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Preface

How to obtain ‘non-column’ space rationally and beautifully has been
a dream of mankind for years. It is always our ambition to develop elegant,
fascinating, unbelievable and even ‘unreasonable’ and ‘impossible’ forms.
There seems no limit to architectural art. Meanwhile, a designer has to face
a combination of different objectives and constraints such as safety, costs,
aesthetics, manufacturing and functional requirements. Normally, rationality
in structural point of view is required.

Tension structures extend architects’ imagination due to cables’ lightness,
unlimited length and flexibility, strengthening the thought that the structure
itself be exposed as a part of aesthetics rather than be enclosed. The shapes
of polyhedral space frames have interested people for years. How to adapt
polyhedra to our architectural and structural needs invites innovation in
forms.

Tensegrity (tensile integrity) systems, characteristic of free-standing
nature and isolation of struts in cable networks, have become a popular
topic in recent years among structural engineers, architects, researchers in
the world of space structures under the driving forces of pursuing lightness
and innovation in forms as is the tendency of the contemporary research. As
new structural forms, tensegrity grids are composite forms of tension struc-
tures and pin-jointed space frames. The book presents the load-transfer
properties inherent in tensegrity systems and extends the concept to a wider
scope – cable-strut systems with structurally more efficient grid types by
arming the law of mechanics and with a broadened expression of polyhedral
art in architecture and special functions.

The book contains two parts. Part I includes the concept and properties
of tensegrity systems:

Chapter 1: Background of tension structures and introduction to 
tensegrity systems.

Chapter 2: Properties of tensegrity simplexes, background knowledge 
and general analytical method for mechanism-contained pin-jointed 
systems.



Chapter 3: Structural configurations, design and structural properties 
of tensegrity grids, structural principles on how to invent new 
systems with much-improved structural efficiency.

Part II is focused on the improved cable-strut systems:

Chapter 4: Cable-strut concept and geometrical characterization of 
simplexes and structural configurations.

Chapter 5: Mechanical properties, design principles and design examples
of lightweight cable-strut grids.

Chapter 6: Further application information, including large span 
design, joint design and deployable design.

Chapter 7: Architectural aspect of cable-strut systems presented with 
new concepts and a wide variety of forms.

The book is the first effort to provide an in-depth investigation of tenseg-
rity system from structural point of view and also the first to study how
to stabilize polyhedra by struts and cables and use them as building blocks
to form structurally efficient grids with rich results. The effort lies in three
aspects. The book presents structural mechanics generally suitable for all
pin-jointed systems with simplified way of analysis. It provides the general-
ized method of analysing pin-jointed systems with mechanisms (Chapter 2),
the principle of how to form structurally efficient free-standing tension
systems based on the law of mechanics (Chapter 3), the application of the
principle to stabilize basic polyhedra as building blocks leading to a wide
variety of new cable-strut grids (Chapter 4), and mechanical analysis expos-
ing their properties by plane analogue truss method (Chapter 5). It appeals
generally to technical-minded readers or students with interest in extensive
bar-system structural mechanics.

In view of architecture, the book gives architects more choices to express
architectural art by structural forms. It presents a wide variety of basic
structural forms (Chapters 3 and 4) and developed forms (Chapter 7) con-
cerned with architecture. Based on the principle, more forms made of basic
and higher polyhedra can be developed from and beyond what are
described in the book, enriching the application and study of polyhedra
architecture. The inherent merits in deployable and retractable functions
(Chapter 6) extend the application to special functions. In view of engi-
neering applications, innovative structural forms presented in the book
(Chapters 3 and 4) provide new solutions in engineering practice. The pro-
vided design principle and examples (Chapters 3, 5 and 6) act as the tool
for structural design. The simplicity in joint design (Chapter 6) is also pre-
sented. The information in the book is sufficient for marketing these prod-
ucts. Both aspects appeal to architects, engineers, researchers, construction

Preface xv
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companies and graduate students (including final-year undergraduates)
having interest in the innovation of tension structures and space frames.

The author wishes to develop curious and rational structural forms to
serve society. Generally, the topic of the study is relatively new and the work
is aimed at inspiring new thoughts in the field and inviting exploration,
discovery, and application of these systems to creative, imaginative, expres-
sive and potential designs for buildings. If the book contains anything that
deserves the term ‘creative,’ the author owes a debt of gratitude to all our
great predecessors for showing the way.

Wang Bin Bing 
Singapore, 2003
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Part I

Tensegrity systems





1 Introduction

In the recent years, space structures as a whole are becoming lighter, and
even lightness has become a fashion in aesthetics. A common phenomenon
is that tension structures are becoming more and more popular as these
structures extend architects’ imagination due to cables’ lightness, unlimited
length and versatility. The combination of tension structures with roof
material, such as glass and membrane, expresses the sense of transparency
of space and lightness of forms.

Another driving force is the innovation in forms. Forms keep changing so
as to achieve pleasant looking and unique structures to meet the curiosity
of people, especially when the forms themselves are also a type of tension
structures. The typical case is polyhedral space frames.

In space structures architectural art is often expressed by the structure
itself, hence new structural forms create new aesthetic standards. As a type
of tension structures, tensegrity systems studied in this book are typical
examples and is a popular topic today. However, as originality and personal
expression are their first concern, architects may not pay much attention to
structuralism, or rationality in structural principle. The study on structural
rationality leads to the extension of tensegrity systems to cable-strut systems.

In this chapter, the application of tension structures is reviewed. In view
of definition, there seems to be some controversies on what are tension
structures. Some scholars consider that membrane is a part of tension struc-
tures. Some others consider it only as a roof material. The discussion in this
book is based on the latter. Followed by the background review, tensegrity
concept is introduced as the extensive application of tension structures.

1.1 Classification of space structures

Space structures of spanning types can be classified into three basic cate-
gories according to the dominant load-transfer patterns (Figure 1.1):

� Catenary-like types (Figure 1.1(a)), in which the dominant load-transfer
pattern is the axial tension. Equilibrium of the structure is obtained
by the compression sustained by the boundary anchoring system or



supports. The structure is not free-standing and consequently, load
response is transferred to the boundary. Cable-suspended forms are the
most familiar of these types.

� Arch-like types (Figure 1.1(b)), in which the dominant load-transfer
pattern is the axial compression. Thrust forces are balanced by sup-
ports. Usually, the structure itself can be free-standing under its
own weight but the deformation and especially self-weight may be
much larger without supports. Familiar forms include various forms of
latticed or continuum shells.

� Beam-like types (Figure 1.1(c)), in which the dominant load-transfer
pattern is a self-equilibrated combination of compression and tension.
The structure is free-standing. The global internal forces are identified
as bending moments and shears at the section. Space frames are the
popular of these types.

1.2 Roles of cables in space structures

This section summarizes the basic roles cables playing in three basic struc-
tural types. Other applications may be feasible in the combined types.
Meanwhile, some milestone projects are mentioned here so as to demon-
strate the application and development of tension structures.

4 Tensegrity systems

Compression

Tension

Compression

Tension

Compression 
in edge ring

(a)

(b)

(c)

Thrust 
in supports

Figure 1.1 Classification of space structures: (a) catenary-like type; (b) arch-like
type; (c) beam-like type (dashed line: dominant force flow).



1.2.1 Catenary-like types

In catenary-like types, cables always act as the principal structural compo-
nents due to their natural advantages in sustaining tensions (Figure 1.2).

Pure cable net forms

In ‘pure’ cable net forms, only cables are structural components. In order to
apply prestress and avoid the water drainage problem, special shape, such
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Strut
Ridge cable Diagonal cable

Hoop cablePerimeter 
compression 
ring

Cable domes Cable girders (‘spoke-wheel’ domes)

Load-bearing cable

Stabilizing cable

Mast

Saddle form Vertical cable string

Spider

Glass

(a)

(c)

(b)

Figure 1.2 Catenary-like cable structural forms: (a) cable net forms; (b) cable-
stayed forms; (c) typical tension trusses of strut-cable forms.



as saddle (Figure 1.2(a)), has to be designed. In addition, some planar
cable net form is often used in vertical cladding for glass curtain walls
(Figure 1.2(a)).

Cable-stayed forms

Cable-stayed forms are similar to cable net forms. The difference is that
cable-stayed forms are supported by bulky masts and the ground in place
of a bulky ring beam (Figure 1.2(b)). It affords architects more freedom in
imagination.

Cable-stayed forms can be developed in a linear or circular way. In the
linear way, the basic unit is copied consecutively (Figure 1.3). Notable proj-
ects include the New Denver International Airport in US, measuring
approximately 90m by 300m in plan, which is supported by 34 masts of
roughly 30m in length (Brown 1998).

6 Tensegrity systems

Basic cable-stayed form

Valley 
cable

Figure 1.3 Linear arrays of basic cable-stayed forms.



In the circular way, the basic unit is copied radially (Figure 1.4). Notable
projects include the Millennium Dome in UK �http:// www.burohappold.
com�. It covers 80,000m2, containing 12 huge masts, which support long
radial cables reaching 150m from the perimeter to the centre (Liddell
(1998)). As circular form, opening can be designed so as to show different
look (Figure 1.5).

Strut-cable net forms

In strut-cable net forms, isolated struts are introduced into cable nets to
form the outwardly curved surface. Basic forms include cable girders
(‘spoke-wheel’ domes) and cable domes. Strut-cable net forms generally fol-
low truss-like behaviour (Hanaor 2002), and their typical tension trusses
are given in Figure 1.2(c). The spatial applications of these trusses render
various forms.

Cable domes are relatively new between two basic strut-cable net forms.
A cable dome contains vertical struts, ridge cables, diagonal cables and

Introduction  7

Basic cable-stayed form

Figure 1.4 Circular arrays of basic cable-stayed forms.



hoop cables (Figure 1.2(c)). Cable domes mainly include two variations:
Geiger’s domes (Figure 1.6), and spatially triangulated domes (Figure 1.7).
In the Geiger’s dome, cable trusses are arranged radially. The first cable
dome of the type is the Gymnastics Arenas for the 1986 Korean Olympics

8 Tensegrity systems

Figure 1.5 Cable-stayed forms with opening.

Ring beam

Compression ring

Figure 1.6 Geiger’s dome.



�http://www.geigerengineers.com�. In the spatially triangulated dome,
adjacent rings of struts offset half a module. The Georgia Dome, measuring
240m in length and 193m in short, is among very few of the kind con-
structed today �http://www.wai.com� (Levy 1994, Brown 1998). It is
roughly an elliptical shape with a truss linking two focuses (similar to
Figure 1.7(b)), with an incredibly low weight of 30kg/m2 based on the high
strength of cables.

Cable girders can be used to cover full roof plan (Figure 1.8(a)). In addi-
tion, it has the varied cable wheel forms in which a big opening is designed
at the centre (Figure 1.8(b)). An example is the Outdoor Stadium Roof for
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Figure 1.7 Spatially triangulated domes: (a) circular form; (b) elliptical form (top layer).



the National Sports Complex in Kuala Lumpur (Schlaigh 1997). Moreover,
it is worthy to point out that the evolved planar form of ‘spoke-wheel’ type
is often used for supporting glass (Figure 1.9).

1.2.2 Arch-like types

Due to their weakness in sustaining compression forces, cables are most
frequently used as reinforcing or stabilizing components in arch-like
structures, rather than as structural components like bars.
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Figure 1.8 Cable girder domes: (a) full-plan form; (b) form with opening.



Reinforcing components

As reinforcing components, cables are used to improve the stiffness and
force distribution, and/or reduce thrust forces in supports. Typical examples
are tie cables in supports in cylindrical shells (Figure 1.10(a)) or domes
(Figure 1.10(b)). Cables can also be introduced into the arch directly
(Figure 1.10(c)). One such example of combining arches and cables is the
UNI-dome in the University of Northern Iowa (Berger 1997, Pilla 1998).

The other aspect of applications is to reinforce arch-like types by the
assembly of struts and cables. The resulting forms include hyper cable domes
or hyper ‘spoke-wheel’ domes, which can also be considered as the compos-
ite forms of arch-like types and cable domes or ‘spoke-wheel’ domes. The
design of hyper cable domes is illustrated in Figure 1.11, including radial
form and spatially triangulated form. The ring beam can be avoided but
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Figure 1.9 Skeleton for glass.
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Figure 1.10 Reinforcing arch-like forms by cables: (a) tie cables in cylindrical shells;
(b) tie cables in domes; (c) reinforcing cables in arch.



circular members are still indispensable. Examples include the ‘tension-brace
dome structure’ of Marin Midland Arena (radial form) (Brown 1998), and
the ‘cable-suspen’ dome (spatially triangulated form) (Kawaguchi et al.
1999). These forms are basically of the same principle and the arch benefits
from the introduction of strut-cable assembly at the improvement on the
overall stiffness (stability) and the reduction in thrust forces to circular
components under gravity load.

Stabilizing components

Cables can also be used to stabilize the building units, which are otherwise
deformable. A typical example is the grid shell (Figure 1.12) (Schlaigh and
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Figure 1.11 Hyper cable domes: (a) radial form; (b) spatially triangulated form.



Schober 1999) in which two crossed cables are introduced in each rectan-
gular panel enclosed by steel beams (note that the tie cable assembly of
spider form is also introduced as reinforcing components at a certain inter-
val along generatrix). The design avoids using the conventional triangular
panels. The grid shell may have varied forms so as to improve the bending
strength (Saitoh 1998).

Another example is the unit structure (Figure 1.13) developed by Hangai
et al. (1992). In the building unit, the enclosed four hinged struts in the base
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Figure 1.12 A grid shell form.

Building units Configuration

Figure 1.13 Unit structure (Adapted from Hangai et al. 1992).



are stabilized by a strut and eight cables with prestress. The base of the unit
is not co-planar so as to reserve curvature in the resulting shell forms.

Moreover, among new forms developed in this book that prestress is not
essential for sability, cables can stabilize one layer of struts (certain discus-
sion in Section 6.1.3) or can be sandwiched between two or three layers of
struts (Section 4.6).

1.2.3 Beam-like types

Cables serve as principal structural components in catenary-like types and
as stabilizing or reinforcing components in arch-like types. In comparison,
cables in beam-like types can be used as structural components together
with bars so as to form new tension structures in addition to their natural
advantage as stabilizing or reinforcing components.

Stabilizing or reinforcing components

As stabilizing components, cables can replace web chords in space truss
grids to stabilize each building block (Figure 1.14). These cables can be
applied either at the face or inside each building block.

As an example of reinforcing components, cables are introduced in the
tensional layer (e.g. the bottom layer when downward load is dominant) of
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Building block

Figure 1.14 Cables as stabilizing components in space trusses: (a) cables at the faces
of building blocks; (b) cables inside building blocks.



space bar grids (Figure 1.15(a)). Prestress is introduced in cables to improve
force distribution with some weight reduction. Another example, the assem-
bly of struts and cables can be applied under the beam to improve stiffness
and strength under gravity load (Figure 1.15(b)).

Structural components

As structural components, cables in beam-like forms sustain tensional
components of internal moments, forming free-standing cable networks.
Tensegrity grids and new cable-strut grids with extended concept belong to
the type. These systems broaden the application scale of tension structures
but are actually also new types of space frames (so they can also be used in
arch-like forms in which cables mainly serve as stabilizing components
whereas bars form the load-carrying skeleton, as mentioned in Section 1.2.2).
Tensegrity concept is introduced in the following section.

1.3 Introduction to tensegrity

‘Tensegrity’ attracted wide attention since its mysterious origin and its
unique characteristics in architecture. Although some similar ideas occurred
occasionally in 1920s (Motro 1996), topic studies were led by Buckminister
Fuller, the originator of geodesic geometry. He pushed forward the idea and
coined the word ‘tensegrity’ from ‘tensile integrity’. Kenneth Snelson mate-
rialized the idea into prototypes. However, first true tensegrity unit was
filed by David Emmerich in 1960s.

1.3.1 Origin of tensegrity

Fuller’s conviction

In the 1940s, Buckminister Fuller, a well-known architect, was convinced
that the universe operated according to a tensional integrity principle. This
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Figure 1.15 Cables as reinforcing components: (a) in space trusses; (b) under beam
with struts.



belief gave birth to ‘tensegrity’ a mysterious background. As reported by
Sadao (1996): ‘To Fuller, tensegrity is Nature’s grand structural strategy. At
the cosmic level, he saw that the spherical astro-islands of compression of
the solar system are continuously controlled in their progressive reposition-
ing in respect to one another by comprehensive tension of the system which
Newton called “gravity”. At the atomic level, man’s probing within the
atom disclosed the same bind of discontinuous compression, continuous
tension apparently governing the atom’s structure.’

Fuller believed that tensegrity principle is the rule of the nature from the
solar system to the atom system that is tied by gravity forces. But his con-
viction neglected that these systems follow ‘kinematic equilibrium’, substan-
tially different from ‘static equilibrium’ relation in actual construction
structures. Despite that, the conviction still led to the invention of new
structural and architectural systems.

Snelson’s models

Fuller did not manage to materialize his confound convictions himself.
Later in the summers of 1947 and 1948, Fuller taught at Black Mountain
College and spoke constantly of ‘tensile integrity’. He hoped to create a
model of his structural principle.

In late 1948, Kenneth Snelson, a student and now sculptor, presented
three models to Fuller (Snelson 1996). Among them, the last one – X-column
piece (Figure 1.16) contained the preliminary idea of ‘continuous tension,
discontinuous compression’. It is composed of wooden cross with wires
stretched in a square across the tips of cross. The two units were then
placed across each other in a three-dimensional way and were attached to
a piece of wooden plate. According to Snelson’s description, a ‘planar’
tensegrity module is obtained. It contains two bars and four cables. Cables
are independent in sustaining internal forces. But they are linked at ends
and thus are ‘continuous’ in view of geometry. Two bars connect only to
cables at ends. They look crossing each other but do not contact at body
(although it is not possible in two-dimensional geometry). It is the tensions
that tie the system together as one integrity.

Later, Snelson continued his effort to separate successfully compression
members at the points where they cross each other by introducing cables
in a three-dimensional way. He developed a number of such sculptures
based on these improved ‘X’ modules. The most famous one is the
‘Needle Tower’ at the Hirshhorn Museum of Modern Art, Washington, DC.
(Figure 1.17), as only independent struts could be seen from afar. These
ornamental forms demonstrate ‘islands of compression in a sea of tension’
fascinatingly. So some people believe that Snelson is the originator of
tensegrity. However, it is interesting to note that the sculptor himself did not
believe tensegrity is prospering as load-bearing structures (Snelson, personal
communication).
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Fuller’s idea

Return to our story, when he caught sight of Snelson’s model, Fuller
believed that it was what he searched for years, and his idea of tensegrity
became concrete. He coined the word ‘tensegrity’ in the 1950s, and defined
the notions of tensegrity as follows (Fuller 1975):

The word tensegrity is an invention: it is a contraction of tensile integrity.
Tensegrity is guaranteed by the finitely closed, comprehensively continu-
ous, tensional behaviours of the system and not by the discontinuous
and exclusively local compressional member behaviours. . . . The integrity
of the whole structure is invested in the finitely closed, tensional-
embracement network, and the compressions are local islands. . . . Tension
is omni-directionally coherent. Tensegrity is an inherently non-redundant
confluence of optimum structural effort effectiveness factors. All struc-
tures, properly understood, from the solar system to the atom, are
tensegrity structures. Universe is omni-tensional integrity.

Due to Fuller’s personal influence, people took the assertion for granted
and believed that tensegrity was inherently structurally efficient for years.
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Figure 1.16 Snelson’s X module (left), and the ‘planar’ tensegrity simplex
derived from the module (right). 

Source: Snelson (1996); Courtesy: Multi-Science Publishing.



Fuller (1996) went on developing tensegrity structural forms, but unfor-
tunately, these forms suffer from various kinds of structural problems. A typ-
ical example is his patent of ‘tensile integrity structure’ (Fuller 1962), whose
load-carrying capacity relies on the buckling resistance of crossed long bars
and whose bars are constructed as flexible tensegrity truss in very long spans
(Figure 1.18). It is the invention of the simplest three-dimensional tensegrity
object – tensegrity simplexes that opened wide research field on tensegrity
structures.

1.3.2 Tensegrity simplexes

Tensegrity simplexes are the elementary spatial tensegrity system. In fact,
Snelson’s free-standing assembly of X modules can be evolved from the
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Figure 1.17 Snelson’s ‘Needle Tower’ at the Hirshhorn Museum of Modern
Art, Washington, DC (Photo courtesy: Hanaor).



array of some tensegrity simplexes. Originally, tensegrity simplexes refer to
the triangular tensegrity prism. Later, the concept is extended to higher
prisms and their varied forms.

A tensegrity prism is a stable (free-standing) volume that is realized by the
interaction between isolated struts (islands of compression) and intercon-
nected cables (a sea of tension). It is an anti-prism (occasionally, prism) com-
posed of two layers of cables forming the upper base (by upper cables) and the
bottom base (by bottom cables), stabilized by diagonal cables. Inclined struts
connect opposite vertices of bases so as to brace the prism (Figure 1.19(a)).
The relative rotation angle of the two bases is dictated by the requirement for
the equilibrium of the shape, as explained later in Section 2.1. For regular sim-
plexes (i.e. having regular base polygons), this angle is 30� for a triangular
anti-prism, and 45� for a square anti-prism, etc. (Chassagnoux et al. 1992).

Tensegrity prisms appeared first in David Emmerich’s patent (Emmerich
1963). In fact, he found it in 1958 through independent research
(Emmerich 1996). Interestingly, he used the term ‘self-tensioning structures’
to define his idea and never adopted the term ‘tensegrity’, although they are
essentially the same.

In a tensegrity prism, if the sizes of the upper base and bottom base
are designed not identical, a tensegrity truncated pyramid is formed
(Figure 1.19(b)), which is basically of the same mechanical properties.
Various forms of tensegrity simplexes allow the forming of a wide variety
of tensegrity structures, which is discussed in Chapter 3.
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Structural unit ‘Tensegrity’ truss

Figure 1.18 Fuller’s patent of ‘tensile integrity structure’.

Source: Fuller (1962).



1.3.3 Higher tensegrity polyhedra

In addition to the invention of tensegrity prisms, Emmerich also studied
how to form higher tensegrity polyhedra of the same principle, which was
called by him ‘single-layer spherical structures’ (Emmerich 1990). He stud-
ied all Platonic polyhedra (regular polyhedra) and Archimedian polyhedra
(semi-regular polyhedra), whose vertices are inscribed into a sphere. All
these polyhedra are convex since the tensional members must be on the out-
side, farther from the centre of the polyhedron than the compression mem-
bers that are inserted without any contact among themselves. Among five
Platonic polyhedra, the tetrahedron is unrealizable; the octahedron and
the cube are variants of the triangular and square simplexes, respectively;
the icosahedron and the dodecahedron are given in Figure 1.20(a).
Among tensegrity Archimedians, the simplest forms, cuboctahedron and
pseudo cuboctahedron are given in Figure 1.20(b). For high tensegrity
Archimedians refer to Emmerich (1990).

Another way to form tensegrity polyhedra is proposed by Grip (1992).
All the vertices of Platonic polyhedra are truncated (but not at the centre of
the edges). Each original vertex is thus transformed into three or four ver-
tices. Struts are inserted to connect each pair of new vertices that are trans-
formed from originally adjacent vertices but are not in the same face.
Tensegrity truncated tetrahedron, truncated cube, truncated octahedron are
presented in Figure 1.21. It seems not simple to connect higher tensegrity
polyhedra to form structural grids. However, these polyhedra enrich the
application of tensegrity principle in architectural aspect.
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Figure 1.19 Tensegrity simplexes: (a) tensegrity prisms; (b) tensegrity truncated
pyramids.
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Figure 1.20 Higher tensegrity polyhedra: (a) platonic tensegrity polyhedra;
(b) tensegrity Archimedians. 

Source: Emmerich (1990); Courtesy: Multi-Science Publishing.
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Figure 1.21 Truncated tensegrity polyhedra.

Source: Grip (1992); Courtesy: Multi-Science Publishing.



1.3.4 Structural definition of tensegrity systems

Currently, the definition of tensegrity is subjected to controversies partially
due to a large variety of forms developed. All these controversies ignored,
tensegrity systems, as demonstrated by tensegrity prisms and higher tensegrity
polyhedra, can be defined from structural point of view:

Tensegrity systems are free-standing pin-jointed networks in which an
interconnected systems of cables are stressed against a disconnected
system of struts or extensively, any free-standing systems composed of
tensegrity units satisfying the aforesaid definition.

In the definition, the former half includes ‘pure’ tensegrity forms, whereas
the latter half is more general with extended concept.

Theoretically, struts are recti-linear components that have lower bound
on length but can be extended freely in a ‘telescoping’ way and therefore
they do not sustain tension. In structural use, struts are straight bars that
are designed to sustain only compression (e.g. in a tensegrity polyhedra,
bars in tension normally does not occur if we check nodal equilibrium
condition). Cables are recti-linear members with upper bound on length,
but can contract freely (slacken) and therefore cannot sustain compression
(unless they have pretension reserve).

The definition distinguishes tensegrity systems from conventional cable
networks that rely on bulky anchoring system and prestress as the prerequi-
site to achieve equilibrium of the whole structure. Nevertheless, it is interest-
ing to note that cable domes and ‘spoke-wheel’ domes are derived from
tensegrity principle. Both types of domes span the space with continuous ten-
sional cables and discontinuous compressive posts having the appearance of
‘islands of compression in a sea of tension’. Therefore, some structural engi-
neers take them as tensegrity systems. However, their mechanical properties
are substantially different (catenary-like types vs beam-like types).
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Among tensegrity polyhedra, tensegrity simplexes appear most suitable as
building blocks for structural grids. Other polyhedra have complex geome-
try and thus it seems not easy to connect them to form grids with necessary
stiffness. In this chapter, mechanical properties of tensegrity simplexes are
explained in detail incorporating basic knowledge related to mechanisms.
As the analytical tool, the general method of analysing pin-jointed systems
containing mechanisms is presented based on the stiffness-based Newton
iteration and dumb component method. Properties of the grids formed by
tensegrity simplexes are discussed in the next chapter.

2.1 Equilibrium condition in tensegrity prisms

A tensegrity prism is stable only at a specific prism rotation angle (the
relative rotation angle between two bases). The relation can be obtained
from the nodal internal force equilibrium condition under an assumed 
self-stress state. In a tensegrity prism, it can be easily got from symmetrical
conditions that the forces are equal for all upper and bottom cables, for all
inclined cables, and for all struts, respectively. Meanwhile, the equilibrium
condition for each joint is the same. Each joint is in equilibrium under the
application of actions exerted by the strut, the inclined cable and the two
cables in the base. The strut is confined within the three-dimensional vol-
ume enclosed by the connecting three cables, which is the minimum for
equilibrium.

In a triangular prism, for example, at an arbitrary joint j, we can replace
the forces in two cables jk and jl in the base by a resultant. The direction jj�
of the resultant force passes through the joint j and the base centre O and
jj� should be co-planar with the connected strut jm and the inclined cable jn
for equilibrium (Figure 2.1). As the base cable mn is co-planar with the strut
jm and the inclined cable jn, the direction line jj� should be parallel to mn
as they are already in parallel base planes. The prism rotation angle
obtained is apparently 30�, half the vertex angle.

By repeating this procedure, the prism rotation angle for the square
tensegrity prism is 45�. The analysis shows the specific prism rotation angle

2 Properties of tensegrity simplexes
and analysis of pin-jointed systems
containing mechanisms



for the stabilization of a tensegrity prism, which is half the vertex angle in
base. As the geometrical characteristics, being larger or smaller than this
value results in instability of the volume. However, for tensegrity prisms
higher than the triangular and the square, other specific angles may also be
found (Figure 2.2) (Chassagnoux et al. 1992).

The equilibrium condition also implies that each tensegrity prism has one
and only one self-stress state. The self-stress state is related to another
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Figure 2.2 Higher tensegrity prisms with more than one prism rotation angle:
(a) pentagonal prism; (b) hexagonal prism.

Source: Chassagnoux et al. (1992); Courtesy: Multi-Science Publishing.



aspect of the mechanical properties of tensegrity prisms, that is, mechanism
analysis, which also reveals mechanisms contained in each tensegrity prism.

2.2 Mechanism analysis of tensegrity simplexes

In this section, the mechanism analysis of tensegrity prisms is presented. As
the background knowledge, classification of various pin-jointed systems on
mechanisms is introduced first, followed by two analytical methods of
mechanisms.

2.2.1 Classifications of pin-jointed systems

Pin-jointed systems refer to the systems in which all components are only
subjected to axial forces. These components include bars that can be subjected
to both compression and tension, and cables (tendons) that can only be
subjected to tension. Pin-jointed systems include a large variety of space
structures, such as space trusses (all bars) and cable suspended structures
(all cables or dominantly cables), etc. Tensegrity prisms and the resulting
structures (mixed bars and cables) obviously belong to pin-jointed systems.

The classification of pin-jointed systems is based on the independent 
self-stress states (s) and independent mechanisms (m). Note that the classi-
fication is based on the initial geometry and that mechanisms may be finite
mechanisms or infinitesimal mechanisms. An infinitesimal mechanism dis-
appears after a displacement less than the length order whereas a finite
mechanism still exists.

