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Abstract—When the human fingertip is pressed against a 

surface or bent, the hemodynamic state of the fingertip is altered 
due to mechanical interactions between the fingernail and bone. 
Normal force, shear force, and finger extension/flexion all result 
in different patterns of blood volume beneath the fingernail. This 
phenomenon has been exploited in order to detect finger forces 
and finger posture by creating a photoplethysmograph 
“fingernail sensor,” which measures the two-dimensional pattern 
of blood volume beneath the fingernail. In this paper, a filter is 
designed to predict the normal force, lateral shear force, 
longitudinal shear force, and bending angle based on readings 
from the fingernail sensor. Linear, polynomial and neural 
network models relating the bending angle and touch forces to 
optical sensor outputs are developed and tested. A method is 
developed to uniformly calibrate the predictor for each user. 
Calibration experiments are performed to train and validate the 
predictor for seven human subjects. Results show that on 
average, shear forces can be predicted with 0.5 N RMS error, 
normal force with 1 N RMS error, and posture angle with 10 
degrees RMS error. Applications and methods for improving 
performance are discussed. 
 

Index Terms—fingernail, finger bending, haptic, 
photoplethysmograph, shear force 
 

I. INTRODUCTION 
EASUREMENT of fingertip forces and posture plays an 
increasing role in the fields of robotics, haptics, and 

virtual reality [1]–[2]. Fingertip forces are critically important 
for understanding human manipulation and grasping [3]–[5]. 
Several researchers have investigated the force response of the 
human fingerpad [6]–[9]. In addition to a better understanding 
of human manipulation and grasping, resulting analyses lead 
to better characterizations of the human haptic sense, 
ergonomic design criteria [6], and performance criteria for 
haptic feedback devices [10]. 

Measurement of fingertip forces is also useful for acquiring 
skills to train robots [11], monitoring human behavior [12], 
and understanding human intentions for teleoperation of 

robots and human-machine interaction [13]–[15]. In addition 
to normal touching forces, shear forces, or sliding forces in the 
plane of the contacting surface, play an important role in 
human sensing and manipulation of objects [16]–[18].  
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Forces acting at the fingertip are usually measured by 
placing force-sensing pads beneath the fingerpad, blocking off 
the human’s natural haptic sense. Likewise, finger posture is 
usually measured by wearing electronic gloves, which cover 
the finger and interfere with natural bending motion. Recently 
a new type of sensor has been designed by the authors to 
measure fingertip forces and posture without covering the 
fingertip. This photoplethysmograph fingernail sensor 
optically measures the pattern of blood volume beneath the 
fingernail, which changes when force is applied to the 
fingertip. This pattern can then be used to predict the 
fingerpad forces. Normal forces, shear forces, and even 
changes in finger posture have all been shown to result in 
different blood volume patterns [19]. In the original work [20], 
the fingernail sensor contained a one-dimensional array of 
photodetectors and was capable of measuring only normal 
touching force. However, in this paper, a new fingernail 
sensor containing a two-dimensional array of photodetectors is 
used in order to detect and distinguish between normal forces, 
shear forces, and finger posture. 

In previous work [20], a nonlinear dynamic model was 
created, based on physical laws and physiological knowledge, 
to relate normal force to photodiode outputs in a physically 
meaningful way. This physical model could in principle be 
extended to account for shear forces and bending in addition 
to normal force; however, the tissue mechanics are so complex 
that obtaining an accurate physical model for predicting 
bending and three axes of touch force is impractical.  

Instead, the goal of this paper will be to develop a purely 
mathematical, data driven or “black box” model that can 
predict the fingertip force and posture as functions of the 
photodiode outputs. Both linear and nonlinear models will be 
considered and evaluated. A method is developed to uniformly 
calibrate the predictor to each user for all usable combinations 
of normal and shear forces. Calibration experiments are then 
performed to train and validate the predictor. Finally, 
performance of the predictor is analyzed and compared for the 
different models. 

