted on the 
ordinate. The mean strength is Sm as a limiting value of a^ and is plotted on the abscissa. 

Four criteria of failure are shown in the diagram in Figure II.2.6, that is, Soderberg, 
the modified Goodman, Gerber, and yielding. Only the Soderberg criterion guards against 
yielding as shown in Figure II.2.6. 

The Soderberg, Goodman, and yield criterion are described by the equation of a straight 
line in intercept form: 

^ + ^ = 1, (II.2.11) 
a b 

where a and b are the Sm and Sa intercepts, respectively. The equation for the Soderberg 
line is 

^ + ^ = 1. (II.2.12) 
Syt Se 
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Source: J. E. Shigley, and C. R. Mischke, "Mechanical Engineering Design", 
McGraw-Hill, Inc., 1989. 

FIGURE II.2.5 Modified Goodman diagram. Reprinted with permission of McCraw-f-lill. 

Similarly, the equation for the modified Goodman line is 

(11.2.13) 

The yielding line is described by the equation 

Oyt Oy 
(II.2.14) 
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Gerber line 

Goodman line 

Mean stress dm 

Source: J. E. Shigley, and C. R. Mischke, "Mechanical Engineering Design", 
McGraw-Hill, Inc., 1989. 

FIGURE II.2.6 Various failure theories. Reprinted with permission of McCraw-f-lill. 

The Gerber criterion is also called the Gerber parabolic relation because the curve can be 
modeled by a parabolic equation of the form 

1. (II.2.15) 

The curve representing the Gerber theory is a better predictor since it passes through the 
central region of the failure points. 

If each strength in Eqs. (11.2.12) to (II.2.15) is divided by a safety factor SF, the stresses 
a a and Gm can replace Sa and 5^. Therefore, the Soderberg equation becomes 

Sp S\i SF 
(II.2.16) 
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- Goodman line 

Safe stress line 

^m Srr 

Mean stress am 
Sut 

Source: J. E. Shigley, and C. R. Mischke, "Mechanical Engineering Design", 
McGraw-Hill, Inc., 1989. 

FIG U RE 11.2.7 Safe stress line. Reprinted with permission of McCraw-Hill. 

the modified Goodman equation becomes 

Se Sut SF 

and the Gerber equation becomes 

SFa, 

Se \ Sut / 

(11.2.17) 

(11.2.18) 

Figure II.2.7 shows the explanation of Eq. (II.2.17) [20]. A safe stress line through point 
A of coordinates a^, cr̂  is drawn parallel to the modified Goodman line. The safe stress 
line is the locus of all points of coordinates a^, a a for which the same safety factor SF is 
considered, that is, 5^ = SF a^ and Sa = SF Ga. 

Table 2.4 lists the values of the tensile strength and Table 2.5 gives the yield strength for 
various materials. 

.2.6 Examples 

EXAMPLE 11.2.1: 

Estimate the S-N curve for a precision steel part for torsional loading. The part has 
the cross-section diameter under 2 in. and has a fine ground surface. The material 
has the ultimate tensile strength ^^ = 110 kpsi and the yield strength Sy = 11 kpsi. 
Use the empirical relationships given in Table II.2.3. 

Continued 
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TABLE ir.2.4 Tensile Strength 

Material name 

AISI1006 Steel, cold drawn 
AISI1006 Steel, hot rolled bar, 19-32 mm round 
AISI 1006 Steel, cold drawn bar, 19-32 mm round 
AISI 1008 Steel, hot rolled bar, 19-32 mm round 
AISI 1008 Steel, cold drawn bar, 19-32 mm round 
AISI 1010 Steel, cold drawn 
AISI 1010 Steel, hot rolled bar, 19-32 mm round or thickness 
AISI 1010 Steel, cold drawn bar, 19-32 mm round or thickness 
AISI 1012 Steel, cold drawn 
AISI 1012 Steel, hot rolled bar, 19-32 mm round or thickness 
AISI 1012 Steel, cold drawn bar, 19-32 mm round or thickness 
AISI 1015 Steel, cold drawn 
AISI 1015 Steel, cold drawn, 19-32 mm round 
AISI 1015 Steel, hot rolled, 19-32 mm round 
AISI 1015 Steel, as rolled 
AISI 1015 Steel, normalized at 925°C (1700°F) 
AISI 1015 Steel, annealed at 870°C (1600°F) 
AISI 1016 Steel, cold drawn, 19-32 mm round 
AISI 1016 Steel, hot rolled, 19-32 mm round 
AISI 1017 Steel, cold drawn 
AISI 1017 Steel, hot rolled, 19-32 mm round 
AISI 1018 Steel, cold drawn 
AISI 1018 Steel, hot rolled, quenched, and tempered 
AISI 1018 Steel, hot rolled, 19-32 mm round 
AISI 1018 Steel, as cold drawn, 16-22 mm round 
AISI 1018 Steel, as cold drawn, 22-32 mm round 
AISI 1018 Steel, as cold drawn, 32-50 mm round 
AISI 1018 Steel, as cold drawn, 50-76 mm round 
AISI 1019 Steel, cold drawn 
AISI 1019 Steel, hot rolled, 19-32 mm round 
AISI 1020 Steel, cold rolled 
AISI 1020 Steel, hot rolled, 19-32 mm round 
AISI 1020 Steel, as rolled 
AISI 1020 Steel, normalized at 870°C (1600°F) 
AISI 1020 Steel, as rolled, 25 mm round 
AISI 1021 Steel, cold drawn 
AISI 1022 Steel, cold drawn round (19-32 mm) 
AISI 1022 Steel, as rolled 

Tensile, 

ultimate 
MPa 

330 
295 
330 
305 
340 
365 
325 
365 
370 
330 
370 
385 
385 
345 
420 
425 
385 
420 
380 
405 
365 
440 
475 
400 
485 
450 
415 
380 
455 
407 
420 
380 
450 
440 
472 
470 
475 
505 

strength 

yield 
MPa 

285 
165 
285 
170 
285 
305 
180 
305 
310 
185 
310 
325 
325 
190 
315 
325 
285 
350 
205 
340 
200 
370 
275 
220 
415 
380 
345 
310 
379 
224 
350 
205 
330 
345 
384 
395 
400 
360 

AISI, American Iron and Steel Institute. 
Source: MatWeb — Material Property Data available at: http://www.matweb.com/. 
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TABLE II.2.5 Yield Strength 

Material 

Steel 
1015 
4340 
1045 
1045 
1045 
1045 
4142 
4142 
4142 
4142 
4142 

Aluminum 
1100 
2014 
2024 
5456 
7075 

Cyclic properties 

Condition 

Normalized 
tempered 
Q&T 80°F 
Q&T 360°F 
Q&T 500°F 
Q&T 600°F 
Q&T 80°F 

Q&T400°F 
Q&T 600°F 
Q&T 700°F 
Q&T 840°F 

Annealed 
T6 

T351 
H311 
T6 

Yield strength (MPa) 

228 
1172 

1720 

1275 

965 

2070 

1720 

1340 

1070 

900 

97 

462 

379 

234 

469 

Q&T, Quenched and tempered. 

EXAMPLE 11.2.1: Cont'd 

Solution According to Table 11.2.3, the 10^-cycle peak alternating strength for 
torsional loaded material is S = 0.9 Sus, and for steel is S^s = 0.8 S^ It results: 

5 = 0.9 5^, = 0.9 (0.8) 5 « = 0.9 (0.8) (110) = 79.2 kpsi for Â  = 10^ cycles. 

The 10^-cycle peak alternating strength (endurance limit) for torsional loaded ductile 
material is Se = kskokiS^^. The endurance limit of the test specimen, for 5^ = 110 kpsi 
< 200 kpsi, is given by Eq. (II.2.1): 

5; = 0.5 Su = 0.5 (110) = 55 kpsi. 

The surface factor is found from Figure II.2.2, for fine ground surface, ks = 0.9. The 
other modifying factors for the endurance limit are given in Table II.2.3. The gradient 
(size) factor is kc — 0.9 for J < 2 in. The load factor for torsional load is ki^ = 0.58. 
The endurance limit is 

Se = ks ko ki 5; = 0.9 (0.9) (0.58) (55) = 25.839 kpsi for Â  = 10^ cycles. 

Continued 
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EXAMPLE 11.2.1: Cont'd 

The S-N diagram is plotted on log-log coordinates. For log 10^ = 3 it results: 

log5 = log79.2= 1.898. 

For log 10^ = 6 it results: 

log5e = log 25.839= 1.412. 

The estimated S-N curve is plotted in Figure II.2.8, and the Mathematical^ program 
is given in Program II.2.1. 

S-N diagram 
bjO 
O 

Co 

c3 

OH 

(kpsi) 

79.2 

25.839 

10^ 10^ 10^ 

Life N (cycles (log)) 

10' 

FIGURE 11.2.8 S-N diagram for Example 11.2.1. 

W 

EXAMPLE M.2.2: 

A precision steel part is subjected to fluctuating axial loading. The part has the cross-
section diameter under 8 mm and has a fine ground surface. The material has the 
ultimate tensile strength 5^ = 1100 MPa and the yield strength 5*̂  = 715 MPa. Find 
the 10^ cycle strength (endurance limit). 

Solution The endurance limit of the test specimen for 5^ = 1100 MPa < 1400 MPa, 
is given by Eq. (II.2.1): 

5; = 0.5 Su = 0.5 (1100) = 550 MPa. 

Equation (II.2.3) gives the surface factor 

ks = aSl, = 1.58(1100)-^-^^^ = 0.871, 
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EXAMPLE 11.2.2: Cont'd 

where a = 1.58 and b = —0.085 are obtained from Table II.2.2. The gradient (size) 
factor iskc = I for axial loading from Eq. (11.2.5). Equation (II.2.6) gives the load 
factor ki = 0.923 for axial loading and Su = 1100 MPa < 1520 MPa. The endurance 
limit is 

Se = ks kc ki S'^ = 0.871 (1) (0.923) (550) = 442.286 MPa for Â  = 10^ cycles. 

The Mathematical^ program is given in Program II.2.2. 

EXAMPLE 11.2.3: 

A 15 mm diameter steel bar has a fine ground surface with the ultimate strength 
Su = 1100 MPa and the yield strength Sy = 715 MPa. 

(a) Using Table II.2.3, estimate the S-N curve and the family of constant life 
fatigue curves for bending load. Estimate the bending fatigue life for 5x10"^ 
cycles. 

(b) Determine the fatigue strength corresponding to 10^ cycles and to 5 x 10"̂  
cycles for the case of zero-to-maximum (rather than completely reversed) 
load fluctuations for bending and no yielding. 

Solution 

(a) According to Table II.2.3, the 10-^-cycle peak alternating strength for 
bending load is 

S = 0.9 Su = 0.9 (1100) = 990 MPa. 

The 10^-cycle peak alternating strength (endurance limit) is Se = kskckiS^^. 
The endurance limit of the test specimen for 5^ = 1100 MPa < 1400 MPa is 
given by Eq.(II.2.1): 

5; = 0.5 Su = 0.5 (1100) = 550 MPa. 

The surface factor is found from Figure II.2.2, for fine ground surface and Su 
= 1100 MPa, ks = 0.89. The gradient (size) factor is kc = 0.9 for 
10 mm < d = 15 mm < 50 mm from Table II.2.3. The load factor for 
bending load is A:L = 1 from Table II.2.3. The endurance limit is 

Se = ks ko ki S'^ = 0.89 (0.9) (1) (550) = 440.55 MPa. 

The S-N diagram is plotted on log-log coordinates. For log 10-̂  = 3 it 
results: 

Iog5 = log990 = 2.995. 
Continued 
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EXAMPLE 11.2.3: Cont'd 

For log 10^ = 6 it results: 

Iog5^ = log440.55 = 2.644. 

The estimated S-N line is plotted in Figure II.2.6. The equation of the S-N 
line on log-log coordinates is 

y = mx-{-b = -O.nix + 3.347, 

where the slope m is 

l o g 5 , - l o g 5 2.644-2.995 ^^^^ 
m = , _ 3 = 6 - 3 = -'-'"'^ 

and the > -̂intercept b is 

b = logs-3m = 2.995 - 3(-0.117) = 3.347. 

The log of 10^-cycle peak alternating strength is 

log54 = 4 m + Z? = 4(-0.117) + 3.347 = 2.878, 

and the 10^-cycle peak alternating strength is 

54 = 10̂ ^̂ ^̂ 4 ^ iQ2.m ^ 755 826 MPa. 

The log of 10^-cycle peak alternating strength is 

log^s = 5 m + ^ = 5(-0.117) + 3.347 = 2.761, 

and the 10^-cycle peak alternating strength is 

55 = 10̂ °ŝ 5 = 102-761 ^ 577,043 MPa. 

The log of fatigue life for Â  = 5 x 10"̂  cycles is 

log5iv = m log(5 X 10^) -f fc = (-0.117)(4.698) -h 3.347 = 2.796, 

and the fatigue life for A/̂  = 5 x 10^ cycles is 

SN = 10^°^^^ = 10̂ -̂ ^̂  = 625.883 MPa. 

The estimated S-N curve and the am — cfa curves for 10^, 10"̂ , 5 x 10"̂ , 10^, 
and 10^ cycles of life are plotted on Figure II.2.9. 
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EXAMPLE 11.2.3: Cont'd 

S-N diagram 

^ Bending loading stress in MPa 

Co 

990 

755.826 

577.043 

440.55 

S 

625.883 

^e 

10^ 10 5x10"̂  10' 

Life N (cycles (log)) 

Constant-Life Curves 

lO'' 10' 
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^ra 

—am (compression) (Jm (tension) 

FIGURE n.2.9 S-N diagram and constant life fatigue diagram for Example 11.2.3(a). 

(b) The case of zero-to-maximum load fluctuations corresponds to am = cfa. 
This is represented by the line OA on Figure IL2.10. The a^ — a^ curves for 
10^ and 5 x 10"̂  cycles of life are plotted on Figure IL2.10. The line equation 
corresponding to 10^ cycles of life is 

^^ = Se(l-—)= 440.55 (l - - ^ ) . 
\ SuJ V 1100/ 

The intersection of the line OA with the 10^ cycles line is the point B of 
coordinates am = cfa = 314.566 MPa. For infinite life (10^ cycles of life) 
o^max = cra + crm = 629.132 MPa. 

Continued 
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EXAMPLE IL2.3: Cont'd 

(^a (MPa; 

625.883 

440.55 f 

FIGURE IL2.10 Gm - era curves for Example 11.2.3(b). 

The line equation corresponding to 5 x 10^ cycles of life is 

. . = . . ( • - I ) =625.883(1-^). 

The intersection of the line OA with the 5 x 10"̂  cycles line is the point C of 

coordinates am^ cfa — 398.91 MPa. For this case 
(jmax = (^a-\-^m = 797.819 MPa greater than the yield strength Sy = 715 
MPa and this is not permitted. 
The line equation corresponding to the Sy — Sy line is 

"-^'-f)--('-^)-
The intersection of the line OA with the Sy — Sy line is the point D of 
coordinates cxm = era = 357.5 MPa. If no yielding is permitted the point D is 
selected and amax = a^ + cTm = 715 MPa < 5"̂  = 715 MPa. The 
Mathematical^ program is given in Program II.2.3. 

EXAMPLE IL2.4: 

A round steel part with the ultimate strength 5M = 110 kpsi and the yield strength 
Sy = 77 kpsi has average machined surfaces. The diameter of the part is less than 
1 in. The part is subjected to an axial load fluctuating between 1000 and 6000 lb. 
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EXAMPLE 11.2.4: Cont'd 

A safety factor of 2 is applied to the loads. Determine the required diameter for infinite 
life (10^ cycles of life) and for 10^ cycles of life. No yielding is permitted. 

Solution According to Table II.2.3, the 10^-cycle peak alternating strength is 

S = 0.75 Su = 0.75 (110) = 82.5 kpsi. 

The surface factor is ks = 0.74 (from Fig. II.2.2 for machined surfaces and 5^ = 110 
kpsi). The gradient (size) factor is kc = 0.8 (between 0.7 and 0.9 from Table II.2.3). 
The load factor for axial load is ^^ = 1 from Table II.2.3. The endurance limit of the 
test specimen for 5^ = 110 kpsi < 200 kpsi, is 

S'^ = 0.5 Su = 0.5 (110) = 55 kpsi. 

The endurance limit (10^-cycle peak alternating strength) is 

Se = ks kc h S'^ = 0.74 (0.8) (1) (55) = 32.55 kpsi. 

The am — cfa curves for 10^ and 10^ cycles of life are plotted on Figure II.2.8. 
The following relations between the stress components exist: 

am = SF-—, aa=SF--, 
A A 

where A is the unknown area, 5*̂  = 2 is the safety factor, and 

J-, ^max I ^min j-, ^max ~ ^min 

with Fmax = 6 kip and Fynin = 1 kip-
The ratio between the alternating stress and the mean stress is crjcrm = 0.714, 

and the equation of the line OA on Figure II.2.11 is 

aa = 0.714 (7^. 

At the point O, cxa = (Jm = 0-
Moving out along line OA, the area A of the part is decreasing. 
The intersection of the line OA with the 10^ cycles line (infinite life) is the point 

B of coordinates a^ = 23.020 kpsi, am = 32.228 kpsi. At this point a« = SF FJA 
and the area A is determined as 

n (f Fa 2(2.5) 
A = =SF — = — — - . 

4 aa 23.020 

The required diameter for infinite life h d = 0.525 in. This diameter is within the 
range for the gradient factor ^G = 0.8. 

Continued 
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EXAMPLE 11.2.4: Cont'd 

^a (kpsi) 

X \ 10̂  cycles 
N 

- ^ = 0.714 X 
CTrr 

O 20 40 60 Sy 

FIGURE 11.2.11 Gm-Oa curves for Example 11.2.4. 

100 Su 
am (kpsi) 

The intersection of the line OA with the 10-̂  cycles line is the point C of coordinates 
aa = 40.243 kpsi, am = 56.341 kpsi, and amax = 96.585 kpsi > Sy = 71 kpsi. This 
is not permitted because yielding is unacceptable. The line equation corresponding 
to the Sy — Sy line is 

"-M'-f)="0-w)-
The intersection of the line OA with the Sy — Sy line is the point D of coordinates 
aa = 32.083 kpsi, am = 44.916 kpsi. If no yielding is permitted the point D is 
selected and the diameter is selected based on this point. At point D the area A is 

nd^ Fa 2(2.5) 
A = = SF — = , 

4 aa 32.083 

and the required diameter is d = 0.445 in. A diameter smaller than 0.445 in. would 
cause yielding. The Mathematical^ program is given in Program II.2.4. 

EXAMPLE 11.2.5: 

Consider a 30 mm diameter steel bar having the ultimate tensile strength Su = 950 
MPa and the yield strength Sy = 600 MPa. The part has a hot rolled surface finish 
and is subjected to axial loading. The fluctuating stress of the bar for a typical t = 5 
seconds of operation includes, in order, two cycles with minimum stress amini = 
— 100 MPa and maximum stress amaxi = 300 MPa, and three cycles with minimum 
stress aminii = —100 MPa and maximum stress amaxii = 400 MPa, (Fig. II.2.12). 
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EXAMPLE 11.2.5: Cont'd 

FIGURE 11.2.12 Stress time plot for Example 11.2.5. 

For the axial loading of the part the 10^ cycle peak strength is 5 = 712.5 MPa and the 
10^ cycle peak strength (endurance limit) is Se = 180.5 MPa. Estimate the life of the 
part when operating continuously. 

Solution For the first two cycles of fluctuation (nj = 2), with minimum stress 
c^mini = —100 MPa and maximum stress cfmaxi = 300 MPa, the mean stress and the 
alternating stress are 

(JmaxI + C^minl 300 + ( - 1 0 0 ) 
CTml = ;; = = 100 M P a , 

<yal 

2 2 

CTmaxI - crmini 300 - (-100) 
200 MPa. 

The point A of coordinates cfmi = 100 MPa, cfai = 200 MPa on the a^ — (Xa plot in 
Figure 11.2.13(a) is connected by a straight line to the point am = Su = 950 MPa on 
the horizontal axis. The slope of this line equation (line ASu) is 

mj = 
<yai 200 

= -0.235. 
ami - Su 100 - 950 

The intersection of the line ASu with the vertical axis (am = 0) is the y-intercept 

Sj = -mi Su = (-0.235)(950) = 223.529 MPa. 

Continued 
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EXAMPLE 11.2.5: Cont'd 
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FIGURE II.2.13 (a) am — era curves and (b) S-N diagram for Example 11.2.5. 

For the second three cycles of fluctuation («// = 3), with minimum stress aminii = 
—100 MPa and maximum stress amaxii = 400 MPa, the mean stress and the alternating 
stress are 

(TmaxII + Cfminll 4 0 0 + ( - 1 0 0 ) , - ^ , , ^ 
amii = ;; = ;; = 150 MPa, 

(yall = 

2 2 

CTmaxII - Cfmifill 4 0 0 - ( - 1 0 0 ) 
= 250 MPa. 
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EXAMPLE 11.2.5: Cont'd 

The point B of coordinates Omii = 150 MPa, aaii = 250 MPa on the am — a a plot in 
Figure 11.2.13(a) is connected by a straight line to the point am = Su = 950 MPa on 
the horizontal axis. The slope of this line equation (line BSu) is 

GaU ^ 250 ^ ^^^^ 

""̂ ^ Omii-Su 150-950 

The intersection of the line BSu with the vertical axis (a^ = 0) is the y-intercept 

Su = -mil Su = (-0.312)(950) = 296.875 MPa. 

The hues SjASu and SjjBSu are Goodman lines (constant life) and the points A and 
B correspond to the same fatigue lives as the points Si and 5//. These fatigue Hves 
are determined from the S-N diagram (log-log coordinates) in Figure 11.2.13(b). For 
log 10^ = 3 it results: 

log5=:log712.5 = 2.852. 

For log 10^ = 6 it results 

log5^ = log 180.5 = 2.256. 

The estimated S-N line is plotted in Figure II.2.13.(b). The equation of the S-N line 
on log-log coordinates is 

y = mx + b = -0.198x4- 3.449. 

For log SI = log 223.529 = 2.349 it results: 

\ogSi-b 2.349 - 3.449 _ _ _ 
logNi = = — — — = 5.532, 

m —0.198 

and the number of cycles is 

Ni = 10^̂ ^̂ ^ = 10 -̂̂ ^̂  = 341065 cycles. 

For log Sii = log 296.875 = 2.472 it results: 

^ ^̂  logSii-b 2.472-3.449 ^ ^^^ 
logNii = = TTT^ = 4.912, 

m —0.198 

and the number of cycles is 

Nil = 10̂ ^̂ ^̂ ^ = 10 -̂̂ ^̂  = 81814 cycles. 
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EXAMPLE 11.2.5: Cont'd 

Adding the portions of life consumed by cycles / and // gives 

c = ̂  + ̂  = ^ + Trr̂ TT = 0.0000425325. 
Ni Nn 341065 81814 

This means that the estimated life corresponds to 1/C oft = 5-second duration. The 
life of the part is 

l = t/C= 117557 s = 1959.28 min = 32.6547 h 

The Mathematical^ program for this example is given in Program II.2.5. 

EXAMPLE 11.2.6: 

A 2 in. tension bar is machined from a material with the ultimate tensile strength Su 
= 97 kpsi and the yield strength Sy = 68 kpsi. This part is to withstand a fluctuating 
tensile load varying from 3 to 60 kip. The endurance limit is Se = 29.488 kpsi. Using 
the modified Goodman theory, determine the safety factor under the assumption that 
(a) Gm remains fixed; (b) aa remains fixed; and (c) the ratio cr^/a^ is constant. 

Solution The equation for the modified Goodman line is 

Yu ^ ~ ' *"̂  97 29.488 
= 1. 

This equation is plotted in Fig. 11.2.14. The alternating and mean loads are 

max ^ mm 6 0 - 3 
2 2 

Fmax + Fmin _ 60 + 3 
2 ~ 2 

The alternating and mean stresses are found to be 

4 Fa 4(28.5) 

= 28.5 kip, 

= 31.5 kip. 

<Ja = 

O'm = 

"" 7td^ 3.141(2)2 

4Fm ^ 4(31.5) 

nd^ 3.141(2)2 

= 9.071 kpsi. 

= 10.026 kpsi. 

These data are shown in Fig. 11.2.14. 

(a) Using Sm = cfm = 10.026 kpsi, Eq. (II.2.13) yields 

/ Sni\ ( 10.026 \ 
Sa = 5 J 1 - - ^ j = 29.488 f 1 - - ^ ^ \ = 26.439 kpsi. 
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EXAMPLE 11.2.6: Cont'd 

Goodman line 

^m 20 40 60 
Mean stress am 

FIGURE n.2.14 cTm - Oa curves for Example 11.2.6. 

The safety factor is 

aa 9.071 

(b) Using Sa = cra = 9.071 kpsi, Eq. (II.2.13) yields 

Sut 

--"(>-|)=K-i^) 
The safety factor is 

19.071 \ 
l - r : r T : : r 1 =67.158 kpsi. 

Sm 67.158 
SF= — = = 6.697. 

(c) FromEq.(II.2.9): 

Gm 10.026 

A = ^ = ^ = - ^ : ^ = 0 . 9 0 4 . 
Sm CTm 10.026 

Equation (II.2.13) yields 

^m — 
29.488 (97) 

= 24.395 kpsi, 
Se-^ASu 29.488 + 0.904(97) 

and the safety factor is 

am 10.026 

These data are plotted on Figure II.2.14. The Mathematical^ program for 
this example is given in Program 2.6. 
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.2.7 Problems 
11.2.1 Using the empirical relationships given in Table II.2.3, estimate the S-N curve for 

a precision steel part for axial and bending loading. The part has the cross-section 
diameter under 2 in. and has a machined surface. The material has the ultimate 
tensile strength Su = 110 kpsi and the yield strength Sy -11 kpsi. 

11.2.2 A precision steel part with the diameter under 8 mm is subjected to fluctuating 
bending and torsional loading. The part has a hot rolled surface. The material has 
the ultimate tensile strength Ŝ̂  = 1100 MPa and the yield strength 5'̂  = 715 MPa. 
Find the 10^ cycle strength (endurance Hmit). 

11.2.3 Plot the S-N curves for bending, axial, and torsional loading of a steel shaft with 
the diameter J = 1.5 in. The shaft was machined from steel having tensile properties 
Su = 90 kpsi and Sy = 75 kpsi. Find the fatigue strength for 6 x 1 0 ^ cycles. 

11.2.4 A steel bar having the ultimate strength Su = 950 MPa and the yield strength 
Sy = 600 MPa has a hot rolled surface finish. The surface factor is ks = 0.475, the 
gradient factor is kc = 0.8, and the load factor is /:L = 1- Determine the fatigue 
strength at 5 x 10^ cycles for reversed axial loading. 

11.2.5 A steel round link has the diameter d = 25 mm is subjected to an axial load 
fluctuating between 1000 and 6000 lb. The link has a hot rolled surface finish. The 
ultimate tensile strength of the material is Su = 950 MPa and the yield strength is 
Sy = 600 MPa. Find the fatigue strength corresponding to 10^ cycles. 

11.2.6 A 2 in. diameter shaft is machined from AISI4320 steel having Su = 140 kpsi and 
^3; = 90 kpsi. Estimate the a^ — a^ curves for bending load. 

11.2.7 A 15 mm diameter steel bar has a forged surface with the ultimate strength 
Su = 1100 MPa and the yield strength Sy = 715 MPa. (a) Using Table II.2.3 
estimate the S-N curve and the family of constant life fatigue curves for axial load. 
Estimate the fatigue life for 4 x 1 0 ^ cycles, (b) Determine the fatigue strength 
corresponding to 10^ cycles and to 4 x 10^ cycles for the case of zero-to-maximum 
(rather than completely reversed) load fluctuations for bending and no yielding. 

11.2.8 A round steel link with the ultimate strength Su = 110 kpsi and the yield strength 
Sy = 77 kpsi has ground surfaces. The diameter of the link is less than 2 in. The 
link is subjected to a bending load fluctuating between 1000 and 6000 lb. A safety 
factor of 1.5 is applied to the loads. Determine the required diameter for infinite life 
(10^ cycles of life) and for 10-̂  cycles of life. 

11.2.9 Consider a 30 mm diameter steel bar having the ultimate tensile strength Su = 
950 MPa and the yield strength Sy = 600 MPa. The part has a hot rolled surface 
finish and is subjected to axial loading. The fluctuating stress of the bar for a typical 
t = 6 seconds of operation includes, in order, two cycles with minimum stress of 
— 100 MPa and maximum stress of 300 MPa, three cycles with minimum stress 
of —150 MPa and maximum stress of 400 MPa, and four cycles with minimum 
stress of —200 MPa and maximum stress of 600 MPa. Estimate the life of the part 
when operating continuously. 

II.2.10 A steel part with the diameter 20 mm has the ultimate tensile strength 
5M = 1100 MPa and the yield strength 5'̂ ; = 715 MPa. The part has a hot rolled 
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surface finish and is subjected to bending loading. The fluctuating stress of the 
bar for 10 seconds of operation includes, in order, two cycles with zero minimum 
stress and maximum stress equal to 100 MPa, two cycles with minimum stress 
equal to —50 MPa and maximum stress equal to 300 MPa, and two cycles with 
minimum stress equal to 100 MPa and maximum stress equal to 500 MPa. 
Determine the fatigue life of the part. 

11.2.11 A tension bar is machined from AISI1050 (Su = 100 kpsi and Sy = 84 kpsi). This 
bar has the diameter d = 1.5 in. and is subjected to a fluctuating tensile load 
varying from 0 to 50 kip. The endurance limit is Se = 25 kpsi. Using the modified 
Goodman theory, determine the safety factor under the assumption that am and 
aa remain constant. 

11.2.12 Repeat the previous problem considering that the ratio crjcfm is constant. 

-2-8 Programs 
PROGRAM 11.2.1 

Apply[C1ear,Names["Globar*"]]; 
Off[General::spell]; 
Off[General::spel11]; 

"steel bar, d<2in., fine ground surface" 

Su=110.; (* ultimate strength [kpsi] *) 
Sy=77.; (* yield strength [kpsi] *) 

Print["ultimate strength [kpsi] Su=",Su]; 
Print["yield strength [kpsi] Sy=",Sy]; 

"lO'̂ S cycle strength S" 
"torsional load: S=0.9 Sue; Sue=0.8 Su (for steel); Sue=0.7 Su (other)' 
S=(0.9)(0.8) Su; 
Print["torsional: S=",S]; 

"lO'̂ e cycle strength (endurance limits) Se=kS kG kL Se'" 

"endurance limit of test speciment Se'" 
"Se'=0.5 Su (for Su<200 kpsi); Se'=100 kpsi (for Su>200 kpsi)" 
"bending, axial, torsion: Se'=0.5 Su " 
Sep=0.5 Su; 
Print[" Se'=",Sep]; 

"modifying factors for endurance limit" 

"surface factor kS (bending, axial, torsion)" 
"fine ground surface" 
kS=0.9; 
Print["surface factor kS=",kS]; 
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"size (gradient) factor kG" 
"bending and torsion: kG=l (for d<0.4 in.); kG=0.9 (for 0.4<d<2.0 in)' 
kG=0.9; 
Print["bending and torsion: size factor kG=",kG]; 

"load factor kL" 
"bending and axial: kL=l; torsion: kL=0.58" 
kL=0.58; 

"endurance limit Se=kS kG kL Se'" 
Se=kS kG kL Sep; 
Print["torsion: Se=",Se]; 

"S-N diagram" 
LS=Log[10,S]; 
LSe=Log[10,Se]; 
Lm=(LSe-LS)/(6-3); 
Lb=LS-3 Lm; 

Print["N=10'^3 cycles, S = " ,S , " [kpsi]; Log[N]=3, Log[S] = ",LS]; 
Print["N=10'^6 cycles, Se = ",Se," [kpsi]; Log[N]=6, Log[Se] = ",LSe]; 

LSN=Lm x+Lb; 

SNG=P1ot[LSN,{x,3,6},Axes0rigin->{3,LSe}, 
AxesLabel^{"Log[N]","Log[S]"}]; 

Show[SNG,Ticks^{{3,4,5,6},{LSe,LS}}, 
GridLines^{{3,4,5,6},{LSe,LS}}, 
PlotRange^{{3,6},{LSe-0.15,LS+0.15}},AxesOrigin->{3,LSe-0.15}, 
AxesLabel->{"Log[N]","Log[S]"}]; 

steel bar, d<2in., fine ground surface 

ultimate strength [kpsi] Su=110. 

yield strength [kpsi] Sy=77. 

lO'̂ S cycle strength S 

torsional load: S=0.9 Sue; Sue=0.8 Su (for steel); Sue=0.7 Su (other) 

torsional: S=79.2 

lO'̂ e cycle strength (endurance limits) Se=kS kG kL Se' 

endurance limit of test speciment Se' 

Se'=0.5 Su (for Su<200 kpsi); Se'=100 kpsi (for Su>200 kpsi) 

bending, axial, torsion: Se'=0.5 Su 

Se'=55. 
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modifying factors for endurance l imi t 

surface factor kS (bending, ax ia l , torsion) 

fine ground surface 

surface factor kS=0.9 

size (gradient) factor kG 

bending and torsion: kG=l (for d<0.4 i n . ) ; kG=0.9 (for 0.4<d<2.0 in) 

bending and torsion: size factor kG=0.9 

load factor kL 

bending and axia l : kL=l; torsion: kL=0.58 

endurance l imi t Se=kS kG kL Se' 

torsion: Se=25.839 

S-N diagram 

N=10'̂ 3 cycles, S = 79.2 [kpsi ] ; Log[N]=3, Log[S] = 1.89873 

N=10'̂ 6 cycles, Se = 25.839 [kpsi ] ; Log[N]=6, Log[Se] = 1.41228 

Log[S] 

1.89873 

1.41228 

Log[N] 

PROGRAM 11.2.2 
Apply [Clear,Names["Globar*"]]; 
Off[General::spel1]; 
Off[General::spell 1]; 

"steel bar, d<=8 mm., fine ground surface, axial loading" 
d=8; 
Print["diameter d<= ",d," mm " ] ; 
Su=1100.; (* ultimate strength [MPa] *) 
Sy=715.; (* yield strength [MPa] *) 

Print["ultimate strength [MPa] Su=",Su]; 
Print["yield strength [MPa] Sy=",Sy]; 
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"lO'̂ e cycle strength (endurance limits) Se=kS kG kL Se'" 

"endurance limit of test speciment Se'" 
"Se'=0.5 Su (for Su<200 kpsi); Se'=100 kpsi (for Su>200 kpsi)" 
"Se'=0.5 Su (for Su<1400 MPa); Se'=700 MPa (for Su>1400 MPa)" 
"Se'=0.5 Su " 
Sep=0.5 Su; 
Print["Se'=",Sep," MPa"]; 

"modifying factors for endurance limit" 

"surface factor kS: kS= a (Su)'̂ b " 
"surface finish: fine ground => a=1.58; b=-0.085" 
a=1.58; b=-0.085; 
kS=a (Su)''b; 
Print["surface factor kS=",kS]; 

"size (gradient) factor kG" 
"bending and torsion:" 
"d<=8 mm ; kG=l " 
"8 mm <= d <= 250 mm ; kG=1.189 (def)'^(-0.097)" 
"d > 250 mm ; 0.6 <= kG <= 0.75" 
"axial: kG=l" 
kG=l; 

"load factor kL" 
"axial: Su <= 1520 MPa (220 kpsi); kL=0.923" 
"axial: Su > 1520 MPa (220 kpsi); kL=l" 
"bending: kL=l" 
"torsion and shear: kL=0.577" 
kL=0.923; 

"endurance limit Se=kS kG kL Se'" 
Se=kS kG kL Sep; 
Print["axial: Se=",Se," MPa"]; 

steel bar, d<=8 mm., fine ground surface, axial loading 

diameter d<= 8 mm 

ultimate strength [MPa] Su=1100. 

yield strength [MPa] Sy=715. 

IC^e cycle strength (endurance limits) Se=kS kG kL Se' 

endurance limit of test speciment Se' 

Se'=0.5 Su (for Su<200 kpsi); Se'=100 kpsi (for Su>200 kpsi) 

Se'=0.5 Su (for Su<1400 MPa); Se'=700 MPa (for Su>1400 MPa) 
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Se'=0.5 Su 

Se'=550. MPa 

modifying factors for endurance limit 

surface factor kS: kS= a (Su)'̂ b 

surface finish: fine ground => a=1.58; b=-0.085 

surface factor kS=0.871242 

size (gradient) factor kG 

bending and torsion: 

d<=8 mm ; kG=l 

8 mm <= d <= 250 mm ; kG=1.189 (def)'^(-0.097) 

d > 250 mm ; 0.6 <= kG <= 0.75 

axial: kG=l 

load factor kL 

axial: Su <= 1520 MPa (220 kpsi); kL=0.923 

axial: Su > 1520 MPa (220 kpsi); kL=l 

bending: kL=l 

torsion and shear: kL=0.577 

endurance limit Se=kS kG kL Se' 

axial: Se=442.286 MPa 

PROGRAM 11.2.3 
Apply[Clear,Names ["Globar*" ] ] ; 
Off[General::spell]; 
Off[General::spell 1 ] ; 

(*Input data: steel bar, f ine ground surface*) 

Su=1100; (* ultimate strength [MPa] *) 
Sy=715; (* yield strength [MPa] *) 

Print["ultimate strength [MPa] Su=",Su]; 
Print["yield strength [MPa] Sy=",Sy]; 

"lO'̂ S cycle strength S" 
"bending loads: S=0.9 Su " 
S=0.9 Su; 
"Print["bending: S=",S]; 
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"lO'̂ e cycle strength (endurance limit) Se=kS kG kL Se'" 

"endurance limit of test speciment Se'" 
"Se"=0.5 Su (for Su<1400 MPa); Se'=700 MPa (for Su>1400 MPa)" 
"bending, axial, torsion: Se'=0.5 Su " 
Sep=0.5 Su; 
Print[" Se'=",Sep]; 

"modifying factors for endurance limit" 

"surface factor (kS) (bending, axial, torsion)" 
"print["ultimate strength [kpsi] Su=",Su/6.895]; 
"fine ground surface" 
kS=0.89; 
Print["surface factor kS=",kS]; 

"size (gradient) factor (kG)" 
"bending and torsion: kG=l (for d<10 mm); kG=0.9 (for <10<d<50 mm)* 
"axial: kG=0.7-0.9" 
kG=0.9; 
"Print["bending: size factor KG=",kG]; 

"load factor (kL)" 
"bending and axial: kL=l; torsion: kL=0.58" 
kL=l; 

"endurance limit Se=kS kG kL Se' " 
Se=kS kG kL Sep; 
Print["bending: Se=", Se]; 

"bending: S-N diagram: 
LS=Log[10,S]; 
LSe=Log[10,Se]; 
Lm=(LSe-LS)/(6-3); 
Lb=LS-3 Lm; 
Print["S-N l ine slope: m=",Lm]; 
Print["S-N l ine y-intercept: b=",Lb]; 

LS4=4 Lm+Lb; 
S4=10'̂ LS4; 
LS5=5 Lm+Lb; 
S5=10US5; 

NN=5 10'^4; 
LN=N[Log[10,NN]]; 
LSN=Lm Log[10,NN]+Lb; 
SN=10'̂ LSN; 

Print["N=10'^3 cycles, S = " ,S , " [MPa]; Log[N]=3, Log[S] = ",LS]; 
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Print["N=10"4 cycles, S4 = ",S4," [MPa]; Log[N]=4, Log[S4] = ",LS4]; 
Print["N=5 10"4 cycles, SN = ",SN," [MPa]; Log[NN]=",LN,", 

Log[SN] = ",LSN]; 
Print["N=10"5 cycles, S5 = ",S5," [MPa]; Log[N]=5. Log[S5] = ",LS5]; 
Print["N=10"6 cycles, Se = ",Se," [MPa]; Log[N]=6, Log[Se] = ",Le]; 

lineSN=Lni x+Lb; 
SNG=P1ot[1i neSN, {x,3,6},AxesOri gi n]^{3,LSe}, 

Axes Label -^ { " Log [N]", " Log [S]" } ] ; 
Show[SNG,Ticks^{{3,4,LN,5,6},{LSe,LS5,LSN,LS4,LS}}, 

GridLines-»-{{3,4,LN,5,6},{LSe,LS5,LSN,LS4,LS}}, 
PlotRange->-{{3,6},{LSe-0.15,LS+0.15}},AxesOrigin^{3,LSe-0.15}, 
AxesLabel->-{"Log[N]"."Log[S]"}]; 

"constant=life fatigue diagram" 
eqS=Sy (1-x/Sy); 
GS=Plot[{eqS},{x,0,Sy},PlotStyle->{Dashing[{0.01,0.01}]}]; 
eq3=S (1-x/Su); 
eq4=S4 (1-x/Su); 
eq5=S5 (1-x/Su); 
eq6=S6 (1-x/Su); 
eqN=SN (1-x/Su); 
CF=P1 ot[{eq3,eq4,eq5,eq6,eqN},{x,0,Su}, Axes->True]; 

Show[{GS,CF},AxesLabel-^{"ain"."aa"}]; 
C2=Plot[{eq6,eqN},{x,0,Su}, Axes->True]; 
Print["eq. for Sy - Sy:",eqS,"=0"] 
Print["eq. for N=10"6 cycles:",eq6,"=0"] 
Print["eq. for N=5 x 10"4 cycles:",eqN,"=0"] 

ins=l.; 
eqSS=ms x; 
GSS=Plot[{eqSS},{x,0,Su},PlotStyle->{Dashing[{0.05,0.05}]}]; 
Show[{GS,C2,GSS},AxesLabel-f{"<Tiii","<Ta"}]; 

"intersection of Oa=(Jm with 10"6 cycle line:" 
sol6=Solve[{y==ms x,y==eq6},{x,y}]; 
siga6=y/.sol6[[l]]; 
sigm6=x/.sol6[[l]]; 
Print["aa=",siga6,", "am=",sigm6, " [MPa]" ] ; 
Print["ormax=",2 siga6," [MPa]" ] ; 

"intersection of <ra=<rm with 5 x 10"6 cycle line:" 
sol6b=Solve[{y==ms x,y==eqN},{x,y}]; 
siga6b-y/.sol 6b[[ ! ] ] ; 
si gni6b=x/. sol 6b [ [ ! ] ] ; 
Print["ora=",siga6b,", ani=",sigm6b, " [MPa]" ] ; 
Print["amax=",2 sigaSb," [MPa]" ] ; 
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"intersection of aa=am with SySy line" 
solS=SolYe[{y==ms x,y==eqS},{x,y}]; 
sigaS=y/.solS[[l]]; 
sigmS=x/.solS[[l]]; 
Print["aa=",sigaS,", am=",sigmS, " [MPa]" ] ; 
Print["amax=",2 sigaS," [MPa]" ] ; 

"intersection of 5 10'̂ 6 cycle line with SySy line" 
sol=Solve[{y==eqN,y==eqS},{x,y}]; 
siga=y/.sol[[l]]; 
sigm=x/.sol[[l]]; 

Print["aa=",siga,", am=",sigm, "[MPa]" ] ; 
Print["amax=", 2 siga, " [MPa]" ] ; 

ultimate strength [MPa] Su=1100 

yield strength [MPa] Sy=715 

IC'S cycle strength S 

bending loads: S=0.9 Su 

bending: S=990. 