A system that contains infinitesimal mechanism has at least one self-stress
state. Given a system with m � 0 and s � 0, if a state of self-stress can
impact positive first-order stiffness to every mechanism, then the mecha-
nisms are first-order infinitesimal, that is, they are associated with second-
order changes of component lengths. If on the other hand there are some
mechanisms that cannot be stabilized by a state of self-stress, these mecha-
nisms are (at least) second-order infinitesimal or are finite (Calladine and
Pelligrino 1991). Two examples in Figure 2.3(c) and (d) illustrate respec-
tively first- and second-order infinitesimal mechanisms. However, second-
or high-order infinitesimal mechanisms seldom appear in actual structures.

Geometrically deformable pin-jointed systems that contain finite mecha-
nisms (s � 0, m � 0) are in general not considered a structure (Figure 2.3(a),
(b)). Pin-jointed systems that do not contain finite mechanisms can be
classified as follows:

� When s � 0, m � 0, the system is statically and kinematically undeter-
mined, or geometrically flexible (Figure 2.3(c), (d)).

� When s � 0, m � 0, the system is statically and kinematically determined
(Figure 2.3(e)).

� When s � 0, m � 0, the system is statically undetermined and
kinematically determined (Figure 2.3(f)).
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Geometrically flexible system cannot maintain equilibrium with the applied
load to the mechanism in its original geometry (the load–deflection curve
has zero slope at the origin). But it can deform and change its shape to
develop internal force components to balance the external load. The mag-
nitude of the deformation can be quite large, even for small load values.
Initial stiffness has to be obtained by a state of self-stress. These properties
are discussed in Section 2.4.1.

Two mechanism free cases, such as those in Figure 2.3(e) and (f) are also
described as ‘geometrically rigid’ cases. As a geometrically rigid system does
not contain mechanisms, it can maintain equilibrium in its original geometry.
Its deformation is a result of elastic deformation of components and hence
is normally much smaller compared with that of a geometrically flexible
system, unless its geometry is near mechanism.

The characteristics of pin-jointed systems are compared in Table 2.1 for
clarity.
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Figure 2.3 Classification of pin-jointed bar systems by two-dimensional examples:
(a) and (b) geometrically deformable; (c) and (d) geometrically flexible;
(e) and (f) geometrically rigid.



2.2.2 Two analytical methods of mechanisms

Extended Maxwell’s rule

As a tool to analyse the self-stressed states and mechanisms of pin-jointed bar
systems, the extended Maxwell’s rule is introduced here (Calladine 1978):

2Nj � Ne � Nc � m � s, for two-dimensional systems (2.1a)
3Nj � Ne � Nc � m � s, for three-dimensional systems (2.1b)

where Nj, Ne and Nc are the number of joints, elements and external
constraints, respectively. In tensegrity structures, cables are allowed to
slacken under load. At this state, Ne becomes the number of force-carrying
elements, excluding slack cables. But in general, the analysis is based on the
initial geometry.

In a pin-jointed system with relatively simple geometry, either m or s can
be obtained from simple nodal equilibrium analysis, then the other can be
derived from Eqn (2.1). The analysis of the self-stress state in tensegrity
prisms in Section 2.1 is such an example.

Matrix analysis

When the geometry is relatively complex, matrix analysis is necessary:

[G]{F} � {0} (2.2)

where [G] is the equilibrium matrix depending only on geometrical para-
meters, ranked (3Nj � Nc) � Ne for three-dimensional model, {F} is the
internal force vector, ranked Ne � 1, and the right is the zero load vector
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Table 2.1 Characteristics of pin-jointed systems

Concepts Mechanisms Stable? Having initial stiffness
contained under external force?

Non-prestress Prestressed
state state

Geometrically Finite No No Not applicable
deformable

Geometrically Infinitesimal Yes No Yes
flexible

Geometrically rigid No Yes Yes Yes



applied to the unconstrained degrees of freedom, ranked (3Nj � Nc) � 1.
Therefore,

s � Ne � rG (2.3)
m � 3Nj � Nc � rG (2.4)

where rG is the rank of equilibrium matrix [G].

2.2.3 Mechanisms in tensegrity simplexes

All tensegrity prisms (truncated pyramids) are geometrically flexible. All
infinitesimal mechanisms are first-order and thus initial stiffness can be
obtained by one state of self-stress. In the triangular prism, s � 1, m � 1.
The infinitesimal mechanism is a combination of rotation and translation
between two bases and it is common for all tensegrity prisms and truncated
pyramids. In the square prism, s � 1, m � 3, as it contains two additional
infinitesimal mechanisms in two bases. In the pentagon, s � 1, m � 5, and
so on. The characteristics can be proved by mechanism analysis.

Analysis of mechanical properties of pin-jointed systems including
tensegrity prisms can be realized by the stiffness method introduced in the
following section.

2.3 Analysis of pin-jointed systems containing mechanisms

In this section, the ‘more conventional’ stiffness-based Newton iteration
method is used generally for analysing any pin-jointed systems in which
components (bars and cables) are subjected to axial forces only (a cable
component cannot remain straight under its own weight, but the effect
is normally not critical), and (finite or infinitesimal) mechanisms are
contained.

The analysis of cable networks contains two steps. One is the optional
form-finding (also termed ‘shape-finding’) procedure aiming at determining
the equilibrium geometry when self-stress is applied by shortening cables or
lengthening struts. The other followed is the analysis of load response, the
behaviour of the structure under load. Stiffness-based method itself (Argyris
and Scharpf 1972) is not capable of analysing structures with finite mecha-
nisms or high-order infinitesimal mechanisms, form-finding process when
infinitesimal mechanisms exist, and unstable loading process when many
cables slacken. These problems can be avoided by introducing dumb com-
ponents that transform a structure with mechanisms to the equivalent
‘geometrically rigid’ structure. Therefore, the stiffness-based method can be
all-powerful. Other analytical methods may be feasible, including force
density method, dynamic relaxation method (Motro 1997), generalized
inverse matrix method (Hangai and Lin 1989), linear complementary
equation method (Wang et al. 1998), etc., but are out of the scope.
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Main symbols to be used in the following section are listed as follows:

P Point load at a joint
F Internal force of an element
x, y, z Nodal coordinates
l Length of an element
E Modulus of elasticity
A Cross-sectional area of an element
R Residual force at a joint.

2.3.1 Formulation of equations

The stiffness-based method can be explained by considering a node i in any
spatial pin-jointed network connected to adjoining node j through elements e
(Figure 2.4). The derivation is based on incremental loading process. Under
load Pi,x, Pi,y, Pi,z at the node i at the last step, the force in a typical element
e is Fe and its length is le. The corresponding coordinates of nodes i and j
are xi, yi, zi and xj, yj, zj, respectively.

At the initial state before external load is applied,

Pi,x � Pi,y � Pi,z � 0 (2.5)

(2.6)

in which, is the initial force under prestressed state (it equals to zero if
prestress is not applied), which can be computed using the same method
(see Section 2.3.2).

The equilibrium equations at node i at the previous loading step can be
written as

(2.7a)� 

e Fe

le
 · (xj � xi) � Pi,x � 0

Fe
0

Fe � F e
0
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(2.7b)

(2.7c)

in which

(2.8)

When the loads are increased to by amounts �Pi,x, �Pi,y, �Pi,z,
the nodes i and j deflect to through �xi, �yi, �zi, and to 
through �xj, �yj, �zj, respectively. Meanwhile, the force Fe and length le
increase by �Fe to and �le to , respectively. Accordingly, Eqns (2.7) and
(2.8) change as follows:

(2.9a)

(2.9b)

(2.9c)

in which

(2.10)

(2.11)

in which EAe is the sectional modulus of element e. Neglecting the
displacement items of higher order, we get

(2.12)

Subtracting from both sides of Eqn (2.9a), 
from both sides of Eqn (2.9b), and from both sides

of Eqn (2.9c), and substituting Eqns (2.11) and (2.12) into Eqns (2.9a, b
and c), respectively, we get

�e(Fe / le)(zj � zi)(yj � yi)
�e(Fe / le)�e(Fe / le)(xj � xi)

1
le�

 � 

1
le�1 � 

1
le
2
[(xj � xi)(�xj � �xi) � (yj � yi)(�yj � �yi) � (zj � zi)(�zj � �zi)]�

Fe� � Fe � �Fe � Fe � EAe�le�

le
 � 1�

 le� � [(xj � �xj � xi � �xi)
2
 � (yj � �yj � yi � �yi)

2
 � (zj � �zj � zi � �zi)

2]1/2

 � 

e Fe�

le�
 · (zj� � zi�) � Pi,z�  � 0

 � 

e Fe�

le�
 · (yj� � yi�) � Pi,y�  � 0

 �
 e Fe�

le�
 · (xj� � xi�) � Pi,x�   � 0

le�Fe�

xj�, yj�, zj�xi�, yi�, zi�
Pi,x� , Pi,y� , Pi,z�

le � �(xj � xi)
2
 � (yj � yi)

2
 � (zj � zi)

2

� 

e Fe

le
 · (zj � zi) � Pi,z � 0

�
e

 

Fe

le
 · (yj � yi) � Pi,y  � 0
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(2.13a)

(2.13b)

(2.13c)

in which nodal residual in-equilibrium force Ri,x, Ri,y and Ri,z is given as
follows:

(2.14a)

(2.14b)

(2.14c)

Applying Eqn (2.13) to all joints, we get

[K]{d} � {R} (2.15)

in which [K] is the stiffness matrix ranked 3Nj � 3Nj (Nj is the total num-
ber of joints), {d} is the displacement vector ranked 3Nj � 1, and {R} is the
nodal in-equilibrium force vector ranked 3Nj � 1. [K] should always be
non-singular.

In Eqn (2.13), Fe is normally negligible compared to EAe for most mate-
rials (e.g. the proportion is less than 1% for steel). The items containing
EAe (e.g. , etc.) form the elastic stiffness, and the
item Fe/le forms the geometrical stiffness. When a system is loaded at its
infinitesimal mechanisms, only geometrical stiffness due to prestress con-
tributes before elastic stiffness due to deformation is developed. So the stiff-
ness of the system with infinitesimal mechanisms is low, as proved in
Section 2.4.1.

((EAe � Fe)/(le
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2
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e
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2.3.2 Computation process

For a geometrically flexible system, incremental loading process is generally
required for the stability of the computation process. The iteration process
for a loading step is given as follows:

(a) Form {R}.
(b) Form [K].
(c) Solve Eqn (2.15) to get {d}.
(d) Get new coordinates and internal forces.
(e) Form {R}. If it does not converge and the iteration has not reached

the prescribed circles, return to b.

Form-finding process under prestress {F0}, if introduced, can be calculated
based on the same method with zero load vector.

2.3.3 Singularity in stiffness matrix and dumb element method

Singularity in stiffness matrix

Problems in using the stiffness method happen when [K] cannot be 
non-singular. It happens at the following cases:

� Form-finding process for geometrically flexible systems with first-order
mechanisms. In a system of first-order infinitesimal mechanisms, the
initial stiffness (geometrical stiffness) can be provided by a state of self-
stress, after that [K] becomes non-singular. When the geometry is sim-
ple, the resulting internal forces under the self-stress state can be input
directly, and the resulting deformation is neglected (e.g. the cable string
in Figure 2.5). When the geometry is complex, how to obtain the result-
ing internal forces and geometry becomes a problem. One aspect of the
problem is that [K] is singular before the prestress is introduced. The
other is that during the self-stressing process, bars or cables for intro-
ducing prestress actually do not contribute stiffness to the system. But
if these components are removed in the computation model and
replaced by prestress forces, new mechanisms are produced (even an
originally geometrically rigid system may be changed into a geometri-
cally flexible/deformable system). An existing method is to keep these
components in the iteration process (Hanaor 1992). However, the
process is hard to converge.

� A system with high-order infinitesimal mechanisms or finite mecha-
nisms. A system with high-order infinitesimal mechanisms cannot be
rigidified by one state of self-stress. A system with finite mechanisms
cannot be rigidified at all. However, these mechanisms may actually
reach a stable final position under load after experiencing large dis-
placement (including rigid body movement) despite that singularity in
stiffness matrix hinders efficient analysis.
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� Loading process due to cable slackening. During the loading process,
some cables may slacken. They cannot sustain forces and thus behave
as they are temporarily removed. The number and position of slack cables
vary with load. The stiffness matrix may become singular (calculation
process becomes suddenly unstable) after these cables are ‘removed’
through affording zero stiffness and forces, even if the initial geometry
is geometrically rigid. At the state, it is hard to say whether the structure
is actually stable or not.

Dumb component method

The analysis of the geometrically flexible/deformable form can be realized
by analysing its equivalent geometrically rigid form, which is formed by
introducing the additional components, namely, dumb components of
small stiffness and zero stress (Figure 2.6). The internal forces of dumb
components are always restored to zero for iteration.

In actual structural design, the length of the dumb component is set the
same degree of magnitude as the existing elements in the structure. As for
the cross-sectional area, if it is too small, the computation process may be
unstable. But if not sufficiently small, accuracy requirement cannot be sat-
isfied and the iteration process may not converge. The cross-sectional area
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recommended is 0.1~1% that of the smallest element in the structure. The
accuracy is in general almost 100%.

When dumb components are introduced, one joint of a dumb component
is attached to the joint where (infinitesimal) mechanisms possibly exist. The
other joint may be supported (Figure 2.6(b)) or connected to an existing node
(Figure 2.6(c)). If we are not sure exactly how many mechanisms and where
these mechanisms exist, it does not matter introducing more dumb compo-
nents. For example, as the extreme case we may introduce three orthogonal
dumb components at each joint. If so, it can be automatically realized by
a program without the need to identify the mechanisms. Despite that the
method increases joints and elements, it is not a problem for modern
computers and actually such system is normally not of complex geometry.

2.3.4 Numerical examples

Systems containing various kinds of mechanisms can be transformed into
the equivalent geometrically rigid form by introducing dumb components.
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In addition to the following cases, the idea can also be extended to analyse
deployable structures and membrane structures.

Form-finding for structures with infinitesimal mechanisms

In Figure 2.7, is presented a regular square-based tensegrity prism. The
supports provided are only to avoid rigid body movements as a whole. The
prism contains a state of self-stress (s � 1) and three states of infinitesimal
mechanisms (m � 3). Self-stress is supposed to be introduced by elongating
struts to reach 100kN. For all struts, sectional stiffness is 2 � 106kN; for all
cables, 1.8 � 105kN. As the initial stiffness matrix is singular, form-finding
process cannot proceed.

To avoid the problem, four dumb components are introduced to the orig-
inal geometry (Figure 2.7(a)). Their sectional stiffness is 1% that of cables,
1.8 � 103kN. In addition, four struts are also afforded small stiffness to let
the computation process converge quickly. The value is one-twentieth of the
original, 1 � 105kN. The resulting internal forces are accurate as given in
the resulting geometry (Figure 2.7(b)).

Systems with finite or high-order infinitesimal mechanisms

In Figure 2.8, it is presented an anchored string of bars with finite mechanisms.
At the beginning, the components are in a ‘disordered’ state (Figure 2.8(a)).
When load is introduced, they will move to the equilibrium state. Based
on the present method, three dumb components are introduced to the
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original geometry to transform the model into a geometrically rigid one.
The sectional stiffness for all bars is 2 � 106kN; for the dumb components,
2 � 103kN. The resulting equilibrated internal forces under final geometry
are given (Figure 2.8(b)).

The method is the same for calculating the load response of structures with
high-order infinitesimal mechanisms such as the example in Figure 2.9. The
transformed form is given whereas the analysis is omitted here.

Loading processes

Following the principle of applying dumb components, slack cables in all
cable structures are afforded a small stiffness. Therefore, computation
process is stable if the actual structure is stable. Examples are omitted.
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2.4 Mechanical properties related to tensegrity simplexes

Tensegrity prisms are geometrically flexible. General properties of geomet-
rically flexible systems are discussed in this section, including how to trans-
form these systems into geometrically rigid ones. Following that, rigidified
tensegrity simplexes are obtained.

2.4.1 Properties of geometrically flexible systems

The general properties of geometrically flexible systems, including
tensegrity prisms, can be explained by the simplest planar two-cable model
in Figure 2.3(c) or Figure 2.10(a) (s � 1, m � 1). The load applied can be
divided into two components: the elastic load and the geometrical load. The
elastic load (Pe), also termed extensional load or fitted load, produces only
elastic deformations without activating the mechanisms – it is fitted to the
initial geometry. The geometric load (Pg), also termed inextensional load,
causes changes in the geometry through activation of the mechanism but no
elastic strains (based on the initial geometry).

Given Pe � 0, Pg � 0.0001EA, different levels of prestress (Fp) are intro-
duced into cables in order to balance load under deformation (when Fp � 0,
dumb component method is applied). The internal forces (F) and displace-
ments (d) obtained are presented in Figure 2.10(b). It shows that a geomet-
rically flexible system produces large internal forces under geometrical load
and high prestress is required to control displacement. The load–displacement
curve under the non-prestress condition (Fp � 0) is shown in Figure 2.11(c)
(the D/L � 0 case). It presents zero stiffness at the start under non-prestress
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condition. Then, the stiffness keeps increasing, showing ‘strain-hardening’
phenomenon, as the geometrical stiffness component is dominant and
increases with internal forces. After experiencing large deformation (the
deformed geometry is already ‘away’ from mechanism), the stiffness
becomes stable as the elastic stiffness component becomes dominant.

The infinitesimal mechanism can be considered as the limit case of near-
mechanism geometry. It is presented for reference in Figure 2.11 the inter-
nal forces and displacement of the near-mechanism geometry (when sag D
is approximate to zero) compared with those of ‘normal’ geometry (when
D is not very small). Near-mechanism geometry is also characteristic of
large internal forces and especially large displacement compared with
‘normal’ geometry, indicating insufficient utilization of material strength.
The effect of strain hardening gradually disappears when the geometry
becomes ‘farther’ from mechanism (here, strain hardening becomes neg-
ligible when D/L � 0.1, see Figure 2.11(c)). Near-mechanism case often hap-
pens in conventional cable networks, whose lightness is mainly due to high
strength of cables and boundary anchoring system (to which the load is
transferred).
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2.4.2 Principles of transforming geometrically flexible
systems to rigid systems

A geometrically flexible bar system can be transformed into a geometrically
rigid one by adding components and/or changing the geometry to remove
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the mechanisms. In cable networks, the case is relatively complicated as
cables cannot sustain compression and thus may become slack.

In a geometrically flexible cable network, changing the geometry can let
the system superficially satisfy geometrically rigid condition. However,
cables may slacken at the deformed geometry, producing finite mechanisms
(Figure 2.12, case (b)). So the method is normally not applicable.
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Adding cables without changing the geometry can give the system initial
stiffness as can be expressed in the stiffness matrix, satisfying the geometri-
cally rigid condition. The added cable may slacken under certain loads and
thus the original mechanism still ‘implicitly’ exists (Figure 2.12, case (c)).
But anyway, adding cables reduces the chance of activating the mechanism.
Generally, it is ‘safe’ both to change the geometry and to add components
in order to stabilize the deformed geometry (Figure 2.12, case (d)).

A geometrically rigid system unavoidably produces slack cables under
load. It is generally required that the geometrically rigid system be stable
under applied loads after cable slackening. The number and position of
slack cables vary with loads and there is no generalized rule to evaluate it.
Prestress can postpone the occurrence of cable slackening but cannot
ultimately avoid it unless the level is excessively high compared with the
external load. When prestress level is low, the effect on internal forces and
thus component design is generally not significant for a geometrically rigid
system.

2.4.3 Rigidified tensegrity simplexes

Based on the earlier discussion, rigidifying tensegrity simplexes necessitates
the introduction of lateral diagonal cables. In the triangular prism of
increased prism rotation angle (Figure 2.12, case (d)), adding one lateral
cable can superficially satisfy the geometrically rigid condition. However, as
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instability occurs in the left joints owing to potential cable slackening, three
lateral cables are added in the resulting rigidified geometry, which contains
three states of self-stress based on the initial geometry.

The introduction of lateral additional cables removes the infinitesimal
mechanism of prism rotation, but the infinitesimal mechanisms in the base
polygon higher than the triangular cannot be avoided. In the rigidified
square prism (Figure 2.13), for example, in addition to four additional lat-
eral diagonal cables, two crossing cables are introduced in one base to
remove two mechanisms in the bases. It contains four states of self-stress.

In the tensegrity prisms reinforced by lateral diagonal cables (for the trian-
gular, rigidified), the relative rotation angle of the two bases is not unique and
can be varied between the original prism rotation angle, at which the addi-
tional cables cannot be self-stressed (geometry unchanged), and at the limit
state, double that angle, at which the struts would intersect at the centre (for
the triangular: 30� to less than 60�; for the square: 45� to less than 90�). With
the increase of the prism rotation angle, lateral additional cables are apt to
share more forces although the actual behaviour depends on how external
forces are applied.
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Fuller believed that tensegrity is ‘the rule of nature’. He thought that tensegrity
structures are naturally optimal structural forms without testifying it. His
belief has significant influence on his followers. Morphological studies
widely spread out to express ultimately the impact of tensegrity concept on
architecture. But in contrast, application studies on structural behaviour
were carried out only in recent years. Among tensegrity forms, double-layer
tensegrity grids composed of tensegrity simplexes appear most suitable as
structural forms and are illustrated in detail in this chapter, including con-
figuration details related to the geometrical characteristics, design examples
presenting mechanical properties, and evaluating tensegrity concept by the
law of mechanics. The analysis shows the inherent deficiency of tensegrity
structures. Accordingly, principles on how to achieve structurally efficient
systems are summarized. Architectural aspect of tensegrity systems regarding
other tensegrity forms is presented in Section 7.1.

3.1 Structural systems made of tensegrity simplexes

As structural building blocks, tensegrity simplexes can be used in various
planar layouts. The configurations made of higher simplexes (especially
geometrically rigid forms) induce complex geometry and thus are not so
convenient. Therefore, triangular and square simplexes are studied repre-
sentatively. In general, triangular simplexes are suitable for circular and
elliptical plans, whereas square simplexes are suitable for square and rec-
tangular plans. Structural configurations composed of tensegrity simplexes
include non-contiguous strut configurations and contiguous strut ones, as
illustrated as follows. In these double-layer forms, struts are sandwiched
between two parallel (when flat) cable surfaces as skeletons to brace the
volume.

3.1.1 Non-contiguous strut configurations

Non-contiguous strut configurations (or non-bar-to-bar connections) are
different from ‘regular’ connection methods that simplexes are connected

3 Structural configurations,
properties and design of
tensegrity grids composed 
of simplexes



directly at vertex joints. On the contrary, tensegrity simplexes are connected
in a node-to-cable way. Therefore, each connected cable is divided into two
and struts are not in contact. The resulting non-contiguous strut configura-
tions do not contain continuous struts and thus are ‘pure’ tensegrity forms.
Emmerich (1990) was the first to conceive non-contiguous strut tensegrity
grids. Hanaor developed the concept and proposed the way of connecting
simplexes into three methods (Ia, Ib and II, see Figure 3.1). Methods Ia and
Ib are vertex-to-edge connections of prisms. In Method Ia, prisms are con-
nected consecutively (Figure 3.1(a)). Between each pair of adjacent tenseg-
rity prisms, one prism is linked to another by vertex-to-edge connection in
both bases. The method is feasible only for prisms with odd number of ver-
tices in the base polygon. In Method Ib, each pair of prisms is connected by
linking in one layer the vertex of one prism to the edge of the other prism
and alternatively in the other layer (Figure 3.1(b)). The last (Method II) is
the edge-to-edge connection, in which adjacent prisms share a segment of
the edge in each layer (Figure 3.1(c)).

In the configurations made of triangular tensegrity prisms, Method Ia has
better stiffness than Methods Ib and II and the infinitesimal mechanism
between two bases is avoided by the restraints from six adjacent simplexes.
It has been studied systematically by Hanaor (1991a,b, 1992, 1994, 1997).
In domical forms, tensegrity truncated pyramids are employed as building
blocks in place of tensegrity prisms (Figure 3.2).

In the configurations made of square tensegrity prisms, Method Ia is not
applicable. In Method Ib or II, unlike in the triangular prism, struts (and
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Figure 3.1 Connecting methods for non-contiguous strut configurations by
Hanaor: (a) vertex-to-edge connection (Method Ia); (b) vertex-to-edge
connection (Method Ib); (c) edge-to-edge connection (Method II).



also diagonal cables) in each square prism can be placed in various ways
due to ‘chirality’ or ‘handedness’, presenting various architectural forms.
Method Ib produces two layouts: regular layout (Figure 3.3(a)) and irregu-
lar layout (Figure 3.3(b)). In the regular layout, simplexes are copied con-
secutively. In Method II, three layouts are identified including Layout A –
strut orthogonal to the edge (Figure 3.4(a)), Layout B – strut diagonal to the
edge (Figure 3.4(b)), and Layout C – mixed type (Figure 3.4(c)). Cable inter-
ference may occur in some layouts. In the layout in Figure 3.4(c), unlike in
other layouts, prism rotation angle greater than 45� is not feasible.

3.1.2 Contiguous strut configurations

The other way to form tensegrity grids, which was proposed by Motro, is
node-to-node connection of simplexes (Motro 1990). Therefore, struts are
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connected directly at ends. Contiguous strut configurations (or bar-to-bar
connections) violate ‘islands of compression in a sea of tension’ of the orig-
inal tensegrity concept but they are included within tensegrity systems as
the extended concept on the premise that the configurations are based on
tensegrity simplexes.

There are basically two methods to form contiguous strut configurations for
low tensegrity simplexes. One is the vertex-to-vertex (two-vertex) connection
(Method I, Figure 3.5(a)) (Wang and Liu 1998). Simplexes are connected at
vertices to each other in both layers with no common edges. The other, as rec-
ommended by Motro, is the vertex-and-edge (three-vertex) connection of sim-
plexes (Method II, Figure 3.5(b)). Each pair of adjacent simplexes shares a
vertex in the layer with small base and an edge (two adjacent vertices) in the
other layer. In the flat form made of triangular or square simplexes, tensegrity
prisms are suitable for the vertex-to-vertex connection, and tensegrity trun-
cated pyramids suitable for the vertex-and-edge connection. The configura-
tions of the pentagonal and hexagonal prisms are presented (mainly as
architectural forms) in Figure 3.5(c)–(e) for reference. It is interesting to note
that the ‘prism’ form of the hexagonal tensegrity prisms is connected in the
face-to-face way (Figure 3.5(a)).

In the vertex-and-edge connection (Method II) of square tensegrity trun-
cated pyramids, two feasible layouts of struts can be presented due to the
chirality. One is the regular layout (Layout A) in which struts are con-
nected co-linearly in plan (Figure 3.6(a)), the other is the irregular lay-
out (Layout B) in which struts are connected in a zig-zag way in plan
(Figure 3.6(b)).

46 Tensegrity systems

(a) (b)

Figure 3.3 Layouts of non-contiguous strut configuration Method Ib for the square
simplex: (a) regular layout (geometrically flexible); (b) irregular layout
(geometrically flexible).

Source: Wang and Li (2001); Courtesy: Multi-Science Publishing.



In the vertex-to-vertex connection (Method I) of square tensegrity prisms,
struts can be introduced typically in three directions due to the chirality. In
Layout A, struts are orthogonal to the edge (Figure 3.7(a)), in Layout B,
struts being diagonal to the edge (Figure 3.7(b)). Layout C is the mixed type
in which only 45� prism rotation angle is feasible (Figure 3.7(c)).

3.2 Geometrically rigid forms

Geometrically rigid forms have better distribution of internal forces and
thus avoid large values. This is beneficial as joint design and standardiza-
tion of fabrication become easier. What is more important, deflection is
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(a) (b)

(c)

Figure 3.4 Layouts of non-contiguous strut configuration Method II for the square
simplex: (a) struts orthogonal to the edge (Layout A, geometrically flex-
ible); (b) struts diagonal to the edge (Layout B, geometrically flexible);
(c) mixed type (Layout C, geometrically flexible).

Source: Wang and Li (2001); Courtesy: Multi-Science Publishing.



(a)

(c)

(d) (e)

(b)

Figure 3.5 Connecting methods for contiguous strut configurations: (a) vertex-
to-vertex connection (Method I); (b) vertex-and-edge connection
(Method II); (c) vertex-to-vertex connection of pentagonal tensegrity
prism (a small simplex at the centre); (d) vertex-to-vertex connection of
hexagonal tensegrity prism; (e) face-and-face connection of hexagonal
tensegrity prism.



much smaller (e.g. reduced often by about half in non-contiguous strut
grids). The only drawback, which is unavoidable, is that more cables are
added. However, the gross weight is still reduced based on the much
improved load-transfer pattern. It is recommended that in ‘non-structural’
application we use geometrically flexible forms, whereas in ‘structural’
application, we transform them into geometrically rigid forms. Therefore,
prestress is not indispensable for tensegrity structures.

3.2.1 Non-contiguous strut configurations

In non-contiguous strut configurations, dividing each cable in the base into two
when connecting adjacent simplexes results in two infinitesimal mechanisms.
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(a)

(b) (c)

Additional cables

Figure 3.6 Layouts of contiguous strut configuration Method II for the square trun-
cated pyramid: (a) regular layout (Layout A, geometrically rigid form);
(b) irregular layout (Layout B, geometrically flexible form); (c) irregular
layout (Layout B, geometrically rigid form). 

Source: Wang and Li (2001); Courtsey: Multi-Science Publishing.



Such mechanisms cannot provide initial restraints to the connected vertex. So
even the grid formed by joining geometrically rigid prisms is still geometrically
flexible although it is stiffer (Figure 3.8(b)). These infinitesimal mechanisms,
as proposed by Hanaor (1994), can be avoided by attaching cables in differ-
ent layers to adjacent simplexes.

