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 
Abstract— In this letter, the zeroth-order and TM10 modes of 
composite right/left-handed (CRLH) mushroom resonator are 
investigated with regards to the number of cells. It is shown 
that in addition to 2N-1 metamaterial resonance frequencies in 
an N-cell mushroom resonator, there is also a resonance which 
belongs to TM10 mode of the unit-cell. This TM10 mode is the 
fundamental mode of the patch which occurs at a frequency 
above metamaterial resonance frequencies. These two types of 
resonance frequencies yield 2N resonances in an N-cell CRLH 
mushroom resonator. This is beneficial especially in one-unit 
cell case due to dual-band operation. To investigate this 
feature, three types of mushroom resonant antennas with 
different number of cells (N=3, 2, 1) are designed and 
implemented. Based on theoretical investigation, a single-cell 
dual-band CRLH mushroom resonant antenna is proposed. At 
the zeroth-order mode (2.88GHz), the proposed antenna has a 
dimension of approximately ૙. ૚ૢૃ	 ൈ 	૙. ૙ૢૃ	 ൈ ૙. ૙૚૝ૃ while 
achieving a gain and an efficiency of -0.82 dBi and 46%, 
respectively. 
 

 
Index Terms —Composite right/left-handed (CRLH) 

resonator, multiband antenna, mushroom structure, zeroth-
order resonant antenna (ZORA). 
 

I. INTRODUCTION 

VER the last decade, increasing demands for low 
profile multifunctional antennas have resulted in 

considerable interest in a research community of 
electromagnetic metamaterials (MTM). MTM was first 
realized using artificial structures made of wires and split 
ring resonators (SRRs) [1]. Meanwhile, some researchers 
proposed another type of MTMs known as composite 
right/left-handed (CRLH) structures which is based on an 
equivalent circuit approach [2]. Two of their main 
applications are in leaky wave and resonant antennas. 
Introducing zero and negative-order modes (n=0,-1,-2,…) is 
the intriguing property of CRLH resonators to achieve 
multiband functionality and miniaturization. It is well-
known that mushroom configuration [3], as a CRLH 
structure, provides left-hand propagation. Based on CRLH 
resonator theory, the number of resonances (2N-1) is 
defined by the number of cells (N) [2]. Consequently, a 
multiband characteristic is obviously present in a multi-cell  
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CRLH resonant structure. Although the word "MTM" is 
compatible with a periodic structure, in reality, one has to 
reduce the number of cells to have a compact resonator and 
there are several reports on a single unit antenna, which is 
referred to as metamaterial-inspired antenna [4]-[7]. 
Nevertheless, previous works did not provide a theory to 
delineate how a metamaterial-inspired antenna can show 
dual-band operation. 

In this letter, the zeroth-order and TM10 modes of CRLH 
mushroom resonators with regards to the number of cells 
are investigated. It is shown that in an N-cell mushroom 
resonator, the TM10 mode which is defined by the length of 
radiating edges of the unit-cell is excited above 2N-1 
metamaterial resonance frequencies. These two types of 
resonance frequencies lead to 2N resonances in an N-cell 
CRLH mushroom resonator. This is practical especially in 
one-unit cell case due to dual-band operation with more 
compact size in comparison with multi cells resonators. To 
investigate this feature, three types of mushroom resonant 
antennas with different number of cells (N=3, 2, 1) are 
designed and implemented. The resonance frequencies are 
extracted from simulations and compared with 
measurement results. The commercial CST Microwave 
Studio software is adopted for simulations. 

II. THEORY OF CRLH RESONATOR 

In practical implementation, the CRLH equivalent circuit 
represents the most general possible MTM structure. When 
a CRLH transmission line (TL) is not terminated to a 
matched load, standing wave is produced and TL converts 
to a resonator. For a resonator of length l consisting of N 
unit cells with period p, resonance frequencies occur where 
the physical length of the resonator, l, is multiple of half a 
wavelength (λ) or the electrical length is a multiple of π.  
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Here, βm is the propagation constant of mode, m is the mode 
number and N is the number of unit cells. Well-known 
metamaterial CRLH modes are achieved when m=0, ±1, …, 
±N-1. Therefore, 2N-1 resonances (i.e. N-1 positive-order 
resonance (POR), N-1 negative-order resonance (NOR) and 

Zeroth-Order and TM10 Modes in One-Unit Cell 
CRLH Mushroom Resonator 

Navid Amani and Amir Jafargholi, Member, IEEE 

O



1536-1225 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/LAWP.2015.2407955, IEEE Antennas and Wireless Propagation Letters

 REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

2

one zeroth-order resonance (ZOR)) are achieved from an N-
cell CRLH resonator.  

