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Abstract

Advanced wireless communication and sensing systems have created a growing

need for high performance, compact antennas. Low-profile wideband phased arrays

are of particular interest, and have recently been shown to be capable of extremely

large bandwidths. However, the size, weight, and cost of phased arrays still makes

them impractical for many applications. The development of thinner, lightweight,

and inexpensive wideband arrays is critical to improving the capabilities of small

platforms such as small unmanned aerial vehicles.

Like all antennas, phased arrays are limited by a fundamental compromise be-

tween size and performance. Although the theoretical limitations of electrically small

antennas have been well known for over 60 years, similarly general limits have not yet

been developed for periodic antenna arrays. In the first part of this thesis, we derive a

new fundamental bandwidth limit for any periodic array that is backed by a conduct-

ing ground plane and constructed from passive and reciprocal materials. This limit is

related to several critical design factors, including the array’s thickness, polarization,

scan angle, materials used, as well as the overall complexity of the array design. We

also consider the common case when all radiating currents are confined to a thin

planar sheet placed above the ground plane. We show here that such planar phased

arrays have a fundamental impedance bandwidth limit of 8.3:1 (with VSWR≤2:1), in
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the absence of material loading. This bandwidth may be further improved by adding

dielectric superstrate or magnetic substrate material layers.

Knowledge of such fundamental bandwidth limits is extremely useful in the design

of practical wideband arrays, which is the focus of the second part of this thesis. A

key challenge with many wideband arrays is developing a feed circuit that supports

extremely wide bandwidths without significantly adding to the size, weight, and cost

of the design. Here, we demonstrate a novel approach that overcomes this problem by

exploiting the natural reactance of the feed circuit as a simple impedance matching

network for the array. The result is a simultaneous reduction in size and weight and

improvement in bandwidth compared to other feeding techniques. We refer to our

design as the Tightly Coupled Dipole Array with Integrated Balun (TCDA-IB), and it

achieves 7.35:1 bandwidth while maintaining a low VSWR of ≤ 2.65:1 while scanning

to ±45◦ in all planes. A prototype 8×8 array was constructed and demonstrated

excellent performance relative to simulation. We also demonstrate that by adding re-

configurable components to the TCDA-IB, its maximum scan angle may by increased

to as much as ±70◦ while maintaining a 5:1 impedance bandwidth.

Our fundamental bandwidth limits reveal for the first time the extent of the real-

izable design space for wideband low-profile arrays, and suggest there are significant

opportunities for further improvement. Several practical techniques are also pre-

sented for increasing bandwidth and scanning performance while reducing the total

size, weight and cost of the array. In summary, the ongoing development of high-

performance wideband low-profile arrays will likely remain an important and fertile

area of research for the foreseeable future.
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5.11 Reflection coefficient of TCDA with feed circuit, using the equivalent
circuit model (Fig. 5.14) with values given in Table 5.2, and the full
wave model of a “half” unit cell (Fig. 5.10b) with dimensions given in
Table 6.1. (a) Broadside scan. (b) 45◦ H−plane scan (c) 45◦ E−plane
scan, showing circuit response using both TM substrate mode via
(5.1)-(5.3), and TEM substrate mode via (5.4)-(5.5) . . . . . . . . . . . . . . 161

5.12 VSWR of TCDA with feed circuit, using the equivalent circuit model
(Fig. 5.14) with values given in Table 5.2, and the full wave model of
a “half” unit cell (Fig. 5.10b) with dimensions given in Table 6.1. . . . . . 162

5.13 Top down representation of the unit cell. The impedance of the unit
cell is proportional to the aspect ratio dE/dH . By splitting the cell
into two halves, the impedance of each is correspondingly reduced by
a factor of two. Recombining these halves in parallel again reduces the
impedance at the common port by another factor of two. . . . . . . . . . . . 165

5.14 TCDA-IB equivalent circuit with a Marchand balun feed. The addition
of the balun’s two transmission line stubs increases the overall order of
the matching network, leading to increased impedance bandwidth. . . . . 165

xxi



6.1 (a) Physical representation of the Marchand balun. (b) Conceptual
representation of the Marchand balun, showing it to be a simple trans-
former. The unbalanced line feeds the primary loop, and the secondary
loop excites the balanced output. The secondary loop is grounded in
the center at the bottom, which balances the output voltage with re-
spect to the ground of the unbalanced input. The frequency response
and impedance match of the balun is determined by the impedances
and lengths of the transmission line sections. . . . . . . . . . . . . . . . . . . . . 170

6.2 Implementation of a unit cell of the TCDA-IB. Each unit cell contains
two 100Ω baluns, fed by a single 50Ω microstrip trace. Dimensions are
provided in Table 6.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.3 Simulated VSWR of TCDA-IB, matched from 0.68-5.0GHz (7.35:1
BW). This simulation differs from that of Fig. 5.12 only in that the en-
tire “double” unit cell is modeled with both baluns and the Wilkinson
combiner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.4 Simulated co-polarized gain per unit cell of TCDA-IB. . . . . . . . . . . . . . 175

6.5 Simulated cross-polarized gain per unit cell of TCDA-IB using Lud-
wig’s third definition, illustrating excellent cross-polarization in the
principal planes and better than -15 dB over most of the band in the
D-plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.6 “Egg-crate” implementation of dual-polarized TCDA-IB. Orthogonal
elements intersect at the coupling capacitance via a partial slot cut in
both boards. The elements are otherwise unchanged from the single-
polarized design of Fig. 6.2. A small gap is preserved between the
orthogonal elements and no soldering is required at the joint. . . . . . . . . 181

6.7 Simulated VSWR of the dual-polarized TCDA-IB unit cell, with one
polarization excited and the other terminated. Array is matched to
<2.65:1 in all scan planes from 0.71-4.9GHz . . . . . . . . . . . . . . . . . . . . 182

6.8 Simulated co-polarized gain of the dual-polarized TCDA-IB unit cell,
with one polarization excited and the other terminated. . . . . . . . . . . . . 183

6.9 Simulated cross-polarized gain of the dual-polarized TCDA-IB unit
cell, with one polarization excited and the other terminated. . . . . . . . . . 184

xxii



6.10 Simulated coupling between the neighboring orthogonal elements within
the dual-polarized TCDA-IB array of Fig. 6.6. . . . . . . . . . . . . . . . . . . 185

6.11 Sketch of the TCDA-IB design used for the 8×8 prototype array. Di-
mensions are listed in Table 6.2. This represents an earlier design with
slightly reduced bandwidth than the final TCDA-IB of Fig. 6.2. . . . . . 187

6.12 Simulated VSWR of the priliminary TCDA-IB design from Fig. 6.11.
The array is matched from 0.69-4.37GHz with VSWR<2.5 over a ±45◦

scan volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.13 Photograph of the fabricated 8 × 8 TCDA-IB prototype with half of
the superstrate removed to show the array details. Note the extended
dipole arms of the edge elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

6.14 Closeup of single element of TCDA-IB prototype element, showing
both front and back metallization. . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.15 Closeup of TCDA-IB prototype aperture showing element details. . . . . 192

6.16 Profile of TCDA-IB prototype, showing total height above ground
plane of 1.75′′. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

6.17 Detail of TCDA-IB prototype underside showing element mounting
and coaxial connectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

6.18 Entire TCDA-IB prototype array showing 64:1 power divider network. . 195

6.19 Measured VSWR of the TCDA-IB prototype, measured through a 64:1
matched power divider. The return loss was compensated for the round
trip insertion loss of the power divider and cables. Scanning VSWR
is artificially low due to out-of-phase reflections absorbed within the
power divider. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.20 The prototype TCDA-IB was mounted on a 4′×6′ ground plane and
measured in the anechoic compact range at The Ohio State University. . 198

xxiii



6.21 Measured co- and cross-polarized gain of the 8×8 TCDA-IB prototype
at broadside. (a) Gain at broadside vs. frequency. Also plotted is the
theoretical aperture limit for the array, calculated using the area of the
active elements, as well as the total area including the extended dipole
arms. (b) Measured patterns in E-plane (blue solid) and H-plane (red
dotted) at several frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

6.22 Measured gain of the TCDA-IB prototype, scanning to 45◦ in the H-
plane. (a) Gain vs. frequency at nominal beam center. (b) Gain
pattern in H-plane at several frequencies. The nominal beam center
at 45◦ is noted by a vertical line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

6.23 Measured gain of the TCDA-IB prototype, scanning to 45◦ in the E-
plane. (a) Gain vs. frequency at nominal beam center. (b) Gain
pattern in E-plane at several frequencies. The nominal beam center at
45◦ is noted by a vertical line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

6.24 Measured gain of the TCDA-IB prototype, scanning to 45◦ in the D-
plane. (a) Gain vs. frequency at nominal beam center. (b) Gain
pattern in D-plane at several frequencies. The nominal beam center
at 45◦ is noted by a vertical line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.25 The D-plane feed excited only 48 of 64 elements, with the center 8
diagonals in progressive phase, and the remaining elements in two cor-
ners terminated in matched loads. The maximum gain is reduced by
∼1.25dB, and the θ̂ and φ̂ beamwidths are unequal. . . . . . . . . . . . . . . . 203

6.26 Full patterns of the TCDA-IB prototype array scanning in the D-plane.
Nominal beam center is at θ = 45◦, φ = 45◦. . . . . . . . . . . . . . . . . . . . . 203

7.1 TCDA with screen forming “switchable” ground plane. The red squares
indicate the location of switches. A fixed PEC ground plane (not
shown) is located at the bottom of the array. . . . . . . . . . . . . . . . . . . . 208

7.2 Simulated VSWR of TCDA-IB with switchable ground plane and tun-
able dipole capacitance, matched over 630MHz-5GHz (8:1 BW). Un-
fortunately, the impedance match at intermediate scan angles is signif-
icantly worse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

xxiv



7.3 Scanning the TCDA-IB with switchable ground plane in the H-plane.
Although the widest scan position at θ = 60◦ is well matched over the
entire band when the switches are turned off, even a slight reduction
in scan angle to 55◦ or 50◦ produces large mismatches whether the
switches are on or off. This indicates that discrete switches are unlikely
to be effective, and a continuously tunable approach is preferred for
covering the entire scan volume. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

7.4 Circuit model for a wide-scan TCDA with tunable substrate layer.
Note the variable capacitors Csurf and CCoupling, implemented with
varactor diodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

7.5 TCDA-IB unit cell with tunable substrate layer. The tunable layer con-
sists of two thin horizontal wires per unit cell, populated with tunable
varactor diodes, indicated in red. Biasing the layer is straightforward,
and can be done at the array edges without disturbing the individ-
ual elements. Varactors also load the dipole tips, which can be easily
biased through the balun’s ground plane. . . . . . . . . . . . . . . . . . . . . . . 213

7.6 Impedance bandwidth of the reconfigurable TCDA-IB from Fig. 7.5.
(a) Optimized for ±60◦ scan volume, with 6.6:1 bandwidth. (b) Opti-
mized for ±70◦ scan volume, with 5.4:1 bandwidth. . . . . . . . . . . . . . . . 215

7.7 Simulated co-polarized and cross-polarized radiated power for wide-
scan TCDA in the D-Plane. The polarization is defined using the
Ludwig-3 definition. Curves are labeled with the scan angle measured
from normal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

8.1 To scale comparison of the TCDA-IB unit cell with integrated balun to
the standard TCDA which requires external baluns or 180◦ hybrids at
each element to implement a wideband scanning array. It is clear that
the integration of a compact balun has significant size, weight and cost
advantages. Additionally the performance is significantly improved,
since the bandwidth is increased from 5.5:1 to 7.35:1, and the insertion
loss from the balun is significantly reduced. . . . . . . . . . . . . . . . . . . . . . 221

8.2 Survey of wideband array performance PA vs. electrical thickness k0h.
The fundamental limit under constant polarization is given by the
heavy black line, and the limit for arbitrary polarization is given by
the dotted line. The TCDA-IB designs of Chapters 6-7 are shown in red. 223

xxv



Chapter 1: Introduction to Wideband Low-Profile Phased

Arrays

The demand for more bandwidth is skyrocketing at an exponential rate. The

average speed of a high-end personal internet connection increases by more than 50%

every year [1], and with the advent of smart phones and mobile broadband, traffic on

cellular networks is growing at an even faster rate [2], see Fig. 1.1.

This trend is unlikely to slow down, nor is it limited to mass market commer-

cial technologies. Today’s military systems must collect and process a tremendous

amount of data from various sensors distributed among personnel, equipment, satel-

lites, manned and unmanned vehicles, and then redistribute this information to a

myriad of end users. This level of interconnectivity provides the modern warfighter

with unprecedented informational superiority and situational awareness.

However, developing the next generation of robust wireless networks, radios, and

sensors that can keep pace with this voracious appetite for more information is not

an easy task. Platforms such as small unmanned aerial vehicles (UAV) or compact

hand-held devices have limited available size, weight, and power, yet they still must be

equipped with high performance RF sensors and provide high bandwidth connectivity.

Moreover, the distribution of these capabilities across a large number of users and

platforms requires low-cost implementations. There is therefore significant interest in
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Figure 1.1: Exponential growth in bandwidth usage. (a) Speed of a high-end personal
internet connection, showing 55% annual growth [1]. (b) Average cellular traffic
showing 70% annual growth in recent years [2].

developing new wideband antenna technology that can provide greater performance

in a compact and cost effective form.

Of particular interest are low-profile phased arrays that can operate over wide

bandwidths (3:1 or more) with a wide scanning field of view (≥ ±45◦). Phased arrays

are ideal for many applications because their high gain directional beams enable long

range point-to-point communication and high-resolution sensing. Unlike reflectors,

phased arrays can be mounted conformally on the skin of a vehicle, and can produce

multiple electronically steered beams.

Another emerging application for wideband arrays is for multi-functional RF sys-

tems. Installing multiple antennas on a platform is often undesirable for aerodynamic,

structural, and budgetary reasons. Therefore, rather than using a separate antenna

for each system, a single wideband array may support a collection of individual sys-

tems and radios [3]. Fig. 1.2 depicts common waveforms and frequency bands used in
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Figure 1.2: Modern military and commercial platforms use many radios spanning
many decades of bandwidth. Without wideband multi-functional antennas, each radio
would require a separate antenna. Figure courtesy of Dr. Dev Palmer and Dr. Sanjay
Raman, DARPA/MTO.

commercial and military environments. A UAV or telecommunications base station

may contain radios that span several decades of bandwidth, stretching the capabil-

ities of current wideband arrays. Reconfigurable systems such as software defined

radios and adaptive radars may also require wideband arrays in order to support

their various operational modes, waveforms, and bands.

Despite their usefulness, the size, weight, and cost of wideband phased arrays still

makes them impractical for some applications and platforms. While the capabilities

of the underlying electronics continue to grow exponentially each year, there is un-

fortunately not a similar exponential trend in antenna capabilities. Rather, the laws
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of physics impose fundamental limits on the size and performance of electromagnetic

systems – Moore’s law does not apply to Maxwell’s equations. Nevertheless, there re-

mains opportunity for improvement, and recent years have seen several advancements

in state-of-the-art wideband low-profile phased arrays.

The goal of this thesis is two-fold. First and foremost, we seek to determine

the fundamental limits of performance for low-profile phased arrays, and to establish

which design factors are most critical to reaching this limit. Secondly, we seek to deter-

mine how our understanding of these limitations may be applied to develop practical

wideband arrays that achieve superior bandwidth and electrical performance, while

reducing the total size, weight, and cost of the system.

1.1 Wideband Arrays above a Conducting Ground Plane

Antenna miniaturization is a challenging problem, famously illustrated by the

Wheeler-Chu limits [4], [5], which define the maximum possible gain and bandwidth

for any electrically small antenna. Although high gain arrays are not electrically

small and thus the Wheeler-Chu limits do not provide a useful bound, they do face

a similar miniaturization problem. Just as reducing the electrical size of a small

antenna has a dramatic effect on its gain and bandwidth, placing an antenna array

in close proximity to a conducting ground plane will also significantly deteriorate its

performance.

The reason for this phenomenon can be understood by considering the current

distribution of a low profile array placed above a ground plane, as shown in Fig.

1.3. For an array radiating in the z direction, the radiating currents must lie in the

x-y plane. The virtual currents below the ground plane are the mirror image of the
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Figure 1.3: (a) A low-profile array of height h above a conducting ground plane. For
an array radiating at broadside, radiating currents are horizontal (b) Representation
of the array using image theory. If h is electrically small, the image currents will
cancel and prevent efficient broadside radiation.

primary currents, running in the opposite direction. If the array is sufficiently thick,

these image currents may not necessarily degrade the performance of the array. In

fact, if the primary currents are λ/4 above the ground plane, the image currents

add constructively and the array will radiate efficiently. However, if the array is

electrically thin (h � λ/4), the primary and image currents will add destructively,

regardless of how sophisticated the array design may be. The array will therefore

have large currents, however it will radiate very little power. This ratio of stored

(reactive) power to radiated (real) power is denoted by the quality factor or Q of

the system. Since, as is well known, the impedance bandwidth of a simple resonant

circuit is fundamentally limited by its Q [6], low-profile PEC-backed arrays also have

a fundamental bandwidth limit which depends on their electrical thickness.
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Rrad 

LGP 

Array 
Feed 

Low-profile 
Array 

ZL 

Figure 1.4: Equivalent circuit for a low-profile array backed by a conducting ground
plane. The radiation resistance Rrad and the ground plane inductance LGP form a
reactive load ZL to be matched by the array. The Fano bandwidth limit of the load
ZL establishes a fundamental bandwidth limit for the array.

A useful way to quantify the Q of a low-profile array is to represent the ground

plane as a reactive load to the array. When the array is electrically thin, the ground

plane can be modeled by an inductance LGP in parallel to the radiation resistance

Rrad, as depicted in Fig. 1.4. Viewed in this manner, the array itself can be treated

simply as a black-box impedance matching network to a fixed load impedance. With

such a model, circuit theory may be used to obtain fundamental constraints on the

performance of any low-profile array. Perhaps even more importantly, network syn-

thesis techniques may be applied to inspire new array designs with performance that

approaches these theoretical limits. This paradigm of treating array analysis and

design as an impedance matching problem is quite useful, and forms the basis of our

overall approach to wideband low-profile arrays.

1.2 Survey of Wideband Array Technologies

A number of wideband array technologies have been developed which address the

challenges described above using a variety of different techniques. In this section, we
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provide a brief introduction to several of the most popular types of wideband arrays,

their operational principles, and their relative strengths and weaknesses.

1.2.1 Tapered Slot and Traveling Wave Arrays

Rrad 

LGP 

Rfeed 

ZArray 

Tapered 
Impedance 

Transformer 

Figure 1.5: A tapered transmission line can be used to reduce the effective radia-
tion resistance at the feedpoint, mitigating the ground plane inductance over a wide
bandwidth.

As depicted in Fig. 1.4, the bandwidth limitations of PEC-backed arrays result

from the inductance of the ground plane in parallel with the radiation resistance. This

can be mitigated by either increasing the effective inductance or reducing the effective

radiation resistance, so that the reactance seen at the feed point is minimized. In

practice, a tapered transmission line can be placed between the feed point and the

top of the array to reduce the effective radiation resistance, as shown in Fig 1.5. With
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Rfeed � LGP , the input impedance ZArray becomes mostly real, and the array can

operate effectively over a wide band, with the high end cutoff being limited by the

onset of grating lobes.

Vivaldi Arrays

Tapered 
Slotline 

Microstrip or 
Stripline Feed 

Marchand 
Balun 

… … 

Ground Plane 

~2-3λhigh 

(a) (b)

Figure 1.6: Vivaldi Array. (a) Sketch of Vivaldi element with balun and feedline. (b)
Photo of Vivaldi Array, from [7], c©2008 IEEE.

The most basic implementation of this concept is the so-called Vivaldi array1,

which uses an exponentially tapered slot line fed by a Marchand balun, as shown in

Fig. 1.6. Vivaldi arrays have been in use for almost 40 years [9, 10], and are still

perhaps the most well known type of wideband phased array. They are capable of

10:1 bandwidth or more, and can scan to > 45◦ from broadside [11,12].

1The name Vivaldi is apparently due to “a resemblance to the shape of a cello or violin, instru-
ments used by Antonio Vivaldi.” [8]
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As the effective bandwidth of the impedance transformation provided by the ta-

pered slot line is determined by its length, wideband Vivaldi arrays must be fairly

thick, commonly 2-3λ at the highest frequency. Therefore, a major drawback of Vi-

valdi arrays is that they are not very low-profile. In addition to their height, Vivaldi

arrays also suffer from high cross-polarization when scanning. This is because there

are strong vertical currents running down the length of the slotline, perpendicular to

the plane of the array. When array radiates at broadside, these currents are normal

to the direction of propagation and therefore do not radiate. However as the array is

scanned, these currents begin to produce significant cross-polarization. This can even

result in “polarization reversal” where the cross-polarized radiation level exceeds the

co-polarization level. For wideband Vivaldi arrays, this may occur with as small a

scan angle as 30◦ [12].

Vivaldi arrays have been used for many wideband applications, from fire-control

radars to radio astronomy. However, the significant electrical thickness and poor

polarization purity limits their usefulness for certain applications. Overcoming such

limitations of Vivaldi arrays has motivated much of the recent focus on alternate

low-profile wideband array technologies.

Balanced Antipodal Vivaldi Arrays

The Balanced Antipodal Vivaldi Array (BAVA) represents an improvement to the

standard Vivaldi design that mitigates some of the above drawbacks [14]. Rather

than using only a simple flared slot, the radiating BAVA element is shaped like a pair

of “bunny ears” which provide a smooth transition between a stripline feed and the

radiating elements, as seen in Fig. 1.7. The BAVA therefore does not require a sep-

arate balun section, which reduces its total height. Moreover, the additional degrees
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Figure 1.7: Balanced Antipodal Vivaldi Array (BAVA). (a) Sketch of BAVA element.
(b) Photo of BAVA Array, from [13], c©2010 IEEE.

of freedom afforded by the shape of the radiating element allow further reduction in

thickness, so that that the BAVA is typically only ∼ λ/2 tall at the highest frequency.

However, this reduction in thickness results in a corresponding reduction of im-

pedance bandwidth compared to the standard Vivaldi. A BAVA operating over a

5:1 bandwidth was shown in [15]. More recently, a BAVA with 10:1 bandwidth has

been demonstrated, albeit with a fairly high impedance mismatch of VSWR≤4 when

scanning to 45◦ [16].

1.2.2 Tightly Coupled and Connected Arrays

While tapered slot arrays such as the Vivaldi and BAVA primarily make use of

the vertical dimension to achieve wideband performance, tightly coupled arrays and

connected arrays make use of the horizontal dimension, through mutual coupling. The
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idea that mutual coupling in arrays can be beneficial may seem counterintuitive, as it

is often perceived as a detrimental effect. However, it is easy to see that a low-profile

array without significant mutual coupling can never achieve wideband performance.

(a) Baum’s “Planar Distributed Source”

 
(b) Munk’s “Current Sheet Array”

Figure 1.8: Tightly Coupled and Connected Arrays. (a) Baum’s “Planar Distributed
Source”, formed from connected radiating elements, from [17]. Used with permission.
(b) The “Current Sheet Array”, formed from dipole elements with interdigitated
capacitors between neighboring elements, from [18], c©2008, John Wiley and Sons.

11



The high frequency response of any periodic array is limited by the onset of grating

lobes. For scanning arrays, the element spacing cannot be greater than ∼ λ/2 at the

top of the band. If mutual coupling is negligible, the low end performance of an array

is limited by the small electrical size of the individual elements. With both the high-

and low-frequency performance constrained, the bandwidth is fundamentally limited.

However, this limitation can be overcome by introducing mutual coupling. If each

element interacts significantly with its neighboring elements, its effective electrical size

will be increased. In this case, the individual elements no longer operate as isolated

antennas, and the bandwidth is not limited by the dimensions of the unit cell. Arrays

with strong mutual coupling can support currents at wavelengths that are much

larger than the dimensions of a single element. Although the onset of grating lobes

still fundamentally limits high-frequency performance, the low end performance can

be significantly improved in this manner, allowing tightly coupled arrays to operate

over extremely large fractional bandwidths.

The idea of using interconnected array elements to improve the low-end perfor-

mance was suggested as early as 1970, by Baum [17], see Fig. 1.8a. This idea was

more recently re-introduced by Munk [19], who was inspired in part by his exten-

sive work with Frequency Selective Surfaces (FSS) [20], and in part by Wheeler’s

use of a infinite sheet of continuous current as a convenient way to model phased

arrays [21, 22]. Munk recognized that if there were a way to physically implement

Wheeler’s ideal current sheet, such an array would have excellent bandwidth and

scanning performance. His implementation consisted of small dipoles that are capac-

itively coupled at their tips. He referred to this design as the Current Sheet Array

[18,19,23], pictured in Fig. 1.8b. Others have since referred to such arrays as Tightly
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Coupled Arrays [24, 25]. When the radiating elements are directly connected rather

than capacitively coupled, they are instead referred to as Connected Arrays [26, 27].

Circuit Models for Tightly Coupled Arrays above a Ground Plane

Z0 

…
 

ZL 

…
 

Z0 

Planar Array 
 

 

(a)

|ZL(jω)| 
Z0 

ω-2 ω-1 0  ω1  ω2  ω3  

… … 

(b)

Figure 1.9: The radiation load for any planar array is represented by a pair of trans-
mission lines with the impedance of free space. (a) If the array is placed above a
ground plane, the lower transmission line is short circuited at the location of the
ground. (b) The magnitude of the impedance ZL, showing short circuits at the peri-
odic frequencies ωn.
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Figure 1.10: (a) Approximate equivalent circuit for a current sheet array implemented
with tightly coupled dipoles. (b) Smith Chart showing impedance of Zin. (c) VSWR
of optimized array, demonstrating 4.5:1 bandwidth with VSWR≤2.

An infinitely large connected array in free space has no fundamental low-end cutoff,

and is theoretically capable of unlimited fractional bandwidth [28]. This is exemplified

by the well-known principle that any self-complimentary structure will be frequency-

independent [29]. However, in practice, the array must usually be installed above

a conducting ground plane. At low frequencies, the ground plane will short-circuit

the array and prevent efficient radiation, as depicted in Fig. 1.3. Additionally, since

all of the radiating currents are contained in a single plane, the image currents will

14



also interfere destructively when the height of the array reaches λ/2, and then again

periodically at every half-wavelength interval. For tightly coupled arrays (and all

planar arrays without grating lobes), the ground plane can be modeled as a short

circuited transmission line in parallel with the radiation resistance, as shown in Fig.

1.9a. The resulting load impedance is plotted in Fig. 1.9b, with the periodic short

circuits clearly shown. This can be interpreted as a slightly more specific form of

the circuit shown in Fig. 1.4, since a short-circuited transmission line stub can be

modeled as an inductance at low frequencies [30].

Compensation for these ground plane effects is the reason why Munk did not

directly connect the dipoles in his current sheet array, but inserted a series capacitance

between neighboring elements. This capacitance, along with the self-inductance of

the dipoles compensates for the shunt reactance of the transmission line stub, as

seen in Fig. 1.10. This series L−C circuit may be thought of as a simple impedance

matching network for the the load ZL. In this way, Munk was able to obtain nearly 5:1

bandwidth with a Tightly Coupled Dipole Array (TCDA), matched to VSWR≤2 at

broadside [19]. In contrast, connected dipole arrays without inter-element capacitive

loading are capable of only ∼40% (1.5:1) bandwidth when placed above a ground

plane [27].

Alternate Implementations of Tightly Coupled Arrays

In addition to dipoles, other types of radiating elements can also be used to create

an effective current sheet. The Long Slot Array uses continuous slots [31,34] as shown

in Fig. 1.11a. This can be viewed simply as the dual of the connected dipole array.

Spirals have also been used as elements of wideband arrays [35]. The Interwoven Spiral

Array (ISPA), shown in Fig. 1.11b, uses tightly coupled spiral elements to achieve
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(a) Long Slot Array (b) Interwoven Spiral Array (ISPA)

(c) Fragmented Aperture Array

Figure 1.11: The current sheet array concept can be implemented in various forms.
(a) Long Slot Array (LSA), achieving 10:1 bandwidth using a ferrite loaded sub-
strate, from [31], c©2008 IEEE. (b) Interwoven Spiral Array (ISPA), achieving 10:1
bandwidth without material loading [32]. Figure courtesy of Ioannis Tzanidis. (c)
Fragmented Aperture Array unit cell, showing pixelated surface optimized by genetic
algorithm, from [33], c©2005 IEEE.

an incredibly large 10:1 bandwidth with VSWR≤2 without the use of any material

loading [32]. However, the ISPA also suffers from high cross-polarization at the edges

of the band, and experiences resonances when scanning away from broadside.
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The so-called Fragmented Aperture Array does not use traditional antenna ele-

ments such as dipoles, slots, or spirals, but rather uses a computer algorithm to design

the shape of the radiating element [33,36]. The element is defined on a pixelated grid

as seen in Fig. 1.11c, and an optimization routine determines which “pixels” should

be metalized and which should be left open. Such arrays have been shown to yield

8:1 bandwidth with ≤3dB mismatch loss, when placed above a ground plane [36].

1.2.3 Use of Materials in Wideband Arrays

The use of bulk materials can also significantly affect the behavior and perfor-

mance of wideband arrays. One option is to load the volume between the radiating

currents and ground plane with a dielectric substrate, as shown in Fig. 1.12a. One

might initially assume that this would improve the performance of the array, since it

increases the effective electrical thickness of the array. While this may be effective at

a single frequency, it is actually counterproductive when operating the array over a

large bandwidth. A dielectric substrate will lower the impedance of the transmission

line stub in the circuit of Fig. 1.10, which increases the reactance of the load ZL and

reduces the bandwidth of the array.

Magnetic substrate materials on the other hand, have the opposite effect. They

increase the impedance of the substrate transmission line, which reduces the net

reactance of ZL. As a result, ferrites and other magnetic materials provide a very

effective manner of compensating for ground plane effects and significantly improving

bandwidth [31, 37–39]. However, magnetic materials are in practice often heavy and

lossy, and thus may not be practical for many applications. The engineering of
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Figure 1.12: Material loading in planar arrays. (a) Magnetic substrates generally
improve bandwidth, whereas dielectric substrates reduce bandwidth. (b) Dielectric
superstrates can improve bandwidth as well as scanning performance.
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improved magnetic materials therefore continues to be an area of significant interest

[40–44].