 

M 
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II. PRINCIPLE AND EXPERIMENTAL APPARATUS 

A. Fingernail Color Changes 
When the human finger is flexed or pressed down against a 

surface, the blood volume under the fingernail changes and a 
variety of color patterns are visible through the fingernail. Fig. 
1 shows the variables of interest that influence the coloration 
of the fingernail. These include the normal force, zF , the 
lateral shear force, xF , and the longitudinal shear force, yF , 

which occur when the finger is pressed against a surface. 
Since the finger surface is curved, the direction of force and its 
influence on coloration vary, depending on the location, 
contact angle, and the shape of the contact surface. For this 
paper, we focus on the case where the fingerpad is pressed 
against a large, uniformly flat surface parallel to the bone of 
the distal phalanx, such that the contact area is maximized and 
the contact is most stable. Thus the contact location is 
irrelevant and the three touch force directions are defined with 
respect to the surface. 
 

 
Fig. 1.  Finger variables of interest. The forces are defined to be positive when 
the finger is pressed against a surface in the positive x, y, and z directions as 
shown. The finger posture is represented by the angle of the knuckle (MP) 
joint, J1, the middle (PIP) joint, J2, and the distal (DIP) joint, J3. The angles 
are defined to be positive for flexion and negative for extension (the finger 
can typically be hyper-extended to -10°). 

 
Also of interest are the three posture angles, 1J , 2J , and 

3J . However in practice, 1J  does not affect the fingernail 
color; also 3J  is coupled to 2J , as long as the finger is not in 
contact with the surface when bending occurs, an assumption 
that will be addressed later in Section III-A. Therefore in this 
paper, the only posture angle of interest is 2J , hereafter 
referred to as θ . 

Fig. 2 shows a typical set of fingernail colorations for a 
single human subject. The subject was directed to assume 
eight different force/posture poses by pressing down on a 
force sensor or bending the finger, while the fingernail was 
imaged from above using a digital CCD camera. Normal 
force, negative and positive lateral shear force, negative and 
positive longitudinal shear force, extension and flexion all 
result in visibly different patterns of coloration. In addition, 
the same general patterns of coloration occur for all people 
with healthy fingernails. Fig. 3 shows the average fingernail 
color patterns for 16 human subjects of various size, gender, 

and skin color. 
 

 
Fig. 2.  Fingernail coloration for a single human subject. Eight different 
force/posture poses are shown. 5x contrast is applied. 

 

 
Fig. 3.  Average fingernail coloration for 16 human subjects for the same eight 
poses. Images from the 16 subjects were normalized to the same size and 
averaged pixel by pixel. 5x contrast is applied. Subjects were instructed to 
apply the same constant forces using visual feedback from the force sensor. 

 
The differences in the color patterns are further 

demonstrated in Fig. 4, where a threshold filter is used to 
highlight regions of white and dark, corresponding to regions 
of more and less blood, respectively. 
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Fig. 4.  Average fingernail coloration for 16 human subject with threshold 
filter applied for the same eight poses. 

B. Fingernail Sensor 
Based on the above experiments on fingernail coloration, 

we can develop an optical fingernail sensor. When light is 
emitted into the fingernail and the reflected light is measured 
by a photodiode, the photodiode output depends on the 
volume of blood, which is the principle of the fingernail 
sensor. Thus a fingernail sensor that measures these two-
dimensional color patterns should be able to detect and 
distinguish between normal force, shear forces, and 
extension/flexion. 

 

 
Fig. 5.  Fingernail sensor with 2-D array of photodiodes. On the left is a 
partially assembled sensor. On the right is a schematic of the sensor array 
relative to the fingernail. 

 
In this paper, an advanced fingernail sensor prototype with 

a two-dimensional array of photodiodes is used, as shown in 
Fig. 5. Six LEDs and eight photodiodes are placed on the 
fingernail surface to measure the blood volume at eight 
locations. The wavelength is chosen to be near the isobestic 

point (~800nm), where the absorption is independent of blood 
oxygen levels. The closest commercially available LED chips 
emit at 770nm. 