In the geometrically rigid configurations (Method Ia) made of geometri-
cally flexible triangular tensegrity prisms (Figure 3.8(c)), each connecting
vertex receives two diagonal attaching cables (each cable is attached to
two layers). Some inclined cables can be appended at the boundary to
reduce maximum strut forces. In the geometrically rigid grid, increased
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(a) (b)

(c)

Figure 3.7 Layouts of contiguous strut configuration Method I for the square
prism: (a) Layout A – struts orthogonal to the edge (geomatrically flex-
ible); (b) Layout B – struts diagonal to the edge (geometrically flexible);
(c) Layout C – mixed type (geometrically flexible). 

Source: Wang and Li (2001); Courtesy: Multi-Science Publishing.



Boundary cables

Attaching cable Attaching cable

(a) (b)

(c) (d)

Figure 3.8 Layouts of non-contiguous strut configuration Method Ia for the trian-
gular simplex: (a) geometrically flexible form composed of geometrically
flexible simplexes; (b) geometrically flexible form composed of geomet-
rically rigid simplexes; (c) geometrically rigid form composed of geo-
metrically flexible simplexes; (d) geometrically rigid form composed of
geometrically rigid simplexes.

Source: Wang and Li (2001); Courtesy: Multi-Science Publishing.



prism rotation angle can be designed with better mechanical properties
and all inclined cables except those at the boundary are removable as their
forces can be transferred to attaching cables. Hence, Hanaor’s geometri-
cally rigid form is derived. The grid with 40� prism rotation is given in
Figure 3.8(d).

In the grid composed of square tensegrity prisms, each inner simplex has
only four adjacent simplexes to restrain it compared with six in the grid
composed of triangular tensegrity prisms (Method Ia), thus the infinitesimal
mechanism between two bases cannot be avoided. In addition, geometri-
cally flexible square tensegrity prisms contain mechanisms in the bases, so
geometrically rigid prisms have to be employed to form geometrically rigid
grids. The new mechanisms owing to prism connection can be removed by
the same principle – attaching diagonal cables to different prisms. The
resulting geometrically rigid forms are given in Figures 3.9(a), (b) and 3.10,
in which prism rotation angles are 70� for Method Ib and 45� for Method II,
respectively. Some inclined cables always slacken and can be removed.
But the case is complex and varies with layouts, so the topic is out of the
scope.
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Attaching cable Attaching cable

(a) (b)

Figure 3.9 Geometrically rigid layouts of non-contiguous strut configuration
Method Ib for the square simplex: (a) regular layout (geometrically
rigid); (b) irregular layout (geometrically rigid).

Source: Wang and Li (2001); Courtesy: Multi-Science Publishing.



3.2.2 Contiguous strut configurations

In the vertex-and-edge connection of the square tensegrity truncated pyra-
mid, mechanisms in the bases are avoided by the restraints from adjacent
simplexes. In the irregular layout, additional diagonal cables are required to
compensate for shared cables so as to remove mechanisms (Figure 3.6(c)).
The regular layout is geometrically rigid (when the number of modules is at
least three along each way) since no diagonal cables are shared by adjacent
simplexes, but it does not contain higher prism rotation angle.

The vertex-to-vertex connection produces more joints and possibility of
mechanisms. In the connection of the square tensegrity prism, the mechanisms
in simplexes cannot be removed and the resulting grid is geometrically flexi-
ble. In order to form geometrically rigid grids, rigidified simplexes have to be
employed although some cables may be taken away (Figure 3.11). In addition,
it is interesting to note that in the grid there is still one infinitesimal mecha-
nism left, which is the relative rotation of adjacent simplexes (any pair). It can
be removed by introducing an attaching cable in the tensional layer to link any
pair of adjacent simplexes, but introducing more attaching cables can reduce
internal forces and increase stiffness significantly (Figure 3.11). In the figure,
the bottom layer is assumed to be the tensional layer.

The characteristics of the configurations made of triangular simplexes are
similar. The vertex-and-edge connection of geometrically flexible truncated
pyramids (Figure 3.5(b)) results in geometrically rigid configuration but
strut density is high with low material efficiency. The vertex-to-vertex con-
nection of geometrically flexible tensegrity prisms produces geometrically
flexible configuration (Figure 3.12(a)). In order to form geometrically rigid
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Attaching cable

Figure 3.10 Geometrically rigid form for all layouts of non-contiguous strut 
configuration Method II for the square simplex.

Source: Wang and Li (2001); Courtesy: Multi-Science Publishing.



configuration, stiffened simplexes are required, and an attaching cable is
also needed to remove the infinitesimal mechanism of relative rotation of
adjacent simplexes, but more attaching cables are introduced in the ten-
sional layer to improve structural properties (Figure 3.12(b)).

3.3 Design examples

Till recently, only a few studies have been carried out on real-scale proto-
types, except for some preliminary analysis. That is because few people
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Prism rotation angle = 45° 
         Attaching cable

Figure 3.11 Geometrically rigid form for all layouts of contiguous strut configura-
tion Method I for the square prism.

Source: Wang and Li (2001); Courtesy: Multi-Science Publishing.

(a) (b)

 Attaching cable

Figure 3.12 Layouts of contiguous strut configuration Method I for the triangular
prism: (a) geometrically flexible form; (b) geometrically rigid form
(prism rotation angle � 30�).



ever doubted the efficiency of tensegrity concept, since cables are
employed as tensional materials and all bars are in compression without
redundancy. However, design results turn out to be quite negative. In this
section, properties of various tensegrity grids are presented through design
examples.

3.3.1 Introduction

Hanaor (1994, 1997) presented a real-scale study of a flat tensegrity layout
based on the triangular simplexes. The tensegrity grid is also compared with
a square-on-square offset space grid. Some important conclusions are
drawn. First, the geometrically rigid grid is much stiffer than the geometri-
cally flexible grid with deflection about half whereas the weight saving is
apparent although not significant, about one-sixth (note that under the
same stiffness requirement, geometrically flexible form would be much
heavier). Second, the self-weight of the geometrically rigid tensegrity grid is
nearly twice that of the studied space grid (although the space grid is not
the optimal form, e.g., it can be improved by supporting at the upper layer
with reduced modules). Finally, long bars, a feature of all tensegrity struc-
tures, is pointed out as the reason for the heavy weight of tensegrity grids.
In fact, there are also other important factors related to the weakness of
non-contiguous strut tensegrity grids (Wang and Li 2001), which are
adapted in this chapter.

The design of all grids in this book is based on Chinese code (note that
the examples are comparative and thus code independent) and internal
forces and displacements are computed by the Newton iteration method
(Section 2.3). The load factor for dead load is 1.2, for live load 1.4 (so the
internal forces are factored). The design strength equals to yield strength
divided by material factor 1.1 (but in general, we use smaller value:
200MPa for A3 steel (yield strength � 235MPa), and 300MPa for high-
strength 16Mn steel (yield strength � 350MPa). Various tube cross-sections
popular in Chinese market are introduced in the design and the selection of
these tubes is automatically realized based on full stress design method and
the principle that fewer types are preferred. The computation process is
based on the following procedure:

(a) Input the initial cross-sections of components.
(b) Compute the form-finding process if prestress is applied.
(c) Compute the load response.
(d) Select the cross-sections of components. If the change of cross-sections

is greater than 5%, return to (b).

In general, the iteration of cross-sections needs only 3–5 circles. The
resulting cross-sections can satisfy the accuracy requirement in practical
constructions.
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3.3.2 Non-contiguous strut tensegrity grids

In this section, geometrically rigid non-contiguous strut grids formed by the
square tensegrity prisms are studied in two-way spanning (in one-way
spanning, tensegrity grids present even worse properties; see Appendix A
for reference). Although both connection methods are studied, only the
results of the edge-to-edge connection (Method II) are listed because the
vertex-to-edge connection (Method Ib) is proved less efficient by test com-
putations. The span is prescribed 30m (square plan), as a representative of
the familiar range. These grids are simply supported at the bottom bound-
ary nodes. The grid for Layout A is given in Figure 3.13 for reference.
Parameters for design are presented as follows.

Span: 30m
Number of modules: 10 for each way
Grid depth: 3m
Dead load: 50kg/m2 (excluding self-weight of the grid structure)
Live load: 50kg/m2

Design strength for struts: 200MPa (A3 steel)
Tubes for designing struts: D114t4 (diameter � 114mm, thickness �

4mm), D140t4.5, D159t5, D168t6, D180t7, D194t8, D194t9
Design strength for cables: 500MPa (tendon)
Cross-sections for designing cables (cm2): 0.5, 1, 2, 3, . . .

Prestress is not introduced, unless specified. The design depth is relatively
large in that the stiffness of non-contiguous strut configurations is low as a
whole. Test computations prove that double-layer tensegrity grids are insen-
sitive to non-symmetric loads, such as dead load � half-span live load, so
only the full load case is presented. In each grid, several types of tubes and
cables are selected from the available list given here. The selection follows
the principle that fewer types are preferred (e.g. in the present design, tube
types vary from two, when bar forces are evenly distributed, to six, when
bar forces are not evenly distributed). The chief results are presented in
Table 3.1.

In Layouts A and B, the prism rotation angle is variable. For both lay-
outs, the proportion of slack cables decreases with the increase of the prism
rotation angle. In Layout A, the 67.5� case is of much lower internal forces
and higher stiffness than the 45� case. But in Layout B, the 67.5� case is less
advantageous than the 45� case and its struts are longer. Both the 45� case
in Layout A and the 67.5� case in Layout B suffer from uneven distribution
of internal forces.

The comparison of three layouts shows that Layout A is the lightest. By
inspection, the only difference among three layouts is the arrangement of
struts. In Layout A, struts are orthogonal to the edge, whereas other con-
figurations contain struts diagonal to the edge (it seems that torsional effect
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does not take effect in non-contiguous strut grids). Perhaps owing to the
same reason, the layout is also lighter than the vertex-to-edge connection.

In order to study the influence of prestress, same prestress value is applied
to all struts for the optimal case – the 67.5� case of Layout A (marked as
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Figure 3.13 Optimal non-contiguous strut grid – Method II, Layout A, 67.5�.

Source: Wang and Li (2001); Courtesy: Multi-Science Publishing.



‘67.5� � P’). The level is 1/6 (5kN) and 1/3 (10kN) of the maximum com-
pression (30kN) under design load respectively. Results in Table 3.1 show
that the number of slack cables decreases with the increase of prestress level
and the stiffness is improved accordingly. Results also imply that prestress
does not increase self-weight significantly and does not have much influence
on internal forces when prestress level is not high in geometrically rigid grids.

3.3.3 Contiguous strut tensegrity grids

In this section, contiguous strut tensegrity grids formed by the square sim-
plexes are studied under two-way spanning (one-way spanning cases are
presented in Appendix A for reference). Two sample grids, Method I,
Layout A (67.5�) and Method II, Layout A, are illustrated in Figures 3.14,
3.15, respectively. The design follows the procedure in Section 3.3.2.
Parameters different from those in Section 3.3.2 are presented as follows:

Grid depth: 2.5m
Available tubes for designing bars: D76t3.8, D89t4, D114t4,
D140t4.5, D159t5, D168t6, D180t6, D194t6, D219t6

Design results show that in Method II, Layout B is less efficient compared
with Layout A (Table 3.2). That is because at each inner joint in the upper
layer of Layout B (Figure 3.6b), the pair of connected struts includes an
inclined angle in plan, resulting in extra force component for the co-planar
inclined cable to equilibrate, and the resulting tension in return increases strut
compressions and thus strut weight. It follows that the pair of connected
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Table 3.1 Design results for non-contiguous strut grids of the edge-to-edge
connection (Method I)

Layout Prism Maximum forces Self-weight Proportion Maximum Strut
rotation under designed (Kg/m2) of slack deflection length
angle load (10kN) cables under live (m)

load
Compression Tension Struts Cables (span)

A 45� 76 53 30.5 8.2 860/2880 1/46 4.646
67.5� 30 27 28.8 8.2 748/2880 1/71 4.529
67.5�� p

5a 30 27 30.3 8.9 647/2880 1/84 4.529
10a 32 28 32.2 9.9 555/2880 1/109 4.529

B 45� 29 23 33.8 9.9 848/2880 1/64 4.646
67.5� 55 33 36.9 9.5 740/2880 1/57 5.016

C 45� 75 58 33.5 9.5 840/2880 1/41 4.646

Source: Adapted from Wang and Li (2001).

Note
a Prestress value for all struts (unit: 10kN).



struts had better be designed ‘co-linear’ in plan, like the case in Layout A.
Owing to the same reason, in Method I, Layouts B and C are much less effi-
cient than Layout A as the included angle is much smaller, so only the results
of Layout A (45� and 67.5� cases) are presented.
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Figure 3.14 Contiguous strut tensegrity grid – Method I, Layout A, 67.5�. 

Source: Wang and Li (2001); Courtesy: Multi-Science Publishing.



In Method I, Layout A, deflections under live load, a principal factor for
service design, are about 1/180 span. The case of larger prism rotation angle
(67.5�) is slightly better. Maximum cable tensions in Method I are roughly
half those of Method II at the expense of introducing crossing cables in the
tensional layer.
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Figure 3.15 Optimal contiguous strut tensegrity grid – Method II, Layout A.

Source: Wang and Li (2001); Courtesy: Multi-Science Publishing.



By comparing two types of connection methods based on the optimal
cases (Layout A, 67.5� case for Method I and Layout A for Method II), the
former has more cables and connections, and the latter is subject to slightly
longer struts. They are roughly identical in self-weight and stiffness, but in
practical construction the latter is better.

3.3.4 Comparison of optimal tensegrity configurations

In this section, the optimal cases of contiguous strut tensegrity grids are
compared with the optimal non-contiguous strut tensegrity grid, and a
square-on-square offset space grid (SOS grid), one of the popular space truss
forms, in 30m span. The optimal cases for tensegrity grids are Method II,
Layout A, 67.5� for non-contiguous strut grids (Figure 3.13); Method I,
Layout A, 67.5� (Figure 3.14) and Method II, Layout A (Figure 3.15) for
contiguous strut grids. The conditions are the same as those in Section 3.3.3
(note that grid depth is 2.5m for all).

Note that the optimal non-contiguous strut tensegrity grid and the
contiguous strut grid of Method I, Layout A follow the same orientation
of struts and that the only difference between them is just the configu-
ration method, thus the efficiency of two types of configurations can be
compared straightforwardly. The contiguous strut grid of Method II,
Layout A with simpler geometry can be compared with the space truss. The
results are presented in Table 3.3. Because the studied conditions are typi-
cal in design, the results are considered representative of the properties of
various grid types.

In order to see their properties more clearly, internal forces distribution
of tensegrity grids (excluding web cables) and the space truss (excluding
web bars) are illustrated in Figures 3.17–3.19, respectively. Most upper
cables in the non-contiguous strut tensegrity grid do not slacken and large
part of them is subjected to relatively large tensions. Whereas in contiguous
strut tensegrity grids, most upper cables slacken, and a few subjected to
small tensions mainly lie in boundary modules. Note that the distributions
are common for all tensegrity grids.
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Table 3.2 Design results for contiguous strut grids

Methods Prism Maximum forces Self-weight Proportion Maximum Strut
and rotation under designed (Kg/m2) of slack deflection length
layout angle load (10kN) cables under live (m)

load
Compression Tension Struts Cables (span)

I A 45� 19 13 16.9 4.0 422/1719 1/179 3.905
67.5� 18 15 16.2 3.7 410/1719 1/184

II A 45� 18 29 16.9 2.9 360/1020 1/184 4.183
B 22 29 19.6 3.8 340/1020 1/134

Source: Adapted from Wang and Li (2001).



Design results show that non-contiguous strut grid is much larger in
internal forces, weight and deflection than contiguous strut grids, so are
contiguous strut grids than the space truss except for the deflection aspect
due to different material application. The inherent reason is explained in
the following section.

3.4 Structural efficiency of tensegrity grids

The invention of novel structural systems of cables and struts with higher
structural efficiency can be feasible based on clear understanding of the low
structural efficiency of tensegrity grids.

� Structural efficiency is defined by the reverse of the weight of the grid
specified to be capable of sustaining the prescribed loading conditions
and satisfying service requirements.

Clearly, the higher the weight, the lower is the structural efficiency. The
chief service requirement is stiffness (deflection control). A structure of low
stiffness requires high prestress to meet service requirements, thus internal
forces and consequently, self-weight is increased. Properties related to
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Table 3.3 Comparison of optimal tensegrity grids and space truss

Grid types Max. forces Self-weight Max. Strut Tube Cable
under design (Kg/m2) deflection length cross- cross-
load (10kN) under live (m) section section

load (D � t) (cm2)
Compression Tension Bars Cables (span)

Optimal 34 33 26.4 8.5 1/66 4.215 89 � 4 0.5, 1,
non- 114 � 4 2, 3, 4,
contiguous 140 � 4.5 5, 7
strut grid 159 � 5

Contiguous 18 15 16.2 3.7 1/184 3.905 76 � 3.8 0.5, 1,
strut grid – 89 � 4 2, 3
Method I, 114 � 4
Layout A, 140 � 4.5
67.5�

Contiguous 18 29 16.7 3.1 1/184 4.183 76 � 3.8 0.5, 1,
strut grid – 89 � 4 2, 3, 4,
Method II, 114 � 4 5, 6
Layout A 140 � 4.5

Square- 14 13 14.0 — — 3 48 � 3.5 —
on-square 3.279 60 � 3.5
offset 76 � 3.8
space grid 89 � 4

114 � 4

Source: Adapted from Wang and Li (2001).



the structural efficiency of two tensegrity configurations are presented as
follows and then summarized.

3.4.1 Properties of contiguous strut tensegrity grids

The properties of non-contiguous strut tensegrity grids are more complex
than those of contiguous strut grids, so the latter are explained in advance.

Internal forces in the structural components in either tensegrity grids
or space trusses (both belong to space frames as a whole) arise from the
action of bending moments and shear forces on the structure as a whole. Of
these two actions the effect of internal moments is dominant. The inter-
nal forces of components forming the compressive/tensional layer are deter-
mined by the corresponding resistant level arms to the tensional/compressive
centre of the cross-section (in the context, the resistant level arms). The
deeper the level arm, the smaller is the force (for further discussion refer to
Section 5.1.1).

In contiguous strut tensegrity grids, upper cables slacken or sustain small
tensions following the ‘compressive’ deformation of the upper layer.
Therefore, internal moments are sustained by inclined struts and bottom
cables whereas the influence of upper cables is negligible as a whole. The
internal forces of contiguous strut grids are generally larger than those in
space trusses owing to the reduced resistant lever arms as a result of bar incli-
nation. The resistant lever arms of inclined struts in resisting internal
moments are about 80% of the grid depth for the studied parameters, and the
lever arms of bottom cables can be estimated referring to the case that struts
are joined at centres, that is, about half the grid depth (Figure 3.16(a)). In
contrast, both lever arms in space trusses are the full depth of the grid. It
explains larger internal forces in tensegrity grids, which can refer to their dif-
ference in force distributions in Figures 3.17 and 3.18. Larger strut compres-
sions and especially larger cable tensions in connection Method II (Figure
3.17(a)) are obvious as compared with the internal forces in the space truss
(Figure 3.17(b)). The case is similar for Method I except that large cable ten-
sions are not explicit (up to 77kN, Figure 3.18) due to much higher cable
density (7 :2 compared with the bottom chords in the space truss).

In addition to the reduction in the resistant lever arms, another factor,
which is more important, is obviously their excessive bar length hence
larger tube cross-sections are designed. Consequently, the self-weight of the
optimal tensegrity grids is about 40% heavier than that of the space truss
even under higher grade for cables (Table 3.3). The difference in fact
becomes larger with the increase of span.

By the way, contiguous strut configurations with openings (or called ‘plane-
filling forms’) are of low structural efficiency owing to the resulting isolation
of struts, which results in cables sustaining tension in the compressive layer.
The properties are partially similar to those of non-contiguous strut grids,
as can be analysed as follows.
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3.4.2 Properties of non-contiguous strut tensegrity grids

From analytical results, non-contiguous strut tensegrity grids are character-
istic of large internal forces, very low stiffness and heavy weight and are
actually sensitive to support positions. The deformation and internal forces
of upper cables, inclined struts, and bottom cables of the studied optimal
case are illustrated in Figure 3.19. Among factors leading to their low effi-
ciency, excessive bar length and the reduction of the resistant lever arms due
to bar inclination are the same as in contiguous strut grids. But the domi-
nant factor is actually the strut-to-cable connection among simplexes as can
be inferred from the comparison between the contiguous type of Method I,
Layout A and the non-contiguous type (Table 3.3). It is the fundamental
reason why the properties of non-contiguous strut tensegrity grids are much
poorer in structural efficiency than contiguous strut grids.

The strut-to-cable connection causes low efficiency in that the internal
forces among simplexes are transferred indirectly through joints to cables.
Consequently, cables in the compressive layer (here, upper cables) always
remain in tension and infinitesimal mechanisms occur at the connected ver-
tices. Additional attaching cables can ‘remove’ these mechanisms in view of
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Figure 3.16 Resistant lever arms in tensegrity grids: (a) contiguous strut grid;
(b) non-continuous strut grid.

Source: Adapted from Wang and Li (2001).



geometry, forming geometrically rigid form, but considerable part of them
actually still exists. As illustrated in Figure 3.20, the resultant forces at the
connected vertices from adjacent simplex are compression in the upper
layer and tension in the bottom layer. In the bottom layer the tensions can
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generally be balanced by the corresponding attaching cables, so most mecha-
nisms can be avoided and the deformation is small as a whole (Figure 3.19(b)).
However, in the upper layer, large part of infinitesimal mechanisms will be
activated as the attaching cables are inclined to slacken or share very small
forces (these infinitesimal mechanisms are thus ‘implicit’, as mentioned in
Section 2.4.2). It explains the large deformation and internal forces in the
layer, as verified in Figure 3.19(a). (The cases with camber, which may refer
to Appendix B, are better in that forces are much reduced but do not pres-
ent significant improvement in structural efficiency because near-mecha-
nism geometry is still unavoidable.)

Upper cables in high tension results in additional significant reduction in
the resistant lever arms besides bar inclination by offsetting the moment
resistance of the bottom cables and inclined struts, respectively. The concept
of the reduction in resistant lever arms for non-contiguous strut grids is
illustrated in Figure 3.16(b), compared with that for contiguous strut grids
(Figure 3.16(a)). The increases in strut compressions in return enlarge ten-
sions in upper cables. The developed large deformation and tension are then
transferred to all other components.
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Compressive resultant transferred from adjacent simplex 

Tensional resultant transferred from adjacent simplex

Attaching cable inclined to slacken under load

Figure 3.20 Analysis of mechanism geometry under load (central simplex taken
out, for detailed drawing see Figure 3.13).



3.4.3 Summary of structural efficiency

Tensegrity grids are not structurally efficient despite that high-strength cables
are introduced as tensional material and that all bars are in compression as
they do not comply with the dominant load-transfer pattern. Due to the low
structural efficiency, tensegrity grids are suitable in small spans or when
special architectural requirements become the principal concern (as the
example, large span applications of non-contiguous strut grids are dis-
cussed in Appendix B) or in special functions such as deployment, as dis-
cussed in Chapter 6. Based on the present analysis (The present discussion
is focused on flat forms, excluding domical forms relying on lateral sup-
ports. But conceptually, the property should be similar), the low structural
efficiency can be summarized into three factors, which are ranked in
descending order according to the significance:

� Isolation of struts in grid,
� Excessive bar length, and
� Reduced resistant lever arm owing to bar inclination.

The latter two factors are due to the isolation of struts in simplex, which is
common for all tensegrity grids.

Isolation of struts in grid

In non-contiguous strut tensegrity grids, struts are isolated among simplexes.
The indirect force transfer leads to cables in tension in the compressive layer
and infinitesimal mechanisms (or near-mechanism geometry) that enlarge
the tensions, resulting in much-reduced resistant lever arm and low stiff-
ness. The drawback is dominant and is conceptually common for all non-
contiguous strut grids, including those that are not composed of simplexes.
In addition, ‘isolation of struts in grid’ increases significantly the number of
joints that require much more components to restrain the degree of freedom
and results in complexity in geometry especially when curved forms are
required.

As improved forms, contiguous strut tensegrity grids avoid the ‘isolation
of struts’ in simplex connections and thus present much better structural
efficiency over non-contiguous strut tensegrity grids. Meanwhile, as struts
are connected at ends, large part of contiguous strut configurations can
directly realize geometrical rigidity. It follows that structurally efficient
grids should be at least based on contiguous strut configurations.

Isolation of struts in simplex

In tensegrity grids struts are isolated in simplexes. These struts are required
to stabilize a tensional outer space without contacting each other;
thus struts are attached to far vertices of simplexes. It results in long bars
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subject to buckling and bar inclination that causes the reduction of the
resistant lever arms for struts and especially cables. Hence, the structural
efficiency of contiguous strut tensegrity grids is still significantly lower than
that of space trusses. So if we expect that the resulting grids can be struc-
turally efficient, struts should be allowed to be in contact in simplexes.

3.4.4 How to achieve high structural efficiency

From structural point of view, tensegrity concept is the introduction of
‘isolation of compression members (struts)’ in free-standing cable networks.
However, based on the analysis above, low structural efficiency of tenseg-
rity concept stems exactly from the introduction of ‘isolation of struts’ in
simplexes and simplex connections. It leads to the conclusion that only con-
tiguous strut configurations made of simplexes containing contiguous struts
could present high structural efficiency.

The defect of tensegrity concept in structure leads to the search for
lightweight free-standing grids of cables and struts by discarding the
concept of ‘isolation of struts’ in both simplexes and simplex connections.
Consequently, the discussion of structural efficiency leads to the invention
of lightweight forms that are more ‘reasonable’ from structural point of
view, and in addition, present new architectural art.
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Part II

Cable-strut systems





Tensegrity structures are low in structural efficiency because of the
introduction of the concept ‘islands of compression in a sea of tension’ in
free-standing grids. Although the concept is undoubtedly an invention in
architecture, it is not sufficient for successfully creating lightweight struc-
tures as the original objective. Lightweight free-standing grids made of
cables and struts can be invented successfully through avoiding the draw-
backs and inefficient forms of tensegrity grids. The nature of tensegrity
grids as dominantly composed of simplexes leads naturally to the idea that
improved structural forms should also be based on the innovation in sim-
plexes, either by new methods to stabilize the original tensegrity building
blocks or by designing novel simplexes. Consequently, tensegrity grids are
extended to cable-strut grids. The concept was discussed preliminarily by
the author (Wang 1998a,b) and studied systematically afterwards (Wang
and Li 2001, 2003a,b, Wang 2002a,b). Geometrical details are presented in
this chapter.

4.1 Definition of cable-strut systems

Cable-strut systems are extended from tensegrity systems. The term ‘cable-
strut’ itself contains the following meaning:

� Cables as tensional material. ‘Cable’ here is the generalized term for
cables or tendons, such as steel strands, steel wires and tension rods,
etc. that are either in tension or inactive. It is utilized to reduce weight
by the high-strength lightweight property, and in addition, to simplify
joint connection.

� Bars only as compressive material. Bars in tension are only occasional
(thus cables are normally ‘continuous’). The specification makes sure
that bars can be saved to the ultimate degree so as to reduce weight.
That is the reason why the systems are termed ‘cable-strut systems’, not
the more generalized ‘cable-bar systems’. In contrast, bars in conven-
tional bar systems are subjected to either compression or tension or in
general, compression and tension alternatively under various load cases.

4 Geometrical characterization of
basic cable-strut systems



� The whole structure is stabilized by the interaction of cables and struts
only. That is to say, there are no boundary anchoring systems.
Accordingly, cable domes and radial cable roofs are cable-strut – ring
beam systems.

Based on the spirit above, cable-strut systems can thus be defined:

� Cable-strut systems are free-standing pin-jointed systems of struts and
continuous cables.

Here, ‘continuous cables’ means cables are inter-connected to be continu-
ous in geometry, otherwise, bars in tension is conceptually unavoidable. In
comparison with the definition of tensegrity systems, cable-strut systems
remove the restriction of ‘isolation of struts’. The extended systems cover a
wide variety of forms, including ornamental forms. However, studies in this
book are focused primarily on structural forms – cable-strut grids. Cable-
strut grids are in general composed of cable-strut simplexes and the config-
urations include non-contiguous strut types and contiguous strut types.

4.2 Principles of designing cable-strut simplexes

The basic principle of designing cable-strut simplexes, evidently, lies in how
to realize weight reduction. The weight of the resulting grid is contributed
by struts, cables and joints. Improved resistant lever arms and less slack
cables are preferred for the reduction of cable weight. Improved resistant
lever arms can also reduce joint weight, and reducing joint density and
avoiding small included angles among components are related design tech-
niques. However, the main concern here is the minimization of strut weight,
which is the main index introduced in simplex design.

4.2.1 Evaluation of strut weight

Whether a cable-strut grid is lightweight can be evaluated when compared
with other grids. Under the same layouts and loading conditions, the strut
weight of various grids can be compared approximately by the following
function:

Vi � Ai Li, i � 1, n (4.1)

in which, n is the number of struts per area (strut density), Vi, Ai, Li being
the volume, cross-sectional area and length of a strut i, respectively.

The cross-sectional area Ai of a strut subjected to buckling can be
expressed as follows:

(4.2)Ai � C · Fi · 

Si
2

��
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in which, C is a constant of material, Fi and Si is the internal force and
slenderness of a strut i, respectively. In actual structural design, Ai is subject
to the restriction of smallest cross-section and Si to the smallest slenderness
(in China, 180).

