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Preface

 

This book is mainly intended for designers and users of magnetic components
in power electronics. It can also be used for didactical purposes. Magnetic
components such as inductors and transformers constitute together with the
control and the semiconductor components, the main parts in the design of
power electronic converters. Some experience teaches that the design of the
magnetic parts is still often done by trial and error. This can be explained by
a (too) long working-in time for designing inductors and transformers. The
design has many aspects, such as the magnetic core and winding, eddy cur-
rents, insulation, thermal design, parasitic effects, and measurements. A lot of
literature exists concerning those subjects, but the information is spread over
many articles and methods. This book is mainly focused on classical methods
and uses numerical tools such as finite element methods in the background.

We try to give some overview of the basics and technological aspects of the
design. In the different chapters we also describe analytical approximations
based on known analytical solutions, but tuned by finite elements. In most
of the cases, a sufficient accuracy can be obtained and the results are obtained
almost instantaneously, even for graphics using many calculation points. A
fast approximation method is useful as a first step in the design stage, whereas
numerical tools such as finite elements are good in analysis. Specific books
on finite elements exist and the description will not be repeated here.

Some basic introduction on magnetic principles and materials are given
in Chapter 1.

Today power electronics use quite a high switching frequency.

 

 

 

Simple rules
of thumb such as that “the eddy copper current losses are always negligible
when the diameter of the wire is smaller than the penetration depth” are not
true. However, it is clear that the main cause of the eddy current losses is
caused by the presence of high frequency transverse magnetic field compo-
nents. This is the base of the fast design method in Chapter 2. The method
is further improved using some corrections for other effects and is embedded
in a decision flow chart of a design procedure. More insight and better
accuracy is provided in the other chapters. We invite the readers to let them
guide by the contents of the book to their specific subjects of interest.

The chapters in the book are organized in a quite independent way with
respective local appendices and references. The general appendices at the
end provide information that is not linked to a specific chapter and can be
used independently. 

This work can be seen as complementary information to books on power
electronic circuits. Different levels of complexity are proposed depending on
the available time, the desired accuracy, and the mathematical level of the
designer.
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Nomenclature

 

The symbols do mainly follow the standard ISO 31-11
Concerning upper and lower cases we try to keep the following conventions:
Voltage and current:

Time dependent values of voltage and current are denoted by low
cases (

 

v, i

 

)

 

RMS

 

 values are capitals without index for sinusoidal waveforms.
The index

 

rms

 

 is mentioned explicitly for 

 

RMS

 

 values of non-sinusoidal
waveforms.

Field quantities such as 

 

H

 

 and 

 

B

 

 are always written in capital case, the context
shows what it is e.g. 

 

B

 

p

 

 = is the peak value of the induction 

 

B

 

(

 

t

 

) is the value
depending on time.

 

Matrices and vectors

 

 are written in bold.

 

Variables

 

 are written in italic.
Functions, operators, universal constants are non-italic.
Complex variables are underlined if confusion is possible.
Blanks are used as multiplication.

We did split the nomenclature in variables, subscripts, superscripts, constants
and frequently used abbreviations. The specific combination of variables with
subscripts is defined in the respective chapters at their first appearance.

 

Variables

 

A

 

area [m

 

2

 

]

 

a

 

geometrical dimension [m]

 

B

 

magnetic induction = magnetic flux density [T]

 

b

 

width of the window area, geometrical dimension [m]

 

C

 

coefficient [W/(m

 

2

 

K)]

 

c

 

geometrical dimension [m]

 

D

 

duty ratio []

 

d

 

diameter [m]

 

E

 

electric field [V/m]

 

e

 

dimension [m]

 

F

 

function, factor —

 

f

 

frequency [Hz] = [periods/s]

 

G

 

function —

 

g

 

dimension [m]

 

H

 

magnetic field [A/m]

B̂
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xiv

 

Nomenclature

i

 

instantaneous current [A]

 

I RMS

 

 current (sine wave) [A]

 

k

 

coefficient —

 

k

 

thermal conductivity [W/m 

 

°

 

C]

 

L

 

Inductance [H]

 

L

 

characteristic distance, Chapter 6 [m]

 

l

 

length [m]

 

M

 

total numbers of layers —

 

N

 

number of wires —

 

m

 

layer number —

 

n

 

conductor number in a layer —

 

P

 

power [W]

 

p

 

primary

 

p

 

pressure, Chapter 6 [Pa]

 

q

 

tuning parameter; heat transfer rate [W]; —

 

R

 

resistance; (with index 

 

θ

 

: thermal) [

 

Ω

 

]:[K/W] 

 

=

 

 [

 

°

 

C; W]

 

r

 

radius [m]

 

S

 

surface [m

 

2

 

]

 

s

 

secondary; distance (with index) —; [m]
s Laplace operator —; [m]

 

T

 

period; absolute temperature (with index) [s]; [K]

 

t

 

time; thickness (with index) [s]; [m]

 

V

 

voltage [V]

 

v

 

instantaneous value of the voltage [V]

 

V RMS

 

 value of the voltage (sine wave) [V]

 

W

 

area; energy [m

 

2

 

]; [J]

 

w

 

winding width [m]

 

X

 

reactance [

 

Ω

 

]

 

x

 

horizontal distance to origin [m]

 

Y

 

admittance [

 

Ω

 

−

 

1

 

] 

 

=

 

 [S]

 

y

 

vertical distance to origin [m]

 

z

 

complex distance to origin [m]

 

Z

 

Impedance [

 

Ω

 

]

 

α

 

(Alpha) frequency exponent; angle (with index) —; [rad]

 

β

 

(Beta) induction exponent —

 

γ

 

(Gamma) exponent —

 

δ

 

(Delta) penetration depth [m]

 

ε

 

(Epsilon) function; —

 

ε

 

relative number of turns (Chapter 10) —

 

ε

 

emissivity (Chapter 6) —

 

ζ

 

(Zeta) parameter —

 

η

 

(Eta) horizontal filling factor —

 

θ

 

(Theta) angle; temperature [rad][

 

°

 

C]

 

κ

 

(Kappa) parameter for the field factor —

 

λ

 

(Lambda) vertical filling factor —

 

µ

 

(Mu) permeability —
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Nomenclature

 

xv

 

ν

 

(Nu) kinematic viscosity [m

 

2

 

/s]

 

ξ

 

(Xi) relative height —

 

ρ

 

(Rho) resistivity [

 

Ω

 

m]

 

σ

 

(Sigma) conductivity [

 

Ω

 

−

 

1

 

m

 

−

 

1

 

] 

 

=

 

 [S/m]

 

τ

 

(Tau) time constant [s]

 

Φ

 

(Phi) main flux [Wb] 

 

=

 

 [Tm

 

−

 

2

 

]

 

ϕ

 

(Phi) angle [rad]

 

χ

 

(Chi) function (influence of penetration 
depth on dipole effect) —

 

Ψ

 

(Psi) flux linkage [V s] 

 

=

 

 [T m

 

−

 

2

 

]

 

ψ

 

(Psi) angle [rad]

 

ω

 

(Omega)=2

 

π

 

f

 

[Hz] 

 

=

 

 [rad/s]

 

Subscripts

 

1 2 3

 

number or harmonic

 

A

 

around (

 

=

 

 local)

 

a

 

ambient

 

av

 

average

 

bot

 

bottom (of conductor)
c core; curie (temperature),
c wide frequency (combined low-high), 

for coefficients
c conductor (for length)
cd conduction heat transfer
cv convection heat transfer
cu copper
d differential
D Dowell
cu copper
e effective
F from field pattern
f finished (area)
ff filling factor
fe iron, ferrite
g gap, graph
h thermal
h horizontal
hf high frequency
hy hyperbolic (field type)
hs hot spot
i, j,k,l,m,n elements of a vector
i induced
in internal
LF low frequency
m middle
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xvi Nomenclature

max maximum
min minimum
N nominal
o no-load; outer (diameter)
own own (of the conductor itself)
p practical, pressure, parallel
R radiation heat transfer
r relative
rad radiation
ref reference
s saturation (inductance), series
sf stacking factor
sin sine wave
T transverse, temperature
t thickness
top top (top of conductor)
tip tip (top or bottom of foil)
tr transverse (field type)
tri triangular wave
v vertical
w wall, surface, winding
WFM wide frequency method
x in the x-direction
y in the y-direction
0 absolute (permeability), characteristic (impedance)
θ thermal
∑ Sum
σ leakage

Superscripts

^ peak
* complex conjugate

Constants

e = 2.71828 —
ε0 = 8.842 × 10−12 [F/m]
µ0 = 4π10−7, absolute permeability [H/m]
π = 3.14159 —
j = , imaginary constant —

Frequently Used Abbreviations

EMC Electro Magnetic Compatibility
EMF Electro Motive Force
RMS Root Mean Square
MLT Mean Length of Turn

−1
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1
Fundamentals of Magnetic Theory

This chapter gives a brief review of the basic laws, quantities, and units of
magnetic theory. Magnetic circuits are included together with some examples.
The analogy between electric and magnetic circuits and quantities is pre-
sented. Hysteresis and basic properties of ferromagnetic materials are also
discussed. The models of the ideal transformers and inductors are shown.

1.1 Basic Laws of Magnetic Theory

The experimental laws of electromagnetic theory are summed up by the Max-
well equations. In 1865, after becoming acquainted with the experimental results
of his fellow Englishman Faraday, Maxwell gave the electromagnetic theory a
complete mathematical form. We will present specific parts of the Maxwell
equations: Ampere’s law, Faraday’s law, and Gauss’s law, which together with
Lenz’s law are the basis of magnetic circuit analysis. These are the laws that are
useful in the design of magnetic components for power electronics.

1.1.1 Ampere’s Law and Magnetomotive Force

When an electrical conductor carries current, a magnetic field is induced
around the conductor, as shown in Fig. 1.1. The induced magnetic field is
characterized by its magnetic field intensity H. The direction of the magnetic
field intensity can be found by the so-called thumb rule, according to which,
if the conductor is held with the right hand and the thumb indicates the
current, the fingers indicate the direction of the magnetic field.

The magnetic field intensity H is defined by Ampere’s law. According to
Ampere’s law the integral of H [A/m] around a closed path is equal to the
total current passing through the interior of the path (note that a line above
a quantity denotes that it is a vector):

(1.1)H l J S⋅ = ⋅∫∫ d d
Sl
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2 Inductors and Transformers for Power Electronics

where
H is the field intensity vector [A/m]
dl is a vector length element pointing in the direction of the path l [m]
J is the electrical current density vector [A/m2]
dS is a vector area having direction normal to the surface [m2]
l is the length of the circumference of the contour [m]
S is the surface of the contour [m2]

If the currents are carried by wires in a coil with N turns, then

(1.2)

where
i is the current in the coil
N is the number of the turns

The terms  and Ni in Equation (1.2) are equivalent to a source called
magnetomotive force (MMF), which is usually denoted by the symbol F [A ⋅ turns].
Note that the number of turns N does not have dimension, but the value Ni
is an actual MMF and not a current. According to Equation (1.1) the net MMF
around a closed loop with length lc is equal to the total current enclosed by
the loop. Applying Ampere’s law to Fig. 1.1 we obtain

(1.3)

In Fig. 1.1 the reference directions of the current and the H field vector are
shown. The magnetic field intensity H leads to a resulting magnetic flux density
B given by

(1.4)

FIGURE 1.1
Illustration of Ampere’s law. The MMF
around a closed loop is equal to the sum of
the positive and negative currents passing
through the interior of the loop.
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area Ac
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Fundamentals of Magnetic Theory 3

where:
m is a specific characteristic of the magnetic material termed permeability
m0 is the permeability of free space, a constant equal to 4π × 10–7 H/m
mr is the relative permeability of the magnetic material

The value of mr for air and electrical conductors (e.g., copper, aluminum)
is 1. For ferromagnetic materials such as iron, nickel, and cobalt the value
of mr is much higher and varies from several hundred to tens of thousands. 

The magnetic flux density B is also called magnetic induction and, for
simplicity, in this book we will use the term induction for this magnetic
quantity. The vector B is the surface density of the magnetic flux. The scalar
value of the total magnetic flux Φ passing through a surface S is given by

(1.5)

If the induction B is uniform and perpendicular to the whole surface area
Ac, then the expression in Equation (1.5) results in 

Φ = BAc (1.6)

We have to mention that the expression given by Equation (1.1) is not
complete; there is a term missing in the right-hand side. The missing term,
which is a current in fact, is called displacement current and was added to the
expression by Maxwell in 1865. The full form of the law is

(1.7)

where
e is the permittivity of the medium
E is the electric field

Maxwell’s correction to Ampere’s law is important mainly for high-
frequency applications with low current density. In magnetic components
for power electronics the expected current density is of the order of at least
J = 106 A/m2. In all normal applications the second term on the right-hand
side of Equation (1.7) (the Maxwell’s correction) is almost surely not more
than 10 A/m2, and can be neglected. Exceptions are the currents in capacitors,
currents caused by so-called parasitic capacitances, and currents in trans-
mission lines. This conclusion allows us to use the simplified expression in
Equation (1.1) in power electronics magnetic circuit analysis, an approach
called the quasi-static approach.

Φ = ⋅∫ B Sd
S

H l J S E S
l S S

t∫ ∫ ∫⋅ = ⋅ + ∂
∂

⋅d d de
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4 Inductors and Transformers for Power Electronics

1.1.2 Faraday’s Law and EMF

A time-changing flux Φ(t) passing through a closed loop (a winding) gen-
erates voltage in the loop. The relationship between the generated voltage v(t)
and the magnetic flux Φ(t) is given by Faraday’s law. According to Faraday’s
law the generated voltage v(t) is

(1.8)

If we denote the intensity of the electric field as E, then Faraday’s law is

(1.9)

Equation (1.9) is valid for the generator convention. For the consumer con-
vention there is no minus sign in it. In this book we use the consumer
convention. The positive senses of B, dl, dS, and the generated electromotive
force (EMF) are shown by arrows in Fig. 1.2.

Faraday’s law is valid in two cases:

• A fixed circuit linked by a time-changing magnetic flux, such as a
transformer

• A moving circuit related to a time-stationary magnetic flux in a way
that produces a time-changing flux passing through the interior of
the circuit.

Rotating electrical machines generate EMF by the latter mechanism.

1.1.3 Lenz’s Law and Gauss’s Law for Magnetic Circuits

Lenz’s law states that the voltage v(t) generated by a fast time-changing
magnetic flux Φ(t) has the direction to drive a current in the closed loop,
which induces a flux that tends to oppose the changes in the applied flux
Φ(t). Figure 1.3 shows an example of Lenz’s law.

FIGURE 1.2
Illustration of Faraday’s law. The voltage v(t)
induced in a closed loop by a time-changing flux
Φ(t) passing the loop (generator convention).

B(t)
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Fundamentals of Magnetic Theory 5

Lenz’s law is useful for understanding the eddy current effects in magnetic
cores as well in the coil conductors. The eddy currents are one of the major
phenomena causing losses in magnetic cores and in coil conductors.

Gauss’s law for magnetic circuits states that for any closed surface S with
arbitrary form the total flux entering the volume defined by S is exactly equal
to the total flux coming out of the volume. This means that the total resulting
flux through the surface is zero:

(1.10)

Gauss’s law for magnetic circuits is analogous to Kirchoff’s current density
law for electrical circuits.

1.2 Magnetic Materials

Magnetic materials can be classified in three general groups according to
their magnetic properties:

• Diamagnetic materials
• Paramagnetic materials
• Ferromagnetic materials

The relative permeability mr of diamagnetic and paramagnetic materials is
close to unity. The values of B and H are linearly related for both materials.
Diamagnetic materials have a value of mr less than unity, which means that they
tend to slightly exclude magnetic field, that is, a magnetic field intensity is
generally smaller in a diamagnetic material than it would be in a paramag-
netic material under the same conditions. The atoms of diamagnetic materials

FIGURE 1.3
Illustration of Lenz’s law in a closed winding. The applied flux Φ(t) induces current i(t), which
generates induced flux Φι(t) that opposes the changes in Φ(t).

Applied flux Φ(t)

Induced flux Φi (t)
Induced current i (t)

Closed loop

B S⋅ =∫ d 0
S
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6 Inductors and Transformers for Power Electronics

do not have permanent magnetic moments. Superconductors are a specific
class of diamagnetic materials. In these materials there are macrocurrents
circulating in the structure. These currents oppose the applied field and as
a result the material excludes all exterior fields. Paramagnetic materials have a
value of mr greater than unity, and they are slightly magnetized by an applied
magnetic field. Ferromagnetic materials are characterized by values of mr much
higher than unity (10–100,000) [1]. For the design of magnetic components
for power electronics, the third type of materials, the ferromagnetic mate-
rials, are of real importance, especially ferromagnetic ceramics and metals.
Comparison of B-H relation of different types of magnetic materials is shown
in Fig. 1.4.

1.2.1 Ferromagnetic Materials

To understand ferromagnetic materials we will start with the magnetic
moments of atoms and the structure of metals. Each electron possesses an
electrical charge and its own magnetic (spin) moment. Besides the spin, each
electron of the atom has another magnetic moment, a so-called orbital
moment, caused by its rotation around the nucleus. In the atoms of many
elements the electrons are arranged in such a way that the net atomic moment
is almost zero. Nevertheless, the atoms of more than one-third of the known
elements possess a magnetic moment. Thus, every single atom of these
elements has a definite magnetic moment as a result of the contributions of
all of its electrons. This magnetic moment can be associated with an atomic
magnet.

In metals there is an interaction between the atoms, which defines the
magnetic properties of the total structure. In most cases the atomic moments
in the crystal are inter-coupled by coupling forces. If the atomic moments
are arranged in parallel with crystal lattice sites, then the moments of the
individual atoms are summed up resulting in the ferromagnetic effect. The
coupling forces in the ferromagnetic materials of technical interest are strong
and at room temperature almost all atomic magnets are parallel-aligned. The
alignment of the atomic magnets does not occur in the entire structure, but
only within certain regions. These regions of alignment of the atomic mag-
nets are called ferromagnetic domains or Weiss domains. In polycrystalline

FIGURE 1.4
Magnetization curves for different types
of magnetic materials. The scale of the
magnetization curve of ferromagnetic ma-
terials is much higher.
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Fundamentals of Magnetic Theory 7

materials they usually have a laminar pattern. The size of the domains varies
considerably, from 0.001 mm3 to 1 mm3. Each domain contains many atoms
and is characterized by an overall magnetic moment, as a result of the
summing of the atomic magnets. The directions of the domain magnetic
moments in an unmagnetized crystal are not completely random among all
available directions. The domain magnetic moments are oriented so as to
minimize the total external field, and in that way to keep the energy content
as low as possible. To follow this rule, adjacent domains have opposite
magnetic moments, as shown in Fig. 1.5. The net external field is reduced
additionally by so-called closure domains, shown in Fig. 1.5.

In every crystal the domains are divided from each other by boundaries,
so-called domain walls or Bloch walls. Across the domain walls the atomic
magnetic moments reverse their direction, as shown in Fig. 1.6

The described mechanism of summing the atomic magnetic moments,
resulting in spontaneous magnetization of the domains in ferromagnetic
materials, is valid until a specific temperature, called the Curie temperature
TC. The value of TC is clearly defined for every material. If the temperature
of the material is increased above that value the thermal oscillations of the
atomic magnets increase significantly and overcome the coupling forces that
maintain the alignment of the atomic magnets in the domains. The final
effect disturbs the alignment of magnetic moments of adjacent atoms. When
a ferromagnetic material is heated above its Curie temperature TC, its mag-
netic properties are completely changed and it behaves like a paramagnetic
material. The permeability of the material drops suddenly to mr ≈ 1, and both
coercivity and remanence become zero (the terms coercivity and remanence
will be discussed in the next section). When the material is cooled, the
alignment of the atomic magnets in the domains will recover, but the mag-
netic moments of the domains will be orientated randomly to each other.

FIGURE 1.5
Orientation of domain magnetic moments in
the structure of unmagnetized iron.

FIGURE 1.6
Domain (Bloch) walls.
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8 Inductors and Transformers for Power Electronics

Thus, the total external field in the structure will be zero. This means that
heating a ferromagnetic material above TC demagnetizes it completely. The
Curie temperatures of various ferromagnetic elements and materials are
shown in Table 1.1.

1.2.2 Magnetization Processes

Each crystal of a ferromagnetic material contains many domains. The shape,
size, and magnetic orientation of these domains depend on the level and
direction of the applied external field.

Let us start with an unmagnetized sample of a ferromagnetic material
(Fig. 1.7, a). Suppose an external magnetic field Hext in a direction parallel of
the domain magnetic moments. With increasing intensity of the applied field
the domain walls begin to move (wall displacement), first slowly, then quickly,
and at the end, in jumps. In the presence of an external field the atomic
magnets are subjected to a torque, which tends to align them with the
direction of the applied field. The magnetic moments that are in the direction
of Hext do not experience a resulting torque. The magnetic moments that are
not aligned with Hext are subjected to a torque tending to rotate them in the
direction of Hext. As a result, the overall domain wall structure becomes
mobile and the domains that are in the direction of the applied external field
Hext increase in size by the movement of the domain walls into the domains
with direction opposite to Hext (Fig. 1.7b). There will be a net magnetic flux
in the sample. The magnetization, which is the average value per unit volume
of all atomic magnets, is increased.

When the applied external field Hext is small, the described domain wall
displacements are reversible. When Hext is strong, nonelastic wall displace-
ments occur, which cause hysteresis in the B-H relation. Above a certain level
of the applied external field, Barkhausen jumps of the domain walls occur
(Fig. 1.7c). By these jumps, a domain having the direction of the applied
field absorbs an adjacent domain with a direction opposite to the applied
field.

TABLE 1.1

Curie Temperatures of Various Ferromagnetic Elements
and Materials

Material Curie temperature, TC, [ºC]

Iron 770
Cobalt 1130
Nickel 358
Gadolinium 16
Terfenol 380–430
Alnico 850
Hard ferrites 400–700
Soft ferrites 125–450
Amorphous materials 350–400
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Fundamentals of Magnetic Theory 9

When the strength of the applied external field Hext is increased further, the
process of domain rotation occurs. The domain magnetic moments rotate in
order to align themselves to the direction of Hext, thus increasing the magne-
tization. The process tends to align the domains more to the direction of the
applied external field in spite of their initial direction along the crystal axes.

The total magnetization process includes domain wall displacements and
jumps and domain rotations. In the case of ferromagnetic metals, at the start
the process is realized mainly by means of the wall displacements and jumps,
and the rotations of the whole domains take place at the end of the process,
doing the final alignment in the preferred directions, defined by the external
field.

For further reading, the magnetization processes are described in detail in
standard texts [1,2].

1.2.3 Hysteresis Loop

Let us suppose a magnetic core with a coil, as shown in Fig. 1.8. At the
beginning, the net magnetic flux B in the core, the current i in the coil, and
the magnetic field intensity H are zero. Increasing the current in the coil
results in applying the field with intensity H according the Ampere’s law

FIGURE 1.7
Magnetization of a ferromagnetic sample: (a) without applied external field; (b) with applied
external field Hext–movement of the domain walls; (c) with applied external field Hext–rotation
of the domain magnetic moments.

FIGURE 1.8
Magnetic core with a coil.
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10 Inductors and Transformers for Power Electronics

(Hlc = Ni, assuming that H is uniform in the core). The first, slowly rising
initial section of the magnetization curve, Fig. 1.9, corresponds to reversible
domain walls displacements. In the second section of the curve, the induction
B increases much more quickly with the increase of H and the curve is steep.
The significant increase of B in the second section is explained with the
Barkhausen jumps of the domain walls, which occur when the applied
external field intensity reaches a necessary level. At the end of this section
the structure of the ferromagnetic material contains mainly domains, which
are almost aligned along the crystal axes nearest to the direction of the
applied external field. The increase of the magnetic flux in the material is
not any more possible by domain wall motion. Further increase in H to larger
values results in non-significant increase in B. and the third section of the
magnetization curve is flat. Because the level of H is already much greater
than in section 1 and 2, it is enough to initiate the domain rotation process.
The contribution of this process to the total magnetic flux is relatively small
and gradually decreases. The material reaches saturation and further
increase in H results in very small increase in B. The maximum value of B:
the saturation induction value Bsat, is practically reached. All the atomic mag-
nets are aligned along the direction of the applied external field H.

Let us observe the process of decreasing H, which means decreasing the
excitation current i in the coil. The first reaction of reducing H is the rotation
of the domains back to their preferred initial directions in parallel with the
crystal axes. Further, some domain walls move back in their initial positions,
but most of the domain walls remain in the positions reached in the wall
displacement process. Thus, the flux B does not return along the same curve,
along which it rises with increasing H. The new curve, observed with reduc-
ing H, lags behind the initial magnetization curve. When H reaches zero,

FIGURE 1.9
Hysteresis loop and magnetization curve of a ferromagnetic material.

B

H
Hc

−Br

−Hc

Br

3

2

1

−Bsat

Bsat

DK4141_C01.fm  Page 10  Tuesday, January 18, 2005  11:10 AM

Copyright 2005 by Taylor & Francis Group, LLCCopyright 2005 by Taylor & Francis Group, LLC



Fundamentals of Magnetic Theory 11

residual flux density or remanence, Br, remains mainly due to non-elastic
wall displacement process. To reduce this residual flux density Br to zero, a
negative (reversed) field H is necessary to be applied. That field should be
sufficient to restore the initial positions of the domain walls. The negative
value of H at which B is reduced to zero is called coercive force or coercivity
of the material Hc. A further increase of H in the opposite direction results
in a process of magnetization as the one described above and B reaches
saturation level −Bsat, (|−Bsat|= Bsat). If the current of the excitation coil is
repeatedly cycling between the two opposite extreme values, corresponding
to the two opposite maximum values of H, the hysteresis loop is traced out,
as shown in Fig. 1.9.

The hysteresis loop gives the relation between the induction B and the flux
intensity H for a closed reversal cycle of magnetization of a ferromagnetic
material. The shape of the hysteresis loop is material dependent. Other
factors that influence the shape are the excitation frequency and the condi-
tions of the treatment of the material. Some typical hysteresis loops are
shown in Fig. 1.10.

The surface of the loop in the B–H plane is the energy loss per volume for
one cycle.

According to their coercive force Hc the ferromagnetic materials are sub-
divided in two general classes:

• Soft magnetic materials
• Hard magnetic materials

Soft magnetic materials are characterized by an ease of change of magnetic
alignment in their structure. This fact results in low coercive force Hc and a
narrow hysteresis loop as shown in Fig. 1.11. Soft magnetic materials are of
main importance for modern electrical engineering and electronics and are
indispensable for many devices and applications. In power electronics most
of the magnetic components use cores made from soft magnetic materials.

FIGURE 1.10
Typical hysteresis loop shapes: (a) round loop, R-type; (b) rectangular loop, Z-type; (c) flat loop,
F-type.

B B B
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12 Inductors and Transformers for Power Electronics

Hard magnetic materials are also called permanent magnets. The initial
alignment of the magnetic moments in hard magnetic materials strongly
resists any influence of an external magnetic field and the coercive force Hc

is much higher than  that of soft magnetic materials. Another important
property of permanent magnets is their high value of the remanence induc-
tion Br. A typical hysteresis loop of a permanent magnet is shown in Fig. 1.11.
The permanent magnets produce flux even without any external field. The
typical applications of permanent magnets are in electrical motors, genera-
tors, sensing devices, and mechanical holding.

The following ranges can be used as approximate criteria for classifying
a material as a soft or hard magnetic material [2]:

Hc < 1000 A/m soft magnetic material
Hc > 10 000 A/m hard magnetic material

Usually, the values of Hc of most of the used in practice materials are
Hc < 400 A/m for soft materials and Hc > 100,000 A/m for hard magnetic
materials.

1.2.4 Permeability

Permeability is an important property of magnetic materials and therefore we
will discuss it in detail. The relative permeability µr introduced in Section 1.1
has several different interpretations depending on the specific conditions of
defining and measuring it. The index r is omitted and only the corresponding
index is used in denoting the different versions: amplitude permeability ma,
initial permeability mi, effective permeability me, incremental permeability min,
reversible permeability mrev, and complex permeability m.

FIGURE 1.11
Typical hysteresis loops: (a) a sof magnet-
ic material, narrow loop, low Hc; (b) a
hard magnetic material, square loop, high
Hc and Br.
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Fundamentals of Magnetic Theory 13

Amplitude permeability ma is the relative permeability under alternating
external field H, which gives the relation between the peak value of the
induction B and the magnetic field H. Its general definition is

(1.11)

where
 is the amplitude induction value averaged out over the core cross-section
 is the amplitude field parallel to the surface of the core

The initial permeability mi is the relative permeability of the magnetic mate-
rial when the applied magnetic field H is very low:

(1.12)

For practical purposes the value obtained at a small field H is standardized
[2], e.g., as the permeability at H = 0.4 A/m (see Fig. 1.12).

If there is an air gap in a closed magnetic circuit, the apparent total per-
meability of the circuit is called effective permeability me, which is much lower
than the permeability of the same core without an air gap. The effective
permeability depends on the initial permeability mi of the magnetic material
and the dimensions of the core and the air gap. For cores with relatively
small (short) air gaps the effective permeability is given by

(1.13)

where
Ag is the cross-sectional area of the air gap
lc is the effective length of the magnetic path

FIGURE 1.12
Definition of µi, µ4, and µ∆ dependent on the
field H.
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14 Inductors and Transformers for Power Electronics

If the air gap is long, some part of the flux passes outside the air gap and
this additional flux results in an increased value of the effective permeability
in comparison with Equation (1.13). Therefore Equation (1.13) is valid only
when fringing permeability is neglected. The effective permeability is also
known as the permeability of an equivalent homogeneous toroidal core.

Incremental permeability m∆ is defined when an alternating magnetic field
HAC is superimposed on a static magnetic field HDC. The hysteresis loop
follows a minor loop path. The incremental permeability is

(1.14)

The limiting value of the incremental permeability min, when the amplitude
of the alternating field excitation HAC is very small, is termed reversible per-
meability mrev (see Fig. 1.13):

(1.15)

1.2.4.1 Complex Permeability

In practice, we never have an ideal inductance when the core is made from
a magnetic material. Under sinusoidal excitation there is a phase shift
between the fundamental components of the induction B and the magnetic
field H. By using a complex quantity for the relative permeability, consisting
of a real part and an imaginary part, these effects are easily presented. The
imaginary part of the complex permeability µ is associated with the losses in
the material. There are two different forms of the complex permeability µ.

• Series representation, according to the series equivalent circuit of
magnetic component shown in Fig. 1.14a:

(1.16)

FIGURE 1.13
Definition of the reversible permeability µrev.
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Fundamentals of Magnetic Theory 15

where
 are the real and imaginary parts of the complex permeability

• Parallel representation, according to the parallel equivalent circuit
shown in Fig. 1.14b):

(1.17)

where
 are the real and imaginary parts of the complex permeability

In Fig. 1.15 the complex permeability is represented by the series terms in
the frequency domain. These values are often given in the data to describe the
behavior of the material at very low induction levels (signal applications). The
graphs of the real and imaginary parts versus frequency are often shown to
describe the frequency behavior of the material. The values of the real and
imaginary parts of the complex permeability in the series presentation for a
given frequency can be calculated form the measured inductance Ls and resis-
tance Rs of the coil of it series equivalent circuit.

The parallel representation has the advantage that the loss associated part
 does not change when an air gap is added in the magnetic circuit. Usually

in applications the induction B is known, which allows the calculation of the
losses directly by using  The parallel representation is more often used
in power applications.

FIGURE 1.14
Series and parallel equivalent circuits.

FIGURE 1.15
Complex permeability presented by the series
terms in the frequency domain.
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16 Inductors and Transformers for Power Electronics

Depending on the application and purpose, the series or parallel presen-
tation may be used. The following expressions give the relation between the
series and parallel presentation parts of the complex permeability:

(1.18)

(1.19)

In Equations (1.18) (1.19) δ is the loss angle, which is also the phase lag of
the induction B with respect to the applied magnetic field H. The tangent of
the loss angle δ is given by the expression

(1.20)

The quantity tan δ is also the ratio of the equivalent series resistance of a
coil (neglecting copper resistance) to its reactance, which is the reciprocal
value of quality factor of the inductance: 

(1.21)

The complex permeability is mainly used in signal electronics and for low
induction levels and is less often used in power electronics. In power elec-
tronics the magnetic materials have a nonlinear frequency behavior. We
would like to warn the reader that if the ferrite losses at high induction levels
are estimated by m’ and m” values, which are relevant at low induction levels,
then the losses can be severely underestimated. The reason is that the losses
in the ferrites increase more than the square of the induction B.

1.2.4.2 Hysteresis Material Constant

The losses of some ferrite grades are described using the hysteresis constant
hB, which is defined at low induction levels. The hysteresis constant hB is
defined by the following expression [7]:

(1.22)

where
 is the amplitude of the induction B

me is the effective permeability

The hysteresis losses increase when the induction in a core increases. The
contribution of the hysteresis losses to the total losses can be estimated by
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Fundamentals of Magnetic Theory 17

means of the results of two measurements, usually at the induction levels
1.5 mT and 3 mT [4]. By these measurements the hysteresis constant hB is
found from

(1.23)

and then it is used to find dh by Equation (1.22).
The consequence of this behavior is that at low B values the losses tent to

increase with B2, whereas at large B values the dependence is close to B3.

1.3 Magnetic Circuits

1.3.1 Basic Laws for Magnetic Circuits

According to Ampere’s law, the sum of the MMF around a closed magnetic
loop is zero:

(1.24)

This requirement is analogous to the Kirchoff’s voltage law. The MMFdrop

for an element of a magnetic circuit is

MMFdrop = Hl [A ⋅ turns] (1.25)

Substituting H = B/m and B = Φ/Ac results in the following expressions:

(1.26)

(1.27)

In Equation (1.26) the magnetic flux Φ is analogous to current I, and the
quantity ℜ = l/µAc is analogous to resistance R. The quantity ℜ = l/µAc

[A ⋅ turns/Wb] is called reluctance and we will use the symbol ℜ for it. The
quantity 1/ℜ [Wb/A ⋅ turns] is called permeance Λ of the magnetic path (in
soft ferrites data this value is often denoted as AL value).

For a magnetic circuit with an air gap (Fig. 1.16), by splitting the left side
into two terms and assuming that H is almost uniform in both mediums,
the Ampere’s law can be written as

(1.28)

h d
mB

e B
= ∆

∆
tan
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MMF MMF MMFloop source drop,= =∑ ∑∑0
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l
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drop∫ = = ℜ =Φ Φ Φ
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18 Inductors and Transformers for Power Electronics

where
Hc and Hg are the field intensity in the core and in the air gap, respectively
lc is the magnetic path length in core
lg is the length of air gap

Considering Fig. 1.16, the application of Gauss’s law for a closed surface
crossing the core and the air gap and including the total transition surface
between them, gives the expression

(1.29)

which yields

Φc = Φg = Φ (1.30)

Equation (1.28) can be rewritten as

(1.31)

where
Φc is the magnetic flux in the core
Φg is the magnetic flux in the air
ℜc is the reluctance of core path
ℜg is the reluctance of the air gap

Equations (1.29) and (1.30) are valid only for small air gaps. At larger air
gaps, the flux tends to the outside. In contrast to electrical circuits true
“insulation“ is not present, as the relative permeability of air equals 1, which
is nonzero.

FIGURE 1.16
Magnetic circuit with an air gap: (a) physical geometry; (b) equivalent circuit scheme.
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Fundamentals of Magnetic Theory 19

The application of Gauss’s law for a node of a magnetic circuit gives the
result that the algebraic sum of fluxes coming out of the node is equal to
zero, as it is shown in Fig. 1.17:

(1.32)

Equation (1.32) is analogous to Kirchoff’s current law.
For further reading, magnetic circuits and components are presented in a

suitable way for the needs and the applications of power electronics in
textbooks on power electronics [3,4,5]. Electromagnetic concepts and appli-
cations are described in detail in Marshall et al. [6].

1.3.2 Inductance

1.3.2.1 Flux Linkage

First, we will define the term flux linkage, Ψ (flux linked to all turns). The
instantaneous voltage across a coil can be presented as

(1.33)

where R is the ohmic resistance of the coil, i(t) is the coil current and e(t) is
the electromotive force.

From that expression we define the term Ψ(t):

(1.34)

with dimension [Weber] or [V ⋅ s].
We prefer [V ⋅ s], as it reminds that the quantity is a flux linkage and not

a physical flux.

FIGURE 1.17
Application of Gauss’s law to a node of a magnetic circuit.
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20 Inductors and Transformers for Power Electronics

1.3.2.2 Inductance: Definitions

The term inductance can be defined in different ways with respect to the
nonlinearity of the B-H dependence. For simplicity, we do not consider core
losses in this section. Here we explain the different definitions and presenta-
tions of the term inductance.

Chord Inductance or Amplitude Inductance

The slope of the chord in the curve Ψ = Ψ(t) is called chord inductance or
amplitude inductance (see Fig. 1.18a), and is denoted Lc, La, or simply L:

[H] (Henry) or [Ω ⋅ s] (1.35)

Differential Inductance

The (derivative) of the flux linkage Ψ = Ψ (i) is the differential inductance Ld.
This inductance is observed when small signals are superimposed to the coil
current i.

(1.36)

Note that with material having hysteresis losses, see Fig. 1.18b, a minor
loop is observed resulting in a lower small signal inductance, called reversible
inductance:

(1.37)

FIGURE 1.18
Flux linkage Ψ as a function of current i and definitions of Lc, Ld, and Lr.
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Fundamentals of Magnetic Theory 21

Neglecting the losses, the differential inductance equals to the reversible:
Ld = Lr.

Energetic Inductance

The shaded area in Fig. 1.18a represents the stored inductive energy. There-
fore an energetic inductance Lw can be defined as

(1.38)

The relation between the different definitions of inductance for a normal
saturating curve (without hysteresis and with a negative second derivation)
is Ld < Lw < Lc. This energetic definition is useful in converters, such as
inverting choppers, fly-back converters, and Cúk converters, which first store
energy in an inductive component and then deliver it to the load. 

Inductance in a Classical “No-load” Test with Sinusoidal Voltage

In a classical “no-load” test an almost sinusoidal voltage or EMF is used.
The resulting measured inductance is

(1.39)

where Vrms and Irms are the measured RMS values. The current is non-
sinusoidal.

Inductance in a Classical “No-load” Test with Sinusoidal Current

The same measurement can be done feeding with a sinusoidal current. The
voltage is non-sinusoidal. Then the measured inductance is

(1.40)

Close to saturation level of a core, one can expect the following relations:
Ld < Lv < Li < Lc.

1.3.2.3 Inductance: Additional Considerations

The average flux Φ for one turn is obtained by dividing the flux linkage Ψ
by the number of turns N:

[Weber/turn] (1.41)
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22 Inductors and Transformers for Power Electronics

The average flux is equal to the physical flux of the core only when the
leakage flux is neglected.

1) The average flux of one turn can be compared to the total MMF:
MMF = Ni [A ⋅ turns]. That flux can be presented in a diagram,
similar to Fig 1.19. Then the slope of the chord is called permeance
Λ.  It has also different possible definitions as the inductance (given
above). In ferrite data sheets the permeance is called the inductance
factor, AL. The unit is [H/turn2], which has the dimension Henry [H].
Using the term AL, the inductance L can be expressed as

, (1.42)

The quantity  represents the total reluctance [turn2/H] of the magnetic
circuit. It can be presented as the sum of the reluctances of the total magnetic
path (core reluctances and air gap reluctances).

2) Depending on the application, the so-called linearity limit or satura-
tion point can be defined. Such a practical limit in power electronics
is the point at which the differential inductance Ld is reduced to a
half of its maximum value due to saturation. For example, in a design
of an L-C low-pass filter at that point the voltage ripples at the output
are doubled and so does an open-loop gain! In AC sinusoidal voltage
excitation the current waveform is quite deviating from a sine wave
when the peak current reaches the saturation point (it gets closer to
a triangle).

1.3.2.4 Self-inductance and Mutual Inductance

The self-inductance L relates the flux linkage produced by a coil to the current
in that coil:

(1.43)

FIGURE 1.19
A two-winding transformer, physical
geometry.
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where
Ψ is the effective flux linkage
Φ is the physical magnetic flux linking the coil

 is the reluctance of the magnetic circuit
 is the permeance of the magnetic circuit

The magnetic coupling between the windings of a magnetic device is
expressed by mutual inductance M. The mutual inductance is defined by the
following relation:

(1.44)

where
N1 is the turn number of the primary winding
i1 is the primary winding current
Φ12 is the magnetic flux linking the primary winding as a result of the current 

in the secondary winding
N2 is the turn number of the secondary winding
i2 is the secondary winding current
Φ21 is the magnetic flux linking the secondary winding as a result of the 

current in the primary winding

1.3.3 Transformer Models

Consider the two-winding transformer shown in Fig. 1.19. The core reluc-
tance is

(1.45)

where
le is the mean effective magnetic path length
Ae is the effective core cross sectional area
µ is the permeability of the core material

There are two windings in the transformer, and applying the Ampere’s law
yields

(1.46)

Substituting  we obtain

(1.47)
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24 Inductors and Transformers for Power Electronics

1.3.3.1 Ideal Transformer

In the ideal transformer the core reluctance is zero  and the resistances of
the windings are neglected. Thus, the core MMF is also zero and Equation (1.47)
becomes

(1.48)

Applying the Faraday’s law to an ideal transformer, we obtain

, , , (1.49)

where Φc is the core flux. Eliminating Φc yields:

(1.50)

For the ideal transformer shown in Fig. 1.20, Equations (1.47) and (1.49)
can be rewritten as

, (1.51)

Thus, the ideal transformer is a lossless zero-reluctance device that acts as
a voltage ratio changer. The power toward a transformer is set positive,
which explains the convention in Fig. 1.20. There are three classifications of
transformer, depending on the relative voltage at which power is received
and delivered:

1. When a transformer receives power at a low-voltage winding and
delivers power to a high-voltage winding, the transformer is called
step-up transformer.

2. When a transformer receives power at a high-voltage winding and
delivers power to a low-voltage winding, the transformer is called
step-down transformer.

3. When the turn number of the windings is the same, the transformer
is called one-to-one transformer.

FIGURE 1.20
An ideal transformer, equivalent scheme.
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1.3.3.2 Practical Transformer

In a practical transformer the core reluctance is nonzero. Then we can write

(1.52)

and substituting this expression for Φ in e1 = N1 we have:

(1.53)

In Equation (1.53) we can distinguish two terms. The term Lm =  that is
equivalent to inductance is called magnetizing inductance, referred to the pri-
mary winding. The term im = i1 + i2  is called magnetizing current, also referred
to the primary winding.

In a real transformer there is always some flux that links only one winding,
but not the other winding and it is called leakage flux (see Fig. 1.21). Let us
denote by Φs1 the leakage flux for the primary winding and by Φs2 the
leakage flux for the secondary winding The leakage flux usually leaks
through the air. This flux leads to so called leakage inductances Ls 1 and Ls 2.
Hence:

(1.54)

where
Ls1 is the primary leakage inductance
Ls2 is the secondary leakage inductance

FIGURE 1.21
Magnetizing and leakage fields in a transformer, p: primary winding, s: secondary winding.
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26 Inductors and Transformers for Power Electronics

The leakage inductances are in series with the windings. In Fig. 1.22 we
show the transformer model including magnetizing inductance Lm and pri-
mary and secondary leakage inductances Ls 1 and Ls 2. We can write

(1.55)

(1.56)

where
L1 is the primary self-inductance inductance
L2 is the secondary self-inductance inductance
Lm1 is the magnetizing inductance placed in the primary side
Lm2 is the magnetizing inductance placed in the secondary side

The quantities L1 and L2 are called the primary and secondary self-inductances
of the transformer.

Another equivalent transformer scheme is shown in Fig. 1.23, where  is
the magnetizing permeance. We can write

(1.57)

(1.58)

(1.59)

The following expressions relate the magnetizing and mutual inductances
in a transformer:

(1.60)

(1.61)

FIGURE 1.22
A two-winding transformer model including magnetizing inductance Lm and primary and
secondary leakage inductances Lσ 1 and Lσ 2.
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Using the self- and mutual inductances, the equations for the primary and
secondary winding voltages are

(1.62)

(1.63)

Note that L1, L2, Lm1, Lm2, and Λm are always positive. The terms N1 and N2

can be positive or negative depending on the winding direction. The mutual
inductance M can be also negative or positive in that aspect.

We can also define the coupling coefficient k:

(1.64)

The coupling coefficient k is in the range  and it represents the
degree of magnetic coupling between the primary and the secondary wind-
ings. If a transformer is perfectly coupled, then the leakage inductances Lσ1

and Lσ 2 are zero. Then the coupling coefficient is zero. Usually the low-
voltage transformer constructions can obtain a coupling coefficient of 0.99.
In power electronics not always a high value of k is the target of the design.
Note that k decreases when the core saturates. In many converter circuits
the leakage inductances are used to obtain the desired voltage and current
waveforms, especially in the resonant circuits.

The inductance L1 can be measured in a no-load condition test, fed at the
primary. The inductance Lσ1 + Lσ2(N1/N2)2 can be measured in a short-circuit
test at the primary.

More information can be found in Chapter 11.

1.3.4 Magnetic and Electrical Analogy

The already mentioned analogy between magnetic and DC electrical quan-
tities and circuits is summarized in Table 1.2.

FIGURE 1.23
T-scheme transformer model with magnetizing permeance.
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28 Inductors and Transformers for Power Electronics

The analogy between the magnetic and electrical quantities and circuits is
off course, not complete. There are a few differences:

• The relationship between B and H in soft magnetic materials, which
is usually non-linear.

• In the magnetic circuits with air gaps there is fringing flux changing
the total reluctance of the circuit, but in electrical circuits there is no
such effect (exception is the electrostatic equivalent). The electrical
isolation conductivity is on the order of 1020 times lower than the
conductivity of metals and all current flows in wires. The air per-
meance mo is only about 103 times less than the permeance of the
magnetic materials. Thus, leakage flux does not have an analogue
in electrical circuits.

• Mutual inductance and mutual coupling also do not have an ana-
logue in electrical circuits.

• In wires carrying current there is I2R loss, but no Φ2ℜ loss exists in
magnetic circuits.
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2
Fast Design Approach Including
Eddy Current Losses

In today’s power electronics, the active switches can withstand high switch-
ing frequencies. This means that the major part of the magnetic component
of power electronics is subjected to eddy current losses. In this chapter we
propose a fast design method that includes eddy current losses—neglecting
eddy currents may result in significant errors. The word fast means that a
decision tree is given to guide the designer and that no time-consuming
mathematical tools are used. The fast design uses methods that do not
achieve the highest accuracy, e.g., the proposed thermal approach. However,
the provided accuracy is sufficient for most power electronics applications.
Moreover, the same design flowchart can also be used with more precise
methods (e.g., a more accurate thermal model or a transverse field compu-
tation by finite elements).

The fast design approach is applicable to both transformers and inductors
for a wide range of designs using round wires. The approach simplifies the
design, makes it more systematic, and categorizes it into two major cases:
saturated thermally limited design and non-saturated thermally limited
design.  The design procedure is illustrated with two fully calculated design
examples and several other examples that concern specific parts of the design.

2.1 Fast Design Approach

The method includes simplified assumptions and omits certain details in the
design, but the accuracy is usually sufficient for first experiments or as a fast
calculation before a more precise approach.

In the fast design approach presented here the following simplifications
are made:

• the leakage inductance of transformers is neglected for the flux
calculation

• the field pattern is only approximated
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32 Inductors and Transformers for Power Electronics

• the method is limited to round wires
• the method looses accuracy when partially filled layers are used
• for inductors, only gaps in the center leg are considered
• the insulation distances and clearances are considered but not in details

For more details and limits concerning coil windings, refer to Chapter 4
and to standards, e.g., IEC950. The standards are not very restrictive, but
the limits, such as creepage distances, can greatly influence the size of the
transformers and, thus, the total design procedure.

The design is done step by step and begins with finding the design limits
and defining the design category, as shown in Fig. 2.1.

1. Design limits

For the circuit in which the component is used, a number of parameters and
requirements can usually be calculated:

• RMS current of the windings
• Peak current of the windings
• Peak to peak flux linkage
• Peak flux linkage
• Insulation requirements (clearance, creepage distance) (for detailed

information concerning these insulation distances, refer to Chapter 4)

2. Category choice

The second step is choosing one of the three possible general cases (approaches).

FIGURE 2.1
General flowchart of the fast design approach.
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Fast Design Approach Including Eddy Current Losses 33

(A) Saturated thermally limited design
(B) Non-saturated thermally limited design
(C) Signal quality limited design

As no design results are known up to this point, the category choice is
made on experience using the input design parameters. If the initial choice
is not the right one, it will be noticed in the next design steps and then the
right choice will be made.

Here we give some practical examples and recommendations on how to
choose the design category:

• Magnetic components for high frequency AC applications correspond
to case (A).

• Magnetic components for applications with a high DC component
or low frequency applications correspond to case (B). Examples: Pulse
applications, DC-chokes, applications with small duty cycles.

• Signal quality limited design includes components used in audio,
telephone, or radio frequency applications, for measuring in power
electronics systems (voltage and current transformers), of accurate
inductors, and for applications with a high Q-factor.

2.1.1 Non-Saturated Thermal Limited Design

A compromise between core losses and copper losses has to be considered
for the total heat dissipation. To realize this, we present a design proce-
dure consisting of several steps. The flowchart of the design is shown in
Fig. 2.2.

Step 1) Choose a Core Material and Size

To choose the core size we use a simple scaling law based on natural con-
vection in air, which compares the total volt-amp rating of the component
and a core characteristic size parameter ach:

⇒ (2.1)

where
A is a coefficient; for ferrites, A = (5–25) × 106 if ach is in [m] (A is in the range 

A = 5–25 if ach is in [cm]), see the remarks below
ach is the largest dimension of the component, used as a scaling parameter
g is an exponent, characterizing the material and shape of the core, γ  = 3
Stot is the total volt-amp rating of the component

S V I A atot rms rms
allwindings

ch= =∑ γ a
S
Ach
tot= 





1/γ
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34 Inductors and Transformers for Power Electronics

FIGURE 2.2
Flowchart of the fast magnetic component design procedure.
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Fast Design Approach Including Eddy Current Losses 35

Equation (2.1) is used to compare the ability of the different core sizes of
one shape to meet the allowed volt-amp rating of the component. From
Equation (2.1) we find ach. As a component characteristic size parameter
(scaling parameter) ach we use the largest dimension of a ferrite core (for
instance, for an EE42 core, ach = 0.042 m) or the diameter of a ring core.

In Fig. 2.3 we show the possible ranges of the scaling parameter ach, upper
value ach,u (A = 5 × 106) and lower value ach,l (A = 25 × 106),  as a function of
the total V–A rating S of the component. Figure 2.3 can be used as a fast
approach for obtaining the value of ach.

Depending on the core material and on induction B, the coefficient g varies
approximately in the range 2.8 < γ < 3.2. The derivation of the value of g is
presented in detail in Appendix A.2.1 at the end of this chapter. For simplicity,
we use the value γ = 3.

REMARKS CONCERNING THE EQUATION (2.1)

1. An incorrect choice in step 1 is detected later in the next steps. This
may lead to a smaller or a larger core size.

2. The low values of A are applicable for low-frequency design (20–30 kHz)
and low-frequency materials or presence of high DC current com-
ponents. The high values A = (20 − 25) × 106 are applicable for high-
frequency design (100–500 kHz) and high-frequency materials in
applications with good thermal conditions.

3. Insulation requirements tend to decrease the coefficient A.
4. The coefficient A is lower for high-current applications because of

eddy current effects.

FIGURE 2.3
Core size estimation for a non-saturated thermally limited ferrite core design: upper ach,u (A =
5 × 106) and low ach,l (A = 25 × 106) values of the scaling parameter ach as a function of the total
V-A rating Stot of the component.
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36 Inductors and Transformers for Power Electronics

5. The final accuracy of the design is achieved in the next steps of the
design procedure.

6. For A = 10 × 106, an easy order of magnitude to remember is the
following: 1 cm of ach corresponds to 10 W. The line for A = 10 × 106

is the diagonal in Fig. 2.3.

Examples
Note: In the examples we use A = 15 × 106, a value suitable for the average
design.

1. Choose a core for a ferrite transformer with the following parameters:
input voltage, RMS value: Vin = 100 V
input current, RMS value: Iin = 5 A
output voltage, RMS value: Vout = 500 V
RMS secondary current: Iout = 1 A
Using the equation (2.1) we have Vrms Irms = 1000, 
ach =  = 0.0405 m. We choose EE42/21/15 ferrite core with largest
dimension ach,data = 0.042 m. This core can handle total volt-amps

equal to 
2. A ferrite ring core T87/54/14 with ach,data = 0.087 m can handle total

volt-amps equal to 
If the core is used as a transformer with equal primary and secondary
volt-amps, the primary volt-amps are 4938.5 VA.

3. A ferrite pot core P30/19 with ach,data = 0.030 m can handle total volt-
amps equal to .

Step 2) Calculate the Heat Dissipation Capability Ph

In this step, a rough estimation of the heat dissipation capability of the chosen
core is made. The rule of thumb used is

The heat dissipation capability of a component can be approximated as
the product of the two largest dimensions of that component in [m] and
a constant 2500 W/m.

The total heat capability Ph is then

(2.2)

where
kA is a coefficient, a typical value is 2500 W/m2

a and b are the two largest dimensions of the component in [m]

The expression in Equation (2.2) is not precise, but it gives a rough esti-
mation of the allowed heat dissipation and it can be used in the fast design

Σ
all windings

1000
15 106×








A ach
g = × × =15 10 0 042 11116 3.  VA

A ach
γ = × × =15 10 0 087 98776 3. VA

A ach
γ = × × =15 10 0 03 4056 3. VA

P k abh A=
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Fast Design Approach Including Eddy Current Losses 37

approach. We do not use the full surface of the component as that requires a
lot of detailed calculations, which are not so relevant. A much more precise
approach is given in Chapter 7 Thermal Considerations.

REMARK
For 50-Hz iron transformers, Equation (2.2) with kA = 2500 W/m2 is a good
approximation up to 40°C ambient temperature and 115°C hot spot tempera-
ture. For ferrite transformers, the dissipation is often quite well distributed
between ferrite and copper, so that a temperature rise of 50°C can be allowed
for kA = 2500 W/m2.

Examples

1. For an EE42/15 ferrite core transformer, where both major dimensions
are 0.042 m, the allowed dissipation is Ph = 2500 × 0.042 × 0.042 = 4.41 W.

2. For a P30/19 ferrite core transformer the two largest dimensions are
both 0.030 m and the result is 

3. For a single phase transformer, scrapless EI type laminated iron of
0.12 m, the two major dimensions 0.12 m and 0.10 m, the allowed
total losses are 

Step 3) Copper Loss/Core Loss Ratio

We use the simplified assumption that the maximum efficiency, which means
minimum losses at a given input or output power, is close to the point where
the copper losses Pcu equal the core losses Pfe. This assumption allows us to
find both copper and core losses:

(2.3)

(2.4)

where
Ph are total allowed losses found by Equation (2.2) (the dissipation capa-

bility of the component)
Ph,cu are the allowed copper losses
Ph,fe are the allowed core losses

The simple assumption presented by Equation (2.4) is true when

• the magnetic material is not saturated and the core losses are pro-
portional to the square of the induction (as a first approximation)

• eddy current losses are low

Ph = × × =2500 0 03 0 03 2 25. . .  W.

Ph = × × =2500 0 12 0 1 30. .  W.

P P Ph h cu h fe= +, ,

P P
P

h cu h fe
h

, ,= =
2
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38 Inductors and Transformers for Power Electronics

Detailed study of the optimal copper loss/core loss ratio is presented in
Chapter 10.

Step 4) Calculate the Specific Core Losses Pfe,sp

By the next two steps, 4) and 5), we find the peak induction corresponding
to the specific core losses in the core. The specific core losses Pfe,sp can be
calculated as follows:

• For iron-based cores, the specific losses are given per a unit weight:

(2.5)

where
Vc is the volume of the chosen core
sm is the specific mass of the material
kff is the filling factor of the chosen core (typically 0.95 for classic magnet 

iron)

• For ferrites the filling factor kff is 1. The specific losses are given per
volume:

(2.6)

where
Vc is the volume of the chosen core

Step 5) Find the Peak Induction Bp,g from Graphical Data

In data sheets of iron and ferrite cores, graphical dependencies of the specific
losses are usually shown versus peak induction with frequency as a parameter.
From those graphs, for a given frequency one can find the peak induction
Bp,g corresponding to the specific losses Pfe,sp under sinusoidal excitation.
Multiplying this induction by 2 gives us the allowed peak-to-peak induction.
For more details concerning core losses, please refer to Chapter 3. For sym-
metrical waveforms we can write

(2.7)

where
Bpp is peak-to-peak induction

It is important to check whether the graphs give typical or maximum
losses, as material characteristics may vary depending on samples. We
observed that data of material grades can change throughout years.

P
P

V s kfe sp w
fe

c m ff
, , =

P
P

Vfe sp v
fe

c
, , =

B Bpp p g= 2 ,
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Fast Design Approach Including Eddy Current Losses 39

Step 6) Check if the Peak Induction Bp is Higher Than
the Saturation Value Bsat

Symmetrical Waveforms

In symmetrical waveforms, see Fig. 2.4,a (kw = 1/2, kw = Bp/Bpp), the peak induction
Bp is half of the peak-to-peak induction Bpp. Thus, we have Bp = Bp,g (Bp,g is
found in the step 5), and for the check we can use Bp,g. We compare Bp,g with
the saturation level Bsat for the corresponding material:

(2.8)

Most ferrites intended for energy conversion saturate at about 0.35 T (at
100°C). For laminated iron cores the saturation level is typically 1.5–1.7 T.
The new soft magnetic materials, such as nanocrystalline iron, saturate at
about 1.2 to 1.5 T. However, attention should be paid since the finished
nanocrystaline core filling factor kff is about kff = 0.5, which results in a two
times higher induction in the material than in the cross-sectional area of the
core. For more detailed information, refer to Chapter 3.

Asymmetrical Waveforms

In the case of asymmetrical waveforms (with DC flux, or even harmonics), the
actual waveform has to be considered to find the peak induction Bp. Then
we have

(2.9)

FIGURE 2.4
Typical wave forms and corresponding peak induction Bp.
a) kw = 0.5; b) kw > 1; c) kw = 1; d) kw = 1.
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40 Inductors and Transformers for Power Electronics

where 
the coefficient kw depends on the specific wave forms of the application

Figure 2.4 shows some typical forms and corresponding peak induction
Bp. The value of Bp has to be compared to the saturation level value Bsat:

(2.10)

If the peak induction is higher than the saturation induction, then we have
a saturation limited design case and the design continues with the corre-
sponding procedure, described in the next section.

Step 7) Calculate the Winding Turns Ni

Let us consider an arbitrary voltage waveform v(t) across a winding, as
illustrated in Fig. 2.5. The integral of the voltage v(t) during its positive half
period, which is the area S shown in Fig. 2.5, is equal to the peak-to-peak
flux linkage Ψpp:

(2.11)

where
Ψpp is the peak-to-peak magnetic flux linkage, [Wb]
N is the number of turns
Φpp is the peak-to-peak magnetic flux

The peak-to-peak physical magnetic flux Φpp is equal to the product of the
peak-to-peak induction Bpp and the effective cross sectional area Ae of the core:

(2.12)

Substituting Equation (2.12) into Equation (2.11), and because Bpp is two
times Bp,g(Bpp = 2Bp,g) for symmetrical cases, the primary turns number N1 is
presented as:

(2.13)

FIGURE 2.5
Arbitrary voltage waveform v(t) across a
winding.
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Fast Design Approach Including Eddy Current Losses 41

Equation (2.13) is applicable for both primary and secondary winding turns.
Depending on where the peak-to-peak flux linkage Ψpp is calculated, the
result will be the respective number of turns.

Under sinusoidal excitation, Equation (2.13) is modified to:

(2.14)

where
V1 is the RMS value of the voltage across the primary winding 
f is the excitation frequency
Ae is the effective cross sectional area of the core

The number of the turns of the other windings is calculated according the
desired voltages as

(2.15)

where
Ni are the number of turns of the ith winding
Vi is the RMS value of the voltage across the ith winding

Step 8) Distribute Allowed Total Copper Losses Ph,cu

Among the Windings

To distribute the allowed total copper losses Ph,cu among the windings (pri-
mary and secondary windings, or more than one secondary winding) we
introduce a coefficient ai, which is equal to the relative part of the losses Pcu

attributed to the ith winding:

(2.16)

(2.17)

where
Irms,i is the RMS current of the ith winding 
Ph,cu,i are the allowed losses of the ith winding
Ph,cu are the allowed total losses, found by the equation (2.4)

Step 9) Determine Wire Diameter di

Knowing the allowed copper losses Ph,cu,i distributed over every winding
Ph,cu,i = αiPh,cu, we determine a wire diameter di. We neglect the eddy currents

N
V
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V
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42 Inductors and Transformers for Power Electronics

losses Pcu,eddy and considering only the ohmic losses Pcu,ohm,i in the wires, we
assume Ph,cu,i = Pcu,ohm,i:

(2.18)

(2.19)

where
R0,i is the DC resistance of the ith winding
Irms,i is the RMS current of the ith winding
rc is the electrical resistivity of the wire (resistivity of copper)
lTi  is the mean-length-per-turn of the ith winding

The available copper wire diameters are given in Appendix C at the end
of the book. In practice, we select a practical wire diameter dp,i, which is higher
than the calculated by the Equation (2.19) value di and dp,i is the next available
wire diameter. Since dp,i > di, there are reduced ohmic losses, allowing some
eddy current losses without exceeding the total allowed copper losses.

REMARKS

1. In transformer designs, when less than one full layer width is obtained,
a good practice is to enlarge the diameter in order to achieve a full
layer width (as far as allowed by the primary-secondary creepage
insulation distance).

2. In some designs paralleling wires or using a Litz wire is necessary.
In those cases the equation  is to be used, where pi is the
number of the wires in parallel or the strands in a Litz wire.

3. In the realization of designs with parallel wires it is important to
guarantee an equal current sharing as well as an arrangement pro-
viding the same flux linkage for every wire.

Step 10) Calculate the Actual Copper Losses Pcu

I) Ohmic Copper Losses

The actual ohmic losses Pcu,ohm for all windings are inversely proportional to
the square of the diameter of the wires and can be found by the expression:

(2.20)

where
Irms,i is the RMS current of the ith winding
Ni is number of turns of the ith winding
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Fast Design Approach Including Eddy Current Losses 43

pi is the number of wires in parallel (or the number of strands in a litz wire)
ρc = 23 × 10−9 Ωm at 100ºC; ρc = 17.24 × 10−9 Ωm at 25ºC

Note that in case of Litz wire, the value lTi (mean-length-per-turn) is
increased by about 5%.

For simplicity of notation, from now on, we drop the index i for the ith
winding.

II) Low-Frequency Transverse Field Eddy Current Losses

The major part of the eddy current losses in a low frequency (LF) approxi-
mation for round wires can be explained by the presence of a uniform
magnetic field component, which acts like an induction heating to the wire.

REMARKS

1. Note that we talk about a low frequency approximation of eddy
currents, and that it does not mean that the eddy losses are low!

2. Low frequency (LF) approximation is applicable when the eddy
currents induced in the winding do not considerably change the
applied field inside the conductor.

3. In practice, the LF approximation is valid up to , (d is the wire
diameter and d is the penetration depth). For d, see Equation (2.30).

To express the eddy current losses we use the following equation:

(2.21)

where
dp is the practical diameter of the copper wire of the ith winding
B is the induction, assumed perpendicular to the considered wire
lw is the conductor length of the ith winding (lw = N p lT) 

Equation (2.21) is quite general and applicable for the cases with more
complicated field distribution and also for non-sinusoidal waveforms [1,2,3].
The LF approximation and Equation (2.21) can also be used if the field is
calculated by finite differences or finite element methods (FEM).

Figure 2.6 shows details of windings in a winding area, defining the
parameters m, n, tw, b, and h. Note that the parameter w is given in the data
sheets as the minimum winding width (MWW) of a coil former.

Figure 2.7 shows common transformer and inductor shapes and the dis-
cussed dimensions. The number of layers m, the number of conductors in a
layer n, and the field symmetry factor K are illustrated in Fig. 2.7.
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44 Inductors and Transformers for Power Electronics

Definitions of the Values mE, nE, η, and λ
The parameter mE is defined as an equivalent number of layers. The param-
eter nE is defined as an equivalent number of turns in a layer.

• For p parallel wires a number of wires are present in the same layer,
which will become an equivalent number of wires in a layer.

, (2.22)

• For the Litz wire one cannot count exactly the number of individual
wires in a layer. We distribute the equivalent turns in both directions
and then we have

, (2.23)

where
p is the number of paralleled strands

• The copper fill factor in the direction of the layer η can be defined as

(2.24)

where
d is the wire diameter
w is the winding width (see Fig.2.6)

• The copper fill factor in the direction perpendicular to the layer λ
can be defined as

(2.25)

FIGURE 2.6
Details of a winding area, defining the
winding area height h, the winding area
width b, the winding thickness tω and the
minimum winding width w (MWW), (p-
primary winding, s-secondary winding).
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Fast Design Approach Including Eddy Current Losses 45

FIGURE 2.7
The usual transformers and inductor shapes and the discussed dimensions and field directions.
a) Normal transformer (reference case), K = 1 for both windings.
b) Secondary winding in an interleaved transformer (the secondary winding is sandwiched),
K = 2 for secondary winding.
c) Center gapped inductor, K = 2.
d) EI core inductor, K = 1.
e) Ring core transformer or inductor, K = 1.

(a) (b)

(c) (d)

(e)
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46 Inductors and Transformers for Power Electronics

where
h is the window height (see Fig. 2.6)

We can also write for a transformer with one concentric primary and one
secondary winding:

(2.26)

For interleaved windings in transformers (and no parallel wires) mE = m/K,
where K is the field symmetry factor, see Fig.2.7. This presentation is neces-
sary for half layers.

Usually, the field over the winding cross section area increases almost
linearly from zero to its maximum value, so if we express the total losses by
(Bmax)2, the result is to be divided by a factor of 3, see Appendix A. However,
as not all field patterns behave like this, we add a factor kF , and the result
for eddy current losses becomes

(2.27)

where

Substitution of the expression of Bmax into the equation (2.27) yields

(2.28)

where
kF = 1 for transformers
kF = 1 also for inductors if the air gap is at a large distance from the layer 

compared to the layer width.

REMARK
When the losses are quadratic with frequency, as it is in low frequency
approximation, using (di/dt)rms instead of ω I is possible, thus avoiding the
summing over the harmonic components. Then the apparent frequency nec-
essary for Equation (2.28) is fap = .

Note that the eddy current losses are basically proportional to the third
power of the number of turns for a given core, as the transverse field (the
field perpendicular to the wire axis) is proportional to the number of turns
N, and that the wire length is also proportional to N.

We denote kF as field factor. For transformers, such as in Fig. 2.7,a) and b),
the value of the field factor is kF ≈ 1. The factor kF for inductors (e.g., EE and
ETD cores) is highly dependent on the distance of the winding to the air
gap, such as illustrated in Fig. 2.8. The corresponding high eddy current
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Fast Design Approach Including Eddy Current Losses 47

FIGURE 2.8
2-D field factor kF as a function of κ. Solid curve–typical average values of kF;
Dashed curve-Field factor kF for wires between legs, e.g., EE core, see Fig. 2.8, a;
the eddy current losses are maximal;
Dash-dotted curve-Field factor kF for wires of coil ends, e.g., without legs, see Fig. 2.8, a;
the eddy current losses are minimal.
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48 Inductors and Transformers for Power Electronics

losses are located close to the air gap and can cause local overheating. Thus,
a thin layer coil close to the air gap has an especially high field factor kF .
The factor kF is reduced for filled coils as the average distance to the air gap
is increased.

REMARKS CONCERNING FIG. 2.8

1. The two extreme cases are shown:
• Dashed curve—Field factor kF for wires between legs (plane field

pattern), e.g., EE core, see Fig. 2.8,b). The eddy current losses are
maximal in this case.

• Dash-dotted curve—Field factor kF for wires of coil ends (axis-
symmetrical field pattern), e.g., without legs, see Fig. 2.8,b). The
eddy current losses are minimal in this case.

2. In this Chapter we use the average typical values shown by the solid
curve in Fig. 2.8.

The factor kF is also somewhat decreased in the coil ends because of the
3-D effect, as the transverse fields in the coil ends are lower in comparison
with the fields in the coil inside the core.

We define a dimensionless parameter k (pronounced kappa), which reflects
the relative distance between the winding and the air gap. The parameter
can be expressed as

(2.29)

where
dwg is the distance between the winding and the leg, see fig 2.7c
tw  is the thickness of the winding, see fig 2.7c
K is the field symmetry factor, see Fig. 2.7

The factor kF is mainly dependent on k and has a low dependence on tw and
w in the cases when k is kept constant. The factor kF is derived in details in
Appendix 5.A.3.

Note that as far as Equation (2.28) is valid, the losses are proportional to
the square of ω Iac,i, so they are proportional to di/dt. This is an interesting
feature, as it allows us to use directly the RMS value of di/dt in these cases
instead of summing all individual harmonics. Often the RMS value of di/dt
is easy to compute. In the case of an inductor, it is the RMS voltage value
across the inductor divided by its inductance VL,rms/L. In the case of trans-
formers, it is proportional to the voltage across the leakage inductance.

In the case of p parallel wires or Litz wire with p strands, we have p times
more wires, but the transverse field remains the same. It is assumed that all

k =
+d
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w K
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Fast Design Approach Including Eddy Current Losses 49

currents in the parallel wires are equal. Thus, in this case we have the
following result Pcu,eddy,litz compared to the original Equation (2.27):

(2.30)

The advantage is that the losses Pcu, eddy  are inversely proportional to p, as
for the same total cross section the term  is inversely proportional to p2

and, thus, we have Pcu,eddy,litz = .
In the case of Litz wire, one has to take in account an increased wire length

of about 5%. The wire diameter of the Litz wire is small and local fields are
negligible, so the low frequency transverse field approximation is usually
valid.

III) Wide Frequency Eddy Current Losses

The presented method for calculating eddy current losses includes 2-D effects,
which provides an increased accuracy compared to 1-D approaches (such as
Dowell type). Starting from Equation (2.28), two improvements can be done:

• At high frequency, the eddy currents in the wires generate fields, which
influence the fields in the conductor itself and in other conductors.
This fact leads to a reduction coefficient FT in the equation for Pcu,eddy,
see Appendix 2A.2. The letter T comes from the term transverse field.

• At low frequency, one can consider the real eddy current losses,
caused also by the local fields around the wire and not only by the
transverse fields. This fact yields a specific term and a reduction
coefficient FA in the equation for Pcu,eddy, see Appendix 2.A.2. The
letter A comes from the term around.

To be able to analyze eddy current losses in a wide frequency range, we
introduce the penetration (skin) depth d, given as

(2. 31)

where
 is the frequency of the applied magnetic field

m is the permeability of the material (for copper ), µ0 is the permeabil-
ity of vacum; µo = 1.25664 × 10−6

2rcu is the electrical resistivity of the conducting material (copper) we use
2rcu = 23 × 10−9 Ωm at 100°C; ρc = 17.3 × 10−9 Ωm at 25°C

The penetration depth δ of copper (Cu) conductors is plotted in Fig. 2.9
as a function of frequency f for temperatures 25°C and 100°C.
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50 Inductors and Transformers for Power Electronics

Eddy Current Losses Factor kc and the Wide Frequency Method

To extend the validity of Equation (2.27) for larger diameters and a wide
frequency range, we derived the factor kc(mE, ζ, η, λ), which represents the
ratio between the eddy current losses compared to the losses in the ohmic
resistance of the winding of the magnetic component. The approach is called
the wide frequency method for inductors and transformers, as it is appli-
cable for all frequencies.