In addition to substrate loading, materials may also be placed above the radiating

currents. Such materials are then referred to as superstrates, see Fig. 1.12b. If a

dielectric superstrate is approximately λ/4 thick, it will act as a quarter-wave imped-

ance transformer, analogous to the tapered transmission line shown in Fig. 1.5. The

effective radiation resistance is thus lowered, making the input impedance more real

and improving the bandwidth [19]. A superstrate can also be seen as asymmetrically

loading the top side of the array so that more power is radiated up and away from the

ground plane. Furthermore, dielectric superstrates can improve the stability of the

impedance over scan, increasing the scan volume of the array [45]. For this reason,

dielectric superstrates are occasionally referred to as Wide Angle Impedance Matching

(WAIM) layers. Superstrates have been used for planar arrays such as tightly coupled

dipoles or slots [23], as well as for traveling wave arrays such as Vivaldis [11].

Lossy materials may also be used to improve wideband performance. Without

lossy materials, it is impossible to operate a planar array across the λ/2 short-circuit

resonant frequency caused by the ground plane (c.f. Fig. 1.9b). However, if the

reflections from the ground plane are partially absorbed, this limitation is removed

and the total impedance bandwidth can be significantly increased. In this way, arrays

with bandwidths above 30:1 have been achieved [46]. The intentional introduction of

loss into the array of course results in some reduction of radiation efficiency. How-

ever, these losses can be mitigated by combining a dielectric superstrate with a lossy

substrate. In this way, the Superstrate Enhanced Substrate Loaded Array (SESLA)

achieves greater than 70% efficiency over a 21:1 bandwidth [25].
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1.3 Performance of Low-Profile Wideband Arrays

All of the above array technologies have their own particular strengths and weak-

nesses, and are suitable for various applications. In order to directly compare various

array designs, we must be cautious to ensure a fair “apples to apples” comparison.

This is because not all arrays are optimized to the same set of performance specifica-

tions, such as VSWR and maximum scan angle, and some normalization is needed to

account for these differences. We therefore introduce a new array performance metric

PA, defined as,

PA =
B log 1/|Γmax|

cos θmax
, (lossless arrays), (1.1)

where B is the bandwidth defined as B = (ωmax − ωmin)/
√
ωmaxωmin and θmax is the

angle from broadside that defines a conical scan volume for the array. Γmax is then

the worst-case reflection coefficient seen at the array feed port (or at the unit cell,

for periodic array simulations), over the entire scan-volume defined by θmax and the

frequency band ωlow − ωhigh. We also note that here and elsewhere in this thesis, log

refers to the natural logarithm.

This metric is of course only relevant if the array has negligible losses. If the array

is lossy, then an equivalent metric is given by,

PA =
B| log(1− ηmin)|

2 cos θmax
, (lossy arrays), (1.2)

where ηmin is the total efficiency of the array, including losses from both absorption

and impedance mismatch, and ηmin ≤ 1− |Γmax|2.

The metric PA may seem like a rather arbitrary combination of bandwidth, scan

angle, and matching efficiency. However, we will show in Chapter 3 that this quantity

arises naturally from the analysis of the fundamental limits of such arrays. The design
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of any low-profile wideband array involves engineering trade-offs between bandwidth,

efficiency, and scan angle. For example, it is trivial to improve B and/or θmax at the

expense of Γmax. However, for an array of a given thickness, if such trade-offs are

performed optimally, the quantity PA will generally be conserved. This therefore pro-

vides a convenient single metric that represents the overall performance of wideband,

low-profile, scanning phased arrays, and permits a direct comparison between various

designs.
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Figure 1.13: Survey of wideband PEC-backed arrays vs. electrical thickness. Broad-
side performance is denoted by ‘◦’ and scanning performance by ‘×’, with points
representing the same design connected by a dotted line. Arrays are color-coded
based on the type of radiating element.
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In Fig. 1.13, PA is plotted for a number of wideband arrays versus their electrical

thickness k0h, measured from the top of the ground plane to the top of the array

at the center frequency ω0 =
√
ωlowωhigh. Here, several observations may be made.

As expected, we observe a general correlation between performance and thickness.

The thick Vivaldi arrays have the largest PA, and the thinner patch arrays have the

smallest PA. The cluster of arrays with k0h ≈ π/2 corresponds to single layer planar

arrays operating near the optimal λ/4 height. The primary outlier to the performance

vs. height trend is the ISPA array [32], which is quite thin but maintains a very high

PA. This behavior is discussed in depth in Chapter 3, and here we remark only that

the polarization bandwidth of the ISPA is not as large as its impedance bandwidth.

This survey provides the essential context for our research, and raises two signif-

icant questions. The first question is, given this general empirical relationship be-

tween array thickness and performance, can we quantitatively establish an absolute

performance limit for any low-profile PEC-backed array? Secondly, what engineer-

ing choices or design approaches might be taken in order to effectively optimize the

performance of practical wideband low-profile arrays, relative to these fundamental

limits? Addressing these two questions is the goal of this thesis.

1.4 New Contributions and Organization of this Thesis

This thesis is organized in two parts, corresponding to the above two questions.

In the first part, we derive new fundamental performance limits for low-profile PEC-

backed arrays, similar to the Wheeler-Chu limits for electrically small antennas.

Chapter 2 reviews the basic mathematics of dispersion relations, which provide the
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theoretical foundation for our study of bandwidth limits for arrays. Chapter 3 de-

velops an impedance matching model for arbitrary PEC-backed arrays and applies

a dispersion relation based on Fano’s limit [6]. In this way, we obtain a fundamen-

tal performance limit for any PEC-backed array constructed from passive, LTI, and

reciprocal materials. Although others have developed similar theoretical limits for

certain types of arrays, our limit is the first that applies to such a broad class of

arrays, regardless of the radiating element design.

Chapter 4 extends these results to provide a specific bandwidth limit for arrays

formed by a single planar radiating surface, including those with substrate and/or

superstrate material loading. These planar array limits apply to many popular types

of wideband arrays such as dipole arrays, slot arrays, fragmented aperture arrays,

patch arrays, etc.

The second part of this thesis addresses practical considerations in the design of

wideband low-profile arrays, in light of the fundamental limits. In contrast to the field

of electrically small antennas, which have essentially reached the theoretical limits of

performance [52], our results suggest that there remain significant opportunities for

further improvement of wideband arrays before their theoretical limits are reached.

The field of wideband low-profile arrays therefore remains an important and fertile

area of research for the foreseeable future.

One particular design problem encountered with many types of wideband arrays

is the implementation of a wideband feed, which often requires additional external

circuitry. In Chapter 5, we propose a method for integrating a compact balun within

a wideband dipole array. Through the use of an approximate circuit model, we apply

impedance matching theory to optimize the balun and array design. The result is
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a simultaneous reduction in size, weight and cost of the array with an increase in

bandwidth compared to other feeding techniques. This design, which we refer to as

the Tightly Coupled Dipole Array with Integrated Balun (TCDA-IB), is detailed in

Chapter 6 and yields a bandwidth of 7.35:1 with VSWR ≤ 2.65 while scanning to

±45◦ in all planes. To our knowledge, the TCDA-IB is the first low-profile array

with a bandwidth of greater than 7:1 and VSWR < 3:1 over the entire scan volume,

that does not use ferrite loading, lossy matching, or require external feed circuitry. A

prototype array was built and tested, and compares very will with simulation.

Chapter 7 focuses on further improvement of the wide-angle scanning performance

of the TCDA-IB, and proposes a technique for using reconfigurable components to

increase the maximum scan angle to 60− 70◦, with minimal reduction in bandwidth

and efficiency. Subsequently, Chapter 8 summarizes our overall conclusions and offers

several opportunities for further research into these topics.
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Part I: Fundamental Limits of
Wideband Low-Profile Antenna

Arrays
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Chapter 2: Causality, Dispersion Relations, and Theoretical

Limits of Physical Systems

In this chapter, we will explore from first principles the concept of dispersion

relations and their important consequences for physical systems. The theory is based

on causality, the basic fact that an event cannot precede its own cause in time. This

fact has obvious implications when looking at signals in the time domain, i.e. a signal

which arrives at the input to some system at time t0 cannot influence the output

of the system prior to t0. However there are several other less obvious corollaries

that arise when causal signals are analyzed in the frequency domain. Specifically,

the real and imaginary parts (or magnitude and phase) of the Fourier Transform of

any causal signal cannot be defined independently, but actually contain the same

information. This relatively simple idea has a number of important consequences

which may be used to derive fundamental constraints on the frequency response of

many types of physical systems, such as materials [53, 54], scattering of acoustic [55,

56], electromagnetic [57–59], and quantum-mechanical [57,60] waves, and electrically

small antennas [4, 5, 61,62].

This chapter does not itself represent new research, but rather is intended to

provide an introduction to these fundamental physical limits that arise from the

enforcement of causality. Our intent is to illustrate these concepts in a simple and
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straightforward manner so that in later chapters, the reader may easily follow their

application to the specific problem of developing bandwidth limits for antenna arrays.

As such, we will attempt to preserve mathematical rigor where possible, but our

priority will be to present the fundamental concepts in a clear, intuitive, and accessible

manner. For a more complete and rigorous treatment, many excellent resources are

available [57,63–65].

Much of the central concepts are rooted in the mathematical theory of complex

analysis. For those with some familiarity with the tools of complex analysis, the math-

ematics are not overly challenging, but are indeed rather simple and elegant. Complex

analysis provides a powerful and beautiful system which often yields greater insight

and intuition than is possible when working only in the real domain. However, when

working in the complex plane, the underlying physical significance of the mathemat-

ics is not always obvious or intuitive. Therefore, we will first begin with a simple

demonstration that may be easily understood while remaining in the real domain.

2.1 Response of an “Ideal” Filter

Suppose we wish to design an ideal band-stop filter, as shown in Fig. 2.1, such that

a narrow frequency band ω1 < |ω| < ω2 is completely blocked, while the magnitude

and phase of all other frequencies pass through unaltered. Could such a filter be

physically constructed?

Let us treat this filter as a black-box system and make no assumptions on its

internal construction. How would this system respond to an hypothetical input signal

fin(t), such as shown in Fig. 2.2a?. Note that the input signal begins at t = 0, such

that fin(t) = 0 for all t < 0. The frequency domain of the signal is shown in Fig.
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(a) “Ideal” filter
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Figure 2.1: Proposed “ideal” filter which perfectly attenuates all frequencies in a
narrow band ω1 < |ω| < ω2, and transparently passes all other frequencies with no
attenuation or phase shift. (a) Filter block representation (b) Frequency response.
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Figure 2.2: Example input signal (a) time domain signal fin(t) (b) magnitude of
frequency domain signal |Fin(ω)|.
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Figure 2.3: Signal after passing through “ideal” filter (a) time domain signal fout(t)
(b) magnitude of frequency domain signal |Fout(ω)|.
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Figure 2.4: Non-causal impulse response of “ideal” filter, h(t) = F−1[H(ω)].
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2.2b. If this signal is applied to the ideal filter of Fig. 2.1, all frequency components

ω1 < |ω| < ω2 will be completely attenuated, and the remaining frequencies will be

unaffected. Thus the output signal in the frequency domain can be easily computed

by simply zeroing the frequencies of the input signal within the stop-band, as shown

in Fig. 2.3. The time-domain output signal fout(t) is then determined from the inverse

Fourier Transform of the frequency domain signal. Note that fout(t) 6= 0 for t < 0.

Therefore, in order to realize the prescribed frequency response, the filter must begin

to generate the signal fout prior to the arrival of fin. This not only requires that

the filter be non-passive, but more problematically, this violates causality because

the filter has no “knowledge” of fin prior to t = 0, and therefore could not possibly

begin to produce the appropriate filtered output. Such non-causal filters may be

approximated if the signal is recorded and post-processed, for example on a computer.

However, physically constructing such a filter to operate in real time is clearly not

possible.

The condition of causality therefore imposes a significant restriction which pre-

vents the assignment of an arbitrary complex frequency response to any physical

system. For linear, time-invariant (LTI) systems, with which we are primarily con-

cerned, a necessary and sufficient condition for causality is that the impulse response

of the system must itself be causal (identically equal to zero for all t < 0). The

impulse response of the proposed ideal filter is shown in Fig. 2.4, and is clearly non-

causal. Because the impulse response of a LTI system is completely determined by its

frequency-domain transfer function, it is clear that time-domain causality must also
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have consequences in the frequency domain, and that the frequency response of any

physically realizable system must be carefully constructed so as to preserve causality.2

The difficulty with the proposed “ideal” filter is that both the magnitude and the

phase response have been determined a priori, without regard to causality. However,

if the output phase could be adjusted as needed, the desired magnitude response could

perhaps in theory be preserved. This would require each transmitted frequency to be

phase shifted by a certain amount, so that the sum over all frequencies perfectly can-

cels for all t < 0. Although it may not be obvious how such a phase response should

be constructed, it is clear that this phase function must depend on the attenuation

function. Therefore, causality in the time domain imposes a fundamental relation-

ship between the magnitude and phase of the corresponding signal in the frequency

domain.

The result is that a causal LTI system with an arbitrary magnitude response will

generally be dispersive, since variations in magnitude will create varying phase shifts

at different frequencies in order to preserve causality. The exact relationship between

the magnitude and phase functions (or equivalently the real and imaginary parts) of

the complex frequency response are thus referred to as dispersion relations. A method

for deriving these dispersion relations is presented in the following section.

2.2 Titchmarsh’s Theorem and Dispersion Relations

In order to determine the dispersion relations for a given signal, it is most con-

venient to extend the domain of interest to the full complex plane, via the Laplace

2This is stating things somewhat backwards – the frequency response of any physical system
will of course satisfy causality automatically. However, when developing a theoretical model or
considering fundamental limits, causality may need to be intentionally enforced to ensure that the
model represents physical reality.
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Figure 2.5: Complex s-plane, with s = σ + jω. We denote the Right Hand Plane
(RHP) as σ > 0 and the Left Hand Plane (LHP) as σ < 0.

Transform. Our complex frequency variable is defined as s = σ+jω, with the complex

s-plane shown in Fig. 2.5. The time-domain function f(t) is mapped to a complex

frequency-domain function F (s) by the (bilateral) Laplace Transform, defined as

F (s) = L[f(t)] =

∫ ∞
−∞

e−stf(t)dt. (2.1)

Note that the behavior of F (s) on the jω-axis corresponds to the Fourier Transform

of f(t).

Consider the Laplace Transform of a causal signal fc(t). Because fc(t) = 0 for all

t < 0, the Laplace integral of a causal signal can be restricted to only positive time,

Fc(s) =

∫ ∞
0

e−stfc(t)dt. (2.2)
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Note that the integral in (2.2) is not guaranteed to converge for all s. However, if fc(t)

is square integrable, then by Parseval’s Theorem, the Laplace Transform on the jω-

axis (i.e. the Fourier Transform) must also be square integrable, and thus (2.2) must

converge almost everywhere on the jω-axis. Moreover, if the integral converges for

σ = 0, then it must also converge for all σ > 0. This is guaranteed by the causality

of fc(t), since the additional factor of e−σt in the integrand will only improve the

convergence when both t and σ are positive. Therefore, all square-integrable, causal

functions fc(t) have a Laplace Transform Fc(s) which is guaranteed to be analytic

(no poles, branch-cuts, or other singularities) in the open right hand s-plane (RHP).3

2.2.1 Contour Integrals in the Complex Plane

γ s0 

F(s) 

jω 

σ 

Figure 2.6: Contour for evaluating F (s0) by Cauchy’s integral formula in a region
where F (s) is analytic

3Although Fc(s) may not be point-wise analytic on the jω-axis, the Paley-Wiener theorem guar-
antees that there exists an analytic continuation of Fc(s) into the open right hand s-plane, provided
that fc(t) is both causal and square integrable. A more rigorous proof may be found in [57].
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The analytic property of Fc(s) is incredibly significant, as it allows us to take

advantage of the rich properties of analytic functions. In particular, Cauchy Integral

Formula states that for any function F (s) that is analytic in a given region, the value

of the function at an interior point s0 can be found by an integral over a closed path

γ which encloses s0 within a single counterclockwise loop, as shown in Fig. 2.6.

F (s0) =
1

2πj

∮
γ

F (s)

s− s0
ds. (2.3)

jω 

σ 
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γ2 
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(b)

Figure 2.7: Contour for evaluating Fc(s0) from Cauchy integral formula. (a) s0 in
open RHP plane (b) s0 on jω-axis

Consider the path shown in Fig. 2.7a. Because the entire path is in the analytic

open RHP, we may apply (2.3) to obtain an expression for the function at any point

in the open RHP in terms of an integral over the path.
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Taking the limit as ε → 0+, we can see that the integral over the path γ3 must

vanish, since (2.2) becomes exponentially small as σ → +∞. Also, if Fc(jω) is square

integrable, then it must have finite support and vanish as ω → ±∞. Therefore the

integrals over the paths γ2 and γ4 also vanish. The only contribution to the integral

therefore must come from the path γ1. Taking the limit ε → 0+, and using ξ as the

variable of integration, Fc(s0) can be written explicitly as

Fc(s0) =
1

2π

∫ +∞

−∞

Fc(jξ)

s0 − jξ
dξ, Re s0 > 0. (2.4)

Equation (2.4) is remarkable, in that it allows us to compute the exact value of

Fc(s0) anywhere in the open RHP, simply from knowledge of its behavior on the jω-

axis. Of course, (2.4) is valid only for s0 in the open RHP. If s0 is instead in the open

LHP, the integrand will be completely analytic in the open right hand ξ-plane, and

the integral over the closed path equals zero. Equivalently, if s0 remains in the open

RHP, but in (2.4) we replace s0 with −s0, the integral must also vanish,

1

2π

∫ +∞

−∞

Fc(jξ)

s0 + jξ
dξ = 0, Re s0 > 0. (2.5)

Adding (2.4) and (2.5), we obtain

Fc(s0) =
s0
π

∫ +∞

−∞

Fc(jξ)

s20 + ξ2
dξ, Re s0 > 0. (2.6)

Note that because 1/(s20 +ξ2) is even in ξ, only the even part of Fc(jξ) will contribute

to the result. Because the time-domain signal fc(t) is real-valued, ReFc(jξ) is purely

even, and ImFc(jξ) is purely odd. We can therefore write (2.6) as

Fc(s0) =
2s0
π

∫ +∞

0

ReFc(jξ)

s20 + ξ2
dξ, Re s0 > 0. (2.7)

Therefore, the value of Fc(s0) can be determined anywhere in the RHP based only

on knowledge of the real part of the function on the positive jω-axis, an even stronger
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result than (2.4). We will see below that this relationship between the local response

(i.e. the value of Fc(s0) at a single point) and the global response (i.e. the integral

of Fc(jω) over real positive frequencies) is central in the development of fundamental

limits for physical, causal systems.

2.2.2 Contour Integrals on the Boundary of Analyticity

Suppose now that we wish to compute Fc(s0) at some point not in the open RHP,

but at a point on the jω-axis itself. In this case, we must be cautious since the

point of interest is no longer in an open region of analyticity, but is on the boundary.

However, we may include a semicircular distortion to the path as shown in Fig. 2.7b,

and then evaluate a point just to the right of the jω-axis. As before, the integral

over the paths γ2, γ3, and γ4 vanish, and the integral over γ1 with the semicircular

distortion is written as,

Fc(jω0) = lim
ε→0+

∫ j/ε+ε

j(ω0+ε)+ε

Fc(s)

2πj(s− jω0 − ε)
ds+∫ j(ω0−ε)+ε

−j/ε+ε

Fc(s)

2πj(s− jω0 − ε)
ds+∫ 3π/2

π/2

Fc(jω0 + ε(1 + ejφ))

2π
dφ.

(2.8)

In the limit as ε → 0+, the first two integrals can be interpreted as a principal

value integral over the entire jω-axis, minus the singularity at ω = ω0, and the third

integral over the semicircular contour evaluates to Fc(jω0)/2. Thus, after a minor

notation change of ω0 → ω and ω → ξ, (2.8) simplifies to

Fc(jω) =
1

πj
−
∫ ∞
−∞

Fc(jξ)

ω − ξ
dξ. (2.9)

Taking the real and imaginary parts of (2.9), we find

ReFc(jω) =
1

π
−
∫ ∞
−∞

ImFc(jξ)

ω − ξ
dξ, (2.10)
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ImFc(jω) = − 1

π
−
∫ ∞
−∞

ReFc(jξ)

ω − ξ
dξ. (2.11)

These equations are the dispersion relations mentioned above which define the rela-

tionship between the real and imaginary parts of Fc(jω) such that fc(t) represents

a causal signal. In fact, (2.10) implies (2.11), and vice versa, and either one is suf-

ficient to satisfy (2.9). The relationship defined by (2.10)-(2.11) is known as the

Hilbert Transform, and functions such as ReFc(jω) and ImFc(jω) which are Hilbert

transforms of each other are known as conjugate harmonic functions.

2.2.3 Titchmarsh’s Theorem

The above results are summarized by Titchmarsh’s Theorem which states [57],

Theorem. For any square integrable function F (jω), the following statements are

equivalent:

• The inverse Fourier Transform f(t) of F (jω) vanishes for t < 0, i.e. f(t) is

causal.

• F (jω) is, for almost all jω, the limit as σ → 0+ of an analytic function F (jω+

σ) which is analytic in the open RHP, and square integrable over any line in

the open RHP parallel to the jω-axis.

• ReF (jω) and ImF (jω) are Hilbert Transforms each other.

In the preceding section, we demonstrated how this theorem is a direct result of

the behavior of causal functions in the complex frequency plane. Although this is

an incredibly elegant and powerful way to analyze the problem, it may not provide

a tremendous amount of intuitive insight as to exactly how these relations arise. We
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therefore present an alternate (although somewhat less rigorous) demonstration of

Titchmarsh’s Theorem from [66]. The dispersion relations are a direct result of the

fact that even real functions in the time-domain have purely real frequency-domain re-

sponses, and odd real functions in the time-domain have purely imaginary frequency-

domain responses. Thus the real and imaginary parts of a frequency-domain signal

correspond to the even and odd parts of the real-valued time-domain signal, respec-

tively. Moreover, a causal signal cannot have even and odd time-domain parts that

are independent, but these actually contain the same information. This therefore fixes

the relationship between the real and imaginary parts of the signal in the frequency

domain.

Consider a causal signal fc(t), decomposed into its even and odd parts, fe(t) and

fo(t) such as shown in Fig 2.8. The three functions are defined as

fe(t) = fe(−t) = [fc(t) + fc(−t)]/2, (2.12)

fo(t) = −fo(−t) = [fc(t)− fc(−t)]/2, (2.13)

fc(t) = fe(t) + fo(t). (2.14)

Because fc(t) = fe(t) + fo(t) = 0 for t < 0, it is obvious that the even and odd parts

must have equal magnitude and opposite sign for t < 0. It follows that fe(t) = fo(t)

for t > 0. Therefore, the odd part is equal to the even part times the signum function,

fo(t) = sgn(t)fe(t), (2.15)

where sgn(t) = +1 for t > 0, sgn(t) = −1 for t < 0, and sgn(0) = 0.

Because the Fourier Transform of an even real function is purely real, and the

Fourier Transform of an odd real function is purely imaginary, we can easily decom-

pose the Fourier Transform of fc(t) into its real part ReFc(ω) given by the the Fourier
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(a) Causal signal fc(t)
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(b) Even part of fc(t)
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(c) Odd part of fc(t)

Figure 2.8: (a) Example causal signal fc(t) (b) Even part of signal, fe(t) =
[fc(t) + fc(−t)]/2 (c) Odd part of signal, fo(t) = [fc(t) − fc(−t)]/2. Note that
fo(t) = sgn(t)fe(t).
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Transform of fe(t), and its imaginary part ImFc(ω), given by the Fourier Transform

of fo(t),

ReFc(ω) = F [fe(t)](ω), (2.16)

j ImFc(ω) = F [fo(t)](ω) = F [sgn(t)fe(t)](ω). (2.17)

Since the Fourier Transform of the product of two functions is given by the convolution

of the transforms of the individual functions, we can rewrite (2.17) as

j ImFc(ω) =
1

2π
(F [sgn(t)](ω) ∗ F [fe(t)](ω)) . (2.18)

Although sgn(t) technically does not have a proper Fourier Transform, we may make

use of its Laplace Transform, 2/s, which is valid everywhere on the jω-axis except at

the origin. In this way, we can write (2.18) as

j ImFc(ω) =
1

2π

(
2

jω
∗ ReFc(ω)

)
, (2.19)

ImFc(ω) = − 1

π

∫ ∞
−∞

ReFc(ξ)

ω − ξ
dξ, (2.20)

which is equivalent to the result found above in (2.11), when the integral is interpreted

as a principal value by removing the singular point at the origin.

2.2.4 Magnitude-Phase Relations for Causal Signals

In addition to a relationship between the real and imaginary parts of a signal,

dispersion relations can also be formulated between the magnitude and phase of a

signal. Consider the natural logarithm of the frequency-domain signal F (jω),

logF (jω) = log |F (jω)|+ j argF (jω). (2.21)

If the signal is causal, F (jω) can be analytically continued into the open RHP as

F (s). If F (s) also happens to have no zeros in the open RHP, then the function
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logF (s) will also be analytic everywhere in the open RHP. Such functions with no

open RHP zeros are called minimum phase.

If F (s) is not minimum phase, there exists a unique decomposition into a minimum

phase function Fm(s), times an all-pass function η(s), as shown in Fig. 2.9. An all-

pass function has zeros and poles that are located symmetrically across the jω-axis,

and therefore has unity magnitude on the jω-axis. Therefore, F (jω) and Fm(jω)

have the same magnitude. The minimum phase function Fm(s) is identical to F (s),

except that all open RHP zeros are moved symmetrically across the jω-axis to the

LHP. The all pass function η(s) contains all of the open RHP zeros of F (s), and for

each zero, a matching pole is placed in the LHP symmetrically across the jω-axis.

Because all poles and zeros must occur in conjugate pairs, we may construct η(s) as

η(s) = ±
∏
k

s− sk
s+ sk

, (2.22)

where F (sk) = 0 and Re sk = σk > 0. The minimum phase decomposition of F (s) is

then given by

F (s) = η(s)Fm(s). (2.23)

Because Fm(s) is analytic and has no zeros in the open RHP, logFm(s) is likewise

analytic in the open RHP. However, several additional conditions are required in order

for a given function to represent the frequency-domain magnitude of a causal signal.

These conditions are stated precisely by the Paley-Wiener Theorem [64],

Theorem. A function a(ω) which is the amplitude of the Fourier Transform of a

causal square-integrable time-domain function must meet all of the following criteria:

• a(ω) > 0, (almost everywhere)
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Figure 2.9: (a) Pole-zero plot of an example signal F (s) in the complex s-plane. Zero
locations are represented as ‘◦’, and poles are represented as ‘×’. (b) All pass function
η(s) built from the open RHP zeros of F (s), with |η(jω)| = 1. (c) Minimum phase
function Fm(s), such that F (s) = η(s)Fm(s) and |Fm(jω)| = |F (jω)|.
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• a(ω) itself is square-integrable4

•
∫ +∞

−∞

| log a(ω)|
1 + ω2

dω < +∞

If the Paley-Wiener conditions are satisfied by the amplitude function |Fm(jω)|,

and if Fm(s) is minimum phase, then we can apply (2.11) to function logFm(s),

yielding a relationship between its magnitude and phase response,

argFm(jω) = − 1

π
−
∫ ∞
−∞

log |Fm(jξ)|
ω − ξ

dξ. (2.24)

Therefore, the phase of a causal signal is uniquely determined by its magnitude,

provided it is minimum phase (no open RHP zeros), and the magnitude function

satisfies the Paley-Wiener Theorem. For a general function F (s) that is not minimum

phase, we may represent the phase function by its minimum phase component plus

the phase of its all-pass component as defined by (2.23).

argF (jω) = arg η(jω)− 1

π
−
∫ ∞
−∞

log |F (jξ)|
ω − ξ

dξ. (2.25)

Another useful form of the magnitude-phase relations can be found by applying

(2.7) to obtain

logF (s) = log η(s) +
2s

π

∫ ∞
0

log |F (jξ)|
s2 + ξ2

dξ, Re s > 0. (2.26)

The above results finally allow us to revisit the ideal filter proposed at the be-

ginning of the chapter. Can we determine an appropriate phase response given the

4Technically, a high-pass transfer function H(ω) is excluded by the Paley-Wiener Theorem, since
its magnitude is not square-integrable. However, if H(ω) converges to a constant H∞ as ω → ±∞,
that constant may be subtracted and Paley-Wiener applied to the function H(ω)−H∞ [67].
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(c) Resulting causal impulse response

Figure 2.10: (a) Magnitude and (b) corresponding (minimum) phase response of a
physically realizable filter. This filter differs from that of Fig. 2.1 in that the stop-
band gain is increased from zero to 0.1, and the phase is now computed using (2.24).
(c) The impulse response of the filter, which can be seen to now be causal.
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desired ideal amplitude response shown in Fig. 2.1? Interestingly, this is still not

possible, because the magnitude function does not satisfy Paley-Weiner.5

In order to construct a physically realizable band-stop filter, we must avoid setting

the magnitude identically equal to zero, other than at a countable number of isolated

frequency points. We will therefore set the stop-band gain to 0.1, rather than iden-

tically zero, and compute the phase function from (2.24) or (2.26). The resulting

magnitude and phase responses, as well as the resulting causal impulse response, are

shown in Fig. 2.10.