The substitution of Eqn (4.2) into Eqn (4.1) yields

(4.3)

Eqn (4.3) expresses generally the influence of various factors on the total
volume or equivalently, weight of all struts. Therefore, general principles of
weight reduction can be obtained.

4.2.2 General principles

In Eqn (4.3), the item of slenderness squared expresses the influence of the
length of struts (Li) in buckling effect. The length of struts (Li) is undoubt-
edly the primary factor affecting the weight of struts and hence the whole
structure. Therefore, small bar length becomes a primary concern in invent-
ing novel cable-strut simplexes. As in cable-strut simplexes struts are
allowed to be in contact, it gives the freedom in designing short struts.

Bar forces (Fi) in contiguous strut grids are determined chiefly by their
resistant lever arms when modular parameters are given. Cable-strut sim-
plexes should allow for relatively high resistant lever arms in grid including
optimal design. Then the factor becomes less influential among structurally
efficient forms (Chapter 5).

The strut density (n) is determined by the number of struts in each simplex
and the way of connecting simplexes for the given modular length. As fewer
struts are preferred, cable-strut simplexes are generally of simple geometry.

Polyhedra of simple geometry include prisms, anti-prisms, pyramids, trun-
cated pyramids, anti-truncated pyramids and reciprocal prisms (di-pyramids),
etc. as shown in Figure 4.1(a)–(f). As the building blocks of lightweight grids,
cable-strut simplexes can be formed by the aforesaid principles to stabilize
these polyhedra by struts and cables. The topic is discussed in detail in the
following section.

Irregular polyhedra of simple geometry, such as those with different top
base and bottom base in Figure 4.1(g), require further investigation. Higher
polyhedra that are not suitable as building blocks for lightweight structures
but are capable of forming ornamental forms are excluded from the present
discussion.

4.3 Cable-strut simplexes

The narrow sense of cable-strut simplexes includes only cable-strut sim-
plexes that can be applied to form lightweight cable-strut grids whereas the
broad sense also includes tensegrity simplexes. In cable-strut simplexes,

�Vi � C · �Fi · 

Si
2 · Li,   i � 1, n
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struts are allowed in contact, giving the freedom in designing short struts
and/or reducing strut number. In order that all bars are in compression and
that bars are of reduced length and density, cable-strut simplexes are in gen-
eral of simple geometry. Moreover, simple geometry has the benefit that the
distribution of internal forces is not so complex in the resulting grid. Cable-
strut simplexes can be formed by new methods to stabilize polyhedra that
form tensegrity simplexes or by designing new polyhedra. Studies are
focused on the triangle-based and square-based simplexes. Square simplexes
can be used in building square and rectangular layouts, and triangular
simplexes in elliptical and irregular layouts.

4.3.1 Anti-prisms and anti-truncated pyramids

Tensegrity prisms have the feature of non-contiguous struts. Each realizes a
stable volume of continuous cables and discontinuous struts, that is, ‘tenseg-
rity’. When the struts are joined at centres, the volume becomes unstable and
thus lateral inclined cables are required to stabilize the simplex (Figure 4.2).
The resulting bar-intersecting simplexes with half-reduced bar length
belong to a new type of cable-strut simplexes, namely, anti-prisms (APs)
and anti-truncated pyramids (ATPs). In contrast, the prism rotation angles
in new simplexes can vary randomly between larger than zero and half central

76 Cable-strut systems

(a) (b)

(c) (d)

(e)

(g)

(f)

Figure 4.1 Polyhedra of simple geometry: (a) prisms; (b) truncated pyramids;
(c) anti-prisms; (d) anti-trucated pyramids; (e) pyramids; (f) reciprocal
prisms (di-pyramids); (g) irregular polyhedra of simple geometry.



angle (e.g. 60� for the triangular, 45� for the square). In Figure 4.2(a), the
angle of each simplex is half the vertex angle. Each AP or ATP is geometri-
cally rigid (note that for the squares, reinforcing the base is not necessary)
with three degrees of static indeterminacy based on the initial geometry for
both the triangle and the square.

An AP or ATP can also be stabilized by designing two inner joints, as
shown in Figure 4.2(b). Such simplexes can be called an AP2 or ATP2. An
AP2 (ATP2) appends a vertical strut that connects upper and lower inclined
struts. Each AP2 (ATP2) has a state of self-stress and no mechanisms. The
introduction of the vertical strut facilitates the deployment as it can be real-
ized easily by telescoping only one strut (the vertical strut) in each simplex,
which is discussed in Section 6.3. More inner joints may be designed but the
topic is beyond the scope of this book.

The so-called AP or ATP simplexes include all designs but in the narrow
sense may refer to the ones with one inner joint.

4.3.2 Prisms and truncated pyramids

A prism (P) is topologically identical to an anti-prism or anti-truncated
pyramid. The resulting simplexes can also be formed by short struts from
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Figure 4.2 AP and ATP simplexes: (a) APs and ATPs; (b) AP2s and ATP2s.



inside and relatively longer edge cables from outside. The principles of
forming cable-strut simplexes by truncated pyramids (TPs) are the same.
The resulting TP forms can be considered as the variation of P simplexes.

The simplex is called a P when it contains only one inner joint
(Figure 4.3(a)). A triangle-based P contains an infinitesimal mechanism of
prism rotation and a self-stress state. The only self-stress state can be easily
figured out from geometry, as at each joint three cables enclose one strut.
Given force to any member determines the whole force state. The only
mechanism is obvious from geometry, which can also be got from the
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Figure 4.3 P simplexes: (a) Ps; (b) P2s; (c) P3; (d) P4.

Source: Adapted from Wang and Li (2003a).



generalized Maxwell’s rule (Eqn 2.1b). In order to achieve better stiffness,
the mechanism can be avoided by introducing a diagonal stabilizing cable
in a lateral face in view of geometry. However, as it may slacken under rota-
tion, another cable of reverse clockwise shall be added.

A square-based P contains a state of self-stress, a finite mechanism in base
and an infinitesimal mechanism of relative rotation between two bases
(actually arbitrary two opposite faces). Typically, the prism rotation mech-
anism can be avoided by a pair of diagonal cables in lateral faces and the
finite mechanism can be avoided by introducing a pair of crossing cables in
the upper or bottom base (Figure 4.3(a), bottom left). Another choice, as
shown in Figure 4.3(a) (bottom right), is that two mechanisms can be
avoided by introducing two pairs of diagonal cables.

The simplex is called a P2 when it contains two inner joints (Figure 4.3(b)).
Compared with a P, a P2 appends a vertical strut that connects upper-and
bottom-inclined struts. The vertical strut introduces two additional infinites-
imal mechanisms of translations between two bases. In a triangle-based P2,
three infinitesimal mechanisms can be stabilized by four lateral cables. In a
square-based P2, it is interesting to find that the introduction of two pairs of
lateral cables, just like that in the case of a square-based P, can also stabilize
the two additional translations in view of geometry with a state of self-
stress (Figure 4.3(b), bottom left). However, in consideration of cable slack-
ening, crossing cables may be required in the base depending on actual
forces (Figure 4.3(b), bottom right).

Prisms with more inner joints among possible forms (P3, P4, etc.) are pre-
sented in Figure 4.3(c), (d) for reference. Ps P2s and P3s, etc. are called P
simplexes generally, but the narrow sense may include only Ps.

4.3.3 Reciprocal prisms and di-pyramids

Reciprocal prisms and di-pyramids refer to the same polyhedron, but they are
used separately to describe simplexes of different composition. As cable-strut
simplexes, a reciprocal prism (RP) is made of a vertical strut (VS), a certain
horizontal struts (HSs) and edge cables (ECs) connected by hinged joints
(Figure 4.4). The horizontal struts are enclosed, forming the base polygon. In
each RP, there is only one state of self-stress, and if no cable slackens there
is no inner mechanism. The self-stress state can be easily understood as each
joint in the base is connected with only four components. Actually, RPs are
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Triangular RP Square RP Pentagonal RP Hexangular RP

Figure 4.4 RP simplexes.



introduced as the first cable-strut simplexes that are applied to form grids in
order to avoid the low structural efficiency of tensegrity grids (Wang 1996a).

As a cable-strut simplex, a di-pyramid (DP) contains struts in the base
polygon that are connected at its centre and two perpendicular struts that
are connected at the same centre (Figure 4.5). The other end of these struts
is connected to edge cables that enclose the simplex volume. From compo-
sition, a DP resembles two pyramids combined together, and that is how the
name is obtained. The simplexes were patented in China (Wang 2002a). A
DP does not contain mechanisms. A triangular DP contains two states of
self-stress, and a square contains three, etc.

4.3.4 Crystal-cell pyramids

A crystal-cell pyramid (CP) is made of a vertical strut (VS), a certain inclined
struts (ISs) and outer cables connected by hinged joints to stabilize a pyramid
(Figure 4.6). Outer cables include upper cables (UCs) and inclined cables (ICs).
UCs form the upper base and ICs form the diagonal edges. Each inclined strut
is connected to the upper base in one end and to the VS in the other. In each
CP, there is also only one state of self-stress and no inner mechanisms if no
cable slackens. It was also patented in China (Wang 2002b).

4.3.5 Summary of basic cable-strut simplexes

As pointed out in Chapter 1, the planar form of tensegrity simplexes is
a two-strut ‘X’ module (Figure 1.16). Accordingly, planar (2D) forms of
cable-strut simplexes are summarized in Figure 4.7. The planar form of RPs
is a two-strut ‘�’ module, that of CPs a three-strut ‘Y’ module, that of DPs
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Figure 4.5 DP simplexes.

Source: Wang (2002a).
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Figure 4.6 CP simplexes.



a four-strut ‘�’ module, and that of APs, ATPs and Ps is a four-strut ‘X’
module. Finally, the planar form of AP2s, ATP2s, P2s is of five-strut ‘dumb bell’
module developed from ‘X’ module with a pair of stabilizing cables added.

Except for the RP simplexes, all the other simplexes are stabilized by
short struts from inside and relatively longer cables from outside, and
among them, a CP has the smallest strut density.
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Figure 4.7 Corresponding planar forms of cable-strut simplexes.



4.3.6 Simplex structures

All cable-strut simplexes themselves can be a roof structure. An example in
Figure 4.8(a) shows a CP structure with base nodes supported. When struts
are long, they may be replaced by super struts (Appendix B). Secondary
struts can be added, when necessary, to shape faceted surface, and increased
volume can be realized by designing twin simplexes together (Figure 4.8(b)).
More studies on simplex structures from architectural point of view are
presented in Chapter 7.

It is mentioned that irregular cable-strut polyhedra offer more choices
in design. The example in Figure 4.8(c) shows a polyhedron of hexagonal
base and an edge top. Membrane covering is to be attached to two large
trapezoidal faces.
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Figure 4.8 Simplex structures: (a) a CP structure; (b) twin-CP structure with
secondary bars; (c) a structure of irregular simplex.



4.4 Cable-strut grids of non-contiguous strut configurations

Based on the geometry, cable-strut simplexes can be applied into non-
contiguous strut configurations in which struts are not connected directly
among simplexes (among them, only RPs seem not suitable as their bases
are composed of bars). The resulting grids belong to cable-strut grids in the
general sense, and are structurally more efficient than non-contiguous strut
tensegrity grids owing to the reduction of strut length. However, these grids
are still not structurally efficient due to cables in tension in the compressive
layer. Despite that, such a form expresses the value of cable-strut simplexes
in architecture, presenting isolation of strut groups while avoiding com-
plexity of geometry in tensegrity grids. In this section, non-contiguous strut
configurations are summarized. The resulting infinitesimal mechanisms at
the connecting joints can be avoided by the same principle as that in non-
contiguous strut tensegrity configurations (Section 3.2.1) and the discussion
is omitted here.

4.4.1 Configurations made of APs and ATPs

The configurations made of APs (Figure 4.9) are the same as those of
tensegrity prisms, which can be referred to in Chapter 3. In contrast, prism
rotation angle in APs can be smaller than 30� for a triangular AP and 45�
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Figure 4.9 Non-contiguous strut configurations made of APs: (a) vertex-to-edge
connection (Method Ia); (b) vertex-to-edge connection (Method Ib);
(c) edge-to-edge connection (Method II).



for a square AP. So Method Ia, which is not suitable for the square tensegrity
prism, is suitable for the square AP. For the other two methods (Methods
Ib and II), regular APs are preferred. In Method Ib, additional cables are
required to restrain relative rotation of adjacent simplexes.

The configurations made of ATPs are the same as those of APs but are
applied in the domical forms with camber. For example, the Swiss Expo
2001 (Pedretti 1998), as the rare application proposal in the field, is based
on Method Ia, triangular ATPs.

4.4.2 Configurations made of Ps and TPs

Non-contiguous strut configurations made of Ps can be classified into two
types: face-to-face connection (Figure 4.10(a)) and edge-to-face connection
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Triangular prisms

Triangular prisms

Hexagonal
prisms

Square prisms
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Figure 4.10 Non-contiguous strut configurations made of Ps: (a) Face-to-face
connection; (b) Edge-to-face connection.



(Figure 4.10(b)). In the former, adjacent simplexes share a part of lateral
face. In the latter, the vertical edge of one simplex is connected to the lat-
eral face of another simplex. In the edge-to-face connection of square-based
simplexes, additional cables are required to restrain relative rotation of
adjacent simplexes, which are not shown in the figure.

The configurations made of TPs can be got from the varied domical forms
of Ps. But some flat forms are also feasible, for example, the face-to-face
connection of triangular or square TPs (Figure 4.11(a)). In addition, some
‘half’ non-contiguous forms can be derived, in which struts are connected
directly just in one layer (Figure 4.11(b)).

4.4.3 Configurations made of CPs and DPs

The configurations made of CPs and those of DPs are basically the same.
The bases are connected in either a vertex-to-edge way or an edge-to-edge
way (Figures 4.12 and 4.13). Bottom cables are needed in CP configura-
tions to form the tensional layer. The resulting CP grids act as free-standing
grids when downward load is dominant. In DP configurations, upper and
bottom cables are introduced so that two layers of cables can act as the
tensional layer alternatively under various loads. The discontinuity of strut
groups, as shown in Figure 4.12, present unique appearance.
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Figure 4.11 Non-contiguous strut configurations made of TPs: (a) face-to-face
connection; (b) connections of square TPs (half non-contiguous forms).



4.5 Cable-strut grids of contiguous strut configurations

Contiguous strut configurations made of cable-strut simplexes are the basic
structural configurations for designing lightweight cable-strut grids. The
configurations are summarized in this section. In free-standing supporting
structures, geometrically rigid forms achieve better stiffness and more even
distribution of internal forces and even obviate prestressing process. Most
configurations are geometrically rigid themselves. The left with mechanisms
are discussed and improved into geometrically rigid ones. Besides, some
evolved structural configurations and shell forms are illustrated.
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(a)
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Square CPs

Triangular CPs

Square CPs

Triangular CPs

Figure 4.12 Non-contiguous strut configurations made of CPs: (a) vertex-to-edge
connection; (b) edge-to-edge connection.



4.5.1 Configurations made of APs and ATPs

All connection methods for the contiguous strut configurations made of
tensegrity simplexes can be applied into the corresponding APs and ATPs
(Figure 4.14). In flat grids, the vertex-and-edge connection is suitable for
ATPs whereas the vertex-to-vertex connection is suitable for APs.
Meanwhile, attaching cables are also introduced in each vertex-to-vertex
connection like the case in tensegrity configurations, in order to reduce
internal forces and increase structural stiffness. The configurations made of
AP2s and ATP2s are the same as those of APs and ATPs.

Unlike in the configurations made of tensegrity simplexes, there is in gen-
eral no chirality in the configurations of the square AP or ATP and regular APs
and ATPs are introduced more often to achieve better structural properties. In
addition, an additional form can be feasible for the triangular AP in the ver-
tex-to-vertex connection (Figure 4.14(c)), in which each AP should be regular.
The connection is better than the vertex-and-edge connection of the triangu-
lar ATP (Figure 4.14(a)) in that its bar density is lower. Meanwhile, the form
in Figure 4.14(b) can be considered as the honeycombed form of Figure 4.14(c)
when each simplex is regular, as is the case in the figure.

The connection of the square AP (Figure 4.14(e)) and that of the trian-
gular AP in Figure 4.14(b) have the drawback that each pair of connected
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Figure 4.13 Non-contiguous strut configurations made of DPs: (a) vertex-to-edge
connection; (b) edge-to-edge connection.



struts from adjacent simplexes is inclined to each other in plan. Therefore,
additional force component is required for equilibrium (see also analysis
in Section 5.3.1). So the vertex-and-edge connection (Figure 4.14(d)) is
better for the square simplexes, whereas the vertex-to-vertex connection in
Figure 4.14(c) is more suitable for the triangular.
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Increased strut
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(c)
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Figure 4.14 Contiguous strut configurations made of APs and ATPs: (a) vertex-
and-edge connection of the triangular ATP; (b) vertex-to-vertex
connection of the triangular AP (Layout (a)); (c) vertex-to-vertex con-
nection of the triangular AP (Layout (b)); (d) vertex-and-edge con-
nection of the square ATP; (e) vertex-to-vertex connection of the
square AP. 

Source: Wang and Li (2001); Courtesy: Multi-Science Publishing.



4.5.2 Configurations made of Ps and TPs

The configurations of prisms can be classified into the face-to-face connec-
tion method (Figure 4.15(a)) and the edge-to-edge connection method
(Figure 4.15(b)). The face-to-face connection is not suitable for the triangular
simplexes due to high bar density, which also leads to tensional bars that are
considered ‘redundant’ under cable-strut concept. In the edge-to-edge connec-
tion of the square simplexes, crossing cables are added in both layers to avoid
relative rotation although these cables sustain only small forces under load.

In the face-to-face connection, the mechanisms in the base and those of base
rotation are avoided by the restraints from adjacent simplexes. Consequently,
configurations made of the square P are geometrically rigid. In the connection
of the square P2, the left mechanisms of translation are avoided by introducing
one diagonal cable in each lateral face (Figure 4.15(a)).
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Figure 4.15 Contiguous strut configurations made of P (TP) simplexes: (a) face-to-face
connection; (b) edge-to-edge connection; (c) square TP in flat form
(edge-to-edge).



In the edge-to-edge connection, only the mechanism of base rotation can be
avoided, but it is enough for the connection of the triangular P to be geomet-
rically rigid. In the connection of the square P, the mechanism in the base can
be avoided by introducing crossing cables in the base of the tensional layer (in
Figure 4.15(b), both layers). In the connection of the triangular or square P2s,
stiffened simplexes have to be used in order to achieve rigidified forms.

All configurations made of P simplexes can be applied to the correspon-
ding TP simplexes to form curved forms. It seems not convenient to form
flat TP grids. However, one such special case is presented in Figure 4.15(c),
which is the edge-to-edge connection of the square TP of alternate large and
small bases.

4.5.3 Configurations made of CPs

With reference to the methods of forming AP and ATP grids, contiguous strut
configurations of CPs fall into two categories: edge-to-edge connection
(Figure 4.16(a)) and vertex-to-vertex connection (Figure 4.16(b)). In both
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Figure 4.16 Contiguous strut configurations made of CP simplexes: (a) edge-to-edge
connection; (b) vertex-to-vertex connection.



connections, bottom connecting cables are added to form the tensional 
layer.

For the triangular CP, the edge-to-edge connection is not suitable. For the
square, stabilizing cables are added among simplexes to avoid relative rota-
tion in the vertex-to-vertex connection. The connections of the hexagonal
simplexes are also illustrated for reference. All CP configurations are
geometrically rigid.

As the special case of cable-strut grids, the CP grids are not restrictedly
free-standing as bottom cables cannot form a compressive layer. But they
behave as free-standing forms when the gravity load (including roofing,
cladding and self-weight load of the grid) is dominant. Special configura-
tions refer to Section 7.3.3.

4.5.4 Configurations made of RPs and DPs

As far as various RP simplexes are concerned, their configurations can also
be composed of two types: vertex-to-vertex connection and edge-to-edge
connection. Two layers of cables are introduced in forming RP configura-
tions. For the triangular simplex, only the vertex-to-vertex connection is
suitable (Figure 4.17(a)). For the square simplex, both connection methods
are suitable (Figure 4.17(b) and (c)), and in the vertex-to-vertex connection
relative planar rotation of adjacent simplexes may be avoided by introduc-
ing crossing cables in the grid or bars along the edge. Configurations of the
hexagonal simplex are presented in Figure 4.17(d) and (e) for reference. All
RP configurations are geometrically rigid.

Each RP configuration has its corresponding form in space trusses if
we change the reciprocal prism to the pyramid of the same base and
restore connecting cables to bars. For example, the RP grid formed by the
edge-to-edge connection of the square simplex corresponds to the square-on-
square offset space grid (the ‘SOS’ grid), and the one formed by the vertex-
to-vertex connection corresponds to the diagonal-on-square space grid (the
‘DOS’ grid). Other sub-types of RP grids can be formed by referring to the
methods of forming various space trusses. Their composition being com-
pared at the same modular length, RP grids reduce bar density significantly
with typical proportion of 3:8 by replacing all inclined and bottom bars
with cables and only one vertical strut in each simplex. Proportion of cables
in RP grids to bars in space trusses is typically 12:8. But as cables are not
subject to buckling and large part of them is of low stress level, the overall
structural efficiency is higher than the latter, as proved in Section 5.3.

The configurations made of DP simplexes are the same as those of RP
simplexes (Figure 4.18). In the vertex-to-vertex connection of the square
DP, the introduction of prestressed crossing cables can stabilize the relative
rotation. But introducing a strut is preferred for ‘purely’ hinged node
model. When moment resistance of nodes is considered, stabilizing compo-
nents may be obviated as discussed in Section 5.3.1.
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4.5.5 Summary of basic structural configurations

Among configurations composed of cable-strut simplexes, those made of APs
and ATPs are ‘special’ compared with others, as only one type of connection
methods is suitable. In the configurations made of P simplexes, the face-to-face

92 Cable-strut systems

(a)

(b)

(c)

(d)

(e)

Figure 4.17 Contiguous strut configurations made of RPs: (a) vertex-to-vertex
connection of the triangular RP and its corresponding space truss form;
(b) edge-to-edge connection of the square RP and its corresponding
space truss form; (c) vertex-to-vertex connection of the square RP and its
corresponding space truss form; (d) edge-to-edge connection of the hexag-
onal RP and its corresponding space truss form; (e) vertex-to-vertex
connection of the hexagonal RP and its corresponding space truss form.



connection method results in more connected joints between each pair of
adjacent simplexes than the edge-to-edge connection. The case is the same for
the edge-to-edge connection in the configurations made of CPs, RPs or DPs
than the vertex-to-vertex connection. For the convenience of narration, the
former connection method with more connection joints is named Type ‘a’,
the latter named Type ‘b’. The resulting configuration is accordingly called 
‘P-a’ configuration, ‘P2-b’ configuration, ‘CP-b’ configuration, and so on, as
summarized in Table 4.1.

Configurations in this chapter are obtained from geometrical relations.
The Type ‘a’ of the triangular simplexes is excluded from cable-strut con-
figurations as they contain ‘extra’ bars that are unavoidably in tension
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Figure 4.18 Contiguous strut configurations made of DPs (a) edge-to-edge connection
(b) vertex-to-vertex connection.

Source: Wang (2002a).



(actually, Type ‘b’ can be taken as Type ‘a’ with openings). Some other
forms may also not satisfy cable-strut definition and modification is
required, but such cases need to be verified through structural analysis.

4.5.6 Evolved structural configurations

The aforesaid structural configurations are characteristic of co-planar bases
as the typical way to form the load-bearing layer. More structural forms can
be developed, which are conceptually illustrated as follows. Other forms
developed mainly for architectural concern (but may still be structurally
efficient) are discussed in Chapter 7.

Grid with openings

In small spans, openings may be designed to reduce material consumption. It
is generally suitable for all simplex types. The forms made of triangular sim-
plexes with openings are illustrated in Figure 4.19(a). It is evolved from Type
‘b’. In Figure 4.19(b), the forms made of square simplexes with openings can
be considered as an evolved form of Type ‘a’. When further opening is intro-
duced as checkerboard pattern (Figure 4.19(c)), it is characteristic of Type ‘b’.

Mixed base types

Different base types can be mixed in one grid. A simple example, which is
just a design technique, is the mixing of triangles and squares to meet the
shape of boundary (Figure 4.20(a)). Another example, a mixing of triangles
and hexagons with stabilizing cables in plan, among lots of possible forms,
is illustrated in Figure 4.20(b).

Mixed simplex types

It is interesting to note that various types of simplexes can be used in one
grid. One such example composed of square ATPs and triangular Ps with
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Table 4.1 Summary of typical cable-strut simplexes and basic structural configurations

Simplexes Polyhedra Basic structural configurations
(contiguous strut)

P, P2 Prisms Face-to-face Edge-to-edge
(P-a, P2-a) (P-b, P2-b)

CP Pyramids Edge-to-edge Vertex-to-vertex
(crystal-cell (CP-a) (CP-b)
pyramids)

RP, DP Riciprocal prisms Edge-to-edge Vertex-to-vertex
or di-pyramids (RP-a, DP-a) (RP-b, DP-b)

ATP, ATP2 Anti-truncated Vertex-and-edge —
pyramids

AP, AP2 Anti-prisms — Vertex-to-vertex



Type IIType I

(a)

(b) (c)

Bar

Figure 4.19 Evolved structural configurations: (a) grid of triangular simplexes with
openings (from Type b); (b) grid of square simplexes with openings
(from Type a); (c) grid of square simplexes of checkerboard pattern
(from Type b).

(a)

(b)

Figure 4.20 Mixed forms of various angle types: (a) mixed form of triangles and
squares; (b) mixed form of triangles and hexagons.



openings is presented in Figure 4.21. The triangular Ps are ‘laid down’ with
two bases connected to the lateral faces of ATPs. It is for sure that more
forms can be designed.

4.6 Cable-strut shells

Latticed shells benefit from space action to lower self-weight. Large defor-
mation is not permissible because joints will deviate from the original posi-
tions, destroying space action. Cable-strut grids discussed previously are
based on flat forms, which can be developed into low-rise domes. When
cable-strut shells, especially cylinders (barrel vaults) are designed in large
spans, improvement of structural stiffness may be necessary.

The flat RP or DP grids studied previously are of single-layer bar form,
thus the corresponding grids are subject to relatively large deformation.
When applied in cylindrical forms, RP-a and DP-b grids are more suitable.
The structural stiffness can be improved through introducing bars to
replace connecting cables. Therefore, double-layer bar form can be
obtained (Figure 4.22(a)), in which all the bottom connecting cables are
replaced by bars, and so does triple-layer bar form (Figure 4.22(b)), in
which both the upper and bottom connecting cables are replaced by bars.
Alternatively, connecting cables along generatrix (in a dome, circular direc-
tion) can be kept to form partial double-layer/triple-layer bar forms (Figure
4.22(c) and (d)). Based on the same principle, (partial) double-layer bar
form for CP grids can be formed (Figure 4.22(e) and (f)).

In double-layer and triple-layer strut forms cable weight takes very
small proportion as cables are just stabilizing elements. Due to the savings in
web components, cable-strut shells are lighter than latticed bar shells.
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Square ATP

Triangular P

Figure 4.21 Mixed configurations made of square ATPs and triangular Ps.



Compared with double-layer latticed barrel vault, test computations at 100
m span show that partial triple-layer RP barrel vault can be 14% lighter due
to the savings in web bars. DP barrel vault is still lighter due to the reduction
in bar length. CP barrel vault is the lightest but under restriction of span.
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Figure 4.22 Cable-strut shells of multi-layer strut forms: (a) double-layer bar form
(half span, for RP or DP grids); (b) triple-layer bar form (half span, for
RP or DP grids); (c) partial double-layer bar form (for RP or DP grids);
(d) partial triple-layer bar form (for RP or DP grids); (e) double-layer
bar form for CP grids (half span); (f) partial double-layer bar form CP
grids (half span).



In general, in small spans, it is sufficient for RP/DP cylinders (barrel vaults)
to design single-layer bar form; in middle spans, (partial) double-layer bar
form, including CP cylinders (barrel vaults), may be preferred; whereas in
large spans (partial) triple-layer bar form may be required. In domical
forms, however, the span range is much increased, as domes are naturally
stiffer than cylinders (barrel vaults).

4.7 Summary of cable-strut simplexes and grids

As load-carrying grid structures, cable-strut grids, in the general sense, can be
classified into four categories based on simplex types and simplex connections:

� struts not in contact in both simplexes and grids;
� struts not in contact in simplexes but in connection in grids;
� struts in contact in simplexes but not in connection in grids; and
� struts in contact in both simplexes and grids.

The former two types are, respectively, non-contiguous strut tensegrity
grids and contiguous strut tensegrity grids. The latter two are new cable-
strut grids. The last produces the lightweight type, the resulting structural
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Figure 4.23 Summary of cable-strut grids and simplexes.

Source: Wang and Li (2001); Courtesy: Multi-Science Publishing.



weight of most grids can be lighter than space trusses. The broad sense of
cable-strut grids includes tensegrity grids and new cable-strut grids in which
struts are allowed in contact in simplexes, whereas the narrow sense
includes only the last lightweight type that entirely discards the concept of
‘isolation of struts’.