Using the previously introduced terms mE, η, and λ, the eddy current losses
are given by the following equation:

(2.32)

where 
the parameter ζ (the Greek letter zeta) represents the conductor diameter 

divided by the penetration depth

(2.33)

In Equation (2.32) R0 is the ohmic resistance of the winding,

The details of the function  are given in Appendix 2A.2
and the full derivation is presented in Chapter 5. To allow an easy use of kc,
we provide here a few graphs.

FIGURE 2.9
Penetration depth δ for copper wires as a function of frequency f, parameter temperature,
T = 25ºC and T = 100ºC.
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Fast Design Approach Including Eddy Current Losses 51

REMARKS AND CONCLUSIONS CONCERNING EQUATION (2.32)

1. The results of the proposed equation are close to the known Quadrature-
of-the-circle method of Dowell [4], but the proposed equation is
more accurate in transformers (e.g., at low packing factors) and it
can also handle inductor designs, where the Dowell method results
in large errors.

2. For ζ < 1.6, the low frequency approximation is valid and the losses
increase proportionally to the frequency with an error below 10%.

3. In the transformer design, if mE > 2 we can consider only the trans-
verse field losses given by Equation (2.28).

Apparent Frequency Calculation

In Equation (2.32) the apparent frequency should be used.

1. In general, one has to sum the contribution of each current harmonic
in order to calculate losses. In the presented method, for sinusoidal
currents no corrections have to be made and the apparent frequency
fap is the real one:

2. For a symmetrical triangular current waveform, in the low frequency
approximation we obtain the following apparent frequency fap:

3. At high frequency, the losses tend to increase with the root of fre-
quency for a given current. In that case, the contribution of harmon-
ics in the current is low and one can use the RMS value of the current
instead of summing over all harmonics. For a symmetrical triangular
current waveform this results in an apparent frequency fap:

Reference Wire Diameter

The choice of 0.5 mm as a reference wire diameter is done in order to use
a typical wire diameter for power electronics. The frequency, for which the
penetration depth is equal to the reference diameter d = δ, is 20 kHz. The
limit of the low frequency (LF) approximation for the reference diameter
d = 0.5 mm is 50 kHz, thus LF can be applied below 50 kHz for that wire
diameter. These values are easy to remember. The diameters of wires in
adjacent layers are taken equal and in a square fitting. This is the worst-
case design, as a hexagonal fitting usually reduces the losses.

f fap =

f f fap = ≈2 3
1 10

π
.

f fap ≈ 1 025.
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52 Inductors and Transformers for Power Electronics

Equivalent Frequency Calculation

To use the provided graphs (Figs. 2.10– 2.13) for any frequency, wire diameter,
and conductor resistivity, the equivalent frequency of the considered case
should be first found:

(2.34)

where
fap is the apparent frequency
dp is the practical wire diameter in [mm]
rc is the conductor resistivity in [Ωm]

If one is only interested in an order of magnitude of the eddy current
losses, the waveform and resistivity change could be neglected, but the
diameter effect has still to be taken into account by the following simplified
expression:

(2.35)

REMARK
Use Equation (2.35) only for fast design when reading from Fig. 2.10 to Fig. 2.13.
The direct calculation of the coefficient kc and the graphical method for
obtaining it are explained in detail in the Appendix 2.A.2.

Transformer Cases and Examples

For the transformers the value of the coefficient kc is

(2.36)

where 
the value of ktf is found using Fig. 2.10 and Fig. 2.11. The number of parallel 

wires p reduces the DC resistance and thus increases kc.

It is not recommended to use partially filled layers in transformer designs.
If otherwise partially filled layers are used, the wires should be equally
spread. The effect of the partially filled layers is reduced at high values of mE.

The graphs shown in Fig. 2.10 and Fig. 2.11 concern a design example with
a typical wire diameter of 0.5 mm and the normal frequency range for power
electronics: 10 kHz to 10 MHz. For more than two layers (mE > 2), the result
is almost independent of the number of layers. The usual values of η in
transformers are between 0.7 (typical for thin wires and Litz wire) and 0.9
(typical for d > 0.5 mm). For other values of η, a linear interpolation between
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Fast Design Approach Including Eddy Current Losses 53

FIGURE 2.10
Transformer cases, typical transformer factor ktf for d = 0.5 mm, η = 0.9, ρ = 23 × 10−9 and λ = 0.5,
1) dotted line: half layer, mE = 0.5; 2) solid line: single layer, mE = 1; 3) dashed: two layers, mE = 2;
4) dash-dot: three or more layers, mE > 2. LF – low frequency approximation.

FIGURE 2.11
Transformer cases, typical transformer factor ktf for d = 0.5 mm, η = 0.7, ρ = 23 × 10−9 and λ = 0.5,
1) dotted line: half layer, mE = 0.5; 2) solid line: single layer, mE = 1; 3) dashed: two layers, mE = 2;
4) dash-dot: three or more layers, mE > 2. LF – low frequency approximation.

LF

3

1 2

4

1.104 1.105 1.106 1.107

feq

ktf

0.01

0.1

1

10

100

LF

3

1 2

4

1.104 1.105 1.106 1.107

feq

ktf

0.01

0.1

1

10

100

DK4141_C02.fm  Page 53  Tuesday, January 18, 2005  11:13 AM

Copyright 2005 by Taylor & Francis Group, LLC



54 Inductors and Transformers for Power Electronics

FIGURE 2.12
Inductor case, kin as a function of feq for η = 0.9, d = 0.5 mm, ρ = 23 × 10−9, high mE values, Straight
full line LF: low frequency solution; Full curve AP: approximation of kin used in Chapter 2;
dashed curves: solutions given in the Chapter 5 for λ = 0.1, 0.3, 0.9.

FIGURE 2.13
Inductor case, kin as a function of feq for η = 0.7, d = 0.5 mm, ρ = 23 × 10−9, high mE values, Straight
full line LF: low frequency solution; Full curve AP: approximation of kin used in Chapter 2;
Dashed curves: solutions given in the Chapter 5 for λ = 0.1, 0.3, 0.9.
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Fast Design Approach Including Eddy Current Losses 55

Fig. 2.10 and Fig. 2.11 can be done. The additional error due to that interpo-
lation is below 2%.

A few short examples of transformer design show the use of the graphs
in Fig. 2.10 and Fig. 2.11 or the corresponding equations in Appendix 2A.2.

1) A single layer winding of a transformer uses a wire diameter of 0.9 mm
and an outer diameter of 1 mm, the frequency is 30 kHz, the copper
resistivity is r = 23 × 10-9 Ωm.

We have  so we use Fig. 2.10. We have to keep
the same diameter/penetration depth ratio, i.e., to find the equivalent fre-
quency feq = 30 kHz × (0.9/0.5)2 = 97.2 kHz. 

For this frequency, we calculate kc using the full equation of Appendix
2A.2. The result corresponds to ktf = 0.473. Reading from Fig. 2.10 gives the
same result. It is a single layer transformer, so mE = 1 and we obtain kc =
ktf = 0.473.

2) The same wire diameters and resistivity, but a three-layer transformer
winding, using a three times smaller winding width, the same turn number.

We use the same values η = 0.9 and feq = 97.2 kHz. It is a three-layer
transformer, so mE = 3. For three layers and more, we obtain ktf = 0.575 (using
Fig. 2.10. or the equation of the Appendix 2A.2) and we have kc = 32ktf = 5.17.
For comparison, using the full equation we obtain kc = 5.08, which is close to
that result.

3) The same wire diameters and resistivity, but a half layer transformer design
(the considered single layer secondary is sandwiched between two primaries).

Using the same values η = 0.9 and feq = 97.2 kHz, we calculate or read from
Fig. 2.10 ktf = 0.166. It is a half-layer transformer, so  and we have kc =
0.52 ktf = 0.0415. Using the full equation for kc gives the same result. This
value is much lower than cases 1) and 2). The reason is that in this design
case the transverse field is zero and only local fields are present. In practical
realizations, the half layer solutions do indeed perform well, but a noncareful
winding (e.g., nonequal winding width of the layers) generates parasitic
transverse fields that increase the losses considerably.

4) A two-layer transformer winding of 0.5-mm diameter copper at 50 kHz
and packing factor in the direction of the layer η = 0.8, copper resistivity
ρc = 23 × 10−9 Ωm.

We have the same diameter as the graphs, so the equivalent frequency is
equal to the applied frequency. We obtain ktf,0.9 = 0.170 from Fig. 2.10 and
ktf,0.7 = 0.104 from Fig. 2.11. To find ktf,0.8 (for η = 0.8), we take the average of
the two values ktf, 0.8 =  = 0.137. Then we find kc = 22 ktf,0.8 = 0.549.
For comparison, using the full equation for kc gives kc = 0.541.

h = =0 9 1 0 9. / . , mm  mm

mE = 0 5.

0 104 0 170
2

. .+
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56 Inductors and Transformers for Power Electronics

Inductor Cases and Examples

For the low frequency range, where the dependence of the losses on the
frequency is quadratic, Equation (2.30) can be used. At higher frequency, the
losses are lower than predicted by Equation (2.30). The field has parallel
components to the layer as well as perpendicular components. In this chapter,
a simplified expression is used for inductors, neglecting the field induced by
the other conductors.

Thus, we define the following simplified eddy current loss factor kc for
inductors:

(2.37)

where
kF is the field factor, see Fig. 2.8 
the coefficient kin is found from Fig. 2.12 and Fig. 2.13
p is the number of wires in parallel (or the number of strands in a Litz wire).

The full equation presenting the eddy current loss factor kc is given in the
Appendix 2A.2.

REMARKS CONCERNING FIG. 2.12 AND FIG. 2.13

1. For the low frequency range ( f < 50 kHz for d = 0.5 mm), where d <
1.6δ, the parameters λ and η are not really important and the low
frequency approximation is valid, see the straight line LF in Fig. 2.12
and Fig. 2.13.

2. In Fig. 2.12 and Fig. 2.13, we give the approximation of kin for induc-
tors (solid curve AP), which neglects the induced field of other wires
and we use it in this chapter.

3. In Chapter 5 we directly calculate kc in a more accurate way—the
results are the dashed curves added to the graphs in Fig. 2.12 and
Fig. 2.13.

We give a few short examples of inductor designs showing the use of the
graphs in Fig. 2.12 and Fig. 2.13. In all examples the resistivity is ρ = 23 × 10−9 Ω m.

1) A single layer center gapped inductor with 40 turns has a winding width
of 30 mm and η = 0.9. The wire diameter is d = 0.8 mm. The frequency is
25 kHz. The winding is wound directly on the coil former and the distance
to the center leg is 1.5 mm.

The equivalent frequency for the given diameter is

feq = 25 kHz × (0.8/0.5)2 = 64 kHz.

The symmetry factor is K = 2 and the value of κ is κ =  = 0.1

k
p N d

w
k k fc

p
F in eq=







2

( )

1 5
30 2

.
/

DK4141_C02.fm  Page 56  Tuesday, January 18, 2005  11:13 AM

Copyright 2005 by Taylor & Francis Group, LLC



Fast Design Approach Including Eddy Current Losses 57

For the found equivalent frequency feq = 64 kHz we calculate kin = 0.365 by
the full equations or read from the curve in Fig. 2.12. Using Fig. 2.8 or
Equation (2.A.24) we find the field factor value kF = 12.5. Then, we calculate

2) An inductor with the same wire diameter, frequency, turn number, core
type, and η, but 

This corresponds to a distance of 4.5 mm between the centerline of the
winding and the center leg. Only kF changes and its value is now kF = 2.77,
see Equation (2.A.24). We have

Although the wire length increases in this case compared to the previous
one, and thus the DC resistance is also increased, a significantly lower AC
loss is obtained. Moreover, the hot spot close to the air gap is avoided.
However, even better kc values can be obtained. A smaller diameter would
result in smaller AC losses but paralleled wires or Litz wire can still give
further improvements in both AC and DC resistance of the winding.

3) A high-current DC inductor with a center gap is wound with d = 2 mm
wire (2.22 outer diameter), and a high frequency component of 200 kHz is
present. The number of turns is 24, 12 turns in each layer. The distance
from the winding to the center leg is 1.5 mm, the winding thickness is
4.5 mm, the winding width is 30 mm, and the winding area height is 10 mm.

The equivalent frequency for the given diameter is feq = 200 kHz × (2/0.5)2 = 3.2
MHz.

In the case K = 2, the value of κ is

Using Fig. 2.8 or Equation (2.A.24) we find kF = 5.19. The value of h is η = 0.8.
We interpolate between the two graphs in Fig. 2.12 and Fig. 2.13 or use the
equation in the appendix to get kin. We obtain kin = 17.48. Then, we have

The value of kc is very high and this type of inductor is definitely really not
suitable to be used as an AC inductor! The example shows also that even
for small high frequency components, the AC losses are much higher (kc =
232) than the DC losses.
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58 Inductors and Transformers for Power Electronics

NOTE: We have λ = 4.5/10 ≈ 0.45, this results in about 30% lower AC loss
if the full equations of Chapter 5 are used.

4) The same design as 3), also 24 turns but 4 wires in parallel of 1 mm wire, the
DC resistance is the same. The currents are equally divided among the 4 wires.

The equivalent frequency for the given diameter d = 0.5 is feq = 200 kHz feq =
200 kHz × (1/0.5)2 = 800 kHz.
The values for η and kF are the same as in 3): η = 0.8, kF = 5.19. We read or
calculate kin = 8.06. Then, we find

The conclusion is that for this high frequency, the AC losses increase by
taking more wires in parallel with the same total cross section: kc is 428 in
comparison with 232 in the previous case. For really high frequency cases the
eddy current losses tend to increase with the root of p. This high frequency
phenomenon is the inverse of what is experienced for the low frequency
eddy current losses, where the losses decrease with p.

IV) Total Copper Losses

Now we calculate the sum Pcu of the obtained actual ohmic and eddy current
losses for all windings:

(2.39)

Step 11) Check if the Copper Losses Pcu are Lower Than
the Allowed Copper Dissipation Ph,cu

We check if the total copper losses are lower than the thermally allowed
copper dissipation:

(2.40)

If the total copper losses Pcu are lower than the allowed dissipation limit Ph,cu,
then we continue with the step 13, otherwise we go to step 12.

Step 12) Is Improvement Possible?

The answer to this question is related to the type of technology one is willing
to use. This means

• Which wire diameters are in stock or available?
• Is Litz wire allowed or not?
• Can one keep distance between the winding and the air gap?
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Fast Design Approach Including Eddy Current Losses 59

The proposed design method normally guarantees a sufficiently low ohmic
copper loss. If step 11 is not satisfied, it means that the eddy current losses
are too high. So it is still worthwhile to investigate if one can reduce the total
actual copper losses. In general, if keddy < 0.5, a small increase in diameter can
be useful as the ohmic losses decrease and the eddy current losses may not
increase too much. However, specific tricks to reduce the eddy current losses
are possible. They are discussed in step 12a.

The choice of wire diameters and winding arrangements can be used to
optimize the wire losses.

Step 12a) Optimize the Diameter and Winding Arrangement

I) Transformers

Possible improvements are

• If the design results in a single layer winding, the diameter of the
wire can be increased in order to fill the layer completely, as far as
it is tolerated by the creepage distance. This is a very efficient way
to reduce the DC resistance. Thus, although keddy(keddy = Pcu,eddy/Pcu,ohm)
may be high, the losses are reduced while increasing the diameter
of the wire. If this trick is not sufficient, one can think of interleaving,
where the secondary winding wound with thick wires (typically 2
times the penetration depth or more) is sandwiched by two primary
windings of a lower diameter.

• If the design results in two or more layers, then it is useful to use pi

wires in parallel to reduce the eddy current losses. In this way, the
diameter of the wires can be diminished with a factor  and thus
eddy current losses reduced. Special care should be taken to make
sure that the current in the wires is almost equal, which is usually
obtained by symmetry. A special case of paralleling wires is Litz
wire. In this case pi becomes the number of strands. Some 5% increase
of MLT has to be taken into account in the case of Litz wire and
paralleling wires.

II) Inductors

Possible improvements are

• Using Litz wire or paralleled wires reduces the eddy current losses
a lot in the usual cases.

• An important improvement can be reached while keeping some
distance from the air gap. The graph of kF (Fig. 2.8) gives an impres-
sion of this improvement.

• Designs with large ratio dp/δ are possible if the AC current is much
lower than the DC component.

pi
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In inductors with concentrated air gaps, the field close to the air gap is
only slightly lower than the field in the air gap. Thus, the field close to the
air gap can cause an induction heating of the windings by the transverse
field at that place. Moreover, the field is usually not parallel to the layers,
this means that the field has to tunnel between the wires. This fact increases
in a significant way the losses in single layer designs. 

 

So, using a single layer
directly on the coil former, close to the air gap is the worst thing to do in inductor
designs

 

!

 

Step 13) Check the Copper Filling Factor

 

We check if the core window area 

 

W

 

a

 

 is large enough to fit all the windings.
We assume a copper filling factor 

 

k

 

cu

 

 

 

=

 

 0.4 for round conductors and 

 

k

 

cu

 

 

 

=

 

 0.2
for Litz wire and check the inequality:

(2.41)

If the window area is not large enough, we go to step 13a) and choose a
larger core. For more detailed information concerning the copper filling
factor, refer to Chapter 4.

 

Step 13a) Choose a Larger Core

 

We choose a larger core in order to have a larger window area and higher
dissipation possibility. Choosing a better material with lower losses or a
higher saturation level may also be a sufficient step.

 

Step 14) Check if the Chosen Core Size in Step 1) is not Too High

 

To estimate if the chosen core size in step 1)

 

 

 

is not too high, we use the
inequalities

(2.42)

 (2.43)

and if both are true, then we go to step 14.a).

 

Step 14a) Choose a Smaller Core

 

We choose a smaller core size as the window area is hardly filled 
and eddy currents losses are relatively low .

A low core size results in longer wires as we have to increase the turn
number and, thus, higher wire diameters are to be chosen to keep the ohmic
losses low. This results in higher eddy current losses. Therefore, we choose
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Fast Design Approach Including Eddy Current Losses 61

a smaller core (step 14a), only if both the inequalities, Equations (2.42) and
(2.43), are really met.

Step 15) Calculate the Total Air Gap Length S lg

Usually, inductors require an air gap to avoid saturation. An air gap is also
required for transformers subjected to DC MMF (magneto-motive force).

When neglecting fringing field in a magnetic circuit with air gaps, the
inductance L can be presented as

(2.44)

Then, for calculating small air gaps the following expression can be used:

 (2.45)

where
Σlg is the total length of the air gaps
mc is the permeability of the core material
m0 is the permeability of free space
Ae is the equivalent cross-sectional area of the magnetic circuit, see Appendix B
le is the equivalent magnetic path length in the core, see Appendix B
L is the wanted inductance

For large air gaps, the permeance of the other field paths (fringing paths)
at the side of the air gap is to be considered. This permeance results in
considerable deviations of Equation (2.45), which takes into account only
the main magnetic path. In some cases, as the permeance of the fringing
field paths is neglected, Equation (2.45) underestimates the necessary air gap
length up to a factor of 2. Thus, practically, the total air gap length calculated
by Equation (2.45) should be increased typically 1–2 times to obtain the
necessary gap length :

(2.46)

Many parameters influence the necessary correction, but as a first approach,
some rough approximation for a center gapped EE core or for an UA core
can be made by using the experimental equation proposed by McLyman [5]:

(2.47)

(2.48)
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62 Inductors and Transformers for Power Electronics

where
L is the inductance, found by Equation (2.44)
L′ is the inductance corrected for fringing flux
F is the fringing factor
lg is the length of the air gap
Ag is the cross-sectional area of the air gap
wh is the total width of the winding

REMARKS

1. It is not correct to compensate the fringing effect by decreasing the
turn number. This results in a high induction value, the core might
saturate, and the core losses will be higher;

2. If for obtaining the wanted inductance L, some of the already calcu-
lated parameters are to be changed (N, core size), then both core and
copper losses have to be recalculated and compared with the allowed
limits.

The real question is to find lg when L is given, which corresponds to

(2.49)

Equation (2.49) results in solving a nonlinear equation, as Fnew is also a
function of lg. However, a result very close to the final value is obtained by
substituting the following value of Fnew:

(2.50)

Parameter AL

Often the manufacturers of ferrite cores consider the parameter AL for center-
leg gapped cores. The parameter AL, corresponding to a defined gap length,
is given in the data sheets. Then, the inductance value is presented as

(2.51)

where
AL is in fact the permeance of the magnetic circuit
N is the turn number

Knowing the desired value of L, first we find AL and then using the
manufacture data, we obtain the corresponding gap length lg:

 (2.52)
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REMARK
Such data are not always available, or in the first design a spacer gap is used
(two air gaps in series in the flux path) so a more precise expression is necessary
to find the wanted air gap length. Spacer gaps tend to give lower losses than
center gaps, but they are not preferred as they generate a lot of leakage field
outside the magnetic component, causing possible EMI problems.

2.1.2 Saturated Thermally Limited Design

In applications where the core losses are relatively low and the induction
level is high, the design is thermally limited as well as saturation limited.
Usually, these applications are low-frequency or pulse applications. Typical
examples of such applications are AC filters, pulse transformers, and DC
chokes.

We explain the steps of the saturated thermally limited design as they are
given in the flowchart in Fig. 2.2.

Step 1’) Find the Peak-to-Peak Induction Bpp

To start the design, we find the peak-to-peak induction, as this value corre-
sponds to the losses in the core. We need this value to evaluate the necessary
core size.

To find the allowed Bpp, we first have to define the saturation induction
Bsat. The practical use of a core is limited to an induction value, where the
nonlinearity of the saturation does not deteriorate the waveforms too much.
For transformers, this limit is the induction value for which the magnetizing
current becomes excessive. For inductors, the limit corresponds to the point,
where the differential inductance is significantly reduced, for example by a
factor of 2. For ferrites for power conversion applications, the induction value
of 0.35 T is a typical saturation value at a temperature of 100°C. Knowing
Bsat we can find the allowed Bpp using the specific converter current and
voltage waveforms.

Example
Let us consider a filter inductor in a step-down or step-up converter. If the
DC component of the current of the inductor is IL,DC and the ripple peak
current is ∆iL,peak, then the allowed Bpp is

 (2.53)

Step 2’) Choose a Core, Material, and Size

The next step of the design is to choose an appropriate core material and
size. To choose the core size, we use again a simple scale law based on natural
convection in air, which compares the total volt-amp rating of the component

B B
i

I ipp sat
L peak

L DC L peak

=
+

2 ∆
∆
,

, ,

DK4141_C02.fm  Page 63  Tuesday, January 18, 2005  11:13 AM

Copyright 2005 by Taylor & Francis Group, LLC



64 Inductors and Transformers for Power Electronics

to the product of a core characteristic size parameter ach, the operating frequency
f, and the peak-to-peak induction Bpp:

 ⇒  (2.54)

where
A1 is a coefficient.

For ferrites, A1 is in the range A1 = (5 − 15) × 103 when ach is in [m]; (A1 = (0.5 −
1.5) × 10−3 when ach is in [cm])

ach is the largest dimension of the component, used as a scaling parameter
g is an exponent, characterizing the material and shape of the core, γ = 3.5
f is the operating frequency in [Hz]
Bpp is the peak-to-peak induction in [T]

In Equation (2.54) we use the operating frequency f and the peak-to-peak
induction Bpp as indications for the power handling ability of the component,
and thus, the core size choice is more accurate in comparison with the non-
saturated thermally limited design.

In Fig. 2.14 we show the possible ranges of the scaling parameter ach, upper
value ach,u (A1 = 5 × 103) and lower value ach,l (A1 = 15 × 103), as a function of
the total V-A rating Stot of the component for two values of the peak-to-peak
induction Bpp (0.7 T and 0.35 T).

FIGURE 2.14
Core size estimation for a saturated, thermally limited ferrite core design at 25 kHz.
1: for A1 = 5 × 103 and Bpp = 0.35 T (single magnetization direction)
2: for A1 = 5 × 103 and Bpp = 0.7 T (double magnetization direction)
3: for A1 = 15 × 103 and Bpp = 0.35 T (single magnetization direction)
4: for A1 = 15 × 103 and Bpp = 0.7  T (double magnetization direction)
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REMARKS

1. A not appropriate choice in step 2’) will be noticed later in the next
steps, which leads to a smaller or a larger core size.

2. The high values of A1 are considered for better cooled applications.
The low values of A1 are typical for applications with a low filling
factor kcu (Litz wire, for instance) and a high DC component, where

3. Insulation requirements tend to decrease the coefficient A1.

Step 3’) Find the Core Losses Pfe from Graphical Data

To find the core losses Pfe, we use the aforementioned graphic dependencies
of the specific losses Pfe,sp versus induction Bpp/2 with frequency f as a parameter.
These graphs are usually provided by the core manufacturers. We find the
specific losses Pfe,sp,w from the graphs and then the core losses for iron-based
cores are

(2.55)

where
Vc is the core volume
g is the specific weight of the material, g = 7800 kg/m3

kff is the core filling factor
Pfe,sp,w are the losses per unit weight

For ferrites it is common to specify the losses per unit volume:

 (2.56)

where
Pfe,sp,v are the losses per unit volume

Step 4’) Find the Heat Dissipation Capability Ph of the Component

This step is similar to step 2 in the non-saturated thermally limited design.
First, we calculate the component dissipation capability:

(2.57)

where
kA is a coefficient, typical value 2500 W/m2

a and b are the two largest dimensions of the component in [m]

The result of (2.57) is the allowed total losses in the case with ratio Pfe/Ph = 0.5,
which corresponds to the non-saturated thermally limited design. However,
the allowed dissipation is lower than the component dissipation capability

B Bpp p/ ;2 <<

P P V g kfe fe sp w c ff= , ,

P P Vfe fe sp v c= , ,

P k abh A=
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66 Inductors and Transformers for Power Electronics

when the major part of the losses is concentrated in the windings. This is the
case in the saturated thermally limited designs.

Step 5’) Check the Ratio Pfe /Ph

We check if the core losses Pfe, found in step 3), are below half of the found
component dissipation capability Ph:

(2.58)

and if it is so, we continue the design as a saturated thermally limited case.
If Pfe is not below 1/2 of Ph, we consider the case as a non-saturated thermally

limited design and start with step 1) of that design procedure.

Step 6’) Estimate the Allowed Copper Dissipation Capability

Using the already found core losses Pfe from Equation (2.55) and component
dissipation capability Ph from Equation (2.57), in this step we find the
allowed copper losses Ph,cu in the considered saturated limited case. Assum-
ing the component allowed dissipation of 2/3 of Ph, from Equation (2.57), for
the case with zero core losses, we can depict the allowed copper dissipation
Ph,cu, compared to the total dissipation capability Ph, as a linear function of
the ratio Pfe/Ph, see Fig. 2.15. That function can be also expressed as

(2.59)

Now we find the allowed copper losses Ph,cu graphically using Fig. 2.15 or
analytically by Equation (2.59).

The next steps of the design are aimed at finding the number of turns, the
wire diameter, and the copper losses. Thus, we go to step 7) of the non-
saturated thermally limited design (see the flowchart shown in Fig. 2.2).

FIGURE 2.15
Dependence of the allowed copper loss/dissipation capability (the ratio Ph,cu/Ph) on the ratio Pfe/Ph.
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2.1.3 Signal Quality Limited Design

Taking into account the specifics of the signal quality limited cases, they can
be considered as non-saturated thermally limited cases or saturated ther-
mally limited cases. The design temperature is typically close to ambient
temperature if ferrites are used. This fact may lead to a different choice of
ferrite grades according to the specific constraints.

Here we give some recommendations:

• Current transformers: There is limitation on the magnetizing current
that can influence the current transfer ratio. This fact determines the
size of the core. The number of turns is not a degree of freedom in
these designs.

• Accurate inductors: The non-linearity has to be kept within some
limits in such designs. After calculating the maximum induction, the
case can be considered as a saturated thermally limited design.

• Loss limited designs in order to achieve high efficiency. These cases
correspond to non-saturated thermally limited designs. Low loss at
a low temperature ferrite grades have to be considered.

2.2 Examples

Two fully calculated examples are given here. Although it is still possible to
calculate them with a pocket calculator and graphs, the most accurate way is
to include the algorithm in a computer program. We use MathCAD, but Maple,
Matlab, C, Pascal, and Basic types and spreadsheet programs can also be used.

2.2.1 Non-Saturated Thermally Limited Design Example

2.2.1.1 Design Steps

As an example of the non-saturated thermally limited design procedure, let
us consider a transformer for a full bridge converter (Figs. 2.16 and 2.17).
The converter is only used to do a voltage level conversion and a galvanic
separation, not voltage control. In the converter, the series resonant capacitor
is added to resonate with the leakage inductance of the transformer. This
allows us to approximate the current by a sine wave.

The corresponding (ideal case) converter specifications are as follows:

Input DC voltage: Vin,DC = 400 V
Output DC current: Io,DC = 3.6  = 3.24 A
Output voltage: Vo = 100 V
Operating temperature: T = 100ºC

2 2
π
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The transformer specifications are:

Operating frequency: fop = 100 kHz
Square wave primary voltage: V1 = 400 V
Square secondary voltage: V2 = 100 V
Output AC current: I2 = 3.6 A
Input AC current: I1 = 0.9 A

In a practical design, the resonance frequency is set somewhat higher than
the switching frequency in order to obtain zero voltage switch behavior, and
thus, the converter specifications are close to 300 W transferred power.

The design is likely to be a non-saturated thermally limited case as it is a
high frequency application and there is no DC current in the transformer.

1) Using Equation (2.1) we find the total VA rating:

FIGURE 2.16
Full bridge DC/DC converter.

FIGURE 2.17
Voltage and current of the secondary wind-
ing of the full bridge converter.
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and for A = 15 × 106 the scale parameter ach is

An ETD34 core seems to be too small, so we choose a core shape ETD39,
material grade 3F3 [6] with the largest dimension a = b = 0.039 m. The core
parameters (see the Appendix B at the end of the book) are

2) Using Equation (2.2) gives the total allowed dissipation:

3) The allowed copper and core losses are

4) The specific core losses are found by Equation (2.6):

5) Find the peak induction of the data sheets for the ferrite core material
3F3, see Fig.2.18, using the obtained value Pfe,sp,v = 165 kW/m3.

We use the following two points:

• at 100ºC, 100 kHz, and 0.1 T the core losses are 75 W/m3

• at 100ºC, 100 kHz, and 0.2 T the core losses are 450 W/m3

The graph in Fig. 2.18 represents the Steinmetz equation Psp,v = kfe fαBβ,
where

kfe is the core loss coefficient
a is the frequency exponent
B is the peak-to-peak value of the induction AC waveform
f is the frequency

So, we can do a logarithmic interpolation to find the core loss exponent b
in the Steinmetz equation, and then using that value of b we can calculate
the wanted peak induction.

First, using the data of the two points, we can write
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70 Inductors and Transformers for Power Electronics

Second, using the found value for b, the peak induction level for

6) The peak induction is lower than the saturation value  

7) To find the number of turns we need the peak-to-peak flux linkage Ψpp:

Using Equation (2.13) we calculate N1 and N2:

We choose 

FIGURE 2.18
Specific core losses for the ferrite core material 3F3 as a function of peak-to-peak value of the
induction B, frequency f is the parameter, T = 100ºC.
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Fast Design Approach Including Eddy Current Losses 71

8) The V–A ratings of the primary and secondary windings are almost
equal, so

9) Determine the wire diameters.

Using Equation (2.18) we find

For the primary winding we choose a wire diameter d1 = 0.335 mm. This
diameter fits in a single layer design. The skin depth for 100 kHz is δ100Khz=
0.241 mm, so the secondary winding copper losses for d2 = 0.65 mm will be
seriously increased by eddy current losses in that winding. In single layer
transformers, we can increase the diameter to reduce losses instead of putting
wires parallel. For the secondary winding we choose a diameter of 1.25 mm;
this results in about the same winding width as the primary and we again
have a single layer design. The chosen diameters are in accordance with DIN
46 435 and IEC 182-1, see Appendix C. The diameters are chosen in a way
to fill one layer, as partial layers would result in losses, which are not
described in this chapter.

10) Actual copper losses.

First we find the ohmic resistances of the two windings:

We calculate the packing factor h using the external diameter of the wires
(maximum overall diameter, Grade 2) and the diameter of the copper cross
section (nominal diameter, see Appendix C).

η1 = 0.355/0.411 = 0.864

η2 = 1.25/1.349 = 0.927
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72 Inductors and Transformers for Power Electronics

Beware, this approach is allowed for transformers, not for inductors.
A check of the winding width using w = dN gives:

d1,out = 0.411 mm, w1 = 0.411 × 60 = 24.66 mm

d2,out = 1.349 mm, w2 = 1.349 × 15 = 20.2 mm

The winding width is about 24.66 mm for primary, 20.2 mm for the
secondary, and the minimum winding width (MWW) is 25.7 mm.

For an accurate design one can use the wide frequency equation, giving
kc directly, see the Appendix to that Chapter. The approach is fast when the
equation is already programmed. Using Equation (A.2.11) the results are

• for the primary winding: kc,1 = 0.1357
• for the secondary winding: kc,2 = 3.223

Then for the copper losses we have

We can also use the graphical method. First, using Fig. 2.10 and Fig. 2.11 we
find the values of ktf,1 and ktf,2. For both windings p = 1 and mE = 1, so we have kc = ktf.

• To find the primary winding value ktf,1, we first calculate the equiva-
lent frequency:

 

Then we find ktf,0.9 = 0.15 from Fig. 2.10 for η = 0.9 and ktf,0.9 = 0.9 from Fig. 2.11
for η = 0.7. The actual value of η for the primary is η1 = 0.864. Using the found
two values and interpolating for η1 = 0.864, we obtain kc1 ≈ 0.137. For compar-
ison, the result from the full equation of Appendix 2.A.2 is kc1 ≈ 0.136.

• For the secondary winding we calculate the equivalent frequency:

 

Then we read ktf 2 = 3.18 from Fig. 2.10 for η = 0.9. The actual value η2 = 0.923
is very close to η = 0.9. The full equation of Appendix 2.A.2 gives kc2 ≈ 3.22.

Conclusions:

1. The graphs (Figures 2.10–2.13) can also be used to give a first approx-
imation, neglecting small differences in h and in resistivity, thus
allowing a fast check.
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Fast Design Approach Including Eddy Current Losses 73

2. It is clear that the full equation results in more accuracy than the
approximate graphical method.

11) Compare the total copper losses and the allowed copper losses:

Although this power is higher than 1.9 W, it is very close to the limit of
1.9 W.

We know that the real mean length of turns lT is considerably lower than
the data of the manufacturer because a fully wound coil-former is considered
to define this data value. Thus, the actual copper losses are lower and the
found difference could be neglected. We checked the actual losses by the
results of the experiment and by a more accurate value of lT.

12) Is improvement possible?

The total copper losses are lower than the allowed copper losses, thus we
do not look for an improvement at this step.

13) We calculate the resulting copper filling factor:

 

We see that the filling factor is much lower than 0.4. However, if we want
to use a smaller core size, it would be at a more expensive manufacturing
cost.

The actual winding width of both windings is smaller than the available
MWW = 25.7 mm, so there is still room for a limited creepage distance. If
the creepage distance is not needed, lower losses can be obtained by spacing
the conductors or using a somewhat larger wire diameter.

14) Check if the chosen core in step 1) is not too high.

In this case keddy = kc because there is no DC current component, so we have

keddy,1 = kc,1 = 0.136 < 1

keddy,2 = kc,2 = 3.223 > 1

The eddy current factor of the secondary is much bigger than 1, which is
allowed in single layer designs as it avoids using a number of parallel wires
or Litz wire.

The copper filling factor is low:

kcu = 0.14

P P Pcu c c= + =, , W1 2 1.95

k N
d

Wcu i
i p

i

all
windings

a=














=
=

∑ π , / .
2

1
4

0 14

DK4141_C02.fm  Page 73  Tuesday, January 18, 2005  11:13 AM

Copyright 2005 by Taylor & Francis Group, LLC



74 Inductors and Transformers for Power Electronics

As a conclusion, improvements are possible but at the expense of a more
complicated design.

2.2.1.2 Improvements of the Design

The following improvements of the design are feasible:

1. A possibility is to sandwich (interleave) the secondary between two
primaries in parallel.

In this way, a half-layer winding is obtained for the secondary and only half
of the MMF [A turn] is present in each primary. This results in a reduction
close to a factor of 2 in the primary winding losses and somewhat more than
a factor of 2 in the secondary winding losses. We obtain

1+ kc,2 (single layer case) = 4.20 compared to
1+ kc,2 (half layer case) = 1.95

Thus, the total copper losses are reduced by about a factor of 2. Or, while
keeping the same total copper loss, the current (and the total power rating)
can be increased by a factor of 1.4.

2. Improvements using Litz wire.

Let us consider a not interleaved design with 30 strands of 0.1 mm Litz wire.
The equivalent number of layers for the primary winding for Litz wire is:

We consider η = 0.7.
The eddy current factor is kc,1 = 0.078. The DC resistance is 0.424 Ω, where

5% increase in the wire length is taken into account. The total primary copper
losses are then 0.451 W.

The secondary winding contains 15 turns and every wire consists of 120
strands of 0.1 mm. Thus, we obtain

We have the same copper losses as in the primary winding. Thus, the total
copper loss in the Litz wire is 0.902 W. This value is much lower than the
losses of the full wire design. The lower losses allow increasing the current
(and power) by a factor of 1.5, compared to the original design.

3. Interleaved Litz wire designs or more strands in the Litz wire can
still reduce losses. However, the use of Litz wire has other troubles
of heat transfer, insulation, and soldering.
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Fast Design Approach Including Eddy Current Losses 75

REMARKS CONCERNING LITZ WIRE DESIGNS
The window is more filled in the design with Litz wire. Also the leakage
inductance in the Litz wire design is much higher than in the sandwich
case, for a comparable rating. The increased leakage inductance may be an
advantage or has to be avoided, depending on the design strategy of the
converter.

2.2.1.3 Measuring and Validation of the Design

We made a transformer with the obtained specifications: core ETD39, material
grade 3F3, primary winding turn number N1 = 60, and secondary N2 = 15
(Fig. 2.19). The primary winding was insulated from the secondary winding
by two turns of 0.1 mm polyester insulation sheet.

We performed a no-load and a short circuit test on the built transformer.
For more information concerning no-load and short circuit tests, refer to
Chapter 11, Measurements.

• Short circuit test

By this test we obtain the copper losses. The test was realized at a temper-
ature of 100ºC. The measurement was done at the primary side and the
secondary was short-circuited, using a straight wire of the same type as the
secondary winding. The results of the test are shown in Table 2.1.

FIGURE 2.19
Photograph of the experimental transformer.
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76 Inductors and Transformers for Power Electronics

We see that the measured losses are lower than the calculated. The main
reason is that in the fast method we use the data of the manufacturer for the
mean turn length. If we introduce the real turn length, based on measure-
ments of the winding diameters, we obtain the following mean length per
turn values for the primary lT1 and for the secondary lT2:

lT1 = (15.2 + 0.411)π = 50.0 mm

lT2 = (20.2 – 1.349)π = 59.2 mm

Here we use the measured outer diameter of the primary winding, which is
15.2 mm, and the measured outer diameter of the secondary winding of
20.2 mm. The wire diameters are

d1 = 0.411 mm and d2 = 1.349 mm

If we use the obtained values in the design, we get the following results:

R1dc = 0.684 R2dc = 0.0166

Pcu1 = 0.629 Pcu2 = 0.907

Pcu = 1.536 W

The found value for the copper losses 1.536 W is very close to the measured
value of 1.59 W. The remaining difference can be attributed to mechanical
tolerances and the typical accuracy of about 3% of the proposed wide fre-
quency method. For comparison, the measured values of the DC resistances
at 100ºC are R1dcm = 0.729, R2dcm = 0.0159. For the primary winding, the mea-
sured DC resistance is higher than the calculated one, which also reflects in
the results for the losses.

The conclusion of the short circuit test is that the calculations and the
measurements give almost the same results.

• No-load test

By this test we obtain the core losses. The test was realized also at temper-
ature of 100ºC, at square wave voltage 100 V. The voltage was applied at the
secondary winding and the primary winding was open. The results for the
core losses are shown in the Table 2.2. The measured value of 1.328 W for
the core losses is lower than expected one because of three reasons:

TABLE 2.1

Results of the Short Circuit Test on the Calculated
and Built transformer

f, [kHz] I, [A] Pcu, [W]

100 0.90 1.59
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Fast Design Approach Including Eddy Current Losses 77

1. The practical number of turns is higher than the theoretic one
N1 = 58.8, thus the actual induction B is lower and the ratio reflecting
on the core losses is:

That is, the actual core losses are decreased with factor of 0.949.
2. There is tolerance between the manufacture data and the actual

cores data. There is also some safety margin between typical and
maximal values. Care should be taken if those safety margins are
set to zero.

3. A 50% duty ratio square wave voltage generates 10–15% lower losses
than a sine wave voltage for the same peak-to-peak induction. This
fact is shown in Chapter 3, Magnetic materials. Thus, we overesti-
mate the core losses, while using the data for sine waves in the case,
where we have square wave.

The conclusion of the no-load test is that the calculations do give a right
order of magnitude but that measurements show lower core losses, allowing
the core to be operated at somewhat higher ambient temperature or slightly
higher currents, or allowing some tolerances on the manufacture data.

2.2.2 Saturated Thermal Limited Design Example

The second example is an inductor for a buck (step-down) converter. A buck
converter is shown in Fig. 2.20 and the inductor current and voltage are
given in Fig. 2.21.

TABLE 2.2

Results of No-Load Test on the Calculated
and Built Transformer

f, [kHz] U, [V] Pfe, [W]

100 100.4 1.328

FIGURE 2.20
A buck (step-down) DC/DC converter.
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78 Inductors and Transformers for Power Electronics

The purpose of the inductor is to reduce the current ripple to the load.
This purpose defines a desired value of the inductance L. Usually, an air gap
is used in order to prevent saturation of the core by the peak inductor current
iL,peak = IL,DC + ∆ipeak. The design results usually in a saturated thermal limited
design. The core losses are smaller than the copper losses.

First, we calculate the parameters of the inductor used in the buck DC/DC
converter (Fig. 2.20). The maximum power output is 450 W. However, a duty
ratio of 50% results in the largest current ripple for the given frequency, so
it can be considered as a worst-case design. We need a desired induction
value and the RMS values of the voltage and current of the inductor. The
specifications of the converter are

Input voltage:
Output voltage:
Operating frequency:
Output current:
Peak-peak inductor ripple current

The duty ratio of the transistor control D is:

 ⇒ 

The inductor DC current component is

The peak magnitude of the ripple in the inductor current  is

FIGURE 2.21
Voltage and current across the inductor in a
step-down converter.
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Fast Design Approach Including Eddy Current Losses 79

so, we can find the desired inductance value:

, ⇒  ⇒ 

The AC RMS value of the inductor current is

The RMS value of the inductor current is

The RMS value of the inductor voltage is

All the input parameters of the inductor under design are

Wanted inductance value:
AC RMS inductor current:
Total RMS inductor current:
RMS inductor voltage:
Operating frequency:
Operating temperature:

2.2.2.1 Design Procedure

Now we follow the design steps.

1’) We find Bpp by

2’) We find the size parameter ach:
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80 Inductors and Transformers for Power Electronics

Here we use A1 = 1 × 104. We choose a core shape ETD 34, material grade
3F3 [6] with the largest dimension a = b = 0.034 m. The core parameters are

3’) We find the specific core losses Pfe,sp,v = 33 × 103 from graphs for f = 70 kHz
and Bp,g = Bpp/2 = 0.175/2 = 0.0 875 T. 
Then Pfe = Pfe,sp,v Vc = (33 × 103) (7.64 × 10−6) = 0.25 W

4’) Find the total heat capability of the component:

5’) Check the ratio Pfe/Ph:

The design is clearly a saturation thermal limited case.
6’) Estimate the allowed copper losses using Equation (2.59):

7) Calculate the number of turns. 
The number of turns is found by Equation (2.13), using

We choose 
8) Distribute the copper losses.

In an inductor there is only one winding.
9) Determine a wire diameter:
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Fast Design Approach Including Eddy Current Losses 81

The next available wire diameter in the table in Appendix C is 0.71 mm, the
outer diameter is 0.789 mm. We try the design the 0.71 mm wire, directly
wound on the coil former.

10) Calculate the actual ohmic and eddy current losses

In principle, we could sum over all individual current harmonics to find
accurate eddy current losses. In this design we avoid that complication. We
calculate the apparent frequency, which generates the same (di/dt)rms as in a
sine wave:

We start calculating kc using the graphs.

The equivalent frequency is

The distance from center leg to outer leg is 7.7 mm (measured on the core).
The diameter of the coil former is 13.4 mm. The diameter of the center leg
is 10.7 mm. The number of layers is almost 2 (we spread the wires of the
second layer). With this information we can calculate κ.

We first consider the 2-D solution. The corresponding kF is 6.31 found from
the graph in Fig. 2.8. We read kin from the graph (Fig. 2.12, η = 0.9) for the
found equivalent frequency feq = 155.6 kHz. The value of λ is found as
λ =  = 0.1737. We find kin = 1.76. Then we obtain the eddy current loss
factor
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82 Inductors and Transformers for Power Electronics

Equation Approach

The packing factor η for the chosen 0.71 mm wire (in the layer direction for
inductors) is η = 0.71/0.789 = 0.899, which is close to 0.9. Using the full
equation of Chapter 2, the found value of kc is 27.4.

We calculate the DC resistance:

Then the copper losses are

11) Check if the copper losses are lower than the allowed copper dissi-
pation: 3.14 W > 1.88 W

The resulting copper losses are too high and they are concentrated close to
the air gap, which could create a hot spot at the middle of the coil. Using a
smaller diameter wire generates too much ohmic loss; a design with a larger
wire diameter results in even worse eddy current losses.

12) Is improvement possible?
1. A solution is to keep some distance between the winding and the

air gap, e.g., to increase k. If the winding is wound on a 19.6-mm
diameter coil former with the same wire diameter, then k = 0.468.
Thus, we have the field factor kF = 1.48 and the copper losses are
1.85 W.

2. Another way to improve the design is to use an appropriate Litz
wire, so that the losses are sufficiently low. For example, a design
with Litz wire of 60 strands of 0.1 mm diameter, k = 0.21, kF = 4.72,
and kc = 0.666 results in 1.39 W total copper losses.

13) We calculate the resulting filling factor.

The winding area is 123 mm2 and the filling factor is about 0.1 for the full
wire design and 0.12 for Litz wire design.

14) Check if the core size is not too high.

A design with a smaller core (ETD29) can be possible but only using Litz
wire.

15) Calculate the air gap length.

To find the length of the air gap, we use the McLyman equation, and the
obtained result is: lg = 0.639 mm, without correction for fringing field. The first
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Fast Design Approach Including Eddy Current Losses 83

calculated value of the fringing factor is F = 1.28. The final air gap is found
using the iteration approach. We obtain Fnew = 1.357, which is close to the above
value. It is clear that the correction for fringing field was necessary. The final
air gap is lg = 0.867 mm.

In practice, the air gap is sometimes adjusted until the inductance of 375 µH
is reached.

REMARK
The accuracy of the previous calculations is limited because of the limited
accuracy of the mechanical dimensions (wire diameter, mean length per turn,
core dimensions) and the ratio fap/f.

2.2.2.2 Measurements and Validation
of the Eddy Current Losses

The main concern in the design is the eddy current loss. So, in the tests a
higher AC current is applied,  to improve the measurement
accuracy.

Three inductors are built and measured:

• Inductor 1: with 0.69 mm wire, wound directly on the coil former,
so the winding is with 13.3 mm diameter, Fig. 2.22,a.

• Inductor 2: with 0.71 mm wire, wound in a winding with diameter
19.6 mm, Fig. 2.22,b.

• Inductor 3: using Litz wire of 60 strands of 0.1 mm wire diameter,
wound directly on the coil former, Fig. 2.22,c.

Adapted Calculations

We measured all the dimensions: the copper wire diameter (by measuring
the DC resistance), the outer and inner diameters of the winding, the width
of the winding, and the turn length. Then we used the obtained values to
recalculate the losses. In Table 2.3 we give the winding dimensions and the
values of k and kF for the three measured designs.

Oscilloscope Measurements

We use the oscilloscope method, see Chapter 11 Measurements, for more
details.

• Core loss measurements. The ferrite losses are low and a separate
test is done to evaluate them. The magnetic path is closed (no air
gap) and only an AC current component is applied generating the
same flux as in the case with an air gap. Thus, the measured losses
are the core losses (the copper losses are neglected as in a no-load
test).

IL AC rms, , A,= 1
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84 Inductors and Transformers for Power Electronics

• Copper loss measurement. We apply a 70-kHz, 50% duty ratio square
wave in order to obtain 1A RMS value (3.46 A peak-to-peak).

The obtained results are shown in Table 2.4 and compared with the calcu-
lated results using the equations in Chapter 2 and the equations in Chapter 5,
which are more accurate.

FIGURE 2.22
The three built and measured inductors, the
core is ETD34, turn number N = 47:
a) wire diameter d = 0.69 mm, the winding
wound directly on the coil former;
b) wire diameter d = 0.71 mm, the winding
wound in a distance from the coil former;
c) Litz wire, 60 strands of 0.1 mm wire diameter,
the winding wound directly on the coil former.

(a)

(b)

(c)
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REMARK
The typical error of the oscilloscope measurements, described in Chapter 11,
is about 0.15 W at the applied test frequency of 70 kHz. This explains the
difference in the calculations and measurements.

2.3 Conclusions

We know that the design of magnetic components for power electronics
comprises many steps and skills, but eddy currents usually determine the
conductor choice in today’s transformers and inductors. Simple rules, such
as increasing the diameter of the wires to reduce copper losses, are not valid
any more. Without a clear approach, the design of a magnetic component
including eddy currents could be a labyrinth, which may result in tedious
trial and error. This chapter guides the designer throughout the designs of
inductors and transformers including eddy currents. Using graphs one can
get a fast design, even with a simple calculator. More accurate solutions can
be obtained using the full equations for kc directly. This approach can be
implemented by calculation programs (e.g., MathCAD).

The accuracy of the presented approach for calculating eddy current losses is
already sufficient in many cases, although we propose a method using a limited
amount of mathematical tools. We do not apply numerical methods directly; we
use them in the derivation and validation of the proposed equations.

TABLE 2.3

The Winding Dimensions, the Values of κ and kF for the Three 
Measured Inductors

Design case
Wire diameter,

mm
Winding diameter, mm

κ kFouter inner

Inductor 1 0.69 13.3 16.3 0.165 6.57
Inductor 2 0.71 19.6 22.7 0.468 1.48
Inductor 3 60 × 0.1 13.3 18.7 0.21 4.72

TABLE 2.4

The Calculated and Measured AC Losses of the Three Experimental 
Inductors, the Core Losses are Pfe = 0.75 W for all the Cases

Design 
case

Calculation, 
Ch2

Calculation, 
Ch5

AC copper losses
by scope

measurements

Inductor 1 3.03 2.99 2.65
Inductor 2 1.24 1.17 1.13
Inductor 3 0.196 0.196 0.27
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86 Inductors and Transformers for Power Electronics

The given loss calculation method is based on 2-D analytical expressions
and improved by finite element calculations. This approach results in good
accuracy as well in both low and high copper filling factors and in low and
high frequency. The method is an improvement of existing methods such as
Dowell type [4], which are not applicable at low copper filling factors, very
high frequency, and not in inductor designs!

In practice, the final accuracy in loss calculations is more limited by the mechan-
ical tolerances of ferrite cores and windings than by the equations themselves.

Many effects are reflected in the proposed design approach. The following
basic conclusions are derived:

• A design where saturation limit is reached is different from the cases
where there are only thermal limits.

• A high total number of turns N reduces the core losses, but it
increases the eddy current losses by about N3, as both the transverse
field and the wire length are increased. This effect often appears in
designs where the winding area is not filled.

• At low frequency approximation designs (d < 1.6d ) the losses increase
with the 4th power of the diameter of the wires, and they are qua-
draticly dependent on frequency.

• A good approach to reduce the transformer losses is to use inter-
leaved (sandwiched) windings. In such a design the MMF is reduced
for the same length of the field line for the outside windings, and
the field line length is increased for the inside winding.

• In high frequency transformers, single layer winding designs do per-
form better than more layer designs at high frequency. Thus, if the num-
ber of turns and the wire size allow it, the single layer design should
be preferable. Increasing the wire diameter in a single layer transformer
reduces the losses, even if the diameter is large compared to the pene-
tration depth. But this last fact is not true for more layer windings.

• In gapped inductors, with high frequency currents, winding close
to the air gap should be avoided, unless Litz wire is used. The
combination of Litz wire and some distance to the air gap further
improves the design. Increasing the wire diameters results in higher
eddy current losses in almost all practical cases of inductor designs.

Appendix 2.A.1 Core Size Scale Law for Ferrites in
Non-Saturated Thermal Limited Design

The core dissipation capability Ph,fe based on natural convection in air is
proportional to the square of the scaling parameter ach:

(2.A.1)P ah fe ch, ~ 2
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The core losses Pfe are proportional to the induction in power b and to the
volume of the core:

(2.A.2)

Equalizing  we obtain

(2.A.3)

Equalizing the copper dissipation capability Ph,cu and copper losses Pcu

(2.A.4)

, (2.A.5)

we obtain the following expression for current density J:

(2.A.6)

The RMS value of the MMF is

(2.A.7)

Using the obtained dependence (2.A.7), we get the volt-amps rating of the
component:

(2.A.8)

where
Φ is the RMS value of the magnetic flux in the core, 

From the equation (2.A.8) it follows that

(2.A.9)

Using Equation (2.A.9) for β = 2, we obtain γ = 3. In more accurate models
the dissipation is less proportional to the surface (for instance 
and ), but also, β is usually higher than 2 for ferrites, usually
β = 2.4 − 3. Even then, for a case with β = 3 and thermal dissipation 
we again obtain γ = 3.

P B afe ch~ b 3

P Ph fe fe, = ,

B ach~ /−1 b

P ah cu ch, ~ 2

P J acu ch~ 2 3

J ach~ /−1 2

MMF a J ach ch~ ~ .2 1 5

V I MMF A a B a A a a A a Aarms rms
allwindings

ch ch ch ch ch ch∑ × ( ) = = =− −~ ~ . . / . /Φ 2 1 5 3 5 1 3 5 1b b g

Φ ~ a Bch
2

g b= −3 5 1. /

P ah fe ch,
.~ 1 8

P ah cu ch,
,~ 1 8

P ah ch~ ,.1 8
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88 Inductors and Transformers for Power Electronics

Appendix 2.A.2 Eddy Current Losses for Wide Frequency

2.A.2.1 Approximation of kc

The eddy current loss factor kc is defined as

(2.A.10)

In Chapter 5 Eddy Currents, a function presenting kc is derived, which gives
eddy current losses in round wires. It combines

• The analytical low frequency solutions
• The analytical solution for a round, current carrying free wire
• The analytical solution for a round conductor in a transverse field
• The high filling high frequency rule
• More than 100 well-chosen finite element computations to tune the

remaining parameters, matching better than 10%, typically 3%; the
computations are based on infinite layers with square fitting

The function of kc takes into account the major part of all 2-D effects and it
is applicable for all values of η and λ and for all frequencies from very low
to very high.

2.A.2.2 Transformers

2.A.2.2.1 Direct Calculations

For transformers, the function is expressed as

(2.A.11)

where the quantities mE, η, and λ are already defined in Chapter 2

A value of λ = 0.5 can be chosen for Equation (2.A.11). For lower values,
the result is almost identical. For λ tending to 1, the eddy current factor kc

is slightly higher, but this increase is mainly due to the tuning with finite
element models based on square fitting.

The parameters and functions in Equation (2.A.11) are described as follows:

• The coefficient kF, named as field factor, is derived in Chapter 5. For
transformers it is close to 1 (for η > λ, which is usually the case in
transformers).
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Fast Design Approach Including Eddy Current Losses 89

• The parameter ζ is the ratio between diameter and penetration
depth, and it is used in defining the functions FT and FA:

(2.A.12)

• The function FT is given as

(2.A.13)

where

This relation is usual with transformers.

• The function Fi represents the dipole effect of the induced eddy
currents. This effect has the tendency to reduce the losses at high
frequency and high filling in the direction of the layer.

• The function χ(ζ ) used in Equation (2.A.13) represents the influence
of the penetration depth on the dipole effect and it is defined as

(2.A.14)

• The function FA is expressed as

(2.A.15)

• The quantities GT and GA are given as

(2.A.16)

(2.A.17)

The function FT and the quantity GT are introduced to realize a 1% approx-
imation of the exact analytical solution of the losses in a transverse field (the
approximation avoids the use of Bessel functions and it is more flexible).

The functions FA and the quantity GA are introduced to realize a 0.4%
approximation of the exact analytical solution of the losses of a free current
carrying conductor.
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90 Inductors and Transformers for Power Electronics

Note that

• ζ is proportional to the root of the frequency, the consequence is that
kc is proportional to the square of the frequency at low frequency
and to the root of the frequency at high frequency

• For transformers with concentric windings, kF is close to 1, even
when the coil ends (3-D effect) are considered

Although the equations are not very simple, they do not use complicated
functions. They are very fast by their analytical nature.

2.A.2.2.2 Graphical Transformer Method

The presented direct calculation is more accurate than the graphical method.
However, for simple calculations some details can be neglected and a function
ktr is derived to allow a graphical representation:

(2.A.18)

To display this function, a reference diameter (0.5 mm) and a reference
resistivity (23 × 10−9 Ωm) are chosen. The diameter is quite typical in power
electronics, whereas 1mm wires are already large. The resistivity corresponds
to copper at 100ºC, which is a normal temperature in power electronics
designs. Other diameters and resistivities can be chosen by calculating an
equivalent frequency, based on the fact that the result is identical for a
given ζ. Curves are given for mE = 0.5, 1, 2, and 10, see Fig. 2.10 and Fig.
2.11. For mE > 2, the curves are almost identical. Using these graphs we obtain
ktr and then, substituting it into Equation (2.A.18) we find kc.

2.A.2.3 Inductors

2.A.2.3.1 Direct Calculations

In inductors, due to the presence of air gaps, the transverse field is usually
much higher than in transformers for similar windings. Also, half-layer
solutions are not realistic in inductors. This means that the local fields can
be neglected, which simplifies the expression of kc to

(2.A.19)

More accurate presentation is given in Chapter 5. 
For inductors, the field factor kF is highly dependent on the distance

between the windings and the air gap. The dependence is shown graphically
in Fig. 2.8 and it is also derived in Chapter 5.
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Fast Design Approach Including Eddy Current Losses 91

The full field problem in inductors is quite involved as the leakage field
has main components in the layer direction as well as in the direction per-
pendicular to it. If the field components are parallel to the layers, the field
is reduced (screening effect). If the fields are perpendicular to the layer, the
losses are increased (tunneling effect).

A further simplification is not to take these effects in account and to take
the solution of eddy current losses of a free wire in a transverse field, without
considering the field induced by the eddy currents of other wires. This
simplifies the expression of FT to FTb.

(2.A.20)

where
FTb is the simplified presentation of FT for a single wire

REMARK
For inductors a simplified presentation of GT is possible instead of Equation
(2.A.16). It is given as

(2.A.21)

Note that with those simplifications, the solution is not dependent on η and
λ anymore.

2.A.2.3.2 Graphical Inductor Method

For simple calculations some details can be neglected and a function kin is
created to allow a graphical representation:

(2.A.22)

With the simplifications

(2.A.23)

To display this function, a reference diameter of 0.5 mm and a reference
resistivity (23 × 10−9 Ωm) are chosen.

The factor kF , is mainly dependent on the distance to the air gap, winding
width, and thickness of the winding. For a given distance to the air gap,
a 2-D modeling with yoke and side legs (close to the pot cores) results in some
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92 Inductors and Transformers for Power Electronics

overestimation of the kF value. The lowest value of kF corresponds to coil
ends, where neither yoke nor side legs are present. In practical cores (EE,
ETD cores), a situation in between the two extreme cases is observed, so we
advise taking the average value.

We define a parameter k, which is relevant to the factor kF:

(2.A.23)

The function kF can be approximated as

(2.A.24)

Using the graphs, we obtain kin and kF and then, substituting them into
Equation (2.A.22), we find the wanted value of kc.

Appendix 2.A.3 Mathcad Example Files

Here we present a MathCAD example file, which calculates eddy current
losses in a transformer and an inductor windings, see Fig. 2.A.1. The two
windings are identical with the same number of turns and wire diameter
0.5 mm. The windings are wound on the same core and subjected to the
same currents and frequency.

The MathCAD example file for calculating eddy current losses in a trans-
former is shown in Fig. 2.A.2. Figure 2.A.3 shows the MathCAD example
file for calculating eddy current losses in an inductor.

FIGURE 2.A.1
The transformer a) and inductor b) constructions used in the MathCAD example files.
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FIGURE 2.A.2
MathCAD example file for calculating eddy current losses in a transformer.
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94 Inductors and Transformers for Power Electronics

FIGURE 2.A.3
MathCAD example file for calculating eddy current losses in an inductor.
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3
Soft Magnetic Materials

In this chapter we present different magnetic materials used in power elec-
tronics. The manufacturing process, magnetic properties, and specific appli-
cations are discussed. The losses in the magnetic materials are considered
in detail since they are very important for selection of the right material type
and size in the design of high efficiency magnetic components.

Iron-based soft magnetic materials, such as laminated cores, powdered
iron, and carbonyl iron cores are considered together with amorphous and
nanocrystalline materials. Amorphous and nanocrystalline materials com-
bine a high peak induction and low high frequency losses.

Ferrites are still a common choice in power electronics, as they have low
losses in a wide frequency range (up to 3 MHz for power ferrites) because
of their high specific resistivity (usually 1 Ωm and higher).

In this chapter the peak values of the induction are used in the discussions.
The permeabilities are all relative except for the values of m and m0.

3.1 Magnetic Core Materials

The history of magnetism begins centuries before Christ with the discovery
of the magnetic properties of a natural mineral called magnetite (Fe3O4). In
1600 William Gilbert published the first scientific study on magnetism: Die
Magnete. The new science of electromagnetism was founded by the later
contributions by Oersted, Faraday, Maxwell, and Hertz.

The development of soft magnetic materials for industrial purposes started
with laminated iron and continues with powdered and carbonyl iron, fer-
rites, amorphous materials, and the newest nanocrystalline materials. The
historical development of the soft magnetic materials is shown in Fig. 3.1.

In power electronics there are two basic classes of materials used for
magnetic cores for transformers and inductors:

• The first class of materials are alloys of iron and they contain some
amounts of other elements, such as silicon (Si), nickel (Ni), chrome (Cr),
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98 Inductors and Transformers for Power Electronics

and cobalt (Co). These materials are referred to as ferromagnetic
materials. The values of the saturation induction begin at 1.4 T, and
for some of the materials the values are near 1.9 T. The electrical
resistivity of these alloys is only slightly higher than good conductors,
such as copper or aluminum.

• The second class of magnetic materials are ferrites (ferrimagnetic).
Ferrites are ceramic materials, basically soft magnetic oxide mixtures
of iron and other magnetic elements, such as manganese (Mn), zinc
(Zn), nickel, and cobalt. They are characterized by a high resistivity.
The order of magnitude of the resistivity is at least 106 higher than
the first class.

Depending on the applications, the desirable properties of the magnetic
materials are different. In most soft magnetic material applications high per-
meability and saturation induction and low coercivity and power loss are
preferable. Mechanical properties of the materials are also important. Usually
it is not possible to have all the desirable properties in a single material, so for
a given application the choice of the material is usually a compromise.

3.1.1 Iron-Based Soft Magnetic Materials

In this section we discuss the first class of materials often referred to as
ferromagnetic materials.

3.1.1.1 Laminated Cores

The magnetic cores that use magnetic materials with high electrical conduc-
tivity are made from stacks of many thin laminations, electrically insulated
from each other by a thin insulating coating. Laminations are used to reduce
the eddy currents in AC applications and in DC applications with superim-
posed AC components. In pure DC applications, the core can be laminated
to reduce the manufacturing cost. For laminated cores, a core stacking factor
is defined as the ratio of the cross-sectional area of the soft magnetic material
to the cross-sectional area of the core (typical values are 0.9 to 0.95).

FIGURE 3.1
The history of soft magnetic materials.
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Iron-Silicon Alloys

The main purpose of adding silicon to iron is to reduce the conductivity of
iron and in that way to reduce the eddy-current loss in the alloy. The second
beneficial effect of alloying iron with silicon is reducing magnetostriction
and, thus, reducing the acoustic noise caused by cyclic stresses resulting
from magnetostriction strains in AC applications.

The disadvantages of alloying silicon with iron are

• decreasing the saturation induction
• high silicon content results in a very brittle core
• reducing the life time of the punched material

The normal high silicon content is about 3%; above this content the mechan-
ical processing is more complex. The practical useful limit of silicon content
is about 6.5%. This content combines low losses with a low magnetostriction.

Grain-Oriented Silicon Steel

In the laminated cores, the magnetic flux passes in the direction along the
laminations and it is beneficial to provide the highest permeability along this
direction (in the plane of the laminations) and to decrease the permeability in
the direction perpendicular to lamination plane. Grain-oriented silicon steel
is mainly used for transformer and inductor cores. In general, iron cores are
called isotropic when the same magnetic properties are observed in the rolling
direction and in the direction perpendicular to it. Grain-oriented steel is aniso-
tropic with high permeability and low loss in the rolling direction.

Over the last years the reduction of the core loss of grain-oriented silicon
steel has been achieved mainly by the improvement of crystalline orientation,
the development of thinner-gauge materials, and the development of mag-
netic domain refining techniques. According to [1], the extremely low core
loss of 0.35–0.65 W/kg at 1.7 T and 50 Hz is obtained for 3.5% silicon grain-
oriented steel of 0.15 mm thickness.

Iron-Nickel Alloys

There are three groups of nickel-iron alloys used for magnetic cores [2]. The
first alloy contains 80% nickel (Permalloy, Mumetal) and exhibits the highest
permeability. The alloy consisting of 50% nickel (Isoperm) has the highest
saturation induction, near 1.6 T. The electrical resistivity of the alloy consist-
ing of 36% nickel (Invar) is the highest and is about 0.7–0.8 µΩm.

The applications of iron-nickel alloys are in the transformers and inductor
cores at audio frequencies. Some of the high permeability alloys (Mumetal)
with relative permeability up to 300,000 are used for magnetic screening.

Iron-Aluminum and Iron-Cobalt Alloys

Other iron alloys are iron-aluminum and iron-cobalt alloys. The alloy
Fe65Co35 exhibits the highest saturation induction of about 2.45 T and it is
used in electromagnet pole tips.
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100 Inductors and Transformers for Power Electronics

Manufacturers of special grades of magnetic strip alloys are Magnetics [3],
Vacuumschmelze [4],[5], NKK, and TDK.

3.1.1.2 Powdered Iron and Carbonyl Iron Cores

Powdered Iron

Iron powder is obtained directly from iron with low carbon content. The
iron powder is resin bonded, which also limits the temperature. Powdered iron
cores consist of small iron particles electrically isolated from each other. The
size of the particles (less than a skin depth in their largest dimension even
at moderate frequency) results in a quite high resistivity of the material and,
thus, it leads to low eddy currents. In general, there are two kinds of eddy
currents in powdered iron cores:

• eddy currents limited in the volume of the particles (micro currents);
• eddy currents in the bulk material (macro currents).

The powdered iron has a high saturation induction in the range 1–1.3 T.
The usual initial permeability is in the range 1–200 [6].

Typical applications of powdered iron are DC filter inductors, where a
high induction and a low permeability are possible and some damping (loss)
is tolerated.

Manufacturers of iron powder cores are Magnetics [3] and Micrometals [7].

Carbonyl Iron
Carbonyl iron cores are obtained by heating carbonyl iron Fe(CO)5. The
carbon monoxide splits off and the material has a microspherical, onionlike
structure. The obtained material still has 0.8% carbon. This carbon has an
adverse effect on hysteresis losses. To obtain low carbon contents, a further
reduction of the carbon is performed afterward. The material has a relatively
low permeability, which is in the range 1–50. Specific advantages of the
carbonyl iron are its almost constant permeability versus magnetic field and
frequency and its temperature stability (–55° + 150°C). The quality factor Q
(Q = jwL/R) is very high even for frequencies above 100 MHz. The saturation
induction is high (above 1.9 T). The losses per volume are higher than the
ferrite’s losses at the same induction level. The double logarithmic core loss
graphics available in data sheets are straight lines. The following fit equation
is often used to present the graphic data:

Ploss = kfe fa Bb (3.1)

where
Ploss the average power loss per unit volume
B is the peak induction
f is the frequency of the sinusoidal excitation

In equation (3.1) typical values for carbonyl iron are kfe = 0.3–0.7, a = 1.15,
b = 2.1–2.2 this corresponds to a loss of 1000–3000 kW/m3 at 0.1 T, 100 kHz.
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Soft Magnetic Materials 101

In comparison, good ferrites have 50–100 kW/m3 at 0.1 T, 100 kHz. At several
MHz, and higher induction, the difference is less.

The carbonyl iron shows low hysteresis losses up to very high frequencies
(10 MHz) and can be used in high frequency applications. Main applications
are in EMI/RFI devices and in high linearity RF current sensing.

Typical shapes for powdered iron and carbonyl are ring cores and pot cores.
The advantage of powdered iron and carbonyl iron soft magnetic materials

is that they can be easily processed (drilling, sawing, grinding) without the
need of special tools. The tolerance of the dimensions of the powdered iron
and carbonyl iron cores is lower in comparison with ferrites.

3.1.1.3 Amorphous Alloys

Amorphous soft magnetic materials are alloys of iron and other magnetic or
transition metals such as cobalt, nickel, boron, silicon, niobium, and manganese.
The alloys are known mainly by the following trade names: VITROVAC [4],
METGLAS [8].

Production Process and Microstructure Characteristics
Amorphous alloys exhibit special chemical, mechanical, and magnetic prop-
erties due to their amorphous structure. Atoms in the amorphous structure
are in complete disorder and no crystalline order exists in the structure. This
type of structure is typical for liquids, molten metals, or glass. Amorphous
metals are therefore called metallic glasses. The alloys are produced as thin
ribbons directly from a melt. The hot molten metal with a temperature of
around 1300°C is compressed on a cooling roller that rotates at high speed
(100 km/h) (Fig. 3.2). When the liquid metal is rapidly quenched, the amor-
phous structure freezes up to a certain extent. In the manufacturing process
the high cooling speed of about 106 K/s prevents the formation of crystals
and the amorphous structure is kept for a wide temperature range.

FIGURE 3.2
Rapid quenching technology for producing amorphous thin ribbon—the first step for obtaining
nanocrystalline thin ribbon structure.
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102 Inductors and Transformers for Power Electronics

Magnetic Properties

Amorphous materials exhibit linear hysteresis loops with low coercivity and
a saturation induction of 0.7–1.8 T [7l]. The values of the saturation induction
are almost completely retained at high frequency. The initial permeability of
the material (up to 150,000 for some alloys) as well the remanence induction
ration Br/Bs are adjustable in a wide range by field annealing. By annealing
the amorphous ribbon with high frequency, high values of the DC perme-
ability are obtained, such as a DC permeability up to 800,000 for the iron-
nickel based alloy 2826MB METGLAS [7]. Although the permeability
reduces at high frequency, a relative permeability of about 1000 is still
attained even at 1 MHz. The low permeability alloys have a wider frequency
range and some of them are applicable above 1 MHz. The amorphous mate-
rials have relatively low losses with small temperature dependence or even
a negative temperature coefficient.

The Curie temperature (the temperature at which the material loses its
magnetic properties) of the amorphous materials is in the range of 350–450°C.

Applications

The small thickness of about 10–50 µm combined with the relatively high
resistivity of 1.2–2.0 µΩm (for comparison, the resistivity of pure iron is about
0.08 µΩm) makes the material suitable for high frequency applications. For
high frequency applications, iron-based cores, such as MicroLite® and Pow-
erlite® (based on Metglas materials), and cobalt-based cores, such as VITRO-
VAC ® and MagnaPerm® are used. The MicroLite® toroidal cores are available
with distributed gap, which results in a distinct RFI advantage compared to
conventional air gapped cores. Other high-frequency applications of amor-
phous metal cores are for common-mode RFI suppression chokes; flyback
and push-pull transformers, active power factor correction common mode
chokes, saturable reactors, and uninterruptible power supply inductors; high
power outdoor industrial ballasts; and welding power supplies.

