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Vector - Sensor Array Processing for 
Electromagnetic Source Localization 

Arye Nehorai, Fellow, IEEE, and Eytan Paldi, Member, IEEE 

Abstract- We present a new approach for localizing electro- 
magnetic sources using sensors where the output of each is a 
vector consisting of the complete six electric and magnetic field 
components. Two types of source transmissions are considered: 1) 
single signal transmission (SST), and 2) dual signal transmission 
(DST). The model is given in terms of several parameters, includ- 
ing the wave direction of arrival (DOA) and state of polarization. 
A compact expression is derived for the Cramer-Rao bound 
(CRB) on the estimation errors of these parameters for the multi- 
source multi-vector-sensor model. Quality measures including 
mean-square angular error (MSAE) and covariance of vector 
angular error (CVAE) are introduced, and their lower bounds 
are derived. The advantage of using vector sensors is highlighted 
by explicit evaluation of the MSAE and CVAE bounds for source 
localization with a single vector sensor. A simple algorithm for 
estimating the source DOA with this sensor is presented along 
with its statistical performance analysis. 

I. INTRODUCTION 

HE localization of source signals using sensor data pro- T cessing has attracted significant attention lately. Most 
existing methods employ sensor arrays in which the output 
of each sensor is a scalar corresponding, for example, to 
the pressure in the acoustic case or to a scalar function of 
the electric field in the electromagnetic case. This paper (see 
also [ 11) considers new methods for multiple electromagnetic 
source localization using sensors whose output is a vector 
corresponding to the complete electric and magnetic fields 
at the sensor. These sensors, which will be called vector 
sensors, can consist for example of two orthogonal triads 
of scalar sensors that measure the electric and magnetic field 
components. The main advantage of the vector sensors is that 
they make use of all available electromagnetic information 
and, hence, should outperform the scalar-sensor arrays in 
accuracy of direction of arrival (DOA) estimation. Vector 
sensors should also allow the use of smaller array apertures 
while maintaining performance. (Note that we use the term 
“vector sensor” for a device that measures a complete physical 
vector quantity.) 

Section I1 derives the measurement model. The electro- 
magnetic sources considered can originate from two types of 
transmissions: 1) single signal transmission (SST), in which 
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a single signal message is transmitted and 2) dual signal 
transmission (DST), in which two separate signal messages 
are transmitted simultaneously (from the same source); see, 
for example, [2] and [3]. The interest in DST is due to the fact 
that it makes full use of the two spatial degrees of freedom 
present in a transverse electromagnetic planewave. This is 
particularly important in the wake of increasing demand for 
economical spectrum usage by existing and emerging modem 
communication technologies. 

Section I11 analyzes the minimum attainable variance of 
unbiased DOA estimators for a general vector-sensor array 
model and multi-electromagnetic sources that are assumed 
to be stochastic and stationary. A compact expression for 
the corresponding CramCr-Rao bound (CRB) on the DOA 
estimation error that extends previous results for the scalar- 
sensor array case in [4] (see also [ 5 ] )  is derived. 

A significant property of the vector sensors is that they 
enable DOA (azimuth and elevation) estimation of an elec- 
tromagnetic source with a single vector sensor and a single 
snapshot. This result is explicitly shown by using the CRl3 
expression for this problem in Section IV. A bound on 
the associated asymptotic normalized mean-square angular 
error (MSAE), which is invariant to the reference coordinate 
system, is used for an in-depth performance study. Compact 
expressions for this MSAE bound provide physical insight into 
the SST and DST source localization problems with a single 
vector sensor. 

The CRl3 matrix for an SST source in the sensor co- 
ordinate frame exhibits some nonintrinsic singularities (i.e., 
singularities that are not inherent in the physical model while 
being dependent on the choice of the reference coordinate 
system) and has complicated entry expressions. Therefore, we 
introduce a new vector angular error defined in terms of the 
incoming wave frame. A bound on the asymptotic normalized 
covariance of the vector angular error (CVAE) is derived. The 
relationship between the CVAE and MSAE and their bounds is 
presented. The CVAE matrix bound for the SST-source case is 
shown to be diagonal, easy to interpret, and has only intrinsic 
singularities. 

A simple algorithm is proposed for estimating the source 
DOA with a single vector sensor, motivated by the Poynting 
vector. The algorithm is applicable to various types of sources 
(e.g., wide-band and non-Gaussian); it does not require min- 
imization of a cost function and can be applied in real time. 
Statistical performance analysis evaluates the variance of the 
estimator under mild assumptions and compares it with the 
MSAE lower bound. 
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Section V extends these results to the multi-source multi- 
vector-sensor case with special attention to the two-source 
single-vector-sensor case. Section VI summarizes the main 
results and gives some ideas of possible extensions. 

The main difference between the present paper and pre- 
vious papers on source direction estimation is in our use 
of vector sensors with complete electric and magnetic data. 
Most previous papers dealt with scalar sensors. Other papers 
that considered estimation of the polarization state and source 
direction are [6]-[ll]. Reference [6] discussed the use of 
subspace methods to solve this problem using diversely po- 
larized electric sensors. References [7]-[9] devised algorithms 
for arrays with 2-D electric measurements. Reference [lo] 
provided performance analysis for scalar arrays with two 
types of electric sensor polarizations (diversely polarized). An 
earlier reference [ l l ]  proposed an estimation method using a 
3-D vector sensor and implemented it with magnetic sensors. 
All these references used only part of the electromagnetic 
information at the sensors, thereby reducing the observability 
of DOA’s. In most of them, time delays between distributed 
sensors played an essential role in the estimation process. 

For a planewave (which is typically associated with a single 
source in the far field), the magnitude of the electric and 
magnetic fields can be found from each other. Hence, it 
may be felt that one (complete) field is deducible from the 
other. However, this is not true when the source direction 
is unknown. Additionally, the electric and magnetic fields are 
orthogonal to each other and to the source DOA vector; hence, 
measuring both fields significantly increases the accuracy of 
the source DOA estimation. This is true in particular for an 
incoming wave that is nearly linearly polarized, as will be 
explicitly shown by the Cramtr-Rao bound. 

Our proposed use of the complete electromagnetic vector 
data enables source parameter estimation with a single vector 
sensor (even with a single snapshot) where time delays are not 
used at all. In fact, this is shown to be possible for at least 
two sources. As a result, the derived CRB expressions for this 
problem are applicable to wide-band sources. The source DOA 
parameters considered include azimuth and elevation. This 
paper also considers, to the best of the authors’ knowledge, 
for the first time direction estimation to DST sources, as 
well as the CRB on wave ellipticity and orientation angles 
(which will be defined later) for SST sources using vector 
sensors. The MSAE and CVAE quality measures and the 
associated bounds are also new. Their application is not limited 
to electromagnetic vector-sensor processing. 

11. THE MEASUREMENT MODEL 

This section presents the measurement model for the esti- 
mation problems that are considered in the later parts of the 
paper. 

A. Single-Source Single-Vector-Sensor Model 

1 )  Basic Assumptions: Throughout this paper, it will be 
assumed that the wave is traveling in a nonconductive, homo- 
geneous, and isotropic medium. Additionally, the following 
will be assumed: 
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Fig. 1. The orthonormal vector triad (U, VI, v2). 

A l :  Planewave at the sensor: This is equivalent to a far- 
field assumption (or a maximum wavelength that is much 
smaller than the source-to-sensor distance), a point-source 
assumption (i.e., the source size is much smaller than the 
source-to-sensor distance), and a point-like sensor (i.e., the 
sensor’s dimensions are small compared with the minimum 
wavelength). 

A2: Band-linited spectrum: The signal has a spectrum 
including only frequencies w satisfying w,in 5 (wI 5 wma, 
where 0 < wmin < w,, < CO. This assumption is satisfied 
in practice. The lower and upper limits on w are also needed, 
respectively, for the far-field and point-like sensor assumption. 

Let E ( t )  and X ( t )  be the vector-phasor representations (or 
complex envelopes, see, e.g., [12], [13], and Appendix A) of 
the electric and magnetic fields at the sensor. In addition, let U 
be the unit vector at the sensor pointing towards the source, i.e. 

cos el cos e2 
U = sin 6’1 cos 192 (2.1) [ sin82 ] 

where 81 and 02 denote, respectively, the azimuth and el- 
evation angles of U; see Fig. l .  Thus, 6’1 E [0,27r), and 

In Appendix A it is shown that for planewaves Maxwell’s 
equations can be reduced to an equivalent set of two equa- 
tions without any loss of information. Under the additional 
assumption of a band-limited signal, these two equations can 
be written in terms of phasors. The results are summarized in 
the following theorem. 

Theorem 2.1: Under assumption A1 Maxwell’s equations 
can be reduced to an equivalent set of two equations. With the 
additional band-limited spectrum assumption A2, they can be 
written as 

I&( I T / 2 .  

U x E ( t )  = - v X ( t )  (2.2a) 
U .  E ( t )  = 0 (2.2b) 

where v is the intrinsic impedance of the medium, and “ x ”  
and ‘‘-” are the cross and inner products of R3 applied to 
vectors in C3. (That is, if U, w E C3, then U . w = Ci w;wi. 
This is different from the usual inner product of C3). 
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Proof: See Appendix A. (Note that U = -6, where n is 
the unit vector in the direction of the wave propagation). 

Thus, under the plane and band-limited wave assumptions, 
the vector-phasor equations (2.2) provide all the information 
contained in the original Maxwell equations. This result will 
be used in the following to construct measurement models in 
which the Maxwell equations are incorporated entirely. 

2) The Measurement Model: Suppose that a vector sensor 
measures all the six components of the electric and magnetic 
fields. (It is assumed that the sensor does not influence the 
electric and magnetic fields). The measurement model is based 
on the phasor representation of the measured electromagnetic 
data (with respect to a reference frame) at the sensor. Let yE (t) 
be the measured electric field phasor vector at the sensor at 
time t and e E ( t )  its noise component. Then, the electric part 
of the measurement will be 

(2.3) Y E ( t )  = f ( t )  + e E ( t ) .  

and (U, u1, u2) is a right orthonormal triad; see Fig. 1. (Observe 
that the two coordinate systems shown in the figure actually 
have the same origin). The signal [ ( t )  fully determines the 
components of E ( t )  in the plane where it lies, namely, the 
plane orthogonal to U spanned by u1, u2. This implies that 
there are two degrees of freedom present in the spatial domain 
(or the wave’s plane) or that two independent signals can be 
transmitted simultaneously. 

Combining (2.6) and (2.7), we now have 

This system is equivalent to (2.6) with (2.2b). 
The measured signals in the sensor reference frame can be 

further related to the original source signal at the transmitter 
using the following lemma. 

Lemma2.1: Every vector I = [<1,<2]T E CZx1 has the 
representation 

Similarly, from (2.2a), after appropriate scaling, the magnetic 

y H ( t )  = U x € ( t )  + e H ( t ) .  (2.4) 

I = IIIllei‘Qw (2.1 1) 
part of the measurement will be taken as 

where 

(2.12a) 
In addition to (2.3) and (2.4), we have the constraint (2.2b). 

Define the matrix cross product operator that maps a vector 
U E to (U x U) E R3x1 by 

( u x )  2 [ := -tz ;z] (2.5) 
-uy U ,  

where U,, uY, U, are the z, y, z components of the vector U. 
With this definition, (2.3) and (2.4) can be combined to 

where 13 denotes the 3 x 3 identity matrix. For notational 
convenience, the dimension subscript of the identity matrix 
will be omitted whenever its value is clear from the context. 

The constraint (2.2b) implies that the electric phasor €( t )  
can be written 

E ( t )  = V I ( t )  (2.7) 

where V is a 3 x 2 matrix whose columns span the orthogonal 
complement of U and [ ( t )  E CZx ’. It is easy to check that 
the matrix 

(2.8) 

whose columns are orthonormal, satisfies this requirement. For 
future reference, we note that since llu112 = 1, the columns of 
V, which are denoted by 01 and u2, can be constructed, for 
example, from the partial derivatives of U with respect to 81 
and 82 and post normalization when needed. Thus 

I [ O  cos $2 

- sin 81 - cos 81 sin 6’2 

V = cos01 - sin81 sin82 

1 au =-- 
cos e2 a ~ ,  (2.9a) 

(2.9b) 

w = [ .  COS 84 ] 
2 sin 84 (2.12b) 

and where cp E (-7r,w],83 E (-7r/2,7r/2],84 E [-7r/4,7r/4]. 
Moreover, 11~$1I, cp, & , e 4  in (2.1 1) are uniquely determined if 
and only if <I + <,” # 0. 