Tensegrity simplexes are anti-prisms and anti-truncated pyramids stabi-
lized by isolated struts from inside and inter-connected cables from outer
layer. Cable-strut simplexes are formed from simple polyhedra, including APs
and AP2s (formed from anti-prisms), ATPs and ATP2s (formed from anti-
truncated pyramids), Ps and P2s (formed from prisms), CPs (formed from
pyramids), and RPs and DPs (formed from reciprocal prisms or di-pyramids),
etc. Tensegrity or cable-strut simplexes can be applied into non-contiguous
strut and contiguous strut configurations. Various forms of cable-strut sim-
plexes and grids are summarized in Figure 4.23. Configurations of light-
weight cable-strut grids include Type ‘a’ and Type ‘b’ (Table 4.1). In addition,
RP, CP and DP grids have multi-layer bar forms, applicable in large span
high-rise shells.

In addition to the role in basic structural grids, cable-strut simplexes are
basic building blocks for a wide variety of ornamental forms and cable-strut
simplexes themselves have varied forms, enriching the application of cable-
strut systems. The topic is discussed in Chapter 7. Moreover, a wide variety
of irregular polyhedra or higher polyhedra are applicable as building
blocks, and grids not based on polyhedra may also be feasible although
these themes are not focused in this book, awaiting further investigation.
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In this chapter, the load-transfer properties of lightweight cable-strut grids are
explained through truss analysis method based on the simplified planar ana-
logue models. These free-standing modules composed of cables and struts
add new content to bar system structural mechanics. Properties discussed
include the function and efficiency of various types of grid components in sus-
taining load response, especially those forming the compressive and tensional
layers. Principles of designing cable-strut grids are summarized according to
their mechanical properties and are illustrated by design examples. Finally,
various aspects of structural properties concerning lightweight cable-strut
grids, including weight reduction, stiffness and grid depth are reviewed.

5.1 Truss analysis method on mechanical properties

In practical applications, each grid can be supported and loaded in various
ways. Consequently, the distribution of internal forces is somewhat com-
plex. For the reason the properties of the simplified planar analogue models –
planar (2D) cable-strut trusses are explained instead to show grid properties
conceptually. In this chapter, the terms ‘shear force’ and ‘moment’ mean
‘shear force on the section as a whole’ and ‘bending moment on the section
as a whole’, respectively.

5.1.1 Planar bar truss and tension trusses

Cable-strut grids are both a type of space frames and a type of tension
structures. Before the introduction of cable-strut trusses, a planar bar truss
(Figure 5.1(a)), representing the load-transfer patterns of space trusses, and
tension trusses (Figure 5.1(b), (c)), representing the load-transfer patterns of
cable roofs, are presented for reference. Space trusses and cable roofs can
be taken as their spatial applications.

Planar bar truss

A planar bar truss is generally called a ‘planar truss’ in structural mechanics
(but as cable-strut trusses studied as follows are also ‘planar trusses’,

5 Structural properties and
design of lightweight 
cable-strut grids
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identification is necessary). Such truss is a simply-supported beam truss
(beam-like type) characteristic of large span-to-rise ratio.

Like in a beam, internal forces in a planar bar truss are determined by
two types of force equilibrium conditions at each cross-section, namely,
shear force equilibrium and moment equilibrium due to external forces.
Between the two, shear forces take effect mainly near supports, whereas
moments are dominant due to the shallow profile. Inclined chords sustain
shear forces. Upper and bottom chords are subjected to compressive and
tensional components of internal moments respectively to balance external
forces. The functions of these components are the same as in the corre-
sponding space grids. The resistant lever arms for compressive and 
tensional chords are both the full grid depth, the limit value.

Tension trusses

As catenary-like type, tension trusses are not free-standing and cables are
the principal structural components.

In the tension truss for the radial cable roof (bicycle-wheel roof), 
Figure 5.1(b), top cables slacken under downward load and the resistant
lever arm of bottom cables is their sag. Tensions in bottom cables form
internal couple with the compression ring beam (in the figure shown as
fixed support). Under uplift load, the role of two families of cables is
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Figure 5.1 Resistant lever arms for the bar truss and tension trusses: (a) planar bar
truss; (b) radial cable roof; (c) cable dome (Georgia dome profile).



reversed. The relative sags of two families of cables can be adjusted in
accordance with the relative magnitude of downward and uplift loads.

The planar tension truss for a cable dome (the shallow profile of Georgia
dome, Figure 5.1(c)) shows similar load-transfer pattern to a radial cable
roof but is structurally less efficient under downward load. As reported by
Hanaor (2002), downward load on internal panels is transmitted via the
diagonal cables to vertical struts, which are supported by hoops cables at
the bottom, until the vertical struts adjacent to supports. Hence, struts
receive enlarged load values with the interaction of edge cables. An addi-
tional factor negative to structural efficiency is the near-mechanism geome-
try of hoop cables in sustaining radial tensions, which cannot be expressed
in the truss model. But detailed discussion is out of the scope.

5.1.2 Planar cable-strut trusses

In comparison, planar cable-strut trusses are free-standing beam-like type
composed of struts and cables, adding new content to bar system structural
mechanics.

The relation of a planar cable-strut truss to a cable-strut grid is similar to
that of a planar bar truss to a space truss or a tension truss to a cable roof.
A planar cable-strut truss is composed of planar cable-strut modules that
are listed in Figure 4.7 with required cables to form the tensional layer.
Therefore, there are basically four types of planar cable-strut trusses:

� CP (crystal-cell pyramid) truss (Figure 5.3(a)).
� P (prism) truss (Figure 5.4). The so-called P truss represents not only

the dominant properties of P grids, but also AP (anti-prism) grids and
ATP (anti-truncated pyramid) grids.

� RP (reciprocal prism) truss (Figure 5.5(a)).
� DP (di-pyramid) truss (Figure 5.6(a)).

For comparison, a tensegrity truss representing the load-transfer pattern of
contiguous strut tensegrity grid is also presented here (Figure 5.2), showing
the reduced resistant level arms as analysed in Chapter 3. However, it seems
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not possible to find a planar truss to represent the pattern of non-contiguous
strut types of tensegrity or cable-strut grids, because cables subjected to
tension in the compressive layer is due to three-dimensional effect which
cannot be modelled in a two-dimensional way.

The relation of cable-strut trusses, except the RP truss, to the corresponding
cable-strut grids is straightforward, as the truss itself can be extracted directly
from the grid. As a typical example, the relation of the DP truss to two con-
nection methods respectively is illustrated in Figure 5.6(a). Generally, a planar
cable-strut truss is formed through projecting a one-way array of square cable-
strut simplexes into its symmetrical plane. Examples illustrated are the CP
truss (Figure 5.3(a)) and the RP truss (Figure 5.5(a)).

5.1.3 Properties of cable-strut trusses

As each type of planar cable-strut trusses is the simplified form of the cor-
responding cable-strut grids and is thus characteristic of their load-transfer
pattern, the function of each type of components in cable-strut grids is 
represented by the corresponding components in the cable-strut truss.
Properties of cable-strut trusses are analysed as follows, each containing
seven modules. No self-stress is introduced for all and various parameters
are defined as follows.

a modular length.
h overall depth for the CP truss, P truss, tensegrity truss and planar

truss; and the distance between the strut layer and the bottom layer
(tensional layer under downward load, as always the case studied)
in the DP truss and RP truss.

h1 the distance from the inner joints to the upper base for the CP truss
and P truss.

hu the distance between the strut layer and the upper cable layer in the
DP truss and RP truss.

The definition of these parameters is the same as those in the corresponding
grids. Values typical in the grids are afforded to these parameters for analysis.

In each planar cable-strut module, outer cables are stabilized by inner
struts. Under non-prestress state, one cable is slack based on geometrical
relations provided that the other cables are in tension and all struts are in
compression. The rule is useful in identifying which cable is slack so as to
simplify the truss.

CP truss

In the planar CP truss, there are two cable-slackening modes for planar CP
modules: upper cable slackening mode and inclined cable slackening mode
(Figure 5.3(b)). In the boundary module ABCD where shear force is dominant,



inclined cable CD slackens as upper cable AD and inclined cable AC are ten-
sional so as to satisfy equilibrium condition at node D (Figure 5.3(c)).
Whereas in the inner module DEFG, inclined cable FG is in tension because
at node G, the shear force is much smaller than the compressive component
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of the moment. Meanwhile, inclined cable DF is in tension in order to equil-
ibrate the shear force at the cross-section I-I (Figure 5.3(c)). Hence, upper
cable DG slackens. By repeating the procedure, all upper cables in inner
modules slacken. Therefore, the upper cable slackening mode is dominant.

The CP truss becomes both statically and kinematically determined after
slack cables are removed. The role of the vertical strut is always to brace
the module. The tensions in all bottom cables can be determined directly by
the moment equilibrium at the section. The corresponding resistant lever arm
(Dc) is the overall depth, h (Figure 5.3(c)). But at getting the compressions in
inclined struts, those in inner modules and in boundary modules are different.
In inner modules, the compressions can be obtained by the equilibrium of sec-
tional moments. The corresponding resistant lever arm (Ds) is reduced owing
to bar inclination, so smaller h1 is preferred (but it cannot be too small so as
to avoid instability). In each boundary module, the compressions in inclined
struts are obtained by the equilibrium of sectional shear forces so larger h1
may reduce the compressions. Based on the analysis, it is optimal to design
different h1, that is, smaller at the inner modules and larger at the boundary.

The role of inclined cables is to sustain shear forces. It is interesting to
find that due to inclined struts providing vertical force components, forces
in the inclined cables lying in the near-support side are reduced whereas
those on the other side are increased (Figure 5.3(d)).

P truss

The properties of the P truss (Figure 5.4) are similar to those of the CP truss.
Based on the same procedure of analysis, the P truss can also be simplified
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Figure 5.4 A P truss: (a) when downward load is dominant; (b) when uplift load is
dominant.



as statically and kinematically determined form by removing slack cables
and the internal forces can be determined accordingly.

The geometry of the P truss when the downward load is dominant refers
to Figure 5.4(a). Under downward load, slack cables are upper cables in
inner modules and two boundary vertical cables connected to the support
(it follows the same case as in the tensegrity truss in Figure 5.3). Upper
inclined struts form the compressive layer and bottom cables form the ten-
sional layer. The resistant lever arm for bottom cables in inner modules (Dc)
is h–h1, for upper inclined struts in inner modules (Ds) is larger, as marked
in Figure 5.4(a). Both resistant lever arms are reduced by bar inclination, 
so it is desirable to design smaller h1 in inner modules when downward 
load is dominant. The lower inclined struts sustain shear forces with
reduced values in the near-support side and enlarged value on the other
side. When secondary uplift load is applied, upper cables and lower inclined
struts form the tensional and compressive layers with smaller resistant lever
arm (Figure 5.4(a)), respectively.

When uplift load is dominant, the geometry is reversed, as shown in
Figure 5.4(b). Therefore, the resistant lever arms in the P truss can be 
balanced, and it is an advantage over the tensegrity truss (Figure 5.2). 
Of course, the advantage vanishes when the uplift load and the downward
load are equivalent, if really happened. In Figure 5.4(b), due to tensional
support reaction, the connected bottom cable slackens, in place of the 
connected vertical cable. In addition, struts in tension may be unavoidable
if h1 in boundary modules is smaller than h/2.

RP truss and DP truss

In the RP cable truss, under downward load, the bottom continuous cables
form the tensional layer, and all the upper cables slacken. Under uplift load
only, the upper cables form the tensional layer, and all bottom cables slacken.
The horizontal struts always form the compressive layer, and the vertical struts
stabilize truss modules. The property is generally similar to the tension truss
(Figure 5.1(b)) if the strut layer is replaced by a compressive ring.

Based on the same procedure of slack cable analysis, it is easily seen that
the RP cable truss (Figure 5.5(a)) is also statically determinate after slack
cables are taken away. Under downward load, inclined cables CD, GF, IJ
and the symmetrical ones slacken. Upper inclined cables BD, EG, HJ and
the symmetrical ones are subjected to shear forces. The resulting tensions in
these inclined cables increase the compressions or equivalently, reducing the
resistant lever arm in the corresponding horizontal struts, as shown in
Figure 5.5(b) (actually in RP grids, such tension is also sustained by the
orthogonal strut in the base that is reduced in the RP truss model).
The reduction in lever arm is relatively large near the boundary and is
negligible at the middle of span following the decrease of the overall shear
forces. In contrast, the resistant lever arm for bottom cables is h.
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Figure 5.5 Conception and analysis of the RP cable truss: (a) conception of the RP
cable truss and internal forces under given parameters (a � 1, h � 2/3, 
hu � 1/3, p � 20); (b) resistant lever arms for the RP truss; (c) internal
forces of a planar truss (a � 1, h � 2/3, p � 20) for comparision.

The internal forces of the RP truss are compared with the planar truss
(Figure 5.5(b)) based on the given parameters in the figure for reference.
The compressions in the compressive layer of the RP truss distribute evenly
at higher values with the maximum value approximate to that in the planar
truss. Two trusses are identical in tensions in the bottom layer. So two
trusses are generally similar in properties.

The functions of various components in the DP cable truss (Figure 5.6(c))
are identical to those in the RP truss, and the resistant lever arms are also
equivalent.



5.1.4 General properties of cable-strut grids

A cable-strut truss represents the load-transfer pattern of the corresponding
cable-strut grids. All of them are beam trusses, containing a compressive
layer formed by a continuous line of struts and a tensional cable layer, and
all struts are in compression. Like the case in the tension truss (Figure 5.1(b)),
upper and bottom cables form the tensional layer alternatively under uplift
and downward loads, respectively, except the CP truss. It shows the spirit in
cable-strut grids, which is proved in design examples in Section 5.3. Optimal
parameter design can thus be obtained and adjusting internal forces, when
necessary, can have the guide. General properties of each type of cable-strut
grids are obtained as follows.

In CP grids, most upper cables slacken under downward load. Some
upper cables that do not slacken lie in boundary modules. Inclined struts
are dominantly subjected to the compressive component of internal
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moments with reduced level arms due to bar inclination. Each vertical strut
stabilizes inclined struts in the simplex and inclined cables balance shear
forces. Bottom cables sustain tensional components of internal moments
with the lever arm of h. Designing smaller h1 in inner modules can increase
resistant lever arm for inclined struts that form the compressive layer,
whereas designing larger h1 in boundary modules is preferred.

The properties of P grids, AP grids and ATP grids are similar to those
of CP grids. The dominant properties are also characterized by inner
modules in which moments dominate the design. Under downward load,
upper inclined struts form the compressive layer, and bottom cables form the
tensional layer. The resistant lever arm for bottom cables is h–h1, and for
struts is larger. Designing smaller h1 in inner modules can improve resistance
lever arms for both and larger h1 in boundary modules is preferred. Under
uplift load, upper cables and lower inclined struts form the internal resistant
couple instead. The corresponding resistant lever arm and design parameters
can be obtained accordingly. Under both load cases, balancing of two groups
of lever arms shall be considered in determining design parameters.

In RP grids and DP grids, the role of the vertical struts is to stabilize the
inclined cables that are subjected to shear forces. Under downward load,
bottom cables sustain the tensional components of internal moments with
the lever arm of h. Horizontal struts form the compressive layer and the
compressions are enlarged by the tensions in the inclined cables. Larger hu
decreases the compressions in the horizontal struts but in RP grids length-
ens the vertical struts. Because the effect of bending moments is dominant,
the lever arm of the horizontal struts is approximate to h. Under uplift load,
upper cables and horizontal struts form the internal couple. The relative
value of hu and h can be adjusted in accordance with the relative magnitude
of downward and uplift loads.

5.2 Principles of designing lightweight cable-strut grids

Based on the discussion in the previous section, various cable-strut grids can
be summarized into two groups. RP grids and DP grids belong to one
group, whereas CP grids, P grids, AP grids and ATP grids belong to the
other. In this section, design principles of various lightweight cable-strut
grids are presented according to their load-transfer patterns and individual
properties. For the convenience of narration, the discussion of design
parameters is given representatively for square-based simplexes. Grids
made of triangular simplexes are presented in Appendix C for reference.

5.2.1 General

In cable-strut grids, components for designing struts are in general round
pipes. At larger spans, employing tubes of larger outer diameter (D) and
thinner wall thickness (t) are preferred to reduce strut weight. Components
for designing cables are tension rods, steel strands, steel wires, etc. In



conventional spans, when roof material requires high stiffness, tension rods
can be used. In other cases, higher strength material is suitable, resulting in
larger deflection which can be offset by camber or slope design.

The joint design in cable-strut grids can be simple as bars are subjected
only to compression. But joint design may affect modular length. The topic
is discussed in Section 6.2 but is not considered here. In lightweight cable-
strut grids, prestress level is in general very low and can be neglected. 
Most often, the so-called ‘prestress’ is only used to tighten cables.

In actual application, cable-strut grids may be applied in various supporting
conditions including edge-supported, corner-supported, one-way spanning,
and even cantilever cases. Conceptually, a grid containing struts diagonal to the
edge in the compressive layer is less advantageous in one-way spanning, includ-
ing the RP-b grid, the DP-a grid, and the CP-a grid, etc. In this section, only
edge-supported case is discussed, and the spirit can be extended to other cases.

5.2.2 RP grids

When downward load is dominant, parameters for designing RP grids are
hu (the height of the upper part), h (the height of the lower part, normally,
the main part), and a (the modular length). As the load-transfer pattern of
the RP grids is similar to the corresponding forms of space trusses as a
whole, their design parameters can refer to the latter. That is to say, h and
a can be the same as those in designing space trusses of the same layouts.
hu is related to h. Designing larger hu can reduce the internal forces but may
increase the weight. The optimal ratio of hu to h is roughly 0.3, which is got
from a number of test designs. When upward load is dominant, the upper
part becomes the main part.

Between two types of RP grids, if their modular lengths are designed the
same, the base length of each simplex in the RP-b grid is 71% that of the
RP-a grid and their self-weight is equivalent. The RP-b grid can be lighter
than the RP-a grid if larger modular length is designed. But the modular
length is not the larger the better because of bar buckling property. The pro-
portion of two modular lengths shall be clearly smaller than , at
which base lengths are the same for two grids. The optimal value is the mid-
dle, about 1.2 : 1, and it is proved by test designs.

Moreover, balancing of resistant lever arms (hu/h) is preferred when a RP
grid is subjected to both downward and uplift load cases. For example,
when roof dead load � 30kg/m2, self-weight load � 20kg/m2, live load �
50kg/m2, suction load � 70kg/m2, the resulting design load for the com-
bined downward load case based on Chinese code is

30 � 1.2 � 20 � 1.2 � 50 � 1.4 � 130kg/m2 (5.1)

The design load for the combined uplift load case is

70 � 1.4 � 30 � 20 � 48kg/m2 (5.2)

�2   : 1
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Therefore,

(5.3)

Normally, the less critical load case (here, the combined uplift load) between
the two does not affect weight much as the increase of weight is mainly due to
one layer of cables (here, upper cables under the combined uplift load case).

Sample RP grids are given in Figure 5.7 under downward load in 30m
span. In the figure, a is 3m for the RP-a grid, 3.75m for the RP-b grid
respectively, and hu, h are 0.75m, 2.5m in both cases.
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Figure 5.7 Sample RP grids (30m span): (a) RP-a grid; (b) RP-b grid.
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In RP grids and other cable-strut grids, camber design can be introduced
to consider the water drainage problem and the bottom layer can be
designed flat to make even the distribution of internal forces (Figure 5.8).
The design can reduce bar weight and deflection in a certain degree.

5.2.3 DP grids

The properties of DP grids are similar to those of RP grids. Sample grids,
when downward load is dominant, are given in Figure 5.9 in 30m span. h
can refer to the design in RP grids, although larger h may reduce more
weight. hu is affected by joint types. When the joint is of solid ball joint
type, for example, hu is preferred to be larger so as to avoid small included
angle among components. Here, hu/h is recommended to be 0.6. When hol-
low ball joint or plate-type joint is designed, hu/h can be smaller.

In the DP-a grid, the modular length a can be larger as strut lengths are
short. It can be the same as that in the RP-b grid. The modular length in the
DP-b grid is preferred to be the same as that in the DP-a grid. That is
because although its horizontal struts are shorter, the forces in these struts
are larger due to larger modular length in the strut layer (Figure 5.9). The
modular length in the strut layer of the DP-b grid is 3.75m, and that of 
the DP-a grid is .

Note that inner base cables in the DP-a grid can be removed due to the
restraint from adjacent simplexes, as shown in Figure 5.9(a).
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Figure 5.8 Illustration of camber design for the RP grids in 30m span.
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5.2.4 CP grids

In CP grids, design parameters are modular length (a), grid depth (h), and
the depth from the inner joint to the upper layer (h1). The majority of the
upper cables in CP grids slacken except those at the boundary modules
because of the effect of the global shear force. Optimal h1 is smaller at inner
modules (but cannot be excessively small so as to avoid ‘snap-through’
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Figure 5.9 Sample DP grids (30m span): (a) DP-a grid; (b) DP-b grid.
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buckling) to increase the resistant lever arm for the inclined struts that form
the compressive layer (roughly h–h1), but optimal h1 is larger at boundary
modules. When it is permissible, h can be designed to be relatively larger for
weight reduction. The design of a can refer to that in the DP grids.
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Figure 5.10 Sample CP grids (30m span): (a) CP-a grid; (b) CP-b grid.



Structural properties and design 115

The design examples for CP grids are given in Figure 5.10. In the figure,
h1 is 0.5m in inner modules, and 1m in boundary modules; a, h are 3.75m,
2.5m for the CP-a grid, and 3.75m, 3m for the CP-b grid, respectively. 
h in the CP-b grid is designed to be larger in order to reduce compressions
as the modular length in the strut layer is relatively large.

In the CP grids, the downward load is in general required to be domi-
nant. They are suitable in the load case that dead load can offset the effect
of uplift load. However, when the design uplift load is not much larger than
the downward load, the bottom layer may be attached to lateral supports
by cables. Sample layouts are illustrated in Figure 5.11.

5.2.5 ATP grids and AP grids

In general, the mechanical properties of the AP and ATP grids are similar to
those of contiguous strut tensegrity grids in that in the compressive layer, most
cables always slacken, and some subjected to small tensions mainly lie in
boundary modules. Therefore, inclined struts connected to the compressive
layer sustain the compressive components of internal moments. The difference
is that the resistant lever arms for these struts and especially for the bottom
cables in the AP and ATP grids can be improved through optimization.

When the ATP grid is subject to dominant downward load case, it is
advantageous to place the larger base of each ATP in the upper layer and to
design smaller h1 (Figure 5.12(a)). The optimal design can balance the
lengths of struts in the upper and bottom parts in addition to the improvement

Elevation

Column

Tie cable
Elevation

Layout of the bottom cables Layout of the bottom cables

(a) (b)

Figure 5.11 Stabilized forms of the CP grids: (a) CP-a grid; (b) CP-b grid.



in resistant lever arms. The choice of h1 can refer to the relative design
values of downward load and uplift load after combined and the design in
the CP-a grid for distribution. In addition to h1, other design parameters in
the ATP grid include module length (a) and overall depth (h) can also refer
to those in the CP-a grid.
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In the design example shown in Figure 5.12(a) under downward load in
30m span, a is 3.75m, h is 2.5m, and h1 is the same as that in Figure 5.9(a).
When the uplift load is dominant, the grid is placed upside down, and the
same design techniques can be applied accordingly.

The design parameters for the AP grid can refer to the ATP grid. The 
sample grid is given in Figure 5.12(b). However, the grid made of square
simplexes is less advantageous as proved by the design examples in Section
5.3. In this case, its prism rotation angle can be adjusted to be smaller or it
can be replaced by a P-b grid in application.

The principles of designing ATP2 and AP2 grids are similar and mean-
while, they may also refer to the design of P2 grids in the following section.

5.2.6 P grids

In general, between two types of configurations forming cable-strut grids,
Type ‘a’ produces more and longer bars compared with Type ‘b’. Therefore,
Type ‘a’ is generally heavier. In the P-a grid, there are high proportion of
bars in tension in two-way spanning owing to the interaction of upper and
bottom inclined bars, and thus it does not meet the spirit of cable-strut
forms. Therefore, openings shall be introduced (Figure 5.13). The case is

Plan
h1

h1

h2

h

h

Elevation of the P-a grid

Elevation of the P2-a grid

Square P

Square P2

a

Figure 5.13 Sample P-a and P2-a grids (30m span).

Source: Wang and Li (2003a).



the same for the P2-a grid, in which rigidified simplexes are required to
achieve geometrical rigidity.

Sample grids designed under downward load for P grids are shown in
Figures 5.13 and 5.14, design parameters including h1, h and a, which can
refer to the design in the ATP grid. Design parameters in P2 grids are h1, h,
a, and h2 (the distance of the lower inner joint to the bottom base), and
optimal h is larger than that in P grids and h2 is preferred to be larger so as
to reduce forces in lower inclined struts.

5.3 Design examples in conventional spans

In this section, various lightweight cable-strut grids are studied in conventional
spans (here, 30m). Layouts of these grids are given in Section 5.2. Note that
in these contiguous strut forms, the effect of geometrical stiffness is not sig-
nificant and computation process is stable. Therefore, the design and analy-
sis is easy as it can be solved with sufficient accuracy by lots of commercial
software that can model tendons.
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Figure 5.14 Sample P-b and P2-b grids (30m span).

Source: Wang and Li (2003a).
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For the simplicity of presentation, all grids are studied under downward
load only. No prestress is introduced and basic conditions, including loads,
span and supporting conditions, are specified to be the same as in Chapter 3.
As forces are in general smaller for cable-strut grids, the smallest cross-
section for cables is 0.25cm2, for struts is D48t3.5.

All grids in the section are two-way spanning. The one-way spanning case is
presented in Appendix D, giving an extensive understanding of the properties.

5.3.1 Design results

Chief design results are given in Table 5.1. In order to present the lightness
cable-strut grids are compared with the DOS grid and the SOS grid. Two
space grids are familiar forms and the DOS grid is generally the optimal. 
In addition, the results of the optimal tensegrity grid (contiguous strut
grid of regular vertex-and-edge connection) in Table 3.3 are appended
for comparison. Internal forces in the compressive and tensional layers that
are characteristic of the load-transfer pattern of each grid are given in
Figures 5.15–5.21 for reference. The distribution of forces in the SOS grid
refers to Figure 3.17(b). In the figures, only one quarter of the grids are
given due to the symmetry. Continuous lines refer to struts or bars, dashed
lines to cables. The unit for forces is kN.

RP-a and RP-b grids

In the RP-a grid, the distribution of strut compressions is relatively even as
a whole except for a few large values in boundary struts due to the forces
transferred from boundary inclined cables (Figure 5.15(a)), which follows the
property shown in the truss analysis. In addition, the distribution of 
tensions for both RP grids is also approximate to that in space trusses. The
exception is that in the RP-b grid, the distribution of strut compressions is not
even and small tensions occur in the central area (Figure 5.15(b)). The
uniqueness seems mainly due to the torsional effect when struts are diagonal
to the boundary (further study may be required to reveal why the effect is so
‘severe’). However, such distribution can be adjusted by simple techniques
such as camber design so that all struts are in compression with even values.

DP-a and DP-b grids

In contrast, DP grids present quite similar force distribution to space trusses,
conforming well to the truss analysis results. In the DP-a grid, the force
distribution (Figure 5.16(a)) is similar to that in the DOS grid (Figure 5.21)
both under torsional effect. In the DP-b grid, the force distribution
(Figure 5.16(b)) is similar to that in the SOS grid (Figure 3.17(b)). Also the
DP-a grid is equivalent in lightweight properties to the RP-b grid (Table 5.1).

In the DP-b grid, stabilizing bars are subjected to small forces. They can
be removed when semi-rigidity of joints is considered. Base cables simply
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stabilize struts in the base under small forces. They may be further removed,
if necessary, for example, in deployable model. In this case, the computa-
tion lengths of struts out of the vertical plane are doubled. Rectangular or
elliptical tubes may be applied to balance the slenderness.
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Source: Wang and Li (2001); Courtesy: Multi-Science Publishing.



CP-a and CP-b grids

As shown by the truss analysis, in both CP grids, upper cables in inner
modules slacken or are subjected to very small tensions. In the CP-a grid,
base cables in some inner modulus are removed. In the CP-b grid, base
cables in inner modulus can also be removed when joints can take second-
ary moment and stabilizing cables can be further removed leading to double
computation length of struts.
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The force distribution is generally similar to that in DP grids. In general,
the structural properties of the CP-a grid (Figure 5.17(a)) are compared to
those of the DOS grid with torsional effect, and the CP-b grid (Figure 5.17(b))
to the SOS grid.

The strut forces in the CP-b grid (Figure 5.17(b)) are much larger than
those in the CP-a grid (Figure 5.17(a)) although the depth is 1.2 times the
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latter. The main reason is that the modular length in the strut layer of the
CP-a grid is times the latter and that the latter benefits form torsional
effect to achieve smaller forces.

ATP, AP and P grids

In the ATP grid, only upper cables in boundary modules are subjected to
tensions (Figure 5.18). The overall property conforms with that obtaining
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from the truss analysis and the overall distribution of strut forces follows
the torsional effect.

In the AP grid, most upper cables are subjected to tensions producing
larger compressions in struts as a whole (Figure 5.19). That is because each
pair of struts is not co-planar in plan due to the relative rotation between two
bases in each simplex (the factor cannot be expressed in the truss model),
although the situation can be improved in the grid composed of the triangu-
lar simplex (Figure C.2 in Appendix C). In contrast, the force distribution in
two P grids (Figure 5.20) is proved to be much more even and forces in upper
cables are much smaller, conforming well with the property of the P truss.
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P2 grids are similar in properties to those of P grids and so are AP2 (ATP2)
grids to AP (ATP) grids, thus their results are not presented. They are in
general less advantageous for conventional usage owing to increased cables
and degrees of freedom, but their strut weight can be equivalently light.

