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Abstract

Modifications to the well known technique for calculating the inductance of a circularly symmetric conducting
structure, such as that of a magnetocumulative generator, are presented. The presented method is verified both
theoretically and experimentally.

1. Introduction

Novac et al [1] have presented a method for
the analysis of a variable-pitch multi-section helical
magnetocumulative generator (MCG). This method
requires that the helical stator and cylindrical
armature be broken down into a number of parallel
coaxial conducting filaments, and that the self
inductance of each circular filament and the mutual
inductance it shares with all other filaments be
calculated. The method for the calculation of the
mutual inductance between two filaments is well
known. Grover [2], Smythe [3] and Knoepfel [4] (to
name a few) present equivalent methods requiring the
solution of elliptic integrals. Indeed, Grover comments
that "Since the original formula given by Maxwell,
numerous series developments have appeared ... so
that no less than a hundred formulas have been
published". The method of Novac is no different, with
the exception that Novac’s equation 9 appears to have
incurred a typing error. This error has propagated
through to the work of Altgilbers et al [5].

In this paper yet another method is presented.
For those new to MCG simulations the method is
derived from first principles. For those relying on fast
computer simulation techniques the method uses two
alternative elliptic integrals — the complete Legendre

elliptic integral of the first kind F (ψ, k), and a
linear combination of the Legendre elliptic integrals
of the first and second kind D(ψ, k). Although little
different, the choice of these integrals (in preference
to the accepted first and second Legendre elliptic
integrals) facilitates a subtle improvement in the
prescribed method for numeric solution of elliptic
integrals. Namely F (ψ, k) and D(ψ, k) may be solved
simultaneously.

2. Method

Figure 1 shows two parallel coaxial conducting
filaments, one of radius ri the other of radius rj ,
separated by distance dij . For the purpose of this
problem the lower filament carries current I and the
upper filament defines the boundary of an enclosed
surface S.

Fig. 2 shows the two circular filaments observed
from above the xy-plane. The angle θ is subtended
between the vectors PO and QO projected onto the
xy-plane.

By definition magnetic flux density B = ∇ ×
A, where A is the magnetic vector potential. Since
Φ =

∫

S

B · dS it is easily shown (by means of Stokes’
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Fig. 1. Two conducting filaments, radius ri and rj ,
centred on the z-axis and separated by distance dij .

Fig. 2. The two conducting filaments, radius ri and rj ,
viewed from above the xy-plane.

theorem) that:

Φ =

∮

A · dl (1)

where Φ is the total magnetic flux (due to current I
flowing in the lower filament) coupled to the surface
S (bounded by the upper filament), and:

dl = rjdθaθ (2)

where aθ is the unit vector in the θ direction. Since
the current through the lower filament is by definition
a line current, then:

A =
µ0

4π

∮

Idl

r
(3)

where in this case:

dl = ridθaθ (4)

µ0 is the magnetic permeability of free space and r is
the scalar distance between the current element Idl

(point P on the lower filament) and that point at
which the magnetic vector potential A is determined
(point Q on the upper filament). Hence:

r = |P − Q| =
√

d2
ij + r2

i + r2
j − 2rirj cos θ. (5)

The contribution to the magnetic vector potential A

at the point Q (in the aθ direction) as the point P is
moved around the lower filament, is proportional to
cos θ. Consequently, from (3) and (5):

A =
µ0Iri

4π

θ=2π
∫

θ=0

cos θdθaθ
√

d2
ij + r2

i + r2
j − 2rirj cos θ

. (6)

Letting θ = 2α and substituting cos(2α) = 1−2 sin2 α
into (6):

A =
µ0Iri

4π

×

θ=2π
∫

θ=0

(1 − 2 sin2 α)2dαaθ
√

(d2
ij + (ri − rj)2) + 4rirj sin2 α

. (7)

Substituting sin2 α + cos2 = 1 into (7):

A =
µ0Iri

2π
√

d2
ij + (ri − rj)2

×

α=π
∫

α=0

(1 − 2 sin2 α)dαaθ
√

cos2 α + k2
c sin2 α

(8)

where:

k2
c =

d2
ij + (ri + rj)

2

d2
ij + (ri − rj)2

. (9)

The integrand of (8) is a symmetric function. Hence:

A =
µ0Iri

π
√

d2
ij + (ri − rj)2

×

α=π/2
∫

α=0

(1 − 2 sin2 α)dαaθ
√

cos2 α + k2
c sin2 α

. (10)