Fig. 6 shows a human subject wearing a fully assembled 
fingernail sensor and pressing against a calibration stand. The 
fingernail sensor has been molded to the shape of the 
fingernail and attached using a transparent adhesive tab. A 
three-axis force sensor is placed beneath the fingertip to 
measure the actual normal and shear forces during calibration. 
In order to measure the posture angles, a video tracking 
system is used to track the positions of colored markers placed 
along the finger. 

 

 
Fig. 6.  Experimental apparatus for measuring touch force. A 3-axis force 
sensor underneath the fingertip measures actual normal and shear forces. 

III. PREDICTOR DESIGN 

A. Modeling Goals 
Preliminary experiments show that the photodiodes do 

respond with different patterns of signals to changes in normal 
force, zF , lateral shear force, xF , longitudinal shear force, 

yF , and change in finger posture, θ . The goal of this section 

is to design a multi-input, multi-output filter that receives the 
photodiode signals and inputs and predicts the three forces and 
bending angle. Since the model parameters will vary from user 
to user, the model will be calibrated by experimentally tuning 
the parameters for each user. To calibrate the model so that it 
can predict any combination of touch forces and bending 
angle, all four variables should be simultaneously varied in all 
possible combinations while the photodiode outputs are 
recorded. However, this leads to two major problems: 

1. It is extremely difficult to simultaneously vary and 
measure the three forces and bending angle in a 
controlled manner.   

2. When force is applied to the fingertip, the angles of 
the DIP and PIP joints are no longer coupled and can 
vary independently. 

In this paper, we limit the functional requirements and 
applications to prediction of either touch or bending but not 
both simultaneously. In other words, the sensor is to measure 
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three axes of touch force while the finger is in contact with the 
environment, and measure the bending angle when the 
fingertip is free of contact.1 

 

 
Fig. 7.  Dual touch/posture predictor. Posture predictor turns on when normal 
touch force is below some threshold. 

 
In this case, the predictor can be split into two separate 

predictors as shown in Fig. 7, one for force and one for 
bending, which can then be calibrated separately. If the force 
predictor is programmed to be resistant to bending (i.e. predict 
zero force in the presence of bending), then the posture 
predictor can simply be activated whenever the touch-force 
predictor predicts zero force. 

The triple-output touch-force predictor must still be 
calibrated by simultaneously varying all three forces and thus 
is more complicated than the single-output posture predictor. 
Therefore this paper will focus on the design and calibration 
of the touch predictor. However the same types of models can 
be used for the bending predictor and calibration results will 
be presented for both. Three different types of regression 
models will now be proposed as candidates for the framework 
of the two predictors. 

 

B. Linear Regression Model 
The simplest model that can be used for the touch-force 

predictor is a linear regression model. Each variable of interest 
will be a linear combination of the outputs of the m 
photodiodes (for the current prototype, ): 8m =
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where P is an  vector of photodetector outputs,  is a 
 vector of force predictions, and  is the 3 x  

experimentally determined matrix relating the two.  is the 
experimentally determined force offset vector. Equation (1) 
reduces to a homogeneous equation by augmenting vector P 
and combining matrix  and vector  together: 

x 1m F̂

0

3 x 1 FJ m
F

FJ 0F
ˆ = FF J P , (2) 

where  is a  matrix and  is 

an 

[ ,=F F 0J J F 3 x ( 1)m + ,[ 1T=P P

1 Note that since touching and bending are now exclusive actions, J3 can 
indeed be treated as coupled to J2 during bending, and can thus be eliminated 
as an independent variable. 

( 1) xm +  vector. To determine , a multivariate linear 
least squares regression is performed using n sets of 
experimental data. 

FJ

Let Y be a  matrix consisting of the n sets of 
experimentally measured forces, 

3 x n

xF , yF , and zF , and B be a 

( 1) xm n+  matrix containing the corresponding n sets of 
measured photodiode outputs. The optimal regression matrix  

*JF
~  that minimizes the squared prediction errors is given by: 
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  (3) 
A similar regression model can be obtained for the bending 

predictor where the 3-D force vector is replaced by the 1-D 
posture angle. 