2.3 Kramers-Kronig Relations

We will now introduce several applications of dispersion relations for characterizing

physical systems. The first (and perhaps most well-known) use of dispersion relations

was discovered by Kramers [54] and Kronig [53], and pertains to the propagation of

light through a material. Consider an electromagnetic plane wave propagating in the

+x direction through some homogeneous material with index of refraction n(ω). In

general, the index of refraction is a complex number, written as

n(ω) = n′(ω) + jn′′(ω), (2.27)

where n′(ω) is a real function which determines the phase velocity of the wave in the

material, and n′′(ω) is a real function which determines the absorbtion of the wave

by the material. The frequency-domain electric field at position x is given by

E(x, ω) = E(0, ω)G(x, ω), (2.28)

5However, the rectangular magnitude function in Fig. 2.1 could be interpreted as a Butterworth
or Chebychev band-stop response in the limit as the order tended to infinity, which then does satisfy
Paley-Wiener.[64]
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where G(x, ω) = e−jωxn(ω)/c is the propagator function, c is the speed of light in a

vacuum, and E(0, ω) is the frequency-domain electric field at the origin. The time-

domain electric field at position x is then given by

E(x, t) =

∫ ∞
−∞

E(0, t′)g(x, t− t′)dt′, (2.29)

where g(x, t) is the inverse Fourier Transform of the propagator. Because the wave

cannot travel faster than the speed of light, the field at point x, E(x, t), can only be

influenced by the field at the origin, E(0, t′), for t′ < t− x/c. Therefore, the function

g(x, t) must be zero for all t < x/c. This condition is referred to as relativistic

causality. The frequency domain propagator G(x, ω) can thus be written as

e−jωxn(ω)/c =

∫ ∞
x/c

g(x, t)e−jωtdt. (2.30)

Multiplying both sides by ejωx/c, and applying a shift in integration coordinates, we

obtain

e−jωx[n(ω)−1]/c =

∫ ∞
0

g(x, t′ + x/c)e−jωt
′
dt′, (2.31)

and g(x, t′ + x/c) = 0 for all t′ < 0. Therefore, the function e−jωx[n(ω)−1]/c represents

the Fourier Transform of a causal time-domain signal. Provided that the material is

not completely lossless, (2.31) will tend to zero as ω → ±∞, and thus will be square

integrable. By Titchmarsh’s Theorem, e−sx[n(s)−1]/c must therefore be analytic in the

open RHP.

We can also prove that n(s) itself must also be analytic in the open RHP. The

logarithm of an analytic function is analytic provided the function has no zeros. We

can write e−sx[n(s)−1]/c as esx/c(e−sn(s))x/c, and recognize that in the finite s-plane, this

equals zero only if e−sn(s) = 0. However, this would imply that (e−sn(s))x/c contains a
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branch cut for some choice of x/c, which is not permitted. Therefore, n(s) must also

be analytic in the open RHP.

Furthermore, it can be shown through physical arguments [57] that n(ω) → 1

as ω → ±∞. Thus, the quantity n(ω) − 1 is square integrable and the dispersion

relations from Titchmarsh Theorem may be applied to find a relationship between

n′(ω) and n′′(ω),

n′(ω) = 1 +
1

π
−
∫ ∞
−∞

n′′(ξ)

ω − ξ
dξ, (2.32)

n′′(ω) = − 1

π
−
∫ ∞
−∞

n′(ξ)− 1

ω − ξ
dξ. (2.33)

We may alternatively define n′′(ω) in terms of the material’s absorption coefficient

(or extinction coefficient) β(ω),

n′′(ω) =
cβ(ω)

2ω
. (2.34)

Using the fact n′′(ω) must be odd and β(ω) even, we may write (2.32) as

n′(ω) = 1 +
c

π
−
∫ ∞
0

β(ξ)

ξ2 − ω2
dξ. (2.35)

The consequence of (2.32)-(2.35) is that the phase velocity and absorption of a wave in

any material are not independent, but depend critically on one another. Importantly,

these relations can be shown to apply not only to strictly homogeneous materials,

but also to engineered materials, e.g. metamaterials. In fact, certain properties of

metamaterials (e.g. negative index of refraction, high impedance surfaces, etc.) can

often be shown to be fundamentally narrow-band and/or lossy by use of dispersion

relations such as (2.35). The derivation of such physical limits for materials and

metamaterials is an ongoing research area of significant interest [68–75].
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2.4 Bode-Fano Matching Bandwidth Limits

In addition to characterizing the frequency response of materials based on causal-

ity, dispersion relations can also be used to develop physical limits for circuits and

networks. In 1945, Bode [76] used dispersion relations to demonstrate a fundamental

bandwidth limit for matching networks connected to a capacitive load. This work was

further generalized by Fano [6] in 1950 to develop fundamental matching bandwidth

limits for loads of arbitrary impedance. Fano also demonstrated how to compute

a bandwidth limit when the complexity (order) of the matching network is limited.

Fano’s work was further extended by Youla [77] and Carlin [78], who simplified Fano’s

method by using the technique of complex normalization. Because Fano’s setup of

the problem is simpler and somewhat more accessible, whereas Youla and Carlin’s

mathematical formulation is easier to use, we will present a synthesis of their methods

below.

ZL 

Generator Passive Load 

(a)

ZL 

Impedance 
Matching 
Network 

(b)

Figure 2.11: (a) Generator and load to be connected with minimal mismatch. (b) In-
sertion of a reactive matching network designed to minimize the impedance mismatch
between the generator and load over a band of interest.
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The impedance matching problem is illustrated in Fig. 2.11 and can be stated as

follows. Given some frequency-dependent and passive load ZL(ω), we wish to connect

a generator with real impedance such that the impedance mismatch is minimized over

some band of interest. Without loss of generality, we may normalize the system so

that the generator has an impedance of 1Ω. If the generator is directly connected to

the load, it is unlikely that the resulting impedance mismatch will be acceptable if ZL

differs significantly from unity. Therefore, an additional impedance matching network

(or equalizer network) may be inserted between the generator and load, which can be

designed to reduce the mismatch over some frequency band of interest. We assume

that the impedance matching network is passive, reciprocal, LTI, and lossless6.

A remarkable result proved by Darlington [79] is that any physically realizable

load impedance can be represented as a lossless two-port reactive network terminated

in a unit resistance. This synthesis is based on characterizing the transmission zeros

of the load, which are the frequencies at which no power can be dissipated in the

load. An example is an inductive load such as a parallel R−L network, which has a

simple transmission zero at ω = 0. The transmission zeros of an arbitrary load ZL(s)

are located at the poles of ZL(s) on the jω-axis, as well as at the closed RHP zeros

of the even part of the impedance, r(s) = (ZL(s) + ZL(−s))/2 [64].

The overall system can thus be thought of as a cascaded two-port network formed

by two sub-networks, the matching network and the reactive portion of the load,

as shown in Fig. 2.12. Both sub-networks may be described by their scattering

properties, normalized to 1Ω. We define the reflection from the right and left hand

6The assumption of losslessness is not restrictive, since losses in the matching network cannot
improve power transfer [64]. Lossy matching can easily be considered by defining the bandwidth in
terms of total matching efficiency.
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Figure 2.12: Impedance matching problem shown as a cascaded two-port network.
The load impedance ZL is decomposed into a lossless reactive two-port network ter-
minated by a unit resistance.

sides of the impedance matching network as ΓM1 and ΓM2, respectively, and the

transmission coefficient through the matching network as TM . Likewise, we define

the reflection from the right and left hand sides of the load reactance network as

ΓL1 and ΓL2, respectively, and its transmission coefficient as TL. The scattering

parameters for the overall cascaded network can then be computed as

Γ = ΓL1 + ΓM1
T 2
L

1− ΓL2ΓM1

(2.36)

T =
TLTM

1− ΓL2ΓM1

(2.37)

where Γ is defined as the reflection looking into the cascaded network from the load

side, and T is the transmission coefficient through the cascaded network. Although we

may be primarily interested in the magnitude of the reflection seen by the generator,

ΓG, we note that because the total network is lossless and reciprocal, |ΓG| = |Γ|

on the jω-axis. From (2.36)-(2.37), it can be seen that for any transmission zero of

the load in the open RHP, denoted s0, we have Γ(s0) = ΓL1(s0). Moreover, if the

transmission zero has multiplicity n, the first n − 1 derivatives of Γ(s0) and ΓL1(s0)
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must also be equal7. Therefore, the transmission zeros of the load represent critical

points at which the behavior of the overall network is completely determined by the

load alone and is independent of the matching network design.

This fact allows us to make use of dispersion relations, which relate information

about the overall frequency response of a function to its behavior at a single frequency

point. Because we wish to determine constraints on the magnitude of the reflection

coefficient Γ(s), we will apply the magnitude-phase dispersion relations. Therefore,

we will work with the functions log 1/Γ(s) and log 1/ΓL1(s), with the inverse of the

reflection coefficient being used so that the logarithm will be positive. Expanding

these functions as Taylor series around a point s0 we obtain,

log 1/Γ(s) = Bs0
0 +Bs0

1 (s− s0) +Bs0
2 (s− s0)2 + ..., s→ s0 (2.38)

log 1/ΓL1(s) = As00 + As01 (s− s0) + As02 (s− s0)2 + ..., s→ s0 (2.39)

It can be shown [64] that if the load has a transmission zero of multiplicity n at

frequency s0 in the closed RHP (counting double zeros on the jω-axis only once), the

following relations apply:

If Re s0 > 0,

Bs0
i = As0i , i = 0, 1, 2, ..., n− 1. (2.40)

If Re s0 = 0 and ZL(s0) 6=∞,

Bs0
i = As0i , i = 0, 1, 2, ..., 2n− 2, (2.41)

Bs0
2n−1 − As02n−1

rs02n
≥ 0. (2.42)

7If the transmission zero lies on the jω-axis, it will necessarily be a double-zero and the first
2n− 1 derivatives will be equal. Furthermore, since the denominator 1− ΓL2ΓM1 may also contain
a zero on the jω-axis, the (2n− 1)th derivative may be an inequality rather than an equality.
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If Re s0 = 0 and ZL(s0) =∞,

Bs0
i = As0i , i = 0, 1, 2, ..., 2n− 2, (2.43)

Bs0
2n−1 − As02n−1
rs02n−2

≤ 1

c−1
, (2.44)

where rs0i is the ith coefficient of the power series of r(s) = (ZL(s) +ZL(−s))/2 taken

around the point s0, and c−1 is the residue of ZL(s) at s0.

At this point, we introduce the dispersion relations. If ZL is a passive load

(ReZL(s) ≥ 0 in the open RHP), then Γ(ω) will satisfy the Paley-Wiener criteria

and we may apply (2.26) to obtain

log 1/Γ(s) = log 1/η(s) +

∫ ∞
0

Ψ(s, ξ) log 1/|Γ(jξ)|dξ, Re s > 0. (2.45)

where Ψ(s, ξ) is defined as

Ψ(s, ξ) =
2s

π(s2 + ξ2)
(2.46)

We may also represent the Ψ(s, ξ) and log 1/η(s) functions as a Taylor series around

s0,

log 1/η(s) = ηs00 + ηs01 (s− s0) + ηs02 (s− s0)2 + ..., s→ s0 (2.47)

Ψ(s, ξ) = Ψs0
0 (ξ) + Ψs0

1 (ξ)(s− s0) + Ψs0
2 (ξ)(s− s0)2 + ..., s→ s0 (2.48)

Thus, by matching like coefficients of s, we can represent (2.45) as a set of integral

equations

Bs0
i = ηs0i +

∫ ∞
0

Ψs0
i (ξ) log 1/|Γ(jξ)|dξ, i = 0, 1, 2, ... (2.49)

The relations (2.40)-(2.44) allow us to determine Bs0
i from As0i , which can be directly

calculated from the Darlington equivalent of the load impedance via (2.39). The set of

equations (2.49) then establishes the fundamental constraints that must be satisfied

by any physically realizable matching network.
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If the load to be matched has a large number of transmission zeros, the constraints

(2.40)-(2.44) and (2.49) involve multiple simultaneous integral equations that may

become rather unwieldy and difficult to express as a simple bandwidth limit. However,

for simpler load impedances, the constraints are fairly easy to apply, as we shall

demonstrate next.

2.4.1 Bandwidth Limit for a Simple Load

L R 

ZL 

(a)

 

 

1 1 Γ ΓL1 
Matching 
Network 

ΓG 
L/R 

(b)

Figure 2.13: (a) Load to be matched consisting of parallel R−L network (b) Renor-
malized load in Darlington form, with matching network.

Consider a simple load shown in Fig. 2.13a consisting of a simple resistor R in

parallel with an inductor L. We wish to determine the fundamental bandwidth limit

when the load is matched with a lossless reciprocal network as shown in Fig. 2.13b.

Here, the load is renormalized and represented by its Darlington equivalent form, as

in Fig. 2.12. Note that the load only has a single transmission zero at s0 = 0. We

can therefore compute the series expansion of Ψ(ξ, s) and log 1/η(s) as

Ψ(s, ξ) =
2

πξ2
s+ ..., s→ 0 (2.50)
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log 1/η(s) = η00 +
∑
k

2

σk
s+ ..., s→ 0 (2.51)

where η00 equals either 0 or jπ, depending on the sign of η(0), and σk is the real part

of the kth zero of η(s). Since Ψ0
0 = 0, the i = 0 equation in (2.49) simply reduces to

η00 = B0
0 . For i = 1, we obtain

B0
1 =

∑
k

2

σk
+

2

π

∫ ∞
0

log 1/|Γ(jξ)|
ξ2

dξ. (2.52)

The term B0
1 is related to A0

1 by (2.42). A0
1 is computed from the load reflection

coefficient ΓL1(s),

ΓL1(s) =
Ls−R
Ls+R

. (2.53)

The series expansion of log 1/ΓL1(s) is then

log 1/ΓL1(s) = −jπ +
2L

R
s+ ..., s→ 0. (2.54)

We find r02 = −(L/R)2, and thus (2.42) yields

B0
1 ≤

2L

R
. (2.55)

Plugging this into (2.52), we obtain

2L

R
≥
∑
k

2

σk
+

2

π

∫ ∞
0

log 1/|Γ(jξ)|
ξ2

dξ. (2.56)

Since all zeros of η(s) lie in the RHP, each σk must be positive and their inclusion

will reduce the bandwidth. In general, the maximum bandwidth is usually given by

the minimum phase solution (i.e. η(s) = ±1), however the inclusion of an all-pass is

occasionally necessary in order to satisfy (2.40)-(2.44) when the load contains multiple

transmission zeros.
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The magnitude of the reflection coefficient ΓG(jω) seen by the generator when

matching to a parallel R− L load is therefore fundamentally limited by∫ ∞
0

log 1/|ΓG(jω)|
ω2

dω ≤ πL

R
, (2.57)

since |ΓG(jω)| = |Γ(jω)|.

The inequality (2.57) provides a general expression for the maximum impedance

bandwidth that may be provided by any passive, linear matching network, configured

as in Fig. 2.13. However, even simpler expressions may be developed for certain

canonical frequency responses.

|Γ| 
1 

ω ωc 

Γmax 

ωc ωc 

Γmax 

Γmax 

Figure 2.14: Ideal high-pass response to R − L load. As the cutoff frequency is
reduced, the matching tolerance must be relaxed.

Suppose we wish to implement a high-pass match to the R− L load, as shown in

Fig. 2.14. What is the lowest cutoff frequency ωc that could be obtained for a given

mismatch tolerance of Γmax. Examining (2.57), we see that the optimal configuration
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producing the smallest ωc is a rectangular response, with |Γ(jω)| = Γmax for ω > ωc,

and |Γ(jω)| = 1 for ω < ωc. The limit can then be written as∫ ∞
ωc

log 1/Γmax
ω2

dω ≤ πL

R
, (2.58)

which yields a lower bound for the cutoff frequency of

ωc ≥
R

πL
log

1

Γmax
. (2.59)

The limit obtained from the ideal rectangular response is referred to as the Bode

limit, since Bode [76] was the first to derive impedance bandwidth limits using this

method. For a low-pass match to a parallel R − C network, a similar limit can be

obtained,

ωc ≤
1

πRC
log

1

Γmax
. (2.60)

2.4.2 The Q-Bandwidth Limit

The above limits for R − L and R − C loads may be further generalized using

standard low-pass to band-pass (or high-pass to band-pass) transformations, yielding

a bandwidth limit for any first-order circuit,

QB∞ ≤
π

log 1/Γmax
, (2.61)

where B∞ = (ωhigh − ωlow)/ω0 and ω0 =
√
ωhighωlow. Q is a measure of the ratio

between real and reactive power in the load, and is defined for parallel resonant

circuits as

Qparr = ω0RC =
R

ω0L
, (2.62)

and for series resonant circuits as

Qseries =
ω0L

R
=

1

ω0RC
. (2.63)
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The limit expressed in (2.61) is of course the famous Q-Bandwidth limit, and is an

incredibly convenient form for expressing the fundamental bandwidth limit for any

simple resonant load. However, because it is derived for circuits with only a single

transmission zero on the jω-axis, it is not applicable to wideband matching of more

complex, multi-resonant loads. For multi-resonant loads with multiple transmission

zeros, the bandwidth limit must be evaluated from (2.40)-(2.44) and (2.49).

2.4.3 Finite-Order Matching Limits

In addition to deriving the limits for loads of arbitrary impedances, Fano [6] ex-

tended Bode’s result to account for the physical matching networks of finite order.

By “order” we refer to the order of the rational polynomial representation of the fre-

quency response, or equivalently the number of ladder sections required to implement

the matching network. The ideal rectangular response of the Bode limit would require

a matching network of infinite order, and therefore cannot be realized in practice.

Rather than using an ideal rectangular function, a more realistic response is given

by the Chebyshev polynomials. For a given order, these polynomials provide the

optimal approximation to the rectangular function8. Therefore, for an optimal finite-

order response, the Bs0
i terms in (2.40)-(2.44) are determined by the series expansion

of the Chebyshev response, rather than by (2.49). The solution of this problem, even

for a single transmission zero, involves solving several transcendental equations [6].

However, an approximation is given in [80], which is valid to within a few percent,

QBn ≤
(
bn sinh

(
1

an
log

1

Γmax

)
+

1− bn
an

log
1

Γmax

)−1
, (2.64)

8Actually, the elliptic functions are optimal, but are more difficult to work with and the difference
is usually negligible [6].
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where n is the total order of the matching network and load. The coefficients an and

bn are given in Table 2.1, along with QBn computed for VSWR=2:1 (Γmax = 1/3).

For a simple matching network (small n), the bandwidth will be reduced, since the

in-band ripple must be larger and the slope at the edges of the band is reduced,

see Fig. 2.15. However, as the order n is increased, the Chebyshev response begins

to look more like the ideal rectangular response, and the bandwidth approaches the

Bode limit (2.61).

|Γ| 
1 

ω ωlow ωhigh 

Γmax 

ωlow ωhigh 

n=∞ 

n=2 
B∞> B2 

Figure 2.15: Infinite-order vs. finite order band-pass frequency response. For the
same load impedance, bandwidth increases with higher-order matching.
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Table 2.1: Coefficients of (2.64) for finite-order matching, from [80], and QBn for
VSWR=2:1

n an bn QBn (VSWR=2:1)

1 1 1 0.750

2 2 1 1.733

3 2.413 0.678 2.146

4 2.628 0.474 2.358

5 2.755 0.347 2.481

6 2.838 0.264 2.564

7 2.896 0.209 2.625

8 2.937 0.160 2.660

∞ π 0 2.857

2.5 Complex Normalization and Youla’s Method

One limitation of Fano’s method is that the load must be expressed in Darling-

ton form, which is often inconvenient for complex loads. Youla [77] extended Fano’s

method through the use of complex normalization. In order to properly define scatter-

ing parameters for a network, a reference impedance must be defined. This reference

impedance is often chosen to be 50 Ω, but may of course be any impedance. However,

the well known equation for the reflection Γ from a load ZL,

Γ =
ZL − Z0

ZL + Z0

, (2.65)
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is valid only when the reference impedance Z0 is real. Nevertheless, the definition

of scattering parameters may be extended to complex reference impedances by the

theory of complex normalization [81].

As is well known, the reflection is zero when the load and reference impedances

are complex conjugates, i.e. when ZL(jω) = Z0(jω). The concept of conjugation may

be extended to the entire complex plane by taking the paraconjugate of Z0(s), defined

as Z0(−s), and typically denoted Z0∗. We may naturally wish to extend (2.65) to

complex reference impedances as

Γ
?
=
ZL − Z0∗

ZL + Z0

. (2.66)

However, we note that because the poles of Z0 are in the LHP, Γ will have poles in the

RHP, which violates causality. We must therefore modify our definition to account

for this.

Network 
 

z(s) S(s) 

Z(s) 

Figure 2.16: Reflection coefficient S(s) for a port in a network normalized to a complex
load z(s). The impedance looking into the network is defined as Z(s).

To do so, we first define several parameters relating to the network and load.

Referring to Fig. 2.16, we define a network terminated in a load impedance z(s) which
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is constructed from passive, lumped components. The function z(s) will therefore

be rational and positive-real in the RHP. The para-hermitian (even) part of z(s) is

defined as

r(s) =
z(s) + z∗(s)

2
. (2.67)

Note that r(s) is the same as defined above in Section 2.4. Since z(s) is rational, we

may express it as the ratio of two polynomials, z(s) = n(s)/d(s). We then define b(s)

as an all-pass function based on the poles of z(s),

b(s) = d∗(s)/d(s) (2.68)

Given the above definitions, the network’s reflection coefficient S(s), normalized

to the load z(s), can be written as [64]

S(s) = b(s)
Z(s)− z∗(s)
Z(s) + z(s)

(2.69)

where Z(s) is the impedance looking into the network, with all other ports terminated

in their proper impedances. The reflection coefficient S(s) will go to zero when the

network is conjugate matched to the load impedance. The all-pass function b(s) is

necessary to remove the poles of z∗ so that S(s) will be analytic in the RHP, preserving

causality. In fact, the construction of the complex normalized reflection is equivalent

to Darlington synthesis, and S(s) is exactly equal to Γ(s), as defined in Fig. 2.12 [82].

We can therefore use complex normalization to easily evaluate the Fano limit. This

is the basis of Youla’s matching theory [77]. The use of complex normalization has

other advantages, such as being valid not only for passive networks, but also active

impedances as well.

From the above parameters, we may also provide a formal definition of the trans-

mission zeros of the reference impedance z(s). The transmission zeros are the closed
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RHP zeros of the function F (s) [64],

F (s) =
4r(s)b(s)

(z(s) + 1)2
(2.70)

Note that all transmission zeros on the jω-axis will appear with multiplicity 2n,

but this is considered an nth order transmission zero when computing the matching

constraints from (2.40)-(2.44).

From (2.69), Youla obtained

b(s)− S(s) =
2r(s)b(s)

Z(s) + z(s)
, (2.71)

and determined that at every transmission zero, S(s) = b(s). Writing (2.71) as

log 1/b(s)− log 1/S(s) = log

(
1− 2r(s)

Z(s) + z(s)

)
, (2.72)

we may define the following Taylor series around the transmission zero s0,

log 1/S(s) = Bs0
0 +Bs0

1 (s− s0) +Bs0
2 (s− s0)2 + ..., s→ s0 (2.73)

log 1/b(s) = As00 + As01 (s− s0) + As02 (s− s0)2 + ..., s→ s0 (2.74)

The coefficients of (2.73) and (2.74) are precisely the same coefficients as defined above

in (2.38) and (2.39), and are governed by the same relations (2.40)-(2.44)9. However,

in Youla’s formulation, the Darlington equivalent form of z(s) does not need to be

constructed.

Youla’s formulation of complex normalization as it relates to impedance matching

has also been applied to the problem of double matching [83], i.e. when both the

generator and load have complex impedances, and to multi-port matching [84, 85],

9In fact the relations (2.40)-(2.44) are in the form as developed by Youla. Fano expressed his
general matching constraints in integral form [6]. Nevertheless, the Fano and Youla constraints are
mathematically equivalent.
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when there are multiple loads to be simultaneously matched by a passive network

with three or more ports. As we will see in the following chapter, the multi-port

matching problem is applicable to the question of bandwidth limits for arrays when

the array is allowed to radiate with multiple modes.
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Chapter 3: Bandwidth Limits for Arrays Backed by a

Conducting Ground Plane

We turn now to the particular problem of determining the fundamental bandwidth

limitations of PEC-backed antenna arrays. One of the most significant problems in

developing practical wideband arrays is overcoming the reactance of a nearby con-

ducting ground plane, which is required for low-profile installation on most platforms.

As described in Chapter 1, various different strategies have been applied to mitigate

these ground plane effects. However, in addition to the development of new practical

designs and techniques, it is also important to develop a better understanding of the

theoretical limitations of PEC-backed arrays.

By quantifying the fundamental limits, we will gain a better understanding of

what is possible. An improved knowledge of the physically realizable design space

allows us to establish realistic goals that aggressively advance the state-of-the-art,

without wasting time and energy on the physically impossible. Such limits also may

provide insight into which parameters are critical to performance, and guide practi-

cal engineering decisions, e.g. will magnetic materials be required to meet the given

design specifications, or, how will the bandwidth be affected if the scan volume is
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increased? Finally, fundamental limits provide a valuable metric with which to eval-

uate designs against an objective standard. It is useful to know whether a design is

nearly optimal, or if significant further improvements may be possible.

Such limits for electrically small antennas have been well known for over 60 years

[4, 5], and these limits have enabled and guided the development of optimal small

antennas [52]. However, these limits are not useful for characterizing highly directive

arrays. Nevertheless, various performance limits for certain types of arrays above a

ground plane have been developed through theoretical and empirical means. In [46],

an empirical rule of thumb was proposed for the minimum height of wideband arrays.

An approximate bandwidth limit was developed in [86] for self-complimentary arrays

with multilayer dielectric superstrates. A minimum Q was also determined for arrays

comprised of cylindrical electric [87] and equivalent magnetic [88] currents. However,

all of the above results apply only to specific types of arrays, and do not provide a

general limit for arbitrary PEC-backed arrays.

In this chapter, we will develop a general bandwidth limit that is valid for any

electrically large periodic array that is backed by a perfect electrically conducting

(PEC) ground plane and constructed from passive, reciprocal, and LTI materials.

The low frequency asymptotic behavior of an arbitrary PEC-backed array is first

determined through homogenization, yielding a PEC-backed slab model. This is

then used to obtain a constraint on the matching efficiency through Fano’s method.

Doing so, a simple expression is found for the maximum bandwidth of any array

above a PEC ground plane. The limit is irrespective of the array’s internal geometry

(e.g. planar, multi-layer, or volumetric), and allows for dielectric and/or magnetic

material loading. We will also explore the effect that polarization and scanning have
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on the array’s bandwidth. Finally, the finite-order Fano limits are used to determine

a relationship between the array’s bandwidth and its overall complexity.

3.1 Scattering from PEC-Backed Arrays

Consider a general array as depicted in Fig. 3.1. We assume that the array is

periodic, backed by a PEC ground plane, and constructed from passive, linear, time-

invariant (LTI), and reciprocal materials. However, no other restrictions are placed

on the array design and our analysis is applicable to a large class of arrays. To

understand the radiating properties of the array, it is convenient to first examine its

scattering properties.

The array is illuminated by an incident plane wave traveling in the k̂ direction,

which may be decomposed into TE and TM components, i.e. the electric (TE) or

magnetic (TM) field is transverse with respect to ẑ. As depicted in Fig. 3.1, the

electric field of the TE wave is aligned with the unit vector p̂TE, where p̂TE · ẑ = 0,

and the electric field of the TM wave is aligned with the unit vector p̂TM , where

(k̂ × p̂TM ) · ẑ = 0.

Without loss of generality, homogenization may be used to model the array’s low

frequency scattering properties as a PEC-backed slab with static material properties

εr and µr [89]. These represent the response of the array to static electric and magnetic

fields which are co-polarized with the corresponding TE or TM plane wave. We note

that the effective static permittivity εr depends not only on the dielectric materials

within the array but also on conducting inclusions, and in general may be arbitrarily

large. However, µr is determined solely by the relative static permeability of any

magnetic materials contained within the array, averaged over volume. As such, µr
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Figure 3.1: Illustration of a periodic array with arbitrary geometry above a PEC
ground plane. Polarization vectors p̂TE and p̂TM are depicted for an incident plane
wave traveling in the k̂ direction.

is unity for all arrays that do not contain magnetic materials [90]. Using the low

frequency expansion of the plane wave reflection coefficient for a homogeneous PEC-

backed slab given in [69], we have

ΓTE(s) = −1 +

(
2h

c
µr cos θ

)
s+O(s2), as s→ 0, (3.1)

ΓTM(s) = −1 +

(
2h

c

µr − ε−1r sin2 θ

cos θ

)
s+O(s2), as s→ 0. (3.2)
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for TE or TM polarization. Here, θ is the angle of incidence from normal, h is the

maximum height of the array from the PEC-ground plane, c is the speed of light in

a vacuum, and s = σ + jω is the complex frequency variable.

3.2 Network Model for PEC-Backed Arrays

To relate the behavior of ΓTE and ΓTM to standard array parameters such as

radiation efficiency and impedance bandwidth, we proceed to represent the array

using a simple three-port network, shown in Fig. 3.2. For a passive periodic array

illuminated by a plane wave, as shown in Fig. 3.1, the TE and TM components of the

plane wave can be identified as the fundamental TE and TM Floquet modes. These

two modes are represented in Fig. 3.2 by ports 2 and 3, which are terminated with the

corresponding Floquet mode impedances ZTE and ZTM , respectively. The associated

voltage reflection coefficients are denoted as ΓTE and ΓTM , and are governed by (3.1)

and (3.2), respectively.

Some or all of the power absorbed by the array from the incident plane wave may

be delivered to an array feed port, represented by port 1 in Fig. 3.2. This port is

terminated by the impedance of a generator or transmission line and has an associated

voltage reflection coefficient ΓA. Although a receiving array has been described, the

equivalent transmitting case follows from reciprocity.

For a periodic array, the only other radiating modes are grating lobes which occur

only if the array does not have sufficiently small inter-element spacing. If grating

lobes are present, they can be represented as losses within the network. If the array

is free from grating lobes and does not contain any ohmic losses, then the three-port

network is also lossless.
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ΓTE Port 1: 
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Arbitrary 
PEC-backed 
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Figure 3.2: Equivalent three-port model for an arbitrary periodic array, as in Fig. 3.1.
This network describes the coupling between the array feed port and the fundamental
TE and TM Floquet modes. The contribution of all higher-order Floquet modes is
included within the network itself. If the array does not contain ohmic losses and no
grating lobes are excited, the network is lossless.