The magnetic vector potential A, calculated at the
point Q, is independent of the absolute position of the
points P and Q over the xy-plane, depending only
on the relative angle θ subtended between the two
points and the origin. Consequently the magnitude of
magnetic vector potential A is constant around the
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circular path defined by the upper filament. Hence,
from (1):

Φ = A·

ψ=2π
∫

ψ=0

rjdθaθ = 2πrj(A · aθ). (11)

Since by definition Mij = Φj/Ii, where Mij is the
mutual inductance between the ith and jth filament,
then from (10) and (11):

Mij =
2µ0rirj

√

d2
ij + (ri − rj)2

(

α=π/2
∫

α=0

dα
√

cos2 α + k2
c sin2 α

− 2

α=π/2
∫

α=0

sin2 α.dα
√

cos2 α + k2
c sin2 α

)

. (12)

The first integral term in (12) is the Legendre elliptic
integral of the first kind, denoted F (φ, k), where
k2 = 1− k2

c . The integral is performed between 0 and
π/2 and is consequently termed the complete elliptic

integral of the first kind. The second integral term is
a linear combination of the complete elliptic integrals
of the first and second kind, denoted D(φ, k). These
elliptic integrals cannot be solved analytically and
must be solved numerically. Press et al [6], as cited
by Novac, present an algorithm for the solution to
the complete elliptic integral of any kind, denoted
cel(kc, p, a, b). Consequently, from equation 12:

Mij =
2µ0rirj

√

d2
ij + (ri − rj)2

×
(

F
(π

2
, k

)

− 2D
(π

2
, k

))

(13)

where according to Press:

F
(π

2
, k

)

= cel(kc, 1, 1, 1),

D
(π

2
, k

)

= cel(kc, 1, 0, 1).
(14)

Due to the similarity in coefficients a computer
code derived from Press was constructed whereby
cel(kc, 1, 1, 1) and cel(kc, 1, 0, 1) could be solved for
simultaneously.

3. Results

Although the above formulation was intended for
use with more complicated structures of non-linear
pitch, it was decided that (13) would be verified by
means of comparison to two simple N -turn inductors
of circular cross-section, namely a simple solenoid
and a pancake coil. These two inductors were chosen
specifically due to the abundance of pocket-book
type inductance calculations to which equation (13)

can be compared. Each turn of the inductor was
approximated as one filament. The EMF V measured
across an inductor comprised of N series connected
filaments is the sum of the EMF due to each filament,
where the EMF across each filament is the sum of the
EMF due to a particular filament’s self and mutual
inductance components. Hence:

V =

i=N
∑

i=1

j=N
∑

j=1

(

Mij
dIj

dt

)

. (15)

However, since current I flows through all filaments:

V =





i=N
∑

i=1

j=N
∑

j=1

Mij





dI

dt
. (16)

The self inductance L of the complete inductor is
therefore:

L =
i=N
∑

i=1

j=N
∑

j=1

Mij . (17)

Note: Mij , where i = j, is simply the self inductance
of the filament, where Mij(i=j) of the ith filament was
calculated using Grover’s equation:

Mij(i=j) = µ0ri ln

(

8ri

rc
− 1.75

)

(18)

where rc, the radius of a filament, was set to 0.4l/N ,
which, for a solenoid of length l, took into account
space between windings for insulation. All units are
SI.

The self inductance of an N -turn solenoid, length l,
radius r, was calculated using Kaufman’s equation [7]:

L = 3.94 × 10−5 r2N2

(9r + 10l)
(19)

where in this case r = ri = rj . Fig. 3 shows a plot of
equations (17) and (19) as a function of the number of
turns N between N = 150 and N = 250, The solenoid
radius and winding pitch were arbitrarily set to 20 mm
and 0.7 mm respectively.

Since the inductance of a solenoid is approximately
proportional to N2/l, and in this particular case N is
proportional to l (since the winding pitch is constant),
L is expected to increase linearly with increased
number of turns. This is as indicated by figure 3 for
both equations (17) and (19).

The second inductor examined was the spiral or
pancake coil. The pancake coil is, as its name suggests,
a flat spiral of wire, wound one turn over the next,
starting at initial radius ra and ending at final radius
rb. The inductance of the pancake coil was again
calculated using Kaufman’s equation:

L = 3.94 × 10−5 (rb + ra)N2

(

16 + 44

(

rb − ra

rb + ra

)) . (20)
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Fig. 3. Self inductance of a simple solenoid calculated
using equations (17) and (19), as a function of number
of turns.