Low frequency applications of amorphous iron-based cores are in utility
and industrial energy-efficient transformers as they have lower losses than
the best grain-oriented steel grades (about 0.25 W/kg at 1.4 T, for amorphous
materials). The amorphous cores permit very low no-load losses in trans-
formers. The efficiency of amorphous iron-based dry-type transformers is as
high as 99.5% [10]. The high permeability makes them a preferred material
for current sensors in leakage current detectors.

Shapes

Amorphous alloys are mainly available in toroidal cores. Usually the cores
are supplied epoxy coated and suitable for direct winding. Air-gapped and
U-shape cores are also available [7]. U-shaped cores are also referred to as
C-cores or cut cores, when they are made from a bobbin. For power elec-
tronics, the external dimensions today are from a few mm up to 130 mm for
outer diameters and between 8 mm and 35 mm for the core height. The core
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stacking factor, defining the ratio between the effective cross-sectional area Ae

and the physical cross-sectional core area Ac (without coating) ksf  = Ae/Ac, is
around 0.8. The finished core sizes and the finished core cross sectional area
Af define the total core filling factor kff = Ae/Af, which is in the range 0.44–0.60.

In fact, the total core filling factor is equal to the product of the core stacking
factor and the core packaging factor (coating).

Example
Fig. 3.3 shows the cross-sectional view of a tape wound amorphous core [4].
The effective iron cross-sectional area given in the manufacturer data sheets
is Ae = 190 mm2. The core stacking factor ksf is

(3.2)

where
Ae is the effective cross-sectional area of the soft magnetic material
Ac is the physical cross-sectional area of the magnetic core

The total core filling factor kff is then

(3.3)

where
Af is the finished core cross-sectional area (in this case, after coating of the core)

The effective filling factor is much lower than for coated ferrite ring cores.
As the density of metallic cores is high (about 7500 kg/m3) and the density
of ferrites is about 4800 kg/m3, the resulting average density of a wound core
becomes similar to the average density of ferrite cores.

3.1.1.4 Nanocrystalline Magnetic Materials

In the last decade much work has been done with the aim of introducing
new soft magnetic materials, called nanocrystalline materials, which
enjoy more and more acceptance in modern power electronics. The first

FIGURE 3.3
Core dimensions of core type 100-W342, alloy VITROPERM 500 F.
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104 Inductors and Transformers for Power Electronics

nanocrystalline material was invented in 1988 by Yoshizawa et al. from
Hitachi Metals Laboratory [11]. The alloy composition originally proposed
is Fe73.5Cu1Nb3Si13.5B9.

The advantages of iron-based nanocrystalline materials lie in the high
values of the saturation induction, the reduction of volume of the magnetic
components, the low heat dissipation, and the stable operation up to 120°C.

The first commercial names of nanocrystalline materials are known as
VITROVAC and VITROPERM from VAC [4] and FINEMET from Hitachi
Metals [9].

Production Process and Microstructure Characteristics

The material is a two-phase structure consisting of an ultra fine grain phase of
FeSi embedded in an amorphous minority phase. During the production pro-
cess, a continuous, originally amorphous ribbon of only 20–25 micrometers in
thickness is produced. The nanocrystalline structure is obtained by a specific
annealing procedure usually under the presence of a transversal and/or longi-
tudinal magnetic field. The thermal treatment affects the magnetic properties as
a consequence of the structural changes produced within the amorphous state.
During the thermal treatment at temperatures about 500° to 600°C, the initially
achieved amorphous structure forms ultrafine crystals with a typical size of only
7–20 nm and therefore the material is called nanocrystalline. The soft magnetic
properties of the nanocrystalline material combine the high saturation induction
of conventional silicon steel and low high-frequency losses of ferrites.

The material itself is brittle and additional mechanical protection is nec-
essary, provided by suitable epoxy coating or by plastic core boxes. There
are several nano-ribbon trade names: VITROPERM with nominal compo-
sition Fe73.5Cu1Nb3Si15.5B7 [4,12,13], FINEMET with nominal composition
Fe73.5Cu1Nb3Si13.5B9 [14], NANOPERM consisting of Fe-M-B (M = Zr, Nb at
5–7%, and B of 2–6%) [15, 16]. The major manufactures of nano-ribbons are
in Germany and in Japan.

Magnetic Properties

Nanocrystalline soft magnetic materials exhibit a linear hysteresis loop with
coercivities smaller than 2 A/m and a saturation induction of 1.2–1.5 T [15].
The initial permeability of the material is adjustable in the range of 15,000
to 150,000. The remanent induction ratio Br/Bs is also controllable depending
on the specific needs of the different applications. By magnetic field anneal-
ing with transverse (perpendicular to the circumferential direction of a core)
and longitudinal (parallel to the circumferential direction of a core) fields,
almost rectangular and flat loops can be obtained.

The properties of nanocrystalline materials and their possible features are
summarized in Fig. 3.4.

The material reveals a relatively high electrical resistivity of about 1.2 µΩcm.
Combined with a ribbon thickness of 15–25 µm, this results in a proper
frequency dependence of the permeability and low eddy current losses. The
permittivity of the material is low due to its metallic conductivity. The low
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core losses and the static hysteresis properties yield a favorable dynamic
behavior of the nanocrystalline materials up to 150 kHz and more.

Figure 3.5 shows a graph of the losses as a function of the induction for
two frequencies. It is remarkable that for the nanocrystalline materials the
losses are almost purely quadratic with the induction.

Temperature Behavior

The dependence of the initial permeability mi of the nanocrystalline soft
magnetic materials on the temperature is almost linear and the difference in
the temperature range, –40°C to 120°C, is about 6% [13]. For comparison,
the same curves of ferrites and permaloys show a high level temperature
dependence, which has to be additionally considered during the component

FIGURE 3.4
Properties of nanocrystalline materials and their possible feature.

FIGURE 3.5
Specific core losses of nanocrystalline material VITROPERM and amorphous material VITRO-
VAC, ribbon thickness 20 µm, with permission of Vacuumschmelze, GMBH.
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106 Inductors and Transformers for Power Electronics

design. The Curie temperature of the material is about 600°C and addition-
ally contributes to its temperature stability. Figure 3.6 shows the permeability
as a function of the frequency for some nanocrystalline materials.

Shapes

The material itself is brittle and additional mechanical protection is neces-
sary, provided by suitable epoxy coating or by plastic core boxes. Nanocrys-
talline cores are made in similar shapes as amorphous materials: toroidal
cores, air-gapped, and U-shape cores. The core stacking factor ksf is typically
about 0.8 and the total core filling factor kff is in the range 0.45–0.55.

Applications

There is no doubt that the nanocrystalline soft magnetic materials are a good
choice for magnetic component design in electronics and power electronics
when their price is competitive.

1. Power electronics
The applications of nanocrystalline materials with the most added value

are these with high peak induction and EMC applications, where a high
permeability in a wide range is useful. The nanocrystalline materials can
combine a high permeability in the 100 kHz range together with the 10 MHz
range, which is difficult to obtain with ferrites.

Typical applications of the nanocrystalline soft magnetic materials are
(Fig. 3.7)

FIGURE 3.6
Permeability of nanocrystalline material VITROPERM, ribbon thickness 20 µm, with permission
of Vacuumschmelze, GMBH.
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• power transformers in SMPS (switched mode power supplies)
• distribution transformers
• common-mode chokes
• high precision current transformers
• signal transformers

In comparison with amorphous alloys, nanocristalline alloys are a better
choice for power transformers and common mode chokes because of the
higher saturation induction and the lower cost [17]. The high saturation
induction allows a lower operating frequency fop and thus low switching
losses Psw. Nanocrystalline cores reveal good high frequency damping prop-
erties because of their low losses, high saturation induction, and high initial
permeability.

2. Pulse transformers in ISDN.
Pulse transformers are used in integrated service digital network (ISDN)
terminal equipment. The role of the pulse transformers is to isolate elec-
trically the network circuit from the terminal equipment. The high satu-
ration induction Bsat and the high initial permeability m i of the
nanocrystalline soft magnetic materials allow miniaturization of the trans-
formers. As a result, the mass-size parameters of the nanocrystalline core
pulse transformers are much better in comparison with traditional MnZn
ferrites transformers.

3. Flux gate magnetic detectors.
The magnetic properties of the nanocrystalline materials allow manufactur-
ing flux gate magnetic detectors with high output voltage, high precision,
and low size.

3.1.2 Ferrites

Currently ferrites are still the soft magnetic materials most widely used in
power electronics.

FIGURE 3.7
Applications of nanocrystalline materials.
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108 Inductors and Transformers for Power Electronics

The most important characteristic of ferrites, as compared to other magnetic
materials, is the high volume resistivity of the material. In high frequency
applications eddy current losses are usually dominant and increase approxi-
mately with the square of the frequency. These losses are inversely proportional
to the resistivity. Therefore the high resistivity of the ferrites is the factor most
contributing to their wide application in high frequency magnetic components.

Production Process and Microstructure Characteristics

Ferrites are dark gray or black ceramic materials. They are chemically inert,
brittle, very hard, and difficult to process, except with water-cooled diamond
tools. The general chemical formula is MeFe2O3, where Me represents one
or more divalent transition metals, such as manganese, zinc, nickel, cobalt,
or magnesium. The most common combinations are manganese and zinc
(MnZn) or nickel and zinc (NiZn). MnZn ferrites are characterized by a high
permeability and high saturation induction levels and they are applicable
up to a few MHz. NiZn ferrites are, in general, used in higher frequency
ranges (above 1 MHz) and are suitable for low induction levels.

The raw materials used to produce ferrite cores are oxides or carbonates of
the constituent metals. The base materials are weighed into the correct propor-
tions and mixed to obtain a uniform distribution of all the components. The
pre-fire (calcine) of the mixed oxides forms the ferrite at about 1000°C. The pre-
sintered material is then milled to a specific particle size. A small amount of
organic binder is added. Most ferrites are formed by pressing and as a result,
so called green cores are obtained. Further in the process, the green cores are
sintered at a temperature between 1150°C and 1300°C. After sintering, the ferrite
core has the required magnetic properties. The finishing operations in the man-
ufacturing process are burnishing, grinding, providing air-gap, annealing, and
coating, depending on the specific form and application. The dimensions of the
cores are typically within 2% of nominal due to 10–20% shrinkage.

Magnetic Properties

The relations between B [T] and H [A/m] (magnetization curves) are material
properties. Although they have a physical origin, the properties are influenced
by the manufacturing process. So, for practical applications, the dependency
of B-H loops on frequency and temperature are measured on samples. For
such characteristics one can refer to data from manufacturers [18–22].

The magnetic properties of the ferrites are isotropic. By various pressing,
injection molding, and/or grinding techniques, a wide range of different
shapes can be formed.

The saturation induction of the ferrites is in the range 0.25–0.45 T for the
different material grades. The initial permeability is in the range 1000–15,000
and there are new materials reported with values above 20,000 [23]. Gener-
ally, the permeability of ferrites increases with the frequency to a maximum
value at the Curie temperature and then drops sharply. Because of the iso-
lation between the crystals in the structure, the bulk resistivity of ferrites is
high: 0.1–10 Ωm for MnZn ferrites and 104–106 Ωm for NiZn ferrites. The
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Soft Magnetic Materials 109

resistivity depends strongly on the temperature and the measuring fre-
quency. The resistivity increases with increasing temperature. At high fre-
quencies the crystal boundaries are short-circuited by the capacitances and
the resistivity decreases.

Low Induction Level (Signal Level) Parameters

Specific parameters used in ferrite data books are the loss factor (tan d/mi), the
hysteresis material constant hB [1/T], and the inductance factor AL[nH]. In
material grade specifications, the loss factor (tan d/mi) includes residual and
eddy current losses but not hysteresis losses. The hysteresis losses are
described by the hysteresis loss factor (tan dh/me), which can be calculated using

(3.4)

where
is peak induction

me is effective permeability

REMARK
Cores with larger air gaps have a lower me and lower tan dh.

For induction values above 10 mT the hysteresis losses become predomi-
nant. Their part in the total losses can be found by means of two measure-
ments, usually at 1.5 mT and 3 mT induction levels. Then the hysteresis
material constant hB is found from

, (3.5)

See also Chapter 1, section 1.2.4.

High Induction Level (Power Level) Parameters

For high induction, the losses in the ferrites are based on experimental data
and can be modeled depending on temperature, induction, and frequency.
The general form of the loss per unit volume, termed the specific loss Psp,v , is

(3.6)

where
kfe is core loss coefficient, kfe = F( f, B, T)
a is frequency exponent
b is core loss exponent
B is the peak-to-peak value of the induction AC waveform
f is the frequency

The constants kfe, a, and b depend on material grade, induction, and temper-
ature. For a constant value of kfe the double logarithmic core loss graphics
are straight lines. At high induction levels the losses are almost proportional
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110 Inductors and Transformers for Power Electronics

to B3. Equation (3.6) is often used as an interpolation equation for graphical
data. The losses are given for peak induction with sinusoidal voltage. For
other waveforms, the peak-to-peak induction divided by two is used. For
square wave voltages, this approach results in typical errors of 10 to 15%.
However, usually the accuracy of loss models is also limited due to the
spreading on the material grade characteristics.

Since the frequency exponent a is strongly dependent on the frequency,
the core loss coefficient kfe in Equation (3.6) differs enormously for the high
frequency range.

Ferrites also show a temperature dependence of their permeability, which
can change up to 1.5 times between signal levels (few mT) and intermediate
induction levels, such as 0.1–0.2 Tesla.

More precise results concerning temperature dependence can be obtained
by the following expression:

(3.7)

where
T is the core temperature in °C 
c1, c2, c3 are specific coefficients [24]

The values of the coefficients c1, c2, and c3 are much different for the
different material grades and are usually not available in the data sheets. It
is important to look carefully at the data of the temperature characteristics
of different ferrite grades, as the losses can easily increase by a factor of 2 if
a grade with an incorrect temperature is chosen. In a lot of designs, ferrite
grades with a minimum loss at about 100°C are used, as this is often a worst-
case temperature of the ferrite in the design.

Shapes

There are a number of different shapes for ferrites. In Appendix B at the end of
the book the most frequently used shapes are given with the corresponding data.

TABLE 3.1

Magnetic and Operating Properties of Some Iron-Based Soft Magnetic Materials
in Use in Electronics

Material
FeSi, 

laminated
NiFe, nickel 

steel, laminated
Powdered

iron
Carbonyl

iron

Contents 3–6% Si Permaloy
80% Ni 

Isoperm
50% Ni

Invar
30–40% Ni

95% Fe
bulk

92.5% Fe
bulk

Permeability, mI 1000–10000 10000 3000 2000 1–500 1–50
Bpeak,T 1.9 1 1.6 0.6 1–1.3 1.6–1.9
r, µΩm 0.4–0.7 0.15 0.35 0.75 >106

Ploss, W/kg 0.3–3 at 
1.5 T/50 Hz

24 at 
0.2 T/5 kHz

22 at 
0.2 T/5 kHz

21 at
0.2 T/5 kHz

60 at 
0.02 T/1 MHz

Curie temp. 
Tc,°C

720 500 500 500 700 750

P k f B c T c T csp v fe, ( )= − +a b
1

2
2 3
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3.2 Comparison and Applications of the Core Materials 
in Power Electronics

The magnetic and operating properties of the soft magnetic materials discussed
here are summarized in Table 3.1 and Table 3.2. The comparison and the appli-
cations of some soft magnetic materials in power electronics are shown in Fig. 3.8.

TABLE 3.2

Magnetic and Operating Properties of Ferrites, Amorphous, and Nanocrystalline 
Soft Magnetic Materials

Material Ferrites Amorphous s.m.m.
Nanocrystalline

s.m.m.

Contents MnZn, NiZn bulk 73.5% Fe, 
ribbon 
thickness 
5–25 µm

70–73% Co, 
ribbon 
thickness 
25 µm

73.5–90% Fe,
ribbon
thickness 
20 µm

Permeability, mi 100–20000 10000–150000 10000–150000 15000–20000
Bpeak,T 0.3–0.45 0.7–1.8 0.5–0.8 1.2–1.5
r, µΩm 102–104 MnZi

107–109 NiZn
1.2–2 1.4–1.6 0.4–1.2

Ploss, W/kg 12 at 0.2 T/20 kHz 
60 mW/cm3

18 at 0.2 T/
20 kHz

7–18 at 0.2 T/
20 kHz

5 at 0.2 T/20 kHz

Curie temp. 
Tc,°C

125–450 350–450 400 600

FIGURE 3.8
Applications of various soft magnetic materials.
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112 Inductors and Transformers for Power Electronics

3.3 Losses in Soft Magnetic Materials

In this section, a more general approach for modeling losses in soft magnetic
materials is given.

According to classical loss separation, the total loss is decomposed into a
sum of hysteresis, eddy current, and residual loss components. This decom-
position permits loss mechanisms to be treated separately, as if they were
independent of each other.

3.3.1 Simplified Approach for Laminated Steel Cores

In simplified models, the core losses are traditionally separated into hyster-
esis losses and eddy current (Foucault) losses. This should be considered as
curve fitting in losses, proportional to frequency and losses and proportional
to the square of the frequency at constant induction B. For a first approxi-
mation, they are also quadratic with the induction. For steel, these losses are
usually specified at 50 Hz and 1.5 T peak value of the induction B:

(3.8)

The losses at 50 Hz are the sum of hysteresis losses Pvh and eddy current
(Foucault) losses Pvf. The coefficients Pvh and Pvf in Equation (3.8) should be
considered as curve fitting constants in 50 Hz. In high quality grades Pvh is
dominant

The losses are at least 0.5 W/kg at 1.5 T for grain-oriented steel of 0.3 mm
and up to 20 W/kg for non-silicon soft iron of 0.65 mm. For high-frequency
applications, ultra thin silicon steel has been used down to 50 µm (~2 mills =
0.002 in) thickness.

When the excitation frequency rises, a reduced penetration depth is
observed. The frequency at which the penetration depth d equals half the
sheet thickness is called the cut-off frequency fco:

(3.9)

where 
d is the thickness of the iron sheet

For commonly used sheets intended for 50-or 60-Hz applications, the cut-
off frequency fco is close to 400 Hz.

3.3.2 Hysteresis Losses

Hysteresis in the B-H characteristics of the magnetic materials is the central
feature among their properties. The size of the B-H loop depends on the
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range of the applied H field. The hysteresis loss PH corresponds to the dissi-
pation in the DC measurements, i.e., it is equal to the work done on the
magnetic material by the applied field. The area inside the B-H loop is the
actual energy loss for a cycle of the applied H field. The higher values of B,
respectively H, result in the larger enclosed area of the B-H loop. When an
alternating H field is applied, the loss per unit time is the energy enclosed
by the loop multiplied by the exciting frequency. The hysteresis loss is
approximately proportional to frequency:

(3.10)

(3.11)

where
kh is the hysteresis loss coefficient
b is the core loss exponent: for a very small induction amplitude (e.g., 1 mT), 

b = 2; for larger amplitudes, b = 1.5–2 for iron and b = 2–3 for ferrites

The area of the hysteresis loop increases with the frequency. This means
that the relation PH/f increases with frequency at constant B level.

The reduction of the hysteresis loss can be realized by reducing the hin-
drances to domain wall movement [25]. There is some compromise as in
thin sheets the hysteresis losses increase while the thickness decreases.

Further description of the physical mechanisms that cause hysteresis and
lead to hysteresis loss is beyond the scope of this book. Detailed character-
ization of magnetic hysteresis and mathematical presentation of the phe-
nomenon are presented by Bertotti in [25].

3.3.3 Eddy-Current Losses

All magnetic materials have some electrical conductivity, and the conduc-
tivity of iron-based magnetic materials is relatively high. As a result, the flux
within the core induces an internal voltage dΨ/dt that drives circulating
currents around the paths, as shown in Fig. 3.9.

FIGURE 3.9
Eddy currents in a magnetic core.

P f B HH = ∫ d
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114 Inductors and Transformers for Power Electronics

These currents are termed eddy currents and corresponding effects are
termed eddy current effects. If a field is suddenly applied, the eddy currents
flow in directions such that the magnetic field generated by them is opposite
to the applied (primary) field. As illustrated in Fig. 3.9 this field is generated
in the opposite direction and superimposes with the applied field and thus,
the resulting magnetic field in the core decreases exponentially inside the
core. The resulting shielding effect increases with the rate of change of the
applied magnetic field. The characteristic penetration depth is called skin
depth. The value of the skin depth is given by

(3.12)

where
w = 2πf, f is the frequency of the applied magnetic field
m is the permeability of the magnetic material
s is the electrical conductivity of the magnetic material

The skin effect is important for defining the geometry of the cross-sectional
area of the core. If the cross-sectional dimensions of the core are large com-
pared to the skin depth expressed by the equation (3.12), then the applied
magnetic field is carried mainly by the surface area and the inner part of the
core carries very little of the flux. As a result, the AC reluctance of the core
for that frequency is increased and the main role of the core, to provide low
reluctance path for the applied field, is significantly deteriorated. At 50 Hz,
for iron, the skin depth is in the order of 1 mm.

The eddy currents with density J cause eddy current losses per volume ,
where r is the specific resistance of the core material. For a given thickness
and material, the eddy current losses Pec depend on the amplitude induction
Bmax, on the frequency f, and on the internal resistivity r of the core material.
As the eddy current losses per volume are proportional to the square of the
induced voltage, the eddy current losses are proportional to ( f Bmax)2. Accord-
ing to Snelling [26], eddy current losses can be expressed as

(3.13)

where
ke is a dimensionless eddy currents loss coefficient
Bmax is the amplitude induction of the applied field
r is the internal resistivity of the core

Equation (3.13) is only an approximation of the actual eddy current losses,
as the impedance of some magnetic materials is not pure resistive and thus
it depends on frequency. In most of the magnetic materials, the core per-
meance magnitude decreases with increasing frequency f. This implies that
beyond some frequency, the eddy current loss dependence on frequency is
higher than  at constant induction level.
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Soft Magnetic Materials 115

The microstructure and the construction of the magnetic cores in power
electronics are considered in order to reduce the eddy current effects. To
increase the resistivity of most magnetic steel a percentage of Si is added to the
iron. Ferrites are appropriate core materials for high frequency applications
because of their high resistivity, so that laminating ferrite cores is not required.

3.3.3.1 Eddy Current Losses in Laminated Cores

Iron-based magnetic materials have a low resistivity of about 0.4–0.8 µΩm.
A way to decrease the density of eddy currents is by using cores made from
stacks of many thin laminations. The laminations carry little flux and have
short paths and, thus, a low induced voltage V ∼ dΨ/dt is generated, result-
ing in lower specific eddy current losses. The same effect of reducing eddy
current effects is obtained in amorphous and nanocrystalline magnetic cores
by winding up a thin (10–100 µm) ribbon. This specific structure makes amor-
phous and nanocrystalline magnetic materials suitable for high frequency
applications in spite of their still relatively low resistivity (1.2–2 µΩm).

The solutions and presentation of eddy current losses in sheets can be
found in literature for two different approaches:

1. Low frequency approximation, where the average field inside the
magnetic conductor is only slightly different from the applied field.
This is already a good approximation when the thickness d of the
magnetic sheet is smaller than the skin depth d;

2. Arbitrary frequency, a short discussion of which is given here, and
the basics are given in the appendix of this Chapter.

Low Frequency Approximation of Eddy Current Losses in Laminated Cores

In the low frequency approximation, according to Bertoti [25] and the appen-
dix to this chapter, the specific eddy current losses Pec,sin in laminated cores
under sinusoidal induction are

(3.14)

where
Pec,sin are the eddy current losses per unit volume
Vc is the core volume
dt is the thickness of the lamination

In a more general case, where the induction B changes with a constant rate
in each half period dB/dt = ±4 f Bmax (i.e., under triangular induction wave-
form), the specific eddy current losses are

(3.15)

according to [25] and the appendix to this chapter.
The ratio Pec,tri/Pec,sin is 8/π2, e.g., Pec,tri /Pec,sin = 0.811.

B t B f t( ) sin ( )max= 2 π

P V d f Bec c t,sin max= π2
2 2 2

6
s
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3
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116 Inductors and Transformers for Power Electronics

3.3.3.2 Eddy Current Losses in Laminated Cores at Arbitrary Frequencies

The expression for eddy current losses for an arbitrary frequency and a linear
magnetization law is given by Bertotti [25] as

(3.16)

where
 is a dimensionless parameter

This is a special case of the wide frequency model, where only the eddy
current losses are considered and where the change in permeability or reac-
tive power and hysteresis losses are not taken into account.

In the case g << 1 (i.e., low frequency case) Equation (3.16) results in
Equation (3.14).

When the magnetization law is a steplike function, see Fig. 3.10, the case
is close to a real heavy saturation mode. According to [25], in the case of
sinusoidal induction the eddy current losses are

(3.17)

The comparison of this result with Equation (3.14) gives

(3.18)

From Equation (3.18) it is clear that in the case of heavy saturation the
eddy current losses are proportional to ( f Bmax)2, such as in the low frequency
approximation case but increased by a factor 3/2.

FIGURE 3.10
Linear and step like magnetization law.
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Soft Magnetic Materials 117

3.3.4 Anomalous (Residual, Excess) Losses

Under AC measurement conditions there are extra losses that do not match
Equation (3.14). These losses can be expressed by a third term, anomalous
losses, in the total loss presentation:

(3.19)

According to the different magnetic materials, the third term in the decom-
position of the losses in Equation (3.19) is attributed to different mechanisms
in the magnetization process.

In magnetic steels and other iron-based materials these losses are called
excess losses and are attributed to the consequence of the existence of magnetic
domains. The excess losses are caused by the induced eddy currents in the
vicinity of active domain walls in motion under the influence of the applied
external field. According to [25] the excess losses Pe can be presented as

(3.20)

where
C is a parameter depending on a given material and the geometry of the 
magnetic core

For ferrites, the third category in the loss separation is termed residual
losses. The residual losses Pr are associated with magnetic relaxation and (spin
and dimensional) resonances in the ferrite. The relative importance of the
residual losses to the total losses is strongly dependent on the frequency. At
MHz frequencies, the residual losses dominate the ferrite dissipation.
Decreasing the residual losses is persuaded by using fine-grained ferrites.

The loss separation is important in the description of the losses because
each of the contributing terms exhibits a different, distinctive power law
dependence on the frequency f and on the amplitude induction Bmax.

3.4 Ferrite Core Losses with Non-Sinusoidal 
Voltage Waveforms

In usual data ferrite core losses are given under sinusoidal excitation, how-
ever in power electronic converters the non-sinusoidal voltage waveforms,
such as square voltage waveforms, are much more common. Therefore, we
discuss ferrite core losses with non-sinusoidal voltage waveforms

The macroscopic mechanisms responsible for the losses in magnetic cores
are discussed in the classical books [2,25,27] and also are summarized and
updated in [28]. A practical approach for computing high-frequency ferrite
core losses for arbitrary voltage waveforms is presented in [29,30]. The
articles [31,32] present a technique to predict more accurately the magnetic
core losses for pulsed operation.

P P P PH ec a= + +

P C f Be ~ ( )max
/3 2
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118 Inductors and Transformers for Power Electronics

Practical disadvantages of most of the proposed methods are the required
additional measurements for a given material and the parameter calculations. The
most popular equation for ferrite losses is known as the Steinmetz equation [33]:

(3.21)

where
is the peak induction

Ploss is the average power loss per unit volume
f is the frequency of the sinusoidal excitation

For commonly used power ferrites, a = 1.2−2 and b = 2.3−3. For square
waves of 50% duty ratio Equation (3.21) shows a decreased accuracy but still
remains a good approximation. But with a duty ratio D of 5% (or 95%), our
calorimetric experiments showed more than doubled losses compared to
sine waves and the prediction of Equation (3.21). Thus, it is obvious that in
such cases Equation (3.21) cannot be used.

3.4.1 Identification of the Steinmetz Equation

In ferrite materials, there is some dependence of the batch and also manu-
facturer data change in time for the same grade. To avoid this problem, we
measure the samples.

Real materials do not always fit perfectly to the Steinmetz equation. In
practice, this means that a (and b) are frequency dependent. Usually they
increase with frequency. The consequence is that k also changes.

To define a working (investigation) area, the reference frequency of 100 kHz
is defined with a reference power and induction of 0.1 T, for which we can write

(3.22)

The coefficient b is fitted at the reference frequency (100 kHz), for the refer-
ence induction (0.1 T), and for other levels (0.05 and 0.15 T). The coefficient
a is determined using the losses at the reference induction at a higher
frequency of 250 kHz as is lies between the second and third harmonic.

Here we give the values a and b for two ferrite grades: 3F3 and N67,
obtained after measuring the corresponding cores. The found value of b at
100°C is higher than the value at 25°C. The value of a is higher at 100 kHz than
at 25 kHz. The values are shown in Table 3.3.

The parameters a and b are close to the actual manufacture data sheets.

3.4.2 Natural Steinmetz Extension for Ferrite Core Losses 
with Non-Sinusoidal Voltage Waveforms

In a quasi-static approach, no power loss is generated during moments where
B is constant. The losses can be represented as a surface in the B/H loop.
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Soft Magnetic Materials 119

A natural way to include the frequency dependence is to include a depen-
dence of losses on dB/dt. We propose the following loss model called the Natural
Steinmetz Extension:

(3.23)

where the coefficients a and b are defined using the approach given in the
previous subsection.

Equation (3.23) is consistent with the Steinmetz equation, Equation (3.21),
for sine waves, if kN is defined as

(3.24)

The ratio kN/k is show in Fig. 3.11 as a function of a, for a in the range of 1–2.

TABLE 3.3

Measured Material Constants at the Reference Point

Material Grade kref a b Operational conditions

3F3 0.0482 1.842 3.06 100°C, 100 kHz
N67 0.1127 1.76 2.94 100°C, 100 kHz
3F3 17.26 1.31 2.9 100°C, 25 kHz

FIGURE 3.11
The ratio kN /k as a function of a.
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120 Inductors and Transformers for Power Electronics

We call the model given by Equations (3.23) and (3.24) a natural extension
of the Steinmetz equation (NSE).

For a square wave voltage with duty ratio D, Equation (3.23) can be simplified to

(3.25)

where
f is the operating frequency

is the peak induction
D is the duty ratio of the square wave voltage

NOTE: The second and third harmonics are dominant at moderate values
of duty ratio D. For extreme values of D (95%), a higher value of a gives
better matching to the actual losses.

The modified Steinmetz equation (MSE) presented in [34,35] and later in
[36] is also a good prediction of losses with non-sinusoidal waveforms. The
losses in the MSE are given as

(3.26)

where
feq is an equivalent frequency
f is the operating frequency
a and b are the exponents, derived under sine excitation

The equivalent frequency in the MSE, Equation (3.26), is defined as

(3.27)

where
Bpp is peak-to-peak induction value
T = 1/f is the period of the operating frequency

The specific loss predictions (PV losses per unit volume) calculated by
NSE, Equation (3.25), are shown in Fig. 3.12, Fig. 3.13, and Fig. 3.14 for the
ferrite grades 3F3 and N67 at 100 kHz and 25 KHz, 0.1 T. The same graphs
show the experimental measurements for square voltage waveforms with
D = 50%–95%. The computed results of the MSE, Equation (3.26), and the
classical Steinmetz Equation (3.21) with corresponding a and b for sine
wave are also shown in the same graphs. The experiments were made with
an ETD 44 core, 3F3 material grade and an EE42 core, N67 material grade.
For more details about the measuring set up, refer to Chapter 11 and to
[37,38].

The given comparisons show that the matching for NSE is within 5% for
duty ratio D up to 90%. The small difference for D = 95% can be explained
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Soft Magnetic Materials 121

FIGURE 3.12
Specific ferrite core losses with square voltage waveforms for ferrite grade 3F3 at 100 kHz,
100°C, 0.1 T as a function of the duty ratio D: the experiments are the circles; the natural
Steinmetz extension is the solid curve (NSE) for a = 1.842; b  = 3.06; the modified Steinmetz
equation [34] is the dashed curve (MSE); classical Steinmetz Equation (3.21) is the dash-dot
curve (SE).

FIGURE 3.13
Specific ferrite core losses with square voltage waveforms for ferrite grade N67 at 100 kHz,
100°C, 0.1 T as a function of the duty ratio D: the experiments are the circles; the Natural
Steinmetz Extension is the solid curve (NSE) for a = 1.76; b = 2.94; the modified Steinmetz
equation [34] is the dashed curve (MSE); classical Steinmetz Equation (3.21) is the dash-dot
curve (SE).
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122 Inductors and Transformers for Power Electronics

by the high frequency content at that point and the fact that material char-
acteristics show a higher a at higher frequencies.

Note that NSE and MSE show the same numerical results for a = 1 (pure
hysteresis losses) and for a = 2 (pure Foucault losses).

REMARK
DC magnetization increases the losses for the same Bpp induction value.
However, it is not usual in practice to have large Bpp and large DC compo-
nents combined.

3.5 Wide Frequency Model of Magnetic Sheets Including 
Hysteresis Effects

In the classical loss separation theory, the permeability and the losses are
described in a separate way. There is however a relation between the frequency
characteristic of the active and reactive power and between the angle and
frequency characteristic of the permeability. Impedance functions have no
poles or zeros in the right half plane and are minimum phase. The complex
permeability associated with hysteresis losses has a nearly constant angle,

FIGURE 3.14
Specific ferrite core losses with square voltage waveforms for ferrite grade 3F3 at 25 kHz, 100°C,
0.2 T as a function of the duty ratio D: the experiments are the circles; the natural Steinmetz
extension is the solid curve (NSE) for a = 1.31; b = 2.9; the modified Steinmetz equation [34] is
the dashed curve (MSE); classical Steinmetz Equation (3.21) is the dash-dot curve (SE).
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whereas its magnitude decreases with increasing frequency. A one-dimensional
approach is known using complex tanh functions [39].

We use the theory of impedances and the theory of one-dimensional homo-
geneous transmission lines to find a general function in which energy losses
(hysteresis and eddy currents) and reactive power are combined and used
to derive complex analytical functions describing the losses.

In this section, we are limited to the linear case. The theory is derived
using complex analytical functions as they give much shorter expressions
and are still easy to handle in today’s mathematical software. More mathe-
matical details are presented in Appendix D at the end of the book.

3.5.1 Constant Loss Angle Impedance

First, we consider a constant loss angle impedance function for the descrip-
tion of the hysteresis losses. The hysteresis effect can be characterized by a
constant loss angle dh of the complex impedance of the material over a wide
frequency range. The mathematical function with constant loss angle, which
satisfies the requirements of impedance functions, is

(3.28)

where
dh is the loss angle (in radians)
s is the Laplace operator (s = jw)
mhr is the hysteresis reference permeability

The hysteresis reference permeability mhr is a real constant and is fitted
such that Equation (3.28) matches the data at a reference frequency, e.g.,
100 kHz. For dh = 0, the material is loss-less and has a constant permeability.

For a low loss angle, the amplitude of the permeance is almost independent
of the frequency and the losses are almost proportional with the frequency.

High loss angles (combined with a high permeance) are present in some
amorphous alloys, grain-oriented FeSi steels, and Ni-Fe alloys. In these cases
an important frequency dependence of the permeability is also observed. By
the frequency dependence, the major part of the anomaly losses are
explained as well. Equation (3.28) tends to give an infinite permeance at zero
frequency. This corresponds to a flux without current, known as a remanent
flux. However, as it is a singularity point of the function, it should not be
used to describe the behavior at DC inductance.

If the considered core has some parasitic air gap, a loss-less parallel per-
meability mg can be paralleled in the full model. This additional permeability
does not affect the losses.

The nonhomogenous materials can also behave like a series connection of
different reluctances, which results in paralleling permeabilities with a dif-
ferent loss angle.

z s s s sh h hr
h( ) ( ) /= = −  m m d1 2 π
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124 Inductors and Transformers for Power Electronics

3.5.2 Transmission Line Approach with Constant Loss Angle Material

The transmission line theory gives us an equation, which takes into account
the one-dimensional approach of magnetic material, where the flux pene-
trates from the outer sides.

Using the one-dimensional transmission line theory, the following equa-
tion for a loss-less complex permeability mc can be derived:

(3.29)

where
s is the electrical conductivity
d is the lamination thickness

Similar expressions are used in [39], [40], and [41]. At high frequencies,
the permeance reduces with the root of the frequency, and the angle tends
to π/4.

Equation (3.28) is an intrinsic material characteristic and can be included
in the transmission line model of Equation (3.29). This results in complex
permeability mc:

(3.30)

This function combines low and high frequency properties and is still con-
sistent with the theory of passive impedances. One can see that the per-
meance goes to infinity when the frequency goes to zero. Some high
permeance materials exhibit such behavior while the permeance is still
increasing below 50 Hz.

NOTES:

• The angle of the resulting permeability is dh at low frequency and
tends to 45° + dh/2 at very high frequency.

• For iron based materials, a typical loss angle close to dh = π/6 is
observed.

• For amorphous and nanocrystalline materials, a loss angle close to
dh = 50° is typical.

• For dh = 45°, the losses at low frequency increase with the frequency
to the power 1.5, which would be equivalent to the previously cited
anomalous losses.

3.5.3 Wide Frequency Complex Permeability Function

At very low frequency, materials can exhibit some permeability limitation.
This limitation can be loss-less if it is a parasitic air gap. We call this limitation
the parallel permeability . One could intuitively consider this as taking
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into account the parasitic air gap in a perfect core. This parallel permeability
is defined by the reference permeability mgr and loss angle dg:

(3.31)

If it is a part of the material characteristics,  usually represents losses. Note
that for dg = 0, the permeability mg is real and constant. With dg on the order
of 1%, this behavior corresponds to amorphous and nanocrystalline materials.

The wide frequency complex permeability mw is thus given as follows:

(3.32)

The model does have the following features:

• It explains both low and high frequency behavior, loss angle, and
amplitude of the permeability in one expression.

• It gives an answer how it is possible to have loss angles that exceed
π/4 (45°) in the high-frequency range, which is observed in most of
materials.

• It includes effects, which are known as excess losses.
• It has only four parameters (for a given resistivity and thickness):

mhr, dh, mgr, and dg.

The model has its limitations:

• It is based on linear theory, thus it is valid at a given induction level
and when the induction does not change much over the thickness.

• The resistivity of the material can change depending on the depth
in the sheet.

• Even under sinusoidal flux excitation, harmonics are introduced.
Those harmonics caused by the non-linearity of the magnetic mate-
rial are not modeled.

3.5.4 Real, Reactive, and Apparent Power

The wide frequency model gives useful information, including the reactive
power and the wide frequency behavior of the material.

The knowledge of the permeability allows calculating the complex power
per unit volume under sinusoidal flux [m3]:

(3.33)
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where
is the peak induction

 is the effective value of the magnetic field

Using Equation (3.33), we can calculate the apparent power of the funda-
mental component |S(jw)|, the power loss at sinusoidal flux exci-
tation, and the reactive power of the fundamental component.

3.5.5 Dependence on Saturation Level

As far as the permeability variation due to the change in induction is neg-
ligible, the derived equations are applicable for a wide frequency range. With
increasing frequency however, the induction level at the side edge of the
sheet becomes significantly higher than the average induction in the sheet.
The ratio between the average induction B, compared to the induction on
the side edges, is denoted as Kw(s). We have to compare the wide frequency
permeability with the permeability when the thickness would be zero. Thus,
for Kw(s) we obtain

(3.34)

The coefficient Kw(s) is an indication of the ratio between the outer sides
induction level and the average induction level in the cross section of the
magnetic core.

For the frequency range, where Kw(s) is close to unity, the linear model can
be used.

But, for example, for an average induction level of 1 T and a Kw(s) = 0.3, it
is clear that a serious local saturation will occur close to the surface of the sheet.

3.5.6 Wide Frequency Model Curves of Typical Materials

Three examples of wide frequency model curves are computed using a
MathCAD program. The material parameters used in the wide frequency
model for the description of the soft magnetic materials are given in Table 3.4.

3.5.6.1 Silicon Steel

Silicon Steel of 0.35 mm Thickness

Example 1 considers 3% silicon steel of 0.35 mm thickness. The effect of a
parallel permeability mg is ignored (set to infinite). When the thickness and
the resistivity are given, only two parameters are left: the hysteresis loss
angle dh and the hysteresis reference permeability mhr. Two values of the
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Soft Magnetic Materials 127

hysteresis reference permeability were chosen: 20,000 and 100,000. These two
values have been chosen to illustrate the influence of the permeability. The
computed curves for different functions are shown in Fig. 3.15.

Silicon Steel of 0.1 mm Thickness

Example 2 resembles the Example 1 except for the thickness, here the thick-
ness is 0.1 mm. The improvement in losses and permeability is clear for
high frequencies, see the computed curves, Fig. 3.16. Note that a factor 2
reduction in thickness has the same effect as a factor 4 increase in specific
resistivity.

3.5.6.2 Nanocrystalline Material

Example 3 shows the curves for the nanocrystalline material Vitroperm 500 F.
The computed curves, Fig. 3.17, can be compared with the manufacture data
given in Fig. 3.5 and Fig. 3.6. As the material is quite linear, the predicted
values can be quite close to the measured quantities. The values of mg have
been adjusted in order to obtain a permeability of 15,000 at 10 kHz. When
comparing the graphs, note that the scale of the losses in Example 3 is shifted
by a factor 10 to lower losses compared to Examples 1 and 2, describing
silicon steel sheets.

Amorphous and nanocrystalline materials are thin ribbons (about 20 µm),
so the argument of the value of tanh is low and equal to its argument up to
100 kHz, thus the penetration depth is high compared to the thickness. This
effect is reflected in the parameter Kw. As the core filling factor for thin
ribbons is lower than for ferrites, the induction level of 0.5 T could be
compared with ferrite data in the range of 0.3–0.35 T for the same outer
dimensions of a core.

TABLE 3.4

Material Parameters in the Wide Frequency Model for the 
Description of Soft Magnetic Materials

Quantity

Example 1 Example 2 Example 3
3% Si steel, 

0.35 mm
3% Si steel, 

0.1 mm
Nanocrystalline,
Vitroperm 500 F

d [mm] 0.35 0.1 0.021
r [Ωm] 0.5 × 10–6 0.5 × 10−6 1.15 × 10–6

density [kg/m3] 7500 7500 7300
dh [°] 30 30 50
mhr 2 × 104 and 105 2 × 104 and 105 250 × 106

dg [°] 0 0 0.025
mg infinite infinite 18000
|mr| at 50 Hz
(calculated)

2907 and 13810 2939 and 14640 —

|mr| at 10 kHz 
(calculated)

— — 15000
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128 Inductors and Transformers for Power Electronics

FIGURE 3.15
Computed curves of the wide frequency model for magnetic sheets, 0.35 mm 3% Si steel,
Example 1.
Curves 1, 2, 3, 9, 10, 12, and 13 correspond to a material with mhr = 105; curves 4, 5, 6, 8, 9, 11, and
14 correspond to a material with mhr = 2 × 104.
1,4: magnitude of the permeability: |mw|
2,5: real part of the permeability: Re( mw)
3,6: imaginary part of the permeability: –Im( mw)
7,10: power loss at 0.5 T: Re(S( jw))
8,9: apparent power at 0.5 T: |S( jw)|
11,12: ratio average/peak induction: Kw

13,14: loss angle d: arg( mw)
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FIGURE 3.16
Computed curves of the wide frequency model for magnetic sheets, 0.1 mm 3% Si steel, Example 2.
Curves 1, 2, 3, 9, 10, 12, and 13 correspond to a material with mhr = 105; curves 4, 5, 6, 8, 9, 11, and
14 correspond to a material with mhr = 2 × 104.
1,4: magnitude of the permeability: |mw|
2,5: real part of the permeability: Re(mw)
3,6: imaginary part of the permeability: –Im(mw)
7,10: power loss at 0.5 T: Re(S( jw))
8,9: apparent power at 0.5 T: |S( jw)|
11,12: ratio average/peak induction: Kw

13,14: loss angle d: arg( mw)
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130 Inductors and Transformers for Power Electronics

FIGURE 3.17
Computed curves of the wide frequency model for on nanocrystalline Vitroperm500F, Example 3.
1: magnitude of the permeability: |mw|
2: real part of the permeability: Re(mw)
3: imaginary part of the permeability: –Im(mw)
4: power loss at 0.5 T: Re(S( jw))
5: apparent power at 0.5 T: |S( jw)|
Kw: average/peak induction ratio
δ: loss angle, arg( mw)
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3.5.6.3 Wide Frequency Model for Ferrites

Similar models are possible for ferrite materials. If no capacitive (the high
permittivity of ferrites) and resonance effects are modeled, the models are
good up to a few MHz only. The properties of ferrites have been well
documented in data sheets during the past decades.

The conductivity of ferrites is low, so in general there is no need to laminate
ferrites (ferrimagnetic), such as ferromagnetic sheets. At very high frequency
however there can be some benefit of laminating ferrites. Also, ferrites with
a thickness of more than 20 mm begin to have cooling problems.

Appendix 3.A Power and Impedance of Magnetic Sheets

In principle, the main derivations for power as a function of the field H, for
general conductors, given later in Appendix 5.1, are also valid for magnetic
sheets. One difference is that magnetic sheets are bad electrical conductors
as their penetration depth is low because of the high relative permeability.
The fact that the magnetic sheets sometimes carry current is usually not
intentional but a result of a bad construction. The term applied current cor-
responds in fact to an outside current, which generates an average magnetic
field, see Fig. 3A.1. Another difference is that magnetic materials are usually
described by the magnetic induction B and the permeability m.

NOTE: Here we use RMS values for H and B variables.
Figure 3A.1 shows a magnetic sheet in an average H-field. The average

value of Htop and Hbot, see Fig. 3A.1, is denoted by Hav: .
For the apparent power S(s), according to Equations (5A.20) and (5.A25) in
Appendix 5.1 we can write

(3A.1)

where
d is the thickness of the sheet
b is the width of the sheet
Z0(s) is the characteristic impedance of the material, 
s is the specific conductivity of the material
R0 is the resistance of the material
g (s) is a propagation function,

is the penetration depth,
s = jw

H H Hav top bot= +( )/2
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132 Inductors and Transformers for Power Electronics

The induced voltage V around the sheet is the apparent power divided by
,

(3A.2)

where
lc is the length of the sheet, see Fig. 3A.1

is the complex conjugate of Hav.
The integral of the voltage is the flux Φ :

(3A.3)

The averaged induction Bav is then

(3A.4)

where
is the cross sectional area of the sheet

The corresponding average complex permeability  is

(3A.5)

Using the penetration depth , we can write

(3A.6)

Note that m is an intrinsic material constant and that mc is a property of a
magnetic sheet. A negative imaginary part of mc corresponds with positive
power losses.

FIGURE 3A.1
A magnetic sheet in an average H-field (a) caused by a fictitious current foil around the sheet (b).
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One can also express the apparent power as a function of Bav:

(3A.7)

where
Vc is the volume of the magnetic material

Also the impedance Z(s) of a magnetic sheet can be calculated using
Equation (3A.1). Note that this impedance is not obtained by feeding a
current into the sheet, but with a current i, which generates an average
magnetic field, Hav = i/b, and observing the voltage of top and bottom close
to the sheet, see Fig. 3A.1. The impedance of a magnetic sheet Z(s) is then

(3A.8)

(3A.9)

With the Taylor expansion given in Appendix 5.1, we can look at the first
two terms of this impedance:

(3A.10)

NOTE: The impedance value, given by Equation (3A.10) is for one sheet
and one turn.

This can be used for frequencies, where the thickness d = 1.5d. The second
term in the Taylor expansion corresponds to the eddy current losses. The
first term represents the low frequency approximation of the reactive part
of the impedance.

Note that the space between sheets is normally composed by air and also
gives a contribution to the reactive power:

(3A.11)

For a number of sheets, with an applied EMF, the losses are

(3A.12)

where
 is the admittance of one sheet and one turn, which can be 

presented as

(3A.13)
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134 Inductors and Transformers for Power Electronics

For the loss calculation one is used to formulate it by the peak value of
the induction and with a magnetizing inductance Lm in parallel to the core
loss resistance. The reason is that the magnetizing reactance becomes highly
nonlinear close to saturation and that the core loss resistance shows much
less dependence on saturation. This corresponds to a parallel representation
(admittance) of the transmission line:

(3A.14)

For high frequencies, the function coth will tend to 1 and the behavior of
Y(jw) is quite clear.

For low frequencies, we can make a Taylor series as a function of a relative
frequency wr .

(3A.15)

where
wa is the absolute frequency, for which the penetration depth d equals the 

thickness of the sheet d = d,
wr is the relative frequency ; for wr = 1, d = d,

The first two terms in Equation (3A.15) are the low frequency magnetizing
inductance Lm and the parallel resistance, by which the low frequency eddy
current losses can be modeled. For the magnetizing inductance Lm1 , using
the first term of Equation (3A.15) and multiplying with and Nf, we can
write

(3A.16)

where
N1 is the primary number of turns
Nf  is the number of sheets

The second term from Equation (3A.15) gives for Rm1

(3A.17)

The results from Equations (3A.16) and (3A.17) correspond with the usual
models [25] of eddy current losses.
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Soft Magnetic Materials 135

The power loss in the sheet is then

(3A.18)

where
is the effective cross sectional area of the core

This result can also be obtained if one states that the eddy currents do not
influence the induction inside the sheet at the low frequency approach, which
is defined by d ≤ 1.5d. In that case, the current density is zero in the middle
and increases in a linear way to the sides of the sheets.

Note that in this approximation, the losses are quadratic with the RMS
voltage at the magnetizing reactance.

For sinusoidal waveforms, the losses can be presented as a function of the
peak induction . First, we express

(3A.19)

Then we can write

(3A.20)

For a square wave emf, the induction is triangular and the peak value is

(3A.21)

This equation leads to the following result for the losses Ptri in that case

(3A.22)

Equations (3A.20) and (3A.22) are known in literature [25].
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4
Coil Winding and Electrical Insulation

A beginning designer of magnetic components has to face a few questions
concerning the windings of the components: how much copper can be
wound on a given core, how many turns for one layer are available, and
what kind of insulation should be used in the design. Some experience and
the trial-and-error approach can improve the result. In this chapter a more
systematic view about coil winding aspects is given to facilitate the design.

The filling factor, the hexagonal and orthogonal wire fitting, the possible
number of layers, and the wire length are considered.

We discuss the spread standards concerning wires, as well as the thermal
requirements and standards of magnetic modules. In the United States the
AWG (American Wire Gauge) is spread. The standard widely used in Europe
is EN 60317 (old IEC 317).

In this chapter we assume that the winding axis is horizontal so that we
can view cross sections and see the layers horizontally. Basically the approach
is given for concentric layers. The application to coils with different sections
is similar. Regardless, it makes sense to make a drawing of the cross section
to know how the wires are arranged.

Coil winding is closely related to electrical insulation. Therefore, special
attention is given to breakdown in air and solid materials.

Here we do not discuss ring cores, but many presented items are similar
and applicable to them, when referring to the inside area of the core. Ring
cores are usually wound by hand or by specialized equipment.

4.1 Filling Factor

The total copper cross-sectional area equal to the product of the number of
turns N and the wire cross section Acu (in some data it is denoted as Aw) is
always less than the window area of the core Wa. The ratio of the total copper
cross-sectional area and the core window area is called the copper filling factor:

(4.1)k
NA
Wcu

cu

a

=
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140 Inductors and Transformers for Power Electronics

The copper filling factor kcu is usually considered for each winding. Indeed,
primary and secondary windings can be of very different natures. They can
have a different diameter, and windings in round, Litz, and foil windings
are possible.

The copper filling factor depends on the following aspects:

• The type of coil former used
• The insulation thickness of the used wire compared to the wire

diameter
• Whether round or rectangular coil formers are used
• The creepage distance and insulation sheets between layers
• The accuracy of the winding equipment

In general, a net total copper section of 30% to 80% can be obtained for a
given available core winding area Wa, e.g., kcu = 0.3–0.8. For round conductors
the copper filling factor is in the range kcu = 0.5–0.7. Practical values for Litz
wire are kcu = 0.3–0.4. Usually, the high voltage magnetic components have
a low filling factor in comparison with low voltage applications.

The best method of compact winding is to use a coil former with ripples on
the bottom. In this way one avoids wire crossings. The ripples absorb the wire
thickness tolerances. When the coil former is designed with the nominal diam-
eter, the right result can be obtained only if the final delivery of the wire is like
this design. So, for a good design one should take the maximum diameter into
account. Another way to increase the filling factor is to use baking wire. In this
way a self-supporting coil can be manufactured without a coil former.

Here, a perfect winding arrangement is assumed so that no chaotic wind-
ing is possible, e.g., where one wire can block the place of a whole layer. In
circular (round) coil formers, a good winding arrangement is quite easily
obtained. In rectangular coil formers, some manufacturers use ribbons in the
bottom of the coil former to obtain a better arrangement. To obtain a good
winding, it is also imperative that intermediate connections are made in the
coil ends and not in the winding area of the coil. Note that obtaining a good
winding with thin wires is difficult.

In a lot of designs for power electronics, the winding area Wa is not
completely filled. Generally it is a good practice to perform a compact wind-
ing. It reduces the length for one turn, but it also reduces air between layers,
which is an advantage for obtaining a good heat transfer. However, at high
frequency (d >> δ) low eddy current losses may be obtained when the wires
are spaced perpendicular to the field direction. Also it is not always possible
to fill layers with the given number of turns. Sometimes it is better to adapt
the wire thickness to still obtain full layers. An important advantage of
winding a full layer is the fact that all wires are well fixed. Wires can move
when the winding is injected with thermoplastic materials.

In this section we discuss the different arrangements of the wires and the
influence of those arrangements on the copper filling factor.
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REMARK
Here we will use the terms ksq and khx for the filling factor to denote the ratio
between the total copper cross-sectional area and the available winding area
(no insulation between layers is considered). This available winding area is
less than the core window area Wa. The difference is the sum of the areas of
the coil former, the necessary creepage distance, and other spaces.

4.1.1 Round Wires

In the arrangement of the round wires there are basically two different kinds
of fittings: square and hexagonal.

4.1.1.1 Square Fitting

Ideal Case

In this case the wires fit in a square grid as shown in Fig. 4.1,a. The theoretical
filling factor for square fitting ksq is

(4.2)

where
do is the outer diameter of the enameled copper wire;
dcu is the effective diameter of the copper wire;
h is the horizontal packing factor;
l is the vertical packing factor.

In the ideal case, when the insulation thickness is zero and dcu = do, the
filling factor for square fitting reaches its maximum value: .

The horizontal packing factor is

(4.3a)

FIGURE 4.1
Different fitting of wires in the coil-former: (a) square fitting (b) hexagonal fitting.
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142 Inductors and Transformers for Power Electronics

The vertical packing factor in that case is the same as the horizontal one:

(4.3b)

Layer Approach

To find the number of wires in one layer we use the following expression:

(4.4)

where
w is the available width of the coil-former, in data sheets it is also known 

as MWW
h is the horizontal spacing filling factor, h = 0.8–1, typically 0.9;
ent is the function giving the greatest integer less than the value in the brackets

The number of layers is

(4.5)

where
h is the available height for the considered winding in the coil former;
l is the vertical spacing filling factor and it is close to 1 if there is no insu-

lating sheet between the layers;
ds is the thickness of the insulating sheet;
ni is the number of insulating sheets.

The total maximum number of turns N is

(4.6)

where 
nh and nv are, respectively, the number of wires in one layer and the num-

ber of the layers.

4.1.1.2 Hexagonal Fitting

Ideal Case

We can use partly the same approach as in the previous section. The theo-
retical filling factor for hexagonal fitting khx is

(4.7)

In the ideal case when dcu = do, the filling factor for hexagonal fitting reaches
its maximum value: .
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The maximal horizontal packing factor is

(4.8)

The maximal vertical packing factor is

(4.9)

The value of the vertical packing factor given by Equation (4.8) can be higher
than one. This represents the fact that more layers could be possible than the
available total winding height divided by the outer wire diameter.

Layer Approach

The number of wires in the horizontal direction (in one layer) is given again as

(4.10)

Taking into account that the first and the last half layers are still square
fitting, the number of layers is

(4.11)

The total possible number of turns N is

(4.12)

where
nh and nv are, respectively, the number of wires in one layer and the num-

ber of the layers

In hexagonal fitting no insulating sheets are assumed between layers, as
normally the fitting is not improved compared to square if such insulation
is used. With rectangular coil formers, often some air is present in the middle
of a plane section, which reduces the vertical spacing filling factor l. This is
particularly true for thick wires.

4.1.1.3 Practical Case

Concerning the number of the layers nv, in practice a winding arrangement
between hexagonal and square is usually obtained. A winding arrangement
close to the hexagonal can be achieved mainly in the case of a circular coil
former.
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144 Inductors and Transformers for Power Electronics

In the case of a rectangular coil former, and when winding different layers
from left to right and backwards, the wires of the second and higher layers
have to jump two times a turn, generating a square fitting on that place.
Generally the jump occurs in a long section, which is usually the winding
section. Statistically, the cross section consists of a mix of about 50% hexag-
onal and 50% square fitting. Using the Equations (4.5) and (4.10) and assum-
ing no insulation between layers, the number of layers for this case is

(4.13)

REMARKS ABOUT w AND h

1. There can be a large difference between the allowed winding width
w and the width of the core window. So the maximum value of w
is a characteristic parameter of the coil former but not of the core
itself.

2. The allowed value of w can be limited by the need of creepage
distances for galvanic insulation.

3. The height h is the value for one winding, not for the whole trans-
former. The sum of the different layers must not exceed the available
total height, because some air distance has to be provided for the
insulation to the core.

4. Windings of a thick wire cannot follow the bottom of a square coil
former, usually some air remains between the coil former and the
first layer.

The filling factor for square and hexagonal fitting of a coil is given in Fig. 4.2
as a function of wire diameter. The graph is obtained using the data from
Appendix C of the book (Grade 1 is used as insulation standard). However,
the result given in Fig. 4.2 has to be lowered by a stacking factor of 5% to
10% because of two factors:

• a wire in a winding takes more space than its nominal diameter;
• the tolerances in the wire diameter decrease the filling factor.

Therefore, the values given in Fig. 4.2 can be used as a first approximation. 

4.1.2 Foil Windings

Foil winding is often preferred when the necessary effective copper cross
section is high. The foil windings have very low eddy current losses for fields
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parallel to the foil. Care should be taken for end (edge) effects and fringing
field of air gaps, for more details refer to Chapter 8.

The foil can be insulated by insulation sheets or by varnish. The vertical
filling factor, dependent on the insulation thickness, is

(4.14)

where
tcu is the thickness of the copper of the foil
dins is the thickness of the foil insulation

As long as the thickness of the foil insulation is much lower than the copper
foil, high filling factors can be obtained. The usual insulation thickness for
thin copper foils is a multiple of 50 µm (Europe) or 2 mils (= 50.8 µm).
Aluminum foils can also be used; however, care should be taken to ensure
good electrical contacts. This can be made by pressure or by a nickel surface.

The major problem in manufacturing foil windings is the labor-intensive
handling of the place where the foil is connected to the contacts of the coil
former. Also foils can be enameled as wires, but it is again a manufacturing
problem for the contacts.

4.1.3 Wires with Rectangular Cross Section

Wires with rectangular cross section are used for high currents. They are
preferred in large 50-Hz transformers. The rectangular cross section wires
are easier to handle than the square cross section wires. The filling factors
of the rectangular cross section wires can be very high, especially if the
changes from one layer to another are done in the coil ends. The rectangular

FIGURE 4.2
Filling factor for square and hexagonal fitting as a function of wire diameter; dashed lines present
the ideal case without insulation, Grade 1 is used as insulation standard, see Appendix C.
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146 Inductors and Transformers for Power Electronics

cross section wires have enamel insulation or combined glass-fiber epoxy
insulation.

4.1.4 Litz Wires

Litz wires are used in order to reduce the eddy currents at high frequencies.
A Litz wire contains from 4, 7, and so on to several hundreds of strands, which
are insulated from each other. The strands are assembled in groups of strands.
Every group is insulated a second time as a whole by a woven texture or a foil.
For typical numbers and diameters, see Appendix C3 at the end of the book.

The advantages of the Litz wires are lower high-frequency losses and easier
bending compared to the full wires. One of the disadvantages is a low filling
factor, as the strands in the wires are small and the insulation takes more
space. Another disadvantage is the low thermal conductivity of Litz wire
wound winding.

The insulating material of the Litz wires can usually be removed by a high
soldering temperature. Indeed, it is not practical to remove the insulation of
each strand. But this manipulation can reduce the available insulation class
for the Litz wires. However, in practical cases often the coil former is the
limiting factor with respect to the insulation temperature requirements.

4.2 Wire Length

The wire length considered in this section is derived for a round wire wound
component. For foil wound and rectangular cross section conductors the
results are nearly the same.

4.2.1 Circular Coil Formers

The wire length lw, summed over the number of layers nv , is

(4.15)

where
ri is the radius of the ith layer
nh,i is the turn number of the ith layer

For an equal number of wires per layer we can write

(4.16)
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where
N is the number of the turns
lavr is the mean length per turn (MLT ) also lT is used before

is the average diameter of the winding

According to Equation (4.16), the mean length per turn (MLT) lavr based on
the average diameter davr determines the total length of the wire. Manufac-
turers often give the average turn length for a full coil former (MLT), see
Appendix A at the end of the book. The given MLT value is usually the
worst-case value.

If in a winding the last layer contains a lower number of wires than the
other full layers, then the total length is somewhat lower.

4.2.2 Rectangular Coil Formers

The wire length of one turn can be approximated by four lines and four
quarters of a circle.

Then, the total wire length lw is determined by the mean length per turn
(MLT) lavr:

(4.17)

where
a and b are the sides of the coil former
hmin and hmax are the minimum and maximum available height above the 

coil former, see Fig. 4.3

If one uses h values based on practical filling factors, normally the length
will be somewhat overestimated, as the fitting on the corners is usually
hexagonal.

The angles of a rectangular coil former should be rounded. The radius
should not be smaller than the radius of the wire; however, the minimum

FIGURE 4.3
Determining the total wire length in rectangular coil formers.
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148 Inductors and Transformers for Power Electronics

radius should be 0.2 mm at least. When winding on a rectangular coil former,
one should be aware of the fact that the wires make contact mainly at the
four angles, which reduces the filling factor and increases the thermal resis-
tance to the core.

4.3 Physical Aspects of Breakdown

Here we present fundamentals concerning physical aspects of breakdown.

4.3.1 Breakdown Voltage in Air

The breakdown voltage of air for a homogeneous field for a distance ds is
given by [1]:

(4.18)

where
Vs is the voltage in [V]
r is the relative density of air referenced to 101.3 kPa and 20°C, for water 

contents of 11 g per m3

ds is the distance [m]

The relative density of air r can be presented by the following expression:

(4.19)

where
p is the pressure [kPa]
T is the air temperature [°C]

The breakdown voltage of air for homogeneous fields at 20°C, 101.3 kPa,
versus the product of density r  and distance ds is shown in Fig. 4.4.

Let us consider the dielectric strength.

DEFINITION
The dielectric strength of an insulating material is the maximum value of
the electrical field that can be applied without irreversible phenomena, such
as a breakdown, in which the voltage can not be applied again. It is the ratio
between the breakdown voltage and the distance: Vs �ds [V�mm].

One can notice that the dielectric strength of air, which is the first derivate
of the graph in Fig. 4.4, increases with decreasing distance.

V d ds s s= × × + ×2441 10 66 1 103 3r r.

r =
+

p
T101 3

293
273.
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REMARKS

1. Equation (4.18) is valid within the range of 10−4 m < r ds < 0.15 m,
for DC or AC voltages with frequency below 1000 Hz.

2. For nonhomogenous fields, the breakdown voltage is much lower,
typically a factor 0.1 to 0.3 of the breakdown voltage in the homog-
enous field case described by Equation (4.18).

Example
A typical problem is corona discharge in the parasitic air spaces. This can
occur between layers of a transformer, inside capacitors, or in other conduc-
tor arrangements. To illustrate this we consider the following example.

Two flat conductors are separated by an insulation foil of 0.3 mm and a
variable air distance d, see Fig. 4.5. The insulating foil has a breakdown
voltage of 15 kV and a relative permittivity er,f = 3. The field is assumed to
be homogenous and the air density is normal. What is the worst case air
distance and the worst case peak voltage at which discharge in air occurs?

ANSWER 
The breakdown voltage in the air is given by Equation (4.18). The voltage
drop in the foil Vf is

(4.20)

Then, using Equations (4.18) and (4.20), the total voltage Vtot is expressed as

(4.21)

FIGURE 4.4
Breakdown voltage in a homogeneous
field in air, 20°C, 101.3 kPa.

FIGURE 4.5
Flat conductors separated by an insulating
sheet and air.
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The total breakdown voltage Vtot as a function of the distance ds is shown in
Fig. 4.6.

From Fig. 4.6 we find that the worst case distance is about 60 µm, and the
worst case total voltage is 1.75 kV peak. At that point, the voltage across the
air is only 690 V peak and the E-field in the insulation is 3.55 kV/mm, which
is about nine times lower than the breakdown E-field of the foil. The con-
clusion of the example is that corona discharges can occur much earlier than
the breakdown of an insulating foil, even for a homogenous field.

4.3.2 Breakdown Voltage in Solid Insulation Material

Volume Breakdown

The best insulation materials can withstand optimal conditions from a hun-
dred kV/mm up to one MV/mm. Practical materials reach a few tens of
kV/mm. Under severe circumstances, such as water trees, at about 1 kV/mm
the insulation aging process occurs. Therefore, the maximal theoretically
achievable dielectric strength has only small practical importance.

A practical expression for the breakdown voltage in solid materials has
been proposed in [2]:

(4.22)

where
Vd is the breakdown voltage [V]
Vr is the reference voltage [V]
d is the thickness of the sample [m]
dr is reference thickness [m]
a  is an exponent, a = 0.5 according to [2]

For a = 0.5 Equation (4.22) is known as the Tautscher equation [2]. In the
same reference the equation is validated on materials such as glass fiber filled
polyester, polyamide film (thickness: 0.1–2 mm). According to Equation (4.22),

FIGURE 4.6
Total peak breakdown voltage of the example
as a function of the distance ds.
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the dielectric strength is not a constant but decreases when the thickness
increases. This seems to be the main reason for high dielectric strength values
of foils compared to potting insulators made with similar materials. In fact,
they are tested in different thickness and the thickness for foil is lower.

Example
A foil of dr = 50 µm thickness has a breakdown voltage of 10 kV. What is the
breakdown voltage of a d = 200 µm foil made of the same material?

ANSWER
We use Equation (4.22) for α = 0.5:

kV (4.23)

The expected breakdown voltage is found to be 20 kV and not 40 kV as
one would expect if the dielectric strength was constant.

REMARK
In practical cases one has also to consider possible mechanical damage,
aging, environment pollution, and so on. To obtain a valuable breakdown
property at high thickness, often materials with a high degree of purity are
used at high thicknesses or a several layer design is utilized.

For most materials, the dielectric strength is reduced by a factor of 2 in
their temperature operating range. The temperature aging can also cause
breakdown in a material.

In practice, often a breakdown occurs at quite low values of the electric
field. The cause is often mechanical stresses or a defect at the actual border
of the insulating material. Typical factors for decreasing the dielectric
strength are

• gas enclosures
• conductors with a small radius (point effect)
• foreign particles (metal particles, salt pellets, residue of the polymer-

ization process)
• partial discharges at the surface
• electrical tree or water trees

Surface Breakdown Along Solid Insulating Materials

The surface of an insulator usually has a lower dielectric strength compared
to the volume itself. Often, the dielectric strength along the surface is lower
even than the strength in air. In practical cases one should also take into
account external pollution, which additionally decreases the breakdown
voltage values. Insulators for all climates are also tested with salt smog.

In quite favorable circumstances, for instance inside instruments and equip-
ment, the breakdown voltage value of 2–3 mm/kV is necessary.
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A very specific case happens with a thin insulator (plate or foil) with asym-
metric conductors on both sides, see Fig. 4.7. If the shorter conductor is charged
quickly, a dart type discharge occurs at the edge of the conductor (usually at
the corner). This dart gives a new field concentration, which continues the
process. The dart can propagate over a long distance because a part of the
insulation foil is charged like a capacitor. For example, with a 30-kV, 50 Hz
supply, a flashover distance of about 20 cm can be reached over a foil of
0.2 mm, and the foil itself remains intact. The effect is also known to occur at
the end of a slot in electrical machines. For medium voltage machines, some-
times an intermediate semi-conductive zone is used to smooth the field.

4.3.3 Corona Discharge

In a capacitor with a dielectric sheet and some air distance, the electrical
field in the air is er times higher than in the dielectric. As the dielectric
strength of air is much lower than the strength of the usual dielectrics, it is
clear that a first discharge occurs in the air. This happens only once in DC
but happens two times during a period in AC. The discharge produces ozone
and nitrogen oxides, which attack the insulation material, and a slow deg-
radation process occurs. The effect is known as corona discharge.

Typical places for such phenomena are non-impregnated or partially
impregnated wire wound components. The peak-to-peak voltage across two
adjacent wires is important. Usually the risk becomes real for voltages of
500 V peak-to-peak between wires.

Partial discharge measurement set-up can be used to evaluate the corona
risk.

4.4 Insulation Requirements and Standards

As the physical phenomenon are difficult to be estimated clearly, some safety
factor must be included in order to meet the insulation requirements.

4.4.1 Basic, Supplementary, and Reinforced Insulation

Basic standards, such as IEC65 [3], are drawn up especially for insulating
materials. A typical standard, which also contains requirements for magnetic
components, is the standard for safety of information technology equipment
IEC950 [4].

FIGURE 4.7
A dart in the case of asymmetrical con-
ductors insulated with a thin insulator,
e.g., the two sides of a PC board.
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In these standards the following different terms are defined for the kind
of insulation: operational (Op) insulation, basic (B) insulation, supplementary
(S) insulation, double (D) insulation, and reinforced (R) insulation. In the
standard IEC 950 the following definitions are given:

• Op: necessary for proper functional operation
• B: to avoid electrocution
• S: to avoid electrocution when the basic insulation fails
• D: Double insulation equal to: B + S
• R: Single insulating system, which properties are equivalent to dou-

ble insulation

Three different pollution degrees of the environment are specified:

1. environment without dust and humidity
2. common environment, applicable for the most of the equipment
3. environment containing dust or dry dust, which becomes conduct-

ing at expected condensation

4.4.2 Standard Insulation Distances

Here we consider the standard insulation distances clearance and creepage
distance. The distance trough insulation is considered in subsection 4.3.2 and
the electric tests are discussed in subsection 4.4.3.

4.4.2.1 Clearance

Clearance is defined as the shortest distance between two conductors, or
between a conductive part and the bounding surface of the equipment,
measured through air. Bounding surface is the outer surface of the electrical
enclose, considered as though metal foil were pressed into contact with
accessible surface of insulation material.

Clearance is shorter than the creepage distance, defined later, because air is
a better insulator than the surface of the insulator itself. A quite elaborate
description of clearance is given in IEC950 [4]. In Table 4.1 we tabulate only
a selection of the available data. The insulating distance depends on the mains
voltage, on the insulated working voltage, and on the pollution degree.

According to the definition in [4], the working voltage is the highest voltage
to which the insulation under consideration is, or can be, subjected when
the equipment is operating at its rated voltage under conditions of normal
use. The working voltage in magnetic components is the highest voltage
between primary circuits and secondary circuits, between primary circuits
and the body of the equipment, and between secondary circuits and the
body of the equipment.

In Table 4.1 a few typical cases are given; the distances are in mm, pollution
degree 2.
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154 Inductors and Transformers for Power Electronics

In some circumstances smaller distances can be tolerated than those tab-
ulated in Table 4.1. Note that pollution degree 3 requires higher insulation
distances than the given in Table 4.1. Also, the presence of additional peak
voltages from a power electronic converter increases the required distance.