IC^e cycle strength (endurance limit) Se=kS kG kL Se' 

endurance limit of test speciment Se' 

Se'=0.5 Su (for Su<1400 MPa); Se'=700 MPa (for Su>1400 MPa) 

bending, axial, torsion: Se'=0.5 Su 

Se'=550. 

modifying factors for endurance limit 

surface factor (kS) (bending, axial, torsion) 

ultimate strength [kpsi] Su=159.536 

fine ground surface 

surface factor kS=0.89 

size (gradient) factor (kG) 

bending and torsion: kG=l (for d<10 mm); kG=0.9 (for <10<d<50 mm) 

axial: kG=0.7-0.9 

bending: size factor kG=0.9 

load factor (kL) 

bending and axial: kL=l; torsion: kL=0.58 

endurance limit Se=kS kG kL Se' 
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bending: Se=440.55 

bending: S-N diagram 

S-N l i n e slope: m=-0.117213 

S-N l i n e y - i n te rcep t : b=3.34728 

N=10'̂ 3 cycles, S = 990. [MPa]; Log[N]=3, Log[S] = 2.99564 

N=10'̂ 4 cycles, S4 = 755.826 [MPa]; Log[N]=4, Log[S4] = 2.87842 

N=5 10-̂ 4 cycles, SN = 625.883 [MPa]; Log[NN] =4.69897, Log[SN] =2.79649 

N=10'̂ 5 cycles, S5 = 577.043 [MPa]; Log[N]=5, Log[S5] = 2.76121 

N=10'̂ 6 cycles, Se = 440.55 [MPa]; Log[N]=6, Log[Se] = 2.644 

Log[S] 

2.99564 

2.87842 

2.79649 
2.76121 

2.644 

^^^--^^ 

^^--^^ 
~"̂^̂  

^ ^ ^ 

4 . 6 9 8 9 7 5 
L o g [ N ] 

constant-life fatigue diagram 

200 400 600 800 1000 

eq. for Sy - Sy:715 (1- —-)=0 
715 

eq. for N=10"6 cycles:440.55 (1-
1100 

)=0 

eq. for N=5 x 10"4 cycles:625.883(1-
1100 

)=0 
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00 800 1000 

i n te rsec t ion of aa=am wi th IC^G cycle l i n e : 

aa=314.566, am=314.566 [MPa] 

o-max=629.132 [MPa] 

i n te rsec t ion of adi=am wi th 5 x 10''6 cycle l i n e : 

aa=398.91, am=398.91 [MPa] 

crmax=797.819 [MPa] 

i n te rsec t ion of adi=am wi th SySy l i ne 

aa=357.5, am=357.5 [MPa] 

amax=715. [MPa] 

intersection of 5 IC^e cycle line with SySy line 

(Ta=508.24, am=206.76 [MPa] 

ormax=1016.48 [MPa] 

PROGRAM 11.2.4 
Apply[Clear,Nanies["Globar*"]]; 
Off[General::spell]; 
Off[General::spell 1 ] ; 
(*d=l in . machined surfaces*) 
(* Input data * ) 
Su=110; Sy=77;(*kpsi*) 
Print["ultimate strength [kpsi] Su=",Su]; 
Print["yield strength [kpsi] Sy=",Sy]; 

"lO'̂ e cycle strength (endurance limit) Se=kS kG kL Se" 
"kS=0.74; machined surfaces Fig.2" 
kS=0.74; 
"kG=0.8; between 0.7 and 0.9; Table 3" 
kG=0.8; 
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"kL=l; Table 3" 
kL=l; 

"endurance limit of test speciment Se'" 

"Se'=0.5 Su (for Su<200 kpsi)" 

Sep=0.5 Su; 
Print["Se'=",Sep," [kpsi]"]; 
Se=kS kG kL Sep; 
Print["10'^6 cycle strength Se=",Se," [kpsi]"]; 

"lO'̂ a cycle strength S" 
"axial loads: S=0.75 Su " 

S=0.75 Su; 

Print["10'^3 cycle strength S=",S," [kpsi]"]; 

"constant-life fatigue diagram" 

eqS=Sy (1-x/Sy); 

GS=Plot[{eqS},{x,0,Sy},PlotStyle->{Dashing[{0.01,0.01}]}]; 
eq3=S (1-x/Su); 
eq6=Se (1-x/Su); 
CF=Plot[{eq3,eq6},{x,0,Su}, Axes->True]; 

Show[{GS,CF},AxesLabel^{"am","aa"}]; 
Print["eq. for Sy - Sy:",eqS,"=0"]; 
Print["eq. for N=10'̂ 3 cycles:",eq3,"=0"]; 
Print["eq. for N=10'̂ 6 cycles:",eq6,"=0"]; 

Fmax=6 (*kip*); 

Fmin=l (*kip*); 

SF=2; 

Fa=(Fmax-Fmin)/2; 
Fm=(Fmax+Fmin)/2; 

Sa=SF Fa/A; Sm=SF Fm/A; 
ms=N[Sa/Sm]; 

Print["OA: cra=",ms," am"]; 

eqSS=ms x; 
GSS=Plot[{eqSS},{x,0,Su},PlotStyle->{Dashing[{0.05,0.05}]}]; 

Show[{GS,CF,GSS},AxesLabel-^{"am","ora"}]; 

"intersection of OA with 10'̂ 6 cycle l ine:" 
sol6=Solve[{y==ms x,y==eq6},{x,y}]; 
s iga6=y/ .so l6 [ [ l ] ] ; 
sigm6=x/.sol6[[ l ] ] ; 

Pr int["aa=",siga6," , am",sigm6, " [kpsi]" ] ; 

Print["amax=",siga6+sigm6," [kpsi]" ] ; 
A6=SF Fa/siga6; 
d6=Sqrt[4 A6/N[Pi]] ; 
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Print["d=",d6," [ i n ] " ] ; 

"intersection of OA with W S cycle l i ne : " 
sol3=Solve[{y==ms x,y==eq3},{x,y}]; 
s iga3=y/ .sol3[ [ l ] ] ; 
sigm3=x/.sol3[[ l ] ] ; 
Print["ora=",siga3,", am=",sigm3, " [kpsi ]" ] ; 
Print["amax=",siga3+sigm3," [kpsi ]" ] ; 

"intersection of OA with Sy-Sy l ine" 
solS=Solve[{y==ms x,y==eqS},{x,y}]; 
sigaS=y/.solS[[ l ] ] ; 
sigmS=x/.solS[[l]]; 

Print["aa=",sigaS,", (]rm=",sigmS, " [kpsi ]" ] ; 

Print["amax=",sigaS+sigmS," [kpsi ]" ] ; 

AS=SF Fa/sigaS; 
dS=Sqrt[4 AS/N[Pi]]; 
Print["d=",dS," [ i n ] " ] ; 

ultimate strength [kpsi] Su=110 

yield strength [kpsi] Sy=77 

lO'̂ e cycle strength (endurance limit) Se=kS kG kL Se' 

kS=0.74; machined surfaces Fig.2 

kG=0.8; between 0.7 and 0.9; Table 3 

kL=l; Table 3 

endurance limit of test speciment Se' 

Se'=0.5 Su (for Su<200 kpsi) 

Se'=55. [kpsi] 

lO'̂ e cycle strength Se=32.56 [kpsi] 

lO'̂ S cycle strength S 

axial loads: S=0.75 Su 

lO'̂ S cycle strength S=82.5 [kpsi] 

constant-life fatigue diagram 

eq. for Sy - Sy:77 (1 - ^ ) = 0 

eq. for N=10'̂ 3 cycles:82.5 (1 - T 7 ^ ) = 0 

eq. for N=10'̂ 6 cycles:32.56 (1 - T - T ) = 0 
110 

OA: aa=0.714286 am 
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20 40 60 80 100 

i n te rsec t ion of OA wi th IC^e cycle l i n e : 

aa=23.0204, o-m=32.2285 [kps i ] 

ormax=55.2489 [kps i ] 

d=0.525877 [ i n ] 

in te rsec t ion of OA with IC'S cycle l i n e : 

ora=40.2439, a-m=56.3415 [kps i ] 

amax=96.5854 [kpsi ] 

in te rsec t ion of OA wi th Sy-Sy l i ne 

aa=32.0833, orm=44.9167 [kpsi ] 

amax=77. [kps i ] 

d=0.445451 [ i n ] 

PROGRAM 11.2.5 
Apply[C1ear,Names["Globar*"]]; 
Off[General::spell]; 
Off[General::spel11]; 

(*Input data: steel bar, fine ground surface*) 

Su=950; (* ultimate strength [MPa] * ) 
Sy=600; (* y ield strength [MPa] *) 

Print["ultimate strength [MPa] Su=",Su]; 
Print["yield strength [MPa] Sy=",Sy]; 

aminl=-100.; 

amaxl=300.; 

aal=(OTmaxI-ami nl) /2; 
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0rml= (0rmaxl+0»mi nl) II; 

mI=oraI/(amI-Su); 
SI=-mI Su; 

Print ["ami =",ormI,"; aal=",aal]; 
Print["ml=",ml]; 
Print["SI=",SI]; 

orminll=-100.; 

amaxll=400; 

aaII=(amaxII-aminn)/2; 

amII=(amaxII+aminII)/2; 

mII=aaII/(ormII-Su); 
SII=-mII Su; 

Print["amII=",amII,"; aal l=",aal l ] ; 
Print["mII=",mII]; 
Print["SII=",SII]; 

yl=nil x+SI; 
yll=mll x+SII; 

graph=Plot[{yI,yII},{x,0,Su},AxesLabel^{"am","aa"}, GridLines-^ 
{{smijsmll},{sal,sail}}]; 

"lO'̂ a cycle strength S" 
"axial loads: S=0.75 Su" 
S=0.75 Su; 
Print["axial: S=",S]; 

"lO'̂ e cycle strength (endurance limits) Se=kL kG kL Se'" 

"endurance limit of test speciment Se'" 
"Se'=0.5 Su (for Su<1400 MPa); Se'=700 MPa (for Su>1400 MPa)" 
"bending, axial, torsion: Se'=0.5 Su " 
Sep=0.5 Su; 
Print[" Se'=",Sep]; 

"modifying factors for endurance limit" 

"surface factor kS (bending, axial, torsion)" 
Print["ultimate strength [kpsi] Su=",Su/6.895]; 
"fine ground surface" 
kS=0.475; 
Print["surface factor kS=",kS]; 

"size (gradient) factor kG" 
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"bending and torsion: kG=l (for d<10 mm); kG=0.9 (for <10<d<50 mm)" 
"axial: kG=0.7-0.9" 
kG=0.8; 
Print["axial: size factor kG=",kG]; 

"load factor kL" 
"bending and axial: kL=l; torsion: kc=0.58" 
kL=l; 

"endurance limit Se=kS kG kL Se'" 
Se=kS kG kL Sep; 
Print["axial: Se=",Se]; 

"S-N diagram" 
LS=Log[10,S]; 
LSe=Log[10,Se]; 
Lm=(LSe-LS)/(6-3); 
Lb=LS-3 Lm; 
Print["m=",Lm," b=",Lb]; 

LSI=Log[10,SI]; 
LNI=(LSI-Lb)/Lm; 
NI=10"LNI; 

LSII=Log[10,SII]; 
LNII=(LSII-Lb)/Lm; 
NII=10"LNII; 

Print["N=10"3 cycles. S = ",S," [MPa]; Log[N]=3, Log[S] = ",LS]; 
Print["N=10"6 cycles, Se = ",Se." [MPa]; Log[N]=6, Log[Se] = ",LSe]; 

Print["SI = " ,SI ," [MPa]; Log[SI] = ".LSI," =>"]; 
Print["Log[NI]= ",LNI," => NI = ".NI." cycles"]; 

Print["SII = " .SI I ." [MPa]; Log[SII] = ".LSII." =>"]; 
Print["Log[NII]= ".LNII." => Nil = " .Ni l ." cycles"]; 

LSN=Lm x+Lb; 
SNG=Plot[LSN.{x,3.6}.Axes0rigin^{3,LSe}, 

Axes Label -^ { " Log [N]"." Log [S]" } ] ; 
Show[SNG,Ticks-^{{3,4.5,6}.{LSe.LSI,LSII,LS}}, 

GridLines^{{3,4.5,6}.{LSe,LSI,LSII,LS}}, 
PlotRange^{{3,6}.{LSe-0.15.LS+0.15}}.Axes0rigin-^{3,LSe-0.15}, 
AxesLabel^{"Log[N]"."Log[S]"}]; 

nl=2;nll=3; 
p=nI/NI+nII/NII; 
t=5; 
Li=t/p; 
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Print["nI/NI+nII/NII= ",p]; 
Print["life of the part = ",Li, 

ultimate strength [MPa] Su=950 

yield strength [MPa] Sy=600 

orml = 100.; aal=200. 

mI=-0.235294 

51=223.529 

ormll=150.; aall=250. 

mll=-0.3125 

511=296.875 

',Li/60," min = ",Li/3600," h " ] ; 

10''3 cycle strength 5 

axial loads: 5=0.75 5u 

axial: 5=712.5 

IC^e cycle strength (endurance limits) 5e=kL kG kL 5e' 

endurance limit of test speciment 5e' 

5e'=0.5 5u (for 5u<1400 MPa); 5e'=700 MPa (for 5u>1400 MPa) 

bending, axial, torsion: 5e'=0.5 5u 

5e'=475. 

modifying factors for endurance limit 

surface factor k5 (bending, axial, torsion) 

ultimate strength [kpsi] 5u=137.781 

fine ground surface 

surface factor k5=0.475 
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size (gradient) factor kG 

bending and torsion: kG=l (for d<10 mm); kG=0.9 (for <10<d<50 mm) 

axial: kG=0.7-0.9 

axial: size factor kG=0.8 

load factor kL 

bending and axial: kL=l; torsion: kc=0.58 

endurance limit Se=kS kG kL Se' 

axial: Se=180.5 

S-N diagram 

m=-0.198769 b=3.44909 

N=10'̂ 3 cycles, S = 712.5 [MPa]; Log[N]=3, Log[S] = 2.85278 

N=10'̂ 6 cycles, Se = 180.5 [MPa]; Log[N]=6, Log[Se] = 2.25648 

SI = 223.529 [MPa]; Log[SI] = 2.34933 => 

Log[NI]= 5.53284 => NI = 341065. cycles 

SII = 296.875 [MPa]; Log[SII] = 2.47257 => 

Log[NII]= 4.91283 => Nil = 81814. cycles 

Log[S] 

Log [N] 

Log[S] 

2.85278 

2.47257 

2.34933 
2.25648 

^ ^ -

"̂ --̂  

Log[N] 
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nI/NI+nII/NII= 0.0000425325 

life of the part = 117557. s = 1959.28 min = 32.6547 h 

PROGRAM 11.2.6 
Apply[Clear,Names["Globar*"]]; 
Off[General::spell]; 
Off[General::spel11]; 

d=2.; 
Print["d=",d," i n . " ] ; 

"fluctuating tensile load" 
Fmin=3; 
Fmax=60.; 

Print["Finin=",Fmin," kip"]; 
Print["Fmax=",Fmax," kip"]; 

Su=97; 
Sy=68; 

Print["ultimate strength Su=",Su," kpsi"]; 
Print ["yield strength Sy=",Su," kpsi"]; 

"endurance limit of test speciment Se'=0.5 Su" 
Sep=0.5 Su; 
Print["Se'=",Sep," kpsi"]; 
"modifying factors for endurance limit" 
kS=0.76; 
Print["surface factor kS=",kS]; 
kG=0.8; 
Print["size factor kG=",kG]; 
kL=l; 
Print["load factor kL=",kL]; 
Se=kS kG kL Sep; 
Print["endurance limit Se=kS kG kL Se"=",Se," kpsi"]; 

Fa=(Fmax-Fmin)/2; 
Fm=(Fmax+Fmin)/2; 
Print["Fa=Fm=Fmax/2=",Fa," kpsi"]; 

aa=4 Fa/(N[Pi] d'^2); 

Print["0ra=4 Fa/(;r d'^2)=",aa," kpsi"]; 

am=4 Fm/(N[Pi] d'^2); 

Print["am=4 ¥m/{jt d'̂ 2)=",am," kpsi"]; 
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"overload on da" 

"modified Goodman: Sa/Se+Sm/Su=l => Sa=Se(l-Sm/Su)" 

Sam=Se (1-Sm/Su) / . {Sm->am}; 

"for Sm=am =>" 

Print ["Sa=Se(1-am/Su)=",Sam," kpsi"]; 

SFa=Sam/aa; 

Print["safety factor SFa=Sa/aa=",SFa]; 

"overload on dm" 

"modified Goodman: Sa/Se+Sm/Su=l =>Sm=Su(l-Sa/Se)" 

Sma=Su(1-Sa/Se)/.{Sa->aa}; 

"for Sa=aa =>" 

Print["Sm=Su(l-Sa/Se)=",Sma," kpsi"]; 

SFm=Sma/(Tm; 

Print["safety factor SFm=Sm/am=",SFm]; 

"0>a/orm = constant" 

r=aa/orm; 

Print["aa/am = Sa/Sm = r=",r]; 
"modified Goodman: Sa/Se+Sm/Su=l => Sm=Se Su(Se+r Su)" 
Smr=Se Su/(Se+r Su); 
Print["Sm=Se Su/(Se+r Su)=",Smr," kpsi"]; 
SFr=Smr/0'm; 

Print["safety factor SFr=Sm/am=",SFr]; 

"OTm-OTa diagram" 
eq=Se (1-x/Su); 

eqm=(Ta; 

eqa=r x; 

CF=Plot[{eq,eqm,eqa},{x,0,Su},GridLines^{{am},{aa}}, 
PlotRange^{{0,Su},{0,Se}}, Axes->True]; 

d=2. i n . 

fluctuating tensile load 

Fmin=3 kip 

Fmax=60. kip 

ultimate strength Su=97 kpsi 
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yield strength Sy=97 kpsi 

endurance limit of test speciment Se'=0.5 Su 

Se'=48.5 kpsi 

modifying factors for endurance limit 

surface factor kS=0.76 

size factor kG=0.8 

load factor kL=l 

endurance limit Se=kS kG kL Se'=29.488 kpsi 

Fa=Fm=Fmax/2=28.5 kpsi 

aa=4 Fa/(7r d'^2)=9.07183 kpsi 

cTm=4 Fm/(7r d'^2) = 10.0268 kpsi 

overload on era 

modified Goodman: Sa/Se+Sm/Su=l => Sa=Se(l-Sm/Su) 

fo r Sm=am => 

Sa=Se(l-orm/Su)=26.4399 kpsi 

safety fac tor SFa=Sa/aa=2.9145 

overload on am 

modified Goodman: Sa/Se+Sm/Su=l => Sm=Su(l-Sa/Se) 

fo r Sa=aa => 

Sm=Su(l-Sa/Se)=67.1584 kpsi 

safety fac tor SFm=Sm/orm=6.69792 

era/am = constant 

era/am = Sa/Sm = r=0.904762 

modified Goodman: Sa/Se+Sm/Su=l => Sm=Se Su(Se+r Su) 

Sm=Se Su/(Se+r Su)=24.3952 kpsi 

safety fac tor SFr=Sm/am=2.43301 

crm-aa diagram 
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1.3 Screws 

Fasteners may be classified as threaded, fixed, and locking. Threaded fasteners include 
bolts, studs, and various forms of screws. Fixed fasteners include welds, solders, brazing, 
adhesives, and rivets. Locking fasteners may be used separately or in conjunction with 
other fasteners and include washers, keys, splines, springs, and pins. 

Threaded fasteners such as screws, nuts, and bolts are important components of mechan-
ical structures and machines. Screws may be used as removable fasteners or as devices for 
moving loads. 

11.3.1 Screw Thread 
A screw thread is a uniform wedge-shaped section in the form of a helix on the external or 
internal surface of a cylinder (straight thread) or a cone (taper thread). 

The basic arrangement of a helical thread wound around a cylinder is illustrated in 
Figure II.3.1. The terminology of an external screw threads is: 

• Pitch — denoted by p is the distance, parallel to the screw axis, between corresponding 
points on adjacent thread forms having uniform spacing. 

• Major diameter—denoted by d is the largest (outside) diameter of a screw thread. 
• Minor diameter—denoted by dr or d\, is the smallest diameter of a screw thread. 
• Pitch diameter—denoted by dm or J2 is the imaginary diameter for which the width of 

the threads and the grooves are equal. 

The standard geometry of a basic profile of an external thread is shown in Figure II.3.2, 
and it is basically the same for both Unified (inch series) and ISO (International Standards 
Organization, metric) threads. 

The lead denoted by / is the distance the nut moves parallel to the screw axis when the 
nut is given one turn (distance a threaded section moves axially in one revolution). A screw 
with two or more threads cut beside each other is called a multiple-threaded screw. The 
lead is equal to twice the pitch for a double-threaded screw, and up to three times the 
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• Major diameter d 

• Pitch diameter dm, c?2 

(— Minor diameter dr, di 

Pitch ; 

Thread angle 2a 

FIGURE 11.3.1 Terminology of an external screw thread. 

45° chamfer 

FIGURE 11.3.2 Geometry of an external thread. 

538 KINEMATIC CHAINS AND MACHINE COMPONENTS DESIGN 



Single thread-right hand 

Double thread-left hand 

FIGURE IL3.3 (a) Single threaded right-hand screw and (b) double-threaded left-hand screw. 

pitch for a triple-threaded screw. The pitch p, lead /, and lead angle X are represented in 
Figure II.3.3. Figure 11.3.3(a) shows a single thread right-hand screw and Figure 11.3.3(b) 
shows a double-threaded left-hand screw. If a thread traverses a path in a clockwise and 
receding direction when viewed axially, it is a right-hand thread. All threads are assumed 
to be right-hand, unless otherwise specified. 

A standard geometry of an ISO profile, M (metric) profile, with 60° symmetric threads 
is shown in Figure II.3.4. In Figure II.3.4 D (d) is the basic major diameter of the internal 
(external) thread, Di(di) is the basic minor diameter of the internal (external) thread, 
D2 (t/2) is the basic pitch diameter, and H = 0.5 V^p. 

Metric threads are specified by the letter M preceding the nominal major diameter in 
millimeters and the pitch in millimeters per thread. For example: 

M 1 4 x 2 
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FIGURE ir.3.4 Standard geometry of an ISO profile. 

M is the SI thread designation, 14 mm is the outside (major) diameter, and the pitch is 2 mm 
per thread. 

Screw size in the Unified system is designated by the size number for major diameter 
(in.), the number of treads per in., and the thread form and series, like this: 

5" 
18UNF 

5" 
— is the outside (major) diameter where the double tick marks mean inches, and 18 threads 
8 

per in. Some Unified thread series are: 

UNC, Unified National Coarse 
UNEF, Unified National Extra Fine 
UNF, Unified National Fine 
UNS, Unified National Special 
UNR, Unified National Round (round root) 

The UNR series threads have improved fatigue strengths. 
Figure 11.3.5(a) shows different types of thread delineation on a drawing: detailed, 

schematic, and simplified thread representation. The schematic representation is realis-
tic and is used frequently in assembly drawings. The simplified thread representation 
is used widely because its ease of drawing. Typical screw heads are illustrated in 
Figure 11.3.5(b). 
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Detailed thread representation Schematic thread representation Simphfied thread representation 

(a) 

4> 
Hexagon head Square head Round head 

Flat head Filhster head Oval head 

Hexagon socket head Hex socket headless setscrew 

Carriage bolt Round head with Phillips socket 

(b) 

FIGURE n.3.5 (a) Thread representation and (b) typical screw heads. 

.3.2 Power Screws 
For applications that require power transmission, the Acme (Fig. II.3.6) and square threads 
(Fig. II.3.7) are used. 

Power screws are used to convert rotary motion to linear motion of the meeting member 
along the screw axis. These screws are used to lift weights (screw-type jacks) or exert large 
forces (presses, tensile testing machines). The power screws can also be used to obtain 
precise positioning of the axial movement. 

A square-threaded power screw with a single thread having the pitch diameter dm, the 
pitch p, and the helix angle X is considered in Figure II.3.8. Consider that a single thread 
of the screw is unrolled for exactly one turn. The edge of the thread is the hypotenuse of a 
right triangle and the height is the lead. The base of the right triangle is the circumference 
of the pitch diameter circle (Fig. II.3.9). The lead angle X is the helix angle of the thread. 

The screw is loaded by an axial compressive force F (Figs. II.3.8 and II.3.9). 
The force diagram for lifting the load is shown in Figure 11.3.9(a), (the force Pr is 

positive). The force diagram for lowering the load is shown in Figure 11.3.9(b), (the force 
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Acme 

FIGURE n.3.6 Acme threads. 

r^ — • 

2a = 29T 

V^Pn 0.3p\ 

Acme stub 

P 
^ • 

P 

Modified square 

FIGURE 11.3.7 Square threads. 
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F/2 

FIGURE n.3.8 Power screw. 

(a) (b) 

FIGURE 11.3.9 Force diagrams for (a) lifting the load and (b) lowering the load. 
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Pi is negative). The friction force is 

Ff = ixN, 

where /x is the coefficient of dry friction and Â  is the normal force. The friction force is 
acting opposite to the motion. 

The equilibrium of forces for raising the load gives 

Y^Fjc =Pr-NsmX- iiNcosX = 0, (II.3.1) 

Y^Fy = F -\- fji NsinX - NcosX = 0. (II.3.2) 

Similarly, for lowering the load one may write the equations 

Y^F^ = -Pi - Nsink -{- fi Ncosk = 0, (II.3.3) 

YFy=F-fiN sink -Ncosk = 0. (II.3.4) 

Eliminating Â  and solving for Pr 

P, = ^ ^ ^ ' " ' + ^ ^ " ^ ^ \ (II.3.5) 

and for lowering the load 

cos k — IX sink 

Fificosk-sink) n^r^^^ 
Pi = : . (11.3.0) 

cosk-\- jismk 

Using the relation 

tanX = l/(7tdm), 

and dividing the equations by cos k one may obtain 

1 - ilxlTtdm) 

Pi = P^^-^'"<^-^\ (11.3.8) 
1 + (fllTtdm) 

The moment required to overcome the thread friction and to raise the load is 

n + 7tixdm\ 

\7tdm - fllj ' 
M,=P,^ = ^ { - • / - — ; I. (11.3.9) 
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The moment required to lower the load (and to overcome a part of the friction) is 

When the lead, /, is large or the friction, /x, is low the load will lower itself. In this case 
the screw will spin without any external effort, and the moment Mi in Eq. (II.3.10) will be 
negative or zero. When the moment is positive. Mi > 0, the screw is said to be self-locking. 

The condition for self-locking is 

7t jJidm > I' 

Dividing both sides of this inequality by n dm, and using l/(n dm) = tan A, yields 

lx>tmX. (II.3.11) 

The self-locking is obtained whenever the coefficient of friction is equal to or greater than 
the tangent of the thread lead angle. 

The moment, MQ, required only to raise the load when the friction is zero, /x = 0, is 
obtained from Eq. (II.3.9): 

Mo = ^ . (II.3.12) 
Z7t 

The screw efficiency e can be defined as 

Mo Fl 

Mr InMr 
(II.3.13) 

For square threads the normal thread load, F, is parallel to the axis of the screw (Figs. II.3.7 
and II.3.8). The preceding equations can be applied for square threads. 

For Acme threads (Fig. II.3.6) or other threads, the normal thread load is inclined to the 
axis due to the thread angle 2a and the lead angle X. 

The screw threads in normal and axial planes are shown in Figure 11.3.10(a). The angle 
an is the thread angle measured in normal plane. The relation between the thread angle 
measured in axial plane, a in Figure II.3.6, and the thread angle measured in normal plane, 
an in Figure 11.3.10(a), is 

s s 
tan an = — = cos A = tan a cos A, 

H H cos X 

or 

tan an = tan a cos X. (II.3.14) 

The screw thread forces in normal plane are represented in Figure 11.3.10(b). The force 
diagram for lifting the load is shown in Figure 11.3.10(b). The equilibrium of forces for 
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screw axis 

Section N-Nir 
normal to thread 

Section A-A~k 
axial to thread 

Section N-Ni^ 
normal to thread 

Oin = thread angle measured in normal plane 

FIGURE n.3.10 (a) Acme screw threads in normal and axial planes and (b) force diagram. 

raising the load gives 

y j Fx = Pr — N cos an sin X — fiN cos 1 = 0, 

22, ^y — ~^ + ^ ^^s an cos X — fiN sin X = 0. 

(11.3.15) 

(II.3.16) 
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Eliminating Â̂  and solving for P^, 

jji cos A + sin A, cos a„ /x + tan A cos an 
Pr = F :— = F . (II.3.17) 

cos X cos an — /ji sin k cos a„ — /x tan A, 

The moment required to overcome the thread friction and to raise the load is 

M. = / > . ^ = ^ /A^ + tanAcosa„\ ^̂ ^ 3^^^ 
2 2 \cosa„ —/xtanXy 

Using the relation 

tan A = l/(7tdm), 

the following expression is obtained: 

Fdm ( UTtdm + / COS «„ \ 

2 \7Tdm COS an —/Jil J 

Similarly, the moment required to lower the load and to overcome a part of the friction is 

Fdm ( UTtdm — I COS Qf̂  \ 
M/ = — ^ -— . (II.3.20) 

2 \7rdm cos an-\-/jil J 

For power screws the square thread (an = 0) is more efficient than the Acme thread. The 
Acme thread adds an additional friction due to the wedging action. It is easier to machine 
an Acme thread than a square thread. 

In general, when the screw is loaded axially, a thrust bearing or thrust collar may be 
used between the rotating and stationary links to carry the axial component (Fig. II.3.11). 
The load is concentrated at the mean collar diameter dc. The moment required is 

Mc = - ^ , (11.3.21) 

where JJLC is the coefficient of collar friction. 

IL3.3 Force Analysis for a Square-Threaded Screw 
Consider a square-threaded jack under the action of an axial load F and a moment M about 
the axis of the screw [Fig. 11.3.12(a)]. The screw has the mean radius r^ and the lead /. The 
force exerted by the frame thread on the screw thread is R. The angle 0 made by R with the 
normal to the thread is the angle of friction [Fig. 11.3.12(b)]: 

tan^ = /x = -^ . 
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FIGURE 11.3.11 Thrust collar. 

The unwrapped thread of the screw shown in Figure 11.3.12(b) is for Hfting the load. The 
force equilibrium equation in the axial direction is 

F = Rcos(X + 0), 

where X is the helix angle, tan A, = IKlnrm)- The moment of i? about the vertical axis of 
the screw is Rvm sin(A -\-0). The moment equilibrium equation for the screw becomes 

M = Rrm sin(A + 0). 

Combining the expression for F and M gives 

M = Mr= Fvm tan(A, + 0). (II.3.22) 

The force required to push the thread up is P = Mlvm-
The moment required to lower the load by unwinding the screw is obtained in a similar 

manner: 

M = Mi= Fvm tan(6> - A). 

If0<'k the screw will unwind by itself. 

(II.3.23) 
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FIGURE 11.3.12 faj Square-threaded jack and (b) force diagram. 

.3.4 Threaded Fasteners 
In general bolts are used to hold parts together. External forces tend to pull, or slide, the 
parts apart. Figure 11.3.13(a) shows two parts connected with a bolt. An external force, F^, 
acts on the joint and tends to separate the two parts. The free-body diagram of a portion of 
this joint without the external load is shown in Figure 11.3.13(b). In this figure the nut has 
been initially tightened to a preload force F/. The initial bolt axial load F^o and the clamping 
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Fe 

(a) (b) 

Fe 

(c) 

FIGURE 11.3.13 (a) Force diagrams for two parts connected with a bolt; (b) free-body diagram of 
a portion without the external load; and (c) free-body diagram of a portion with the external load. 

force between the two plates, Fco, are both equal to the preload force Ff. F^Q = Fco = Ft. 
The free-body diagram of the portion with the external load Fe is shown in Figure II.3.13(c). 
Equilibrium requires an increase in Ft and a decrease in F^. The separating force Fe must 
be equal to the sum of the increased bolt force AF^ plus the decreased clamping force AF^: 

Fe = AFb + AFc. 

The bolt and the clamped members elongate the same amount: 

AFb AFc 
8 = 

h 

(IL3.24) 

(IL3.25) 

where k^ and kc are the spring constants for the bolt and clamped parts, respectively. From 
Eqs. (II.3.24) and (II.3.25) the elongation is 

(11.3.26) 

The bolt axial load F^ and the clamping force Fc are 

Fb = Fi + AFb = Fi + 
kb 

kb -i-k 
Fe, 

Fc = Fi - AFc = Fi -Fe. 
kb + kc 

The joint constant is defined as a dimensionless stiffness parameter given by 

C= ^^ 
kb + kc' 

Equations (II.3.27) and (II.3.28) will become 

Fb=Fi + CFe, 

Fc = Fi-(l-C)Fe. 

(II.3.27) 

(II.3.28) 

(11.3.29) 

(II.3.30) 

(II.3.31) 
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The general axial deflection equation 

gives the spring constant (stiffness) 

S = 
Fl 

F AE 

where A is the cross-sectional area, E is the modulus of elasticity, and / is the length. 

Bolt Stiffness 
A bolt with thread is considered as a shaft with a variable section. The minor diameter (root 
diameter), dr, is used for the threaded section of the bolt, and the major diameter (crest 
diameter), d, is used for the unthreaded section of the bolt (shank). The stiffness of the 
bolt is 

1 1 
+ 

1 

f^b thread ^shank 

For a bolt with a shank having a constant major diameter the spring constant is [6]: 

1 4 Ose lte\ 4 Os-^OAd . /j 

kb cP + 
lt + OAdr\ 

J2 J' (n.3.32) 

where Is is the length of the unthreaded section and U is the length of the threaded section 
(Fig. II.3.14). The effective lengths of the unthreaded and threaded sections are Ise and Z ,̂ 
respectively. The modulus of elasticity of the bolt is E. 

h 

^ %^ ^/" "N 

FIGURE n.3.14 Geometry of a bolt and nut assembly. 
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Shigley and Mischke [20] proposed the following expressions for the stiffness of the 
unthreaded section of the bolt, kg: 

/Co 
AcE 7t d^ E 

h 4L 

and for the stiffness of the threaded section of the bolt, kt\ 

AtE 
kt = 

It 

(II.3.33) 

(11.3.34) 

The tensile stress area. At is defined as [6]: 

At = 0.7854 (d - 0.9143/nf in.^ (II.3.35) 

for UN thread profiles where d is in inches and n is the number of threads per inch: 

At = 0.7854(J - 0.9382pf mm^ (II.3.36) 

for M thread profiles with the major diameter d and the pitch p in millimeters. The tensile 
stress area is also given in Tables 11.3.1 and II.3.2 [6]. 

TABLE IL3.1 Tensile Stress Areas for Metric Threads 

Major diameter 
(dmm) 

1 

1.6 
2 
2.5 
3 
4 
5 
6 
8 

10 
12 
16 
20 
24 
30 
36 
42 
48 

Coarse threads (MC) 

Pitch 
(pmm) 

0.25 

0.35 
0.4 
0.45 
0.5 
0.7 
0.8 
1 
1.25 
1.5 
1.75 
2 
2.5 
3 
3.5 
4 
4.5 
5 

Tensile stress 
area (At mnp-) 

0.460 

1.27 
2.07 
3.39 
5.03 
8.78 

14.2 
20.1 
36.6 
58.0 
84.3 

157 
245 
353 
561 
817 

1121 
1473 

Fine threads (MF) 

Pitch 
(pmm) 

— 
0.20 

.25 

.35 

.35 

.5 

.5 

.75 
1 
1.25 
1.25 
1.5 
1.5 
2 
2 
3 

— 
— 

Tensile stress 
area (At mm^) 

— 
1.57 
2.45 
3.70 
5.61 
9.79 

16.1 
22 
39.2 
61.2 
92.1 

167 
272 
384 
621 

865 

— 
— 

Source: B. G. Hamrock, B. Jacobson, and S. R. Schmid, Fundamentals of Machine Elements, New York, 
McGraw-Hill, 1999. Reprinted with permission of McGraw-Hill. 
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TABLE n.3.2 Tensile Stress Areas for UN Threads 

Major 
diameter 

(d in.) 

0.0600 
0.0730 
0.0860 
0.0990 
0.1120 
0.1250 
0.1380 
0.1640 
0.1900 
0.2160 
0.3500 
0.3125 
0.3750 
0.4735 
0.5000 
0.5625 
0.6250 
0.7500 
0.8750 
1.000 
1.125 
1.250 
1.375 
1.500 
1.750 
2.000 

Coarse threads (UNC) 

Number of 
threads per 

in. (n) 

— 

64 
56 
48 
40 
40 
32 
32 
24 
24 
20 
18 
16 
14 
13 
12 
11 
10 
9 
8 
7 
7 
6 
6 
5 
4.5 

Tensile 
stress area 
(At in?) 

— 

0.00263 
0.00370 
0.00487 
0.00604 
0.00796 
0.00909 
0.0140 
0.0175 
0.0242 
0.0318 
0.0524 
0.0775 
0.1063 
0.1419 
0.182 
0.226 
0.334 
0.462 
0.606 
0.763 
0.969 
1.155 
1.405 
1.90 
2.50 

Fine threads (UNF) 

Number of 
threads per 

in. (n) 

80 
72 
64 
56 
48 
44 
40 
36 
32 
28 
28 
24 
24 
20 
20 
18 
18 
16 
14 
12 
12 
12 
12 
12 
— 
— 

Tensile 
stress area 
(At in?) 

0.00180 
0.00278 
0.00394 
0.00523 
0.00661 
0.00830 
0.01015 
0.01474 
0.0200 
0.0258 
0.0364 
0.0580 
0.0878 
0.1187 
0.1599 
0.203 
0.256 
0.373 
0.509 
0.663 
0.856 
1.073 
1.315 
1.581 

— 
— 

Source: B. G. Hamrock, B. Jacobson, and S. R. Schmid, Fundamentals of Machine Elements, New York, 
McGraw-Hill, 1999. Reprinted with permission of McGraw-Hill. 

Thus, the bolt stiffness is 

h = As It H~ At Is 
(11.3.37) 

Stiffness of the clamped parts 
Difficulties commonly arise in estimating the stiffness of the clamped parts or the joint 
stiffness. The clamped parts may consist of a combination of different materials. The parts 
may represent "springs" in series, as shown in Figure II.3.14. The stiffness of the clamped 
parts is 

1 _ 1 1 1 

kc ki k2 ki 
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Shigley and Mischke [20] proposed the following expression for the joint stiffness: 

0.577 7T Eid 

''• = , . / 0 .577 / ,+0 .5 .^ ^''-'-''^ 
21n 5-0.577//+ 2.5 J , 

Wileman et al. [25] obtained an exponential expression using finite element analysis: 

ki = Ei d A e^^^'^^ (11.3.39) 

the numerical constants are: 

A = 0.78715, B = 0.62873 for steel; 
A = 0.79670, B = 0.63816 for aluminum; 
A = 0.79568, B = 0.63553 for copper, and 
A = 0.77871, 5 = 0.61616 for gray cast iron. 

Bolt Preload 
The initial tensile force Ft is defined as [7]: 

Fi=KAtSp, (II.3.40) 

where At is the tensile stress area of the thread and Sp is the proof strength of the material 
[7, 20]. The proof strength of steel bolts is given in Tables II.3.3 and II.3.4 for various 
sizes [6]. The International Organization for Standardization (ISO) defines a metric grade 
number as a range of 4.6 to 12.9 (Table II.3.3) and the Society of Automotive Engineers 
(SAE) specifies grade number from 1 to 8. The higher grade numbers represent greater 
strength. The bolt grades are numbered according to the tensile strength. The constant K is 
0.75 for reused connections and 0.90 for permanent connections. The proof load is defined 
as Fp = At Sp and is the maximum load that a bolt can withstand without acquiring a 
permanent set. 

TABLE 11.3.3 Proof Strength of Steel Bolts (ISO) 

Major diameter Ultimate tensile Yield strength Proof strength 
Metric grade (d, mm) strength (Su, MPa) (Sy, MPa) (Sp, MPa) 

4.6 
4.8 
5.8 
8.8 
9.8 

10.9 
12.9 

M5-M36 
ML6-M16 

M5-M24 
M17-M36 
M1.6-M16 

M6-M36 
M1.6-M36 

400 
420 
520 
830 
900 

1040 
1220 

240 
340* 
415* 
660 
720* 
940 

1100 

225 
310 
380 
600 
650 
830 
970 

* Yield strength approximate and not included in standard. 
Source: B. G. Hamrock, B. Jacobson, and S. R. Schmid, Fundamentals of Machine Elements, New York, 
McGraw-Hill, 1999. Reprinted with permission of McGraw-Hill. 

554 KINEMATIC CHAINS AND MACHINE COMPONENTS DESIGN 



TABLE 11.3.4 Proof Strength of Steel Bolts (SAE) 

SAE grade 

1 

2 

4 

5 

7 

8 

Range of major 

diameter (in.) 

4 ^2 

1 3 
4 4 

3 _ i i 
4 ^2 

i-4 
i-1 
1- l i 

4 ^2 

4 ^2 

Ultimate tensile 

strength (Su, 

60 

74 

60 

115 

120 

105 

133 

150 

kpsi) 
Yield strength 

(Sy, kpsi) 

36 

57 

36 

100 

92 

81 

115 

130 

Proof strength 

(Sp, kpsi) 

33 

55 

33 

65 

85 

74 

105 

120 

Source: B. G. Hamrock, B. Jacobson, and S. R. Schmid, Fundamentals of Machine Elements, New York, 
McGraw-Hill, 1999. Reprinted with permission of McGraw-Hill. 

Static Loading of the Joint 
The bolt stress can be calculated from Eq. (II.3.30): 

Fb Fi Fe 
ab = ^ = ^ + C^, (IL3.41) 

^t ^t ^t 

where At is the tensile stress area. The limiting value for the bolt stress, o\y, represents 
the proof strength, Sp. A safety factor rib is introduced for the bolt stress and Eq. (II.3.41) 
becomes 

S F)^^Frna^^ (11.3.42) 
At At 

The safety factor is not applied to the preload stress Ft/At. The bolt failure safety factor is 

SryAt-Fi 
ubf = - ^ -, (II.3.43) 

^ ^max,b 

where Fmax,b is the maximum external load applied to the bolt. 
Separation occurs when the clamping force is zero, Fc = 0. The safety factor against 

separation of the parts of the joint is obtained from Eq. (II.3.31) with Fc = 0 and has the 
expression 

ns = T-^r-TTy (11.3.44) 

where F^ax is the maximum external load applied to joint. 
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11.3.5 Examples 

EXAMPLE 11.3.1: Double square-thread power screw 

A double square-thread power screw (Fig. II.3.15) has the major diameter d = 40 mm 
and the pitch/? = 6 mm. The coefficient of friction of the thread is /x = 0.08 and the 
coefficient of collar friction is /x̂  = 0.1. The mean collar diameter is dc = 45 mm. 
The external load on the screw is F = 8 kN. 

Find: 

(a) the lead, the pitch (mean) diameter, and the minor diameter; 

(b) the moment required to raise the load; 

(c) the moment required to lower the load; 

(d) the efficiency of the device. 

c l ^ 

FIGURE 11.3.15 Screw Jack used in Example 11.3.1. 
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EXAMPLE 11.3.1: Double square-thread power screw—Cont^d 

Solution 

(a) From Figure II.3.7: the minor diameter is 

dr = d-p = 40-6 = 34 mm, 

the pitch (mean) diameter is 

dm=d-p/2 = 40-3 = 31 mm. 

The lead is 

/ = 2/7 = 2 (6 )= 12 mm. 

(b) The moment required to raise the load is [Eqs. (II.3.9) and (II.3.21)]: 

Fficdc _ Fdrn fl + n^ldm\ 

2 \7Tdm — l^lj 

8 (10^) (37) (10-3) 

+ 

12 + 0.08(37)7r 
+ 

8 (10^) (0.1) (45) (10-3) 

.377r-0.08(12)_ 

= 45.344 N m. 

(c) The moment required to lower the load is [Eqs. (II.3.10) and (II.3.21)]: 

_ Fdrn fnixdm-l\ Filed, 
2 \7Tdm + fJ^lJ 2 

8 (10^) (37) (10-3) r0.08(37)7r - 12 
+ 

8 (10^) (0.1) (45) (10-^) 

_377r+0.08(12)_ 

= 14.589 N m. 

The screw is not self-locking: 

Ttfidm - / = 0.08(37)7r - 12 = -2.700 < 0. 

(d) The overall efficiency is [Eq. (II.3.13)]: 

Fl 8(103)(12)(10-3) 
e = : 0.336. 

iTtMr 2(45.344);r 

The Mathematical^ program for this example is given in Program II.3.1. 
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EXAMPLE 11.3.2: Acme-thread power screw 

A double-thread Acme screw is used in a jack to raise a load of 2000 lb (Fig. II.3.16). 
The major diameter of the screw is J = 2 in. A plain thrust collar is used. The 
mean diameter of the collar is dc = 3 in. The coefficient of friction of the thread is 
/x = 0.12 and the coefficient of collar friction is /x^ = 0.09. 

Determine: 

(a) the screw pitch, lead, thread depth, mean pitch diameter, and helix angle; 
(b) the starting moment for raising and for lowering the load; 
(c) the efficiency of the jack. 

Solution 

(a) The preferred pitches for Acme threads are [20]: 

d [in.] 

P [in.] 

1 
4 

1 
16 

5 
16 

1 
14 

3 
8 

1 
12 

1 
2 

1 
10 

5 
8 

1 
8 

3 
4 

1 
6 

7 
8 

1 
6 

1 

1 
5 

i | 

1 
5 

li 
1 
4 

li 
1 
4 

2 

1 
4 

2i 
^2 

1 
3 

3 

1 
2 

For the major diameter, d = 2 in., the preferred screw pitch isp = 0.25 in. 

FIGURE n.3.16 Acme screw jack used in Example 11.3.2. 
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EXAMPLE IL3.2: Acme-thread power screw — Cont^d 

Because of the double thread, the lead is 

/ = 2/7 = 2 (0.25) = 0.5 in. 

The pitch (mean) diameter is (see Fig. II.3.6): 

dm=d-p/2 = 2- 0.25/2 = 1.875 in. 

The heUx angle is 

A = tan-^ = tan-^ — - — = 4.851°. 
ndm 1.8757r 

(b) The starting friction is about one-third higher than running friction and the 
coefficients of starting friction are [7]: 

M. = -/x = - (0.12) = 0.16 and /x,, =-fi^ = - (0.09) = 0.12. 

The angle a„ is calculated with the formula 

an = tan-^tanof cosA) = tan'^tan 14.5° cos 4.851°) = 14.450°, 

where a = 14.5° (see Fig. II.3.6). The moment for Hfting the load is 

Fdm /lJ.s7tdm-\-I cos an\ , F/J^csdc 
Mrs = —^ I —; ; I + 

2 \7tdm cos an — f^sU ^ 

_ 2000(1.875) / 0.1671(1.875)+ 0.5 cos 14.450° \ 2000(0.12)(3) 

~ 2 V7r(1.875)cos 14.450° - (0.16)(0.5)y ^ 2 

= 835.626 lb in. 

Similarly, the moment required to lower the load and to overcome a part of 
the friction is 

Fdm /^IsTtdm - I cos an\ , 
Mis = —- I — • + 

2 \7TdmC0San + flslj 

FjJ^csdc 

2 

2000(1.875) / 0.167r(1.875)-0.5 cos 14.450° \ 2000(0.12)(3) 

2 V7r(1.875)cos 14.450° + (0.16)(0.5)y "̂  2 

508.562 lb in. 

Continued 
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EXAMPLE 11.3.2: Acme-thread power screw — ConVd 

(c) Changing the coefficient of friction to the running values of /x and /x ,̂ the 
moment for Hfting the load is 

Fdm / iJiTcdm + / COS a„ \ Fjjicdc 

2 \7tdm cos an — IJLI J 2 

2000(1.875) / 0.127r(1.875) +0.5 cos 14.450° 

2 V7r(1.875)cos 14.450° - (0.12)(0.5) 

= 665.667 lb in. 

+ 
2000(0.09)(3) 

With both friction coefficients zero, the moment to raise the load is 

2000(0.5) _ Fdrn / I cos an \ _ FJ_ _ 

2 \7tdm cos an J 27r 27t 
= 159.155 lb in. 

(d) The efficiency is the ratio of friction-free moment to actual moment, or 

Fl Mo 159.155 
e = = 23.909%. 

27tMr Mr 665.667 

If the collar friction is neglected (/x̂  = 0), the efficiency 

cos an — fJi tan X 
e = , 

cos a„ + A6 cos k 
function of X is plotted in Figure II.3.17 where a„ = tan~^(tan 14.5° cos A) 
and M = {0.05; 0.12; 0.15}. 

The Mathematical^ program for this example is given in Program II.3.2. 

fi=om 

% 

0.2 0.4 0.6 0.̂  

rad 

FIGURE IL3.17 Efficiency of Acme screw thread (the collar friction is neglected). 
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EXAMPLE 11.3.3: 

A hexagonal bolt made of steel with the modulus of elasticity E^ = 206.8 GPa is 
used to join two parts made of cast iron. The modulus of elasticity for gray cast iron 
is Ec = 100.0 GPa. The thread major diameter is J = 14 mm, the root (minor) 
diameter is dr = 12 mm, and the pitch is p = 2 mm. The bolt has the axial length 
/ = 50 mm and the threaded portion of the bolt is 1/2. The cast iron parts have the 
same axial length, 1/2. Determine: 

(a) the stiffness of the bolt using Eq. (II.3.32); 
(b) the stiffness of the clamped parts using Eq. (II.3.38); 
(c) the stiffness of the clamped parts using Eq. (11.3.39). 

Solution 

(a) The lengths of the threaded section and unthreaded section of the bolt are 
If = l^ = 1/2 = 25 mm. The effective length of the threaded bolt is 

If^ = /̂  + 0.4dr = 25 + 0.4(12) = 29.8 mm = 0.0298 m. 

The effective length of the unthreaded bolt is 

4^ = /, + OAd = 25 + 0.4(14) = 30.6 mm = 0.0306 m. 

The minor diameter area is 

Ar = nd^/A = 7r(0.012)^/4 = 113.097 x 10"^ m l 

The major diameter area is 

As = nd^/A = 71(0.014)^/4 = 153.938 x 10^ m l 

The stiffness of the threaded portion is 

A ^ ^ (113.097x10-^) (206.8x10^) ^ ^ ^^, 

he 0.0298 

The stiffness of the unthreaded portion is 

Ise 0.0306 

The bolt stiffness is 

Ks — 
A ^ ^ (153.938x10-^) (206.8x10^) ^ ^_^^^^ ^ ^^, ^^^_ 

ktks (7.8485 X 10^) (1.04034 x 10^) ^ ^o 
h = - ^ - ^ = ^ ^ ^ = 4.47357 X 10^ N/m. 

kt-\-ks 7.8485 X 108 + 1.04034 x 10^ 
Continued 
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EXAMPLE 11.3.3: Cont'd 

(b) Shigley and Mischke [20] proposed the following expression for the 
stiffness of the clamped parts [see Eq. (II.3.38)]: 

O.SllnEcd 

21n 5 
.0.577/ + 

0.577/ + 

= 1.22925 X lO^N/m. 

Q.5d\ ^, / 0. 

25d) 2^H'a 

0.577;r(100.0 x 10^)(0.014) 
577(0.05) + 0.5(0.0147 
577(0.05)+ 2.5(0.014), 

(c) Wileman et al. [25] proposed the expression for the stiffness of the clamped 
parts [Eq. (II.3.39)], with the numerical constants A = 0.77871 and 
B = 0.61616 for gray cast iron: 

kc = EcdAe^'" = (100.0 X 109)(0.014)(0.77871)^^-^i6i^(0-^i4)/0-^^ 

= 1.29548 X lO^N/m. 

The Mathematical^ program for this example is given in Program 11.3.3. 

EXAMPLE 11.3.4: 

A hexagonal bolt and nut assembly is used to join two parts. The bolt and nut are 
made of steel (modulus of elasticity Eb = 30 Mpsi for steel). One part is made of 
steel and the other part is made of cast iron (modulus of elasticity Ec = 12 Mpsi for 
cast iron). The thread major diameter is d = 5/8 in., the root (minor) diameter is 
dr = 0.5135 in. There are 11 threads per inch, hence the pitch is p = 1/11 in. The 
assembly and the bolt have the axial length / = 1.5 in. The length of the threaded 
portion of the bolt is 1/2. The axial length of the cast iron part is 1/2. 

Determine: 

(a) the stiffness of the bolt using Eq. (II.3.37); 
(b) the stiffness of the clamped parts using Eq. (II.3.38); 
(c) the stiffness of the clamped parts using Eq. (II.3.39). 

Solution 

(a) The lengths of the threaded section and unthreaded section of the bolt are 
If = l^ = 1/2 = 0.75 in. The major diameter area is 

As = nd^/A = 7r(5/8)^/4 = 0.306 in.^ 
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EXAMPLE 11.3.4: Cont'd 

The tensile stress area is given by Eq. (II.3.36): 

At = 0.7854(J - 0.9743 pf = 0.7854 ( - - 0.9743—j = 0.226 in.^ 

The stiffness of the unthreaded portion is 

ks = AsEb/ls = 0.306(30)70.75 = 12.271 Mlb/in. 

The stiffness of the threaded portion is 

kt = AfEbllt = 0.226 (30)70.75 = 9.040 Mlb/in. 

The bolt stiffness is 

kskt 2.271(9.040) .^^.^,,.r 
kh = = = 5.205 Mlb/in. 
^ ks-\-kt 2.271+9.040 

(b) The axial length of the cast iron clamped part and steel clamped part are 
li = I2 = 111 = 0.75 in. Using Eq. (II.3.38), the stiffness of the cast iron 
clamped part is 

O.SllTcEcd 0.5777r(12)(5/8) 
h = 

\ 0.5 

^, . 1577/1+0.5J , , , 
21n 5 21n 

1.577/1 + 2.5J 
0.577(0.75) + 0.5(5/8) 

0.577(0.75)4-2.5(5/8) 

= 10.882 Mlb/in. 

and the stiffness of the steel clamped part is 

O.SnnEbd 0.577;r(30)(5/8) 
ki^ / 0.577/2+ 0.5J \ 

Un 5 ^-^ 21n 
V 0.577/2 + 2.5^7 

0.577(0.75) + 0.5(5/8) 
. 0.577(0.75) + 2.5(5/8) 

= 27.206 Mlb/in. 

The resulting stiffness of the clamped parts is 

kik2 10.882(27.206) ^ ™ . , . ,. 
kr = = = 7.773 Mlb/m. 

ki + k2 10.882 + 27.206 

(c) Using Eq. (11.3.39), the stiffness of the cast iron clamped part is 
(A = 0.77871 and B = 0.61616 for gray cast iron): 

ki =^EcdAe^^'^' = 12(5/8)(0.77871)̂ -̂̂ ^^^^^^^^ /̂̂ -'̂ ^ 

= 9.759 Mlb/in. 
Continued 
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EXAMPLE 11.3.4: Cont'd 

and the stiffness of the steel clamped part is (A = 0.78715 and B = 0.62873 
for steel): 

k2 = E,dAe^'''^ = 30(5/8)(0.78715)̂ 0-6^^^3(5/8)/0-̂ 5 

= 24.923 Mlb/in. 

The resulting stiffness of the clamped parts is 

hk2 9.759(24.923) ^ . , . ^ ^ , , , . 
kc = = = 7.013 Mlb/m. 

ki-{-k2 9.759 + 24.923 

The Mathematical^ program for this example is given in Program II.3.4. 

EXAMPLE M.3.5: 

A bolt made from cold-drawn steel with the stiffness kb is used to clamp two steel 
plates with the stiffness kc. The elasticities are such that kc = 5kh. The plates and the 
bolt have the same length. The external joint separating force fluctuates continuously 
between 0 and 6000 lb. 

Determine: 

(a) the minimum required value of initial preload to prevent loss of compression 
of the plates; 

(b) if the preload is 6500 lb, find the minimum force in the plates for fluctuating 
load. 

Solution 

(a) Compression of the plates is lost when Fc = 0 when maximum load is 
applied. Equation (II.3.28) becomes 

Fi = Fc+ Fe, \ = 0 + 6000 = 5000 lb. 
kb^-kc 1 + 5 

(b) Minimum force in plates occurs when fluctuating load is maximum. From 
Eq. (II.3.28) with F/ = 6500 lb, it results: 

Fc = Fi - Fe — = 6500 - 6000 = 1500 lb. 
kb-^kc 1 + 5 
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EXAMPLE 11.3.6: 
A bolt and nut assembly is used to join two parts made of cast iron. The bolt has 
the thread major diameter d = 10 mm, the pitch p = 1.5 mm, and a 4.8 grade. 
The clamped plates have a stiffness kc six times the bolt stiffness kh. The assembly 
and the bolt have the axial length and the cast iron parts have the same axial length. 
Determine the maximum load for bolt and joint failure assuming a reused connection 
and a static safety factor of rif = 2. 

