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PREFACE 

The papers published in this volume were presented at the Second International 
Conference on Ultra-WidebandiShort-Pulse (UWB/SP) Electromagnetics, ApriIS-7, 1994. 
To place this second international conference in proper perspective with respect to the first 
conference held during October 8-10, 1992, at Polytechnic University, some background 
information is necessary. As we had hoped, the first conference struck a responsive cord, 
both in timeliness and relevance, among the electromagnetic community 1. Participants at 
the first conference already inquired whether and when a follow-up meeting was under 
consideration. The first concrete proposal in this direction was made a few months after the 
first conference by Prof. A. Terzuoli of the Air Force Institute of Technology (AFIT), 
Dayton, Ohio, who has been a strong advocate of time-domain methods and technologies. 
He initially proposed a follow-up time-domain workshop under AFIT auspices. Realizing 
that interest in this subject is lodged also at other Air Force installations, we suggested to 
enlarge the scope, and received in this endeavor the support of Dr. A. Nachman of AFOSR 
(Air Force Office of Scientific Research), Bolling Air Force Base, Washington, D.C. 
Thinking further along these lines, it was felt that other government and also industrial 
organizations might want to see whether and how UWB/SP has developed along the 
directions that were on the horizon during our first conference. Various Army and Navy 
programs indeed supported this concept and we express our appreciation for their 
acceptance of our invitation to participate. For this substantially enlarged scope and 
potential clientele, a workshop format was too restrictive, thereby leading to the decision to 
convene a full-fledged conference like the first one, with ·venue again at the Polytechnic. 
The purpose, scope and format of the second conference were contained in the 
announcement and call for papers, a portion of which is reproduced below: 

"The purpose of the second conference is (1) to assess further developments in the 
topics covered by the first conference, and (2) to place special emphasis on UWB/SP 
systems and time-domain data processing. The subject areas to be updated since the first 
conference include SP generation and detection, UWB antennas and radar, SP for circuits 
and materials studies, analytic and numerical modeling of SP propagation and scattering, 
and time-domain analysis of data." 

The topics and papers in these Proceedings demonstrate that the expectations of those 
involved in the organization of the second conference have been confirmed. Besides the 
variety of contributions to forward (direct) radiation and scattering, there is a strong 
emergence of interest in inverse problems of reconstructing radiation and/or scattering 
environments from data via various data processing techniques. Our choice of the logo on 
the hard cover of the Proceedings of the first conference was intended to highlight this 
trend which, in fact, is being pursued in our own UWB/SP research at Polytechnic.2 

Will there be a follow-up to the second conference? Possibly, if the electromagnetics 
community will provide the impetus. For the present, we express our thanks again to all 
organizations and participants who made this conference a reality. 

December, 1994 

Lawrence Carin 
Leopold B. Felsen 

1See the proceeding volume "Ultra-Wideband, Short-Pulse Electromagnetics," Plenum Press, New 
York, NY 1993. 

2For a recent overview, see L. Carin and L. B. Felsen, "Wave-oriented Data Processing for 
Frequency and Time-domain Scattering by Nonuniform Truncated Arrays," IEEE Antennas and 
Propagation Magazine, June 1994. 
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GUIDED-WAVE PROPAGATION OF 
TERAHERTZ-BANDWIDTH ELECTRICAL 

PULSES 

J.F. Whitaker1, H. Cheng1, T.M. Weller2, and L.P.B. Katehi2 

lCenter for Ultrafast Optical Science 
University of Michigan 
2200 Bonisteel Blvd., Rm. 1006 
Ann Arbor, MI 48109-2099 

2NASA Center for Space Terahertz Technology 
Dept. of Electrical Engineering and Computer Science 
University of Michigan 
Ann Arbor, MI 48109-2122 

INTRODUCTION 

One of the most important future considerations for workers in the key technology areas of 
communications and computing will be the transmission of high-bandwidth electromagnetic 
signals. While all-optical or hybrid optoelectronic systems will play a significant role in 
advanced systems, it should be possible to continue to utilize high-speed semiconductor 
electronics and high-bandwidth transmission structures for even extremely high-frequency 
circuits. The investigation of the guided transmission of ultrashort electrical pulses provides 
researchers with an understanding of the various effects that contribute to the degradation of 
signals as they propagate. Problems can arise, for instance, due to the conductors, the 
substrate, or the geometry of the guide. Such studies also suggest measures that can be 
undertaken to maintain the fidelity of a propagating waveform. In this paper, we describe how 
short electrical signals, generated and detected using optoelectronic techniques, can be made to 
reveal the characteristics of transmission lines and other components at frequencies that reach 
the terahertz regime. 