4.4.2.2 Creepage Distance

Creepage distance is the shortest distance between two conductors, or between
a conductive part and the bounding surface of the equipment, measured
along the surface of the insulation.

In a pure environment (pollution degree 1) the creepage distance can be
equal to the clearance distance (generally true for mica, quartz, ceramics).
But the required distance may increase a lot for pollution degree 2 or 3.

A number of distances are listed in Table 4.2 for pollution degree 3 and a
material susceptible to creepage paths. The creepage paths are tracks where
flashover is possible.

Concerning electronic printed circuit boards (PCB) with additional coating,
the creepage distance is shorter than the values tabulated in Table 4.2. The
PCBs are tested on dielectric strength.

TABLE 4.1

Minimum Clearances for Different Voltages and Insulation Types [4]

Maximum insulated
secondary side working

voltage [V]

Clearance [mm]
Primary voltage between

150 and 300 V RMS
(Transient 2500 V)

Pollution degree 1, 2

Primary voltage between
300 and 600 V RMS
(Transient 4000 V)

Pollution degree 1, 2, 3
Vpeak VRMS Op B/S R Op B/S R

71 50 1.0 2.0 4.0 2.0 3.2 6.4
210 150 1.4 2.0 4.0 2.0 3.2 6.4
420 300 1.7 2.0 4.0 2.5 3.2 6.4
840 600 3.0 3.2 6.4 3.0 3.2 6.4
1400 1000 4.2 4.2 6.4 4.2 4.2 6.4

TABLE 4.2

Creepage Distance, Operational, Basic and supplementary Insulation, 
Pollution Degree 2 and 3, for the material groups IIIa and IIIb [4]

Working voltage* [V]

Creepage distance to 
the secondary 

side [mm] PD = 2

Creepage distance to 
the secondary 

side [mm] PD = 3

200 to 250 2.5 4.0
250 to 300 3.2 5.0
300 to 400 4 6.3
400 to 600 6.3 10
600 to 1000 10 16

*This is the highest voltage between points, DC or AC RMS value.
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4.4.3 Electric Strength Tests

Considerable progress has been made in the development of tests to evaluate
insulating materials. Here we give the required voltages for electric strength
tests. All voltages mentioned section are RMS values. If the electric strength
test is performed with DC voltage, then the tested voltage should be

The test voltage is applied progressively during the test.
The RMS values of test voltage depending on the working voltage (RMS
values) are tabulated in Table 4.3.

For working voltages higher than those tabulated in Table 4.3, one can
directly refer to the corresponding standard. During the test no flashover is
tolerated (corona is permitted).

If the equipment contains radio interference filters, then it is tested in DC
voltage. For practical reasons (portable testers, cost), mostly DC tests are used.

For the operation insulation itself (Op), these tests can be omitted as long
as the requirements for clearances and creepage distances are fulfilled.

4.4.4 Leakage Currents

Usually, magnetic components have very low leakage currents, typically
below 1 µA in DC or currents corresponding with 0.1 to 10 nF in AC. Due
to the presence of high frequencies in power electronics, even a parasitic
capacitance of a few nF can result in currents of a few mA. The leakage
current is often increased by discharge resistors, voltage surge arrestors, and
parallel capacitors.

The total leakage current of information technology equipment in normal
operation is limited as follows:

• normal equipment: <0.25 mA
• hand held equipment: <0.75 mA
• movable equipment: 3.5 mA
• stationary, pluggable equipment: 3.5 mA
• stationary equipment, with a special warning label for leakage 

current: 5% of input current

TABLE 4.3

RMS Values of Test Voltages Depending on the RMS Values of the Working 
Voltage Vw

Test voltage, RMS values [V]
Vw = 0 to 130 V Vw = 131 to 250 V Vw = 251 to 1000 V

Insulation Type: Op 1000 1500 ≅ 114.5⋅ U0.4638

Insulation Type: B/S 1000 1500 ≅ 114.5⋅ U0.4638

Insulation Type: R 2000 3000 3000

V VDC Test rms, .= 2
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In industrial equipment higher leakage currents are usually tolerated than
those stated previously.
However, one should be aware of

• the EMC regulations and requirements
• the need to reduce the earth currents a sufficient level below the trip

level of leakage current protection devices

4.5 Thermal Requirements and Standards

There are a few classes of insulation with respect to the thermal requirements:

• Class A: The maximum temperature in the component is not allowed
to exceed 100°C. A high diversity of materials can be used, where
each material is of class A.

• Classes E, B, F, H: The materials have to fulfil stringent rules and
need a special certification.

REMARK
If one uses self-adhesive systems, one should be aware of the possible elec-
trolytic corrosion action of the adhesive. With thin enamel layers on copper,
the adhesive can corrode the copper. The standards that address these issues
are VDE 0203 and DIN53489 [5].

4.5.1 Thermal Evaluation of Insulation Materials and Systems

The IEC 216 standard is a guideline for the determination of thermal endur-
ance properties. The maximum operating temperatures of some installation
materials are tabulated in Table 4.4 at 25°C ambient temperature. There is a
difference between the general standard IEC 85 [6] and the standard for
equipment IEC 950 [4].

TABLE 4.4

Maximum Operating Temperatures of Some Insulation Materials 
at 25°C Ambient Temperature

Installation materials
Maximum allowed 

temperature [°C]

Rubber, PVC (cord, normal type) 75°C
Rubber 60°C
PE, PVC 70°C
XLPE 90°C
Paper-lead 80°C
Butyl rubber 85°C
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Thermal Evaluation of Insulation Systems

The description of an insulating material as being of a particular thermal
class does not mean that each material used in a system (or a device) has
the same thermal capability. Problems of incompatibility between materials
may decrease the appropriate temperature limit of the system below that of
the individual materials. On the other hand, in an isolating system the
thermal performance of the insulating materials could be increased by the
protective character of the other materials used in that system.

Very few test procedures for thermal evaluation are standardized. The IEC
505, IEC 610, and IEC 791 [7] can help as a guideline for the determination
of thermal endurance properties.

Responsibility for Selection and Assignment

The manufacturer has the responsibility for the selection of appropriate
insulation materials of a component. Only sufficient experience or adequate
acceptable tests provide bases for assigning rational temperature limits for
the insulation.

4.5.2 Requirements and Standards for Inductive (Magnetic) Modules

We must differentiate between the thermal classification of an inductive
module and the terminal classification of the wire of the inductive module.
The reason is that the endurance of the insulation of inductive modules is
affected by many factors such as temperature, electrical and mechanical
stresses, vibration, deleterious atmospheres and chemicals, moisture, dirt,
and radiation. This means that an inductive module could have a lower
thermal class than the wires used in it. The thermal class of the inductive
modules is specified according to the IEC 85 standard [6]. The thermal class
of the wires is specified according to the IEC 317 [7] standard.

Certain basic thermal classes are recognized and widely spread throughout
the industrial world. These thermal classes are tabulated in Table 4.5.

TABLE 4.5

Thermal Classes for Inductive Modules

Thermal class
Maximum allowed 

temperature [°C]

Y 90
A 105
E 120
B 130
F 155
H 180
200 200
220 220
250 250
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REMARKS

• Temperatures over 250°C should increase by 25°C intervals and
corresponding classes should be consistent with that requirement.

• The old class C, used in the past for all temperatures above 180°C,
is replaced by the above mentioned thermal classes.

• The tabulated temperatures are the actual temperatures of the insu-
lation and not the temperature rises.

• When a thermal class describes an inductive module, it represents
the maximum temperature that is allowed under rated nominal load.
The insulation used in the device is subjected to the same standard
maximum temperature. Thus, it should have thermal capability at
least equal to the temperature associated with the thermal class of
the device.

4.5.3 Standards for Wires

The copper diameter dcu of enameled copper wire is standardized. In the U.S.
the AWG (American Wire Gauge) [8] is frequently used, please refer to section
C2 of Appendix C at the end of the book. The standard widely used in Europe
is EN 60317 [7] (old IEC 317), refer to section C1 of Appendix C. The basic
description is EN60317-0. There is also a special standard depending on the
enamel type, e.g., EN60317-20. In Europe, the E10 mechanical series are used,
refer to section C1 of Appendix C. Depending on the required insulation
level, a varnish layer is needed, which increases the outer diameter do.

The IEC 317 standard specifies also the thermal class of magnet wires. In
the standard IEC 317–0 a lot of general requirements for magnet wires are
specified, such as bending properties, etc. The major given specifications are
bare material diameter, enamel thickness, resistance per meter, and high volt-
age characteristics. We give some explanations concerning those specifications.

Bare Material Diameter

Not all possible diameters can be ordered. The IEC 317 standard specifies
two series of diameters: the R20 and the R40 series. The R20 series are the
preferred diameters. The R40 series can be ordered but are the exceptions.
However, most of the suppliers of magnet wires have both the R20 and R40
series in their standard program.

NOTE: At additional cost the suppliers can deliver wires with improved
(reduced) tolerances on resistance and wire diameter. The actual production
techniques are more refined now than they were 10 years ago.

Enamel Thickness

The IEC standard specifies 3 grades concerning the enamel thickness: Grade 1,
Grade 2, and Grade 3. For most applications only Grade 1 and Grade 2 are
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used. A high grade number means better high voltage characteristics. For
example, a wire with a diameter of 0.25 tested at room temperature according
to IEC 851 is guaranteed up to 2100 V at Grade 1, up to 3900 V at Grade 2,
and up to 5500 V at Grade 3.

Resistance Per Meter

Depending on the wire size, different equations are used to determine
the minimum and maximum values of the resistance per meter. However,
the nominal value is always calculated with a specific resistance of rc =
17.24 × 10−9 Ωm at 25°C.

Thermal Classes of Magnet Wires

The index of the IEC standard describes the enamel type and accordingly
the temperature index. The temperature index means that the wire can be
used during that specific temperature for at least 20,000 hours.

The most common enamel types are discussed in the following standards:

1. IEC 317–20: This standard describes polyurethane enamel insulation,
class 155.

2. IEC 317–51: This standard describes modified polyurethane enamel
insulation class, 180.

3. IEC 317–13: This standard describes enamel insulation made of poly-
ester with a polyamide overcoat, class 200.

4. IEC 317–26: This standard describes polyamide enamel insulation,
class 200. Although only standardized up to 200°C, all the suppliers
guarantee 220°C during 20,000 hours for this enamel wire type.

NOTE: With increasing thermal properties also the chemical resistance is
increasing.

In Table 4.6 we give an overview of the maximum operating temperature
of a copper wire in normal operating. The temperature is registered by

TABLE 4.6

Thermal Classes for Copper Wires Depending on Thermal Properties 
of the Insulation

Class
Maximum temperature

According IEC 85
Maximum temperature*

Resistance method
Maximum temperature**
Thermocouple method

A +105°C +100°C +90°C
E +120°C +115°C +105°C
B +130°C +120°C +110°C
F +155°C +140°C +130°C
H +180°C +165°C +155°C

* Resistance method, thermocouple for motors, according IEC 950.

** Thermocouple method for transformers, according IEC 950.
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resistance measurement in 25°C ambient temperature. The tolerated temper-
ature by thermocouple measurement is 10°C lower in transformers but equal
to the resistance measurement method for electrical motors. The maximum
allowed temperature rise is the temperature value of Table 4.6 after subtract-
ing an ambient temperature of 25°C.

4.6 Magnetic Component Manufacturing Sheet

Often, wrong series or prototypes are made due to a too limited communi-
cation between the designer and the manufacturer. The origin of these errors
is the common practice to specify only the number of turns and the wire
diameter for small 50 or 60 Hz transformers. But this information is not
sufficient for power electronics magnetic components!

Here we consider some important items to be included in magnetic com-
ponent design information.

Coupling

Often errors are made in the coupling between windings. The coupling is
defined when the starting pin and the stop pins are specified, assuming that
the same winding direction is maintained.

Air Gaps

Usually, first breadboard designs are made with a spacer, as it is not easy to
cut ferrites at that level. However, the series manufacturing is normally done
with a center gap. Therefore, it is not sufficient to specify just the total gap
length. Unpunctuality in these specifications generates inductance errors,
close to a factor of 2, refer to Chapter 8 for more details. In fact, the designer
wants to realize a given permeance (AL) value by creating an air gap. At low
air gaps, the permeance measurement is more accurate than the measure-
ment of the air gap, so it is advisable to specify the AL value or to measure
the final component.

Impregnating

Another important fact is impregnating a magnetic component. The perfor-
mance of a transformer is not the same if it is impregnated. Impregnation
increases the lifetime of the insulation but also the parasitic capacitance,
which may not be suitable. The most used materials for impregnation are
polyester, or epoxy resins. Recently, silicones are also used for impregnation.
The advantage of the latter materials is the flexibility and the high maximal
operating temperature. The disadvantage is the price and the lower resis-
tance to chemicals.
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FIGURE 4.8
Magnetic component manufacturing sheet.
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Partially Filled Layer

A layer that is partially filled can be realized in different ways. Thus, the
different realizations have impact on the total performance of the component.
The designer should use some of the following relevant aspects to specify
the right manufacturing:

• winding on one side of the coil, which is the easiest way of winding
• spread along the winding width, thus low leakage inductance with

other layers
• avoiding to wind in the middle, thus decreasing eddy current losses

in the presence of an air gap

Manufacturing sheet

Here we give an example of a magnetic component-manufacturing sheet. It
contains the aforementioned aspects, such as coupling, air gaps wire diam-
eters insulation type and thickness, core material and coil former type see
Fig. 4.8. 
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5
Eddy Currents in Conductors

5.1 Introduction

Eddy current effects in conductors were recognized at an early time. At the
end of the nineteenth century, it was known that a conductor of a (telegraphic)
coaxial cable has an increased AC resistance for higher frequencies and that
the inductance reduces with frequency [1]. The method that was applied used
mathematical series and the derivative of the current. This approach is differ-
ent from the methods we use now, but the result was correct.

Eddy currents have long been recognized in electrical machines as well.
For example, the starting torque in squirrel cage induction motors is
improved by a rotor resistance increase and inductance decrease caused by
the eddy currents. In large machines and transformers, eddy currents have
a big impact on the process of manufacturing coils because of efforts to avoid
them, for example, paralleling wires and Röbel bars.

Although some physical properties were known before, the real break-
through of ferrites came after 1945 in the Netherlands [2]. Using ferrites, the
magnetic components could be made much smaller since the main flux path
was not going through the conductors and, thus, most of the eddy currents
could be avoided. In classical electronics, more attention was given to the total
core losses and the Q-factor than to a detailed analysis of eddy current losses [3].

Current Power Electronics Needs

Because of improvements in semiconductors and soft switching topologies,
much higher switching frequencies are now possible, compared to 20 years
ago. As a result, most of the actual designs of magnetic components in power
electronics are highly influenced by eddy currents.

Skin Effect

At high frequencies, the major part of the current flows in a thin outer layer
(skin) of the conductor, so the phenomenon is called skin-effect.
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Proximity Effect

The effect by a transverse field is called proximity effect. The eddy current
losses in wires close to each other are much larger than in a free wire or the
central wire in a coaxial arrangement. A similar increase in losses appears
when magnetic materials are close to conductors. The major part of losses in
wires can be explained by the presence of a transverse field. This allows
simplified approximations such as in Chapter 2.

Air Gap Effects

The most intense losses appear when the flux is concentrated by a magnetic
circuit with an air gap and some conductors are close to that air gap. This
is often the case with gapped inductors and transformers. If one does not
pay special attention to this phenomenon, it often results in a local melting
of the coil former.

Eddy Current Losses in Conductors

In general, other field patterns are also possible and we can talk about eddy
currents or about eddy current losses. A way to reduce the eddy currents is using
Litz wire. The word Litz is derived from the German word Litzendraht and
refers to wire consisting of a number of separately insulated strands twisted
or bunched together such that each strand tends to take all possible positions
in the cross section of the entire conductor; it is also called bunched wires.

The presence of eddy currents is a linear effect. Voltage and current remain
proportional and active and reactive power losses are quadratic with cur-
rents or fields. The complex impedance functions related to eddy currents
are linear and passive. Thus, they contain neither poles nor zeroes in the
right half plane. The mathematical functions associated with them are ana-
lytical (minimum phase impedance function). This means that Bode laws
are applicable and that real and imaginary parts are related to each other.
For example, neglecting capacitive effects, if the resistance increases with
frequency, then the inductance must decrease with frequency.

Only a few exact analytical explicit solutions of eddy currents are known
and we give some of the most useful ones. Although they are not always
that simple, they are worthwhile and give automatically analytical functions
(both real and imaginary part of the impedance) when the complex formu-
lation is used. Using modern mathematical programs (MathCAD, Maple,
Matlab, Mathematica) makes the implementation of the approach easier.

Many approximations are possible, such as low frequency approximation,
high frequency approximation, Quadrature of the circle method of Dowell
[4], splitting in orthogonal components. The finite element methods and
finite difference methods can also be seen as approximations, as they dis-
cretize the space and solve an idealized local field problem. We observe a
good interaction between finite element and classical methods. The knowledge
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of the classical theory can reduce the amount of cases for simulation for one
side and the finite elements methods can solve geometries and problems not
solvable by analytical solutions for the other side.

We propose a wide frequency approximation, which starts from analytical
solutions of special cases and is finetuned by finite elements. The focus is
on the losses (the real part of the power). The imaginary part, corresponding
to the inductance, is easier to measure so that modeling is less important.

Practical experiments are often difficult; if the design is well done, the eddy
current losses are only a fraction of the total losses and they have to be
separated from the losses of magnetic materials and the temperature depen-
dence of copper and core losses. With the right approximations, very fast and
quite accurate calculations can be done. This allows using such an approach
in an optimizing design, where many cases can be calculated in a short time.

Mathematical derivations are given in the Appendix at the end of this
chapter.

5.2 Basic Approximations

In order to avoid extensive mathematical computation and to improve the
intuitive understanding, some approximations of the effects are shown.

An important quantity in eddy currents theory is the penetration depth d
given as

(5.1)

where
w = 2π f is the frequency of the applied magnetic field
m is the permeability of the material (for copper m ≅ m0)
rc is the electrical resistivity of the conducting material (copper) we use
rc = 23 × 10−9 Ωm at 100° C; rc = 17.24 × 10−9 Ωm at 25° C

The ratio between a characteristic dimension of the conductor (the diam-
eter for round wires) and the penetration depth for the corresponding fre-
quency is a parameter for estimation if low or high frequency approximations
can be done. In Fig. 5.1 the penetration depth is shown as a function of
frequency.

5.2.1 Low Frequency Approximation

In this type of approximation, the field of the induced eddy currents is
neglected. Thus, the basic field is assumed to penetrate completely through
the conductors. This simplifies the mathematical solution, as the induced

d r
m w

= 2 c
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current can be computed with the aid of the DC field pattern. If an analytical
exact solution for all frequencies exists, the low frequency approximation will
give the first term in the Taylor expansion (series). In power electronic com-
ponents, a large part of the impedance is not influenced by eddy currents, so
that most of the time, the change in inductance can be neglected. The low
frequency approximations are usually applicable (lower that 5% on the resis-
tance increase) if the largest dimension of the conductor is lower than 1.6 times
the penetration depth. If a low frequency approximation is allowed, the losses
can be represented by a parallel resistor to the considered type of inductance.
This approach simplifies greatly the circuit modeling.

It should be emphasized that the statement “The low frequency eddy
current approximation is allowed” does not mean at all that the eddy current
losses are low!

5.2.2 High Frequency Approximation

If an AC H-field is applied parallel to the surface of a plane conductor, this
field will be attenuated along the depth in the conductor. If the thickness of
the conductor is much larger than the penetration depth d, the losses in the
conductor can be associated with an equivalent thin layer with thickness d,
which has a fictitious homogenous current not affected by eddy currents.
The equivalent inductance would be explained by an equivalent fictitious
increase of the area of the air by d/2. Note the difference: for resistive part d is
used and for the inductive part, d/2!

FIGURE 5.1
Penetration depth d as a function of frequency for copper conductors, rc = 20 × 10−9 Ωm, T ≈ 66°C.
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For an infinite frequency, no field is penetrating into the conductor. This
can be simulated by taking permeability equal to zero inside the conductor
or stating that the field must be parallel to the surface (Dirichlet boundary
condition in numerical problems).

5.2.3 Superposition of Losses

The superposition of fields can be done in eddy current problems, as the
phenomenon is linear. However, in general, for the calculation of the
losses, the superposition of losses from different field types is not allowed.
Nevertheless, simply adding losses of different field types is an interesting
feature.

Let us consider the following calculation of an average power over a
conductor cross section:

(5.2)

 

(5.3)

where
Ja(x, y, t) is the current density generated by a field Ha (x, y, t)
Jb(x, y, t) is the current density generated by a field Hb (x, y, t)

To add the losses without taking into account mixed products, it is sufficient
that the following integral vanishes:

(5.4)

The usual reasons and conditions that make the superposition of losses
allowed are as follows:

• The wire and the field problem have a symmetry axis; one current
density is even (or constant) and the other current density is odd
across that symmetry axis.

• Two different frequencies are applied.
• The current densities of the same frequency have 90° phase differ-

ence. This can be the case with a magnetizing field and a leakage
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field in a transformer if the transformer has a low leakage inductance
and the load is resistive.

• In general, when the functions of the current densities in space are
orthogonal.

If the superposition of losses is applied where it is not allowed, the losses
can range from zero up to two times the expected ones.

5.2.4 Wide Frequency Approximation

If a low frequency solution and a high frequency solution exist, the transition
between low and high frequency is usually smooth and even if no exact
solution exists, still some approximations can be used. A way to finetune the
approximations is to use finite element solutions or known analytical cases.

5.3 Losses in Rectangular Conductors

Here only some major highlights are shown; the mathematical derivation
and more details can be found in Appendix 5.A.1 at the end of this chapter.

5.3.1 Exact Solution For a Current Carrying Rectangular Conductor 
in a Transverse Field

The conductor is placed between two walls of magnetic material with infinite
permeability (Fig. 5.2,a). All field lines are perpendicular to the walls, which
allows a one-dimensional solution. The case is also equivalent to a field
pattern, where several conductors are present between walls of a magnetic
material with infinite permeability (Fig. 5.2,b) or a large (infinite) number of
conductors are placed in a layer (Fig. 5.2,c).

FIGURE 5.2
Rectangular conductor subjected to a horizontal field, in parallel to the layer: a) Single conductor;
b) Several conductors; c) Many conductors.

(a) (b) (c)
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Note that we do not look at the field outside the conductors. This means
that the fictitious current return path can be thought of just as a thin layer
above and below the conductor. The choice of the place of the return path
does only influence the inductive part in the one-dimensional approach.

We consider the complex apparent power given as

S = P − jQ = VI* (5.5)

where
P is the real power
Q is the reactive power
I* is the complex conjugate of the current

As found in Appendix 5.A.1, the losses of a rectangular conductor are

(5.6)

where
lc is the length of the conductor
a is the thickness of the conductor, see Fig. 5.2
b is the width of the conductor, see Fig. 5.2
s = 1/r is the specific conductivity of the conductor
r is the specific resistivity of the conductor (for copper: 

T is the temperature in °C
s = jw = j 2π f 
Htop is the H-value at the top of the conductor in the x-direction
Hbot is the H-value at the bottom of the conductor in the x-direction

The following quantities, impedance, propagation function, and penetra-
tion depth, are defined as

(5.7)

(5.8)

(5.9)

The aforementioned type of formulation, Equation (5.6), is interesting by its
symmetry. The formulation is quite general as not only current in the con-
ductor but also other applied fields are allowed. In the appendix, more
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170 Inductors and Transformers for Power Electronics

details and other formulations are given. We can rewrite Equation (5.6) using
the current I in the conductor and the average transverse field Hav:

(5.10)

, (5.11)

The advantage of the previous formulation is that no phase relationship
between the average transverse field and the current must be known (no
time orthogonality required), as Equation (5.10) and Equation (5.6) use
orthogonal functions in space.

The contribution of the air between the conductors to the apparent power
is given as

(5.12)

For m superimposed layers carrying the same current, H = 0 below the lowest
one, the impedance can be calculated compared to the DC resistance:

(5.13)

The equation is also valid for m = 0.5. This is the case where the magnetic
field is zero in the middle of the each conductor of the layer. The case is
referred to as a half layer.

The last term at the right side of Equation (5.13) (the sum) gives the
contribution of the field between the conductors.

5.3.2 Low Frequency Approximation

5.3.2.1 Current Carrying Conductor Without Transverse Field

For a low frequency approximation, the exact solution can be written using
Taylor expansion. The even terms with respect to the frequency w contribute
to the resistance. The first term is the DC resistance; the third term gives the
low frequency eddy current part. The first and third terms are

, (5.14)
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The odd terms with respect to w present the inductance. Here we give only
the first term:

(5.15)

The second term in Equation (5.14) is quadratic with the frequency, so this
type of loss is quadratic with the derivative of the current. These results can
also be obtained assuming that

• the field fully penetrates the conductor and generates an e.m.f.
• the average current density generated by eddy currents is always

zero; if it is not so, the constraint of the applied current is not
maintained

Using Appendix 5.A.1, more terms in the expansion can be calculated.
However, the exact equation is easier to apply than adding a number of terms.
Compared to the exact solution, Equations (5.14) and (5.15) give a higher
inductance and higher resistance for increasing frequencies.

5.3.2.2 Conductor Without Current in a Transverse Field

The losses Ptr,lf in a rectangular conductor without current with fields in the
x and y directions is given by

(5.16)

where
Ptr,lf are the losses using the low frequency approximation
Hav,x is the average transverse field in x direction
Hav,y is the average transverse field in y direction

No DC loss is present in this case. In the low frequency approximation for
m superimposed layers, the power loss expressed by the DC resistance is

(5.17)

The LF inductance for m superimposed layers is

(5.18)

The first term in Equation (5.18) originates in the energy of the average static
field in the conductor. The second term in Equation (5.18) is the contribution
of the inductance of the air between the conductors.
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172 Inductors and Transformers for Power Electronics

5.3.3 High Frequency Approximation

5.3.3.1 Ideal Case

The eddy currents generate a field that tends to neutralize the field inside
the conductor. The losses are equivalent to the conduction process in a thin
layer of the conductor on both sides of the conductor, as the problem is
symmetrical. Using Equation (5.13), the impedance of a conductor without
transverse field is presented:

(5.19)

where
R0 is the DC resistance of the series connection of the conductors

This result corresponds to a conducting layer with thickness d on the top
and bottom of the conductor. The imaginary part (reactance) equals the
resistive part and both increase with the root of the frequency.

Using Equation (5.13), the HF approximation of the resulting impedance
for m superimposed layers is

(5.20)

This result can also be obtained using the equivalent currents in the thickness
of the penetration depth shown in Fig. 5.3.

We can denote by F the sum of the squares of the current ratio of the
upper and lower surface current compared to the conductor current:
F = (Ibot

2  + Itop
2 )/I2. Table 5.1 presents the increase in eddy current losses due

to the high frequency effects.

FIGURE 5.3
High frequency approximation of series connected wires in a slot with current I. The currents
shown flow in an equivalent penetration depth.
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REMARK
The DC resistance is increased by a factor of m while using m layers.

5.3.4 Spaced Conductors

5.3.4.1 Classical Approach

The approximation is derived under the condition that b’ is still small com-
pared to a and to the penetration depth d, so that the H-field is still almost
horizontal.

Conductors do need insulation, which corresponds to a minimum distance
between the conductors. For conductors spaced with air or insulation, the
classical approach is to enlarge the conductor in the x-direction to fill the air
and to adapt the conductivity to get the same DC resistance. In this way the
penetration depth and other quantities depending on the conductivity are
changed. The following terms are used, see Fig. 5.4:

• a is the thickness of the conductor
• b is the width of the conductor
• b’ is the slot width or distance between center lines of the conductor
• b/b’ is the (horizontal) filling factor

The penetration depth is then defined as

(5.21)

TABLE 5.1

The Increase in Eddy Current Losses Due to the High Frequency Effects

Conductor number m: 1 2 3 4 5

F = (Ibot
2  + Itop

2 )/I2 1 1 + 4 4 + 9 9 + 16 16 + 25
Σ F2 1 6 19 44 85
m(2 m2 + 1)/3 1 6 19 44 85

FIGURE 5.4
Spaced conductors. a) Symmetrical arrangement of conductors; b) enlarging the conductors in
the x-direction.
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174 Inductors and Transformers for Power Electronics

The adapted characteristic impedance and the propagation function can
be written as

(5.22)

(5.23)

At decreasing b/b′ and increasing frequency the conditions are not satisfied,
but for a = b and b/b ′ > 0.5 the approximation is still feasible. Equations (5.21),
(5.22), and (5.23) can be substituted in the exact solutions presented by Equa-
tions (5.6), (5.10), and (5.13). By this substitution, the exact equations become
only wide frequency approximations. The exact problem with several conduc-
tors is a two-dimensional problem and it is not easily solved analytically.

This type of method was first applied in slots of electrical machines, where
rectangular conductors are placed vertically in a slot, as they are easily
inserted in this way. The horizontal dimension is smaller than the penetration
depth, and the distance between the conductors is low. Under these condi-
tions, the approach is a good approximation.

5.3.4.2 Low Filling Factor and High Frequency

The previous conditions are not always present in practical arrangements.
At low filling factors, which are close to a standalone conductor, vertical

fields are also present and Equation (5.10) does not contain all losses, thus
underestimating the total losses. In Equations (5.22) and (5.23), if b/b′ is
sufficiently low, the losses tend to zero, which does not correspond to the
reality of standalone conductors.

This conclusion shows that the classical approach leads to erroneous
results at low filling factors, as it neglects the vertical field components. The
best approach is to use finite element methods to solve problems with rect-
angular conductors at low filling factors. If by some means, the top, bottom,
and side H-fields can be estimated, Equation (5.6) can be extended and quite
good approximations can be obtained.

5.4 Quadrature of the Circle Method for Round Conductors

We called the next method the Quadrature of the circle after a historical math-
ematical problem that couldn’t be solved: to construct a square with the
same surface as a circle by means of a ruler and a pair of compasses. Since
we have a solution for rectangular conductors, if we can convert a circle to
a square, we could use the already derived method to approximate the eddy
current losses. This method is often referred to as the Dowell method.
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The way of presenting here is slightly different from the classical Dowell,
as we prefer using orthogonal functions, since the superposition of losses
can easily be applied. An improvement of that method is possible by using
other functions. We call it improved quadrature of the circle method (IQOC).

5.4.1 Equivalent Rectangle Principle

Following the principle of equivalent rectangles, the original round conductor
is approximated by a square with the same surface, Fig. 5.5 h is the horizontal
filling factor, This assumption allows maintaining the same DC losses
while using the same resistivity. To obtain the equivalent square, we use

(5.24)

The square can be enlarged to a rectangle, which fits the available area, Fig. 5.5,
such as in the rectangular conductors with space to the core material (the slot).

5.4.2 Adapted Equations

The equations for the impedance of m superposed conductors can be refor-
mulated. We introduce directly the (copper) diameter of the wire d. For the
contribution of air between the layers, the distance between the conductors
has to be increased with the difference of a and d.

The conductor impedance Zcond can be presented as

(5.25)

The adapted penetration depth is

(5.26)

FIGURE 5.5
A circle, the equivalent square, and the equivalent rectangle.
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176 Inductors and Transformers for Power Electronics

The air impedance Zair is given as

(5.27)

Then, we have

Z = Zcond + Zair (5.28)

Those equations can be reformulated using the original penetration depth
again and showing the dependency on h = d / b ’ in a separate function. This
simplifies the equation as the real penetration depth is used and not some-
thing dependent on both frequency and h.

(5.29)

(5.30)

5.4.3 Low Frequency Approximation

For low frequency approximation, using the equations of Appendix 5.A.1,
the resistive part Rac,lf of the impedance of m superposed round conductors
is presented as

(5.31)

The transverse field part, the third term in Equation (5.31), can also be
calculated directly in a homogenous field, as in low frequency, the eddy
currents do not influence the transverse field.

REMARKS CONCERNING EQUATION (5.31)

• It can be shown that Equation (5.31) overestimates the low frequency
losses of a pure transverse field by a factor π/3 in that case.

• For the local field losses (the second term) the deviations are larger
than π/3. Equation (5.31) indicates that those losses tend to zero for
large b’ values, which is not true for local eddy current losses, as a
free wire also has losses.
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For low frequency approximation, we derive accurate 2-D solutions (see
next sections). This permits us to verify the accuracy of Equations (5.25),
(5.30), and (5.31) for low frequency. We checked a transformer design with
primary and secondary windings with opposite currents and the same wire
diameter. The (vertical) distance between the layers equals the horizontal
distance, and it is given as the copper diameter d divided by h (Fig. 5.5). The
wires in Fig. 5.6 are shifted to make an average between the different arrange-
ments (square and hexagonal fitting). Analyzing square fitting only, results
in much more loss at lower filling factors. However, this worst case is not
realistic, as actual coils are not wound in square fittings. To compare different
arrangements, we use a three-field method that has a high accuracy for low
frequency problems. This method is discussed later in the chapter.

Accuracy of Dowell Method

From the comparison in Fig. 5.7 one can see that the Dowell method seriously
underestimates the losses at low filling factors (low values of h). At low
filling factors the approximation is better for a higher number of layers m.

FIGURE 5.6
Conductor arrangement for several wires,
variable shift of wires of different layers.

FIGURE 5.7
Dowell method low frequency conductor resistance increase divided by the resistance found
by the low frequency three field method, see section 5.7.2 (the method is accurate for low
frequency cases), m is the layer number. The conductors are shifted.
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The reason is that the approximation of the local field in the Dowell presen-
tation, Equation (5.30), is not accurate enough. The quite good matching of the
single layer at high filling factor is because of the combination of overesti-
mating the transverse field and underestimating the local field.

The lack of accuracy of the local field estimation is more noticeable if a
half layer is considered: the losses of a primary layer that is sandwiched by
two secondary layers. In this case m = 0.5. One can see that for this case, the
third term in Equation (5.30) is zero.

If we compare this solution again with the accurate three-field method,
we have the result shown in Fig. 5.8.

From Fig. 5.8 we see that in the Dowell method, the low frequency local field
loss is underestimated for all filling factors for half layers. The reason is that only
fields parallel to the layers are considered in the Dowell method, and that
at low filling factors the losses do not tend to zero.

When the conductors are not shifted, which means a square fitting, there
is a maximum of 2.5% loss increase for a half layer and less than one percent
in one and more layers.

5.4.4 Improved Quadrature of the Circle Method

Knowing what is wrong in the Dowell method described in the previous
section, we can try to correct the inaccuracies. Thus, we present an Improved
Quadrature of the circle method (IQOC). The method avoids the disadvan-
tages of the classical Dowell method.

FIGURE 5.8
Dowell method low frequency conductor resistance increase divided by the resistance found
by the low frequency three field method for a half layer (m = 0.5).
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We define two g-functions, a local one gA (A refers to around) and a
transverse field one gT (T comes from transverse). The functions are formu-
lated as follows:

(5.32)

(5.33)

We can put both functions in Equation (5.30) to get an improved quadrature
of the circle approximation of the impedance:

(5.34)

NOTES:

• The gT function is adapted to remove the typical π/3 error of the
Dowell approach for a transverse field.

• The gA function fits the low frequency approximation for a free wire
for h tending to zero. It has been tuned to fit the half layer case. It
is significantly different from the original Dowell presentation.

Figure 5.9 shows the plot of the g-function of the Dowell method and the
g-functions of the introduced IQOC method.

When using the IQOC method with variable shifted wires, the matching with
the low frequency three field method becomes very good. The deviation is
lower than 0.1% for the whole range of filling factors and layers! We must
admit that finding those functions was a combination of luck and some
knowledge.

If the conductors are not average shifted, the eddy current losses of one
or more layers may increase up to 1% for a square fitting (χ = 0) and decrease
up to 1% for χ = 0.5.

Figure 5.10 shows the ratio between the IQOC method results for eddy
current losses compared to the three field method results.

For a half layer the differences become +2.5% for s = 0 and –2.5% for s =
0.5 on eddy current losses.

NOTE: Keeping more distance between the layers than between wires
decreases the eddy current losses very little in low frequency.
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The following remarks should be considered with respect to accuracy of
the presented IQOC method:

• In this approach, end effects are neglected (we assume an infinite
permeability on left and right side)

• The distance between the layers (their center lines) equals the dis-
tance between the center of the wires in the layer; those distances
are changed equally in the investigation

• No partially filled layers are present

FIGURE 5.9
Plot of the g-function of the Dowell method and of the introduced IQOC method.

FIGURE 5.10
The ratio between the IQOC method results for eddy current losses compared to the three field
method results. Curves from bottom to top: 1, 2, 3, and 4 layers.
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• The high frequency accuracy is not improved by the IQOC method
• It is still a 2-D solution, some curvature and differences at the coil

ends remain
• The method is difficult to use in inductor design in the presence of

air gaps as the transverse field is mainly not parallel to the layers

5.4.5 Discussion of Quadrature of the Circle Methods

Conclusions for Classical Dowell Method

The Dowell method contains several types of approximations:

• Transition from round to square conductors (this is not the major cause
of error) creates up to about 10% deviation of the eddy current loss

• Transition from square to rectangle shapes that causes additional error
• The method solves accurately designs, where there is no distance

between the winding and the magnetic material at the sides
• There are possible vertical components of fields, especially in induc-

tors with air gap, that are not considered
• Neglecting vertical components in the local fields
• The effects connected with extending the solution from 2-D to 3-D

are neglected

However, the Dowell method fails for inductors with concentrated air gaps,
as the transverse field is mainly influenced by effects of the air-gap. The method
also has a poor accuracy for low filling factors and for half layer designs. 

Other attempts have been made to improve the Dowell methods, including
end effects [5]. However, the method [5] is based on multivariable regression
and many data, and it is not easy to implement. Usually, most of the pro-
posed methods are suitable mainly for eddy currents caused by transform-
erlike fields without air gaps.

The Dowell method has been used for a long time by many designing
engineers. In fact, at usual filling factors, the approximation is accurate
enough for practical designs. The reasons for this are the following:

• This is a wide frequency approximation, giving a resistive and induc-
tive part of the impedance.

• At high filling factors and low frequency range, no underestimation
is observed, except for half layers.

• Due to tolerances in diameter, the exact position of wires and the
temperature, and 3-D effects, it was difficult to find those differences
by measurements.

However, the method fails for inductors with concentrated air gaps, as the
transverse field is mainly influenced by effects of the air-gap.

DK4141_C05.fm  Page 181  Wednesday, January 19, 2005  3:03 PM

Copyright 2005 by Taylor & Francis Group, LLC



182 Inductors and Transformers for Power Electronics

Conclusions for IQOC Method

The IQOC method avoids some of the drawbacks of the classical Dowell
method at low frequency. This is because of the following:

• The 2-D local fields are well modeled, so that the typical large error
at half layers is avoided.

• The typical π/3 error due to the transition from round to square
shapes is also avoided.

The improved quadrature of the circle method has additional merits:

• It does not underestimate the losses at low filling factors.
• The half layer is better modeled than in the classical Dowell method.

As both methods are somewhat limited in accuracy, one can think of adapting
the equations. However, our opinion is that one can obtain a much better global
accuracy starting from the known 2-D analytical solutions. Such solutions are
developed in the next sections of this chapter. The proposed method is long,
but it also supports inductors with air gaps. The method is used in Chapter 2.

5.5 Losses of a Current Carrying Round Conductor 
in 2-D Approach

In this section, we consider a conductor having neither another conductor
close to it nor magnetic material. In this way, there is no average transverse
field across the wire.

5.5.1 Exact Solution

The problem of a current carrying cylinder was described in [6].
We first define a parameter x (the Greek letter xi), which can also be related

to the penetration depth d

(5.35)

where
ro is the conductor radius

The solution for the impedance of the current carrying round conductor is

(5.36)

x mw
r d

= =r ro o
2

R L Z
l

r
c

o

( ) ( ) ( )w w w w
r

x
x

x
+ = =













j j

J j

J j

0

1

2 2

3
2

3
2

3
2

π

DK4141_C05.fm  Page 182  Wednesday, January 19, 2005  3:03 PM

Copyright 2005 by Taylor & Francis Group, LLC
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Or also

(5.37)

where
J0 , J1 is a Bessel function of order zero and order 1, complex argument
ber0, bei0 are the real and imaginary part of the Bessel-function, of order 0 

in the Kelvin form
ber1, bei1 are the real and imaginary part of the Bessel-Kelvin, of order 1 in 

the Kelvin form
is the complex number

m is absolute permeability
lc is the length of the considered conductor

For the graph, Fig. 5.11, we use the relative impedance Zr(w):

(5.38)

where 
R0 is the DC resistance

Note that the graph can be used for any other diameters as well; for a wire
with diameter d = a × 0.5 mm, the applied frequency must be multiplied with
a2 to obtain the equivalent frequency feq = f a2 to be used to read the relative
impedance Zr(w) on the graph in the Fig. 5.11. Note that for feq = 20 kHz and
the considered case, the penetration depth equals the conductor diameter.

FIGURE 5.11
Real and imaginary part of the impedance of a 0.5-mm diameter free wire as a function of the
frequency [Hz], r = 20 × 10–9.
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184 Inductors and Transformers for Power Electronics

5.5.2 Low and High Frequency Approximation

In the Taylor expansion, the first term after the constant term is quadratic
with frequency. So, in the equation of the resistance Rl in low frequency
approximation, there is a 4th power dependence on the penetration depth:

(5.39)

Fig. 5.12 shows the area A for the calculation of the high frequency approx-
imation of the resistive part. For high frequency approximation, one can use
the skin depth principle, see Fig. 5.12, so the active area is

(5.40)

Then, the resistive part for the high frequency Rh is

(5.41)

It is clear that the approximation makes no sense if d > 0.5 d.
The field inside a conductor with a homogenous current density is linear

increasing with the radius. The low frequency reactance of the internal field
is known to be

(5.42)

For high frequency, the reactance is

(5.43)

Note, that the penetration depth for the inductance should be considered
as d/2. This fact is verified in Fig. 5.13, which shows the low frequency
approximation, the high frequency approximation, and the exact solution.

FIGURE 5.12
The equivalent active area A used for the re-
sistive part of the impedance in the high fre-
quency approximation.
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Eddy Currents in Conductors 185

5.5.3 Wide Frequency Approximation

Not everyone likes to work with Bessel type functions. Therefore, here we
present another approximation solution. We concentrate on the resistive part
of the power. The advantage is that the new expression can help the intuition
of the engineer. The resistive part is given as

(5.44)

where

(5.45)

z is the diameter/penetration depth ratio and the polynomial function GA

is given as

(5.46)

FIGURE 5.13
Comparison of the exact solution and low and high frequency approximations for the real and
imaginary part of the impedance of a 0.5-mm diameter free wire as a function of the frequency.
The wire length is 9.81 m and the total DC wire resistance is 1 Ω.
Exact solution: full line, EX.
Low frequency approximation: dash-dot line, LF.
High frequency: dash line, HF.
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186 Inductors and Transformers for Power Electronics

The coefficient in polynomial function GA is tuned to give a 0.4% accuracy in
the wide frequency approximation. The numbers 48 and 36864 are not tuning
constants but result from exact analytical limits to low and high frequency.

Figure 5.14 shows the deviation of the resistive part of the wide frequency
approximation from Equation (5.44) compared to the exact Equations (5.36)
and (5.37) with Bessel functions.

5.6 Losses of a Round Conductor in a Uniform 
Transverse AC Field

This type of field is usually the main cause of eddy current losses in round
conductors. As this field generates an odd current density across the con-
ductor, the losses can be superposed on losses with an even current density,
resulting from the field from the current through the conductor itself. The
intensity of the transverse field can be changed by eddy currents in other
conductors or by the presence of magnetic materials.

5.6.1 Exact Solution

If we consider an applied field in the x-direction, the induced current density
will be an odd function of y-direction. Thus, it is orthogonal to the field

FIGURE 5.14
Deviation of the resistive part of the wide frequency approximation from Equation (5.44)
compared to the exact Equations (5.36) and (5.37) for a current carrying free wire. Diameter
d = 0.5 mm, r = 20 × 10−9 Ωm.
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Eddy Currents in Conductors 187

caused by the current flowing through the conductor, which generates an
even current density function.

Expressing the active and reactive power of a conductor in a transverse
field is not an easy mathematical problem. It needs more than five pages
with Bessel equations and a Lommel integral [6]. Anyhow, the solutions are
known and can be applied now. We limit ourselves to the case where the
permeance of the conductor is equal to the permeance of free air (nonmag-
netic conductors). We give the mathematical solution and compare it with
low and high frequency approximations.

The power loss is expressed as

(5.47)

H is the undisturbed (for away) magnetic field
An auxiliary function F is introduced in order to present the reactive power.

This function is given as

(5.48)

Then, the reactive power is

(5.49)

The active and reactive powers of a conductor in a transverse field are
shown in Fig. 5.15 as functions of the frequency.

The choice of a field of 1000 A/m is not arbitrary. It could be generated at
half the conductor height by a current of 1 A in a slot width of 0.5 mm.
Adding both types of losses (the transverse field and own field) is not a final
solution as the proximity of other wires or magnetic material still affects the
losses in the considered wire.

5.6.2 Low Frequency Approximation

In contradiction to the involved exact solution, the low frequency approxi-
mation can be quite easily calculated and presented analytically.

At low frequency, the power losses can be approximated by

(5.50)

where
lc is the conductor length
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188 Inductors and Transformers for Power Electronics

In this equation, H is an RMS value. One can see that the losses are in fact
proportional to the RMS value of the derivative of the H-field.

At low frequency, the eddy currents do not change considerably the field
inside the conductor. The energy inside the conductor is the energy of the
field, multiplied by the pulsation frequency w. This factor can also be recog-
nized in Equation (5.44). Out of this observation, the reactive power can be
computed at low frequency:

(5.51)

One can see that Equation (5.50) corresponds to the first part of Equation (5.16).

5.6.3 High Frequency Approximation

For the high frequency approximation, it can be demonstrated that the sur-
face current is distributed in a sinusoidal way along the circumference of
the conductor. The maximum surface current density is two times the undis-
turbed field. Using the penetration depth, the power loss at the high fre-
quency approximation can be computed:

(5.52)

Figure 5.16 shows the matching of low and high frequency loss approxima-
tion together with the exact solution. Note that, if the correction of the
penetration depth on the diameter is not done, the matching is not so good.

FIGURE 5.15
Active power in [W] and reactive power in [VAR] of a wire d = 0.5 mm, in a uniform transverse
field of 1000 A/m, as a function of the applied frequency. The length is 9.81 m, the DC wire
resistance is 1 Ω.
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Eddy Currents in Conductors 189

5.6.4 Wide Frequency Approximation

Here we present wide frequency approximation. We use the function

(5.53)

Then, we obtain

(5.54)

where
R0 is the DC resistance
Rwf is the obtained resistance using the presented wide frequency approx-

imation

Equation (5.54) is quite similar to Equation (5.44) for the skin effect. It satisfies
the low and high frequency limit for the exact solution of a conductor in a
transverse field. The factors 16 and 1024 are not tuning constants but a con-
sequence of the exact low and high frequency limits. The coefficients in GT are
adapted to the exact solution match to an error on eddy current loss, less than
1%, see Fig. 5.17.

FIGURE 5.16
High and low frequency approximation and the exact solution of losses for a wire d = 0.5 mm
in a field of 1000 A/m. The wire length is 9.81 m, the DC wire resistance is 1 Ω.
HF: high frequency approximation.
LF: low frequency approximation.
EX: exact solution.
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190 Inductors and Transformers for Power Electronics

5.6.5 Discussion

The conductor losses in a transverse field are exactly known and presented
analytically for a free conductor if the applied uniform transverse field can
be calculated.

Besides the transverse field losses and the skin-effect losses, other compo-
nents are present when conductors are close to each other or close to a magnetic
material. In order to consider those effects, in the next sections we propose
analytical methods valid in low frequency approximation. The methods are
tuned in intermediate and high frequency by finite element calculations.

5.7 Low Frequency 2-D Approximation Method 
for Round Conductors

5.7.1 Direct Integration Method for Round Wires

The method is discussed in detail in Appendix 5.A.2. This method is an exact
solution

• at low frequency approximation, where the eddy currents practically
do not influence the field inside the conductor

• when the conductors do have a circular cross section
• when the problem can be converted to a 2-D plane problem, where

no magnetic materials are present

FIGURE 5.17
Deviation of the wide frequency approximation of the losses of a free round conductor in a
uniform transverse field. Comparison to the exact solution. Diameter d = 0.5 mm, r = 20 × 10−9 Ωm.
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Eddy Currents in Conductors 191

The last requirement can be obtained in rectangular winding areas by
mirroring.

We consider m layers with Nm conductors in a layer. To have the possibility
to investigate a number of winding constructions, we use the winding
arrangement and specifications shown in Fig. 5.18. We use complex numbers
to identify the center of the conductors. This method is used because the
formulation of the Biot-Savart law gets particularly simple. The first conduc-
tor in each layer has the (complex) coordinate qm = qmx + j qmy .

The field induced by the other conductors in a considered point from a
conductor n in layer m, with coordinates z = x + jy, is

(5.55)

(5.56)

where
e(m − mc, n − nc) = 0 for (m = mc AND n = nc) 
e(m − mc, n − nc) = 1 for all other cases
n is the number of the conductor, which field is considered
m is the layer of the conductor, which field is considered
nc is the number of the conductor in which we calculate the flux
mc is the layer of the considered conductor
M is the total number of layers
Nm is the total number of conductors in the m-th layer
* is used for a complex conjugate value

The contribution of the flux of the considered conductor itself is

(5.57)

FIGURE 5.18
An arbitrary winding arrangement.
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192 Inductors and Transformers for Power Electronics

Then the total flux in a considered point is

(5.58)

The average flux is an integrating constant and has to be removed, as it leads
to the eddy current component, which would generate a nonzero total cur-
rent contribution:

(5.59)

Then we consider the following flux

(5.60)

The eddy current losses are obtained using the induced EMF and the
resistivity

(5.61)

This power is the low frequency eddy current loss in the considered con-
ductor. The method is very accurate, as only one numerical surface integral is
needed. However, the solution is not very fast due to this numerical integral
and since the flux can be generated by many conductors.

No special approximations (except low frequency eddy current) are done,
so this type of solution can be used to check other solutions!

5.7.2 Three-Field Approximation

The external fields change smoothly inside the conductor. This allows
approximating the direct integral method with simplified functions.

A rough simplification is to consider only a homogenous transverse field
calculated at the center of the conductor with Equation (5.56). This can be
called a zero order approximation. The losses associated with the transverse
field are

(5.62)

A better approach is obtained using also the first derivative. Together with
the homogenous transverse field, there are three types of fields, which can
be shown to be orthogonal, see Fig. 5.19. We consider the first derivative of
the field at the center of a conductor. The field is generated from the external
conductors. We take the derivative of Equation (5.55) to z and we have
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(5.63)

(5.64)

The obtained type of field is called hyperbolic (Hhy), as the field lines follow
hyperbolas, see Fig. 5.20. The losses associated with the hyperbolic field are

(5.65)

The field caused by the current contributes also to the first derivative in the
center of the conductor. However, it has a singularity point in the middle,
so we calculate its contribution in a separate way. Then, the losses associated
with the one field are

(5.66)

FIGURE 5.19
The three orthogonal fields, comprised in the proposed three-field approximation.

FIGURE 5.20
The field lines of the hyperbolic field.
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194 Inductors and Transformers for Power Electronics

Now we can write the total power losses for one conductor:

(5.67)

The three-field method has the advantage of being very fast, as neither
numerical integrals nor functions have to be computed. Besides that, com-
puting the magnitudes can be avoided, as the square contains no functions,
for example

(5.68)

The method has an error, which is usually below 0.1% compared to the
integral method for normal field problems. In Appendix 5.A.2, the validation
of the method is discussed. The accuracy is somewhat limited by the pres-
ence of higher mode fields, which do not contribute to a derivative in the
center of the conductor.

5.7.3 Solution in a Magnetic Window Using Mirroring

In the previous section, the solutions were derived ignoring magnetic mate-
rials. Often this result is still quite good for eddy currents caused by leakage
fields in transformers. When conductors are surrounded by material with
infinite permeability, we know that the H-field is perpendicular to the walls.
This property can be used to remove the walls from the magnetic problem.
A wall at the bottom, corresponding to y = 0 can be removed by injecting
the same currents at positions mirrored to y = 0. In this way, the fields will
be perpendicular to the x-axis and the same field problem is obtained inside
the window. A new wall is created at y = –yw, w is the window width. A
mirroring can be done across the y-axis so that the wall at y = 0 is removed,
and a new wall is created at x = –xw. One can continue mirroring like this,
pushing the walls always farther away. However, after the first two times
mirroring, the problem becomes symmetrical, in such way that mirroring
becomes equal to shifting by 2yw in the y direction or 2xw in the x-direction.
This is easier to implement in programs. Figure 5.21 illustrates the described
mirroring approach.

Normally, a lot of mirroring would be needed before reaching 0.1% accu-
racy in all cases. After the mirroring at the x-axis and y-axis, the H-field is
perpendicular to the x- and y-axis by symmetry, and H = 0 at the origin.

The additional mirroring is needed to fulfill the perpendicularity of H at
x = xw and y = yw. A way to check this feature is to look at the corners
(xw, 0), (0, yw), and (xw, yw). Far away mirrors do generate smooth functions,
which tend to make H = 0 at the corners. This effect can be simulated by
creating a smooth compensating function that has that effect. In this way,
less time-consuming mirrors are needed. By the special choice of the function
it cancels the field at the four corners of the window and other symmetrical
points (0, 0), (±xw, 0), (0, ±yw), and (±xw, ± yw).

P P P Peddy eddy tr eddy own eddy hy, , , ,Σ = + +

H H Htr tr tr

2 2 2= +Re( ) Im( )
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For inductors with an air gap, a counter MMF is placed at the air gap. In
that case, it is considered as a first layer.

The analysis is not intended for problems where the total MMF is non-
zero. This is the case when studying eddy currents of magnetizing currents
in transformers without air gap. This problem is not compatible with an
infinite permeability.

5.7.4 Suppression of the First Infinite Sum

When mirroring in two directions, two sums are cascaded. This fact reduces
the speed of the calculation. To remove the first sum the following equation
can be used:

(5.69)

The equation is applicable for the transverse field, for z ≠ 0. The transverse
field of other conductors, for z = 0, is zero, so it does not have not to be
calculated.

For the hyperbolic field, for z ≠ 0, we can use this series:

(5.70)

For z = 0, in the middle of a conductor, there is a contribution of the same
layer that has to be calculated by a mathematical limit:

(5.71)

FIGURE 5.21
Mirroring a window with magnetic walls.
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196 Inductors and Transformers for Power Electronics

A lot of calculation time can be saved using these methods. This is the case
for the graphs, which are generated to compare with the quadrature of the
circle method. For example, a graph with 100 points (changing filling factor),
50 shifts in relative position of wires, and 10 infinite layers, can be generated
in about one second using MathCAD 11 and a Pentium 4, 2 GHz PC.

A consequence of the aforementioned sums is that the main effect of induced
fields is caused by the layer in the direction of the field. In the presence of
different layers, when the relative position of the wires is shifted (so it means
no pure square or hexagonal wire fitting), the average effect of the losses due
to the distance between layers is very small in the low frequency case. 

5.8 Wide Frequency Method for Calculating Eddy Current 
Losses in Windings

5.8.1 High Frequency Effect of Other Wires, Using Dipoles

At high frequency, the field induced by the eddy currents of other wires is
not negligible. At very high freqency (d <<  d), the eddy currents will even
cancel any field inside a conductor. We consider a transverse field applied
to a single, infinite layer of conductors. For simplicity, we consider the field
in the x-direction and a conductor with complex coordinates z = 0. Here, not
all intermediate steps are mentioned in order to shorten the explanation. For
a standalone wire, a sinusoidal surface current density cancels the field inside
the wire. The maximum value of that current density s (q) is twice the inverse
of the applied field:

(5.72)

where
q is the angle with x-axis
Hext is the applied field

The induced field of the nth conductor generates a field outside the wire.
This field is identical to the field of a dipole, see Fig. 5.22:

(5.73)

where
s is the distance between the center lines of the conductors, the step 

the term  is the dipole moment of the current
n is the number of the conductors in the layer

s q s q q( ) sin( ) sin( )max= = 2 Hext
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Eddy Currents in Conductors 197

The field Hexti attenuates or increases the field applied to other wires. Thus,
we start from an unknown sinusoidal surface current, which is the same in
each conductor.

One can demonstrate that the field generated by the other wires Hm, in the
middle of a considered wire, is

(5.74)

Here the effect of other than homogenous transverse fields is neglected. The
sum of the induced fields, Hi, of an infinite row of conductors on the x-axis,
including the field inside the conductor, is

(5.75)

In Equation (5.75) we recognize a factor that increases the field compared
to a single wire for a given smax. This results in the fact that a lower current
density is sufficient to cancel the fields inside the wire compared to a single
wire case. The attenuation factor for a transverse field in the x-direction
AFx is

(5.76)

FIGURE 5.22
A vector plot of the dipole field shown in a), and the dipole field with an applied homogenous
field in the –x direction, shown in b); scale for the arrows in b).1
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198 Inductors and Transformers for Power Electronics

We have the corresponding effect on losses FT,hf,x for a transverse field in the
x-direction:

(5.77)

where
FT,hf,x is the high frequency coefficient

The field parallel to a layer seems in this way to be screened by the current
distributions of the wires in that layer. It can be noted that the dipoles induce
an almost negligible field outside the conductor area (y > d/2 and y < –d/2).
This fact is especially true if one takes the average over the shift positions
of different conductors. This type of effect is typical with transformers. As
the thickness of a layer is usually much lower than the winding width, the
effect is dominant.

Concerning the field perpendicular to a layer, in the y-direction, a similar
solution is possible, but the current is increased compared to the single wire
problem. The resulting effect on losses FT,hf,y in this case is

(5.78)

In this case, the field between the wires is increased. The flux has to tunnel
between the wires, causing an increased H-field and more losses. This effect
is present in center-gapped inductors. In a major part of the winding, the
field is rather perpendicular to the layers.

It is convenient to consider a filling factor in the direction of the layer,
denoted as h, and a filling factor perpendicular to the layer named l. Now
we want again to give definitions of the coefficients h and l:

h = d/sx, l = d/sy (5.79)

Both coefficients are illustrated in Fig. 5.23.
The previous presentation of the filling factors can be used to solve single

layer cases. We define the function Fi as

Fi = h2 for l = 0 (5.80)

Fi = -l2 for h = 0 (5.81)

Then we can rewrite the resulting effect on losses FT,hf,y as

(5.82)

F
d
sT hf x, , = + 












−

1
12

2 2 2
π

F
d
sT hf y, , = − 












−

1
12

2 2 2
π

F FT hf y i, , ( , )= −






−

1
12

2 2
π h l

DK4141_C05.fm  Page 198  Wednesday, January 19, 2005  3:03 PM

Copyright 2005 by Taylor & Francis Group, LLC



Eddy Currents in Conductors 199

These extreme cases set the limits for Fi : –1 < Fi  < 1.
The general analytical case, where h and l are both non-zero is not simple

to analyze analytically. These cases and the frequency dependence at inter-
mediate frequencies are more easily obtained by tuning with finite elements.
The condition d <<  d is usually not fulfilled in power electronics so that the
actual frequencies are often in the region between low and high frequency
approximation.

5.8.2 Wide Frequency Method, Tuning with Finite Element Solutions

Although the pure analytical solutions help to find the nature of the func-
tions, they usually do not give practical solutions for general 2-D (and 3-D)
problems. However, analytical approximations can still be made when tun-
ing with finite elements is provided. The used method is current driven, this
means that we consider that the currents (or MMF) are given, although
voltages and inductance may be frequency dependent. This allows starting
from low frequency and obtaining a good approximation at high frequency.

5.8.2.1 A Wire in a Transverse Field

In this case, an average H-field is applied, and the situation corresponds
with a wire in an infinite layer with layers above and below it. The considered
layer itself does not carry current. According to the way of implementing,
the case corresponds to a square fitting of wires, which has the tendency to
overestimate losses.

Figure 5.24 shows finite element modeling of a wire in a transverse field,
d = 0.5 mm.

FIGURE 5.23
Definition of the filling factors h and l of conductors in a winding area. The ratio h = d/sx is
in the horizontal direction, and the ratio l = d/sy is in the vertical direction in the illustrated
field case.
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200 Inductors and Transformers for Power Electronics

A function FT (T for transverse fields) is found as the ratio between the
wide frequency approximation and the low frequency approximation. Then
the losses of a single wire in a transverse field Ptr are given as

(5.83)

Note that FT ≅ 1 at low frequency cases. We propose the following presen-
tation of FT :

(5.84)

where Fi is the effect of induced field by dipoles compared to the direction
of the layers.

The function FT has only three parameters: z, h, and l. The relative diam-
eter compared to the penetration depth is

(5.85)

FIGURE 5.24
Finite element modeling of a wire in a transverse field, d = 0.5 mm; l = 0.5; h = 0.8.
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Eddy Currents in Conductors 201

The function c (pronounced chi) takes the frequency dependence of the
dipole effect in account and is defined as

(5. 86)

The function Fi can be approximated as

(5.87)

(5.88)

The following situations are relevant:

• For h >>  l, the case corresponds to the screening effect case, which
is typical for transformers

• For h <<  l, the case corresponds to the tunneling effect case, which
is present in gapped inductors

• Special cases: 
• The function Fi and its derivatives are continuous for h = l
• The factor 2hl is a result of the finite element tuning

FEM Tuning Conditions

We performed FEM tuning of the function in equation (5.84), (using MATLAB
and also checked with GETDP) of the proposed analytical method. The
following conditions and ranges are considered:

• The ratio l/h was set in the range 0.1, 0.5, 1, 2, 10.
• The maximum values of h and l were set to 0.2, 0.5, 0.7, 0.8, 0.9, and

0.999.
• The tested frequencies were 20 kHz, 50 kHz, 100 kHz, 200 kHz, 500

kHz, 1000 kHz, and 10 MHz.
• The wire diameter was d = 0.5 mm.

The resulting set of problems simulated corresponds to 210 cases, in the
described wide range of parameters.

Accuracy of the Simulations

Up to 1 MHz (for that frequency the diameter is lower than seven times the
penetration depth), the typical error is about 3%, maximum 10%. At higher
frequencies, the deviation is somewhat larger. In those cases the finite elements
solutions show larger losses, mainly because the finite element simulations
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202 Inductors and Transformers for Power Electronics

were done for a square fitting, whereas the analytical solutions take an
averaged variable shift into account.

Conclusions

• The low frequency and high frequency cases at low filling factors fit
easily, as they are close to known analytical solutions.

• Some additional terms were added to take the losses of the local
fields in account at high frequency.

5.8.2.2 A Wire in a Half Layer

In this case, no average transverse field is considered across the conductor.
The conductor carries current I. The conductors above and below the con-
sidered conductor carry half of the current in the reverse direction. This
situation is often referred to as a half layer. The case includes no only the
losses of a current carrying free wire but also losses due to the local field of
the conductors around it, although no average field is present.

The half layer situation is orthogonal with the losses of a transverse field
(even and odd current distributions), which permits adding those losses.
Figure 5.25 shows finite element modeling of a current carrying conductor
with current I and two return conductors each carrying current –I/2.

The function FA is also presented as the ratio between the wide frequency
approximation and the low frequency approximation of a free wire problem.
The index A comes from fields close around the conductor. Using the function
FA, the losses of a free wire in a half layer are given as

(5.89)

where
lw is the wire length

The function FA is defined as

(5.90)

Conclusions of the Comparisons

• At low frequency, the term (1 + 1.3537h4)−2 allows very good match-
ing (better than 0.1%) with the three-field method calculations of a
continuous (average shifted) layer. At low frequency (and h = 1), the
losses are about two times higher than the case of the free wire only.
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• At high frequency, high filling factors l = 1 and h = 1, the losses seem to
be about 2–3 times higher than the case of the free wire only. This increase
is similar to the low frequency case.

In the case of a half layer, no transverse field is present. The losses of a free
wire do not accurately predict the losses at normal filling factors.

5.8.2.3 Losses in the General Case of a Transformer Winding

In a transformer, the transverse field is caused by the other layers and by
half of the field increase across the considered layer. This allows compiling
an equation that predicts the losses taking into account the above facts. We
did solve similar problems for rectangular cross sections. Not all details in
the calculation are given here; for more details see the Appendix 5A.

FIGURE 5.25
Finite element modeling of a current carrying conductor with current I and two return conduc-
tors each carrying current –I/2.
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204 Inductors and Transformers for Power Electronics

For transformers, the ratio of the eddy current losses compared to the AC
losses in the DC resistance is denoted as eddy current factor kc,tr :

(5.91)

and we have the following presentation for kc,tr

(5.92)

where m is the number of layers, perpendicular to the field direction
Taking into account the typical length of field lines, h and l can be approx-

imated by

(5.93)

where
w is the winding width
n is the number of conductors in a layer

(5.94)

where
h is the winding height
m is the number of layers

Note that h and l, m, n, d, w, and h are not independent. The parameters
are linked by the equations (5.93) and (5.94).

The eddy current losses are then given as

(5.95)

Accuracy Limitation

The winding width w is chosen as the flux returns even if the winding
area width is larger, so the winding area width is less relevant than the
winding width. The winding height h is used as in the y-direction the field
lines go from the center leg to the outer leg. The definition of l is not
important for transformers as it is mainly relevant when l > h, which is
usually not the case in transformers. In the coil ends, h is virtually higher,
which results in even lower l. In practice, the accuracy is often 10% or
better and is even more limited by the knowledge of the exact mechanical
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Eddy Currents in Conductors 205

parameters (such as exact wire diameter and winding width, temperature)
than the error of the approximation method.

5.8.2.4 Losses in an Inductor Winding

In usual transformers, the transverse field is mainly parallel to the layer. This
is a reasonable assumption for transformers. However, for inductors this
is usually not the case. The fields perpendicular to layers do induce more
losses as they tunnel between the wires. The transverse field is mainly caused
by the presence of an air gap.

In a large part of the inductor winding, the field is even rather perpendic-
ular to the layers.

To present the inductor winding losses, we define a correction field factor
kF with contributions in the x-direction (parallel to the layer) and y-direction
(perpendicular to the layer) as follows

(5.96)

(5.97)

where
kFx and kFy are x and y components of the coefficient kF

Hx is the transverse field in the layer direction
Hy is the transverse field in the direction perpendicular to the layer
K is the symmetry factor (= 2 for EE, = 1 for EI cores)
N is the turn number

If the influence of the direction can be neglected, a global value kF can also
be defined:

(5.98)

kF = kFx + kFy (5.99)

where 
Htr is the transverse field value
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206 Inductors and Transformers for Power Electronics

REMARKS

1. The factor kF for transformers and multiple layer windings, where
the transverse field linearly increases across the winding, is kF ≅ 1.

2. For usual concentric wound transformers the factor kFx ≅ 1 and kFy ≅ 0.
This is also true for multiple layer windings, where the field is parallel
to the layers and linearly increasing across the winding.

3. For inductors the values kFx and kFy are of the same order of
magnitude.

Full Equation for Inductors

Using the introduced coefficients, the eddy current loss factor kc,in for induc-
tors can be presented as

(5.100)

Equation (5.100) is called the full equation for inductors. The factors kFx

and kFy can be determined analytically in some special cases or derived
using finite elements. The factors take the H-field in account at low fre-
quency. Together with the filling factors h and l, a good estimate of the
high frequency losses is obtained. The details are given in the appendix.
Here we give the following approximation presentations of the factors kFx

and kFy:

(5.101)

(5.102)

The parameter k is the characteristic distance ratio, defined as
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(5.103)

where
dwl is the distance between the winding and the core leg
tw is the winding thickness
h is the height of the window
w is the width of the window
K is symmetry factor (equals 2 for EE, 1 for EI cores)

The parameter k is defined in such way that the field factor is quite insen-
sitive (<10%) for changes in tw and h for constant k.

Simplified Equation for Inductors

Simplifications of Equation (5.100) are possible. Usually the local field losses
FA are negligible as the transverse field losses are usually much more. For
intermediate frequencies, and for large values of m and n, Equation (5.100)
can be approximated by

(5.104)

with the simplified function FTb corresponding to the free wire losses:

(5.105)

and the following approximation of kF

(5.106)

Equation (5.104) is called the simplified equation for inductors. This simplifica-
tion was used in Chapter 2 for inductors. The advantage is its simplicity and
the fact that h and l do not have to be evaluated. The simplification can be
allowed, as the fields of an inductor are a mix between parallel and perpen-
dicular fields. This type of simplification is not allowed in transformers, as
it would result in a systematic overestimation of losses as it neglects the
screening effect.
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208 Inductors and Transformers for Power Electronics

Accuracy

The typical accuracy on the eddy current losses calculation is about 10% for
low frequency cases and about 20% at high frequency. However, in practice,
the main cause of error is the accuracy of the mechanical dimensions, as for
instance kFx and kFy are very sensitive to the distance to the center leg. The
eddy current loss is only a part of the total loss, so that good global designs
can still be made.

The method has decreased accuracy for inductors with a low number of
turns (e.g., lower than 5). The reason is that the derivation of kFx and kFy uses
a homogenous current distribution, which is a bad approximation at a low
number of turns. Regardless, such cases are easy to analyze using finite
elements.

5.8.3 High Frequency, High Filling Factor Relations

For h = 1 and for a frequency tending to infinite, the field at the horizontal
wire diameter tends to zero. This effect results in a defined ratio (not the
value itself) of losses between the layers, as it is solved in section 5.3.4 of
this chapter. The found relationship is valid also for round wires, although
the losses are not the same in the case of round wires compared to rectangular
conductors. Thus, we can present the additional loss factor in kc for m layers
compared to the value of kc for one layer.

For h = 1, independent of l, and a frequency tending to infinite (e.g., for
a penetration depth lower than 1% of the diameter) the following relation
should be met:

,each value of m (5.107)

where 
kc (1, f ) is the eddy currents factor for one layer

When the approximation is derived, this property was taken in account,
although the frequency, where it appears, is often beyond the actual appli-
cations of power electronics. Figure 5.26 shows the dependence of the ratio
kc (m,f )/kc (1, f ) on l for high frequency.

Using Equations (5.84) and (5.90), the following relation between the tun-
ing coefficients can be derived:

(5.108)

Note that the 1-D approximation and both quadrature of the circle methods
(Dowell and IQOC) also satisfy the high frequency, high filling factor rela-
tions stated in that section.
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5.8.4 Summary of the Wide Frequency Method

Assembling the elements of previous sections, we can summarize the wide
frequency method. To extend the validity of Equation (2.27) for larger diam-
eters, and a wide frequency range, the factor kc(mE, z, h, l) is derived, which
represents the ratio between the eddy current losses compared to the losses
in the ohmic resistance of the winding of a magnetic component. The factor
kc is expressed with full and simplified equations for inductors.

We get a reduction of the parameters by using the relative diameter z. The
effect of induced currents (the dipole effect) is frequency dependent. We take
such an effect into account by an empirical (tuned by finite element simula-
tion) factor χ. The effect of induced field by dipoles compared to the direction
of the layers is reflected by the function Fi. The adaptation factor for trans-
verse field losses is denoted as FT and the adaptation factor for field around
(local field) losses is FA.

The field factor kF reflects the type of the field problem. This field factor
is close to 1 for transformers. The factor kF is highly dependent on an equiv-
alent relative distance to the center leg, thus for inductors typical values of
kF are in the range 0.6–15.

5.8.5 Comparison of Analytically Based Methods

5.8.5.1 Low Frequency Methods

Low frequency methods can use different approaches of field calculation but
take only the static field solution in account. They are easy to apply, as they
need less parameters and less computing time in finite elements. An additional

FIGURE 5.26
The dependence of the ratio kc(m, f )/kc(1, f ) on l for high frequency.
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210 Inductors and Transformers for Power Electronics

advantage is that the losses are proportional to the square of the derivative
of the current, which simplifies the modeling to a parallel loss resistor.
Therefore, it is still worthwhile to look in which conditions low frequency
methods are applicable. The solution is compared to the wide frequency
method (WFM).