Solution The joint constant is 

h _ h _ 1̂  
kb -\-kc kb + 6kb 1 

The tensile stress area is 

At = 0.7854(J - 0.9382 p f = 0.7854[10 - 0.9382(1.5)]^ = 57.989 mml 

From Table II.3.3, for a 4.8 grade the proof strength is Sp = 310 MPa. The proof 
load is 

Fp = AtSp = (57.989 x 10-^)(310 x 10^) = 17976.8 N. 

The preload for reused connections is 

Fi = O.lSFp = 0.75(17976.8) = 13 482.6 N. 

The maximum external load applied to the bolt is 

_ SpAt-Fj _ (310 X 10^)(57.989 x 10"^) - 13 482.6 _ , ^ , ^ , , , , 
J^ma.,b- ^^^ - 2(1/7) -15729 .7N. 

Equation (II.3.44) gives the maximum external load applied to the joint before 
separation as 

Fi 13 482.6 
Fmax = = = 7864.84 N. 

"̂"'̂  nf(l-C) 2[1-(1/7)1 

EXAMPLE 11.3.7: 

A number of N identical bolts, 1" - 8 UNC grade 5, are used to join two members. 
The joint constant is C = 0.5 and the separating force is 60 kip. Assume that the 
bolts may be reused when the joint is taken apart. Find the number of bolts (N) for 
a design safety factor of 2. 

Continued 
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EXAMPLE 11.3.7: Cont'd 

Solution From Table II.3.2 for J = 1 in. and n = S, the tensile stress area is 
At = 0.606 in.^ From Table II.3.4 for grade 5, the proof strength is Sp = 85 kpsi. 
The recommended preload for reused connections is 

Fi = 0.75 At Sp = 0.75 (0.606) (85) = 38.632 kip. 

For N bolts Eq. (II.3.43) can be written as 

SpAt-Fi 
nf = 

or 

N = 
^ ^f ^ max,b 

C(Fmajc,b/Ny 

0.5(2)(60) 

(II.3.45) 

= 4.659. 
Sp At - Fi (85)(0.606) - 38.632 

Five bolts are selected. Using Eq. (II.3.45) with N = 5, the safety factor is 

SpAt - Fi (85)(0.606) - 38.632 
rife 

C(Fmax,b/N) 0.5(60/5) 
= 2.146, 

which is greater than the required safety factor of 2; therefore five bolts will be used 
for the recommended preload in tightening. 

EXAMPLE M.3.8: 

The support block of a machine is attached to the ground with two screws. The 
machine applies a tensile static load of 10 kN to the block. 

(a) Select appropriate metric screws of class 5.8 for the block attachment; 
(b) Find the appropriate tightening moment. Use a safety factor of 4 based on 

proof strength. 

Solution 

(a) The load of 10 kN is applied equally by each screw and the bolt load is axial 
tension. The nominal load for each of the two bolts isF = 5 kN. With a 
safety factor of rib = 4, the design overload for each bolt is 
rib F = 4(5) = 20 kN. For static loading of a ductile material the stress 
equation is a = P/A. When P is equal to the design overload, a is equal to 
the proof strength and 

Sn = 
ribF 

At ' 
(II.3.46) 
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EXAMPLE 11.3.8: Cont'd 

For class 5.8 a proof strength of Sp = 3S0 MPa is selected from Table 11.3.3. 
Equation (II.3.46) gives the tensile stress area: 

At = 
ribF 20000 
Sp 380 X 10^ 

= 52.631 X 10"^ m^ = 52.631 mml 

From Table II.3.1 an appropriate standard size is M 10 x 1.5 
(At = 58.0 mm^). 

(b) The initial tightening tension Ft is defined as 

Fi = KAtSp = 0.9(58.01 x 10-^)(380 x 10^) = 19 836 N, 

where the constant K is 0.90 for permanent connections. Juvinall and 
Marshek give an estimated tightening moment for standard screw threads 
m a s 

T = 0.2 Fid = 0.2(19836X10 x 10"^) = 39.672 Nm. (II.3.47) 

11.3.6 Problems 
11.3.1 The double square-threaded screw has the major diameter J = 1 in. and the 

pitch p = 0.2 in. The coefficient of friction in the threads is 0.15. A moment 
M = 60 Ib-in. is applied about the axis of the screw (Fig. II.3.18). Find the axial 
force required to advance the screw: (a) to the right, and (b) to the left. 

11.3.2 A double square-thread power screw has a pitch (mean) diameter of 30 mm and a 
pitch of 4 mm (Fig. II.3.15). The coefficient of friction of the thread is 0.08 and the 
coefficient of collar friction is also 0.08. The mean collar diameter is 40 mm. 
The external load on the screw is 6.4 kN. Determine the moment required to lower 
the load and the overall efficiency. 

E33H 
w w w w 

FIGURE 11.3.18 Double square-threaded screw. 

Screws 567 



6 in. 

FIGURE 11.3.19 C-clamp. 

11.3.3 A power screw has a double square thread with a mean diameter of 40 mm and a 
pitch of 12 mm. The coefficient of friction in the thread is 0.15. Determine if the 
screw is self-locking. 

11.3.4 The single-threaded screw of a vise has a mean diameter of 1 in. and has 5 square 
threads per in. The coefficient of static friction in the thread is 0.20. Determine the 
helix angle and the fiction angle for the thread. 

11.3.5 A triple-thread Acme screw is used in a jack (as shown in Fig. II.3.16) to raise a 
load of 4000 lb. The major diameter of the screw is 3 in. A plain thrust collar is 
used. The mean diameter of the collar is 4 in. The coefficient of friction of the 
thread is 0.08 and the coefficient of collar friction is 0.1. Determine: (a) the screw 
pitch, lead, thread depth, mean pitch diameter, and helix angle; (b) the starting 
moment for raising and for lowering the load; (c) the efficiency of the jack. 

11.3.6 A C-clamp develops a 250-lb clamping force (Fig. II.3.19). The clamp uses a 
1/2-in. Acme single thread. The collar of the clamp has a mean diameter of 5/8 in. 
The coefficients of running friction are estimated as 0.1 for both the collar and the 
screw. Estimate the force required at the end of a 6-in. handle. 

11.3.7 A bolt made of steel is used to join two parts made of cast iron. The thread major 
diameter isd = 14 mm, the root (minor) diameter is dr = 12 mm, and the pitch is 
p = 2 mm. The bolt has the axial length / = 60 mm and the threaded portion of the 
bolt is 1/3. The cast iron parts have the same axial length 1/2. Determine: (a) the 
stiffness of the bolt using Eq. (II.3.32); (b) the stiffness of the clamped parts using 
Eq. (II.3.38); (c) the stiffness of the clamped parts using Eq. (II.3.39). 

11.3.8 A hexagonal bolt and nut assembly is used to join two parts, as illustrated in 
Figure II.3.20. The bolt and nut are made of steel. One part is made of steel and 
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rton 
1 

FIGURE 11.3.20 Bolt and nut assembly. 

the other part is made of cast iron. The thread major diameter isd = 5/8 in., the 
root (minor) diameter is dr = 0.5135 in., and there are n = II threads per in. The 
assembly and the bolt have the axial length / = 1.8 in. The length of the threaded 
portion of the bolt is 1/3. The axial length of the cast iron part is 1/3. Determine: 
(a) the stiffness of the bolt using Eq. (II.3.37); (b) the stiffness of the clamped parts 
using Eq. (II.3.38); (c) the stiffness of the clamped parts using Eq. (II.3.39). 

II.3.9 Abolt M 12 X 1.25 ISO grade 5.8 made of steel is used to join two parts made 
of cast iron. The assembly and the bolt have the axial length / = 80 mm and the 
threaded portion of the bolt is 1/4. The cast iron parts have the same axial length 1/2. 
The external joint separating force fluctuates continuously between 0 and 20 kN. 
Determine the minimum required value of initial preload to prevent loss of 
compression of the parts. 

11.3.10 Abolt M 10 X 1 ISO grade 4.8 made of steel is used to join two plates made of 
cast iron and steel. The bolt and the assembly have the axial length / = 60 mm and 
the threaded portion of the bolt is 1/2. The cast iron plate has the axial length 1/4. 
The external joint separating force fluctuates continuously between 0 and 20 kN. 
The bolt is tightened to an initial tension of 5 kN. Determine the minimum force 
in the plates. 

11.3.11 Abolt made from steel has the stiffness k^. Two steel plates are held together by 
the bolt and have a stiffness kc. The elasticities are such that kc = 1 k^. The plates 
and the bolt have the same length. The external joint separating force fluctuates 
continuously between 0 and 2500 lb. Determine: (a) the minimum required value of 
initial preload to prevent loss of compression of the plates, and (b) if the preload is 
3500 lb, find the minimum force in the plates for fluctuating load. 

11.3.12 Repeat the previous problem, but consider that the external joint separating force 
varies between 0 and 8500 lb. 

11.3.13 A bolt and nut assembly is used to join two parts made of cast iron. The bolt has the 
thread (3/4)"-16 UNF, SAE grade 5. The clamped plates have a stiffness kc six 
times the bolt stiffness kb. The assembly and the bolt have the axial length and the 
cast iron parts have the same axial length. Determine the maximum load for bolt 
and joint failure assuming a reused connection and a static safety factor of n/ = 2. 

11.3.14 A number ofN identical bolts, M 10 x 1.5, ISO grade 4.6, are used to join two 
members. The joint constant is C = 0.45 and the separating force is 6 kN. Assume 
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FIGURE II.3.21 Bolted pressure vessel. 

• F 

FIGURE 11.3.22 Bolt with two shear planes. 

that the bolts may be reused when the joint is taken apart. Find the number of bolts 
(N) for a design safety factor of 2. 

11.3.15 Figure II.3.21 shows the connection of a cylinder head to a pressure vessel using 10 
identical steel bolts, M 16 x 2, ISO grade 8.8. The parts are made of steel. All the 
dimensions are illustrated in Figure II.3.21 and are all in mm. The static pressure 
inside the pressure vessel is 5.5 MPa. Determine the load safety factor. 

11.3.16 Repeat the previous problem for the pressure vessel made of cast iron and the cover 
plate made of aluminum (for aluminum, E = 70 GPa). 

11.3.17 A rotating shaft applies a load of 20 kN on a block. Select the appropriate size for 
the two screws of class 4.8 for the block attachment and find the tightening moment. 

11.3.18 Figure II.3.22 shows an M 8 x 1.25, ISO grade 4.6, steel bolt tightened to its full 
proof load. The bolt is loaded in double shear (the bolt has two shear planes). The 
clamped plates are made of steel with the coefficient of friction approximately 0.3. 
Determine the force F the joint is capable to withstand. 
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.3.7 Programs 
PROGRAM 11.3.1 

Apply[Clear, Names["Globar*"]]; 

Off[General::spell]; 

Off[General::spel11]; 

" input data " 

" load F [N] " 

" major diameter d [mm] " 

" screw pitch p [mm] " 

" coefficient of friction for thread fi " 
" collar diameter dc [mm] " 

" coefficient of friction for collar fic " 
data = {F ̂  8000, d ̂  40, p -^ 6, JM, -> 0.08, dc -> 45, fic -> 0.1} 
"solution" 

1 = 2 p; 

Print["lead for double thread 1 = ", 1 , " = ", 1 / . data, " [mm]"] 
dr = d - p; 
Print["minor diameter dr = ", dr, " = ", dr / . data, " [mm]"] 
dm = d - p/2; 
Print["mean (pitch) diameter dm = ", dm, " = ", dm / . data, " [mm]"] 
Mr = 0.5 F dm (1 + JT jLt dm)/(jr dm - / i 1) + 0.5 F dc /ic; 
Print["moment to raise load 

Mr = 0.5 F dm ( 1 + TT //, dm ) / ( ;r dm - )M̂  1 ) + 0.5 F dc jfic "] 
Print["Mr = ", Mr / . data, " [N mm] = ", 10'^(-3)Mr / . data, " [N m]"] 
Ml = 0.5 ¥ dm {jt fi dm ' l ) / (7r dm + /M, 1) + 0.5 F dc jic; 
Print[ 

"moment to lower load Ml = 0.5 F dm ( TT /x dm - 1 ) / ( TT dm + /t 1) 
+ 0.5 F dc fic "] 

Print["Ml = ", Ml / . data, " [N mm] = ", 10'^(-3)M1 / . data, " [N m]"] 
sf = (TT jM, dm - 1 ) ; 
"sef-locking condition: ( ; r j M - d m - l ) > 0 " 
Print["( JT /t dm - 1 ) = ", sf / . data] 
I f [ ( s f / . data) > 0, Print["the screw is sef-locking"]. 

Print["the screw is not sef-locking"]] 
e = F l / (2 JT Mr); 
Print ["efficiency e = F l / ( 2 jr Mr ) = ", e / . data] 

input data 

load F [N] 

major diameter d [mm] 

screw p i tch p [mm] 

coe f f i c i en t of f r i c t i o n fo r thread /x 

co l l a r diameter dc [mm] 
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coefficient of f r i c t ion for collar /xc 

{F -> 8000, d -> 40, p -> 6, M ^ 0.08, dc -> 45, /xc -> 0.1} 

solution 

lead for double thread 1 = 2 p = 12 [mm] 

minor diameter dr = d - p = 34 [mm] 

mean (pitch) diameter dm = d - ^ = 37 [mm] 

moment to raise load Mr = 0.5 F dm ( 1 + TT /x dm )/( :7r dm - /x 1 ) 
+ 0.5 F dc /xc 

Mr = 45344.7 [N mm] = 45.3447 [N m] 

moment to lower load Ml = 0.5 F dm ( TT /x dm - 1 ) / ( :/r dm + /x 1) 
+ 0.5 F dc /xc 

Ml = 14589.3 [N mm] = 14.5893 [N m] 

sef-locking condition: ( TT /x dm - 1 ) > 0 

( ;r /x dm - 1 ) = -2.70089 

the screw is not sef-locking 

efficiency e = F l / ( 2 TT Mr ) = 0.336949 

PROGRAM 11.3.2 
(* Acme double thread power screw *) 
Apply[Clear, Names["Globar*"]]; 
Off[General::spel1]; 
Off[General::spell1]; 

(*Given data*) 
d = 2.; (* in *) (* major diameter *) 
F = 2000.; (* lb *) (* weight of the load *) 
dc = 3.; (* in *) (* mean diameter of plain thrust collar *) 
fi = 0.12; fic = 0.09; (* coefficients of friction *) 

(*Assumption: coefficient of starting friction is about one-
third higher than the coefficient of friction (running friction) 
)Lts=(4/3) fi ; fics={^/3) fic 

*) 

(* a *) 
p = 1/4.; (* in *) (* screw pitch; Standard sizes of power screw threads) 

for d=2 in. there are 4 (four) threads per inch, p=(l in.)/4=0.25 in. *) 
1 = 2 p; (* lead, because of the double thread *) 
dm = d - p/2; (* mean diameter of thread contact from figure *) 
X = ArcTan[l/(7r dm)]; (* rad *) (* lead angle *) 
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(* b *) 

(*For starting, increase the coefficients of running friction by 

one third*) 
fis = (4/3) ft; 
fics = (4/3) fic ; 
(* coefficients of static f r ic t ion *) 
a = 14.5 * jr/180; (* rad *) 
(* from Figure , 2 a=29 deg yields a=14.5 deg (Acme)*) 
an = ArcTan[Tan[a]*Cos[X,]]; (* thread angle in the normal plane *) 
(* the torque for raising the load: * ) 
(* Moment using coefficients of static f r ic t ion *) 
Mrs = 0.5 F dm (jt jLts dm + 1 Cos[an])/(;r dm Cos[an] - /ts 1 ) + 

0.5 F dc fics ; 
(* Moment using coefficients of running f r ic t ion *) 
Mr = 0.5 F dm ( JT )L6 dm + 1 Cos[an])/(jr dm Cos[an] - fi 1 ) -^ 

0.5 F dc fic; 
(* for lowering the load*) 
Mis = 0.5 F dm ( TT /ts dm - 1 Cos[an])/(7r dm Cos[an]+ fis 1 ) + 

0.5 F dc fics ; 
Ml =0.5 Fdm (TT /^dm- 1 Cos[an])/(7r dmCos[an] + JM, 1 ) + 0.5 F dc fic; 

(* c *) 

(* Efficiency (the ratio of friction-free moment to actual moment) *) 

MrO = F 1 /(2 TT); 

e = F 1 /(2 JT Mr); 

Print["Screw pitch p = (1 i n . ) / 4 = ", p, " i n " ] ; 
Print["Lead 1 = 2 p = ", 1 , " i n " ] ; 
Print["Mean pitch diameter dm = d-p/2 = ", dm, " in"]; 

Print ["Lead angle X=ArcTan[l/(7r dm)] = ", N[X]*180 / P i , " deg"]; 
Print ["Thread angle an=ArcTan[Tan[a]*CosU]] = ", an * 1 8 0 / P i , "deg"]; 
Print["Moment for raising the load with starting friction = ", Mrs, 

" lb in"]; 

Print["Moment for lowering the load with starting friction = ", Mis, 

" lb in"]; 

Print["Moment for raising the load with running friction = ", Mr, 

" lb in"]; 

Print["Moment for raising the load with no friction = ", N[MrO], 

" lb in"]; 

Print["Efficiency (the ratio of friction-free moment to actual moment) 

e = ", e, " % " ] ; 

deg = 180/N[Pi]; 

ti = 0.05; 
graphl = Plot [(Cos [an] - fi * Tan [X])/(Cos [an] + /t * Cos[;i]) * 100, 

U , 0.0, 1.5192087045738232 } , PlotLabel -^ "Efficiency e{X) (%) 
for fi =0.05"]; 
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II = 0.12; 
graph2 = Plot [(Cos [an] - ii * Tan [A,])/(Cos [an] + JM, * Cos[X]) * 100, 

{X, 0.0, 1.4475046197126569}, PlotLabel -> "Efficiency e(X) (%) 
for II =0.12"]; 

II = 0.15; 
graph3 = 

Plot [(Cos [an] - ^i * Tan [X])/(Cos [an] + /i * Cos [A.]) * 100, 
a , 0.0, 1.4171173868835931}, PlotLabel -^ "Efficiency e(X) 
(%) for /t =0.15"]; 

Show[graphl, graph2, graph3]; 

Screw pitch p = (1 in.)/4 = 0.25 in 

Lead 1 = 2 p = 0.5 in 

Mean pitch diameter dm = d-p/2 = 1.875 in 

Lead angle A=ArcTan[l/(7r dm)] = 4.85179 deg 

Thread angle an=ArcTan[Tan[Qf]*Cos[A]] = 14.4502 deg 

Moment for raising the load with starting f r i c t ion = 835.626 lb in 

Moment for lowering the load with starting f r i c t ion = 508.562 lb in 

Moment for raising the load with running f r i c t ion = 665.667 lb in 

Moment for raising the load with no f r i c t ion = 159.155 lb in 

Efficiency (the rat io of f r ic t ion- f ree moment to actual moment) 
e = 0.239091 % 
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(%) for ^ = 0 . 1 2 

0 . 2 0 . 4 0 . 6 0 . 8 1 1 .2 1 .4 

E f f i c i e n c y e ( A ) (%) f o r /i = 0 . 1 5 

0 . 2 0 . 4 0 . 6 0 . 8 1 1 .2 1 .4 

E f f i c i e n c y e ( A ) (%) f o r jj = 0 . 0 5 

0 . 2 0 . 4 0 . 6 0 . 8 1 1 .2 1 .4 

PROGRAM 11.3.3 
Apply[Clear,Names["Globar*"]]; 
Off[General::spell]; 
Off[General::spel11]; 

d=14. 10'^(-3); (* m *) (* major diameter *) 
dr=12. lO'^C-S); (* m *) (* minor diameter *) 
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p=2. 10-^(-3); (* m *) (* pitch *) 
1=50. ^ ( - 3 ) ; (* m *) (* jo int axial length * ) 

Print["major thread diameter d=",d," m"]; 
Print["minor thread diameter dr=",dr," m"]; 
Print["pitch p=",p," m"]; 
Print ["joint axial length 1 = M , " m"]; 

"modulus of e last ic i ty [GPa] E=206.8 for steel" 
Eb=206.8 10-^9; 
Print["modulus of e last ic i ty of the bolt Eb=",Eb," Pa"]; 

"a. Bolt stiffness kb" 
l t = l / 2 ; 
l te=l t+0.4 dr; 
Print["effective length of threaded portion of the bolt lte=lt+0.4 

dr=", Ite," m"]; 

ls=l/2; 

lse=ls+0.4 d; 

Print["effective length of the unthreaded portion of the bolt 

lse=ls+0.4 d=",lse," m"]; 

Ar=N[Pi] dr'^2/4.; 

Print["minor diameter area Ar=Pi dr'^2/4=",Ar," m'^2"]; 
As=N[Pi] d'^2/4.; 
Print["major diameter area As=Pi d'^2/4=",As," m'^2"]; 

kt=Ar Eb/lte; 
Print["stiffness of the threaded portion kt=Ar Eb/lte=",kt," N/m"]; 

ks=As Eb/lse; 
Print["stiffness of the unthreaded portion ks=As Eb/lse=",ks," N/m"]; 
kb=kt ks/(kt+ks); 
Print["bolt stiffness kb=kt ks/(kt+ks)=",kb," N/m"]; 

Print ["joint axial length 1=" ,1 , " m"]; 
11=12=1/2; 
"axial length of the parts 11=12=1/2" 

"modulus of elasticity [GPa] E=100.0 for gray cast iron" 

Ec=100 10'̂ 9; 

Print["modulus of e last ic i ty of the part Ec=",Ec," Pa"]; 
"Joint Stiffness kc" 

"b. Stiffness of clamped parts (Shigley)" 
Print["J.E.Shigley & C.R.Mischke, Mechanical Engineering Design, 

McGraw-Hill 1989"]; 
kc=0.577 N[Pi] Ec d/(2 Log[5 (0.577 1 + 0.5 d)/(0.577 1 + 2.5 d ) ] ) ; 
Print["kc=0.577 Pi Ec d/(2 Log[5 (0.577 1 + 0.5 d)/(0.577 1 + 2.5 d ) ] ) " ] 
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Print["stiffness of clamped parts (Shigley) kc=",kc," N/m"]; 

"c. Stiffness of clamped parts (Wileman)" 
Print["J.Wileman et a l . ,1990"] ; 
"constants A=0.78715; B=0.62873 for steel" 
"constants A=0.77871; 6=0.61616 for cast iron" 
"joint stiffness: kc = Ec d A e'̂ (B d/1)" 
"parts of the joint: cast iron " 
A=0.77871; 
8=0.61616; 
kcw=Ec d A E-̂ CB d/1); 
Print["joint stiffness (Wileman) kc=",kcw," N/m"]; 

major thread diameter d=0.014 m 

minor thread diameter dr=0.012 m 

pitch p=0.002 m 

joint axial length 1=0.05 m 

modulus of elasticity [GPa] E=206.8 for steel 

modulus of elasticity of the bolt Eb=2.068 x 10^^ Pa 

a. Bolt stiffness kb 

e f fec t i ve length of threaded port ion of the bo l t l t e= l t+0 .4 
dr=0.0298 m 

e f fec t i ve length of the unthreaded por t ion of the bo l t lse=ls+0.4 
d=0.0306 m 

minor diameter area Ar=Pi dr'^2/4=0.000113097 m'̂ 2 

major diameter area As=Pi d'^2/4=0.000153938 m'̂ 2 

s t i f f ness of the threaded por t ion kt=Ar Eb/lte=7.8485 x 10^ N/m 

s t i f f ness of the unthreaded por t ion ks=As Eb/lse=l.04034 x 10^ N/m 

bo l t s t i f f ness kb=kt ks/(kt+ks)=4.47357 x 10^ N/m 

j o i n t axial length 1=0.05 m 

axial length of the parts 11=12=1/2 

modulus of e l a s t i c i t y [GPa] E=100.0 fo r gray cast i ron 

modulus of e l a s t i c i t y of the part Ec=100000000000 Pa 

Jo int St i f fness kc 

b. St i f fness of clamped parts (Shigley) 

J.E.Shigley & C.R.Mischke, Mechanical Engineering Design, 
McGraw-Hill 1989 
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I<c=0.577 Pi Ec d/(2 Log[5 (0.577 1 + 0.5 d)/(0.577 1 + 2.5 d)]) 

stiffness of clamped parts (Shigley) kc=l.22925 x 10̂  N/m 

c. Stiffness of clamped parts (Wileman) 

J.Wileman et al.,1990 

constants A=0.78715; B=0.62873 for steel 

constants A=0.77871; B=0.61616 for cast iron 

joint stiffness: kc = Ec d A e'̂ CB d/1) 

parts of the joint: cast iron 

joint stiffness (Wileman) kc=l.29548 x 10^ N/m 

PROGRAM 11.3.4 
Apply[Clear,Names["G1obar*"]]; 
Off[General::spell]; 
Off[General::spel11]; 

"coarse thread" 
d=5/8.; (* in *) (* major diameter *) 
dr=0.5135; (* in *) (* minor diameter *) 
n=ll; (* threads per inch *) 
p=l./n; 
(* At=226 in'̂ Z *) 
1=1.5 ; (* in *) (* joint axial length *) 

Print["major thread diameter d=",d," in."]; 
Print["minor thread diameter dr=",dr," in."]; 
Print["pitch p=l/n=",p," in."]; 
Print["joint axial length 1=",1," in."]; 

11=12=1/2; 
"axial length of the parts 11=12=1/2" 

"modulus of elasticity [Mpsi] E=30 for steel" 
"modulus of elasticity [Mpsi] E=12 for cast iron" 

Eb=30; 
Ec=12; 
Print["modulus of elasticity of the bolt Eb=",Eb," Mpsi"]; 
Print["modulus of elasticity of the part Ec=",Ec," Mpsi"]; 

Print[" " ] ; 
"a. Bolt stiffness kb" 
Print [" " ] ; 
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Print["J.E.Shigley & C.R.Mischke, Mechanical Engineering Design, 
McGraw-Hill 1989"]; 

lt=l/2; 
Print["length of threaded portion of the bolt lt=",lt]; 
ls=l/2; 
Print["length of unthreaded portion of the bolt ls=",ls]; 
As=N[Pi] d-^ZM.; 
Print["niajor diameter area As=Pi d''2/4=",As]; 
At=0.7854(d-0.9743 p)'^2; 
Print["tensile stress area At=0.7854(d-0.9743 p)'^2=",At]; 
ks=As Eb/ls; 
Print ["stiffness of the unthreaded portion ks=As Eb/ls=",ks," Mlb/in"]; 
kt=At Eb/lt; 
Print ["stiffness of the threaded portion kt=At Eb/lt=",kt," Mlb/in"]; 
kb=ks kt/(ks+kt); 
Print["bolt stiffness kb=kt ks/(kt+ks)=",kb," Mlb/in"]; 

Print [" " ] ; 
Print["Stiffness of the parts kc"]; 
Print[" " ] ; 

Print["b. J.E.Shigley & C.R.Mischke, Mechanical Engineering Design, 
McGraw-Hill 1989"]; 

kl=0.577 N[Pi] Ec d/(2 Log[5 (0.577 11+0.5 d)/(0.577 11+2.5 d)] ) ; 
Print["kl=0.577 Pi Ec d/(2 Log[5 (0.577 11 +0.5 d)/(0.577 11 +2.5 d)])"] 
Print["stiffness of the cast iron part kl=",kl," Mlb/in"]; 

k2=0.577 N[Pi] Eb d/(2 Log[5 (0.577 12+0.5 d)/(0.577 12+2.5 d)] ) ; 
Print["k2=0.577 Pi Eb d/(2 Log[5 (0.577 12 +0.5 d)/(0.577 12 +2.5 d)])"] 
Print["stiffness of the steel part k2=",k2," Mlb/in"]; 
kc=kl k2/(kl+k2); 
Print ["resulting stiffness of clamped parts: kc=kl k2/(kl+k2)=",kc," Mlb/in"]; 
Print["c. J.Wileman et al,1990"]; 
"constants A=0.78715; 6=0.62873 for steel" 
"constants A=0.77871; 6=0.61616 for cast iron" 
"joint stiffness: kc = Ec d A e'̂ (6 d/L)" 

"parts of the joint: cast iron " 
A1=0.77871; 
61=0.61616; 
kwl=Ec d Al E''(61 d / U ) ; 
Print ["stiffness kl=Ec dl Al E'̂ (61 dl/ll)=",kwl," Mlb/in"]; 

"parts of the joint: steel " 
A2=0.78715; 
62=0.62873; 
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kw2=Eb d A2 £-^(82 d/12); 
Pr int[" joint stiffness: k2=Eb d A2 £-^(82 d/12)=",kw2," M1b/in"]; 

kwc=kwl kw2/(kwl+kw2); 
Print["resulting stiffness of clamped parts: kc=kl k2/(kl+k2)=",kwc,' 

Mlb/in"]; 

coarse thread 

major thread diameter d=0.625 in. 

minor thread diameter dr=0.5135 in. 

pitch p=l/n=0.0909091 in. 

joint axial length 1=1.5 in. 

axial length of the parts 11=12=1/2 

modulus of elasticity [Mpsi] E=30 for steel 

modulus of elasticity [Mpsi] E=12 for cast iron 

modulus of elasticity of the bolt Eb=30 Mpsi 

modulus of elasticity of the part Ec=12 Mpsi 

a. Bolt stiffness kb 

J.E.Shigley & C.R.Mischke, Mechanical Engineering Design, 
McGraw-Hill 1989 

length of threaded portion of the bolt lt=0.75 

length of unthreaded portion of the bolt ls=0.75 

major diameter area As=Pi d'^2/4=0.306796 

tensile stress area At=0.7854(d-0.9743 p)'^2=0.226002 

stiffness of the unthreaded portion ks=As Eb/ls=12.2718 Mlb/in 

stiffness of the threaded portion kt=At Eb/lt=9.04009 Mlb/in 

bo l t s t i f f ness kb=kt ks/(kt+ks)=5.20547 Mlb/ in 

St i f fness of the parts kc 

b. J.E.Shigley & C.R.Mischke, Mechanical Engineering Design, 
McGraw-Hill 1989 
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kl=0.577 Pi Ec d/(2 Log[5 (0.577 11 +0.5 d)/(0.577 U +2.5 d)]) 

stiffness of the cast iron part I<1=10.8826 Mlb/in 

k2=0.577 Pi Eb d/(2 Log[5 (0.577 12 +0.5 d)/(0.577 12 +2.5 d)]) 

stiffness of the steel part k2=27.2065 Mlb/in 

resulting stiffness of clamped parts: kc=kl k2/(kl+k2)=7.77327 Mlb/in 

c. J.Wileman et al,1990 

constants A=0.78715; 8=0.62873 for steel 

constants A=0.77871; 6=0.61616 for cast iron 

jo in t st i f fness: kc = Ec d A e'̂ (B d/L) 

parts of the j o in t : cast iron 

stiffness kl=Ec dl Al E'̂ (B1 dl/11)=9.75962 Mlb/in 

parts of the j o i n t : steel 

jo in t st i f fness: k2=Eb d A2 £̂ (̂82 d/12)=24.9232 Mlb/in 

resulting stiffness of clamped parts: kc=kl k2/(kl+k2)=7.0133 Mlb/in 
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IL4 Rolling Bearings 

.4.1 Generalities 
A bearing is a connector that permits the connected parts to rotate or to move relative 
to one another. Often one of the parts is fixed, and the bearing acts as a support for the 
moving part. Most bearings support rotating shafts against either transverse (radial) or thrust 
(axial) forces. To minimize friction, the contacting surfaces in a bearing may be partially 
or completely separated by a film of liquid (usually oil) or gas. These are sliding bearings, 
and the part of the shaft that turns in the bearing is the journal. Under certain combinations 
of force, speed, fluid viscosity, and bearing geometry, a fluid film forms and separates the 
contacting surfaces in a sliding bearing, and this is known as a hydrodynamic film. The 
hydrostatic film is the oil film that can be developed with a separate pumping unit that 
supplies pressurized oil. 

The surfaces in a bearing can also be separated by balls, rollers, or needles; these 
are known as rolling bearings. Because shaft speed is required for the development of 
a hydrodynamic film, the starting friction in hydrodynamic bearings is higher than in 
rolling bearings. To minimize friction for metal-to-metal contact, in hydrodynamic bear-
ings, materials with low coefficient of friction have been developed (bronze alloys and 
babbitt metal). 

The principal advantage of the rolling bearings is the ability to operate at friction levels 
considerably lower at start-up, the friction coefficient having the values /x = 0.001 — 0.003. 
Other advantages over bearings with sliding contact are: accurate shaft alignment for long 
periods of time, easy lubrication, little attention, easy replacement in case of failure, and 
heavy momentary overloads without failure. 

The rolling bearings have the following disadvantages: design and processing of the 
shaft and house are more complicated, higher cost, more noise for higher speeds, and lower 
resistance to impact forces. 

583 



11.4.2 Classification 
The important parts of rolling bearings are illustrated in Figure 11.4.1: these include the 
outer ring, inner ring, rolling element, and separator (retainer). The role of the separator 
is to maintain an equal distance between the rolling elements. The races are the outer ring 
or the inner ring of a bearing. The raceway is the path of the rolling element on either ring 
or the bearing. 

Rolling bearings can be classified using the following criteria (Fig. II.4.2): 

• the rolling element shape: ball bearings [Fig. II.4.2(a)-(f)], roller bearings [cylinder. 
Fig. 11.4.2(g) and (h), cone, Fig. II.4.2(i), barrel. Fig. II.4.2(j)], and needle bearings 
[Fig. II.4.2(k)]; 

• the direction of the principal force: radial bearings [Fig. II.4.2(a)(b)(g)(h)], thrust 
bearings [Fig. II.4.2(d)(e)], radial-thrust bearings [Fig. II.4.2(c)(i)], or thrust-radial 
bearings [Fig. 11.4.2(f)]; 

• the number of rolling bearing rows: rolling bearings with one row 
[Fig. II.4.2(a)(d)(g)(k)], with two rows [Fig. II.4.2(b)(e)(h)]. 

The radial bearing is primarily designed to support a force perpendicular to the shaft 
axis. The thrust bearing is primarily designed to support a force parallel to the shaft axis. 

Single row rolling bearings are manufactured to take radial forces and some thrust 
forces. The angular contact bearings provide a greater thrust capacity. Double row bearings 
are made to carry heavier radial and thrust forces. The single row bearings will withstand a 
small misalignment or deflection of the shaft. The self-aligning bearings [Fig. 11.4.2(f)] are 
used for severe misahgnments and deflections of the shaft. 

Cylinder roller bearings provide a greater force than ball bearings of the same size 
because of the greater contact area. This type of bearing will not take thrust forces. Tapered 
(cone) roller bearings combine the advantages of ball and cylinder roller bearings, because 
they can take either radial or thrust forces, and they have high force capacity. 

Needle bearings are used where the radial space is limited, and when the separators 
are used they have high force capacity. In many practical cases they are used without the 
separators. 

11.4.3 Geometry 
Figure II.4.3 shows a ball bearing with the pitch diameter given by 

do + d 
(II.4.1) 

where do is the outer diameter of the ball bearing and d is the bore. 
Exactly, the pitch diameter can be calculated as 

Di + De 
dm = ^ ^ ' (II.4.2) 

where Dt is the race diameter of the inner ring and De is the race diameter of the outer 
ring. 
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Width 

Snap ring grove 

— Outer ring 
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Ball bearing 
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Width 

Cylindrical roller bearing 

(b) 
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(c) 
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Outer ring 
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Outer ring 
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roller (c^^^) 

Inner ring 
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FIGURE 11.4.1 Rolling bearing nomenclature. 
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BALL BEARINGS 

Single row radial Double row radial 
(a) (b) 

Radial-thrust (angular contact) 

(c) 

Single row thrust 
(d) 

Double thrust 
(e) 

Thrust-radial 
(f) 

Single row radial Double row radial Radial thrust 
(g) (h) (i) 

Self-aligning 
(J) 

NEEDLE BEARINGS 

y//////////////A 

(k) 

FIGURE n.4.2 RoW'm^ bearing classification. 

In general the ball bearings are manufactured with a clearance between the balls and the 
raceways. The clearance measured in the radial plane is the diametral clearance, Sd, and is 
computed with the relation (Fig. II.4.3): 

Sd=De- Di - 2D, (II.4.3) 

where D is the ball diameter. 
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FIGURE n.4.3 Ball-bearing geometry. 

Because a radial ball bearing has a diametral clearance in the no-load state, the bearing 
also has an axial clearance. Removal of this axial clearance causes the ball raceway contact 
to assume an oblique angle with the radial plane. Angular contact ball bearings are designed 
to operate under thrust force and the clearance built into the unloaded bearing along with the 
raceway groove curvatures determines the bearing-free contact angle. Due to the diametral 
clearance for a radial ball bearing there is what is known 2is free endplay, Sa, (Fig. II.4.4). 
In Figure II.4.4 the center of the outer ring raceway circle is Oe, the center of the inner ring 
raceway circle is O,. 

The distance between the centers Oe and 0/ is 

A = re-\-ri- D, (II.4.4) 

where r̂  is the radius of the outer ring raceway and r/ is the radius of the inner ring raceway. 
If the raceway groove curvature radius isr =f D, where/ is a dimensionless coefficient, 

then 

A = (fe+fi-l)D = BD, (II.4.5) 
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Outer ring 
raceway 

Axis of bearing 

FIGURE n.4.4 Clearance for radial ball bearing. 

Inner ring 
raceway 

where B =fe -\-fi — 1 is defined as the total curvature of the bearing. In the above formula 
re=feD and rt =fi D, where/^ and^ are dimensionless coefficients. 

The free contact angle, ao. is the angle made by the line passing through the points 
of contact of the ball and both raceways and a plane perpendicular to the bearing axis of 
rotation (Fig. II.4.4). The magnitude of the free contact angle can be written as 

sinofo = 0.5 sjA. (II.4.6) 

The diametral clearance can allow the ball bearing to misalign slightly under no load. 
The free angle of misalignment, 0, is defined as the maximum angle through which the 
axis of the inner ring can be rotated with respect to the axis of the outer ring before stressing 
bearing components: 

0 =0.-\-0^^ 

where Oi [Fig. 11.4.5(a)] is the misalignment angle for the inner ring 

^ , sA(2f-l)D-Sd/4] 
cos Oi = I , 

2dm[dm + (2f-l)D + Sd/2]' 

and Oe, [Fig. 11.4.5(b)] is the misalignment angle for the outer ring 

sA(2fe~l)D-Sd/4] c o s Oe = I — 
2dm[dm-(2fe-l)D-^Sd/2] 

(II.4.7) 

(II.4.8) 

(II.4.9) 
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(a) 

FIGURE M.4.5 Misalignment angle for the rings. 

(b) 

With the following trigonometric identity: 

cos Oi + cos 0e = 2 COS [(Oi + Oe) 12] COS [(Oi - Be) /2] , (II.4.10) 

and with the approximation Oi — Oe ^ 0, the free angle of misalignment becomes 

0 = 2 arccos [(cos Oi + cos Oe) 12] , (II.4.11) 

or 

= 2 arccos \ 1 — 
Sd 

4dm 

(2fi-l)D-Sd/4 ^ (2fe-l)D-Sd/4 

dm + (2fi - 1)D + Sd/2 dm - (2fe - 1)D + Sd/2 ]] 
(11.4.12) 

11.4.4 Static Loading 
In Figure 11.4.6(a) a single row radial thrust (angular contact) ball bearing is shown. The 
contact angle, a, is the angle of the axis of contact between balls and races. For a single 
row radial ball bearing the angle a is zero. If Fr is the radial force applied to the ball, then 
the normal force to be supported by the ball is 

cos a 
(II.4.13) 

and the axial force, Fa (or Ft), is 

Fa = Fs ina . (II.4.14) 
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(a) 

(b) (c) 

FIGURE 11.4.6 Static loading for rolling bearing. 

For self-aligning roller bearings [Fig. IL4.6(b)] the above relations are valid for each 
roller, and the total axial force is zero. 

For taper roller bearings [Fig. 11.4.6(c)] there are three contact angles: at the contact 
angle for the inner ring, of̂  the contact angle for the outer ring, and a/ the contact angle for 
the frontal face. 

The normal and axial forces for the inner ring are 

Fi = 
Fri 

cos a. 
and Fai=FrMrvai, (II.4.15) 
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where Frt is the radial force acting on the inner ring. The normal and axial forces for the 
outer ring are 

Fe — — ^ ^ and F^^ = F^^tana^, (11.4.16) 
cosa^ 

where Fre is the radial force acting on the outer ring. The normal and axial forces for the 
frontal face are 

Ff = —^— and Faf = Frfimaf, (II.4.17) 
cos Of/ 

where Frf is the radial force acting on the frontal face. 
The equilibrium equations for radial and axial directions are 

Fri — Frf — Fre = 0 01 Fri — Ff COS Of/ — Fe COS Qf̂  = 0, (II.4.18) 

Fai + Paf — Fae — 0 or Fri tan Of/ + Ff siu af — Fe sin ae = 0. (II.4.19) 

From Eqs. (II.4.18) and (II.4.19) the forces Fe and Ff are obtained: 

sin (ae + af) 

Fri (sin ae — tan a,- cos ae) 
Ff = - ^ '- r̂ - , (II.4.21) 

sin (ae + af) 

11.4.5 Standard Dimensions 
The Annular Bearing Engineers Committee (ABEC) of the Anti-Friction Bearing Manufac-
turers Association (AFBMA) has established four primary grades of precision, designated 
ABEC 1, 5, 7, and 9 for ball bearings. The standard grade is ABEC 1 and is adequate 
for most normal applications. The other grades have progressively finer tolerances. The 
AFBMA Roller Bearing Engineers Committee has established RBEC standards 1 and 5 for 
cylindrical roller bearings. 

The bearing manufacturers have established standard dimensions (Fig. II.4.7 and 
Table II.4.1) for ball and straight roller bearings in the metric sizes, which define the 
bearing bore J, the outside diameter do, the width w, the fillet sizes on the shaft and housing 
shoulders r, the shaft diameter ds, and the housing diameter J//. 

For a given bore, there is an assortment of widths and outside diameters. Furthermore, 
the outside diameters selected are such that, for a particular outside diameter, one can 
usually find a variety of bearings having different bores. That is why the bearings are made 
in various proportions for different series (Fig. II.4.8): extra-extra-light series (LLOO), 
extra-Hght series (LOO), fight series (200), and medium series (300). 
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r - maximum fillet radius on a shaft and in housing that will clear the bearing 
corner radius 

Shaft and housing shoulder dimensions 

FIGURE 11.4.7 Standard dimensions for rolling bearing, shaft, and housing shoulder. 

TABLE IL4.1 Bearing Dimensions 

Ball bearings Roller bearings 

Bearing 
basic d do 

number [mm] [mm] 
w r ds dfi do w r dg du 

[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] 

LOO 10 26 8 0.30 12.7 23.4 _ _ _ _ _ 
200 10 30 9 0.64 13.8 26.7 _ _ _ _ _ 
300 10 35 11 0.64 14.8 31.2 — — — — — 

LOl 12 28 8 0.30 14.5 25.4 _ _ _ _ _ 
201 12 32 10 0.64 16.2 28.4 _ _ _ _ _ 
301 12 37 12 1.02 17.7 32.0 _ _ _ _ _ 

L02 15 32 9 0.30 17.5 29.2 _ _ _ _ _ 
202 15 35 11 0.64 19.0 31.2 — — — — — 
302 15 42 13 1.02 21.2 36.6 _ _ _ _ _ 

L03 17 35 10 0.30 19.8 32.3 35 10 0.64 20.8 32.0 
203 17 40 12 0.64 22.4 34.8 40 12 0.64 20.8 36.3 
303 17 47 14 1.02 23.6 41.1 47 14 1.02 22.9 41.4 

L04 20 42 12 0.64 23.9 38.1 42 12 0.64 24.4 36.8 
204 20 47 14 1.02 25.9 41.7 47 14 1.02 25.9 42.7 
304 20 52 15 1.02 27.7 45.2 52 15 1.02 25.9 46.2 
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TABLE 11.4.1 Bearing Dimensions (continued) 

Bearing 
basic 

number 

L05 
205 
305 

L06 
206 
306 

L07 
207 
307 

LOS 
208 
308 

L09 
209 
309 

LIO 
210 
310 

Lll 
211 
311 

L12 
212 
312 

L13 
213 
313 

L14 
214 
314 

L15 
215 
315 

L16 
216 
316 

L17 
217 
317 

d 
[mm] 

25 
25 
25 

30 
30 
30 

35 
35 
35 

40 
40 
40 

45 
45 
45 

50 
50 
50 

55 
55 
55 

60 
60 
60 

65 
65 
65 

70 
70 
70 

75 
75 
75 

80 
80 
80 

85 
85 
85 

do 
[mm] 

47 
52 
62 

55 
62 
72 

62 
72 
80 

68 
80 
90 

75 
85 
100 

80 
90 
110 

90 
100 
120 

95 
110 
130 

100 
120 
140 

110 
125 
150 

115 
130 
160 

125 
140 
170 

130 
150 
180 

Ball bearings 

w 
[mm] 

12 
15 
17 

13 
16 
19 

14 
17 
21 

15 
18 
23 

16 
19 
25 

16 
20 
27 

18 
21 
29 

18 
22 
31 

18 
23 
33 

20 
24 
35 

20 
25 
37 

22 
26 
39 

22 
28 
41 

r 
[mm] 

0.64 
1.02 
1.02 

1.02 
1.02 
1.02 

1.02 
1.02 
1.52 

1.02 
1.02 
1.52 

1.02 
1.02 
1.52 

1.02 
1.02 
2.03 

1.02 
1.52 
2.03 

1.02 
1.52 
2.03 

1.02 
1.52 
2.03 

1.02 
1.52 
2.03 

1.02 
1.52 
2.03 

1.02 
2.03 
2.03 

1.02 
2.03 
2.54 

ds 
[mm] 

29.0 
30.5 
33.0 

34.8 
36.8 
38.4 

40.1 
42.4 
45.2 

45.2 
48.0 
50.8 

50.8 
52.8 
57.2 

55.6 
57.7 
64.3 

61.7 
65.0 
69.8 

66.8 
70.6 
75.4 

71.9 
76.5 
81.3 

77.7 
81.0 
86.9 

82.3 
86.1 
92.7 

88.1 
93.2 
98.6 

93.2 
99.1 
105.7 

dH 
[mm] 

42.9 
46.7 
54.9 

49.3 
55.4 
64.8 

56.1 
65.0 
70.4 

62.0 
72.4 
80.0 

68.6 
77.5 
88.9 

73.7 
82.3 
96.5 

83.1 
90.2 
106.2 

87.9 
99.3 
115.6 

92.7 
108.7 
125.0 

102.1 
114.0 
134.4 

107.2 
118.9 
143.8 

116.3 
126.7 
152.9 

121.4 
135.6 
160.8 

do 
[mm] 

47 
52 
62 

47 
62 
72 

55 
72 
80 

68 
80 
90 

75 
85 
100 

72 
90 
110 

90 
100 
120 

95 
110 
130 

100 
120 
140 

110 
125 
150 

115 
130 
160 

125 
140 
170 

130 
150 
180 

Roller bearings 

w 
[mm] 

12 
15 
17 

9 
16 
19 

10 
17 
21 

15 
18 
23 

16 
19 
25 

12 
20 
27 

18 
21 
29 

18 
22 
31 

18 
23 
33 

20 
24 
35 

20 
25 
37 

22 
26 
39 

22 
28 
41 

r 
[mm] 

0.64 
1.02 
1.02 

0.38 
1.02 
1.52 

0.64 
1.02 
1.52 

1.02 
1.52 
1.52 

1.02 
1.52 
2.03 

0.64 
1.52 
2.03 

1.52 
2.03 
2.03 

1.52 
2.03 
2.54 

1.52 
2.54 
2.54 

2.54 
3.18 

2.54 
3.18 

2.03 
2.54 
3.18 

2.03 
3.18 
3.96 

ds 
[mm] 

29.2 
30.5 
31.5 

33.3 
36.1 
37.8 

39.4 
41.7 
43.7 

45.7 
47.2 
49.0 

50.8 
52.8 
55.9 

54.1 
57.7 
61.0 

62.0 
64.0 
66.5 

67.1 
69.3 
72.9 

72.1 
77.0 
78.7 

81.8 
84.3 

85.6 
90.4 

88.4 
91.2 
96.0 

93.5 
98.0 
102.9 

dH 
[mm] 

43.4 
47.0 
55.9 

43.9 
56.4 
64.0 

50.8 
65.3 
71.4 

62.7 
72.9 
81.3 

69.3 
78.2 
90.4 

68.1 
82.8 
99.1 

83.6 
91.4 
108.7 

88.6 
101.3 
117.9 

93.7 
110.0 
127.0 

115.6 
135.6 

120.1 
145.8 

117.6 
129.3 
154.4 

122.7 
139.2 
164.3 
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TABLE n.4.1 Bearing Di 

Bearing 
basic 

number 

L18 
218 
318 

L19 
219 
319 

L20 
220 
320 

L21 
221 
321 

L22 
222 
322 

L24 
224 
324 

L26 
226 
326 

L28 
228 
328 

L30 
230 

L32 
232 

L36 
236 

L40 
240 

L44 
244 

L48 
248 

d 
[mm] 

85 
85 
85 

90 
90 
90 

95 
95 
95 

100 
100 
100 

105 
105 
105 

120 
120 
120 

130 
130 
130 

140 
140 
140 

150 
150 

160 
160 

180 
180 

200 
200 

220 
220 

240 
240 

do 
[mm] 

140 
160 
190 

145 
170 
200 

150 
180 
215 

160 
190 
225 

170 
200 
240 

180 
215 

200 
230 
280 

210 
250 

225 
270 

240 

280 

— 

— 

— 

i mens ions (continued) 

Ball bearings 

w 
[mm] 

24 
30 
43 

24 
32 
45 

24 
34 
47 

26 
36 
49 

28 
38 
50 

28 
40 

33 
40 
58 

33 
42 

35 
45 

38 

46 

— 

— 

— 

r 
[mm] 

1.02 
2.03 
2.54 

1.52 
2.03 
2.54 

1.52 
2.03 
2.54 

2.03 
2.03 
2.54 

2.03 
2.03 
2.54 

2.03 
2.03 

2.03 
2.54 
3.05 

2.03 
2.54 

2.03 
2.54 

2.03 

2.03 

— 

— 

— 

ds 
[mm] 

99.6 
104.4 
111.3 

104.4 
110.2 
117.3 

109.5 
116.1 
122.9 

116.1 
121.9 
128.8 

122.7 
127.8 
134.4 

132.6 
138.2 

143.8 
149.9 
160.0 

153.7 
161.5 

164.3 
173.0 

175.8 

196.8 

— 

— 

— 

dH 
[mm] 

129.0 
145.5 
170.2 

134.1 
154.9 
179.3 

139.2 
164.1 
194.1 

146.8 
173.5 
203.5 

156.5 
182.6 
218.2 

166.6 
197.1 

185.4 
210.1 
253.0 

195.3 
228.6 

209.8 
247.6 

223.0 

261.6 

— 

— 

— 

do 
[mm] 

140 
160 
190 

145 
170 
200 

150 
180 
215 

160 
190 
225 

170 
200 
240 

180 
215 
260 

200 
230 
280 

210 
250 
300 

225 
270 

240 
290 

280 
320 

310 
360 

340 
400 

360 
440 

Roller bearings 

w 
[mm] 

24 
30 
43 

24 
32 
45 

24 
34 
47 

26 
36 
49 

28 
38 
50 

28 
40 
55 

33 
40 
58 

33 
42 
62 

35 
45 

38 
48 

46 
52 

51 
58 

56 
65 

56 
72 

r 
[mm] 

3.18 
3.96 

3.18 
3.96 

2.54 
3.96 
4.75 

3.96 
4.75 

2.54 
3.96 
4.75 

4.75 
6.35 

3.18 
4.75 
6.35 

4.75 
7.92 

3.96 
6.35 

6.35 

4.75 
6.35 

7.92 

9.52 

9.52 

ds 
[mm] 

103.1 
108.2 

109.0 
115.1 

109.5 
116.1 
122.4 

121.4 
128.0 

121.9 
127.3 
135.9 

139.2 
147.8 

143.0 
149.1 
160.3 

161.5 
172.0 

164.3 
174.2 

185.7 

199.6 
207.5 

232.4 

256.0 

279.4 

dH 
[mm] 

147.6 
172.7 

157.0 
181.9 

141.7 
167.1 
194.6 

175.3 
203.5 

159.3 
183.9 
217.2 

198.9 
235.2 

188.2 
213.9 
254.5 

232.4 
271.3 

212.3 
251.0 

269.5 

262.9 
298.2 

334.5 

372.1 

408.4 

Source: R. C. Juvinall and K. M. Marshek, Fundamentals of Machine Component Design, New York, John Wiley & 
Sons, 1991. Reprinted with permission of John Wiley & Sons, Inc. 
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Light Medium 
series series 

Extra- Extra- 
extra- light 
light 

series 

(4 
Relative proportions of bearings 

with same bore dimension 

(b) 
Relative proportions of bearings 

with same outside diameter 

Relative proportions of bearings of different series 

Source: R. C. Juvinall, K. M. Marshek, Fundamentals of machine component design, 
John Wiley & Sons, 1991, New York 

FIGURE 11.4.8 Different series for rolling bearing. Reprinted with permission of lohn Wiley & Sons, Inc. 