Summary of internal forces

Based on the design results, truss analysis method can reveal the dominant
load-transfer pattern of lightweight cable-strut grids. Generally, the influ-
ence of internal forces on structural efficiency is not so significant among
lightweight grids, as the resistant level arms are already improved and
optimal design can be applied.

It is interesting to note that average values of internal forces in the
compressive and tensional layers in most grids are roughly proportional to
load, modular length in the layer and inversely proportional to the resistant
lever arms, but are relatively independent of grid types. Such property
concerning some typical grids is summarized in Table 5.2 for reference.

5.3.2 Review on structural properties

In view of application, the CP grids are more suitable when the downward
load case is dominant. The P-b grids and ATP grids are suitable in lighter
roofs with restricted requirement on stiffness, and the P-a grids (with open-
ings), RP grids and DP grids in more general cases. Structural properties are
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evaluated as follows. Generally, the principles of inventing novel simplexes
and lightweight grids turn out to be successful.

Weight reduction

The AP grid has the poorest properties compared with other cable-strut grids
but still saves strut weight significantly due to bar length reduction compared
with the optimal tensegrity grid. Other cable-strut grids are obviously lighter
than space trusses. The ATP grid and P grids save more than half of self-
weight compared with the optimal tensegrity grid and has good stiffness. The
RP-b grid, two CP and two DP grids, owing to further reduction of bar den-
sity, can achieve more weight savings. The CP grids save strut weight mostly
and the gross weight saving is nearly half compared with space grids (the CP-a
grid with the SOS grid, and the CP-b grid with the DOS grid)!

The structural efficiency of cable-strut grids compared with space trusses
can be illustrated more directly by appointing the same material grade for
cables as for struts, here 200MPa so as to take out the material factor in
structural efficiency. Hence, the weight of cables is increased to around
2.2 times. The final component weights, representing the ‘actual’ structural
efficiency of cable-strut and space truss grids are compared in Figure 5.22.
It shows the higher structural efficiency of cable-strut grids over space
trusses due to the minimization of bars subject to buckling.

The experience of applying conventional cable networks impress people
that weight reduction has little to do with economy. However, cable-strut
grids may be exceptions. In addition to material saving, simplified joint
design and convenience in construction are among other merits. The

0
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10

Component
weight
(kg/m2)

15

DOS
ATP

SOS

CP-b

DP-b
P-b

P-a

RP-b

RP-a

DP-a

CP-a

Figure 5.22 Comparison of structural efficiency based on the same material
grade.
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simplified joint design is presented in Section 6.2, and the convenience in
construction is related to reduced weight, free-standing nature, and the fact
that prestress is conceptually not necessary.

Stiffness

In addition to their lightness, the stiffness of cable-strut grids is also high.
Ref. Table 5.1, the deflections under live load can meet the stiffness require-
ment for the conventional roofs (1/200–1/300 span) under non-prestress
state or low prestress level. The ATP grid is especially stiff.

Grid depth for RP grids and DP grids

The present parameter design presents approximate resistant lever arms
between cable-strut grids and space trusses for the convenience of comparing
their properties. Therefore, RP and DP grids show higher overall grid depth
(h�hu). When it is an architectural requirement that both grids shall have
reduced overall depth as space trusses, internal forces are increased. Self-
weight is also increased but the proportion is less than 10% for the present
cases. The ‘worst’ case, which seldom happens in practice, is that the design
downward load and uplift load (after combined) are identical: hu and h
become half the depth in space trusses. The resistant lever arms are thus the
smallest and the weight reduction becomes non-significant. For example, DP
grids can only save 10% based on the same material grade for cables as struts.



In this chapter, the large-span application, joint design and deployable
functions of cable-strut grids are presented as further application studies.
The technical information serves as the reference for design. However, the
application of cable-strut concept should not be limited by these aspects
and are yet to be exploited. For example, the hybrid forms of cable-strut
grids with other structural types may be used in the design to combine their
merits and it will challenge the wisdom of designers and engineers.

In large span applications, large internal forces, complex construction
process, joint design, weight reduction and structural analysis, etc. are
among issues that need advanced techniques. By reference to the analysis in
Chapter 5, tensegrity grids and the AP grid composed of square simplexes
are not preferred due to their large self-weight load and large internal
forces, which produce difficulties in joint design. In comparison, light-
weight grids of smaller internal forces are suitable in super spans when self-
weight load becomes significant. Among them, the DP-a grid is studied
representatively. The spirit can be extended to other grid types. Besides,
domical forms are not a focus in the present study, but cable-strut grids
shall conceptually present good performance.

Joint design is important for any structure as it may affect the structural
performance, the aesthetics, the fabrication price and the assembling process
in construction, etc. On the premise of efficiently transferring internal forces,
joints are required to be light, easy to fabricate, fast assembling, good look-
ing, etc. It is preferred that the joint design can be as simple as possible so as
to meet these requirements. In cable-strut grids, cable connection is simple
and struts are subjected to compression. The principles of the joint design are
recommended in this chapter.

Deployable structures hold full volume as supporting structures when
deployed and have smallest volume for transportation when collapsed into
a compact bundle. The main benefits of these structures are that they are
reusable, can be kept with very small volume, and can be assembled and
released very quickly with least manual or mechanical forces. Most
‘conventional’ deployable structures are composed of bars. In comparison,
cable-strut systems can achieve less stowed volume (higher packaging

6 Application studies of lightweight
cable-strut grids



efficiency) and reduced weight (higher structural efficiency), and decrease
the number of joints that have complicated mechanisms. Discussion of
deployable functions includes telescopic strut method, energy-loaded strut
method and releasing cable method, etc. among possible means. Finally, the
retractable functions are mentioned.

6.1 Large span design

In this section, large span design of DP grids is presented for reference. Two
examples are given as follows.

6.1.1 Example one – 100m span, circular layout

The grid is of circular plan (100m span) and simply-supported at the
boundary nodes in the middle layer. That is to say, the supporting structures
for the grid are not supposed to sustain lateral forces, unlike conventional
cable networks. For the DP-a grid itself, most roof materials including
membrane or metal panels are suitable when secondary members are intro-
duced. The light membrane is used in the design in order to consider the
effect of suction wind load. Note that all cable-strut grids have upper
cables, with which membrane can be stiffened so as to avoid large stress and
deformation under uplift load.

Load cases

Load cases are given as follows.

Roof dead load: Pd � 30kgf/m2

Live load: Pl � 70kgf/m2

Suction load: Ps � 100kgf/m2

Here, the roof dead load includes the weight of the membrane, the second-
ary cables for attaching the membrane and prestress load in membrane,
excluding the self-weight load of the grid (Psw). Other load types, such as
seismic load, are not considered as they do not take effect often. But it is of
interest to include it in further study.

Based on the given loads, two combined load cases are considered. One
is the full load case (downward), the design value based on Chinese code

Pf � 1.2 Pd � 1.2 Psw � 1.4 Pl (6.1)

The other is the uplift load case, the design value

Pu � 1.4 Ps � Pd � Psw (6.2)
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Assuming that the self-weight Psw � 30kgf/m2, then

Pf � 1.2 � 30 � 1.2 � 30 � 1.4 � 70 � 170kgf/m2 (6.3)

Pu � 1.4 � 100 � 30 � 30 � 80kgf/m2 (6.4)

These loads are distributed by area to all upper joints. As such grid is not
sensitive to unsymmetrical loads, half-span load cases are not considered.
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Figure 6.1 General layout of the DP-a grid in 100m span.



Grid description

The primary concern of grid design is to avoid densified components and
make even the distribution of internal forces. The resulting self-weight may
not be the optimal. By referring to the general layout in Figure 6.1 and the
layout of the strut layer in Figure 6.2, the modules vary from large trapezoids
in the outer ring to smaller trapezoids in the second outer ring, then to two
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rings of mixed trapezoids and triangles, finally, to a hexagon at the centre.
The number of modules is nine across the span. The modular lengths vary in
radial direction from the edge to the centre: 12m, 10m, 10m, 10m and 16m.
The rise for the upper layer is 5.5m, presenting the span-to-rise ratio of 16 :1.
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The rise for the compressive layer is 4m and the sag for the bottom layer is
designed to be 5m. When necessary, the overall grid depth can be reduced.

The grid contains 500 struts and 1,032 cables. The layout of upper
tensional layer with boundary upper inclined cables is presented in
Figure 6.3(a), and the layout of bottom tensional layer with boundary
lower inclined cables in Figure 6.3(b). Following the layout of the upper
tensional layer, the membrane is cut into seven sizes only.

Design results

In the design, material strength for struts is 200Mpa, and for cables 500Mpa.
Tubes for designing struts are D194t5, D219t6, D245t7 and D299t8. Cable
cross-section in design are 0.0003m2, 0.0006m2, 0.0012m2 and 0.0018m2.
No prestress is introduced. The resulting overall deflection under uniform
suction load alone (without being offset by dead load) is 1/100 span.
Deflection under uniform live load only is 1/290 span.

Under the two combined load cases, the supports sustain compression
and tension respectively. The bottom layer and the upper layer act as the
tensional layer alternatively whereas the strut layer always functions as the
compressive layer. The distribution of compression is given in Figure 6.2 for
reference. The maximum value 1210kN, also the largest of the grid, lies in
the triangular modules at the second ring from the centre.

The distribution of tensions in the upper and bottom layer respectively is
illustrated in Figure 6.3(a) and (b). The maximum tension is 850kN, lying
in lower inclined cables connected to the boundary. The forces are distrib-
uted quite evenly as a whole, so joint design can be easier by clamping con-
tinuous cables to nodes. It is interesting to note that in central area, the
tensions for both layers are almost identical. This is due to the balanced
design of their resistant lever arms according to the proportion between the
design upward and downward load values in Eqns (6.3) and (6.4).

Finally, the unit weight for struts (based on centre-to-centre length) is
18kg/m2, for cables 8kg/m2, altogether, 26kg/m2. It is much lighter than the
space truss of the similar layout, about 45kg/m2.

6.1.2 Example two – 200m span, square layout

The grid is of square plan (200m � 200m) and simply-supported. The roof
material covering the outer layer, for such a large span, is prescribed mem-
brane, and sufficient rise is required. In such a large span, internal forces are
always large hence base-reinforcement method is introduced first to reduce
internal forces.

Base-reinforcement method

The base-reinforcement method is originally applied into space trusses to
reduce internal forces when the increase of grid depth is not preferred
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(Wang 1998c). Meanwhile, such method has additional merits in the
improvement in stiffness and stability. Following the principle, four 
co-planar bars with a common node are introduced into the base of each
square pyramid module (Figure 6.4(a)). In this condition, an additional bar
is needed to stabilize them. The method reduces internal forces in space
trusses significantly (up to two-thirds, Wang 1998c) without densifying
modules and increasing many web elements.

The case is the same for the 200m grid here. The internal forces are quite
high but it is not a good practice to increase grid depth arbitrarily. The
applications of base-reinforcement principle to DP-a and DP-b grids are
shown in Figure 6.4(b). But in the present design of the DP-a grid, only
cables in the bottom layer are reinforced. As cables are always in tension,
no stabilizing component is needed.

Grid description

In designing the DP-a grid, the number of modules in each way is odd, nine,
in consideration of water drainage at the centre module. The resulting
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Reinforced strut layer

Strut layer of DP-a

Stabilizing bar

Reinforcing bar

Reinforced cable net

Cable net

Reinforced strut layer
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Square pyramid

(a)

(b)

BP

Figure 6.4 (a) Base-reinforcement principle (source: Wang 1998c); and (b) derived
methods.



modular length is 22.222m. The rise for the upper layer is 11m, giving
the span-to-rise ratio of 16 : 1, which is conventional for membrane roofs.
The rise for the compressive layer and the sag for the bottom tensional layer
are both 10m. The general layout and the isotropic view of the layout are
shown in Figures 6.5 and 6.6, respectively.

Based on the design, the grid contains 486 struts. The lengths of struts in
the compressive layer are around 15.6m. The lengths of the upper vertical
struts are equal, 10m, except for the central one, 11m, those of the lower
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Figure 6.5 General layout of the DP-a grid in 200m span.
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vertical struts ranging from 10m to 20m. A quarter of the compressive layer
is illustrated in Figure 6.7.

The grid contains 1,100 cables. Among them, crossing cables are
introduced in order to reduce cable tensions in the bottom layer. These cables
can rigorously share tensional forces and make even the force distribution
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by reducing the maximum cable tension in the layer by two-thirds. A quar-
ter of the bottom tensional layer is given in Figure 6.8.

A quarter of the upper tensional layer is shown in Figure 6.9. Based on the
design, membrane as a whole is cut into only eight different sizes. Upper cables
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actually function together with membrane roofs but the effect is not consid-
ered here. Note that introducing crossing cables can reduce the size of cable
nets for attaching membrane and also the depth of the upper part since
cable forces are much reduced, but it is not considered for simplicity.
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Design results

As span is large, high-strength steel is introduced. Here, the design material
strength for struts is 300MPa, for cables is 1,000MPa. Tubes for designing
struts are D325t8, D377t9, D450t9, D530t9, D600t10 and D600t12. Cables
cross-sections in design are 0.0005m2, 0.001m2, 0.002m2, 0.003m2, 0.004m2

and 0.005m2.
For such a large span, it is preferred to introduce a low level of prestress

to improve the stiffness and stability of the whole grid. It is assumed that
500kN compression is introduced to all lower vertical struts. Such level of
prestress has little influence on self-weight and internal forces as a whole.
The effect of membrane and its prestress to upper cables not considered, the
resulting maximum deflection under uniform suction load alone (without
being offset by dead load) is around 1/65 span. In comparison, the maxi-
mum downward displacement under uniform live load only is 1/200 span.

The strut layer always functions as the compressive layer. The distribu-
tion of compression is given in Figure 6.7. It shows torsional effect, and the
maximum value is 4,330kN, which is the largest of the grid. The largest
compression in the vertical struts is about 4,000kN, lying in the lower
vertical struts in some boundary modules.

Under the two combined load cases, the bottom and upper layers act as
the tensional layer alternatively. The distribution of final tensions in the
upper and bottom layer is illustrated in Figures 6.8 and 6.9, respectively.
The maximum tension is 4,710kN, lying in lower inclined cables connected
to the edge. But in the majority of cables, the tensions are relatively small
in view of such large span. For a few cables of large tension, both ends are
connected to only one strut hence the joint design ought not to be difficult.
In contrast, large tension is in general a problem in large span design.

The lightweight of the present design is prominent at the cost of high grid
depth and high-strength material. The unit weight for struts (based on
centre-to-centre length) is 20kg/m2, for cables 9kg/m2. Including the joint
weight, the total weight is only about 30kg/m2!

6.1.3 Summary and discussion

Design parameters and self-weight

The DP grids achieve optimal lightness at relatively high grid depth. In the
present examples, the overall depth for Example One is 14.5m for 100m
span, for Example Two 31m for 200m span. The depth can be reduced with
the increase of weight for the large design modules. For example, when we
proportion the depth from 14.5m to 10m in Example One, the resulting
component weight increases from 26kg/m2 to 32kg/m2.

Besides, designing large modules with large tube diameter and grid depth
proportional to span leads to the effect that self-weight does not increase
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proportionally with span. In Example One, if we double all dimensions (the
resulting module lengths and grid depth are then approximate to those in
Example Two) and utilize the same cross-sections and high strength mate-
rial as in Example Two, the resulting component weight increases from
26kg/m2 in 100m span to 32kg/m2 in 200m span, 10% heavier than the
square layout in Example Two. When there is the restriction on overall
depth, smaller modules can be used to control internal forces.

Comparison with cable domes

Present studies show that it is not difficult for cable-strut grids to achieve
below 40kg/m2 in 200m span. Cable domes are lighter but are actually not
highly structurally efficient whose weight reduction is due to high strength
of cables. In comparison, cable-strut grids save a boundary ring beam and
avoid complicated construction process.

Cable-strut grids extend the merits of cable structures by the incorpora-
tion of simple techniques in space trusses. The dominant advantages of
cable-strut grids over cable domes lie in two aspects. One is that joints in
cable-strut grids can be standardized and cheap (as discussed in the follow-
ing section), whereas joints in cable domes cannot be standardized and are
quite expensive. The other is that the former are much simpler in construc-
tion in that they are free-standing and do not require high prestress. In
contrast, the latter are not free-standing and rely on high prestress to pre-
vent the slackening of the majority of cables so as to maintain stability and
sufficient stiffness. So in large spans, cable-strut grids can be much more
economical than conventional cable networks.

Discussion on domical forms

When the DP grid in Example One is applied into higher-rise domical
form, grid depth is much reduced. As the property is simple, details are
omitted and only the conclusions are presented. Here, it is sufficiently
stiff to apply the present single-layer strut form in 100m span domes.
Application of double-layer and triple-layer struts refers to the discussion in
Section 4.6.

Compared with flat forms, forces in domical forms are transferred to the
edge, namely, thrust forces, which are positive under downward load and
negative under uplift load. The values vary with rise but are normally quite
big. When the thrusts are sustained by the boundary ring beam or supports,
the in-span weight is reduced quite significantly. Adjusting the profile (rise)
can reduce the thrust but does not have much influence on total weight. The
behaviour is generally similar to that of a latticed bar shell and is general
for all cable-strut domes.

Generally, bars in the middle layer (except those at the edge) of the
DP grid are compressive under downward load but are tensional under
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suction load. Cables mainly act as stabilizing components and the weight
contribution is quite low. Extended to other cable-strut domes, RP grids are
similar in properties. The left three types (AP, ATP and P domes) are stiffer,
containing two layers of inclined struts.

6.2 Joint design in lightweight cable-strut grids

6.2.1 Components and joint types

In actual construction, there are many options available for designing
components. For struts, circular/elliptical or square/rectangular tubes, tim-
ber bars, and even air-inflated plastic pipes, etc. are among the possible
options. For cables, tension rods, steel strands, steel ropes, flat bars and
even tubes are feasible. A steel tube, as an idea, has two flattened ends, each
bolted to a plate with a slot hole (Figure 6.10(a)). The bolt can slide in the
slot hole to release compression. The idea for the flat bar is similar (Figure
6.10(b)). Based on the principle, the purlin member, when necessary in
metal roofing, can be applied as the top tensional member simultaneously.

There are a wide variety of choices in designing joints for cable-strut
grids. For example, joint design in tension structures shall be indicative,
such as the tubular joint in glass cladding (Figure 6.11). But as cable-strut
grids are basically a family of space frames, their joint design may concep-
tually refer to another family of space frames, space trusses, as studied here.

In space trusses, there are mainly four types of prevailing joint systems:
solid bolted spherical joints, hollow bolted spherical joints, welded hollow
spherical joints and plate-type joints. In applying four types of joint systems
into cable-strut grids, welded hollow spherical joints require site welding.
Other three types are discussed in the following sections.
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(a)

(b)

Figure 6.10 Tensional elements: (a) tubular element; (b) flat bar.



6.2.2 Solid bolted spherical joint system

Solid bolted spherical joints are used frequently in space trusses. In con-
necting a tube to the bolted ball, it requires a bolt, a nut, a pin and a cone
welded to the tube (Figure 6.12(a)). The connection method can also be
used for the struts in cable-strut grids. As struts are mainly subjected to
compression, the bolt can be smaller as little force is transferred to it.

In comparison, the connection of a tendon to the ball is much simpler and
requires a small contact area (Figure 6.12(a)). Only an additional turnbuckle
is required to tighten it. The simplicity is an important benefit of applying
tendons over tensional tubes in space trusses. The appearance of applying
tendons and solid bolted joint in a DP grid is presented in Figure 6.12(b).

Solid bolted spherical joints are simple and can express the simplicity of
connecting tendons. However, the joints have the drawbacks in that the
diameter of the joints has to be increased when the included angle between
any two components is small. At this aspect, hollow spherical joints with
larger outer diameter are more advantageous.

6.2.3 Hollow spherical joint system

A typical hollow bolted ball can be designed as a half ball (Figure 6.13(a)), as
in the upper and bottom layers of various cable-strut grids. In connecting
the tendon to the hollow ball, the nut is applied inside the ball to fasten
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Figure 6.11 Tubular joint in glass cladding.



8
(a)

(b)

7
9

1 2

3

4

5

6

1. Tube
2. Cone
3. Pin
4. Bolt
5. Nut
6. Tendon
7. Threaded end
8. Turnbuckle
9. Ball

Figure 6.12 Solid bolted spherical joint system: (a) joint design; (b) the resulting
DP-a grid.
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the threaded end, thus a turnbuckle is not necessary. In connecting the
tube to the hollow ball, the connecting assembly can be the same as the
solid ball, but the small nut can also be fastened from inside the ball
(Figure 6.13(a)).
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Figure 6.14 Plate joint system: (a) cable-to-plate connection; (b) RP test modules
made of plate joints (source: Lee 2001); (c) improved joint design.
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Alternatively, it is much cheaper to weld the ball directly to the tube
(Figure 6.13(a)) by saving nuts and bolts. The typical cases are the upper
and bottom layers of the RP or DP grids where only one tube is connected
to the ball. It is also feasible in the compressive layer of the DP-b grid,
where two half balls from adjacent simplexes can be joined easily into one
as two halves always compress each other under load (Figure 6.13(b)).
Meanwhile, the semi-rigidity of joints can obviate base cables in inner mod-
ules when it is preferred. In the compressive layer of the DP-a grid or RP
grids, mixed welding and bolting (struts are bolted inside the ball) may be
required as each half ball needs to connect two tubes and the connection of
adjacent simplexes is similar to that in the DP-b grid.

It is noted that the ball can be evolved into tubular or other forms.

6.2.4 Plate-type joint system

Plate-type joints are popular in conventional cable structures. Each joint
often contains only one plate connecting several co-planar tendons (Ishii
1999). The joint assembly contains a turnbuckle, an end connector and a
pin (Figure 6.14(a)). The turnbuckle can be omitted when a tendon with
reverse threads at two ends is used.

A test was done on plate-type joints designed in the RP-b grid of 8m by
8m plan (Figure 6.15) (Lee 2001). The test results comply well with the
theoretical. But the ‘butterfly’-shaped joints in the test model as shown
in Figure 6.14(b) turn out to be too robust compared with tubes. So it is

Figure 6.15 Test model of the RP-b grid under loading.

Source: Lee (2001).



recommended that the joint be welded to the tube as one piece
(Figure 6.14(c)) and high-strength material be used to reduce the size.

Plate-type joint may not be easy to be standardized like two spherical joint
types. However, the detail is simple and is not sensitive to small included
angles (when angle is small, just let the plate extend longer). Moreover, other
components, such as flat bars, can be introduced to present new appearance
(Figure 6.16).
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(a)

(b)

Figure 6.16 DP-b grid made of plate-type joints and flat bars: (a) top joint;
(b) bottom view of the DP-b grid.



6.2.5 Summary

In cable-strut joint systems, joint design can be easier than that in conven-
tional space frames, as tendon connection is simple and tubes are only sub-
jected to compression, leaving more space in design. Especially inside each
simplex the joint needs only to connect tubes to sustain compression, so the
connection is simple, for example sleeve joint. In hollow ball joints and
plate-type joints, tubes of large diameter can be designed to reduce weight
without incurring component congestion. The mixed use of various joint
systems may fully express their expertise, for example, plate-type and ball
joints in a DP grid (Figure 6.17). However, better solutions shall be found
from engineering practice.

When joint weight is considered in the structural design of cable-strut
grids, larger modular length is preferred as cable-strut grids normally con-
tain more joints than space trusses under the same modular length.
Meanwhile, large modular length is beneficial for cable-strut grids of small
bar lengths. As the general principle, the modular length design in the solid
joint system may produce equivalent number of joints to that of space
trusses, whereas the modular lengths in the hollow joint or plate-type joint
system can be relatively smaller (like those given in Chapter 5).

6.3 Deployment studies of cable-strut grids

6.3.1 Introduction

Deployable structures can be widely used in temporary construction roofs,
market roofs and temporary warehouses, etc. They are especially useful
in military purposes such as field hospitals, field camps, etc. With the
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Sleeve joint

Figure 6.17 Proposal of various joints in the DP-b grid.



development of astronomical techniques, deployable space antennas and
payload systems are applied to satisfy the restriction of volume and weight
in space station. It is believed that antennas using primarily tensile members
will play a major role in future large space antennas. But even so, the poten-
tial of application is yet to be exploited.

Different types of deployable structures have been brought forth, which
can refer to Hanaor’s collection (Hanaor 2000). Deploying/folding a system
requires following a series of steps including the creation of ‘mechanisms’,
that is the verification of the system compatibility in relative motion
between the links, and the stabilization and the stiffening of the system in
the unfolded geometry by a state of stiffness.

Components of deployable structures include plates, bars and cables, etc.
In bar systems, which are used most frequently, deployment can be realized
respectively by scissors elements (Figure 6.18(a)) (Escrig and Valcarel 1993,
Escrig et al. 1996), energy-loaded elements (Figure 6.18(b)) (Fanning and
Hollaway 1993, Hollaway and York 1995), telescopic elements (Figure
6.18(c)), or other complicated means. Meanwhile, activation of deployment
can be realized by external energy such as fluid, electricity and manual
force, etc., or internal energy stored in components.

As the composite system of bars and cables, tensegrity grids have been
studied preliminarily on deployable properties, extending the application of
cables into special functions. In Figure 6.19(a), Hanaor (1993) presented a
small deployable model of a non-contiguous strut tensegrity grid composed
of triangular simplexes. In the model, all struts are telescopic with O-ring
seals through which air pressure is supplied by a bicycle bump. When bars
are contracting, all cables are slack and the structure collapses into a bundle,
allowing for the greatest reduction of the system volume.

Another folding method is the releasing of cables. A case of releasing indi-
vidual cable is the flattening (one-way folding) of a square tensegrity truncated
pyramid by lengthening a pair of opposite diagonal cables (Figure 6.19(b))
(Bouderbala et al. 1997). Another case is to deploy the simplex through sliding
cable pairs over joints (Figure 6.19(c)), and these deployable modules are con-
nected at site into a non-contiguous strut dome so as to avoid the requirement
of a crane (Liapi 2000). When sliding groups of cables for deployment, the inte-
gral cable tension design for prestressing tensegrity grids is suitable (Figure 6.20)
(Wang and Liu 1996). In the design, diagonal cables are made continuous over
joints so that the grid can be contracted into a bundle at the beginning, and
stretching these cables realizes the deployment of the whole grid.

Finally, the combination of releasing cables and telescoping struts is also
feasible for tensegrity systems but might be complex.

6.3.2 General principles

Deployable cable-strut grids are made of simplexes that can concatenate in
a repeatable fashion to form a desired structure. Each of these simplexes
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undergoes determinate relative motion between the links, to transform from
an initially folded to finally deployed configuration, without the need for
tedious assembly steps. In addition to this grid deployable method, the sys-
tem may also follow module deployable method. Each deployed module is
then connected into a grid (in a domical grid, the sequence shall be from the
periphery to the centre). In this aspect, contiguous strut configurations
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Figure 6.18 Deployment methods: (a) scissors element; (b) energy-loaded element;
(c) telescopic strut; (d) releasing cable.
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Type ‘b’ for various cable-strut grids is preferred. It is generally noted that
non-contiguous strut configurations have advantages in simplified joints
among simplexes and that the geometrically flexible forms have merits in
reduced elements. These merits in deployable functions are dominant when
the requirement of stiffness is not restricted and load is small.

In tensegrity grids, telescoping struts and releasing cables are studied as
deployment methods (actually, elongating struts and shortening cables are
also two methods for applying prestress). In cable-strut grids, energy-loaded
struts is also a choice. During the deployment process, elements in sim-
plexes or grids can be classified into three types, including constant ele-
ments (CEs), slackening cables (SCs) and activating elements. The length of
CEs is constant during deploying process neglecting the deformation due to
inner forces, and such elements can be either struts or cables. SCs slacken
at the folded state and during deployment process and finally, become taut
at the deployed state. In the figures of this section, SCs are represented by
dotted lines or omitted for simplicity.

The length of an activating element is variable so as to realize the deploy-
ment. Generally, activating elements can be classified into three types in the
present study depending on which deployment method is used.

� Telescopic struts (TSs). A telescopic strut is activated by fluid pressure
when the magnitude of elongation is relatively large (Figure 6.18(c)). It
requires an external energy supply system but the grid can be deployed
simultaneously. Another method is turning screw, which is free of
energy supply and is normally used for small magnitude of elongation.
However, the magnitude can be increased significantly by attaching a
pin to lock two strut segments before fastening them through turning
screw (Figure 6.21).

� Energy-loaded struts (ESs). They are deployed when energy is released,
and folded when energy is restored (Figure 6.18(b)). The mechanism
operates in such a way that when it deploys, hinge that connects two strut
segments locks, and then the two behave as a single continuous piece.

� Releasing cables (RCs). Cables can be released individually or continu-
ously through joints. Where released individually, folding of the sim-
plex is realized through lengthening cables and deploying of the simplex
through restoring cables to the structural length. Conventionally, releas-
ing cables is realized by a pulley. A method of realizing RCs recom-
mended here is to attach a tying element (e.g. a rubber band) through the
turnbuckle to a cable segment (Figure 6.18(d)). When released continu-
ously through joints, cable pairs or cable groups are continuous over the
joint so as to realize the collapse of the unit (Figure 6.19(c)) or the grid
(Figure 6.20). Cable pairs are fixed after deployed but cable groups are
not fixed if the grid is of low frequency.