C. Polynomial Model 
In order to achieve a model that fits the data more closely, a 

nonlinear regression could be performed. Since preliminary P 
vs. F data shows some curvature, it is reasonable to try a 
polynomial model. The more terms in the polynomial, the 
better the model can fit the curvature. As a start, a second-
degree polynomial model is considered, the most 
comprehensive of which includes all the squares and cross 
products of the photodetector readings: 

= =⎜ ⎟
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where  is the vector 

, 

the dimension of which is .  is computed 
as before using experimental training data, except that B is 
now an 

QP

1 1, P P

) x

2 2
2 2, P

( 3m= +
2 1 3 1 3 2[ , ,... , ,... ,... ]Tm mP P P P P P P P P P

) / 2M m *
FJ~

( 1M n+  matrix containing n samples of the 
photodiode outputs. 

D. Neural Network Model 
Neural network models can also be used to approximate 

nonlinear functions [21]. A basic three-layer feedforward 
neural network model can be used to predict the three touch 
forces based on the m photodiode signals. Let the hidden layer 
consist of N nodes, each of which outputs a nonlinear function 
of a weighted and biased sum of the photodiode signals.  The 
output layer then produces estimates of the three forces, each 
of which is the weighted and biased sum of the N outputs of 
the hidden layer.  The total number of parameters involved in 
the three-layer neural net is ( 4 . )+ + 3m N

Each neural network model is trained using a standard 
backpropagation algorithm on a set of training data. In order to 
avoid over-training, a set of validation data is used to halt 
training when the validation performance no longer improves. 
The optimal number of hidden nodes is experimentally 
determined by iteratively increasing N and retraining until the 
performance no longer improves. 
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IV. PREDICTOR CALIBRATION 

A. Method 
In order to calibrate the touch predictor using any of the 

three types of models (linear, polynomial, neural network), a 
set of training data is needed, consisting of readings from each 
of the m photodiodes and corresponding values of the three 
touch forces as measured by a three-axis force sensor placed 
beneath the finger.  

In order to calibrate the force predictor to predict any 
possible combination of touch forces, the training data should 
be distributed across the entire usable portion of the three-
dimensional force space. Therefore, a means is needed to 
prompt the user to fully explore this space during the training 
session. Since it is difficult for a human to apply desired 
forces simultaneously in three dimensions, the desired forces 
and the actual forces (measured by the experimental platform) 
should be visually presented to the user in an intuitive manner.  

In the past, three-dimensional force information has been 
visually presented using a pseudo-perspective view with 
horizontal, vertical, and diagonal bars representing each of the 
forces [22]. However this requires the user to track three 
different positions on the screen at once.  Instead, to achieve a 
more intuitive feedback, the information should be presented 
in such a way that the user must only track a single position on 
the screen.  

 

 
Fig. 8.  Graphic user interface for calibration. The user tries to keep the circle 
within the moving ring while matching the color of the circle to that of the 
ring. The bar on the right also displays normal force, providing an alternative 
to matching the colors. 
 

Fig. 8 shows a graphic user interface (GUI) that will be 
used as an intuitive force prompter. Two of the three 
dimensions of force are represented by position, while the 
third dimension is represented by color. The small circle in the 
center of the white display represents the actual force applied, 
as measured by a three-axis force-sensing platform placed 
beneath the finger. The ring represents the desired force 
generated by the prompter. The goal of the user is to keep the 

circle within the ring and match the color at the same time, 
while the prompter moves the ring along a prescribed 
trajectory. The x-positions of the circle and ring represent 
lateral shear force xF , the y-positions represent longitudinal 
shear force yF , and the colors represent normal force zF . The 

bar on the right side of the GUI provides an alternate, 
redundant display of normal force. It is not critical that the 
actual forces are identical to the prompted forces. The actual 
forces, measured by the force sensor, are used for training the 
predictor. The prompts are only a guide to fully exploring the 
force space. 

In the previous section, it was mentioned that the touch 
predictor must also be trained to predict zero force in the 
presence of bending. Therefore, the GUI in Fig. 8 also 
includes a posture prompt in the form of a graphically 
illustrated finger. Before the touch prompting begins, the user 
is prompted to bend the finger in synchronization with the 
finger on the screen, while readings of zero force are 
registered. The training data for the force predictor then 
contains a number of samples with zero force, whose 
photodiode readings correspond to finger bending. The 
posture prompt is also be used to generate training data for the 
posture predictor during a separate posture calibration session. 
The actual posture is measured using a video tracking system 
where colored markers are placed along the length of the 
finger. 