11.4.6 Bearing Selection 
Bearing manufacturers' catalogues identify bearings by number, give complete dimensional 
information, list rated load capacities, and furnish details concerning mounting, lubrica-
tion, and operation. Lubrication (fine oil mist or spray) is important in high-speed bearing 
applications. For ball bearings nonmetallic separators permit highest speeds. 

The size of bearing selected for an application is usually influenced by the size of shaft 
required (for strength and rigidity considerations) and by the available space. In addition, 
the bearing must have a high load rating to provide a good combination of life and reliability. 

Juvinall and Marshek [7] proposed the following expressions for bearing selection. 

Life Requirement 
The life of an individual ball or roller bearing is the number of revolutions (or hours at 
some constant speed) that the bearings run before the first evidence of fatigue develops 
in the material of either the rings or of any of the rolling elements. Bearing applications 
usually require lives different from that used for the catalogue rating. Palmgren determined 
that ball bearing life varies inversely with approximately the third power of the force. 
Later studies have indicated that this exponent ranges between 3 and 4 for various rolling-
element bearings. Many manufacturers retain Palmgren's exponent of 3 for ball bearings 
and use 10/3 for roller bearings. Following the recommendation of other manufacturers, 
the exponent 10/3 will be used for both bearing types. Thus, the life required by the 
application is 

L = LR{CIFr)^^'^, (n.4.22) 

where C is the rated capacity, from Table IL4.2, LR is the life corresponding to rated 
capacity (i.e., L/?= 9 x 10^ revolutions), and Fr is radial force involved in the application. 

The values of the rated capacity in Table 114.2 correspond to a constant radial load that 
90 of a group of identical bearings can endure a rating life of L/?= 9 x 1 0 ^ revolutions 
without surface fatigue failure. 

The required value of the rated capacity for the application is 

Creq=Fr{LILRf^\ (114.23) 

For a group of apparently identical bearings the rating life, LR, is the life in revolutions 
(at a given constant speed and force) that 90% of the group tested bearings will exceed 
before the first evidence of fatigue develops. For example, the Timken Company rates the 
bearings for 3000 h at a speed of 500 rpm operation. The corresponding life is 

..^^^, / 60min \ /500rev\ ^ / ^7\ 
rev. 

Different manufacturers' catalogues use different values of L/? (some use 10^ revolutions). 

Reliability Requirement 
Tests show that the median life of rolling-element bearings is about 5 times the standard 10% 
failure fatigue life. The standard life is commonly designated as the Lio life (sometimes 
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TABLE IL4.2 Bearing Rated Capacities, C, for 90 x 10^ Revolution Life (/./?) with 90% Reliability 

d 
[mm] 

10 

12 

15 

17 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

70 

75 

80 

85 

90 

95 

100 

105 

110 

120 

130 

140 

150 

160 
180 

200 

220 

240 

Radial ball, a 

LOO 
xlt 

[kN] 

1.02 

1.12 

1.22 

1.32 

2.25 

2.45 

3,35 

4.20 

4.50 

5.80 

6.10 

8.20 

8.70 

9.10 

11.6 

12.2 

14.2 

15.0 

17.2 

18.0 

18.0 

21.0 

23.5 

24.5 

29.5 

30.5 

34.5 

— 
47.0 

— 
— 
— 

200 
It 

[kN] 

1.42 

1.42 

1.56 

2.70 

3.35 

3.65 

5.40 

8.50 

9.40 

9.10 

9.70 

12.0 

13.6 

16.0 

17.0 

17.0 

18.4 

22.5 

25.0 

27.5 

30.5 

32.0 

35.0 

37.5 

41.0 

47.5 

— 
— 
— 
— 
— 
— 

= 0° 

300 
med 
[kN] 

1.90 

2.46 

3.05 

3.75 

5.30 

5.90 

8.80 

10.6 

12.6 

14.8 

15.8 

18.0 

20.0 

22.0 

24.5 

25.5 

28.0 

30.0 

32.5 

38.0 

40.5 

43.5 

46.0 

— 
— 
— 
— 
— 
— 
— 
— 
— 

Angular ball, a 

LOO 
xlt 

[kN] 

1.02 

1.10 

1.28 

1.36 

2.20 

2.65 

3.60 

4.75 

4.95 

6.30 

6.60 

9.00 

9.70 

10.2 

13.4 

13.8 

16.6 

17.2 

20.0 

21.0 

21.5 

24.5 

27.5 

28.5 

33.5 

35.0 

39.0 

— 
54.0 

— 
— 
— 

200 
It 

[kN] 

1.10 

1.54 

1.66 

2.20 

3.05 

3.25 

6.00 

8.20 

9.90 

10.4 

11.0 

13.6 
16.4 

19.2 

19.2 

20.0 

22.5 

26.5 

28.0 

31.0 

34.5 

37.5 

41.0 

44.5 

48.0 

56.0 

62.0 

— 
— 
— 
— 
— 

= 25° 

300 
med 
[kN] 

1.88 

2.05 

2.85 

3.55 

5.80 

7.20 

8.80 

11.0 

13.2 

16.4 

19.2 

21.5 

24.0 

26.5 

29.5 

32.5 

35.5 

38.5 

41.5 

45.5 

— 
— 

55.0 

— 
71.0 

— 
— 
— 
— 
— 
— 
— 

1000 
xlt 

[kN] 

2.12 

3.30 

3.70 

— 
— 
7.20 

7.40 

— 
11.3 

12.0 

12.2 

— 
— 

17.3 

18.0 

— 
— 

20.9 

— 
29.4 

— 
48.9 

— 
58.7 

— 
97.9 

— 
— 
— 

Roller 

1200 
It 

[kN] 

— 
— 
— 
3.80 

4.40 

5.50 

8.30 

9.30 

11.1 

12.2 

12.5 

14.9 

18.9 

21.1 

23.6 

23.6 

26.2 

30.7 

37.4 

44.0 

48.0 

49.8 

54.3 

61.4 

69.4 

77.4 

83.6 

113.4 
140.1 

162.4 

211.3 

258.0 

1300 
med 

[kN] 

— 
— 
— 
4.90 

6.20 

8.50 

10.0 

13.1 

16.5 

20.9 

24.5 

27.1 

32.5 

38.3 

44.0 

45.4 

51.6 

55.2 

65.8 

65.8 

72.9 

84.5 

85.4 

100.1 

120.1 

131.2 

— 
— 
— 
— 
— 
— 

Source: New Departure-Hyatt Bearing Division, General Motors Corporation. 

as the Bio life) and this life corresponds to 10% failures. It means that this is the life 
for which 90% have not failed, and corresponds to 90% reliability (r = 90%). Using 
the general Weibull equation together with extensive experimental data, a life adjustment 
reliability factor, Kr, is reconmiended. The life adjustment reliability factor Kr is plotted 
in Figure II.4.9. This factor is applicable to both ball and roller bearings. The rated bearing 
life for any given reliability (greater than 90%) is thus the product Kr LR. Incorporating this 
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90 91 92 93 94 95 96 97 98 99 100 

Reliability r (%) 

Reliability factor Kr 

Source: R. C. Juvinall, K. M. Marshek, Fundamentals of machine 
component design, John Wiley & Sons, 1991, New York 

FIGURE IL4.9 Life adjustment reliability factor. Reprinted with permission of John Wiley & Sons, Inc. 

factor into Eqs. (IL4.22) and (IL4.23) gives 

0.3 

^req ^^ ^r 
KrLR J 

(II.4.24) 

Influence of Axial Force 
For ball bearings (load angle a = 0°) any combination of radial force (Fr) and thrust 
force (Fa) results in approximately the same life as does a pure radial equivalent force, Fe, 
calculated as 

• for 0.00 < FJFr < 0.35 =^ Fe = Fr; 
• for 0.35 < FJFr < 10.0 =:^ F^ = F , [1 + 1.115(F«/F, - 0.35)]; 
• for FJFr > 10.0 ==^ Fe = 1.116 Fa. Standard values of load angle a for angular ball 

bearings are 15°, 25°, and 35°. Only the 25° angular ball bearings will be discussed 
here. The radial equivalent force, Fe, for angular ball bearings with a = 25° is 

• for 0.00 < FJFr < 0.68 =^ Fe=Fr\ 
• for 0.68 < FJFr < 10.0 = ^ F^ = F, [1 + 0.87(F«/F, - 0.68)]; 
• for FJFr > 10.0 ==^ Fe = 0.911 F^. 
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TABLE n.4.3 Application Factors Ka 

Type of application 

Uniform force, no impact 

Gearing 

Light impact 

Moderate impact 

Heavy impact 

Ball bearing 

1.0 

1.0-1.3 

1.2-1.5 

1.5-2.0 

2.0-3.0 

Roller bearing 

1.0 

1.0 

1.0-1.1 

1.1-1.5 

1.5-2.0 

Source: R. C. Juvinall and K. M. Marshek, Fundamentals of Machine Component 
Design, New York, John Wiley & Sons, 1991. Reprinted with permission of John 
Wiley & Sons, Inc. 

Shock Force 
The standard bearing rated capacity is for the condition of uniform force without shock, 

which is a desirable condition. In many apphcations there are various degrees of shock 

loading. This has the effect of increasing the nominal force by an application factor, Ka. 

In Table IL4.3 some representative sample values of Ka are given. The force application 

factor in Table II.4.3 serves the same purpose as factors of safety. 

Substituting Fe for Fr and adding Ka, Eq. (11.4.24) gives 

L = KyLjR {—T 
0.3 

Creq = KaFe \J~-R) ' ^ " ' ^ ' ^ ^ ^ 

When more specific information is not available, Table II.4.4 can be used as a guide 

for the life of a bearing in industrial applications. Table II.4.4 contains recommendations 

TABLE 11.4.4 Representative Bearing Design Lives 

Design life 

Type of application k h (thousands of hours) 

Instruments and apparatus for infrequent use 0.1-0.5 

Aircraft engines 0.5-2.0 

Machines used intermittently, where service interruption 

is of minor importance 4-8 

Machines used intermittently, where reliability is of great 

importance 8-14 

Machines for 8-hour service, but not every day 14-20 

Machines for 8-hour service, every working day 20-30 

Machines for continuous 24-hour service 50-60 

Machines for continuous 24-hour service where reUability 

is of extreme importance 100-200 

Source: R. C. Juvinall and K. M. Marshek, Fundamentals of Machine Component Design, New York, 
John Wiley & Sons, 1991. Reprinted with permission of John Wiley & Sons, Inc. 
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on bearing life for some classes of machinery. The information has been accumulated by 
experience. 

Shigley and Mischke [20] proposed the following expressions for bearing selection. 

• The minimum basic load rating (load for which 90% of the bearings from a given group 
will survive 1 million revolutions) is defined as 

where P is the design load, L is the design life in millions of revolutions, and a = 3 for 
ball bearings and a = 10/3 for roller bearings. The equivalent radial load is 

Pe^XVFr + YFa, 

where Fr is the radial force and Fa is the thrust force. For a rotating inner ring V = 1, 
and for a rotating outer ring V = 1.2. The AFBMA recommendations are based on the 
ratio of the thrust force Fa to the basic static load rating Co, and a variable reference 
value, 

/ r \ 0.236 
= 0.5,3 ( ^ ) 

• The static load rating Co is tabulated in bearing catalogues. The X and Y factors have 
the values 

^ -0.247 

• for FJiVFr) >e =^ Z=0.56 and F : ="•**'(I)" 
• for FJiVFr) <e ==^ X=l and 7 = 0. 

.4.7 Examples 

EXAMPLE 11.4.1: 

Select a light series (200) radial ball bearing for a machine for continuous 24-hour 
service. The machine rotates at the angular speed of 1000 rpm. The radial force is 
F^=1.5 kN, and the thrust force is F«=1.8 kN, with light impact (Fig. II.4.10). 

Solution For Fa/Fr = 1.8/1.5=1.2, the equivalent radial force (for radial ball 
bearings with 0.35 < Fa/Fr < 10.0) is 

Fe = F , [1 + lAl5(Fa/Fr - 0.35)] = 2.921 kN. 

From Table II.4.3 choose (conservatively) ^^ = 1.5 for light impact. From Table II.4.4 
choose (conservatively) 60 000 hour life. The life in revolutions is 

L = 1000 rpm x 60000 h x 60 min/h = 3600 x 10^ rev. 
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EXAMPLE IL4.1: Cont'd 

For standard 90% reliability (Kr=l, Fig. IL4.9), and for LR = 90 x 10^ rev (for 
use with Table. II.4.2), Eq. (II.4.25) gives 

^req 

0.3 = (1.5)(2.921)(3600/90r^ = 13.253kN 

From Table II.4.2 with 13.253 kN for 200 series =^ C = 13.6 kN and J = 60 mm 
bore. From Table II.4.1 with 60 mm bore and 200 series the bearing number is 212. 

FIGURE 11.4.10 Radial ball bearing for Example 11.4.1. 

EXAMPLE IL4.2: 

A no. 305 radial contact ball bearing carries a radial load of 4 kN, 5 kN, and 6 kN 
for, respectively, 50%, 40%, and 10% of the time. The loads are uniform, so that 
Ka = I. The bearing supports a shaft that rotates with 2000 rpm. Determine the Bio 
life and the median life of the bearing. 

Solution For no. 305 radial contact bearing from Table II.4.2, the rated capac-
ity is C = 5.9 kN with LR = 90 x 10^ and standard 90% reUability (Kr = 1). 
Equation (II.4.25) gives 

L ^ Kr LR 
\KaFe) 

3.33 

where Ka = I and Fe = Fr. 

Continued 
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EXAMPLE IL4.2: Cont'd 

The corresponding life is calculated from the previous relation: 

Â i = (1)(90 X 10^) 

N2 = (1)(90 X 10^) 

Â3 = (1)(90 X 10^) 

The Miner rule is 

where 

5.9 

0X4), 

5.9 

0X5), 

5.9 

0X6), 

3.33 

= 3.283 X 10^ rev, for F, = 4 kN; 

3.33 

= 1.561 X 10^ rev, for F^ = 5 kN; 

3.33 

= 8.510 X 10^ rev, for F , = 6 kN. 

Ni N2 N3 
(II.4.26) 

m = (50%) nX = (0.5)(2000 rpm) X = 1000 X rev, for 50% of the time; 

n2 = (40%) nX = (0.4)(2000 rpm) X = 800Z rev, for 40% of the time; 

/23 = (10%) nX = (0.1)(2000 rpm) X = 200X rev, for 10% of the time. 

The minutes of operation are X = Bio and the shaft rotates with n = 2000 rpm. 
Equation (II.4.26) gives 

lOOOX 
+ 

800 X 
+ 

200 X 

3.283 X 108 1.561 X 10̂  8.510 x 10̂  
1, 

or X = ^10 = 95072.6 min (= 1584.54 hs). 
The median life is approximately 5 times the B\o life or 475,363 min (7922.72 hs). 

11.4.8 Problems 
11.4.1 A no. 208 radial ball bearing has a 4000-hour Bio life at 1200 rpm. Find the bearing 

radial capacity. 

11.4.2 A radial ball bearing has a given radial load F and a given life L. Find the radial 
load Fnew if the life of the bearing is tripled, Lnew = 3 L. 

11.4.3 A no. 207 angular ball bearing is selected to carry a radial load of 250 lb and a thrust 
load of 150 lb at 1000 rpm. Determine the bearing life Bio for steady loading. 

11.4.4 A ball bearing can withstand a radial load of 4 kN and a thrust load of 6 kN at 
a speed of 600 rpm. The bearing is intended for an aircraft engine with heavy 
impacts. Select an angular ball bearing for this application. 
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11.4.5 The life of a bearing for 90% reliability is 12000 hours. Determine the lives of the 
bearing for, respectively, 60% and 98% reliability. 

11.4.6 A ball bearing carries a radial load of 2.5 kN and a thrust load of 1.5 kN at 900 rpm. 
The application is considered to be light to moderate with respect to shock loading. 
The required life is 6000 hours with only 4% probability of failure. Select a suitable 
ball bearing: (a) radial ball bearing and (b) angular ball bearing. 

11.4.7 Repeat the previous problem for 3 kN radial load, 2 kN thrust load at 1200 rpm, 
and 2% probability of failure. 

11.4.8 A no. 211 radial ball bearing is intended for a continuous one-shift (8 h/d) operation 
at 1000 rpm. The radial load varies in such a way that 60% of the time the load is 
5 kN and 40% of the time the load is 10 kN. The application factor is Ka = 1.5 
(light to moderate impact). Estimate the Bio life and the median life of the radial 
ball bearing. 

11.4.9 A no. 207 radial-contact ball bearing supports a shaft that rotates 1500 rpm. A radial 
load varies in such a way that 30%, 30%, and 40% of the time the load is 5, 2, and 
10 kN. The loads are uniform, so that Ka = I. Estimate the Bio life and the median 
life of the bearing. 

II.4.10 The shaft shown in Figure II.4.11 rotates at 900 rpm and is supported by radial ball 
bearings at points A and B. The length dimension of the shaft is / = 300 nmi. The 
radial force acting on the shaft at R is on the yz plane and has the magnitude 
FR = 900 N. The angle of the force FR with the z-axis is a =45° . The thrust load 
(along X-axis) on the bearing at A is FaA = 500 N and at B is FaB = 500 N. The 
bearings are subjected to steady loading with 98% reliability and 30000 hours of 
Hfe. Select radial ball bearings for A and B. 

y\ 

I 

FIGURE 11.4.11 Sketch of the shaft for Problem 11.4.10. 

II.4.11 Figure II.4.12 shows two bearings at A and B supporting a shaft that rotates at 
1000 rpm. The loads acting on the shaft are at point P, ¥p = Fpy} + Fpy^ = 
-500 J + 600 k N, and at point R, ¥R = FRy] = -lOOOj N. The loading is light to 
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moderate impact. The length dimensions are 5* = 100 mm and / = 200 mm. The 
required life is 5000 hours with only 2% probability of failure. Select identical ball 
bearings for A and B. 

FIGURE 11.4.12 Sketch of the shaft for Problem 11.4.11. 

II.4.12 Figure II.4.13 shows a countershaft a with two rigidly connected gears 1 and 2. The 
angular speed of the countershaft is 300 rpm. The force on the countershaft gear 1 

FIGURE 11.4.13 Sketch of the shaft for Problem 11.4.12. 
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at P is Fp = Fpy] + Fpzk = -200j + 500k N, and the force on the gear 2 at /? is 
F/? = FRy} + FR^k = -600j - 1500k N. The radius of the gear 1 is OP = 0.15 m 
and the radius of the gear 2 is QR = 0.05 m. The distance between the bearings is 
5" = 100 mm and the other distance is / = 25 mm. The gear reducer is a part of an 
industrial machine intended for continuous one-shift (8h/d). Select identical 
extra-light series (LOO) ball bearings for A and B. 
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11.5 Lubrication and Sliding Bearings 

Lubrication reduces the friction, wear, and heating of machine parts in relative motion. 
A lubricant is a substance that is inserted between the moving parts. 

.5.1 Viscosity 
Newton's Law of Viscous Flow 
A surface of area A is moving with the linear velocity V on a film of lubricant as shown in 
Figure 11.5.1(a). The thickness of the lubricant is s and the deforming force acting on the 
film is F. The layers of the fluid in contact with the moving surface have the velocity v = V 
and the layers of the fluid in contact with the fixed surface have the velocity v = 0. 

Newton's law of viscous flow states that the shear stress r in a fluid is proportional to 
the rate of change of the velocity v with respect to the distance y from the fixed surface, 

F dv 
r = - = / x - , (II.5.1) 

A dy 

where /x is a constant, the absolute viscosity, or the dynamic viscosity. The derivate |^ 
is the rate of change of velocity with distance and represents the rate of shear, or the 
velocity gradient. Thicker oils have a higher viscosity value causing relatively higher shear 
stesses at the same shear rate. For a constant velocity gradient Eq. (II.5.1) can be written as 
[Fig. 11.5.1(b)]: 

r = M - . (II.5.2) 
s 

The unit of viscosity /x, for U.S. Customary units, is pound-second per square inch, 
(Ib-s/in^), or reyn (from Osborne Reynolds). 

In SI units the viscosity is expressed as newton-seconds per square meter, (N-s/m^), or 
pascal-second (Pa-s). 
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FIGURE 11.5.1 SMer bearing. 

^ Fixed surface 

The conversion factor between the two is the same as for stress: 

1 reyn = 1 lb • s/in^ = 6890 N • s/m^ = 6890 Pa • s. 

The reyn and pascal-second are such large units that microreyn (/xreyn) and millipascal 
second (mPas) are more conmionly used. The former standard metric unit of viscosity was 
the poise (shortening of Jean Louis Marie Poiseuille, French physician and physiologist). 
One centipoise, cp, is equal to one millipascal-second 

1 cp = 1 mPa • s. 

Dynamic viscosities are usually measured under high shear conditions, for example, the 
cylinder viscometer in which the viscous shear torque is measured between two cylinders. 
The kinematic viscosity is defined as absolute viscosity, /x, divided by mass density, p 

V = 
/^ (II.5.3) 

The units for kinematic viscosity are lengths/time, as cm^/s, which is the Stoke (St). Using 
SI units: 1 m^/s = 10^ St and 1 cSt (centistoke) = 1 nun^/s. The physical principle of 
measurement is based on the rate at which a fluid flows vertically downward under gravity 
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^999, Bottom of bath 

FIGURE 11.5.2 Saybolt Universal Viscometer. 

through a small-diameter tube. Liquid viscosities are determined by measuring the time 
required for a given quantity of the liquid to flow by gravity through a precision opening. 
For lubricating oils, the Saybolt Universal Viscometer, shown in Figure 115.2, is an instru-
ment used to measure the viscosity. The viscosity measurements are Saybolt seconds, or 
SUS (Saybolt Universal Seconds), SSU (Saybolt Seconds Universal), and SUV (Saybolt 
Universal Viscosity). 

With a Saybolt Universal Viscometer one can measure the kinematic viscosity, v. 
Absolute viscosities can be obtained from Saybolt viscometer measurements by the 
equations 

/ 180\ 
/x (mPa-s or cp) = I 0.22 t I p. (n.5.4) 

and 

/ 180\ 
/x (/xreyn) = 0.145 f 0.22 t j p. (n.5.5) 

where p is the mass density in grams per cubic centimeter, g/cm^ (which is also called 
specific gravity) and t is the time in seconds. For petroleum oils the mass density at 
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different temperatures is 

p = 0.89 - 0.00063 (^C - 15.6) g/cm^ (II.5.6) 

or 

p = 0.89 - 0.00035 (^F - 60) g/cml (II.5.7) 

The Society of Automotive Engineers (SAE) classifies oils according to viscosity. Any 
viscosity grade should be proceeded by the initials SAE. It should be noted that SAE is not 
a performance category, it only refers to the viscosity of the oil. 

Two series of SAE viscosity are defined (Table II.5.1): monograde oils or single viscosity 
oils and multigrade oils (those with the suffix W), which are essentially for winter conditions. 

For the monograde oils (grades without the W), the viscosity is measured in cSt at 100°C 
(212°F). A monograde oil only has one part, such as SAE 30, or SAE 40. The number after 

TABLE II.5.1 SAE Viscosity Grades for Engine Oils« 

SAE 

viscosity 

grade 

Low 
temperature CC), 

cranking 

viscosity^, 

cpmax 

Low 
temperature (° C) 

pumping 
viscosity^, 

cp max with 

no yield stress^ 

Low-shear-rate 

kinematic 
viscosity^ (cSt) 

atlOO°Cmin 

Low-shear-rate 
kinematic 
viscosity ̂  

(cSt)atlOO°C 

max 

High-shear-rate 

viscosity^ (cp) 
atlSO^'Cmin 

ow 
5W 
low 
15W 
20W 
25W 
20 
30 
40 

40 

50 
60 

6200 at - 3 5 
6600 at - 3 0 
7000 at - 2 5 
7000 at - 2 0 
9500 a t - 1 5 

13,000 a t - 1 0 

60,000 at - 4 0 
60,000 at - 3 5 
60,000 at - 3 0 
60,000 at - 2 5 
60,000 at - 2 0 
60,000 a t - 1 5 

3.8 
3.8 
4.1 
5.6 
5.6 
9.3 
5.6 
9.3 

12.5 

12.5 

16.3 
21.9 

<9.3 
<12.5 
<16.3 

<16.3 

<21.9 
<26.1 

2.6 
2.9 

2.9 (OW-40, 
5W-40, lOW-40 

grades) 
3.7 (15W-40, 

20W-40, 25W-40, 
40 grades) 

3.7 
3.7 

^ 1 cp = Impas; 1 cSt = 1 mm^/s 
^ All values are critical specifications as defined by ASTM D3244. 
^ ASTM D5293 
^ ASTM D4684: Note that the presence of any yield stress detectable by this method constitutes a failure regardless of viscosity. 
^ ASTM D445 
/ ASTM D4683, CEC L-36-A-90 (ASTM D4741) or D5481 
Source: SAE J300 ©1999, Society of Automotive Engineers, Inc. 
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SAE gives a measure of the viscosity of the oil at high temperature (100°C). The lower 
the number the thinner the oil is at high temperature. Thus an SAE 30 is a thinner, or less 
viscous, oil than an SAE 40. 

A multigrade oil (multiviscosity graded motor oil) must meet the viscosity standard at 
the W temperature and the SAE viscosity requirement at 100°C. For the W grades (W from 
winter), viscosity is measured by two test methods, one in the cold cranking simulator 
and the other in a pumping test that evaluates borderline pumping temperature. The cold 
cranking simulator reports dynamic viscosity in cp at temperatures that depend upon the 
grade. Additionally, the viscosity of motor oils with a W suffix is measured in cSt at 100°C. 
A multigrade oil is an oil that has two parts, such as SAE 15W-40 or 20W-50. For the 
multigrade oil SAE-10W20, the first number (lOW) refers to the viscosity grade at low 
temperatures (W), whereas the second number (20) refers to the viscosity grade at high 
temperatures. The lower the W number the lower the viscosity of the oil. Therefore an SAE 
5W oil is a lower viscosity oil than an SAE lOW oil. 

The multigrade oils SAE lOW-30 and SAE 15W-30 have a similar high temperature 
viscosity as indicated by the 30. The lOW-30 oil is a thinner oil than the SAE 15W-30 at 
cold temperatures as indicated by the W number (10 < 15). Therefore, in cold temperatures, 
the SAE lOW-30 oil is better than the SAE 15W-30 oil. In winter it is beneficial to move 
from an SAE 15W-30 oil to an SAE lOW-30 oil. 

During summer the ambient temperatures are high and the oil tends to be thinner, so 
a more viscous oil should be used. The SAE lOW-20 is a thinner oil than the SAE lOW-
30 or SAE 15W-30 at high temperatures, as indicated by the second number (20 < 30). 
Therefore, in warm temperatures, a thicker oil (either an SAE lOW-30 or SAE 15W-30), 
could offer better engine protection than SAE lOW-20. In summer SAE lOW type oil is not 
required, which is why the SAE 15W-40 is favored. 

There is much discussion about mineral oils versus synthetic oils and the relative per-
formance of each type. The synthetic oils offer certain advantages over mineral oils in 
terms of low temperature performance and high temperature oxidation stability. Synthetic 
oils are very expensive, and properly formulated mineral oils are more than suitable for 
most engine applications. A synthetic oil can be considered for very cold temperatures, or 
for applications that may need a high level of oxidation protection. The manufacturer's 
recommendations should be followed. 

Petroleum products can be graded according to the ISO Viscosity Classification System, 
approved by the International Standards Oreganization (ISO). Each ISO viscosity grade 
number corresponds to the mid-point of a viscosity range expressed in centistokes (cSt) at 
40°C (the viscosity of the ISO grades, however, is measured at 40°C instead of 100°F = 
37.8°C, which results in a slightly more viscous lubricant for each corresponding grade). For 
the ISO 3448 viscosity classification system the ISO VG 22 lubricant refers to a viscosity 
grade of 22 cSt ± 10% at 40°C. The kinematic viscosity limits are 19.8 cSt (min.) and 
24.2 cSt (max.), and the mid-point viscosity is 22 cSt. 

In Figures II.5.3, II.5.4, and II.5.5 the absolute viscosity function of temperature for 
typical SAE numbered oils is shown. Grease is a non-Newtonian material that does not 
begin to flow until a shear stress exceeding a yield point is appHed. 

The viscosity index (VI) measures the variation in viscosity with temperature. The vis-
cosity index, on the Dean and Davis scale, of Pennsylvania oils is VI = 100. The viscosity 
index, on the same scale, of Gulf Coast oils is VI = 0. Other oils are rated intermedi-
ately. Nonpetroleum-base lubricants have widely varying viscosity indices. Silicone oils 
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FIGURE M.5.3 Absolute viscosity (mPa-s) function of temperature CQ. Reprinted with permission 
of John Wiley & Sons, Inc. 

have relatively little variation of viscosity with temperature. The viscosity index improvers 
(additives) can increase viscosity index of petroleum oils. 

11.5.2 Petroff s Equation 
Hydrodynamic lubrication is defined when the surfaces of the bearing are separated by a film 
of lubricant and does not depend upon the introduction of the lubricant under pressure. The 
pressure is created by the motion of the moving surface. Hydrostatic lubrication is defined 
when the lubricant is introduced at a pressure sufficiently high to separate the surfaces of 
the bearing. 

Ahydrodynamic bearing (hydrodynamic lubrication) is considered in Figure II.5.6. There 
is no lubricant flow in the axial direction and the bearing carries a very small load. The 
radius of the shaft is R, the radial clearance is c, and the length of the bearing is L 
(Fig. II.5.6). The shaft rotates with the angular speed n rev/s and its surface velocity is 
V = IjzRn. 
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FIGURE II.5.4 Absolute viscosity (iireyn) function of temperature (°F). Reprinted witti permission 
of John Wiley & Sons, Inc. 

From Eq. (II.5.2) the shearing stress is 

_ V _ InRiin 

s c 

The force required to shear the film is the stress times the area, 

where A — InRL. 
The friction torque is the force times the lever arm: 

Tf=FR = (xA) 
'InRfJin \ ^ An^/jinLR^ 

-ATtRL " R= i ^ ^^27rRL\R = 

(11.5.8) 

(11.5.9) 
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Temperature, °F 

Source: J. E. Shigley, C. R. Mitchell, Mechanical engineering design, 
McGraw-Hill, 1983, New York 

FIGURE 11.5.5 Absolute viscosity function of temperature for multigrade oils. Reprinted with 
permission of McGraw-Hill. 

If a small radial load W is applied on the bearing, the pressure P (the radial load per unit of 
projected bearing area) is 

2RL 

The friction force i s / W, where/ is the coefficient of friction, and the friction torque is 

Tf=fWR=f (2RLP) R = IR^fLP. (IL5.10) 

Equations (11.5.9) and (IL5.10) can be equated and the coefficient of friction is 

z-'H )̂©- (II.5.11) 
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Oil film 

FIGURE 11.5.6 Hydrodynamic bearing. 

Journal Bearing 

This is called Petroff s law or Petroff s equation. In Petroff s equation there are two impor-

tant bearing parameters: the dimensionless variable, ( — 1 and the clearance ratio I — j 

with the order between 500 to 1000. 
The bearing characteristic number, or Sommerfeld number 5, is given by 

=^(?r (IL5.12) 

where R is the journal radius (in.), c is the radial clearance (in.), /x is the absolute viscosity 
(reyn), n is the speed (rev/s), and P is the pressure (psi). 
The power loss in SI units is calculated with the relation 

H=:2nTfn, W 

where H = power (W), n = shaft speed (rev/s), Tf = torque (N-m), or 

H = 
9549' 

kW 

where H = power (kW), n = shaft speed (rpm), and Tf = torque (N-m). 
The power loss in British units is 

H = -^—, hp 
5252 ^ 

where H = power (hp), n = shaft speed (rpm), and Tf = torque (Ib-ft). 

(II.5.13) 

(II.5.14) 

(II.5.15) 
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11.5.3 Hydrodynamic Lubrication Theory 
In Figure II.5.7 a small element of lubricant film of dimensions dx, dy, and dz is shown. 
The normal forces, due to the pressure, act upon right and left sides of the element. The 
shear forces, due to the viscosity and to the velocity, act upon the top and bottom sides of 
the element. The equilibrium of forces give 

- lp+ —dxj dydz- IT -\- —dyj pdxdz + r dxdz— \p-\- ~i~dx ) dy dz dx dz = 0, (11.5.16) 

which reduces to 

dp dr 

dx dy' 
(11.5.17) 

X 

pdydz 

, r + -TT-dy I dxdz 
dy 

Fixed bearing 

Lubricant 

Rotating journal 

p + -^dx ) dydz 

rdxdz 

FIGURE 11.5.7 Pressure and forces on an element of lubricant film. 

616 KINEMATIC CHAINS AND MACHINE COMPONENTS DESIGN 



In Eq. (II.5.17) the pressure of the film/? is constant in y direction and depends only on the 
coordinate x,p = p(x). The shear stress r is calculated from Eq. (II.5.1): 

r = M ^ . (II.5.18) 
dy 

The velocity v of any particle of lubricant depends on both coordinates x and y,v = v(x, y). 
From Eqs. (IL5.17) and (11.5.18), it results 

dp a^v 
f = M T J - , (II.5.19) 
ax a'^y 

or 

d^v _ 1 dp 

d'^y II dx 
(11.5.20) 

Holding X constant and integrating twice with respect to y gives 

'^^^(fy + cX (II.5.21) 
ay 11 \dx ) 

and 

.,2 

The constants C\ andC2 are calculated using the boundary conditions: for j = 0 =^ v = 0, 
and for J = 5 =>• v = V. 

With C\ and C2 values computed, Eq. (II.5.18) gives the equation for the velocity 
distribution of the lubricant film across any yz plane: 

Equation (II.5.23) gives the velocity distribution of the lubricant in the film as a function of 
the coordinate y and the pressure gradient dp/dx. The velocity distribution is a superposition 
of a parabolic distribution, the first term, onto a linear distribution, the second term (and 
shown as a dashed line in Fig. II.5.8). 

The volume of lubricant Q flowing across the section for width of unity in the z direction is 

f Vs s^ dp 

C = /__v(,.,M,= - - — 1 . ,...5.24) 

For incompressible lubricant the flow is the same for any section: 

^ = 0. 

dx 
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Flow of 
Lubricant 

FIGURE 11.5.8 Velocity distribution. 

By differentiating Eq. (II.5.24), one can write 

dQ 

dx 
V ds 
2 dx 

d / s^ dp\ 

dx \12/i dxj ' 

or 

d /s^ dp\ ds 

dx\iJidx) dx' 
(11.5.25) 

which is the classical Reynolds equation for one-dimensional flow. 
The following assumptions were made: 

• The fluid is Newtonian, incompressible, of constant viscosity, and experiences no 
inertial or gravitational forces. 

• The fluid has a laminar flow, with no slip at the boundary surfaces. 
• The fluid experiences negligible pressure variation over its thickness. 
• The journal radius can be considered infinite. 

The Reynolds equation for two-dimensional flow is (the z direction is included): 

o3 c»„\ Q / . 3 a 
dx \/X dx J dz \lJi dzj dx 

(II.5.26) 

For short bearings, one can neglect the x term in the Reynolds equation 

dz\lJi dz) 
6V-

^dh 

dx 
(II.5.27) 

Equation (II.5.27) can be used for analysis and design. 
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FIGURE IL5.9 Minimum film thicl<ness variable. 

11.5.4 Design Charts 
Raimondi and Boyd have transformed the solutions of the Reynolds Eq. (II.5.27) to chart 
form. The charts provide accurate solutions for bearings of all proportions. Some charts 
are shown in Figures II.5.9 to II.5.15. The quantities given in the charts are shown in 
Figure II.5.16. The Raimondi and Boyd charts give plots of dimensionless bearing param-
eters as functions of the bearing characteristic number, or Sommerfeld variable, S. The S 
scale on the charts is logarithmic except for a linear portion between 0 and 0.01. 

.5.5 Examples 

EXAMPLE 11.5.1: 

The Saybolt kinematic viscosity of an oil corresponds to 60 seconds at 90°C 
(Fig. II.5.2). What is the corresponding absolute viscosity in millipascal-seconds 
(or centipoises) and in microreyns? 

Continued 
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FIGURE n.5.10 Position angle of minimum film thickness. 

EXAMPLE 11.5.1: Cont'd 

Solution From Eq. (II.5.6), the mass density of the oil is 

p = 0.89 - 0.00063(°C - 15.6) = 0.89 - 0.00063(90 - 15.6) 

= 0.843 g/cm^ 

From Eq. (II.5.4), the absolute viscosity in centipoise is 

lx=(o.22t-^\p = (0.22)(60) - ^ 1 0.843 

= 8.598 cp (or 8.598 mPa • s). 

From Eq. (II.5.5), the absolute viscosity in microreyns, fireyn, is 

/i = 0.145 (0.22f - — U = 0.145 (0.22)(60) - ^ j 0.843 

= 1.246 jttreyn. 
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Source: A. A. Raimondi, J. Boyd, A solution for the finite journal bearing and its application 
to analysis and design. Part I, II, and III, Trans. ASLE, Vol. 1, No. 1, pp. 159 - 209, 
in Lubrication Science and Technology. Pergamon Press, New York, 1958. 

FIGURE 11.5.11 Friction variable. 

Lubrication and Sliding Bearings 621 



o» 
(̂  

I 
I 

6 -~H~J4 

5 r i z m 

3 Lbtrjr-

!" 2 U - -

"'T""r"'Tr'T"n''' i i i 

i f MM 

T i^THtd l l 
M l '" •'' 't"|-- TTin•• ] • 

it i \\\r^^ 

i 1 M 
U.ii,|. .[ii. 

-4-|44|4|)tj|{-

1 1 ill-
:±Hlh 1 

\r\ 
M 111 
\i 1 H r t f . 1 

,,.J..,,L, . ..( \V\U-\\\\\v 
M M 1 h 

JIL] j 
I I I ]\¥\\ 

11 i/ni 

(1 ' i r . 1. ii'M i i 

1 j 

n M l ' 

WfflfflL /̂̂  
|T|rf> 

TTilFrS/:^" 

ittittlitt 
•r^^ffl^® L/L 

"l~Hi"HiFll i i 
* ! iniTtt Ifi tnll* T i •fti H ' i 

i|'|j|iif|x/D 
h i ' 1 ^̂  1 J^ 

^WnP¥i-
JljjM i 

w1 TMT 'p ' ' 
J^l 
( 1 1 > 

Mr • 
i l j i M 

T 1" Ml i i 
M M 
M M 1 ! 

j 1 l|4-f 
n n i i i l i i r ' r i 

Ti") ! I l i ^ ' i i i l l 1 ' 
i M M ! ' ' 

in hr ^ Ml HirtTffirT r 

\- \ I. T!! 
MM 

i l m 

= i u | f 

TTWL * Tt 
•tl-lLUl 

= °lM-
-Hltiihiin 

"̂ "' ""'^TiT 

lift 

I 

1 

ImTT 
J 
Tnt T l i i 

iin r r 

-Oill' LJ ntn r^ 

TT'T'TTiTTT 

|M| 

J 1 hr 

?Hilil4' 

IPT 

j . 1 j 1 

' Itlliii 

" 1 lljfij 

"TTTTT'TTT 

p | n ^ ^ 

illSI+ffi 

i l l i ' i i i i ' 

-TTTTI 

w 

1 

^ M I 

Iffll Itftt 

n iM t t i n • 1 i 

•' 
i 

M ii 
i l l h i 

I f f t l i i t f fM mi P ...|...Hf . 1 
pf • r'̂  i | | i | . |L l; |l 
Ijirrli ft 

' TMnlHI 11 

!llrl4-Hl-

U! 
' 

Ttr! 

4Tn 
0 0.01 0.02 0.04 0.1 0.2 0.4 0.60.81.0 2 4 6 8 10 

Bearing characteristic number, --̂  = ( r I ~^ 

Source: A. A. Raimondi, J. Boyd, A solution for the finite journal bearing and its application 
to analysis and design. Part I, II, and III, Trans. ASLE, Vol. 1, No. 1, pp. 159 - 209, 
in Lubrication Science and Technology. Pergamon Press, New York, 1958. 

FIGURE 11.5.12 Flow variable. 
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Bearing characteristic number, S' = ( - 1 —-

Source: A. A. Raimondi, J. Boyd, A solution for the finite journal bearing and its application 
to analysis and design. Part I, II, and III, Trans. ASLE, Vol. 1, No. 1, pp. 159 - 209, 
in Lubrication Science and Technology. Pergamon Press, New York, 1958. 

FIGURE 11.5.13 Flow ratio (side leakage flow/total flow). 
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Source: A. A. Raimondi, J. Boyd, A solution for the finite journal bearing and its application 
to analysis and design, Part I, II, and III, Trans. ASLE, Vol. 1, No. 1, pp. 159 - 209, 
in Lubrication Science and Technology. Pergamon Press, New York, 1958. 

FIGURE 11.5.14 Pressure ratio. 
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Bearing characteristic number, 5 = ( - 1 —— 

Source: A. A. Raimondi, J. Boyd, A solution for the finite journal bearing and its application 
to analysis and design. Part I, II, and III, Trans. ASLE, Vol. 1, No. 1, pp. 159 - 209, 
in Lubrication Science and Technology. Pergamon Press, New York, 1958. 

FIGURE n.5.15 Terminating position of the oil film and position of the maximum pressure. 
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Oil viscosity /i 
and flow rate Q 

Average film pressure = P --
W 

"DL 

ho the minimum oil film thickness 
^Pmax ^h^ angular posit ion of t h e point of m a x i m u m pressure 
Opo the terminating position of the oil film 
Pmax the maximum pressure 
0 the position angle of minimum film thickness 

e = c - h^ the eccentricity 

Source: J. E. Shigley, C. R. Mischke, Mechanical engineering design, 
McGraw-Hill Inc., 1989, New York. 

FIGURE 11.5.16 Notation for Raimondi and Boyd charts. Reprinted with permission of 
McGraw-Hill. 
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EXAMPLE 11.5.2: 

A shaft with a 120-mm diameter (Fig. 11.5.17), is supported by a bearing of 100-
mm length with a diametral clearance of 0.2 nmi and is lubricated by oil having a 
viscosity of 60 mPa-s. The shaft rotates at 720 rpm. The radial load is 6000 N. Find 
the bearing coefficient of friction and the power loss. 

Solution The pressure is calculated with the relation 

P = 
W 6000 

2RL 2(0.06) (0.1) 
= 500 000 N/m^ = 500 000 Pa, 

where W = 6000 N,R = 0.06 m, and L = 0.1 m. 
From Eq. (II.5.11), the coefficient of friction is 

-^ \ P ) \c) I 500000 J VO.I/ 

where /x = 60 mPa • s = 0.06 Pa • s, n = 720 rev/min = 1 2 rev/s, /? = 60 mm, and 
c — 0.1 mm. 

The friction torque is calculated with 

Tf=fWR = (0.017) (6000) (0.06) = 6.139 N • m 

The power loss is 

H = 2TcTfn = 27t (6.139) (12) = 462.921 N • m/s = 462.921 W. 

6000 N 
Oil viscosity 

n= 720 rpm 

FIGURE n.5.17 Journal bearing for Example 11.5.2. 
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EXAMPLE 11.5.3: 

A journal bearing has the diameter D = 2.5 in., the length L = 0.625 in., and 
the radial clearance c = 0.002 in., as shown in Figure II.5.18. The shaft rotates at 
3600 rpm. The journal bearing supports a constant load, W = 1500 lb. The lubricant 
film is SAE 40 oil at atmospheric pressure. The average temperature of the oil film 
is Tavg = 140°F. 

Find the minimum oil film thickness, ho, the bearing coefficient of friction, / , 
the maximum pressure, Pmax^ the position angle of minimum film thickness, 0, the 
angular position of the point of maximum pressure Op^^, the terminating position 
of the oil film Opo, the total oil flow rate, Q, and the flow ratio (side flow/total 
flow) QJQ. 

Solution The pressure is 

P = 
W 1500 

LD (0.625) (2.5) 
= 960 psi. 

^-6 The dynamic viscosity is /x = 5 x 10~ reyn (SAE 40, Tavg 
Figure II.5.4. 

The Sommerfeld number is 

140^F), from 

\cj P V0.002/ 
(5x 10-^) (60) 

960 
= 0.12. 

For all charts 5 = 0.12 and L/D = 0.25 are used. 

• From Figure II.5.9, the minimum film thickness variable is ho/c = 0.125 and the 
minimum film thickness is /IQ = 0.125 c = 0.00025 in. 

15001b 
SAE 40 oil 

Tavg = 140°F 

n = 3600 rpm 

FIGURE 11.5.18 Journal bearing for Example 11.5.3. 
Continued 
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EXAMPLE 11.5.3: Cont'd 

• From Figure II.5.11, the friction variable is (R/c)f = 5 and the coefficient of 
friction isf = 5c/R = 0.00832. 

• From Figure II.5.14, the pressure ratio is P/pmax = 0.2 and the maximum film 
pressure is pmax = P/0.2 = 4800 psi. 

• From Figure II.5.10, the position angle of minimum film thickness is 0 = 24° 
(seeFig.II.5.16). 

• From Figure II.5.15, the terminating position of the oil film is Opo = 33° and the 
angular position of the point of maximum pressure is Op^^ = 9.5° (see 
Fig.II.5.16). 

Q 
• From Figure II.5.12, the flow variable is =5 .9 and the total flow is 

RcnL 
Q = 0.553 inVs. 

• From Figure II.5.13, the flow ratio (side leakage flow/total flow) is Qs/Q = 0.94. 
Of the volume of oil Q pumped by the rotating journal, an amont Qs flows out 
the ends. The side leakage that must be made up by the oil represents 94% of the 
flow. The remaining 6% of the flow is recirculated. 

EXAMPLE 11.5.4: 
A journal shaft of a gear train has a rotational speed of 2200 rpm and a radial load of 
2200 lb. The shaft is lubricated with an SAE 30 oil and the average film temperature 
is 180°F. Determine the values of the clearance c for the two edges of the optimum 
zone for the bearing characteristic number for L/D = 1 (Fig. II.5.9). 

Solution From Figure II.5.9, the optimum values for the bearing characteristic 
number are [7]: 

L/D 

1 

S 
for min. friction 

0.082 

S 
for max. load 

0.21 

where D is the diameter and L is the length of the bearing. 
The absolute viscosity of an SAE 30 oil at 180°F is [7] (see Fig. II.5.4): 

/x = 1.87/xreyn = 1.87 x 10~^eyn. 

From Table II.5.2, the representative unit sleeve bearing load, for gear reducers, 
arbitrarily is selected P = 250 psi. 