In general, the justification for improving the charactedstics of transmission lines is to 
enhance the bandwidth of interconnects within millimeter- and submillimeter-wave circuits, and 
to some extent, digital circuits. (Of course, as the dse times and repetition rates of the signals in 
the latter become faster, they also appear more like millimeter-wave analog circuits.) If future 
use is to be made of the outstanding high-frequency and fast-switching behavior of GaAs and 
InP HEMTs, resonant tunneling diodes, and other modern devices, then circuits using 
transmission lines that can sustain waveforms that exhibit extremely short temporal 
charactedstics must be designed. Indeed, while the cutoff frequencies of electronic devices 
have continued to increase, [1] and the ability to optically and electronically generate picosecond 



and subpicosecond electrical transients has matured, the development of 10w-distOltion, high­
frequency transmission structures acceptable to the broad microwave community has lagged. 
The short-pulse propagation section of this paper will introduce a number of high-bandwidth 
planar transmission lines that have been characterized using ultrashort-electrical-pulse 
propagation. While these may not necessarily be ideal for application with current technologies, 
they indicate a direction in which the millimeter-wave community may wish to look when 
increased operating frequencies are desirable. In addition, since a good deal of the modest 
number of published papers on the topic of ultrafast electrical pulse propagation stress 
modelling, this treatment will concentrate on experimental pulse transmission. 

Optically-based testing schemes generally rely on the laser-activated generation of ShOlt­
duration, wide-bandwidth test signals near the element to be measured, so that high frequencies 
travel only a short distance and information over the widest possible frequency band can be 
acquired from only several time-domain waveforms. Since both the generation and the 
measurement of ultrashort -duration electrical pulses are of critical impOltance to this technique 
for characterization, a description ofthese topics has been included here. Basically, ultrashOit 
electrical pulses are produced optoelectronically by photoconductive switching and then 
measured using another optoelectronic technique, that of electro-optic sampling. Other all­
electronic techniques, using non-linear transmission lines in pulse generators and san1pling 
circuits, can also produce and measure short electrical waveforms.[2,31 These techniques have 
been treated elsewhere in this conference. 

ULTRA-WIDEBAND TIME-DOMAIN MEASUREMENTS 

All of the time-domain techniques used to study high-frequency transmission lines attempt 
to launch and measure guided electrical signals which have features of very short duration. This 
is because the extension of the temporal resolution of high-bandwidth measurement techniques 
to the shortest possible durations is important if we wish to also extend the measurement 
bandwidth to as high a frequency as possible. For instance, a minimum resolution in the time­
domain of a single picosecond provides a 3-dB measurement bandwidth in excess of 3000Hz. 
In fact, if a lops-duration electrical pulse can be reproduced by a sampling oscilloscope, 
frequencies in the amplitude spectrum of this pulse which reach hundreds of gigaheltz higher 
than the 3-dB point can be resolved (if the signal-to-noise ratio of the temporal waveform is 
adequate). Subpicosecond-duration resolution of voltage signals is readily available using an 
external electro-optic sampling probe, so that frequencies in the spectra of measured waveforn1s 
in excess of I THz can be distinguished from the noise floor.[41 With this capability one can 
measure waveforms at two different locations and determine the attenuation and phase shift of 
signals due to any electrical elements in between these two measurement points across a very 
wide frequency band. 

This ability to acquire both a frequency-dependent loss and phase shift is available with 
time-domain measurements as long as one keeps track of the absolute time delays between 
signals measured at different places. That is, the amplitude and the phase information are each 
preserved in the Fourier transforms of the time-domain data if this is done. This, of course, is 
necessary for time-domain network analysis in order to completely obtain the S-'parameter 
information on an electronic component between two measurement planes. 