We emphasize that although the higher-order evanescent Floquet modes are not

explicitly represented in Fig. 3.2, this does not mean that they are disregarded or

that the model is only approximate. Rather, the contribution of all higher-order

evanescent modes is implicitly included within the reactance of the arbitrary three-

port network. In this sense, the design of an optimal matching network corresponds to

the optimal configuration of higher-order Floquet modes that maximizes the overall

bandwidth and performance of the array.
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3.2.1 Synthesis of the Ground Plane Reactance as an Induc-
tive Load

To analyze the above equivalent circuit using impedance matching theory, it is

convenient to have an arbitrary matching network terminated in frequency-dependent

loads [84]. However, the network as shown in Fig. 3.2 is not arbitrary, but is limited by

the constraints (3.1)-(3.2). Nevertheless, we may represent these constraints explicitly

as complex load impedances using Darlington synthesis [91]. From (3.1)-(3.2), we

express the input admittance of the two Floquet ports as

Y in
TE(s) =

1

ZTE

c

hµr cos θ

1

s
+O(s0), as s→ 0, (3.3)

Y in
TM(s) =

1

ZTM

c cos θ

h(µr − ε−1r sin2 θ)

1

s
+O(s0), as s→ 0. (3.4)

This indicates that the Darlington synthesis of the input impedances Zin
TE = 1/Y in

TE

and Zin
TM = 1/Y in

TM each must begin with a shunt inductance, which we define as LTE

and LTM , respectively. Normalizing to unit resistances, and using the fact that εr is

unbounded, these inductances are found to be

LTE ≤
hµr cos θ

c
, (3.5)

LTM ≤
hµr
c cos θ

. (3.6)

We can therefore represent the system as a completely arbitrary three-port network

terminated in reactive loads, as shown in Fig. 3.3. The load which terminates the ith

port is defined as zi, viz.
z1(s) = 1,

z2(s) =
sLTE

1 + sLTE
,

z3(s) =
sLTM

1 + sLTM
.

(3.7)
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Figure 3.3: Equivalent model for an arbitrary periodic array. The matching con-
straints given by (3.1)-(3.2) have been interpreted as inductive loads for the TE and
TM ports. The resulting three port network defined by the matrix S(s) is normalized
to the complex loads at each terminal, and is otherwise arbitrary.

We define the associated scattering matrix for the arbitrary network as S, and normal-

ize each port to the corresponding load impedance zi using complex normalization

[81]. Because complex normalization and Darlington synthesis are mathematically

equivalent [82], S22 is equivalent to ΓTE, and S33 is equivalent to ΓTM . The system

in Fig. 3.3 is therefore equivalent to that of Fig. 3.2, with the constraints (3.1)-(3.2)

explicitly represented by the complex load impedances z2 and z3. In this form, the

system now represents a well-defined three-port impedance matching problem, with

an arbitrary matching network and frequency-dependant loads.

3.3 Bandwidth Limits: TE or TM Excitation

For arrays whose polarization is principally TE or TM , analysis of the above

system becomes straightforward, because only one of the radiating modes must be
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considered and the system becomes a simple two-port network as shown in Fig. 3.4.

This is the case for linearly polarized arrays scanned in the principle planes, for ex-

ample. Although explicit consideration of the intercardinal scan planes requires that

TE-TM coupling also be accounted for, the impedance bandwidth in the principal

planes is generally indicative of the bandwidth of the array over the entire scan vol-

ume. The single-mode analysis also applies to arrays of arbitrary polarization at

broadside (since the TE and TM modes are degenerate at θ = 0), provided that the

polarization is constant over frequency. The matching bandwidth limits under TE

or TM excitation are therefore of significant interest and pertain to a wide range of

practical array design problems.

S11 1 S22 1 

Port 1: 
Array Feed 

Port 2: 
Fundamental TE or 
TM Floquet Mode 

LTE/TM 

Arbitrary 
PEC-backed 

array 
 

(TE or TM 
polarization) 

Figure 3.4: Equivalent two-port model for an arbitrary PEC-backed array, in which
either the TE mode or the TM mode is principally excited. Any excitation of the
other mode is considered cross-polarization, and can be represented as a loss within
the two-port network.

Referring to Fig. 3.4, the reflection coefficient of the excited Floquet mode is S22,

normalized to the R − L load impedance, using (3.5)-(3.6) to define the inductance.

From (2.57) the bandwidth limit for an inductance L in parallel with a unit resistance
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is given by ∫ ∞
0

ω−2 log 1/|1/S22(jω)|dω ≤ πL. (3.8)

Plugging in (3.5)-(3.6), we then have∫ ∞
0

ω−2 log |1/S22(jω)|dω ≤ πµrh cosp θ

c
. (3.9)

where p represents the choice of polarization, with p = +1 for TE and p = −1 for

TM . If the array contains neither ohmic losses nor grating lobes, then |S11| = |S22|,

and (3.9) directly yields a bound for the impedance mismatch at the array feed.

The inequality (3.9) establishes a fundamental limit for the performance of any

physically realizable linearly-polarized array above a ground plane, constructed from

passive, reciprocal, and LTI materials. Notably, it is a simple expression involving

the total height, scan angle, and average magnetic permeability of the array. A

corresponding result for PEC-backed absorbers was given in [68] for normal incidence.

In fact, (3.9) can be considered a generalization of [68] to oblique incidence. The

similarity of arrays to absorbers is not surprising, because a receiving array may be

viewed as a special case of an absorbing structure.

We can define the operational band of the array over the continuous frequency

range ωlow to ωhigh with a maximum impedance mismatch tolerance of Γmax. To

determine the maximum possible bandwidth B = (ωhigh−ωlow)/ω0, we may make the

ideal assumption that the impedance mismatch is constant within the band (|S11| =

|S22| = Γmax), and totally mismatched elsewhere (|S11| = |S22| = 1). Under this

condition, (3.9) can be evaluated as

B∞ ≤
πµrk0h cosp θ

log 1/|Γmax|
. (3.10)
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Here, k0 is the free space wavenumber at the center frequency ω0 =
√
ωhighωlow. The

subscript “∞” indicates that this ideal response is only theoretically obtainable by

an infinitely complex array that behaves as an infinite-order impedance matching

network.

Array bandwidth can alternatively be defined by the ratio BR = ωhigh/ωlow, a

bandwidth definition often used when (ωhigh − ωlow)/ω0 > 1, viz.

BR∞ ≤
(

1− πµrklowh cosp θ

log 1/|Γmax|

)−1
, (3.11)

where klow is the free space wavenumber at ωlow. Of course, (3.11) is valid only when

the right hand side is positive, otherwise the bandwidth ratio is unbounded.

In the more realistic case when the array contains ohmic losses (or has grating

lobes within the band of interest), then not all of the power accepted at port 1 is

delivered to port 2. Therefore, in Fig. 3.4, |S11| 6= |S22| and (3.9) is not applicable

at the array feed. However, we may still find a bandwidth limit by introducing the

array efficiency factor η, equal to the power transmission coefficient between port 1

and port 2. This efficiency metric accounts not only for ohmic losses, but also for

losses in the realized gain due to impedance mismatch or grating lobes. For arrays

with such losses, we define the operational band of the array as a continuous frequency

range over which the efficiency is above some minimum efficiency ηmin. Applying the

relation η ≤ 1 − |S22|2 to (3.10), we obtain the following bandwidth limit based on

the minimum efficiency of the array,

B∞ ≤
2πµrk0h cosp θ

| log(1− ηmin)|
. (3.12)
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Figure 3.5: Bandwidth limit for PEC-backed arrays (3.10) as a function of scan angle
θ for TE (H-plane) and TM (E-plane) polarizations. Limit is normalized to unity
at broadside.

The bandwidth limit of (3.10) is plotted in Fig. 3.5 as a function of scan angle, for

both TE and TM polarization. For linearly polarized arrays, TE polarization corre-

sponds to scanning in the H-plane and TM polarization corresponds to scanning in

the E-plane, as shown in Fig. 3.6. Interestingly, for TE polarization (H-plane scan-

ning), the bandwidth limit is reduced as the array is scanned further from broadside,

but the bandwidth limit for TM polarization (E-plane scanning) is increased with

larger scan angle. This phenomenon can be understood by considering the boundary

conditions at the surface of the PEC ground plane.

As the scan angle θ is increased, the electrical thickness of the array becomes small

(kzh → 0 as θ → 90◦). Therefore at large scan angles, the field radiating from the
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Figure 3.6: Electric and magnetic fields of fundamental plane wave mode under TE
and TM polarizations. At large scan angles the E and H fields of the TE mode
violate ground plane boundary conditions, whereas the TM fields do not. The band-
width limit is therefore much more restrictive for H-plane scanning than for E-plane
scanning.

array must satisfy the PEC ground plane boundary conditions, which require that

both the tangential (x̂, ŷ) component of the E field and the normal (ẑ) component of

the H field go to zero. Examining Fig. 3.6, we see that for large scan angles, the TE

polarized fields violate the boundary condition, but the TM fields do not. For this

reason, the effect of the nearby ground plane becomes increasingly restrictive when

scanning in the H-plane, with the effective load reactance becoming infinite and the

bandwidth going to zero as θ → 90◦. Conversely, when scanning to large angles in the

E-plane, the radiating fields do satisfy the ground plane boundary conditions, even

when the array is quite thin. This causes the ground plane reactance to vanish and

the bandwidth limit to become (theoretically) unbounded.

This analysis is of course only valid in the specific case where the polarization is

purely TE or TM . Because these two polarizations have rather different responses at

large scan angles, it may be of interest to consider what happens when both modes
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are excited simultaneously. This will allow us to derive a general bandwidth limit

that applies to PEC-backed arrays of arbitrary polarization.

3.4 Bandwidth Limits: Arbitrary Polarization

If both TE and TM modes are excited, we cannot use the simplified two-port

model from Fig. 3.4, but must consider the full three-port network of Fig. 3.3. It is

obvious that the impedance bandwidth at the feed port must depend on the relative

excitation of the TE and TM modes. For example, the overall array bandwidth limit

must converge to (3.10) with p = 1 when only the TE mode is excited, and to (3.10)

with p = −1 when only the TM mode is excited. However, when both modes are

excited, it is less obvious what constraint are placed on the response at the feed.

For example, scanning a linearly polarized array in the intercardinal planes will

excite both TE and TM modes. For many arrays, we find that the impedance

mismatch in the intercardinal planes tends to be in-between the E- and H-plane

performance. Thus, we might expect the multi-mode limits to be bounded above

and below by the individual TE and TM limits from (3.10). However, in the case

of electrically small antennas, it is well known that a simultaneous excitation of both

TE and TM modes can result in greater bandwidth (lower Q) than either mode is

capable of individually [92]. It is therefore a question of significant interest whether

such multi-mode improvements may also be achieved in PEC-backed arrays.

Determining the bandwidth limits for arbitrary polarization is a multi-port match-

ing problem. The theoretical conditions for the physical realizability of a multi-port

matching network were given in [93], and a methodical process for enforcing these

conditions was developed in [84, 85]. However, these existing techniques are rather
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cumbersome and do not yield convenient closed-form limits for arbitrary excitation of

the two radiating modes. The frequency response of each scattering parameter must

be defined a priori, e.g. as a Butterworth or Chebyshev function of a given order.

A unitary scattering matrix is then constructed from these specific functions, and a

system of equations is solved to satisfy the constraints of [93]. However, this tech-

nique has limited practical applicability as it requires a separate explicit solution for

every possible excitation function. It also requires an assumption about the optimal

frequency response of the TE-TM coupling, which may not be known. Moreover,

evaluation of the resulting equations becomes tedious for more complex higher-order

responses. Specifically, neither a closed-form “infinite-order” bandwidth limit as in

(3.10), nor the general integral formulation of the limit as in (3.9), can be constructed

using existing methods.

Here, we demonstrate a new technique that does not suffer from these limitations.

By expressing the scattering parameters as a low-frequency asymptotic series, we

develop constraints for the lowest order terms without needing to explicitly define the

higher order terms. A general limit can then be written as an integral of impedance

mismatch over frequency, as in (3.9), using the dispersion relations. Unlike previous

multi-port matching solutions, this result is valid for all excitation functions and

does not require a priori knowledge of the TE-TM coupling. For arbitrary and

frequency-independent polarization, the result is a simple closed-form expression for

the maximum bandwidth of any lossless and reciprocal PEC-backed array.
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3.4.1 Multi-port Matching of the PEC-backed Array

Consider the three-port network for a PEC-backed array shown in Fig. 3.3. We

assume that the scattering matrix S(s) is lossless10 (S(s)ST (−s) = I) and reciprocal

(Sij=Sji). If the array admits an equivalent circuit constructed from lumped elements,

then the scattering matrix is also rational. However, distributed elements may be

considered in the limit by allowing the number of lumped elements to be arbitrarily

large. Given this network, we wish to establish constraints for the impedance match

at the array feed (port 1) given the reactive loads at the TE port (port 2) and the

TM port (port 3), and the relative excitation of the TE and TM ports, i.e. the

polarization of the array.

Series Form of the Scattering Matrix

Because we are principally concerned with the behavior of the network in the

vicinity of the transmission zero at s = 0, we represent each scattering parameter as

a Taylor series around the origin,

S11(s) = a11,0 + a11,1s+ a11,2s
2 +O(s3),

S22(s) = −1 + a22,1s+ a22,2s
2 +O(s3),

S33(s) = −1 + a33,1s+ a22,2s
2 +O(s3),

S12(s) = a12,ns
n + a12,n+1s

n+1 +O(sn+2),

S13(s) = a13,ms
m + a13,m+1s

m+1 +O(sm+2),

S23(s) = a23,1s+ a23,2s
2 +O(s3), as s→ 0.

(3.13)

10The assumption of losslessness is somewhat restrictive. Although losses that are applied at
the feed may still be accounted for as in (3.12), our method requires that the TE-TM coupling
network be completely lossless. Unfortunately, lossy arrays must still consider the TE or TM
modes individually.
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We have made use of the fact that the shunt inductive loads on ports 2 and 3 forces

S22(0) = S33(0) = −1. Likewise, all transmission paths have a transmission zero at

the origin, and thus S12(0) = S13(0) = S23(0) = 0. For S12(s) and S13(s), we define

the order of the zero at the origin as n ≥ 1 and m ≥ 1, respectively. We furthermore

remark that passivity requires that the first two non-zero terms of each series have

opposite sign, and thus a22,1 ≥ 0 and a33,1 ≥ 0 [94].

In order to define the polarization of the array, we introduce the function α(s) as

the ratio of the TE excitation to the TM excitation,

α(s) = S12(s)/S13(s). (3.14)

We will initially assume11 that n ≥ m, so that α(s) is finite at the origin, and define

α(0) = α0.

The Fano-Youla matching relations (2.42) establish constraints for the terms a22,1

and a33,1,

a22,1 ≤ 2LTE, (3.15)

a33,1 ≤ 2LTM . (3.16)

Note that these constraints can also be obtained directly from (3.1)-(3.2). In addition

to the Fano-Youla limits at the individual ports, the physical realizability constraints

for the overall network from [93] must be satisfied. In Appendix A we show that this

produces a third constraint,

a223,1 ≤ (2LTE − a22,1)(2LTM − a33,1). (3.17)

11This does not necessarily result in a reduction of generality. The case of n < m can be considered
by reassigning the TE mode to port 3, and the TM mode to 2, respectively. Or (with somewhat
less rigor) by allowing |α0| → ∞.
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The goal is to derive a corresponding constraint for the mismatch at port 1 which

satisfies (3.15)-(3.17).

Determining a Matching Constraint for the Feed Port

When solving the simpler two-port matching problem, the relationship between

the mismatch at the feed port and the mismatch at the load port is trivial, since

|S11| = |S22| for a lossless and reciprocal two-port. More specifically, the scattering

matrix can be written in canonical form as [95]

S =
1

g

(
h f
f ±h∗

)
, (3.18)

where f and h are polynomials in s that define the transmission and reflection roots,

and g is a polynomial in s that defines the poles, common to all parameters. Thus,

S11 and S22 have the same poles, and S11 has the same roots as S22, mirrored across

the jω axis12.

The canonical form of a lossless reciprocal three-port is not as simple as (3.18).

However, a similar condition can be established for the three-port which relates the

feed port (port 1) to the load ports (ports 2 and 3) [96],

S11∗ =
1

det[S]
det

[
S22 S23

S23 S33

]
. (3.19)

Writing the scattering parameters as Sij = fij/g, Sii = hii/g, and noting that det[S] =

±g∗/g for a lossless network [97], we can write (3.19) as

Ŝ11 =
h11∗
g

= ±(S22S33 − S2
23). (3.20)

where Ŝ11 is equal to S11 after all of the roots have been reflected across the jω

axis. This is equivalent to multiplying S11 by an all-pass function h11∗/h11, and thus

12The paraconjugate operator h∗ moves a root at s0 to the frequency −s0, but because all roots
must occur in conjugate pairs, this is equivalent to mirroring across the jω axis.
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|Ŝ11(jω)| = |S11(jω)|. Therefore, the magnitude of the reflection coefficient at the

array feed port is determined completely by the reflection coefficients at the two

Floquet ports, along with the TE-TM coupling coefficient.

We have now defined the necessary constraints that must be satisfied at the Flo-

quet ports (3.15)-(3.17), and have established a relationship between the impedance

match at the Floquet ports and the impedance match at the feed port (3.20). How-

ever, solving these expressions requires knowledge of S23, the coupling between the

TE and TM modes. This in turn depends on the relative excitation of the two Flo-

quet modes, i.e. on the polarization of the array. To further explore this relationship,

it is useful to represent the three-port scattering matrix in a canonical form.

Canonical Form for Lossless Reciprocal Three-Port Networks

A canonical form for an arbitrary three-port lossless, reciprocal matrix is given

in [97], and described below. As in (3.18), the canonical form allows us to represent

the matrix with polynomial functions that describe the various roots and poles of

the network. From this form, it is possible to derive several basic relations for the

coupling between the TE and TM ports.

We proceed to represent the scattering parameter Sij in rational form with a

polynomial fij which defines the roots of Sij, and a polynomial g that defines the

poles of the network,

Sij =
fij
g
. (3.21)

Following the method of [97], we factor the polynomial which describes the transmis-

sion zeros, fij, (i 6= j), as

fij = θijmij. (3.22)
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We denote the set of all of the roots of polynomial f as f . We define θij and mij as

θij = fij ∩ fij∗, i, j = 1, 2, 3, i 6= j, (3.23)

mij = fij − θij, i, j = 1, 2, 3, i 6= j. (3.24)

Thus, θij are the roots of Sij that are also roots of Sij∗. These roots are either located

on the jω axis or are paired with another root located symmetrically across the jω

axis. The roots mij are not located on the jω axis, and do not have a matching root

mirrored across the jω axis.

The polynomial θij is further factored as

θij = f0fifj, i, j = 1, 2, 3, i 6= j, (3.25)

where

f0 = θ12 ∩ θ13 ∩ θ23, (3.26)

fi = θij ∩ θik − f0. (3.27)

Therefore, we now have the factorization of the roots of Sij as fij = f0fifjmij. Note

that Sij and Sij∗ do not share any roots that are not also shared by at least one other

transmission function. Additionally, f0 and fi (i = 1, 2, 3) may share roots, but fi

and fj (i, j = 1, 2, 3; i 6= j) may not, since such a root would be present in all paths

and must thus belong to f0. The polynomials fi are either purely even or purely odd,

as determined by εi = ±1,

fi∗ = εifi, i = 0, 1, 2, 3. (3.28)

Given this factorization of the transmission zeros, the canonical form allows us to

define the rest of the scattering matrix [97],

Sij = f0fifjmij/g, i 6= j, i, j = 1, 2, 3, (3.29)
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Sii = εi(ε0mijmiknjk∗ − nijmikmjk∗ − nikmijmjk∗)/g, i, j, k = 1, 2, 3, (3.30)

where nij and g are polynomials defined by

g = n12m13m23 + n13m12m23 + n23m12m13, (3.31)

nijmij∗ + ε0nij∗mij = f0fkfk∗, (3.32)

with g is a Hurwitz polynomial (all roots are in the open LHP). We note that this

guarantees that S is analytic in the RHP.

An important result follows directly from this canonical representation. If a root

belongs to both mij and mik, then it must also be a root of both g and Sii. Such a

root is also a pole, and is considered a degenerate root of Sij, Sik, and Sii because

the root and pole cancel and have no net effect on these functions.

From this canonical form, we may develop a new and useful relationship between

the mismatch at the TE and TM ports, the TE-TM coupling, and the polarization

of the array. This will in turn allow us to determine a matching limit for the feed

port using (3.15)-(3.17) and (3.20).

A Useful Relationship for TE-TM Coupling in PEC-backed Arrays

We apply the above canonical form to the PEC-backed array system of Fig. 3.3.

Expanding each canonical polynomial as a power series around the origin, we have

fi(s) = fi,0 + fi,1s+O(s2),

mij(s) = mij,0 +mij,1s+O(s2),

nij(s) = nij,0 + nij,1s+O(s2),

g(s) = g0 + g1s+O(s2), as s→ 0.

(3.33)

By definition, mij cannot have a zero at the origin, and thus mij,0 6= 0. We may

normalize the polynomials such that mij,0 = 1, moving the constant factor to the
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polynomials fi. For the three-port network given in Fig. 3.3, there is a transmission

zero in all paths at DC. The polynomial f0 thus has a root at s = 0, and f0,0 = 0.

From (3.32), we find that if ε0 = 1, then n12,0 = n13,0 = n23,0 = 0. From (3.31) this

yields g0 = 0 which would violate the condition that g(s) is a Hurwitz polynomial,

i.e. it cannot have a root at the origin. Thus, ε0 must equal −1. Comparing (3.13)

with (3.30)-(3.31), we also find that ε2 = ε3 = 1. A corollary is that both n and m in

(3.13) must be odd, and that if α(s) has a zero (or pole) at the origin, then it must

be a zero (or pole) of even order.

From (3.32) we compute the coefficient nij,1,

nij,1 =
f0,1f

2
k,0

2
+mij,1nij,0. (3.34)

Using this, we can then compute the coefficients a22,1, a33,1, and a23,1 from (3.30),

a22,1 =
f0,1f

2
2,0

g0
+ 2m13,1, (3.35)

a33,1 =
f0,1f

2
3,0

g0
+ 2m12,1, (3.36)

a23,1 =
f0,1f2,0f3,0

g0
. (3.37)

The coefficient mij,1 can be written in terms of the roots mij,

mij,1 = −
∑
r∈mij

1

r
. (3.38)

We note that the sum in (3.38) can equivalently be extended over the complete set of

non-zero roots of Sij, since all other non-zero roots of Sij that do not belong to mij

will sum to zero, due to (3.23). Moreover, we can define these roots in terms of the

polarization function α(s).

To do so, we partition the roots of S12 and S13 as shown in Fig. 3.7. The roots of

S12 that are not shared by S13 are defined by the roots of α(s). Likewise, the roots
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f0 ∪ f1
rα pα

Figure 3.7: Partition of the roots of S12 and S13. The roots that are common to m12

and m13 are defined as rd. These roots are degenerate (pole/zero pairs). The unique
roots of S12 and S13 are defined by the zeros and poles of α(s), rα and pα, respectively.

of S13 that are not shared by S12 are defined by the poles of α(s). We denote the

roots of α(s) by the set rα, and the poles of α(s) by the set pα. We then define the

quantities Σrα and Σpα as the sum of the inverse of the non-zero roots and poles of

α(s), respectively,

Σrα =
∑

r∈rα,r 6=0

1

r
, (3.39)

Σpα =
∑

p∈pα,p6=0

1

p
. (3.40)

The set of roots that are common to m12 and m13 are denoted by rd. As described

above, these represent degenerate roots of S12, S13, and S11, i.e. they are pole/zero

pairs that cancel and have no direct effect on these parameters. We define Σrd as

Σrd =
∑
r∈rd

1

r
. (3.41)
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Because all of the roots in rd are also poles, they must be in the LHP and Σrd ≤ 0.

From (3.38)-(3.41) we may write m12,1 and m13,1 as

m12,1 = −Σrα − Σrd, (3.42)

m13,1 = −Σpα − Σrd. (3.43)

Finally, we identify the ratio f2,0/f3,0 as α0 from (3.14). Combining (3.35)-(3.37) with

(3.42)-(3.43), we obtain the following identity

â22,1 = a23,1α0 = â33,1α
2
0, (3.44)

where

â22,1 = a22,1 + 2Σpα + 2Σrd, (3.45)

â33,1 = a33,1 + 2Σrα + 2Σrd. (3.46)

The expressions (3.44)-(3.46) therefore directly relate the TE-TM coupling to the

mismatch at each Floquet port and to the polarization function α(s).

Enforcing Realizability Constraints

We may now impose the realisability constraints (3.15)-(3.17) using the parameters

defined in (3.44)-(3.46). From (3.15) and (3.16), we obtain

â22,1 ≤ 2LTE + 2Σpα + 2Σrd, (3.47)

â22,1 ≤ (2LTM + 2Σrα + 2Σrd)α
2
0. (3.48)

If α0 = 0 (corresponding to n > m), then a23,1 = 0 from (3.44). In this case, (3.17) is

automatically satisfied. Otherwise, if α0 is finite and non-zero, we obtain

â222,1 ≤ (2LTE + 2Σpα + 2Σrd − â22,1)
(
α2
0(2LTM + 2Σrα + 2Σrd)− â22,1

)
. (3.49)
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We find that in order for (3.47)-(3.49) to be simultaneously satisfied, the following

condition must hold,

2LTE + 2Σpα + 2Σrd + α2
0(2LTM + 2Σrα + 2Σrd) > 0. (3.50)

Under this condition, we solve (3.49) for â22,1,

â22,1 ≤ 2
(LTE + Σpα + Σrd)(LTM + Σrα + Σrd)

(LTE + Σpα + Σrd) + (LTM + Σrα + Σrd)α2
0

. (3.51)

Together, (3.50)-(3.51) are sufficient to satisfy (3.47)-(3.49), and thus all of the phys-

ical realizability constraints for the matching network in Appendix A are satisfied.

These expressions provide an upper bound for â22,1, and from (3.44)-(3.46), an

upper bound is determined for a22,1 and a33,1. It remains to apply (3.20) to obtain a

corresponding limit at port 1. We may write the series expansion of Ŝ11(s) as

ε1Ŝ11(s) = −1 + â11,1s+O(s2). (3.52)

From (3.20) and (3.13), we find

â11,1 = a22,1 + a33,1. (3.53)

From (3.44)-(3.46) and (3.51), we then find

â11,1 ≤ −2 (Σrα + Σpα + 2Σrd) + 2
(LTE + Σpα + Σrd)(LTM + Σrα + Σrd)(1 + α2

0)

(LTE + Σpα + Σrd) + (LTM + Σrα + Σrd)α2
0

.

(3.54)

This now allows us to establish a bound on the impedance bandwidth at port 1.

Using the fact that Ŝ11 must be analytic in the RHP, we apply a dispersion relation

such as (2.52) which yields an integrated bandwidth limit for |S11| = |Ŝ11|, viz.

â11,1 = η +
2

π

∫ ∞
0

ω−2 log |1/S11(jω)|dω (3.55)
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where η is a term that depends on the open RHP zeros of Ŝ11,

η =
∑

r∈RHP zeros of Ŝ11

2

r
≥ 0. (3.56)

Thus the bandwidth is maximized if Ŝ11 has no open RHP zeros, i.e. if it is minimum

phase.

Roots of S11 that belong to the set rd are in the LHP, and therefore represent

RHP roots of Ŝ11. Therefore η is bounded by

η ≥ −2Σrd, (3.57)

which becomes an equality if rd are the only RHP zeros of Ŝ11. However, because rd

are degenerate pole/zero pairs for S11, S21, and S31, these roots may be chosen inde-

pendently of the specified gain, polarization, and feed reflection coefficient functions.

Thus, we are free to choose rd as needed to maximize bandwidth and performance.

This is accomplished by setting Σrd = 0.

The limits (3.50) and (3.54) then become

Σpα + α2
0Σrα > −LTE − α2

0LTM , (3.58)

Imax = −π (Σrα + Σpα) + π
(LTE + Σpα)(LTM + Σrα)(1 + α2

0)

(LTE + Σpα) + (LTM + Σrα)α2
0

, (3.59)

where Imax is an upper bound for the integral,∫ ∞
0

ω−2 log |1/S11(jω)|dω ≤ Imax. (3.60)

We initially assumed that the zero at the origin of the TE mode was equal to or

greater than the zero at the origin of the TM mode, i.e. n ≥ m and α0 is bounded.

As noted above, the case of m > n can be handled by swapping the assignment of the

TE and TM modes to ports 3 and 2, respectively. However, the result is equivalent
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to allowing |α0| → ∞ and evaluating (3.58)-(3.59) in the limit. In this sense, the

above result can be interpreted as general.

Therefore, the relations (3.58)-(3.60) establish fundamental constraints for the

bandwidth of S11(s), under arbitrary polarization. Given a rational function α(s)

that describes the behavior of polarization over frequency, the values α0, Σrα, and Σpα

are computed. The inductances LTE and LTM are determined by the array geometry,

from (3.5)-(3.6). Provided that (3.58) is satisfied by the polarization function, the

impedance bandwidth limit for S11(s) is given by (3.59)-(3.60).

We will next consider several basic polarization functions and observe their effect

on impedance bandwidth.

3.5 Bandwidth Limits: Constant Linear Polarization

The simplest and most useful choice of polarization is one that does not vary over

the band of operation. If the polarization is frequency independent, then α(s) = α0

and Σrα = Σpα = 0. In this case, the constraints (3.58)-(3.59) simplify to

Imax =
πLTELTM(1 + α2

0)

LTE + LTMα2
0

. (3.61)

Further, α0 must be real and thus if the polarization is constant over frequency,

it must be linear. Using Ludwig’s third definition of polarization [98], we define

α0 = tanφ, where φ is the azimuthal scan angle, with φ = 0◦ in the E-plane (pure

TM polarization), and φ = 90◦ in the H-plane, (pure TE polarization). Substituting

this into (3.61), along with (3.5)-(3.6), we have

Imax =
πµrh

c

1

cos θ cos2 φ+ sec θ sin2 φ
. (3.62)

90



As expected, this reduces to (3.9) for φ = 0◦ (with p = −1) and φ = 90◦ (with

p = +1). However, the explicit consideration of both TE and TM modes has allowed

us to extend the bandwidth limits for linearly polarized arrays from the principal

planes to the entire hemispherical scan volume. As in (3.10), we can compute the

maximum bandwidth limit for a lossless linearly polarized array using an ideal rect-

angular response as

B∞(θ, φ) ≤ πµrk0h

(cos θ cos2 φ+ sec θ sin2 φ) log 1/|Γmax|
, (3.63)

BR∞(θ, φ) ≤
(

1− πµrklowh

(cos θ cos2 φ+ sec θ sin2 φ) log 1/|Γmax|

)−1
. (3.64)

The bandwidth B∞(θ, φ) is plotted in Figs. 3.8-3.10.