Proof: See Appendix B. 
The equality <I + e,” = 0 holds if and only if (041 = 7r/4, 

corresponding to circular polarization (defined below). Hence, 
from Lemma 2.1, the representations (2.11) and (2.12) is 
not unique in this case, as should be expected, since the 
orientation angle 83 is ambiguous. It should be noted that the 
representations (2.11) and (2.12) are known and were used 
(see, e.g., [14]) without a proof. However, Lemma 2.1 of 
existence and uniqueness appears to be new. The existence and 
uniqueness properties are important to guarantee identifiability 
of parameters. 

The physical interpretations of the quantities in the repre- 
sentations (2.11) and (2.12) are as follows: 

leiW 

w 

Complex envelope of the source signal 
(including amplitude and phase) 
normalized overall transfer vector of the 
source’s antenna and medium, i.e., from the 
source complex envelope signal to the principal 
axes of the received electric wave 
rotation mamx that performs the rotation from 
the principal axes of the incoming electric wave 
to the ( V I ,  u2) coordinates. 

Q 

Let w, be the reference frequency of the signal phasor 
representation; see Appendix A. In the narrow-band SST case, 
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the incoming electric wave signal Re { eiwC 1 I[( t )  1 leZp ( t )Qw} 
moves on a quasistationary ellipse whose semi-major and 
semi-minor axes' lengths are proportional, respectively, to 
cos O4 and sin 04; see Fig. 2 and [ 151. The ellipse's eccentricity 
is thus determined by the magnitude of 84.  The sign of 
04 determines the spin sign or direction. More precisely, a 
positive (negative) I34 corresponds to a positive (negative) spin 
with right- (left)-handed rotation with respect to the wave 
propagation vector K = -U. As shown in Fig. 2, 83 is the 
rotation angle between the ( V I ,  112) coordinates and the electric 
ellipse axes (Gl,&). The angles O3 and 84 will be referred 
to, respectively, as the orientation and ellipticity angles of 
the received electric wave ellipse. In addition to the electric 
ellipse, there is also a similar but perpendicular magnetic 
ellipse. 

It should be noted that if the transfer matrix from the source 
to the sensor is time invariant, then so are I33 and 04. 

The signal c(t) can carry information coded in various 
forms. In the following, we discuss briefly both existing forms 
and some motivated by the above representation. 

3)  Single Signal Transmission (SST) Model: Suppose that 
a single modulated signal is transmitted. Then, using (2.1 l ) ,  
this is a special case of (2.10) with 

I(t) = (2.13) 

where s ( t )  denotes the complex envelope of the (scalar) 
transmitted signal. Thus, the measurement model is 

Special cases of this transmission are linear polarization with 
I34 = 0 and circular polarization with 1041 = 7r/4. 

Recall that since there are two spatial degrees of freedom 
in a transverse electromagnetic planewave, one could, in 
principle, transmit two separate signals simultaneously. Thus, 
the SST method does not make full use of the two spatial 
degrees of freedom present in a transverse electromagnetic 
planewave. 

of 
transmission in which two separate signals are transmitted 
simultaneously from the same source will be called dual 
signal transmissions. Various DST forms exist, and all of 
them can be modeled by (2.10), with c(t)  being a linear 
transformation of the 2-D source signal vector. 

One DST form uses two linearly polarized signals that are 
spatially and temporally orthogonal with an amplitude or phase 
modulation (see, e.g., [2], [3]). This is a special case of (2.10), 
where the signal [( t )  is written in the form 

4 )  Dual Signal Transmission (DST) Models: Methods 

(2.15) 

where SI (t) and s2 (t) represent the complex envelopes of the 
transmitted signals. To guarantee unique decoding of the two 
signals (when 03 is unknown) using Lemma 2.1, they have to 
satisfy s l ( t )  # 0,s2(t)/sl(t) E (-1,l). (Practically, this can 
be achieved by using a proper electronic antenna adapter that 
yields a desirable overall transfer matrix.) 
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Fig. 2. Electric polarization ellipse. 

Another DST form uses two circularly polarized signals 
with opposite spins. In this case 

[( t )  = Q[WSi(t) + W92(t)I (2.16a) 
w = (l/JZ)[l, Z I T  (2.16b) 

where W denotes the complex conjugate of w .  The signals 
91 (t), 92 (t) represent the complex envelopes of the transmitted 
signals. The first term on the r.h.s. of (2.16) corresponds to a 
signal with positive spin and circular polarization (04 = 7r/4), 
whereas the second term corresponds to a signal with negative 
spin and circular polarization (04 = -7r/4). The uniqueness 
of (2.16) is guaranteed without the conditions needed for the 
uniqueness of (2.15). 

The above-mentioned DST models can be applied to com- 
munciation problems. Assuming that U is given, it is possible 
to measure the signal t ( t )  and recover the original mes- 
sages as follows. For (2.15), an existing method resolves 
the two messages using mechanical orientation of the re- 
ceiver's antenna (see, e.g., [3]). Alternatively, this can be 
done electronically using the representation of Lemma 2.1 
without the need to know the orientation angle. For (2.16), 
note that [ ( t )  = weie3&(t) +We-ze3s"2(t), which implies the 
uniqueness of (2.16) and indicates that the orientation angle 
has been converted into a phase angle whose sign depends on 
the spin sign. The original signals can be directly recovered 
from [ ( t )  up to an additive constant phase without knowledge 
of the orientation angle. In some cases it is of interest to 
estimate the orientation angle. Let W be a matrix whose 
columns are w, TZ. For (2.16), this can be done using equal 
calibrating signals and then premultiplying the measurement 
by W-l and measuring the phase difference between the two 
components of the result. This can also be used for real-time 
estimation of the angular velocity d83/dt. 

In general, it can be stated that the advantage of the DST 
method is that it makes full use of the spatial degrees of 
freedom of transmission. However, the above DST methods 
need the knowledge of U and, in addition, may suffer from 
possible cross polarizations (see, e.g., [2]), multi-path effects, 
and other unknown distortions from the source to the sensor. 

The use of the proposed vector sensor can motivate the 
design of new improved transmission forms. Here, we suggest 
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a new dual signal transmission method that uses on-line 
electronic calibration in order to resolve the above problems. 
Similar to the previous methods it also makes full use of 
the spatial degrees of freedom in the system. However, it 
overcomes the need to know U and the overall transfer matrix 
from source to sensor. 

Suppose the transmitted signal is z ( t )  E CZx1 (this signal 
is as it appears before reaching the source's antenna). The 
measured signal is 

where C( t )  E is the unknown source-to-sensor transfer 
matrix that may be slowly varying due, for example, to the 
source dynamics. To facilitate the identification of z( t) , the 
transmitter can send calibrating signals, for instance, transmit 
z l ( t )  = [l,0IT and z p ( t )  = [071]Tl separately. Since these 
inputs are in phasor form, this means that actually constant 
carrier waves are transmitted. Obviously, one can then estimate 
the columns of C(t )  by averaging the received signals, which 
can be used later for finding the original signal ~ ( t )  by 
using, for example, least-squares estimation. Better estimation 
performance can be achieved by taking into account a priori 
information about the model. 

In future research, it would be of interest to develop optimal 
coding methods (modulation forms) for maximum channel ca- 
pacity while maintaining acceptable distortions of the decoded 
signals despite unknown varying channel characteristics. 

Observe that actually, any combination of the variables 
1, cp, 03, and 194 can be modulated to carry information. A 

binary signal can be transmitted using the spin sign of the 
polarization ellipse (sign of 04). Lemma 2.1 guarantees the 
identifiability of these signals from [( t ) .  
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B.  multi-source multi-vector-Sensor Model 

Suppose that waves from n distant electromagnetic sources 
are impinging on an array of m vector sensors and that 
assumptions A1 and A2 hold for each source. To extend the 
model (2.10) to this scenario, we need the following additional 
assumptions, which imply that A1 and A2 hold uniformly on 
the array: 

A3: Planewave across the array: In addition to A l ,  for 
each source, the array size d~ has to be much smaller than the 
source-to-array distance so that the vector U is approximately 
independent of the individual sensor positions. 

Narrow-band signal assumption: The maximum fre- 
quency of &(t), which is denoted by w,, satisfies w, d A / c  << 
1, where c is the velocity of wave propagation (i.e., the 
minimum modulating wavelength is much larger than the array 
size). This implies that &(t - r )  21 E ( t )  for all differential 
delays r of the source signals between the sensors. 

Note that (under the assumption w, < w,) since w, = 
max { )W,in - w,1, 1wmaX - w J } ,  it follows that A4 is satisfied 
if (w,,, - w,in) d ~ / 2 c  << 1, and w, is chosen to be close 
enough to (w,,X + wmin)/2.  

Let yEH(t) and e E H ( t )  be the 6m x 1-dimensional electro- 
magnetic sensor phasor measurement and noise vectors 

A4: 

where @(t)  and &'(t) are, respectively, the measured 
phasor electric and magnetic vector fields at the j t h  sensor 
and similarly for the noise components e g ) ( t )  and e g ' ( t ) .  

Then, under assumptions A3 and A4 and from (2.10), we 
find that the array measured phasor signal can be written as 

n 

where 8 is the Kronecker product and e k  denotes the kth 
column of the matrix E E Cmx" whose (j,  k) entry is 

(2.20) E .  Jk - - e - Z w c r ~ k  

where T j k  is the differential delay of the kth source signal 
between the j t h  sensor and the origin of some fixed reference 
coordinate system (e.g., at one of the sensors). Thus, T j k  = 
-(?& . r J ) / c ,  where u k  is the unit vector in the direction from 
the array of the kth source, and rj is the position vector of 
the j t h  sensor in the reference frame. The rest of the notation 
in (2.19) is similar to the single-source case, cf., (2.1), (2.Q 
and (2.10). The vector [ k ( t )  can have either the SST or the 
DST form described above. 

Observe that the signal-manifold matrix in (2.19) can be 
written as the Khatri-Rao product (see, e.g., [16], [17]) of 
E and a second matrix whose form depends on the source 
transmission type (i.e., SST or DST). 

111. CRAMGR-RA0 BOUND FOR A VECTOR-SENSOR ARRAY 

A. Statistical Model 
Consider the problem of finding the parameter vector B in 

the following discrete-time vector-sensor array model associ- 
ated with n vector sources and m vector sensors 

y(t) = A(B)z(t) + e( t )  t = 1,2 , .  . . (3.1) 

where y(t) E CTixl are the vectors of observed sensor outputs 
(or snapshots), z(t) E C"' are the unknown source signals, 
and e( t )  E C F x l  are the additive noise vectors. The transfer 
matrix A(B) E CFxu and the parameter vector B E E t T x 1  are 
given by 

A(B) = [A1(8('))...A,(B("))] (3.2a) 
(3.2b) 

where A k ( B ( " )  E CTixvk and the parameter vector of the kth 
source E RqkX1, thus = Y k ,  and = c;=1 Q k .  

The following notation will also be used 

Y(t) = [(Y(1)(t))T7.. ' 1 (Y"'(t))TIT 
z( t )  = [(z ' l ' ( t ) )T, .  . . , (z'"'(t))T]' 

e =[(e('))',  . . . , (e("))']' 

(3.3a) 
(3.3b) 
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where y(j)(t) E CC”3 x1  is the vector measurement of the j t h  
sensor, implying = Cy=l pJ ,  and z ( ’ ) ( t )  E C y k x l  is the 
vector signal of the kth source. Clearly, ji and V correspond, 
respectively, to the total number of sensor components and 
source signal components. 

The model (3.1) generalizes the commonly used multi- 
scalar-source multi-scalar-sensor one (see, e.g., [6], [ 181). It 
will be shown later that the electromagnetic multi-vector- 
source multi-vector-sensor data models are special cases of 
(3.1) with appropriate choices of matrices. 

For notational simplicity, the explicit dependence on 8 and 
t will be occasionally omitted. 

We make the following commonly used assumptions on the 
model (3.1): 

A5: The source signal sequence {z(1),2(2), ...} is a 
sample from a temporally uncorrelated stationary (complex) 
Gaussian process with zero mean and 

Ez( t ) z* ( s )  = PSt,, 
Ez(t)zT(  s) = 0 (for all t and s). 

where E is the expectation operator, the superscript “*” 
denotes the conjugate transpose, and S t , ,  is the Kronecker 
delta. 

The noise e ( t )  is (complex) Gaussian distributed 
with zero mean and 
A6: 

Ee(t)e*(s) = a216t,, 
Ee(t)eT(s) = O  (foralltands). 

It is also assumed that the signals z(t)  and the noise e(.) are 
independent for all t and s. 