B. Constraints 
(1) Range of Calibration: The usable portion of the force 

space is constrained by three factors: 
1. The range of forces that a human can comfortably 

apply and control. 
2. The range of sensitivity of the fingernail sensor. 
3. The coefficient of friction of the finger against the 

surface of contact. 
A number of references discuss the capability of the human 

to apply normal forces with the fingertip. As reported in [6], 
normal forces in the range of 0 to 2 N are most relevant for 
examining the response of the fingerpad during grasping and 
typing. According to [23], a human is capable of controlling a 
constant force in the range of 2 to 6 N with average error of 
6% using visual feedback in addition to natural haptic sense. 
However, when shear force is added, the maximum normal 
force that a human subject can comfortably apply for an 
extended time (i.e. a few minutes) is about 3 N. Preliminary 
experiments conducted indicate that this is within the range of 
sensitivity of the fingernail sensor. 

The ability of the human to apply shear forces depends on 
the coefficient of friction between the finger skin and the 
surface of contact. To maximize the shear force during 
calibration, the experimental platform is covered with a soft 
rubber material, with an experimentally determined static 
coefficient of friction of approximately 0.75. Therefore, if the 
normal force ranges between 0 and 3 N, the total shear force 
can range between 0 and 2.25 N. Preliminary experiments 
indicate that this also is within the range of sensitivity of the 
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fingernail sensor. 
(2) Speed of Calibration: To make calibration as convenient 

as possible, the total training time should be minimized. 
However, the speed of calibration is also constrained by the 
dynamics of the fingertip system. If the user is prompted to 
explore the force space too quickly, the sensor response will 
lag too much behind the applied force due to viscoelastic 
dynamics. 

If the fingertip dynamics are approximated as a linear 
system dominated by its slowest time constant, maxτ , and the 

force is changing at a rate F
Δ

, then the steady-state lag in 
photodiode output is given by . maxτPP =

If this apparent error in photodiode output is expressed as a 
percentage, then 

max
maxmax% τ

ττ f
F

F
P

P
P
Perror =≈=

Δ
= , (5) 

where FFf =  is the percent rate of change of force. 
Therefore, if the time constant is known and a limit is set on 
the allowable percent error, the maximum f  can be 
calculated and used as a constraint on the speed of the 
prompter. 

The experiments in [20] indicate that the effective time 
constant of the sensor response is between 0.1 and 0.4 
seconds. This is comparable to the viscoelastic time constants 
of the fingerpad determined by [6]. Therefore, if the %error in 
(5) is constrained to be 10%, and max 0.1sτ =

max

, then the 
maximum allowable rate of change of force, f , is 100% 
per second, which is 1 s-1 or 1 N/s per N. Based on the results 
in Section V, the choice of 10% error here is not likely to be 
the limiting factor on predictor performance. 

C. Trajectory Design 
The next task is to design the calibration trajectory that the 

force prompter will execute in order to lead the user to explore 
the entire force space while a set of training data is collected. 
The force space to be explored consists of a three dimensional 
cone defined by the constraints of maximum normal force and 
frictional shear force, as depicted in Fig. 9. 

To efficiently explore this cone-shaped space, an upward 
moving, spiraling and circling trajectory can be designed as 
shown in Fig. 10. As the normal force gradually increases 
from zero, the magnitude of shear force periodically increases 
and decreases while the direction of the shear force circles 
around. Due to the frictional constraint, the range of possible 
shear force magnitudes increases linearly with normal force. 
However the training data should be spread uniformly across 
the cone-space in order to create a predictor that is not biased 
toward any specific portion of the space (unless a specific 
application suggests otherwise). 