The resulting limits are as we might intuitively expect. The bandwidth varies

smoothly from the H-plane where the ground plane reactance is most significant and

the bandwidth is minimum, to the E-plane where the ground plane currents do not

destructively interfere and the bandwidth is improved. We also note that the lowest

bandwidth occurs when the TE mode is excited alone (H-plane), which can therefore

be used as the limiting case for a given conical scanning volume.
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H-Plane Scanning 
(Pure TE) 

E-Plane Scanning 
(Pure TM) 

kx 

ky 

Relative 
Bandwidth 

Figure 3.8: Relative bandwidth limits for a hemispherical scan volume of a lossless
array with frequency independent linear polarization. Scan angle given in terms
kx = sin θ cosφ and ky = sin θ sinφ. Array is polarized in x-direction. Bandwidth is
normalized with B = 1 at broadside.
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Figure 3.9: Relative bandwidth limits for a hemispherical scan volume of a lossless,
reciprocal PEC-backed array with frequency independent linear polarization, plotted
as contour map. Scan angle given in terms kx = sin θ cosφ and ky = sin θ sinφ. Array
is polarized in x-direction. Bandwidth is normalized with B = 1 at broadside.
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Figure 3.10: Relative bandwidth limits for a lossless array with frequency indepen-
dent linear polarization, plotted in several scan planes. Scan planes are plotted in
15◦ increments, with φ = 0◦ representing the E-plane and φ = 90◦ the H-plane.
Bandwidth is normalized with B = 1 at broadside.

94



3.6 Bandwidth Limits: Circular Polarization

As we demonstrated in the above section, if the polarization of the array is not

linear, it cannot be constant over frequency. This of course complicates the discussion

of bandwidth for circularly polarized arrays. If the polarization is not perfect in the

band of operation, then the level of acceptable cross-polarization must be specified

in order to obtain a meaningful bandwidth metric. To further complicate matters,

the limit for arbitrarily polarized arrays (3.60) was derived under the assumption

that the array and feed network is perfectly lossless. However, circular polarization is

often implemented using two orthogonally polarized arrays combined using a 4-port

quadrature hybrid. Because the 4th port is terminated in a resistive load, the above

multi-mode limits do not apply. For such arrays, a more relevant performance bound

is found by considering the bandwidth limits of the individual linear polarizations from

(3.63). In this case, the bandwidth limit of circularly polarized arrays is comparable

to that of linearly polarized arrays.

Nevertheless, some circularly polarized arrays, such as those with spiral elements,

do not use dual linear apertures with hybrids, and may be analyzed as a lossless

three-port system. In this case, we must define an appropriate polarization function

α(s) in order to compute the corresponding bandwidth limit. A simple example is

given by

α(s) =
s− σ0
s+ σ0

, (3.65)

with σ0 real. In this case, α(s) is an all-pass function, with its magnitude and phase on

the real frequency axis plotted in Fig. 3.11. It can be seen that α(jω) produces good
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Figure 3.11: α(s) a simple first-order all-pass, as defined by (3.65). (a) Magnitude
of α(jω) is unity for all ω. (b) Phase of α(jω) varies from π (slant linear) at DC, to
π/2 at ω = σ0 (RHCP), to 0 (slant linear in orthogonal direction) as ω →∞. (c) TE
and TM modes are equally excited at all frequencies. (d) α(s) is circularly polarized
near ω = σ0.
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circular polarization near ω = σ0. However, the polarization purity deteriorates away

from this center frequency, and becomes slant linear at higher and lower frequencies.

For any α(s) constructed from an all-pass function, we find α0 = ±1 and Σrα =

−Σpα. We can then compute the limit (3.59) as

Imax = πL− πΣ2
rα

L
, (3.66)

where we have assumed the broadside case, with LTE = LTM = L for simplicity. For

the first-order all pass function (3.65), this limit becomes

Imax = πL− π

Lσ2
0

. (3.67)

It is clear that any such all-pass polarization function will reduce the impedance

bandwidth of the array compared to the limit for constant polarization at broadside,

which we find from (3.61) to be Imax = πL. Moreover, the simple first-order all

pass function from (3.65) has a limited circular polarization bandwidth as seen in

Fig. 3.11d. Improving the polarization bandwidth can be accomplished by using

higher-order quadrature approximation functions [99], but this requires adding more

pole/zero pairs to α(s), and the magnitude of Σrα quickly exceeds L, sending the

impedance bandwidth to zero. Our conclusion is that lossless, reciprocal low-profile

PEC-backed arrays (which excludes dual-linear arrays with matched hybrids) cannot

simultaneously achieve a wide impedance bandwidth and a wide circular polarization

bandwidth with high polarization purity.

We may, however, improve the impedance bandwidth by modifying our polariza-

tion function to be

α(s) = − s
2(s− σ0)
σ2
0(s+ σ0)

. (3.68)
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Figure 3.12: α(s) includes a double zero at the origin, as defined by (3.68). (a)
Magnitude of α(jω) varies from 0 (pure TM) at DC to∞ (pure TM) as ω →∞. (b)
Phase of α(jω) varies from π at DC, to π/2 at ω = σ0, to 0 as ω →∞. (c) Relative
excitation of TE and TM modes over frequency, showing TE and TM modes matched
over separate bands. This feature allows the impedance bandwidth to be increased
from the simple all-pass case. (d) α(s) is circularly polarized near ω = σ0, though
with a narrower polarization bandwidth than in Fig. 3.11.
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Here, we have kept the all-pass from (3.65) but have added a double zero at DC.13

This produces a polarization response as shown in Fig. 3.12. As with the all-pass

function, the polarization is circular at ω = σ0, but now the array has pure TM

polarization (α(s)→ 0) at low frequencies and pure TE polarization (α(s)→∞) at

high frequencies, as seen in Fig. 3.12. The circular polarization bandwidth is reduced,

but the impedance bandwidth limit computed from (3.59) becomes

Imax = πL+ π/σ0. (3.69)

Therefore, the bandwidth in this case exceeds that of constant linear polarization.

Previously, we stated that a lossless array cannot realize wideband circular polariza-

tion without significantly reducing the impedance bandwidth. However, we see here

that the converse is also true – by reducing the polarization bandwidth, the impedance

bandwidth may be increased above that of a linearly polarized array. This advantage

is of course not unlimited, and the absolute maximum impedance bandwidth for a

PEC-backed array regardless of polarization can be found from (3.53),

Imax = πLTM + πLTE, (3.70)

corresponding to a polarization function with the following parameters14,

Σrα → −LTM , (3.71)

Σpα → −LTE. (3.72)

However, the polarization of such an array would vary significantly the band. In

general, we find that for lossless circularly polarized PEC-backed arrays, there is a

13Note that the order of the zero at DC must be even if the array is lossless.

14These must be taken in the limit, because setting Σrα = −LTM and Σpα = −LTE violates
(3.58) and gives an indeterminant result from (3.59).
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fundamental tradeoff between the impedance bandwidth and the polarization band-

width.

An explanation for this phenomenon is that the array may match to one Floquet

mode at the low end of the band and the other mode at the high end of the band,

as in Fig. 3.12c. Although each individual Floquet mode is still limited by (3.10),

the total impedance bandwidth can be larger. The result (3.70) is therefore rather

intuitive, since the absolute maximum impedance bandwidth limit is the sum of the

limit for each mode.

A practical example of an array that makes use of this phenomenon is the ISPA

[32], with interwoven spiral radiating elements, pictured in Fig. 1.11b. The ISPA

is less than λ/2 tall at the top of the band, and yet achieves 10:1 bandwidth at

broadside with VSWR <2:1, see Fig. 3.13a. This impedance bandwidth exceeds the

theoretical limit for PEC-backed arrays with fixed polarization (3.61) by ∼14%. This

is only possible because the ISPA has elevated cross-polarization near the band edges

as shown Fig. 3.13b.
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(a) Impedance bandwidth of ISPA (b) Polarization bandwidth of ISPA

Figure 3.13: Frequency response of the ISPA, a lossless, circularly polarized PEC-
backed array. (a) VSWR≤2:1 over a 10:1 bandwidth. (b) Co- and cross-polarization,
showing elevated cross-polarization at edges of the band. Figures are from [32], c©2011
IEEE.

3.7 Array Complexity and Finite-Order Matching

We now concern ourselves with the optimal implementation of the array as a

impedance matching network. As stated above, realization of the limits (3.10) and

(3.63) require the matching network to be of infinite-order. By “order” we refer to

the order of the rational polynomial representation of the elements of the scattering

matrix, or equivalently the number of ladder sections required to synthesize an equiv-

alent lumped element circuit for the array. In practice, the order of the equivalent

network cannot be infinite, but is limited by the complexity of the array and feed.

Unlike electrically small antennas for which first-order representations are typically

appropriate, wideband arrays usually have equivalent circuits of at least second-order

or higher. External matching can also be used to increase the effective order of the

array.
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For an array represented by an equivalent nth order network, Fano [6] provides a

method to compute the corresponding bandwidth limit subject to an ideal equi-ripple

match, as described in Section 2.4.3. Although Fano’s method requires the solution

of several simultaneous transcendental equations, the limit can be approximated by

substituting the quantity (log 1/|Γmax|)/π with the factor Kn. For linearly polarized

arrays, this yields

Bn(θ, φ) ≤ µrk0h

Kn(cos θ cos2 φ+ sec θ sin2 φ)
, (3.73)

BRn(θ, φ) ≤
(

1− µrklowh

Kn(cos θ cos2 φ+ sec θ sin2 φ)

)−1
, (3.74)

where n is the effective order of the array. Kn is given by [80]

Kn ≈ bn sinh

(
1

an
log

1

|Γmax|

)
+

1− bn
an

log
1

|Γmax|
, (3.75)

for lossless arrays, or

Kn ≈ bn sinh

(
| log(1− ηmin)|

2an

)
+

1− bn
2an

| log(1− ηmin)|, (3.76)

when the array contains ohmic or radiation losses. The coefficients an and bn are listed

in Table 2.1. Note that, as expected, (3.73) and (3.74) reduce to the infinite-order

limits for n =∞.

Many wideband arrays have equivalent (or approximate) circuits that can be used

to determine the effective order of the array. In general, arrays containing more

complex physical structures capable of multi-resonance behavior will lead to higher

order equivalent networks, theoretically capable of greater bandwidth. For exam-

ple, an array may contain several dielectric superstrate layers or frequency selective

surfaces (FSS), with each additional layer increasing the overall order of the array.
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Similarly, multi-turn spiral elements will typically be of higher-order than an array of

simple dipole elements (e.g. [32] vs. [19]). Also note that, although distributed net-

works (such as those that include transmission lines) technically have infinite-order

lumped equivalents (i.e. they are not rational), this does not imply that they are

capable of reaching the infinite-order limit. In such cases, an equivalent or approxi-

mate finite-order lumped, rational representation (such as obtained by the Richards’

Transformation [30]) is typically available and should be used instead.

A plot of bandwidth ratio vs. klowh for a non-magnetic array matched to VSWR

≤ 2:1 is given in Fig. 3.14 for various n. As an example, consider a lossless low profile

array with klowh = 0.4 (h ≈ λlow/16), matched to VSWR≤ 2:1. If the array is only

second-order, the bandwidth is limited to 3.2:1. However, a third-order array of the

same height is capable of more than twice as much bandwidth (up to 7:1). Thus, the

order (and hence the physical complexity) of the array can have a great impact on

its performance.
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Figure 3.14: Bandwidth ratio limit ωhigh/ωlow for an arbitrary non-magnetic array of
height h and order n, above a perfectly conducting ground plane with VSWR ≤ 2:1
and broadside scanning (θ = 0).

3.8 Minimum Height for High-Pass Arrays

The bandwidth ratio limit given by (3.74) reveals the high-pass nature of a PEC-

backed array. If kh is sufficiently large at the low end of the band, then ωhigh becomes

unbounded, and the array behaves as a high-pass filter. In practice, of course, the

high frequency performance of the array will be limited by inter-element spacing and

the onset of grating lobes. However, this can in theory be moved arbitrarily high in

frequency, and is therefore not considered to be a fundamental limit for the purposes

of this analysis. The minimum array thickness hhp of a high-pass array scanning to
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an angle θ (using TE excitation as the limiting case) can be found by solving (3.74)

with BR→∞, yielding

hhp =
Kn

2πµr cos θ
λlow. (3.77)

From this, we find that a simple second-order, lossless, non-magnetic, high-pass array

matched to VSWR ≤ 2:1 at broadside must be at least λlow/11 tall. This is consistent

with the empirical “rule of thumb” suggested in [46] of λlow/12 as the minimum height

for wideband arrays. However, (3.77) indicates that even thinner arrays may be

possible by increasing the order of the array through increased geometrical complexity

or external matching. Specifically, an infinite-order, non-magnetic, high-pass array

matched to VSWR ≤ 2:1 at broadside has a minimum height of λlow/18.

3.9 Performance of Arrays vs. Theoretical Limits

In Chapter 1, we introduced a generalized array performance metric PA defined

as

PA =
B log 1/|Γmax|

cos θmax
, for lossless arrays, (3.78)

PA =
B| log(1− ηmin)|

2 cos θmax
, for lossy arrays. (3.79)

Comparing this metric to the theoretical limits (3.10) and (3.63), we see that the

maximum possible PA for a low-profile PEC-backed array with frequency independent

polarization scanning within a cone of angle θmax is given by

PA ≤ πµ0k0h, constant polarization. (3.80)

If the polarization is not constant over the band, the limit at broadside becomes

PA ≤ 2πµ0k0h, arbitrary polarization, broadside. (3.81)
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Figure 3.15: Survey of wideband array performance PA vs. electrical thickness k0h.
The fundamental limit under constant polarization is given by the heavy black line.

Fig. 3.15 revisits the survey of wideband array performance from Fig. 1.13 with

the limits of (3.80)-(3.81) overlayed. With the exception of the ISPA as discussed

above, we see that all of the arrays surveyed fall below the fundamental limit for

arrays with constant polarization.

We notice in Fig. 3.15 that there seems to be a large design space that has not

yet been utilized. The widest bandwidth arrays do not seem to follow the same

slope as given by the fundamental limit, but rather diverge with a much shallower

slope. We suggest that this is primarily due to the use of simple, low-order, low

106



Q structures in the design of wideband arrays. This is especially seen in the long

tapered slot arrays, which yield significant bandwidth but are much taller than the

limit suggests is optimal. It should therefore be possible to develop thinner arrays with

larger bandwidths than what is achieved by current the state-of-the-art. However,

accessing this design space will require new techniques such as higher-order impedance

matching.

It is often assumed that wideband arrays should avoid resonant structures and

minimize the amount of stored reactive energy in the array, i.e. minimize the total

Q. However, as shown above in Section 3.7, this strategy cannot yield maximum

bandwidth. Instead, an optimal array must act like a high-order filter or impedance

matching circuit, containing many resonant stages and a large amount of total stored

energy. An optimal wideband array therefore will therefore not have a small Q.

This highlights a common misunderstanding about the relationship between Q

and bandwidth. The well known Q-bandwidth limit (2.61) applies only to simple first

order loads consisting of a single resonance, such as an RLC circuit. Higher-order

loads with multiple resonances have a much more complex relationship between Q

and bandwidth, i.e. (2.40)-(2.44). In the case of a PEC-backed array, the bandwidth

is limited by the direct interaction between the radiation resistance and the ground

plane, i.e. the unloaded Q of the RL loads depicted in Fig. 3.3. It is true that the

bandwidth is maximized when this Q is minimized, e.g. by increasing the thickness

of the array. It is not true, however, that the bandwidth is limited by the total Q of

the system; otherwise adding matching stages would be counter productive, and an

infinite-order system would have zero bandwidth. It is for this reason that we have

avoided framing the array bandwidth limits in terms of Q.
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Therefore, this analysis suggests that development of thinner PEC-backed arrays

with more bandwidth should be possible, and that this requires the use of higher-order

matching features, rather than minimizing the total Q of the array. These additional

matching features may be integrated within the array itself, or they may be included

in the feed network.
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Chapter 4: Bandwidth Limits for PEC-Backed Planar Arrays

In the previous chapter, general bandwidth limits were derived for arbitrary arrays

backed by a PEC ground plane. However, many common types of wideband PEC-

backed arrays, such as arrays of dipoles, slots, spirals, and fragmented apertures, have

radiating currents that are confined to a thin planar surface as shown in Fig. 4.1.

The volume between the planar radiating surface and the ground plane may be filled

by air or by some lossless substrate material with relative material properties εsub and

µsub. A lossless superstrate material layer may also be added on top of the radiating

surface, with relative material properties εsup and µsup.

The bandwidth of such arrays is more limited than that of a completely arbitrary

array whose radiating currents are allowed to fill the entire volume of the array. This

is because the ground plane will short circuit the radiating surface the array not only

at DC, but also whenever the height of the array is a multiple of a half-wavelength

(h = nλ/2). Given this observation, it would be useful to develop a tighter bound

for the bandwidth of this common family of arrays. First, we must develop a valid

equivalent circuit for an arbitrary planar array.
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Figure 4.1: Cross section of a planar array above a conducting ground plane

4.1 An Equivalent Circuit for Planar Arrays

The fields within any two-dimensionally periodic structure may be decomposed

into a set of orthogonal eigenmodes, known as Floquet modes (also referred to as

Bloch modes). Any interaction that the periodic surface has with the surrounding

fields may be treated by considering the coupling to these Floquet modes. We may

therefore represent the planar radiating surface as a multi-port network as seen in

Fig. 4.2, with a single port for the array feed, and a separate port representing the

interaction of the array with each Floquet mode. We furthermore remark that, apart

from the radiating surface itself, the structure as depicted in Fig. 4.1 is homogeneous

in the transverse dimension. Therefore the Floquet modes will remain uncoupled

outside of the multi-port network.

If the periodicity of the array is less than the grating lobe spacing, then only the

two fundamental modes may propagate in free space15. The remaining higher-order

15Even if there are grating lobes present, these may be treated as losses within the network. By
extension, we may even relax the requirement that the array be periodic, and the resulting limit
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Figure 4.2: A planar radiating surface will excite a set of Floquet modes. If grating
lobes are not present, all higher-order modes are evanescent and simply contribute to
the reactance of the shaded network.

111



Floquet modes are evanescent, and if the substrate and superstrate materials are

lossless, these modes cannot dissipate any real power. We may therefore collect all

higher order modes and include them within the reactive network. This is depicted

in Fig. 4.2 with the shaded area defining a 3-port matching network with a feed port,

a fundamental TE mode port, and a fundamental TM mode port.

The characteristic impedance of the fundamental TE and TM Floquet modes is

given in [100] as

ZTE
r =

ωµ0µr
kzr

, (4.1)

ZTM
r =

kzr
ωε0εr

. (4.2)

For both modes, the propagation constant in the ẑ direction is

kzr = k0
√
µrεr cos θr, (4.3)

where k0 is the free space wavenumber, εr and µr are the relative material properties

of each layer (i.e. substrate, superstrate, free space). The scan angle θ is measured

from broadside as illustrated in Fig. 4.1, and the corresponding angle of refraction

within each layer is given by θr = sin−1(sin θ/
√
µrεr).

As shown by Wheeler [21], we may represent the fundamental Floquet modes with

equivalent transmission lines, with impedances proportional to (4.1)-(4.2). We denote

the propagation constant of each transmission line as βr, which is equivalent to kzr

from (4.3). Discontinuities in the ẑ direction, such as at the ground plane, and at the

superstrate-free space interface, are automatically accounted for by the transmission

line properties. The resulting equivalent circuit is shown in Fig. 4.3. This equivalent

then establishes not an impedance bandwidth limit, but a gain-bandwidth limit for any PEC-backed
array scanned to a particular angle.
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sections are represented by variations in the impedance and propagation constant of
each transmission line section. The ground plane creates a short-circuit at the bottom
of the substrate transmission line.
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circuit is similar to those developed in [19, 101], with the exception that our model

makes no assumptions about the nature of the radiating surface itself.

These transmission line circuits represent irreducible and fixed loads that describe

the natural reactance of the TE and TM modes of any planar PEC-backed array with

lossless materials. This equivalent network is similar to that of Fig. 3.3, but here the

loads are not simple inductances, but represent the particular geometry of the planar

array. As in the previous chapter, we may consider the planar radiating surface as an

arbitrary matching network, with a fundamental bandwidth limit determined by the

TE and TM load impedances.

4.2 Bandwidth Limits for Planar Arrays with Substrate Ma-
terial Loading

We will begin by assuming the array contains some substrate material (possibly

vacuum or air), and neglect the presence of a superstrate. Furthermore, we will

assume the array is co-polarized with either the TE or TM Floquet mode, although

the result can easily be extended to arbitrary polarization using the method developed

in the previous chapter. The array can thus be modeled as a simple two-port network

as shown in Fig. 4.4. The two-port network can be viewed as an impedance matching

network to a load ZL that is fixed and independent of the specific design of the planar

radiating sheet. We find the impedance of the load to be

ZL(jω) =
jZ0Zsub tan βsubhsub
Z0 + jZsub tan βsubhsub

, (4.4)

where Z0, Zsub, and βsub are given by (4.1)-(4.3).

To compute the Fano bandwidth limit for ZL, we must first determine its trans-

mission zeros, which are the points in the closed right-hand complex frequency plane
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Figure 4.4: Equivalent circuit for a planar array above a ground plane with no super-
strate, under TE or TM excitation. Regardless of the design of the radiating surface,
the load ZL is fixed. The impedance bandwidth of the system is therefore limited by
the Fano limit of ZL.
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Figure 4.5: Magnitude of the impedance ZL(jω) seen by a planar aperture above a
ground plane. ZL(jω) has periodic transmission zeros at multiples of half-wavelength
spacing between the aperture and ground plane. Due to the symmetry of the distri-
bution of matching constraints, the bandwidth will be maximized when the matched
band is centered around ω1/2. This establishes the optimum array height to be
λmidsub /4.

at which no power can be delivered to the load. Whereas the general volumetric array

in the previous chapter had only one known transmission zero at the origin, the planar

array has one whenever βsubhsub = mπ, corresponding to the periodic frequencies

ωm =
mπc

h
√
εsubµsub cos θsub

, (4.5)

for all integers m (see Fig. 4.5). As depicted, the principle band of interest lays

between DC and the first half-wavelength resonance ω1. We can then extend (4.4)

into the full complex s-plane as,

ZL(s) =
Z0Zsub tanh(πs/ω1)

Z0 + Zsub tanh(πs/ω1)
. (4.6)

Unfortunately, because the Fano method introduces at least one non-linear equa-

tion for each additional transmission zero, calculation of the limit becomes intractable
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for loads with a large number of transmission zeros16. However, an equivalent first-

order rational impedance with only a single transmission zero can be obtained by

applying a transformation from s = σ + jω to a new complex frequency variable

p = Σ + jΩ,

tanh(πs/ω1)↔ p. (4.7)

This is a type of Richards’ Transformation [30], and its application to the band of

interest is depicted in Fig. 4.6. The transformation s→ p maps the distributed load

ZL(s) in the s-domain to a first-order network Z̃L(p) in the p-domain. The resulting

impedance is rational and has only a single transmission zero at p = 0,

Z̃L(p) =
Z0Zsubp

Z0 + Zsubp
. (4.8)

The transformation (4.7) is conformal from the right hand s-plane to the right hand

p-plane. Thus the analytic properties of the load on the real frequency axis are

invariant under the transformation. As such, the frequency responses of ZL(jω) and

Z̃L(jΩ) are identical with respect to the corresponding frequency variables, and the

Fano limits may be computed in either the s- or p-domain.

However, the transformation s ↔ p is not one-to-one. The lower half [0, ω1/2)

and upper half (ω1/2, ω1] of the band in the s-domain are both mapped to the entire

positive Ω-axis in the p-domain. Thus, the transformation is band-pass to high-pass,

and valid only for the special symmetric case when the center frequency ωmid =

(ωhigh + ωlow)/2 equals ω1/2. Nevertheless, since the distribution of the transmission

zeros ωm is also symmetric around ω1/2 (see Fig. 4.5), this special case maximizes

the bandwidth of the array. For a planar array scanned to broadside (θ = 0), this

16Another way of saying this is that the Fano/Youla method cannot handle distributed loads,
which do not have rational impedances.
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symmetry condition establishes an optimum height of h = λmidsub /4, where λmidsub refers

to the wavelength in the substrate material at the mid-band frequency ωmid = ω1/2.

By inspecting (4.8), we see Z̃L(p) represents a resistance Z0 in parallel with an

inductance Zsub. A high-pass match to a parallel R-L load, with a maximum mismatch

Γmax, has a minimum cutoff frequency given by (2.59),

Ωmin =
R

πL
log

1

|Γmax|
. (4.9)

Assuming normal incidence (θ = θsub = 0), we obtain

Ωmin =
Z0

πZsub
log

1

|Γmax|
=

√
εsub/µsub
π

log
1

|Γmax|
. (4.10)

From (3.75) or (3.76) we may obtain the corresponding cutoff frequency for finite-

order or lossy matching,

Ωmin = Kn

√
εsub/µsub. (4.11)

The corresponding frequency ωlow is determined by transforming Ωmin back to the

s-domain from (4.7), giving

ωlow = arctan(Ωmin)ω1/π. (4.12)

Also, via symmetry

ωhigh = ω1 − ωlow. (4.13)

Thus, the maximum bandwidth of an nth order planar array above a ground plane at

broadside is given by

Bplanar
n ≤

−2 + π

arctan(Kn
√
εsub/µsub)√

−1 + π

arctan(Kn
√
εsub/µsub)

. (4.14)

The corresponding expression for the bandwidth ratio is somewhat simpler,

BRplanar
n ≤ −1 +

π

arctan(Kn

√
εsub/µsub)

. (4.15)
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Figure 4.6: Illustration of the conformal mapping used to analyze the planar array.
(a) Map of the complex s-plane, with grid showing of constant σ and ω. (b) Grid from
(a) mapped to the complex p-plane. (using ω1 = 1) (c) Magnitude of load impedance
in s-domain with band-pass edges ωlow and ωhigh located symmetrically around ω1/2.
(d) Magnitude of load impedance in p-domain, with low-pass cutoff frequency Ωmin.
The transformation maps both ωlow and ωhigh to Ωmin, and ω1/2 to Ω =∞.
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Figure 4.7: Maximum realizable bandwidth for an infinite-order planar array above
a PEC-ground with lossless substrate material, scanned to broadside with constant
polarization. This limit can be attained only if the radiating surface is placed a
quarter-wavelength from the ground plane at mid-band.
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Figure 4.8: Maximum bandwidth for an nth order lossless planar array above a PEC-
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surface itself.
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From the above, an infinite-order planar array with air substrate (εsub = µsub = 1)

has a maximum bandwidth of ∼8.3:1 (VSWR ≤ 2:1). This limit can be reached only

if kmidh = π/2. The corresponding bandwidth limit for a volumetric array of the same

height can be found from (3.74) and is ∼9.1:1 (using hklow = hkmid2/(BR + 1) =

π/(BR + 1)). Therefore, despite its simple form, a planar array of optimal height

is capable of nearly as much bandwidth as a general volumetric or multi-layer array

of the same total height. However, for taller arrays, the bandwidth of an arbitrary

PEC-backed array may continue to increase, while the bandwidth of the planar array

will be reduced (as ωhigh nears ω1). The 8.3:1 limit is therefore fundamental for single

layer planar arrays and can only be improved using material loading or by relaxing

the matching tolerance. A plot of BRplanar
∞ vs. VSWR is given in Fig. 4.7 for various

dielectric and magnetic substrates. This demonstrates the well known result that

dielectric substrates reduce bandwidth, whereas magnetic substrates can significantly

increase the bandwidth of arrays [37].

The finite-order limits are plotted in Fig. 4.8 for εsub = µsub = 1, i.e. no materials

used. We note that for arrays of finite complexity, the total order of the array is

one more than the order of the radiating surface. This is because Z̃L is itself a 1st

order network. As an example, the Tightly Coupled Dipole Array (TCDA) has a

planar radiating surface that can be approximated by a first-order L-C circuit. Thus,

the total order of the TCDA is n = 2. Its maximum bandwidth given by (4.15)

is therefore 5:1 when matched to VSWR ≤ 2:1. This is consistent with published

results, where a bandwidth limit of 4.5:1 for TCDAs without material loading has

been determined empirically [19], [38].
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4.2.1 Bandwidth Limits for Low Profile and Scanning Planar
Arrays

For a planar array matched to a fixed frequency band, the optimal symmetry

condition of ωmid = ω1/2 cannot be maintained while scanning, because ω1 varies with

scan angle. Likewise, this symmetry is broken for arrays with h 6= λmidsub /4. Therefore,

electrically thin and/or scanning planar arrays will have reduced bandwidth and

(4.14) will no longer provide a tight limit (although if substrate loading is used,

the bandwidth may increase when scanning in the TM direction). For such arrays,

numerical techniques can be used to compute the actual bandwidth limit [102].

However, under certain conditions, an improved closed-form limit may be com-

puted by disregarding matching constraints that do not contribute significantly to

the result. In general, the constraint imposed by a transmission zero is reduced as

the frequency band moves further from the location of the zero. Specifically, if the

scan angle is large or the array is thin, such that

βzsubhsub � π, (4.16)

then ω1 is far from the band of interest, and its effects (as well as those of the higher

transmission zeros) on the bandwidth limit are minimal. Under these conditions,

the bandwidth limit is dominated by the transmission zero at DC, and the reflection

coefficient ΓW is given by (3.1) or (3.2). In this case, both µr and εr are known and

represent the actual substrate material properties. Following the same process as in

Chapter 3, the TE and TM limits for low profile scanning planar arrays are given by

Bplanar,TE
n (θ, h) ≤ k0hµr cos θ

Kn

, (4.17)

Bplanar,TM
n (θ, h) ≤ k0h(µr − ε−1r sin2 θ)

Kn cos θ
. (4.18)

123



Because (4.17) and (4.18) were obtained by removing matching constraints, they

overestimate the realizable bandwidth. As upper bounds, they are therefore valid for

all h and θ, but only become tight limits under the condition of (4.16). If the array is

required to scan to an angle of θ from normal in all directions, the overall bandwidth

limit is given by the minimum of (4.14) and (4.17). For an infinite-order array with

air substrate matched to VSWR ≤ 2:1, (4.17) will provide a tighter bound than (4.14)

whenever h cos θ ≤ 0.229λmid.