Method Considering Only the Transverse Field

When the diameter is lower than 1.6 times the penetration depth, the trans-
verse field losses can be well described using the low frequency approxima-
tion for transverse field, with an accuracy even better than 10%. The
deviation is the defined function FT. The largest deviation occurs at a high
filling factor in the direction of the field. This is the case in a single layer,
well filled transformer. The lowest deviation occurs when the filling factor
in the direction of the field is low and it is high in the direction perpendicular
to the field. 

Both extreme cases are shown in Fig. 5.27 compared to a single wire low
frequency solution. For the example of 0.5-mm wire, extreme case of h = 1,
l = 0 (transformer case) at 50 kHz, a 10% deviation is observed. At this
frequency the ratio diameter/penetration depth is 1.57, but the ratio is usu-
ally above 1.6 for realistic fillings.

FIGURE 5.27
The coefficient FT as a function of the frequency, the solution for a single wire d = 0.5 mm, r =
20 × 10−9 Ωm.
Full line: h = 1, l = 0 (field parallel to a single layer); 
Dashed line: h = 0, l = 1 (field perpendicular to a single layer).
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Eddy Currents in Conductors 211

Three Field Method

Methods considering only transverse fields are always approximation meth-
ods. Those methods result in significant errors for a half layer, a single layer,
and for low filling factor problems. A way to improve the accuracy is to
consider also the space derivative of the field in the center of a conductor.
This approach leads to field separation of three types of field.

Figure 5.28 shows the correction factor of the losses of a half layer winding
compared to a single wire low frequency solution. The deviation is the defined
function FA. We see that the solution of a single wire is only right at very low
filling and is increased by a factor of 2.35 for low frequency at a full filling
(and up to 1.9 at h = 0.9). The ratio remains about the same at high frequency.
This is an argument to cancel the myth that the total losses can be found by
adding the transverse field losses to the solution of a free wire only.

For single layer and more layers, the transverse field losses dominate and
the relative effect of local field losses is small when the filling factor is not
too low.

5.8.5.2 Wide Frequency Method and Quadrature of Circle Methods

The wide frequency method also takes 2-D high frequency effects into
account, whereas the quadrature of the circle methods are based on 1-D

FIGURE 5.28
The coefficient FA as a function of the frequency, the solution of a single wire d = 0.5 mm,
r = 20 × 10−9 Ωm.
Full line: highly filled window (h = l = 1); 
Dashed line: a single wire solution.
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212 Inductors and Transformers for Power Electronics

methods. The IQOC method is corrected for low frequency and local fields.
A few examples give an impression of the deviation of the eddy current
losses obtained by the Dowell method, IQOC method, and the WFM.

Comparison for the Cases with Transformer Type of Field

In Fig. 5.29 we show the comparison of the eddy current losses of Dowell
approximation and IQOC method compared to the wide frequency method.
The comparison is made for h = 0.8, (0 < l < 0.8), which filling factors are
typical for transformers. The wire diameter is 0.5 mm.

Figure 5.30 shows Dowell approximation and IQOC method compared to
the WFM for h = 0.4, (0 < l < 0.4), d = 0.5 mm. The cases are typical for
transformers at very low filling factors. The comparisons illustrated in Fig. 5.29
and Fig. 5.30 show the following conclusions for transformers:

• The quadrature of the circle methods perform reasonably well at
high filling factors h > 0.7 and above (the errors are lower than 25%).

• The Dowell method significantly underestimates the half layer eddy
current losses, but those losses are low compared to single layer
losses.

FIGURE 5.29
Losses given by the Dowell approximation and by the IQOC method compared to the WFM,
h = 0.8, (0 < l < 0.8), typical for transformers, d = 0.5 mm:
1: PIQOC/PWFM, m = 0.5; 2: Pdowell/PWFM, m = 0.5;
3: PIQOC/PWFM, m = 1; 4: Pdowell/PWFM, m = 1;
5: PIQOC/PWFM, m = 3; 6: Pdowell/PWFM, m = 3.

1.104 1.105 1.106 1.107

f, (Hz)

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

3

2

1

4

5 6

Pdowell

PWFM

PIQOC

PWFM

DK4141_C05.fm  Page 212  Wednesday, January 19, 2005  3:03 PM

Copyright 2005 by Taylor & Francis Group, LLC



Eddy Currents in Conductors 213

• The IQOC method performs well in low frequency and has the
tendency to overestimate at high frequency.

The major conclusion is that one should avoid using the quadrature of
circle methods at low filling factor, as the deviations get significant.

Comparison for the Cases with Inductor Type of Field

• One should not apply quadrature of circle type of methods to
inductors!

• The factor kF is neglected in the classical way of describing quadra-
ture of circle methods, which results in severe underestimations (e.g.,
factor of 10) when winding close to the air gap.

• The number of layers is usually low; it is very normal to have l =
0.1–0.3 and h = 0.9.

• For a large frequency range, one better uses the wide frequency
method of 5.8. or finite element solutions including skin-effect. For
low frequency, one can use the three-field method based on Biot
Savart law like in appendix 5.A.2.4 or combine the three-field
method and a static finite element solution.

FIGURE 5.30
Losses given by the Dowell approximation and by the IQOC method compared to the WFM,
h = 0.4, (0 < λ < 0.4). The cases are typical for transformers at very low filling factors, d = 0.5 mm.
1: PIQOC/PWFM, m = 3; 2: Pdowell/PWFM, m = 3;
3: PIQOC/PWFM, m = 1; 4: PIQOC/PWFM, m = 0.5;
5: Pdowell/PWFM, m = 1; 6: Pdowell/PWFM, m = 0.5.
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214 Inductors and Transformers for Power Electronics

5.9 Losses in Foil Windings

5.9.1 Homogenous Field Parallel to the Foil

The ideal case supposes that the field lines are parallel to the foil surface.
An ideal foil wound winding is shown in Fig. 5.31. This can be obtained if
the tip of the foil almost touches the magnetic material (e.g., using enameled
copper foil in a pot core or open box), so that the field lines are parallel to
the foil surface. In transformers with a turns ratio equal to 1, the same effect
can be reached  by alternating a primary and a secondary foil, in this case the
field lines are also parallel to the foil and very low eddy current losses can
be obtained.

The equations in section 5.3 for rectangular conductors can be used and
the impedance of the winding can be calculated, as the number of layers
equals the number of turns here:

 

(5.109)

where
R0 is the DC resistance of the foil conductor
N is the turn number, equal to the number of layers in the case
tcu is the thickness foils, a is used for conductors
lT is the length of a turn
w is the foil width
d is the penetration depth
m is the mth conductor, start counting from no field (outer side)
am,air space distance below the mth conductor (side towards increasing 

field)

FIGURE 5.31
An ideal foil wound winding.
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Eddy Currents in Conductors 215

The real part of the equation shows the resistive part of the impedance.
Note that this resistive part also contains the DC resistance. The imaginary
part shows the leakage reactance coupled with the winding:

Xs = w Ls (5.110)

NOTE: The leakage inductance will not be considered in the next sections.
A way to approximate the ideal conditions for inductors is to use foil

windings without a coil former in pot cores, or to cover the outside coil ends
with ferrite plates. A special construction is the box type, where the mid-leg
is removed, e.g., a planar core with removed mid-leg.

A way to approximate the ideal conditions for transformers is to use
interleaved windings, so that the field lines have a very short return path
outside the foil.

Care should be taken for incoming and outgoing connecting strips or wires
because if not carefully designed, they may have a considerable part in the
total losses.

5.9.2 Induced Losses by Air Gaps

5.9.2.1 Analytical Modeling

We consider the following simplified ideal 1-D case:

• The tip of the foil winding is very close to the magnetic material
• The air gap is in the center leg
• The air gap length is small compared to the distance from the center

leg to the foil
• The penetration depth is low compared to the total copper thickness

tw of the winding
• If the winding comprises more than one turn, both the thickness of

the foil and the insulation distance of the winding should be con-
siderably lower than the penetration depth

With these conditions, a simplified modeling is possible.

NOTE: When the total copper thickness is higher than the penetration
depth, the foil screens the field perpendicular to it. This case can be modeled
as a material with a zero permeability perpendicular to the foil.

The average current density corresponds to a homogenous field, and it is
discussed in section 5.9.1 of this chapter. For the remaining part of the current
density, the currents are not generating voltage at the end of the winding.
The circulating currents are short-circuited internally. For these type of cur-
rents, the winding can be replaced by a homogenous short-circuited turn
with a copper thickness equal to tcu, winding thickness tw, see Fig. 5.32, and
an adapted resistivity r′:

(5.111)′ =r r N t
t

cu

w
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216 Inductors and Transformers for Power Electronics

where
tcu is the foil thickness
tw is the foil winding thickness

This adapted resistivity corresponds to an adapted penetration depth:

(5.112)

Figure 5.32 shows the discussed transformation.
As by the defined conditions the thickness of winding is much larger than

the penetration depth, and the penetration depth is small compared to the
foil thickness, one can solve the field problem using the 2-D Biot-Savart
solution and mirroring. Here we omit the details of the derivation.

The surface current density s(x) [A/m] equals the H-field parallel to the
layer [A/m], as the perpendicular field is almost zero at a deepness of a few
penetration depths. The surface current density, for an infinite foil (N turns
of a current I), due to a single air gap is given as

(5.113)

where s is the distance from the center leg to the foil, see Fig.5.31
The loss corresponding to the current density of a concentrated air gap for

a foil of width w in a window with the same width w is

(5.114)

FIGURE 5.32
Replacing the foil winding shown in a), by an
equivalent short circuited winding shown in
b), for nonhomogenous current densities,
where the average density is absent.
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Eddy Currents in Conductors 217

where p is the periodicity in the field pattern. It equals the winding area
width w in the case of a single air gap: p = w.

The loss corresponding to the average current is removed, as it is orthogonal
and it corresponds to a homogenous field parallel to the layer (this issue is
discussed in the section 5.9.1 of this Chapter). For an easier calculation, an
additional coefficient Kg is defined and then we can rewrite Equation (5.114):

(5.115)

The coefficient Kg tends to 1 for low values of dwg. Hence, for low dwg, the
considered losses are almost inversely proportional to dwg. Figure 5.34 shows
Kg as a function of the ratio dwg/p.

In Fig. 5.33 we show the field Hg due to the concentrated air gap as a
function of the distance in the x-direction.

FIGURE 5.33
The field Hg due to the concentrated air
gap as a function of the distance x/p in
the x-direction. 
Full line is the Hg-field; dotted line is the
average Hg-field, both in [A/m]; for NI =
1, dwg = 2 mm, p = 20 mm.

FIGURE 5.34
The coefficient Kg (full line) and an ap-
proximation of Kg,ap (dashed line) for low
values of dwg as a function of the ratio
dwg/p, Kg,ap = 1 − π dwg /p.
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218 Inductors and Transformers for Power Electronics

Means to reduce the effect of the air gap field are

• Keep some distance between the winding and the mid-leg. However,
this approach increases the DC resistance of the foil.

• Use several smaller air-gaps, e.g., multiple air gaps, thus p is reduced
by the symmetry.

• Use a mid-leg with low permeability, e.g., equally distributed air
gap.

• Put the air gap in the outer legs. However, this results in higher far-
away fields, which could generate EMI (Electro Magnetic Interfer-
ence) problems.

REMARKS

• Other effects that can be handled in a similar way: one single primary
turn in round wire, with a secondary in foil winding.

• When the radius of the foil is much larger than the radius of the
center leg, an overestimation of the losses will occur as the field is
reduced by the larger surface for the leakage flux (3-D-effect).

5.9.3 Tip Currents in Foil Conductors

We neglect the effects of the air gap in this section. In general, the approx-
imation of spaced conductors given in Chapter 5 is not applicable in a
normal way as the width of the foil is much longer than the penetration
depth.

If the foil tips are at some distance from the magnetic material, a field
component Htip is present perpendicular to the foil, see Fig. 5.35. This field
component is neutralized at some distance from the top by a tip current in

FIGURE 5.35
Field Htip at the tips of foil conductors.

Htip µ = ∞
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Eddy Currents in Conductors 219

a penetration depth. The corresponding losses for one side of foil winding
Ptip,1 for small distances to the core are given as

(5.116)

where
lT is the mean length of turn
tw is the thickness of the foil winding
d ′( f ) is the adapted penetration depth

Foil Inductors

For inductors with small distances from the foil to the core, Htip,a can be
estimated as

(5.117)

where
Iac is the total AC current in the foil
Htip,a is the field in the ‘a’ tip of the foil
ea and eb are the distances from the foil tips to the core, see Fig. 5.36
w is the width of the copper foil
tw is the thickness of the foil winding

Substituting Equation (5.117) in Equation (5.116), we obtain the tip losses

(5.118)

At larger distances to the core-foil tip, the tip losses can be very high. Anyhow,
there is a maximum of those losses when almost all the current is concen-
trated in the tip. This maximum can be approximated as

(5.119)

As the losses are large in this case, this type of construction should only be
used when the AC component in the current is small compared to the DC
component.

FIGURE 5.36
Foil winding arrangement and dimen-
sions.
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220 Inductors and Transformers for Power Electronics

Foil Transformers

For transformers, it is difficult to realize a small distance between the foil
tips and the core. The reason is that the transformer windings need more
connections. Fortunately, the length of the field lines at the top is limited as
this field is a leakage field.

For transformers, a practical order of magnitude can be set:

ea = eb = Kttw (5.120)

where
Kt = 0.5–1 and the lowest Kt values correspond to interleaved windings
tw is the thickness of the foil winding

Conclusions Concerning Tip Currents

1. The tip losses in foil windings can be significantly reduced while inter-
leaving primary and secondary, as in this way the thickness of the
winding is reduced.

2. The current flowing in the tips reduces the average current in the foil.

5.9.4 Conclusions for Foil Windings

The tip currents tend to reduce the homogenous field, which should be taken
into account. Using the previous sections of this chapter, for the transformer
winding number 1 we can present the eddy current losses as

(5.121)

Using sections 5.9.1 and 5.9.3, we can write for an inductor winding with a
center leg gap

(5.122)

REMARK
For simplicity, we neglected the combination of the effects of air gaps and
tip currents.

Although very low eddy current losses are possible in a proper design, it
is not always easy to realize transformers and inductors having low parasitic
effects such as low tip currents and low effects of nonhomogenous current
distributions.
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The best use of foil windings can be obtained in the following conditions:

• The foil tips close to the core
• The foil winding placed far away form air gaps
• For transformers, interleaving primary and secondary windings
• For transformers with mixed foil and wire windings: avoid winding

close to the tips

5.10 Losses in Planar Windings

Planar windings are usually obtained by etching (multilayer) printed cir-
cuit boards (PCB). The windings are perpendicular to the magnetic legs, see
Fig. 5.37. In an experimental set-up one can also bend copper foils under 45°.

Advantages of the Planar Cores

• The planar cores can be incorporated in the PCB design and, thus,
no winding action is needed anymore. In addition, the parasitic
capacitance and leakage inductance are well defined, as the relative
position of the wires is accurate.

• For transformers, low losses and low leakage inductance can be
obtained by interleaving primary and secondary windings (multi-
player PCB).

FIGURE 5.37
A planar core and a winding.
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222 Inductors and Transformers for Power Electronics

• The planar cores (and the windings) could be cooled by a heat sink.
• Planar cores have a low thickness, so the heat transfer is better.

Losses in Planar Magnetic Components

In general, similar types of losses occur as in foil windings. However, the
planar windings are often less close to the ideal cases, so that the use of
numerical (3-D finite element) models is interesting. The designs are partic-
ularly suited for high frequency applications and for applications with a low
number of turns.

Specifics

For transformers, usually a crepage distance and thickness trough insulation
are required. These distances are easily obtained if the primary is in one
layer of the PCB and the secondary is in another layer. If several layers or
interleaved windings are used, metallizations through holes are necessary.
In this case, the design includes crepage distances and distance trough insu-
lation and it gets more involved.

For inductors, care should be taken to avoid the proximity of the air gap.
The air gap can cause currents induced by fringing fields.

Planar designs are often made with planar cores. When using PCB,
usually a very low copper filling factor is obtained. Therefore, it is possible
that other types of windings (such as Litz wire) could have lower copper
losses in the same core. However, in that case one loses the ability of easy
manufacturing.

Appendix 5.A.1 Eddy Current 1-D Model for Rectangular 
Conductors

A one-dimensional (1-D) approach can help to find solutions for eddy
currents in conductors and magnetic materials. The basic mathematics are
close to RL transmission lines and one-dimensional dynamic heat problems.
Care has been taken to obtain orthogonal functions, so that losses can be
added. This appendix builds up the theory using Maxwell and Poynting
laws. Thus, the conditions under which the methods are derived become
clear.

Both conductors and magnetic sheets can be subjected to an average
magnetic field and both have losses due to eddy currents. The theory
unifies the eddy currents in current carrying conductors and in magnetic
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field conducting sheets and cores. The equations are similar, the main
differences are

• the magnetic sheets have a higher permeability and they normally
do not carry current.

• the behavior of conductors is much more linear than the behavior
of magnetic materials.

Inside magnetic materials and in conductors, capacitive effects can usually
be neglected. In this section, the hysteresis and the excess losses in magnetic
materials are also not considered.

Complex RMS values for E and H are used (when they are not explicit
time dependent).

Some properties of mathematical functions used are given in Appendix D
at the end of the book.

5.A.1.1 Basic Derivations

Figure 5.A.1 shows a conductor with infinite permeability material on its
left and right side. A reference plane at y = 0 is placed in the middle of the
conductor. From the laws of Maxwell in differential form [7], in 2-D, we can
derive the following equations:

(5A.1)

(5A.2)

FIGURE 5A.1
A conductor with infinite permeability material on the left and right side. H field in the x-direction,
E field in the z-direction.
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224 Inductors and Transformers for Power Electronics

where
E(y,t) is the electric field in the time domain, [V/m]
H(y,t) is the magnetic field in the time domain, [A/m]
s is the specific conductivity, s = 1/r, [Ω m]
m is the permeability, m = mr m0 , for copper and aluminium mr = 1, [s Ω m]

We consider the Laplace transformation in the time domain:

(5A.3)

(5A.4)

where
E(y, s) is the electric field in the Laplace domain, [Vrms/m]
H(y, s) is the magnetic field in the Laplace domain, [Arms/m]
s is the Laplace operator (s = jw for sinusoidal signals) [1/s]

Transforming Equations (5A.1) and (5A.2), we obtain:

(5A.5)

(5A.6)

Differentiating (5A.6) and substituting in (5A.5) and vice versa give 

(5A.7)

(5A.8)

where

(5A.9)

The function g (s) is called the propagation function and it has the dimension
[m–1]. The general solution for the differential equations is in the form

(5A.10)

(5A.11)
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Eddy Currents in Conductors 225

Here A(s) and B(s) are coefficients, independent of y. The function Z0(s) is
called characteristic impedance of the conductor material and is expressed as

(5A.12)

This impedance is complex here as the medium is not loss-less. For y = 0,
the reference plane, we consider the following reference values for E and H:

(5A.13)

(5A.14)

Solving with respect to A(s) and B(s) results in

(5A.15)

(5A.16)

Using Equation (5A.10), the E and H fields can be expressed by Eref and Href.

(5A.17)

(5A.18)

We can derive an equation for the top fields. We assume fields Etop and Htop

at the top of the conductor for y = a/2, see Fig. 5A.1. Then, we can write

(5A.19)

(5A.20)

The same equations are valid for the bottom of the conductor y = –a/2.
The local power flow through a surface can be calculated using the Pointing
vector, showing the direction and the magnitude of the instantaneous
power:

(5A.21)
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226 Inductors and Transformers for Power Electronics

Using this equation, we can calculate the complex apparent power flowing
through a conductor:

(5A.22)

where
P is the active (real) power
Q is the reactive power
O is the side surface of the conductor
* denotes the complex conjugate value

At the sides of the conductor, the H-field is perpendicular to the surface
and it does give no contribution to the power. The magnetic field is non-
zero only at the top and the bottom and it contributes to the complex power
S of the conductor:

(5A.23)

where
b is the width of the conductor/sheet
lw is the length of the conductor/sheet

We can also look at the power through the reference plane (y = 0). Inter-
esting cases are situations where the power at the reference plane is zero. It
is sufficient that the fields E or H are zero at the reference place. We calculate
the power coming from the top in both cases:

• Href = 0. This case happens when Htop + Hbot = 0. Using Equations
(5A.19) and (5A.20), we obtain

(5A.24)

The practical case corresponding to this case is a current carrying conduc-
tor without average magnetic field. The E-field is an odd function of the
distance to the reference plane.

• Eref = 0. This case happens if Htop = Hbot. Using Equations (5A.19) and
(5.A20), we can write

(5A.25)

The practical case corresponding to that case is a transverse field without
current in the conductor or sheet. The E-field is an even function of the
distance to the reference plane. The cases, when E or H are zero at the
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Eddy Currents in Conductors 227

reference plane, give orthogonal current distributions as they are even and
odd functions of y. Hence, we can calculate the total losses as a superposition
of both cases, for both top and bottom power:

(5A.26)

This equation is quite important as it solves the losses in the 1-D model for
a given field at the top and bottom. The imaginary part describes the negative
reactive power. This is the reactive power in the conductor. The complex
power above or below the conductor in a homogenous field H for a vertical
section Dy can be expressed as

(5A.27)

In practice, we know that the difference between the top and bottom field
comes from the current in the rectangular conductor itself. So, we can use
this fact

(5A.28)

(5A.29)

We give the coefficients with a number of variants in how they can be written

(5A.30)

(5A.31)

(5A.32)

Here the penetration depth d(w) is defined as

(5A.33)
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228 Inductors and Transformers for Power Electronics

power reflects the power losses of the DC resistance. Thus, using the DC
resistance yields

(5A.34)

Then, the impedance of the conductor can be computed using that power.
This presentation makes sense if the average field Hav can be expressed as a
function of the current in the conductor. 

The impedance is

Z = Rs + jwLs (5A.35)

where
Z is the impedance of the conductor
Rs, Ls are the equivalent series resistance and inductance

Then we can write

(5A.36)

Presented by the DC resistance and penetration depth, the impedance is

(5A.37)

The last two equations are important for the cases where the relationship
between the transverse field and the current is known. The case is usual for
inductors. But also in transformers in no-load tests or a short circuit test,
only one current is present. In the next two sections, we have examples where
the average field and the current are related.

5.A.1.2 Single Conductor in a Slot

Figure 5A.2 shows an arrangement for a conductor in a slot or winding area
with a high permeability material on three sides. For a single conductor in a
slot the field at the bottom is zero, Hbot = 0. The average field is Hav = I/(2b).
Using the function properties at the end of this appendix, the corresponding
impedance is

(5A.38)

or

(5A.39)
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Eddy Currents in Conductors 229

For w tending to zero, the value of Z tends to the DC resistance (coth(z) →
1/z), then we have

(5A.40)

For high values of w, we have coth(z) → 1, and then using Equation (5A.31)
we obtain

(5A.41)

Conclusions from Equation (5A.41) are

• The equivalent resistance is the resistance of a thin layer with thick-
ness d and width b on the top of the conductor.

• The real and the imaginary parts are equal and the phase angle
equals 45°.

• The equivalent inductance is the inductance of a thin layer of air
with thickness d/2 on top of the conductor. The equivalent length
for the inductance is b; the equivalent area is Am = lw d/2. Attention
should be paid to the fact that the equivalent air thickness to far the
inductance is only d/2!

We can rewrite Equation (5A.34) in a real and an imaginary part, which
means a series equivalent circuit:

(5A.42)

(5A.43)

Equations (5A.38), (5A.42), and (5A.43) are compatible with [6] and [8] for
single conductors and several publications afterwards. Although Equations

FIGURE 5A.2
A single conductor in a slot and the static field Hx in the x-direction.
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230 Inductors and Transformers for Power Electronics

(5A.42) and (5A.43) are real functions, they are not so easy to handle. As an
example try to compute the value or the derivative for w tending to 0!

Another problem with the equations of a single conductor in a slot is that
the field problem is not split in orthogonal functions. Thus, care should be
taken when these functions are used in various situations. Although the
solution for a single wire is quite simple, it gets more complicated when
other conductors are present, as the decomposition is not orthogonal and
mixed products are present.

5.A.1.3 Superimposed Rectangular Conductors in a Slot

We consider the case of several superposed conductors carrying the same
current, Fig. 5A.3.

Each conductor is subjected to its own field and to the field of the conduc-
tors below it. For the mth conductor the average field is

(5A.44)

where 
F = 2m –1

The losses are dependent on To obtain the total losses we sum over all
the conductors. Thus, we need the sum of F2. Table 5A.1 shows the sum Σ F2.

We use Equation (5A.29), where we substitute the average field from
Equation (5A.44). The total conductor length is mlc . The total impedance for
the series connection of the conductors is then

(5A.45)

FIGURE 5A.3
Several conductors in a slot and the static field Hx in the x-direction.
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Eddy Currents in Conductors 231

We can introduce the DC resistance of the total wire and the penetration
depth, then we obtain

(5A.46)

It can be verified that the case without average field corresponds to m =
1/2. This case occurs when the conductor is mirrored at the bottom of the
slot, with no H-field in the middle of the conductor. This is often referred to
as a half layer. It corresponds to minimal losses for a given current.

It is clear that the losses due to the transverse field increase a lot with increasing
the number of layers m. Figure 5A.4 shows the result of Equation (5A.46) and
various numbers of layers, for R0 = 1. Fig. 5A.4 shows resistive and reactive

TABLE 5A.1

The Sums Σ F2

Conductor 
number 1 2 3 4 5

F 1 3 5 7 9
F2 1 9 25 49 81
Σ F2 1 10 35 84 165
m(4 m2 − 1)/3 1 10 35 84 165

FIGURE 5A.4
Resistive and reactive impedance of m rectangular conductors in a slot, compared to the DC
resistance, as a function of a relative frequency wr, wr = 1 corresponds to a = d. The case m = 0.5
is without transverse field.
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232 Inductors and Transformers for Power Electronics

impedance of m rectangular conductors in a slot, compared to the DC resis-
tance, as a function of a relative frequency wr. We use the relative frequency

 for wr = 1, d = a, and . The absolute frequency wr is defined
as the frequency for which the penetration depth d equals the thickness of
the conductor d = a, .

For m = 0.5, the impedance is identical to the case m = 1 if one chooses the
frequency four times higher. Note that the resistive part increases almost in a
quadratic way with m. The resistive part of the impedance depends on w 2 for low
frequency and increases with the root of the frequency  at high frequencies.

The conclusion is that for a given winding area when the field is in one
direction, the losses are mainly dependent on the number of turns. There is
a slight advantage to using a single layer in low frequency cases.

5.A.1.4 Taylor Expansion and Low Frequency Approximation 
for Superimposed Rectangular Conductors in a Slot

The complex functions can be expanded (for instance using MathCAD) in
Taylor series as a function of the frequency w. This can be done in a symbolic
way. For that purpose, we use again the relative frequency; for wr = 1 the
penetration depth d just equals the thickness a of the conductor:

(5A.47)

where wa is the absolute frequency, defined as the frequency, for which the
penetration depth d equals the thickness of the conductor d = a.

For a current without field we can write

(5A.48)

(5A.49)

The first term of the expansion from Equation (5A.40) is simply the resistance 
of the conductor. The second term is the low frequency inductance:

(5A.50)

The third term is the low frequency resistance increase compared to the DC
resistance. The first and third term together yield

(5A.51)
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Eddy Currents in Conductors 233

The impedance for the transverse field is

(5A.52)

(5A.53)

For a single conductor in a slot the impedance is

(5A.54)

(5A.55)

Conclusions concerning Equations (5A.52) and (5A.54) are

• The first three terms are representative for the low frequency approx-
imation.

• The presence of the fourth term already reduces the inductance with the
frequency and does not fit in the low frequency model any more. For
comparison, this deviation appears earlier in the transverse field case.

• Up to a thickness a of about 1.6d, the first three terms are sufficient
for 10% accuracy on the eddy current losses.

• The losses in the low frequency model are quadratic with the frequency
and with voltage, so they can be modeled as a resistor in parallel to
the considered inductance. This fact allows an easy circuit modeling.

At low frequency, the transverse field solution is quite independent of the
amount of air around the conductor, as far as there is a means to find an average
field value between the upper and lower side. This means also that a low
frequency approximation can also be used for fields being in a different direc-
tion compared to the x-axis. The transverse field is split in two components,
one in the x-direction and one in the y-direction. The generated current distri-
butions are odd in the x-direction (for Hx) and even in the y-direction (for Hy),
which tends to give orthogonal functions, so that losses can be superposed.

The power losses Ptr,lf at low frequency in the transverse field cases are

(5A.56)
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234 Inductors and Transformers for Power Electronics

Often one likes to see the power losses presented by the DC resistance

(5A.57)

5.A.1.5 Approximation for Rectangular Conductors with Air

In real cases, conductors do have insulation or space in between and they
are spaced to the magnetic materials. In these cases exact analytical solutions
are not obvious.

5.A.1.5.1 Classical Approach

The classical approach starts the derivation considering a narrow space and
a narrow conductor. If the space and the conductor width are small compared
to the penetration depth, the H-field is still in the x-direction. Figure 5A.5
shows an example.

The type of approximation possible assumes that the magnetic field is in
the x-direction. The problem can be translated in the problem of a single
conductor with conductivity for horizontal fields reduced with the amount
of air. This adapted conductivity is then given as

(5A.58)

The adapted conductivity results also in an adapted penetration depth d’(w),
characteristic impedance Z0′ (s), and propagation function g ′(s), expressed as

(5A.59)

(5A.60)

(5A.61)

FIGURE 5A.5
A rectangular conductor with air.
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Eddy Currents in Conductors 235

The following remarks should be considered:

• The predicted losses are not accurate for low ratio b/b’. For a free
conductor, the predicted losses are zero, which does not correspond
to the reality.

• There is no physical meaning of the adapted penetration depth. At
very high frequency, the physical penetration depth inside the con-
ductor will still be the original one.

Although the method is not really applicable for low values of the ratio
b/b’, still some reasonable accuracy is obtained in normal cases. For one layer,
reference [9] compares the approximation with finite elements solutions. The
simplified conclusions are

• For b/b’ > 0.8, the losses are overestimated up to about 2.5%.
• For b/b’ = 0.5, the losses are underestimated about 1% for low fre-

quency; and overestimated up to 10% at intermediate frequencies.

In fact, we would not recommend using the method for values of b/ b’ lower
than 0.5 values as both large underestimations and overestimations can
occur. This constraint is usually not limiting for conductors in a layer. But,
in practice, this means that the approximation is not good for fields in the
y-direction of the winding area, where it is likely to have more air than
conductors. Such fields are usual in inductors with concentrated air gap.

Appendix 5.A.2 Low Frequency 2-D Models for Eddy 
Current Losses in Round Wires

5.A.2.1 Low Frequency Approach

For a low frequency (LF) approach, the eddy currents induced in the wind-
ing do not considerably change the applied field in the winding. This field
penetrates in the conductor and the losses in round wires are quadratic
with frequency. The low frequency approach results in about 10% error on
eddy current losses when d ≤ 1.6d, d is the wire diameter and d is the
penetration depth for the applied frequency [10]. In that LF range, the
proposed exact analytical solution has more realistic field patterns com-
pared to the classical Dowell method [6] and is more accurate for low
frequencies, as the method is derived directly for round wires. The main
problem of the classical 1-D methods [3] is that the fields are only homog-
enous in a layer in ideal cases. In the scientific literature 2-D analytical
approximations are mainly focused on uniform transverse fields (proximity
losses) and also on the own field of a wire (skin-effect losses) [11–14].
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236 Inductors and Transformers for Power Electronics

Methods of extending the design to nonsinusoidal waveforms for trans-
former and inductor design are given in [15–17].

Here we present an approximation method for calculating eddy current
losses in round wires using a 2-D low frequency approach.

• First, we derived an exact solution containing the sums of the con-
tributions of fluxes induced by the individual wires. The losses in a
wire can be found using one single surface integral. However, that
integral slows the calculation down.

• To speed up the calculation, we developed an approximation
method using three fields: a uniform transverse, a rotational, and a
hyperbolic field. These fields are easy to compute and the calculation
is very fast, as neither integral nor functions have to be computed.

Within its limitations, the accuracy of the approximation in normal wind-
ing configurations is usually better than 0.1%. Features of the proposed
three-field approximation method are the low computational time and the
possibility to investigate and optimize the following design aspects: the
difference in losses, dependent on the distance between layers; hexagonal
or square fitting of the wires; the influence of the fields of air gaps; and the
influence of the distance to the magnetic materials.

5.A.2.2 Defining a 2-D Winding Arrangement

We use complex numbers to represent the place of conductors and distance
vectors. To have the possibility of testing easily a number of winding
arrangements (Fig. 5A.6), we define for the mth layer:

• The center of the first conductor of the mth layer has a complex
coordinate zm,1 = xm + jym.

• The distance between the centers of the conductors is sm.
• The current in the conductors is im.

FIGURE 5A.6
An arbitrary winding arrangement.
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Eddy Currents in Conductors 237

• The number of conductors of the layer m is Nm.
• m is the considered layer.
• There are M layers in total.

The presence of an air gap can be reasonably modeled as a fictitious
conductor without eddy currents with a current equal to the m.m.f. (magneto-
motive force) across the air gap.

5.A.2.3 Eddy Current Losses by The Direct Integration Method

The field generated by a current i in a single conductor in the LF case, inside
the conductor is

(5A.62)

where
i is the current in the conductor
r is the radius of the conductor
a is the distance vector from the considered point to the center of the 

conductor (|a|< r)
j is the imaginary unit (= positive y-axis, rotates the vector, +90°)

The field generated by a current i in a single conductor outside the conductor
(a > r) in the LF case is

(5A.63)

where
a* is the complex conjugate of a, a* = x − jy, (|a*|= |a| > r)

The resulting field of a number of conductors in a considered conductor
(cc) is the sum of the inside field of the considered conductor (own field)
and the outside fields of all the other conductors in the winding. The con-
sidered conductor is in the layer mc and has the number nc.

The flux Φ at a point in the space at a distance a2 from a current carrying
conductor is

(5A.64)

where
a1 is the distance vector between the centers of the two conductors, see 

Fig.5 A.7
a2 is the distance vector between the point (z) and the center of the nth 

conductor
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238 Inductors and Transformers for Power Electronics

Note that the result does not change if a complex conjugate is used.
The flux Φ(z)of the nth conductor of the mth layer (zm,n), generated in a

point (z) of the considered conductor (zmc,nc-layer mc, number nc) is:

(5A.65)

where
n is the number of the conductor, which field is considered
m is the layer of the conductor, which field is considered
nc is the number of the conductor in which we calculate the flux
mc is the layer of the considered conductor

In a point (z) the sum of the external fluxes Φm,n (z) of all the conductors is

(5A.66)

where
e(m − mc,n − nc) = 0 for (m = mc AND n = nc) and e(m − mc, n − nc) = 1 for all 

other cases

The contribution of the flux of the considered conductor itself is

(5A.67)

Then we obtain the total flux from internal and external currents:

(5A.68)

Eddy currents in wires flow in the axial direction of the wire. The magni-
tude of the current density is the derivative of the flux to the time divided
by the specific resistivity r. The integrating constant in the flux must be
chosen in a way that the induced eddy current over the wire section is zero.

FIGURE 5A.7
The distance vector a1 between the centres of
the two conductors and the distance vector a2
between the center of the nth conductor and
the point (x, y).
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Eddy Currents in Conductors 239

To remove the integrating constant we subtract the average value of the flux
Φav over the cross section surface S = πr2 of the wire. The average value of
the flux for the considered conductor is

(5A.69)

Note that for circular conductors, this contribution comes from the field
from the internal current.

Now we can express the resulting flux Φ(z), which generates eddy currents:

(5A.70)

The local eddy current loss/volume is integrated over the conductor sur-
face to give the power loss for a considered conductor per unit length:

(5A.71)

where
f is the excitation frequency 
rm is the resistivity of the conductor

The proposed method allows using the most practical arrangements even
in cases that are not possible to analyze with methods that suppose that the
field direction is parallel to the layers, such as Dowell’s method.

The calculation speed of the method is feasible (a few minutes for 50 wires,
using MathCAD) as only one surface integral has to be computed numeri-
cally. Regardless, the method is fast enough to be used as a way to check
more approximate methods.

5.A.2.4 The Proposed Three Orthogonal Fields Method

A way to fasten the integral is to approximate it with a first order approxi-
mation. In general, however, the first derivatives to x and y are not orthog-
onal, so the losses cannot be added. Therefore we propose to use the
following set of three fields, see Fig. 5A.8:

• the one field of a single current carrying conductor, which contains
the first derivatives in a single rotation direction

• the uniform transverse field
• the hyperbolic field, which contains the first derivatives in an oppo-

site rotation direction
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240 Inductors and Transformers for Power Electronics

It can be shown that these fields correspond to the following resulting current
distributions:

• a current density independent of the orientation q, mode 0
• a current density changing with sin(q − j1), mode 1
• a current density changing with sin(2q − j 2), mode 2

Those three components are orthogonal, as their mixed products vanish
when integrated over the conductor.

The field H generated by the other conductors of all layers can be approx-
imated by its value at the center of the conductor H0 and its derivatives of
H in space (Taylor expansion):

and also (5A.72)

5.A.2.4.1 The  Field of the Conductor

The field at a point inside the considered conductor imposed by the current
in the same conductor is

(5A.73)

5.A.2.4.2 The Transverse Field

If the field H0 is applied to the whole conductor section we call it a transverse
field Htr . The total transverse field resulting from all the conductors in the
center of the considered conductor is

(5A.74)

This field is applied over the conductor area (Fig. 5A.8,b).

FIGURE 5A.8
The three orthogonal fields, comprised in the proposed three-field approximation.
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Eddy Currents in Conductors 241

5.A.2.4.3 The Hyperbolic Field

The derivative to the distance of the field generated by the other conductors
of all layers in the center of the considered conductor is

(5A.75)

This presentation corresponds to the following field contribution according
to Equation (5A.72).

(5A.76)

Therefore we denote the deviation caused by the derivate of the field by
other conductors as a hyperbolic field, given as

(5A.77)

Equation (5A.77) results in a field pattern where the field lines follow
hyperbolas (Fig. 5A.9). Note that, as the field does not contain the field of
the current, the rotational field of this component is zero. So, the hyperbolic
field component does not contribute to the average value of the MMF.

5.A.2.4.4 Residual Field

The difference between the actual fields, as used in the integral method and
the sum of the three fields is called residual field (2nd and higher order in
Taylor expansion). This field is usually low. It is zero in the middle of the
conductor, and also its first derivatives are zero. In the validation we can
look at the relevance of this residual field for the accuracy of the method.

FIGURE 5A.9
Hyperbolic field distribution in a round 

conductor for .
dH

d z* = 1

d
d

jH
z

i m m n n
z zm c c

n

N

m

M

mc nc m n

m

*
( , )

( ),
*

,
*= − − −

−
==

∑∑2
1

11
2π

e

H
H
z

a1 = d
d *

*

H
H
z

a H ahy hy= = ′d
d *

* *

DK4141_C05.fm  Page 241  Wednesday, January 19, 2005  3:03 PM

Copyright 2005 by Taylor & Francis Group, LLC



242 Inductors and Transformers for Power Electronics

5.A.2.4.5 Eddy Current Losses by the Three Orthogonal Fields

Considering the fields (Hin, Htr , Hhy), we can find the eddy current losses due
to each of the three components as we did for the direct integral method
before—calculate the flux Φ, subtract the average value of the flux Φav , and
integrate the eddy current loss over the conductor surface to obtain the
power loss per unit length for the considered conductor.

• For the field of a single current carrying conductor (the own field),
the eddy current losses are

(5A.78)

This is the first term of the Taylor series of the exact wide frequency skin
effect loss of a free wire [11,18].

• For the transverse field losses we obtain the losses for unity length,
which corresponds to [13]:

(5A.79)

This is the first term of the Taylor series of the exact wide frequency solution
of the proximity losses of a free wire in a uniform transverse field [11,18].

• The hyperbolic field losses are

(5A.80)

The solution is found by calculating the flux of the hyperbolic field and the
corresponding eddy current losses. The hyperbolic field is usually not con-
sidered in analytical solutions in literature, which means that these solutions
do not attain a first order approximation accuracy of the field.

• The total losses are then

(5A.81)

Note that this result does only use sums, multiplications, and divisions;
no functions have to be computed. For example, the operation of the square
of a modulus, used in Equation (5A.79) can be written as

(5A.82)

P
r f i

eddy own
m

m

m
,

( ) ( / )
=

π π π2 2
0
2 22

24
2
2

m
r

P
r f H

eddy tr
m tr

m
,

( )
=

π π4 2
0
2 2

2
4

m
r

P
r f H

eddy hy

m hy

m
,

( )
=

′π π6 2
0
2

2
2

24

m

r

P P P Peddy eddy own eddy tr eddy hy, , , ,Σ = + +

H H Htr tr tr

2 2 2= +Re( ) Im( )

DK4141_C05.fm  Page 242  Wednesday, January 19, 2005  3:03 PM

Copyright 2005 by Taylor & Francis Group, LLC



Eddy Currents in Conductors 243

5.A.2.5 Validation of the Proposed 3-Field Approximation

To validate the proposed approximation method, eddy current calculation,
we take an example with the following parameters, see Fig. 5A.10:

• the first layer (primary winding)

• the second layer (primary winding)

• the third layer (secondary winding)
.

• rm = 20 × 10−9 Ωm

The frequency is f = 50 kHz, so we have a LF case, as the penetration depth
for 50 kHz is d50 kHz = 0.338 mm and for d3 = 0.5 mm the limit d ≤ 1.6d is met.

In Table 5A.2 we give the found values of the eddy current losses in each
conductor of the third layer by the proposed approximation approach Peddy,ap

and the direct integration method Peddy,in and the deviation between two
values. The found deviation is due to the residual field but remains below
0.1%. This accuracy is quite satisfactory, taking into account the very low
computation time of the proposed method. In examples with more layers,
the accuracy improves, as the main losses are due to transverse fields.

FIGURE 5A.10
Two-winding transformer arrangement
for the calculated example.

TABLE 5A.2

Eddy Current Losses in Each Conductor of the Third Layer of the Example (See Fig. 
5A.10), Given by the Proposed 3-Field Method Peddy,ap and Direct Integration Method 
Peddy,in and the Deviation Between Them

Losses/m [W] 1-st conductor 2-nd conductor 3-rd conductor 4-th conductor 5-th conductor

Peddy,ap 0.116425372 0.15459682 0.167083425 0.15459682 0.116425372
Peddy,in 0.116522823 0.15461503 0.167100871 0.15461503 0.116522823

−0.00083632 −0.00011775 −0.00010440 −0.00011776 −0.00083632
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244 Inductors and Transformers for Power Electronics

The time for calculating the losses in all conductors for this arrangement
of 25 conductors with the integral method is 1 min and 15 sec. With the
proposed three-field method we can calculate a problem with 103 conductors
for the same calculating time. We observed that this time is proportional
with the square of the total number of the conductors.

5.A.2.6 Extension of the Obtained Solution

Note that the examples are derived without the presence of magnetic mate-
rial. One can take into account mirroring techniques or use the finite elements
method to calculate the transverse field contribution, but this is beyond the
scope of this appendix.

If different conductors carry different currents with harmonics, each cur-
rent can be written in a Fourier sine and cosine expansion. The contributions
of all the sine components for each frequency are orthogonal in time with
the cosine contributions. By this property all power loss contributions can
be added.

This means that problems of transformer windings with phase-shifted
currents can be solved. Remember that we consider frequencies where d ≤
1.6d. The approach overestimates losses if higher frequencies are present.

Appendix 5.A.3 Field Factor For Inductors

A field factor kF is used to take transverse field losses into account in non-
homogenous fields due to air gaps, such as in inductors. The factor kF has
been chosen in the way that it is close to 1 for transformers and also for
inductors if the winding is far away from the air gap.

5.A.3.1 2-D Analytical Approximation of the Field Factor kF

If the layer is wound using the full winding width of the winding area, the
field of the winding can be presented as a superposition of linear increasing
field by the winding and a field caused by the air gap, mirrored at the walls
of the core.

The gap is modeled with a concentrated MMF at the center of the gap:

(5A.83)

where 
z = x + jy is the complex coordinate of a point

Mirroring at y = 0 doubles the current. Mirroring in the x direction is periodic
with a (the window width) and mirroring in y direction is with a period of
2h (the window height, see Fig. A5.11).
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Eddy Currents in Conductors 245

The field of the gap is given as:

(5A.84)

One of the infinite sums in Equation (5A.84) can be changed into a function,
which improves the accuracy and speed:

(5A.85)

The winding is modeled by a current density. When it is mirrored in the x
direction, it becomes independent of x. We have the field of the window Hw

(5A.86)

The sum of Hg and Hw (the field of the winding) is the resulting field H in
the window area:

(5A.87)

It can be verified that H has no tangential component at the walls. The vector
of the field H is shown in Fig. 5A.12, the amplitude is limited to 50 A/m.

The square of the field in the x-direction, averaged over the cross section is

(5A.88)

FIGURE 5A.11
Inductor core window and dimensions.
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246 Inductors and Transformers for Power Electronics

The square of the field in the y-direction, averaged over the cross section is

(5A.89)

If the winding is far away from the air gap, the field across the winding
increases linearly and the averaged square of the field then is

(5A.90)

This equivalent field is used as a reference solution. Two contributions of
the field factor kF are defined as

(5A.91)

(5A.92)

FIGURE 5A.12
Field vector in x-axis and y-axis, the winding is between 4 and 5 mm. The winding area is
30 mm wide and 10 mm high. The m.m.f. is set to 1 A turn.
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Eddy Currents in Conductors 247

For the field in the x direction the filling factor h is relevant. The filling
factor l is relevant for the field in the y direction.

5.A.3.2 Simplified Approach

When both field directions parallel and perpendicular to the layer generate
about the same losses, a simple presentation of kF can be used:

kF = kFx + kFy (5A.93)

REMARKS

• This simplification is allowed at low frequency.
• In high frequency simplified approach, we consider if the field is

parallel or perpendicular to the layer and not to the higher order
local fields when the filling is high. This approach is allowed as kFx

and kFy are usually of the same magnitude in inductors, whereas kFx

dominates in transformers.
• In the simplified approach for inductors one can use the losses

of a single wire in a transverse field. This approach is used in
Chapter 2.

• The approach gives sufficient accuracy for most of the cases.

5.A.3.3 Parallel and Perpendicular Components of kF

In this approach we separate the field component in a component parallel
and a component perpendicular to the layer.

The analytical approximations of kF, kFx, and kFy are

(5A.94)

(5A.95)

(5A.96)

In Fig. 5A.13, Fig. 5A.14, and Fig. 5A.15 we show factors kF, kFx, and kFy as
a function of the factor κ for different cores (rectangular and round legs) and
for different locations of the windings: between legs and coil ends.

In Table 5A.3 we show the values of kF, in Table 5A.4 the values of kFx, and
in Table 5A.5 the values of kFy for the different cores and cases.

kF( )
. ( . ) .k k

k
= − +3 44 0 505 0 6882

kFx( )
. ( . ) .k k

k
= − +1 55 0 38 0 5172

kFy( )
. ( . ) .k k

k
= − +1 88 0 609 0 1262
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248 Inductors and Transformers for Power Electronics

FIGURE 5A.13
The field factor kF as a function of k.
1: 2-D plane solution for windings between legs, for example: in EE core designs, Figure 2.8, cut A.
2: 2-D plane solution for coil ends, example: in EE core designs, Figure 2.8, cut B.
3: average curve, given by the analytical approximation.
4: axis-symmetrical solution for windings between legs, for example: Pot core designs, ETD
core designs, cut A.
5: axis-symmetrical solution for coil ends, example: ETD core designs, cut B.

TABLE 5A.3

The Values of the Coefficient kF for Different Values of κ

κ

kF,
2-D plane 

Between legs

kF,
2-D plane
Coil ends kF, average

kF ,
Axis-

symmetrical 
Between legs

kF ,
Axis-

symmetrical 
Coil ends

0.05 28.3315 27.7809 28.2293 28.7165 28.0884
0.1 13.0077 12.5958 12.671 12.75 12.3303
0.15 7.8694 7.5813 7.4945 7.3945 7.1328
0.2 5.3515 5.159 5.0058 4.8343 4.6785
0.25 3.9065 3.7782 3.607 3.419 3.3243
0.3 3.0061 2.9127 2.75 2.5748 2.5066
0.35 2.4183 2.3348 2.1956 2.0482 1.9813
0.4 2.0245 1.9306 1.8236 1.7108 1.6283
0.45 1.7585 1.6382 1.5678 1.4918 1.3826
0.5 1.5809 1.421 1.3897 1.3497 1.2071
0.55 1.4681 1.2565 1.2658 1.2595 1.0791
0.6 1.4062 1.1303 1.184 1.2149 0.9845
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Eddy Currents in Conductors 249

FIGURE 5A.14
The field factor kFx as a function of k.
1: 2-D plane solution for windings between legs, for example: in EE core designs, Figure 2.8,
cut A.
2: 2-D plane solution for coil ends, example: in EE core designs, Figure 2.8, cut B.
3: average curve, given by the analytical approximation.
4: axis-symmetrical solution for windings between legs, for example: Pot core designs, ETD
core designs, cut A.
5: axis-symmetrical solution for coil ends, example: ETD core designs, cut B.

TABLE 5A.4

The Values of the Coefficient kFx for Different Values of κ

κ

kFx,
2-D plane 

Between legs

kFx,
2-D plane
Coil ends kFx, average

kFx,
Axis-

symmetrical 
Between legs

kFx ,
Axis-

symmetrical 
Coil ends

0.05 14.4764 14.4715 13.8627 13.2515 13.2515
0.1 6.8142 6.8737 6.4151 5.9558 6.0167
0.15 4.2453 4.3592 3.9767 3.5987 3.7036
0.2 2.9864 3.1384 2.8111 2.4956 2.6238
0.25 2.2639 2.4363 2.1551 1.8940 2.0263
0.3 1.8137 1.9902 1.7507 1.5388 1.6599
0.35 1.5198 1.6866 1.4859 1.3196 1.4177
0.4 1.3229 1.4689 1.3053 1.1810 1.2483
0.45 1.1899 1.3065 1.1784 1.0929 1.1241
0.5 1.1011 1.1814 1.0875 1.0376 1.0298
0.55 1.0447 1.0827 1.022 1.0046 0.9561
0.6 1.0138 1.0034 0.9772 0.9944 0.8973
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250 Inductors and Transformers for Power Electronics

FIGURE 5A.15
The field factor kFy as a function of k.
1: 2-D plane solution for windings between legs, for example: in EE core designs, Figure 2.8, cut A.
2: 2-D plane solution for coil ends, example: in EE core designs, Figure 2.8, cut B.
3: average curve, given by the analytical approximation.
4: axis-symmetrical solution for windings between legs, for example: Pot core designs, ETD
core designs, cut A.
5: axis-symmetrical solution for coil ends, example: ETD core designs, cut B.

TABLE 5A.5

The Values of the Coefficient kFy for Different Values of κ

κ

kFy,
2-D plane 

Between legs

kFy,
2-D plane
Coil ends kFy, average

kFy,
Axis-

symmetrical 
Between legs

kFy,
Axis-

symmetrical 
Coil ends

0.05 13.8551 13.3094 14.3666 15.4650 14.8369
0.1 6.1935 5.7221 6.2559 6.7942 6.3136
0.15 3.6241 3.2221 3.5178 3.7958 3.4292
0.2 2.3651 2.0206 2.1948 2.3387 2.0547
0.25 1.6426 1.3419 1.4519 1.5250 1.2980
0.3 1.1924 0.9225 0.9994 1.0360 0.8467
0.35 0.8985 0.6482 0.7097 0.7286 0.5636
0.4 0.7016 0.4617 0.5183 0.5298 0.3800
0.45 0.5686 0.3317 0.3894 0.3989 0.2585
0.5 0.4798 0.2396 0.3022 0.3121 0.1773
0.55 0.4234 0.1738 0.2438 0.2549 0.1230
0.6 0.3924 0.1269 0.2068 0.2205 0.0872
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6
Thermal Aspects

In this chapter we discuss the heat transfer aspects that determine the mag-
netic component operating temperature. The component operating temper-
ature is the sum of the ambient temperature and the component temperature
rise.

In power electronics not all designs require the maximum accuracy, and
often only an order of magnitude is necessary with respect to thermal dimen-
sioning. Therefore, we present three different levels of approaches for ther-
mal design. Level 0 and level 1 approaches don’t need special knowledge
in heat transfer. These approaches are simple, but they are not to be dis-
missed. Because of the uncertainties in the convection coefficient, sometimes
it makes no sense to use a more elaborate approach. We start the chapter
with level 0 and level 1 designs, so those readers who desire a fast approach
to thermal design will find the necessary sections immediately after this
introduction.

The three mechanisms of heat transfer, conduction, convection, and radi-
ation, are presented together with the basic heat transfer laws. Equivalent
electrical circuits giving the analogy between the heat flow process in mag-
netic components and the corresponding electrical quantities are considered
and explained in details. The level 2 design, including a thermal resistance
network presentation of a magnetic component, is discussed based on the
already introduced fundamentals. This thermal resistance network can be com-
pleted with thermal inertia of the different parts of the component. The
complete model allows the analysis of different operating modes:

• Steady-state conditions, long-term operation under full continuous
load

• Transient thermal behavior, short-term operation under a heavy load
• Adiabatic loading conditions, where a very high load is applied for

a very short time interval, and, thus, no real heat transfer occurs
except a rise in component temperature.

The characteristic features of the heat transfer in magnetic components are
given special treatment in this chapter. An improved thermal modeling of
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254 Inductors and Transformers for Power Electronics

convection and radiation heat transfer for magnetic components for power
electronics is also presented.

6.1 Fast Thermal Design Approach (Level 0 Thermal Design)

In some cases it is quite time consuming to calculate all the surfaces and the
necessary parameters for an accurate heat transfer estimation. One can sim-
ply observe how much power could be dissipated for a given core size (i.e.,
what is the dependence of the allowed dissipated power on the dimensions
of the core). We denote this approach as ‘level 0’ design. Experimental data
concerning data for 50 Hz transformers indicates that allowed dissipation
can be approximated by the following empirical equation:

Ploss = p × a × h, [W] (6.1)

where
p is a coefficient for ‘specific dissipation’ and falls within the range of 

1500–2500 [W/m2];
a is the largest horizontal dimension of the core, [m];
h is the height of the core, [m].

REMARKS

1. In Equation (6.1) the core sizes a and h are in [m], and the obtained
result for the allowed dissipation P is in [W].

2. The other (smaller) horizontal dimension of the core is not consid-
ered, as the horizontal surfaces are always less efficient than the
vertical surfaces are for heat transfer.

3. If the copper winding dimensions are higher than the core dimen-
sions, then the copper dimensions are used in Equation (6.1). This
is the case for ring and core (shell) type transformers and inductors.

4. The magnetic component is assumed to be in vertical position, and
the axis of the coil former is vertical. This is usually the best position
for heat transfer.

Equation (6.1) is derived after considering the allowed power dissipation
for scrapples iron-type transformers at 40°C ambient temperature and 115°C
hot spot temperature in the copper, using manufacturer data [1]. The derived
dependence of the coefficient p (an average value for different stack width and
core grade) on the characteristic dimension of the core a (a = h for the cores in
the data considered) is shown in Fig. 6.1. The influence of the width of the
stack (the third dimension of the core) on the value of p is only a few percent.
For small 50 Hz transformers almost all losses are in the copper, and, thus,
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Thermal Aspects 255

the core open surface, which is usually even higher than the copper open
surface, is not used effectively for dissipation. This results in low values for p.

6.1.1 Specific Dissipation p for Ferrites

A higher value of p can be tolerated for ferrites because the total losses are
more equally distributed between the copper and core, even for small sizes;
thus, a better dissipation is realized. From one side, the ambient temperature
of ferrites is often higher than that of 50 Hz iron transformers because the
ferrite core components are usually used in closed-box equipment. Therefore,
the ambient temperature of 60°C is more realistic for ferrites, which results
in a low allowed temperature rise of about 50°C for copper. But from the
other side, the typical ferrite cores have characteristic dimension values
below 60 mm, which facilitate the heat transfer.

Keeping in mind all mentioned considerations about ferrite dissipation
specifics, a value of p in the range of p = 2000–2500 can be used in most of
the designs with ferrite cores. For safety, in the applications with an ambient
temperature higher than 60°C we suggest a value in the range of p =
1500–2000.

Examples

• For an ETD39 ferrite core with both major dimensions equal to
0.039 m, the allowed dissipation is 

Ploss = 2500 × 0.039 × 0.039 = 3.8 W for p = 2500.

• For an EE65 ferrite core with both major dimensions equal to
0.065 m, the obtained result is 

Ploss = 2500 × 0.065 × 0.065 = 10.56 W for p = 2500.

FIGURE 6.1 
Values of specific dissipation p [W/m2], equation (6.1), versus the largest horizontal dimension
a [m], for 50 Hz scrapples transformers at 40°C ambient temperature and 115°C hot spot
temperature in the copper, by data used from [1].
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256 Inductors and Transformers for Power Electronics

• For a ring core (toroid) T102/65/25 mounted vertically with a = h =
0.102 + 0.004 = 0.106 m (0.004 m copper winding thickness), the
obtained result is Ploss = 2500 × 0.106 × 0.106 = 28 W for p = 2500. In
this case, from one side the open surface is not A = ah, but from the
other side the actual open surface is higher than A = πa2/4 because
of the inner surface of the component, so the approximation used is
still accurate enough.

6.1.2 Conclusion About Level 0 Thermal Design

The level 0 design approach allows a rapid check of the allowable dissipation
of a magnetic component. The advantage is that the calculation is simple
and can even be done in one’s head. However, wherever more accuracy is
needed one should not stick to this level, but use the more elaborate level 1
or level 2 designs.

6.2 Single Thermal Resistance Design Approach
(Level 1 Thermal Design)

For a better understanding of heat transfer process in magnetic components,
we can associate the thermal quantities and equations to an electrical analogy
presented in Table 6.1. Using that analogy, we can present a heat transfer
system by an electrical analog circuit. In this circuit the heat transfer rate is
represented by current, the temperature difference is represented by voltage,
and the thermal resistances are represented by electrical resistances.

The level 1 approach represents a magnetic component by a single thermal
resistance that is temperature dependent (see Fig. 6.2). The heat transfer rate
q is equal to the total power losses in the component Ploss. The temperature
rise ∆T is the difference between the temperature of the component hot spot
Ths and the ambient temperature Ta.

Using Fig. 6.2 and the analogy with electrical quantities we can write

(6.2)

TABLE 6.1 

Analogy Between Thermal and Electrical Quantities

Thermal quantities and laws Electric quantities and laws

Heat transfer rate, q (or Ploss), [W] Current, I, [A]
Temperature difference ∆T, [°C] Potential difference, Voltage, V, [V]
Thermal resistance, Rq , [°C/W ] Resistance, R, [Ω]
q = ∆T/Rq , [W] I = V/R

P
T

Rloss = ∆

q
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where
Ploss is the total power loss, equal to the sum of the core and copper losses
∆T is the temperature rise, ∆T = Ths − Ta

Rq is the total thermal resistance of the component

The thermal resistance paths for convection and radiation are in parallel
for a magnetic component, so the value Rq is

(6.3)

where
A is the total open area of the magnetic component, [m2]
hc is the convection heat transfer coefficient of the component
hR is the radiation heat transfer coefficient of the component

The temperature rise ∆T is then

(6.4)

where
Ths is the component hot spot temperature
Ta is the ambient temperature

NOTE: The convection and radiation heat transfer coefficients are not con-
stants; rather, they are temperature dependent. Some manufacturers give
thermal resistances for cores, but care should be taken if no temperature
difference is provided since the thermal resistances depend on the temper-
ature difference ∆T.

To find the allowed dissipation Ploss when the surface of the component A
and the temperature rise ∆T are known the following empirical equation can
be used:

(6.5)

where A is in [cm2] and Ploss is in [mW].
The purpose of Equation (6.5) is to directly present the influence of the

temperature difference and the area on the dissipation capability. A depen-
dence similar to that of Equation (6.5) is proposed in [1].

Example
Let us consider a magnetic component with an EE42 core set. The total open
surface of the component is: A = 2 × 422 + 4 × 42 × 15 + 8 × 29 × 8 = 7904 mm2 =

FIGURE 6.2 
Electrical analog circuit of heat transfer in a
magnetic component, using only one thermal
resistance.

q = Ploss Ths Ta
Rθ

1 1 1
R R R

h A h A A h h
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q q q
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A h hhs a loss
loss
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258 Inductors and Transformers for Power Electronics

79.04 cm2. If we take ∆T = 50°C, then we obtain: Ploss = (50)1.1 × 79.04 =
5844 mW = 5.844 W. By comparison, the accurate approach given later in
section 5 of this chapter, and applied for the same construction and condi-
tions, results in Ploss = 5.35 W [2].

6.3 Classic Heat Transfer Mechanisms

There are three heat transfer mechanisms: conduction, convection and radi-
ation. In this section we will define these mechanisms and present the pri-
mary physical laws that govern their behavior.

6.3.1 Conduction Heat Transfer

Conduction heat transfer is the energy transfer from a high temperature
region to a low temperature region of a body along a temperature gradient.
The heat transfer rate q is proportional to the cross-sectional area A through
which heat is being conducted and to the temperature gradient in the
direction of the heat flow (normal to A):

(6.6)

A positive constant k, called thermal conductivity, is introduced and then

(6.7)

where
q is the heat transfer rate, [W]
k is the conductivity of the material, [W/m ⋅°C]
A is the cross-sectional area through which heat is being conducted, [m2]

Equation (6.7) is known as Fourier’s law. The negative sign indicates that
the heat flows downhill on the temperature slope. The key parameter in
Equation (6.7) is the thermal conductivity.

Using the energy balance of a unit volume, the general three-dimensional
heat equation is

(6.8)

where
E is the generated energy per unit volume, [W/m3]

 is the thermal diffusivity of the material, [m2/s]
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∂
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r is the material density, [kg/m3]
cp is the material specific heat, [J/kg ⋅°C]

The quantity a characterizes the diffusity of the heat through the material.
A high a means a high thermal conductivity k or a low thermal capacity r  cp

and a leads to faster heat diffusion through the material.
The values of k given in data sheets and used in practice are usually

obtained by experiments because the analytical approach does not yield
accurate results. The thermal conductivity of some materials are given in
Table 6.2 at T = 100°C.

TABLE 6.2 

Thermal Conductivity of Some Materials at T = 100°C, [3] and [4]

Material Conductivity k, [W/m ⋅ °C]

Aluminum, Al 206
Ferrites (MnZn, NiZn) 3.8
Iron (pure), Fe 67
Carbon steel, C ≈ 0.5% 52
Carbon steel, C ≈ 1.5% 36
Invar, Ni = 36% 10.7
Nickel steel, Ni ≈ 80% 35
Nickel (pure), Ni 83
Copper (pure), Cu 379
Tin 59
Lead, Pb 33
Silver 440
Zinc (pure), Zn 109
Magnesium (pure) 168
Glass 0.78
Epoxy resin (unfilled) 0.25
Epoxy resin (filled) 1.1
Polyethylene 0.33
Polyvinylchloride 0.09
Polypropylene 0.16
Polyimide film 0.40
Transformer oil 0.12
Cardboard 0.04
Kraft paper 0.11
Fiber, insulating board 0.05
Asbestos 0.07–0.17
Wood 0.11–0.15
Water, H2O, at T = 20°C 0.60
Air, at T = 30°C 0.026
Air, at T = 70°C 0.030
Carbon dioxide, CO2 0.022
Oxygen, O2 0.033
Hydrogen, H2 0.21

Selection out of tables of Holman J.P. Heat transfer, 8th ed. McGraw-Hill
New York, 1997 [3] and Flanagan, W.M. Handbook of transformer design and
applications, 2nd ed. McGraw-Hill New York, 1992 [4] (with permission of
McGraw-Hill).
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260 Inductors and Transformers for Power Electronics

6.3.2 Convection Heat Transfer

Convection heat transfer is a complex process involving conduction to the
boundary level of the convecting fluid. The physical mechanism of convec-
tion is related to heat conduction through a thin boundary layer of fluid
adjacent to the heated body surface. The heat transfer rate is determined by
the velocity of the fluid blowing the heated surface and the type of fluid (air,
water, oil). The convection process also includes the changes in the fluid
density with the temperature, the viscosity, and the motion of the fluid.

Newton’s law of cooling gives a simple expression for the overall process
of convection heat transfer:

q = hc A(Tw − Ta) (6.9)

where
q is the heat transfer rate by convection, [W]
hc is the convection heat transfer coefficient of the material, [W/m2 ⋅°C]
A is the surface of the heated body, [m2]
Tw is the temperature of the surface (the wall)
Ta is the ambient temperature

The convection heat transfer coefficient is sometimes denoted as thin film
conductance because of the heat conduction process between the heated
body and the thin boundary film of fluid.

6.3.2.1 Natural and Forced Convection

If the heated body is exposed to the ambient room air without any external
source of movement, then the movement of the air is caused only by the
density gradients near the body surface. This type of convection is called
natural, or free, convection. If there is a fan blowing air over the heated body,
then the process is called forced convection.

6.3.2.2 Convection Heat Transfer Coefficient hc

In Equation (6.9) the key parameter is the convection heat transfer coefficient
hc. For vertical plates hc is usually given as a function of the height H of the
plate and is expressed as

(6.10)

where
∆T is the temperature rise Tw − Ta, [°C]
H is the height of the component, [m]

The classical book of Holman [3] gives detailed information for calculating
hc for various surfaces in both laminar and turbulent flow cases, which can

h
T

Hc = 



1 42

1 4

.
/∆
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be used for a more precise estimation of the convection heat transfer coeffi-
cient. However, most of the approaches in [3] are difficult to apply in the
design of magnetic components.

To clarify the uncertainties about the convection heat transfer coefficient
hc, we carried out experimental investigations, and the results are given in
section 5 of this chapter.

6.3.3 Radiation Heat Transfer

The physical mechanism of radiation heat transfer is different from the
mechanism of conduction and convection heat transfer, where the heat is
transferred through a material medium (fluid). The mechanism of radiation
heat transfer is electromagnetic radiation, and heat can be transferred even
through a vacuum area. The heat transfer by radiation is described by the
Stefan-Boltzmann law of thermal radiation:

q = e s AT4 (6.11)

where
q is the heat transfer rate by radiation, [W]
e is the emissivity of the radiating surface
s is the Stefan-Boltzmann constant, s = 5.67 × 10−8 W/m2 ⋅ K4

T is the absolute temperature, [K]
A is the radiating area (for magnetic components this is the component 

open surface), [m2].

The factor e (emissivity) represents the ratio between the heat transfer rate
q for a given surface and a black surface for which e = 1. Painted surfaces
of almost all colors have the emissivity of about 0.9. The emissivity of a
bright, metal surface is much lower, at about 0.05–0.1.

The radiant energy exchange between a hot body with absolute tempera-
ture T1 and an enclosing body with absolute temperature T2 is proportional
to the difference in the absolute temperatures to the fourth power:

(6.12)

where
T1 is the absolute temperature of the hot body
T2 is the absolute temperature of the enclosing body

The wavelength of the temperature radiation for the surface temperature
of magnetic components is in the infrared range.

Table 6.3 lists emissivity values of various surfaces for temperatures near
the operating temperatures of magnetic components (around 100°C).

To unify the equations for the heat transfer rate q of the three heat transfer
mechanisms, given by Equations (6.7), (6.9), and (6.12), Equation (6.12) can
be simplified to

q = hR A(T1 − T2) (6.13)

q A T T= −( )e s 1
4

2
4
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262 Inductors and Transformers for Power Electronics

where 
hR is the radiation heat transfer coefficient:

(6.14)

6.4 Thermal Design Utilizing a Resistance Network

Level 2 Thermal Design

A more detailed presentation of the heat transfer in magnetic components
requires a network consisting of several thermal resistances. Using the anal-
ogy of the electrical circuits and quantities, we can present a heat transfer
system by a detailed equivalent circuit. This kind of circuit is useful for a
better representation of the heat transfer process and for calculation of the

TABLE 6.3 

Total Emissivity of Some Surfaces Near 100°C, [3] and [4]

Material Emissivity e

Aluminum, polished 0.04
Aluminum, oxidized 0.25
Brass (CuZn), polished 0.03
Not brilliant brass 0.2
Ferrites 0.95
Copper, polished 0.052
Copper, not brilliant 0.40
Copper, covered with oxide layer 0.78
Cast iron 0.7
Steel, polished 0.066
Steel, with oxide layer 0.80
Sheet steel 0.55
Tinned sheet steel 0.04–0.06
Nickel, polished 0.072
Paint, all colours 0.90–0.94
Rubber 0.94
Porcelain 0.92
Enamel 0.9
Enameled copper 0.8
Isolation paper 0.9

Selection with permission out of tables of Holman J.P. Heat trans-
fer, 8th ed. McGraw-Hill New York, 1997 [3] and Flanagan, W.M.
Handbook of transformer design and applications, 2nd ed. McGraw-
Hill New York, 1992 [4] (with permission of McGraw-Hill).

h
T T

T T

T T

T TR =
−( )

−
=

× −( )
−

−e s e
1

4

2

4

1 2

8

1

4

2

4

1 2

5 67 10.
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temperature rise in magnetic components. The key parameters are the ther-
mal coefficients k, hc and hR, which depend on the temperature and the
geometry of the magnetic component.

Assumption: All copper surfaces have the same temperature, and all core
surfaces also have the same temperature.

6.4.1 Thermal Resistances

Here we present a resistance network (see Fig. 6.3) that includes the following
thermal resistances:

• Rq,hs, which represents the conduction heat transfer between the hot
spot, is assumed to be in the copper windings and the copper coil
surface. For simplicity, the surface temperature of the copper is
considered to be uniform. This resistance is determined mainly by
the parasitic air gaps in the coil. Rq,hs is expressed as

(6.15)

where
lcw is the equivalent air gap representing the air in windings and parasitic 

air gap between the windings and the coil-former; lcw depends on the 
wire type, the insulation, and the temperature profile inside the coil

Acf is area of the copper coil surface in the slot (the surface realizing the 
conduction between the coil and the core), or the copper-to-ferrite area

Aca is the area of the copper coil open surface (the open surface that trans-
fers heat directly to the ambient air), or the copper-to-ambient area

k is the air thermal conductivity; k = 0.031 W/m ⋅ C° at 100°C, and k = 0.026 
W/m ⋅ C° at 30°C [3]

FIGURE 6.3
Electrical analog circuit of heat transfer in a magnetic component, using a resistance network
(level 2).
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264 Inductors and Transformers for Power Electronics

• Rq,cf This thermal resistance is the inverse of the sum of the inverses
of the conduction and radiation thermal resistances between the
copper-coil surface in the slot and the core (copper-to-ferrite thermal
resistance), Rq,cf,cd and Rq,cf,r , respectively:

(6.16)

The value of Rq,cf,cd is:

(6.17)

where
lcf is the equivalent air gap corresponding to the air space between the coil 

and the core

The value of Rq,cf,r is

(6.18)

where
hR,cf is radiation heat transfer coefficient of the coil
Tc is the absolute temperature of the coil, [K]
Tf is the absolute temperature of core, [K]
e is the emissivity of the coil surface; e = 0.8 (see Table 6.4)
s is the Stefan-Boltzmann constant; s = 5.67 × 10−8 W/m2 ⋅ K4

REMARK
Let us consider Rq,cf,r together with Rq,cf,cd. These resistances are in parallel. A
simple example with lcf = 3 mm, Tc = 374 K and Tf = 373 K (one degree
difference between coil and core temperatures) results in almost the same
thermal resistances:

.

TABLE 6.4 

Values of the Emissivity of the Investigated Surfaces

Aluminium 
surfaces, eal 

Unpolished 
copper, ecu

Enameled 
copper, een

Black painted 
surfaces, ebp

Emissivity 0.07 0.14 0.81 0.925

1 1 1
R R Rcf cf cd cf rq q q, , , , ,

= +

R
l

k Acf cd
cf

cf
q , , =

R
h A

T T

T T A
cf r

R cf cf

c f

c f cf
q e s, ,

,

= =
−

−( )
1

4 4

R A
l

kcf cd cf
cf

q, , /
.
.