With L = D the bearing length is 

L = D 

A diameter ofD = 3 in. is selected. 

2200 

^50" 
= 2.966 in. 

628 KINEMATIC CHAINS AND MACHINE COMPONENTS DESIGN 



TABLE 11.5.2 Representative Unit Sleeve Bearing Loads in Current Practice 

Application 

Relatively steady load 

Electric motors 

Steam turbines 
Gear reducers 
Centrifuge pumps 

Rapidly fluctuating loads 

Diesel engines 
Main bearings 
Connecting rod bearings 

Automotive gasoline engines 
Main bearings 
Connecting rod bearings 

Units load P = 

0.8-1.5 MPa 

1.0-2.0 MPa 
0.8-1.5 MPa 
0.6-1.2 MPa 

6-12 MPa 

8-15 MPa 

4-5 MPa 
10-15 MPa 

LD 

120-250 psi 

150-300 psi 
120-250 psi 
100-180 psi 

900-1700 psi 
1150-2300 psi 

600-750 psi 
1700-2300 psi 

Source: R. C. Juvinall and K. M. Marshek, Fundamentals of Machine Component Design, New York, 
John Wiley & Sons, 1991. Reprinted with permission of John Wiley & Sons, Inc. 

EXAMPLE 11.5.4: Cont'd 

The clearance is calculated from the relation 

-(7?)(?r 
where n = 2200/60 = 36.666 rps and R = 3/2 =1.5 in. 

For minimum friction Smm = 0.082 the clearance is 

c = R 
]nr (1.87 X 10-6) (36.666) 

= (1-5)J ^ ./I.. = 0.002743 in. PS„,i„ 'Y (250) (0.082) 

and for maximum load Smax = 0.21 the clearance is 

c = R 
,n ^ il.,l.m-^H36.666)^^_^^^^^.^_ 

PS, (250) (0.21) 

EXAMPLE IL5.5: 

The oil lubricated bearing of a steam turbine has the diameter D = 160 mm, 
(Fig. II.5.19). The angular velocity of the rotor shaft is n = 2400 rpm. The radial 
load is W = 18 kN. The lubricant is SAE 20, controlled to an average temperature 
of78°C. 

Continued 
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EXAMPLE 11.5.5: Cont'd 

W= 18 kN Force feed, 
SAE 20 oil 

Tavg = 78°C 

n = 2400 rpm 

FIGURE 11.5.19 Journal bearing for Example 11.5.5. 

Find the bearing length, the radial clearance, the corresponding values of 
the minimum oil film thickness, the coefficient of friction, and the friction power 
loss. 

Solution From Table IL5.2, for steam turbine (1 to 2 MPa range) the unit load 
P = 1.5 MPa is arbitrarily selected. The bearing length is 

L = 
W 18 000 

= 75 mm. 
PD (1.5)(160) 

Arbitrarily round this up to L = 80 mm to give L/D =1 /2 for convenient use of the 
Raimondi and Boyd charts. 

With L = 80 mm, P is given by the relation 

P = ^ = 
18 000 

= 1.406 MPa. 
LD (80) (160) 

From Figure II.5.3, the viscosity of SAE 20 oil at 78°C is /x = 9.75 mPa-s. 
From Figure 11.5.9 the optimum values for the bearing characteristic number are [7]: 

L/D 

1/2 

S 
for min. friction 

0.037 

5 
for max. load 

0.35 

For minimum friction Smin = 0.037 the clearance is 

R 
M ^ . . .ox / (9.75 X 10-3)(40) ^ ^ _ _ . 
^ = (0.08)J ^T^TTT—Tzzr^ -̂zTZ7 = 0.219 x 10"^ m. 

PS, (1.406 X 10^) (0.037) 
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EXAMPLE 11.5.5: Cont'd 

and for maximum load Smax = 0.35 the clearance is 

c = R lin 
PSrr 

= (0.08), 
' (9.75 X 10-3) (40) 

(1.406 X 106) (0.35) 
= 0.071 X 10"^ m. 

The minimum oil film thickness, ho, is calculated from the ratio, ho/c obtained from 
Figure II.5.9, and the coefficient of friction, / , is calculated from the ratio Rf/c 
obtained from Figure II.5.11. 

The values of S, ho, and/ function of c, (0.048 mm < c < 0.243 mm), with c 
extending to either side of the optimum range are listed below. 

c 
mm 

0.0482629 
0.0712126 
0.1125970 
0.1445050 
0.2080650 
0.2190230 
0.2432370 

5 

0.762 
0.350 
0.140 
0.085 
0.041 
0.037 
0.030 

ho 
mm 

0.0284751 
0.0302654 
0.0292752 
0.0281784 
0.0249678 
0.0240926 
0.0243237 

/ 

0.00965258 
0.00774437 
0.00619284 
0.00559955 
0.00494154 
0.00479113 
0.00486475 

Figure II.5.20 shows ho and/ function of c, and indicates a good operation. 
For the minimum acceptable oil film thickness, ho, the following empirical 

relations are given (Trumpler empirical equation) [7]: 

ho > homin = 0.0002 + 0.00004D (ho and D in in.), 

ho > homin = 0.005 + 0.00004D (ho and D in m.). (II.5.28) 

For D = 160 mm, the minimum acceptable oil film thickness is 

homin = 0.005 + 0.00004 (160) = 0.0114 mm. 

The minimum film thickness using a safety factor of Q = 2 applied to the load, and 
assuming an "extreme case" of c = 0.243 mm, is calculated as follows: 

the Sommerfeld number is 

^ (f^\ (R\ ^ (9.75 X 10-3)(40) / 80 V ^ 
\CsP)\c) (2)(1.406x 106) V0.243/ • • 

rio 

• from Figure II.5.9 using 5' = 0.015 — = 0.06 is obtained, and the minimum film 
c 

thickness is ho = 0.0145 mm. 
This value satisfies the condition ho = 0.0145 > homin = 0.0114. 

Continued 
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EXAMPLE 11.5.5: Cont'd 

HQ (mm) 

0.032 

0.03 

0.028 

0.026 

' 0.024 

0.022 

max. load 

~A 

0.05 

/ 

0.009 

0.008 

0.007 

0.006 

0.005 

0.1 0.15 0.2 

optimum band 

0.25 ^ ^ 

min. friction 

0.05 ' 0.1 0.15 0.2 ' 0.25 ^ ' " "" ' 

FIGURE n.5.20 Variation of ho and f function of c for Example 11.5.5. 

For the tightest bearing fit, where c = 0.048 mm a n d / = 0.009, the friction 
torque is 

WfD (18 000)(0.009)(0.16) _ _ ^ , 
Tf = —^— =-^ ^ = 13.899 N - m , 

and the friction power is 

nTf (2400rpm)(13.899 N • m) 
fnction power = ^ = ^^ = 3.493 kW. 

The Mathematical^ program for this example is given in Program II.5.1. 

11.5.6 Problems 
IL5.1 Determine the density of a SAE 40 oil at 160°F. 

II.5.2 From a Saybolt viscometer the kinematic viscosity of an oil corresponds to 
60 seconds at 120°C. Find the corresponding absolute viscosity in millipascal-
seconds and in microreyns. 
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11.5.3 An engine oil has a kinematic viscosity at 93°C corresponding to 50 seconds, as 
determined from a Saybolt viscometer. Find the corresponding SAE number. 

11.5.4 A 100 mm diameter shaft is supported by a bearing of 100-mm length with a 
diametral clearance of 0.075 mm. It is lubricated by SAE 20 oil at the operating 
temperature of 70°C. The shaft rotates 3000 rpm and carries a radial load of 
5000 N. Estimate the bearing coefficient of friction and power loss using the Petroff 
approach. 

11.5.5 A journal bearing 4 in. in diameter and 6 in. long is lubricated with an SAE 10 oil 
with the average temperature of 130°F. The diametral clearance of the bearing is 
0.0015 in. The shaft rotates at 2000 rpm. Find the friction torque and the power loss. 

11.5.6 A shaft with the diameter D, rotational speed n, and radial load W is supported by 
an oil-lubricated bearing of length L and radial clearance c. There is no eccentricity 
between the bearing and the journal, and no lubricant flow in the axial direction. 
Determine the bearing coefficient of friction and the power loss. Numerical data is 
as follows: (a) D = 0.2 m, L = 0.15 m, c = 0.075 mm, n = 1200 rpm, 
W = 6.5 kN, and /x = 32 mPa-s (for SAE 10 oil at 40°C); (b) D = 1.5 in., 
L = 1.5 in., c = 0.0015 in., n = 30 rps, W = 500 lb, and ^ = 4 /xreyn. 

11.5.7 A journal bearing of 200-mm diameter, 100-mm length, and 0.1-mm radial 
clearance carries a load of 20 kN. The shaft rotates at 1000 rpm. The bearing is 
lubricated by SAE 20 oil and the average temperature of the oil film is estimated at 
70°C. Determine the minimum oil film thickness bearing coefficient of friction, 
maximum pressure within the oil film, angles 0, ^^max, Opo, total oil flow rate 
through the bearing, and side leakage. 

11.5.8 A journal bearing of 2 in. diameter, 2 in. length, and 0.001 in. radial clearance 
supports a load of 1500 lb when the shaft rotates 1000 rpm. The lubrication oil is 
SAE 30 supplied at atmospheric pressure. The average temperature of the oil film is 
140°F. Using the Raimondi and Boyd charts, determine the minimum oil film 
thickness bearing coefficient of friction, maximum pressure within the oil film, 
angles 0, p̂max» Opo, total oil flow rate, and fraction of the flow rate that is 
recirculated oil flow. 

11.5.9 A full journal bearing has the diameter of 60 mm and an L/D ratio of unity and runs 
at a speed of 200 rpm. The radial clearance is 0.04 mm and the oil supply is SAE 30 
at the temperature of 60°C. The radial load is 3000 N. Determine the minimum oil 
film thickness bearing coefficient of friction and its angular location, the maximum 
pressure within the oil film and its angular location, and the side flow. 

IL5.10 A 5 kN load is appHed to a 100 mm diameter shaft rotating at 2000 rpm. A journal 
bearing is used to carry the load. The journal bearing with a diameter to length ratio 
of 0.25 is lubricated with an SAE 40 oil with an inlet temperature of 40°C. 
Determine the minimum oil film thickness bearing coefficient of friction and its 
angular location, the maximum pressure within the oil film and its angular location, 
and the side flow. 

II.5.11 A shaft rotates at 1000 rpm and is lubricated with an SAE 30 oil at 80°C. The radial 
load is 30 kN. Determine the values of the clearance c for the two edges of the 
optimum zone for the bearing characteristic number for the ratio L/D = 1. 
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11.5.12 A journal bearing for a gear train rotates at 1000 rpm and applies a force of 10 kN 
to the bearing. An SAE 20 oil is used and the average temperature is expected to be 
60°C. A proportion of LID = 1/2 is desired. Find: (a) the value of D, and (b) the 
values of c corresponding for the two edges of the optimum zone for the bearing 
characteristic number. 

11.5.13 The oil-lubricated journal bearing of a gear reducer has the diameter D = 100 mm. 
The angular speed of the shaft is 1200 rpm and the radial load is 20 kN. The 
lubricant is SAE 30, controlled to an average temperature of 65°C. Find the bearing 
length, the radial clearance, and the corresponding values of the minimum oil film 
thickness, the coefficient of friction, the friction power loss, and the oil flows. 

11.5.7 Programs 
Program 11.5.1 

App1y[Clear,Names["Globar*" ] ] ; 
O f f [Gene ra l : : spe l l ] ; 
Of f [Genera l : :spe l11] ; 
d=160. 10-^-3 ; (* m *) 
R=d/2 ; (* m *) 
n0=2400; (* rpm *) 
n=n0/60.; (* rps *) 
W=18000; (* N *) 
"mu=9.75 mPa s" 
mu=9.75n0'^(-3); (* Pa s *) 
"se lect P=1.5 MPa un i t load fo r steam tu rb ine" 
P=1.5 lO'^e; (*Pa*) 
L=W/(P d ) ; (* m *) 
Print["L=W/(P D)= " , L ] ; 
L=0.080; 
"Select L=80 mm " 
P=W/(d L ) ; 
Pr in t [ "P= " , P , " Pa" ] ; 
Smin=0.037; 
Smax=0.35; 

(* S=(R/c)'^2 (mu n/P) *) 
cf=R/(Smin P/(mu n)) '^0.5; 
cl=R/(Smax P/(mu n)K0.5; 
Print[" min. friction => c=",cf," m"]; 
Print[" max load => c=",cl," m"]; 

Sl=0.762; Hl=0.59; Fl=16.; ql=4.3; qsl=0.56 
Smax=0.35; Hl=0.425; Fl=8.7; ql=4.8; qsl=0.72 
S2=0.140; H2=0.26; F2=4.4; q2=5.25; qs2=0.84 
S3=0.085; H3=0.195; F3=3.1; q3=5.45; qs3=0.88 
S4=0.041; H4=0.12; F4=1.9; q4=5.6 ; qs4=0.92 
Smin=0.037;Hf=0.11; Ff=1.75; qf=5.65; qsf=0.93; 
S5=0.030; H5=0.1; F5=1.6; q5=5.7 ; qs5=0.94 
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cl=R/(Sl P/(mu n))"0.5 ; 
(* cl=R/(Smax P/(mu n)) ' '0 .5;* ) 
c2=R/(S2 P/(mu n) ) -0 .5 
c3=R/(S3 P/(mu n))' '0.5 
c4=R/(S4 P/(mu n))' '0.5 

(* cf=R/(Sinin P/(mu n) )"0 .5; * ) 
c5=R/(S5 P/(mu n))"0.5 ; 

hl=cl 
h1=cl 
h2=c2 
h3=c3 

HI ; 
HI : 
H2 ; 
H3 : 

h4=c4 H4 ; 
hf=cf Hf ; 
h5=c5 

ff=Ff 
f l=Fl 
f l=F l 

H5 ; 

cf/R; 
cl/R; 
cl/R; 

f2=F2 c2/R; 
f3=F3 c3/R; 
f4=F4 c4/R; 
f5=F5 c5/R; 

clm^cl 
clni=c1 
c2in=c2 
c3m=c3 
c4m=c4 

10''3 
10"3 
10'3 
10"3 
10"3 

cfm=cf 10"3 
c5in=c5 

hlni=hl 
h1m=h1 
h2in=h2 
h3in=h3 
h4ni=h4 

10"3 

lO'S 
10"3 
10"3 
10"3 
10"3 

hfin=hf 10'3 
h5ni=h5 10"3 

Print["c=",cl , " S=",S1," hO=",hl," f=",fl]; 
Print["c=cl=".cl," S=Smax=",Smax," hO=",hl," f=",f1]; 
Print["c=",c2 , " S=",S2," h0=",h2," f=",f2]; 
Print["c=",c3 . " S=",S3," h0=",h3," f=",f3]; 
Print["c=",c4 , " S=",S4," h0=",h4," f=",f4]; 
Print["c=cf=",cf." S=Siiiin=",Smin," hO=",hf," f=".ff]; 
Print["c=",c5 , " S=".S5." hO=",h5," f=",f5]; 
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Print["c[inni] 
Print[elm," 
Print[clni," 
Print [c2ni," 
Print[c3m," 
Print [c4ni," 
Print[cfm," 
Print[c5m," 

S 
",S1," 
",Smax," 
",S2," 
",S3," 
".S4." 
",Smin," 
".S5." 

h[nm] f " ] ; 
Milm," " , f l ] 

",hlni," 
",h2ni," ",f2] 
",h3m," ",f3] 
",h4m," ",f4] 

Mifm," 
".h5m." ".f5] 

fl]; 

ff]; 

gl=ListP1ot[10"3{{cl,hl},{cl,hl},{c2,h2},{c3,h3}.{c4,h4}.{cf.hf}.{c5,h5}}, 
PlotJoined->True, 
Axes->True,AxesOrigin-»-{0.03,0.02}, PlotRange->^{{0.03,0.25}, {0.02,0.032}}, 
AxesLabe1^{"c","ho"}, GridLines-^{{clin},{h1ni}}]; 
g2=Li stPl ot [{{elm, f 1}, {elm, f 1}, {c2m, f 2}, {c3in, f?}, {c4m, f4}, {cfm, f f } , {c5m, f $}}, 
PlotJoined->True, 
Axes->True,Axes0rigin^{0.03,0.004}, PlotRange^{{0.03,0.25}, {0.004,0.0099}}, 
AxesLabe1->'{"c","f"}. GridLines^{{cfm},{ff}}]; 

homin=0.005+0.00004 d 10^3; 
Print[" homin = 0.005+0.00004 D = ",homin," mm"]; 
"extreme case c=0.243237 mm =>" 
Cs=2; 
S=(R/c5)"2 (mu n/(Cs P)); 
Print["S=",S]; 
" from figure => h0/c=0.06" 
hos=0.06 c5; 
Print[" ho = 0.06 c = ",hos 10-3," mm > homin " ] ; 
"friction torque for tightest bearing fit" 
"c=0.0482629 f=0.00965258" 
Tf=W fl d/2; 
Print["Tf = W f d/2 = ",Tf," N m"]; 
FP=nO Tf79549; 
Print["friction power = n[rpm] Tf[N m]/9549 = ",FP," kW"]; 

mu=9.75 mPa s 

select P=1.5 MPa unit load for steam turbine 

L=W/(P D)= 0.075 

Select L=80 mm 

P= 1.40625 X 10^ Pa 

min. friction => c=0.000219023 m 

max load => c=0.0000712126 m 

c=0.0000482629 S=0.762 hO=0.0000284751 f=0.00965258 

c=cl=0.0000712126 S=Smax=0.35 hO=0.0000302654 f=0.00774437 
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c=0.000112597 S=0.14 hO=0.0000292752 f=0.00619284 

c=0.000144505 S=0.085 hO=0.0000281784 f=0.00559955 

c=0.000208065 S=0.041 hO=0.0000249678 f=0.00494154 

c=cf=0.000219023 S=Smin=0.037 hO=0.0000240926 f=0.00479113 

c=0.000243237 S=0.03 h0=0.0000243237 f=0.00486475 

c[nim] S h[mm] f 

0.0482629 0.762 0.0284751 0.00965258 

0.0712126 0.35 0.0302654 0.00774437 

0,112597 0.14 0.0292752 0.00619284 

0.144505 0.085 0.0281784 0.00559955 

0.208065 0.041 0.0249678 0.00494154 

0.219023 0.037 0.0240926 0.00479113 

0.243237 0.03 0.0243237 0.00486475 

0.05 0.1 0.15 0.2 0.25 

0.05 0.1 0.15 0.2 0.25 

homin = 0.005+0.00004 D = 0.0114 mm 

Lubrication and Sliding Bearings 637 



extreme case c=0.243237 mm => 

S=0.015 

from figure => h0/c=0.06 

ho = 0.06 c = 0.0145942 mm > homin 

f r i c t ion torque for t ightest bearing f i t 

c=0.0482629 f=0.00965258 

Tf = W f d/2 = 13.8997 N m 

f r i c t ion power = n[rpm] Tf[N m]/9549 = 3.49349 kW 
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11.6 Gears 

11.6.1 Introduction 
Gears are toothed elements that transmit rotary motion from one shaft to another. Gears are 
generally rugged and durable and their power transmission efficiency is as high as 98%. 
Gears are usually more costly than chains and belts. The American Gear Manufacturers 
Association (AGMA) has established standard tolerances for various degrees of gear manu-
facturing precision. Spurs gears are the simplest and most common type of gears. They are 
used to transfer motion between parallel shafts, and they have teeth that are parallel to the 
shaft axes. 

11.6.2 Geometry and Nomenclature 
The basic requirement of gear-tooth geometry is the condition of angular velocity ratios 
that are exactly constant, i.e., the angular velocity ratio between a 30-tooth and a 90-tooth 
gear must be precisely 3 in every position. The action of a pair of gear teeth satisfying this 
criterion is called conjugate gear-tooth action. 

Law of conjugate gear-tooth action: The common normal to the surfaces at the point of 
contact of two gears in rotation must always intersect the line of centers at the same point P, 
called the pitch point. 

The law of conjugate gear-tooth action can be satisfied by various tooth shapes, but the 
one of current importance is the involute of the circle. An involute (of the circle) is the curve 
generated by any point on a taut thread as it unwinds from a circle, called the base circle 
[Fig. 11.6.1(a)]. The involute can also be defined as the locus of a point on a taut string 
that is unwrapped from a cylinder. The circle that represents the cylinder is the base circle. 
Figure 11.6.1(b) represents an involute generated from a base circle of radius r̂  starting at 
the point A. The radius of curvature of the involute at any point / is given by 

-f rl (II.6.1) 
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involute 

base circle 

AB2 — B2I2 

AB^=B^Is 

AB^=BJ^ 

(a) 

r = 00 for a straight line 

(b) 

FIGURE 11.6.1 (a) Development of involute curve; (b) pressure angle. 

where r =^ 01. The involute pressure angle at / is defined as the angle between the normal 
to the involute IB and the normal to 07, 0 = ZIOB. 

In any pair of meshing gears, the smaller of the two is called the pinion and the larger one 
the gear. The term "gear" is used in a general sense to indicate either of the members and 
also in a specific sense to indicate the larger of the two. The angular velocity ratio between 
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pinion pitch circle 

center distance 

gear pitch circle 

FIGURE 11.6.2 Gears of pitch diameter d rotating at angular velocity co. 

a pinion and a gear is (Fig. II.6.2): 

/ = cOp/coo = —da/dp, (II.6.2) 

where co is the angular velocity and d is the pitch diameter, and the minus sign indicates 
that the two gears rotate in opposite directions. Tht pitch circles are the two circles, one for 
each gear, that remain tangent throughout the engagement cycle. The point of tangency is 
the pitch point. The diameter of the pitch circle is the pitch diameter. If the angular speed 
is expressed in rpm then the symbol n is preferred instead of co. The diameter (without a 
qualifying adjective) of a gear always refers to its pitch diameter. If other diameters (base, 
root, outside, etc.) are intended, they are always specified. Similarly, J, without subscripts, 
refers to pitch diameter. The pitch diameters of a pinion and gear are distinguished by 
subscripts p and g (dp and dg, are their symbols, see Fig. II.6.2). The center distance is 

c = (dp-{- dg)/2 = rp-\- rg, 

where r — dl2 is the pitch circle radius. 

(II.6.3) 
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pitch circle 

pitch circle 

normal to surfaces 

FIGURE 11.6.3 Pressure angle <f). 

In Figure 11.6.3, line tt is the common tangent to the pitch circles at the pitch point and 
AB is the common normal to the surfaces at C, the point of contact of two gears. The angle 
of AB with the line tt is called the pressure angle, 0. The most common pressure angle 
used, with both English and SI units, is 20°. In the United States 25° is also standard, and 
14.5° was formerly an alternative standard value. The pressure angle affects the force that 
tends to separate the two meshing gears. 

The involute profiles are augmented outward beyond the pitch circle by a distance called 
the addendum, a, [Fig. II.6.4]. The outer circle is usually termed the addendum circle, 
ra = r -\- a. Similarly, the tooth profiles are extended inward from the pitch circle, a 
distance called the dedendum, b. The involute portion can extend inward only to the base 
circle. A fillet at the base of the tooth merges the profile into the dedendum circle. The 
fillet decreases the bending stress concentration. The clearance is the amount by which the 
dedendum in a given gear exceeds the addendum of its meshing gear. 
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1^1—• 7 
I I addendum / 

working whole n V-
depth depth [ 

1 1 dedendunii 

A A A A A A A 
6 7 8 9 10 12 14 

Standard diametral pitches compared with tooth size 

(b) 

A 
16 

FIGURE IL6.4 Nomenclature of gear teeth. 

The circular pitch is designated as p, and measured in inches (EngHsh units) or 
millimeters (SI units). If Â  is the number of teeth in the gear (or pinion), then 

p = nd/N, p = ndp/Np, p = ndglNg. (11.6.4) 

More commonly used indices of gear-tooth size are diametral pitch, Pd (used only with 
English units), and module, m (used only with SI). Diametral pitch is defined as the number 
of teeth per inch of pitch diameter [see Fig. II.6.4]: 

Pd = NId, Pd = Np/dp, Pd = Ngldg. (II.6.5) 

Module m, which is essentially the complement of Pd, is defined as the pitch diameter in 
millimeters divided by the number of teeth (number of millimeters of pitch diameter per 
tooth): 

m = d/N, m = dp/Np, m = dJN, ^g/iyg. (IL6.6) 
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One can easily verify that 

pP^ z= Tt (p in inches; P j in teeth per inch) 

p/m = 7t (p in minimeters;m in millimeters per tooth) 

m = 25.4/Pj. 

With English units the word "pitch", without a qualifying adjective, denotes diametral pitch 
(a "12-pitch gear" refers to a gear with Pj = 12 teeth per inch of pitch diameter). With SI 
units "pitch" means circular pitch (a "gear of pitch = 3.14 mm" refers to a gear having a 
circular pitch of/? = 3.14 mm). 

Standard diametral pitches, Pd (English units), in conmion use are 

1 to 2 by increments of 0.25 
2 to 4 by increments of 0.5 
4 to 10 by increments of 1 
10 to 20 by increments of 2 
20 to 40 by increments of 4. 

With SI units, commonly used standard values of module m are 

0.2 to 1.0 by increments of 0.1 
1.0 to 4.0 by increments of 0.25 
4.0 to 5.0 by increments of 0.5. 

Addendum, minimum dedendum, whole depth, and clearance for gears with English units 
in common use are [5]: 

addendum a 
minimum dedendum b 
whole depth 
clearance 

Mf 
Full-depth involute 

or composite 

ypd 
\.\51IPd 
2.\51IPd 
OASllPd 

20° 
Full-depth 
involute 

yPd 
\.\51IPd 
lASllPd 
OASllPd 

20° 
Stub 

involute 

Q.%IPd 
yPd 

l.^lPd 
0.2/Pd 

For SI units the standard values for full-depth involute teeth with a pressure angle of 20° 
are addendum a = m and minimum dedendum b = 1.25 m. 

11.6.3 Interference and Contact Ratio 
The contact of segments of tooth profiles which are not conjugate is called interference. The 
involute tooth form is only defined outside the base circle. In some cases, the dedendum 
will extend below the base circle, then the portion of tooth below the base circle will not 
be an involute and will interfere with the tip of the tooth on the meshing gear, which is 
an involute. Interference will occur, preventing rotation of the meshing gears, if either of 
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addendum circle 

pitch circle 
^^^base circle 

Pinion 
riving) / \ 

this portion of 
profile is not an 
involute 

position of teeth 
entering contact 

addendum circle 

pitch circle 

Gear (driven) 

FIGURE n.6.5 Interference of spur gears. 

the addendum circles extends beyond tangent points A and B (Fig. 11.6.5), which are called 
interference points. In Figure II.6.5 both addendum circles extend beyond the interference 
points. 

The maximum possible addendum circle radius, of pinion or gear, without inter-
ference is 

raimax) = ^ rl + C^ siu^ 0 , (II.6.7) 

where ri, = r cos 0 is the base circle radius of pinion or gear. The base circle diameter is 

db = dcoscf). (II.6.8) 
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The average number of teeth in contact as the gears rotate together is the contact ratio 
CR, which is calculated from the following equation (for external gears): 

CR = -̂ -— —^- , (II.6.9) 
Pb 

where rap, rag are addendum radii of the pinion and gear, and r^p, r^g are base circle radii 
of the pinion and gear. The base pitch, pb, is computed with 

Pfy = Ttdb/N = pcoscf). (II.6.10) 

The base pitch is like the circular pitch except that it represents an arc of the base circle 
rather than an arc of the pitch circle. 

For internal gears the contact ratio is 

CR = ^ —^- , (11.6.11) 
Pb 

The greater the contact ratio, the smoother and quieter the operation of the gears. If the 
contact ratio is 2 then two pairs of teeth are in contact at all the times. The acceptable values 
for contact ratio are CR > 1.2. 

Gears are commonly specified according to AGMA Class Number, a code that denotes 
important quality characteristics. Quality numbers denote tooth-elements tolerances. The 
higher the number, the tighter the tolerance. Gears are heat treated by case hardening, nitrid-
ing, precipitation hardening, or through hardening. In general, harder gears are stronger 
and last longer than soft ones. 

11.6.4 Ordinary Gear Trains 
A gear train is any collection of two or more meshing gears. Figure 11.6.6(a) shows a simple 
gear train with three gears in series. The train ratio is computed with the relation 

fl3 = — = 
0)2, 0)2 0)'i \ NJ V N2J Ni 

Only the sign of the overall ratio is affected by the intermediate gear 2 which is called an 
idler. 

Figure 11.6.6(b) shows a compound gear train, without idler gears, with the train ratio 

0)\ 0)2> 
i\A = — 

0)2 0)2) ! W4 \ NJ \ N2'J \ NyJ NiN2'Ny 
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(a) 

' 2 ' 

3' 

y//////A\ 

(b) 

FIGURE 11.6.6 Gear train; (a) simple gear trains, and (b) compound gear trains. 

.6.5 Epicyclic Gear Trains 
When at least one of the gear axes rotates relative to the frame in addition to the gear's 
own rotation about its own axes, the train is called SL planetary gear train or epicyclic gear 
train. The term "epicyclic" comes from the fact that points on gears with moving axes of 
rotation describe epicyclic paths. When a generating circle (planet gear) rolls on the outside 
of another circle, called a directing circle (sun gear), each point on the generating circle 
describes an epicycloid, as shown in Figure II.6.7. 
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epicycloid 

generating circle 

directing circle 

FIGURE 11.6.7 Epicycloid curve. 

Generally, the more planet gears there are the greater the torque capacity of the system. 
For better load balancing, new designs have two sun gears and up to 12 planetary assemblies 
in one casing. 

In the case of simple and compound gears it is not difficult to visualize the motion of 
the gears and the determination of the speed ratio is relatively easy. In the case of epicyclic 
gear trains it is often difficult to visualize the motion of the gears. A systematic procedure, 
using the contour method, is presented below. The contour method is applied to determine 
the distribution of velocities for epicyclic gear trains. 

The velocity equations for a simple closed kinematic chain are [1, 24]: 

^ (0/,/-i = 0 and ^ FA, X (0/,/_I = 0, 

(0 (0 

where (0/,/_i is the relative angular velocity of the rigid body (/) with respect to the rigid 
body (/ — 1) and r̂ ^ is the position vector of the joint between the rigid body (/) and the 
rigid body (/ — 1) with respect to a "fixed" reference frame. 

The epicyclic (planetary) gear train shown in Figure IL6.8 consists of a central gear 2 
(sun gear) and another gear 3 (planet gear) in mesh with 2 at B. Gear 3 is carried by the arm 
1 hinged at A. The ring gear 4 meshes with the planet gear 3 and pivots at A, so it can be 
easily tapped as an output member. The sun gear and the ring gear are concentric. The sun 
gear, the ring gear, and the arm can be accessed to tap the angular velocity and torque either 
as an input or an output. There are four moving bodies 1, 2, 3, and 4, (n = 4) connected by: 

• Four full joints (cs = 4): one hinge between the arm 1 and the planet gear 3 at C, one 
hinge between the frame 0 and the shaft of the sun gear 2 at A, one hinge between the 
frame 0 and the ring gear 4 at A, and one hinge between the frame 0 and the arm 1 at A. 

• Two half joints (c4 = 2): one between the sun gear 2 and the planet gear 3, and one 
between the planet gear 3 and the ring gear 4. 
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FIGURE 11.6.8 Epicydoidgear train with two DOF. 
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FIGURE 11.6.9 Contour diagram of the epicycloid gear train with two DOF. 

The system has two degrees of freedom (DOF): M = 3w — 2c5— C4 = 3-4 — 2-4 — 2 = 2. 
The sun gear has A^2-tooth external gear, the planet gear has A^3-tooth external gear, and the 
ring gear has A^4-tooth internal gear. 

If the arm and the sun gear rotate with input angular speeds coi and co2, find the absolute 
output angular velocity of the ring gear. 

The velocity analysis is carried out using the contour method. The system shown in 
Figure II.6.8 has a total of five elements (p = 5): the frame 0 and four moving links 1, 
2, 3, and 4. There are six joints (/ = 6): four full joints and two half joints. The number of 
independent contours is given by 

nc = / - / 7 + l = 6 - 5 + l = 2 . 

This gear system has two independent contours. The graph of the kinematic chain is 
represented in Figure 11.6.9. 

First Contour 
The first contour is formed by the elements 0, 1, 3, 2, and 0 (clockwise path). For the 
velocity analysis, the following vectorial equations can be written 

Wio + (031 + 0)23 + 0)02 = 0, 

rAC X (031 + TAB X (023 = 0, (II.6.14) 

where the input angular velocities are 

(JDIQ = coii and (O02 = —C021, 

and the unknown angular velocities are 

0)31 = 0)21 1 and (023 = <̂ 23 1-
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The sign of the relative angular velocities is selected positive and then the numerical 
computation gives the true orientation of the vectors. 

The vectors r^^, TAC, and TAD are defined as 

TAfi =XBl-\-yBh TAC =Xcl-\- JC J, ^AD = ^D 1 + J D J, (IL6.15) 

where 

yB = r2 = mN2/2, 

y£) = r2 + 2 r3 = m N2/2 -\-mN3. 

The module of the gears is m. Equation (II.6.14) becomes 

6t>i 1 + 0̂ 31 1 + 0)23 1 - <̂ 2 1 = 0, 

1 

xc 
(031 

J 
yc 
0 

k 
0 
0 

+ 
1 J k 

XB yB 0 
CD23 0 0 

= 0. (11.6.16) 

Equation (II.6.16) can be projected on a "fixed" reference frame xOyz as 

m + 0)3\ + 0)23 ~ 0)2=0, 

yc 0)31 -^yBO)23 = 0. (II.6.17) 

Equation (II.6.17) represents a system of two equations with two unknowns, 0)31 and ct)23-
Solving the algebraic equations, the following values are obtained: 

0)31 =N2(0)i - 0)2)1 N3, 

0)23 = —0)\ -\- 0)2 — N2 {0)\ — 0)2)/N3. 

Second Contour 
The second closed contour contains the elements 0, 1, 3, 4, and 0 (Fig. II.6.9). The contour 
velocity equations can be written as (counterclockwise path) 

WlO + W31 + CO43 + (O04 = 0, 

rAC X (031 + TAD X (043 = 0, (II.6.18) 

where the known angular velocities are (Oio, CO31, and the unknown angular velocities are 

(O43 = 6043 1 and (O04 = O>04 1. 
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Equation (11.6.18) can be written as 

a;i 1 + 0^311 + (043 1 + (^04 1 = 0, 

1 J k 
XD yo 0 | = 0 . (II.6.19) 
6̂ 43 0 0 

1 

xc 
C031 

J 
yc 
0 

k 
0 
0 

+ 

From Eq. (II.6.19), the absolute angular velocity of the ring gear is 

2N20)i + IN^coi — N2C02 
(O40 = —CO04 

N2 + 2N3 

11.6.6 Differential 
Figure 11.6.10(a) is a schematic drawing of the ordinary bevel-gear automotive differential. 
The drive shaft pinion 1 and the ring gear 2 are normally hypoid gears. The ring gear 2 acts 
as the planet carrier for the planet gear 3, and its speed can be calculated as for a simple 
gear train when the speed of the drive shaft is given. Sun gears 4 and 5 are connected, 
respectively, to each rear wheel. 

When the car is traveling in a straight line, the two sun gears rotate in the same direction 
with exactly the same speed. Thus for straight-line motion of the car, there is no relative 
motion between the planet gear 3 and ring 2. The planet gear 3, in effect, serves only as a 
key to transmit motion from the planet carrier to both wheels. 

When the vehicle is making a turn, the wheel on the inside of the turn makes fewer 
revolutions than the wheel with a larger turning radius. Unless this difference in speed 
is accommodated in some manner, one or both of the tires would have to slide in order 
to make the turn. The differential permits the two wheels to rotate at different velocities 
while at the same time delivering power to both. During a turn, the planet gear 3 rotates 
about their own axes, thus permitting gears 4 and 5 to revolve at different velocities. The 
purpose of a differential is to differentiate between the speeds of the two wheels. In the 
usual passenger-car differential, the torque is divided equally whether the car is traveling in 
a straight line or on a curve. Sometimes the road conditions are such that the tractive effort 
developed by the two wheels is unequal. In this case the total tractive effort available will 
be only twice that at the wheel having the least traction, because the differential divides 
the torque equally. If one wheel should happen to be resting on snow or ice, the total effort 
available is very small and only a small torque will be required to cause the wheel to spin. 
Thus, the car sits with one wheel spinning and the other at rest with no tractive effort. And, 
if the car is in motion and encounters slippery surfaces, then all traction as well as control 
is lost. 

It is possible to overcome the disadvantages of the simple bevel-gear differential by 
adding a coupling unit which is sensitive to wheel speeds. The object of such a unit is to 
cause most of the torque to be directed to the slow-moving wheel. Such a combination is 
then called a limited-slip differential. 
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FIGURE 11.6.10 (a) Automotive differential planetary gear train; (b) graph attached to the differential 
mechanism; (c) angular velocities diagram. 

Angular Velocities Diagram 
The velocity analysis is carried out using the contour equation method and the graphical 
angular velocities diagram. 

There are five moving elements (1, 2, 3, 4, and 5) connected by 

• Five full joints (cs = 5): one between the frame 0 and the drive shaft pinion gear 1, one 
between the frame 0 and the ring gear 2, one between the planet carrier arm 2 and the 
planet gear 3, one between the frame 0 and the sun gear 4, and one between the frame 0 
and the sun gear 5. 
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• Three half joints (c4 = 3): one between the drive shaft pinion gear 1 and the ring gear 2, 
one between the planet gear 3 and the sun gear 4, and one between the planet gear 3 
and the sun gear 5. 

The system possesses two DOF: 

M = 3n-2c5-C4 = 3-5-2-5-3 = 2, 

The input data are the absolute angular velocities of the two wheels, C040 and (050. 
The system shown in Figure 11.6.10(a) has six elements (0, 1, 2, 3, 4, and 5) and eight 

joints (C4 + C5). The number of independent contours is given by 

He = 8 - / 7 + 1 = 8 - 6 + 1 = 3 . 

This gear system has three independent contours. The graph of the kinematic chain and the 
independent contours are represented in Figure 11.6.10(b). 

The first closed contour contains the elements 0, 4, 3, 5, and 0 (clockwise path). For the 
velocity analysis, the following vectorial equations can be written 

(O40 + (O34 + (O53 + (0o5 = 0, 

or 

(040 + W34 = W50 + CO35. (II.6.20) 

The unknown angular velocities are CO34 and (O35. The relative angular velocity of the planet 
gear 3 with respect to the sun gear 4 is parallel to the la line and the relative angular velocity 
of the planet gear 3 with respect to the sun gear 5 is parallel to lb. Equation (II.6.20) can 
be solved graphically as shown in Figure 11.6.10(c). The vectors OA and OB represent the 
velocities (O50 and (040. At A and B two parallels at lb and la are drawn. The intersection 
between the two lines is the point C. The vector BC represents the relative angular velocity 
of the planet gear 3 with respect to the sun gear 4, and the vector AC represents the relative 
angular velocity of the planet gear 3 with respect to the sun gear 5. 

The absolute angular velocity of planet gear 3 is 

(O30 = CO40 + CO34. 

The vector OC represents the absolute angular velocity of planet gear. 
The second closed contour contains the elements 0, 4, 3, 2, and 0 (counterclockwise 

path). For the velocity analysis, the following vectorial equations can be written 

(O40 + CO34 + (023 + CO02 = 0. (II.6.21) 

Using the velocities diagram [Fig. 11.6.10(c)] the vector DC represents the relative angular 
velocity of the planet gear 3 with respect to the ring gear 2, (O23, and the OD represents the 
absolute angular velocity of the ring gear 2, (O20. 
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Figure 11.6.10(c) gives 

a)2{) = \0D\ = -(ct>40 + (W5o), 

0)2,2 = \DC\ = -((^50 - a>4o)tanQf. (11.6.22) 

When the car is travehng in a straight hne, the two sun gears rotate in the same direction 
with exactly the same speed, co^^) = co^o, and there is no relative motion between the planet 
gear and the ring gear, 002,2 = 0. When the wheels are jacked up, COSQ = —C040, the absolute 
angular velocity of the ring gear 2 is zero. 

11.6.7 Gear Force Analysis 
The force between meshing teeth (neglecting the sliding friction) can be resolved at the 
pitch point (P in Fig. II.6.11) into two components: 

• tangential component Ft, which accounts for the power transmitted; 
• radial component Fr, which does no work but tends to push the gears apart. 

The relationship between these components is 

Fr = Ft tan0, (II.6.23) 

where 0 is the pressure angle. 
The pitch line velocity in feet per minute is equal to 

V = 7Tdn/l2 (ft/min), (II.6.24) 

where d is the pitch diameter in inches of the gear rotating n rpm. 
In SI units, 

V = 7td nl 60 000 (m/s), (II.6.25) 

where d is the pitch diameter in millimeters of the gear rotating n rpm. 
The transmitted power in horsepower is 

H = Ft W33 000 (hp), (II.6.26) 

where Ft is in pounds and V is in feet per minute. 
In SI units the transmitted power in watts is 

H = FtV (W), (II.6.27) 

where Ft is in newtons and V is in meters per second. 
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pitch circle 

pitch circle 

FIGURE n.6.11 Gear tooth forces. Driving pinion 1 and driven gear 2 are shown separately. 

The transmitted torque can be expressed as 

Mt = 63 000 H/n (Ib-in), 

where H is in horsepower and n is in rpm. 
In SI units, 

Mt = 9549 H/n (N-m), 

where the power H is in kW and n is in rpm. 

(II.6.28) 

(IL6.29) 
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For the gear force analysis the following assumptions will be made: 

all the gears mesh along their pitch circles 
friction losses are negligible 
all the tooth loads are transferred at the pitch point 
centripetal forces will not be considered. 

IL6.8 Strength of Gear Teeth 
Hall et al. present an analysis of the strength of gear teeth [5]. The flank of the driver tooth 
makes contact with the tip of the driven tooth at the beginning of action between a pair of 
gear teeth. The total load F is carried by one tooth, and is normal to the tooth profile (see 
Fig. II.6.12). The bending stress at the base of the tooth is produced by the tangential load 
component Ft, which is perpendicular to the centerline of the tooth. The friction and the 
radial component Fr are neglected. The parabola shown in Figure II.6.12 outlines a beam 

uniform strength 
parabola 

^ ̂
^1 

FIGURE 11.6.12 Load carried by the gear tooth. 
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of uniform strength. The weakest section of the gear tooth is at section A — A where the 
parabola is tangent to the tooth outline. 

The bending stress a is 

_Mc _ M(t/2) _ 6M _ 6Fth 

and 

Ft = oBif-ieh) = GB (t^/6hp)p, (II.6.30) 

where M = Fthis the bending moment, h is the distance between the section A — A and 
the point where the load is applied, and t is the tooth thickness. In Eq. (II.6.30) B is the face 
width and is limited to a maximum of 4 times the circular pitch, i.e., B = kp, where k <4. 

The form factor 

y = - — , (II.6.31) 
ohp 

is a dimensionless quantity tabulated in Table II.6.1. 
Substituting y in the Eq. (II.6.30) gives 

Ft = oBpy, (II.6.32) 

or 

„2i , .„2u^,iu2 Ft = ap^ky = a7T^kylP% (II.6.33) 

which is the Lewis equation. 
In the design problem the diameters are either known or unknown. 

• If the diameters are unknown the stress is 

^ ^ 2 M ^ 

kn'^yN ' 
(II.6.34) 

where Mt is the torque on the weaker gear, k = A (upper limit), and Â  is the number of 
teeth on the weaker gear. The minimum number of teeth, Â , is usually limited to 15. 
The stress a should be less than or equal to allowable stress. 
If the diameters are known then the allowable value for the ratio P^/y which controls 
the design is 

P^ly = akn^/Ft, (II.6.35) 

where a is the allowable stress, k = 4 (upper limit). Ft = IMtId is the transmitted 
force, and Mt is the torque on the weaker gear. 
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TABLE 11.6.1 Form factors y —for use in Lewis strength equation 

Number of 
Teeth 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
23 
25 
27 
30 
34 
38 
43 
50 
60 
75 
100 
150 
300 
Rack 

14 i ° Full-depth 
involute or composite 

0.067 
0.071 
0.075 
0.078 
0.081 
0.084 
0.086 
0.088 
0.090 
0.092 
0.094 
0.097 
0.099 
0.101 
0.104 
0.106 
0.108 
0.110 
0.113 
0.115 
0.117 
0.119 
0.122 
0.124 

20° Full-depth 
involute 

0.078 
0.083 
0.088 
0.092 
0.094 
0.096 
0.098 
0.100 
0.102 
0.104 
0.106 
0.108 
0.111 
0.114 
0.118 
0.122 
0.126 
0.130 
0.134 
0.138 
0.142 
0.146 
0.150 
0.154 

20° stub 
involute 

0.099 
0.103 
0.108 
0.111 
0.115 
0.117 
0.120 
0.123 
0.125 
0.127 
0.130 
0.133 
0.136 
0.139 
0.142 
0.145 
0.147 
0.151 
0.154 
0.158 
0.161 
0.165 
0.170 
0.175 

Source: A. S. Hall, A. R. Holowenko, and H. G Laughlin, Theory and Problems of Machine 
Design, Schaum's Outline Series, New York, McGraw-Hill, 1961. Reprinted with permission of 
McGraw-Hill. 

If the diameters are known, design for the largest number of teeth; if the diameters are 
unknown, design for the smallest pitch diameters possible. The most economical design is 
given by the largest diametral pitch. 

From Eq. (II.6.33) the force that can be transmitted to a gear tooth is a function of the 
product aoy. For two gears in contact the weaker gear will have the smaller aoy value. For 
gears made of the same material, the smaller gear will be the weaker and control design. 

Allowable Tooth Stresses 
The allowable stress for gear tooth design is 

Allowable cr =crol 
600 

(TO 

600+ y 

/ 1200 

1200+V 

78 

is + Vv 

for V < 2000 ft/min 

for 2000 < V < 4000 ft/min 

for V > 4000 ft/min, (IL6.36) 
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where ao is the endurance strength in psi, and V is the pitch Hne velocity in ft/min. The 
endurance strength is: 

ao = 8000 psi for cast iron, 
ao = 12 000 psi for bronze, and 
ao = [10 000,. . . , 50 000] psi for carbon steels. 

In general, ao ^ (1/3) ultimate strength of the material. 

Dynamic Tooth Loads 
The dynamic forces on the teeth are produced by velocity changes due to inaccuracies of 
the tooth profiles, and misalignments in mounting, spacing, tooth deflection, and so forth. 
The dynamic load Fd proposed by Buckingham is 

Fd = 
0.05ViBC-\-Ft) 

0.05 V + y/BCTTt 
+ Fu (11.6.37) 

where Fd is the dynamic load (lb). Ft = Mflr, and C is a constant that depends on the 
tooth material, form, and the accuracy of the tooth cutting process (tooth error, e). The 
constant C is tabulated in Table II.6.2. Figure 11.6.13(a) shows the relation of permissible 
errors in tooth profiles function of pitch line velocity, V, and Fig. 11.6.13(b) represents the 
connection between the errors e and diametral pitch, P^. The dynamic force Fd must be 
less than the allowable endurance load, FQ = aoBy p. 

Wear Tooth Loads 
The wear load F^ is 

F^ = dpBKQ, (II.6.38) 

TABLE II.6.2 Values of deformation Factor C—for dynamic load check 

Materials 

Pinion 

cast iron 
steel 
steel 
cast iron 
steel 
steel 
cast iron 
steel 
steel 

Gear 

cast iron 
cast iron 
steel 
cast iron 
cast iron 
steel 
cast iron 
cast iron 
steel 

Involute tooth form 

141/2° 

141/2° 

141/2° 

20° full depth 
20° full depth 
20° full depth 
20° stub 

20° stub 
20° stub 

0.0005 

400 
550 
800 
415 
570 
830 
430 
590 
860 

Tooth error inches 

0.001 

800 
1100 

1600 
830 

1140 

1660 
860 

1180 
1720 

0.002 

1600 
2200 

3200 
1660 
2280 

3320 
1720 
2360 
3440 

0.003 

2400 
3300 

4800 
2490 
3420 
4980 
2580 
3540 
5160 

Source: A. S. Hall, A. R. Holowenko, and H. G Laughlin, Theory and Problems of Machine 
Design, Schaum's Outline Series, New York, McGraw-Hill, 1961. Reprinted with permission of 
McGraw-Hill. 
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permissible error, e (in.) 

0.006 

0.005 

0.004 

0.003 

0.002 

0.001 

(a) 

(b) 

1000 2000 3000 4000 5000 6000 7000 8000 9000 

pitch line velocity, V (feet per min.) 

error, e (in.) 

0.0050 

0.0040 

0.0030 

0.0020 

0.0010 
0.0005 

11 10 9 8 7 6 5 4 3 2 1 

diametral pitch, P^ 

Source: A. S. Hall, A. R. Holowenko, and H. G. Laughhn, Theory and Problems of 
Machine Design, Schaum's Outline Series McGraw-Hill, 1961. 

FIGURE 11.6.13 (a) Errors in tooth profiles versus pitch line velocity and (b) errors in tooth profiles versus 
diametral pitch. Reprinted with permission of McGraw-Hill. 

• P ; , . st class commercial gears 

carefully cut gears 
i precision gears 

1 1 
L _ ,,i,,„,„ 

^^^ 

s=^ 
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where dp is the pitch diameter of the smaller gear (pinion), K is the stress factor for fatigue, 
Q = 2Ng/(Np + Ng), Ng is the number of teeth on gear, and Np is the number of teeth on 
pinion. 