The matrix A has full rank V < ji (thus, A* A is p.d.) 
and a continuous Jacobian d A / d 8  in some neighborhood of 
the true 8. The matrix APA* + a21 is assumed to be positive 
definite, which implies that the probability density functions of 
the model are well defined in some neighborhood of the true 
8 ,  P ,  a2. Additionally, the matrix in braces in (3.4) is assumed 
to be nonsingular. 

The unknown parameters in the model (3.1) include the 
vector 8, the signal covariance matrix P ,  and the noise variance 
a’. The problem of estimating 8 in (3.1) from N snapshots 
y( l), . . . , y( N )  and the statistical performance of estimation 
methods are the main concems of this paper. 

A7: 

B .  The Cramtr-Rao Bound 

Consider the estimation of 8 in the model (3.1) under the 
above assumptions and with 8, P,  a2 unknown. We have the 
following theorem. 

Theorem 3.1: The Cram&-Rao lower bound on the covari- 
ance matrix of any (locally) unbiased estimator of the vector 
8 in the model (3.1), under assumptions A5-A7 with 8, P ,  a’ 
unknown and v k  = v for all k ,  is a positive definite matrix 
given by 

aL 

2N 
CRB (8 )  = -{Re [btr ((1m U )  (D*n,D)bT)]}-l  (3.4) 

where 

U = P(A*AP + a * I ) - l A * A P  (3.5a) 

(3.5e) 

and where 1 denotes a 7j x 7j matrix with all entries equal to 
one, and the block trace operator btr (.), the block Kronecker 
product €4, the block Schur-Hadamard product 0, and the 
block transpose operator bT are as defined in Appendix I with 
blocks of dimensions v x v, except for the matrix 1 that has 
blocks of dimensions q; x q j .  

Furthermore, the CRB in (3.4) remains the same indepen- 
dently of whether a2 is known or unknown. 

Proof: See Appendix C. 
Remarks: The assumption vk = v was necessary to cast 

the above result in a matrix form. When this condition is 
not satisfied, a scalar expression for the entries of the inverse 
CRB matrix that appears in Appendix C can be used. Observe 
that for n = 1, the block Kronecker product reduces to 
the usual Kronecker product. If v = 1, then all the block 
operators reduce to the usual scalar operators. If v = 1 and 
q k  = 1, k = 1, . . . , n then (3.4) reduces to the scalar case in [4] 
(see also [5]). In addition, note that U = PA* R - I A P  where 

R = APA* + a21. (3.6) 

Theorem 3.1 can be extended to include a larger class of 
unknown sensor noise covariance matrices (see Appendix D). 

IV. MSAE, CVAE AND SINGLE-SOURCE 
SINGLE-VECTOR-SENSOR ANALYSIS 

This section introduces the MSAE and CVAE quality mea- 
sures and their bounds for source direction and orientation 
estimation in 3-D space. The bounds are applied to analyze 
the statistical performance of parameter estimation of an 
electromagnetic source whose covariance is unknown using 
a single vector sensor. Note that single-vector-sensor analysis 
is valid for wide-band sources as assumptions A3 and A4 
are not needed. 

A .  The MSAE 

We define the mean-square angular error, which is a qual- 
ity measure that is useful for gaining physical insight into 
DOA (azimuth and elevation) estimation and for performance 
comparisons. The analysis of this subsection is not limited to 
electromagnetic measurements or to Gaussian data. 

The angular error, say 6, corresponding to a direction error 
AU in U, can be shown to be S = 2arcsin (IlAull/2). Hence, 
S2 = (lAu(I2 + O(((Au(I4). Since AU = (du/d&)A& + 
(du/d192)A192 + 0((A81)2 + (A02)2), where A&, Ad2 are 
the errors in 191 and 02 ,  we have 

S2 = ( c o s O ~ .  AI91)’ + (A&)’ + O(lA19113 + (A&I3). (4.1) 

We introduce the following definitions. 
Definition 4.1: A model will be called regular if it satisfies 

any set of sufficient conditions for the CRB to hold (see, e.g., 
[191 and [201). 
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Definition 4.2: The asymptotic normalized mean-square 
angular error of a direction estimator will be defined as 

(4.2) 

whenever this limit exists. 
Definition 4.3: A direction estimator will be called regular 

if its errors satisfy E[lA01l3+ lAt9213] = o(l/N),  the gradient 
of its bias with respect to el, O2 exists and is o(1) as N -+ 03, 

and its MSAE exists. (If 1021 = 7r/2, then O1 is undefined, and 
we can use the equivalent condition E[llAu\13] = o(l/N)).  

Equation (4.1) shows that under the assumptions that the 
model and estimator are regular, we have 

E(6)’ 2 [cos2t92 . CRB(B1) + CRB(&)] 

+o(l/N) as N -+ 03 (4.3) 

To relate the model (2.10) to (3. I), define a scaled measure- 
ment y(t) 2 [ry;(t),yg(t)lT, where T = oH/aEis assumed 
to be known. (The results of this section actually hold also 
when T is unknown as will be explained later). The resulting 
scaled noise vector e( t) = [reg ( t )  , e$ ( t)lT then satisfies 
assumption A6 with (T = C H .  Assume further that the signal 
c(t) satisfies assumption A5 with z(t) = <(t). Then, under 
these assumptions, the scaled version of the DST source (2.10) 
can be viewed as a special case of (3.1) with m = n = 1 and 

A 

A 

A = [(U$] Z ( t )  = [ ( t )  a2 = CT; 

8 = [el, &IT (4.5) 

where the unknown parameters are 8,Pla2. The parameter 
vector of interest is 8, whereas P and a2 are the so-called 
nuisance parameters. 

The above discussion shows that the CRB expression (3.4) 
is applicable to the present problem with the special choice 
of variables in (4.5). Since n = 1 and 7 j  = 2, we have 
lE4 U = 1 2  18 U, where 1 2  is a 2 x 2 matrix with all entries 
equal to one. Hence, in this case 

where CRB(B1) and CRB(82) are, respectively, the 
Cram&-Rao bounds for the azimuth and elevation. Using 
(4.3) we have the following theorem. 

Theorem4.1: For a regular model, the MSAE of any 
regular direction estimator is bounded from below by 

MSAECR A N[cos2 0 2  . CRB(B1) + CRB(&)]. (4.4) 

Observe that MSAECR is not a function of N .  Additionally, 
MSAECR is a tight bound if it is attained by some second- 
order efficient regular estimator (which is usually the maxi- 
mum likelihood (ML) estimator; see e.g., [21]). For vector- 
sensor measurements, this bound has the desirable property 
of being invariant to the choice of reference coordinate frame 
since the information content in the data is invariant under 
rotational transformations. This invariance property also holds 
for the MSAE of an estimator if the estimate is independent 
of known rotational transformations of the data. 

For a regular model, the bound (4.4) can be used for 
performance analysis of any regular direction (azimuth and 
elevation) finding algorithm. 

B .  DST Source Analysis 

Assume that we wish to estimate the direction to a DST 
source whose covariance is unknown using a vector sensor. 
We will first present a statistical model for this problem as a 
special case of (3.1) and then investigate in detail the resulting 
CRB and MSAE. 

The measurement model for the DST case is given in (2.10). 
Suppose the noise vector of (2.10) is (complex) Gaussian with 
zero mean and the following covariances: 

Our assumption that the noise components are statistically in- 
dependent stems from the fact that they are created separately 
at different sensor components (even if the sensor components 
belong to a vector sensor). Note that under assumption A1 the 
measurement includes a source plane-wave component and 
sensor self noise. 

0 2  

2N 
CRB(8) = -{Re [btr ( (12  8 U) U(D*IIcD)*T)]}-l. 

(4.6) 
To compute the matrices U and II,, it is useful to note the 
following general properties of U and V 

(ux)* = - ( u x )  (4.7a) 
(ux)2 = -(I - uu*) (4.7b) 
vv* =I  - uu*. (4.7c) 

From the orthonormality of U and the columns of V and using 
(4.5) and (4.7), we find that 

A*A = P V * V  + V * ( U X ) * ( U X ) V  = (1 + ?)I2 (4.8) 

1 AA* = ‘ , ( ,x )  I -uu* . 
I-uu)* ?-(TAX)* 

Substitution of (4.8) into (3.5a) yields 

(4.9) 

U = P[P + a$2]-lP (4.10) 

where 

(4. I 1) 

The variance (T; can be viewed as an equivalent noise variance 
of two measurements with independent noise variances a; and 
a&. (The subscript ‘‘11’’ is chosen by the analogy between the 
total information in these measurements (sum of the inverses 
of noise variances) and the conductivity of two resistors in 
parallel). Substitution of (4.8) and (4.9) in (3.5b) gives 

1 [I+T2UU‘ ~ ( u x )  ] (4.12) 
= iT-2 T ( U X ) *  T21+UU*  . 

The derivative matrix D (3.5d) specializes in this case to 

(4.13) 
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To compute these derivatives note that 

(4.14a) 

(4.14b) 

(4.14~) 

(4.14d) 

Hence, from (4.5) 

- = [  a A  r ( s i n & . u z - c o s & . u )  -T sin 6 2  . u1 

a01 - sin 192 . u1 - ( s i n & - q  - cosO2 .u)  1 
(4.15a) 

(4.15b) 

Substituting (4.15) into (4.13) and using (4.12), we obtain 

r r 2 c ~ ~ 2 6 2  o o T 2 c o s e 2 1  
cos2 e 2  - cos 02 
-cos02 1 

r2coso2 0 0 
(4.16) 

D*rI,D = 

Hence 

btr ( (12  8 U) CI(D*rI,D)bT) 
(T2ull + uZ2) cos2 o2 

- U12) cos 02 
- q2) cos e2 

U11 + T 2 U 2 2  

where Uij denotes the ( i , j )  entry of U. Substituting (4.17) in 
(3.4), we find that the CRB for a DST source and a single 
vector sensor is 

U2 

2NA 
U11 + r2u22 

CRB(8) = - 

] (4.18) 
(1 - r 2 )  cos 8 2  . Re U12 

' [ (1 - T ' )  cos 02 . Re U12 (?U11 + U 2 2 )  cos2 8 2  

where 

A = [r2(tr U)' + (1 - T ' ) ~  det (Re U)] cos2 02. (4.19) 

Recall that CRB(0) takes into account the fact that P and 
U = UH are unknown, whereas T = UH/CJE is known. 

The case of unknown T can be analyzed using the ap- 
proach of Appendix D with g ( t )  = [yz(t),y:(t)lT and 
r = block diag{r13, 1 3 ) .  We find that if OH is unknown, then 
the CRB (4.18) is the same whether T is known or unknown. In 
addition, it follows from Theorem 3.1 that if T is known, then 
(4.18) remains the same whether C H  is known or unknown. 
Thus 

CRB(8)eH known,r  known = CRB(@),, unknown,r  unknown.  

(4.20) 

The 1.h.s. and r.h.s. of (4.20) fumish lower and upper bounds 
on CRB(8) under any prior information about o~ , OH. Hence, 
CRB(8) is independent of any prior information on o ~ ,  UH.  

In other words, 8 is decoupled from these noise parameters. 
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Substituting the (1, 1) and (2, 2) entries of the CRB matrix 
(4.18) into (4.4), we find that the M S A E ~ R  for the present 
DST problem is 

(U; + u&)o&ui t r  U M S A E ~ ,  = 
2[a$&(tr U ) 2  + (0% - det (Re U)] ' 

(4.21) 

Observe that MSAEE, is symmetric with respect to U E ,  OH, 
as should be expected from the Maxwell equations. MSAE?, 
is not a function of el, 02 ,  133, as should be expected, since for 
vector-sensor measurements the MSAE bound is by defini- 
tion invariant to the choice of coordinate system. Note that 
MSAEE, is independent of whether UE and (TH are known 
or unknown. 

Similar analysis shows that when only the electric field is 
measured, (4.2 1) simplifies to 

U; t r  U 
MSAE:, = 2 det (Re U) ' (4.22) 

Expression (4.21) can be applied to various signal transmis- 
sion models to obtain more explicit physical interpretations. 
Consider, for example, the case in which P = o:1. Equation 
(2.15) shows that this may correspond to transmission of 
two uncorrelated orthogonal linearly polarized signals, each 
of which has variance U,". Altematively, from (2.16), this may 
correspond with two uncorrelated circularly polarized signals 
with opposite spins and equal variances of. Inserting P = o,"1 
into (4.10) and (4.21), we obtain 

I + @  M S A E ~ ,  = - 
e2 

(4.23) 

a where e = o:/ui is an effective signal-to-noise ratio (SNR); 
see also the comment after (4.11). Observe that when e is 
small, (4.23) behaves as 1/e2, whereas for large e, it behaves 
as l /e .  When only the electric field is measured, (4.23) still 
holds but with C J ~  = 0;. 