 The training data can be specified to be of uniform density 
in either cylindrical coordinates or Cartesian coordinates. If 
cylindrical coordinates are chosen, the predictor will be 
unbiased in terms of magnitude and direction of shear force; 
whereas if Cartesian coordinates are chosen, the predictor will 

be unbiased in terms of the magnitudes of the individual shear 
force components. Which method is chosen depends on the 
application of the predictor. In either case, the training data 
should be uniform in magnitude of normal force. 

 

 
Fig. 9.  3-D force space. Possible combinations of normal and shear forces 
form a cone. 

 

 
Fig. 10.  3-D calibration trajectory. Normal force slowly increases while shear 
force oscillates in magnitude and circles in direction. 

 
In order to create a set of training data with a uniform 

cylindrical density, the time spent to explore the range of shear 
force needs to increase linearly with normal force. This 
relationship can be expressed in differential form relating 
infinitesimal time interval to infinitesimal change in normal 
force zF :  

max, zzzz FFTtdFFdt =⇒== α . (6) 
Solving (6) with the boundary condition that the maximum 

normal force is reached at time T gives a formula for normal 
force as a function of the square root of time: 

max max,z z ztF F FT= 3 N= , (7) 

where  is given as shown by the range constraint, and T 
will be determined later from the speed constraint. 

max
zF

Next, in order to create the spiraling action, the magnitude 
of the shear force, rF , should oscillate between the minimum 
and maximum possible values, zFμ± . If rF  is given by 

-1sin(2 ), 0.75, 1.0 Nr z s z sF F f F fμ π μ= = = , (8) 
then Fr oscillates smoothly between the limits in an 
approximately uniform manner. A value of  -11.0 Nsf =
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creates one cycle of radial oscillation per unit of normal force. 
The maximum radial velocity is  

T
Ff

dt
dFMax zsr

2max )(πμ
=⎟

⎠
⎞

⎜
⎝
⎛   (9) 

and will be used with the speed constraint to choose T. 
Finally, in order to create the circling action, the direction 

of the shear force should rotate around with constant speed. 
The lateral and longitudinal components of the shear force are 
thus given by 

)2cos(),2sin( tfFFtfFF crycrx ππ == , (10) 

where cf  is the circling frequency. The ratio of the circling 
frequency to the radial velocity determines how many times 
the trajectory circles around for each unit of radial motion. To 
uniformly cover the force space, the circling frequency should 
be high enough to complete one or two circles per unit of 
radial motion. Assuming the circling action takes place much 
faster than the radial motion and the z-motion, the percent rate 
of change of force is approximately 2 cfπ . The speed 
constraint maxf  from Section IV-B2 can then be used to 
choose cf : 

-1

max
1s2
2c c cf f f fπ
π

< ⇒ < ⇒ = 0.15 Hz  (11) 

This then places a constraint on the maximum radial 
velocity from (9). To ensure the time to complete one circle is 
less than the time to move one radial unit, the following 
equation must be satisfied: 

max 2
1 140s

( )c s z

T T
f f Fμ π

< ⇒ > . (12) 

Thus, by choosing a total calibration time 180 sT =  (3 
min), the trajectory will complete slightly more than one circle 
per radial unit. This is small enough that calibration is not 
overly fatiguing or impractical. Putting everything together, 
the 3-D trajectory of Fig. 10 is achieved. 

A similar trajectory could be derived in order to achieve 
training data with a uniform Cartesian density. 

V. EXPERIMENTS AND ANALYSIS 

A. Touch Prediction 
Using the calibration method detailed in Section III, touch-

force predictors were trained for seven different human 
subjects. Each subject practiced following the force prompt 
and then executed the training routine three times.2 The first 
two times, the data was collected and used to train the 
predictor using the linear, polynomial and neural network 
models. The third time, the data was collected and used to 
validate the performance of the predictors (and to halt the 
backpropagation in the case of the neural network model). 

Each time, the subject was first prompted to bend the finger 
back and forth a few times. Then the subject was instructed to 
extend the finger to 0θ = °  and place the fingerpad flat down 
against the surface of the force-sensing platform, and then 
follow the trajectory of the force prompt. Finally, each subject 
was requested to execute a fourth routine with a random force 
trajectory to use as a final test of predictor performance. 