The stress factor for fatigue has the following expression: 

K = 
al(sm(l))(l/Ep-{-l/Eg) 

1.4 
(II.6.39) 

where aes is the surface endurance limit of a gear pair (psi), Ep is the modulus of elasticity 
of the pinion material (psi). Eg is the modulus of elasticity of the gear material (psi), and 0 
is the pressure angle. Values for the modulus of elasticity are [7]: 

material 

steel 
cast iron 
aluminum bronze 
tin bronze 

E (psi) 

30 X 10^ 

19 X 10^ 
17.5 X 10^ 
16 X 10^ 

E (GPa) 

207 
131 
121 
110 

An estimated value for surface endurance is 

aes = (400)(BHN) - 10000 psi. (II.6.40) 

where BHN may be approximated by the average Brinell Hardness Number of the gear and 
pinion. The wear load F^ is an allowable load and must be greater than the dynamic load F j . 
Table II.6.3 presents several tentative values of ^ for various materials and tooth forms. 

TABLE 11.6.3 Values for surface endurance limit cjes and stress fatigue factor K 

Average Brinell Hardness Number Surface Endurance Stress Fatigue Factor K 
of steel pinion and steel gear limit aes \AV2° 20° 

150 

200 

250 

300 

400 

50,000 
70,000 
90,000 

110,000 
150,000 

30 
58 
96 

144 
268 

41 
79 

131 
196 
366 

Brinell Hardness Number 

Steel pinion Gear 

150 
200 
250 
150 
200 

CI. 
C.I. 
C.I. 

Phosphor Bronze 
Phosphor Bronze 

50,000 
70,000 
90,000 
50,000 
65,000 

44 
87 

144 
46 
73 

60 
119 
196 
62 

100 

C.I. Pinion 
C.I. Pinion 

C.I. Gear 
C.I. Gear 

80,000 
90,000 

152 
193 

208 
284 

Source: A. S. Hall, A. R. Holowenko, and H. G. Laughlin, Theory and Problems of Machine 
Design, Schaum's Outline Series, New York, McGraw-Hill, 1961. Reprinted with permission of 
McGraw-Hill. 
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11.6.9 Examples 

EXAMPLE 11.6,1: 

Two involute spur gears of module 5, with 19 and 28 teeth operate at a pressure angle 
of 20°. Determine whether there will be interference when standard full-depth teeth 
are used. Find the contact ratio. 

Solution A standard full-depth tooth has the addendum of a = m = 5 mm. The 
gears will mesh at their pitch circles, and the pitch circle radii of pinion and gear are 

rp = mNp/2 = 5 (19)/2 = 47.5 mm, 

and 

rg = mNg/2 = 5 (28)/2 = 70 mm. 

The theoretical center distance is 

c = (dp-\- dg)/2 = rp-\-rg= 47.5 + 70 = 117.5 mm. 

The base circle radii of pinion and gear are 

ri,p = Vp cos 0 = 47.5 cos 20° = 44.635 mm, 

and 

riyg = rg cos (f) = 10 cos 20° = 65.778 mm. 

The addendum circle radii of pinion and gear are 

rap = fp+a = m(Np + 2)/2 = 52.5 mm, 

and 

rag = rg -\- a = m{Ng + 2)/2 = 75 nam. 

The maximum possible addendum circle radii of pinion and gear, without 
interference, are 

ra{max)p = ^J^Ip + c^ sin^ 0 = 60.061 mm > rap = 52.5 mm. 

and 

ra(max)g = ^Jrlg + c^ sin^ 0 = 77.083 mm > rag = 75 mm. 

Continued 
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EXAMPLE 11.6.1: Cont'd 
Clearly, the use of standard teeth would not cause interference. 

The contact ratio is 

CR 
^ ,/'-lp-dp + ^'-lg-dg-^'^<i> ̂  ^ ^^^ 

7tm cos 0 

which should be a suitable value (CR > 1.2). 

EXAMPLE 11.6.2: 

A planetary gear train is shown in Figure 11.6.14(a). The system consists of an input 
sun gear 1 and a planet gear 2 in mesh with 1 at B. Gear 2 is fixed on the shaft of 
gear 2. The system of gears 2 and 2 is carried by the arm 3. The gear 2 meshes with 
the fixed frame 0 at E. 

There are three moving gears (1,2, and 3) connected by: 

• Three full joints (cs = 3): one at A, between the frame 0 and the sun gear 1; one 
at C, between the arm 3 and the planet gear system 2; and another at D, between 
the frame 0 and the arm 3. 

• Two half joints (c4 = 2): one at B, between the sun gear 1 and the planet gear 2, 
and another at E, between the planet gear 2 and the frame 0. The system has one 
degree of freedom. The sun gear has a radius of the pitch circle equal to ri, the 
planet gear 2 has a radius of the pitch circle equal to r2, the arm 3 has a length 
equal to r^, and the planet gear 2 has a radius of the pitch circle equal to r4. 

The sun gear rotates with the input angular velocity coi. Find the speed ratio /13 
between the sun gear 1 and the arm 3. 

Solution The system shown in Figure 11.6.14(a) has four elements (0, 1, 2, 3) and 
five joints. The number of independent loops is given by 

n^ = / - p + 1 = 5 - 4 + 1 = 2 . 

This gear system has two independent contours. The diagram representing the 
kinematic chain and the independent contours is shown in Figure 11.6.14(b). 

The position vectors TAB, TAC? ^AD, and r^^ are defined as follows: 

rAB=XBi-{-yB}=XBi-i-ri j , 

rAD=XDi-{-yD]=XDi-^ in -\-r2- rs)J, 

rAE=XEi-\-yE3=XEi-^ (n + 2̂ - ^4)J. 
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EXAMPLE 11.6.2: Cont'd 

y 
1 

'10-

C ^23 

a; 21 

k 

^2' 

^02 = 
" • ^ ^ r 

^ u; 30 

(a) 

(b) 

FIGURE 11.6.14 (a) Planetary gear train for Example 11.6.2; (b) contour diagram. 

FIRST CONTOUR. The first closed contour contains the elements 0, 1, 2, and 0 
(following the clockwise path). For the velocity analysis, the following vectorial 
equations can be written: 

COlO + (021 + W02 = 0, 

rAB X (021 + rAE X (O02 = 0, (IL6.41) 

Continued 
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EXAMPLE 11.6,2: Cont'd 

where the input angular velocity is 

and the unknown angular velocities are 

0)21 = 0)21 h 

^02 = < 0̂2 1. 

Equation (II.6.41) becomes 

(^1 1 + 0)21 1 + 0)02 1 = 0, 

1 J k 

XE JE 0 
C002 0 0 

I 

XB 

ft>21 

J 
ys 
0 

k 

0 

0 
+ = 0. (11.6.42) 

Equation (II.6.42) projected onto a "fixed" reference frame xOyz is 

< l̂ + 0)2\ + ^02 = 0, 

yB 0)2\ + yE 0)02 = 0. (II.6.43) 

Equation (II.6.43) represents a system of two equations with two unknowns, 
0̂ 21 and 0)02' Solving the algebraic equations, the following value is obtained for 
the absolute angular velocity of planet gear 2: 

0)20 = — 0)02 = 
r\o)\ 

^2 - ^4 ' 
(II.6.44) 

SECOND CONTOUR. The second closed contour contains the elements 0, 3, 2, and 0 
(counterclockwise path). For the velocity analysis, the following vectorial equations 
can be written: 

CO30 + (023 + W02 = 0, 

TAD X (O30 + VAC X (023 + ^AE X (Oo2 = 0, 

The unknown angular velocities are 

(O3O = 0)2\ 1, 

(023 = <^23 1-

(II.6.45) 
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EXAMPLE 11.6.2: Cont'd 

Solving Eq. (II.6.45), the following value is obtained for the absolute angular 
velocity of the arm 3: 

rir4m 

rz (~r2 + r4) 

The speed ratio is 

, _coio _ coi _r3 (-r2 + r4) 

0)30 mo n r4 

(II.6.46) 

(II.6.47) 

EXAMPLE n.6.3: 

Figure II.6.15 shows a planetary gear train. The schematic representation of the 
planetary gear train is depicted in Figure IL6.16(a). The system consists of an input 
sun gear 1 and a planet gear 2 in mesh with 1 at i5. Gear 2 is carried by the arm S 
fixed on the shaft of gear 3, as shown. Gear 3 meshes with the output gear 4 at F. 
The fixed ring gear 4 meshes with the planet gear 2 at D. 

FIGURE 11.6.15 Drawing for the planetary gear train for Example 11.63. 
Continued 
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FIGURE 11.6.1 6 (a) Schematic representation of the planetary gear train for Example 11.6.3; (b) contour diagram. 
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EXAMPLE IL6.3: Cont'd 

There are four moving gears (1, 2, 3, and 4) connected by: 

• Four full joints (cs = 4): one at A, between the frame 0 and the sun gear 1; one at 
C, between the arm S and the planet gear 2; one at E, between the frame 0 and 
the gear 3, and another at G, between the frame 0 and the gear 3. 

• Three half joints (c4 = 3): one at B, between the sun gear 1 and the planet gear 2; 
one at D, between the planet gear 2 and the ring gear; and another at F, between 
the gear 3 and the output gear 4. The module of the gears is m = 5 mm. The 
system has one degree of freedom. The sun gear has Â i = 19 external gear teeth, 
the planet gear has N2 = 28 external gear teeth, and the fixed ring gear has 
Â5 = 75 internal gear teeth. Gear 3 has Â3 = 18 external gear teeth, and the 
output gear has Â4 = 36 external gear teeth. The sun gear rotates with an input 
angular speed ni = 2970 rpm (coi = a>io = 7tni/30 = 311.018 rad/s). Find the 
absolute output angular velocity of gear 4, the velocities of the pitch points B and 
F, and the velocity of joint C. 

Solution The velocity analysis is carried out using the contour equation method. 
The system shown in Figure 11.6.16(a) has five elements (0, 1, 2, 3, 4) and seven 
joints. The number of independent loops is given by 

nc = / - / 7 + l = 7 - 5 + l = 3. 

This gear system has three independent contours. The diagram representing the kine-
matic chain and the independent contours is shown in Figure 11.6.16(b). 

The position vectors TAB, ^AC, ^AD, ^AF, and TAG are defined as follows: 

mNi 
rAB=XBl+yBj=XBl-\-n}=XBl-\- —— J, 

m(Ni + N2) 
rAC =xci-\-yc} = x c i + (n +r2) j = x c H j . 

TAD = Ẑ) 1 + JZ) J = XD i(n + 2r2) J =XDI-\ J, 

mNs 
rAF =XFi-\-yF} =x /7 i + r3j =XFi-\- —^h 

m(N3 + Â 4) 
rAG=XGl-\-yG}=XGl-\- (rs + ^4)J = XG 1 + r J. 

FIRST CONTOUR. The first closed contour contains the elements 0, 1, 2, and 0 
(following the clockwise path). For the velocity analysis, the following vectorial 
equations can be written: 

^ (0/,/_i = 0 => (Oio + (021 + W02 = 0, 

(0 

^TAi X (0/,/_i = 0 => TABX C021 + TAD X (O02 = 0, (II.6.48) 

(0 Continued 
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EXAMPLE 11.6.3: Cont'd 
where the input angular velocity is 

and the unknown angular velocities are 

(021 = <W21 1, W02 = 0)02 1. 

The sign of the relative angular velocities is selected to be positive, and then the 
numerical results give the real orientation of the vectors. 
Equation (II.6.48) becomes 

CDi 1 + 0)21 1 + <^02 1 = 0, 

1 J k 

XD yn o | = 0 . 
CO02 0 0 

1 

XB 

0)2\ 

J 
yB 

0 

k 

0 

0 
+ (IL6.49) 

Equation (II.6.49) projected on a "fixed" reference frame xOyz is 

o)\ + o)2\ + ^02 = 0, 

yB o)i\ + yD < 0̂2 = 0. (II.6.50) 

Equation (II.6.50) represents a system of two equations with two unknowns, CD2\ and 
0)02. Solving the algebraic equations, the following value is obtained for the absolute 
angular velocity of the planet gear 2: 

CD20 = — <^02 = 
' IKI2 

19(311.018) 

2(28) 
= -105.524 rad/s. (II.6.51) 

SECOND CONTOUR. The second closed contour contains the elements 0, 3, 2, and 
0 (following the counterclockwise path). For the velocity analysis, the following 
vectorial equations can be written: 

W30 + (023 + <«>02 = 0 , 

^AE X (O30 + r ^ c X (023 + TAD X (002 = 0. (11.6.52) 

The unknown angular velocities are 

<«>30 == 0)2\ 1, (023 = <^23 *• 

Solving Eq. (II.6.52) the following value is obtained for the absolute angular velocity 
of gear 3 and arm S\ 

<^30 = 
Nicoi 19(311.018) 

2(Ni-\-N2) ~ 2(19 + 28) 
= 62.865 rad/s. 
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EXAMPLE 11.6.3: Cont'd 

The absolute angular velocity of the output gear 4 is 

(030N3 _ NiN3(joi _ 19(18)(311.Q18) 

^^^ ~ A ^ ~ ~ 2(A î+A^2)A^4 ~ ~ 2 (19+ 28) (36) 

= -31.432rad/s. 

LINEAR VELOCITIES OF PITCH POINTS. The velocity of the pitch point B is 

VB = mon = 311.018 (0.005) (19)/2 = 14.773 m/s, 

and the velocity of the pitch point F is 

VF = C04or4 = 31.432 (0.005) (36)/2 = 2.828 m/s. 

The velocity of the joint C is 

vc = C03Q (n + r2) = 62.865 (0.005) (19 + 28)/2 = 7.386 m/s. 

GEAR GEOMETRICAL DIMENSIONS. For standard external gear teeth the addendum 
is a = m. 
Gearl 

pitch circle diameter d\ = mN\ = 95.0 mm; 
addendum circle diameter dai = m(N\ + 2) = 105.0 mm; 
dedendum circle diameter dd\ = m{N\ — 2.5) = 82.5 mm. 

Gear 2 

pitch circle diameter d^ = mNi — 140.0 mm; 
addendum circle diameter dai = m(N2 + 2) = 150.0 mm; 
dedendum circle diameter dd2 = m(N2 — 2.5) = 127.5 mm. 

Gear 3 

pitch circle diameter J3 = mN^ = 90.0 mm; 
addendum circle diameter da3 = m(N3 + 2) = 100.0 mm; 
dedendum circle diameter dd3 = m(N3 — 2.5) = 77.5 mm. 

Gear 4 

pitch circle diameter J4 = mN4 = 180.0 mm; 
addendum circle diameter da4 = m(N4 + 2) = 190.0 mm; 
dedendum circle diameter dd4 = m{N4 — 2.5) = 167.5 mm. 

Gear 5 (internal gear) 

pitch circle diameter J5 = mNs = 375.0 mm; 
addendum circle diameter das = m{Ns — 2) = 365.0 mm; 
dedendum circle diameter dds = m{Ns +2.5) = 387.5 mm. 

Continued 
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NUMBER OF PLANET GEARS. The number of necessary planet gears, k, is given by 

the assembly condition 

(Ni + A 5̂)/̂  = INTEGER, 

and for the planetary gear train k = 2 planet gears. The vicinity condition between 
the sun gear and the planet gear, 

m (Ni + Â 2) sin(7T/k) > dai 

is thus verified. 

EXAMPLE 11.6.4: 

Figure II.6.17 shows a two-stage gear reducer with identical pairs of gears. An 
electric motor with the power H = 1 kW and n\ = 900 rpm is coupled to the shaft 
a. On this shaft the input driver gear 1 is rigidly connected with the number of teeth, 
Ni = Np = 11. The speed reducer uses a countershaft b with two rigidly connected 
gears, 2 and 2 , having N2 = Ng = 51 teeth and N^ = Np = \1 teeth. The output 
gear 3 has N3 = Ng = 51 teeth and is rigidly fixed to the shaft c coupled to 

FIGURE 11.6.17 Two-stage gear reducer for Example 11.6.4. 
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the driven machine. The input shaft a and output shaft c are collinear. The countershaft 
b turns freely in bearings A and B. The gears mesh along the pitch diameter and the 
shafts are parallel. The diametral pitch for each stage is P^ = 5, and the pressure 
angle is 0 = 20°. The distance between the bearings is ^ = 100 mm, and the distance 
/ = 25 mm (Fig. II.6.17). The gear reducer is a part of an industrial machine intended 
for continuous one-shift (8 h pd). Select identical extra-light series (LOO) ball bearings 
for A and B. 

Solution 

GEOMETRY. The pitch diameters of pinions 1 and 2 are Ji = ^2' = dp = Np/Pd = 
17/5 = 3.4 in. The pitch diameters of gears 2 and 3 are J2 = <̂3 = <̂g = ^g^Pd = 
51/5 = 10.2 in. The circular pitch is/? = n/Pd = 3.14/5 = 0.63 in. 

ANGULAR SPEEDS. The following relation exists for the first stage: 

m N2 Ni 17 
- = Tr =^ ^2 = ^ - ^ = 9 0 0 — = 300rpm, 
n2 Ni N2 51 

and for the second stage: 

n2 N3 Ny 17 
— = -rr =^ «3=«2 7 7 - = 300— = 100 rpm. 
m Ny N3 51 

The angular speed of the coutershaft bisnt = n2 = 300 rpm, and the angular speed 
of the driven shaft c is n^ = ^3 = 100 rpm. 

TORQUE CARRIED BY EACH OF THE SHAFTS. The relation between the power Ha of 
the motor and the torque Ma in shaft a is 

_ Mgrig 

^ ^ " 9549 ' 

and the torque Ma in shaft a is 

9549 Ha 9549 (2 k W ) 
Ma = = ^̂  = 21.22 N • m. 

Ha 900 rpm 

The torque in shaft b is 

9 5 4 9 ^ ^ N2 51 
Mb = = Ma— = 2122 — = 63.66 N • m, 

Hb Ni 17 

and the torque in shaft c is 

M, = ? ^ 1 ^ ^ Mh— = 63.66 - = 190.98 N • m . 
^ 2 ' 17 

Continued 
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BEARING REACTIONS. All the gear radial and tangential force is transferred at the 
pitch point P. The tangential force on the motor pinion is 

Ft = 
Ma 21.22 

rp 0.0431 
= 492.34 N, 

where rp = dp/2 = 1.7 in = 0.0431 m. The radial force on the motor pinion is 

Fr = Ft tan 0 = 492.34 tan 20° = 179.2 N. 

The force on the motor pinion 1 at P (Fig. II.6.17) is 

F21 = Fr2iJ + Ft2ik = 179.2J - 492.34k N. 

The force on the countershaft gear 2 at P is 

F12 = -F21 = Pri2j + Pn2k = -179.2J + 492.34k N. 

The forces on the countershaft pinion 2 at P are three times as large, i.e., 

Mb 63.66 
F/ = — = = 1477 N, 

' rp 0.0431 

P /̂ = P̂ / tan0 = 1477 tan 20° = 537.6 N, 

and 

^32' = ^r32'J + ^f32'k = -537.6j - 1477k N. 

The unknown forces applied to bearings A and B can be written as 

¥A=FAy}+FAzK 

¥B = FBy3-\-FBzk. 

The sketch of the countershaft as a free body in equilibrium is shown in Figure II.6.18. 
To determine these forces two vectorial equations are used. Sum of moments of all 
forces that act on the countershaft with respect to A are zero: 

Y^MA = TAP X Fi2 + TAR X F32/ + TAB X F ^ 

+ 

« J 

/ r2 

0 Frl2 

» J 
s 0 

0 FBy 

k 

0 

Fni 

k 

0 

FBZ\ 

+ 
I 

s + l 
0 

= 0, 

J 

'-2' 
F / 

k 

0 
P / 
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FIGURE 11.6.18 Free-body diagrams for Example 11.6.4. 

or 

^ MA • J = IFtu - (̂  + l)F,^2' - '^Bz = 0, 

^ MA • k = -IFrii + (5 + /)F^32' + SFBJ = 0. 

From the above equations Fgy = 627.2 N, and FBZ = 1969.33 N. The radial force 
at 5 is 

FB = ^FBy^^FBz^ = 2066.S N. 

Continued 
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Sum of all forces that act on the countershaft are zero: 

^ F = F I 2 + F A + F 5 + F 3 2 ^ = 0 , 

or 

-Frl2 + FAy + FBy - F̂ 32̂  = 0, 

Fti2 + FAZ + FBZ - F,32̂  = 0. (II.6.53) 

From Eq. (11.6.53) FAy = 89.6 N, and FAZ = -984.67 N. The radial force at A is 

FA = ^FAy^+FAz^ = 988.73 N. 

BALL BEARING SELECTION. Since the radial force at B is greater than the radial force 
at A, FB > FA, the bearing selection will be based on bearing B. The equivalent 
radial force for radial ball bearings is Fe = FB = 2066.8 N. The ball bearings operate 
8 hours per day, 5 days per week. 

From Table II.3.3 choose Ka = 1.1 for gearing. From Table II.3.4 choose 
(conservatively) 30 000-hour life. 

The life in revolutions is 

L = 300 rpm x 30 000 h x 60 min/h = 540 x 10^ rev. 

For standard 90% reUability (Kr = 1, Fig. 11.3.9), and for LR = 90 x 10^ rev (for 
use with Table II.3.2), the rated capacity is 

^req 

TO.3 
I ^m) X i i r 

= (1.1) (2066.8) 
540 X 10^ 1 

T\ = 3891.67 N 
(1)90 X 10^ J 

3.9 kN. 

From Table II.3.2 with 3.9 kN for LOO series = ^ C = 4.2 kN and 6? = 35 mm 
bore. 

From Table II.3.1 with 35 nmi bore and LOO series the bearing number is L07. 
The shaft size requirement may necessitate use of a larger bore bearing. 

EXAMPLE 11.6.5: 
Figure 11.6.19(a) shows a gear set. Gear 1 is the driving or input gear; it rotates with 
the angular speed ttJio, (coio > 0), and transmits an unknown motor torque M^^^ The 
output (driven) gear 2 is attached to a shaft that drives a machine. The external 
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(a) (b) 

FIGURE 11.6.19 (a) Two gears in contact for Example 11.6.5; (b) free-body diagrams of the 
gears. 

torque exerted by the machine on the gear 2 is opposite to the absolute angular velocity 
of the output gear, (O20, and is given by 

M ;̂,̂  = -\Mext\ 
<«>20 

IW20I 

The radii of the pitch circles of the two gears in contact are r\ and r2, and the 
pressure angle is 0. Find the motor torque (equilibrium moment) Mmot and the bearing 
reactions in terms of ri, r2, coio, and \Mext I • Use the following numerical appHcation: 

ri = 1 m, r2 = 0.5 m, 0 = 20°, coio = - rad/s, and \Mext\ = 400 N-m. 

Solution The angular speed ratio between the gears is 

mo _ _ ^ 
C020 r2' 

Thus, the angular speed 0̂ 20 of the output gear is 

r2co\0 1(TC/3) 2TC 
0^20 = -- r. ̂  = — —^ rad/s. 

0.5 3 

The angular velocity vector of the output gear is 

CO20 = ^20 ̂  — —T" 1 rad/s. 

The free-body diagrams of the gears are shown in Figure 11.6.19(b). The external 
torque exerted by the machine on the gear 2 is 

M^w = M ext — ^^^ext J _ | M , , , | : ^ = - 4 0 0 : : ? ^ = 400 1 N . m. 
|W20l 27r/3 

Continued 
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Gear 2 
The moment equation for gear 2 with respect to its center C gives 

J2W = ̂ CBx¥n-\-Me,t = 0^ (II.6.54) 

where F12 = F^nJ + F^i2k is the reaction force of gear 1 on gear 2, and TCB = —^2j-
Equation (II.6.54) becomes 

1 J k 
0 -r2 0 

0 Fri2 Ftn 

From Eq. (II.6.55) the tangential force is 

+ M,;,,1 = 0. (11.6.55) 

Mext 400 
Ftx2 = - ^ = — = 800 N. 

2̂ 0.5 

The radial reaction force Fru is 

Frii = /̂ /12 tan0 = — ^ tan0 = 800 tan 20° = 291.176 N. 

The force equation for gear 2 gives 

^ F ( ^ > = F I 2 + F O 2 = 0 , 

and the reaction force of the ground on gear 2 is 

F02 = -F12 = -291.176J - 800k N. 

Gear 1 (driver) 
The moment equation for gear 1 with respect its center A gives 

^ M ^ ^ ^ = rA5xF2i+M^^, = 0, 

where F21 = —F12, and TAB = ^ij- Equation (II.6.56) becomes 

(II.6.56) 

1 J k 
0 ri 0 

0 -Frl2 -Ft\2 

+ Mmotl = 0, 

and the motor torque Mmot is 

Mmot = Ftn n = -Mext = —400 = 800 N • m. 
r2 0.5 
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The force equation for gear 1 is 

EF*'* = 

and the reaction force of the ground on 

Foi = -F21 = Fi: 

F21 + Foi = 0, 

gear 1 is 

>=291.176j + 800kN. 

EXAMPLE 11.6.6: 
A planetary gear train is shown in Figure 11.6.20(a). The planet gear 2 rotates around 
the sun gear 1. The arm 3 is connected to the planet gear at the point C (pin joint) 
and to the ground 0 at the point D (pin joint). The sun gear is connected to the 

^2 

0 ^ n 

C 

^3 

k^\D I v^y/M 

(a) 

(b) 

FIGURE M.6.20 (a) Gear train for Example 11.6.6; (b) free-body diagrams of the gears. 
Continued 
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ground at the point A (pin joint). A motor drives the sun gear with the angular speed 
coio = 2 7t/3 rad/s («i = 20 rpm). A second motor is connected to the arm and has 
the angular speed co^o = —7t/3 rad/s (n^ = —10 rpm). The radii of the pitch circles 
of the sun gear 1 and planet gear 2 are ri = 1 m and r2 = 0.5 m, respectively. 

An external moment Mext = —\Mext\ 
<«>20 

1^201 
acts on the planet gear 2, where 

\Mext\ = 400 N-m. The pressure angle of the gears is 0 = 20°. Find the equilibrium 
moments (motor moments) Mi^ot and M^mot that act on gear 1 and arm 3, and the 
reaction forces. 

Solution First, the angular velocity (O20 of the planet gear will be calculated. 
The gear train has one contour: 0—A—I—B — 2 — C — 3—D — 0. 
For this contour the relations between the relative angular velocities of the links are 

WlO + W21 + (032 + W03 = 0, 

^AB X (021 + ^AC X (032 = 0, (II.6.57) 

where (Oio = coio i, (O03 = — (O30 = (030 h ^AB, and VAC are known. 
Equation (II.6.57) can be solved simultaneously with respect to the two unknowns, 
(021 and (O32. The solutions are 

0)21 = —37ti rad/s and (O32 = 2 TT 1 rad/s. 

The angular speed (O20 of the planet gear 2 is 

In 
0)20 = (Oio + (021 = ——I rad/s (^2 = —70 rpm). 

Figure 11.6.20(b) shows the free-body diagrams of gear 2, gear 1, and arm 3. The 
external torque Mext on the driven gear 2 is 

M,;,, =M,,,i= -|M,;,,| - ^ = -400 ~J ' ' i^ '=400i N-m, 
|(02ol 77r/3 

and the force analysis starts with the driven planet gear. 

Gear 2 
The sum of the moments with respect to the center C for the planet gear 2 gives 

J2W = ^CB>^ ^12 +Mext = 0, or 
1 J k 

0 - r2 0 

0 Frl2 Fti2 

-\-Mexti = 0. (11.6.58) 

where F12 = ^^12 J + Ftn k and rcB = -^2 J- From Eq. (II.6.58), it results: 

Ftl2 
Me: 

r2 

400 

05" 
= 800N. 
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The radial reaction force Fru is 

M 
Fr\2 = Fn2tan0 = — ^ tan0 = 800 tan 20° = 291.176 N. 

r2 

The sum of the forces for the planet gear 2 is 

^ F ( 2 > = F i 2 + F 3 2 = 0, 

and the reaction force of arm 3 on gear 2 is 

F32 = -F12 = /̂ 32 Ĵ + F32zk = -291.176J - 800k N. 

Gearl 
The sum of moments for gear 1 with respect to its center A is 

f(i) ^ M ^ ^ = TAB X F21 + Mi^^, = 0, 

where F21 = —F12 and TAB = '^ij- The motor torque (equilibrium moment) 
Mimot is 

Mimot = -Ft2\ n = Ft\2 r\ = — ^ n = 800 N • m. 
^2 

The sum of the forces for the gear 1 is 

^ F ( i ) = : F 2 i + F o i = 0 , 

and the reaction force of the ground on gear 1 is 

Foi = -F21 = 291.176J + 800k N. 

Arm 3 
The sum of the moments for arm 3 with respect to the point D is 

J2 ^D^ = ^DC X F23 + M3mot = 0, 

where F23 = —F32 and roc = (̂ 1 + ^2)j- The motor torque (equilibrium moment) 
M3 can be computed as 

Mpxt 

M3mot = -F23z (n + r2) = -Fn2 (n + r2) = — in + r2) = -1200 N • m. 
^2 

Continued 
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For arm 3 the sum of forces equation 

J^F^^-. 

is 

= F23 + Fo3 

and the reaction force of the ground on arm 3 is 

Fo3 = —F23 = -291.176J-

= 0, 

-800k N. 

EXAMPLE 11.6.7: 

A planetary gear train with one degree of freedom is shown in Figure 11.6.21(a). The 
sun gear 1 is connected to the ground with a pin joint at point A. The arm 3 is connected 
with pin joints to the planet gear 2 at point C and to the ground at point D. The planet 
gear 2 is also in contact to gear 4 (an internal gear) which is fixed to the ground 
(4 = 0). The angular speed of the motor that drives the sun gear is COIQ = 2 7t/3 rad/s 
{n\ = 2 0 rpm). The radii of the pitch circles of the sun gear 1 and planet gear 2 are 

(O30 

ri = 1 m and r2 = 0.5 m. An external moment Mext = — |M ĵĉ | acts on the 
ICO30I 

driven arm 3, where \Mext\ = 400 N-m. The pressure angle of the gears is 0 = 20°. 
Find the equilibrium moment (motor moment) Mmot that acts on the sun gear and the 
reaction forces. 
Solution 

Contour 0-A - I - B-2 - E-0 

For the relative angular velocities of the gears the following relations can be 
written: 

COlO + W21 + (002 = 0, 

rAB X (021 + TAE X (002 = 0, 

where (Oio = 2:7r/31 rad/s. The solutions of the system are (O21 and (O02: 

(021 = —4 7t/31 rad/s, (O02 = 2 7t/31 rad/s. 

The angular speed (O20 of the planet gear 2 can be computed as 

(O20 = —(O02 = —27r/3irad/s. 

Contour 0 - E-2-C-3 - D-0 
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4=0 

\—\D 

(a) 

M,. 

(b) 

FIGURE 11.6.21 (a) Planetary gear train for Example 11.6.7; (b) free-body diagrams. 

For this contour the relative angular velocity equations are 

W20 + CO32 + (O03 = 0, 

rAE X CO20 + rAc x (O32 = 0. 

The relative angular speed (O32 is 

26.6 7r 
0)32 = 1 rad/s. 

30 
Continued 
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The angular speed (O30 of the arm 3 is 

6.6 TT 
(O30 = - (003 = CO20 + W32 = - — 1 rad/s. 

Figure 11.6.21(b) shows the free-body diagrams of arm 3, gear 2, and gear 1. The 
external torque Mext on the driven arm 3 is 

Mext=Mextl=-\Mext\ 
<«>30 

|W30l 
= -4001 N • m, 

and the force analysis starts with the driven planet gear. 

Arm 3 (driven) 
The moment equation with respect to point D for arm 3 is 

^ M g ^ = rz)cxF23+M,^, = 0, 

where F23 = ^23yJ + F23^ k. Equation (II.6.59) gives 

1 J k 

xc -XD ri-\-r2 0 

0 F32y F32Z 

-^Mextl = 0. 

From Eq. (II.6.60), it results: 

F23z = -
Me: -400 

ri + r2 1 + 0.5 
= 266.666 N. 

Gear 2 
The sum of the moments for gear 2 with respect to its center C is 

f(2) J^Mf = YCE X F02 + VCB X F12 = 0, 

or 

I 

0 
0 

J 
ri 

Fr02 

k 
0 

Fm 
+ 

1 J k 
0 -r2 0 

0 Fri2 Ftn 

= 0, 

or 

r2 Fm - r2 Ft\2 = 0 ==> F̂ o2 = Ffu^ 

The radial component Fr tends to push the gears apart: 

Fr\2 = Ft\2 tan0 and F ô2 = —Fni tan0. 

(II.6.59) 

(II.6.60) 
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For the planet gear 2 the force equation is 

Y^ F̂ 2) ^ pj2 ^ p^^ ^ p^^ ^ Q̂  (II.6.61) 

where F12 = F^i2 J + /̂ ri2 k, F02 = -FrU} + Fn2 K and F32 = -F23. 
Equation (II.6.61) gives 

Frll - Frl2 - F23y = 0 =^ F23y = 0, 

F237 266.666 
Fn2 + Fn2-F23z = 0 =^ F ,I2 = ^ = — ^ — = 133.333 N. 

The radial reaction forces Fru and F ô2 are 

Fr-n = -Fr02 = /̂ ri2tan</> = 133.333 tan 20° = 48.529 N. 

For arm 3 the force equation is 

^ F ^ ^ > = F 2 3 + F o 3 = 0 , 

and the reaction force F03 is 

Fo3 = -F23 = -266.666 k N. 

Gear 1 (driver) 

For gear 1 the sum of the moments with respect to its center A is 

J2 ^T = ^AB X F21 + Mmot = 0, 

where F21 = —F12. The motor torque Mmot is 

Mmot = -Ft2\ r\ = Ft\2 n = 133.333 N • m. 

The sum of the forces for the gear 1 is 

^ F ( i > = F 2 i + F o i = 0 , 

and the reaction force of the ground on gear 1 is 

Foi = -F21 = F12 = 48.529J + 133.333 k N. 

The Mathematical^ program for this example is given in Program II.6.1. 
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EXAMPLE 11.6.8: 

A driver pinion made of steel with the endurance strength ao = 15 000 psi rotates at 
rip = 1200 rpm. The pinion is surface hardened to BHN 250. The gear is made of cast 
iron with the endurance strength CTQ = 8000 psi and rotates at rig = 300 rpm. The 
teeth have standard 20° stub involute profiles. The maximum power to be transmitted 
is 33 horse power (hp). Determine the proper diametral pitch, numbers of teeth, 
and face width for the gears from the standpoint of strength, dynamic load, and 
wear. 

Solution The diameters of the gears are unknown. In order to determine the small-
est diameter gears that can be used, the minimum number of teeth for the pinion will 
be selected, Np = 16. Then the number of teeth for the gear is 

rip 1200 

where / = —rip/rig = 4 is the speed ratio. Next it will be determined which is weaker, 
the gear or the pinion. The load-carrying capacity of the tooth is a function of the 
(Toy product. 

From Table II.6.1 for a 20° stub involute gear with 16 teeth, the form factor is 
Yp = 0.115. For the pinion, the load-carrying capacity is 

Fp = aopYp = 15000(0.115) = 1725. 

From Table II.6.1 for a 20° stub involute gear with 64 teeth, the calculated form 
factor is y^ = 0.155. For the gear, the load-carrying capacity is 

Fg = aogYg = 8000(0.155) = 1240.53. 

Since Fg < Fp the gear is weaker and the gear will be analyzed. 
The moment transmitted by the gear is 

63 000 7/ 63 000(33) ^ ^^ „ . 
Mt = = —^ = 6930 lb • in. 

rig 300 

The diameters are unknown and the induced stress is 

2MtPl 2(6930)P^ , 
a = — ~ — ^ = —^ —^— = 35.375 P i (II.6.62) 

kn^YgNg 4;r2(0.155)(64) ^ ^ 

where a maximum value of ^ = 4 was considered. 
To determine an approximate P j , assume the allowable stress 

ao 8000 _ _ . 
a ^ — = = 4000 psi. 

2 2 
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Equation (II.6.62) yields 

4000 = 35.375 P] ==^ P^ ^ 4.835. 

Try a diametral pitch Pd = 5 teeth per inch. Then the pitch diameter is 

Ns 64 
da = ^ = — = 12.8 in. 
' Pd 5 

The pitch line velocity is 

V = dgTzngin = 12 .8 ;T(300) /12 = 1005.31 ft/min. 

The allowable stress for V < 2000 ft/min is given by Eq. (II.6.36): 

/ 600 \ 
^ = 8000 - — — - - — - = 2990.08 psi. 

V 600+1005.31/ ^ 

Using Eq. (II.6.62) the induced stress is 

2MtPl 2(6930)(5^) 

kn^YgNg 47r2(0.155)(64) 
= 4421.96 psi. 

The gear is weak because the induced stress is larger than the allowable stress. 
Try a stronger tooth and select P^ = 4 teeth per inch. The pitch diameter is 

^9 64 
4 = -^ = — = 16 in. 

' Pd 4 

The pitch line velocity is 

y = J^ jrn^/12 = 16 TT (300)/12 = 1256.64 ft/min. 

Because the pitch line velocity is less than 2000 ft/min, the allowable stress is 

/ 600 \ 
(J = 8000 — - — = 2585.32 psi. 

V600+1256.64/ ^ 

Using Eq. (II.6.62) the induced stress is 

2(6930)(43) 
= 2264.04 psi. 

47r2(0.155)(64) 

The gear is strong because the induced stress is smaller than the allowable stress. 

Continued 
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The parameter k can be reduced from the maximum value of A: = 4. Equa-
tion (11.6.62) with the allowable stress, a = 2585.32 psi, gives 

2585.32 = 
2(6930)(4^) 

^7r2(0.155)(64) 
k = 3.502. 

The face width is 

B = kp = k{7TlPd) = 3.502 (7r/4) = 2.751 in., 

where the circular pitch is 

p = Tt/Pd = n/4 = 0.785 in. 

Then 

Pd=4,B = 2- in., rg = dgll = 16/2 = 8 in. 

and 

rp = -rg/i = 8/4 = 2 in. 

The center distance is 

c = rp + r̂  = 2 4- 8 = 10 in. 

The addendum of the gears is 

a = O.S/Pd = 0.8/4 = 0.2 in., 

while the minimum dedendum for 20° full-depth involute gears is 

b = llPd = 1/4 = 0.25 in. 

The radii of the base circle for the pinion and the gear are 

ri,p = rp COS0 = 2 cos20'' = 1.879 in. 

and 

Vbg = rg COS0 = 8 cos20° = 7.517 in.. 

respectively. 
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The maximum possible addendum circle radius of pinion or gear without 
interference is 

raimax) = ^ ^l + C^ sin^ 0 . 

Hence, for the pinion and for the gear 

rapimax) = Vl.SVQ^ + 10^ sin^ 20° = 3.902 in., 

ragimax) = ^/1-511^ + 10^ sin^ 20° = 8.259 in. 

The addendum radii of the meshing pinion and gear are 

r̂ ^ = r̂  + a = 2 + 0.2 = 2.2 in. 

and 

rag = rg + a = ^-\-0.2 = 8.2 in. 

Since ra{max) > ^a^ there is no interference. 
The contact ratio is calculated from the equation: 

CR = 
yl^lp-^lp'rylrlg-rl^-c^inct) 

Pb 

where the base pitch is pt, = n d^/N = p cos0 = 0.785 cos 20° = 0.738 in. The 
contact ratio is CR = 1.353, which is a suitable value (> 1.2). 
Next, the tentative design will be checked from the standpoint of dynamic load and 
wear effects. 
The allowable endurance load is 

Fo = croBygp = 8000(2.75)(0.155)(7r/4) = 2679.36 lb. 

Equation (II.6.38) gives the allowable wear load 

Fw = dpBKQ = 4(2.75)(170.11)(1.6) = 2993.94 lb, 

where 

2Ng 264 
Q = ^— = = 1.6, 
^ Np+Ng 16 + 64 

Continued 
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EXAMPLE 11.6.8: Cont'd 

the surface endurance limit of a gear pair is 

(jes = (400)(BHN) - 10 000 = (400)(250) - 10 000 = 9000 psi, 

and the stress factor for fatigue is 

, 90002(sin 20°) ( ^—^ + ^—^ I 
) ^ ^V30x 106 19x lOV ^ ^ 4 ( s i n 0 ) ( l / £ ^ + l/£g 

1.4 1.4 

= 170.111b. 

For V = 1256.64 ft/min from Figure 11.6.13(a), the permissible error is 0.00225 in. 
From Figure 11.6.13(b), for carefully cut gears with Pd = 4, the tooth error is 
e = 0.0012 in. From Table II.6.2 the deformation factor for dynamic load check is 
C=1416 . 
The dynamic load Fd proposed by Buckingham is 

^ 0.05V(BC + F,) , ^ 
Fd = , + Ft 

0.05 V + ^BC + Ft 

0.05 (1256.64)[(2.75) (1416) + 866.25] 
= , + 866.25 

0.05 (1256.64) + ^(2.75) (1416) + 866.25 

= 3135.7 lb. 

where Ft = Mt/rg = 6930/8 = 866.25 lb. 
The design is unsatisfactory because the dynamic force Fd must be less than the 

allowable endurance load FQ and less than the wear load F^. 
From Figure II.6.13(b) select a precision gear with an error of action e = 0.00051 

for Pd = 4. From Table II.6.2 the deformation factor for dynamic load check is 
C = 601.8. Recalculating the dynamic load F^ for C = 601.8 gives 

0.05 (1256.64)[(2.75) (601.8) + 866.25] ^ _ ^ ^^ 
Pd = , + ooo.zj 

0.05 (1256.64) + ^(2.75) (601.8) + 866.25 

= 2267.89 lb. 

The design is satisfactory because the dynamic force Fd is less than the allowable 
endurance load FQ and less than the wear load F^: 

Fd < Fo and Fd < F^. 

The Mathematical^ program for this example is given in Program II.6.2. 
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.6.10 Problems 
IL6.1 A planetary gear train is shown in Figure IL6.22. Gear 1 has Â i = 36 external gear 

teeth, gear 2 has N2 = 40 external gear teeth, and the gear 2 has N^ = 2 1 external 
gear teeth. Gears 2 and 2 are fixed on the same shaft, CC . Gear 3 has Â3 = 30 
external gear teeth, and gear 3 has Â 3/ = 24 external gear teeth. Gears 3 and 3 are 
fixed on the same shaft, EE . The planet gear 4 has Â4 = 18 external gear teeth, and 
the planet gear 5 has Â5 = 14 external gear teeth. Gear 1 rotates with a constant 
input angular speed n\ = 320 rpm. The module of the gears is m = 30 mm. The 
pressure angle of the gears is 20°. (a) Determine whether there will be interference 
when standard full-depth teeth are used and find the contact ratios of the meshing 
gears, (b) Find the angular velocity of the output planet arm 6, (05. (c) Find the 

(06 
equilibrium moment on gear 1 if an external moment M̂ ĵ ^ = — IM^̂ r I acts on 

|W6| 

the arm 6, where \Mext\ = 600 N-m. 

\iy/////n 

3' / O 
LI y/////yA\ 

FrCURE 11.6.22 Planetary gear train for Problem 11.6.1. 

II.6.2 The planetary gear train considered in Figure II.6.23 has gears with the same 
module m = 24 mm. The sun gear 1 has N\ — 22 external gear teeth, the planet 
gear 2 has N2 = IS external gear teeth, gear 3 has Â3 = 20 external gear teeth, and 
gear 4 has Â4 = 54 external gear teeth. Gears 3 and 3 are fixed on the same shaft. 
The sun gear 1 rotates with an input angular speed n\ = 290 rpm, and arm 5 rotates 
with ^5 = 110 rpm. The pressure angle of the gears is 20°. (a) Find the number of 
DOF for the planetary gear train, (b) Determine whether there will be interference 
when standard full-depth teeth are used and find the contact ratios of the meshing 
gears, (c) Find the angular velocity of the output gear 4, (04. (d) Find the 
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FIGURE 11.6.23 Planetary gear train for Problem 11.6.2. 

equilibrium moments on gear 1 and arm 5 if an external moment 
(04 

Mext = -|M^;,^| -—- acts on gear 4, where |M ;̂,̂ | = 800 N-m. 
|(04| 

II.6.3 A planetary gear train is depicted in Figure II.6.24. Gear 1 has Â i = 15 external 
gear teeth, gear 2 has N2 = 27 external gear teeth, gear 2 has Â '̂ = 18 external 

FIGURE 11.6.24 Planetary gear train for Problem 11.6.3. 
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gear teeth, gear 3 has N3 = 24 external gear teeth, and gear 3 has N^f = 16 

external gear teeth. The planet gears 2 and 2 are fixed on the same link and the 
planet gears 3 and 3 are fixed on the same shaft. Gear 1 rotates with the input 
angular speed ni = 440 rpm, and the arm 5 rotates at ^5 = 80 rpm. The module 
of the gears is m = 24 and the pressure angle of the gears is 20°. (a) Determine 
whether there will be interference when standard full-depth teeth are used and find 
the contact ratios of the meshing gears, (b) Find the angular velocity of the output 
gear 4, (04. (c) Find the equilibrium moments on gear 1 and arm 5 if an external 

(04 
moment M̂ ;̂ ;̂  = — IM^̂ rl acts on the gear 4, where \Mext\ = 1000 N-m. 

|(04| 

II.6.4 A planetary gear train is shown in Figure II.6.25. Gear 1 has Â i = 11 external gear 
teeth, the planet gear 2 has N2 = 22 external gear teeth, gear 2 has N^ = \1 
external gear teeth, gear 3 has A/̂3 = 51 internal gear teeth, the sun gear 3 has 
Â3/ = 12 external gear teeth, and the planet gear 4 has Â4 = 32 external gear teeth. 
Gears 2 and 2 are fixed on the same shaft and gears 3 and 3 are fixed on the same 
shaft. The sun gear 1 rotates with an input angular speed of ni = 550 rpm. The 
module of the gears is m = 26 mm and the pressure angle of the gears is 20°. 
(a) Determine whether there will be interference when standard full-depth teeth are 
used and find the contact ratios of the meshing gears, (b) Find the angular velocity 
of the arm 5, (05. (c) Find the joint forces if an electric motor with the power 
H = 4 kW is coupled to gear 1. 

2 " 
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FIGURE 11.6.25 Planetary gear train for Problem 11.6.4. 

II.6.5 A planetary gear train is shown in Figure II.6.26. The ring gear 1 has A'̂ i = 60 
internal gear teeth, the planet gear 2 has N2 = 25 external gear teeth, and the planet 
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FIGURE 11.6.26 Planetary gear train for Problem 11.6.5. 

gear 2 has N^ = 15 external gear teeth. The gears 2 and 2 are fixed on the same 
shaft. The planet gear 3 has Â3 = 20 teeth and the gears 3 and 3 are fixed on the 
same shaft. The ring gear 4 has N^ = 90 internal gear teeth. Gear 1 rotates with the 
input angular speed ni = 100 rpm, and arm 5 rotates at ns = —150 rpm (ni is 
opposite to ns). The module of the gears is m = 28 and the pressure angle of the 
gears is 20°. (a) Determine whether there will be interference when standard 
full-depth teeth are used and find the contact ratios of the meshing gears, (b) Find 
the angular velocity of the output ring gear 4, (04. (c) Find the joint forces and 
the equilibrium moments on gear 1 and arm 5 if an external moment 

(04 
M ;̂,, = -\Me. 

m\ 
acts on 4, where IM ĵ̂ rl = 1000 N-m. 

11.6.6 A planetary gear train is shown in Figure II.6.27. The sun gear 1 has Ni = II teeth, 
the planet gear 2 has N2 = 19 teeth, gear 3 has Â3 = 40 internal gear teeth, gear 4 
has Â4 = 29 external gear teeth, and gear 5 has N5 = 24 external gear teeth. Gear 1 
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FIGURE 11.6.27 Planetary gear train for Problem 11.6.6. 

rotates with a constant input angular speed n\ = 200 rpm. The module of the gears 
is m = 22 and the pressure angle of the gears is 20°. (a) Determine whether there 
will be interference when standard full-depth teeth are used and find the contact 
ratios of the meshing gears, (b) Find the angular velocity of the output ring gear 6, 

(06 
(06. (c) An external moment Mext = — |M ;̂c?l acts on gear 6, where 

|C06| 

\M.ext\ = 900 N-m. Find the joint forces and the equilibrium moment on gear 1. 
II.6.7 A planetary gear train is shown in Figure 11.6.28. The sun ring gear 1 has N\ = 28 

teeth, the planet gear 2 has N2 = 21 teeth, and the planet gear 2 has N2' = 16 
teeth. Gears 2 and 2 are fixed on the same shaft. Gear 1 rotates with the input 
angular speed ni = 370 rpm. The module of the gears is m = 20 and the pressure 
angle of the gears is 20°. (a) Determine whether there will be interference when 
standard full-depth teeth are used and find the contact ratios of the meshing gears, 
(b) Find the angular velocity of the arm gear 4, (04. (c) An external moment 
M, - |M, . 

(04 

|(04| 
acts on the arm gear 4, where IM^̂ Î = 800 N-m. Find the 

joint forces and the equilibrium moment on gear 1. 

II.6.8 A planetary gear train is shown in Figure II.6.29. The ring gear 1 has Â i = 75 
internal gear teeth, the planet gear 2 has N2 = 35 teeth, the planet gear 2 has 
Â /̂ = 20 teeth, gear 3 has Â3 = 11 teeth, gear 4 has Â4 = 13 external gear teeth, 
and the ring gear 5 has Â5 = 50 internal gear teeth. Gears 2 and 2 are fixed on the 
same shaft. The module of the gears is m = 42 and the pressure angle of the gears 
is 20°. (a) Determine whether there will be interference when standard full-depth 
teeth are used and find the contact ratios of the meshing gears, (b) Find the angular 
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FIGURE IL6.28 Planetary gear train for Problem 11.6.7. 

(05 
-\Mext\-—racts 

IcosI 
on the output ring gear 5, where \^ext\ — 500 Nm. Find the joint forces and the 

velocity of the ring gear 5, (05. (c) An external moment M x̂? 

on the output ring gea 
equilibrium moment. 