C .  SST Source (DST Model) Analysis 
Consider the MSAE for a single signal transmission source 

when the estimation is done under the assumption that the 
source is of a dual signal transmission type. In this case,. the 
model (2.10) has to be used but with a signal in the form of 
(2.13). The signal covariance is then 

P = o : ~ w ( ~ w ) *  (4.24) 

where U: = Es2( t )  and Q and w are defined in (2.12). Thus, 
rank P = 1 and P has a unit-norm eigenvector Qw with an 
eigenvalue U,". We use the following lemma to express the 
matrix U in terms of P. 

Lemma 4.1: If P is an Hermitian matrix of rank = 1, and 
if f ( z )  is a function defined on the spectrum of P, which 
satisfies f(0) = 0, then 
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Elliptical 

Proof: See Appendix E. 
To apply the lemma to our case, note from (4.10) that here 

U = f ( P )  with f ( z )  = z ' / ( z  + 0;) and rank P = 1. Hence, 
since f(0) = 0, we have Circular Linear 

Using (4.26), we get 

0 Precise Electric Measurement 

U = -  e P  
l + e  

0 6 20: 

where 

e t r U = -  
1 + e'' 

(4.26) 

(4.27) 

(4.28a) 

where the fact that det P = 0 has been used. Using (4.24) and 
(2.12), it is found that Im PI' = -of sin O4 cos 64. Using this 
relation and substituting (4.28a), (4.28b) into (4.21) and using 
the fact that a' = c&, we find that 

(4.29) 
- (1 + e ) ( l +  T-')' - 

2e'[r2 + (I - r2)2 sin' e4 COS' e,] 
where MSAE;, denotes the M S A E ~ R  bound for the SST 
problem under the DST model. (It will be shown later that 
the same result also holds under the SST model). Observe 
that MSAE;, is symmetric with respect to OE, OH. It is also 
independent of whether OH and OE are known or unknown, as 
can be shown from Theorem 3.1 and Appendix D. In addition, 
MSAE;, is not a function of el, 02 , e3 since for vector-sensor 
measurements, the MSAE bound is invariant under rotational 
transformations of the reference coordinate system. On the 
other hand, MSAE;, is influenced by the ellipticity angle 
04 through the difference in the electric and magnetic noise 
variances. 

Table I summarizes several special cases of the expression 
(4.29) for MSAE;,. The elliptical polarization column cor- 
responds to an arbitrary polarization angle 04 E [-7r/4, 7r/4]. 
The circular and linear polarization columns are obtained, 
respectively, as special cases of (4.29) with 1641 = 7r/4 and 
04 = 0. The row of precise (noise-free) electric measurement 
(with noisy magnetic measurements) is obtained by substitut- 
ing O; = 0 in (4.29). The row of electric measurement only is 
obtained by deriving the corresponding CRB and MSAE;,. 
Altematively, MSAE;, can be found for this case by taking 
the limit of (4.29) as O& + 00. 

Observe from (4.29) that when a& # U;, MSAE;, is 
minimized for circular polarization and maximized for linear 
polarization. This result is illustrated in Fig. 3, which shows 
the square root of MSAE;, as a function of T = O H / O E  

for three types of polarizations (194 = 017r/12,7r/4). The 
equivalent SNR = af/a; is kept at one, whereas the individual 
electric and magnetic noise variances are varied to give the 
desired value of T-. As T- becomes larger or smaller than 

10' 

/' -1 1 Linear\ 

, C P L _ _ _ > _ .  
IO-' 100 1 0' 

T 

Fig. 3. Effect of change in T = U H / U E  on MSAES, for three types of 
polarizations (04 = 0, a / 1 2 , ~ / 4 ) .  A single SST source, SNR = crf/c$ = 1. 

one, MS AE;, increases more significantly for sources with 
polarization closer to linear. 

When the electric (or magnetic) field is measured pre- 
cisely and the source polarization is circular or elliptical, the 
MSAE;, is zero (i.e., no angular error), whereas for linearly 
polarized sources, it remains positive. In the latter case, the 
contribution to MSAE;, stems from the magnetic (or electric) 
noisy measurement. When only the electric (or magnetic) 
field is measured, MSAE;, increases as the polarization 
changes from circular to linear. In the linear polarization case, 
MSAEg, tends to infinity. In this case, it is impossible to 
uniquely identify the source direction U from the electric field 
only since U can then be anywhere in the plane orthogonal to 
the electric field vector. 

The immediate conclusion is that as the source becomes 
closer to being linearly polarized it becomes more important 
to measure both the electric and magnetic fields to get good 
direction estimates using a single vector sensor. 

These results are illustrated in Fig. 4, which shows the 
square root of MSAE;, as a function of O; and three po- 
larization types (0, = 0,7~/12, w/4). The standard deviations 
of the signal and electric noise are os = OE = 1. The left 
side of the figure corresponds to (nearly) precise magnetic 
measurement, whereas the right side corresponds to (nearly) 
electric measurement only. 

It is also of interest to note that the MSAE;, for a circularly 
polarized SST source is twice the MSAEg, for a DST source 
with two uncorrelated signals of circular polarization, opposite 
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of polarizations (0, = 0, a/12, a/4). A single SST source, us = U E  = 1. 

Effect of change in magnitude of U& on 41S.4EaR for three types 

spins, and of equal power to the SST source; see (4.23). Thus, 
the quality of the DOA estimation is the same in these two 
cases. However, a similar comparison of the MSAE;, for a 
linearly polarized SST source with that of a DST source with 
two uncorrelated linearly polarized signals (4.23) shows that 
the latter has in general a smaller MSAEc,. This may be 
explained by the fact that both the electric and the magnetic 
fields of the DST source move in a plane rather than on a line, 
which makes it easier to estimate its direction. 

D. SST Source (SST Model) Analysis 

Suppose we wish to estimate the direction to an SST source 
whose variance is unknown using a single vector sensor, and 
the estimation is done under the correct model of an SST 
source. In the following, the CRB for this problem will be 
derived, and it will be shown that the resulting MSAE bound 
remains the same as when the estimation is done under the 
assumption of a DST source, that is, knowledge of the source 
type does not improve the accuracy of its direction estimate. 

To get a statistical model for the SST measurement model 
(2.14) as a special case of (3.1), we will make the same 
assumptions on the noise, and use a similar data scaling as in 
the above DST source case. That will again give equal noise 
variances in all the sensor coordinates. Assume that the signal 
envelope s ( t )  satisfies assumption A5 with z ( t )  = s ( t )  in 
(2.14). Then, the resulting statistical model becomes a special 
case of (3.1) with 

A = [(:;v]Qw z ( t )  = s ( t )  O2 = O$ 

0 = [el, 021 83, &IT. (4.30) 

The unknown parameters are e, P, u2. 

reduces to 
Since in this case n = m = v = 1, the CRB matrix (3.4) 

O2 

2NU 
CRB (e) = -[Re (D*&D)]-' (4.31) 

where U = eO;/(l + e). The matrix expression (4.31) was 
calculated, and its entries are presented in Appendix F. The 
results show that the ellipticity angle 04 is decoupled from the 

rest of the parameters and that its variance is not a function 
of these parameters. Additionally, the parameter vector 8 is 
decoupled from CTE and OH. 

The MSAE bound for an SST source under the SST model 
was calculated by inserting (F.la) and (F.le) with a proper 
normalization into (4.4). The result coincides with (4.29), that 
is, the MSAE bound for an SST source is the same under both 
the SST and the DST models. 

Observe that (F.lh) implies that the CRB variance of the 
orientation angle 83 tends to infinity as the elevation angle 
e2 approaches 7~/2 or -7r/2. This singularity is explained by 
the fact that the orientation angle is a function of the azimuth 
(through u1, u2), and the latter becomes increasingly sensitive 
to measurement errors as the elevation angle approances the 
zenith or nadir. (Note that the azimuth is undefined in the 
zenith and nadir elevations). However, this singularity is not 
an intrinsic one as it depends on the chosen reference system, 
whereas information in the vector measurement does not. 

E .  CVAE and SST Source Analysis in the Wave Frame 

In order to get performance results intrinsic to the SST 
estimation problem and thereby solve the singularity problems 
associated with the above model, we choose an altemative 
error vector that is invariant under known rotational transfor- 
mations of the coordinate system. The details of the following 
analysis appear in Appendix G. 

Denote by W the wave frame whose coordinate axes are 
(U, 61, &), where GI and G2 correspond, respectively, to the 
major and minor axes of the source's electric wave ellipse 
(see Fig. 2). For any estimator $,z = 1,2,3,  there is an 
associated estimated wave frame W .  Define the vettor angular 
error 4w*, which is the vector angle by which W is (right- 
handed) rotated about W, and by [4wa]w the representation 
of &,* in the coordinate system W (see Appendix G). The 
proposed vector angular eror  will be [ 4 w * ] ~ .  

Observe that [4,*]w depends, by definition, only on the 
frames W,*. Thus, for an estimator that is independent of 
known rotations of the data, the estimated wave frame W, the 
vector angular error, and its covariance are independent of the 
sensor frame. We introduce the following definitions. 

Definition 4.4: The normalized asymptotic covariance of 
the vector angular error in the wave frame will be defined as 

CVAE e N--rCX2 lim { N E ( [ ~ w ~ ] w [ ~ W ~ ] ~ ) }  (4.32) 

whenever this limit exists. 
Definition 4.5: A direction and orientation estimator will 

be called regular if its errors satisfy E E:==, lAI9;I3 = o(l /N) 
and the gradient of its bias with respect to 81,192~83 is o(1) 
as N 4 00. 

Then, we have the following theorems. 
Theorem 4.2: For a regular model, the CVAE of any reg- 

ular direction and orientation estimator, whenever it exists, is 
bounded from below by 
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where 

"i ] sin 8' 0 
- COS e2 sin O3 - COS O3 
cose2co~03 -sine3 o 

(4.34) 

and CRB( 01,02 , 03) is the Cram&-Rao submatrix bound for 
the azimuth, elevation, and orientation angles for the particular 
model used. 

Proof: See Appendix G. 
Observe that the result of Theorem 4.2 is obtained using 

geometrical considerations only. Hence, it is applicable to 
general direction and orientation estimation problems and is 
not limited to the SST problem only. It is dependent only 
on the ability to define a wave frame. For example, one can 
apply this theorem to a DST source with a wave frame defined 
by the orientation angle that diagonalizes the source signal 
covariance matrix. 

For vector-sensor measurements, CVAEc, has the desir- 
able property of being invariant to the choice of reference 
coordinate frame. This invariance property holds also for the 
CVAE of an estimator if the estimate is independent of known 
rotational transformations of the data. Note that C V A E ~ R  is 
not a function of N .  

Theorem 4.3: The MSAE and CVAE of any regular esti- 
mator are related through 

MSAE = [CVAE]2,2 + [CVAE]3,3. (4.35) 

Furthermore, a similar equality holds for a regular model 
where the MSAE and CVAE in (4.35) are replaced by their 
lower bounds MSAECR and CVAECR. 

Proof: See Appendix G .  
In our case, CRB(B1,&, 193) is the 3 x 3 upper left block 

entry of the CRB matrix in the sensor frame given in Appendix 
F. Substituting this block entry into (4.33) and denoting the 
CVAE matrix bound for the SST problem by CVAE:,, we 
have that this matrix is diagonal with nonzero entries given by 

(4.36a) 

Some observations on (4.36) are summarized in the following: 
Rotation around U: Nonidentifiable only for a circularly 
polarized signal. 
Rotation around GI (electric ellipse's major axis): Non- 
identifiable only for a linearly polarized signal and no 
magnetic measurement. 
Rotation around 62 (electric ellipse's minor axis): Non- 
identifiable only for a linearly polarized signal and no 
electric measurement. 
The rotation variances around 61 and 62 are symmetric 
with respect to the electric and magnetic measurements. 
All the three variances in (4.36) are bounded from below 
by (1 + e)/2e2 (independent of the wave parameters). 

The nonidentifiable (or singular) cases above are found by 
checking when their variances in CVAE;, tend to infinity 
(see, e.g., Theorem 6.3 of [21]). The three nonidentifiable 
cases above should be expected as the corresponding rotations 
are unobservable. These singularities are intrinsic to the SST 
estimation problem and are independent of the reference 
coordinate system. The symmetry of the variances of the 
rotations around the major and minor axes of the ellipse with 
respect to the magnetic and electric measurements should be 
expected as their axes have a spatial angle difference of ~ / 2 .  