Test-Signal Generation 

Photoconductive switches are optoelectronic devices that exploit the photoconductive effect 
in semiconducting materials when they are illuminated by optical pulses in order to generate an 
electrical transient. In this investigation, the switches have been driven by lOO-fs pulses from a 
mode-locked laser, and they have thus allowed the generation of ultrafast test signals that were 
used for characterizing the propagation factor of various transmission lines. The active 
semiconductor substrates employed were actually thin fIlms of GaAs, and the electrode patterns 
used to apply the dc bias to the photoconductors were the electrodes of the transmission lines to 
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optical excitation 
beam pulses 

semiconductor substrale 

Figure 1. Optical excitation of photoconductive switch gaps to generate Short-duration electrical waveforms. 
(a) in-line gap; (b) "sliding contact" gap, so named because the optical excitation beam can "slide" to different 
locations longitudinally and still excite the same etectrical signal in the gap. 

be tested. Shown schematically in Fig. I are the two means used to excite the test signals: the 
in-line gap and the so-called "sliding-contact." These photoconductive gaps are closed by laser 
pulses that are absorbed near the surface of the semiconductor, a process that takes place in only 
a few hundred femtoseconds. The transients are generated with an amplitude given by (in the 
case of the in-line series gap) 

Zo 
Vout = V bias 2 Z + R (t) + R o s c (1) 

where Zo is the transmission line characteristic impedance, Vbias is the applied dc bias. Rs(t) is 
the time-dependent resistance of the photoconductive element, and Rc is the switch contact 
resistance. 

In this expression, the time-varying resistance of the switch, Rs(t), is inversely 
proportional to the number of carriers generated as [5] 

(2) 
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where L is the switch gap length, q is the charge of an electron, net) is the time-dependent 
electron-hole-pair density, w is the switch width, J1h and J1e are the mobilities, and de is the 
excitation light absorption depth. For the light levels employed in this work, a typical switching 
efficiency of 5% with a dc bias of 20 V provided a 1 V amplitude test signal. The 
recombination of the carriers (the electron-hole pair lifetime) determines the fall time of the 
electrical transient, and thus the duration of the pulse. A complete signal which begins and ends 
at the baseline provides a time-limited electrical impulse, and an accurate Fourier transform can 
be computed from this time-windowed signal so that frequency-domain information can be 
obtained. Thus the generation of "well-behaved" pulses that terminate at a baseline within 
picoseconds or less of their onset is very important to the broadband characterization of 
transmission lines and devices. 

Semi-insulating silicon and chrome-doped or intrinsic GaAs are typically used to generate 
what are essentially step functions on the picosecond time scale, since the rise times can be very 
short, but the carrier recovery times are 100 ps or longer. While these signals are useful for 
simulating digital signals with instantaneous tum-on, they are not useful for performing 
transmission-line measurements, since reflections will corrupt the long waveforms, creating 
uncertainties concerning their origin and errors in the analysis. An ultrashort pulse can be 
generated by photoexciting GaAs grown by molecular beam epitaxy at substrate temperatures of 
- 200°C (known as low-temperature-grown, or LT-GaAs).[6] LT-GaAs, particularly when 
annealed, displays a number of important properties that are each typically superior to those of 
all other fast-lifetime photoconductors. These include a high resistivity, fast carrier response, 
moderately high mobility, and high dielectric breakdown.[7] With a carrier lifetime that can be 
shorter than 0.5 ps, this material can thus be used in the generation of extremely short-duration 
guided signals, facilitating high-bandwidth testing. 

Besides the electrical properties outlined above, another advantage in Using LT-GaAs as a 
fast photoconductor is that it may be lifted off its substrate and subsequently grafted using van 
der Waals attractive forces [8] into places where a pulse source could otherwise not be located. 
This epitaxial lift-off technique has allowed us to generate, in situ, ultrafast test pulses for the 
characterization of transmission lines that were not fabricated on substrates that possessed a fast 
photoconductive effect. The liftoff technique adds a great deal of flexibility to the production of 
electrical transients, in that LT-GaAs generators can be grafted onto arbitrary substrates with an 
adherence that allows the deposition and patterning of metal lines on their surface. 

High-Bandwidth Optical Sampling 

As with the generation of ultra-high-bandwidth test signals, the measurement of signals 
guided on planar transmission lines has also been accomplished using very short optical pulses. 
The premier attribute gained from the application of this combination of optics and electronics is 
instrument temporal resolution. Using a laser having a pulse duration of < 100 fs and an 
electro-optic sampling probe (which utilizes a birefringent crystal and the Pockels effect in order 
to transfer the amplitude information of an rf signal to an optical beam) very high temporal 
resolution and the greatest flexibility of any technique developed for ultrafast measurements 
have been attained.[9,1O] The external EO probe employs just a small tip of electric-field 
sensitive material to make measurements, so that voltages at locations along transmission lines 
and internal to circuits may be measured. 