The combination of these deployment methods may be feasible but is out of
the scope. In addition, a special case that there is no change in component
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length is presented in Figure 6.22 for the DP-b configuration made of the
square-based simplex. In each simplex, one pair of collinear horizontal
struts is fixed to the vertical struts. One-way folding is realized by rotating
the other pair of horizontal struts and the coplanar edge cables. The pair of
struts is joined as one piece and locked to prevent rotation after deployed
in position. All cables in the base are removed and additional bars are
added to the edge for stability after deployed.

6.3.3 Telescoping strut method

Most cable-strut grids can be deployed by telescoping bars except that RP
grids are not so convenient. Like the case in tensegrity simplexes, APs, ATPs
and Ps can be deployed by telescoping either lower or upper inclined struts.
However, DP grids, ATP2 grids, AP2 grids and P2 grids can be deployed
more conveniently as only one telescopic strut (i.e. the vertical strut) is
required in each simplex, therefore, the deployment process is simplified
significantly.

In a DP, the upper and lower vertical struts can work together to form ‘one’
telescopic strut (Figure 6.23(a)). As the lower vertical strut is usually longer
and thus of larger outer diameter, it is designed as the outer tube segment, and
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Figure 6.21 A telescopic strut locked by a pin: (a) stowed; (b) lifting; (c) locked;
(d) fastened.



the upper strut becomes the inner tube segment. The procedure of deploying
a triangular DP is illustrated in Figure 6.23(b)–(d). Three horizontal struts
and three upper edge cables are CEs whereas other cables are SCs. For the
convenience of folding a slack cable, an articulated joint may be introduced.
It is interesting to note that the behaviour of a DP resembles an umbrella.
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Figure 6.22 One-way folding of the DP-b grid composed of the square simplex with
constant component length: (a) a deployable DP simplex; (b) interme-
diate state; (c) deployed state.



In a P2, representing an ATP2 or AP2, deployment is realized by tele-
scoping the vertical strut, which is illustrated in Figure 6.24. The design of
the vertical strut in the figure takes into consideration the reduction of the
height of the simplex. Eight inclined struts and four vertical edge cables are
CEs. Other cables are SCs.

The deployment should sometimes satisfy geometrical relations in order
to make sure that the system can be fully folded. In the DP simplex, for
example, the relation is simple as expressed by the following equation:

h � h1 
 gmin (6.5)

where h, h1 are the length of the lower, upper vertical strut, respectively,
gmin is the minimum gap required between two struts.

The deployment process of a DP grid composed of the triangular simplex
is illustrated in Figure 6.25. In the figure, upper and bottom cables are not
shown. The grid is illustrated as flat form representing the domical and cylin-
drical forms in actual application. In addition, square (or rectangular) sim-
plex can be one-directionally folded to form expandable towers or arches.

6.3.4 Energy-loaded strut method

Energy-loaded strut method can be used to realize one-way or full folding
of a simplex. Reversing the folding process realizes the deployment. An RP
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can be one-way folded by folding horizontal struts in the strut plane
(Figure 6.26), then deployed following reverse steps. All edge cables slacken.

A DP can be fully folded by two methods. One is to fold horizontal struts
(Figure 6.27(a)). The other is much simpler, just to fold the upper vertical
strut (Figure 6.27(b)), for which an additional fastening nut may be required.

An ATP, AP or P may be fully folded by folding upper inclined struts
(Figure 6.28(a)). In addition, it is easy to realize the one-way folding of an
ATP2, AP2 or P2 by folding only the vertical strut (Figure 6.28(b) and (c)).
In a triangular P2, for example, a pair of upper or bottom struts rotate in
the plane shared by the connected slackening base cable (Figure 6.28(b)),
and meanwhile, the vertical strut is folded towards the opposite vertical
edge cable. In a square P2, the vertical strut has two folding directions, cor-
responding to two grid types respectively (Figure 6.28(c)).

Note that energy-loaded joints may also be applied to connect simplexes,
for example, the case in Figure 6.22. Further investigation is needed.
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6.3.5 Releasing cable method

Releasing cable method is relatively cheaper than other methods but normally
at the expense of longer operation time.

Releasing individual cables

When releasing individual cables for DPs, for example, upper inclined
cables are lengthened to allow horizontal struts rotate downwardly in the
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Figure 6.27 Folding a DP by ES method: (a) folding horizontal struts; (b) folding
the vertical strut.



vertical plane (Figure 6.29(a)). The simplex is fully stowed like an umbrella.
As a case of one-way folding, upper and bottom cables in the DP-a grid
along the folding plane are RCs (Figure 6.29(a)).

Releasing individual cables is also convenient in the grid composed of tri-
angular or square Ps as lateral bracing cables are not required. Therefore,
the triangular or square P can be fully stowed only by lengthening vertical
cables, which is illustrated in Figure 6.30(a).
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Sliding cable method

When two cables are continuous over joints, the sliding cable method
applied to tensegrity simplexes is also applicable to the grid composed of
triangular or square Ps with higher structural efficiency and more stable
geometry. As shown in Figure 6.30(b), an upper cable and a vertical cable
form a group to slide over the common joint, and bars always rotate in the
vertical plane. Geometrical relation should be satisfied, that is, the total
length of two cables being greater than that of two bars (one upper, one
lower). In the square prism, as an example,

(6.6)h1 � h2 � a 
 �h1
2
 � a2/2 � �h2

2
 � a2/2
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Figure 6.29 Folding DPs by releasing cable method: (a) folding DPs by individual
cables; (b) folding of a DP by sliding cables.



The definition of parameters refers to Figure 6.28(b). It is easily satisfied so
long as the depth is not too small. For example, when h1 � h2 � h/2, it is just
required h � a/2.

The application of sliding cable pairs to a DP is more straightforward.
Each pair of upper and bottom inclined cables forms an RC during the
deploying/folding process (Figure 6.29(b)). The spirit can be applied to
other simplexes.

When sliding cable groups, the method for tensegrity grids (Figure 6.20)
is clearly suitable for the AP or ATP grid with more stable geometry.

6.3.6 Summary

Generally, cable-strut grids are lightweight and can achieve much less
stowed volume and decrease the number of joints that have complicated
mechanisms. They are superior to conventional bar systems when difficul-
ties are caused by increased weight, packing volume and number of joints.
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As it is a design requirement that deployable grids are restrictedly free-
standing, CP grids are only module deployable. The versatility of other
cable-strut grids, including non-contiguous strut forms, in deployment
functions is expressed by telescopic strut method, energy-loaded strut
method and releasing cable method, etc. and even constant component
length (Figure 6.22). Discussions show that deployment of some cable-strut
grids can be realized by telescoping only one strut in each simplex and many
choices are provided by energy-loaded method and releasing cable method
(releasing individual cable, cable pair/group) in one-way or full folding.
However, the discussions are not sufficient to cover all possible cases.

According to the special functions and requirements, various types of
deployable structures may be developed respectively into market. As cable-
strut grids are pin-jointed systems, mechanical analysis during the folding/
deploying process seems unnecessary unlike the case of scissor-element
systems (Figure 6.18(a)). Further studies include the selection of deployable
methods, energy supply design, joint design, geometrical study in consid-
eration of the actual dimensions of components and joints, form-finding 
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of various geometry and cladding, and dynamic behaviour, etc. Finally,
experiments are required to test the efficiency of these types.

Another important special application of cable-strut grids lies in
retractability. Retractable structures meet people’s desire to the nature and
thus the study becomes popular. The more conventional way of retraction
is realized by the movement of grid panels (the grid is divided into several
independent panels) along rails (Ishii 2000). In this aspect, the advantage of
cable-strut grids in lightness may facilitate the process. Another way of
retracting is realized through folding cable-strut grids simultaneously. As
an example, one-way folding of the DP grid by the TS method is illustrated
in Figure 6.31. More forms can be developed with the accumulation of
engineering practice.
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Lightweight structural systems are becoming increasingly valuable for the
architecture and design fields. Tensegrity systems, and extensively, cable-
strut systems have the potential of offering interesting viable solutions for
architecture. Their free-standing nature is the additional merit. Structural
forms in Chapter 4 for cable-strut grids, especially non-contiguous strut
ones, shall be also innovative in architecture but are considered ‘basic’ forms.
This chapter explores the architectural aspect developed from basic forms.

As cable-strut systems are developed from tensegrity systems, the chapter
starts from the brief review of the contributions of tensegrity concept in archi-
tecture. Then various dimensional cable-strut systems are proposed accord-
ingly. Moreover, a wide variety of new architectural cable-strut forms can be
developed from special cable-strut configurations, simplexes with ornamental
supplements, innovative roof shape and roof sculpture design with matched
structural design, and reshaping cable-strut simplexes themselves etc. Finally,
the principle of forming higher cable-strut polyhedra is illustrated.

In addition to the innovation in forms, new architectural art can be pre-
sented by the employment of new material, which is beyond the scope. One
example, struts in cable-strut simplexes or grids can be made of timber
components. The timber member normally needs an end cap, for example,
a joint cone (Imai et al. 2002) to be connected to a node, but the property
that the member is only subjected to compression simplifies the application
significantly. Another recommendation is the use of air-inflated plastic pipe.

7.1 Review of architectural tensegrity forms

Tensegrity systems have natural expertise in architecture. Certain attrac-
tiveness lies in that only independent struts catch eyes from afar and/or that
a wide variety of unique forms can be developed.

7.1.1 Tensegrity walls

Basic structural forms in Chapter 3 spanning horizontally are pleasing in
architecture themselves. They can be developed in three dimensional ways

7 Architectural aspect of 
cable-strut systems



to extend their application, for example, in the vertical cladding of glass as
tensegrity walls (Figure 7.1). Some openings shall be designed but are not
shown. As normally the span of walls is not much, the effect of structural
efficiency is not significant.

7.1.2 Some plane-filling and multi-layer filling forms

In addition to basic tensegrity forms, more architectural forms are developed
including Snelson’s sculptures (one-way array of X modules) and tensegrity
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Figure 7.1 Tensegrity walls.



polyhedra presented in Chapter 2. Emmerich’s plane-filling forms and
hyper-polyhedra, and Emmerich’s and Grip’s multi-layer space-filling forms
are presented in this section.

From literature, Emmerich was the first to conceive double-layer non-
contiguous strut tensegrity grids. His deck-like form (Figure 7.2(a)) is composed
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Figure 7.2 Some ornamental tensegrity forms: (a) double-layer deck-like flat space
frame; (b) hyper-truncated tetrahedron; (c) tensegrity cube array.

Sources:
a Emmerich (1990); Courtesy: Multi-Science Publishing.
b Adapted from Emmerich (1990).
c Grip (1992); Courtesy: Multi-Science Publishing.



from interlaced quadralic self-tensioning simplexes having automorphic
tessellation as basic pattern (Emmerich 1990). However, simplex connection
seems not strong enough as only one base is connected directly. For many of
other plane-filling forms, refer to the report by Hilyard and Lalvani (2000). In
Emmerich’s ‘hyper-polyhedra’, the triangular, square, or pentagonal tensegrity
truncated pyramids are basic solids filled onto the faces of the polyhedron
with openings (Emmerich 1990). Alternatively, simplexes can be filled to every
face. These faces are hexa-, octa-, or decagonal polygons, each having vertices
double those in the base of its basic solid. A hyper-truncated tetrahedron, typ-
ical of the concept, is shown in Figure 7.2(b), in which the triangular tenseg-
rity solids are filled onto the hexagonal faces. Multi-layer space-filling forms
are developed from plane-filling forms or hyper-polyhedra (Emmerich 1993).

Grip (1992) proposed a multi-layer space-filling form typical of an array
of ‘cubes’. Each cube is composed of six square tensegrity prisms, as shown
in Figure 7.2(c). These prisms are connected in a joint-to-cable way and an
empty volume is enclosed by the connected base of each simplex. To create
an array of cubes, additional modules are added to the unused base poly-
gon of each tensegrity prism, to connect a cube on each face of the original
cube (Figure 7.2(c)). Thus each cube shares one tensegrity prism with its
neighbouring cube.

7.1.3 Tensegrity cable dome

A ‘special’ application of tensegrity forms is that the enclosed radial linkage
of (stiffened) tensegrity truncated pyramids produces a tensegrity ring
beam to support a cable dome (Figure 7.3). As simplexes are connected in
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Figure 7.3 Tensegrity cable dome.



a node-to-cable way, the ring shall be reinforced by struts in order to
provide sufficient stiffness (Wang 1996b). The tensegrity ring and sup-
ported cable dome as a whole conceptually form a ‘pure’ tensegrity model
although it is unlikely to be suitable in large spans.

7.1.4 Other tensegrity forms

In addition, a few relatively new tensegrity forms looking different from
‘basic’ forms are developed recently. In Figure 7.4, the non-contiguous strut
grid is basically the interlacing of triangular anti-truncated pyramids (Kono
et al. 1999). The large base of a simplex lies in the same layer as the small
base of adjacent simplexes, and vice versa. Each pair of adjacent simplexes
shares a strut, whose ends connect the vertices of small bases in different
layers. Besides, Motro proposed ‘truss-like’ forms evolved from contiguous
strut tensegrity forms, which are also characteristic of long inclined struts
(Motro 2002).
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7.2 Linear, plane-filling and space-filling 
cable-strut forms

Cable-strut simplexes are building blocks of structurally efficient load-bearing
grids. Naturally, they can be used to develop more architectural forms in
linear, plane-filling and space-filling forms, which are enriched from morpho-
logical studies.

7.2.1 Linear forms

Two types of linear forms are illustrated here. One is the tower form
(Figure 7.5), the other the walkway (Figure 7.6). Four towers are illustrated
in Figure 7.5, presenting difference appearance. Two towers in Figure 7.5(a),
and (b) are composed of triangular RPs (reciprocal prisms), and triangular
DPs (di-pyramids) with a CP (crystal-cell pyramids) base, respectively.
The former needs four supporting points whereas the latter only three. The
tower in Figure 7.5(c) is composed of triangular Ps (prisms), in which sta-
bilizing cables are added in each simplex to improve stiffness. In addition,
a tower can be designed more ‘practically’, for example, a P tower is
designed with three legs and a CP-shaped pinnacle (Figure 7.5(d)). It is
obvious that more towers can be formed from other simplexes and mixed
use of some types.
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Figure 7.5 Cable-strut towers: (a) a RP tower; (b) a DP tower with a CP base;
(c) a P tower; (d) a P tower with a CP tip and three legs.



The walkway in Figure 7.6(a) is made of square-based P4s, P simplexes
with four inner joints. As shown in the figure, each simplex can be stabi-
lized by connecting opposite vertices in each trapezoid by cables. The walk-
way can also be made by P2s (Figure 7.6(b)) or other simplexes. An
extensive application is presented in Figure 7.6(c), in which the building
block is a derivature of square-based DP (see Section 7.8).

7.2.2 Plane-filling forms

Most plane-filling forms built from tensegrity simplexes are also suitable for
cable-strut simplexes. Some plane-filling forms are presented in Figure 7.7.
In contiguous strut forms in Figure 7.7(a–d), large openings are enclosed by
square simplexes, pentagonal simplexes or mixed square and hexagonal sim-
plexes. Here, simplexes refer to all types. As shown in Figure 7.7(a), and (b),
simplexes are divided into two groups, with CPs, Ps, DPs and RPs into one
group and ATPs and APs into the other, but the latter is not illustrated in
Figure 7.7(c) or (d).

All these forms have their corresponding non-contiguous strut forms,
which are applicable where appropriate. Moreover, it is noted that a non-
contiguous strut forms in Figure 7.8 composed of ‘windmill’ unit. In each
unit, six arms of mixed pentagonal and quadrilateral simplexes are connected
to a hexagon at the centre, indicating the potential.
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Figure 7.6 Cable-strut walkways: (a) a walkway made of P4s; (b) a walkway made
of P2s; (c) a walkway made of DP derivatures.
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Figure 7.7 Plane-filling cable-strut forms: (a) made of square simplexes; (b) made of
square and hexagonal simplexes; (c) made of pentagonal simplexes; 
(d) made of pentagons with small stars.

A windmill unit

Figure 7.8 Non-contiguous strut form composed of windmill units.



7.2.3 Space-filling forms

Many space-filling forms for tensegrity simplexes can also be applied for
cable-strut simplexes. For example, cable-strut simplexes can be inscribed into
a polyhedron, including a Platonic, an Archimedian, or hyper-polyhedron, etc.
as the case for tensegrity simplexes (Figure 7.2(b)). Cable-strut polyhedra can
be formed based on the discussion in Section 7.8.

Plane-filling forms of cable-strut simplexes can be developed in a three-
dimensional way as space-filling forms. As an example, in Figure 7.9 it is
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Figure 7.9 Cable-strut space-filling form composed of cubic prisms (a) isotropic
view; (b) basic unit; (c) array of units; (d) front view; (e) side view.

Source: Wang and Li (2003b).



illustrated that a type of space-filling form is developed from the planar
form in Figure 7.7(a). Each building unit comprises of two orthogonal
hexagonal rings that share two simplexes (Figure 7.9(b)). Each hexagonal
ring is composed of six cubic simplexes, which can be cubic prisms (as
drawn), square DPs or square RPs. Two building units are then connected
by adding two simplexes to form a hexagonal ring so as to enclose empty
space (Figure 7.9(c)). The array is then developed two ways (as shown in
Figure 7.9(a), (d), (e) for different views) or three ways.

Another example, a three-way truss is illustrated in Figure 7.10(a), building
blocks being RP simplexes (Figure 7.10(b)), DP simplexes (Figure 7.10(c)), or
other cable-strut simplexes. More unexpected forms can be developed from
morphological studies of polyhedra geometry. Some studies include Wester
(2000), Burt (1996) and Huybers (2002), etc.

7.3 Special cable-strut configurations

Basic cable-strut simplexes can be applied into various dimensional forms
based on basic configurations in which bases are always co-planar. Moreover,
these simplexes can be applied into ‘special’ configurations that are different
from these basic ones. The topic is highlighted in this section. It is interesting
to note that different groups of simplexes present different connections and
that the connections are different in two ways in the resulting grid. Note that
these configurations can also be developed into ‘spatial’ forms.

7.3.1 RP and DP simplexes

RP or DP simplexes can be connected at the diagonal face (Figure 7.11). This
is to say, adjacent simplexes in one way share a diagonal face, and ‘vertical’
struts and the base are inclined. In the other way, the struts in the base form
continuous flow presenting truss-like appearance. Note that additional
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Figure 7.10 Cable-strut truss forms: (a) three-way truss; (b) truss of DP simplexes;
(c) truss of RP simplexes.
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connecting cables are not required. In the figure, only square-based simplexes
are used, but simplexes of other bases also can work.

From geometry, RP or DP simplexes can also be connected through the
‘vertical’ struts (Figure 7.12). Hence in one way, ‘vertical’ struts become
horizontal and geometrically continuous in the grid. In the other way, the
struts in the base are connected into an ‘independent truss’. When square sim-
plexes are applied, it is an array of squares in the RP grid (Figure 7.12(a)),
and an array of crossings in the DP grid (Figure 7.12(b)) (when triangular
simplexes are used, additional connecting cables are needed). The connec-
tions among these trusses are diagonal cables, horizontal struts and additional
connecting cables.

7.3.2 ATP, AP and P simplexes

ATP and AP simplexes can be connected at the base (Figure 7.13). Therefore,
adjacent simplexes share the base face in one way. Square-based ATP and
triangle-based AP are used as building blocks in the figure, representing
other simplexes. In the other way, each pair of square-based ATPs share
a lateral face (Figure 7.13(a)) whereas each pair of triangle-based APs
just share an edge (Figure 7.13(b)). The appearance of Figure 7.13(a) looks
interesting.

In P simplexes, triangular Ps can be connected at the base to form a truss.
In the grid form (Figure 7.14(a)), the grid also follows truss-like behaviour
under uplift load. Square Ps are special, as lateral faces and two bases are
the same, presenting the same design as basic forms. However, square P2s
can be employed to present different appearance (Figure 7.14(b)).

7.3.3 CP simplexes

The triangular CP can be connected along the edge into a ‘CP truss’ (Figure
7.15(a)). In the CP truss, only one edge cable from each simplex is placed
at the top layer, connected with adjacent ones. Two inclined struts in each
simplex are placed in the upper compressive layer. It is lightweight and can
be used in one-way spanning under downward load only. The grid can take
uplift force with lower inclined struts in the compressive layer when it is
two-way supported. Two-way grid forms can also be realized by the orthog-
onal array of the trusses, the basic unit is shown in Figure 7.15(b).

7.4 Special structural and roof design

Examples below show some ‘special’ roof forms with matched structural
design, which are different from ‘normal’ simplex or grid application. The
flexibility in the design shows the potential application of cable-strut systems
in structural design and architecture.
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Figure 7.12 Special RP and DP configurations by connecting vertical struts: (a) RP
grid; (b) DP grid.
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Figure 7.13 Special ATP and AP configurations by connecting base faces: (a) ATP grid
made of the square simplex; (b) AP grid made of the triangular simplex.
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Figure 7.14 Special P and P2 configurations by connecting base faces: (a) P grid;
(b) P2 grid.



7.4.1 Hyperbolic paraboloid membrane roof

Application of hyperbolic paraboloid membrane in polyhedra has been
studied (Hooper 1998). Here, the membrane can be attached easily to a CP.
In Figure 7.16, it is attached to four edges of a four-vertex CP. A small roof
as shown is composed of four CPs, whose array is presented in Figure
7.15(b). More arrays of CPs are feasible.
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Figure 7.15 Special CP configurations by connecting edges: (a) a CP truss; (b) a CP
grid; (c) two-way configuration of (a).



7.4.2 Two tents

As a ‘special’ way of applying cable-strut simplexes, a five-vertex CP sup-
porting a membrane tent is supported by three vertices of a triangular face
at the ground (Figure 7.17(a)). Two free vertices extend out the volume
below covered by the membrane. A one-way array of tents can be con-
nected successively to cover wider area. The concept shows that a simplex
can be supported in different ways when necessary.

As another type of tents, each structural unit is composed of two
connected quadrilateral-based DPs (Figure 7.17(b)). Each pair of DPs is
supported to the ground at the bottom joint, forming truss-like mechanism.
Discussion of structural detail is omitted for simplicity. Note that in addi-
tion to the membrane tent, other shapes can be attached to the skeleton,
including the ‘sail-like’ form (Berger 1997).

7.4.3 A petal roof

The concept of ‘petal shell’ may not be new to architects (Pavlov 2002). The
invention of cable-strut systems provides more choice of design. For example,
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Building unit Structural unit

Figure 7.16 Hyperbolic paraboloid membrane covering CPs.



flexible membrane petal can be used to enclose the volume and the membrane
is attached to an octagonal AP (anti-prism), as shown in Figure 7.18. In order
to enclose bigger volume, lower inclined struts can be curved, and in addi-
tion, diagonal cables can be curved by tying them to upper cables.
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(a)

(b)

Structure

Side view

Structural unit

Isotropic view

Figure 7.17 Tents made of cable-strut simplexes: (a) a tent of CP skeleton; (b) a tent
of DP skeleton.



7.5 Basic cable-strut structures with ornamental supplements

As the simplest architectural design, ornamental supplements are added to
cable-strut simplexes. The supplement can be either special-shaped panels or
components like tendons and bars without any effect on structural behaviour.

7.5.1 Basic simplexes with ornamental panels

Based on the concept, ornamental panels are attached to cable-strut
simplexes to present aesthetics. In Figure 7.19(a), it is presented as an array
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Figure 7.18 A ‘petal shell’ of AP skeleton.



(a)

(b)

Figure 7.19 DP grids with ornamental panels: (a) square DP with airplane;
(b) hexagonal DP with maple leaf.

(a) (b)

Figure 7.20 RP simplexes with supplementary bars: (a) square RP; (b) hexagonal RP.



(a)

(b)

(c)

Figure 7.22 Array of DP simplexes with supplementary components: (a) an array
of DP propeller; (b) an array of DP butterflies; (c) an array of DP
snowflakes.

(a) (b) (c) (d)

Figure 7.21 DP simplexes with supplementary components in the base: (a) a DP
propeller; (b) a DP flower; (c) a DP snowflake; (d) a DP butterfly.



of airplane models attached in the strut layer of DP grids. Each ‘plane’ is
composed of four pieces of elements, connected to a square-based DP. In
Figure 7.19(b), it is illustrated as an array of five-panel maple leaf, attached
to the strut layer of DP grids composed of hexagonal simplexes. Shapes as
many as one may wish, such as a butterfly, an insect, a fish and a flower,
etc. can be introduced.

Extensively, ornamental panels are applicable to the strut layer of RP
grids, CP grids, the lower inner struts of ATP (anti-truncated-pyramids), AP
and P grids, or to the bottom cable layer of any cable-strut grids, presenting
different eyesight effect.

7.5.2 Basic simplexes with small additional components

Supplemental components can be added to basic cable-strut simplexes to
form funny units of different appearance. As the example for an RP, addi-
tional bars can be attached to inclined cables (Figure 7.20), and the resulting
shape resembles radial cable roof.

In DP simplexes (or CP simplexes), a triangular becomes a propeller
(Figure 7.21(a)), a pentagonal becomes a flower (Figure 7.21(b)), and a
hexagonal becomes a snowflake or a butterfly (Figure 7.21(c), and (d)), in
which additional short bars and cables are attached to the struts in the base.
These derived forms present special appearance in grids (Figure 7.22),
especially a butterfly (Figure 7.23) built from a number of ‘flowers’.

7.6 Basic cable-strut structures with roof sculptures

Based on the concept, structural art is expressed through sculptures of
specially shaped roof. It may be considered as the extended concept from
Section 7.4. Modified design of supporting simplexes or grids may be
required to match roof design. Note that the concept is feasible benefiting
from the cables in simplexes, which are convenient for attaching and
prestressing.

7.6.1 Application in simplex structures

Discussion of the concept starts from simplex structures in this section. A
simple example is a maple leaf attached to an octagonal CP (Figure 7.24).
The leaf part is covered by red membrane, whereas the boundary non-leaf
part is covered by white coloured membrane or even glass. The leaf can be
seen from both the inside and outside of the enclosure. In order to follow
the maple shape, the vertical strut is moved away from the centre.

A more complex example is shown in Figure 7.25, in which the transfor-
mation from the basic simplex is required in order to meet the architectural
form. In Figure 7.25(a) an octagonal TP2 (truncated pyramid with two
inner joints) is presented, in which lateral cables and supports in the base
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remove mechanisms and provide sufficient stiffness. In Figure 7.25(b), the
positions of eight top joints are adjusted so that seven joints are located
along a semi-circle. The inclined strut connected to the left joint is modified
to a broken-line shape (taking moment as an occasional case) and the ver-
tical strut is moved away from the centre. The transformed simplex allows
a membrane peacock attached to the upper inclined strut skeleton as the
sculpture and the membrane depicted with a maple leaf attached at the
lower inclined strut skeleton as the structural roof for the peacock to stand
on (Figure 7.25(c)).

The detail of the form is illustrated in Figure 7.26. In the upper sculpture
part, the head and body of the peacock is made of hydrogen-inflated mem-
brane, tied to the broken-line strut. The feather tail is portrayed in each
piece of white membrane attached to inclined struts and upper base cables.
Under wind flow, the peacock looks alive following the vibration of the
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Figure 7.23 A flower butterfly made of DP flowers.



membrane body! The lower structural part attached with maple leaf mem-
brane is not difficult to cover the 30m span.

As the further application, the one simplex form can be connected to
form twin-simplex or multi-simplex form. In Figure 7.27, it is shown that
further application of a triple-simplex form. The sculpture part includes
two bigger peacocks facing each other standing on the maple leaf roof and
a small orthogonal peacock standing on a small maple canopy. The door is
below the half-cantilevered small maple leaf and the enclosure along
the boundary is indicated in the figure. The form covers an elliptical layout
sufficient for a small stadium.
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Planar view

Isotropic view

Figure 7.24 A maple leaf made of an octagonal star CP.



(a) (b)

(c)

Figure 7.25 A new architectural form incorporating roof and structural skeleton:
(a) an octagonal TP2; (b) specially designed skeleton; (c) supported
membrane roof of maple leaf and decorated peacock – a peacock
standing on a maple leaf.

Source: Wang and Li (2003b).



White membrane depicted
with peacock feather (both sides)

Red membrane area
for shaping maple leaf

Air-inflated
membrane
head and body
attached to
the curved strut

White membrane area

(a)

(b)

Figure 7.26 Layout of the design in Figure 7.25: (a) elevation; (b) plan. 

Source: Wang and Li (2003b).



(a)

(b)

Door Canopy Wall

Figure 7.27 Triple simplex form developed from Figure 7.25: (a) front view; 
(b) layout.



7.6.2 Application in grids

In grid application, a wide variety of roof sculpture forms are applicable,
including an airplane, a bird, an insect, and a flower, etc. The ‘actual’ roof
may have to be attached to the bottom layer of the grid. However, it shall
be borne in mind that the shape of the sculpture should match the structural
shape of the simplex as the design technique and how to ‘attach’ it should
be considered.