The fact that the resulting singularities in the rotational 
errors are intrinsic (independent of the reference coordinate 
system) as well as the diagonality of the CVAE;, bound 
matrix with its simple entry expressions indicate that the wave 
frame is a natural system in which to do the analysis. 

Now, consider the augmented error vector 

where A04 is the estimation error in 64. Combining the results 
of Appendices F and G, we find that for regular models and 
estimators, the normalized asymptotic covariance of the error 
vector 0 is bounded from below by 

(4.38) A BgR = N . KCRB(e)K* 

where 

K = block diag {K, 1} (4.39) - 
and CRB(8) is the 4 x 4 CRB matrix in the sensor coordinates 
given in Appendix F. Substituting this matrix in (4.38) and 
using (4.33) with the fact that CVAE;, is diagonal, we find 
that BgR is a diagonal matrix with 

F .  A Cross-Product-Based DOA Estimator 

(4.40b) 

We propose a simple algorithm for estimating the DOA of 
a single electromagnetic source using the measurements of a 
single vector sensor. The motivation for this algorithm stems 
from the average cross-product Poynting vector. Observe that 
-U is the unit vector in the direction of the Poynting vector 
given by [22] 

S ( t )  = E ( t )  x H ( t )  = Re{ei"ct&(t)} x Re{ei"ct3-1(t)} 
= Re { E ( t )  x R(t)} + $ Re {e iZwCtE( t )  x 3-1(t)} 

where R denotes the complex conjugate of 3-1. The car- 
rier time average of the Poynting vector is defined as 
( S ) ,  5 Re { E ( t )  x %(t)}. Note that unlike &(t)  and 'Fl(t), 
this average is not a function of w,. Thus, it has an intrinsic 
physical meaning. 

At this point, we can see two possible ways for estimating U: 

1) Phasor time averaging of ( S ) ,  yielding a vector denoted 
by (S) with the estimated U taken as the unit vector in 
the direction of - ( S )  

2) estimation of U by phasor time averaging of the unit 
vectors in the direction of Re { E ( t )  x a@)}. 
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Clearly, the first way is preferable since then U is estimated 
after the measurement noise is reduced by the averaging 
process, whereas the estimated U in the second way is more 
sensitive to the measurement noises that may be magnified 
considerably. 

Thus, the proposed algorithm computes 

(4.41a) 5 = - 
N 

ii=5/1p11. (4.41b) 

l N  
Re { Y E ( t )  x g H ( t ) )  

t=l  

The statistical performance of this estimator Q is ana- 
lyzed in Appendix H under the previous assumptions on 
t( t) e E  ( t  ) , e H  (t) except that the Gaussian assumption is 
omitted. The results are summarized by the following theorem. 

Theorem 4.4: The estimator ii has the following properties 
(for both DST and SST sources): 

1) If llt(t)1127 IleE(t)II, IleH(t)l( have finite first-order mo- 
ments, then Q + U almost surely. 

2) If Ilt(t)1127 ( ( e E ( t ) ( ( ,  IleH(t)l( have finite second-order 
moments, then fl(Q - U) is asymptotically normal. 

3)  If ll,$(t)1127 I l e E ( t ) J I ,  I leH(t) l l  have finite fourth-order 
moments, then the MSAE is 

MSAE = ?je-'(l+ 4 ~ - l ) ( r  + r-l)' (4.42) 

where e = tr(P)/ai = SNR. 

distributed with two degrees of freedom. 
4) Under the conditions of 3), NS2 is asymptotically x 2  

Pro05 See Appendix H. 
For the Gaussian SST case, the ratio between the MSAE of 

this estimator to the MSAE:, in (4.29) is 

eff = A MSAE = -11 + ( r  - r - 1 ) ~  sin2 o4 cos2 e,]. 
MSAE:, e + l  

(4.43) 
Hence, this estimator is nearly efficient if the following two 
conditions are met 

e >> 1 (4.44a) 
r - 1  or O4 N 0. (4.44b) 

Fig. 5 illustrates these results using plots of the efficiency 
factor (4.43) as a function of the ellipticity angle 04 for SNR 
= e = 10 and three different values of r. 

The estimator (4.41) can be improved using a weighted 
average of cross products between all possible pairs of real and 
imaginary parts of y E  (t) and y H  (s) taken at arbitrary times t 
and s. (Note that these cross products have directions nearly 
parallel to the basic estimator ii in (4.41); however, before av- 
'eraging, these cross products should be premultiplied by +1 or 
-1 in accordance with the direction of the basic estimator Q.) 
A similar algorithm suitable for real-time applications can also 
be developed in the time domain without preprocessing needed 
for phasor representation. It can be extended to nonstationary 
inputs by using a moving-average window on the data. It is 
of interest to find the optimal weights and the performances 
of these estimators. 

t 
I 

1' = 10 

2L 
r14 

Fig. 5. Efficiency factor (4.43) of the cross-product-based direction esti- 
mator as a function of the normalized ellipticity angle for three values of 
T = U H / U E .  A single source, SNR = 10. 

The main advantages of the proposed cross-product-based 

It can give a direction estimate instantly, i.e., with one 
time sample. 
It is simple to implement (does not require minimization 
of a cost function) and can be applied in real time. 
It is equally applicable to sources of various types, 
including SST, DST, wide-band, and non-Gaussian. 
Its MSAE is nearly optimal in the Gaussian SST case 
under (4.44). 
It does not depend on time delays and therefore does 
not require data synchronization among different sensor 
components. 

algorithm (4.41) or one of its variants above are as follows: 

V. MULTI-SOURCE MULTI-VECTOR-SENSOR ANALYSIS 
Consider the case in which we wish to estimate the direc- 

tions to multiple electromagnetic sources whose covariance 
is unknown using an array of vector sensors. The MSAECR 
and C V A E ~ R  bound expressions in (4.4) and (4.33) are 
applicable to each of the sources in the multi-source multi- 
vector-sensor scenario. Suppose that the noise vector e E H  (t) 
in (2.19) is complex white Gaussian with zero mean and 
diagonal covariance matrix (i.e., noises from different sensors 
are uncorrelated) and with electric and magnetic variances 
g$ and &, respectively. Suppose also that T = aH/oE is 
known. Similar to the single-sensor case, multiply the electric 
measurements in (2.19) by r to obtain equal noise variances in 
all the sensor coordinates. The resulting models then become 
special cases of (3.1) as follows. 

and the 
signals z(t) E cZnx1 are 

For DST signals, the block columns Ak E 

(5.la) 

(5.lb) 

The parameter vector of the kth source includes here its 
azimuth and elevation. 
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For the SST case, the columns Ak E and the signals 
z(t)  E cnX1 are 

(5.2a) 

4 t )  = [Sl( t ) ,  . . . , %@)IT. (5.2b) 

The parameter vector of the kth source includes here its 
azimuth, elevation, orientation, and ellipticity angles. 

The matrices A whose (block) columns are given in (5.la) 
and (5.2a) are the Khatri-Rao products (see, e.g., [I61 and 
[17]) of the two matrices whose (block) columns are the 
arguments of the Kronecker products in these equations. 

Mixed single and dual signal transmissions are also special 
cases of (3.1) with appropriate combinations of the above 
expressions. 

A .  Results for Two Sources-Single Vector Sensor 
We present some observed behavior of the two-source model 

and a single vector sensor. It is assumed that the signal and 
noise vectors satisfy, respectively, assumptions A5 and A6. 
The results are applicable to wide-band sources since a single 
vector sensor is used, and thus, A3 and A4 are not needed. 
In general, the analytical expressions involved are found to be 
intractable, and hence, the results given below are obtained by 
numerical evaluation, assuming T is known. 

The following is a summary of results conceming the 
localization of two uncorrelated sources: 

1) Identification of two sources’ DOA’s is generally possi- 
ble with only one vector sensor. 

2) When only the electric field is measured, the DOA’s 
(azimuths and elevations) are nonidentifiable (singular 
information matrix). 

3) When the electric measurement is precise, the CRB 
variances are generally nonzero. 

4) The MSAE:, can increase without bound with de- 
creasing source angular separation for sources with the 
same ellipticity and spin direction, but remarkably, it 
remains bounded for sources with different ellipticities 
or opposite spin directions. 

Properties 2 and 3 are in general different from the single- 
source case. Property 2 shows that it is necessary to include 
both the electric and magnetic measurements to estimate the 
direction to more than one source. Property 4 demonstrates 
the great advantage of using the electromagnetic vector sensor 
in that it allows high resolution of sources with different 
ellipticities or opposite spins. Note that this generally requires 
a very large aperture using a scalar-sensor array. 

The above result on the ability to resolve two sources that 
are different only in their ellipticity or spin direction appears to 
be new. Note also the analogy to Pauli’s “exclusion principle.” 
In our case, two narrow-band SST sources are distinguishable 
if and only if they have different sets of parameters. The set 
in our case includes wavelength, direction, ellipticity, and spin 
sign. 

Figs. 6 and 7 illustrate the resolution of two uncorrelated 
equal power SST sources with a single electromagnetic vector 
sensor. The figures show the square root of the MSAE;, of 

1 0 1  

Fig. 6. .\ISAE$, for two uncorrelated equal-power SST sources and a 
single vector sensor as a function of the source angular separation. Upper 
two curves: same spin directions (0:’) = Or) = ~ / 1 2 ) ;  lower two 
curves: opposite spin directions (82’) = -Oy) = 7r/12); solid curves: 
same orientation angles (O!jl) = O r )  = 7r/4); dashed curves: different 
orientation angles (06” = -o$’) = x / . i ) ;  remaining parameters are 
O i l ’  : = OF) = 0,AO’ 2 @ ) > P  = 1 2 . U E  = UH = 1. 62 

one of the sources for a variety of spin directions, elliptic- 
ities, and orientation angles as a function of the separation 
angle between the sources. (The MSAE;, values of the two 
sources are found to be equal in all the following cases.) The 
covariances of the signals and noise are normalized such that 
P = 12, OE = OH = 1. The azimuth angle of the first source 
and the elevation angles of the two sources are kept constant 
( O i l )  = 0;) = Op) = 0). The second source’s azimuth is 
varied to give the desired separation angle A01 e Oy). In Fig. 
6, the cases shown are of same spin directions (0;) = Of’ = 
~ / l 2 )  and opposite spin directions (OF) = -df)  = 7r/12), 
same orientation angles (OF’ = Or) = 7r/4), and different 
orientation angles (6:’ = -or)  = 7r/4). The figure shows 
that the resolution of the two sources with a single vector 
sensor is remarkably good when the sources have opposite 
spin directions. In particular, the MSAE;, remains bounded 
even for zero separation angle and equal orientation angles. On 
the other hand, the resolution is not as significant when the two 
sources have different orientation angles but equal ellipticity 
angles (then, for example, the MSAE;, tends to infinity for 
zero separation angle). In Fig. 7, the orientation angles of the 
sources is the same (0:) = Or) = 7r/4), and the polarization 
of the first source is kept linear ( e t )  = 0), whereas the 
ellipticity angle of the second source is varied (IOf’I = 
~ / 1 2 ,  ~ / 6 ,  ~ / 4 )  to illustrate the remarkable resolvability due 
to different ellipticities. It can be seen that the MSAE:, 
remains bounded here even for zero separation angle. 

Thus, Figs. 6 and 7 show that with one vector sensor, it 
is possible to resolve extremely well two uncorrelated SST 
sources that have only different spin directions or different 
ellipticities (these sources can have the same direction of 
arrival and the same orientation angle). This demonstrates a 
great advantage of the vector sensor over scalar-sensor arrays 
in that the latter require large array apertures to resolve sources 
with small separation angle. 
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Fig. 7. MSAE;, for two uncorrelated equal-power SST sources and a 
single vector sensor as a function of the source an ular separation. Sources 
are with the same orientation angles (OF) = OF’ = a/4)  and different 
ellipticity angles (Oy) = 0 and Or) as shown in the figure). Remaining 
parameters are as in Fig. 6. 

B. Resolution Capacity and Degrees of Freedom 
The maximum number of sources whose directions can be 

found (the so-called resolution capacity) using a single vector 
sensor is of great interest. 

The results above have shown that it is possible to estimate 
the DOA (azimuth and elevation) of at least two sources 
using the instantaneous electromagnetic phasor measurement 
of a vector sensor. For a single source and and electric 
measurement only, the electric phasor E defines an ellipse that 
determines a plane whose binormal determines the direction to 
the source. Alternatively, the relationship U . E = 0 gives two 
equations in its real and imaginary parts that can be solved 
for O1 and 02 if the source is not linearly polarized. Note that 
with scalar sensors, it is necessary to use a plane array for the 
same purpose. 