SHORT-PULSE PROPAGATION 

Mechanisms that lead to pulse distortion on planar transmission lines include ohmic skin­
effect attenuation from the metalizations, substrate dielectric loss, substrate conduction loss, 
radiation or surface-wave loss, and dispersion due to higher order or hybrid modes. Except in 
extreme cases where the substrate has a dielectric resonance which overlaps with the spectrum 
of the guided electrical pulse or when the dielectric is highly conductive, the most severe 
distortion is caused by the radiation loss and the modal dispersion. 
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As pointed out by Rutledge, [11] the attenuation due to radiation on a coplanar 
transmission line follows a cubic frequency dependence under quasi-static conditions and also 
strongly depends on the permittivity of the substrate. As refined by Frankel [12] to include 
non-TEM wave propagation, this attenuation depends on fP as 2 < p < 3 and can be given as 

( )
2 2 3/2 

_ 5 (3-18)~ E:efdf) 1 _ E:eff(f) (s +2w) £r f3 
acps - 1t 

2 E: r E:r C 3 K'(k)K(k) 
(3) 

where E:r is the relative permittivity of the substrate, £et/f) is the effective permittivity of the 
CPS, c is the speed of light in vacuum, s is the separation between the lines, w is their width, 
k=s/(s+2w), K(k) is the complete elliptic integral of the first kind, and 

K'(k)=K(~) (4) 

The radiation arises due to the fact that the propagating guided signal mode travels with a 
velocity which is faster that the electromagnetic propagation velocity in the substrate. That is, 
the guided mode experiences a lower permittivity (from the combination of air and substrate) 
and therefore a higher velocity than a wave in the substrate. Thus, the guided mode loses 
energy through an electromagnetic shock wave which is emitted into the substrate at a radiation 
angle 'P. Rutledge et al. [11] have shown that the magnitude of the attenuation depends 
critically on this angle, which is determined by the velocity mismatch between the guided and 
the radiated modes. The greater the dielectric inhomogeneity between substrate and superstrate, 
the greater the velocity mismatch and the greater the radiation loss. 

The frequency dependence of the effective permittivity not only impacts the radiation loss, 
but it is also has a great influence on the capacitance of the transmission line and the phase 
velocity of frequencies present on the line. Practically, EefJ at low frequencies, where the quasi­
TEM approximations are valid, is roughly the average of the permittivities of the substrate and 
superstrate, and at high frequencies it approaches the permittivity of whichever of these 
materials has the higher E:r. In between, the effective permittivity rises with frequency, 
becoming significantly higher than its quasi-static value at a frequency that depends on the 
geometry of the line and the difference of the substrate and superstrate permittivities.[ 13, 14] 
The increase in E:e.tfbegins at lower frequencies for greater mismatChes in permittivity, leading to 
an enhanced distortion for pulses that have bandwidths extending from the quasi-static regime 
up to the high-frequency regime. Physically, the coupling of the longitudinal section modes 
which are present in open-boundary, planar transmission lines becomes more efficient for the 
higher frequency components in the pulse. This implies that a higher flux density exists in the 
substrate for higher frequencies, so that the effective permittivity increases with increasing 
frequency. 

The effects of the radiation loss and modal dispersion for CPS lines supported by GaAs on 
the bottom and having air on the top may be directly observed in experimental results using the 
techniques described previously. Results on identical CPS structures fabricated on substrates of 
lower E:r values have demonstrated that the smallest distortion will be present in the lines 
fabricated on the substrates with the lowest permittivity. In each case, the CPS had s = w = 
20 llm, a sliding contact pulse-generator gap was used, and the dc voltage bias across the lines 
was 20 V. Figure 2(a) shows the propagation, in the time-domain, of a pulse on a CPS 
fabricated on an LT-GaAs substrate. The permittivity of GaAs is approximately 13, and the 
pulses have been measured at distances up to 3.2 mm from the generator. The pulse, which 
originally has a sub picosecond rise time and FWHM, degrades over 3 mm of CPS until its peak 
amplitude has dropped more than 60%, its rise time has become several picoseconds long, and 
its FWHM has more than doubled. Some of the pulse energy has been dispersed more than 
attenuated, and it turns up in the tail of the pulses that have travelled greater distances as ringing 
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components. The loss and dispersion are better viewed quantitatively as in Figs. 3(a) and (b), 
where the attenuation and phase velocity are plotted in the frequency domain between 50-
600 GHz. The radiation losses dominate over the ohmic losses for all frequencies above 
- ISO GHz, and the increase in the permittivity is also dramatic over the frequency range 
explored. 