Fig. 11 shows sample training data from a single subject 
with the force predictions of the linear model plotted overtop. 
In this case, the predictions are simply a measure of how well 
the model fits the training data. The actual forces are zero for 
the first 60 seconds as the finger is bent back and forth. Then 
the normal force slowly increases in the negative direction 
while the two shear forces oscillate with increasing magnitude. 

Fig. 12 shows sample validation data from the same subject. 
Data from a third spiral trajectory is followed and the forces 
are predicted based on a linear model that was trained on the 
first two spirals. The force predictions are plotted overtop of 
the actual measured forces. In this case, there is a slight 
degradation in the predictor performance, but the predictor 
still performs well. 

Finally, Fig. 13 shows sample test data using a random 
trajectory. In this case the subject began with 20 seconds of 
bending followed by 100 seconds of random motion through 
the force space. The same predictor that was calibrated using 
the first two spirals was then used to predict the forces for the 
test data. In this case, the predictor performs well for the shear 
forces, but performs significantly worse for the normal force. 

Figs. 14-16 compare the average performances (over all 
seven subjects) of the three types of models for training, 
validation and testing. As shown in Fig. 14, the polynomial 
model fits the training data with the least error due to the large 
number of parameters. However, as shown in Fig. 15, the 
polynomial model has the worst error when predicting the 
forces for the test data, especially the normal force, zF . While 
the polynomial model is better able to fit the curvature of the 
data, it actually over-trains itself to the noise in the training 
data and cannot generalize to predict forces for new data. 

 The linear and neural network models both show 
comparable performance for fitting the training data and 
predicting all three forces for the validation data. The neural 
network has more flexibility to fit the data, but is prevented 
from over-training by the validation check. To further examine 
the linear and neural network models, performances can be 
compared for the random test data. When presented with new 
random data, the linear model performs better on average than 
the neural network model for all three forces. Especially for 
the two shear forces, the linear model has a consistently lower 
RMS error in predicting new random data. Therefore, the 
linear model, which also has the advantage of being less 
complex and faster to train, should be used. Using the linear 
model, the two shear forces are predicted with average RMS 
errors of 0.4 to 0.5 N, while the normal force is predicted with 
an average RMS error of 1.0 N. 

 
2 Results show that the predictor performs significantly better on test data 

if calibrated using two sets of training data. This could be due to unmodeled 
variations between training sessions, such as slight variations in the posture of 
the finger relative to the force-sensing platform. When two sets of data are 
used for training, it forces the model to train to the features that remain 
constant between training sessions. 
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Fig. 11.  Sample training data for touch predictor for a single subject. Data belongs to one of two consecutive spiraling trajectories used to train the model. 
Predicted forces using the linear model are superimposed on experimental forces measured by 3-axis force sensor.  

 

 
Fig. 12.  Sample validation data for touch predictor for a single subject. Data belongs to third spiraling trajectory that is used to validate the model. Predicted 
forces using the linear model are superimposed on experimental data. 

 

 
Fig. 13.  Sample test data for touch predictor for a single subject. Data belongs to a random user-generated trajectory that is used to test the model. Linear model 
predictions are again superimposed. 
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Fig. 14.  Training performance for touch predictor. RMS errors of model 
predictions are averaged for 7 human subjects. The polynomial model fits the 
training data with the least error.  

 

 
Fig. 15.  Validation performance for touch predictor for same 7 subjects. The 
polynomial model performs the worst when presented with new validation 
data. 
 

 
Fig. 16.  Test performance for touch predictor for same 7 subjects. The linear 
model performs better than the neural network model when presented with 
new random test data. 
 

When comparing the random test performances with the 
validation performances, it is important to note that the errors 
in predicting the shear forces are almost identical, while the 
error in predicting normal force is significantly larger for the 
random case. This indicates that while the spiraling trajectory 
may be very good for calibrating the shear forces, it is not a 
good trajectory for calibrating normal force. The obvious 
difference is that the normal force, unlike the shear forces, is 
not oscillating at all. In future experiments, the effect of 
building some normal force oscillation into the calibration 
trajectory should be investigated as a means for improving 
performance. 