II.6.9 A planetary gear train is shown in Figure II.6.30. An electric motor with the power 
H — 1 kW and 319 rpm is coupled to sun gear 1. Gear 1 has Â i = 12 teeth, the 
planet gear 2 has Â2 = 17 teeth, gear 3 has N^ = 20 teeth, gear 4 has Â4 = 11 
teeth, gear 4 has N^f = 17 external gear teeth, and the ring gear 5 has Â5 = 51 
internal gear teeth. Gears 4 and 4 are fixed on the same shaft. The module of the 
gears is m = 33 mm and the pressure angle of the gears is 20°. (a) Find the angular 
velocity of the output ring gear 5. (b) Find the joint forces. 

II.6.10 The planetary gear train considered is shown in Figure II.6.31. The sun gear 1 has 
Ni = 22 teeth, the planet gear 2 has N2 = 20 teeth, the planet gear 2' has N2' = 35 
teeth, the sun gear 4 has Â4 = 15 teeth, and the planet gear 5 has Ns = 16 teeth. 
Gears 2 and 2 are fixed on the same shaft. The ring gear 3 rotates with the input 
angular speed n^ = 200 rpm and the ring gear 6 rotates at the input angular speed 
«6 = 150 rpm. The module of the gears is m = 24 mm. Find the absolute angular 
velocity of gear 1. 
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FIGURE 11.6.29 Planetary gear train for Problem 11.6.8. 

11.6.11 The planetary train with two planet gears is shown in Figure IL6.32. The sun gear 1 
has an angular speed of 600 rpm and is driven by a motor with the moment 20 N-m. 
The planet gears are 2 and 2 ', each having N2 = N^ = 20 teeth. The ring gear 4 
has N4 = 70 teeth. A brake holds the ring gear 4 fixed. The module of the gears is 
m = 2 mm and the pressure angle of the gears is 20°. The arm 3 drives a machine. 
Determine: (a) the circular pitch of the gears; (b) the angular speed of the arm; 
(c) the pitch line velocity of each gear; (d) the joint forces; (e) the output moment; 
(f) the moment to be applied to the ring to keep it fixed. 

11.6.12 A driver spur pinion of cast steel with the endurance strength ao = 20 000 psi 
rotates at n = 1500 rpm and transmits 35 hp. The driven gear is made of cast iron 
with the endurance strength CFQ = 8000 psi. The transmission ratio is 3.5 to 1 
(external gearing). Both gears have 14.5° pressure angles, and full-depth involute 
gear teeth. Design for strength and determine the smallest diameter gears and the 
face width. 

11.6.13 A cast steel spur pinion (ao = 15 000 psi) rotating at 900 rpm is to drive a bronze 
spur gear (ao = 12 000 psi) at 300 rpm. The power to be transmitted is 10 hp. 
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FIGURE II.6.30 Planetary gear train for Problem 11.6.9. 

f ^ f 
2' 

O 

\ * * 

J>5 

"U 
FIGURE 11.6.31 Planetary gear train for Problem 11.6.10. 

lU 

I V///M^ I 

698 KINEMATIC CHAINS AND MACHINE COMPONENTS DESIGN 



ring gear 

I 
FIGURE n.6.32 Planetary gear train for Problem 11.6.11. 

The teeth have standard 20° stub involute profiles. Determine the smallest diameter 
gear that can be used and the necessary face width. 

11.6.14 Two spur gears are to be designed with a minimum size. The following 
requirements are given: speed of the pinion 600 rpm, power to be transmitted 15 hp, 
velocity ratio 3 to 1 external gearing, endurance strength for pinion ao = 30 000 psi, 
endurance strength for gear ao = 20 000 psi, tooth profile 20° stub involute. For 
strength design determine the necessary face width and diametral pitch. 

11.6.15 A driver made of mild steel pinion with the endurance strength ao = 15 000 psi 
rotates at ni = 1750 rpm and transmits 6 hp. The transmission ratio is / = —3.5. 
The gear is made of bronze and has the endurance strength CTQ = 12 000 psi. The 
gears have 20° pressure angles, and full-depth involute gear teeth. Design a gear 
with the smallest diameter that can be used. No less than 15 teeth are to be used 
on either gear. 

11.6.16 A pinion made of cast iron with the endurance strength GQ = 20 000 psi rotates at 
Up = 900 rpm and transmits 30 hp. The transmission ratio is / = —7/3. The gear is 
made of cast iron and has the endurance strength ao = 8000 psi. The gears have 
20° pressure angles, and full-depth involute gear teeth. The diameter of the pinion 
is dp = 4 in. Design for the greatest number of teeth. 
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11.6.11 Working Model Simulation for Gear Trains 
Working Model Simulation for Example IL6.5 
The gear set shown in Figure 11.6.19(a) will be simulated using Working Model software. 
Gear 1 (n = r̂  = 1 m) rotates with the angular speed ni = 10 rpm. The external torque 
exerted on the pinion 2 (r2 = rp = 0.5 m) is Mext = 400 N-m. 

Step 1: Opening Working Model 

1. Click on the Working Model program icon to start the program. 
2. Create a new Working Model document by selecting "New" from the "File" menu. 
3. Set up the workspace. 

In the "View" menu: select "Workspace", check Coordinates and X,Y Axes from the 
Navigation box, and check all the objects from the Toolbars box except Simple; turn off 
Grid Snap and turn on Object Snap; select "Numbers and Units" and change the Unit System 
to SI (degrees). 

Step 2: Creating the gear 
This step creates the two gears for the system. 

1. Create the gear 1. Click on the "Circle" tool in the toolbar to sketch out a disk. Click 
on the disk and modify its radius at the bottom of the screen to ri = 1 m. 

2. Create the pinion 2. Click on the "Circle" tool in the toolbar to sketch out a disk. 
Click on the disk and modify its radius at the bottom of the screen to r2 = 0.5 m. 

3. Change the properties of the gears. Press the Shift key and click on the main gear 
and the pinion, respectively. Select "Properties" in the "Window" menu and change 
the material to Steel, the coefficients of static and kinetic friction to 0.0 (no friction), 
the coefficient of restitution to 1.0 (perfect elastic), and the charge to 0.0 (no charge), 
as shown in Figure II.6.33. 

Remark In order to make the objects clearly visible the commands "Zoom in" and "Zoom 
out" can be used by clicking on the icons at the top of the screen. 

Step 3: Connecting the gears to the ground 
This step connects a motor to gear 1 and the pinion 2 to the ground using a pin joint. 

1. Select the gear 1 and modify its center coordinates at the bottom of the screen to 
jc = 0 and y = 0 (the center of axis). 

2. Click on the "Motor" tool, place the cursor over the "snap point" on the center of the 
main gear and then click again. This connects the motor to the ground and the gear. 

3. Select "Numbers and Units" in the "View" menu and change the "Rot. Velocity" to 
Revs/min. Select the "Properties" box in the "Window" menu and change the 
"value" to ni = 10 rpm. 
The screen should look like that shown in Figure II.6.34. 

4. Select the pinion and modify its center coordinates at the bottom of the screen to 
X = Oandy = 1.5 m. 
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5. Click on the "Pin joint" tool and then click again on the center of the pinion. This 
connects the pinion to the ground with the pin joint. 

The screen should look like that shown in Figure IL6.35. 

Step 4: Connecting the gears 

This step connects the gear and the pinion using the "Gear" tool. 

1. Click on the "Gear" tool from the toolbox and then click on the centers of the gear 
and the pinion, respectively. This connects the two gears with a rigid rod. 

By default, each pair of gears has a rigid rod constraint between the two mass centers. The 
rod maintains a constant distance between the two objects. 

The screen should look like that shown in Figure II.6.36. 

Step 5: Running the simulation 

1. Click on "Run" in the toolbar to start the simulation. 
2. Click on "Reset" in the toolbar. The simulation resets to the initial frame 0. 
3. Select the pinion, then go to "Measure" menu and "Velocity" submenu. Apply the 

"Rotational graph" command to measure the rotational velocity of the pinion. Click 
on the arrow in the right upper comer of the measurement window to change it from 
graphic to numerical. Select the gear and apply the same command to measure the 
rotational velocity of the gear. 
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FIGURE 11.6.36 

Step 6: Adding an external torque 

1. Click on the "Torque" tool from the toolbox and then click on the pinion 
(anywhere). This will apply an external torque to the pinion. 

2. Select the torque and modify its value to Mext = 400 N-m in the "Properties" menu. 
Apply the command "Torque" from the "Measure" menu to measure the torque 
applied. 

3. Select the motor and apply the command "Torque Transmitted" from the "Measure" 
menu to measure the torque of the motor. 

The screen should look like that shown in Figure II.6.37. 

Results 
The angular speed of the gear ni = 10 rpm and the external torque Mext = 400 N-m are 
given. It results in the angular speed of the pinion n2 = —20 rpm and the motor torque 
Mmot = 800 N-m. 

Working Model Simulation for Example 11.6.6 
The planetary gear train with two DOF shown in Figure 11.6.20(a) will be simulated using 
Working Model software. The sun gear 1 (ri = 1 m) has the angular speed ni =20 rpm. The 
planet gear 2 has the pitch radius r2 = 0.5 m. The arm has the angular speed n^ = —10 rpm. 
The external torque exerted on the gear 2 is Mext = 400 N-m. 
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FIGURE 11.6.37 

Step 1: Creating the gears and the arm 

1. Create the sun gear 1. Click on the "Circle" tool in the toolbar and sketch out a disk. 
Click on the disk and modify its radius at the bottom of the screen as ri = 1 m. 

2. Create the planet gear 2. Click on the "Circle" tool in the toolbar and sketch out 
a disk. Click on the disk and modify its radius at the bottom of the screen as 
r2 = 0.5 m. 

3. Create arm 3. Click on the "Rectangle" tool in the toolbar and sketch out a rectangle. 
Click on the rectangle and modify its the dimensions as /i = 1.5 m and w = 0.1 m. 
The rod created with a set of gears cannot have torques applied to it or have an 
anchor or a motor placed on it. That is why the rectangle 3 will be used instead of 
the rod to model the arm connected to the planet gear 2 and the ground. 

4. Select the arm 3 and modify the coordinates of its center as x = 0 and y = 0.75 m at 
the bottom of the screen. 

5. Select the planet gear 2 and modify the coordinates of its center as x = 0 and 
y = 1.5 m at the bottom of the screen. 

Step 2: Connecting the planet gear and the arm 

1. Click on the "Pin joint" tool on the toolbox and connect the planet gear and the 
rectangle by clicking again on the center of the circle. 

2. Click on the "Motor" tool on the toolbox and then click again on the center of the 
axis. This connects the motor to the ground and the arm. Click on the motor and 
change the value of the velocity to 10 rpm in the "Properties" window 
(«3 = —10 rpm). 

The screen should look like that shown in Figure II.6.38. 
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FIGURE n.6.38 

Step 3: Connecting the sun gear to the ground 

1. Click on the "Motor" tool on the toolbox and then click again on the center of the 
sun gear 1. 

2. Select the motor and open the "Properties" window. Change the value of the velocity 
to 20 rpm (ni = 20 rpm), as shown in Figure 11.6.39. 

3. In the "Properties" window, select the base point of the motor and change its 
coordinates to x = 0 and y = 0. This moves the motor along with the sun gear to the 
center of axis (the motor is still connected to the ground). 

Step 4: Connecting the gears 

1. Click on the sun gear 1 and select "Move to front" from the "Object" menu. Do the 
same command for the planet gear 2. 

2. CHck on the "Gear" tool from the toolbox. With the gear selected, click on the center 
of the sun gear 1 and then again on the center of the planet gear 2. The two circles 
are now connected with a gear. 

3. Click on the rectangle 3 and select the command "Bring to front" from the "Object" 
menu. 

The screen should look like that shown in Figure II.6.40. 

Step 5: Running the simulation 

1. Select all the bodies and choose the command "Do not collide" from the "Object" 
menu. 

2. Click on "Run" in the toolbar to start the simulation. 

Gears 705 



% m m WtJiNt Wm mm S l̂ne Meame gm M«dQw Melp ^jgixi 

^ ^ 
a 

^1 

Jom^ ' 

SplJto^i 

0 

£ 

1^ 
•l-^ 
# 
r* 
A 

F 

n 

i 

•Ih 

-

HiiMsiiiiilPr,^|A|,aigj 

ij^!l1liM'i^l^i^^^^• ^ 

Uok» 
TjipelVelocity ^ J 

v.^1 Wm fm 

1 
PPNI IO I 1 

PtM 1 

F jWwâ js 
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3. Click on "Reset" in the toolbar. The simulation resets to the initial frame 0. 
4. Click on the planet gear 2 and select the "Measure" menu and the "Velocity" and 

"Rotational graph" submenus to measure the rotational velocity ^2- Click on the 
arrow in the right upper comer of the measurement window to change it from 
graphic to numerical. Apply the same command to visualize the rotational velocity 
ni of the sun gear 1. 

Step 6: Adding an external torque 

1. Click on the "Torque" tool from the toolbox and then click on gear 2 (anywhere on 
the disk). This will apply an external torque to gear 2. 

2. Select the torque and modify its value to Mext = 400 N-m in the "Properties" menu. 
3. Select the submenu "Torque" from the "Measure" menu to measure the torque 

applied. 

The screen should look like that shown in Figure II.6.41. 

Results 
The angular speed of gear l,ni = 2 0 rpm, the angular speed of arm 3, ̂ 23 = —10 rpm, and 
the external torque, Mext = 400 Nm, are given. It results in the angular speed of gear 2, 
n2 = —70 rpm, the motor torque on gear 1, Mimot = 800 N-m, and the motor torque on 
arm 3, M^mot = -1200 N-m. 
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Working Model Simulation for Example 11.6.7 
The planetary gear train with one DOF shown in Figure 11.6.21(a) will be simulated using 
Working Model software. The sun gear 1 (ri = 1 m) has the angular speed ni = 20 rpm. 
The planet gear 2 (r2 = 0.5 m) is connected to the sun gear 1 and the fixed ring gear 4. The 
external torque exerted on arm 3 is Mext = —400 N-m. 

Step 1: Creating the gears and the arm 

1. Open a new file and make a drawing as shown in Figure II.6.41, following the steps 
from the previous example of planetary gears. 

2. Select the motor connected to the rectangle 3 and erase it using the "Delete" 
conmiand from the "Edit" menu. 

3. Click on the "Pin joint" tool from the toolbox and then click again on the end of the 
rectangle 3. This connects arm 3 to the ground with a pin joint. 

4. Click on the "Circle" tool from the toolbox and draw a disk with the radius 
r4 = 2 m. Modify the coordinates of its center as x = j = 0 at the bottom of the 
screen. Select the command "Send to back" from the "Object" menu. 

5. Click on the "Anchor" tool from the toolbox and then click again on gear 4. This 
fixes gear 4 to the ground. 

The screen should look Hke that shown in Figure II.6.42. 

Step 2: Connecting gear 2 and gear 4 

1. Click on gear 2 and select the conmiand "Bring to front" from the "Object" menu. 
Apply the same command to gear 4. 
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2. Click on the "Gear" tool, then click on the center of gear 4 and the center of gear 2, 
respectively. Double-click on the gear and check the box "Internal gear" on the 
"Properties" window. Choose gear 4 as internal gear. 

The screen should look like that shown in Figure II.6.43. 

Step 3: Running the simulation 

1. Select gear 1 and choose "Bring to front" command. Apply the same command to 
arm 3. 

2. Select all the bodies and choose the command "Do not collide" from the "Object" 
menu. 

3. Click on "Run" in the toolbar to start the simulation. 
4. Click on "Reset" in the toolbar. The simulation resets to the initial frame 0. 
5. Click on the planet gear 2 and select the "Measure" menu and the "Velocity" and 

"Rotational graph" submenus to measure the rotational velocity ^2- Click on the 
arrow in the right upper corner of the measurement window to change it from 
graphical to numerical. Apply the same command to visualize the rotational velocity 
ni of the sun gear 1 and the rotational velocity n^ of the arm 3. 

Step 4: Adding an external torque 

1. Click on the "Torque" tool from the toolbox and then click on arm 3 (anywhere on 
the rectangle). This will apply an external torque to arm 3. 

2. Select the torque and modify its value to Mext = —400 N-m in the "Properties" 
menu. 
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3. Select the submenu "Torque" from the "Measure" menu to measure the torque 
applied. 

The screen should look like that shown in Figure 11.6.44. 

Results 
The angular speed of gear 1, ni = 2 0 rpm, and the external torque, Mext = —400 N-m, are 
given. It results in the angular speed of gear 2, ^2 = — 20 rpm, the angular speed of arm 3, 
n2 = 6.667 rpm, and the motor torque on gear 1, Mmot = 133.333 N-m. 

.6.12 Programs 
PROGRAM 11.6.1 

Apply[Clear, Names["Globar*"]]; 
Off[General::spell]; 
Off[General::spell1]; 

(*Input data*) 

nlO = 20; 
f i = 20 N[Pi]/180; 
r l = 1.; 
r2 = 0.5; 
mext = 400; 

710 KINEMATIC CHAINS AND MACHINE COMPONENTS DESIGN 



Print["sun gear speed nl = ", nlO, " rpm"]; 
Print["rl = ", rl, " m"]; 
Print["r2 = ", r2, " m"]; 
Print["pressure angle fi = ", fi, " rad"]; 
Print["|Mext| = ", mext, " Nm"]; 

dl 
d2 

(* 
xB 
yB 
rB 

(* 
xC 
yc 
rC 

= 2 rl; 
= 2 r2; 

Position of joint 
= 0; 
= rl; 
= {xB, yB, 0}; 

Position of joint 
= 0; 
= rl + r2; 
= {xC, yC, 0}; 

B 

C 

*) 

*) 

(* Position of joint E *) 
xE = 0; 
yE = rl + 2 r2; 
rE = {xE, yE, 0}; 

(* Position of joint D *) 
rD = {xD, 0, 0}; 

" Contour 0-1-2-0 " 

(*Relative velocities*) 

nlOv = {nlO, 0, 0}; 
n21vSol = {n21Sol, 0, 0}; 
n02vSol = {n02Sol, 0, 0}; 

"nlO + n21 + n02 = 0" 
"rB X n21 + rE x n02 = 0" 
eqlk = (nlOv + n21vSol + n02vSol) [[1]] == 0; 
eqli = (Cross[rB, n2lYSol] + Cross[rE, n02vSol])[[3]] == 0; 
eqlk = (nlOv + n21vSol + n02vSol)[[1]] == 0 
eqli = (Cross[rB, n21vSol] + Cross[rE, n02vSol])[[3]] == 0; 
soli = Solve[{eqlk, eqli}, {n21Sol, n02Sol}]; 
n21v = n21vSol /. solI[[l]]; 
n02v = n02vSol /. solI[[l]]; 

Print["n21 = ", n21v, " rpm"]; 
Print["n02 = ", n02v, " rpm"]; 
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(^Absolute velocities*) 

n20v = -n02v; 

Print["n20 = ", nZOv, "rpm"]; 

" Contour 0-2-3-0 " 

(*Relative velocities*) 

n32vSo1 = {n32Sol, 0, 0}; 
n03vSol = {n03Sol, 0, 0}; 

"n20 + n32 + n03 = 0 " 
"rE X n20 + rC x n32 = 0" 
eqlk = (n20v + n32vSol + n03vSol)[[l]] == 0; 
eqli = (Cross[rE, n20v] + Cross[rC, n32vSol])[[3]] == 0; 

soli = Solve[{eqlk, eqli}, {n32Sol, n03Sol}]; 
n32v = n32vSol /. sol I[[!]]; 
n03v = n03vSol /. sol I[[!]]; 

Print["n32 = ", n32v, " rpm"]; 
Print["n03 = ", n03v, " rpm"]; 

(*Absolute velocities*) 
n30v = -n03v; 
Print["n30 = ", n30v, " rpm"]; 
Print["arm speed n3 = ", n30v[[!]] , " rpm"]; 

Mext = -Sign[n30v[[l]]] {mext, 0, 0} ; 
Print["Mext = - Sign[n3] |Mext|=", Mext, " rpm"]; 

"arm 3" 
"F23s={0,F23y,F23z}" 
F23s = {0, F23ys, F23zs}; 
"arm 3: sumMD = rDC x F23 + Mext = 0 =>" 
MD = (Cross [rC-rD, F23s] + Mext)[[l]]; 
s3 = Solve[MD == 0, F23zs]; 
F23z = F23ZS /. s3[[!]]; 
Print["F23z =", F23z, " N"]; 

"planet gear 2" 
"F12={0,Frl2,Ftl2}" 
"F02={0,Fr02,Ft02}" 
"gear 2: sumMC = rCE x F02 + rCB x F12 = 0" 
"=> r2 Ft02 - r2 Ftl2 = 0 => Ft02=Ftl2" 
"=> F02={0,-Frl2,Ftl2}" 
"gear 2: sumF = F12 - F23 + F02 = 0" 
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"y-axis: F23y = 0" 
"z-axis: Ftl2 = F23z/2" 
"Frl2=Ftl2 Tan[fi]" 
F23 = {0, 0, F23z}; 
Ftl2 = F23Z/2; 
Frl2 = Ft12 Tan[fi]; 
F12 = {0, Frl2, Ftl2}; 
F02 = {0, -Frl2, Ftl2}; 
Print["F23 =", F23, " N"]; 
Print["F12 =", F12, " N"]; 
Print["F02 =", F02, " N"]; 
"arm 3: F03 = -F23 =>" 
Print["F03 =", -F23, " N"]; 

"sun gear 1" 
"gear 1: sumM_A = rAB x F21 + Mmot = 0 =>" 
MA = (Cross[rB, -F12] + {Mmot, 0, 0})[[1]]; 
si = Solve[MA == 0, Mmot]; 
Mms = Mmot /. sl[[l]]; 
Mmos = {Mms, 0, 0}; 
Print["Mmot =", Mmos, " Nm"]; 
"gear 1: sumF = F21 + FOl = 0 =>" 
Print["F01 = -F21 = F12= ", F12, " N"]; 

sun gear speed nl = 20 rpm 

rl = 1. m 

r2 = 0.5 m 

pressure angle fi = 0.349066 rad 

I Next I = 400 Nm 

Contour 0-1-2-0 

nlO + n21 + n02 = 0 

rB X n21 + rE x n02 = 0 

20 + n02Sol + n21Sol == 0 

n21 = {-40., 0, 0} rpm 

n02 = {20., 0, 0} rpm 

n20 = {-20., 0, 0}rpm 

Contour 0-2-3-0 

n20 + n32 + n03 = 0 

rE X n20 + rC x n32 = 0 

n32 = {26.6667, 0, 0} rpm 
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n03 = {-6.66667, 0, 0} rpm 

n30 = {6.66667, 0, 0} rpm 

arm speed n3 = 6.66667 rpm 

Mext = - Sign[n3] |Mext|={-400, 0, 0} rpm 

arm 3 

F23s={0,F23y,F23z} 

arm 3: sumM_D = rDC x F23 + Mext = 0 => 

F23z =266.667 N 

planet gear 2 

F12={0,Frl2,Ftl2} 

F02={0,Fr02,Ft02} 

gear 2: sumM_C = rCE x F02 + rCB x F12 = 0 

=> r2 Ft02 - r2 Ftl2 = 0 => Ft02=Ftl2 

=> F02={0,-Frl2,Ftl2} 

gear 2: sumF = F12 - F23 + F02 = 0 

y-axis: F23y = 0 

z-axis: Ftl2 = F23z/2 

Frl2=Ftl2 Tan[fi] 

F23 ={0, 0, 266.667} N 

F12 ={0, 48.5294, 133.333} N 

F02 ={0, -48.5294, 133.333} N 

arm 3: F03 = -F23 => 

F03 ={0, 0, -266.667} N 

sun gear 1 

gear 1: sumM__A = rAB x F21 + Mmot = 0 => 

Mmot ={133.333, 0, 0} Nm 

gear 1: sumF = F21 + FOl = 0 => 

FOl = -F21 = F12= {0, 48.5294, 133.333} N 

PROGRAM 11.6.2 
Apply [CI ear. Names ["Globar*"]]; 
Off[General::spell]; 
Off[General::spel11]; 
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(*Input data*) 
"stub involute profile" 
(^pressure angle 0=20 deg stub involute*) 
aOp = 15000; (*endurance strength steel psi*) 
aOg = 8000; (*endurance strength cast iron psi*) 
0 = 20.jt/180; 
np = 1200.; (*rpm*) 
ng = 300.; (*rpm*) 
i = -np/ng;(*transinission ratio*) 
H = 33.; (*hp*); 
BHN = 250; 

Print["endurance strength for pinion - aOp = ", aOp, " psi"]; 
Print["endurance strength for gear - aOg = ", aOg, " psi"]; 
Print["transmission ratio i = ", i]; 
Print ["pressure angle 0 = ", 0, " rad = ", 0180/TT, " deg"]; 
Print["speed of the pinion np = ", np, " rpm"]; 
Print["speed of the gear ng = ", ng, " rpm"]; 
Print["power trasmitted H = ", H, " hp"]; 
Print["Brinell Hardness Number BHN = ", BHN]; 

Np = 16; 
Print["select Np = ", Np, " teeth" ]; 
Ng = -i Np; 
Print["Ng = - i Np = ", Ng, " teeth" ] ; 
yp = 0.115; 
Print["table 1 , Np = ", Np, " => form factor yp = ", yp ] ; 
xl = 60.; y l = 0.154; 
x2 = 75; y2 = 0.158; 
ml = (y2 - y l ) / (x2 - x l ) ; 
bl = y2 - mlx2; 
yg = mlNg + b l ; 
Print["table 1 , Ng = ", Ng, " => form factor yg = ", yg ] ; 
Fp = aOp yp; 
Print["load carrying capacity pinion: Fp = aOp yp = ", Fp, " " ] ; 
Fg = aOg yg; 
Print["load carrying capacity gear: Fg = aOg yg = ", Fg, " " ] ; 
I f [Fp < Fg, 

Print["Fp<Fg => pinion is weaker => design will be based on the pinion"]; 
Nw = Np; y = yp; aO = orOp; n = np , 
Print["Fp>Fg => gear is weaker => design will be based on the gear"]; 
Nw = Ng; y = yg; aO = orOg; n = ng ]; 

Mt = 63000 H/n; 
Print["moment trasmitted Mt=63000 H/n = ", Mt, " lb-in"] 
k = 4; 
Print["face width factor k = ", k] 
a = aO / 2 . ; 
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Print["assume allowable stress a = aO/2 = ", <r, " psi"]; 
"ff=(2 Mt Pd"3 )/(k n'2 y N) =>" 
eql = a == (2 Mt P6'3 ) I (k n'l y Nw) 
Pds = Solve [eql, Pd]; 
Print["Pd = ", Pd /. Pds[[3]]]; 
P = Input["Select diametral pitch Pd"]; 
Print["try Pd = ", P, " teeth per inch"]; 
dw = N[Nw /P]; 
Print["pitch diameter dg = Ng/Pd = ", dw, " in"]; 
V = dw TT n /12.; 
Print["pitch line velocity V = d jr n/12 = ", V, " ft/min" ] ; 
If[V < 2000, a = 600 aO / (600 + V); 
Print["allowable stress for V<2000 ft/min is a = 600 aO/(600+V) = ", 
a. " psi"] 

]; 
If[2000 < V < 4000, a = 1200 aO /(1200 + V); 
Print [ 
"allowable stress for 2000<V<4000 ft/min is a = 1200 aO/(1200+V) = ", 
a. " psi"] 

]; 
If[V > 4000, (J = 78 aO /(78 + V0.5); 
Print ["allowable stress for V>4000 ft/min is a = 78 orO/(78+V"0.5) = ", 

or, " psi"] 
]; 

ai = (2 Mt P'3 )/(k jt'Z y Nw); 
Print["induced stress ai=(2 Mt Pd"3 )/(k n'2 y H) = ", ai, " psi"]; 
While[ai > a. 

Print[ 
"ai>a => weak because the induced stress is greater than the allowable 

stress"]; 
P = Input["Select a stronger diametral pitch Pd"]; 
Print["try a stronger tooth, Pd = ", P, " teeth per inch"]; 

dw = N[Nw/P]; 
Print["pitch diameter: d = N/Pd = ", dw , " in"]; 
V = dw TT n/12.; 
Print["pitch line velocity V = d n: n/12 = ", V, " ft/min" ] ; 
If[V < 2000, a = 600 a0/(600 + V); 
Print["allowable stress for V<2000 ft/min is or = 600 aO/(600+V) = ", 

o, " psi"] 
] : 
If[2000 < V < 4000, a = 1200 aO /(1200 + V); 
Print[ 
"allowable stress for 2000<V<4000 ft/min is a = 1200 orO/(1200+V) = ", 

a, " psi"] 
] ; 
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If[V > 4000, a = 78 (TO /(78 + V^O.S); 
Print ["allowable stress for Y>400C ft/mi n is a = 78 aO/(78+^^0.5) = ", 

<T, " psi"] 
]; 

ai = (2 Mt p-̂ a )/(k jt-^Z y Nw); 
Print["induced stress ai = (2 Mt Pd-̂ S )/(k jt'^2 y N) = ", ai, " psi"] 

]; 
Print["ai<a => strong because the induced stress is less than the 
allowable stress"] 

"k is reduced from the maximum value k=4" 
"a=(2 Mt Pd-̂ a )/(k ;r'̂ 2 y N) => k" 
eq2 = a == (2 Mt P'̂ S )/(kp ;r'̂ 2 y Nw); 
kps = Solve[eq2, kp]; 
k = kp /. kps[[l]]; 
Print["reduce k to k = ", k]; 
P = N[;r/P]; 
Print ["circular pitch p = :7r/Pd = ", p, " in ." ] ; 
B = k p; 
Print["face width B = k p = ", B, " in ." ] ; 
B = 2.75; 
Print["select face width B = ", B, " in ." ] ; 
a = 0.8 / P; 
Print["addendum a = 0.8/Pd = ",a, " in."]; 
b = 1. /P; 
Print["min. dedendum b = 1/Pd = ", b, " in."]; 
rp = Np/(2. P); 
Print ["radius of pitch diameter for pinion: rp = Np/(2 Pd) = ", rp, " in."]; 
rg = Ng/(2. P); 
Print ["radius of pitch diameter for gear: rg = Ng/(2 Pd) = ", rg, " in."]; 
rbp = rp Cos[0]; 
rbg = rg Cos[0]; 
Print["radius of base diameter for pinion: rbp = rp Cos[0] = ", rbp, " in."]; 
Print ["radius of base diameter for gear: rbg = rgCos[0] = ", rbg, " in."]; 
c = rp + rg; 
Print["center distance c=rp+rg= ", c, " in"]; 
"radius of maximum possible addendum circle ra(max)= 

(rb'̂ 2+(c Sin[0])'^2)^5" 
ramp = (rbp'̂ 2 + (c Sin[0])''2)'^.5; 
ramg = (rbg'̂ 2 + (c Sin[0]K2K.5; 
Print["ra(max)p = (rbp'̂ 2+(c Sin[0])'^2)^5 = ", ramp, " in ." ] ; 
Print["ra(max)g = (rbg'̂ 2+(c S i n [ 0 ] r 2 r . 5 = ", ramg, " in ." ] ; 
"radius of addendum circle ra = r + a" 
rap = rp + a; 
rag = rg + a; 
Print["rap = rp + a = ", rap, " in."]; 
Print["rag = rg + a = ", rag, " in."]; 
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If[ramp > rap && ramg > rag, 
Print["ra(max)>ra => no interference " ] , Print["interference "]]; 

pb = p Cos[0]; 
Print["base pitch pb = p Cos[0] = ", pb, " in."]; 
CR = ((rap'^2 - rbp'^2)\5 + (rag'̂ 2 - rbg'^2)\5 - c Sin[0])/pb; 
Print[ 

"contact ratio CR = ((rap'^2-rbp'^2)'^.5+(rag'^2-rbg'^2)'^.5-c Sin[0])/ 
pb = ", CR ]; 

"contact ratio CR > 1.2 " 
FO = orO B y p; 
Print["endurance load FO = aO B y p = ", FO, " lb"]; 

aes = 400 BHN - 10000; 
Print["endurance limit of the gear pair aes = 400 BHN - 10000 = ", aes, 
" psi"]; 

Q = 2 Ng/(Np + Ng); 
Print["Q = 2 Ng/(Np+Ng) = ", Q]; 
Ep = 30. 10-̂ 6 (*psi*); 
Eg = 19. lO'̂ e (*psi*); 
K = aes'^2 Sin[0](l/Ep + l/Eg)/1.4; 
Print["stress fatigue factor K = aes'^2 Sin[0] (l/Ep+l/Eg)/1.4 = ", K]; 
dp = 2 rp; 
Fw = dp B K Q; 
Print["wear load Fw = dp B K Q = ", Fw, " lb"]; 
F = Mt/rg; 
Print["F = Mt/rg = ", F, " lb"]; 
Print["for Y = ", Y, " ftm => from fig 13(a) permissible error = 

0.00225 in. " ] ; 
Print["from fig 13(a) for f irst class comercial 

gears with Pd=4 => error e = 0.0025 in. > permissible error " ] ; 
Print["from fig 13(b) for carefully cut gears with Pd=4 => error 

e = 0.0012 in. " ] ; 
(^deformation factor C*) 
xl = 0.001; yl = 1180; (*yl=1140;*) 
x2 = 0.002; yl = 2360; (*y2=2280;*) 
ml = (y2 - yl) / (x2 - xl) 
bl = y2 - ml x2; 
e = 0.0012; 
Print["select tooth error e = ", e, " in ." ] ; 
Cf = ml e + bl; 
Print [ 

"from table 2 calculate the deformation factor for dynamic load 
check C = ", Cf]; 

Fd = 0.05 Y (B Cf + F)/(0.05 Y + Sqrt[B Cf + F])+ F; 
Print[ 

"dynamic load Fd = 0.05 Y (B C+F)/(0.05 Y + Sqrt[ B C+F]) + F = ", Fd, 
" lb"]; 
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If[Fd > FO, Print["FO = ", FO, " approx Fd = ", Fd, " within ", 
(1 - FO /Fd)100, " %"], 
Print["Fd<FO"]]; 

If[Fd > Fw, Print["Fw = ", Fw, " approx Fd = ", Fd, " within ", 
(1 - Fw /Fd)100, " %"], 
Print["Fd<Fw"]]; 

Print["from fig 13(b) for precision gears with Pd=4 => error 
e = 0.00051 in. " ] ; 

e = 0.00051; 
Cf = ml e + bl; 
Print[ 

"from table 2 calculate the deformation factor for dynamic load 
check C = ", Cf]; 

Fd = 0.05 V (B Cf + F)/(0.05 Y + Sqrt[B Cf + F])+ F; 
Print[ 

"dynamic load Fd = 0.05 V (B C+F)/(0.05 V + Sqrt[ B C+F]) + F = ", 
Fd, " lb"]; 

If[Fd > FO, Print["FO = ", FO, " approx Fd = ", Fd, " within ", 
(1 - FO /Fd)100, " % " ] , 
Print["Fd<FO"]]; 

If[Fd > Fw, Print["Fw = ", Fw, " approx Fd = ", Fd, " within ", 
(1 - Fw /Fd)100, " %"], 
Print["Fd<Fw"]]; 

stub involute profile 

endurance strength for pinion - aOp = 15000 psi 

endurance strength for gear - aOg = 8000 psi 

transmission ratio i = -4. 

pressure angle </> = 0.349066 rad = 20. deg 

speed of the pinion np = 1200. rpm 

speed of the gear ng = 300. rpm 

power trasmitted H = 33. hp 

Brinell Hardness Number BHN = 250 

select Np = 16 teeth 

Ng = -i Np = 64. teeth 

table 1, Np = 16 => form factor yp = 0.115 

table 1, Ng = 64. => form factor yg = 0.155067 

load carrying capacity pinion: Fp = aOp yp = 1725. 

load carrying capacity gear: Fg = aOg yg = 1240.53 

Fp>Fg => gear is weaker => design wi l l be based on the gear 
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moment trasmitted Mt=63000 H/n = 6930. Ib-in 

face width factor k = 4 

assume allowable stress a = aO/Z = 4000. psi 

a=(2 Mt Pd-̂ S )/(k n^Z y N) => 

4000. == 35.3757 Pd^ 

Pd = 4.83561 

try Pd = 5 teeth per inch 

pitch diameter dg = Ng/Pd = 12.8 in 

pitch line velocity V = d ;r n/12 = 1005.31 ft/min 

allowable stress for V<2000 ft/min is a = 600 orO/(600+V) = 2990.08 psi 

induced stress ai = (2 Mt Pd'̂ 3 )/(k n^Z y N) = 4421.96 psi 

ai>a => weak because the induced stress is greater than the allowable stress 

try a stronger tooth, Pd = 4 teeth per inch 

pitch diameter: d = N/Pd = 16. in 

pitch line velocity V = d ;r n/12 = 1256.64 ft/min 

allowable stress for V<2000 ft/min is a = 600 aO/(600+V) = 2585.32 psi 

induced stress ori = (2 Mt Pd'̂ 3 )/(k n'^Z y N) = 2264.04 psi 

a\<G => strong because the induced stress is less than the allowable stress 

k is reduced from the maximum value k=4 

a=(2 Mt Pd'̂ 3 )/(k jt^Z y N) => k 

reduce k to k = 3.50292 

circular pitch p = K/P6 = 0.785398 in. 

face width B = k p = 2.75119 in. 

select face width B = 2.75 in. 

addendum a = 0.8/Pd = 0.2 in. 

min. dedendum b = 1/Pd = 0.25 in. 

radius of pitch diameter for pinion: rp = Np/(2 Pd) = 2. in. 

radius of pitch diameter for gear: rg = Ng/(2 Pd) = 8. in. 

radius of base diameter for pinion: rbp = rp Cos[0] = 1.87939 in. 

radius of base diameter for gear: rbg = rg Cos[0] = 7.51754 in. 

center distance c=rp+rg= 10. in 

radius of maximum possible addendum circle ra(max)= 

(rb'̂ 2+(c Sin[0]))'^2\5 
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ra(max)p = (rbp'^2+(c Sin[0])'^2)\5 = 3.90255 in. 

ra(max)g = (rbg'^2+(c Sin[0])'^2)^5 = 8.25901 in. 

radius of addendum circle ra = r + a 

rap = rp + a = 2.2 in. 

rag = rg + a = 8.2 in. 

ra(max)>ra => no interference 

base pitch pb = p Cos[0] = 0.738033 in. 

contact ratio CR = ((rap'^2-rbp'^2)'^.5+(rag'^2-rbg'^2)'^.5-c Sin[0])/pb = 

1.35303 

contact ratio CR > 1.2 

endurance load FO = aO B y p = 2679.36 lb 

endurance limit of the gear pair aes = 400 BHN - 10000 = 90000 psi 

Q = 2 Ng/(Np+Ng) = 1.6 

stress fatigue factor K = aes'^2 Sin[0] (l/Ep+l/Eg)/1.4 = 170.11 

wear load Fw = dp B K Q = 2993.94 lb 

F = Mt/rg = 866.25 lb 

for V = 1256.64 ftm => from fig 13(a) permissible error = 0.00225 in. 

from fig 13(a) for first class comercial 

gears with Pd=4 => error e = 0.0025 in. > permissible error 

from fig 13(b) for carefully cut gears with Pd=4 => error e = 0.0012 in. 

select tooth error e = 0.0012 in. 

from table 2 calculate the deformation factor for dynamic load check 
C = 1416. 

dynamic load Fd = 0.05 V (B C+F)/(0.05 V + Sqr t [ B C+F]) + F = 3135.11 lb 

FO = 2679.36 approx Fd = 3135.11 w i th in 14.5369 % 

Fw = 2993.94 approx Fd = 3135.11 w i th in 4.50291 % 

from f i g 13(b) fo r precis ion gears wi th Pd=4 => er ror e = 0.00051 i n . 

from table 2 ca lcu late the deformation fac tor fo r dynamic load check 
C = 601.8 

dynamic load Fd = 0.05 V (B C+F)/(0.05 V + Sqr t [ B C+F]) + F = 
2267.58 lb 

Fd<FO 

Fd<Fw 
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11.7 Mechanical Springs 

Springs are mechanical elements that exert forces or torques and absorb energy. The 
absorbed energy is usually stored and later released. Springs are made of metal. For light 
loads the metal can be replaced by plastics. Some applications which require minimum 
spring mass use structural composite materials. Blocks of rubber can be used as springs in 
bumpers and vibration isolation mountings of electric or combustion motors. 

11.7.1 Material for Springs [20, 21 ] 
The hot and cold working processes are used for springs manufacturing. Plain carbon 
steels, alloy steels, corrosion-resisting steels, or nonferrous materials can be used for spring 
manufacturing. Spring materials are compared by an examination of their tensile strengths 
which require the material, its processing, and the wire size. The tensile strength Sut is 
a linear function of the wire diameter d, which is estimated by 

Sut = — , (11.7.1) 

where the constant A and the exponent m are presented in Table II.7.1. 
The torsional yield strength can be obtained by assuming that the tensile yield strength 

is between 60 and 90% of the tensile strength. Using the distortions-energy theory, the 
torsional yield strength is 

Ssy = 0.5171 Sy, (II.7.2) 

and for steels it is 

0.355,, < Ssy < 0,52Sut. (II.7.3) 
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TABLE 11.7.1 Constants of Tensile Strengths 
Expression 

Material 

Music wire 
Oil-tempered wire 
Hard-drawn wire 
Chrome vanadium 
Chrome siUcom 

m 

0.163 
0.193 
0.201 
0.155 
0.091 

kpsi 

186 
146 
137 
173 
218 

MPa 

2060 
1610 
1510 
1790 
1960 

Source: Barnes Group, Inc., Design Handbook, Barnes 
Group, Inc., Bristol, Conn., 1981. Reprinted with 
permission. 

For static application, the maximum allowable torsional stress tail may be used instead 
of Ssy 

OASSut cold-drawn carbon steel; 

O.SOSut hardened and tempered carbon 

Ssy = Tall = { and low-alloy steel; (II.7.4) 

0.355^^ austenitic stainless steel 

and nonferrous alloys. 

Figure 11.7.1 shows the minimum tensile strength of commonly used spring wire materials. 

11.7.2 Helical Extension Springs 
Extension springs [Fig. 11.7.2(a)] are used for maintaining the torsional stress in the wire. 
The initial tension is the external force, F, applied to the spring. Spring manufacturers 
recommended that the initial tension be 

rinitiai = (OA - 0 . 8 ) ^ , (II.7.5) 

D 
where Sut is the tensile strength in psi. The constant C is the spring index, defined by C = —, 

a 
where D is the mean diameter of the coil and d is the diameter of the wire [Fig. 11.7.2(a)]. 

The bending stress, which occurs in section A — A, is 

16FD /ri\ 

and torsional stress, which occurs in section B — B,is 

(II.7.7) 
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Source: Barnes Group, Inc., Design Handbook, Barnes Group, Inc., Bristol, Conn., 1981 
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FIGURE 11.7.1 Tensile strength of spring wire materials. 



FIGURE 11.7.2 Extension springs. 

(b) 

In practical application the radius r4 is greater than twice the wire diameter. Hook 
stresses can be further reduced by winding the last few coils with a decreasing diame-
ter D [Fig. 11.7.2(b)]. This lowers the nominal stress by reducing the bending and torsional 
moment arms. 

11.7.3 Helical Compression Springs 
The helical springs are usually made of circular cross-section wire or rod (Fig. II.7.3). These 
springs are subjected to a torsional component and to a shear component. There is also an 
additional stress effect due to the curvature of the helix. 

Shear Stress, r 
The total shear stress, r (psi), induced in a helical spring is 

_Tr F _ 16T 4F 

J A Ttd? Ttcfi 

SFD AF 
(II.7.8) 

where 

T = FD/2, is the torque, lb in, 
r = dll is the wire radius, in, 
F is the axial load, lb, 
A = itSlA is cross-section area, in.^, and 
J = 7td^/32 is the polar second moment of inertia, in in.^. 
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FIGURE n.7.3 Helical compression spring. 

The shear stress expressed in Eq. (II.7.8) can be rewritten as 

SFD 
r=Ks 

7td^ 

where Kg is the shear stress multipUcation factor 

2 C + 1 
K,= 

IC 

D 

(II.7.9) 

(IL7.10) 

The spring index C = — is in the range 6 to 12. 
d 

Curvature Effect 
The curvature of the wire increases the stress on the inside of the spring and decreases it 
on the outside. The stress equation is a function of the factor Ks which can be replaced by 
a correction factor KB or K^; 

SFD SFD 
T=KB—-^, or T=K^^-^, 

7td^ nd^ 

where KB is called the Bergstrasser factor (preferred factor), 

4C + 2 
KB = 

and K^ is the Wahl factor and is given by 

4 C - 3 

AC - 1 0.615 

"" AC-A C 

(II.7.11) 

(11.7.12) 

(II.7.13) 

Mechanical Springs 727 



The factor KB or Ky^ corrects both curvature and direct shear effects. The effect of the 
curvature alone is defined by the curvature correction factor Kc, which can be obtained as 

KB 
Kc = -f . (II.7.14) 

Deflection, 8 
The deflection-force relations are obtained using CastigHano's theorem. The total strain 
energy for a helical spring is 

where 

Ut = Z7TT. (n.7.16) 
2GJ 

is the torsional component of the energy, and 

Us = , (II.7.17) 
' TAG ^ ^ 

is the shear component of the energy. The spring load is F, the torsion torque is T, the 
length of the wire is /, the second moment of inertia is / , the cross-section area of the wire 
is A, and the modulus of rigidity is G. 

Substituting T = FD/2, I = nDN, J = Ttd^m, and A = 7t(flA in Eq. (II.7.15), one 
may obtain the total strain energy as 

4F^D^N IF^DN 

where N = Na is the number of active coils. 
Applying Castigliano's theorem, the deflection of the helical spring is 

dU SFD^N 4FDN 

Using the spring index C = Did, the deflection becomes 
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Spring Rate 
The general relationship between force and deflection can be written as 

F = F(8). 

The spring rate is then defined as 

,. AF dF 
k(8) = lim = — , 

A8^o AS dS 

(11.7.21) 

(II.7.22) 

where 8 must be measured in the direction of the load F and at the point of application of F. 
Because most of the force-deflection equations that treat the springs are linear, k is constant 
and is named the spring constant. For this reason Eq. (II.7.22) may be written as 

k=-. (II.7.23) 
8 

From Eq. (II.7.20), with the substitution C = Did, the spring rate for a helical spring under 
an axial load is 

k = 
Gd"^ Gd 

(II.7.24) 
%D^N SC^N' 

For springs in parallel having individual spring rates, kt [Fig. 11.7.4(a)], the spring rate k is 

k = ki-\-k2-\-k3. (II.7.25) 

For springs in series, with individual spring rates, ki [Fig. 11.7.4(b)], the spring rate k is 

1 
k = 

1 1 1 
ki k2 ks 

(II.7.26) 

(a) 

FIGURE IL7.4 (a) Springs in parallel; (b) springs in series. 

(b) 
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Spring Ends 
For helical springs the ends can be specified as shown in Figure II.7.5: (a) plain ends; (b) 
plain and ground ends; (c) squared ends; (d) squared and ground ends. A spring with plain 
ends [Fig. IL7.5(a)], has a noninterrupted helicoid and the ends are the same as if a long 
spring had been cut into sections. A spring with plain and ground ends [Fig. 11.7.5(b)], 
or squared ends [Fig. 11.7.5(c)], is obtained by deforming the ends to a zero-degree helix 
angle. Springs should always be both squared and ground [Fig. 11.7.5(d)], because a better 
transfer of the load is obtained. Table II.7.2 presents the type of ends and how that affects 
the number of coils and the spring length. In Table II.7.2, Â^ is the number of active coils, 
and d is the wire diameter. 

(a) (b) 

(c) (d) 

FIGURE 11.7.5 Helical springs: (a) plain ends; (b) plain and ground ends; (c) squared ends; 
(d) squared and ground ends. 
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TABLE II.7.2 Type of Spring Ends 

Term 
End coils, Total coil, 

Nt 

Free length, 

Lo 

Solid length, 

Ls 

Pitch, 

P 

Plain 

Plain and ground 

Squared or closed 

Squared and ground 

0 

1 

2 

2 

Na 

Na + l 

Na+2 

Na+2 

pNa+d 

piNa + 1) 

pNa + 3d 

pNa + 2d 

d{Nt + 1) 

dNt 

d(Nt + 1) 

dNt 

(Lo - d)/Na 

LoKNa + 1) 

(Lo - 3d)/Na 

{Lo-2d)/Na 

Source: Barnes Group, Inc., Design Handbook, Barnes Group, Inc., Bristol, Conn., 1981. Reprinted with 
permission. 

Stability 
The springs in compression will buckle when the deflection is too large. Figure II.7.6 gives 
the stability zones for two end conditions. 

0.75 

0.7 h 

0.65 

0.6 H 

0.55 h 

0.5 

0.45 

0.4 [-

0.35 [-

0.3 h 

0.25 

0.2 

0.15 

0.1 h 

0.05 

n r 1 r 

Unstable 

Stable 

_L 
3 4 5 6 7 8 9 10 11 

Ratio, free length-mean diameter 

A-end plates are constrained parallel 

B-one end plate is free to tip 

Source: R. C. Juvinall and K. M. Marshek, Fundamentals of Machine 
Component Design, 3rd ed., John Wiley k Sons, New York, 2000. 

FIGURE n.7.6 Stability zone for springs in compression. Reprinted with permission of John Wiley 
& Sons, Inc. 
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11.7.4 Torsion Springs 
The helical torsion springs (Fig. IL7.7) are used in door hinges, automobile starters, and for 
any application where torque is required. Torsion springs are of two general types: helical 
[Fig. 11.7.8(a)] and spiral [Fig. 11.7.8(b)]. The primary stress in torsion springs is bending. 
The bending moment Fa is applied to each end of the wire. The highest stress acting inside 
of the wire is 

KiMc 
Oi = (II.7.27) 

where the factor for inner surface stress concentration Ki is given in Figure II.7.9, and / is 
the moment of inertia. The distance from the neutral axis to the extreme fiber for a round 
solid bar is c = d/2, and for a rectangular bar it is c = h/2. 