A preliminary heuristic discussion on the resolution capacity 
of a single sensor can also be based on the fact that the 
total number of scalar measurements (or degrees of freedom) 
of the instantaneous electric and magnetic phasors E and 7-l 
is 12. Since each DOA has two parameters, this gives an 
upper bound of six sources for DOA estimation per vector 
sensor for one time sample. If also the complex signal of each 
source has to be estimated, the upper bound is reduced to 
three SST sources or two DST sources per vector sensor. The 
determination of the exact resolution capacity for each case 
and for the multi-vector-sensor .case is left for future research. 

VI. CONCLUDING REMARKS 

A new approach for the localization of electromagnetic 
sources using vector sensors has been presented. We summa- 
rize some of the main results of the paper and give an outlook 
to their possible extensions. 

Models: New models that include the complete electro- 
magnetic data at each sensor have been introduced. Further- 
more, new signal models and vector angular error models 
in the wave frame have been proposed. The wave frame 
model provides simple performance expressions that are easy 
to interpret and have only intrinsic singularities. Extensions 

of the proposed models may include additional structures for 
specific applications. 

compact 
expression for the CRB for multi-vector-source multi-vector- 
sensor processing has been derived. The derivation gave rise 
to new block matrix operators. New quality measures in 3- 
D space, such as the MSAE for direction estimation and 
CVAE for direction and orientation estimation, have been 
defined. Explicit bounds on the MSAE and CVAE, having 
the desirable property of being invariant to the choice of the 
reference coordinate frame, have been derived and can be 
used for performance analysis. These bounds are not limited 
to electromagnetic vector-sensor processing. Performance 
comparisons of vector-sensor processing with scalar-sensor 
counterparts are of interest. 

Identifiability: The derived bounds were used to show 
that the fusion of magnetic and electric data at a single 
vector sensor increases the number of identifiable sources 
(or resolution capacity) in 3-D space from one source in the 
electric data case to at least two sources in the electromagnetic 
case. For a single signal transmission source, in order to 
get good direction estimates, the fusion of the complete data 
becomes more important as the polarization gets closer to 
linear. Finding the number of identifiable sources per sensor in 
a general vector-sensor array is of interest. This can be done, 
for example, by extending the results in [23]. 

Resolution: Source resolution using vector sensors is in- 
herently different from scalar sensors, where the latter case is 
characterized by the classical Rayleigh principle. For example, 
it was shown that a single vector sensor can be used to resolve 
two sources in 3-D space. In particular, a vector sensor exhibits 
remarkable resolvability when the sources have opposite spin 
directions or different ellipticity angles. This is very different 
from the scalar-sensor array case in which a plane array with 
large aperture is required to achieve the same goal. Analytical 
results on source resolution using vector-sensor arrays and 
comparisons with their scalar counterparts are of interest. 

Algorithms: A simple algorithm has been proposed and 
analyzed for finding the direction to a single source using a 
single vector sensor based on the cross-product operation. It is 
of interest to analyze the performance of the aforementioned 
variants of this algorithm and to extend them to more general 
source scenarios (e.g., larger number of sources). It is also of 
interest to develop new algorithms for the vector-sensor array 
case. 

Communication: The main considerations in communica- 
tion are transmission of signals over channels with limited 
bandwidth and their recovery at the sensor. Vector sensors 
naturally fit these consideratiQns as they have maximum ob- 
servability to incoming signals, and they can be used to 
recover DST signals. Future goals will include development of 
optimum signal estimation algorithms, communication forms, 
and coding design with vector sensors. 

Implementations: The proposed methods should be imple- 
mented and tested with real data. 

Sensor Development: The use of complete electromagnetic 
data seems to be virtually nonexistant in the literature on 
source localization. It is hoped that the results of this research 

Crame‘r-Rao Bounds and Quality Measures: A 
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will motivate the systematic development of high-quality 
electromagnetic vector sensors. A recent reference on this topic 
can be found in [24]. 

Other Extensions: The vector-sensor concept can be ex- 
tended to other areas and open new possibilities. An example 
of this can be found in [25] for the acoustic case. 

APPENDIX A 
PROOF OF THEOREM 2.1 

We prove first that, for plane waves, Maxwell's equations 
can be reduced to a system of two equations without any loss 
of information. 

Under the assumption of nonconductive, homogeneous, and 
isotropic medium, the Maxwell equations become (see e.g., 
[221) 

dH V x E = - p -  at 
dE- V X H = E -  
at 

V .  E = ~ - ' p  

V . H = O  

(A.la) 

(A.lb) 

(A.lc) 
(A. Id) 

where E and H are, respectively, the electric and magnetic 
fields and E and p are the permittivity and permeability of the 
medium. 

Let c be the velocity of wave propagation in the medium and 
K be the unit vector in the direction of the wave propagation. 
Then, under assumption A1 we have 

E(r, t )  = E(0, t - T), H ( r ,  t )  = H ( 0 ,  t - T )  (A.2) 

where T = (6 . r ) / c  and r is the location vector relative 
to the reference coordinate frame; thus T is constant in a 
plane. Equation (A.2) is equivalent to a constant delay of 
wave in a plane. Let E A E(0, t )  and-A(t) H ( 0 , t ) .  
Then E ( r ,  t )  = E(t  - T) and H ( r , t )  = H(t - T). 

Equation (A.2) shows that for plane waves the operator V is 
equivalent to - ( ~ / c ) ( a / a t ) ,  hence (A.l) can now be written 

1 5 "  
-- x E = - u H  

C 
K Z  

C 
-- x H = & E  

6 '  - - .  H = O  

(A.3a) 

(A.3b) 

(A.3c) 

(A.3d) 

where E fi d E / d t  and k e d H / d t .  
Using (A.3b) and (A,3d), we get, respctively, E = 

- ( E c ) - ~ K  x I? and K .  I? = 0, hence ( E , H , K )  is a right 
orthogonal triad. Using (A.3c), it then follows that p = 0. In 
addition, from (A.3b) and (A.3a) we obtain 

E = - (EC)- lK x I3 = - (Epc2) - lK  x (K  x E )  = ( E p C y E  

(A.4) 

where the last equality follows from the orthogonality of K 

and E. Therefore, under the assumption that E varies with 

A time, we have c = ( & p ) - l 1 2 .  Denoting 77 = ( p / € ) l 1 2 ,  i.e., 
q is the so-called intrinsic impedance of the medium, (A.3) 
may now be written 

r s x E = q H  (A.5a) 

K X q H = - E  (A.5b) 

K . E = O  (A.%) 

K .  H = O .  (A.5d) 

Clearly, (A.5a) and ( A A )  are equivalent to (A.5b) and (ASd). 
Thus,under the assumptions of a plane wave at the sensor and 
that E varies with time, it follows that the Maxwell equations 
are equivalent to either of these sets of two equations, i.e., 
they can be reduced to either set without loss of information. 

Now consider the reduction of the Maxwell equations under 
the additional assumption A2 of band-limited waves. 

Let w, > 0 and let E+(t) be the signal corresponding 
to the positive frequency component of E ( t ) .  The phasor 
representation or the complex envelope (see e.g. [12], [13]) 
of E ( t )  with respect to w, is defined by 

Since E( t )  is real it can be recovered from E ( t )  using 
E ( t )  = Re { e i w c t € ( t ) }  where Re {.} denotes the real part 
of its argument. A sufficient condition for the uniqueness of 
€( t )  in the representation of &(t) is that the spectrum of E ( t )  
is contained in ( - w , , w ) .  

Recall that for plane waves it is sufficient to consider only 
(A.5a) and (A.%). From (A.5a) it is clear that 

where the constant term is zero from assumption A1 or A2. 
Hence, E ( t )  and H ( t )  contain the same spectral components. 
Therefore, applying the phasor operator as in (A.6) to both 
sides of (A.7) and applying the same approach to (A.%), we 
get the phasor representations (2.2a), (2.2b), which completes 
the proof of the theorem. 

APPENDIX B 
PROOF OF LEMMA 2.1 

For notational convenience it will be useful to rewrite the 

Lemma 2.1: Every vector < = [ [ 1 , [ 2 I T  =E C2 has the 
lemma with a slight change of notation. 

representation 

< = r e a p  [ [:E;] (B.l) - s i n a  coscr 

where r 2 0,cp E ( - T , T ] , ( Y  E ( - ~ / 2 , ~ / 2 ] , @  E 
[-7r/4,~/4].  Moreover, r ,  p,cr,P in (B.1) are uniquely 
determined if and only if [l + [i # 0. 

Proof: Let & + i t 2  = r le2p1 ,J1  - i t 2  = r2e ip2,  for 
some r1,rz 2 0 and cp1, (p2 E ( - T , T ] .  Take r 2 0 and 
p1 E [ O , T / ~ ]  such that r1 + 27-2 = &reiP1, and define 
P = PI - ~ / 4  E [-7r/4, ~ / 4 ] .  Define 'p3 E ( -T ,  T ]  to be the 
argument of ei(pz--ipl), and take CY 2 p 3  E ( - ~ / 2 , ~ / 2 ]  
and define cp E ( -T ,  T ]  to be the argument of e i ( p l + a ) .  

A 
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which gives (B.1). 
To prove the uniqueness part, suppose that (12 + E; # 0 

and (B.l) holds for some r, cp, CY, p. Thus <1 + it:! # 0 and 
51 - i t 2  # 0. 

Using (B.l) we have in the same manner 

] (B.3) 
ei(~-")(cos - sin p)  
ei(v+")(cos p + sin 0) . [:: = r [ 

Thus, 51 + it:! = r(cos0 - sinp)ei(9-") = r1eiP1 and 
51 -it:! = r(cosp+sinP)ei(p+") = rzezv2. Hence, ~ ( c o s p -  
sinp) = TI > 0 and r(cosP + sinp) = T:! > 0 and 

r 2 [ ( ~ ~ s ~ - s i n ~ ) 2 + ( ~ ~ ~ p + s i n p ) 2 ]  = 2r2, so r is uniquely 
determined. Also, cos p = (TI + r:!)/2r, sin /3 = (7-2 - r1)/2r, 
so P is uniquely determined in [-7r/4,7r/4]. In addition, 
ei(p2-p1) = eZia, so a is uniquely determined in ( -7r /2 ,  w / 2 ] .  
Also eip = e i ( p l + a ) ,  so cp is uniquely determined. 

To prove the "only if '  part, observe that if (12 + E; = 0, 
there are three cases to be checked. Case 1: 51 + it:! = 0 and 
(1 - a<:! # 0. In this case, r1 = 0,p = 7r/4, and cp - a is not 
determined. Case 2: 51 + i& # 0 and 51 - it:! = 0. In this 
case, T:! = 0,p = -7r/4, and cp + a is not determined. Case 
3: 51 + i t 2  = 5 1  - i52 = 0. In this case, r = 0 and p, cp, a 
are not determined. 

also ei(Pp-a) = eiP1, ei(P+a) = ei(P2. We have ry + ~ 2 "  = 

APPENDIX C 
PROOF OF THEOREM 3.1 

To find the CRB of 8 when 8,  P, az are unknown in (3.1), we 
use the notion of the concentrated log-likelihood function. The 
normalized (i.e., multiplied by - 1/N) log likelihood function 
for (3.1) is given (up to an additive constant independent of 

L(8,  a', P) e lndet R + t r  [R-lk] 

e , P , a 2 )  by 

(C.l) 

where R is defined in (3.6) and 
- N  

R = A y(t)y*(t). 
t=l  

N 

Under the restrictions that det ( A * A )  > 0, R > 0 (where P 
is assumed to be Hermitian), the unique global minimizer of 
L(8, P, a') with respect to P and a' is given by 

( ~ . 3 a )  P = (A*A)-~A*~A(A*A)- '  - ~ ( A * A ) - '  

(C.3b) 1 
p - - v  

5' = t r  [ I I ,~ ]  

(see e.g., [26]-[29]). The normalized log-likelihood function 
concentrated with respect to P and a2 is given by 

F ( 8 )  L(8, 5', p) = lndet [IIfiII + 5'II,] + p. (C.4) 

Next, to avoid certain technical assumptions related only to 
the method of proof used in [30] (e.g., existence of Hessian 
of the log-likelihood function), we need the following two 
lemmas. 

Lemma C.1: Under the assumptions of Theorem 3.1 and 
the additional assumption that A(8)  is linear in 8, the inverse 
Cramtr-Rao bound matrix for 8, when 8,  P, a' are unknown 
in (3.1), is given (elementwise) by 

where U and II, are defined in (3.5) and 1 5 r , s  5 7j. (An 
implicit assumption is that the matrix whose entries appear on 
the r.h.s. of (C.5) is nonsingular.) 