.= = =0 003
0 031
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• Rq,ca This thermal resistance is a combination of the convection and
radiation thermal resistances between the coil open surface and the
ambient air (copper-to-ambient thermal resistance), Rq,ca,cv and Rq,ca,r,
respectively. These resistances are in parallel so:

(6.19)

The values of Rq,ca,cv and Rq,ca,r are as follows:

(6.20)

(6.21)

where
hR,ca is the radiation heat transfer coefficient of the open coil area 
Tc is the absolute temperature of the open coil area, [K]
Ta is the absolute temperature of ambient air, [K]
e is the emissivity of the open coil surface; e = 0.8 (see Table 6.4).

• Rq, fa This thermal resistance is a combination of the convection  and
radiation  thermal resistances between the core open surface and the
ambient air ( ferrite-to-ambient thermal resistance), Rq, fa,cv and Rq, fa,r ,
respectively. These resistances are also in parallel so:

(6.22)

The value of Rq, fa,c is

(6.23)

where
Afa is the core end surface (the core open surface transferring heat to the 

ambient air), or ferrite-to-ambient area

The value of Rq, fa,r is

(6.24)

where
hR,fa is radiation heat transfer coefficient of the core end
Tf is the absolute temperature of the core end, [K]
e is the emissivity of the core surface; e = 0.9–0.95 (see Table 6.2)

1 1 1
R R Rca ca cv ca rq q q, , , , ,
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R
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q , , = 1

R
h A

T T
T T Aca r

R ca ca

c a

c a ca
q e s, ,

,

= =
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= +

R
h Afa c

c fa
q , , = 1

R
h A

T T

T T A
fa r

R fa fa

f a

f a fa
q e s, ,

,

= =
−

−( )
1

4 4

DK4141_C06.fm  Page 265  Wednesday, January 19, 2005  12:27 PM

Copyright 2005 by Taylor & Francis Group, LLC



266 Inductors and Transformers for Power Electronics

The equivalent circuit comprising the above-mentioned thermal resis-
tances is presented in Fig. 6.3.

NOTE: For components with forced convection or cooled by heat sinks, an
additional thermal resistance should be included between the hot spot point
in the core and the core surface.

6.4.2 Finding Temperature Rise

There are two sources of heat in a magnetic component: the copper losses
Pcu and the core losses Pfe (see Fig. 6.3). To find the temperature rise ∆T in
the magnetic component we use the superposition principle.

First, we find the temperature rise ∆Tc,f in the coil caused by the core losses
Pfe. The losses are assumed to be a current source in the equivalent circuit of
that process (Fig. 6.3). We have to find the ‘potential difference’ ∆Tc,f = Tc − Ta

caused by the losses Pfe. Using the known electrical laws and Fig. 6.4, we
find Pfe,c

(6.25)

(6.26)

Second, we find the temperature rise ∆Tc,c in the copper caused by the
copper losses Pcu. The heat transfer process is represented by the equivalent
circuit shown in Fig. 6.5. Using Fig. 6.5, we find:

(6.27)

Now, knowing the temperature rises caused by copper and core losses,
we can find the total temperature rise ∆T as a sum of these values:

(6.28)

FIGURE 6.4 
Electrical analog circuit for finding the tem-
perature rise ∆Tc, f in coil caused by the core
losses Pfe.
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Thermal Aspects 267

Equation (6.28) allows us to find the temperature rise in a magnetic compo-
nent for given values of the copper and core losses. Sometimes a few itera-
tions are necessary in practice to find the exact temperature rise, as the
thermal resistances used in Equation (6.28) and the core and copper losses
are temperature dependent.

6.5 Contribution to Heat Transfer Theory 
of Magnetic Components

The thermal design of magnetic components is usually somewhat neglected,
as it is often not clear exactly which theory and coefficients should be used.
Also, the experiments are time-consuming and not easy. In a real design
many construction details that complicate the modeling are present. This is
true for classical approaches as well as for numerical methods. Here we want
to present some reference expressions and conclusions to be used for fine-
tuning classical and other methods.

Both the classical approaches [4,5,6] and the new thermal models [7,8] have
their advantages and applications. In the isotherm surface model (all open
surfaces of the component have the same temperature) the total heat transfer
rate q, which shows the heat dissipating capability of a component, can be
presented as follows:

q = qd + qr + qc (6.29)

where
qd, qr, qc are the already discussed conduction, radiation and convection 

transfer rates 

Substituting, we obtain

(6.30)

where
k is the conductivity of the material, [W/m2K]
Ak is the cross-sectional area through which heat is being conducted, [m2]
lk is the equivalent length of the conduction heat transfer path
e is the emissivity of the radiating surface

FIGURE 6.5 
Electrical analog circuit for finding the tem-
perature rise ∆Tc,c in the coil caused by the
copper losses Pcu.
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268 Inductors and Transformers for Power Electronics

s is the Stefan-Boltzmann constant, s = 5.67 × 10−8 W/m2 ⋅ K4

Ar is the radiating area; i.e.,the component open surface, [m2]
hc is the convection heat transfer coefficient of the material, [W/m2 ⋅ °C]
Ac is the open surface of component, [m2]; Ac = Ar

Tw − Ta = ∆T is the temperature rise; Tw is the surface temperature of the 
component, and Ta is the ambient temperature.

The conduction heat transfer can usually be neglected in the heat transfer
from a magnetic component to the ambient air, so we will focus only on the
radiation and convection heat transfers.

The uncertainties in the coefficients k, e, and hc result in an insufficient
accuracy of Equation (6.30) applied to magnetic components. In particular,
the coefficients hc and e are quite critical. The well-known expression of the
coefficient hc is

(6.31)

where
∆T is the temperature rise Tw − Ta, [°C]
L is the height of the component, [m]

This equation is valid only under specific conditions, and some factors limit
its validity for magnetic component design:

• The convection heat transfer is a quite complex process, and Equa-
tion  (6.31), which was derived for infinite surfaces, is not completely
applicable for magnetic components.

• The conductivity, viscosity, and density of air are assumed to be
constant in the temperature range for which the expression is used,
but this assumption is only an approximation.

• Equation (6.31) is not valid for natural convection in an enclosed
space or in close proximity of other heated surfaces. Usually the
ambient temperature is adapted to some average temperature inside
the enclosure.

Example
For an EE42 core with L = 0.042 m, and for a temperature rise of ∆T = 50°C
the value of the convection heat transfer coefficient, according to Equation
(6.31), is hc = 8.34 [W/m2 ⋅ °C]. According to the references [9,10], the typical
values of hc are spread in the range of 6–10 [W/m2 ⋅ °C] for cores used in
power electronics!

The above-mentioned limitations of Equation (6.31) and the uncertainties
in the values of e and hc result in an inaccuracy of about 20–30% in the
estimation of convection and about 15% in the estimation of the total heat
transfer! This inaccuracy can really influence some designs.

h
T

Lc = 



1 42

0 25

.
.∆
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6.5.1 Practical Experience

We carried out some experiments to investigate the values of emissivity e
for some surfaces typical to power electronics components (see the appendix
to this chapter). The main results are summarized in Table 6.4.

Our conclusions from the experiments and the results concerning the
position and location of the magnetic components are:

• The location of a magnetic component directly on the PCB (printed
circuits board) improves the heat transfer, and the temperature rise
is 6–8% lower by comparison to the case when the component does
not touch the PCB.

• The dissipating ability hardly depends on the position (vertical or
horizontal) of a magnetic component.

• In high ambient temperatures the allowed temperature rise ∆T for
the same dissipated power Pdiss is slightly lower because of the
increased radiation heat transfer.

For more details see the appendix to this chapter.

6.5.2 Precise Expression of the Natural Convection Coefficient hc

Magnetic components are never infinite or thin plates like the shapes in the
classical heat transfer. So, the heat transfer coefficient hc could be well-defined
but still different from the classical thermal approach for horizontal and vertical
plates. Here we present improved thermal modeling of convection heat trans-
fer for magnetic components for power electronics.

6.5.2.1 Derivation of Convection Coefficient hc

The convection process is a quite complex phenomenon. Properties of air,
such as heat conductivity k, kinematic viscosity n and specific weight (den-
sity) r, that influence the convection process change a lot in the considered
temperature range of 250–400 K. Thus, the heat transfer parameters, Nusselt
number Nu, Grashof number Gr, Prandtl number Pr and Rayleigh number
Ra, which are used in classical convection heat transfer theory, are quite
affected by the temperature, and, as a result, the simplified proportionality
hc ~ (∆T/L)0.25 is not observed in the real experiment.

The accurate dependence of hc on ∆T is different than the one given in the
simplified relation of Equation (6.31). To obtain a good matching between
the classical expressions and Equation (6.31) the exponents in it should be
precisely adapted. We consider the following approximation:

(6.32)h C
T
Lc

T

L
= ( )∆ a

a
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270 Inductors and Transformers for Power Electronics

where the exponents aT and aL will not be 0.25 as they are in Equation (6.31).
To complete the expression of Equation (6.32) and to derive the dependence
of hc on the pressure p, the ambient temperature Ta, and the position (hori-
zontal or vertical) of the component, we propose the following expression:

(6.33)

where the exponents a p and a Ta, and the coefficient C, which depends on the
position, are to be found.

The precise values of the exponents aT, aL, ap, and aTa, and the coefficient
C were found using table data and analytical matching (see the appendix to
this chapter). Each exponent was found individually by comparing the
results obtained by a classical complete presentation of hc and the results of
an expression consisting of an adaptation coefficient and the corresponding
quantities of ∆T, Ta, L, p.

Using the found values of aT, aL, ap, aTa, and C we give the following
complete expression for the convection coefficient hc:

(6.34)

where
C is Ch = 1.53 for horizontal position and Cv = 1.58 for vertical position of 

the component in an open enclosure ; Ce = 1.35 in a closed enclosure 
(closed box)

L is the total distance passed by the air cooling the component (see Fig. 6.6)
∆T is the temperature rise, ∆T = Tw − Ta, [K]
pref is the reference pressure at sea level, Pref = 101.32 kPa
Ta,ref is the reference ambient absolute temperature, Ta,ref = (273.15 + 25) K

FIGURE 6.6 
Parameter L as the total distance of the boundary layer: b)L = a + b; c)
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The found exponent aT = 0.225 matches well the results for convection
of vertical and horizontal plates in the considered temperature range of
250–400 K obtained by software included in [3]. Note that convection
decreases for the same temperature rise ∆T when the ambient temperature
Ta increases. However, that dependence is quite small in comparison with
the dependence of radiation on Ta.

The value ap = 0.5 can also be used in Equation (6.34), as it gives only a
very small difference in comparison with ap = 0.477. A similar dependence
of can also be found in [3].

The derived expression of Equation (6.34) can also be used in more com-
plex thermal models including inner thermal resistances and different copper
and iron temperatures, representing the complexity in the construction
details of the component.

More details of the presented approach can be found in [2,11,12].

6.5.2.2 Dependencies of hc on the Parameter L and on the Position 
and Shape

Here we give the details of the proposed dependencies of hc on the param-
eter L and on the position and shape of a component, included in Equation
(6.34).

Dependence of hc on Parameter L

The dependence for combined vertical and horizontal surfaces, which is the
case of magnetic components, includes three new aspects:

1. A more precise exponent for L in the considered range of L = 10–400
mm is aL = 0.285 with 4% deviations with respect to the experimental
results. The deviations are at the end of the range. By comparison,
the exponent aL = 0.25 results in deviations above 22% in the con-
sidered range.

2. The parameter L is the total distance passed by the air cooling the
component (e.g., the length of the boundary flow layer of the com-
ponent (see Fig. 6.6)). In general L could be described as “half of the
length of the shortest path around a vertical midsection of the object.”
Notice that L is not the height of the component. For example, in
the box-shaped model with EE42 dimensions the parameter L is L =
a + b = 57 mm (see Fig. 6.6b). For the EE core transformer shape,
as one general parameter for the whole surface we propose

(see Fig. 6.6c). For an EE42 transformer we
obtain .

3. Magnetic components are often mounted above a PC board. For
simplicity, we keep the same L and surface in Equations (6.34) and
(6.30) for magnetic components mounted directly on a PC board.
Our investigations show that when the component is mounted on

h pc ~

L a b e d e≅ + − + +2 2 2 2

L a b e d e≅ + − + + =2 2 642 2 mm
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a PC board the total thermal heat transfer of the component is
improved by about 6–8% in comparison with the case when the com-
ponent is above the PC board. On one hand, the contribution of the
bottom surface toward the total heat transfer is low and mainly
determined by the air conductivity. On the other hand, the conduc-
tion heat transfer to the PC board seems to be relevant, certainly if
some copper traces are present. However, the detailed investigation
of this case is beyond the scope of this book.

Dependence of hc on the Position of Component and on Enclosure

The difference in convection for horizontal and vertical position of a com-
ponent is proved to be low by the experiments. This difference can be
presented by different values of the coefficient C for both positions. The
experimentally obtained values are Ch = 1.53, Cv = 1.58, respectively, for
the horizontal and vertical positions of the model in an open enclosure. The
obtained value for a closed enclosure (closed box with dimensions of 0.5 m ×
0.3 m and a height equal to 0.3 m), when the convection is lower than in
an open box, is Ce = 1.35.

Dependence of hc on the Shape of the Component, the ‘Envelope Surface’

For the magnetic component shapes we propose specific equivalent surfaces
to be used to present more accurately the convection and radiation heat
transfer instead of the full open surface of the component. For radiation, this
surface Srad is close to the component envelope surface. The surface between the
corners is reduced because in those regions the surfaces radiate to each other
and the actual radiating surface is lower than the total surface (see Fig. 6.7a).
For convection, the equivalent surface Scon includes completely the vertical
parts of the component because all of the vertical surfaces act effectively in
the convection process (see Fig. 6.7b).

FIGURE 6.7
The equivalent surfaces of an EE core transformer:
a) the ‘envelope’ surface for radiation, .
b) the equivalent surface for convection, .
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The envelope surface Senv = Srad and the equivalent surface for convection
Scon of an EE core transformer, in accordance with Fig. 6.7, are

(6.35)

(6.36)

The box surface Sbox is The values of those three surfaces
and the parameter L for an EE core transformer are tabulated in Table 6.5.

The measured difference in dissipation between a transformer and a cor-
responding black-painted box is only about 10.5%. This difference is well-
explained by the proposed equivalent surfaces for the heat transfer of a
transformer, the difference in the characteristic parameter L, and the differ-
ence in the global emissivity for both cases.

6.5.3 Forced Convection

6.5.3.1 Classical Approach

Because of the complicated nature of the flow-separation processes it is not
possible to analytically calculate the average heat transfer coefficients in
forced convection heat transfer. However, some experimental data, [3,13],
indicate that the average heat transfer coefficients for flow across cylinders
can be calculated with the following expression:

(6.37)

where
hc is the mean convection heat transfer coefficient
d is the height of the magnetic component
C and n are constants
u∞ is the velocity of the approaching flow
nf is the cinematic viscosity evaluated at the film temperature
Prf is the Prandtl number evaluated at the film temperature
kf is the air thermal conductivity evaluated at the film temperature

TABLE 6.5 

The Surfaces and the Parameter L for an EE42 Core Transformer

EE42 Box Transformer
Difference 

transformer/box

Total surface, [10-6 ⋅ m2] 6048 7904 30%
Senv = Srad, [10−6 ⋅ m2] 6048 6895 14%
Scon, [10-6 ⋅ m2] 6048 7324 21%
Parameter L, [10−3 ⋅ m] 57 64.26 12.7%

S S ab ac S S S Senv rad= = + + + + +2 2 2 4 2 21 2 3 4( )

S ab ac S S S Scon = + + + + +2 2 2 2 2 25 6 7 8( )

S ab ac bcbox = + +2 2 2 .
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The cinematic viscosity is defined as

(6.38)

where mf is the dynamic viscosity and rf is the density, both properties
evaluated at the film temperature.

To facilitate the use of Equation (6.37) we tabulate the values of cinematic
viscosity n, thermal conductivity k, and the Prandtl number of air at atmo-
spheric pressure (see Table 6.6).

The coefficients C and n are tabulated in Table 6.7, depending on the
geometry of the object. Here the object is considered to be infinite in one of
its dimensions, and its cross-section is considered in Table 6.7. The values
given in the Table 6.7 are found using the Reynolds number Ref evaluated
at the film temperature Tf :

(6.39)

TABLE 6.6

Properties of Air at Atmospheric Pressure

T, [K] v ⋅ 106, [ m2/s] k, [W/m ⋅ °C] Pr

300 15.69 0.02624 0.708
350 20.76 0.03003 0.697
400 25.90 0.03365 0.689

Part of a table with permission of: Holman J.P. Heat
transfer, 8th ed. McGraw-Hill New York, 1997 [3]
(with permission of McGraw-Hill).

TABLE 6.7 

Copnstants C and n Used for Forced Convection 
Presentation Given by Equation (6.37)

Geometry Cases C n

Case 1 0.246 0.588

Case 2 0.102 0.675

Case 3 0.153 0.638

Part of a table of: Holman J.P. Heat transfer, 8th ed.
McGraw-Hill New York, 1997 (with permission of
McGraw-Hill) [3].
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The film temperature Tf is defined as

(6.40)

where
Tw is the surface temperature of the component
T∞ is the temperature of the approaching flow

Now, having found hc, we can present the convection heat transfer q as

(6.41)

where A is the approached-by-the-flow area of the magnetic component;
A = dl, where l is the horizontal length of the component.

The first advantage of Equation (6.37) is that it allows investigation of the
influences of the parameters, such as air pressure and the kind of the fluid,
on the value of the convection coefficient. The second advantage is that the
coefficients C and n give the dependence on how the flow approaches the
surface; for instance, the diagonal flow of case 1 in Table 6.7 provides much
better cooling in comparison with the side flow of case 2.

6.5.3.2 Adapted Approach

To simplify the calculations of Equation (6.37) we propose the following
expression for forced convection in air at atmospheric pressure:

(6.42)

where L is the total distance of the boundary layer of the component (see
Fig. 6.6).

Equation (6.42) is consistent with the classical reference [10] up to u∞ =
12 m/s, as well as with Equation (6.37), case 2 [3]. The advantage of Equation
(6.42) is that it combines both natural and forced convection processes. The
offsets of the corresponding curves, when the velocity of the approaching
flow u∞ is zero, correspond to the values of the natural convection coefficient
hc given by Equation (6.34) of the previous section. Fig. 6.8 presents the
convection coefficient hc for different values of the parameter L for a tem-
perature difference of 30°C, in accordance with Equation (6.42). Fig. 6.8 gives
a fast result for the forced convection coefficient hc, including the scale effect
of the component size.

In forced cooling there are a lot of details to be considered to find the accurate
heat transfer, such as the position and orientation of the component relative
to the nearby components. Thus, the accuracy of Equation (6.42), which is
about 10–15%, is quite acceptable for most designs in power electronics.

Concerning forced convection, some warnings should be given:

• The forced convection reduces the surface-to-ambient thermal resis-
tance, but does not change the internal hot spot-to-ambient thermal
resistance.

T
T T

f
w=

+





∞

2

q h A T Tc w= − ∞( )

h u Lc = +( )∞
−3 33 4 8 0 8 0 288. . . .
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• An intensive forced cooling results in a high temperature gradient
within the component. In extreme cases the thermal stresses caused
by such a cooling can break the ferrites or reduce the lifetime of the
insulation.

6.5.4 Relationship with Thermal Resistance Networks

The accurate expressions for convection and radiation heat transfer for mag-
netic components given in the previous sections can be used in the resistance
network shown in Fig. 6.3. To separate the copper-to-ambient and core-to-
ambient resistances, one has to separate the surfaces corresponding to copper
and to the core. A pragmatic solution is to attribute resistances proportionally
to the respective core and copper surfaces. The other resistances in the resistance
network are the same as they are defined in Section 6.4.1 of this chapter.

6.6 Transient Heat Transfer

In this section we consider the basic aspects of transient heat transfer and
their applications in magnetic components design.

6.6.1 Thermal Capacitances in Magnetic Components

The thermal resistance network can be completed by thermal capacitances
of the magnetic component parts. The thermal capacitance is analogous to
the electrical capacitance in a circuit that is equivalent to the thermal transfer.

FIGURE 6.8
Convection coefficient h versus the flow velocity u∞, for different values of the parameter L, the
temperature difference of 30°C, in accordance with equation 6.42.
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To find thermal capacitance Cq of a component part we need the value of
specific heat c and the mass m of that part:

(6.43)

where
r is the material density, [kg/m3]
V is the volume of the element, [m3]
m is the mass of the element, [kg]

The thermal capacitance of the component Cq is the sum of the thermal
capacitances of all of the parts of the component:

(6.44)

where
are the specific heat values for the copper, the core, the coil-

former, and the insulation, [kJ/kg ⋅ °C];
are the values of the mass of the copper, the core, the coil-

former, and the insulation, [kg].

REMARKS

1. For short time processes the thermal resistances can be neglected, and
the model of the component comprises only its thermal capacitances.

2. The thermal capacitances are mainly determined by the weight of
the magnetic component elements, as all values of their specific heat
capacitances (rc) are close to each other.

3. The values of the thermal capacitances are usually more accurate
than the values of the thermal resistances.

Values for the specific heat c and the density r (at 20°C) of some common
materials are given in Table 6.8 [3].

6.6.2 Transient Heating

After starting the heat generating process (the operating process) in the
magnetic component some time must elapse before the equilibrium temper-
ature is to be reached. The temperature rise ∆T of the magnetic component
increases from the start of the magnetic component operation, following an
exponential law defined by the thermal time constant tq of the component.
The same time constant defines the cooling process of the component.

The transient dependence of the temperature rise of a magnetic component
on time ∆T(t) can be expressed as

(6.45)

C c V c mq r= =

C C C C C c m c m c m c mcu fe co i cu cu fe fe co co i iq q q q q= + + + = + + +, , , ,

c c c ccu fe co i, , ,

m m m mcu fe co i, , ,

∆ ∆T t T e t( ) ( )/= − −1 t q
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where
tq is the thermal time constant of the magnetic component
∆T is the steady-state temperature rise over the ambient temperature

It should be noted that the temperature rise values in Equation (6.45) are the
average values across the component.

The thermal time constant tq of a magnetic component is

tq = Rq Cq (6.46)

where
Rq is the average thermal resistance of the component [°C/W]
Cq is the average thermal capacitance of the component [kJ/°C].

Knowing the value of tq is useful in the case of short-term overloading of
the magnetic component. If we know the rated (nominal) values of the
temperature rise ∆TN and losses Ploss,N, we can find the thermal resistance:

(6.47)

TABLE 6.8 

Specific Heat c and Density r of Some Common Materials at 20°C, [3]

Material
Specific heat cp, 

[kJ/kg ⋅ °C]
Density r,

[kg/m3]

Aluminum, Al 0.896 2707
Ferrites (MnZn, NiZn) 1.07 4800
Iron (pure), Fe 0.452 7897
Carbon steel, C ≈ 0.5% 0.465 7833
Carbon steel, C ≈ 1.5% 0.486 7753
Invar, Ni ≈ 40% 0.46 8137
Nickel steel, Ni ≈ 80% 0.46 8618
Nickel (pure), Ni 0.45 8906
Copper (pure), Cu 0.383 8954
Tin 0.226 7304
Lead, Pb 0.13 1137
Silver 0.234 1052
Zinc (pure), Zn 0.384 7144
Glass fiber 0.84 32
Polyethylene 2.1 930
Polyvinylchloride 1.1 1700
Polypropylene 1.9 1150
Polyimide film — 1420
Asbestos 0.816 500
Water, H2O, at T = 30°C 4.296 918
Air, at T = 30°C 1.0056 1.177
Carbon dioxide, CO2 0.871 1.80
Oxygen, O2 0.92 1.3
Hydrogen, H2 14.43 0.082

Selection out of tables of Holman J.P. Heat transfer, 8th ed. McGraw-Hill New
York, 1997 (with permission of McGraw-Hill) [3].

R
T

P
N

loss N
q =

∆

,
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And then, for a given value of the overloading losses Ploss,ov, we can find the
corresponding steady-state temperature rise ∆Tov:

(6.48)

Now we can find the dependence of the temperature rise on time in the
overloading conditions:

(6.49)

Using Equation (6.48) and substituting ∆T(t) = ∆TN, we can also find the time
interval ∆T, after which the temperature rise under overloading conditions
will reach the allowed (nominal) temperature rise:

(6.50)

6.6.3 Adiabatic Loading Conditions

If a winding is subjected to a large current for a short time interval and no
heat transfer occurs in a magnetic component, we call these conditions and
that process adiabatic loading. The critical parameter under such conditions
is the highest allowed temperature of the wire insulation or the allowed
temperature of the coil-former. Assuming that there is no heat transfer in
the magnetic component, the thermal process can be represented by charging
a capacitor equal to the thermal capacity of the windings by a current source.
The current source in this case are the copper losses (see Fig. 6.9).

Considering Fig. 6.9, we can write

(6.51)

(6.52)

(6.53)

FIGURE 6.9
Equivalent circuit for adiabatic loading.
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where
I is the RMS value of the winding current during the time interval ∆t, [°C]
R is the (AC) resistance of the wire, [Ω]
∆Tcu is the temperature rise, ∆Tcu = Tcu − Ta; Tcu is the copper temperature, [°C]
Ccu is the thermal capacity of the windings, Ccu = ccumcu; for pure copper the 

specific heat is ccu = 0.383 at 20°C.

The highest allowed temperatures of some insulation types and coil-formers
given in Table 6.9 are in the range 85–180°C.

6.7 Summary

Three different levels for thermal design are presented. The level 0 and
level 1 thermal designs do not need special knowledge in heat transfer. These
approaches are relatively simple. Because of the uncertainties in the convec-
tion coefficient, sometimes it makes no sense to use a more elaborate approach.
The level 2 design, including a thermal resistance network presentation of a
magnetic component, is based on the already introduced fundamentals.

An improved thermal modeling for convection and radiation heat transfer
is proposed. The model includes a precise dependence of the convection coef-
ficient hc on the temperature rise ∆T, on the ambient temperature Ta, on the
pressure, on the dimensions and position of the magnetic component, and on
the type of enclosure. The model uses an extended representation of hc, but
with more precise values of the exponents of the parameters ∆T and charac-
teristic dimension L. Use of the definition of the characteristic parameter L and
reduced surfaces, instead of the totally open surface of a transformer, contrib-
utes to the accurate modeling of the convection and radiation heat transfer.
The proposed isotherm surface model can also be used as an element in more
complex, multiple thermal resistance models of magnetic components.

TABLE 6.9 

Allowed Highest Operating Temperatures of 
Some Isolation Types and Coil Former Materials

Materials
Highest operating 
temperature, [°C]

Polybutileneterephtalate (PBT) 155
Thermoplastic polyester 150
Polyamide (PA) 85–130
Liquid crystal polymer (LCP) 155
Phenolformaldehyde (PF) 150–180

Selection out of a table of Holman J.P. Heat transfer, 8th
ed. McGraw-Hill New York, 1997. (with permission of
McGraw-Hill) [3].
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A level 3 approach includes a finite element presentation of radiation and
convection on all surfaces, and conduction in all the component parts. The
design requires knowledge of FEM (Finite Element Methods). Presenting
this type of design is not within the scope of this book.

Appendix 6.A Accurate Natural Convection Modeling 
for Magnetic Components

Most of the authors [3,14] give the following simplified expression for hc:

(6A.1)

where
C is in the range of 1.32–1.42 for vertical surfaces and C = 0.59 for horizon-

tal surfaces
∆T is the temperature rise, ∆T = Ts − Ta, [K]
L is the height of the component, [m]; in classical theory L is a characteristic 

dimension equal to the height of an infinite vertical surface

For magnetic components the values of hc are given in a wide range of
6–10 [W/m2⋅°C] for a temperature rise of ∆T = 50 [K] [8,9,10]

We present a study, and its results, of the natural convection process and
the convection heat transfer coefficient hc. The results are relevant to the
design of magnetic components for power electronics and other equipment.

6.A.1 Experimental Set Up

The two experimental shapes used are:

• A box- (parallelepiped-) type shape with dimensions 42/42/15 mm,
which are the outer dimensions of an EE42 core set

• A transformer-like shape, the dimensions of which are exactly the
dimensions of an EE42 core transformer with a fully wound coil-former

The experimental models were made from copper of 1 mm thickness. The
temperature was measured by NTC thermistors. Two heating resistors inside
the model were use to heat the model, see Fig. 6A.1. The model is close to
an isothermal surface model because the thermal conductivity of copper is
quite high.

NOTE: The detailed set up, experimental results, and analytical presenta-
tions are given in [2].

h C
T

Lc = 





∆ 1 4/
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6.A.2 Thermal Measurements with the Box-Type Model

The objective of the experiments carried out with the box-type model was
to collect enough data to derive a more precise expression for hc. The exper-
iment was conducted with four different surfaces of the model: new, but
unpolished copper; enameled copper, which is the real open surface of
windings; a black-painted surface, which has an emissivity close to the
emissivity of transformer iron and ferrites; and a bright, aluminium-covered
model.

To find the influence of the horizontal and vertical surface areas on the
coefficient hc, the measurements were taken for both the horizontal and
vertical orientation of the model. The values of emissivity coefficients were
found to be the following: black painted surface: een = 0.925; enameled copper:
een = 0.81; unpolished copper: ecu = 0.14; and bright aluminium: eal = 0.07.

6.A.3 Thermal Measurements with the EE Transformer Type Model

6.A.3.1 Thermal Measurements at an Ambient Temperature of 25°C

A set of measurements was taken for a model that completely resembles a
real transformer with respect to its surfaces. The surfaces of the model
corresponding to the ferrite surfaces were black painted, and the surfaces
corresponding to the coil-ends were enameled copper. Fig. 6A.2 shows the
experimental results obtained for the vertical and horizontal positions of the
model, and for the case when the model is on a PCB.

6.A.3.2 Thermal Measurements at an Ambient Temperature of 60°C

The final set of thermal measurements was taken at an ambient temperature
of 60°C in a closed enclosure. The model was put in a black–painted, closed
box with a constant temperature inside.

FIGURE 6A.1 
A sketch of the experimental box model, a) transparent view; b) side cross section.

Heating
resistors

Copper
tubes

NTC

(a) (b)
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The results and conclusions of the experiments conducted are mentioned
above in Section 6.5 of this chapter.

6.A.4 Derivation of an Accurate Presentation of the Convection 
Coefficient hc

A plot of the experimental results is a poor match to a curve-fitting plot
based on the widely used Equation (6.10). The reason is that the convection
process is a quite complex phenomenon. Properties of air, such as heat
conductivity k, kinematical viscosity n, and specific weight (density) r, that
influence the convection process vary a lot in the considered temperature range
of 250–400 K (see Table 6A.1, [3]). Thus, the heat transfer parameters, Nusselt
number Nu, Grashof number Gr, Prandtl number Pr and Rayleigh number
Ra, which are used in classical convection heat transfer theory, are quite
influenced by the temperature, and, as a result, the simplified proportionality

FIGURE 6A.2 
Measured temperature rise ∆T as a function of the dissipated power Pdiss, transformer model,
EE core 42/42/15 mm, the results are normalized to 25°C ambient temperature.
1: black painted and enameled model, horizontal position;
2: black painted and enameled model, vertical position;
3: black painted and enameled model on PCB.

TABLE 6A.1 

Properties of Air: Heat Conductivity k, Viscosity n and Density r in the 
Temperature Range 250–400 K [3]

Temperature, [K] 250 300 350 400

Conductivity k, [W/m ⋅ K] 0.02227 0.02624 0.03003 0.03365
Kinematic viscosity n, [10–6 m2/s] 11.31 15.69 20.76 25.29
Density r, [kg/m3] 1.4128 1.1774 1.0091 0.8826
Prandtl number Pr, [.] 0.722 0.708 0.697 0.689
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of hc × (∆T/L)0.25 is not observed in the real experiment. The definitions for
Prandtl number Pr, Grashof number Gr and Rayleigh number Ra are

(6A.2)

(6A.3)

Ra = Gr Pr (6A.4)

where
n is kinematic viscosity, [m2 /s]
a is an accommodation coefficient, [s/m2]
g is gravity, g = 9.81 [m/s2]

The convection coefficient hc is defined by the Nusselt number Nu as
follows:

(6A.5)

where
k is the thermal conductivity

One precise presentation of the Nusselt number, applicable over a wide
range of the Rayleigh number, has been provided by Churchill and Chu [15]:

for Ra < 109 (6A.6)

Substituting Equations (6A2), (6A.3), and (6A.4) into Equation (6A.6) and
then substituting the obtained relation for the Nusselt number in Equation
(6A.5) results in the following expression for hc:

(6A.7)

REMARK
For the temperature dependency of n and a, the average value of these
quantities for ambient and surface temperature is used.
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From Equation (6A.7) it is clear that:

• the exponent, giving the final dependence of hc on temperature
rise, is lower than 0.25, as Ts, n, Pr, and k are quite temperature
dependent 

• the exponent giving the dependence of hc on the height L is higher
than 0.25 because of the additional term 0.68 in Equations (6A.6)
and (6A.7)

The above conclusions imply the need for more precise values of these
exponents. Considering these facts, our investigation aims are the following:

1. To obtain more precise values for the exponents in a simplified expres-
sion of hc:

(6A.8)

where the exponents aT, aL and the coefficient C are to be found (note that aT

and aL are not equal like in Equation (6A.1))
2. To extend Equation (6A.8) and to derive the dependence of hc on the

pressure p, on the ambient temperature Ta, and on the orientation
(horizontal or vertical) of the component; i.e., to define a complete
presentation of hc in the following way:

(6A.9)

where the exponents ap and aTa and the coefficient C (depending on the
orientation) are to be found.

First, using MathCAD and table data [3], we derive the following ana-
lytical expressions: which match
the corresponding table data very well, and the difference is smaller than
0.1% (m is dynamic viscosity, ). Second, those expressions are sub-
stituted in Equation (6A.9), and we obtain the complete classical expres-
sion for hc:

(6A.10)

In eq. (6A.9), the values of the exponents aT, aL, ap and aTa, are matched
to fit (6A.7) which results in the final equation (6A.11):

(6A.11)
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where
C is Ch = 1.53 for horizontal orientation and Cv = 1.58 for vertical orienta-

tion of the component
L is the total distance passed by the air cooling the component (see Fig. 6.6)
∆T is the temperature rise, ∆T = Ts − Ta, [K]
pref is the reference pressure at sea level
Ta,ref is the reference ambient temperature, Ta,ref = 25 + 273 °C

REMARK
The value ap = 0.5 can also be used in Equation (6A.11), as it gives only a
very small difference in comparison with ap = 0.477.

6.A.5 Comparison of the Experimental Results and Proposed 
Thermal Modeling

The experimental results were compared with the analytical curves obtained
by the final fit formulae (Equation (6A.11)) and by using the proposed enve-
lope surface for both convection and radiation for the transformer-shaped
model. The experimental and theoretical curves for the unpolished and
black–painted, enameled transformer models in an open and closed enclo-
sure are shown in Fig. 6A.3 for an ambient temperature of Ta = 25°C. The
results for an ambient temperature of Ta = 60°C, closed enclosure, for the
black–painted, enameled transformer model are shown in Fig. 6A.4. In all

FIGURE 6A.3 
Temperature rise ∆T as a function of the dissipated power Pdiss for a transformer, EE core 42/
42/15 mm, Ta = 25°C,
1: unpolished surface in an open enclosure;
2: enameled-black painted surface in a closed enclosure (a closed box);
3: enameled-black painted surface in an open enclosure.
Solid (gray) curves are the model results; dash curves are experimental results.
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cases the matching between the experimental results and the model results
is very good. The closeness of the match proves the validity of the proposed
expression for hc, the found values of the emissivity of enameled and unpol-
ished copper and black-painted surface, as well as the proposed approach
for using the envelope surface for real magnetic components.
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7
Parasitic Capacitances 
in Magnetic Components 

This chapter presents the parasitic capacitances in the magnetic components,
their measurements and some approaches to decrease the values of these usu-
ally undesired capacitances. At very high frequency even parasitic capacitances
are not sufficient to describe the complete behavior of the magnetic compo-
nent, as propagation or transmission-line effects become important. Such
effects are also encountered in wide band current probes [1],[2]. Thus, at
very high frequency, it is advisable to use special measurement techniques
such as an impedance analyzer, (discussed in Chapter 11, Measurements).
A specific view on EMC filter components is presented in [3] and [4].

At high frequencies or high voltages the parasitic capacitances cannot be
neglected and should be taken into account in the magnetic components design
and applications. We will discuss, consecutively, the typical capacitances influ-
encing the design:

• Capacitances between the windings (inter capacitance);
• Own capacitance of the windings (intra capacitance);
• Capacitance between the windings and the magnetic material (the

core).

REMARK 
In this chapter we consider mainly the low frequency effects of the parasitic
capacitances.

7.1 Capacitance Between Windings: Inter Capacitance

The capacitances between the windings are also denoted as inter capaci-
tances of the windings in a magnetic component.
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290 Inductors and Transformers for Power Electronics

7.1.1 Effects of the Inter Capacitance

The capacitance between windings often generates common mode currents
in galvanic insulated converters. This is a typical case of EMI (Electro Mag-
netic Interference) generation. Often it is even a matter of safety to obtain
low common mode currents, especially in medical equipment. Another typ-
ical example of the requirement of low capacitance transformers is the supply
of the high side drivers in bridge converters.

Here we will explain the mechanism of the inter capacitance influence. Let
us consider the transformer shown in Fig. 7.1. When we apply a step in the
common mode voltage between the primary and secondary windings (see
Fig. 7.1a) we have the common mode current shown in Fig. 7.1b. By the step
voltage DV, an average charge Q = ∆VCinter is injected. The RMS value of the
corresponding current is usually quite high as ringing
occurs, causing the charge to oscillate forward and backward. The parasitic
capacitance Cinter resonates with a parasitic leakage inductance Lp, see the
equivalent series scheme in Fig. 7.1,c. To decrease the RMS common mode
current, a damping common mode choke can be added to the circuit.

7.1.2 Calculating Inter Capacitances and the Equivalent Voltage

The inter capacitance can be expressed as

(7.1)

where
S is the area between the windings
d is the distance between the wires of the adjacent layers
eo is the permittivity of the air
er is the relative permittivity

FIGURE 7.1 
The effect of the inter capacitances Cinter in an isolating transformer. (a) the isolating transformer;
(b) the common mode current i(t) at step voltage v(t); (c) the equivalent circuit for common
mode current.
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Note that d is not constant, and that er also depends on the enamel, insulating
sheets, impregnating varnish, and air, so, in fact, a quite complex field prob-
lem is present.

We will start with estimating the transmitted charge. If a winding is excited
with an AC voltage, then a total charge is present, depending on the voltages
V’ and V” between the adjacent surfaces. The total charge Q is

(7.2)

where
V' − V" is the voltage between adjacent wires of different layers
d is the distance between the wires of the adjacent layers
dS is an elemantary surface

To present a transformer with respect to common mode voltages and
currents, we can use the equivalent circuit shown in Fig. 7.2. Using Equations
(7.1) and (7.2), the equivalent voltage Veq from Fig. 7.2 can be calculated as

(7.3)

However, the inter capacitance is easily measured using a low frequency
test. In practice, the test is much easier to be carried out than the calculating
the value.

7.1.3 Measuring Inter Capacitances

Usually, the measurements can easily be done with a capacitance meter,
or an RLC tester at low frequency (1 kHz or lower), where the voltages
induced in the windings by the capacitive currents are negligible. Care
should be taken with the internal capacitance influence of the measurement
device.

Measurements of very low capacitances (10pF and lower) require special
measurement techniques such as the methods described in Chapter 11.

FIGURE 7.2
Equivalent circuit of a transformer with respect to common mode voltages.
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7.2 Self-Capacitance of a Winding: Intra Capacitance

The capacitances of the windings are also denoted as intra capacitances.
First, we will show the negative effects of these capacitances on the perfor-
mance of a circuit in which the magnetic component is included.

7.2.1 Effects of Intra Capacitance

This capacitance is usually not desired and one tries to keep it low. The intra
capacitance of a magnetic component results often in parallel resonances
with magnetizing or leakage inductances of the component.

Let us consider the boost (step up) converter illustrated in Fig. 7.3a. The
inductor voltage and current are shown in Fig. 7.3b for discontinuous mode.
The ripples in these voltage and current waveforms are due to the resonance
between the intra capacitance of the winding Cintra and the inductance L of
the inductor. Here we should also take into account the outer body capaci-
tance of the semiconductor device, which is, in fact, in parallel with Cintra

for the AC component. These ripples are narrow band disturbances, which
are harmful with respect to the EMC (Electro-Magnetic Compatibility) of the
converter. In some cases, the ripples can even cause instability in the feedback

FIGURE 7.3 
The effect of the intra capacitance Cintra; (a) boost converter; (b) inductor voltage VL and current iL

wave forms, discontinuous mode.
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control of the converter while the open loop gain can have a locally inverted
gain [5]! The problem is really relevant when the resonant frequency of the
circuit consisting of Cintra and L is not very high in comparison to the switch-
ing frequency. To decrease the amplitude of the ripples a damping should
be realized by additional components.

In some designs the switching frequency can be close to the resonant
frequency of the converter. This is typically true for converters from low to
high voltage. Such converters are often designed to operate near the resonant
frequency of the high voltage winding; thus, fewer primary switch currents
are necessary in the primary side to operate the converter.

7.2.2 Calculating Intra Capacitances of a Winding

At low frequency, the capacitance between layers can be converted to an
equivalent capacitance between the terminals. To calculate the capacitance,
the method using the energy of a capacitor is often preferable because it
seems to be the easiest one. Assume a sinusoidal voltage applied to the
thermals of a winding. Using the voltage distribution between turns of the
different layers, the elementary energy can be estimated and integrated to
obtain the total energy W of the equivalent capacitor Cintra, representing the
intra capacitance of the winding:

(7.4)

(7.5)

where
W is the total energy accumulated in the equivalent capacitor Cinta

v' − v" is the voltage between adjacent wires of different layers
d is the distance between the wires of the adjacent layers

The elementary energy is integrated over the surface between the different
layers. Then, using Equations (7.4) and (7.5), the equivalent capacitance Cintra,
converted to the primary winding, is

(7.6)

where 
v is the voltage across the considered winding

The practical problem is that the distance between two adjacent layers is
not constant (d is not constant in Equation 7.5), and, also, there is usually
some air between the windings. The solution is to do a practical test to

W
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measure the capacitance between layers. This can be done by cutting the
link between the layers and then measuring the capacitance between the
layers such as an inter capacitance.

Usually, the voltage between the conductors of the layers increases linearly.
In this case, the intra capacitance between two layers can be approximated
based on Equations (7.2), (7.5), and (7.6):

(7.7)

where Cintra,i is the capacitance between every two adjacent layers of the
considered winding.

REMARK
In the ferrite core components, the capacitance of the wires is not the only
factor that contributes to the equivalent intra capacitance. The resonant
properties of the ferrite material itself can also increase the apparent equiv-
alent intra capacitance.

7.2.3 Measuring Intra Capacitances of Windings

Measurement of the intra capacitance of a winding is usually realized by
measuring a resonant frequency. In this case, the capacitance of the measuring
device should also be taken in account. A sine wave generator can be used,
along with a series resistor. Depending on the considered equivalent scheme,
different tests can be used.

7.2.3.1 Single Parasitic Capacitance Model

This model is mainly applicable to inductors, as they have only two termi-
nals. In transformers with a low and a high voltage winding, the major effect
is in the high voltage winding. To reduce the influence of the capacitance of
the probe on the results, it is advisable to measure the resonant frequency fr

using the low voltage winding of the transformer with open high voltage
winding, as it is shown in Fig. 7.4. Thus, the parasitic capacitance can be
modeled as a single capacitor in that high voltage winding (see Fig. 7.4).

For an inductor it is sometimes easy to add one turn to the core. The
measurement is possible on this single turn in the same way, since it is used
as a low voltage winding fed by a sine generator. The device being tested is
fed with a sine wave generator with a resistor, which is much higher than
the resonant impedance (typically > 10 kΩ). Then:

(7.8)

C Cintra intra,i= ∑1
3
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L f
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where
is the inductance of the high voltage winding, measured at 

low frequency (see Fig. 7.4)
fr is the measured resonant frequency

; N1, N2 are the turn numbers of the primary and secondary wind-
ings, respectively

Cprobe is the capacitance of the probe.

Note that we don’t include Ls2 in Equation (7.8) because the current of the
secondary winding, where the generator is placed, is very small in comparison
with the current in the resonant circuit consisting of L1 and Cintra.

7.2.3.2 Model with a Parasitic Capacitance for Each Winding

This is a typical scheme for transformers with a turn ratio close to 1 and a
few windings. All the windings are short-circuited except the measured
winding. In Fig. 7.5 this is the primary winding, and the measured capaci-
tance in the case is Cintra,1. The capacitance can be estimated in a similar way as
described in Section 7.2.3.1. For each measurement, the generator is connected
to the respective windings. The inductance to be considered for the calculation
is the equivalent series leakage inductance Ls,e seen from that winding. This

FIGURE 7.4 
Measurement using a single parasitic capacitance equivalent circuit, the transformer is fed at
the low voltage winding.

FIGURE 7.5 
Equivalent circuit with a capacitance at each winding, measurement circuit in dots.
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296 Inductors and Transformers for Power Electronics

inductance should be measured at a sufficiently high frequency to avoid
errors due to series resistance of the winding, as the magnetizing inductance
Lm is not always high compared to resistances (see Chapter 11). Then the
parasitic capacitance Cintra of the measured winding is

(7.9)

where Ls,e is equivalent series leakage inductance measured at the excited
(measured) winding.

The measurements as described in Section 7.2.3.2 are not easy. To improve
the accuracy in this case one can also use impedance analyzer.

7.3 Capacitance Between the Windings 
and the Magnetic Material

Up to now we neglected the capacitances between the windings and the
magnetic material in the calculations. Sometimes the core is ground to reduce
the capacitive transfer between the windings. Grounding or not grounding
of the core influences both inter and intra capacitances, and thus, it influences
the resonant frequency of the magnetic component. When the core (the
magnetic material) is ground, the capacitances increase and vise versa.

The capacitance between the windings and the magnetic material is
discussed also in [3].

7.4 Practical Approaches for Decreasing the Effects 
of Parasitic Capacitances

7.4.1 Low Intra-Capacitance Windings

Obtaining a low intra capacitance of a winding is realized by a higher
distance between layers, a low number of turns per layer, and a low value
of er. Impregnating or immersion in oil of the winding increases this capac-
itance considerably because of increasing er.

Here we give a construction approach to decrease the intra capacitance
using a special way of winding (see Fig. 7.6). In this case the voltage between
the adjacent turns is always , where v is the total voltage across
the layers. Then the total intra capacitance of the winding is found as

(7.10)

C
L f

Cintra
e r

probe= −1
2 2

s , ( )π

v v v" '− = /2

C Cintra intra,i= ∑1
4
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where Cintra,i is the capacitance between every two adjacent layers of the
considered winding. This value is somewhat decreased in comparison to the
value  in the common way of winding.

Other advantages of such a design are:

• The maximum voltage between the adjacent turns is always equal
to 1/2  of the total voltage, applied over the winding;

• The winding pitch has the same direction; thus, obtaining hexagonal
fitting is easy, which contributes to a better heat transfer in the
winding;

• This arrangement is better with respect to corona effect. Also, the
arrangement reduces the partial discharges, which are harmful for
the lifetime of the component.

7.4.2 Decreasing the Effects of the Inter Capacitance

A good design idea is to decrease the inter capacitance itself. One way is
to provide more distance between primary and secondary windings. This
can be realized by putting more insulating material between primary and
secondary windings in concentric windings. One can also wind in separate
rooms. However, good solutions for capacitance reduction often result in
increasing a lot both leakage inductance and eddy current losses of the
magnetic component.

A method to decrease the effect (capacitive current) of the inter capacitance
of a transformer is to wind the windings symmetrically in a way that the
adjacent layers of the primary and secondary winding contain the same num-
ber of turns (see Fig. 7.7).

To find the effect of the inter capacitance, we consider only the two adjacent
layers at the border between primary and secondary because these layers
act as a screen for the other layers. In the construction shown in Fig. 7.7, the
voltage between the adjacent turns of the two boundary layers of the primary
and secondary windings and the reference point is the same. Thus, there is

FIGURE 7.6 
A coil former construction to decrease intra
capacitance of a winding.
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298 Inductors and Transformers for Power Electronics

no voltage between the adjacent turns of the primary and the secondary
windings. So, if we use the equivalent scheme illustrated in Fig. 7.2, the
equivalent voltage Veq in it is zero, which means that there is (almost) no
common mode current in that case.

In some cases it is difficult to reduce the effect of the parasitic inter capacitance
only by the design of the magnetic component. Another solution is to add
an additional external capacitance as it is shown in Fig. 7.8. In this case a
‘capacitive voltage divider’ is obtained, and the equivalent common mode
current is much lower. The typical value of the additional external capacitor
is 2.2nF (at 2 kV or more). If the common mode choke has an inductance of
1mH, then a resonant frequency below 150kHz is obtained. Together with
some damping (low tand ) of the common mode choke, the EMC require-
ments can be satisfied.

The proposed method for decreasing the parasitic inter capacitance by
adding an external capacitor is not advisable for supplies for high side
drivers in bridge converters, or other applications where a high dv/dt is
applied between both sides of the galvanic separation.

FIGURE 7.7 
Symmetrical adjacent layers of the primary and secondary windings in order to decrease the
common mode currents.

FIGURE 7.8 
A method to suppress the effects of inter capacitance by adding an external capacitance.
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7.4.3 Screening

Screens are sometimes used to decrease the capacitive currents. This effect
is obtained by lowering the equivalent voltage Veq, in spite of the usually
higher values of the parasitic capacitances. Screens can be considered as
single turn windings. In screens, eddy currents can also be induced. All this
implies that making high quality magnetic components is still an art.
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8
Inductor Design

This chapter treats the specific aspects related to inductors, in general, and
the design of special inductors.

The inductance of air coils and toroidal cores is presented at the beginning.
Air coils were historically important and are still used if accurate values are
needed, as they are not influenced by the characteristic of magnetic materials.
Compared to air coils, much higher energy and apparent power densities are
obtained using coils with cores of magnetic materials. With high permeability
materials, air gaps are necessary to improve the energy storage. Usual shapes
for laminated iron are given in this chapter. For inductors with air gaps, methods
to estimate the additional permeance due to fringing fluxes are also presented.

In the second part of the chapter we discuss the design details for different
kinds of inductors. We present the differences in design of DC inductors, HF
(high frequency) inductors, and combined DC-HF inductors. A few examples
are given:

• the requirements of an inductor in a buck converter
• a coupled common mode inductor
• a flyback transformer

At the end of the chapter we include appendices, concerning fringing
coefficients for gapped wire wound inductors and details in the design of
the mixed DC-HF inductors.

8.1 Air Coils and Related Shapes

8.1.1 Air Coils

Air coils have several applications, such as:

• inductors with high peak currents and low duty ratio
• accurate coils, as there is no influence of the magnetic material char-

acteristics, such as a low initial permeability and saturation
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302 Inductors and Transformers for Power Electronics

• inductors with very large dimensions employed in distribution grids
• commutating inductors (in thyristor and resonant commutation

circuits)

The typical shapes of air coils are:

• solenoids
• toroidal air coils
• air coils with rectangular winding cross section

In designs with small dimensions care should be taken, as the air coils
usually have more DC resistance and more eddy current losses than designs
with magnetic materials.

8.1.2 Solenoids

For long solenoids, where the length is much larger than the diameter (see
Fig. 8.1), as a first approximation, the reluctance of the flux return path (flux
path outside the coil) can be neglected as the return path reluctance is
typically 5 to 20 times less than the internal reluctance of the central part.
The central path for the flux is indeed much narrower than the external
return path. Thus, the inductance of a solenoid, neglecting the reluctance of
the outside flux path, is:

(8.1)

where
m0 = 4π10−7 [H/m] is the permeability of free space
N is number of turns
A is the cross sectional area of the coil [m2], A = πd2

l is the length of the coil [m]

The accuracy of Equation (8.1) is not high, except if the return path is closed
with high permeability magnetic material.

If the internal volume of the coil is filled with a high permeability material
then only the return path is considered. In this case the inductance of the
coil is typically increased 5 to 10 times. This type of construction combines
a low DC resistance and a high power/weight ratio. However, the stray

FIGURE 8.1 
A solenoid air coil, l is the length, d is the
diameter of the coil.
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fields are really high so that this type of construction is not compatible with
EMC requirements.

8.1.3 Toroidal Coils

When a solenoid is ‘bent’ to a toroidal shape (see Fig. 8.2a) and the ends are
joined together, the coil is called a ‘toroid’. The inductance of a toroidal air
coil can be calculated by Equation (8.2). In that case it is permissable to
neglect the return path. If the internal volume is filled with a magnetic
material with relative permeability mr, the inductance is increased by a factor
mr and it becomes:

(8.2)

where
lc is is the average length of the magnetic part
N is the number of turns
mr is the relative permeability inside the toroid
m0 is the relative permeability inside the toroid

If a toroidal shape is filled with high-permeability material, it is called a
toroidal core or a ring core. It is easily saturated as the magnetic circuit is
closed. When using low-permeability materials, the energy storage is good.
However, it is not easy to find low-permeability materialsthat combine low

FIGURE 8.2
Toroid coils.
(a) a toroidal air coil: lc is the length, d is the diameter of the winding, din , dout are inner and
outer diameters of the coil;
(b) a toroidal core with rectangular cross section of the winding.
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loss at high induction, so materials must be carefully chosen. The use of an
air gap allows for the use of high-permeability materials in combination with
good energy storage, but the advantage of low stray fields is lost.

For toroidal cores with rectangular cross section (see Fig. 8.2b), one can
easily correct for the curvature. To find the inductance first we will find the
flux linkage Ψ = ΦN. The total MMF of the coil is MMF = Ni. The physical
flux is:

 (8.3)

The inductance in that case is:

(8.4)

where
din, dout are inner and outer diameters of the coil (see Fig. 8.2b)
h is the height of the coil

The advantage of toroidal coils is that their outside field is virtually zero.
Also, the voltage at the terminals is not influenced by external fields. A
special exception is the case of a wire through the coil aperture. In an open
circuit, the output voltage of the inductor will be proportional to the deriv-
ative of the current. If no magnetic material is present, the toroid can be seen
as a closed Rogowski coil.

The typical disadvantage of toroidal air cores is that the energy density is
also very low compared to other air coils, such as air coils with rectangular
cross sections.

8.1.4 Coils with Rectangular Cross Sections

8.1.4.1 General Case

An air coil with a rectangular cross section is shown in Fig. 8.3. The exper-
imental formula of Welsby proposed in [1] gives a quite accurate result for

FIGURE 8.3 
Cylindrical air coil with rectangular winding
cross section.
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the inductance value:

(8.5)

where
a is the distance between the axis of the winding area and the axis of the 

coil (for a,b and c see Fig. 8.3)
b is the width of the winding cross section
c is the height of the winding cross section

The accuracy of Equation (8.5) is usually better than 2%. The expression also
gives good results for solenoids (small c) and disc coils (small b). For small
values of c, Equation (8.5) is similar to the approximation for the solenoid, but
a distance of 0.9a has been added to b to compensate for the reluctance of the
return path. However, Equation (8.5) is not accurate in the cases where both
parameters c and b are small compared to a.

Cylindrical coils generate high stray fields. In practice, this means that
some conductive shielding around the circuit should be provided. This
reduces the inductance and increases the losses. In the presence of iron
enclosures acoustic noise can also occur.

8.1.4.2 ‘Four Square’ Cylindrical Air Coil

Brooks proposes an air inductor with a ‘four square’ cross section shown in
Fig. 8.4 [1]. The proposed that the coil construction obtains maximal induc-
tion L for a given wire length lw. The optimal shape is close to the coil with
a ‘four square’ cross section and the inductance is:

(8.6)

The ‘four square’ shape is close to the minimum wire length for a given
DC resistance and inductance at ambient temperature, but it is not optimal
with regard to thermal aspects and eddy current losses, where solenoid type
(long) coils exhibit better performance.

Other cross-sectional areas such as hexagonal winding cross section or a
circular winding cross section give almost no improvements; hardly a 1%
increase in the inductance value can be obtained for the same wire length.

FIGURE 8.4 
“Four square” cylindrical air coil.
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306 Inductors and Transformers for Power Electronics

8.2 Inductor Shapes

For frequencies below 1 kHz laminated iron inductors are still considered
in power electronics. Typical applications are smoothing inductors at the DC
or AC side of grid-connected rectifiers (intended to reduce harmonics),
energy storage in DC link converters, and low-frequency lamp ballasts. The
advantages are the low cost, the high saturation induction, and the avail-
ability in large sizes. Inductors with laminated iron sheets are somewhat
different in construction and assemblage compared to iron sheet transform-
ers. In most types they need more mechanical construction elements than
transformers. In general, care should also be taken to avoid short circuit
paths for circulating currents into construction parts, which would heat up
the mechanical construction element such as bolts. A normal design peak
induction of laminated iron is 1.5 T.

Here we present usual inductor shapes used for laminated iron cores.

• EI (Fig. 8.5)

The EI shape is called scrapless if the lamination dimensions of the E- and
I-part fit to each other. In that case the laminations are made by punching
without loss of material. All dimensions are multiples of a characteristic
dimension (thickness of the I-part). The center leg cross-sectional area is
equal to the sum of the outer legs. For non scrapless E-I types, the height of
the winding area is larger than the thickness of the I-part. The air gap can
be obtained with a distance between E- and I-parts. This distance is realized
by a so-called “spacer.” If only the center leg is shortened, the gap is then
referred to as a “center-leg gap.” In the commercial products, normally a
center-leg gap is utilized because of both the reduced leakage field and the
acoustical noise. To obtain the same inductance, the center-leg gap length
has to be more than twice the spacer thickness due to “fringing” field effects
(to be discussed in greater detail later in the chapter).

• UU shape (Fig. 8.6)

FIGURE 8.5 
An EI laminated iron inductor.
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In the UU shapes, normally both legs are wound with equal coils. The
advantage of a UU shape is having air gaps close to the point where the
MMF is produced. This equalizes the induction along the iron path, thus
avoiding bottlenecks.

• 4I shape (Fig. 8.7)

The 4I construction has four air gaps. The windings are located on both
side legs. The iron is easy to cut without special tooling. It is typically used
for large cores.

• M-shape (Fig. 8.8)

M-shapes can be manufactured with (inductor) or without (transformer)
air gaps. The advantage of this type is that it has almost no stray field. Also,
no special mechanical pieces are needed to hold the parts together. The
acoustical noise is limited as the mechanical construction is stiff.

FIGURE 8.6 
A UU laminated iron inductor.

FIGURE 8.7 
A 4I laminated iron inductor.
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8.3 Typical Ferrite Inductor Shapes

A special appendix at the end of the book is dedicated to this subject. This
is Appendix B and it gives geometrical data of a selection of commonly used
ferrite core shapes. In the tables we present the data concerning the following
parameters:

• le – effective magnetic path
• Ae – effective magnetic area
• Amin – minimum magnetic area
• Wa – minimum winding area
• MLT – mean length per turn
• MWW – minimum winding width (also denoted in the book as w)

8.4 Fringing in Wire-Wound Inductors with Magnetic Cores

Basically ferrite types of inductors are considered here, as they are the most
usual ones in power electronics.

8.4.1 Center Gapped, Spacer and Side Gapped Inductors

Figure 8.9 shows different arrangements of gapped inductors.
The center gap inductors (Fig. 8.9a) are common in industrial designs, as

they generate less EMI than inductors with gaps in the side legs. However
making center gaps needs special diamond tools with water-cooling. Also,
the center leg is not easy to adapt.

In practice, the first laboratory prototypes are often made using spacers,
Fig. 8.9b. The advantage is that one can easily change the air gap throughout
the design of the circuit. These inductors induce lower eddy current losses

FIGURE 8.8 
A M-type laminated iron inductor.
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than center gap inductors do. The disadvantage is that they produce more
stray field at some distance form the core.

Some problems can arise when the production goes from prototype with
spacers to series production using a center gap. The first problem is that the
required center gap length is more than twice the spacer thickness. The

FIGURE 8.9 
Different ways to realize air gaps in EE cores.
(a) A center gapped inductor;
(b) A spacer gapped inductor;
(c) A side gapped inductor;
(d) An inductor with side shunts;
(e) An inductor with planar I type core parts in the side legs.

(a) (b)

(c)

(e)

(d)
I type planar parts

Field path
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310 Inductors and Transformers for Power Electronics

second problem is that the eddy current losses in the conductors increase.
It is may be a good idea to take the losses of a center gap into account even
when designing a prototype with a spacer, thereby avoiding troubles
afterwards.

Cores with only side gaps (Fig. 8.9c) usually induce still lower eddy current
losses than cores with spacers. A problem with cores having only side gaps
is that the center leg carries the biggest flux (losses) and it is easily saturated
(also due to the higher temperature inside the magnetic component).

A practical way to simulate a center gap for experiments is to use shunted
outer legs (see Fig. 8.9d) or by using parts of planar cores in the side legs
(see Fig. 8.9e). While using spacers or shunted outer legs, the inductance can
easily be adapted by trial and error. Often, the inductance will be higher
than expected due to fringing fields. If the number of turns is well designed,
one should not reduce the number of turns, but increase the air gap. The
reason is that the difference in the inductance value is due to the permeance
of the air gap. Reducing the number of turns at high fringing fields would
cause an early saturation of the core.

8.4.2 Simplified Approach to the Center Gapped Inductors

Inductors with full wire or Litz wire windings are the most common con-
structions. For the calculation of the inductance in a simplified approach
for small air gaps, if only the main flux path is considered, and one can use
a simple expression for the inductance of a coil. This yields the following
equation:

(8.7)

where
Σlg is the sum of the air gap lengths in the flux path
Ag is the cross section of the air gap, equal to core cross section
lfe is the equivalent length of the flux path in core material
mr is the relative permeability of the core material
N is the number of turns

In Equation (8.7) mr depends on the type of magnetic material, the induction
saturation level, and the type of applied voltage and current waveforms. For
more details concerning mr, see Chapter 3.

However, for normal air gaps, the permeance of other field paths (fringing
paths) out of the air gap is not negligible. It results in much larger values
for L than predicted by Equation (8.7). In almost all designs of gapped
inductors for power electronics the fringing field should be considered, and,
thus, the expression (8.7) gives a poor approximation in most practical cases.

L N
A

l l
g

g fe r

=
+∑

m
m0

2

/

DK4141_C08.fm  Page 310  Wednesday, January 19, 2005  3:58 PM

Copyright 2005 by Taylor & Francis Group, LLC



Inductor Design 311

A better approximation for gapped UU and gapped EE cores (the gap is in
the excited leg or legs) is McLyman’s equation [2]:

(8.8)

where
L’ is the inductance value corrected for fringing
Xf is fringing factor
w is the total width of the winding (layer width)
lg is the air gap length

The accuracy of Equation (8.8) can be increased using a tuning coefficient q
for round and rectangular cross-sections:

(8.9)

where
q = 0.85–0.95 for round cores (for example ETD-core)
q = 1–1.1 for rectangular cores (for example EE-core)

The values of q are fine-tuned using manufacturer data and compared with
the results of Finite Elements Method (FEM) [3] solutions. The results of
Equations (8.7), (8.8), and (8.9) and the manufacturer data for an EE42/21/15
core (12/15 mm center leg) are shown in Fig. 8.10. The value of the coefficient
q is 1.05. The same comparison between the results of Equations (8.7), (8.8),

FIGURE 8.10 
Comparison of the inductance value L ob-
tained by Equations (8.7), (8.8), and (8.9) and
the manufacturer data for EE42/21/15 core,
q = 1.05.
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and (8.9) and the manufacturer data for an ETD44 core (15 mm center leg)
are shown in Fig. 8.11 (q = 0.85).

The advantage of the above approach is that it is quite easy and that it
gives a rapid idea of the effect of fringing when using a center gap. The
drawback is that it is only applicable for center-gapped inductors, whereas
the extension to inductors having air gaps in the side legs is not easy.

Detailed general methods for calculating gapped inductors are presented
in [4,5,6,7].

8.4.3 Improved Approximation for Fringing Permeances 
of Gapped Inductors

Here we discuss analytical approximations for fringing flux calculations
around the air gaps of inductor cores.

8.4.3.1 Fringing Coefficients

It is clear that in a 2-D problem, the fringing permeance is proportional to
the third dimension (the permeance Λ is , where ℜ is the reluctance
of a magnetic path). The fringing permeance leads mainly to a correction on
the permeance of the air gap and it is of a small consequence to the remaining
core permeance. The permeance of an air gap is:

(8.10)

where
Λg is the permeance of the air gap
Sg is the surface of the air gap
Cg is a part of the total core circumference

FIGURE 8.11 
Comparison of the inductance value L ob-
tained by Equations (8.7), (8.8), and (8.9) and
the manufacturer data for ETD44 core,
q = 0.85.
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lg is the total length of air gap
F is the fringing coefficient corresponding to the given part of Cg (see the 

Appendix 8.A.1).

We provide analytical expressions for the fringing coefficient F for several
basic cases of air gap designs and the proposed coefficients can be used to
calculate most usual symmetrical and asymmetrical cases of gapped induc-
tors. The values of the fringing coefficient F for the basic cases and for the
symmetrical and asymmetrical cases are given in the Appendix 8.A.1 at the
end of this Chapter. The appendix presents the derivation of the expressions
and comparison with finite element calculations.

8.4.3.2 Equivalent Surface

A graphical interpretation can be used to incorporate the effect of fringing.
The corner effects are not considered. The fringing coefficient F multiplied
by lg can be seen as a border to enlarge the original cross section with an
area to obtain the real permeance:

(8.11)

where
A’g is the enlarged air gap area corresponding to the fringing field

For a single air gap the total permeance of the magnetic circuit is:

(8.12)

where Am is the effective cross-sectional area of magnetic circuit.
In the presented solution, we only include the 2-D effects. In 3-D pre-

sentation we also have a contribution of corner permeances, which results
in an increase of permeance. However, in 3-D presentation the field lines
return closer to the gapped leg, resulting in only a small increase by corner
contributions.

NOTE: Increasing the mathematical accuracy of the expressions has its
limits, as the tolerances of the mechanical dimensions often influence the
result significantly.

8.4.3.3 Single and Multiple Air Gap Cases

If more than one air gap is present, a reluctance network can be used to
describe the permeance of the full magnetic circuit (or the reluctance ¬g = 1/Λg).
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Example 1
The case with a center gap, where the yoke to yoke reluctances vanish, is
shown in Fig. 8.12.

Example 2
For a multiple air gap in the center leg the magnetic circuit is represented
by the reluctance network shown in Fig. 8.13.

Example 3
This example addresses the use of a spacer to increase the air gap. In that
way air gaps are created in all legs (see Fig. 8.14).

FIGURE 8.12 
An EE-core set with a centre leg air gap, Example 1, N–turn number; i–current.
(a) Flux path definition;
(b) The reluctance network.

FIGURE 8.13 
An EE-core set with a multiple air gap at the centre leg, Example 2.
(a) Flux path definition;
(b) The reluctance network.
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Example 4
A UU-core set. The MMF of both legs can be equal or different (even zero).
It is clear that in the symmetrical case the top to bottom permeance does not
influence the result (see Fig. 8.15).

REMARK
While using multiple air gaps, care should be taken with the heat transfer
of the magnetic core pieces in the center leg. The air gap should be filled by
preference with thermally conductive, but electrically isolating materials.

FIGURE 8.14
A spacer gaped EE-core set, Example 3.
(a) Flux path definition;
(b) The reluctance network.

FIGURE 8.15
A gapped UU-core set, Example 4.
(a) Flux path definition;
(b) The reluctance network.
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8.5 Eddy Currents in Inductor Windings

8.5.1 Referring to Described Methods

The major part of the eddy current losses in inductors is caused by transverse
field. For the center-gapped EI and EE inductors some methods are already
given in the book.

In Chapter 2 an approximated method is presented, which introduces a
factor kF to take into account the increased losses due to the air gap. In
Chapter 5 the method is refined as the losses caused by an H-field in the
direction of the layer or perpendicular to it are sensitive to the field factors
in the direction of the layers and perpendicular to it. The method includes
the field factors kFx and kFy.

Inductors with spacers could have about two times less eddy current losses
by fringing compared to center gapped ones. Indeed, the m.m.f. of the air
gap is divided in two air gaps, each inducing two times less field, so resulting
in two contributions of about one quarter. However, the field problem is a
full 3-D one.

8.5.2 Multiple Air Gap Inductors

Up to now, while calculating kF, the symmetry factor K value was equal to 1
for EI-cores, and 2 for EE-cores. But if Ng multiple air gaps are used, the field
pattern can have symmetry with K = 2Ng sections with the same field type.
For such cases approximately the same type of calculation for kF can be adopted
using the new K value. The effect is that for the same distance to the center
leg, the parameter k increases a lot if K increases, thus the resulting eddy
current losses are comparable to a transformer case winding with kF ≈ 1.

NOTE: Often three air gaps are used (cutting each leg one time with a
diamond band saw) and this approach reduces the losses already a lot.

One possible problem while using multiple air gaps is that the ferrite pieces
are not well cooled and can create a hot spot. In a ferrite core, too-high
temperatures result in lower saturation levels and higher specific losses,
which could lead to a thermal run-away. A good practice is to fill the ‘air
gaps’ with thermally conductive insulating materials.

8.5.3 Avoiding Winding Close to the Air Gap

Different arrangements of windings in the window area of an inductor are
shown in Fig. 8.16

• a fully filled winding area, case A
• a partly filled winding area, case B
• a partly filled winding area, sufficient distance to the air gap, case C
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The arrangements shown in Fig. 8.16b and Fig. 8.16c are intended to reduce
the eddy current losses in the windings.

Figure 8.16b shows a solution, where some distance between the winding
and the center leg is kept. This is described in Chapter 2 and is reflected in
the calculations through the use of a global field factor coefficient kF. More
details are given in Chapter 5 regarding the use of the field factor coefficients
kFx and kFy depending on the horizontal and the vertical direction. The eddy
current losses are substantially reduced by this approach. The disadvantage
is that the mean length of turn and the DC resistance are increased.

Figure 8.16c shows another solution to keep distance from the air gap. The
advantage of this type is that the mean length of turn is equal to the value for
a fully filled area. It also avoids a hot spot in the middle of the winding area.

8.6 Foil Wound Inductors

A high-frequency foil inductor with substantial AC current requires careful
design to avoid high AC conduction losses. In the ideal case, when the field
is parallel to the foil, a low level of high-frequency eddy current loss can be
obtained.

In the general case, there are three different types of winding loss effects
(mechanisms) that can be distinguished in gapped inductors with foil wind-
ings (see also Chapter 5):

1. Losses due to the homogeneous field parallel to the foil
2. Losses due to a non-homogeneous field parallel to the foil; this field

usually has its origin in the fringing field at the air gap
3. Losses due to the field at the tips (edges) of the foil

FIGURE 8.16 
Different arrangements of windings in the window area of an inductor:
(a) A fully filled winding area, case A;
(b) A partly filled winding area, case B;
(c) A partly filled winding area, sufficient distance to the air gap, case C.
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The low value of the first type of losseffect is the attractive feature of foil
windings. However, the second and the third effects are of real importance,
and they can cause the main part of the winding losses at high frequencies.

8.6.1 Foil Inductor—Ideal Case

Figure 8.17 shows a foil inductor with a pot core. To be classified as an ideal
case, the width of the foil must be equal to the width of the winding area.
The tips of the foil touch the high permeability material over the whole
circumference. The center leg is made from a low permeability material (or
air), thus acting as a distributed air gap. This is the best solution for the air
gap fringing problems. In this case the field lines are parallel to the conductors.
The resultant AC resistance in the uniformly distributed gap design is low.