Note that if the substrate material is air (εr = µr = 1), then (4.17) and (4.18)

are equivalent and the limit does not depend on polarization. This differs from the

limits for arbitrary volumetric arrays, in that TM polarization does not yield wide

bandwidths at large scan angles. This is because wide angle TM scanning requires

vertical currents (see Fig. 3.6), which are not present in planar arrays.

4.3 Bandwidth Limits for Planar Arrays with Superstrate
Material Loading

We now consider the effects of adding a superstrate material layer on top of the

radiating planar surface. Whereas dielectric substrates reduce bandwidth, it is known

that dielectric superstrates can improve bandwidth [19]. The superstrate adds a

length of transmission line in series between the array and the free space termination,

and can be viewed as a quarter wave transformer. The corresponding equivalent

circuit is shown in Figure 4.9.

The load impedance for the circuit in Fig. 4.9 is given by

ZL,SS(jω) =
1

1
jZsub tan(βsubhsub)

+ 1

Zsup
Z0+jZsup tan(βsuphsup)

Zsup+jZ0 tan(βsuphsup)

. (4.19)
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Figure 4.9: Equivalent circuit for a planar array above a ground plane with a lossless
superstrate material slab. The load to be matched, ZL,SS, now contains a series
section of transmission line representing the superstrate.

125



0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 β h

 Z
L

,S
S
/Z

0

 

 
ε

sup
 = 1 (No SS)

ε
sup

 = 2

ε
sup

 = 4

ε
sup

 = 6

ε
sup

 = 8

Figure 4.10: Magnitude of load impedance |ZL,SS| for superstrates of various dielectric
constants. Zsub = Z0 and βsubhsub = βsuphsup.

An example plot of |ZL,SS(jω)| is provided in Fig. 4.10. The superstrate acts

as a quarter-wave matching section, lowering the effective radiation resistance, and

increasing the natural bandwidth of the load. Because the bandwidth is maximized

when this quarter-wave match is centered at mid-band (ω1/2), the optimal superstrate

height is given by

βsuphsup = βsubhsub = πω/ω1. (4.20)

Under this condition, both transmission line sections have equal electrical length, and

we may apply the conformal map (4.7). After normalizing to Z0 = 1 and simplifying,

we obtain

Z̃L,SS(p) =
ZsubZ

2
supp

2 + ZsubZsupp

Zsubp2 + (Z2
sup + Zsub)p+ Zsup

. (4.21)
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The impedance is now represented as a rational polynomial, and we determine the

bandwidth limits from the Fano/Youla method. In order to determine the trans-

mission zeros of the load, we compute the functions r(p) and F (p) from (2.67) and

(2.70),

r(p) =
p2Z2

subZsup(p
2Zsup − 1)(

p2Zsub + Zsup − p(Zsub + Z2
sup)
) (
p2Zsub + Zsup + p(Zsub + Z2

sup)
) , (4.22)

F (p) =
4p2(p2 − 1)Z2

subZ
2
sup

p2Zsub(1 + Z2
sup))

2 + pZsup(2Zsub + Zsup) + Zsup
. (4.23)

The transmission zeros are then given by the RHP zeros of F (p). As before, there is

a transmission zero at the origin corresponding the the short circuit from the ground

plane17. However, the introduction of the superstrate creates another transmission

zero at p = 1. This zero is not due to the load impedance becoming either a short-

circuit or open-circuit, but is mapped from the complex infinity point in the s-plane

under (4.7), as seen in Fig. 4.6b. Therefore, this transmission zero corresponds to

infinite electrical length (and infinite attenuation) in the superstrate. Therefore at

p = 1 (s → ∞), the radiation resistance is completely decoupled from the matching

network, and referring to Fig. 4.9, the reflection coefficient Γ must equal ΓL1.

Because Z̃L,SS(p) has two transmission zeros, calculation of the Fano/Youla limit

from (2.49) will involve multiple constraints that must be satisfied simultaneously.

Following the process defined in Section 2.4, we first determine the reflection coeffi-

cient ΓL1(p) seen from the unit resistance of the load when the matching network is

replaced by a unit resistance (c.f. Fig. 4.9b),

ΓL1(p) =
(ZsubZ

2
sup − Zsub)p2 + Z2

supp− Zsup
(ZsubZ2

sup + Zsub)p2 + (Z2
sup + 2ZsubZsup)p+ Zsup

. (4.24)

17Note that double zeros of F (p) on the jΩ axis are treated as single transmission zeros [64].
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For the simple transmission zero at p = 0, we must compute the the first two terms

of the Taylor series of the functions log 1/ΓL1(p), log 1/η(p), Ψ(p, ξ) around the point

p = 0. Since bandwidth is maximized for an all pass η(p) with the fewest zeros that

still satisfies the Fano constraints, we may assume that η(p) has at most a single real

zero at p = Σ0 > 0. Since η(p) must also satisfy (2.41) at the origin, we also set

η(0) = −1. We therefore obtain

log 1/ΓL1(p) = jπ + 2(Zsub + Zsup)p+O(p2), (4.25)

log 1/η(p) = jπ +
2

Σ0

p+O(p2), (4.26)

Ψ(p, ξ) = 0 +
2

πξ2
p+O(p2), as p→ 0. (4.27)

Plugging the above into (2.42) and (2.49) yields the first fundamental constraint for

the system

2

π

∫ ∞
0

log 1/|Γ(jξ)|
ξ2

dξ ≤ 2(Zsub + Zsup)−
2

Σ0

. (4.28)

For the transmission zero at p = 1, we only require the first (constant) term of the

Taylor series,

log 1/ΓL1(p = 1) = log
Zsup + 1

Zsup − 1
, (4.29)

log 1/η(p = 1) = log
1 + Σ0

1− Σ0

, (4.30)

Ψ(p = 1, ξ) =
2

π(1 + ξ2)
. (4.31)

Substituting this into (2.40) and (2.49) yields the second fundamental constraint for

the system,

2

π

∫ ∞
0

log 1/|Γ(jξ)|
1 + ξ2

dξ = log
Zsup + 1

Zsup − 1
− log

1 + Σ0

1− Σ0

. (4.32)

Equations (4.28) and (4.32) are fundamental limits for the impedance match (in

the p-domain) of any physically realizable planar array with a superstrate. The con-

stant Σ0 may be any non-negative number which satisfies both equations. However,
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in their present form, these limits are not particularly convenient. We may sim-

plify things somewhat by assuming that the array has an ideal bandpass rectangular

(infinite order) match on the jω-axis, with maximum mismatch of Γmax. In the p-

domain, this maps to a high-pass response with a low end cutoff frequency of Ωmin.

The integrals in (4.28) and (4.32) can then be evaluated, resulting in

log 1/|Γmax|
πΩmin

≤ (Zsub + Zsup)−
1

Σ0

, (4.33)

2

π
log 1/|Γmax| arctan

1

Ωmin

= log
Zsup + 1

Zsup − 1
− log

1 + Σ0

1− Σ0

. (4.34)

We may make several observations regarding the above results. Since the left

side of (4.34) is real, the arguments of the log functions on the right hand side must

either both be positive or both negative. Thus, Zsup < 1 implies Σ0 > 1, and

Zsup > 1 implies Σ0 < 1 (Zsup = 1 is the degenerate case without any superstrate,

which was addressed previously). From (4.33), we see that Ωmin is generally reduced

as Σ0 is increased, which corresponds to increased bandwidth. Therefore, dielectric

superstrates therefore will generally have superior bandwidth to magnetic superstrates

(the opposite result as found from substrate loading), and we will primarily concern

ourselves with the former.

To avoid carrying around the resulting jπ terms, we may negate the arguments

of both of the log functions. Also, for convenience we refer to (3.75) and denote

(log 1/|Γmax|)/π as K∞
18. Solving for Ωmin, we obtain

Ωmin ≥
K∞

(Zsub + Zsup − 1/Σ0)
, (4.35)

Ωmin = 1/ tan

[
1

2K∞

(
log

1 + Zsup
1− Zsup

− log
Σ0 + 1

Σ0 − 1

)]
. (4.36)

18Note that we may not apply the finite matching values for Kn, since the limit no longer depends
only on a single transmission zero, and the solution from [80] does not apply.
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Figure 4.11: Matching constraints for various superstrate dielectric constants vs. Σ0.
Dotted lines depicts lower bound of (4.35), and solid lines depict (4.36). A valid
match for a given superstrate must lie on the solid line and above the dashed line.
Plot is for air substrate and VSWR=2 (|Γmax| = 1/3).
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The behavior of these constraints can be seen in Fig. 4.11, where each color

represents a choice of superstrate dielectric. The lower bound on Ωmin from (4.35) is

given by the dashed line, and the equation (4.36) is given by the solid line. Both curves

asymptotically approach a constant as Σ0 →∞, which is the minimum phase solution.

For superstrates with larger dielectric constants, the curves never intersect, and the

bandwidth will be set by the minimum phase solution of (4.36). For superstrates

with lower dielectric constants, the curves do intersect, and the maximum bandwidth

(smallest Ωmin) requires solving for Σ0 at the point of intersection.

The maximum possible bandwidth for any choice of superstrate occurs when both

curves share the same asymptote and intersect in the limit as Σ0 →∞. From (4.35),

the lowest possible Ωmin for an optimal choice of superstrate is therefore given by

Ωmin,opt =
K∞

Zsub + Zsup
. (4.37)

From (4.12)-(4.13), we then can compute the corresponding maximum bandwidth in

the s-domain for a superstrate loaded planar array with optimal choice of superstrate

dielectric is

BRSS,opt
∞ = −1 + π

[
arctan

K∞
Zsub + Zsup

]−1
. (4.38)

Examining Fig. 4.11, the superstrate for which this bandwidth is possible occurs for

a dielectric constant just above 5 (with an air substrate and mismatch of VSWR=2).

The exact optimal dielectric constant may be expressed analytically by equating (4.35)

and (4.36), with Σ0 → ∞. The result is a single transcendental equation which can

be solved (numerically) for the optimal superstrate εopt,

arctan

[
1

K∞

(√
µsub
εsub

+

√
1

εopt

)]
=

1

2K∞
log

√
εopt + 1
√
εopt − 1

. (4.39)
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For air substrate and mismatch of VSWR=2, the optimal superstrate εopt is 5.29, and

the corresponding maximum bandwidth from (4.38) is 12.14:1.
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Figure 4.12: Bandwidth limits for a planar array with and without superstrate mate-
rial loading. The superstrate bandwidth assumes the superstrate dielectric constant
is optimal, computed from (4.39).

.

Technically, (4.38) is valid so long as εsup ≥ εopt, however we will show that increas-

ing the dielectric constant above εopt results in a dramatic reduction in bandwidth.

For a superstrate with εsup < εopt, a closed form solution of (4.35)-(4.36) is not avail-

able. However, they may be solved numerically, with the resulting bandwidth shown

in Fig. 4.13 as a function of VSWR, and in Fig. 4.14 as a function of superstrate

dielectric constant.
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Figure 4.13: Bandwidth limits for a planar array with superstrate material loading,
plotted as a function of VSWR. The upper bound traced out by this family of curves
corresponds to the optimal superstrate bandwidth limit shown in Fig. 4.12. Substrate
material is assumed to be air. Limits are for broadside scanning and for superstrate
and substrate each quarter-wavelength at mid-band.
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Figure 4.14: Bandwidth limits for a planar array with superstrate material loading,
plotted as a function of superstrate dielectric constant. Substrate material is assumed
to be air. Limits are for broadside scanning and for superstrate and substrate each
quarter-wavelength at mid-band.
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4.3.1 Finite Order Matching for Superstrate-Loaded Planar
Arrays

In order to determine the matching limits for a finite-order superstrate-loaded

planar array, we must consider the response not of a perfectly rectangular frequency

response, but of a fixed-order Chebyshev rational polynomial. Previously, for the

arbitrary array and planar array with substrate loading, this was straightforward and

simply required substitution of the quantity Kn, given by (3.75)-(3.76). This result is

from [80] and represents an approximate solution of Fano’s transcendental equations

from [6]. Until now, we have been able to apply this method because we were working

with loads with only a single transmission zero on the jω-axis. However, because the

superstrate-loaded array has two transmission zeros in the p-domain, Fano’s solution

for finite-order matching does not apply.

However, we may compute the finite-order limits for loads with multiple transmission-

zeros using a similar method. For the finite-order limits, the matching coefficients

used in the constraints (2.40)-(2.44) do not arise from a dispersion relation integral,

but are rather taken directly from the Chebyshev rational polynomial. We define the

reflection coefficient for an nth order high-pass network with cutoff frequency Ωmin as

Γn(p,Ωmin). The poles and zeros of this function are given by [6],

pm =

{
Ωmin/ sinh

(
−a± j π(m+1/2)

n

)
, n even,

Ωmin/ sinh
(
−a± j πm

n

)
, n odd,

(4.40)

rm =

{
Ωmin/ sinh

(
−b± j π(m+1/2)

n

)
, n even,

Ωmin/ sinh
(
−b± j πm

n

)
, n odd.

(4.41)

For a minimum phase response, a > b > 0 and m is an integer with −bn/2c ≤ m ≤

dn/2e − 1. The maximum reflection coefficient Γmax within the band is given by

Γmax =
coshnb

coshna
. (4.42)
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Fano also provided a condition that specifies the optimal ripple such that Γmax is

minimized within the band [6],

tanhna

coshna
=

tanhnb

coshnb
. (4.43)

In the case of a single transmission zero at the origin, the quantity A0
1 is computed

as

A0
1 =

∑
m

1

pm
−
∑
m

1

rm
=

1

Ωmin

sinh a− sinh b

sin π/2n
. (4.44)

The bandwidth limits are then computed from (2.42) while also satisfying (4.42)-

(4.43). This is difficult to do in closed form as it requires the solution of several

simultaneous transcendental equations. It can either be solved numerically, or good

closed form approximate solutions such as in [80] may be used.

For the superstrate-loaded array, the additional transmission zero imposes a re-

striction not only at the origin, but also at p = 1. We must therefore also compute

the coefficient A1
0, i.e.,

A1
0 = log Γn(1,Ωmin). (4.45)

Therefore, from (2.40) and (2.42), the finite-order matching constraints for the superstrate-

loaded array are

1

Ωmin

sinh a− sinh b

sin π/2n
≤ 2(Zsub + Zsup)−

2

σ0
, (4.46)

log Γn(1,Ωmin) = log
Zsup + 1

Zsup − 1
− log

1 + σ0
1− σ0

. (4.47)

These equations must be solved along with the constraints (4.42)-(4.43) which define

the mismatch and optimal ripple. Although a closed-form solution is not apparent,

a numerical solution is not difficult. The result for air substrate and VSWR≤2:1

(Γmax = 1/3) is plotted in Fig. 4.15. Note that the optimal dielectric constant εopt
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Figure 4.15: Bandwidth limits for a finite-order planar array with superstrate material
loading, plotted as a function of superstrate dielectric constant. Substrate material
is assumed to be air, and VSWR≤2:1. Limits are for broadside scanning and for
superstrate and substrate each quarter-wavelength at mid-band. The effective order
of the array is noted for each curve.
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depends on the overall order of the array, and that εopt is slightly lower when the

order is odd, and slightly higher with the order is even.

4.3.2 Empirical Verification of Bandwidth Limits

The development of bandwidth limits for planar arrays has required several rather

abstract mathematical techniques. It may therefore be useful to check the accuracy

of the result through empirical means. We may do this simply by designing an

optimal matching network of a given order for the equivalent load, and measuring

the resulting bandwidth. Such a network is shown in Fig. 4.16, which represents

a superstrate-loaded planar array with a 3rd order matching network constructed

from open-circuited and short-circuited quarter-wave stubs. Because the substrate

and superstrate themselves comprise two additional stages, the total order of the

array is n = 5. For a range of superstrate dielectric constants, the matching circuit

was optimized for maximum bandwidth in AWR Microwave Office using a genetic

algorithm. The results are depicted in Fig. 4.17, along with the 5th order and infinite

order limits. Our empirical results appear to be consistent with the theoretical limits,

lending confidence to the preceding analytical analysis.
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Floquet mode equivalent circuit 
(substrate and superstrate) 

3rd order matching network 

Figure 4.16: Example 5th order equivalent circuit for a superstrate-loaded array, as
modeled in AWR Microwave Office. The array itself is 2nd order, as the substrate
and superstrate comprise two reactive stages, and also contains an arbitrary 3rd order
network representing the aperture and feed. For simplicity, the aperture and feed
are also implemented using shunt open-circuit and short-circuit stubs, and thus the
Richards’ Transform maps the entire circuit to a 5th order lumped LC network.
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Figure 4.17: The 5th order equivalent circuit of Fig. 4.16, optimized in ADS, along
with the theoretical 5th order limit. Also plotted is the theoretical (infinite order
limit) derived above.
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4.4 Wideband Backplanes, High Impedance Surfaces, and
Metamaterials

The bandwidth of planar arrays is fundamentally limited by the reflections from

the ground plane. As such, a designer may attempt to mitigate these reflections

by introducing some type of additional matching structure between the array and

ground plane. Such a structure may absorb the ground plane reflections, alter the

phase of the reflection, or adjust the effective impedance of the ground plane seen

at the array. Collectively, such structures are referred to as wideband backplanes,

since they represent an attempt to restore the bandwidth lost from ground plane

reflections.

The most straightforward wideband backplane simply uses magnetic materials.

As demonstrated in this and the previous chapter, magnetic substrates can have a

dramatic effect on improving bandwidth. Note that for planar arrays, the critical pa-

rameter in the bandwidth limit (4.14) is not simply the permeability µsub, but the ratio

of permeability to permittivity, µsub/εsub, and therefore the dielectric constant must

be kept small while the permeability is increased. In practice, magnetic substrates

are also somewhat lossy, which furthermore improves the impedance bandwidth of

the array, at the expense of efficiency.

But what about artificial magnetic materials? Could metamaterials constructed

from non-magnetic components (e.g. split-ring resonators) be used effectively to in-

crease the permeability of the array? Unfortunately, the critical value of permittivity

that determines the bandwidth limit is that at DC. Although artificial magnetic

materials may be synthesized over some frequency range, it is not possible using non-

magnetic materials to increase the static permeability of a structure. Therefore, any
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attempt to use artificial magnetic materials will still be constrained by causality and

therefore by the bandwidth limits imposed by the dispersion relations based on the

low-frequency response of the material.

Figure 4.18: Artificial high-impedance surface, from [103], c©1999 IEEE.

Another strategy that is occasionally proposed is the use of artificial high-impedance

surfaces above the PEC ground plane. An example are “thumb-tack” or “mush-

room” shaped conducting structures that synthesize a high-impedance surface over

some frequency band [103], see Fig. 4.18. The idea is that unlike a PEC ground

plane, a engineered surface could perhaps produce reflections that are in-phase and

thus avoid destructive interference, even when the array is electrically thin. Although

this approach may have some practical uses, it unfortunately cannot provide any

improvement beyond the impedance bandwidth limits for planar arrays presented in

this chapter, if only lossless non-magnetic materials are used.

The reason for this was demonstrated by Munk [19]. Foster’s Reaction Theorem

states that a lossless impedance must have reactance that increases monotonically

with frequency. Consider a planar array with a homogeneous substrate that is λ/2
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Figure 4.19: (a-b) Standard lossless, homogeneous substrate and ground plane creates
a short circuit at DC and at the half-wavelength resonance. (c-d) If an artificial high-
impedance surface is introduced to create a high-impedance at multiple frequencies
within the band, Foster’s Reaction Theorem states that this must introduce another
short-circuit at some intermediate frequency. This is of course counterproductive for
improving the bandwidth.
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thick at the frequency ω1, as shown in Fig. 4.19a. The impedance of the ground plane

seen at the reference plane of the array begins at DC as a short-circuit, becomes an

open-circuit at ω1/2, and returns back to a short circuit at ω1, see Fig. 4.19b. Suppose

we wished now to include a backplane or frequency selective surface (FSS) as in Fig.

4.19c such that the ground plane impedance is open-circuited at additional frequencies

within the band. Foster’s reactance theorem states that if the impedance is an open

circuit at two distinct frequencies, then it must also have a short-circuit at some

intermediate frequency, as seen in Fig. 4.19d. Therefore, by attempting to synthesize

a wideband back-plane, we have actually made the bandwidth worse by introducing

additional short circuits within the band. Munk referred to this phenomenon as the

“moving ground plane that moved too fast”.

We can also frame Munk’s argument in terms of our bandwidth limits. If the

high-impedance surface is constructed from lossless and non-magnetic materials, then

whatever impedance we include in the additional block in Fig. 4.19c will increase the

reactance of the load. However, the bandwidth is maximized when the reactance of

the load is minimal, corresponding to a homogeneous substrate without any reactive

components. Such high-impedance backplanes may be effectively used to reduce the

height of a planar array, but can do so only at the expense of bandwidth. However,

the low-profile planar limits (4.17)-(4.18) suggest that the same effect can be obtained

simply by redesigning the planar radiating surface itself, and thus the use of additional

high-impedance surfaces is not strictly required. One way to express this conclusion

is that rather than designing an intermediate surface which acts as high-impedance

ground plane, it is often simpler and more effective to simply excite the metamaterial

surface directly, and use it as the primary radiating aperture.
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One area that metamaterials or frequency selective surfaces may be more effec-

tively used is not as artificial substrates, but as artificial superstrates. The bandwidth

improvements that were obtained by adding a superstrate layer may also be obtained

by including additional planar matching layers above the primary radiating surface.

Such an approach has the advantage of avoiding bulk superstrate materials that add

weight to the array and may support undesired higher-order modes or surface waves.

We can generalize these findings by stating that if multiple layers are used in a

lossless planar array, it is typically best to directly excite the layer nearest to the

ground plane. If additional layers are used, they should be placed above the driven

layer and parasitically excited. The space between the driven layer and the ground

free then should be from dielectrics or reactive components, other than necessary feed

lines.
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Part II: Practical Implementations
of Wideband Low-Profile Antenna

Arrays
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Chapter 5: Wideband Feeds for Tightly Coupled Arrays

We now move from the theoretical question of the fundamental limits for low-

profile PEC-backed arrays, to the practical question of how best to implement such

arrays with maximum performance and minimum size, weight, and cost. We begin by

considering how such arrays may be optimally excited. One of the most challenging

design problems for wideband arrays is the design of a practical feed that does not

deteriorate the natural wideband response of the array. Most wideband arrays have

radiating elements that use balanced feeds, meaning that the feed point consists of

two symmetrical nodes that are fed with a differential signal. This is in contrast to

an unbalanced feed, where one node is connected to the signal line, and the other

node is grounded. A simple example is a dipole, which has a balanced feed, versus a

monopole which has an unbalanced feed, see Fig. 5.1.

Balanced feeds are common in wideband arrays because, as discussed in the pre-

vious chapters, the radiating elements must be removed from the ground plane in

order to obtain wideband performance. Therefore, there is no good ground reference

available to feed an unbalanced element. However, the problem with balanced feeds is

that the electronics which drive the array, as well as the transmission lines in the feed

network typically employ unbalanced feed lines, e.g. microstrip, stripline, or coaxial
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Figure 5.1: (a) A dipole is an example of a radiator with a balanced input, with
positive and negative terminals. Neither terminal is grounded. A balun is required
to feed a dipole from an unbalanced transmission line. (b) A monopole is an example
of a radiator with an unbalanced input, with a single terminal referenced to ground.
No balun is needed.

(a) (b)

Figure 5.2: Various baluns have been proposed for coupled and connected dipole ar-
rays. (a) TCDA with a compact balun implemented just above the ground plane,
yielding 1.5:1 bandwidth, from [104], c©2010 IEEE. (b) Microstrip to co-planar
stripline transition, operating as a balun for a connected dipole array, over a 1.5:1
bandwidth, from [105], c©2010 IEEE.
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Figure 5.3: The Planar Ultrawideband Modular Array (PUMA) uses shorting posts
rather than a traditional balun to avoid common-mode resonances over a 5:1 band-
width, from [49], c©2012 IEEE.

cables. Therefore, a circuit must be employed to convert between the balanced and

unbalanced parts of the network. Such a device is called a balun.

Ideally, a small balun could be integrated within each unit cell above the ground

plane for a lightweight, low profile implementation. However the available volume is

quite limited, particularly for arrays operating above 500 MHz. For example, a TCDA

operating over a 6:1 bandwidth of 750-4500 MHz may have a 30 mm element-element

spacing (< λ/13 at 750 MHz), with the ground plane spaced a similar distance be-

low the dipoles. Commercially available passive baluns at microwave frequencies are

generally either narrow-band or are large, heavy and expensive, and active balun cir-

cuits are limited to receive-only applications. Integration of wideband baluns within

the available volume is therefore quite difficult, and previous attempts have yielded
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Figure 5.4: (a) Configuration of a CSA with an external balun and feed organizer.
(b) Feed organizer detail, from [106].

150



modest bandwidths of less than 2:1 [104,105,107]. Figure 5.2 illustrates several such

designs. Another technique is to avoid baluns altogether and use shorting posts to

mitigate common mode resonances, resulting in 5:1 bandwidth after external imped-

ance matching, as shown in Fig. 5.3 [49].

For maximum bandwidth and performance, TCDAs currently must use bulky

external baluns or 180◦ hybrids located below the ground plane, as shown in Fig. 5.4.

In addition to the additional size, weight and cost of the balun itself, which can be

significant, care must be taken not to excite so-called common modes on the feed lines.

These can arise when balanced feed lines are left unshielded, and produce significant

impedance mismatches and high cross-polarization [18]. To avoid such resonances, a

structure known as a feed organizer is used to shield the balanced line and reduce

the electrical distance between neighboring feed lines [18, 106]. The combination of

external balun and feed organizer significantly increases the total size, weight, and

cost of the array. However, this is currently the only way to realize the full bandwidth

and performance of tightly coupled arrays.

In this chapter, we will introduce a novel technique for integrating an electrically

small balun within the existing volume of a TCDA. Not only does our method preserve

the naturally wide bandwidth of the TCDA, but it actually improves the array’s

impedance bandwidth by canceling the reactance of the array with the reactance of

the balun. By including the balun as part of the matching network for the array,

we obtain a higher-order impedance match, which leads to higher bandwidth from

(3.73).
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5.1 Equivalent Circuits for Scanning Tightly Coupled Dipole
Arrays

hsub 

dH 

dE 

ZTCDA 

x 

y 

z 

ϕ 

θ 

Unit Cell 

Figure 5.5: A Tightly Coupled Dipole Array (TCDA) consisting of capacitively cou-
pled dipole elements, placed above a conducting ground plane. The dipoles are aligned
with the x-axis and the ground plane is normal to the z-axis. Substrate and super-
strate materials (not shown) may also be included.

A Tightly Coupled Dipole Array (TCDA) uses horizontal dipoles placed above

a conducting ground plane, as shown in Fig. 5.5. By capacitively coupling neigh-

boring dipoles, the array supports currents at wavelengths which greatly exceed the

dimension of a single element. Moreover, the dipole inductance and inter-element
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Figure 5.6: Equivalent circuit for the TCDA proposed in [19].

capacitance serve to cancel the reactance of the nearby ground plane over a wide

bandwidth.

An approximate equivalent circuit for the TCDA was proposed in [19], and is

shown in Fig. 5.6. In this circuit, the dipole inductance is represented by Ldipole,

and the inter-element capacitance is denoted as Ccoupling. The substrate, superstrate,

and free space layers are represented by transmission line sections with properties

determined by the propagating Floquet mode within each corresponding layer, c.f.

(4.1)-(4.3).

In general, the array may excite both the fundamental TE and the TM Floquet

modes. For linearly polarized arrays, the TE mode is excited when scanning in

the H-plane (φ = 90◦) and the TM mode is excited when scanning in the E-plane

(φ = 0◦). The scan angle θ is illustrated in Fig. 5.5, and the corresponding angle of

refraction within each layer is given by θr = sin−1(sin θ/
√
µrεr). The impedance of
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Figure 5.7: Implementation of a TCDA unit cell, using vertical printed dipoles with
arms on opposite sides of a thin PCB. The model does not include a realistic feed,
rather the dipole is fed with an ideal gap source. On the left is a cross section of the
PCB, showing the layout of the dipoles with overlapping arms.
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each transmission line section in Fig. 5.6 when scanning in the E- and H-planes is

given by [21]

ZE
r =

dE
dH

ZTM
00 = η

√
µr
εr

dE
dH

cos θr, (5.1)

ZH
r =

dE
dH

ZTE
00 = η

√
µr
εr

dE
dH

1

cos θr
. (5.2)

The propagation constant for each line is given by

βr = kzr = k0
√
µrεr cos θr. (5.3)

Here, η ≈ 377 Ω is the characteristic impedance of free space, dE is the E-plane (x-

dimension) element spacing, and dH is the H-plane (y-dimension) element spacing.

Note that scanning in the intercardinal planes will excite both TE and TM modes

simultaneously, which requires a more general model, such as given in Fig. 4.3.

However, the performance of TCDAs at a given scan angle in the intercardinal planes

typically varies between the E- and H-plane responses, and thus can usually be

neglected when performing initial design optimizations.

5.1.1 Validation of the Circuit Model

To evaluate the accuracy of the equivalent circuit, we considered a TCDA array

implementation as shown in Fig. 5.7, with dipoles that are printed on a vertically

oriented printed circuit board of thickness tPCB = 0.5 mm and dielectric constant

εPCB = 3.66. The dipole’s inductance is controlled by the height hdipole, and the

inter-element capacitance is created by the overlap wcap of the dipole arms that are

printed on opposite sides of the PCB. The spacing between the the dipoles and the

ground plane is hsub, and the thickness of the dielectric superstrate is hsup.