Proof: It is known (see [30]) that under the above 
assumptions the following limit 

exists almost surely and is a deterministic p.s.d. matrix (the 
primes symbolically denote derivatives with respect to 8) .  
From [4], the ( T ,  s) entry of F t ( 8 )  is given by N-' times the 
r.h.s. of (C.5) (thus by the above implicit assumption F:(8) 
is nonsingular). Using (C.3), the linear parametrization (3.6) 
of R by P,a2 is identifiable, thus it has a full-rank matrix 
representation and by [21, Lemma 6.1, p. 6011 it has a positive- 
definite information matrix (w.r.t. P, a'), and by [30] the CRB 
for 8 when 8,  P, a' are unknown is given, for a fixed N,  
through 

CRB-l(8) = N .  F t ( 8 ) .  (C.7) 

This gives the result. 
Lemma C.2: Lemma C.l remains true without the assump- 

tion that A(8)  is linear in 8. 
Proofi We use the fact that from a well-known formula 

(see e.g., [31]) that holds under the assumptions of Theorem 
3.1, the dependence of the Cramtr-Rao bound on 8 is only 
through A(8)  and its Jacobian dA(e)/d8 at the true parameter 
vector. Let A(8)  be the linear interpol$ion of A(8)  and its 
Jacobian dA(O)/d8 at the true 8 (i.e., A(8)  is the first-order 
Taylor expansion of A(8)  at the true!). Using the above fact, 
the two models given by A(8)  and A(@) have the same CRB. 
From Lemma C.l (applied to A(8)) ,  CRB(8) is given by a 
modified (C.5) in which A(8)  is replaced by A(@). The result 
then follows from the fact that the dependence of this last 
expression on 8 is only through A(8)  and its Jacobian at the 
true 8 .  

Proof of the Theorem: Let @ a )  denotes the lth entry of 
8 ( i ) , l  5 i 5 n and 1 5 I 5 qi.  Observe that 

dA - - [O . . . o p  0 . .  . 01 

C V k  

(C.8) 
deii) -+ 

i - 1  v2 n 

k = l  k=i+l 
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where and C is a positive definite matrix. Assume that there exists 
a matrix r E em'" such that 

(C.9) 
rcra = 2 1 ~  (D.3) 

Using Lemma C.1, we extend the definition (C.6) for F{(8)  
by redefining it as N-' times the matrix whose entries appear 
on the r.h.s. of (C.5). As a result Fc(8)  is still defined even 
if the Hessian of F(8)  does not exist. From Lemma C.2, it 
remains to cast F{(,'(B) in a form that implies (3.4), which in 
tum implies (by assumption A7) that the implicit assumption 
of Lemma C.1 holds. 

Let [F{]( i j )  E CqtXqJ denote the ( i l j )  block entry of 
F{(8) .  Then, the (Z ,p)  entry of this matrix is 

r r  

for some unknown parameter a2,  and r is parametrized by 
an unknown parameter vector y that is assumed to have the 
local identifiability property (see e.g., [21]). From the Gaussian 
assumption, the negative log-likelihood function of jj(t), up to 
additive and multiplicative constants is 

i ( e ,  7, 0 2 ,  P )  2 tr[&APA* + E)-'] 
+ lndet [APA' + Cl 

= tr[k(APA' + o'I)-~] 
+ lndet[APA' + a21] - lndet[lT'] 

(D.4) 

A = ~ A  R=rRra. (D.5) where 1 5 p 5 q, and U(z,)  E ~ " a x y ~  denotes the (i,j) 
block entry of U with 1 5 i , j  5 n. Observe that Dii) is the 
(CL=: qk + Z)th block column of D ,  cf. (3.5d), or notationally 

(C.ll) 

The first terms On r.h.s. Of (D.4) have a form 
to the corresponding ones in (C.1). The last term in (D.4) is 
a function of -y only. Hence, we can concentrate (D.4) with 
respect to P and a' as is done in [26]-[29] for C = a21. 

D y  = DE%4 
k = l  P k f l '  

Hence The result is 

. l-Ic(DL.;z; qk+ l ) l l .  (C.12) 

Assume now that v, = v for all 2, then collecting terms we 
have that 

(C-13) 

where @ is the Kronecker product, and the block trace operator 
btr, the block Schur-Hadamard product U and the block 
transpose operator bT are as defined in Appendix I, with 
blocks of dimension v x v, except for l(z,), which is a 
q, x q, matrix with all entries equal to one. Note that the 
matrices (l(,j) @ U(23))  and (D'II,D)(,,) are of dimensions 
qzv x qjv. Collecting the above block results and using the 
block Kronecker product definition of Appendix I, we obtain 
the desired mamx expression (3.4). The proof of the last 
statement of the theorem (i.e., CRB(8) remains the same 
independently of whether o2 is known or unknown) follows 
in the same manner for the case in which a2 is known. 

lFCYl(,,) = btr P ( z , )  @ U(2,)) wDancD>(,z)>bTl 

APPENDIX D 
EXTENSION TO UNKNOWN SENSOR NOISE COVARIANCE 

The results of Theorem 3.1 can be extended to a larger class 
of unknown (structured) sensor noise covariance matrices as 
follows. Suppose that the model is 

y ( t )  = A ( q z ( t )  + q t )  (D.1) 

where the assumptions are as above, except that the noise 
covariance is 

E E ( t ) E ' ( S )  = Est,, (D.2) 

F(8,  7) = In det [IIhII + 6'IIc] - In det [IT'] (D.6) 

where the variables in the first term on the 5h.s of (D.6) are 
the same as for C = a'I but with A and R given in (D.5). 
Observe that all the terms (in particular, k )  in (D.6) depend 
on the unknown vector 7. When is known, Theorem 3.1 
can be applied to find CRB(8). When 7 is unknown, the joint 
CRB of 8 , ~  is given through the deterministic as .  limit of the 
Hessian of the r.h.s. of (D.6), see [30] and Appendix C. (The 
submatrix of [CRB(B,+y)]-' corresponding to 8 remains the 
same as for the case with 7 known.) 

APPENDIX E 
PROOF OF LEMMA 4.1 

For any Hermitian matrix P with unit-norm eigenvectors 
U; and eigenvalues A,, we have 

f(P) = f (Az)uzw: (E.1) 
Z 

for any f defined on the spectrum of P. In our case, rank 
P = 1 and hence P has only a single nonzero eigenvalue 
A 1  = t r  P with an eigenvector V I .  With f ( 0 )  = 0 it is found 
that 

(E.2) f(P) = f(A1)vl.; + C f ( x , ) u , u :  = f(A1)fJlu;. 
z>l 

Using P = C , X z u z u ~  = Alulur we get 

(E.3) 

But since A 1  = t r  P we get the desired result (4.25). 
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APPENDIX F 
CRB FOR AN SST SOURCE (SST MODEL) 

This appendix presents the entries of CRB(8) for the special 
case of an SST source, SST model, and a single vector sensor, 
see (4.30). These entries were calculated using the symbolic 
software program MACSYMA. For notational simplicity, the 
entries of a normalized matrix C defined through CRB(8) = 
[ (1+~)(1+7-’) /2Ne~]C are presented. Also, since this matrix 
is symmetric only the upper triangular entries are shown in the 
equation at the bottom of the page. 

APPENDIX G 
PROOFS OF THEOREMS 4.2 AND 4.3 

A .  Background 

For ease of reference, it is useful to review some basic 
principles on rotation of coordinate systems in R3 needed for 
the proofs. For more details, see, for example, [32], [33]. 

Fact 1 :  To every nonsingular matrix A 6 there 
is a corresponding coordinate system, denoted also by A, 
such that every U E R3x1 has its representation in A given 
by [VIA = A-lu. If A , B  E R3x3 are nonsingular, then 
[.]A = C,”[U]B where Cg = A-lB serves as a translation 
matrix from vector representation in B to that in A. Note that 
the columns of C,” are the columns of B represented in A ,  
i.e., C,” = [ B ] A .  For nonsingular A, B ,  C, E R3x3; we have 
the composition rule CA“ = CEC;. 

Definition: Given nonsingular A, B E R3x3, we say that 
the system A can be rotated to B if CB is orthogonal and 
det CA” = 1. The rotation of U E R3” by a vector angle 

A 

4 E is defined as follows: If 4 = 0, then the rotation of 
U is U. If 4 # 0 then U is right-handed rotated around the axis 
4 e by an angle 141. We say that B is a rotation of 
A by a vector angle $J if the columns of B are the rotations 
of the corresponding columns of A by 4. For 4, U E R3” , 
the matrix form of the cross-product operator U + 4 x U is 
defined by ( 4 ~ ) .  

Fact2: .If A can be rotated to B, then B is a rotation of 
A by a vector angle  AB such that 5 7r and 

It fOllOWS that [ ~ A B ] A  = C,”[$hAB]B = [ ~ A B ] B  and 
t r ( C g )  = 1 + 2 ~ 0 s  lgABI. Moreover, if tr(C,”) > -1, 
then 14ABl < 7r and 4AB is uniquely determined, and if 
t r  (C,”) = -1 then It$ABl = 7r and 4AB is determined up to 
a multiplication by -1. n u s ,  the matrix [f$AB]A([+AB]A)T 

is uniquely determined (by A and B or C,”) in all cases. 

B .  Proof of Theorem 4.2 

Denote by I the sensor reference frame, by A the frame 
( U , U I , U ~ ) ,  and by W the wave frame ( u , 6 1 , 6 ~ ) .  Let C i  be 
the translation matrix from a vector representation in A to that 
in I, and similarly let C& be the translation matrix from W 
to A. We have 

1 cos 01 cos 02 - sin el - cos O1 sin 8’ 

sin 02 0 cos e2 
sin 61 cos 02 cos - sin O1 sin 0’ 

(G.2a) 

. .  

(1 - ?)>( (1 - 2 COS’ 03)  sin’ 04 + cos’ 0,) + 7-2 

[( 1 - 7-2)’ sin’ e4 cos2 e4 + T’] cos2 o2 C1,l = (F. 1 a) 

Cl,’ = - (F. 1 b) 

c1,3 = (F.lc) 

c1,4 = o  (F.ld) 

c 2 , 2  = - (F.le) 

(1 - r’) (1 - 2 sin’ e,) sin 03 COS 03 
[( 1 - ~ 2 ) ’  sin’ 04 cos2 04 + 7-21 cos 02 

{ (1 - r2) [ (  1 - 2 cos’ 8,) sin 82 sin’ 84 + cos’ 831 + r 2 }  sin 02 

[( 1 - 7-2)’ sin’ e4 cos2 d4 + T’] cos2 e2 

(1 - r 2 )  { (1 - 2 cos‘ 8,) sin’ e4 + COS’ 6 3 }  - 1 
(I - 7-2)’ sin’ 04 cos2 e4 + 7-2 

(1 - r2)(1 - 2 sin2 04) sin e3 cos e3 sin 02 

[ (1 - 7-2)2 sin’ d4 cos2 04 + 7-21 cos ez c 2 , 3  = - (F. 10 

c 2 , 4  = 0 (F. 1g) 

c 3 , 3  = 
( A  cos’ 84 - B )  sin2 84 - (1 - r4) sin’ Rz cos’ d3 - T4 sin’ 82 - r2 

{ (1 - r2)[-4(1 - r4) sin’ 84 cos’ O4 + (1 - 5r2) ]  sin2 04 cos2 04 + (r4 + r’)}  cos’ 82  

A = -4( 1 - T ~ )  sin2 02 cos2 03 - (1 - T ’ ) ~  cos’ 0’ + 4( 1 + r 2 )  sin’ 0’ 
B = (1 - r4) sin’ 8 2 ( 2 ~ ~ ~ 2  e3 - 1)(1+ 4 ~ 0 s ~  8,) 

c 3 , 4  = 0 

c 4 , 4  = - 1 + 9’  
1 

(F.lh) 
(F. 1 i) 

(F. 1j) 
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0 -sin03 cost$ 

1 0  

these estimates. 
Using first-order Taylor expansion, we get 

3 a  
C& = C& + %(C&)Adi + O(lAd12) (G.3) Now assume that the model and estimator are regular, see 

definitions 4.1 and 4.5. It follows that i=l 

where Ad e [Ad,, Ad2, Ad3IT. Thus 

j d  c$ = cyc& = 1 i- cy %(c&)Aoi + O(lAfll2). Multiply both sides by N and let N --f 00; the result completes 
the proof of Theorem 4.2. i=l 

(G.4) 
On the other hand 

C .  Proof of Theorem 4.3 

To prove (4.35), recall the definition of S as the angular 
error between U and 6. Since [S2 - 2( 1 - cos S)]/( 1 - cos S ) 2  

CY = , ([4wwIw x )  == 1 + ([4 ] W w+ w x )  + O(14ww12). 
(G.5) 

Define the components Of the vector angular error in the wave has a continuous extension to [O, r], we have for 6 E [O, T] 
fl-ame by [4,+lw = i41, $2, 431T,  then 

S2 =2(1 - COSS) + O((1 - cosS)2) 
= 2 ( 1 - ~ . G ) + O ( ( l  -U-&)'). ((3.14) + o ( 1 4 W * ) 2 ) .  ((3.6) 

From (G.5) 

Using (G.6), (G.4) it then follows that cu'-": = I +  ([$wLdwx) + ;([4,,@lWx)2 
( c w ) 3 , 2  + : ( [ ~ w d w ~ ) 3  + 0 ( 1 4 ~ + 1 ~ ) .  ~ 1 5 )  

~ ,+ i / lW = [ + o ( I ~ ~ * I ~ )  
(CW)2,1 

Observe that the entries of Cw are the inner products of the w.. 
orthonormal bases of W and W .  Also, for any vector angle 
d, the matrices (bx )  and ( 4 ~ ) ~  = -14I2(4x) are skew- =KAe+o((Ae(2)+o((4wi , (2)  (G.7) \. 
symmetric (hence with zero diagonal entries). Using these 
facts we find from (G.15) where K is given in (G.8) (see bottom of page). That is 

2(1 - u . q  = 2 ( l -  [c$]l,l) 
i- 1 ,i+ 1 

where i + 1 is a positive cyclic shift of the index i E { 1,2,3} 
and i - 1 is a negative cyclic shift of i (e.g., 1 - 1 = 3, 1 
+ 1 = 2 , 3 + 1 = 1 ) .  