In the discussed ideal case, the theory of a rectangular conductor is per-
fectly applicable, as all fields are parallel to the foil surface. Shapes like EE
and ETD can nearly meet the ideal case conditions when no coil-former is
used (a negligible distance to the top and bottom of the magnetic core can
be obtained), and the conductor edges are covered with ferrite plates. The
low-permeability center leg can be simulated by using multiple air gaps.

NOTES:

1. If the center leg of planar cores is removed a kind of hollow box is
obtained, where foil windings can be inserted while the conductor
edges are covered with ferrite.

2. In general, to reduce the thickness of the insulation one can use
enameled copper foil.

For the ideal case of Fig. 8.17 an analytical solution exists to determine the
inductance of the inductor. For simplicity, a homogenous current density in
the winding cross-sectional area and a constant thickness are assumed. In
this case an exact analytical result can be obtained using symbolic integration
of the integral of the stored energy divided by i2 the inductance is:

(8.13)

FIGURE 8.17 
A foil inductor—ideal case.
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where
L is the total inductance of the coil
mr is the relative permeability of the center leg
A1 is the cross-sectional area of the center leg
A2 is the area of the surface between the first winding and the center leg
lmin is the perimeter length inside the first turn (the closest turn to the cen-

ter leg)
lmax is the perimeter length outside the last turn

The field problem of this particular shape is a unique one. The form of (8.13)
was the simplest form we could obtain. It corresponds to an equivalent
length of turn measured at 1/4th of the thickness of the winding. Although
the equation was derived for axis-symmetrical problems, it remains true for
a variable curvature case (but also with constant current density and keeping
tw constant). The winding can be also a combination of straight and axis-
symmetrical parts, such as for a rectangular mid-leg.

NOTE:

• The above-defined equivalent length is also applicable for eddy
current type of losses.

• The equivalent length is different from the length we would have if
we calculate the DC resistance, as then we have to consider the
length at 1/2th of the thickness.

8.6.2 Single and Multiple Air Gap Design in Foil Inductors

Materials with low permeability have some disadvantages, as they often
have a lower saturation induction level or higher specific losses than high
permeability materials (for example ferrites). Therefore, the use of a distrib-
uted air gap is often a good compromise. Discretely distributed air gap
design is a solution to decrease the perpendicular field component near the
foil edges. A single air gap inductor is shown in Fig. 8.18.

(NOTE: We don’t consider the edge (tip) losses here, and, therefore, we take
the ideal case when the foil winding touches top and bottom of the core.)

FIGURE 8.18
Single air gap in a foil wound inductor.
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Figure 8.19 shows a discretely distributed air gap inductor, where the air
gap is in the center leg. The air gaps are placed near the foil, but the length
of the air gaps is very small compared to the lumped air gap design. The
investigations presented in [8] show that AC resistance of the layers that are
near the air gaps is still quite high compared to that of the other layers. This
is a result of the eddy currents induced by the fringing field of the air gaps.
When the distance between the foil and the air gaps (denoted by s in Fig. 8.18)
is decreased and the foil is subjected to the fringing field, the AC losses are
increased significantly. The influence of the distance s and the other geomet-
ric parameters lg and p on the eddy current losses of the foil are discussed
in Chapter 5.

8.6.3 Eddy Current Losses in Foil Windings of Gapped Inductors

A more detailed view of the different air gap designs and the losses at high-
frequency foil inductors are presented in Chapter 5 and in [8,9,10,11].

8.6.4 Planar Inductors

Planar configurations are often applicable for inductors because of packing
constraints, thermal considerations, and improved production technology.
Often the planar constructions use printed circuit board windings. Figure
8.20 shows an example of a planar inductor with an air gap. In some cases
the design parameters are achievable without air gaps (or distributed gaps).
Depending on the inductance value, low-permeability materials may be
necessary.

A planar inductor configuration is likely to be subjected to high eddy
current losses in windings. Gaps in the magnetic path tend to introduce a
perpendicular field. To obtain acceptable eddy current losses, the conductors
should be placed a sufficient distance from the air gaps. The best solution
for the planar inductors is to use a low-permeability material to realize a
distributed gap [12,13]. Such a construction is shown in Fig. 8. 21. Another
solution is to use discretely distributed air gaps as shown in Fig. 8.22. In that
kind of construction the design and loss are similar to that of the foil induc-
tors with discretely distributed air gaps presented in the previous section.

FIGURE 8.19 
Discretely distributed air gap in a foil wound
inductor.
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One difference is the loss at the coil ends. The current density at the coil
ends close to the center leg is higher than the outer edges; therefore, higher
eddy current losses are expected (but the perpendicular field can be low, as
the inner side is close to the high m material, ferrite). The outer edges are
also subjected to the same kind of losses, but the current density is lower
because of the smaller radius. Accurate loss estimation in planar inductors
requires 3-D FEM calculations.

In cases where printed circuit board windings are used, a higher number
of turns can be obtained by several layers or more turns in one layer. An
advanced design can even use different thicknesses for the different layers,
in which the thicker layers are away from the air gap in order to reduce the
eddy current losses.

FIGURE 8.20 
A planar inductor with an air gap.

FIGURE 8.21 
A planar inductor with a low permeability distributed gap.
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322 Inductors and Transformers for Power Electronics

Making windings parallel in planar inductors is not easy. It is worthwhile
to mention that for inductor design, planar cores can be used in combination
with round wires, Litz wires, or foil conductors. In many practical cases the
final result is better when using these kinds of windings instead of using
printed circuit board windings only.

8.7 Inductor Types Depending on Application

8.7.1 DC Inductors

True DC inductors do not exist. If one uses an inductor, there is always
some AC component of the current, which requires higher AC impedance.
Applications where the AC current components are small are typically EMI
filters and continuous conduction mode inductors with low peak-to-peak
AC currents.

Example
In an inductor the peak-to-peak AC current ripples are about 10% of the DC
current value. For a triangular current waveform, we obtain a resulting RMS
current value of about 3% of the DC current. And, if the eddy current factor
is kc = 100 (thick wires, several layers such as in short example of chapter 2)
some additional copper losses of 10% can still occur in the component. In
some cases the kc value can even be several hundred. Thus, one should not
be quick to say that an inductor is a true DC inductor.

Low frequencies such as 50, 60, 100, and 120 Hz can often be considered
as almost DC for eddy currents and for ferrite materials. These frequencies
are typical for low-frequency components in grid-connected applications.

DC inductors are usually wound using full wires and are nearly filled. The
approach has the advantage of obtaining a high filling factor and, thus, low
losses due to the DC resistance.

For cores in DC inductors, it is beneficial to use materials with a high
saturation induction, such as low-frequency ferrite grades or iron powder. The
advantage of iron-powder materials is that they combine a low permeability

FIGURE 8.22 
A planar inductor with discretely distributed air gaps.
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(distributed air gap) and a high saturation. The iron-powder cores are pro-
posed in several types:

• Soft-iron type, saturation up to 1.4 T.
• Iron with Silicium alloy (Sendust, Kool-mu), saturation of about 1.1 T.
• Fe-Ni types (Permalloy), saturation of about 0.8 T.
• Nanocrystalline powder iron (expensive).

The soft-iron type has the advantage of high saturation. However, care
should be taken if a large low-frequency component is also present, such as
inverter output filters at low frequency losses. At 60 Hz AC, 1 T, the losses
may be 40—100 mW/cm3, depending on the material grade. This is about 5
to 13 W/kg, which is much higher than the losses of good transformer iron.
The reason is that hysteresis losses increase when the size of the domain
walls decreases. The other powder grades have reduced losses, but also have
reduced saturation induction. Powder materials are preferable in the MHz
areas, as they have smooth characteristics and do not exhibit capacitive
resonant frequencies that reduce the permeability.

At intermediate frequencies it may be useful to have iron losses in EMC
filter inductors so that the amplitude of parasitic resonances can be reduced.
With intermediate frequencies, we mean frequencies lower than the switch-
ing frequencies but higher than the DC or low frequency component. Those
resonances increase the EMI spectrum, but they are also a risk for instabilities
in the control of converters.

8.7.2 HF Inductors

An HF (high-frequency) inductor is a typical component in resonance con-
verters. We also denote AC inductors as high frequency inductors, where
the eddy current losses in the wires are not negligible. This is usually the
case in the frequencies actually used in power electronics.

REMARKS CONCERNING HF INDUCTORS

• The full-wire design is usually not the preferred choice for HF inductors.
• At least some distance to the air gap should be taken.
• The preferred design is parallel wires (but avoiding circulating cur-

rents) or Litz wire.
• Usually the winding area is not filled completely, as it would gen-

erate too much eddy current loss.

As a number of turns per layer is used, one has to choose a small wire
diameter to reduce the eddy current losses, which automatically results in
a design where the low-frequency approximation is valid. The latter can
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324 Inductors and Transformers for Power Electronics

simplify the design because simplified equations can be used. Also, the
modeling is easier since the eddy current losses can be modeled as a resistor
in parallel with the inductor.

The drawbacks of Litz wire designs are the low filling factor and poor
thermal conductivity due to the presence of more insulation material. Also,
the Litz wire is more fragile in the winding process and harder to solder. At
a high current and for a limited number of turns one can also consider using
foil windings, taking care of tip and fringing losses.

The current and voltage of the HF inductors are both alternating, and there
is no DC component of the current. The main difference between the HF induc-
tors and the filter inductors is that the loop of the HF inductors
is high, i.e., under large excitation, but the of the DC (filter) inductors is a
so-called minor loop. The core losses in HF inductors are large and should
be considered for the total component dissipation. The copper losses are also
high due to the high AC resistance in that kind of inductors. The design of
an HF inductor is a typical, non-saturated, thermally limited design (see
Chapter 2).

8.7.3 Combined DC-HF Inductor

In the combined DC-HF inductors the losses of the HF component are usually
not negligible compared to the DC or LF losses. This type of inductor is very
normal in power factor controllers, buck and boost converters. It concerns
continuous-mode operation with high ripples, border–mode, or discontinuous
operation.

8.7.3.1 Classical Solutions

The DC or low-frequency component in the current would benefit from full
wires, but then the eddy current losses are the bottleneck of the design. Using
Litz wire is possible, but it results in a larger DC resistance due to the lower
filling factor. One can also use one winding close to the air gap to “screen”
the frequency magnetic field, where the remaining winding area is used to
put a parallel winding, which carries almost only DC current. In [14],
arrangements are proposed where a foil winding or a single layer round
wire winding is used as an “HF screen” with multiple or distributed air gap.

8.7.3.2 Special, Combined Design: Litz Wire–Full Wire Inductor Winding

Here we propose a Litz wire winding to screen the HF magnetic field, while
using a single air gap design. The special, combined design: Litz wire–full
wire solution is proposed in details in the appendix 8.A.2 of this chapter.
We screen the HF m.m.f of the air gap using Litz wire; the remaining part
of the winding area is filled with full wire. This type of solution combines
the benefits of Litz wire and full wire. Moreover, if a special arrangement
can be achieved, only the HF losses in the Litz wire have to be calculated.
The special arrangement is given in Fig. 8.23; it was first proposed in [15].

B t F H t( ) ( ( ))=
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The design asks that almost all the HF m.m.f. would be cancelled by the
Litz winding. Thus, almost all of the HF current would flow in the Litz wire.
The average flux per turn in the Litz winding is somewhat lower than in the
full wire. This leads to a number of turns in the Litz wire that is slightly
higher than in the full wire. In practice, there is always some local leakage
flux that also causes some voltage drop, so the number of turns of the Litz
wire can be almost equal to the number of turns in the full wire.

A practical solution is to do a test while feeding the Litz wire with an HF
voltage and measure the difference in voltage between the windings. This
voltage should be low; if not, one can adapt one turn.

8.7.3.3 Analytical Modeling of the Combined 
Full-Wire–Litz-Wire Inductor

In the appendix 8.A.2 an analytical model is proposed. It permits one to
predict the losses and the required number of turns of both the Litz wire
and the full wire winding.

(8.14)

where
p is the number of strands
ds is the diameter of the strands

The experiments show that, although the DC resistance of the Litz wire
winding is much higher than the DC resistance of the full wire, much lower
losses are obtained by the combination of both types of wires.

Figure 8.24 shows the coil former before and after winding with Litz wire.

FIGURE 8.23 
Cross section of the combined Litz wire-Full wire inductor.
(a) full cross section;
(b) details of the air gap.
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326 Inductors and Transformers for Power Electronics

8.8 Design Examples of Different Types of Inductors

8.8.1 Boost Converter Inductor Design

An inductor (a DC choke) is usually employed in DC/DC converters. Such
a boost converter is shown in Fig. 8.25, and the inductor current and voltage
are shown in Fig. 8.26. The purpose of the inductor in this topology is to
reduce the current ripple and to realize the voltage increase from its input
value to the required output value. This purpose defines a desired value of
the inductance L. An air gap is used in order to prevent saturation of the
core by the peak inductor current . The core losses are
smaller than the copper losses. Therefore, such a design can be defined as a
Saturated, Thermally Limited Design according to the classification given in
Chapter 2, Fig. 2.1.

The basic constraints of the design are:

• to obtain a given inductance value L
• to keep the induction peak value Bp below the saturation value Bsat

• to keep the temperature limited

FIGURE 8.24 
Coil former of the combined inductor before and after winding with Litz wire.

FIGURE 8.25 
A boost DC/DC converter.
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Here we calculate the design parameters of an inductor. We need a desired
induction value and the RMS values of the voltage and current of the induc-
tor. The specifications of the example converter are

Input voltage: Vin = 100 V
Output voltage: Vout = 400 V
Operating frequency: fop = 20 kHz
Output power: Pout = 1 kW

The peak magnitude of the ripple in the inductor current is envisaged to
be equal to 20% of the inductor DC component.

The duty ratio D of the switch control is:

⇒ (8.15)

The inductor DC current component is:

(8.16)

The peak magnitude of the ripples in the inductor current is:

(8.17)

where Top is the operating period, .

FIGURE 8.26 
Inductor current and voltage waveforms.
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328 Inductors and Transformers for Power Electronics

Since we want to be equal to 20% of IL,DC, we can find the desired
inductance value:

, L = 937µH (8.18)

The RMS value of the inductor current is:

(8.19)

The RMS value of the inductor voltage is:

(8.29)

Now we have all the input parameters of the inductor under design:

Wanted inductance value: L = 937.5 µH
RMS inductor current:
RMS inductor voltage:
Operating frequency:

To continue the design, one can follow the design procedure presented in
Chapter 2.

If the case is a low-frequency design (d < 1.6d ), the eddy current losses in
the winding can be calculated using the apparent frequency:

(8.21)

If the low frequency condition (d < 1.6d ) is not fulfilled, the calculated apparent
frequency is a worst-case frequency value.

8.8.2 Coupled Inductor Design

A coupled inductor is a filter inductor having multiple windings. The induc-
tor is designed to have a high inductance for common mode currents and a
negligible inductance for differential currents. Possible applications are a
coupled inductor in a two-output forward converter, or common mode
chokes. Figure 8.27 gives an example of a common mode choke, which is,

FIGURE 8.27 
A common mode choke as a coupled inductor
example.
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in fact, a coupled inductor. The inductors are wound on the same core. There
is a significant DC-current (or low-frequency) component in both windings.
The size of the B-H loop is small, as the inductor current ripples are small
compared to the DC-current component.

We split the field patterns into two types:

• Magnetizing field induced by the sum of the currents in both wind-
ings i1 + i2

• Leakage field induced by the difference between the currents in both
windings i1 − i2

The magnetizing field flows along a high-permeance path (using the core).
The leakage field encounters a low-permeance path (through air). It is useful
to split the currents in two components:

• a common mode component, icom

• a differential mode component, idif

The two current components are:

and (8.22)

(8.23)

(8.24)

Here the magnetizing permeance Λm is a value given by the manufacturer
(AL value).

In respect to Icom, the magnetic device behaves as an inductor with two
parallel windings. We follow the loss calculation given in Chapter 2. The
winding width w is equal to the inner circumference of the core. The satu-
ration value for Icom is very low, as a suitable flux path is provided.

In respect to Idif, the magnetic device behaves as a transformer. The primary
and the secondary windings are far from each other. The design of the
transformer part is not easy, as the field pattern is a real 3-D type. The
saturation value for Idif is not very high, as the leakage permeance is not very
low. Thus, it is advisable to check this value. The practical leakage permeance
for ring cores is almost proportional to the inner diameter dint. The propor-
tionality factor A is almost independent from the material and somewhat
dependent on how the core is actually wound. The leakage permeance is
approximated as

(8.25)

where
A is typically 2.3 µH/m;
the inner diameter dint is in [m].
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The eddy current losses of the two components (the common-mode com-
ponent icom, and the differential-mode component idiff) can be added. The
summation of losses is usually allowed, as the common-mode and differential-
mode currents contain different frequencies. Without splitting into common
mode and differential mode, the design would be difficult.

Example
A ferrite ring core has the following dimensions (coating included):

1. Internal diameter: 18.4 mm
2. External diameter: 32.7 mm
3. Height: 13.3 mm

Both windings have 20 turns.The common mode or magnetizing permeance
Λm is found as 2.0 µH /turn2. The differential mode permeance is about
2.3 µH × 0.019 m = 44 nH/turn2. The common-mode inductance is calculated as:

The differential-mode inductance is found:

By comparison, the measured values on the built inductor are: Lcom = 874 µH
and Ldif = 17.4 µH. The measurements are made by putting the windings in
series and anti-series and dividing the result by four.

8.8.3 Flyback Transformer Design

A flyback transformer operates as an inductor with two windings; therefore,
we discuss it in this chapter. It could also be denoted as a coupled inductor
in which the current waveforms are well known. The first winding carries
current while the switch S conducts, and the second winding carries current
while the diode D conducts (see Fig. 8.28: A flyback converter). Although the
device has two interacting windings and is depicted by the same symbol as
a transformer, a more descriptive name of that magnetic component is a two-
winding inductor. The major difference between a transformer and a flyback
transformer is that the currents in a flyback transformer do not flow simulta-
neously in both windings as in a usual transformer. The purpose of the flyback
transformer is to store energy during the conduction interval of the switch
and to inject it to the output during the conduction interval of the diode.

FIGURE 8.28 
A flyback converter.
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The B-H loop depends on the current mode of the converter. In DCM
(Discontinuous Current Mode) the loop is larger than in CCM (Continuous
Current Mode) and the core losses are higher. In a flyback transformer two
types of fields are present simultaneously:

• The magnetizing field with energy storage action such as in an inductor
• The leakage field that performs a transformer action

However, it is not obvious that the losses could be separated in magnetiz-
ing and leakage type. Let us assume that the total field across the winding
is a sum of the magnetizing field Bm(t) and the leakage field Bl(t):

(8.26)

The eddy current losses are mainly determined by the square of the trans-
verse field B(t). Then, we can write:

(8.27)

To be able to separate losses, the mixed product (the third term in Equation
(8.27)) should be zero in average. A way to obtain this is to distribute the
magnetizing m.m.f. between primary and secondary windings in such a way
that the mixed product vanishes when averaged over time. Figure 8.29 shows
a decomposition of the fields of the primary and secondary windings, which
allows considering both types of fields in the device, the inductor and the
transformer types. This approach allows presenting the eddy current losses
more clearly and precisely.

The following relations are considered for Fig. 8.29:

F1 = N1i1

F2 = N2i2

(8.28)

Fl1 = −Fl2

 Fm1 = Fm1 = 

where
F1, F2 are the m.m.f. of the primary and secondary windings, respectively
Fm1, Fm2 are the magnetizing field components of the primary and second-

ary windings
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Fl1, Fl2 are the leakage field components of the primary and secondary 
windings

Fm is the total magnetizing field in the component

The choice of Fm1, Fm2, Fl1, Fl2, is made in such way that the mixed product
of Fm1 and Fl1 does vanish when averaged over one period and also for Fm2

and Fl2. This allows the superposition of the magnetizing type current losses
and the leakage type current losses without considering the mixed products.

Considering the magnetizing fields Fm1 and Fm2, we analyze the inductor
type of field in the device. This allows presenting and calculating the eddy
current losses associated with fringing fields near the air gap for each of the
windings. While considering the leakage fields Fl1 and Fl2, the transformer
type of field is analyzed, and we obtain the corresponding losses.

REMARK

• In a single-center-gap design, it is better to put the thinnest winding
(or Litz wire) close to the air gap and the thickest winding (or foil

FIGURE 8.29 
Decomposition of the currents of the primary and secondary windings in a flyback transformer.
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conductor winding) at a sufficient distance from the air gap. By this
arrangement, the eddy current losses due to the fringing field are
reduced.

Now we can calculate the losses separately for the magnetizing field and
leakage field and sum them. For the magnetizing field, the calculation can
be done by the solutions given for an inductor. For the leakage field, the
field pattern is the same as in a transformer.

There are two reasons why flyback converters are not preferred for high
power applications:

• The leakage inductance between primary and secondary windings
causes switching-off losses in the transistor. It is difficult to reduce
this leakage inductance, as an insulation voltage is often required
between primary and secondary, and, also, a low capacitance between
primary and secondary is preferred. These constraints increase the
distance between the primary and secondary windings and thus
increases the leakage inductance.

• The magnetic design of the component leads to a compromise, as
both field patterns are present in a single component, and, thus, they
make the design more difficult.

8.A.1 Fringing Coefficients For Gapped-Wire-Wound 
Inductors

Here we propose calculations of fringing coefficients along the sides of an
air gap. The accuracy of the mathematical approximations of the inductance,
obtained using the proposed equations, is usually better than 3% for a wide
variety of parameters. The approximations are derived with a fully filled
window. The real accuracy using practical windings is slightly lower, as the
winding area is not fully filled but sufficient for the usual designs. Windings
at some distance to the air gap show higher fringing; windings at a shorter
distance to the air gap show a lower fringing. We compare the solutions
with experiments and an overall good matching is obtained. Influences are
parasitic air gaps when the gap is set to zero, mechanical tolerances, and
differences between data of different manufacturers for the same air gaps.

8.A.1.1 Basic Cases

8.A.1.1.1 Basic Case 1

In the basic case 1 the conductors are surrounded by magnetic material
except at the air gap (see Fig. 8A.1). The current density in the conductor
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area (copper) is assumed to be homogenous. The permeability of magnetic
material is assumed to be infinite. Then, the coefficient F1 is given by the
following approximation:

(8A.1)

where
F1 [ ] is the fringing coefficient for the basic case 1
d [m] is the air gap distance to the reference plane
c [m] is the thickness of winding
h [m] is the width of the winding, see Fig. 8A.1

NOTE: The appendix is derived on an independent basis, the definitions
of the dimensions (c, h, d) are different with respect to the definitions used
in the other chapters.

Equation (8A.1) corresponds to analytical solutions when c is small or
when d = h, and also for a small d. The tuning constants (0.26 and 0.5) are
fitted using the software Finite Element Method Magnetics (FEMM3.1) [3]. For
small d, Equation (8A.1) is symmetrical with respect to c and h.

The fringing coefficient F1 is shown in Fig. 8A.2 as a function of the ratio
d/h, and c is a parameter (c/h = 0.5, 1, 2).

8.A.1.1.2 Basic Case 2

In the basic case 2 the winding touches the core, but all other sides of the
winding are surrounded by air (see Fig. 8A.3). In this case the fringing field

FIGURE 8A.1 
Magnetic field in the basic case 1 (conductors surrounded by a core).

Copper

h
a

c

d

Core

Air gap

F d c h c d

c h

h d h d c
c h

c
h1

2

2
2

1 1

1 1
0 26 0 5

3 3
, , ln

. .( ) =





 + 









 + 





















+
−( ) − −( ) +

π

DK4141_C08.fm  Page 334  Wednesday, January 19, 2005  3:58 PM

Copyright 2005 by Taylor & Francis Group, LLC



Inductor Design 335

is also mainly concentrated near the air gap. The fringing coefficient F2 is
approximated as:

(8A.2)

For a small d, Equation (8A.2) is symmetrical with respect to c and h.
Note that cases 1 and 2 are similar when c is equal to h. This is normal

since in case 2 almost no field lines are present outside the conductor area
when c = h, so the presence of ferrite walls does not influence the result too

FIGURE 8A.2 
Fringing coefficient F1 as a function of the ratio d/h, c is a parameter (c/h = 0.5, 1, 2).

FIGURE 8A.3 
Magnetic field in the basic case 2 (conductors in open area).
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much. The correspondence between the analytical approximations and the
finite elements solutions is within 2% for both cases.

The fringing coefficient F2 is shown in Fig. 8A.4 as a function of the ratio
d/h, and c is a parameter (c/h = 0.5, 1, 2).

8.A.1.1.3 Basic Case 3

The basic case 3 represents a new problem as no conductors are present (see
Fig. 8A.5), and the m.m.f. (magnetomotive force) can be put in the air gap.
This is the case of the outside legs without windings (for instance cores EE,
ETD, ER cores). The total height is now larger than the winding height so

FIGURE 8A.4 
Fringing coefficient F2 as a function of the ratio d/h, c is a parameter (c/h = 0.5, 1, 2).

FIGURE 8A.5 
Magnetic field in the basic case 3, typically
outer legs.
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we use g, instead of h. The fringing coefficient is approximated as:

(8A.3)

The fringing coefficient F3 is shown in Fig. 8A.6 as a function of the ratio d/g.

8.A.1.1.4 Basic Case 4

The basic case 4 represents a top to bottom problem, where there are no
conductors (see Fig. 8A.7). This field pattern occurs when the m.m.f of yoke-
yoke is not zero. It cannot be separated from the case 3. Case 3 and case 4,
together, present the full problem. Although it is theoretically not obvious,
in practice the field problems of case 3 and case 4 are de-coupled for normal
values of d (d < 0.8 g). The fringing coefficient F4 is given as:

(8A.4)

From Equation (8A.4) it is seen that, when a is small, the value of F4 decreases
and almost vanishes.

The contribution of F4 to the total permeance is usually low, except for
cases such as planar EE or EI ferrites with a spacer.

For real cases (3-D), a good choice for a is a half of the core thickness.
Together with the circumference, this will somewhat over-estimate the top

FIGURE 8A.6 
Fringing coefficient F3 as a function of the ratio d/g.
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338 Inductors and Transformers for Power Electronics

or bottom surface, thus compensating for the lack of corner contributions.
Note that the exact value of a does not have a high influence on the result.

The basic case 4 can also be used in combination with the basic case 2 if
the outer legs are wound and if the m.m.f between yokes is non-zero. This
appears in the case of spacer-gapped UU cores if only one leg is wound.

The fringing coefficient F4 is shown in Fig. 8A.8 as a function of the ratio
a/g. The correspondence with finite elements is within 4%.

8.A.1.2 Symmetrical Cases

In general, all symmetrical cases can be split into two asymmetrical cases
where the line of symmetry is replaced by m = ∞.

FIGURE 8A.7 
Magnetic field in the combination of basic case 3 and case 4.

FIGURE 8A.8
Fringing coefficient F4 as a function of the ratio a/g.
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8.A.1.2.1 Case 1s

In the symmetrical case 1 of a wound center leg with an air gap in the middle,
each side has a field pattern identical to basic case 1. In this case d = lg/2.
Thus, the permeance of the air gap should be divided by two, and the
corresponding fringing coefficient F1s is:

(8A.5) 

(See Fig. 8A.9 for the definitions of c and w.)

8.A.1.2.2 Case 2s

The symmetrical case 2 represents two times the basic case 2. The corre-
sponding fringing coefficient F2s is:

(8A.6)

Fig. 8A.9 shows a cross section of the core for case 1s and case 2s. For
simulation we use axial symmetry with respect to the center of the core.

8.A.1.2.3 Case 3s

In this case the height of the magnetic part is g. This external height g is
somewhat higher than the internal height h (or the winding width w). The
case is close to the basic case 3. The fringing coefficient F3s is:

(8A.7)

8.A.1.2.4 Case 4s

This is the case where a top-to-bottom magnetic field part is present.
Figure 8A.10 shows a cross section of the core for the symmetrical case
3s and case 4s:

(8A.8)

FIGURE 8A.9 
Cross section of the core presenting case 1s
and case 2s.

C
op

pe
r

C
or

e

c

lg

Case 2s Case 1s

w

F l c w
F l c w

s g
g

1
1 2 2

2
( , , )

( / , , / )
=

F l c w
F l c w

s g
g

2
2 2 2

2
( , , )

( / , , / )
=

F l g
F l g

s g
g

3
3 2 2

2
( , )

( / , / )
=

F a g
F a g

s t
t

4
4 2

2
( , )

( / , )=

DK4141_C08.fm  Page 339  Wednesday, January 19, 2005  3:58 PM

Copyright 2005 by Taylor & Francis Group, LLC



340 Inductors and Transformers for Power Electronics

8.A.1.3 Application to Gapped Rectangular Cores

The basic and symmetrical cases can be combined in all design constructions
to obtain the inductance (center-gapped cores, spacer-gapped cores, UU
cores and so on).

We give an example for a center gapped EE-core. In the window itself,
usually case 1 type of field is observed. At the coil ends, perpendicular to
the plane, case 2 type is present, see Fig. 8A.11. The permeance contribution
in corner volumes still has to be added; however, it is small. Taking in account
the above-stated remarks, the total permeance for a rectangular-gapped
center-leg case is:

(8A.9)

Ac : center leg cross section

8.A.1.4 Application to Center Gapped Rectangular Cores

In Fig. 8A.12 we show the fringing coefficients F1, F2 and F3 for a spacer gapped
rectangular core.

The series connection of the permeances by the spacers can also be calculated:

As : side leg cross section

FIGURE 8A.10 
Cross section of the core presenting case 3s
and case 4s.

FIGURE 8A.11 
The fringing coefficients F1 and F2 at the cross
section of a gapped rectangular centre leg.
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8.A.1.5 Application to Center Gapped Round Cores

In center gapped round leg cores (ETD, PM, RM) a mix of case 1 and case 2
are present; however, it is not evident where each field type stops. Close to the
air gap, the field of case 1 and case 2 are not different. The main difference is
present when the ratio h/c is small. A good choice is to determine an angle at
an equivalent radius of c/4, see Fig. 8A.13. Thus, we take a contribution of case
1 or case 2 proportionally to the arc covered by the ferrite at the radius r = r1 + c/4:

(8A.10)

 (8A.11)

FIGURE 8A.12 
The fringing coefficients F1, F2 and F3 at a
spacer gapped rectangular legs inductor.

FIGURE 8A.13 
Geometry of a center gapped round leg.
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where 
q is the thickness of the core.

For a symmetrical case, the total permeance of the center leg is given as:

(8A.12)

In principle, the method slightly underestimates the fringing, as there is
more return surface available in the fringing flux path in 3-D as compared
to a 2-D case.

8.A.2 Analytical Modeling of Combined 
Litz-Wire–Full-Wire Inductors

Here we discuss mainly the eddy current losses in the Litz-wire winding in
the proposed combined Litz-wire–full-wire inductors. The solution is based
on 2-D simulations, combined with the correct mean length of turn. The
Litz-wire area is limited by distances to the air gap; i.e., the inner and outer
radii. For high frequency, we assume that only the Litz wire carries current,
so almost no field is present for a radius greater than the outer radius of the
Litz-wire winding. By these assumptions, the field lines through the Litz-
wire area are also almost circles.

The H-field depends on the enclosed m.m.f., and it is inversely propor-
tional to the distance to the air gap:

(8A.13)

where
NL is the number of Litz-wire turns
r1 is the inner radius of the Litz-wire area
r2 is the outer radius of the Litz-wire area

We denote the field at the radius r1 by H1, and it is given as

(8A.14)

Inside the area of the Litz wire the H field is:

(8A.15)
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The square of the field integrated over the surface of the Litz area is (obtained
with the help of by symbolic integration):

(8A.16)

where

Slitz is the surface of the Litz area

We divide the result of Equation (8A.16) by the Litz-wire area to get an
average square of the field:

(8A.17)

We define a factor kL, which is only dependent on q:

(8A.18)

Note that the factor kL approaches 1 for thin Litz-wire areas. The factor kL

is shown in Fig. 8A.14 as a function of the ratio q = r2/r1. Since the purpose
is to reduce eddy current losses, it is normal to have Litz-wire strand diam-
eters d << 1.6d. Thus, the following expression, based on the low-frequency

FIGURE 8A.14 
Factor kL as a function of q = r2/r1.
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eddy current loss approximation of Chapter 5 and [16,17], can be used for
p strands:

(8A.19)

(8A.20)

where
p is the number of strands
ds is the diameter of the strand
lw is the length of the Litz wire

REMARK
The simplified equivalent scheme of the combined Litz-wire–full-wire induc-
tor is shown in Fig. 8A.15. It is valid when the number of turns is chosen to
obtain an induced voltage in the full wire which is almost equal to the Litz
wire voltage (LLW = MLW,FW).

The length of the Litz wire lw should be multiplied by a factor of about 1.05
since the Litz-wire strand is internally longer than the outside length of the wire.

8.A.2.1 Example of a Combined Litz-Wire–Full-Wire Inductor

An inductor is built for an application with DC RMS current ILF = 5 A, and a
high-frequency component IHF =1 A RMS, at 100 kHz and a 50% duty ratio. The
current waveform is trangular, and the peak-to-peak current is Ipp = 3.46 A. This
waveform corresponds to . The core is EE42/15-type, fer-
rite material N67, and the available winding area is 7.5 × 16.3 mm.

The inductor design corresponds to a step-up chopper operation of 100 kHz,
210 V DC, 5 A DC in, and 420 V DC out. A quite high air gap of 5 mm is

FIGURE 8A.15
Simplified equivalent scheme of the combined Litz-wire full wire inductor.
RDC,LW – the DC resistance of the Litz wire;
RDC,FW – the DC resistance of the full wire;
LLW and LFW the self inductances of the Litz wire and the full wire respectively;
MLW,FW the mutual inductance Litz wire – full wire.
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chosen in order to permit a high allowable peak current. The saturation
current is about 10 A. By its specifications, the inductor could also be used
in a continuous–mode, single–phase, power-factor-correction circuit of about
1050 W, at an input voltage of 210 Vrms. The number of turns of the Litz
winding is 60 and each Litz wire contains 30 strands of 0.1 mm diameter
each. The distance from the Litz winding to the ferrite is about 1.5 mm (which
is not modeled). The full-wire winding contains two windings of 59 turns
of 0.8 mm wire in parallel, one at the left side and one at the right side of
the coil former. To test if the correct turns ratio of full wire to Litz wire is
realized, a voltage can be applied on the Litz wire, observing the open-circuit
voltage at the full wire.

An equivalent scheme of the inductor is shown in Fig. 8A.15. By the special
choice of the turns ratio, the equivalent scheme can be reduced to an L-scheme.
This scheme well describes the behavior up to high frequencies. The eddy
current losses could be described with a parallel resistor to the inductors LL

and Ls .

8.A.2.2 Experimental Results

A coil corresponding to the example was built. A cylindrical spacer was used
before winding the Litz wire in order to keep distance to the air gap. The
Litz wire was impregnated with epoxy before winding the full wire. The
low-frequency inductance is measured as:

LL = 300 µH, Ls = 300 µH

To have sufficient accuracy on AC losses, we apply only the AC voltage
(in this case, a square wave voltage with a full bridge converter).

For comparison and in proof of the design advantages, a second coil former
is made without Litz wire, with two times 60 turns of 0.8 mm wire in parallel.
The same ferrite core with a 5 mm air gap is used in the measurements. The
ferrite losses are 0.9 W, measured when the air gap is filled with a piece of
ferrite and using a coil former with a normal winding of 60 turns of the same
Litz wire. The losses are measured with a flow calorimeter [18] to an accuracy
of 5%. The copper losses of the combined inductor are:

and this value is about five times lower compared to the copper losses of
the full-wire-only inductor: 

.

The results of the measurements on the combined inductor and on the
inductor without Litz wire are summarized in Table 8A.1.

The DC current of 5 A adds about 2.42 W to the copper losses, but the
calculations and the experiments show that the total losses of the combined

Pcu com, . . . W= − =1 61 0 9 0 71

Pcu = − =4 3 0 9 3 2. . . W
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inductor can be dissipated without forced cooling. The experiments show that
a comparable coil without Litz wire, but still taking 6.5 mm distance from the
air gap, with an applied voltage of 210 V generates a 4.3 W copper loss, which
is already too much for the copper loss, so no DC current can be added!

REMARKS

• We do not compare the inductor to an inductor without distance to
the air gap. This would result in excessive losses and melt the coil
former close to the gap.

• Inductors using only Litz wire are also possible, but less are per-
forming than the combined Litz-wire–full-wire inductors. One rea-
son is that the DC resistance increases a lot. Another reason is that
a wire with a high number of strands has to be used.

• It is true that the proposed shape is harder to manufacture, but this
is often the price to pay for a combination of high power density
and low losses.

8.A.2.3 Conclusion

The design of a single-air-gap, combined Litz-wire–full-wire inductor is
described. It is designed for mixed HF/DC current. The realization of a
special shape results in a significant reduction in the copper losses.
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9
Transformer Design

9.1 Transformer Design in Power Electronics

The design of a transformer in power electronics has many aspects, most of
which are discussed in different chapters of the book.

In this chapter, we discuss mainly specific issues concerning transformer
design. Many properties of the transformer  influence the design of the power
electronic converter, such as magnetizing inductance, leakage inductance,
voltage, current, frequency, power loss, insulation voltage, parasitic capacitance,
and so on. Parasitic properties often play an important role in the function
of the transformer in power electronic converters.

9.2 Magnetizing Inductance

Usually the magnetizing flux determines the no-load current of the trans-
former. In general, the magnetic material is non-linear. For simplicity, we do
not consider hysteresis losses in the magnetic material here.

The presence of an air gap is a property of inductors, and it is not discussed
here.

9.2.1 Basics

We use the flux linkage presented as:

(9.1)

The amplitude-magnetizing inductance La can be represented by the peak
current Ip:

(9.2)
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350 Inductors and Transformers for Power Electronics

This representation is usually used to determine the peak magnetizing
current, and it corresponds to the amplitude (chord) permeability of the
material (see Fig. 9.1). The shaded area corresponds to the energy stored
in the coil.

The differential magnetizing inductance Ld is defined as

(9.3)

where
V and i are the coil voltage and current.

It corresponds to the incremental (differential, reversible) permeability of the
material, and it is used to determine ripple currents superposed on a DC
magnetizing current.

NOTE: At normal induction levels (0.1–0.2 T), the amplitude-magnetizing
inductance La of ferrites is typically 1.5 times higher than it is at the low-induction
amplitude of a few mT, which is a typical induction level of Henry meters.

The differential inductance can drop very fast once the core is close to
saturation (0.35–0.4 T for power ferrites). The following relations should be
considered:

• At low induction levels
• At high induction levels

REMARK
For linear materials .

The saturation point is dependent on the criterion for saturation. If no
special requirements are given, a practical criterion for power electronics is
to use the point where the differential inductance is reduced by a factor of
two, compared to its maximum value.

FIGURE 9.1
Peak flux linkage yp as a function of the peak
current Ip and definitions of La and Ld.
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9.2.2 Design

The instantaneous flux linkage Ψ, divided by the number of turns results in
an instantaneous average flux/turn Φ:

(9.4)

The peak flux is determined by (see also figure 2.5 in chapter 2):

(9.5)

where
Am is the minimum core cross-sectional area.

This equation usually determines the number of turns. In the saturation-limited
designs Bp = Bsat. If the design is non-saturated, then Bp can be determined by
the allowed core losses (see Chapter 2).

The flux is also called physical flux. It is also the flux in the core if the
leakage fluxes are neglected. Note that it is advisable to make a difference
in units between the flux linkage [Vs] and the flux for one turn [Wb].

PERMEANCE
The ratio of the physical flux and the peak m.m.f. Fp [A turn] is the
permeance Λ. This permeance is also known as AL value in the ferrite data:

(9.6)

The defined (non-linear) permeance gives the relationship between the peak
flux linkage and the peak magnetizing current. This allows to determine the
peak magnetizing current which is often a contribution in the turn-off current
of transistors. The permeance Λ is defined as:

(9.7)

where 
Ae is the area of the equivalent magnetic cross section
le is the equivalent magnetic path length
mr is the relative permeability (the amplitude or differential value can be 

used depending on needs, see Chapter 3).

The equivalent magnetic cross section Ae and the equivalent magnetic path
length le correspond to a fictitious ring core, which would have the same
permeance and the same losses. This value is usually given by the manu-
facturer. The effective cross section is usually slightly higher than the section
of the mid leg, which usually corresponds to the minimum cross section.
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352 Inductors and Transformers for Power Electronics

Now we can write a simplified equation for the magnetizing inductance
of the primary winding:

 (9.8)

9.3 Leakage Inductance

Leakage inductance can be very harmful in some designs, such as fly-back
converters. In contrast, in some resonant converters it is used to improve the
waveforms in the switching transistors, and should have a determined value.

9.3.1 Leakage Inductance of Concentric Windings

In this construction case, the field pattern is quite well-defined, and the
leakage inductance can be accurately estimated.

The easiest way to determine the leakage inductance is by using the stored
energy near the leakage field. To do this, we need an idealized short circuit
test, where the sum of the ampere-turns in primary and secondary are zero.
In this case, the energy in the magnetizing inductance is zero.

The H field between the two windings is:

(9.9)

where
w is the winding width (see Fig. 9.2)
Ha is the magnetic field between the windings
N1, N2 are the number of turns

NOTE: Here we neglect the reluctance of the flux return path, which is
usually a good approximation.

FIGURE 9.2
Concentric windings, dimensions and cross sections.
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The corresponding energy is:

(9.10)

(9.11)

where 
Va is the volume between the windings

In the windings themselves, the field is linearly increasing from the outside
to the space between the windings. This part of the field gives a three times
lower contribution in energy/volume.

(9.12)

where 
Vw is the volume of the windings.

The total energy in the leakage field equals:

(9.13)

Hence, using Equations (9.9) and (9.13) we obtain:

(9.14)

where 
Vw1 is the volume of the primary winding
Vw2 is the volume of the secondary winding
w is the winding width

If we represent the volumes by the cross-sectional surface of the cylinders S
and their height w (see Fig. 9.2), then we can write:

(9.15)

Using the same approach, the leakage permeance can be defined as:

(9.16)

Equation (9.16) allows us to define an equivalent length leq and an equivalent
cross section of the leakage path Seq:

(9.17)

(9.18)
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354 Inductors and Transformers for Power Electronics

Although the method seems simple, the accuracy is often better than 10%.
The practical problem, usually, is to get all mechanical dimensions right.
Leakage inductances can be more easily measured than copper losses, so it
is sometimes easier to measure the inductance than to get the exact dimensions
of the magnetic component.

Note that the leakage inductance of concentric windings is hardly different,
whether the core is present or not. The reason for this is that the area for the
flux between the windings is small compared to the return path outside,
even if there is no core. However, if the core is removed, there might be a
measurement problem, as the resistance of the winding is not negligible
compared to the magnetizing inductance (see Chapter 11, Measurements).

9.3.2 Leakage Inductance of Windings in Separate Rooms

9.3.2.1 General Case

This type of winding is preferred if a high-insulation voltage is present or
if a low-parasitic capacitance between windings is pursued. Figure 9.3 shows
a transformer with windings in separate rooms. As the distance between
primary and secondary is high, one can expect a high leakage permeance.
An accurate estimation is not as easy as in the concentric-windings cases.
Often a practical test is necessary to determine the permeance, or a 3-D finite-
element computation could solve the problem.

The transverse field across the windings is quite high. So, high transverse-
field eddy current losses can be expected. This type of winding should be
used in combination with Litz wire.

9.3.2.2 Axis-Symmetrical Case

This is the case when the windings are in separate rooms, in a closed pot
core (see Fig. 9.4). In this case the leakage field has an analytical solution.
The same energy method can be used here as was used for concentric
windings.

FIGURE 9.3
A transformer with windings in separate
rooms.

w1 w2a
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Let us first calculate the maximum H-field close to the center leg. We
consider the ideal case where the winding touches the legs (rmin is lower and
rmax is higher than the values shown in Fig. 9.4). It can be demonstrated that
the field in the air between the windings is:

(9.19)

where
rmin is the minimum radius of the winding area (see Fig. 9.4)
rmax is the maximum radius of the winding area

Using the energy method, the leakage inductance can be calculated as:

(9.20)

where
a is the distance between the primary and secondary winding
w1 is the width of the primary winding
w2 is the width of the secondary winding.

Note that in cores with round center legs, but with outer legs that do not
cover the winding completely (ETD, RM, PQ cores, EP cores), Equation (9.20)
can also be used to obtain a maximum value of the leakage inductance.

FIGURE 9.4
Transformer windings in separate rooms in an (almost) closed pot core, axis-symmetrical case.
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356 Inductors and Transformers for Power Electronics

9.3.3 Leakage Inductance in T, L and M Models of Transformers

The model of a transformer can be described using simple or more involved
schemes.

9.3.3.1 T Transformer Model

If the transformer is symmetrical, the traditional model attributes a part of the
leakage to the primary winding and the other part to the secondary winding.

In Fig. 9.5 we show an extended T model.

9.3.3.2 L Transformer Model

If the leakage inductance is small (maximum of a few percent) compared to
the magnetizing reactance, then the scheme can be simplified to an L-scheme
(see Fig. 9.6).

An L scheme can also be a more accurate model than a symmetrical
T-scheme in some cases. One example is a ring core with a primary winding
close to the core and a secondary winding above the primary. It is clear that
in this case the primary winding is better coupled with the core than the
secondary winding.

9.3.3.3 M Transformer Model

Some designs have large leakage inductances. This is the case in some
common-mode suppression inductors. In those cases, saturation can occur
at either the primary or secondary side. This effect is easily represented by

FIGURE 9.5
An extended T model of a transformer.

FIGURE 9.6
L model of a transformer.
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the M transformer model (see Fig. 9.7). The saturable parts are well coupled
with windings, whereas the air gap exhibits neither saturation nor core losses.

If the core contains an air gap, a small, central-magnetizing inductance
can also be present. This is the case in non-contact, rotational axis, power
transmission using two pot cores and an air gap.

9.4 Using Parallel Wires and Litz Wires

In power electronics large currents are often handled, and the eddy currents
losses can dominate. A way to reduce eddy currents is to use more wires of
smaller diameter in parallel.

In general, it is useful to use parallel wires or windings if they carry the
same e.m.f. (electromotive force) or flux. If the e.m.f. is somewhat different
and the leakage inductance between the paralleled windings (or wires) is
small, then severe circulating currents can flow, which may be worse than
the eddy current losses in the original design.

9.4.1 Parallel Wires

Just winding several (p) wires together is one possibility. Currents are shared
if each wire has about the same distance to the other layer (or to an air gap).
Practically, winding two wires in parallel is easy, but more than four wires
is not advisable.

Here we discuss low-frequency and high-frequency cases separately.

9.4.1.1 Low Frequency Case: d < 1.6 δ
The low frequency case is typical in designs with several layers. When using
p parallel wires we can distinguish the following specific cases:

A) Maintaining the same number of layers, increase the winding width
with p.
In this case, the transverse field is reduced by a factor p but the
amount of wires increases by a factor p. The result is that the eddy

FIGURE 9.7
M model of a transformer.
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358 Inductors and Transformers for Power Electronics

current losses are reduced with a factor p. So, it is interesting to fill
the layers.

B) Increase the number of layers with p.
The DC losses reduce almost with a factor p. However, in this case,
the transverse field in the wires remains the same but the number
of layer increases, and the eddy current losses will increase almost
with a factor p. This is tolerated if the eddy current losses are low.

C) Keep the same total cross section of the conductor.
The field remains the same but the wire diameter reduces with a factor

. This results in a reduction of transverse field losses r with a factor p2.
D) The general case.

We can use the equation of Chapter 2 and 5, which give more nuance
and more accurate results for a variable p, diameter, and number of
layers.

9.4.1.2 High Frequency Case: d > 2.7δ
This may be the case in single layer designs. The use of parallel wires with
the same total cross section may even increase the eddy current losses. In the
case of a single layer transformer, it is usually not beneficial to use parallel wires.
A better approach is to use the highest diameter that fills the layer completely.
The solution is to use the equations of the proposed wide-frequency method.
In cases where windings carry both high-frequency and DC currents, it is
useful to screen the HF field by a single layer and to have a second winding
charring only DC. In this solution the influence of internal circulating
currents is reduced.

9.4.2 Parallel Windings Using Symmetry in the Magnetic Path

A way to reduce eddy current losses is to reduce the conductor thickness.
This approach will result in greater ohmic losses, so one will have to put
wires in parallel to keep ohmic losses low. Normally, in designs that are
subjected to eddy currents, there is an optimal wire thickness. In practice,
this means that the winding area is hardly filled if single wires are used.

One can use the natural symmetry of shapes to wind different coils that will
carry the same current. Without interleaving, a number of windings with the
same number of turns can be put in parallel without circulating currents. Here
we give the possible number of parallel windings for different cores:

• EE and EI types (see Fig. 9.8a): two parallel windings
• UU types (see Fig. 9.8b): four parallel windings;
• Multiple air gaps, if well arranged: two times more parallel windings

than the number of gaps.
• Ring cores: in principle, an infinite number of paralleled windings.

p
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9.4.3 Using Litz Wire

A way to parallel more wires is to use Litz wire, also called bunched
conductors. Each Litz wire contains a number of strands that are individually
insulated, and all the strands use their positions in the section equally.
Therefore, in the typical transverse fields, each wire has the same flux. The
advantage of Litz wire is that much lower eddy currents losses are usually
generated, as the diameter of the individual strands is small. The disadvan-
tages of Litz wire are a lower filling factor, a lower thermal conduction, and,
usually, a lower temperature grade. The DC resistance increases by about
5% as the wire length increases.

We consider Litz wire containing p strands. In low-frequency approximation,
for the same total wire cross section, Litz wire reduces the eddy current loss
by a factor p. We can give a practical design aspect with an example:

9.4.3.1 Example in the Low-Frequency Approximation

We want to increase the current in an existing (poorly filled) transformer
design by a factor of α, while trying to maintain the same ohmic and eddy
current loss within the same core size.

FIGURE 9.8
Possible number of paralleled windings for different cores, (a) EE core set: 2 windings, (b) UU
core set: 4 windings.

(a)

(b)
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360 Inductors and Transformers for Power Electronics

To have the same ohmic losses we would have to increase the diameter
by a factor of α. However, this would increase the eddy current loss by a
factor of α4 due to the diameter increase and, additionally, by a factor of α2

due to the transverse field increase! Hence, to maintain the original eddy
current loss, we would need a reduction factor of α6. The required Litz wire
diameter is α−2 times the original wire. For example, if we want to double
the current (α = 2) and the required number of strands is 64, then the required
Litz wire diameter should be four times smaller than the original diameter.

NOTE THAT:

• Large design improvements need many strands in the Litz wire.
• Litz wire can have a different temperature rating and a lower thermal

conductance, so the design result may be slightly different than
proposed.

9.4.4 Half Turns

Using half turns to equalize currents in different windings is a quite special
technique.

Half windings are possible in EE cores, as they have two apertures for
the windings. A winding of 3.5 turns has, for example, three turns in the
left winding area and four turns in the right winding area. Usually, such half
windings have to be avoided in designs. They tend to saturate the side legs
as the m.m.f is not fully compensated by the secondary winding. However,
when two such turns are put in parallel, an equal m.m.f. in both sides can
be obtained again (e.g., having 3 + 4 turns on the left side and 4 + 3 on the
right side). This winding is possible in vertically mounted coil formers. In
that case, even when the winding is non-symmetric, the currents in the
parallel windings are almost equal, as the leakage inductance between the
windings is high since it contains one turn around each leg.

9.5 Interleaved Windings

This approach is only applicable to transformers, not to inductors.
If the design is changed from Primary/Secondary (P/S) to (P1, S1, S2, P2

or P1, S1, P2, S2) with the same type of wires, both the ohmic losses and the
eddy current losses will be reduced by a factor of two. In practice, the thermal
capability of the component is not improved significantly in the case of
interleaving, so the current handling capability is increased by a factor of .

REMARKS

1. In the case of a center-gapped transformer, the inner primary winding
will carry almost all of the magnetizing current.

2
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2. The additional windings will have higher turn length.
3. The energy method can be used to compute the leakage inductance,

and the leakage inductance usually decreases inversely proportion-
ally to the number of interleavings in parallel.

4. The parasitic capacitance is almost proportional to the number of
interleavings in parallel.

9.6 Superimposing Frequency Components

The actual voltage and current waveforms in power electronics are usu-
ally non-sinusoidal. When a phenomenon is linear, and not time-dependent,
a complex waveform can be separated in Fourier components to analyze its
behavior with a transfer function and to analyze losses.

This is the case with leakage inductance (mainly in air) and eddy currents
in conductors. The individual Fourier components in frequency are orthogonal,
and the losses caused by them can be superimposed. Also, sine and cosine
Fourier components are orthogonal and can be analyzed separately (see
orthogonality in Chapter 5).

Magnetized inductance and core losses are usually non-linear, and the orthogonality
is not present.

9.6.1 Magnetic Materials

The peak-to-peak inductance and the frequency are the main parameters that
determine the core losses (see Chapters 2 and 3). They are usually measured
and shown in double-logarithmic graphs by the manufacturers. As long as the
curves are close to straight lines, they can be modeled by the Steinmetz equation.

For ferrites, a dependence of the waveform, itself, for a given peak-to-peak
inductance has also been observed (see Chapter 3 and [1], [2], [3]). Methods
of extending to non-sinusoidal waveforms for transformer and inductor
design are given in [4], [5], [6]. High-frequency-loss analysis based on Preisach
modelling is presented in [7].

9.6.2 Eddy Currents in Conductors

In the scientific literature, 2-D analytical approximations are mainly focussed
on uniform transverse fields (proximity losses) and on the field of a wire
(skin-effect losses) [8], [9], [10].

A current waveform can be separated into frequency components and
cosine and sine components. The reference for the cosine and sine must be
the same for all windings.

The individual losses of the Fourrier components can be added without taking
into account the interaction of mixed products, as superposition is allowed.
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9.6.2.1 General Solution

The Fourier expansion of each component in a transformer current can be
written as:

(9.21)

The losses of each component presented by can be calculated and
summed, as the contributions are orthogonal. This way of proceeding is
mathematically correct, but it takes time to be implemented.

In the low-frequency approximation, the terms can be calculated as described
below. The eddy currents are proportional to the derivative of the current.
This means that the losses can be modeled as a resistor parallel to the leakage
inductance. One way to consider this fact is to define an apparent frequency
fap that will result in the same losses as a sine wave at that apparent frequency
with the same current RMS value.

As an example, we consider a triangular current waveform (see Fig. 9.9).
The RMS value of this current is:

(9.22)

where 
Ipp is the peak-to-peak value of the current.

The square RMS di/dt value is

(9.23)

(9.24)

FIGURE 9.9
An asymmetric triangular current waveform
of a coil and voltage across the coil.
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where 
D is the duty ratio, which is equal to the ratio of the rising edge to the total 

period (see Fig. 9.9).

For a sine wave we have:

(9.25)

Then, combining Equations (9.24) and (9.25), we obtain the apparent
frequency:

(9.26)

This ratio between the apparent frequency and the switching frequency is
shown in Fig. 9.10.

For D = 0.5, the ratio is 1.103, which is not so high of a value. At extreme
values of D the difference is more significant, but in most converters the peak-
to-peak current, or the RMS ripple current, reduces at extreme D; thus, the
resulting eddy current losses are often even lower than at D = 0.5.

9.7 Superimposing Modes

Transformers in power electronics may have more than two windings. We
illustrate this fact by an example of a push-pull converter with two primary
windings and one secondary winding (see Fig. 9.11).

FIGURE 9.10
The ratio between the apparent frequency
fap and the switching frequency f as a func-
tion of the duty cycle ratio D.
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Both primary windings contain similar harmonics (see Fig. 9.12), and they
cannot be considered separately for the loss calculation. The eddy current
losses can be present in a winding, even if it does not carry current, as some
transverse fields of other windings are present in that winding.

One solution is to expand the currents in Fourier components as mentioned
above, but it takes a lot of implementation time and does not give much insight.

Another way is to divide the current into a common mode part and a
differential mode part. Common mode icm and differential mode idm currents
are expressed as

(9.27)

(9.28)

(9.29)

(9.30)

These currents are orthogonal, as they are even and odd functions in time.

FIGURE 9.11
Push-pull converter and the corresponding current waveforms.
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The common mode part contains a DC component and even harmonics of
the switching frequency. The differential mode part contains only odd com-
ponents of the switching frequency.

The field pattern in the case is quite different (see Fig. 9.13):

• The common mode current corresponds to the field of two single
layers with opposite currents.

• The differential mode current corresponds to a two-layer primary
winding containing only AC current, with a secondary winding
carrying the opposite current.

FIGURE 9.12
Common mode icm and differential mode current idm waveforms in the currents of a push-pull
converter.

FIGURE 9.13
Common mode (a) and differential mode fields (b) in a transformer.
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The advantage of splitting into modes is that the eddy current problem is divided
into simpler problems.
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10
Optimal Copper/Core Loss Ratio 
in Magnetic Components

Most of magnetic component designs are a trade-off between induction level
B and core losses on one hand, and copper, ohmic, and eddy current losses
on the other hand [1,2,3]. This trade-off results in a point of maximum
efficiency placed between 50 and 100% of the nominal load. Depending on
the design philosophy (the starting point), different types of cost functions
and constraints can be defined:

• Loss minimization at constant copper volume and core shape
• Loss minimization at constant copper wire cross section
• Capitalization of losses such as cumulative energy consumption; in

this case partial load and no load are also important
• Worst case designs with maximum temperatures
• A part of optimization in a system, such as a power converter or an

appliance

The purpose of this chapter is to discuss several most frequently appearing
cases and to give results that can be used to check whether the design is
close or far away from the optimal one with respect to loss minimization.

NOTE: It is assumed that, after an initial design, the main parameters of
the magnetic component under development are already known. By using
these found parameters, the core and copper losses can be found and
included in an optimization process of adjusting the turn numbers and
copper wire cross area. The practical optimization is often discrete; the choice
of core shapes, number of turns and wire thickness is not continuous, but is
limited to what the manufacturer offers.

Readers can look at the contents of the chapter to find their specific case.

10.1 Simplified Approach

In this section we give a simplified approach, corresponding to level 0 in the
context of this book.
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368 Inductors and Transformers for Power Electronics

10.1.1 Transformer

For copper losses, the resistance can be calculated by the wire cross section.
The resistance of (pulled) copper wire is

, [Ω] (10.1)

where
Ωm

lw is the wire length [m]
Acu is the area of the wire cross section, [m]
Tc is temperature, [°C]

For T = 20°C ⇒ r = 18 × 10−9 Ωm.

For T = 100°C ⇒ r = 23.4 × 10−9 Ωm,

which is 30% more than the value of r for 20°C.
The cost function to be considered is the total power losses. Assuming a

level for core and copper losses, we derive the condition at which that level
is the optimal one. The total power losses are given by the sum of core and
copper losses, and the aim is to be minimal:

(10.2)

The constraint, or boundary condition, is that the output power Pout must be
achieved. The copper volume Vcu is also assumed to remain constant, and then

(10.3)

 (10.4)

where
Acu is the total cross section, [m2]
lw is the wire length [m]
Vcu is copper volume [m3]

Note that the constant copper volume constraint normally results in a
constant length/turn ratio.

The core losses can be modeled in various ways. In the simplified approach
we assume that the losses are quadratic, with an induction level B:

(10.5)

We neglect the magnetizing current, so the primary and secondary cur-
rents are proportional to each other. In practice this means a non-saturated
transformer design without an air gap. Then increasing the wire length by
e (the relative number of turns, see Equation (10.7)) increases the copper
losses also by e. To keep the total copper volume constant, we also have

R l Aw cu= ρ /

r = + − −18 1 0 0374 20 10 9( . ( ) )Tc

P P Ptot cu fe= + = min

P V Iout out out= = constant

V A lcu cu w= = constant

P Bfe ~ 2
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Optimal Copper/Core Loss Ratio in Magnetic Components 369

to reduce the copper cross–sectional area by e, which results in increasing
the total copper losses by e2. The same increase in number of turns with a
factor e results in a peak induction decreased by a factor of e. Then, if the
core losses are assumed to decrease in a quadratic way with B, the same
losses decrease by a factor of e2. Finally, the dependence of the total power
losses Ptot on e is

(10.6)

where
e is the relative number of turns:

(10.7)

The derived dependence of Equation (10.6) is shown in Fig. 10.1.
Setting the derivative of Ptot to zero with respect to e gives the condition

that is used to adjust the design to the optimum:

(10.8)

If, in a first attempt, the core losses and the copper losses are not equal,
then Equation (10.8) gives the factor e to use for changing the number of
turns so as to obtain the optimal case.

If Pfe = Pcu then e = 1, which means that the number of turns is optimal and
does not have to be changed.

In practice, if the design is not saturation limited, the condition of Equation
(10.8) means that the minimum power losses, or optimal efficiency in the
simplified case, are obtained when the copper losses are equal to the core
losses:

(10.9)

FIGURE 10.1
Total losses Ptot depending on the relative
change of the number of turns e.
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370 Inductors and Transformers for Power Electronics

10.1.2 Inductor

For inductors, an approach similar to that described in the previous section
can be used. However, when the number of turns changes, the air gap should
be adapted (the permeance of the magnetic path) in order to maintain the
same inductance value and the same voltage and current at the inductor
terminals. The change in magnetic path when changing the air gap length
is neglected with respect to the core losses. Applying the above consider-
ations yields minimum losses when:

(10.10)

10.2 Loss Minimization in the General Case

In the general case, the core losses mainly depend on the frequency and on
the peak induction level:

(10.11)

where 
k is core loss coefficient, k = F( f, B, T)
T is the temperature
f is the frequency
a is frequency exponent

is the induction peak value of the AC waveform
b is core loss exponent

The ohmic copper losses are

(10.12)

Imagine an optimal magnetic-component design with core losses Pfe,opt and
copper losses Pcu,opt. Let us present the general core and copper losses by
their optimal values. When increasing the number of turns by a factor of e,
the induction B in the core is decreased by a factor of e because the flux linkage
is kept constant; that is, the induction is proportional to e−1. Thus, considering
Equation (10.11), the core losses are inversely proportional to eb:

(10.13)

The copper losses can be represented by their optimal value and e as

(10.14)

where
g is a coefficient, the value of which is in the range of 1–3. 

P Pcu opt fe opt, ,=

P k f Bfe = a bˆ

B̂

P
l
S

Icu cu
cu

cu
rms= ∑ ρ 2

windings

P Pfe fe opt= −
, ε β

P Pcu cu opt= , εγ
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Optimal Copper/Core Loss Ratio in Magnetic Components 371

The value of g can vary depending on the constraint (e.g. constant copper
volume, constant wire section, or as a result of eddy current calculation).
Equation (10.14) means that a 1% increase in the number of turns results in
a g % increase in copper losses. For example, for g = 2, a 1% increase of
number of turns results in a 2% increase in copper losses.

Combining Equations (10.13) and (10.14) we can write

(10.15)

For the optimal design the total losses Ptot should be minimal for e = 1. The
minimum of Ptot is obtained by taking the derivative with respect to e and
setting it equal to zero:

(10.16)

Solving Equation (10.16) gives

(10.17)

Substitution of e = 1 into Equation (10.17) results in

(10.18)

Compared to the total losses, the optimal core and copper losses in the
general case are:

(10.19)

(10.20)

10.3 Loss Minimization Without Eddy Current Losses

In these cases we assume low eddy current losses and neglect them.

10.3.1 Constant Copper Volume

Here we consider loss minimization in a constant copper volume condition
and neglect eddy current losses. For the constant copper volume design, the

P
P

Ptot
fe

cu opt= +
ε

εβ
γ

,

d
de

( )P Pfe cu+ = 0

P

P
fe opt

cu opt

,

,

= +γ
β

εγ β

P

P
fe opt

cu opt

,

,

= γ
β

P Pfe opt tot, =
+
γ

γ β

P Pcu opt tot, =
+
β

γ β
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372 Inductors and Transformers for Power Electronics

coefficient g is g = 2 because the wire length increases almost proportionally
with e and the wire cross section decreases proportionally with e, which
means that the ohmic copper losses increase with e 2. Accepting this value,
we neglect the eddy current losses and the fact that only discrete values for
the wire cross-section are possible. Then

(10.21)

(10.22)

Assuming quadratic dependence of the core losses on the peak induction,
the value of the core losses coefficient is b = 2, and we find the solution of
50% core and 50% copper from the simplified approach.

For laminated, non-saturated iron, b is usually in the range of 1.6–2, so
iron losses can be somewhat higher than 50%.

For most ferrites b = 2–3 which results in core losses lower than 50%.

10.3.2 Constant Wire Cross Section

Here we consider loss minimization in the constant wire-cross-section con-
dition. We can use almost the same approach as in the previous section. For
most of high frequency transformers and inductors the winding area is not
completely filled, and one can change the wire length (the number of turns)
without changing the diameter of the wire. These conditions correspond to
a coefficient value of g = 1. The substitution of this value into Equations
(10.19) and (10.20) gives the following results:

(10.23)

(10.24)

In fact, g  > 1 as the average turn length increases with the number of turns,
which results in an increased core loss optimum and a correspondingly
decreased copper loss optimum.

For b = 2 we find the following optimal ratios:  and .

10.3.3 Equal Core and Copper Surface Temperatures

The condition in this case is one with equal core and copper surface tem-
peratures. In this case, the thermal heat transfer between the core and the
copper can be neglected. This approach allows a different temperature
inside the copper winding (hot spot) than at the surface. The losses will

Pcu opt, =
+
β

β2

Pfe opt, =
+
2

2 β

P Pfe opt tot, =
+
1

1 β

P Pfe opt tot, =
+
β

β1

P Pfe opt tot, /= 3 P Pcu opt tot, /= 2 3
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Optimal Copper/Core Loss Ratio in Magnetic Components 373

be proportional to the thermal conductance between the core or copper and
the ambient air. We can write

(10.25)

(10.26)

(10.27)

(10.28)

In Equations (10.25), (10.26), (10.27), and (10.28) and  are the
core-to-ambient and copper-to-ambient thermal resistances, respectively.

With shell-type transformers based on EE or EI shapes, the core surface
area is usually about two times that of the outer copper coil. If the radiation
heat transfer coefficient hR and the convection heat transfer coefficient hc are
similar, then about two times more core losses than copper losses results:

(10.29)

Note that this ratio usually results in a maximum power transfer and not
a loss minimization.

10.4 Loss Minimization Including Low-Frequency 
Eddy Current Losses

Almost all actual designs in power electronic converters are subjected to
eddy currents. This is particularly true with frequencies above 20 kHz and
AC currents of several amps. This fact results in a compromise between eddy
current losses, ohmic losses, and core losses.

10.4.1 Constant Copper Wire Cross Section

The total losses in a magnetic component can be presented as

(10.30)

where Pcu,ohm are the copper losses, which would not be present if the copper
losses were only caused by the DC resistance. At a constant diameter,
Pcu,ohm~e, an increase in e leads to an almost proportional increase in the wire
length. Here we neglect the increase in the mean length of turn.

T T T P R T P Rfe cu fe fe fe cu cu cu= = =, ,, ,θ θ

P R P Rfe opt fe cu opt cu, , , ,θ θ=

P
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cu

cu fe
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, ,
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, ,
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374 Inductors and Transformers for Power Electronics

The low-frequency eddy current losses Pcu.eddy are estimated to be propor-
tional to the number of turns and proportional to the square of the total
MMF, which is also proportional to the number of turns [4,5]. As a result, a
cubic dependence of Pcu.eddy on e is assumed: Pcu.eddy~e 3. This dependence is
true in low-frequency approximation (LF) of eddy-current phenomenon. For
a more detailed discussion of low-frequency approximation please refer to
Chapter 5. The low-frequency model for eddy current lossesthat we use there
satisfies the purpose of this chapter. The approximation is applicable if the
general field has not changed significantly by increasing the number of turns
(for example, the change from one to two layers leads to a significant change
in the field). Using the above considerations and the core loss equation, we
obtain the dependence of Ptot on e

(10.31)

Taking the derivative of Ptot with respect to e, setting it to zero, and sub-
stituting e = 1, which corresponds to the minimum for e = 1, yields the
following expression:

(10.32)

From Equation (10.32) it follows that a high eddy current loss tends to
decrease the copper-to-core loss ratio.

REMARK
If the diameter is optimized (so not a constant copper cross section), the wire
cross section is usually selected to perform the equation:

(10.33)

Combining Equations (10.31), (10.32), and (10.33) results in the following
representation of the optimal losses as parts of the total loss:

(10.34)

(10.35)

(10.36)

Assuming b = 2, leads to the following optimal copper/core ratio in this
case:

(10.37)
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Optimal Copper/Core Loss Ratio in Magnetic Components 375

10.4.2 Constant Copper Wire Volume

The case is quite similar to the previously discussed case. As was mentioned
above, the low frequency eddy current losses Pcu.eddy are proportional to the
third power of e in the constant-wire-cross-section case. In the discussed case
there is additional dependence. Increasing the number of turns leads to a
decrease in the wire cross section and, correspondingly, to a decrease in Pcu.eddy

squared, because the low-frequency eddy current losses are proportional to
the square of the wire cross-sectional area. Finally, the low-frequency eddy
current losses Pcu.eddy in this case are proportional to e.

The ohmic losses Pcu.ohm are proportional to the square of e in this case
because increasing the number of turns leads to an increase in the copper
wire length and to a decrease in the copper wire cross-sectional area. Using
the expression for the dependence of the core losses on e, the total losses can
be represented as

(10.38)

Differentiation of Ptot with respect to e and substitution of e = 1 result in:

(10.39)

REMARK
Using Equation (10.39) and assuming that the diameter is optimized,
e.g., , the optimal losses are found as

(10.40)

(10.41)

(10.42)

Considering b = 2, the optimal copper-to-core ratio in this case can be rep-
resented as

(10.43)

10.4.3 Variable Wire Cross Section and Number of Turns

As the eddy current losses increase with the conductor cross section, an
optimal section can be found that does not fill the copper winding area, so both
the number of turns and the copper cross section can be chosen.
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376 Inductors and Transformers for Power Electronics

We introduce a relative section area z = Snew /Sold , S is the wire cross-
sectional area [m2]. As was mentioned above, the low-frequency eddy cur-
rent losses Pcu.eddy are proportional to the number of turns and proportional
to the square of the total MMF. Hence, in this case Pcu.eddy are proportional
to the third power of e. Using Equation (10.13) and the mentioned depen-
dencies, the total losses can be represented as

(10.44)

Differentiation of Ptot with respect to e and z gives

(10.45)

(10.46)

Substituting , and setting to zero yields

(10.47)

Substituting e = 1 and z = 1 and setting to zero gives

(10.48)

By using Equations (10.47) and (10.48), the optimal losses in this case are
found as

(10.49)

(10.50)

(10.51)

In the typical case, when b = 2, the optimal losses are

(10.52)

Equation (10.52) gives the same results as the remarks in the two previous
subsections give.
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10.4.4 More General Problems with Eddy Currents

In the previous sections, a low-frequency approximation is used for the eddy
current losses. The low-frequency approximation tends to over-estimate the
losses at high frequency. If the dependency of copper losses on the diameter
is known and can be approximated by equations in a way similar to Equa-
tions (10.13) and (10.14), then Equations (10.17) to (10.20) are still valid. This
usually results in higher eddy current parts than in Equation (10.50), espe-
cially for round wires. For a high-frequency design with a limited penetration
depth, a wire diameter increase is often beneficial. In the case of rectangular
wire sections, lower optimal eddy current parts are observed [5].

10.5 Summary

This chapter presents a survey concerning the optimal copper-to-core loss
ratio in magnetic components for power electronics. The proposed results
provide a minimal loss design for the most frequently appearing cases. The
optimization process includes adjusting the turn numbers and copper wire
cross-sectional area. The obtained results concerning the optimal copper-to-
core loss ratio are summarized in Tables 10.1 and 10.2.