Prior to performing a full-wave simulation, the array is modeled in AWR Mi-

crowave Office with an equivalent circuit. Three copies of the circuit are created,
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Figure 5.8: Reflection coefficient of TCDA without feed, using the equivalent circuit
model (Fig. 5.6) and the full wave simulation (Fig. 5.7) with parameters given by
Table 5.1. (a) Broadside scan. (b) 45◦ E−plane scan. (c) 45◦ H−plane scan. Other
than hdipole, all array dimensions are directly computed from the corresponding circuit
values and have not been fine-tuned, except for hdipole.
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Table 5.1: Optimized Circuit Values and Dimensions of TCDA without Feed

Equivalent Circuit (Fig. 5.6) Physical Dimensions (Fig. 5.7)

Z0, Zsub 188 Ω dE 14 mm

Zsup 144 Ω dH 28 mm

Zfeed 100 Ω Zfeed 100 Ω

βsubhsub 84◦ at 2.5 GHz hsub 28.3 mm

βsuphsup 64◦ at 2.5 GHz hsup 21.7 mm

Ccoupling 2.0 pF wcap 4.2 mm

Ldipole 3.0 nH hdipole 7.6 mm

εsup 1.7

tPCB .5 mm

εPCB 3.66
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Circuit: 45° H−plane scan
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HFSS: Broadside

HFSS: 45° H−plane scan

HFSS: 45° E−plane scan

Figure 5.9: VSWR of TCDA without feed, using the equivalent circuit model (Fig.
5.6) and the full wave simulation (Fig. 5.7) with parameters given by Table 5.1. All
array dimensions are directly computed from the corresponding circuit values and
have not been fine-tuned, except for hdipole.
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corresponding to broadside, 45◦ E-plane, and 45◦ H-plane scanning. These scan con-

ditions are modeled by adjusting the impedance and length of the transmission line

sections, per (5.1)-(5.3). For reasons discussed in the following sections, we fix Z0 =

188 Ω and Zsup = 144 Ω, which corresponds to a rectangular unit cell (dE/dH = 1/2)

and a superstrate dielectric constant of εsup = 1.7. The dipole was fed by a 100 Ω

lumped gap source. Under these conditions, the remaining circuit components were

optimized for maximum bandwidth at broadside, using using a genetic algorithm.

Due to the simplicity of the circuit, optimization is relatively fast with convergence

in less than one minute. The resulting values are given in Table 5.1, and the response

of the circuit model is shown in Figs. 5.8-5.9.

With the exception of the dipole inductance, each physical dimension of the array

can be directly computed from the corresponding circuit value, and the unit cell then

simulated using Ansys HFSS v.14. The physical thicknesses of the substrate and su-

perstrate are determined from the electrical length of the corresponding transmission

lines, and wcap is computed from Ccoupling using a parallel plate capacitor model. The

dipole inductance was then tuned by adjusting hdipole until the simulation was roughly

in agreement with the circuit model. The resulting dimensions are also given in Table

5.1, and the response of full-wave simulation is compared to the circuit model in Figs.

5.8-5.9 at broadside, and when scanning to 45◦ in the principle planes. Although

further fine-tuning of the physical model could then have been performed, we have

not done so in order that the quality of the initial design computed directly from the

circuit components may be evaluated.

It is clear that despite its simplicity, the circuit of Fig. 5.6 provides a reasonable

representation of the scanning TCDA that can be efficiently analyzed and optimized
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using standard circuit modeling tools. As such, it is a convenient and valuable tool,

both for developing a rough initial design, as well as for providing critical guidance

when fine-tuning the array. However, both the above circuit and physical model are

incomplete because neither accounts for the presence of a feed. This is critical because

in addition to the impedance of the feed circuit itself, any conducting structure placed

between the ground plane and dipoles will also disrupt the fields within the substrate.

Because these effects are not accounted for in the above circuit model, it is less

accurate for modeling TCDAs with practical feeds. Nevertheless, we will show that

this limitation can be mitigated by making a minor adjustment to the equivalent

circuit.

5.2 An Improved Equivalent Circuit for a Tightly Coupled
Dipole Arrays with a Feed

In a practical implementation, a TCDA must be excited by feed lines running

from the ground plane to the dipoles, thus the above representation of the substrate

as a homogeneous slab is insufficient. At broadside and when scanning in the H-

plane, the feed lines do not have much effect, since the substrate mode is TE and the

electric field polarization is normal to the vertical feed. However, when scanning in

the E-plane, the presence of a feed has a significant impact.

The effect of the feed can be seen in Fig. 5.10, where the electric and magnetic

fields are plotted for two TCDAs, each scanned to 45◦ in the E-plane. Although the

radiating dipoles of both arrays are identical, the first TCDA is fed by an ideal gap

source, whereas the second TCDA contains a realistic feed structure. For the TCDA

without feed lines, the substrate fields are accurately represented by the fundamental

TM Floquet mode. However, when the feed structure is introduced, the electric
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Figure 5.10: Electric and Magnetic fields in the unit cell of the TCDA, when scanning
to 45◦ in the E-plane. (a) A TCDA unit cell with ideal gap source and no feed
structure. In this case, the magnetic fields in the substrate, superstrate, and above
the array are all transverse to ẑ, i.e. the TM mode. (b) A TCDA unit cell with
vertical conducting feed lines. The fields in the substrate are strongly influenced by
the feed. Both electric and magnetic fields are transverse to ẑ, and form a quasi-TEM
mode.
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Figure 5.11: Reflection coefficient of TCDA with feed circuit, using the equivalent
circuit model (Fig. 5.14) with values given in Table 5.2, and the full wave model of a
“half” unit cell (Fig. 5.10b) with dimensions given in Table 6.1. (a) Broadside scan.
(b) 45◦ H−plane scan (c) 45◦ E−plane scan, showing circuit response using both
TM substrate mode via (5.1)-(5.3), and TEM substrate mode via (5.4)-(5.5)

161



0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

4.5

5

Freq (GHz)

V
S

W
R
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Figure 5.12: VSWR of TCDA with feed circuit, using the equivalent circuit model
(Fig. 5.14) with values given in Table 5.2, and the full wave model of a “half” unit
cell (Fig. 5.10b) with dimensions given in Table 6.1.
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field in the substrate couples strongly to the feed lines, forming a guided quasi-TEM

mode. Unlike the TM Floquet mode described by (5.1) and (5.3), the impedance and

propagation constant of the TEM mode in the substrate do not significantly vary

when scanning in the E-plane. Therefore, when vertical feed lines are present, a more

accurate representation for the substrate for E-plane scanning is given by

ZE
sub = η

√
µr
εr

dE
dH

, (5.4)

βEsub = k0
√
µrεr. (5.5)

For H-plane scanning, (5.2) and (5.3) remain accurate. The circuit model can now be

optimized over all three scan positions (Broadside, 45◦ E-plane, and 45◦ H-plane).

The improvement provided by (5.4)-(5.5) is illustrated in Figs. 5.11-5.12, which

compare a full wave simulation of a TCDA with an integrated feed to its equivalent

circuit using both the standard Floquet mode substrate model and the proposed TEM

substrate model. As seen, the TEM substrate circuit model for E-plane scanning

is significantly more accurate vs. the standard TM Floquet mode substrate model,

especially at lower frequencies. The details of the actual feed design used in this

analysis is discussed in the following section.

5.3 Wideband Baluns for Tightly Coupled Dipole Arrays

Although the above section presents a useful equivalent circuit model for a TCDA

radiating element, much of the challenge in designing a practical TCDA lies in the

particular details of the feed circuit. The dipoles must be fed differentially, whereas

practical feed networks and electronics employ unbalanced circuits, and thus a balun

is needed for each element. Unfortunately, low-loss passive baluns with sufficient
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bandwidth are often large, heavy, and expensive. Moreover, the optimal input im-

pedance of a TCDA with a square unit cell is typically ∼200 Ω. Thus, a wideband

50 Ω to 200 Ω transformer is also required, further increasing the size and weight of

the feed.

To eliminate the need for the impedance transformer, we may reduce the E-plane

dimension dE of the unit cell by a factor of 2, which correspondingly reduces ZTCDA

to ∼100 Ω. Each square unit cell then contains two “half” elements, each containing

a dipole and a balun (see Fig. 5.13). However, rather than feeding each half-element

individually (which would double the number of phase shifters and T/R modules), the

pair can be combined in parallel to provide a single 50 Ω feed. The effective element

count and unit cell size therefore remains the same, and no impedance transformers

are required. This “double element” technique has also been shown to significantly

reduce cross-polarization by eliminating a common mode resonance which can occur

when the combined length of the dipole and feed lines becomes electrically long [105,

108]

Unfortunately, this approach also reduces the volume available for a balun since

two baluns are required for each element, and an extremely compact design is required.

A Marchand balun, constructed from coupled quarter-wave transmission line stubs

(see Fig. 5.14), is both compact and is theoretically capable of operating over a wide

bandwidth (>10:1). However, a single stage Marchand balun requires transmission

lines with extreme impedance ratios ZOC � ZBal � ZSC for wideband operation

[109]. With limited available space, implementation of such impedances is challenging.

Thus, a standard Marchand balun design integrated within a TCDA unit cell will have

increased reactance, deteriorating the match and reducing impedance bandwidth.
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(b) Two 188 Ω “half” unit cells

Figure 5.13: Top down representation of the unit cell. The impedance of the unit cell
is proportional to the aspect ratio dE/dH . By splitting the cell into two halves, the
impedance of each is correspondingly reduced by a factor of two. Recombining these
halves in parallel again reduces the impedance at the common port by another factor
of two.
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Figure 5.14: TCDA-IB equivalent circuit with a Marchand balun feed. The addition
of the balun’s two transmission line stubs increases the overall order of the matching
network, leading to increased impedance bandwidth.
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This limitation may be mitigated by tuning the reactance of the balun to cancel that

of the array, as is often done in Vivaldi arrays [110]. That is, the balun may be

viewed as part of the impedance matching network for the array. Here, we employ a

similar reactive cancelation technique for TCDAs, and we and demonstrate that the

inclusion of a reactive balun can actually improve the overall bandwidth, as compared

to a TCDA that is fed with no balun.

Referring to the equivalent circuit in Fig. 5.14, the impedance ZL, consisting

of the substrate, superstrate and radiating transmission lines, is independent of the

radiating aperture design and may be thought of as a fixed load for the system.

As discussed in Chapter 4, the bandwidth of the TCDA (and all planar arrays) is

fundamentally limited by the Fano limit of ZL. The standard TCDA of Fig. 5.6, with

series L-C components representing the coupled dipoles, operates as a single stage

impedance matching network to ZL. As shown in Fig. 5.9, optimization of the circuit

model with no feed circuit yielded ∼5.5:1 bandwidth with VSWR≤2:1 at broadside

and VSWR≤2.5:1 when scanning to 45◦ in the H-plane. This bandwidth is limited by

the simplicity of the single stage impedance match provided by the standard TCDA

design. However, if a multi-stage matching network is employed (such as provided by

the reactive Marchand balun), this bandwidth can be further increased.

In the circuit of Fig. 5.14, the stubs ZOC and ZSC along with Ldipole and Ccoupling

form a three stage match to ZL. Through simple circuit optimization, a maximum

bandwidth of 8.9:1 (VSWR≤2) was achieved when only broadside scanning was con-

sidered. Referring to Fig. 4.15, we see that this is consistent with the maximum

limit for a 5th order array (the substrate and superstrate sections along with the 3rd

order matching network) with a superstrate of εsup = 1.7. When optimizing over scan
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Table 5.2: Optimized Circuit Values of TCDA with Integrated Balun

Z0, Zsub 188 Ω

Zsup 144 Ω

hsub 82◦ at 2.5 GHz

hsup 59◦ at 2.5 GHz

Ldipole 3.5 nH

Ccoupling 1.25 pF

ZOC 20 Ω

ZSC 169 Ω

loc 52◦ at 2.5 GHz

lsc 77◦ at 2.5 GHz

volume using (5.1)-(5.5), a 7.3:1 bandwidth was achieved with VSWR≤2 at broadside

and VSWR≤2.5 for 45◦ scanning in all planes, a 33% increase in bandwidth from the

standard TCDA of Fig. 5.6.

There is of course a fundamental tradeoff between bandwidth and maximum scan

angle. Our design reflects a rather conservative matching tolerance of VSWR≤2.5:1,

and greater bandwidth and/or scanning could be achieved by using a more relaxed

matching requirement. Optimized circuit values are given in Table 5.2, and the

performance is plotted above in Fig. 5.12.

Therefore, by incorporating the balun within the matching network, the band-

width of the overall array is significantly increased, while the total size, weight and

cost of the array is reduced by eliminating the need for bulky external wideband

baluns. We refer to this design approach as the Tightly Coupled Dipole Array with
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Integrated Balun (TCDA-IB). In the following chapter, we discuss the physical im-

plementation and design of the TCDA-IB, including measured results from an 8× 8

prototype array.
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Chapter 6: The Tightly Coupled Dipole Array with

Integrated Balun (TCDA-IB)

As described in the previous chapter, a pair of compact Marchand baluns con-

structed from quarter-wave transmission line stubs may be used to efficiently excite

a TCDA element. In this chapter, we detail the implementation of this approach in

an actual array design, which we refer to as the Tightly Coupled Dipole Array with

Integrated Balun (TCDA-IB).

6.1 Physical Implementation of the Marchand Balun

We begin with the physical implementation of the Marchand balun design from

the previous chapter, with equivalent circuit shown in Fig. 5.14. A sketch of the

balun is shown in Fig. 6.1a. The unbalanced input is a simple microstrip or stripline

trace with impedance Zfeed. This is fed at the bottom of the balun and runs to the

top, where the ground plane is split into two thin traces. This represents the short-

circuited stub with impedance ZSC . The feed line crosses the top of the split in the

ground plane, and travels back down the other side, ending in an open circuited stub.

This section represents the stub ZOC . The balanced output is located at the top of

the balun, where the feed line crosses the split in the ground plane.
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Figure 6.1: (a) Physical representation of the Marchand balun. (b) Conceptual rep-
resentation of the Marchand balun, showing it to be a simple transformer. The
unbalanced line feeds the primary loop, and the secondary loop excites the balanced
output. The secondary loop is grounded in the center at the bottom, which balances
the output voltage with respect to the ground of the unbalanced input. The frequency
response and impedance match of the balun is determined by the impedances and
lengths of the transmission line sections.
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The RF frequency response and impedance match of the balun can best be un-

derstood by examining the equivalent circuit in Fig. 5.14. However, this does not

necessarily indicate how the balun works or how the unbalanced input is converted to

a balanced output. This can be best understood by considering the simplified sketch

shown in Fig. 6.1b. The Marchand balun clearly forms two coupled loops. The

primary loop is formed by the transmission lines Zfeed and ZOC , and the secondary

loop is formed by ZSC . The primary loop is excited at the bottom of the balun with

a transmission line that is referenced to ground, i.e. it has an unbalanced input. This

loop then couples to the secondary loop, which is tied to ground at its midpoint. The

voltage at the output terminals of the secondary loop is therefore centered around

the ground voltage, and forming a balanced differential output.

This balun is compact and sufficiently small to fit within the unit cell of the array.

The dipoles are connected to the balanced output at the top of the balun, and the

balun’s ground plane can be connected to the array ground plane.

6.2 Physical Implementation of the TCDA-IB

The full TCDA-IB unit cell design is depicted in Fig 6.2. The balun and dipole

elements are printed together on a single 3-layer printed circuit board. The PCB

is fabricated from two Rogers 4350B (εr = 3.66) boards laminated together using

a prepreg layer of Rogers 4450B (εr = 3.3). Ldipole is controlled by the width of

the dipole arms, which are printed on opposite sides of the board, and Ccoupling is

controlled by the amount of overlap between the arms. We note that Zfeed is a

100 Ω microstrip line, and ZOC is implemented as a stripline. ZSC is formed by twin

vertical metal strips, which also serve as ground planes for Zfeed and ZOC . Vias were
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Figure 6.2: Implementation of a unit cell of the TCDA-IB. Each unit cell contains
two 100Ω baluns, fed by a single 50Ω microstrip trace. Dimensions are provided in
Table 6.1.
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Table 6.1: Optimized Dimensions of TCDA with Integrated Balun

dE 28 mm

dH 28 mm

hsub 27 mm

hsup 14 mm

hGP 41 mm

htotal 45.8 mm

hdipole 4.8 mm

wcap 5.25 mm (dual pol: 4.8 mm)

wfeed 0.13 mm

lsc 20.8 mm

loc 7.9 mm

wsc 2.3 mm

woc 1.3 mm

dgap 2.3 mm

tPCB1 10 mil 4350B

tPCB2 6.6 mil 4350B + 3.6 mil 4450B

εsup 1.7
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Figure 6.3: Simulated VSWR of TCDA-IB, matched from 0.68-5.0GHz (7.35:1 BW).
This simulation differs from that of Fig. 5.12 only in that the entire “double” unit
cell is modeled with both baluns and the Wilkinson combiner.
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Figure 6.4: Simulated co-polarized gain per unit cell of TCDA-IB.
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Figure 6.5: Simulated cross-polarized gain per unit cell of TCDA-IB using Ludwig’s
third definition, illustrating excellent cross-polarization in the principal planes and
better than -15 dB over most of the band in the D-plane.
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introduced to connect the upper and lower ZOC grounds and tie the Zfeed trace to

the ZOC trace at the dipole feed point.

Before attempting to optimize the full unit cell shown in Fig 6.2, a rectangular

“half” element (c.f. Fig. 5.10b) was designed, based on the optimized equivalent

circuit. Simple models for the transmission line structures ZOC and ZSC were used to

estimate initial dimensions of the balun, as determined by the corresponding circuit

values. The design was then simulated using Ansys HFSS v.14, and the response

was compared to that of the equivalent circuit. Because the effects of adjusting a

given parameter could be quickly analyzed with the circuit model prior to running

computationally expensive simulations, the array could be fine-tuned quickly and

efficiently by iterating between HFSS and the equivalent model. The final optimized

dimensions are given in Table 6.1, and the comparison of the equivalent circuit to the

full-wave simulation (of the “half” unit cell) is shown Figs. 5.11-5.12. Although the

agreement between the full wave simulated response and the equivalent circuit is not

perfect, it is sufficient to enable efficient fine-tuning of the array.

Two such “half” elements were then combined to form a full square unit cell (as

shown in Fig. 6.2). The two 100 Ω feeds are combined by a Wilkinson divider below

the ground plane to form a single 50 Ω microstrip trace. The simulated VSWR for the

complete “double” unit cell, measured at the common 50 Ω input is given in Fig. 6.3.

The array achieves 7.35:1 impedance bandwidth (0.68-5.0 GHz) with VSWR≤2 at

broadside, and VSWR≤2.65 when scanning to 45◦ in all planes. The realized gain

and radiation efficiency of the array as seen in Fig. 6.4a is high, with total ohmic and

mismatch losses <0.5 dB at broadside and <1.3 dB over scan volume. The cross-

polarization is shown in Fig. 6.5 is also low (using Ludwig’s third definition [98]),
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except in the D-plane at the top of the band, where it exceeds -10 dB. However, the

cross polarization is reduced when a second orthogonal polarization is added, as we

show below in Section 6.3.

The width of all printed lines and spaces is ≥0.13 mm (10 mil) and the entire

structure can be easily manufactured using low-cost printed circuit board technology.

Standard PCB fabrication allows for 5 mil lines and spaces, the therefore scaling the

design to operate at frequencies up to ∼10GHz is straightforward. However, when

scaling to frequencies above X-band, reoptimization to accommodate manufacturing

tolerances may result in reduced bandwidth. Nevertheless, the smallest features (e.g.

width of the feed trace, PCB thickness, via size, etc.) are not resonant dimensions

and would not necessarily need to be directly scaled.

If desired, T/R modules or phase shifters can be integrated directly on the circuit

board below the ground plane, after the Wilkinson divider, resulting in a low cost

compact electronically scanning array. This level of integration is not possible with a

standard TCDA, because of the need for external baluns located between the array

and electronics.

6.2.1 Practical Considerations and Design Rules for the TCDA-
IB

There are several practical issues that must also be considered when designing

the TCDA-IB to avoid undesired modes and detrimental resonances. The problem

of common mode currents is well known for tightly coupled and connected arrays.

These common modes were described in [49] and [111], and correspond to a resonance

between adjacent vertical feeds. For the TCDA-IB, this mode forms when dH (the

distance between the feed boards) reaches a half-wavelength. However, excessive
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reduction of dH results in oversampling and increased T/R module costs. For our

design, the element spacing in both dimensions is set at 28 mm, which is 93% of the

λ/2 grating lobe spacing at 5 GHz.

Another undesired resonance can occur within the balun due to parasitic coupling

between the open circuited stub ZOC and the trace Zfeed. We avoid this resonance

by extending one of the dipole arms as a shield for the ZOC stub, which converts it

from microstrip to stripline (see Fig. 6.2). This also helps to lower the impedance

ZOC , further improving the balun’s bandwidth.

Surface waves present another possible source of resonances in scanning arrays.

Although high contrast superstrate dielectrics can improve the impedance bandwidth

at broadside (c.f. Fig. 4.15), they may also support surface waves that can cause

scan blindness. Therefore the selection of the superstrate material requires careful

consideration between the required bandwidth and scanning performance. Here, we

avoid surface waves by using a superstrate with a relatively low dielectric constant

of εsup = 1.7, and an air substrate. However, if the array did not need to scan, a

superstrate dielectric constant of εsup ≈ 5 would result in greater bandwidth and a

thinner array.

When connecting the two baluns together to form a single feed for the double

element, it might be assumed that a reactive split would be desirable so as to mini-

mize resistive losses. However, this allows a loop resonance to form between the two

elements when the array is scanned. This resonance is prevented by using a matched

Wilkinson divider, which introduces isolation between the two balun circuits. Unlike

the standard Wilkinson design with three 50 Ω ports, this design has a 50 Ω input

and two 100 Ω outputs, resulting in a frequency independent impedance match. The
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isolation between the output ports does depend on the electrical length of the divider

and is therefore band limited. However, it is not necessary to maintain perfect isola-

tion in order to suppress the loop resonance, and a single stage divider is sufficient.

We note that unlike what was claimed in [27], we did not observe unacceptable losses

when scanning our double element design in the E-plane. As seen in Fig. 6.4, the

worst-case loss is 1.3 dB at the top of the band, which represents ∼0.5 dB reactive

loss due to impedance mismatch and ∼0.8 dB ohmic losses. To minimize the space

required below the ground plane, the Wilkinson is meandered as shown in Fig. 6.2.

The vertical PCB is installed in the ground plane through a slot which is suffi-

ciently wide to allow the microstrip feed and Wilkinson to pass through. However

if the slot is too long, it may resonate due to the dielectric loading from the PCB.

Therefore vias are introduced at the edges of the PCB card in the slot to reduce its

electrical width to less than λ/2 in the dielectric, as shown in Fig. 6.2. Electrical

connection between the PCB ground and the array ground plane is maintained along

the back of the slot with conducting gasket or fingerstock. Additional construction

details, as well as measured results from an earlier TCDA-IB design are provided

below in Section 6.4.

6.3 A Dual-Polarized TCDA-IB

Many wideband array applications require dual-linear or dual-circular polariza-

tions. Therefore, it may be desired to add a second orthogonal set of elements to

the TCDA-IB array. For arrays printed on vertical printed circuit boards, a common

manner of constructing a dual-polarized array is to use an “egg-crate” construction,

in which partial slots are cut to allow crossing boards to fit together as shown in Fig.
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Figure 6.6: “Egg-crate” implementation of dual-polarized TCDA-IB. Orthogonal ele-
ments intersect at the coupling capacitance via a partial slot cut in both boards. The
elements are otherwise unchanged from the single-polarized design of Fig. 6.2. A
small gap is preserved between the orthogonal elements and no soldering is required
at the joint.
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scan planes from 0.71-4.9GHz
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Figure 6.8: Simulated co-polarized gain of the dual-polarized TCDA-IB unit cell, with
one polarization excited and the other terminated.
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Figure 6.9: Simulated cross-polarized gain of the dual-polarized TCDA-IB unit cell,
with one polarization excited and the other terminated.
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Figure 6.10: Simulated coupling between the neighboring orthogonal elements within
the dual-polarized TCDA-IB array of Fig. 6.6.
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6.6. To minimize interference between baluns, the boards do not cross at the feed

centers, but rather cross at the overlapping capacitive sections yielding elements with

offset phase centers, similar to [49].

By leaving a small 0.010′′ gap between the metallization of the orthogonal el-

ements, no electrical connection or soldering is required at the joints, allowing for

simple assembly and maintenance of the dual-polarized array. Parametric analysis

indicates that the gap may be varied from 0.005-0.015′′ without significant impact on

the performance of the array. The gap size may be controlled with a dielectric shim

or tape, or by adding unmetallized outer layers to the PCB stackup. Other than the

addition of the slot and an adjustment of wcap to 4.8 mm, the dual-polarized element

has not been re-tuned and all dimensions are unchanged from Table 6.1.

The simulated VSWR, co-polarized gain, and cross-polarized gain of the dual

polarized TCDA-IB unit cell are shown in Figs. 6.7-6.9. Other than a slight reduction

in impedance bandwidth to 6.9:1 (which may be improved by additional fine tuning of

the dual-polarized design), the VSWR and co-polarized gain are similar to the single

polarized TCDA-IB design (c.f. Figs. 6.3-6.5). However, the addition of the second

polarization has reduced the cross-polarization by ∼5 dB from the single polarized

design (c.f. Fig. 6.5). Specifically, the cross polarization is < -20 dB over most of the

band, with a worst case of -13 dB in the 45◦ D-Plane at the top of the band. The

port-to-port coupling between the orthogonal elements is shown in Fig. 6.10 and is

<-30 dB at broadside and <-15 dB when scanning in the D-plane.
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Figure 6.11: Sketch of the TCDA-IB design used for the 8×8 prototype array. Dimen-
sions are listed in Table 6.2. This represents an earlier design with slightly reduced
bandwidth than the final TCDA-IB of Fig. 6.2.

187



Table 6.2: Dimensions of TCDA-IB Prototype

dE 30 mm

dH 30 mm

hsub 32.3 mm

hsup 12.7 mm

hGP 45 mm

htotal 63.5 mm

hdipole 5.6 mm

wcap 4.3 mm

wfeed 0.13 mm

lsc 20.6 mm

loc 3 mm

wsc 1.8 mm

woc 1.5 mm

dgap 3.6 mm

tPCB1 16 mil 4003C

tPCB2 4 mil 4450B

εsup 1.7
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Figure 6.12: Simulated VSWR of the priliminary TCDA-IB design from Fig. 6.11.
The array is matched from 0.69-4.37GHz with VSWR<2.5 over a ±45◦ scan volume
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Figure 6.13: Photograph of the fabricated 8× 8 TCDA-IB prototype with half of the
superstrate removed to show the array details. Note the extended dipole arms of the
edge elements.
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Figure 6.14: Closeup of single element of TCDA-IB prototype element, showing both
front and back metallization.

191



Figure 6.15: Closeup of TCDA-IB prototype aperture showing element details.
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Figure 6.16: Profile of TCDA-IB prototype, showing total height above ground plane
of 1.75′′.

6.4 Design and Construction of an 8×8 Prototype TCDA-IB
Array

In order to verify the performance of the TCDA-IB concept, an 8 × 8 prototype

TCDA-IB was constructed. The design is shown in Fig. 6.11, and is similar to that

described in Section 6.2. However, the prototype design was optimized before the

development of the improved scanning circuit model described in Section 5.2. As a

result it has a somewhat reduced operational bandwidth of 6.3:1 (0.69-4.37 GHz). The

simulated VSWR for the prototype design is shown in Fig. 6.12, and the dimensions

are provided in Table 6.2.

An 8×8 array was constructed from this design, as pictured in Figs. 6.13-6.18. To

terminate the edges of the array, the dipole arms were extended by an additional 60
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Figure 6.17: Detail of TCDA-IB prototype underside showing element mounting and
coaxial connectors.
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Figure 6.18: Entire TCDA-IB prototype array showing 64:1 power divider network.
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mm, effectively adding 2 rows of short-circuited elements. Terminating the array in

this manner was suggested in [112] as a method to improve gain bandwidth without

reducing efficiency, which can suffer when using resistively terminated edge elements.

The array was constructed on a 12′′×18′′ aluminum plate and was covered by a

12.7 mm (0.5′′) thick superstrate (εsup = 1.7) of the same size, held in place by small

nylon rods around the perimeter of the array. The height of the array is 45 mm (1.77′′)

from the top of the superstrate to the ground plane, and 63.5 mm (2.5′′) to bottom

of the Wilkinson. The active area of the 64 elements is 576 cm2 (89 in2). When

the extended dipole arms are included, the total area of the array is 864 cm2 (134

in2). Rectangular holes were cut in the ground plane allowing the vertical cards to be

installed, which were held in place by right angle brackets below the ground plane.

A small piece of copper fingerstock was used to maintain electrical contact between

the array ground and the vertical PCB ground layer, as shown in Fig. 6.13b. A 50 Ω

SMA connector was installed on each element, which is in turn fed by a matched

64:1 divider located below the ground plane. The array was scanned by adjusting the

lengths of the feed cables.

To allow room for the SMA connector, the opening in the ground plane was large

enough to introduce a resonance, so conductive tape was used to reduce the hole size

after the boards were installed, as seen in Fig. 6.13b. Note that this is unnecessary

in the updated design of in Fig. 6.2, due to the introduction of grounding vias in the

PCB.
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Figure 6.19: Measured VSWR of the TCDA-IB prototype, measured through a 64:1
matched power divider. The return loss was compensated for the round trip insertion
loss of the power divider and cables. Scanning VSWR is artificially low due to out-
of-phase reflections absorbed within the power divider.
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Figure 6.20: The prototype TCDA-IB was mounted on a 4′×6′ ground plane and
measured in the anechoic compact range at The Ohio State University.

6.5 Measured TCDA-IB Results

The measured VSWR of the array is shown in Fig. 6.19 and is less than 2:1

at broadside and under 2.5:1 while scanning to ±45◦ in both planes over the entire

operational band (0.67-4.37 GHz). The measurement was taken at the common port

of the 64:1 divider, and the VSWR data has been compensated by the round trip

insertion loss of the divider and cables. Note that when scanning, the reflections

from the elements are not in-phase and thus the reflected power is mostly absorbed

within the power divider, resulting in artificially low measured VSWR at the common

port.
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Figure 6.21: Measured co- and cross-polarized gain of the 8× 8 TCDA-IB prototype
at broadside. (a) Gain at broadside vs. frequency. Also plotted is the theoretical
aperture limit for the array, calculated using the area of the active elements, as well as
the total area including the extended dipole arms. (b) Measured patterns in E-plane
(blue solid) and H-plane (red dotted) at several frequencies
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Figure 6.22: Measured gain of the TCDA-IB prototype, scanning to 45◦ in the H-
plane. (a) Gain vs. frequency at nominal beam center. (b) Gain pattern in H-plane
at several frequencies. The nominal beam center at 45◦ is noted by a vertical line.
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Figure 6.23: Measured gain of the TCDA-IB prototype, scanning to 45◦ in the E-
plane. (a) Gain vs. frequency at nominal beam center. (b) Gain pattern in E-plane
at several frequencies. The nominal beam center at 45◦ is noted by a vertical line.