1.2 

O.B 

~ 06 ., . 
Ol 

'" '5 0.4 
> 

0.2 

0 

-0.2 
0 2 4 

(a) 

2.2mm 
" 3.2mm 

" / \/~, 
;,1 of \ 

/ \ \ 

_-:~.~!...- -.; ... \,.r~~ 

6 

Time (ps) 

B 

\ / 

10 12 

1.2 

O.B 

~ 0.6 ., 
Ol 

~ 0.4 
> 

0,2 

0 

-0.2 

1.2mm (b) 

2.2mm 
(. 3.2mm 
' \ r I 

\ 
1\ 

I \ 

I I \ 

\ I \ 

\/ \ 
\ 

I \ 

' \ ;'-,~j~-'::" 

0 2 4 6 B 10 12 

Time (ps) 

Figure 2. Ultrashort electrical pulse propagation on coplanar stripline fabricated on (a) GaAs and (b) quartz, 
The distances indicated are between the generator and the probe. 

The other CPS lines investigated were fabricated on substrates with permittivities 
considerably smaller than that of GaAs. Specifically, quartz (er = 3.8) and a I.S-l1m-thick 
membrane of silicon dioxide and silicon nitride (er approaching 1) [15] were used. The 
experimental conditions were essentially the same for each of the three measurements, although 
for the lines fabricated on the substrates that were not high-speed photoconductors, a patch of 
the epi-liftoff LT-GaAs was integrated for use as a test signal source.[8,161 The uniform 
membrane substrate, as compared to a periodically-supported structure used in other work by 
Dykaar,[17] is formed by first growing a composite Si02lSi3N4fSi02 material on a Si substrate 
using a combination thermal oxidation/chemical vapor deposition process.[IS] Part of the Si is 
then etched away from the back side, leaving a rectangular window consisting of the thin 
membrane on the top of the Si wafer. 

For the quartz line, a low permittivity leads to lower radiation loss (Fig. 3[a]), a smaller 
difference between low and high-frequency effective permittivity (as well as an Eetf.,f) which 
begins to increase at a higher frequency), and vastly improved time-domain propagation 
compared to the GaAs line (Fig. 2[b]). Interconnects on the quartz substrate between test-signal 
generation points and devices to be characterized at frequencies of several hundred GHz are 
now being employed for their low dispersion and radiation loss.[19] It is possible that this or 
other low-permittivitynow dielectric-loss substrates could support high-frequency circuits 
containing active devices which had been grafted into place after being lifted off their native 
substrates. 

For the CPS fabricated on the membrane, nearly all of the field lines between the metal 
strips above and below the plane of the substrate are in air, so that there is no loss due to 
radiation and no modal dispersion (since there is no change in effective permittivity with 
frequency - see Fig. 3[b)). Compared to the CPS on GaAs, the total attenuation is essentially 
negligible (Fig. 3[a)), and in the time-domain, the pulses that have propagated up to 4 mm from 
the generator are nearly unchanged except for the loss of amplitude due to the skin effect (Fig. 
4). Even this loss is very low due to the use of 20-l1m wide strips that were separated by the 
same distance. Submillimeter-wave circuits are now being fabricated using this substrate in a 
microshield geometry with a ground plane,[lS] and these will be tested and charactelized when 
they become available. It is anticipated that this structure will form the foundation for a family 
of integrated circuits operating with low loss and dispersion at very high frequencies. 

6 



1.2 

(a) 

0.8 0.8 

~ 0.6 
Q) 

:;-
-; 0.6 2.2mm 

g> 
15 0.4 
> 

i 0.4 
> 

., 3.2mm 
/ 

0.2 0.2 

0 0 

-0.2 
0 2 4 6 

Time (ps) 

8 10 12 
-0.2 

0 2 4 6 

Time (ps) 

8 10 12 

Figure 3. (a) Attenuation for CPS fabricated on three different substrates. The radiation loss decreased 
dramatically as the the substrate permittivity decreased. (b) The phase velocity vs. frequency for ultrashort pulses 
propagating on CPS fabricated on GaAs and a membrane. The modal dispersion is much greater for the GaAs 
line. There was no increase in Eeff versus frequency for the line fabricated on a l.5-l1m-thick membrane 

0.12 

0.1 

0.08 

~ 0.06 
Q) 
Cl 

~ 0.04 
> 

0.02 

0 

-0.02 
0 5 10 15 

Time (ps) 

Figure 4. Picosecond pulse propagation for CPS fabricated on 1.5-l1m-thick membrane substrate for I mm and 
5 mm propagation distances. The pulse amplitude has decreased by only 15%. and there is negligible dispersion. 