For a solid round bar section / = 7td^/64, and for a rectangular bar / = bh^lXl. 
Substituting the product Fa for bending moment and the equations for section properties of 
round and rectangular wire one may write, 

• Round wire: 

7td^ _ 32Fa 
^i — ^^i.round' 

7t d^ 
(II.7.28) 

Rectangular wire: 

I _bh^ _6Fa 
(II.7.29) 

The angular deflection of a beam subjected to bending is 

ML 
(11.7.30) 

where M is the bending moment, L the beam length, E the modulus of elasticity, and / the 
momentum of inertia. 

Single torsion 

FIGURE IL7.7 Helical torsion springs. 

Double torsion 
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(b) 

FIGURE 11.7.8 Torsion springs: (a) lielical and (b) spiral. 

Equation (II.7.30) can be used for helical and spiral torsion springs. Helical torsion 
springs and spiral springs can be made from thin rectangular wire. Round wire is often used 
in noncritical applications. 

.7.5 Torsion Bar Spring 
The torsion bar spring, shown in Figure II.7.10, is used in automotive suspension. The 
stress, angular deflection, and spring rate equation are 

Tr 

JG 

k = 
JG 

T' 

(II.7.31) 

(II.7.32) 

(II.7.33) 

where T is the torque, r = dll is the bar radius, / is the length of the spring, G is the 
modulus of rigidity, and / is the second polar moment of area. 
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Source: A.M. Wahl, Mechanical Springs, McGraw-Hill, New York, 1963. 

FIGURE n.7.9 Stress concentration factor. Reprinted with permission of McGraw-Hill. 

For a solid round section, J is 

For a solid rectangular section 

/ = 
32 

/ = 
~\2 

For solid round rod of diameter d, Eqs. (II.7.31), (II.7.32), and (IL7.33), become 

\6T 
X = 

k = 

7Td^' 

32TI 

Ttd^G' 

nd'^G 

32/ * 

(11.7.34) 

(11.7.35) 

(II.7.36) 

(II.7.37) 

(n.7.38) 
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Fixed end 

(a) Torsion bar 
with splined ends 

(b) Rod with bent ends serving 
as torsion bar spring 

FIGURE II.7.10 Torsion bar spring. 

11.7.6 Multi-Leaf Spring 
The multi-leaf spring can be a simple cantilever [Fig. 11.7.11(a)], or the semi-elliptic leaf 
[Fig. IL7.11(b)]. The design of the multi-leaf springs is based on force, F, length, L, 
deflection, and stress relationships. The multi-leaf spring may be considered as a triangu-
lar plate [Fig. 11.7.12(a)], cut into n strips of width b, or stacked in a graduated manner 
[Fig. 11.7.12(b)]. 

To support transverse shear Â^ more extra full-length leaves are added on the graduated 
stack, as shown in Figure II.7.13. The number Â^ is always one less than the total number 
of full-length leaves, Â . 

(a) (b) 

FIGURE II.7.11 Multi-leaf spring: (a) simple cantilever and (b) semi-elliptic. 
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' \ 

^t *- 1 
(b) 

FIGURE 11.7.12 Multi-leaf spring considered as a triangular plate. 

b 
4 * 

Extra full leaf (leaves),A^g 

FIGURE 11.7.13 Multi-leaf spring: extra full-length leaves. 
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FIGURE 11.7.14 Multi-leaf spring: gap between the extra full-length leaves. 

The pre-stressed leaves have a different radius of curvature than the graduated leaves. 
This will leave a gap h between the extra full-length leaves and the graduated leaves before 
assembly (Fig. II.7.14). 

Bending Stress, oe 
The bending stress in the extra full-length leaves installed without initial pre-stress is 

18FL 

bfiONe + lNgY 
(II.7.39) 

where F is the total applied load at the end of the spring (lb), L is the length of the cantilever 
or half the length of the semi-elliptic spring (in.), b is the width of each spring leaf (in.), t 
is the thickness of each spring leaf (in.), Ne is the number of extra full length leaves, and 
Ng is the number of graduated leaves. 

Bending Stress, og 
For graduated leaves assembled with extra full-length leaves without initial pre-stress, the 
bending stress is 

UFL lOo 

bfiONe^lNg) 3 
(II.7.40) 

Deflection of a Multi-leaf Spring, 5 
The deflection of a multi-leaf spring with graduated and extra full-length leaves is 

12F/3 

bt^E(3Ne + 2Ngy 
(II.7.41) 

where E is the modulus of elasticity (psi). 
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Bending Stress, a 
The bending stress of multi-leaf springs without extra leaves or with extra full-length pre-
stressed leaves which have the same stress after the full load has been applied is 

a = 
6FI 

Nbfi' 
(IL7.42) 

where Â  is the total number of leaves. 

Gap 
The gap between pre-assembled graduated leaves and extra full-length leaves (Fig. II.7.14) is 

2FL^ 
h. 

NbfiE' 
(II.7.43) 

11.7.7 Belleville Springs 
The Belleville springs are made from tapered washers [Fig. 11.7.15(a)] stacked in series, 
parallel, or a combination of parallel-series, as shown in Figure 11.7.15(b). The load-
deflection and stress-deflection are 

E8 

(1 - /x2) {dollfM 

E8 

(1 - /x2) {do/2)^M 

[(h - 8/2)(h - 8)t-\-n, 

[Ci(h - 8/2)-\-C2tl 

(II.7.44) 

(II.7.45) 

where F is the axial load (lb), 8 is the deflection (in.), t is the thickness of the washer (in.), 
h, is the free height minus thickness (in.), E is the modulus of elasticity (psi), a is the stress 
at inside circumference (psi), do is the outside diameter of washer (in.), di is the inside 
diameter of washer (in.) and /x is the Poisson's ratio. The constants M, Ci, and C2 are given 
by the equations 

M = 

Ci = 

r^ — 

6 
7t loge(do/di) 

6 

7t loge(do/di) 

6 

rdo/di-l\^ 
V do/di J ' 

do/di - 1 

logeidoldi) 

do/di — 1 

n logeidoldi) 

11.7.8 Elastic Potential Energy and Virtual Work 
A particle in static equilibrium position is considered. The static equilibrium position of 
the particle is determined by the forces that act on it. The virtual displacement, 8Y, is any 
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Series 

FIGURE n.7.15 Belleville springs. 

Parallel 

(b) 

Parallel-Series 

arbitrary small displacement away from this natural position and consistent with the system 
constraints. The term virtual is used to indicate that the displacement does not really exist 
but only is assumed to exist. The virtual work is the work done by any force F acting on 
the particle during the virtual displacement 8r: 

8U =::¥-8r = F8r cosa, 

where a is the angle between F and 8r (\8r\ = 8r). The actual infinitesimal change in 
position dr can be integrated and the infinitesimal virtual or assumed movement 8r cannot 
be integrated. Mathematically, both quantities are first-order differentials. A virtual dis-
placement may also be a rotation 80 of a body. The virtual work done by a couple M during 
a virtual angular displacement 80 is 8U — M 80. The force F or couple M remain constant 
during any infinitesimal virtual displacement. 
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Consider a particle in equilibrium position as a result of the forces Fi, F2 , . . . , F„. For 
an assumed virtual displacement 8r of the particle away from its equilibrium position, the 
total virtual work done on the particle is 

8U = 'E¥-8r = "EF^ 8x + "EFy 8y + EF, 8z = 0. 

The sum is zero, since EF = 0. The equation 8U = 0 is therefore an alternative statement of 
the equilibrium conditions for a particle. This condition of zero virtual work for equilibrium 
is both necessary and sufficient. 

The principle of virtual work for a single particle can be extended to a rigid body treated 
as a system of small elements or particles rigidly attached to one another. Because the virtual 
work done on each particle of the body in equilibrium is zero, it results that the virtual work 
done on the entire rigid body is zero. 

All the internal forces appear in pairs of equal, opposite, and coUinear forces, and the 
net work done by these forces during any movement is zero. Only the virtual work done by 
external forces are taken into account in the evaluation of 51/ = 0 for the entire body. 

The principle of virtual work will be extended to the equilibrium of an interconnected 
ideal system of rigid bodies. The ideal systems are systems composed of two or more rigid 
bodies linked together by mechanical connections which are incapable of absorbing energy 
through elongation or compression, and in which friction is small enough to be neglected. 
There are two types of forces that act in such an interconnected system: 

• Active forces are external forces capable of doing virtual work during possible virtual 
displacements. 

• Joint forces are forces in the connections between members. During any possible 
movement of the system or its parts, the net work done by the joint forces at the 
connections is zero, because the joint forces always exist in pairs of equal and opposite 
forces. 

Principle of Virtual Work: The work done by external active forces on an ideal mechani-
cal system in equilibrium is zero for any and all virtual displacements consistent with the 
constraints. 

Mathematically, the principle can be expressed as 

8U = 0. (II.7.46) 

The advantage of the method of virtual work is that relations between the active forces 
can be determined directly without reference to the joint forces. The method is useful in 
determining the position of equilibrium of a system under known forces. The method of 
virtual work cannot be applied for the system where the internal friction in a mechanical 
system is appreciable (the work done by internal friction should be included). 

Elastic Potential Energy 
The work done on an elastic body is stored in the body in the form of elastic potential 
energy, V .̂ The potential energy is available to do work on some other body during the 
compression or extension. A spring can store and release potential energy. Consider a spring 
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that is being compressed by a force F. The spring is elastic and linear, and the force F is 
directly proportional to the deflection x: 

F = kx, 

where k is the spring constant or stiffness of the spring. The work done on the spring by 
F during dx is 

dU = Fdx. 

The elastic potential energy of the spring for a compression x is the total work done on the 
spring: 

Ve = I F dx = I kxdx = -kx . 
Jo Jo 2 

For an increase in the compression of the spring from xi to X2, the work done on the spring 
equals its change in elastic potential energy: 

rx2 I 
AVe = I kxdx = -k{x2 — x^). 

Jx] ^ 

During a virtual displacement hx of the spring, the virtual work done on the spring is the 
virtual change in elastic potential energy: 

hYe = F 8x = kx8x. 

When the spring is in tension rather than compression, the work and energy relations are 
the same as those for compression, where x represents the elongation of the spring rather 
than its compression. 

A torsional spring resists the rotation of a shaft or another body and the resisting moment is 

M = KO, 

where K is the torsional stiffness. The potential energy becomes 

Ve= KOdO = -KO^, 
Jo 2 ' 

which is analogous to the expression for the linear extension spring. 
The units of elastic potential energy are the same as those of work and are expressed in 

joules (J) in SI units and in foot-pounds (ft.-lb) in U.S. customary units. 
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Gravitational Potential Energy 
For an upward displacement 8h of a. body, the weight W = mg does negative work, 
8U = —mg 8h. If the body has a downward displacement 8h the weight does positive work, 
8U = -\-mg 8h. The gravitational potential energy Vg of a body is defined as the work done 
on the body by a force equal and opposite to the weight in bringing the body to the position 
under consideration from some arbitrary datum plane where the potential energy is defined 
to be zero. The potential energy is the negative of the work done by the weight. If Vg = 0 at 
h = 0 (datum plane), then at a height h above the datum plane, the gravitational potential 
energy of the body is V̂  = mgh. If the body is a distance h below the datum plane, its 
gravitational potential energy is —mgh. 

Remarks 
(1) The datum plane for zero potential energy is arbitrary because only the change in 

potential energy matters, and this change is the same no matter where the datum 
plane is located. 

(2) The gravitational potential energy is independent of the path followed in arriving at 
a particular level h. 

The virtual change in gravitational potential energy is 

8Vg = mg8h, 

where 8h is the upward virtual displacement of the mass center of the body. The units of 
gravitational potential energy are the same as those for work and elastic potential energy, 
joules (J) in SI units and foot-pounds (ft.-lb) in U.S. customary units. 

Consider a linear spring attached to a body of mass m. The work done by the linear 
spring on the body is the negative of the change in the elastic potential energy of the spring. 
The work done by the gravitational force or weight mg is the negative of the change in 
gravitational potential energy. 

The total virtual work 8U is the sum of the work 8U^ done by all active forces (other 
than spring forces and weight forces) and the work —(8Ve-\- 8Vg) done by the spring and 
weight forces. The virtual work equation 8U = 0 becomes 

8U' - (8Ve + 8Vg) = 0, or 8U' = 8V, (II.7.47) 

where y = V̂  + Vg is the total potential energy of the system. 
Thus, for a mechanical system with elastic members and bodies which undergo changes 

in position the principle of virtual work is: 

For a mechanical system in equilibrium the virtual work done by all external forces (other 
than the gravitational and spring forces) equals the change in the elastic and potential energy 
of the system for any virtual displacements consistent with the constraints. 
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stability of Equilibrium 
Consider a mechanical system where no work is done on the system by nonpotential forces. 
With 8U^ = 0, the virtual work relation becomes 

S(Ve + Vg) == 0, or 8V = 0. (II.7.48) 

Equation (11.7.48) expresses that the equilibrium configuration of a mechanical system is 
one for which the total potential energy V of the system has a stationary value. 

For a system of one degree of freedom where the potential energy and its derivatives are 
continuous functions of the single variable, x describes the configuration the equilibrium 
condition (5y = 0 is equivalent mathematically to 

dV 
— =0. (II.7.49) 
dx 

Equation (II.7.49) states that a mechanical system is in equilibrium when the derivative of 
its total potential energy is zero. For systems with several degrees of freedom, the partial 
derivative of V with respect to each coordinate in turn must be zero for equilibrium. 

There are three conditions under which Eq. (II.7.49) applies: 

• the total potential energy is a minimum (stable equilibrium) 
• the total potential energy is a maximum (unstable equilibrium) 
• the total potential energy is constant (neutral equilibrium). 

When a function and its derivatives are continuous, the second derivative is positive at a 
point of minimum value of the function and negative at a point of maximum value of the 
function. Thus, the mathematical conditions for equilibrium and stability of a system with 
a single degree of freedom x are: 

dV d^V d^V 
equilibrium: — = 0; stable: —^ > 0; unstable: — ^ < 0. 

dx dx^ dx^ 

11.7.9 Examples 

EXAMPLE 11.7.1: 

A hardened and oil-tempered steel wire is used for a helical compression spring. 
The wire diameter is J = 0.105 in., and the outside diameter of the spring is Do = 
1.225 in. The ends are plain and the number of total turns is Â^ = 8. Find: (a) the 
torsional yield strength; (b) the static load corresponding to the yield strength; (c) 
the rate of the spring; (d) the deflection that would be caused by the static load found 
in part (b); (e) the solid length of the spring; (f) the length of the spring so that no 
permanent change of the free length occurs when the spring is compressed solid and 
then released; (g) the pitch of the spring for the free length, and (h) the stability of 
the spring. 

Continued 
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EXAMPLE 11.7.1: Cont'd 

Solution 

(a) From Eq. (II.7.4), the torsional yield strength for hardened and tempered 
carbon and low-alloy steel is 

Ssy = O.SOSut. 

The minimum tensile strength given from Eq. (II.7.1) is 

s - A 

where, from Table II.7.1, the constant A = 146 kpsi and the exponent 
m = 0.193. 

The minimum tensile strength is 

A 146 

^- = J^ = (5155)0193 = 225.561 kpsi. 

The torsional yield strength is 

Ssy = 0.50 Sut = 0.50(225.561) = 112.78 kpsi. 

(b) To calculate the static load F corresponding to the yield strength it is 
necessary to find the spring index, C, and the shear stress correction factor, 
Ks. The mean diameter D is the difference between the outside diameter and 
the wire diameter d: 

D = Do-d= 1.225 - 0.105 = 1.12 in. 

The spring index is 

D 1.12 
C=- = —— = 10.666 

d 0.105 

From Eq. (II.7.10), the shear stress correction factor is 

2 C + 1 2(10.666) + ! ^ ^^^ 
Ks = = = 1.046. 

2C 2(10.666) 

Using the torsional yield strength instead of shear stress, Eq. (IL7.8) gives 
the static load: 

Ttd^Ssy ^ 7t (0.1053) (ii2.78)(103) ^ 

^KsD 8 (1.046) (1.12) 
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EXAMPLE 11.7.1: Cont'd 

(c) From Table II.7.2, the number of active coils is Na = Nt = 8. For N = Na, 
the spring rate is calculated using Eq. (11.7.24): 

Gd (11.5)(10^) (0.105) . - ^ . . , , , . 
k = —^— = ^ = 15.546 Ib/m, 

SC^Na 8 (10.6663) (8) 

where G = 11.5 Mpsi. 
(d) The deflection of the spring is 

^ F A3.126 ^ ^ _ . 
5 = - = = 2.812 in. 

k 15.546 

(e) The solid length, L ,̂ is calculated using Table II.7.2: 

Ls = d (Nt + 1) = 0.105 (8 + 1) = 0.945 in. 

(f) The free length of the spring is the solid length plus the deflection caused by 
the load, 

Lo = 5 + L, = 2.812 + 0.945 = 3.757 in. 

(g) From Table II.7.2 the pitch, p, is calculated with the relation 

Lo-d 3.757-0.105 ^^^^ . 
p = = = 0.456 m. 

(h) Buckling is checked for the worst case of deflection: 

8 2.812 ^ ^ _ , 8 2.812 ^^^^ 
— = = 0.748 and - = = 2.511. 
Lo 3.757 D 1.12 

Reference to Figure II.7.6 indicates that this spring is outside the buckling 
region, even if one end plate is free to tip. 

EXAMPLE 11.7.2: 

In a vertical plane two uniform links, each of mass m and length /, are connected 
and constrained as shown in Figure 11.7.16(a). The spring is not stretched when the 
links are horizontal (0 = 0). The angle 0 increases with the application of the known 
horizontal force F, Determine the spring stiffness k which will produce equilibrium 
at a given angled. 

Continued 
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EXAMPLE 11.7.2: Cont'd 

(b) 

FIGURE M.7.16 (a) Mechanism and (b) force diagram for Example 11.7.2. 

Solution The ideal mechanical system has one degree of freedom.The displacement 
of every link can be expressed in term of the angle 0. 

The spring deflection is 

x = 2l-2l cosO = 2/(1 -cos6>). 

The force diagram is shown in Figure 11.7.16(b). The joint forces are not included in 
the diagram. The elastic potential energy of the spring is 

Ve = -kx^ = 2kl^(l-C0Sef. 

The virtual change in elastic potential energy is 

8Ve = 8\2kf(l-cosOf'\ =2kl^8(l-cos0f = 4kfi(l-cos0) sinOSO. 
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EXAMPLE 11.7.2: Conrd 

The gravitational potential energy is 

[^sme^=-r. Vg = —2mgh = —2mg I - sin^ j = —mgl sin9. 

The datum for zero gravitational potential energy was taken through the support at 
A. The virtual change in gravitational potential energy is 

SVg = 8(—mgl sinO) = —mgl cos089. 

The virtual work done by the active external force F is 

8U' = F8 = F8[2l(l - cos9)] = 2F 18(1 - cos9) = 2FI sm989. 

The virtual work equation 8U^ = 8Ve + 8Vg gives 

2FI sm9 89 =4kfi(l -cos9) sm9 89 - mgl cos9 89. 

The stiffness of the spring is 

F sm9 ^mg cos9 
k = 

2k(l-cos9) sm9 

EXAMPLE 11.7.3: 
Figure 11.7.17 shows a uniform bar of mass m and length / that sHdes freely in the 
vertical and horizontal directions. The spring has the stiffness k and is not compressed 
when the bar is vertical. Find the equilibrium positions and examine the stability. 
There are no external active forces. 

Solution The ideal mechanical system has one degree of freedom and the displace-
ment of the bar can be expressed in terms of the angle 9. The spring is undeformed 
when ^ = 0. The datum for zero gravitational potential energy is the horizontal 
X-axis. The spring deflection is 

y z=z I — I cos9 = /(I — cos^). 

The elastic potential energy of the spring is 

Ve = -ky^ = -kl^(l-cos9f. 

Continued 
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EXAMPLE IL7.3: Cont'd 

FIGURE 11.7.17 Mechanism for Example 11.7.3. 

The gravitational potential energy is 

/ / \ 1 
Vg = mgh = mg I - cos^ I = -mgl cosO. 

The total potential energy is 

1 9 9 1 

V = Ve-\-Vg = -kr(l -cosOy-\--mglcosO. 

The equilibrium position is obtained by differentiating the total potential energy and 
setting it to zero 

dV /2 1 n\ ' n ^^^Sin^ ^ =y^/^(l-cos(9)sin6>- l l^ l i r i : ! =/sin6> [î /Cl - cos6>) - — 1 = 0 . 
dO 2 L 2 J 
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EXAMPLE 11.7.3: Cont'd 

The two solutions to this equation are the equilibrium positions: 

mg 
sin ̂  = 0 and cos 0 = 1 . 

2kl 

The sign of the second derivative of the potential energy for each of the two equilib-
rium positions will determine the stability of the system. The second derivative of 
the total potential energy is 

d V 0 0 o tnsl cos 0 
— ^ = kfisin^O-^kl^l - cos^)cos^ - - ^ . 
dO^ 2 

Solution 1: sinO =0,0 = 0 =^ 

d^V 0 msl msl 

Equilibrium for ^ = 0 is never stable. 
mg 

Solution 2: cos 0 = 1 =^ 
2kl 

d^V 
mg V 4k J dO^ ^ V 4k 

For k > mg/(4k) = ^ d^V/dO^ > 0 the equilibrium position is stable. 
For k < mg/(4k) ==^ d^VldO^ < 0 the equilibrium position is unstable. 

IL7.10 Problems 
11.7.1 A helical compression spring is made of hard-drawn spring steel. The wire diameter 

is 2 mm and the outside diameter is 24 mm. There are 9 total coils. The ends are 
plain and ground. Determine: (a) the free length when the spring is compressed 
solid and the stress is not greater than the yield strength; (b) the force needed to 
compress the spring to its solid length; (c) the rate of the spring; (d) the stability 
of the spring. 

11.7.2 A helical compression spring with squared and ground ends has an outside diameter 
of 1 in. and a wire diameter of 0.074 in. The solid length is 0.9 in. and the free 
length is 3 in. Find the spring rate and the approximate load at the solid length. 

11.7.3 A helical compression spring has squared and ground ends. A minimum force of 
50 lb is applied to compress the spring and the length cannot exceed 3 in. As the 
force is increased to 120 lb the length is 0.75 in. shorter. The outside diameter of 
the spring is Do = 1.15 in. and the wire diameter is J = 0.157 in. The number of 
total turns is 6.38. The spring material is oil-tempered ASTM 229 wire. Find: (a) 
the torsional yield strength; (b) the static load corresponding to the yield strength; 
(c) the rate of the spring; (d) the deflection that would be caused by the static load 
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found in part (b); (e) the solid length of the spring; (f) the length of the spring so 
that no permanent change of the free length occurs when the spring is compressed 
solid and then released; (g) the pitch of the spring for the free length; and (h) the 
stability of the spring. 

11.7.4 A helical compression spring made of steel with closed ends has an outside 
diameter of 56 mm and a wire diameter of 3 mm. The number of total coils is 13 
and the free length is 100 mm. Find: (a) the spring rate; (b) the force required to 
close the spring to its solid length and the stress due to this force. 

11.7.5 Two bars, 1 and 2, each of mass m and length / are connected and constrained as 
shown in Figure II.7.18. The angle 0 is between the link 1 and the vertical axes. 
The spring of stiffness k is not stretched in the position where ^ = 0. Find the force 
F which will produce equilibrium at the angle 0. 

FIGURE n.7.18 Mechanism for Problem 11.7.5. 

II.7.6 Figure II.7.19 shows a mechanism with two links, 1 and 2. Link 1 has the mass 
mi = m and the length h = I. Link 2 has the mass m2 = 2m and the length 
/2 = 2 /. The spring is unstretched in the position ^ = 0. A known vertical force F 
is applied on link 2 at D. Determine the spring stiffness k which will establish an 
equilibrium at a given angle 9. 
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FIGURE 11.7.19 Mechanism for Problem 117.6. 

IL7.7 For the mechanism shown in Figure IL7.20, link 1 has the mass m\=2m and the 
length l\ =21. Link 2 has the mass m2 = m and the length h = L The spring has 
an unstretched length of LQ. Determine the spring stiffness k for an equilibrium at a 
given angle 6 and a given force F. 

FIGURE 11.7.20 Mechanism for Problem 11.7.7. 

II.7.8 The link BC shown in Figure II.7.21 has a mass m and is connected to two springs 
(AB = BC = I). Each spring has the stiffness k and the unstretched length of the 
two springs is LQ. Determine the spring stiffness k which will establish an 
equilibrium at a given angle 0. Use the following numerical application: 
l = Lo = 300 mm, m = 10 kg, and 0 = 60°. 
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FiGURE n.7.21 Problem 11.7.8. 

IL7.9 The mechanism shown in Figure 11.7.22 has the link BC with the mass m and the 
length / (AB = AC = 1/2). The spring has the stiffness k and is unstretched when 
^ = 0. Find the equilibrium value for the coordinate 0. Use the following 
numerical application: / = 400 nmi, m = 10 kg, F = 70 N, and A: = 1.8 kN/m. 

FrCURE IL7.22 Mechanism for Problem 11.7.9. 

II.7.10 The link of mass m and length / is connected to two identical horizontal springs, 
each of stiffness k, as shown in Figure II.7.23. The initial spring compression at 
0 =Oisd. For a stable equilibrium position at ̂  = 0 find the minimum value of k. 
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FIGURE 11.7.23 Problem 11.7.10. 

FIGURE 11.7.24 Mechanism for Problem 11.7.11. 
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11.7.11 The mechanism shown in Figure II.7.24 has two identical links, 1 and 2, each of 
length / and negligible mass compared with the mass m of the slider 3. The two 
light links have a torsion spring at their common joint. The moment developed by 
the torsion spring is M = ^ ^, where 0 is the relative angle between the links at the 
joint. Determine the minimum value of K that will ensure the stability of the 
mechanism for ^ = 0. 

11.7.12 Figure II.7.25 shows a four-bar mechanism with AD = I. Each of the links has the 
mass m (mi = m2 = m^ = m) and the length / (/i = I2 = I3 = /). At 5 a vertical 
force F acts on the mechanism and the spring stiffness is k. The motion is in the 
vertical plane. Find the equilibrium angle 0. Use the following numerical 
application: / = 15 in., m = 10 lb, F = 90 lb, and A: = 15 lb/in. 

FIGURE n.7.25 Mechanism for Problem IL7.12. 
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11.8 Disk Friction and Flexible Belts 

11.8.1 Disk Friction 
The sliding surfaces are present in most machine components (bearings, gears, cams, etc.) 
and it is desirable to minimize the friction in order to reduce energy loss and wear. In 
contrast, clutches and brakes depend on friction in order to function. The function of a 
clutch is to permit smooth, gradual connection and disconnection of two elements having 
a common axis of rotation. A brake acts similarly except that one of the elements is fixed. 

In pivot bearings, clutch plates, and disk brakes there is friction between circular surfaces 
under distributed normal pressure. Two flat circular disks are considered in Figure II.8.1. 
The figure shows a simple disk clutch with one driving and one driven surface. Driving 
friction between the two develops when they are forced together. The disks can be brought 
into contact under an axial force P. The maximum moment that this clutch can transmit is 
equal to the moment M required to slip one disk against the other. The elemental frictional 
force acting on an elemental area is 

dFf = jjipdA, 

where p is the normal pressure at any location between the plates, fx is the coefficient of 
friction, and dA = rdr dO is the area of the element. 

The moment of this elemental friction force about the shaft axis is 

dM = fiprdA, 

and the total moment is 

M = j I /jiprdA, 

where the integral is evaluated over the area of the disk. 
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FIGURE 11.8.1 Simple disk clutch. 

The coefficient of friction, /x, is assumed to be constant. If the disk surfaces are new, 
flat, and well supported it is assumed that the pressure p is uniform over the entire surface 
so that 

P = nR^p. 

The total frictional moment becomes 

HP 
M 

J J "^TtR^ TtR^Jo Jo 
r^drde = -^iPR, 

3 
(IL8.1) 

The total moment is equal to a friction force /x P acting at a distance 2RI?> from the shaft 
center. If the friction disks are rings, as shown in Figure II.8.2, the frictional moment is 

M •" ^^ Jo IR, 

In pRo 2 Rl~R^ 
r^drdO = -iiP—, ^, 

2> Rl~R} 
(II.8.2) 

where RQ and Ri are the inside and outside radii. 
It is reasonable to assume that after the initial wearing-in period is over, the surfaces 

retain their new relative shape and further wear is therefore constant over the surface. This 
wear depends on both the pressure/? and the circumferential distance traveled. The distance 
traveled is proportional to r. Therefore the following expression may be written: 

rp = K, 

where A' is a constant that is determined from the equilibrium condition for the axial forces 

In pR 

/

pin pK 
pdA = K\ / drdO = 27tKR. 

Jo Jo 
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FIGURE 11.8.2 Disk clutch with ring friction disks. 

The constant K is 

K=: 
ITTR 

Withpr = P/(27t R), the frictional moment is 

In pR 
M =fh''''^=^Rri fjLprdA = ^ ^ I I rdrde = -iiPR. (11.8.3) 

InRJo Jo 2 

The frictional moment for wom-in plates is, therefore, only (1/2)7(2/3) = 3/4, as much as 
for new surfaces. If the friction disks are rings of inside radius Ri and outside radius Ro, the 
frictional moment for wom-in surfaces is 

M=^fiP(Ro^Ri). (II.8.4) 

Actual clutches employ N friction interfaces transmitting torque in parallel. The number of 
friction interfaces Â  is an even number. For a clutch with N friction interfaces, Eq. (II.8.4) 
is modified to give 

M=^fiP(Ro+Ri)N. (II.8.5) 

The ratio of inside to outside radius is a parameter in the design of clutches. The maximum 
moment for a given outside radius is obtained when [7] 

Ri=Royl^=0.5SRo, (II.8.6) 

and the proportions commonly used range from Rt = 0.45 RQ to Ri = O.SORQ. 
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Disk clutches can be designed to operate either "dry" or "wet" with oil. Most multiple-
disk clutches, including those used in automotive automatic transmissions, operate wet. 

11.8.2 Flexible Belts 
In the design of belt drives and band brakes the impending slippage of flexible cables, belts, 
and ropes over sheaves and drums is important. Figure 11.8.3(a) shows a drum subjected to 
the two-belt tensions Ti and T2, the moment M necessary to prevent rotation, and a bearing 
reaction R. 

Figure 11.8.3(b) shows the free-body diagram of an element of the belt of length rdO. 
The forces acting on the differential element are calculated using the equilibrium of the 
element. The tension increases from T at the angle 0 to T -\- dT at the angle 0 -\- dO. The 
normal force which acts on the differential element of area is a differential dN. The friction 
force, /x dN, is impending motion and acts on the belt in a direction to oppose slipping. 

The equation for the equilibrium of forces in the ^direction gives. 

dO dO 
r cos — + /zJA^ = ( J + dT) cos — 

2 2 
or /x dN = dT, (II.8.7) 

(a) 
(b) 

FIGURE IL8.3 (a) Drum subjected to belt tensions; (b) free-body diagram of an element of the 
belt; (c) V-belt of angle p. 
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where the cosine of the differential quantity is unity in the Hmit (cos dOI2 ~ 1). 
Equilibrium of forces in the n-direction gives 

dO dO 
dN = (T-^ dT) sin —- + r sin —- ox dN = TdO, (IL8.8) 

where the sine of the differential angle is the angle in the limit (sin dO/2 ^ dO/2) and 
the product of two differentials is neglected in the limit compared with the first-order 
differentials (<irJ6' ^ 0 ) . 

The two equilibrium relations Eqs. (II.8.7), (U.S.8) give 

and integrating between corresponding limits T\ and T2 [with M in the direction shown in 
Fig. 11.8.3(a) = ^ 72 > r i ] : 

1*̂2 dT _ /"̂  

JTx T Jo 

,T2 dT C^ ^ ^ T2 
lidO or In — = jJicj), 

T\ 

where 0 is the total angle of belt contact expressed in radians. 
The tension T2 is 

T2 = Tie^'^. (II.8.9) 

If a rope were wrapped around a drum n times, the total angle of belt contact is 

(/) = 27t n. 

Equation (II.8.9) also applies to belt drives where both the belt and the pulley are rotating at 
constant speed and describes the ratio of belt tensions for impending slippage (or slippage). 

The centrifugal force acting on a flat belt creates a tension of [7]: 

Tc = m'V^ = m' 0? r^ (11.8.10) 

where m' is the mass per unit length of belt, V is the belt speed, and r is the pulley radius. 
Equation (II.8.9) becomes 

T2 

Ti-Tc 
(11.8.11) 

The centrifugal force tends to reduce the angles of wrap 0. 
For a V-belt of angle ^ [see Fig. 11.8.3(c)], Eq. (II.8.11) becomes 

^2 ~- Tc _ a0/siny8 

Ti-Tc 
e^'P'^'^'P. (II.8.12) 
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11.8.3 Examples 

EXAMPLE 11.8.1: 

The automobile disk brake, shown in Figure II.8.4, consists of a flat-faced rotor and 
caHper which contains a disk pad on each side of the rotor. The inside radius is Ri 
and the outside radius is RQ. The forces behind the two pads are equal to P and /x 
is the coefficient of friction. The normal pressure p is uniform distributed over the 
pad. Show that the moment applied to the hub is independent of the angular span a 
of the pads. 

Solution The force acting on the pads is 

P = pA=p r f \drdO = ̂  r(Rl-RJ)dO = ^(Rl-RJ)a. 
Jo jRi ^ Jo ^ 

The moment applied to the hub is 

ra pRo 

M = 2 f fjiprdA = 2fjLp f f \^drdO = ^(Rl-R^)a 
J Jo JRi 3 

2/x 2P 
3 (Rl-Rj)a 

(Rl-Rhct 

2 ^ 

3 

4nPRl-R^ 
3 Rl-Rj' 

The expression of the moment M shows no dependence with the angular span 
a of the pads. The pressure variation with the angle 0 would not change the 
moment M. 

rotor 

FIGURE 11.8.4 Disk brake for Example 11.8.1. 

760 KINEMATIC CHAINS AND MACHINE COMPONENTS DESIGN 



EXAMPLE 11.8.2: 
The basic disk clutch, shown in Figure 11.8.2, has the outside disk diameter of 6 in. 
The kinetic coefficient of friction is 0.3 and the maximum disk allowable pressure is 
100 psi. The disk clutch is designed to transmit a moment of 400 Ibin. Determine 
the appropriate value of the inside diameter and the clamping force. 

Solution The maximum moment for a given outside radius is obtained from 
Eq. (II.8.6): 

Ri = 0,5SRo = 0.58 (3) = 1.74 in. 

The greatest pressure occurs at the inside radius. The design of a clutch of inside 
radius Ri and allowable pressure pmax is based on 

pr = K=pmaxRi^ (11.8.13) 

The total moment that can be developed over the entire interface is 

lxprdA= I fji(pr)(27t rdr) = I In iipmax^i^dr 
jRi JRi 

= 7tfjipmaxRiiRl-Rh (n.8.14) 

or 

M = 7t (0.3) (100) (1.74) (3^ - 1.74 )̂ = 979.421 lb • in. 

For Ri = 1.74 in. and pmax = 100 psi, the clutch is overdesigned based on the 
output moment by a factor of 979.421/400 = 2.448. 

Accepting the overdesign, the clamping force is calculated from Eq. (II.8.4) for 
M = 400 Ib-in. as 

2M 2(400) 
P = = !̂  — = 562.588 lb. 

fM(Ri+Ro) 0.3(1.74 + 3) 

EXAMPLE H.8.3: 

Determine the force F on the handle 1 of the differential band brake [Fig. 11.8.5(a)] that 
will prevent the wheel 2 from turning on its shaft. The external moment M = 200 N m 
is applied to the shaft. The coefficient of friction between the band and the wheel 
of radius r = 100 mm is 0.45. The following dimensions are given: / = 500 mm, 
/i = 80 mm, and 6> = 30°. 

Continued 
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EXAMPLE 11.8.3: Cont'd 

(a) 

4 F 

(b) 

FIGURE 11.8.5 (a) Differential band brake for Example 11.8.3; (b) free-body diagrams. 

Solution The free-body diagrams for the handle 1 and the wheel 2 are given in 
Figure IL8.5(b). For the band the tension T2 is given by Eq. (11.8.9): 

T2 = Tie^'^ = Ti e^""'^ = 5.203 Tu (U.S. 15) 

where 0 = 0 -\-7t. 
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EXAMPLE 11.8.3: Cont'd 

For the wheel 2 the sum of the moments with respect to its center C gives 

Y,^c^ =M-r(T2-Ti) = 200 - 0.1 (T2 - Ti) = 0. (11.8.16) 

The tensions Ti and T2 are obtained from Eqs. (II.8.15) and (U.S. 16): 

Ti = 475.791 N and T2 = 2475.79 N. 

For the link 1 the sum of the moments with respect to point O gives 

^M^g^ = rT2-lF -hTi sin6> = 0, 

and the force F is 

rT2-hTi sinO 0.1(2475.79) - 0.08(475.791)sin30° 

/ 0.5 
= 457.095 N. 

EXAMPLE IL8.4: 

A 3000 rpm motor drives a machine through a V-belt with an angle 6̂ = 18° and a 
unit weight of 1.75 N/m (Fig. II.8.6). The pulley on the motor shaft has a 0.1 m pitch 
radius and the angle of wrap is 170°. The maximum belt tension should be limited to 
1000 N and the coefficient of friction is at least 0.3. Find the maximum power that 
can be transmitted by the smaller pulley of the V-belt drive. 

Solution The speed of the belt in m/s is 

Ttdn TT (0.2) (3000) 

60 60 
31.415 m/s, (11.8.17) 

where d = 2r = 2(0.1) = 0.2 m mdn = 3000 rpm. 

FIGURE 11.8.6 V-belt drive for Example 11.8.4. 
Continued 
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EXAMPLE IL8.4: Cont'd 

Equation (II.8.10) gives the tension created by the centrifugal force: 

Tc =m'V^= (0.178—J (31.415-) = 176.063 N, (II.8.18) 

where m' is the mass per unit length of belt: 

, 1.75 N/m 
= 0.178 kg/m. (II.8.19) 

9.81 m/s2 

From Eq. (II.8.12), with Ti = Tmax = 1000 N, the tension Ti is 

Ti-Tc _ ^ ^ ^ ^ 1000-176.063 
T2 = Tc + — - r r ^ = 176.063 + , . * / s M - • ^o.3(no,(i)/si,[i8(^)] 

= 222.292 N. 

The moment on the pulley is 

M = {Ti- T2) r = (1000 - 222.292) (0.1) = 77.770 N • m. (II.8.20) 

The power transmitted by the pulley is 

Mn 77.770(3000) 
H = —— = —f- = 24.433 kW. (II.8.21) 

9549 9549 

EXAMPLE IL8.5: 
A 30 hp, 2000 rpm electric motor drives a machine through a multiple V-belt as shown 
in Figure II.8.7. The belts have an angle ^ = 18° and a unit weight of 0.012 lb/in. 
The pulley on the motor shaft has a diameter of 6 in. and the angle of wrap is 165°. 
The maximum belt tension should be limited to 110 lb and the coefficient of friction 
is at least 0.2. Determine how many belts are required. 

Solution The speed of the belt in m/s is 

60 60 

Equation (II.8.10) gives the tension created by the centrifugal force: 

Tc =m'V^= ( o . 0 0 0 0 3 l i ^ j (628.319—j = 12.260lb, 
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EXAMPLE IL8.5: Cont'd 

FIGURE 11.8.7 V-belt drive for Example 11.8.5. 

where m' is the mass unit length of belt: 

0.012lb/in. ^^^^^. . „ 2,. ? 
m' = z = 0.000031 lb • s^/in^. 

(32.2ft/s2)(12in./ft) 

From Eq. (II.8.12), with Ti = Tmax = HO lb, the tension T2 is 

(II.8.22) 

T2 = Tc+ \,_.\ = 12.260 + 
110-12.260 

= 27All lb. 

The moment on the pulley is 

M = {Ti- 72) J/2 = (110 - 27.417) (6/2) = 247.748 lb • in. 

The power per belt transmitted by the pulley is 

Mn 247.748(2000) 
H = 

5252 5252(12) 
= 7.862 hp/belt. 

Continued 
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EXAMPLE 11.8.5: Cont'd 

The number of belts is 

Â  = 
30 

7^862 
= 3.815, 

and four belts are needed. 

.8.4 Problems 
II.8.1 The circular disk 1 is placed on top of disk 2 as shown in Figure II.8.8. The disk 

2 is on a supporting surface 3. The diameters of 1 and 2 are 10 in. and 14 in., 
respectively. A compressive force of 100 lb acts on disk 1. The coefficient of 
friction between 1 and 2 is 0.30. Determine: (a) the couple that will cause 1 to 
slip on 2; (b) the minimum coefficient of friction between the disk 2 and the 
supporting surface 3 that will prevent 3 from rotating. 

FIGURE II.8.8 Friction disks for Problem 11.8.1. 

11.8.2 A shaft and a hoisting drum are used to raise the 600 kg load at constant speed as 
shown in Figure II.8.9. The diameter of the shaft is 40 mm and the diameter of the 
drum is 300 mm. The drum and shaft together have a mass of 100 kg and the 
coefficient of friction for the bearing is 0.3. Find the torque that must be applied 
to the shaft to raise the load. 

11.8.3 The disks shown in Figure II.8.10 can be brought into contact under an axial force 
P. The pressure/7 between the disks follows the relation/? = k/r, where A: is a 
constant. The coefficient of friction mu is constant over the entire surface. Derive 
the expression for the torque M required to turn the upper disk on the fixed lower 
in therm of P, IJL, and the inside and outside radii RQ and Rf. 

11.8.4 The cable reel in Figure II.8.11 has a mass of 300 kg and a diameter of 600 mm 
and is mounted on a shaft with the diameter d = 2r = 100 mm. The coefficient of 
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FIGURE II.8.9 Hoisting drum for Problem 11.8.2. 
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FIGURE II.8.10 Friction disks for Problem 11.8.3. 

Disk Friction and Flexible Belts 767 



friction between the shaft and its bearing is 0.20. Find the horizontal tension T 
required to turn the reel. 

cable reel 

w 
FIGURE 11.8.11 Cable reel for Problem 11.8.4. 

11.8.5 For the V-belt in Figure 11.8.3(c) derive the expression among the belt tension, 
the angle of contact p, and the coefficient of friction when slipping impends. 

11.8.6 A cable supports a load of 200 kg and is subjected to a force F = 600 N 
which makes with the horizontal axis the angle 0, as shown in Figure 11.8.12. 

FIGURE 11.8.12 Cable support for Problem 11.8.6. 
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The coefficient of friction between the cable and the fixed drum is 0.2. Find the 
minimum value of 0 before the load begins to slip. 

II.8.7 A band brake is shown in Figure II.8.13. The band itself is usually made of steel, 
lined with a woven friction material for flexibility. The drum has a clockwise 
rotation. The width of the band is b, the coefficient of friction is /x, and the angle 
of band contact is (p. Find the brake torque and the corresponding actuating force 
F if the maximum lining pressure is Pmax- Use the following numerical application: 
b = SO mm, r = 300 mm, h = 150 mm, / = 800 mm, 0 = 270°, pmax = 0.6 MPa, 
and /JL = 03. 

b = width of the band 

FIGURE 11.8.13 Band brake for Problem 11.8.7. 

II.8.8 Figure II.8.14 shows a simple band brake operated by an applied force F of 250 N. 
The band is 30 mm wide and is lined with a woven material with a coefficient of 
friction of 0.4. The drum radius is r = 550 mm. Find the angle of wrap 0 necessary 

FIGURE 11.8.14 Simple band brake for Problem 11.8.8. 
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to obtain a brake torque of 900 N m and determine the corresponding maximum 
lining pressure. 

11.8.9 A 25 hp, 1800 rpm electric motor drives a machine through a multiple V-belt 
as shown in Figure II.8.6. The belts have an angle ^ = 18° and a unit weight of 
0.012 lb/in. The pulley on the motor shaft has a diameter of 3.7 in. and the angle 
of wrap is 165°. The maximum belt tension should be limited to 200 lb and the 
coefficient of friction is at least 0.3. Determine how many belts are required. 

II.8.10 A 3500 rpm motor drives a machine through a V-belt with an angle fi = IS° and 
a unit weight of 2.2 N/m (see Fig. II.8.6). The pulley on the motor shaft has a 
180 mm diameter and the angle of wrap is 160°. The maximum belt tension 
should be limited to 1300 N and the coefficient of friction is at least 0.33. Find the 
maximum power that can be transmitted by the smaller pulley of the V-belt drive. 
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Index 

absolute viscosity, 607 
acceleration, 144 
Acme thread, 541 
addendum, 642 
angle of friction, 40 
angular 

acceleration, 145 
momentum, 207 
velocity, 145, 148 

apparent family, 76 
application factor, 599 
axis of symmetry, 20 

B 

base circle, 639 
belt, 758 

body fixed reference frame, 141 
bolt 

stiffness, 551 
preload, 554 

bound vector, 4 
brake, 755 

Cartesian reference frame, 8 
Castigliano's theorem, 462 
center distance, 642 
centroid of a set, 16 
centroidal axes, 20 
circular pitch, 643 
chamfer, 538 

characteristic number, 615 
clamping force, 549 
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clearance, 642 
closed 

joint, 56 
kinematic chain, 57 

clutch, 755 
coefficient of friction, 39 
coincident points, 182 
column, 463 
complex 

motion, 52 
chains, 59 

component, 7 
composite areas, 21 
compression, 463 
conjugate gear-tooth action, 639 
connectivity table, 97 
constant life fatigue diagram, 497 
contact 

angle, 589 
ratio, 646 

contour, 57 
equations, 181 

Coriolis acceleration, 151, 181 
couple, 25 
coupler, 60 
crank, 60 
critical load, 463 
cross product, 12 

D 

d'Alembert principle, 213 
dedendum, 642 
deflection, 454, 458 
degenerate mechanism, 70 
degrees of freedom, 51, 61 

design charts, 619 
diametral 

clearance, 586 
pitch, 643 

direct dynamics, 213 
direction 

cosines, 10 
of a vector, 3 

differential, 652 
driver, 61 
driven link, 61 
dot product, 11 
dyad, 68 
dynamic 

load, 660 
viscosity, 607 

E 

efficiency, 545 
endurance limit, 491 
epicyclic gear train, 647 
equilibrium, 34 
equivalence of systems, 26 
Euler column formula, 465 

family, 61 
fatigue, 491 

failure, 491 
strength, 491 

first moment, 16 
fixed 

reference frame, 141 
vector, 4 
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fluctuating stresses, 494 
follower, 61 
force closed joint, 56 
frame, 53 
free-body diagram, 36, 215 
free vector, 4 
friction force, 38 
full joint, 54 
fundamental kinematic chain, 67 

G 
gear, 641 
Gerber parabolic relation, 500 
gradient factor, 493 
ground, 53, 60 
Goodman lines, 497 

H 
half-joint, 55 
higher joint, 56 
hydrodynamic, 583 
hydrostatic, 583 

I 

idler, 646 
inertia 

force, 213 
moment, 214 

inertial reference frame, 151 
independent 

parameters, 51 
contour, 78 

inverse dynamics, 213 

involute, 639 
pressure angle, 640 

interference, 644 

J 
joint, 52 

class, 52 
constant, 550 

K 
kinematic 

chain, 57 
pair, 52 

L 

lead, 537 
angle, 539 

Lewis equation, 658 
life requirement, 596 
line of action of a vector, 3 
linear cumulative damage rule, 498 
link, 52 
load 

factor, 494 
intensity, 443 

loop, 57 
lower joint, 56 

M 

magnitude, 3 
major diameter, 537 
Mathematical^, 261 
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mass 
center, 18 
moment of inertia, 211 

mechanism, 59 
median life, 596 
method of decomposition, 17, 19 
Miner's rule, 498 
minor diameter, 537 
mixed kinematic chain, 58 
mobility, 61 
mobile reference frame, 141 
modified Goodman diagram, 498 
modifying factors, 492 
module, 643 
Mohr's circle, 436 
moment, 21 
multiple-threaded screw, 537 
multigrade oil, 611 

N 

Newton's 
first principle, 27 
second law, 27 
third law, 27 

pitch, 537 

circle, 641 

diameter, 537, 584, 641 

point, 641 

planet gear, 648 

planetary gear train, 647 

plane of symmetry, 17 

point of application of a 

vector, 4 

Poisson 

formulas, 143 

ratio, 441 

position vector, 15 

power screws, 541 

preload force, 549 

pressure angle, 642 

primary reference frame, 141 

principal 

directions, 437 

stresses, 437 

proof 

strength, 554 

load, 554 

O 
open kinematic chain, 58 
order of a joint, 56 
orientation of a vector, 3 

Petroff's equation, 612 
pinion, 641 

R 

radial equivalent force, 598 
rated capacity, 596 
rating fife, 596 
redundant support, 37 
reliability factor, 597 
resultant, 6, 7 
Reynolds equation, 618 
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rigid body, 51 
ring gear, 648 
rocker, 60 
rolling bearing, 583 
rotation, 51 

S 
safety factor, 555 
scalar, 3 

product, 11 
triple product, 13 

self-locking, 545 

sense of a vector, 3 
separating force, 550 
screw thread, 537 

shear, 435 

strain, 441 
shock force, 599 

simple chains, 59 
simple couple, 25 
singularity functions, 444 
slendemess ratio, 466 
sliding 

bearing, 583 
vector, 4 

slope, 109 
S-N diagram, 491 
spring 

constant, 550, 729 
index, 728 
ends, 730 

square thread, 541 
strain, 441 

standard life, 596 
stress, 435 

fatigue factor, 662 
structural diagram, 97 
sun gear, 648 
surface 

factor, 493 
endurance, 662 

Somerfeld number, 615 
system groups, 67 

T 

tension, 435 
tensile stress area, 552 
thread angle, 538, 545 
three-force member, 37 
torque, 25 

torsion, 452 
translation, 51 
transmissible vector, 4 
two-force member, 37 

TJ 
\̂  
unit vector, 6 

V 

vector, 3 
product, 12 
triple product, 14 

velocity, 142 
ratio, 641 
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virtual wrench, 31 

displacement, 738 Working Model, 419 
work, 739 

viscometer, 609 

W Z 

wear tooth load, 660 zero vector, 5 
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