201



0.5 1 1.5 2 2.5 3 3.5 4 4.5
−20

−15

−10

−5

0

5

10

15

20

25

Freq (GHz)

G
ai

n
 (

d
B

i)

 

 

Aperture Limit (Active)

Aperture Limit (Total)

Meas. Gain (CoPol)

Sim. Gain (CoPol)

Meas. Gain (CrossPol)

Sim. Gain (CrossPol)

(a)

−50 0 50
−10

0

10

20

1 GHz

θ (deg)

−50 0 50
−10

0

10

20

2 GHz

θ (deg)

−50 0 50
−10

0

10

20

3 GHz

θ (deg)
−50 0 50

−10

0

10

20

4 GHz

θ (deg)

(b)

Figure 6.24: Measured gain of the TCDA-IB prototype, scanning to 45◦ in the D-
plane. (a) Gain vs. frequency at nominal beam center. (b) Gain pattern in D-plane
at several frequencies. The nominal beam center at 45◦ is noted by a vertical line.
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Figure 6.25: The D-plane feed excited only 48 of 64 elements, with the center 8
diagonals in progressive phase, and the remaining elements in two corners terminated
in matched loads. The maximum gain is reduced by ∼1.25dB, and the θ̂ and φ̂
beamwidths are unequal.
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Figure 6.26: Full patterns of the TCDA-IB prototype array scanning in the D-plane.
Nominal beam center is at θ = 45◦, φ = 45◦.
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The array was then mounted to a larger 4′ × 6′ ground plane and measured in

ElectroScience Laboratory Compact Range, see Fig. 6.20. The measured gain and

patterns of the array is shown in Figs. 6.21-6.26 at broadside and when scanning to

45◦ in the E-, H-, and D-planes. For the D-plane patterns, full three-dimensional

patterns are depicted in Fig. 6.26.

The gain of these measurements has been offset by the measured insertion loss of

the power divider and cables. The simulated gain of the finite array is also plotted,

along with the theoretical gain limit for the aperture area. This limit is computed

using both the area of only the actively fed elements, as well as the total area including

the extended dipoles. Because the extended dipoles increase the effective aperture

size in the E-plane dimension, the H-plane beam is slightly broader than the E-plane

beam, especially at lower frequencies, as seen in Fig. 6.21b. Some beam broadening

and beam squint is also apparent between 2-3GHz, which is thought to be due to edge-

launched waves that occur in finite tightly coupled and connected arrays [113, 114].

Because such waves propagate along the dipoles, the effects are seen more strongly in

the E-plane than in the H-plane. However, the gain is within 3dB of the theoretical

limit in all scan-planes over a 6.6:1 bandwidth (0.67-4.37 GHz), and the measured

performance matches the simulations very well. Furthermore, the cross-polarized gain

(using Ludwig’s third definition [98]) of the array is more than 15 dB below that of

the co-polarized gain over the majority of the band, though it exceeds -10 dB in the

D-plane at the top end of the band. As noted above, the cross-polarization can be

significantly mitigated in a dual-polarized implementation.
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Chapter 7: Wide-Angle Scanning of Tightly Coupled Arrays

In addition to wide bandwidth performance, wide-angle scanning is a critical fea-

ture of high performance antenna arrays. However, the problem of implementing a

single array that simultaneously has a wide bandwidth and a large scan volume is

doubly challenging, because the impedance of the radiating plane wave varies with

scan angle. Wide-scan arrays therefore must not only implement a wide-band im-

pedance match, but the load impedance is a moving target. Although this variation

is relatively small and manageable for modest scan angles (e.g. 45◦ or less), it can

become quite large and difficult to compensate for as the array scans to wide angles.

Therefore increasing the scan angle typically results in more limited bandwidth.

In the previous chapter, we demonstrated an array with an integrated matching

balun than scans to 45◦ in all scan planes over a 7.35:1 bandwidth. This involved

tuning the array at a point that was a compromise between various scan conditions.

However, some applications require scanning to even wider angles, e.g. ≥ 60◦, and

a similar compromised tuning approach would significantly reduce the bandwidth.

We would like to find an alternate solution for scanning to large angles without

compromising the TCDA-IB’s wide bandwidth.
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Table 7.1: Optimized Bandwidth of TCDA-IB Circuit, VSWR ≤ 2.5

θmax Broadside only H-plane only E-plane only Entire Scan Volume

0◦ 10:1 10:1 10:1 10:1

45◦ N/A 11.7 11.1 7.7:1

60◦ N/A 9:1 14.3:1 5.5:1

70◦ N/A 7.7:1 16.7:1 3.3:1

80◦ N/A 1.9:1 2.3:1 1.5:1

7.1 Optimizing for Wide-Angle Scanning

Using the equivalent circuit of Fig. 5.14, we can attempt to optimize the array

for wide scan angles in the straightforward manner. Using a genetic algorithm in-

cluded in the software AWR Microware Office, we optimized the circuit for maximum

bandwidth, with VSWR≤2.5:1. This was done at broadside, and for scanning to an

angle θmax in the E- and H-planes. We also optimized the design using all three scan

positions as simultaneous constraints, providing us with an optimal “compromise”

for simultaneously matching the array over the entire scan volume. In all cases, the

component values are restricted to realistic values that may be realized in the TCDA-

IB implementation. The superstrate dielectric constant εsup is fixed at 1.7 to avoid

surface waves and scan blindness. The results are given in Table 7.1.

It is clear that an array optimized at a specific scan angle is capable of significantly

more bandwidth than an array which operate over a large scan volume. Note that

this practical issue is not accounted for in the theoretical limits from Chapters 3-4.

In practice, a scanning array cannot easily be optimized for a single scan position

without de-tuning the performance at other scan positions. This is another reason

why practical arrays generally under-perform relative to the theoretical limits.
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However, this problem could be mitigated if the array was reconfigurable so that

it could be continuously re-tuned as it scanned. Rather than forcing a static array

to implement a “compromised” match that is constant for every scan position, a

reconfigurable array could theoretically provide an optimal match over the entire scan

volume. We will next explore how such a reconfigurable array could be implemented

in practice

7.2 Wide-Angle Scanning with Switchable Ground Plane

Perhaps the simplest reconfigurable element to include in an array is a variable

capacitor, which can be implemented with a varactor diode. For example, a varactor

could be inserted between the tips of neighboring dipoles, allowing Ccoupling to be

tuned while scanning. However, this alone does not provide sufficient wideband com-

pensation for the variation in scan impedance. After some experimenting with the

equivalent circuit model, it was determined that the most critical parameter which

affects the scanning response of a wideband planar array is the distance between the

array and ground plane. Because the electrical length of the substrate varies with

cos θ (under TE polarization), the optimal ground plane distance when scanning to

60◦ is double that when scanned to broadside. Therefore, an array with a moveable

ground plane could provide a much larger scan volume than a static array.

The equivalent circuit was once again optimized over the scan volume, but the

ground plane distance and dipole capacitance were permitted to vary with scan, with

all other features fixed. The resulting bandwidth improved from 5.5:1 to 8.3:1 when

coving a 60◦ cone (VSWR ≤ 2.5:1), almost as much as the maximum possible 60◦
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Figure 7.1: TCDA with screen forming “switchable” ground plane. The red squares
indicate the location of switches. A fixed PEC ground plane (not shown) is located
at the bottom of the array.
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TE bandwidth from Table 7.1. Wide angle scanning would seem to be possible if a

movable ground plane could somehow be implemented.
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Figure 7.2: Simulated VSWR of TCDA-IB with switchable ground plane and tun-
able dipole capacitance, matched over 630MHz-5GHz (8:1 BW). Unfortunately, the
impedance match at intermediate scan angles is significantly worse.

Of course mechanically moving the ground plane is not likely to be practical for

most applications. However, we can approximate a reconfigurable ground plane by

placing a conducting screen between the dipoles and fixed ground plane, as shown

in Fig. 7.1. If switches are inserted within the screen, then it could be switched

between reflective and transparent states. When the switches are on (conducting),

the screen acts as an effective ground plane at a closer distance, for use with broadside

and TM scan conditions. When the switches are off, the screen is (approximately)

transparent, and the distance between the dipoles and ground plane is increased,

for wide angle TE scanning. An additional tuning degree of freedom is added by
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introducing varactor diodes between the dipole tips to adjust the dipole capacitance.

The simulated frequency response of the system is given in Fig. 7.2 for broadside,

TE and TM scanning to 60◦. It is clear that the array maintains a good match over

nearly 8:1 bandwidth in all three scan conditions.
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Figure 7.3: Scanning the TCDA-IB with switchable ground plane in the H-plane.
Although the widest scan position at θ = 60◦ is well matched over the entire band
when the switches are turned off, even a slight reduction in scan angle to 55◦ or 50◦

produces large mismatches whether the switches are on or off. This indicates that
discrete switches are unlikely to be effective, and a continuously tunable approach is
preferred for covering the entire scan volume.

Unfortunately, this approach has a fatal deficiency. Although the switchable

ground plane yields a good match at the extreme scan angles for which it is opti-

mized, the intermediate scan angles are poorly matched. This is because the switch-

able ground plane operates only in only two discrete states, whereas a scanning array

must operate over a continuum of scan angles. As seen in Fig. 7.3, if the array is
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scanned to 50◦, the on-state mode results in a ground plane that is still much too

close, yielding a poor match across the band, especially at low frequencies. However,

in the off-state mode, the ground plane is now too far away, and half-wavelength

short-circuit resonance has moved into the operational band. An attempt was made

to add a second switchable layer, but even this did not provide sufficient “resolution”

for wideband continuous scanning. For this approach to work over the entire scan

volume, the number of switchable surfaces must be dramatically increased, which

is unlikely to provide an efficient and cost-effective solution for extending the array

scan volume. However, we may approximate this effect using continuously tunable

elements.

7.3 Wide-Angle Scanning with a Continuously Tunable Sub-
strate Layer

LDipole CCoupling 

Zsub 

Z0 

hsub 

hsup 

…
 

…
 

Zsup 

Balun 

hsurf Zsub 

Lsurf Csurf 

Figure 7.4: Circuit model for a wide-scan TCDA with tunable substrate layer. Note
the variable capacitors Csurf and CCoupling, implemented with varactor diodes.
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Rather than using discrete switches, a continuously tunable method will be re-

quired in order to cover the entire scan volume. When modeling the above switchable

ground plane, it was observed that the “off state” mesh was not completely trans-

parent, but seemed to increase the effective electrical length of the substrate. The

layer creates a “slow wave” structure which increases the substrate’s effective wave

number. The effect depends on the inductance of the wires and capacitance of the

switches (Lsurf and Csurf ), and therefore can be varied by using a varactor diode to

tune Csurf . By also using varactors to adjust the dipole capacitance Ccoupling, the

result is a continuously tunable array that can be electronically reconfigured for any

scan position. An equivalent circuit model is shown in Fig. 7.4, and the physical

implementation is shown in Fig. 7.5.

Optimization of the circuit in Fig. 7.4 indicates that a bandwidth of 6.6:1 can be

obtained for 60◦ scanning (with VSWR≤2.5:1). This is less than the 8.3:1 bandwidth

that is theoretically possible by physically adjusting the ground plane height, and is

only slightly more than the 5.5:1 bandwidth possible with a fixed non-reconfigurable

array. The reason for the reduction in performance is that the tunable surface is

highly frequency dependent (it can be thought of as a Frequency Selective Surface,

or FSS). The performance improvement when scanning in the H-plane are significant

at the upper end of the band, but the low frequency performance is still limited

by the physical thickness of the substrate hsub. Although the low-end response can

be compensated somewhat by adjusting Ccoupling, the result is not as wideband as

an actual moving ground plane. However, this limitation is less severe than it may

initially seem. Because the reconfigurable layer makes the substrate seem electrically

thicker, the physical array height is reduced. The array with switchable ground plane
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varactors 

hsurf 

hsub 

Figure 7.5: TCDA-IB unit cell with tunable substrate layer. The tunable layer con-
sists of two thin horizontal wires per unit cell, populated with tunable varactor diodes,
indicated in red. Biasing the layer is straightforward, and can be done at the array
edges without disturbing the individual elements. Varactors also load the dipole tips,
which can be easily biased through the balun’s ground plane.
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in Fig. 7.1 has a total height of 2.4′′, whereas the continuously tunable array of Fig.

7.5 is only 1.86′′ tall.

Therefore, the reduction in bandwidth is a natural result of the reduction in

thickness. Although the tunable substrate array has 12% less bandwidth than the

switched ground plane array, it is also 22.5% thinner. Its height to bandwidth ratio

is actually superior to the switched ground plane approach of Fig. 7.1.

The advantages of the tunable substrate layer approach become even more ap-

parent as the scan volume is further increased. For an array scanning to 70◦, the

equivalent circuit of Fig. 7.4 predicts a 5.4:1 bandwidth, which is significantly more

than the 3.3:1 bandwidth possible with a non-reconfigurable TCDA. The full wave

simulated frequency response for both the 60◦ and 70◦ scanning designs are shown

in Fig. 7.6, and depict not only the response at the maximum scan angles, but also

at angles throughout the scan volume (in 10◦ increments of θ and φ). Unlike the

switchable substrate design, the continuously tunable substrate permits an efficient

match over the entire scan volume.
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Figure 7.6: Impedance bandwidth of the reconfigurable TCDA-IB from Fig. 7.5. (a)
Optimized for ±60◦ scan volume, with 6.6:1 bandwidth. (b) Optimized for ±70◦ scan
volume, with 5.4:1 bandwidth.
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7.4 Practical Design Considerations and Challenges

The above analysis was performed with idealized tunable capacitors rather than

with realistic varactor diode models. The capacitances optimized within the tunable

substrate layer used an extremely large tuning range (1-80 fF), which is unavailable

in commercial varactors. When the capacitance ratio is limited to a more realistic 5:1

ratio (13-65 fF), the optimized equivalent circuit bandwidth was reduced from 6.6:1

to 5.9:1 for the 60◦ scanning array, and from 5.4:1 to 5:1 for the 70◦ scanning array.

Although varactors may not be available at such low capacitance values, multiple

devices can be used in series to the same effect.

Fortunately, other than limited tuning range, there are not many performance

reductions expected from physical components. Although devices will contain a small

series resistance, simulation suggests that this has almost no effect on the arrays

bandwidth or efficiency, since it is in series with such a large reactive impedance.

There are also no problems involved with biasing the devices, since they can be daisy

chained together and biased at the edges of the array. This may result in large

voltages if the total number of devices is large, and in such cases it may be preferable

to provide several additional bias points within the array.

In addition to challenges associated with tuning, there are also several practical

issues regarding the array design itself. Cross-polarization is a major challenge for

any wide-scan array. The simulated cross-polarization is given in Fig. 7.7 in the D-

plane (where the cross-polarization is highest), for scan angles up to 70◦. It is clear

that the cross polarization is significantly elevated at large scan angles. This is not

due to any specific design changes associated with the reconfigurable ground plane;

the cross-polarization while scanning to 45◦ is comparable to that of Fig. 6.5. This
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Figure 7.7: Simulated co-polarized and cross-polarized radiated power for wide-scan
TCDA in the D-Plane. The polarization is defined using the Ludwig-3 definition.
Curves are labeled with the scan angle measured from normal.
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elevated cross-polarization is intrinsic to TCDA-type arrays, and is exacerbated here

by the extremely large scan angles achieved by the proposed design. It is well known

that cross polarization can be reduced if the total height of the array is reduced, at

the expense of bandwidth. However, if low cross polarization at extreme scan angles

is critical, then an alternate solution may be required.

Another drawback to the current design is that the element spacing is only 23 mm,

whereas the 5 GHz half-wavelength spacing is 30 mm. The consequence is that the

array is over populated and would need 70% more T/R modules than is theoretically

required. Element size was reduced to better match the full-wave simulation with the

circuit model, for a proof-of-concept design. A larger element size may be possible

through further optimization, though it is not known exactly how performance might

be affected. Because the circuit model does not account for the size of the element,

it is not yet possible to optimize this dimension with the equivalent circuit, and

therefore further optimization requires manually tuning the full wave model. The

use of a more sophisticated circuit model which accounts for element spacing and the

electrical length of the dipole, such as [115], could potentially improve to the design

process.
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Chapter 8: Conclusions and Future Work

As stated in the Introduction, the goal of this thesis has been to address two ques-

tions regarding to low-profile PEC-backed arrays. First: What are their fundamental

limits of performance? And second: How might we improve the design of practical

arrays, in order to approach these fundamental limits?

In the first part of this thesis we provided an answer to the first question by

deriving a fundamental bound on the impedance bandwidth of any electrically large

PEC-backed array constructed from passive, LTI, and reciprocal materials. For arrays

of constant polarization, this limit is a simple closed-form expression which depend

only on the array’s matching efficiency, thickness, scan angle, permeability, as well as

the order (complexity) of the array. Limits were also derived for lossless PEC-backed

arrays of arbitrary polarization, and it was determined that such arrays can only

obtain wide polarization bandwidth if they are linearly polarized.

We also developed limits for the special case when all of the radiating currents

in the array are confined to a single plane, including substrate and/or superstrate

material loading. Because of the ground plane creates periodic resonances over fre-

quency in this case, a high-pass response is not possible for lossless planar arrays.

Rather, the array has a maximum bandwidth that cannot be exceeded, regardless of

array height. The bandwidth limit at broadside for such an array without material
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loading is 8.3:1 (for VSWR ≤ 2:1) if the array is allowed to be infinitely complex,

and 5:1 if the radiating surface has a simple 1st order equivalent impedance, such

as simple coupled dipole or slot arrays. Contrasting the bandwidth limit for planar

arrays to the general limit for volumetric arrays highlights the benefits of features

such as superstrates, lossy backplanes, and multi-layer or volumetric radiators. If the

array is sufficiently tall, these design features can yield extremely large bandwidths.

However, for low profile arrays (kmidh < π/2), a planar design is theoretically capable

of near-optimal performance, despite its relatively simple form.

In the second part of this thesis, we applied our knowledge of the fundamental

limits to address the question of how to design a practical array with performance

that approaches the theoretical limit. These limits were obtained by considering the

array as an impedance matching network, therefore we applied this perspective to

the design problem as well. We showed that a simple Marchand balun can be used

as a multi-stage impedance matching network for a Tightly Coupled Dipole Array

(TCDA), while also providing a practical transition from the balanced input of the

dipoles to an unbalanced feed. This design, which we refer to as the Tightly Coupled

Dipole Array with Integrated Balun (TCDA-IB), eliminates the need for bulky external

baluns, and provides a bandwidth improvement of over 30% compared to a standard

TCDA. The TCDA-IB and TCDA arrays, along with an example balun and 180◦

hybrid are drawn to scale in Fig. 8.1. The TCDA-IB has a height of only 0.68λhigh

above the ground plane, and achieves an impedance bandwidth of 7.35:1 with a low

VSWR of <2.65:1 over the entire ±45◦ scan volume. The baluns are printed on the

same substrate as the array itself and thus their cost and weight is minimal. T/R

modules or phase shifters can be integrated directly onto the same PCB below the
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7.35:1 BW 
3 in3, 15g, $10 
per element 

5.5:1 BW 
>8 in3,  >100g, >$1000 
per element 

External 
180º Hybrid 

MCLI HJ-26 
5.9”x1.75”x0.2” 

1-6GHz 
~1.6dB Loss 

$1000/ea. 

External 
Balun 

Picosecond 5310A 
1.5”x1.75”x0.5” 
4MHz-6.5GHz 

~3dB Loss 
$1500/ea. 

50Ω Unbalanced 
Feed 

50Ω Unbalanced 
Feed 

Balanced Feed 

Figure 8.1: To scale comparison of the TCDA-IB unit cell with integrated balun to
the standard TCDA which requires external baluns or 180◦ hybrids at each element
to implement a wideband scanning array. It is clear that the integration of a compact
balun has significant size, weight and cost advantages. Additionally the performance
is significantly improved, since the bandwidth is increased from 5.5:1 to 7.35:1, and
the insertion loss from the balun is significantly reduced.

ground plane, enabling an extremely compact wideband electronically scanned array.

An 8×8 element prototype array was built to validate the TCDA-IB design, and

compared very well relative to simulation.
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8.1 Comparison of TCDA-IB Performance to Fundamental
Limits

A comparison of the TCDA-IB to other PEC-backed arrays and to the fundamen-

tal limits is plotted in Fig. 8.2. The performance of each design is given in terms of

the new metric PA which was introduced in Chapter 1, and provides single number

to represent the bandwidth, scan angle, and matching efficiency of the array. Also

plotted are the theoretical limits for PA, which were derived in Chapter 3.

As seen in Fig. 8.2, the TCDA-IB designs of Chapters 6-7 have the largest PA

of any of the surveyed arrays of similar height (other than the ISPA). However, like

most scanning arrays, the static TCDA-IB of Chapter 6 still has limited bandwidth

because of compromises that must be made when matching an array over a range

of scan angles. A strategy for overcoming this limitation was proposed in Chapter

7 by integrating reconfigurable components within the TCDA-IB structure. Two

reconfigurable TCDA-IB designs were proposed, one that can scan to ±60◦ over a

5.9:1 bandwidth, and one that can scan to ±70◦ over a 5:1 bandwidth.

Although the theoretical limits impose a fundamental performance bound for wide-

band low-profile arrays, we have shown that there is significant room for improvement

from the current state-of-the-art. We have also proposed and demonstrated several

techniques for moving closer to this bandwidth limit, such as higher-order impedance

matching and the use of reconfigurable arrays. Referring to Fig. 8.2, our TCDA-IB

designs achieve significantly greater bandwidth and superior scanning than any other

PEC-backed array of similar thickness.
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Figure 8.2: Survey of wideband array performance PA vs. electrical thickness k0h.
The fundamental limit under constant polarization is given by the heavy black line,
and the limit for arbitrary polarization is given by the dotted line. The TCDA-IB
designs of Chapters 6-7 are shown in red.

Our tightly coupled dipole array with a compact integrated balun (TCDA-IB) is

a simple, low cost array system with extremely wide bandwidth and excellent scan-

ning capabilities. We believe that the TCDA-IB is the first low-profile array that is

capable of greater than 7:1 bandwidth while maintaining a low impedance mismatch

(VSWR < 2.65:1) over a large scan volume (±45◦), and which does not require active
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or external baluns, or lossy materials. The TCDA-IB is therefore an attractive tech-

nology for a variety of wideband communication and sensing applications, especially

for small platforms where reducing size, weight, and cost is critical.

8.2 Opportunities for Future Work

As stated above, the area of wideband low-profile phased arrays remains a rich

field of study. In particular there are several areas related to the research in this

thesis that we believe present excellent opportunities for further investigation. These

topics are discussed briefly here.

Bandwidth Limits for Finite PEC-backed Arrays

The bandwidth limits in this thesis are valid for infinitely periodic arrays. Of

course, real world arrays are finite and suffer from truncation effects. In particular,

tightly coupled arrays are especially susceptible to edge-born surface waves that can

significantly affect performance [113]. In theory, finite arrays must of course satisfy

the small-antenna limits. However, these limits are currently not well suited for

characterizing finite PEC-backed arrays for several reasons.

The Wheeler-Chu limits [4, 5] are based on individual radiating spherical modes.

These modes can be distinguished between those that can propagate above a ground

plane and those cannot. In this way, the ground plane reactance can be accounted for

by analyzing only those modes that satisfy the PEC boundary conditions. However,

even modestly sized phased arrays are not electrically small, and therefore will radiate

a superposition of many spherical modes. There is not therefore a straightforward

manner to determine the gain-bandwidth limits of a finite PEC-backed array using

the Wheeler-Chu limits.
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An alternate antenna gain-bandwidth limit was proposed by Gustafsson [62]. This

limit is not based on the individual spherical modes, but rather on a dispersion rule

formed from the scattering response of the antenna. The low-frequency (Rayleigh)

scattering for any object is bounded by its geometry [116]. This in turn is fundamen-

tally related to the maximum possible gain of the antenna by the Forward Scattering

Theorem [117]. In this way, a gain-bandwidth limit can be established that does not

assume a specific spherical mode, and therefore provides a fundamental limit even

for large, directive arrays. However, this method cannot accurately consider the ef-

fects of the ground plane reactance. We attempted to modify the formulation using

a version of the forward scattering theorem for half-space problems [118]. However,

the resulting scattering function is not causal when referenced to the ground plane

surface, making it difficult to apply the dispersion relations. A similar approach for

a PEC-backed dipole was attempted in [119], but the limitation due to non-causality

was not addressed.

High Frequency Implementation

Our TCDA-IB design is a practical and low cost design, particularly suited for

arrays operating from UHF to X-band (∼300 MHz - 12 GHz). For frequencies lower

than this, commercial baluns are available with sufficient bandwidth and minimal

size, weight, and cost. At higher frequencies, our overall design strategy of using a

compact reactive balun to improve the bandwidth of the array is still valid. However,

the specific implementation shown in Fig. 6.2 may be difficult to implement because

scaling the smaller features may not be possible using standard PCB fabrication. The

implementation of the TCDA-IB at higher frequencies might involve the redesign
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of the balun to eliminate the smallest features, or could use alternate fabrication

methods to improve resolution.

Practical Wideband Power Distribution

Another important issue not addressed in this thesis is the problem of how to

efficiently distribute the RF signal to each element. Power dividers suffer from similar

size, weight, cost, and bandwidth limitations as the baluns themselves. For multi-

octave wideband arrays, achieving low loss power distribution in a low-profile compact

structure is a hard problem. This is not an issue specific to the TCDA-IB design, but

is a problem for all low-profile wideband arrays.
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Appendix A: Realizability Conditions for PEC-Backed

Arrays

Consider the three port network representing a PEC-backed array as seen in Fig.

3.3, with scattering matrix S(s) described by (3.13). A theorem for the physical

realizability of S(s) is given by Wohlers [93],

Theorem. The necessary and sufficient conditions that an n× n matrix S(s) be the

scattering matrix of a lumped, passive n-port normalized to n non-Foster positive real

impedances zi(s) are:

(1) S(s) is rational.

(2) The matrix I − S∗(jω)S(jω) be nonnegative definite for all ω where S∗(jω) =

S′(jω) and I is the identity matrix.

(3) The augmented admittance matrix defined as

Ya(s) =
1

2
h−1(s)

[
h(s)h−1∗ (s)− S(s)

]
h−1(s) (A.1)

is analytic in the open RHP, where h(s) = diag[h1(s), h2(s), ...hn(s)], with hi(s)

defined by the unique factorization,

hi(s)hi∗(s) = ri(s), (A.2)
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such that all of the zeros of hi(s) are in the RHP and all poles are in the LHP,

and with ri(s) defined by (2.67) for the impedance which terminates the ith port.

(4a) Either det[1− (z(s)− 1)Ya(s)] 6= 0 in the open RHP

where z(s) = diag[z1(s), z2(s), ...zn(s)], or

(4b) The matrix [1− (z(s)− 1)Ya(s)](z(s) + 1) has simple poles on the jω axis, and

the matrix formed by the residue of these poles be nonnegative definite.

A special case occurs when the impedances zi(s) are all analytic on the jω axis. In

this case, the fourth condition of Wohlers’ theorem reduces to the requirement that

Ya(s) have simple poles on the jω axis and that the residue matrix be nonnegative

definite.

We will assume that the 3×3 scattering matrix S(s) of Fig. 3.3 is rational and uni-

tary (S∗(jω)S(jω) = 1), thus satisfying the first two conditions. The load impedances

defined by (3.7) are all analytic on the jω axis, and thus it is sufficient to show that

Ya(s) is analytic in the RHP, and has simple poles on the jω axis with a nonnegative

definite residue matrix. From (A.1), we find the augmented admittance matrix Ya(s)

to be

Ya(s) =
1−S11(s)

2
− (1+LTEs)S12(s)

2LTEs
− (1+LTMs)S13(s)

2LTMs

− (1+LTEs)S12(s)
2LTEs

− (1+LTEs)(1−S22(s)+LTEs(S22(s)−1))
2L2

TEs
2 − (1+LTEs)(1+LTMs)S23(s)

2LTELTMs2

− (1+LTMs)S13(s)
2LTMs

− (1+LTEs)(1+LTMs)S23(s)
2LTELTMs2

− (1+LTMs)(1−S33(s)+LTMs(S33(s)−1))
2L2

TMs
2


(A.3)

We observe from (A.3) that Ya(s) is analytic in the open RHP and the third require-

ment of the theorem is satisfied if and only if S(s) is analytic in the open RHP. We

note that this corresponds to the requirement that the network be causal [6, 120].
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From (A.3), all poles of Ya(s) on the jω axis are located at the origin. We can

therefore write Ya(s) as a Laurent series at the origin,

Ya(s) =
∞∑
k=0

Ya,ks
k +

∞∑
k=1

Ya,−ks
−k, as s→ 0. (A.4)

Using (3.13), we find Ya,n = 0 for n ≤ 2, and thus the poles at the origin are simple.

The remaining condition is that residue matrix Ya,−1 is nonnegative definite.

Ya,−1 =

 0 0 0

0 2LTE−a22,1
2L2

TE
− a23,1

2LTELTM

0 − a23,1
2LTELTM

2LTM−a33,1
2L2

TM

 (A.5)

Using the fact that passivity requires a22,1, a33,1, LTE, and LTM to be non-negative,

this produces the following constraints

a22,1 ≤ 2LTE, (A.6)

a33,1 ≤ 2LTM , (A.7)

a223,1 ≤ (2LTE − a22,1)(2LTM − a33,1). (A.8)

We recognize (A.6)-(A.7) as the individual Fano-Youla matching constraints for the

loads at ports 2 and 3 from (2.42). However, the Fano-Youla constraints alone are

not sufficient for multi-port matching problems, and Wohlers theorem imposes a third

constraint (A.8). Therefore, a passive, reciprocal scattering matrix S(s) corresponds

to a physically realizable network for the system of Fig. 3.3 if and only if it is analytic

in the RHP and if the conditions (A.6)-(A.8) are satisfied.
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