CONCLUSION 

The direct observation in the time domain of electrical pulses containing frequency content 
in the millimeter- and submillimeter-wave regimes and their behavior on various planar 
transmission lines has been demonstrated. The optoelectronic techniques of photoconductive 
switching and external electro-optic sampling have been used to generate and measure 
ultrashort-duration electrical waveforms. It has been established that low-distortion propagation 
can be achieved if the mechanisms of radiation, modal dispersion, and conductor loss can be 
defeated. While other guiding structures could be devised in order to limit the first two effects 
mentioned, by decreasing the size and spacing of the conductors, for instance, it would then be 
necessary to utilize superconductors to diminish the effects of the ohmic losses. A better 
approach very well may be the one demonstmted here, where nearly dispersionless and lossless 
propagation over 4 mm of propagation distance for frequencies up to 1000 GHz have been 
found in a structure approaching the limit of a planar line without a substmte. 
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NONLINEAR WAVE PROPAGATION DEVICES 
FOR ULTRAFAST ELECTRONICS 

ABSTRACT 

S.T. Allen, R.Y. Yu, U. Bhattacharya, M. Reddy, and MJ.W. Rodwell 

Department of Electrical and Computer Engineering 
University of California, Santa Barbara, CA 93106 

We describe active and nonlinear wave propagation devices for generation and 
detection of (sub)millimeter-wave and (sub)picosecond signals. Shock-wave nonlinear 
transmission lines (NLTLs) generate 3-4 V step-functions with less than 0.7 ps falltimes. 
NLTL-gated sampling circuits for signal measurement have attained over 500 GHz 
bandwidth. Soliton propagation on NLTLs is used for picosecond impulse generation and 
broadband millimeter-wave frequency multiplication. Picosecond pulses can also be 
generated on traveling-wave structures loaded by resonant-tunneling-diodes. Applications 
include instrumentation for millimeter-wave waveform and network (circuit) measurements 
both on-wafer and in free space. 

INTRODUCTION 
Bandwidth of heterostructure transistors have exceeded 350 GHz [1], and monolithic 

millimeter-wave integrated circuits (MIMICs) now operate above 100 GHz [2]. Further 
development of millimeter-wave and high-speed circuits will require instrumentation with 
bandwidths approaching 300 GHz. Sampling oscilloscopes, network analyzers, counters, 
and synthesizers use diode sampling bridges for signal measurement or frequency 
downconversion. Instrument bandwidth is determined by sampling circuit bandwidth, in 
tum limited by the strobe pulse duration. Since 1966, 20-30 ps step-recovery diodes 
(SRDs) have been used for strobe pulse generation, limiting sampling circuit bandwidth to 
",,20-40 GHz. We describe here several nonlinear wave propagation devices for generation 
and detection of (sub)millimeter-wave and (sub)picosecond electrical signals. With these 
devices, we have been able to generate electrical pulses much shorter than those generated 
by SRDs. Applications include broadband instrumentation and high-speed switching 
systems. 

THE SHOCK-WAVE NLTL 
The NLTL [3,4] (fig. 1) is a high-impedance transmission line periodically loaded by 

reverse-biased Schottky diodes acting as voltage-variable capacitors. The wave propagation 
velocity varies as the inverse square root of the total (diode plus transmission line) 
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capacitance per unit length and hence increases as the diode reverse bias voltage is 
increased. 

Given a negative-going step function (wavefront) input, the initial portions of the 
wavefront, near zero volts, will propagate more slowly than the final, more negative, 
portions of the wavefront. The wavefront transition time (falltime) will progressively 
decrease with propagation distance. An asymptotic (minimum) compressed fall time is 
eventually reached (fig. 2) at which the NLTL compression is balanced by various 
bandwidth limits in the structure. The two dominant bandwidth limits are the varactor 
diode cutoff frequency fD = 1/21CRDCD (defined using the average diode capacitance 
I!!Q/I!! V) and the periodic-line (Bragg) cutoff frequency fper = 1/ 1C~ L( CD + CL ) . If the 
diode cutoff frequency is dominant, and the wavefront is 6 Volt amplitude, the minimum 
compressed fall time is Tj .min = 1.4/ fD . Advanced Schottky varactor diodes attain 2-8 THz 
cutoff frequencies; with further work, NLTL transition times may ultimately reach 0.2-0.3 
ps (1-1.5 THz signal bandwidth). 