In Figure 7.28, a flying swan is connected to the upper four inclined struts
of the square ATP following the shape of two wings and body. Two additional
examples, presented as the expression of aesthetics and various ways of con-
necting roof sculpture, are birds resting on a DP grid (Figure 7.29) and drag-
onflies resting on a RP grid (Figure 7.30). In the former case, each bird is
attached to three horizontal struts and the upper vertical strut of the square
DP. In the latter, a dragonfly has to rest respectively its body on two horizon-
tal struts and its wings on four upper inclined cables from two adjacent RPs.
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An ATPA swan

The swan array

Figure 7.28 Flying swan sculptures on the ATP grid.



7.7 Reshaped cable-strut simplexes

Based on the concept, aesthetics is demonstrated from structure itself
through designing special geometry to simplexes. The reshaping can be
applied to base cables, edge cables or struts. Some examples, among possi-
ble choices, are presented as follows.

7.7.1 Star simplexes family

Stars in one plane

Cable-strut simplexes can be shaped into their corresponding star forms
when their bases are star-reshaped. In the star-shaped simplexes built from
a CP, a DP or a P (TP), star angles are shaped by broken-lined base cables
stabilized by tying additional cables from inside. The tying cables may be
enclosed among themselves (Type I) or connected to a common node in the
plane (Type II), presenting different appearance. The resulting simplex may
be named a star-shaped CP (SCP), a star-shaped DP (SDP) and a star-shaped
P (SP), etc.

A CP contains a state of self-stress and no mechanisms. In a triangular
SCP, Type I (Figure 7.31(a)), three additional infinitesimal mechanisms
acting normal to the base plane are produced. One mechanism occurs at each
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Figure 7.29 Small birds resting on the struts of the DP grid.

Figure 7.30 Dragonflies resting on the horizontal struts and inclined cables of the
RP grid.



vertex of the small triangle that is enclosed by additional cables in the base.
In a CP higher than the triangular, an infinitesimal mechanism of in-plane
rotation is produced with a state of self-stress in the small polygon. All
these first-order mechanisms can be stabilized by self-stress. Actually, these
mechanisms can be ignored, as they are unlikely to be activated by actual
load to affect structural behaviour. When a CP is transformed into an SCP,
Type II (Figure 7.31(b)), the common joint connecting tying cables just adds
three ignorable infinitesimal mechanisms of translation, compared with
Type I. So the properties of two types of SCPs are basically the same and
are similar to those of the corresponding CP.

P simplexes can be reshaped into SPs or SP2s, but the discussion is focused
on SP for simplicity. A P contains a self-stress state, an infinitesimal mecha-
nism of prism rotation, and n-3 state of finite mechanisms of in-plane dis-
tortion in the bases (e.g. one for the square), where n is the number of edges
in the base. When it is transformed into an SP, Type I (Figure 7.32(a)), 2n
new infinitesimal mechanisms acting normal to the base plane are pro-
duced, n in each base. Meanwhile, one new infinitesimal mechanism of 
in-plane rotation acting within each base plane (altogether two) is produced
accompanying a new self-stress state in each base (altogether two) for all
SPs. As all increased infinitesimal mechanisms can be ignored, the proper-
ties of an SP, Type I are similar to those of the corresponding P. The case
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Hexagonal SCPPentagonal SCP
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Figure 7.31 Star CP simplexes: (a) Type I; (b) Type II.



is the same for an SP, Type II (Figure 7.32(a)). Like the case for a P when
n � 3, additional cables are also required to stabilize the finite mechanisms.
For example, two additional crossing cables are added in the base of the
square SP (Figure 7.32(a)).

An AP or ATP is star form itself. To make sharper star angles, the same
design as in P simplexes can be applied to their bases.

An SDP, Type II (Figure 7.32(b)) contains only one layer of tying cables,
which are connected to the inner joint directly. Hence, only n infinitesimal
mechanisms normal to the base plane are produced.

A star-shaped RP (SRP, Figure 7.32(c)) is ‘special’ compared with other
simplexes. The star angles are formed by broken-lined struts in the base.
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Triangular SRP Square SRP
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Triangular SP

Triangular SP

Square SP
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Pentagonal SP
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Figure 7.32 Other star cable-strut simplexes: (a) star P simplexes; (b) star DP
simplexes (Type II); (c) star RP simplexes.



Meanwhile, these struts shall be connected by bars for stability. As the strut
layer is compressive, joints connecting stabilizing bars should be designed
for moment resistant for out-of-plane stability.

The grid configurations of star simplexes can refer to those of the corre-
sponding basic simplexes, although all the resulting forms look like edge-
to-edge types (Figure 7.33(a)), presenting aesthetics through structure
themselves. Note that like their basic simplexes, star forms also have linear,
plane-filling, space-filling forms, and special configurations in Section 7.3, etc.
A plane-filling form made of pentagonal star simplexes in Figure 7.33(b)
and a special configuration made of the hexagonal SDP in Figure 7.33(c)
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Hexagonal (Type ‘b’)Hexagonal (Type ‘a’)
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Figure 7.33 Configurations made of star cable-strut simplexes: (a) basic configura-
tions; (b) plane-filling form made of pentagonal simplexes; (c) special
configuration made of the hexagonal SDP.



are given as examples. In addition, special roof or sculpture design can also
be introduced to present more exciting forms.

Stars in all ways

In this discussion, stars are introduced in the base plane as ‘planar’ stars.
The concept can be extended to all vertices to form ‘spatial’ stars.
Therefore, every edge cable is tied inside by the introduction of tying cable,
as illustrated in Figure 7.34. The resulting forms are named by adding
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Figure 7.34 Star cable-strut simplexes in 3D form: (a) SDP-3D; (b) SCP-3D; 
(c) SP-3D.



suffix ‘3D’. It seems that lower simplexes (those containing less base cables)
are more suitable for the concept.

Similar to the case in ‘planar’ forms, tying cables in spatial star forms
may be enclosed among themselves (Type I) or connected to the inner joints
of the simplex (Type II). In Type II, each tying cable lies in the plane shared
by the broken-lined edge cable and two coplanar struts. Examples of trian-
gle- and square-based SDP-3D, SCP-3D and SP-3D are illustrated in Figure
7.34(a), (b) and (c), respectively. Note that in Type I, tying cables enclose
small polyhedra, including a cub-octahedron in the square-based SDP-3D
(Figure 7.34(a)) and SP-3D (Figure 7.34(c)), an octahedron in the triangle-
based SCP-3D (Figure 7.34(b)), etc.

All configurations applicable for planar star simplexes are naturally
suitable for spatial star simplexes. ‘Unique’ looking can be presented from
these simplexes as exemplified from the planar/spatial array of square-
based SDP-3D in Figure 7.35, and the SDP column made of the radial array
of pentagon-based SDP-3Ds in Figure 7.36, etc.

7.7.2 Curved strut forms

In the section, the concept is illustrated through designing curved struts.
Two types of curved strut forms are proposed here. One is the ‘inner circle’
type that the circle is shaped inside the simplex. When the concept is applied
to a DP, the struts in the base are connected to an additional strut ring, in
place of connecting directly to the vertical struts (Figure 7.37). Therefore,
the original two vertical struts become one member. New appearance is pre-
sented at the expense of reduced structural efficiency. When the concept is
applied to a P (Figure 7.38), an ATP or an AP, inclined struts are connected
to the central strut ring in place of a common joint.

The other is the ‘outer circle’ type that the circle is shaped outside the
simplex. It is more suitable for RP simplexes. As shown in Figure 7.39, struts
in the base are reshaped to an arc. Arc-shaped struts from adjacent simplexes
enclose a circle in the grid. Six adjacent simplexes are required for the trian-
gular, presenting largest circle (Figure 7.39(a)); four for the square, present-
ing smaller circle (Figure 7.39(b)); and three for the hexagonal, presenting
smallest circle.

7.7.3 ‘Bicycle-wheel’ and ‘cable-dome’ types

An RP can be reshaped by replacing the vertical strut to a circular array
of struts, presenting ‘bicycle-wheel’ shape (Figure 7.40). The concept is
grafted from a bicycle-wheel cable roof. The square-based bicycle wheel
(Figure 7.40(a)) contains a state of self-stress and seven mechanisms.
Among the seven, two infinitesimal mechanisms are rotation of two cable
rings, other three being in-plane distortion of the vertical square enclosed
by two vertical struts and two horizontal cables (the left in-plane distortion
is the linear combination of the other three). The left two finite mechanisms
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are rotations in the outer square strut ring, hence, the strut ring should be
designed moment resistant for stability (despite that the moment is negligi-
ble). The properties of a hexagonal type are similar. The resulting grids are
given for reference (Figure 7.40).

Alternatively, an additional vertical strut with diagonal cables is attached
to the upper cable ring (Figure 7.40), resulting in ‘cable-dome’ shape with
pyramidal faceted surface shown on the roof. The way of forming grids is
the same as ‘bicycle-wheel’ type.

7.8 Higher cable-strut polyhedra

Higher cable-strut polyhedra are unlikely to be as efficient as building
blocks for structurally efficient grids. But they present unique appearance in

202 Cable-strut systems

(a)

(b)

Figure 7.35 Array of SDP-3Ds: (a) planar array; (b) spatial array.



architecture. In order to form polyhedra of cable-strut types, the geometry
is normally stabilized by struts from inside and cables as edges. But it is also
possible to design struts in the outer layer in some relatively simple poly-
hedra. One such case is the derivature of RP with two strut rings forming
the base of the derived prisms, as shown in Figure 7.41(b).
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Top view Building block

Front view Isotropic view

Figure 7.36 A star column made of pentagonal SDPs.



(a) (b)

Figure 7.38 Curved strut P simplexes: (a) triangular P; (b) square P.

(a)

(b)

Figure 7.37 Curved strut DP form – ‘inner’ circle type: (a) triangular DP type;
(b) square DP type.



When no struts are designed in the outer layer, struts may join at the cen-
tre directly provided that the polyhedra is not quite high. For example, the
geometry in Figure 7.41(a), which is hence considered a DP derivature, can
be stabilized by designing struts joined at either one or two inner joints
(Figure 7.41(c) and (d)).

In order to achieve short struts especially in high polyhedra, the general
principles are presented as follows:

� One vertex is connected to only one strut. It means each vertex is only
used once.
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(a)

(b)

Figure 7.39 Curved strut RP form – ‘outer’ circle type: (a) triangular RP type;
(b) square RP type.



� Struts from the same face are connected to the same inner joint. It
forms a ‘pyramid’ with the face.

� Struts from different faces are not connected to the same inner joint.
These inner joints are connected by additional struts.

As the resulting ‘pyramidal’ bases are isolated, it may be named ‘isolated
face’ method.

The polyhedron in Figure 7.41(a) contains twelve surfaces, among
which two triangles and one rectangle are singled out as ‘isolated’ faces
(Figure 7.41(e)). Four struts from the rectangle share a joint inside the
volume, three struts from a triangle being joined at another joint.
Finally, the resulting three inner joints are linked by a small strut triangle.
Furthermore, Figure 7.42(a) shows a truncated tetrahedron in which
four triangular faces are ‘spaced’ by three hexagons. Four inner joints
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Bicycle-wheel type

Cable-dome type

Bicycle-wheel type

(a)

(b)

Figure 7.40 ‘Bicycle-wheel’ and ‘cable-dome’ types: (a) square RP form; (b) hexagonal
RP form.



Joined at centre

(b)

‘Isolated face’ method

Joined at centre

(a)

‘Isolated face’ method

Figure 7.42 Higher cable-strut polyhedra: (a) a truncated tetrahedron; (b) 
a cub-octahedron.

(a)

(b) (c)

(d) (e)

Figure 7.41 RP (DP) derivature and its cable-strut forms; (a) a RP/DP derivature;
(b) RP-like type; (c) DP-like type; (d) joined at centre; (e) ‘isolated face’
method.



become the vertices of a small strut tetrahedron. The case is similar for the
cub-octahedron in Figure 7.42(b).

In higher polyhedra, inner strut polyhedra may not be stable, but it can
be stabilized by introducing cables from inside. As an example, the trun-
cated cube is presented in Figure 7.43. The inner cube is stabilized by crossing
cables.

7.9 Summary

Cable-strut forms are developed from tensegrity systems and therefore,
most morphological studies applicable in tensegrity systems should be suit-
able for cable-strut forms. In addition, configurations other than ‘normal’
basic structural forms are proposed (Section 7.3). Special structural and
roof design (Section 7.4) and extensively the design with roof sculptures
(Section 7.6) are intended to broaden people’s imagination. In comparison,
ornamental supplements attached to cable-strut simplexes (Section 7.5) are
simple. However, many forms can be developed from reshaping basic sim-
plexes (Section 7.7), among which the ‘star’ group (Section 7.7.1) is espe-
cially prominent. Note that irregular simplexes and higher polyhedra
(principles presented in Section 7.8) are not focused in the study, but their
potential is not negligible.

These are all forms and concepts that the author can propose for the
present. Note that these concepts can also be combined to produce many
new forms. It is of no doubt that new architectural concepts and forms are
yet to be developed beyond those which are described in this book when we
are constantly seeking inspiration from the nature.
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Inner small strut polyhedra

Figure 7.43 Cable-strut truncated cube with small inner strut polyhedra stabilized
by cables.



Generally, tensegrity grids are sensitive to boundary conditions and not
advantageous in one-way spanning, as illustrated as follows.

A.1 Non-contiguous tensegrity grids

In one-way spanning cases, parameters are the same set as those in two-way
spanning, which is presented in Section 3.3.2. Because in the vertex-to-edge
connection (Method Ib) and Layouts B and C in the edge-to-edge connec-
tion (Method II), struts are diagonal to the edge in the compressive layer,
they are not suitable in one-way spanning in view of concept design.

Layout A, Method II can refer to Figure 3.13, in which the ‘square’ sup-
ports are used for one-way spanning, the results are presented in Table A.1.
It shows that deflections are enlarged significantly compared with those in
the two-way spanning case (Table 3.1), and self-weight nearly doubles due
to high internal forces. It means that non-contiguous strut grids are sensitive

Appendix A
Tensegrity grids in one-way spanning

Table A.1 Design results for non-contiguous strut grids of the edge-to-edge connection
(Method II) in one-way spanning

Layout Prism Maximum forces Self-weight Proportion Maximum Strut
rotation under designed (Kg/m2) of slack deflection length
angle load (10kN) cables under live (m)

load
Compression Tension Struts Cables (span)

A 45� 77 60 58.0 19.2 924/2880 1/28 4.646
67.5� 82 56 52.2 17.4 751/2880 1/41 4.529

A� 45� 75 59 52.8 18.7 928/2880 1/28 4.646

Optimal 67.5� 80 54 48.2 16.8 753/2880 1/41 4.529
tube 67.5� �p
sizes 10a 82 56 51.5 18.2 644/2880 1/46 4.529

20a 86 57 54.9 20.2 573/2880 1/53 4.529

Source: Adapted from Wang and Li (2001).

Note
a Prestress value for all struts (unit: 10kN).



to boundary condition. But the proportion of slack cables and the influence
of prestress are quite similar to those in two-way spanning.

As the internal forces are high, self-weight optimization can be feasible by
introducing tubes of larger outer diameter and smaller wall thickness. These
cross-sections are D140t4.5, D159t5, D168t6, D180t6, D194t6, D219t6
and D219t7. The weight reduction is apparent, as shown in Table A.1, and
the effect actually increases with span.

A.2 Contiguous strut tensegrity grids

In one-way spanning, parameters are the same as those in two-way span-
ning (ref. Section 3.3.3). Method II (vertex-and-edge connection) is not
optimal for one-way spanning in view of structural design as struts are dia-
gonal to the edge. The grid of Method I (vertex-to-vertex connection),
Layout A (67.5�) is presented in Figure 3.14 with ‘square’ supports for 
one-way spanning.

The results of Method I, Layout A are presented in Table A.2. Results
show that the properties of the 67.5� case are obviously better than the 45�
case, especially in stiffness. But it seems unusual that the proportion of
cables in slackness in the 45� case is smaller.

Compared with two-way spanning cases (Table 3.2), maximum internal
forces and deflections are much increased. But the increment in self-weight
is less significant as in non-contiguous strut grids. It shows that contiguous
strut grids are less sensitive to boundary conditions.

A.3 Comparison with space truss

Two tensegrity grids are also compared with the SOS grid, in which case the
grid depth is prescribed to be 2.5m. The results are presented in Table A.3
for reference. From the comparison, the low structural efficiency of tense-
grity grids, especially the non-contiguous strut type, becomes conspicuous.
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Table A.2 Design results for contiguous strut grids (Method I, Layout A) in 
one-way spanning

Prism Maximum forces Self-weight Proportion Maximum Strut
rotation under designed (Kg/m2) of slack deflection length
angle load (10kN) cables under live (m)

load
Compression Tension Struts Cables (span)

45� 60 46 26.6 8.1 440/1719 1/52 3.905
67.5� 42 38 21.4 6.1 560/1719 1/100 3.905

Source: Adapted from Wang and Li (2001).
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Non-contiguous strut tensegrity grids, representing cable-strut types in
Section 4.4, are subject to structural defects including heavy weight, low stiff-
ness, and large internal forces, etc. However, the form has unique aesthetic
value and may meet special architectural requirement. So if the architectural
requirement is to realize the grids in large spans, then how to improve their
properties? The techniques are discussed incorporating design examples.

B.1 Design examples

The design examples are based on Hanaor’s geometrically rigid non-
contiguous strut tensegrity grids (Method Ia, triangular simplexes) in 60m
span. Sample grid when frequency � 5 is given in Figure B.1(a). The grid is
simply-supported and prestress is not introduced into analysis. The following
conditions are given for all cases except that modular length (a) is variable
with frequency. Note that the tube cross-sections are characteristic of small
wall thickness.

Span: 60m
Grid depth (h): 6m
Prism rotation angle in each simplex: 40�
Frequency: 7, 9, 11
Dead load: 30kgf/m2 (excluding self-weight)
Live load: 70kgf/m2

Designed strength for tubes: 300MPa
Available tubes for bars: D219t6, D245t7, D273t7, D299t8, D325t8, 

D377t9, D402t9, D426t10, D530t10
Designed strength for cables: 1,000MPa
Available cross-sections for cables (cm2): 1, 2, 5, 10, 15, 20, 25, 30

Test studies show that when frequency � 7, very large tensional reactions
occur at six corner supports (definition of corner supports refers to
Figure B.1(a)), varying between 500kN and 1,200kN. It causes trouble in

Appendix B
Design proposal of large span 
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Figure B.1 Non-contiguous strut tensegrity grids made of triangular simplexes:
(a) sample planar layout developed by Hanaor (frequency � 5);
(b) details of the improved non-contiguous strut configuration; (c) profile
of the geometrically rigid configuration with camber.



designing supporting structures. So in the design, six corner supports
are released. For grids with higher frequency, more supports tend to be
subjected to tensional reactions. But for the convenience of narration, the
condition is set the same: only six corner supports are released. Design
results are presented in Table B.1. Various factors affecting the design are
summarized as follows.

Camber

In all three cases of flat grids (frequency � 7, 9, 11, respectively), internal
forces and central deflections are large and support reactions are distributed
unevenly due to the mechanism geometry as analysed in Section 3.4.2. When
grids with the camber of 10% span are introduced, distributions of support
reactions as well as internal forces are much improved, and central deflec-
tions are reduced significantly because it is improved to near-mechanism
geometry. The self-weight is also reduced but not significant.

Reinforcement in configuration

Properties of grids with camber can be further reinforced by restoring short
diagonal cables to each simplex (Figure B.1(b)). Therefore, internal forces
are distributed more evenly so that strut weight and deflection can be fur-
ther reduced (see ‘Improved camber’ case in Table B.1).

Modular length

The modular lengths for three frequencies are respectively 10.315m, 8.067m,
and 6.624m (by contrast, the normal modular length in a space truss for the

214 Appendix B

Table B.1 Results for 60m span non-contiguous strut tensegrity grids

Frequency Cases Maximum Self-weight Maximum Maximum
internal forces (kg/m2) deflection tensional
(10kN) under live reaction at

load (m) supports
Compression Tension Struts Cables (10kN)

7 Flat 384 285 38.0 8.3 2.1 11
Camber 232 225 33.5 6.1 1.4 0
Improved 170 128 31.9 6.1 1.1 0
camber

9 Flat 328 225 42.5 9.9 2.0 60
Camber 183 165 36.7 7.3 1.4 25
Improved 137 111 34.7 7.3 1.1 22
camber

11 Flat 313 185 48.5 12.1 2.0 90
Camber 176 139 40.6 9.2 1.4 65
Improved 131 107 39.6 9.2 1.1 48
camber



span is about 4m). Refer to Table B.1 it is obvious that owing to the increase
of modular length, the self-weight (excluding joint weight, but it is not much
for the large modules) is reduced from 48.8kg/m2 (frequency�11), to
42kg/m2 (frequency�9), to 38kg/m2 (frequency�7). The lightest one is
about 50% heavier than space trusses (SOS grid). In addition, the reduction
of frequency reduces significantly supports that have tensional reactions
(when frequency�7, no tensional supports remain at the camber cases).

B.2 General principles

General principles of applying non-contiguous strut tensegrity grids in large
spans can be summarized as follows.

� Design struts with tubes of larger outer diameter and smaller wall
thickness. In non-contiguous strut grids, struts are long, which requires
large outer diameter to resist bar buckling, and are subjected to large
forces, which requires large cross-section. Designing large tube cross-
sections lets cables to look thinner thus the eyesight effect of strut iso-
lation becomes more conspicuous. Note that the feasibility of designing
tubes of larger diameter in tensegrity grids is because struts are isolated
and joint design can be simple (in conventional bar system, such as
space trusses, the introduction of such tubes would increase joint dia-
meters and thus joint weight significantly, consequently, the total
weight would increase on the contrary).

� Camber design in place of flat plan. Non-contiguous strut grids are
subjected to large deflection. In order to avoid water drainage problem,
camber design is necessary. The rise is recommended 10% of the
span. Due to the improvement from mechanism geometry to near-
mechanism geometry, camber design (of domical shape) has additional
advantage in reducing deflections, making even the distribution of
internal forces and reducing large tensional reactions occur at supports
in flat grids.

� Larger modular length, that is, designing lesser modules, is preferred.
When cambered forms have to be employed, the geometry of non-
contiguous strut tensegrity grids becomes complex. Benefiting from
reduced modules, simplex connection and construction become easier.
Structural weight is thus reduced with the additional benefit from the
introduction of tubes of larger diameter.

� Reinforcement in configuration. When possible, introducing reinforc-
ing cables (sometimes even bars) can make some further improvement
in properties, as the case in Section B.1.

When the modular length or span is further increased, another option is to
introduce super strut concept so as to sustain larger forces and to reduce
further strut weight, as illustrated in the following section.
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B.3 Super strut application

Super strut concept

Under the super bar concept, each long bar is replaced by a reciprocal prism
or generally a derivative of reciprocal prism (DRPs) composed of much
shorter bars with reduced diameter and wall thickness (Figure B.2). Each
segment in the derived part of a DRP is a regular anti-prism, typically a
triangular one, so that the axial force can be shared by six inclined bars of
equal length. Two super bar ends and all base centres of the derived seg-
ments trace a straight line, following the direction of the external axial
force. Alternatively, when small cross-section is designed, each segment of
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the derived part is a triangular prism stabilized by crossing cables in lateral
faces.

The reciprocal bar prism and designed DRPs are called ‘super bars’. The
frequency of derivative (n) of a DRP is determined by super bar length,
super bar force and dimension optimization of short bars. Super bar system
can cope with the stability problem of long struts with reduced weight and
large internal forces to joints. It is applied into 200m span space frames
(Wang 2000) and 500 m span latticed shells (Wang and Li 1999). Details of
super bar design refer to Wang (2000). Super bars can be either tensional or
compressive, but are subjected only to compressive forces when introduced
into tensegrity grids, thus they are super ‘struts’.

Design results of applying super struts

Super struts are introduced into non-contiguous strut tensegrity grids.
The parameters and conditions different from those in Section B.1 are given
as follows:

Camber: 10%
Frequency: 5
Equivalent super strut cross-sections (cm2): 60, 80, 100, 120, 140
Cable cross-sections (cm2): 1, 2, 5, 10, 15, 20.

Owing to the further reduction of frequency to 5, the length of each strut is
increased to 17.468m. Note that in this case, reactions in six corner supports
are in compression thus these supports are kept. The resulting strut weight is
23kg/m2, and the cable weight is 4kg/m2. The total weight including joints
is equivalent to that of space trusses (about 30kg/m2).
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Cable-strut grids made of triangular simplexes shall present different appear-
ance from those made of square ones. Conceptually, the ATP grid made of
the triangular simplex is not suitable due to excessively high bar density that
leads to tensional bars. The P (P2) grid, AP grid, CP grid, RP grid and DP
grid are presented in Figures C.1–C.5, respectively. The spans of these grids
follow 30m. The depth can refer to the design in the square plan.

In Figure C.1, it is shown a hexagonal plan made of the triangular P (P2),
some struts are required at the edge in the compressive layer for stability,
and some cables in the tensional layer. The layouts can be easily changed
into circular or elliptical ones.

Appendix C
Cable-strut grids made of triangular 
simplexes

Triangular P

Triangular P2

Plan

Elevation of P grid

Elevation of P2 grid

Additional strut 
(additional cable below)

Figure C.1 Sample P (P2) grids made of the triangular simplex.



In Figure C.2, the AP grid, containing seven modules along span, is tailored
to suit a circular plan. It presents different appearance in plan from other grids.

In Figure C.3, the CP grid contains eight modules along span, but the
modules along circular direction reduce from the periphery, 21, to the
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Figure C.2 Sample AP grid made of the triangular simplex.

Figure C.3 Sample CP grid made of the triangular simplex.



Figure C.4 Sample RP grid composed of the triangular simplex.

Figure C.5 Sample DP grid composed of the triangular simplex.



centre, three. In Figure C.4, the RP grid is similar to the CP grid but is
formed by repeating one-sixth of the grid.

In Figure C.5, the DP grid presents different design. The modules along
the circular direction are the same for the outer three rings, followed by a
ring of eight quadrilateral DPs and an octagon-based DP core to avoid bar
congestion.

In general, Figures C.2–C.5 show different triangulated ways of forming
circular grids among a wide variety of choices. Which one is more suitable
is related to the specific grid type, and shall be determined by structural
analysis.
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Various cable-strut grids are studied in one-way spanning (supports are
introduced in two opposite edges only) so as to include general supporting
conditions for extensive understanding. No prestress is introduced and
conditions and layouts are given the same as in Chapter 5, despite that
large modules is preferred along span (e.g. 3.75m � 5m in the DP-b grid and
P-b grid). Among cable-strut grids, the RP-b grid, the CP-a grid, the DP-b
grid, the ATP grid and the AP grid contain strut diagonal to the edge in the
compressive layer, thus they are not preferred in one-way spanning. The left
grids are studied and compared with the SOS grid (by the way, the CP truss
in Figure 7.15 is also a good choice in one-way spanning but is not studied
here). The chief design results are given in Table D.1 and the distribution of
internal forces in the compressive and tensional layers of various grids is
illustrated in Figures D.1–D.5.

D.1 RP-a grid

In the compressive layer of the RP-a grid, compressions along the span are
distributed evenly in high values due to the forces transferred by upper
inclined cables (Figure D.1), following the same principle as in the planar

Appendix D
Cable-strut grids in one-way spanning

Table D.1 Design results for various cable-strut and space grids in one-way
spanning

Grid Parameters Max. internal Weight Deflection Number
types in design (m) forces (10kN) (kg/m2) under of joints/

live load bars/
a h h1 or Compression Tension Strut Cable (span) cables

hu

RP-a 3 2.5 0.75 23 20 9.3 2.7 1/223 321/320/1160
CP-b 3.75 3 0.5, 1 27 20 5.3 1.8 1/254 272/320/772
DP-b 3.75 2.5 1.5 25 24 6.2 2.0 1/282 336/412/992
P-b 3.75 2.5 0.5, 1 29 34 7.6 2.0 1/314 352/512/1108
SOS 3 2.5 — 20 23 15.4 — — 221/800/0
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forms (ref. Section 5.1). Forces in upper inclined cables are also transferred
to struts orthogonal to the span. The values are larger near the boundary
and smaller near the centre. Tensions in the tensional layer are generally
identical to those in the SOS grid (Figure D.2).
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D.2 DP-b grid

The distribution of bottom tensional forces and compressions along span in
the DP-b grid (Figure D.3) is much similar to that in the RP-a grid and the
values are enlarged proportionally with modular length. The difference is that
in the DP-b grid, forces in the struts orthogonal to the span are negligible,
presenting better load-transfer property and much lighter weight.
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D.3 CP-b grid

In the CP-b grid, its resistant lever arm for bottom cables is 1.25 times that
in the SOS grid and the modular length is 1.25 times the latter, so the ten-
sions are approximate to those in the latter (actually smaller due to smaller
self-weight load) (Figure D.4). Many upper cables do not slacken but the
forces are not large. The resistant lever arm for struts in inner modules, meas-
ured approximately by the distance from the bottom joint to the inclined
struts in the same module, is 2.416m, 0.8 times that of the bottom cables.
Therefore, maximum bar forces shall be around 245kN. The actual distribu-
tion of strut compressions is somewhat uneven due to cable slackening but
the influence is not much.

D.4 P-b grid

In the P-b grid, the distribution of compressions in upper inclined struts
(Figure D.5) is similar as a whole to that in the CP grid. The difference is
due to the interaction between the upper and lower inclined struts. In the
bottom layer, base cables are subjected to small forces as they are diagonal
to the span. Stabilizing cables along span sustain tensions instead. The dis-
tribution of internal forces is relatively uneven. However, it is still lighter
than the RP-a grid due to the reduction in bar length.
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