B. Posture Prediction 
Bending experiments were also performed using the same 

seven subjects. Each subject was instructed to slowly flex and 
extend the finger for six cycles at a rate of 0.1 Hz, following 
the posture prompt in the GUI.  Fig. 17 and Fig. 18 show 
sample training and validation data for a typical subject using 
a linear model. 

 

 
Fig. 17.  Training data for posture predictor for a single subject. Model is 
trained using first half of 60 second data set. Predicted posture angle for the 
linear model is superimposed on the experimental posture measured by the 
video tracking system.  

 

 
Fig. 18.  Validation data for posture predictor for a single subject. Model is 
validated using second half of data set. Predicted posture angle for the linear 
model is superimposed on experimental data. 

 
The performance of the posture predictor should also be 

compared for the three types of models. Fig. 19 shows the 
average training and validation performances for the three 
models when predicting the angle of the PIP joint. As with the 
touching, the polynomial model over-trains to the data and 
cannot generalize to the validation data. Looking at the 
validation performances, the polynomial model should again 
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be ruled out, while the neural network and linear models both 
perform comparably. The neural network does perform 
slightly better, predicting the bending angle with an average 
RMS error of 8 degrees, compared to 10 degrees for the linear 
model. In this case, either the linear or neural network model 
could be chosen, depending on the relative importance of 
simplicity vs. performance. 

 

 
Fig. 19.  Performance of posture predictor for training and validation. RMS 
errors of model predictions are averaged for 7 human subjects. Polynomial 
model fits training data better but again performs worst when presented with 
new validation data. Linear and neural network models are again comparable. 

VI. CONCLUSIONS 
In conclusion, a new fingernail sensor with a two-

dimensional array of photodetectors has been created in order 
to measure the two-dimensional color patterns of the 
fingernail that results from changes in finger posture and 
application of three-axes of touch forces. 

A multi-input, multi-output predictor has been designed to 
predict normal and shear forces at the human fingertip as well 
as posture angle based on the photodiode readings from the 
fingernail sensor. An intuitive GUI was created to calibrate the 
predictor for each user for all possible combinations of normal 
and shear forces. Despite variations in user sensitivity and 
haptic coordination, the predictor was successfully calibrated 
for seven different human subjects. Experiments show that a 
linear model performs best in predicting random combinations 
of touch forces, predicting shear force with average RMS 
errors of 0.5 N and normal force with an average RMS error of 
1 N. For the posture predictor, linear and neural network 
models perform comparably well, both predicting posture 
angle with an average RMS error of 10 degrees or less. 

The average RMS errors in the shear forces are 
approximately 10% of the shear force range (-2.25 N to +2.25 
N), which would at least be sufficient for providing some 
input to a computer or robot. The average RMS error of the 
posture predictor is also 10% of its range ( , 
making it equally useful. However, the large average RMS 
error of 1 N for normal force is unsatisfactory, especially since 
the range of normal forces is only 0 to 3 N. In future 
experiments, the calibration trajectory will be redesigned to 
include oscillation in normal force as well as shear force in an 

effort to improve this performance. In the meantime, the utility 
of the sensors may be best suited for applications such as an 
alternative computer mouse, where the shear forces are used to 
control the 2-D velocity of the cursor on the screen, or finger 
bending is used for 1-D scrolling. Further analysis will also 
lead to more intelligent configurations of the LEDs and 
photodiodes that could improve predictor performance for all 
four variables of interest, allowing the sensor to be more 
useful for monitoring grasping and manipulation. 

-10  to 90 )° °

Performance can also be improved by shaping the sensor to 
the fingernail of each user to ensure proper adhesion of the 
sensor to the fingernail. In our experiments, human subjects 
having similar fingernail curvatures were selected for testing 
so they could all use the same sensor. In addition, the sensors 
were used in an indoor environment of constant temperature 
and the hand was kept at a constant elevation of desk level. In 
general, the performance of the predictors may be affected by 
variability in blood flow/pressure due to changes in finger 
temperature, hand elevation, or any other factors affecting 
cardiovascular activity. Further study is required in order to 
quantify the effects of any such variations. 
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