A) z" Z,.t "l... n=n ... rrq 

B)~"frlf1 
C) 

I~·)$@ll 
Figure 1. NL TL circuit diagram, a), equivalent 
circuit, b), and layout, c). CD is the diode 

capacitance and RD its series resistance, 

CL = r/2\ is the line capacitance and 

L = ~ r the line inductance. 
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Figure 2. SPICE simulation of NLTL 
wavefront compression and shock-wave 
formation. 

Diode design for the NLTL is a compromise between the objectives of high 
compression rate (small die area, low attenuation), high diode cutoff frequency (short 
fall times ), and high reverse breakdown voltage (8-12 V required). As the diode dimensions 
are reduced and the active-layer doping increased, the cutoff frequency increases but the 
reverse breakdown decreases. The larger capacitance variation of hyperabrupt varactors 
increases the NLTL compression rate (decreasing the required line length and hence the 
skin loss), but hyperabrupt doping decreases the cutoff frequency and the reverse 
breakdown. 

NLTL-GATED SAMPLING CIRCUITS 
A sampling circuit (fig. 3) [4] consists of a strobe pulse generator, a diode/resistor 

bridge, and a balunldifferentiator. An NL TL compresses an input strob" signal, either a 
step function or a -10 GHz sinewave, to picosecond falltimes. The sampling diodes are 
gated by a pair of symmetric positive and negative impulses generated from the strobe 
NLTL output using a balun / differentiator implemented using the coplanar strip (CPS) 
mode of the input signal coplanar waveguide (CPW). Coupled through series hold 
capacitors, the complementary strobe pulses drive the sampling diodes into forward 
conduction. During this period, the aperture time, the input (RF) signal partially charges 
the hold capacitors. If the RF frequency is offset by I!!f from a multiple nfo of the strobe 
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frequency 10 ' the sampled (IF) signal is mapped out at a repetition frequency N· 
Sampling circuit bandwidth is limited by the sampling diode capacitance and by the 
aperture time. 

Figure 3. NL1L-gated sampling circuit 

0.96 ps measured 
10%-90% falltime, 
0.68 ps deconvolved, 
515 GHz bandwidth 
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Figure 4. NLTL output measured by an NL1L­
gated sampling circuit. The measured fall time is 
0.96 ps, from which a 0.68 ps deconvolved NLTL 
falltime and a 515 GHz sampling circuit 
bandwidth are determined 

To evaluate the NLTL and sampling circuit risetime, the output of an NLTL shock 
generator is connected to an on-wafer NLTL-gated sampling circuit. The convolved 
responses of sampling circuit and NLTL shock-wave generator is thus measured. With an 
NLTL using 4 THz Schottky varactor diodes [4] (fig. 4), a 0.96 ps falltime is measured. We 
estimate a 0.68 ps deconvolved NLTL falltime and a 515 GHz sampling circuit bandwidth. 

SOLITON DEVICES: IMPULSE COMPRESSION AND FREQUENCY 
MULTIPLICATION 

A solitary wave is a traveling wave having a localized transition (e.g. a pulse) and 
propagating without distortion in a nonlinear, dispersive medium. Solitons are defined as 
those solitary waves which preserve their shape and velocity after interactions with other 
solitons [6]. The soliton is a pulse waveform for which the effects of nonlinearity and 
dispersion are balanced. If the NLTL Bragg frequency is much smaller than the diode 
cutoff frequency then propagation is dominated by the interaction between the capacitive 
nonlinearity and the periodic-network dispersion, and solitons propagate [7]. On NLTLs, 
soliton duration is inversely proportional to the Bragg frequency and varies approximately 
as the inverse square root of the peak amplitude. Soliton propagation velocity increases 
with increasing soliton amplitude. Applied to the NLTL, signals with pulse duration longer 
than the duration of a soliton correspond to a nonlinear superposition of a set of solitons 
having differing amplitudes and velocities, and will decompose into this set of two or more 
solitons during propagation. Figure 5 shows a circuit simulation of a 6 V, 63 ps impulse 
splitting during propagation into a pair of solitons. Note that the leading output soliton has 
larger amplitude and shorter duration than the input signal. With a broader input pulse, a 
larger number of solitons are produced. 