In addition to CRLH resonances, another resonance 
frequency occurs at the higher frequency in comparison 
with CRLH modes when m=N. In this case, the equation (2) 
becomes βm=π/p and this resonance locates at the edge of 
the first positive-order bandgap of the Brillouin zone. It 
should be noted that this resonance frequency is due to the 
unit cell resonating. Therefore, 2N resonance frequencies 
are accessible from an N-cell CRLH resonator (2N-1 CRLH 
resonances and one resonance of the unit cell). Mushroom 
structure as the simplest CRLH configuration which 
comprises a patch and via is examined here to investigate 
the theory. It is well-known that a simple rectangular patch 
antenna, at its fundamental mode, has two radiating edge 
with in-phase and two non-radiating edge with out-of-phase 
field distributions. By converting a simple patch to a 
mushroom resonator with via-process, it will also have 
CRLH features. Due to this conversion, CRLH resonances 
(2N-1) are accessible according to the number of cells while 
the fundamental TM10 mode of the patch is preserved. This 
is beneficial especially in one-unit cell case due to dual-
band operation. 

In order to investigate the aforementioned theory, three 
microstrip antennas based on mushroom resonators with 
three-, two- and one-cell structure have been designed, 
simulated and fabricated. 

III. ANTENNA DESIGN 

In this section to extract dispersion diagram, two 
different methods are used. One is using two-port 
simulation and employing scattering parameters, and the 
other is based on computing lumped-element values in 
equivalent circuit model. Figures 1(a) and (b) demonstrate 
schematic and dimensions of a mushroom unit cell with its 
equivalent circuit model. The structure dimensions are also 
labeled at the figure caption. Two-port simulation setup is 
adopted as shown in Fig. 1(a) and 1-D dispersion diagram is 
extracted. Two extra 50Ω microstrip sections are added to 
both ends of the unit-cell. It is imperative to de-embed the 
ports to eliminate phase shift due to the additional length of 
microstrip lines [9]. 0.2mm gap in the unit-cell refers to the 
gap between cells introducing the left-hand capacitance. 
With the evaluated scattering parameters, dispersion 
diagram is calculated by (with period p): 
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The series parameters of the proposed structure are LR=13.7 
nH and CL=0.18 pF. Resonance frequency of the zeroth-
order mode due to open-ended termination is ௥݂ ൌ
1/ሺ2ߨඥܮ௅ܥோሻ. With the shunt parameters of CR=1.97 pF 
and LL=1.58 nH, the zeroth-order resonance frequency 
occurs at 2.85GHz. 

 
                            (a)                                                  (b) 

 
(c) 

Fig. 1. (a) Two port simulation setup for mushroom structure on 1.524mm 
thick Rogers RO-4003 substrate with dielectric constant of 3.55, 
p=20.2mm, W=10mm, g=0.2mm, d=2.4mm, (b) equivalent circuit model 
with right- and left-hand parameters (c) dispersion diagram extracted by 
circuit model and full-wave simulation. 
 

According to the equivalent circuit of Fig. 1(b), 
dispersion diagram is calculated using [Eq. 2, 9]. Figure 
1(c) shows the dispersion diagrams of the proposed 
structure while good agreement between the two methods 
has been achieved. Based on aforementioned theory, it is 
expected that the TM10 mode will be located at the upper 
edge of the first RH band. According to Fig. 1(c), this mode 
happens at about 4.2GHz.  

It should be noted that, symmetrical mushroom structure 
(via at the center of the patch) is investigated here. 
However, displacement of via from the center of the patch 
elaborates field distribution. Consequently, it provides 
asymmetrical field distribution at both zeroth-order and 
TM10 modes which may lead to shift both these resonance 
frequencies. 

IV. ANTENNA REALIZATION 

In this section, three open-ended mushroom resonant 
antennas with different number of cells (N=3, 2, 1) are 
investigated. The proposed antennas are implemented on 
1.524mm thick Rogers RO-4003 substrate with dielectric 
constant of 3.55. A 50Ω proximity-coupled microstrip line 
is used as the feed network so that the input impedance is 
matched to 50Ω SMA connector. The proposed mushroom 
resonant antenna consisting of three periodically cascaded 
unit cells is illustrated in Fig. 2. Measured and simulated 
reflection coefficients of the proposed 3-cell CRLH 
mushroom resonant antenna and its manufactured 
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