Using (G.2a), (G.2b), and (G.9), we find that K is given by 
(4.34). Also, from Fact 2 and ((3.4) we have 

= - [ ( [ 4 w * ~ w ~ ) 2 ~ 1 , 1  + 0 ( 1 4 ~ ~ * 1 ~ )  
= 4; + 4; + 0(l4,i,l4). (G.16) 

Using (G.14) and (G.16) we now get 

62 = 4; + 4; + owwi,i4). ((3.17) 

Formula (G.17) gives the representation of S in terms of the 
tilt angles 4 2 ,  43. Note that 6 obeys a Pythagorean relationship tr ('$1 = + 2c0s I ~ w I +  = o ( l A e 1 2 )  



NEHORAI AND PALDI: VECTOR SENSOR PROCESSING FOR ELECTROMAGNETIC SOURCE LOCALIZATION 395 

for infinitesimal 42 , 4 3 .  From the estimator’s regularity and 
since l$wkl 5 T ,  it follows that E[l$,*14] = o(l/N). 
Multiply both sides of (G.17) by N ,  take their expectation, 
and let N + CO. Then, from the definitions (4.2), (4.32) and 
using (G.17), we find the desired result (4.35). 

To prove that for a regular model (4.35) holds also when re- 
placing the MSAE and CVAE by their lower bounds MSAECR 
and CVAE~R,  it is sufficient to prove this for an equivalent 
linear model (as in the proof of Lemma C.2) for which these 
bounds are asymptotically attained by the ML estimate. Hence, 
applying (4.35) to this estimate, we find that this relationship 
holds also for the lower bounds. 

APPENDIX H 

CROSS-PRODUCT-BASED ESTIMATOR 
PERFORMANCE ANALYSIS OF THE 

To prove Theorem 4.4, we need the following two lemmas. 
Lemma H.1: If z1 , . . . , z, are i.i.d. random vectors in lRd, 

with Ezl = 0, Ellz11(4 < CO, then ElIC;z;llP = O(np/’) for 

Proofi Put s = C;z;. Clearly ( 1 ~ 1 1 ~  = (s’s)’ = 
( & j  Z T z j ) ’  = Z i , j , k , l  zTzjzZzl. From the i.i.d. property 
we have 

p E ~441.  

Since p/4 E [0,1], the function f(z) = x P / ~  is concave for 
z 2 0. Thus, by Jensen’s theorem, Ellsl(P = Ef(ll~11~) I 

Lemma H.2: Assume that 21,. . .z, are i.i.d. random vec- 
tors in Rd with Ezl = 0, E11z111’ < CO, and let U be a 
unit vector in E t d .  Let y = ( l / n )  Ci z;, denote by 4 the unit 
vector in the direction of U + y, and by a the angle between 
U and U. Then 

f(Ell~11~) = (O(n2))P/4 = O(nP/’). 

A 

1) i = U + ( I  - U U ~ ) ~  + op(n-l/’) and 
2) when also E11z1114 < CO, then a’ = yT(I - uuT)y + 

op(71-l) and 

Proof: We h a v e i =  (u+y)/ l lu+yl(  and I l ~ + y 1 / ~  = 
1 + 2uTy + lly112. If llyll 5 1/2, we have 2uTy + lly112 2 
11Y1I2 - 211Yll 2 -3/4. 

From the expansion ( 1 + ~ ) - ~ / ’  = 1 - ( 1 / 2 ) ~ + 0 ( ~ ~ ) ,  (Z 2 
-3/4), we obtain 

Ib + yl1-l = 1 - UTY + O(llV1l2>, (Ilvll 5 1/21. 

4= Ilu+yll-l(u+y) = U +  (I-UUT)y+O(Jlv112). 

Thus 

(H.1) 

Note that if Ilyll > 1/2, then ~~i--u-(I-uuT)y[~ 5 2fllyll I 

Since a = 2sin- ( ( 1 / 2 ) ~ ~ i i - u ~ ~ )  = ~~i--~~~+O(~~ii-u~~~), 
2(211Y1/)2 + 211Y1I2 1= 0(llY1l2)- 

we have 

a2 = 114 - U112 + O(lli - U1l4) 

= y T ( I  - 4 Y +  O(llY1I3). (H.2) 

Note that if llyll > 1/2, then la’ - yT(I - uuT)yl I 

1) Since EllyJ12 = n-1EIIz11121 we have from Markov’s 
inequality 11y112 = op(n- l / ’ )  and (H.l) gives the result. 

2) By Lemma H.l, we have El l~11~ = O(n-3/2) .  Thus, by 
Markov’s inequality (Iy1I3 = op(n-’) and (H.2) gives 
the result. 

Proof of Theorem 4.4: Using the measurement model 
(2.6), the estimator computes i = N-l ELl  Re {yE(t) X 

yH(t)} and then 4 = i/11i11. To examine the properties of 
this estimator, we compute from (2.3), (2.4) 

T 2  + Ilvll’ I ~2(211Y103 + 21IY1l3 = O(llY11)3. 

x @H(t) = { E ( t )  + eE(t)} z(t) 
= E ( t )  x (U x a@)) + eE(t) x (U x q t ) )  

+ E ( t )  x a ~ ( t )  + eE(t) x EH(~).  03.3) 

The computation can be done most easily in the A frame (i.e., 
(u,ul,u’), see Appendix G). From (2.7) we have [f(t)]A = 
[O, G(t)l <2(t>lT. n u s  

= [i] x [ 2’1 = [81]. (H.4) 

That is, E ( t )  x (U x Z ( t ) )  = I(E(t)ll’u. 
Next, denote 

A T A T 
[eE]A = [eEur eEvl, eEuz] 7 [eH]A = [eHu, eHvl, ~ H u z ]  

where the time dependence is omitted for notational simplicity. 
A similar computation gives 
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ir = U + N-l l2( t rP)P1[I  - uuT]zN + o p ( ~ - l / ~ ) .  
Since ~ l / ~ ( i i  - U) - (tr P ) - ~ [ I  - uuT]zN converges 
in probability to zero, we have by Slutsky's theorem, 
[34, Theorem 4.4.61 that the scaled estimation error of 
U (i.e., N112(Ci - U)) converges in distribution to the 
limit distribution of (trP)-l[I - uuT]z~, which is 
N(0, ( t r P ) - 2 ( I  - uuT)cov(As(t))(I - UU~)). 

order moments, then As(t) are i.i.d. random 
vectors with zero mean and finite fourth-order 
moment. Let 6 be the angle between U and 
i = (U + N-'CL1(trP)-'As(t))/JJu + 
N-' C E 1  (trP)-'As(t)(l. Thus, by Lemma H.2 
we have (with a = 6 )  

3) If llt(t)112, IleE(t)ll, IleH(t>l\ have finite fourth- 

1) Since ŝ  = N - l  EL1 Re { y E ( t )  x j jH(t)}  is an average 

(since E[IIt(t)112] = tr(P)  < CO), we have by Kol- 
mogorov's strong law of large numbers [34, Theorem 
5.4.21 ŝ  E [llt(t)112]u = tr ( P )  . U. Thus 

MSAE = lim NES2 of i.i.d. random vectors that have finite expectation N-a,  

= tr [ ( I  - uuT)cov((tr P)-'As(t))]. 

To get an explicit expression for the MSAE, we exploit 
A ŝ  a.s .  t r ( P )  .U its invariance to the reference coordinate frame and work U=---+- = u ,  (N+CO). ll4l tr ( P )  in the A frame. We have 

A 2) Denote As(t) = R e { y E ( t )  x j jH(t)}  - 
t r ( P )  . U. We have under the assumption 
that are independent 
and have finite second-order moments, that 
{As(t),t 2 l} are i.i.d. with zero mean and 
covariance given by the equation at the bottom 
of the page. Denote ZN = N-1/2CEl As(t). 
Since EllA~(t)11~ < CO, we have by the central 
limit theorem [35,  ch. 2, Theorem 9.61 that ZN 
converges in distribution to h i ( 0 ,  cov(As(t))). Denote 
z = ( t rP) - lS  = U + N-1/2(trP)-1zN. n u s ,  
ir = i/11i11 = Z/11311. Since EllAs(t)112 < CO, 

the stochastic expansion of Lemma H.2 gives ' 

1 I<(t) 1 1 2 ,  I l e ~ ( t )  1 I ,  I I ~ H  ( t )  1 I 

A 

A 

Thus MSAE = (tr P)-2tr  [(I - uuT)cov(As(t))]~ = 
(1/2)(a;+(~;)(tr P)-'+2a&&(tr P ) - 2  which gives 
the result. 

4) From Lemma H.2 and Slutsky's theorem, it follows that 
NS2 and ( t rP)-2z$(I  - uuT)z~ converge in law to 
the same limiting distribution. This gives the result. 
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APPENDIX 1 
DEFINITIONS OF SOME BLOCK MATRIX OPERATORS 

This appendix defines several block matrix operators found 
to be useful in this paper. The following notation will be used 
for a blockwise partitioned matrix A 

A =  

with the block entries A( i j )  of dimensions pi x uj.  Define 
- A  A 
p = C z l  pi, V = vj, so A is a ji x V matrix. Since the 
block entries may not be of the same size, this is sometimes 
called an unbalanced partitioning. The following definitions 
will be considered. 

Definition: Block transpose. Let A be an m p  x nu block- 
wise partitioned matrix, with blocks A(; j )  of equal dimensions 
,LL x U .  Then the block transpose AbT is an n p  x mu matrix 
defined through 

Definition: Block Kronecker product. Let A be a blockwise 
partitioned matrix of dimension ii x V ,  with block entries A(ij )  
of dimensions pi x u j ,  and let B be a blockwise partitioned 
matrix of dimensions v x 7, with block entries B(;j) of 
dimensions qi x p j .  Also, u j ,  71 = 
C z l  q i , p  = p j .  Then the block Kronecker product 
Am B is an (CEl piq; x u j p j )  matrix defined through 

= C z l  pi, V = 

(1.3) 

i.e., the (i,j) block entry of A N  B is A(ij )  @ B(ij) of 
dimension piqi x u j p j .  Note that this definition generalizes the 
so-called unbalanced block Kronecker product in [36], (24). 

Definition: Block Schur-Hadamard product. Let A be an 
m p  x nu matrix consisting of blocks A(ij )  of dimensions p x U ,  

and let B be an mu x nq matrix consisting of blocks B(ij) of 
dimensions U x q. Then, the block Schur-Hadamard product 
A 0 B is an m p  x nq matrix defined through 

(1.4) 

Thus, each block of the product is a usual product of a pair 
of blocks and is of dimension p x q. 

Definition: Block trace operator: Let A be an m p  x n p  
matrix consisting of blocks A(; j )  of dimensions p x p. Then 
the block trace matrix operator btr[A] is an m x m matrix 
defined by 

(btr [A]) i j  = t r  A(2.j). (1.5) 
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