TABLE 10.1

Optimal Core and Copper Losses for Different Cases, Constant Core 
Shape, Variable Number of Turns

Pfe,opt/Ptot Pcu ohm,opt /Ptot Pcu eddy,opt /Ptot

General case

Constant copper 
volume g = 2

Constant wire cross 
area g = 1

Equal core and copper 
temperature

Variable wire cross 
section, including low 
frequency eddy 
current approach

γ
γ β+

β
γ β+

2
2 + β
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378 Inductors and Transformers for Power Electronics

10.6 Examples

1. A 50 Hz single-phase transformer of 3 kW has 94 W core losses and
47 W copper losses at full load. Saturation is not taken into account.
Assume the copper volume to be constant and the wire diameter to
be variable. The core losses are assumed to be quadratic with the
voltage per turn. How much should one decrease or increase the
number of turns to obtain maximum efficiency at full load? What
are the new losses?

SOLUTION
b = 2 and using Equation (10.8) we find . The new number
of turns . The new core losses and also the new copper losses
are 66.5 W, and the total losses are 133 W, compared to the 141 W originally.

REMARK
One should verify whether the additional copper heat could be removed.

2. In the data sheets for ferrite cores, one can see that the losses (3F3
grade) increase with . What is the optimal copper-to-core loss
ratio for maximum efficiency if eddy current losses can be neglected
and copper volume is constant?

SOLUTION
This is the case described in Section 10.3.1. Using Table 10.1, we find that the
optimal copper-to-core loss ratio for maximum efficiency is Pcu ohm,opt/Pfe,opt =
b/2 = 1.25.

3. The same question as in Example 2, but with constant copper diameter.

TABLE 10.2

Optimal Core and Copper Losses for Special Cases, b = 2, Constant Core Shape, 
Variable Number of Turns

Pfe,opt/Ptot Pcu ohm,opt/Ptot Pcu eddy,opt/Ptot

Constant copper volume g = 2 1/2 1/2 0
Constant wire cross area, g = 1 1/3 2/3 0
Equal core and copper temperature, 
core surface equal to 2 times open coil 
surface

2/3 1/3

Variable wire cross area, including a low 
frequency eddy current approach

5/11 4/11 2/11

ε = =94 47 1 1894 / .
N Nnew old= 1 19.

B2 5.
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SOLUTION 
This is the case described in Section 10.3.2. Using the Table 10.1, we find that
the optimal copper-to-core loss ratio for maximum efficiency in that case is
Pcu ohm,opt/Pfe,opt = b  = 2.5.

4. An EE42 core has a copper surface-to-ambient thermal resistance of
50 K/W and a ferrite-to-ambient thermal resistance of 20 K/W. What
are the maximum copper and core losses it can tolerate if the surface
temperature of the copper and the core is kept at 100°C and the ambi-
ent temperature is 50°C?

SOLUTION
This is the case described in Section 10.3.3. The total allowed losses are

.

By comparison, if we do not know the thermal resistances we use Equations
(10.27) and (10.28), and we obtain: and  =
2.33, which is close to the found result.
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11
Measurements

”Measurement is not only a technique but also an art”

Plato (428-347 B.C.) was already describing “the art of measurement” (From
“Protagoras” [380 B.C.]):

“Now suppose happiness to consist in doing and choosing the greater, in
not doing or in avoiding the less, what would be the saving principle of our
life? Would it not be in the art of measuring; or the power of appearance? Is
not the latter deceiving us, interpreting things in many ways, regretting our
actions and choices relative to of things great and small? But the art of
measurement would remove the effect of appearances, and, showing the truth,
would procure rest to our soul based on truth and would thus save the
happiness of our life. Would not mankind generally acknowledge that the
art which accomplishes this result is the art of measurement?”

11.1 Introduction

This chapter treats the measurements on inductors and transformers.
Measurements in high frequency are discussed, as they are the main item in
magnetic components for power electronics.

Even if the design of a component is carried out carefully, measurements
should be made to check it. Measurements can also be simply imposed by
standards. One should be aware of the fact that measurements are always
limited in accuracy and that the act of measuring does disturb the measured
quantity. When magnetic components are measured in real converters, volt-
age slopes and high frequency fields can perturb the measurements.

We consider measurement of temperature, power loss, impedance, induc-
tance, and parasitic capacitance.
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382 Inductors and Transformers for Power Electronics

11.2 Temperature Measurements

Temperature measurements can be made to check the design. The place of
the expected hot spot temperature (the hottest point of the component) is
also a point of discussion. In some converters limitations of the hot spot
temperature results in a compromise with electrical insulation requirements.
Indeed, increasing the electrical insulation leads to a worse thermal conduction.
Temperature Conversion Equations
The equation for conversion from Fahrenheit to Celsius is

(11.1)

where
°C is the temperature in Celsius degrees
F is the temperature in Fahrenheit degrees.

The Celsius–Kelvin (absolute temperature scale) conversion is

(11.2)

where
K is the temperature in Kelvin degrees.

The usual possibilities for temperature measurements in magnetic compo-
nents are:

• Thermocouple measurement
• Thermistor measurements
• NTC thermistor measurement
• Glass fiber optic measurement
• Infrared surface temperature measurement
• Thermal paint and strips
• Winding resistance measurement.

11.2.1 Thermocouple Measurement

Seebeck discovered the principle that some voltage arises at the end of two
wires when junctions of different materials are at different temperatures. This
principle is used in thermocouples. Thermocouples are mechanically and ther-
mally robust and are not subjected to self-heating. The temperature range of a
thermocouple is more than large enough for most common applications: −
200°C to +1250°C. The thermocouples however, use a very low voltage and are
subjected to disturbances of the power converter. Thus, the measured values
are sometimes not valid during operation of the converter. The accuracy of the
measurement can be reduced because the thermocouples could be heated up
by eddy currents, and also because they can be cooled down by their own wires.

° = − ×C F( ) /32 5 9

° = − = °C K K C273 15 273 15 0. , .
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The most common thermocouple is the K-type: Nickel/Chromium (+) com-
bined with Nickel/Aluminum (–), also known as chrome-constantan, or “yel-
low type.” According to the international code, the negative (nonmagnetic)
wire has the yellow color, the positive (magnetic) wire is red, and the cover is
brown. The voltage change is about 40 µV/°C, so an amplifier is necessary.
Using an appropriate amplifier avoids the need of a reference temperature.

Data for thermocouples are available in the standard EN60584-1 [1] (formerly
IEC 584-1).

The initial accuracy of thermocouples is not high, about 2.5°C for the
K type, 0.5°C for J type. However the inaccuracy is mainly a temperature
offset, which can be taken into account. The advantage of thermocouples is
the cheap basic material. However, the low voltage output limits their use
for measurements in magnetic components.

11.2.2 PT100 Thermistor Temperature Measurement

Thermistors are devices widely applicable to measure temperature.
As an example, we consider frequently used Pt100 thermistors. For the tem-

perature dependence of the resistance of industrial Pt100 thermistors, the fol-
lowing approximation can be made according to EN60751 (formerly IEC 751):

(11.3)

where
Rpt is the resistance value in [Ω];
T is the temperature in [°C].

Equation (11.3) shows about 0.39% resistance change for 1°C.
The Pt100 resistance thermometer is divided into two accuracy classes:

• Class A: (0.15 + 0.002 |T|) °C; the temperature T is in [°C];
• Class B: (0.30 + 0.005 |T|) °C; the temperature T is in [°C].

Often bridge configurations are used to convert the resistance to voltage.
The resistance of the Pt100 thermistors is low and the relative voltage change
is not high. Therefore the Pt100 thermistors are used in a four-wire mea-
surement or in a three-wire system. The four-wire measurement has two
current contacts and two voltage contacts. The three-wire measurement
assumes the voltage drop in the two current wires to be equal.

In the range of 0–200°C, the reverse equation, which gives the temperature
as a function of the resistance, is

(11.4)

where 
R is in [Ω] and T is in [°C].

R T Tpt = × + × × − × ×( )− −100 1 3 90830 10 5 775 103 7 2. .

T R R= × −( ) + × −( )0 00109 100 2 5543 1002. .
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The reverse equation fits the original one, Equation (11.3), to better than
0.05°C in the range of 0–200°C.

The Pt100 thermistors are accurate devices, but they suffer the same draw-
back of all thermistors, that of using low voltages. Another drawback is the
use of more than two wires. Self-heating, and cooling by its own wires, can
also create inaccuracy. Therefore Pt100 thermistors are not very suitable for
measuring in actual power devices and in magnetic components.

11.2.3 NTC Thermistor Temperature Measurement

The negative temperature coefficient resistors (NTC) consist of polycrystalline
mixed oxide ceramic. The typical NTC resistance change is about −3.3 to −5.7%
per 1 K, which gives a good sensitivity. Their usual range of use is −80°C
to +250°C, best between 0 and 105°C.

The resistance of an NTC can be approximated by the following equation:

(11.5)

where
T is the temperature in [K], (0°C = 273.15 K)
Tr is the reference temperature in [K]
RT is the resistance at the temperature T
RTr is the resistance at the temperature Tr

B is a constant dependent on form and material; B is in the range 
2900–5000 K.

Table 11.1 presents the ratio R/R25 given by manufacturer data and the
same ratio obtained by Equation (11.5). From Table 11.1, it is seen that by
using Equation (11.5) a quite feasible temperature accuracy is obtained in
the whole considered range of –20°C to 105°C.

The accuracy of NTC thermistors is high, about 0.2–0.5°C. But care should
be taken to use the correct data of the manufacturer, the parameter B and
the reference temperature; and to use a notion of the self-heating (the order
of magnitude is about 1 K/mW).

Note that PTC thermistors also exist, but they are mainly intended for
protection, as their resistance changes more than 10 times in a few degrees
at the ‘switching’ temperature, which is usually above 100°C.

PN-junctions could also be used for temperature measurement. This idea is
not fantastic, due to the large EMC disturbances in the magnetic components;
the PN junctions are prone to rectify such signals.

11.2.4 Glass Fiber Optic Temperature Measurement

The advantages of glass fiber optic temperature measurement are that glass
fiber is not heated by eddy currents and that the heat conduction of glass is
low. However, the probes may be too expensive to be simply glued inside
the component.

R R eT Tr

B
T Tr=

−






1 1

DK4141_C11.fm  Page 384  Wednesday, February 9, 2005  4:21 PM

Copyright 2005 by Taylor & Francis Group, LLC



Measurements 385

11.2.5 Infrared Surface Temperature Measurement

This technique is quite easy to use. It is important to have surfaces with an
infrared emission coefficient close to 1 (paint or enamel can be sufficient).
An overestimation of the emission coefficient leads to an underestimated
measured temperature. Windings should be accessible directly without insu-
lation foil. The insulation itself gives an additional thermal resistance (insula-
tion) because of the air, so the insulation surface temperature has an
intermediate temperature, which is lower than the copper surface temperature.

11.2.6 Thermal Paint and Strips

Thermal strips and paint are quite useful, if the measurement place is visible.
The thermal strips can have the problem of thermal contact on wires. Permanent
or reversible grades can be used in practice.

11.2.7 Winding Resistance Measurement Method

In general, this technique is quite reliable when good low-resistance mea-
surement equipment is used. For a copper winding, according to IEC950,
the temperature rise is calculated as

(11.6)

where T1 is the starting temperature at the beginning of the experiment and
T2 is the end temperature, both in [K].

TABLE 11.1

Typical NTC Thermistor Data, Compared to the Equation (11.5). Data 
Used is for Thermometric 10 KΩ NTC Type JR; R25 = 10 kΩ, 5%; the 
Value of B in the Range 25–85°C is 3977 K+/− 0.75%

T [°C]
R/R25

From manufacture data
R/R25

Obtained by (11.5)

−20 9.6807 10.709
−10 5.5253 5.895

0 3.2640 3.390
10 1.9902 2.027
20 1.2493 1.255
25 1 1
30 0.8056 0.80251
40 0.5325 0.52785
50 0.3601 0.35631
60 0.2487 0.24626
70 0.1751 0.17391
80 0.1256 0.12525
90 0.9155 0.09186

100 0.6781 0.06849
105 0.05868 0.05949

∆T
R R T

R
T T= − + − −( )( , )

( )2 1 1

1
2 1

234 5
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The corresponding equation for aluminum conductors is

(11.7)

Figure 11.1 shows the average temperature rise as a function of the percent-
age change of the resistance for copper and aluminum, starting from T1 = 20°C,
in accordance with Equations (11.6) and (11.7).

11.3 Power Losses Measurements

11.3.1 Circuit Wattmeter Measurement

In principle, the losses of power electronic components can be measured
using wattmeters that have a sufficient bandwidth. The voltages in convert-
ers contain slopes up to 20 V/ns, which can reduce the accuracy of wattmeters
by parasitic mass currents and by capacitive couplings. The accuracy is also
limited due to the fact that two similar values, i.e., the input and the output
power of a transformer, are subtracted. For example, assume 99% efficiency
of a transformer. Then, even using a wattmeter with an accuracy of 0.2%
results in a losses measurement accuracy of only about 40%.

A practical problem is also that the prolongation of the wires leading to a
transformer is not allowed, due to the risk of damaging the circuit as the
parasitic inductance increases and the semiconductors may be damaged by
peak voltages or by shifted resonance frequencies. Also the number of con-
nections can make the circuit impractical, and one needs a multiple-channel
wattmeter to measure multiple-output transformers in power supplies and
fluorescent lamp converters.

In some circuits a no load or short circuit test on a transformer can be
performed. In that case the losses are equal to all the input power. Usually,
the power factor for those tests is not very low, so reasonable wattmeter
measurements can be expected.

FIGURE 11.1
Average temperature rise ∆T for copper and
aluminum as a function of the percentage
change of the resistance ∆R. The starting
temperature T1 = 20°C, ∆T = T2 − T1.

∆T
R R T

R
T T= − + − −( )( )

( )2 1 1

1
2 1

225
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To measure inductor losses, usually the leads can be prolonged without caus-
ing trouble for the circuit. However, the value of tand may be so low that high-
performance equipment should be used. In any case, at high frequencies and
low tand the measurements are not easy.

11.3.2 Oscilloscope Measurements

The wattmeter principle can also be implemented with digital oscilloscopes.
However, the problem of accurate phase measurement remains. The oscil-
loscope channels could be calibrated to phase differences as low as 1 ns [2].
However, the necessary current and voltage transducers will introduce addi-
tional errors. One possibility to check the equipment is to measure low tand
capacitors down to about tan d = 0.03%. This tand value is lower than tand
values achievable by inductors. The losses of the capacitor can be verified
by calorimetric measurement.

11.3.1.1 Example of the Accuracy Problem in Oscilloscope Measurement

A coil of 400 VA operates at 500 kHz AC and the estimated power losses are
4 W. One wants to measure the losses with an accuracy of 0.4 W, which is
10% of the losses. The angle accuracy necessary for this accuracy is 0.001 rad.
At that frequency, this value corresponds to a time accuracy of 318 picoseconds
( ). That time corresponds to the delay of a less than 10 cm long
transmission line (cable or leads)! The voltage and current transducers can
also cause an additional part of the accuracy problem.

11.3.2 Impedance Analyzers and RLC Meters

11.3.2.1 Impedance Analyzers

For inductors, the power loss could be estimated using the expression

(11.8)

where
is the RMS value of the inductor current.

The problem there is to have accurate measurements of the loss angle d.
Instruments that achieve high loss angle measurement accuracy combined
with high frequencies are impedance analyzers [3]. To obtain a high accuracy
measurement at low impedance, the impedance analyzers use a four-wire
system. The angle error is basically an error on the voltage vector. Between
1 kHz and 1 MHz, an accuracy of 0.1% can be achieved in measuring tand
for impedance values between 10 Ω and 100 kΩ [4]. At frequencies higher
than 1 MHz, the impedance magnitude is still good, but the angle accuracy
is reduced.

2

2 103 318m s ps
π ×

=

P L Iloss rms= w dtan( ) 2

Irms
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388 Inductors and Transformers for Power Electronics

The excitation voltage and current of the basic instruments (impedance
analyzers) are up to 1 V, or 20 mA. If additional amplifiers and current probes
are used, one can test at some actual power level, but the angle accuracy is
much lower [3]. For low impedances, a four-wire measurement is advisable.

Impedance analyzers are mainly intended to give a graphical output and
are useful tools to check series or parallel resonance frequencies.

11.3.2.2 RLC Meters

The RLC meters use quite similar concepts, but they test usually at discrete
frequencies. The simple versions use, e.g.,1 kHz test frequency. The more
sophisticated modifications have different frequencies, even beyond 1 MHz.
Some RLC meters use high voltage or currents. RLC meters are mainly intended
for measuring parameter deviations at given frequencies.

Low-cost RLC meters use frequencies of 1 kHz and 120 Hz. They give a
first indication of the inductance and dissipation factor. However, as the
frequency is low, the usual eddy current losses are not measured. Also, care
should be taken in short circuit tests, as the magnetizing reactance Lm can
be of the same order of magnitude as the secondary resistance Rs.

Impedance testers and RLC meters do not test at actual high power and
induction levels. Their accuracy is good for linear effects such as eddy
currents, but they are not accurate enough concerning core losses, as the
losses are not quadratic with the induction B.

11.3.3 Q-factor Test of LC Networks

In the Q-factor test an inductor or a transformer is connected in parallel to
a low loss capacitor. The frequency is set at the resonance point where current
and voltage are in phase. The multiplication of the RMS current and voltage
of the fundamental harmonic gives the power absorbed by the LC circuit.

(11.9)

where
Ploss are the losses of the magnetic component
ILC, VLC are the RMS values of the fundamental component of the current 

and the voltage to the LC circuit
Ploss,C are the losses of the capacitor.

Practically, a few problems arise in Q-factor tests:

• The losses can only be measured for sine waves.
• The resonance frequency may differ from the actually used frequency.
• The losses of the capacitor may not be well known.

P I V Ploss LC LC C loss= − ,
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• The resonance frequency may shift due to saturation of the component.
• An amplifier or an additional circuit is necessary to excite the LC

circuit at the right inductance or voltage level.
• The test might be sensitive to contact and lead losses.

The inductance can also be measured by using the resonance frequency.
However, the lead inductance and the parasitic inductance of the capacitors
used in the test should be taken into account.

11.3.4 Power Loss Estimation by Thermal Resistance

If one knows the thermal resistance of the magnetic component and the
temperature rise, one can estimate the power losses:

(11.10)

where
∆T is the temperature difference
¬q is the thermal resistance.

The practical problems when applying this loss estimation method are the
following:

1. The thermal resistance of the component is usually not known accu-
rately, as the convection heat transfer is dependent on a lot of details.

2. The practical temperature difference is dependent on the point where
it is measured and the principle of the temperature measurement.

3. The thermal resistance is dependent on the temperature difference
across the component.

However, this method can be valuable for comparing different components
with about the same shape and size, such as cores with different ferrite
grades, in one and the same construction of a magnetic component.

11.3.5 Calorimetric Power Loss Measurement

The efficiency of power electronic converters continuously increases.
Measurement methods, which tend to measure the dissipated heat directly,
are among the most accurate means to measure losses. The calorimetric
method is well suited for inductors and for entire power circuits. Measuring
transformers may have the problem that the wires cannot be prolonged
in the real circuit. Even if this is the case, a separate circuit could be built to
test transformers at similar voltage and current waveforms. Instruments that

Ploss =
ℜ
∆T

q

DK4141_C11.fm  Page 389  Wednesday, February 9, 2005  4:21 PM

Copyright 2005 by Taylor & Francis Group, LLC
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measure heat losses directly are called calorimeters. There are two kinds of
calorimeters:

• Inertia calorimeters, in which the heat content and the thermal resis-
tance are used to find the losses.

• Flow calorimeters, in which a fluid flow is used.

11.3.5.1 Inertia Calorimeter

The inertia calorimeter is well known and used, e.g., for material research in
chemistry and physics, where samples are quite homogeneous in nature and
have good thermal conductance. The total energy of a phenomenon is cal-
culated and compensated for the heat losses through the thermal insulation.
The losses in the measured component are

(11.11)

where
∆T is the temperature difference inside-outside the calorimeter
¬q is the thermal resistance inside-outside the calorimeter
Mi are the different masses in the system: the component (core, copper, 

insulation) and inner materials of the calorimeter
cp,i is the specific heat capacity of the different masses in the system.

The inertia calorimeter has a few drawbacks. Normally, the heat capacity
of the device under test (d.u.t.) has to be known or must be low. The principle
is not suited for devices with multiple masses with long internal thermal
time constants.

• In a simple closed system the component is put in a thermally insulated
box with a fan inside to homogenize the temperature [6]. The box
is calibrated with a resistor as a known heat source. One has to take
into account the mechanical power of the fan. After some time cor-
responding to the thermal time constants, the temperature difference
with the environment is measured and the dissipated power can be
calculated. The drawbacks of the system are the following:
• The long settle time, as the time constant is determined by the

total thermal inertia and the thermal resistance of the box.
• The accuracy is limited by the accuracy of the thermal resistance

of the box, which is dependent on the airflow in the room.
• An improved system uses vacuum insulation and infrared reflec-

tion. Still there is some heat drain by the wires. This system is
often used to test the components at high ambient temperature,

P
T

M c
T
tloss i

i
p i=
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such as 100°C. The system includes a vacuum-insulated, infrared-
reflecting bottle, the device under test, power wires, and a fan
(see Fig. 11.2).

• More sophisticated closed systems use copper enclosures and water
jackets together with multiple temperature measurements [6].

11.3.5.2 Flow Calorimeter

11.3.5.2.1 Principle of Operation

In a flow calorimeter, the device under test is thermally insulated from the
environment but cooled with a mass flow of a cooling fluid. This principle
has the advantage of reducing the settling time constant of the system.
Moreover, there are no fan mechanical losses inside the test chamber. At
steady state, the heat loss of the device under test is the product of the mass
flow of the cooling fluid, the temperature rise of the cooling fluid, and the
specific heat capacity of the cooling fluid:

(11.12)

where
m is the mass flow of cooling fluid (e.g., air)
cp is the specific thermal capacity at constant temperature: for air

cp = 1.0090 kJ/kg × °C at 300 K; for water cp = 4.186 kJ/kg × °C at 289 K;
, T1 is temperature before the device under test; T2 is tempera-

ture after the device under test.

Very diverse implementations of this principle can be realized.

11.3.5.2.2 Accuracy of Flow Calorimeters

The accuracy of a flow calorimeter is dependent on construction, measure-
ment details, and calibration.

FIGURE 11.2
Inertia calorimeter principle with vacuum 
insulation.

Fan motor

Temperature
measurement

Power

d.u.t.

P mc Tloss p= ∆

∆T T T= −2 1
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1. Thermal insulation of the test room.
The losses through insulation should be low, compared to the losses of

the device under test. In fact, it is sufficient if the variation of the insulation
resistance is low, as the test system can be calibrated for these known
losses.

2. The temperature measurement.
In practice, the temperature measurement should not be influenced by

electromagnetic disturbances of the equipment under test, which may not
be screened. The temperature measurements should measure the average
temperature of the air. The measuring equipment should also be insensitive
to the radiation heat transfer of the device under test. The temperature of
the environment should be quite stable. Heat sources from outside should
be avoided such as direct or indirect sunlight.

3. The settling time.
Usually a settling time of about 3 to 6 thermal time constants of d.u.t. is

necessary for large variations of the dissipated power of the tested component.
A typical time constant of a magnetic component is about 20 minutes, which
results in about 1 to 2 hours settling time.

4. Calibration.
The final accuracy of the calorimeter is obtained by calibration with a

known power by means of a resistor powered in DC. Different powers and
positions in the test room have to be tested.

5. Computer modeling.
The calorimetric measurement gets more accurate if at the same time

appropriate computer modeling is done.

11.3.5.2.3 Practical Flow Calorimeter

Here we describe a system that is based on an open air-cooled circuit,
typically made for testing power electronic equipment and magnetic devices
[7]. The system is sufficiently large in order to contain full converters or large
components, but the same principle can be redesigned for small-scale sys-
tems as well. The temperature measurements and the heating resistor for
the flow stabilization are located in a labyrinth path (see Fig. 11.3). This
labyrinth structure improves the mixing of the air in order to measure average
temperatures and to hide the sensors from infrared light coming from the
device under test or the heating resistor. The fan is a brushless DC type,
which is easy to control by the input voltage. The mass flow is stabilized by
the controlled fan while maintaining a constant 5 K temperature rise between
T4 and T3 for 200 W power of the heating resistor. At the inlet, a stack of iron
sheets is used to make a thermal low pass filter to reduce the micro temper-
ature changes, which usually are present in rooms.

Two NTC resistors in series are used for each temperature measurement
to have a more uniform measurement. A circuit is made to linearize the
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measurement of the characteristic. An accurate mass flow control is obtained
by heating the airflow a second time with a constant power and keeping the
temperature rise constant. Significant heat conduction through wires and
false inlet air must be avoided. In the arrangement there is no accuracy
loss if some false inlet air (e.g., the cable feed-through point) has the same
temperature as the actual air inlet.

If the heat losses are neglected and the cp of air is assumed constant, the
power losses of the device under test is

(11.13)

Tests with the proposed calorimeter show an absolute error better than
0.5% of the full power 600 W and a relative error better than 3% of the
measured power.

11.3.5.2.4 Conclusions

The flow calorimetric principle is well applicable to test magnetic compo-
nents at ambient temperatures, but it is not suitable for high temperature
component tests. It can be used to test full converters as most of the electronic
equipment is made to withstand at least 40°C. With a laboratory temperature
of 25°C, a temperature rise of 15°C can be used for the tests.

FIGURE 11.3
Front and top cross-section view of a calorim-
eter for loss measurements up to 600 W. The
dimensions of the inner side of the test room
are 704 mm × 420 mm by 312 mm high. The
polyurethane insulating foam has 48 mm thick-
ness with thermal resistance about 1.1 K/ W.
a) flow calorimeter, side cross-sectional view.
A: air inlet, temperature T1
B: room for device under test
C: place for measuring the temperature 
T2 = T3
D: heating resistor
E: place for measuring the temperature T4
F: regulated fan
G: control circuit
H: wire feed through
b) Flow calorimeter, top view, cover removed.
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11.4 Measurement of Inductances

11.4.1 Measurement of the Inductance of an Inductor

The inductance can be measured by checking the impedance for a given
frequency. Accurate RLC meters measure the real and imaginary part of the
impedance for a given frequency. So, they measure in fact the R-L series
equivalent network. The core losses, which are conventionally represented
as a resistor in parallel to the inductance L, are in that way converted in an
additional series resistor, which is added to the wire DC resistance. Eddy
current losses caused by normal or fringing fields are presented in the same
way as an additional series resistor. If it is relevant, the variation of perme-
ability µ depending on temperature and induction level should be taken into
account. Important variations are present when the magnetic circuit contains
no air gap.

11.4.2 No Load Test of Transformers

The test is similar to the test of inductors. Using a no load test of a transformer
we can measure the losses in the core. Remind that non-current carrying
conductors and screens are also subjected to eddy currents, which can
increase the losses. In this measurement we should check whether the copper
losses are negligible. We can also measure the primary and secondary self-
inductances L1 and L2 (see Fig. 11.4).

11.4.3  Short Circuit Test

In principle, the same approach as in the no load test can be applied in the
short circuit test (see Fig. 11.15). We assume that the magnetizing inductance
is very high ( ) and all the losses are attributed to the ohmic resis-
tance of the windings. In that approximated way, the measured resistive

FIGURE 11.4
No load test: a) measuring core losses;
b) measuring primary and secondary self-inductances L1, L2 of a transformer.

P ≅ Pfe

(a) (b)

L1 L2

L Rm1 2>> '
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part is the sum of the measured primary winding resistance and the
transformed resistance of the secondary side :

(11.14)

NOTE: Here we want to warn about a measurement error, which is often
made with ferrite transformers, especially those with air gap, and also with
small mains frequency transformers. If the measurement frequency is low,
1 kHz or lower, it is not sure that the magnetizing reactance is much higher
than the secondary resistance, especially with gapped transformers. This can
seriously affect the measuring results in the classical short circuit test!

11.4.4 Measurement of the Inductances in Transformers

Here we give a procedure to check the results of the no load test for the case,
when the primary and the secondary number of turns are not too different
(e.g., a ratio below 5). The method can also be applied if the resistance of
the windings is not low compared to magnetizing reactance. The primary
and secondary windings of the transformer are put in series in two different
ways, corresponding to the two possible ways of coupling (see Fig. 11.6).
This gives us two measurement results, which we denote as La and Lb:

(11.15)

(11.16)

The inductances L1, L2, and M are defined according to the symbols used
in Chapter 1. 

FIGURE 11.5
Short circuit test of a transformer. Measuring
ohmic losses and ohmic resistances of the
windings.

FIGURE 11.6
Measuring inductances La and Lb of a trans-
former; a) series connection, La;
b) inverse series connection, Lb.
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396 Inductors and Transformers for Power Electronics

We check the no load test results of L1 and L2 by the equation

(11.17)

If the equality is met, then the no load test measured values of L1 and L2

are correct.
Using the measured values of the inductances La and Lb, we can find the

mutual inductance M of the transformer:

(11.18)

The leakage coefficient s and the coupling coefficient k are then found as

(11.19)

(11.20)

Note that s is obtained only by measurement and no turns ratio is intro-
duced up to now, so s is independent of the actual or fictitious turns ratio
in a transformer. If we introduce the turns ratio as N1 and N2, other elements
in the equivalent transformer scheme (Fig. 1.22, Chapter 1) can be calcu-
lated as

(11.21)

(11.22)

where
Lm1 is the magnetizing inductance placed in the primary side
Lm2 is the magnetizing inductance placed in the secondary side.

One can also substitute the magnetizing inductances in the leakage
coefficient:

(11.23)

We can also calculate the leakage inductances and :

(11.24)

(11.25)

L L L La b1 2 2+ = +( )/
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Note that we can choose fictitious turns ratios, but s will remain positive.
For real turns ratios, Ls1 and Ls2 are positive. One can choose a fictitious
turns ratio in order to make Ls2 = 0, which results in an L-scheme of a
transformer or Ls1 = 0, which results in an inverse L-scheme.

In linear models, T, L, or inverse L schemes are equivalent, if the leakage
coefficient s has the same value. When saturation is considered, or if the
real turns ratio is used, there is a preference to T-schemes. In practice,
with small leakage coefficients, the L schemes are accurate enough and
easy to use.

11.4.5 Measurement of Low Inductances

When the inductance becomes in the order of 1 µH or lower, special care
should be taken concerning the measurement.

Although high-end impedance analyzers and RLC-meters can measure
values below 1 µH, here we give an alternative method. This method might
be useful for measuring leakage inductances of fly-back transformers and
also for measuring the inductance of bus bars. The resistive part of the
impedance is neglected here. Usually the lead inductance (the inductance of
the wires) is not negligible and should be considered separately. Principally,
the problem can be solved in this way:

1. A plane is chosen, which defines the physical limit of the device.
2. A current is injected perpendicular to this plane.
3. The voltage across device under test is measured with leads, which

lay in this plane and are close to each other.

The approach results in a four-wire measurement (see Fig. 11.7).
A practical way to implement such a four-wire measurement is to use a

sine wave generator with 50 Ω output impedance. A resistor with resistance
value of 50 Ω (e.g., two 1% 100 Ω resistors in parallel) is put in series with
the unknown impedance. An oscilloscope is used to measure the voltage
across the unknown impedance and across the additional 50 Ω resistor. To
avoid mass current problems, the voltage measurements can be done in a
differential way (two probes). If some connections have to be short-circuited,

FIGURE 11.7
Four-wire measuring method.
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398 Inductors and Transformers for Power Electronics

this should be done at the limit of the component, using a copper plane. The
inductance of the device under test is

(11.26)

where
f is the excitation frequency, [Hz]

is the voltage across the device under test
is the voltage across the 50 Ω resistor.

The frequency can be 100 kHz, 1 MHz, or even 10 MHz for very small
inductances, such as 10 nH. When using 159.155 kHz, 1.59155 MHz, or
15.9155 MHz, the computation is easier as it results in a round number, when
the excitation frequency f is multiplied by 2π.

11.5 Core Loss Measurements

Losses in magnetic components have been studied because of their particular
significance to the component design in power electronics. The main com-
ponents of the losses in magnetic components are the core losses and the
winding losses. Here we discuss measuring the core losses.

11.5.1 Classical Four-Wire Method

At low frequency, the copper loss of the exciting winding is an important
part of the total power. The traditional solution is to use a transformer-like
four-wire measurement set-up, where the current is measured at the exciting
winding and an EMF (electromotive force) is sensed at the secondary wind-
ing [1,8,9]; see Fig. 11.8. The solution is still applicable at high frequency
for sinusoidal wave forms, as far as the phase shift between the emf in the
exciting winding and voltage at the sense winding is low. The shown
parasitic capacitances of the primary Cp and of the secondary winding Cs

contain the intra capacitance of the windings and the capacitance of the
cables and measuring probes.

FIGURE 11.8
Transformer like material loss measurement.

Ldut

L
f

V
Vdut

dut= 50
2 50π Ω

Vdut
V50Ω

I
Rsh

Cp Cs V

DK4141_C11.fm  Page 398  Wednesday, February 9, 2005  4:21 PM

Copyright 2005 by Taylor & Francis Group, LLC



Measurements 399

But if this measurement method is used in converters with wave forms
having fast edges, for example square waves with variable duty ratio, then
typical errors occur. Such wave forms are much common for power electronics.
In these cases each voltage edge at the input causes an almost instanta-
neous capacitive current to flow due to the input capacitance of wires
and transformer. The charge transfer is typically at half the edge voltage.
In the meantime, the voltage of the sense winding does not change much.
As the average charge transfer is observed at the voltage measurement
side (secondary winding), the current of the input capacitance is observed
as a fictitious negative power (see Fig. 11.9):

(11.27)

where
Perr is approximate power error
Cin is the input parasitic capacitance
f is the excitation frequency
∆V is the voltage edge
T is the period of the excitation frequency f, T = 1/f (it contains 2 voltage edges).

The power given by Equation (11.27) can result in a non-negligible contri-
bution in the following cases: if the input connection wire is coaxial one; if
some probes are connected; or if the component is immersed in oil, which
increases the parasitic capacitance.

Example
At a frequency of 100 kHz, a square wave voltage with edges of 300 V and
a parasitic capacitance of 100 pF results in 0.9 W error! If the measurement
shunt is inductive at high frequency, which is usually the case for the charge
time of the parasitic capacitance, similar errors could be present, even if one
reduces the input parasitic capacitance.

Another  possible cause of error in the four-wire method is the eddy current
loss in exciting and sense winding. However this can be minimized using
litz wire.

FIGURE 11.9
Sketch of the input capacitance current iCp,
input voltage v1 and sensed secondary voltage v2.
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400 Inductors and Transformers for Power Electronics

11.5.2 Two-Wire Method

11.5.2.1 Osciloscope Based Measurement

Theoretically, the electrical power through a surface is obtained by integrat-
ing the contribution of the Poynting vector, which does express the power
direction of an electromagnetic wave. This can be simplified for the power
carried through a multiwire transmission line (cable), when no other power is
exchanged such as by capacitive or magnetic coupling. Then, for the average
power we can write

(11.28)

The potentials vi and the currents ii refer to the i-th conductor.
When there are two wires, we have the so-called two-wire method

(see Fig. 11.10). In the two-wire measurement one of the two wires (i = 2)
can be taken as reference. If the current through the capacitance of the
magnetic component to earth is negligible then i2 = –i1.

At high frequency for high permeability materials, the copper losses can
be kept low using an appropriate litz wire. This allows one to use a simple
total power loss measurement and afterwards to subtract the copper
losses. If air gaps are absent, the copper loss, including eddy current loss,
can be estimated by doing a test without magnetic material. The core
losses Pfe are

(11.29)

where
are the total measured losses

Pcu are the measured copper losses.

To measure the total power using Equation (11.29), an oscilloscope can
be used. Today oscilloscopes are capable of doing a data acquisition with
phase shifts lower than 1 ns. Also multiplication of channels is a standard
function.

It is important that the power measurement has a wide bandwidth and
especially a negligible phase shift between current and voltage measurement. The
phase shift should correspond with a time, for example, less than 10 times

FIGURE 11.10
Two-wire method. Measuring power to a device
with two feeding wires and a ground plane.
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the rise time of the edges. Thus, the practical problem is to have wide band
voltage and current probes and, in the same time, with a low relative phase
shift between their measurements. For power measurement, it is important
that the phase shift difference of voltage and current measurement is as small
as possible. For example, a delay of 1 ns results already in a tand difference
of 0.6% at 1 MHz.

11.5.2.2 Wide Band Current Probe

Here we present a practical solution for a wide band current probe.
The actual operating frequencies for ferrites are about 20 kHz to 1 MHz.

However, due to the fast voltage edges, it is good to extend the measuring
characteristic of the current and voltage probes up to 50 MHz. For a wide
band current probe, the use of a current transformer is preferred as mass
currents to the oscilloscope (resulting in ghost signals) can be reduced. Thus,
an increased accuracy is provided at equal signal levels, compared to shunt
measurement.

The electrical scheme of the current probe is shown in Fig. 11.11. The high
number of the resistors used is imposed for two reasons: the need for a low
parasitic inductance of the equivalent resistor and the need for sufficient
power dissipation ability. The input of the scope is 1 MΩ, 25 pF. The current
probe was constructed using a ring core TX36/23/15-3E25. The secondary
side contains two windings of 20 turns, two 0.8 mm diameter copper wires
in parallel. The current transformer is loaded with a 2 Ω resistance. This
results in a 0.1 V/A transfer impedance. The low resistance results in a low
cut-off frequency below 150 Hz. The probe is designed to accept primary
currents up to 20 A.turns RMS value.

The transmission line nature of the winding of the current probe causes
the signal to be delayed by 1–2 ns.

The current probe has been tested, using a 10 V, 50 Ω generator, loaded
with a 50 Ω resistor. The experimental amplitude-frequency characteristic of
the probe is given in Fig. 11.12.

FIGURE 11.11
Electrical scheme of the current probe.
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402 Inductors and Transformers for Power Electronics

11.5.2.3 Corresponding Voltage Probe

Here we give a practical solution for voltage probe, corresponding to the
presented above wide band current probe. The electrical scheme of the
voltage probe is shown in Fig. 11.13. The probe has a 1:100 ratio.

At low frequency, a high-pass characteristic is tuned to obtain a low phase
shift between voltage and current measurement. In addition, the lower cut-
off frequency is very low compared to the measured frequency of 100 kHz.

A small damping (33 Ω + 33 Ω) is added to give some low-pass charac-
teristic at high frequency and to compensate the phase delay of the trans-
mission line behavior of the current probe.

The experimental amplitude-frequency characteristic of the voltage probe
is given in Fig. 11.14.

The combination of both probes was tested for a sine wave voltage. The
obtained phase difference between the presented current and voltage probes
is sufficient for measuring square wave forms in the range of 1 kHz to 1 MHz.

REMARK
The power measurement should be done with short wires. A first reason is
that a 20–30 cm wire corresponds to 1 ns phase difference. A second reason

FIGURE 11.12
Amplitude-frequency characteristic of the current probe, output Vo,rms = 7.071 mV for 100 mA
peak value of the measured input sine wave current.

FIGURE 11.13
Electrical scheme of the voltage probe.
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is that an unmatched 1 m cable with some parasitic capacitance at the end
acts as a quarter wavelength antenna at  50 MHz. A third reason is that the
power losses of the leads are not negligible, and cannot easily be compen-
sated due to eddy current losses in the cable.

11.5.2.4 Flux Measurement Probe

Here we present a passive integrator that can be used to estimate the flux
linkage of the core (see Fig. 11.15). The integrating time constant is 100 µs. The
cut-off frequency is 845 Hz. This cut-off frequency is already low enough to
result in a negligible error at 20 kHz for square waves. A high accuracy of the
peak-to-peak flux measurement is required as 1% error generates about 2.5%
error in the core losses. The parasitic inductance of the leads between the flux
measurement place and the device under test has also to be taken into account.

11.5.3 Practical Ferrite Power Loss Measurement Set Up

A practical ferrite power loss measurement set up is shown in Fig. 11.16.
A bridge converter is used to feed the measured magnetic component. The
converter should have possibility of high frequency, high voltage output and

FIGURE 11.14
Amplitude-frequency characteristic of the voltage probe, output Vo,rms = 35.36 mV for 5V peak
value of the measured sine voltage input.

FIGURE 11.15
Electrical scheme of the flux measurement probe.
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404 Inductors and Transformers for Power Electronics

regulation of the duty ratio and peak-to-peak voltage, for example presented
in [10]. Also a suitable digital scope is necessary, having multiplying capa-
bility of channels.

NOTE: An exact number of periods should be displayed on the scope,
triggering at the zero crossing of the current. In this way very low windowing
errors are introduced.

Having measured the current I and the voltage V, we obtain the ferrite losses
after subtraction of the copper losses. Using Litz wire, the copper losses are
low. The order of magnitude can be estimated by doing a test without the core.

Now we have the value of the core losses, the induction B (derived by the
measurement of the flux) and the excitation frequency. Thus, we can model
the dependence , deriving optimal values of the exponents a and
b and including additional dependence on dB/dt to predict more precisely
losses at high voltage edges.

11.6 Measurement of Parasitic Capacitances

The parasitic capacitances in magnetic components are considered in details
in Chapter 7 of this book. Here we discuss the means for measuring these
capacitances.

11.6.1 Measurement of Capacitance Between Windings

The capacitance between windings (inter capacitance) is very easy to measure
at low frequency (1 kHz or below) with capacitance meters (CM); see Fig. 11.17.
In this case, the impedance of the inductance is negligible.

However, for a capacitance below 10 pF the capacitance meters are less
accurate. The solution is to use a square wave generator, having frequency in
the range 1 kHz–100 kHz, and to make a capacitive divider using an unknown
Cdut in series with the known capacitance of the probe of an oscilloscope Csc.

First, one has to calibrate (to measure) the capacitance of the probe Csc in
the same way, but using a small precise capacitance (10 pF) to be placed

FIGURE 11.16
Practical core loss measurement set up.
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instead of the unknown one (see Fig. 11.18). Knowing the voltage of the
generator Vgen and the voltage measured by the oscilloscope Vsc, the capaci-
tance of the probe Csc is

(11.30)

where
Vgen is the measured voltage of the generator
Vsc is the voltage measured by the oscilloscope

is the capacitance of the known capacitor, in the exam-
ple (see Fig. 11.18).

Second, we connect the device under test (d.u.t.) and measure the voltage
of the oscilloscope Vsc, as shown in Fig. 11.19. Now we can calculate the
unknown capacitance of the device under test as

(11.31)

11.6.2 Measurement of the Equivalent Parallel Capacitance of a Winding

Usually the first occurring resonance frequency of a transformer is the reso-
nance frequency resulting from the capacitance of the winding itself (the intra
capacitance, as described in Chapter 7) with its inductance. In transformers,
the capacitance of the high voltage winding is dominant.

FIGURE 11.17
Measurement of the capacitance between
windings by a capacitance meter (CM).

FIGURE 11.18
Calibrating the scope capacitance by a known capacitor.

CM

C
V V C

V

V V

Vsc
gen sc known

sc

gen sc

sc

=
−

=
− × −( ) ( )( )10 10 9

Cknown Cknown = 10pF

Cdut

C
V C

V Vdut
sc sc

gen sc

=
−

Generator Scope

Cknown
10 p

DK4141_C11.fm  Page 405  Wednesday, February 9, 2005  4:21 PM

Copyright 2005 by Taylor & Francis Group, LLC



406 Inductors and Transformers for Power Electronics

By the parallel resonance frequency of the winding, together with the
inductance of the winding, the equivalent parallel capacitance can be
derived. Also the capacitance of the probe has to be taken into account. A
solution that is less sensitive to the probe capacitance is to test at the low
voltage winding side or to add a winding with a low number of turns to do
so. If a square wave generator is used, the edges can be recognized and a
phase angle equal to zero can be easy obtained. The obtained capacitance is
then the equivalent capacitance, which reflects the sum of the transformed
capacitances of all the windings, as shown in Fig. 11.20. The capacitance of
the high voltage winding is much higher, N1 < N2 in Fig. 11.20. The resistance,
added in Fig. 11.20 (usually 10 kΩ), is necessary in order to increase the
impedance of the generator, e.g., to obtain a current source in respect to the
magnetic component under measurement. The sine generator in the set-up
in Fig. 11.20 could be also a square generator.

NOTE: The measured capacitance is different if the secondary side is
grounded or not grounded.

FIGURE 11.19
Accurate measurement of a small capacitance.

FIGURE 11.20
Measuring the resonance frequency of a magnetic component.
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11.7 Combined Measuring Instruments

Component test instruments can centralize a lot of measurements, such as
resistance of windings, no load inductance, short circuit inductance, tand,
capacitance between windings, and insulation tests.

The combined measuring instruments are mainly used as an accept-reject
decision device at the end of production lines and can perform this purpose
very rapidly. They are very useful to check for deviating components in the
production line.

NOTE: Attention should be paid when using the results from such combined
measuring instruments for design purposes. The components are usually
tested at low inductance levels, not corresponding to the real use, so the
measured tand may be different compared to the actual use, and the absolute
accuracy at high frequencies (500 kHz and above) may be low, giving a wrong
or even a negative tand readout. Also a low inductance and a low equivalent
series resistance are difficult to be measured with such instruments.
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Appendix A
RMS Values of Waveforms

A.1 Definitions

The RMS (root-mean-square) values are denoted with uppercase letters with-
out index. We use currents in the examples given here.

Physical Meaning of the RMS Value

The RMS value (often called the effective value or DC-equivalent value) of a
current is an equivalent of a DC current, which has the same heat dissipation
as the real current on any resistor.

RMS Value in the Frequency Domain

When a given wave form (a current in the case) comprises components with
different frequency, i.e., different harmonics, then its RMS value is given by
the sum:

(A.1)

where Ik is the RMS value of the kth harmonic.
This sum can also be separated in the frequency domain into two components:

• The DC component: IDC = I0

• The AC component: IAC = 

The basic (the first) harmonic is I1. The RMS value of the higher harmonics is

(A.2)
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410 Inductors and Transformers for Power Electronics

Using Equation (A.2) we can write

(A.3)

RMS Value in the Time Domain

The RMS value of a current, defined as i(t) in the general case, is

(A.4)

where the period of the repeating signal is T and t0 is an arbitrary time instant.

A.2 RMS Values of Some Basic Waveforms

A.2.1 Discontinuous Waveforms

The current flows during some time interval DT and it is zero for the rest
of the period T. For this case we can write

(A.5)

where
D is the duty ratio
ID is the RMS value corresponding to the nonzero part of the waveform in 

the frames of one period (see Fig. A.1)

FIGURE A.1
Waveforms: (a) D < 1; (b) D = 1.
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RMS Values of Waveforms 411

A.2.2 Repeating Line Waveforms

Repeating line wave forms are shown in Fig. A.2. The start value of the
current is I1, the end value is I2, the period is T. For 0 < t < T the current is

(A.6)

After calculating the integral corresponding to RMS value we obtain the
following result:

(A.7)

We can also write this result as

(A.8)

Equation (A.8) describes the RMS value as a function of the average value
(I1 + I2)/2 and the deviation (I1 − I2)/2. The current waveform is divided into
DC current component (I1 + I2)/2 and AC current component (I1 − I2)/2. Then
RMS value is calculated in a similar way to the equation (A.3).

A.2.3 Waveforms Consisting of Different Repeating Line Parts

The curve is composed from the line parts A, B, and C (see Fig. A.3), for
which RMS values IA, IB, and IC are calculated by Equation (A.8). The RMS
value of that waveform is

(A.9)

where
DA = TA/T, IA is the RMS value of the part with duration TA

DB = TB/T, IB is the RMS value of the part with duration TB

DC = TC/T, IC is the RMS value of the part with duration TC

FIGURE A.2
Repeating line waveforms.
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412 Inductors and Transformers for Power Electronics

Note that the current may also be discontinuous.

A.3 RMS Values of Common Waveforms

A.3.1 Sawtooth Wave, Fig. A.4.

A.3.2 Clipped Sawtooth, Fig. A.5.

FIGURE A.3
Different repeating line parts.

FIGURE A.4
Sawtooth wave.

FIGURE A.5
Clipped sawtooth.
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RMS Values of Waveforms 413

A.3.3 Triangular Waveform, No DC Component, Fig. A.6.

A.3.4 Triangular Waveform with DC Component, Fig. A.7.

A.3.5 Clipped Triangular Waveform, Fig. A.8.

FIGURE A.6
Triangular waveform, no DC component.

FIGURE A.7
Triangular waveform with DC component.

FIGURE A.8
Clipped triangular waveform.
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414 Inductors and Transformers for Power Electronics

A.3.6 Square Wave, Fig. A.9.

A.3.7 Rectangular Pulse Wave, Fig. A.10.

A.3.8 Sine Wave, Fig. A.11.

FIGURE A.9
Square wave.

FIGURE A.10
Rectangular pulse wave.

FIGURE A.11
Sine wave.
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RMS Values of Waveforms 415

A.3.9 Clipped Sinusoid, Full Wave, Fig. A.12.

A.3.10 Clipped Sinusoid, Half Wave, Fig. A.13.

A.3.11 Trapezoidal Pulse Wave, Fig. A.14.

FIGURE A.12
Clipped sinusoid, full wave.

FIGURE A.13
Clipped sinusoid, half wave.

FIGURE A.14
Trapezoidal pulse wave.
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Appendix B
Magnetic Core Data

A variety of ferrite cores and shapes exist. Here we give geometrical data of
a selection of commonly used ferrite core shapes. In the tables we use the
following abbreviations:

REMARKS

1. The parameters le and Ae are used to find the inductance of the core
when there is no air gap, which is so called inductance factor AL.

2. The parameter Amin is used to calculate the saturation limit.
3. The parameter effective volume Ve is used for calculating the losses

in the core
4. The parameters Wa, MLT, and MWW concern the corresponding coil

former.

B.1 ETD Core Data (Economic Transformer Design)

The ETD core dimensions and winding parameters are tabulated in Table B.1
and an ETD core half is shown in Fig. B.1.

le effective magnetic path
Ae effective magnetic area
Amin minimum magnetic area
Wa minimum winding area
MLT mean length per turn
MWW minimum winding width
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B.1. ETD Core Data (Economic Transformer Design Core)

TABLE B.1

ETD Core Geometrical Dimensions and Winding Parameters

Core type,
a [mm]

Geometrical dimensions   Effective core parameters of a set Winding parameters
b

[mm]
c

[mm]
d

[mm]
e

[mm]
f

[mm]
Ve

[mm3]
le

[mm]
Ae

[mm2]
Amin

[mm2]
m 

half[g]
Wa

[mm2]
MLT
[mm]

MWW
[mm]

ETD29 15.8 9.8 9.8 22 11 5470 72 76 71 14 90 53 19.4
ETD34 17.3 11.1 11.1 25.6 11.8 7640 78.6 97.1 91.6 20 123 60 20.9
ETD39 19.8 12.8 12.8 29.3 14.2 11500 92.2 125 123 30 177 69 25.7
ETD44 22.3 15.2 15.2 32.5 16.1 17800 103 173 172 47 214 77 29.5
ETD49 24.7 16.7 16.7 36.1 17.1 24000 114 211 209 62 273 85 32.7
ETD54 27.6 18.9 18.9 41.2 20.2 35500 127 280 280 90 316 96 36.8
ETD59 31 21.6 21.6 44.7 22.5 51500 139 368 368 130 366 106 41.2
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Magnetic Core Data 419

FIGURE B.1
ETD core half.
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B.2. EE Core Data

The EE core dimensions and winding parameters are tabulated in Table B.2 an EE core half is shown in Fig. B.2.

TABLE B.2

EE Core Geometrical Dimensions and Winding Parameters

Core type,
a/b/c [mm]

Geometrical dimensions Effective core parameters of a set Winding parameters
d

[mm]
e

[mm]
f

[mm]
Ve

[mm3]
le

[mm]
Ae

[mm2]
Amin

[mm2]
m,

half [g]
Wa

[mm2]
MLT
[mm]

MWW
[mm]

E5.3/2.7/2 1.4 3.8 1.9 31.4 12.7 2.5 2.3 0.08 1.76 13 2.7
E16/8/5 4.7 11.3 5.7 750 37.6 20.1 2 21.6 33 9.45
E20/10/5 5.2 12.8 6.3 1340 42.8 31.2 25.2 4 28.6 38.7 10.8
E25/13/7 7.5 17.5 8.7 2990 58.0 52.0 8 56 49 15.6
E30/15/7 7.2 19.5 9.7 4000 67.0 60 49.0 11 80 56 17.1
E34/14/9 9.3 25.5 9.8 5590 69.3 80.7 14 102 69.0 16.5
E42/21/15 12.2 29.5 14.8 17300 97.0 178 175 44 178 93 26
E42/21/20 12.2 29.5 14.8 22700 97.0 233 233 56 173 100 25.9
E47/20/16 15.6 32.4 12.1 20800 88.9 234 226 53 131 94.7 21.4
E50/21.3/14.6 14.6 34.5 12.5 20900 92.9 225 213 76 178 100 20.1
E55/28/21 17.2 37.5 18.5 44000 124 354 345 108 250 116 33.2
E60/22.3/15.6 15.6 44 13.8 27200 110 248 240 135 289 128 
E65/32/27 20 44.2 22.2 79000 147 540 530 205 394 150 39.5
E80/38/20 19.8 59.1 28.2 72300 184 392 180
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Magnetic Core Data 421

B.3. Planar EE Core Data

The E planar core dimensions and winding parameters are tabulated in
Table B.3. An E-core and an I-plate are shown in Fig. B.3. An E- and an I-core
can be combined or 2 E-cores. The I-plates may also be used for building non-
standard geometrics.

FIGURE B.2
EE core half.
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f
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Magnetic Core Data 422

TABLE B3

EE Planar Core Geometrical Dimensions

Core type,
a/b/c [mm]

Geometrical dimensions
Effective core

parameters of a set of EE cores
d [mm] e [mm] f [mm] Ve [mm3] le [mm] Ae [mm2] m* [g]

E14/3.5/5 3 11 2 300 20.7 14.5 1.1
E18/4/10 4 14 2 960 24.3 39.5 4.1
E22/6/16 5 16.8 3.2 2550 32.5 78.5 10.5
E32/6/20 6.35 25 3.18 5380 41.7 129 23
E38/8/25 7.6 30.2 4.45 10200 52.6 194 43
E43/10/28 8.1 34.7 5.4 13900 61.7 225 59
E58/11/38 8.1 50 6.5 24600 81.2 305 106
E64/10/50 10.2 53.6 5.1 40700 79.7 511 178

* m is the mass of the total E/PLT combination.

FIGURE B.3
Planar EE core half and PLT.
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B.4. ER Core Data

The ER core dimensions and winding parameters are tabulated in Table B.4. An ER-core half is shown in Fig. B.4.

TABLE B.4

ER Core Geometrical Dimensions and Winding Parameters

Core type,
a [mm]

Geometrical dimensions   Effective core parameters of a set Winding parameters
b

[mm]
c

[mm]
d

[mm]
e

[mm]
f

[mm]
Ve

[mm3]
le

[mm]
Ae

[mm2]
Amin 

[mm2]
m,

half [g]
Wa 

[mm2]
MLT
[mm]

MWW
[mm]

ER9.5 2.45 5 3.5 7.5 1.6 120 14.2 8.5 7.6 0.35 2.8 18.4 2
ER11 2.45 6 4.25 8.7 1.5 174 14.7 11.9 10.3 0.5 2.8 21.6 1.85
ER14.5 2.95 6.8 4.6 11.6 1.55 333 19.0 17.6 15.4 0.9 5.1 27 1.9
ER28 14 11.4 9.9 21.75 9.75 5260 64 81.4 77 14
ER35 20.7 11.4 11.3 26.15 14.75 9710 90.8 107 100 23
ER40 22.4 13.4 13.3 29.6 15.45 14600 98 149 139 37
ER48 21.2 21 18 38 14.7 25500 100 255 248 64
ER54 18.3 17.95 17.9 40.65 11.1 23000 91.8 250 240 61

FIGURE B.4
ER core half.
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424 Inductors and Transformers for Power Electronics

B.5. UU Core Data

The U core dimensions and winding parameters are tabulated in Table B.5.
An U-core half is shown in Fig. B.5.

B.6. Ring Core Data (Toroid Core)

In the drawings we give not-coated cores. The ring core dimensions and
winding parameters are tabulated in Table B.6. A ring core is shown in Fig. B.6.

TABLE B.5

UU Core Geometrical Dimensions and Winding Parameters

Core type,
a/b/c [mm]

Geometrical 
dimensions Effective core parameters

Winding 
parameters

d
[mm]

e
[mm]

Ve

[mm3]
le

[mm]
Ae

[mm2]
m,

half [g]
Wa

[mm2]
MLT
[mm]

U10/8/3 4.35 5 309 38.3 8.07 0.9 28 30
U15/11/6 5.4 6.4 1680 52 32.3 4 38.7 46.6
U20/16/7 6.4 8.3 3800 68 56 9 73 54
U25/16/6 12.7 9.5 3380 83.6 40.3 8
U25/20/13 8.4 11.4 9180 88.2 104 23.5 131 73
U30/25/16 10.5 14.9 17900 111 161 43 230 97
U67/27/14 38.8 12.7 35200 173 204 85
U93/76/16 36.2 48 159000 354 448 400

FIGURE B.5
UU Core half.
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Magnetic Core Data 425

TABLE B.6

Ring Core Geometrical Dimensions

Core type, a/b/c [mm]
Effective core parameters

Ve [mm3] le [mm] Ae [mm2] m [g]

T2.5/1.5/1 2.94 6 0.49 0.015
TC2.5/1.5/1 2.73 6 0.45 0.014
TN4/2.2/1.6 12.9 9.2 1.4 0.1
TN6/4/2 30.2 15.3 1.97 0.15
TN10/6/4 188 24.1 7.8 0.95
TN16/9.6/6.3 760 38.5 19.7 3.8
TN20/10/7 1465 43.6 33.6 7.7
TN25/15/10 2944 60.2 48.9 15
TN32/19/13 5820 76 76.5 29
TN36/23/15 8600 89.6 96 42
TL42/26/13 9860 103 95.8 53
TL58/41/18 23200 152.4 152.4 110
TX74/39/13 34300 165 208 170
T102/66/15 68200 255 267 325
T107/65/25 133000 259 514 680

FIGURE B.6
Ring core (toroid).
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B.7. P Core Data (Pot Core)

The P core dimensions and winding parameters are tabulated in Table B.7. A P-core half is shown in Fig. B.7.

TABLE B.7

Pot Core Geometrical Dimensions and Winding Parameters

Core type
a/b [mm]

Geometrical dimensions   Effective core parameters of a set Winding parameters
c

[mm]
d

[mm]
e

[mm]
f

[mm]
g

[mm]
h

[mm]
Ve

[mm3]
le

[mm]
Ae

[mm2]
Amin

[mm2]
m,

half [g]
Wa

[mm2]
MLT
[mm]

MWW
[mm]

P11/7 9 4.7 6.8 2.2 4.4 2.1 251 15.5 16.2 13.3 1.8 4.8 22.6 3.1
P14/8 11.6 6 9.5 2.7 5.6 3.1 495 19.8 25.1 19.8 3.2 8.65 29 4.4
P18/11 14.9 7.6 13.4 3.6 7.2 3.1 1120 25.8 43.3 36.1 6 16.8 36.7 6
P22/13 17.9 9.4 15 3.8 9.2 4.4 2000 31.5 63.4 51.3 12 26.2 44.5 7.5
P26/16 21.2 11.5 18 3.8 11 5.4 3530 37.6 93.9 76.5 20 37.1 52.6 9.3
P30/19 25 13.5 20.5 4.3 13 5.4 6190 45.2 137 115 34 53.2 62 11.1
P36/22 29.9 16.2 26.2 4.9 14.6 5.4 10700 53.2 202 172 54 72.4 74.3 12.5
P66/56 35.6 17.7 32 5.1 20.3 6.4 88300 123 717 591 550 400 130 37.9
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Magnetic Core Data 427

FIGURE B.7
P core.
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B.8. PQ Core Data

The PQ core dimensions and winding parameters are tabulated in Table B.8. A P-core half is shown in Fig. B. 7.

TABLE B.8

PQ Core Geometrical Dimensions and Winding Parameters

Core type
a/b [mm]

Geometrical dimensions   
Effective core

parameters of a set
Winding

parameters
c

[mm]
d

[mm]
e

[mm]
f

[mm]
g

[mm]
h

[mm]
Ve

[mm3]
le

[mm]
Ae

[mm2]
m,

set [g]
Wa

[mm2]
MLT
[mm]

MWW
[mm]

PQ20/16 14 8.8 12 10.3 7.9 4 2330 37.6 61.9 11 23.5 44 7.95
PQ20/20 14 8.8 12 14.3 7.9 4 2850 45.7 62.6 14 36 44 12
PQ26/25 19 12 15.5 16.1 10.5 6 6530 54.3 120 32 47.7 56.4 13.6
PQ32/20 22 13.5 19 11.5 11.6 5.5 9440 55.9 169 47 44.8 66.7 8.9
PQ35/35 26 14.4 23.5 25 11.8 6 16300 86.1 190 80 92.5 75.2 22.3
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Magnetic Core Data 429

B.9. RM Core Data

The RM-core dimensions and winding parameters are tabulated in Table B.9.
An RM-core half is shown in Fig. B.9.

FIGURE B.8
PQ core.
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TABLE B.9

RM Core Geometrical Dimensions and Winding Parameters

Core type

Geometrical dimensions
Effective core

parameters of a set Winding parameters
a

mm
b

mm
c

mm
d

mm
e

mm
f

mm
g

mm
h

mm
Ve

[mm3]
le

[mm]
Ae

[mm2]
Amin

[mm2]
m,

set [g]
Wa

[mm2]
MLT
[mm]

MWW
[mm]

RM4 11 9 4.6 10.4 3.9 9.8 >5.8 8 450 21.4 21.2 14.8 1.4 7.4 20 5.5
RM5 14.9 9.1 6.8 10.4 4.9 12.3 >6 10.2 495 19.8 25.1 19.8 3.2 9.5 25 4.8
RM8 23.2 14.3 11 16.4 8.6 19.7 >9.5 17 1850 35.5 39.5 39.5 11 30.9 42 8.6
RM10 28.5 16.2 13.5 18.6 11 24.7 >11 21.2 3470 41.7 83.2 65.3 20 44.2 52 10
RM14 42 27 19 30 15 34 >17 29 13900 70 198 168 74 111 71 18
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FIGURE B.9
RM core.
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432 Inductors and Transformers for Power Electronics

B.10 Other Information

Still other types of cores exist as H, DR, etc. For further information refer
to specific data of the manufacturers. Relevant information about the cores
and ferrite grades can be found in the corresponding sites of the world
manufactures:

www.ferroxcube.com
www.mag-inc.com
www.epcos.com
www.tokin.com
www.samwha.com
www.ferrishield.com 
www.ferrite.de 
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Appendix C
Copper Wires Data

C.1. Round Wire Data

Here we tabulate data about metric round wires in table C.1, about American
Wire Gauge (AWG), in table C.2 and Litz wire in table C.3.

TABLE C.1

Round Wire Data, Measures Table (IEC 317-0-1)

Copper Wire Standard Enameled Wires

Nominal
diameter

[mm]

Tolerances
Conductor

± [mm]

Linear Resistance
[Ω/m] at 20°C

Minimum
increase [mm]

Maximum overall 
diameter, [mm]

min max Grade 1 Grade 2 Grade 1 Grade 2

0.020 * 48.97 59.85 ** ** 0.024 0.027
0.022 * 40.47 49.47 ** ** 0.027 0.030
0.025 * 31.34 38.31 ** ** 0.031 0.034
0.028 * 24.99 30.54 ** ** 0.034 0.038
0.032 * 19.13 23.38 ** ** 0.039 0.043

0.036 * 15.16 18.42 ** ** 0.044 0.049
0.040 * 12.28 14.92 ** ** 0.049 0.054
0.045 * 9.705 11.79 ** ** 0.055 0.061
0.050 * 7.922 9.489 ** ** 0.060 0.066
0.056 * 6.316 7.565 ** ** 0.067 0.074

0.063 * 5.045 5.922 ** ** 0.076 0.083
0.071 0.003 3.941 4.747 0.007 0.012 0.084 0.091
0.080 0.003 3.133 3.703 0.007 0.014 0.094 0.101
0.090 0.003 2.495 2.900 0.008 0.015 0.105 0.113
0.100 0.003 2.034 2.333 0.008 0.016 0.117 0.125

0.112 0.003 1.632 1.848 0.009 0.017 0.130 0.139
0.125 0.003 1.317 1.475 0.010 0.019 0.144 0.154
0.140 0.003 1.055 1.170 0.011 0.021 0.160 0.171
0.160 0.003 0.812 0.891 0.012 0.023 0.182 0.194
0.180 0.003 0.644 0.707 0.013 0.025 0.201 0.217

0.200 0.003 0.5237 0.5657 0.014 0.027 0.226 0.239
0.224 0.003 0.4188 0.4495 0.015 0.029 0.252 0.266

(Continued)
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434 Inductors and Transformers for Power Electronics

TABLE C.1

Round Wire Data, Measures Table (IEC 317-0-1) (Continued)

Copper Wire Standard Enameled Wires

Nominal
diameter

[mm]

Tolerances
Conductor

± [mm]

Linear Resistance
[Ω/m] at 20°C

Minimum
increase [mm]

Maximum overall 
diameter, [mm]

min max Grade 1 Grade 2 Grade 1 Grade 2

0.250 0.004 0.3345 0.3628 0.017 0.032 0.281 0.297
0.280 0.004 0.2676 0.2882 0.018 0.033 0.312 0.329
0.315 0.004 0.2121 0.2270 0.019 0.035 0.349 0.367
0.355 0.004 0.1674 0.1782 0.020 0.038 0.392 0.411
0.400 0.005 0.1316 0.1407 0.021 0.040 0.439 0.459
0.450 0.005 0.1042 0.1109 0.022 0.042 0.491 0.513
0.500 0.005 0.08462 0.08959 0.024 0.045 0.544 0.566
0.560 0.006 0.06736 0.07153 0.025 0.047 0.606 0.630
0.630 0.006 0.05335 0.05638 0.027 0.050 0.679 0.704
0.710 0.007 0.04198 0.04442 0.028 0.053 0.762 0.789
0.800 0.008 0.03305 0.03500 0.030 0.056 0.855 0.884
0.900 0.009 0.02612 0.02765 0.032 0.060 0.959 0.989
1.000 0.010 0.02116 0.02240 0.034 0.063 1.062 1.094
1.120 0.011 *** *** 0.034 0.065 1.184 1.217
1.250 0.013 *** *** 0.035 0.067 1.316 1.349
1.400 0.014 *** *** 0.036 0.069 1.468 1.502
1.600 0.016 *** *** 0.038 0.071 1.670 1.706
1.800 0.018 *** *** 0.039 0.073 1.872 1.909

2.000 0.020 *** *** 0.040 0.075 2.074 2.112
2.240 0.022 *** *** 0.041 0.077 2.316 2.355
2.500 0.025 *** *** 0.042 0.079 2.578 2.618
2.800 0.028 *** *** 0.043 0.081 2.880 2.922
3.150 0.032 *** *** 0.045 0.084 3.233 3.276

3.550 0.036 *** *** 0.046 0.086 3.635 3.679
4.000 0.040 *** *** 0.047 0.089 4.088 4.133
4.500 0.045 *** *** 0.049 0.092 4.591 4.637
5.000 0.050 *** *** 0.050 0.094 5.093 5.141

* For these tolerances the figures are not relevant.

** For the wires with nominal diameter below 0.071 mm, the numerical value of the
minimum increase of the enamel for Grade 1 is equal to 0.1 times the nominal conductor
diameter.

*** Values are not fixed.

Note: The given nominal diameters of the wires in the Table C.1 refer to the copper diam-
eters, as it is important for the wire resistance. Sometimes wires with the same copper
diameter can have different enamel insulation thickness.
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Copper Wires Data 435

C.2. American Wire Gauge Data

TABLE C.2

American Wire Gauge Data

AWG#
Nominal cross
section [mm2]

Resistance
[mΩ/m]

Nominal outer
diameter* [mm]

0000 107.23 1.608 11.68
000 85.03 2.027 10.4
00 67.42 2.557 9.27
0 53.48 3.224 8.25
1 42.41 4.065 7.35
2 33.63 5.128 6.54
3 26.67 6.463 5.83
4 21.15 8.153 5.19
5 16.77 10.28 4.62
6 13.30 13.0 4.11
7 10.55 16.3 3.66
8 8.367 20.6 3.26
9 6.632 26.0 2.91

10 5.241 32.9 2.67
11 4.160 41.37 2.38
12 3.308 52.09 2.13
13 2.626 69.64 1.90
14 2.002 82.80 1.71
15 1.651 104.3 1.53
16 1.307 131.8 1.37
17 1.039 165.8 1.22
18 0.8228 209.5 1.09
19 0.6531 263.9 0.948
20 0.5188 332.3 0.874
21 0.4116 418.9 0.785
22 0.3243 531.4 0.701
23 0.2508 666.0 0.632
24 0.2047 842.1 0.566
25 0.1623 1062.0 0.505
26 0.1280 1345.0 0.452
27 0.1021 1687.6 0.409
28 0.08046 2142.7 0.366
29 0.06470 2664.3 0.330
30 0.05067 3402.2 0.294
31 0.04013 4294.6 0.267
32 0.03242 5314.9 0.241
33 0.02554 6748.6 0.236
34 0.02011 8572.8 0.191
35 0.01589 10849 0.170
36 0.01266 13608 0.152

(Continued)
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TABLE C.2

American Wire Gauge Data (Continued)

AWG#
Nominal cross
section [mm2]

Resistance
[mΩ/m]

Nominal outer
diameter* [mm]

37 0.01026 16801 0.140
38 0.008107 21266 0.124
39 0.006207 27775 0.109
40 0.004869 35400 0.096
41 0.003972 43405 0.0893
42 0.003166 54429 0.0762
43 0.002452 70308 0.0685
44 0.00202 85072 0.0635

* The given diameter is the outer diameter of the wire including
the insulation.
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C.3. Litz Wire Data

TABLE C.3

Litz Wire Data (only a selection is given)

Number
of strands

Nominal cross
section of all

conductors [mm2]

Nominal outer
diameter of

Litz wire [mm]
Resistance [mΩ/m]

min max
Welding
time [s]

Diameter* 0.05 mm

16 0.0314 0.327 495 652 3
25 0,0491 0.397 317 417 3
60 0.1178 0.62 132 174 5

100 0.1963 0.78 79 104 5
200 0.3926 1.12 39 52 8
420 0.8047 1.5 19 25 11

Diameter* 0.071 mm

16 0.0633 0.44 249.1 310.3 3
25 0.099 0.54 159.4 198.6 4
60 0.2376 0.84 66.6 82.7 6

100 0.3959 1.16 39.8 49.6 8
200 0.7918 1.47 19.9 24.8 10
405 2.1033 2.097 9.9 12 19

Diameter* 0.10 mm

16 0.1257 0.62 127.6 149.7 5
25 0.1964 0.76 81.64 95.81 5
60 0.4712 1.15 34.02 41.13 8

100 0.7854 1.47 20.41 24.68 10
200 1.5708 2.15 10.2 12.34 14
400 3.1416 2.87 5.103 6.17 19

Diameter* 0.15 mm

50 0.88 18.3 20.1 11
150 2.66 6.3 6.7 15
200 3.53 4.7 5.0 16
300 5.30 3.1 3.6 18
400 7.07 2.3 2.5 22

Diameter* 0.20 mm

16 0.5027 1.28 33.01 36.4 8
25 0.7854 1.55 21.13 23.28 10
60 1.885 2.3 8.8 9.99 15

100 3.14 2.9 5.28 5.99 19
550 17.29 6.75 0.93 1.03 30

Diameter* 0.28 mm

16 0.985 1.71 16.86 18.17 10
25 1.54 2.14 10.79 11.62 12 
60 3.695 3.2 4.47 4.84 16

100 6.158 4.2 2.698 2.907 20
405 24.93 8.43 0.67 0.76 60

* The given diameter is the diameter of one conductor in Litz wire.
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Appendix D
Mathematical Functions

Here we give some properties of exponential and hyperbolic complex functions
used in this book.
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