Fig. 4. Self inductance of a pancake coil calculated
using equations (17) and (20), as a function of number
of turns.

Since equation (13) is intended for use with filaments
of varying radial (as well as lateral) spacing, the self-
inductance of a spiral coil was modelled similarly to
the simple solenoid, and compared to equation (20).
Fig. 4 shows a plot of equations (17) and (20) as a
function of the number of turns N between N = 20
and N = 100. Each turn was again approximated by a
single filament. The filament spacing was set to 1 mm,

Table 1. Measurement and calculation of the self
inductance of a conical inductor as a function of the
number of turns.

Number of

turns (N)

Measured

Inductance

(µH)

Calculate

Inductance

(µH)

80 21 20.6

120 63 61.8

160 139 137.8

200 258 259.3

240 437 436.9

280 678 681.3

320 999 1000.3

and the initial radius ra was set to 20 mm.

To further facilitate the verification of the above
method a comparison was made to data collected from
a conical coil, manufactured from 0.4 mm diameter
enamelled copper wire wound over a wooden mandrel.
The conical mandrel, half-angle 150, length 120 mm,
was turned to size on a lathe. A perfect point could
not be formed at the apex of the cone due to the
limited strength of the wood from which the mandrel
was turned. Consequently the radius of the first turn
was restricted to 1.2 mm. The final radius of the cone,
that is the radius of the 320th turn, was ∼ 33.5 mm.
The inductance of the conical coil was measured using
a digital RCL meter at a frequency of 100 Hz, between
80 and 320 turns, at intervals of 40 turns. Table 1
shows the measured and calculated inductance values
as a function of number of turns.

Figure 5 shows a plot of the calculated inductance
as a function of number of turns for the conical
inductor. The measured data points from Table
1 have been included. The maximum discrepancy
between the predicted and measured values is
1.9 %. It is concluded, therefore, that the method
presented for the calculation of the inductance of an
arbitrary circularly symmetric conducting structure is
reasonably accurate and reliable.

Note: The presented method requires an inductor
or inductive structure (such as an MCG) to be
broken down into a number of filaments. In the three
cases considered, each winding was approximated as a
single filament. This was considered acceptable since
the current density through each turn of wire was
assumed to be constant at a frequency as low as
100 Hz. However, at higher frequencies where the skin
effect and the consequent non-uniform distribution
of current through the windings is expected, each
winding may be divided into a number of uniform
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Fig. 5. Calculated self inductance of a conical inductor
as a function of number of turns, measured values
included.

current density filaments. Given the rapidly increasing
speed and power of desktop computers, the number
of filaments into which any given MCG stator turn
or armature segment may be divided is large, while
still maintaining a short code runtime. This technique
has been implemented in MCG simulations where
a correct understanding of high frequency effects is
essential.

4. Conclusions

A method for the calculation of the inductance of a
circularly symmetric coaxial conducting structure has
been presented. The method differs from the numerous
other published methods in the choice of elliptic
integrals and their compatibility with the numeric
solution. This method was developed to assist in the
simulation of a multi-segment variable-pitch helical
magnetocumulative generator.

Manuscript received December 5, 2002

References

[1] Novak B.M., Smith I.R., Enache M.C., and
Stewardson H.R. Simple 2D model for helical
flux-compression generators // Laser and Particle
Beams. – 1997. – V. 15, N 3. – P 379.

[2] Grover F.W. Inductance Calculations. – New
York: Dover. – 1962. – 77 p.

[3] Smythe W.R. Static and Dynamic Electricity.
– McGraw-Hill. – 1968. – 290 p.

[4] Knoepfel H.E. Magnetic Fields. – Wiley & Sons.
– 2000. – 123 p.

[5] Altgilbers L.L., Brown M.D.J., Grishnaev I.,
Novac B.M., Smith I.R., Tkatch Yu.V, Tkatch
Ya.Yu. Magnetocumulative Generators. –
Springer. – 2000. – 254 p.

[6] Press W.H., Flannery B.P., Teukolsky, Vetterling
W.T. Numerical Recipes in Pascal. – Cambridge
University Press. – 1989. – 205 p.

[7] Kaufman M., Seidman A. Handbook for
Electronics Engineering Technicians. – McGraw-
Hill. – 1984. – P. 3–3.

396 "Электромагнитные Явления", Т.3, №3 (11), 2003 г.