We use the splitting of input pulses into pairs of solitons as a method of second- and 
third-harmonic generation [8]. If we drive the NLTL with a train of pulses (e.g.: a sine 
wave) then each pulse separates into a set of solitons, generating a waveform with multiple 
pulses per cycle and significant harmonic content. Figure 6 shows both the output 
waveform and the measured third-harmonic output power vs. frequency for an NL TL with 
a .. 100 GHz Bragg Frequency. A 12 dB conversion loss is attained from 81 to 103.5 GHz. 
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Figure 5. SPICE simulation: splitting of 
an input impulse into a pair of solitons 
during propagation on an NL TL. 
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Figure 7. Measured output of an NL TL 
soliton impulse compressor. 
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Figure 6. Measured output power 
versus output frequency for tripler with 
~ I 00 GHz Bragg frequency and 24 dBm 
input power. The tripler is 5.0 mrn long. 
In the inset the time waveform is shown 
at 31.5 GHz input. 
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Figure 8. Active Probe for on-wafer 
mm-wave network analysis 

A long-duration impulse input to an NLTL will decompose into its characteristic set of 
solitons. Longer input pulses decompose into progressively larger numbers of solitons, and 
impulse compression ratios are limited to approximately 2: 1 on a homogeneous line. 
Higher compression ratios can be obtained by using step-tapered lines, consisting of a line 
with Bragg frequency fper cascaded with a line with Bragg frequency 2fper . The first line 
section performs a 2: 1 pulse compression, with the second line section performing a further 
2: I compression. While higher compression ratios can be obtained by repeating this 
scheme in a three-step or four-step fashion, it is more convenient to taper the Bragg 
frequency continuously [9]. Figure 7 shows the output of an exponentially-tapered soliton 

impulse compressor. 

NLTL-BASED INSTRUMENTATION 
NLTL applications include pulse generation, harmonic generation, picosecond 

waveform measurements (sampling oscilloscopes), and millimeter-wave network analysis. 
A key application is in instrumentation for characterization of mm-wave devices and 
circuits. To this end, we have developed active probes [10,11] (fig. 8) for on-wafer mm­
wave vector network analysis (VNA). These consist of an NLTL-based network analyzer 
IC and a rugged, wideband quartz probe tip. The IC itself incorporates an NLTL stimulus 
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signal generator and an NL TL-strobe directional sampling circuit which independently 
measures the forward and reverse waves from the device. Figure 9 demonstrates system 
accuracy to 200 GHz, while figure 10 shows the forward gain (S21), measured by the active 
probes, of a HEMT distributed amplifier provided by J. Braunstein of the Fraunhofer 
institute [14] 
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Figure 9. Measured transmission 
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magnitude (b) of a lops-length through 
line calibration standard. Instrument error 
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Figure 10. Forward gain S21, measured 
by the active probe, of a HEMT 
distributed amplifier provided by J. 
Braunstein, Fraunhofer Institute 
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We have also constructed a system for free-space network analysis for characterization 
of materials and antennas [12], The system (fig. 11) uses transmitter and receiver les 
(NLTLs and sampling circuits coupled to on-wafer frequency-independent antennas) to 
radiate and detect picosecond pulses. Attenuation-frequency (and phase-frequency) 
measurements are obtained by taking the ratio of the received Fourier spectrum with the 
device under test in place with the spectrum of a reference measurement taken with the 
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device under test removed. Fig. 12 shows a measurement of a high-Q Bragg filter. We also 
have integrated GaAs Schottky photodetectors with NLTL-gated sampling circuits for 
measurement of picosecond optical waveforms [13]. 

TRA VEUNG-WAVE RTD PULSE GENERA TORS 
Picosecond step-functions can also be formed with resonant-tunneling-diodes (RTDs). 

A lumped-element RTD pulse generator (fig. 13a) consists of an RTD with resistive 
generator and load, a circuit with bistability arising from the RTD's negative resistance 
[15]. The RTD is a voltage-dependent current source leV) (fig. 13b) with parasitic shunt 
capacitance C and series resistance R, (fig. 13c); in the small-signal model (fig. 13d), leV) 
is replaced by the negative resistance R". The pulse-generator circuit model of figure 13e 
results. 

As the slowly-varying input voltage increases, the device loadline shifts until the 
current supplied to the RTD exceeds the peak current. The RTD then switches abruptly to 
the stable state defined by the intersection of its I-V curve and the loadline (fig. 13b). The 
risetime of this switching transition is given by 

10.1 VI +O.9Vj 

'1;0-90 = CdV / M(V) 
D.9¥, +O.1Vj 

where M(V) is the difference between the RTD tunneling current and the current 
provided by the external circuit. An approximate expression for the risetime is 
'1;0-90 = CLl V / M. Since the small-signal negative resistance Rn is proportional to Ll V 1M, 
the risetime '1;0-90 DC Rn C. 

If the RTDs' quantum-well lifetime and space-charge transit time are negligible, the 
RTD maximum frequency of oscillation is frrmx == 11 21CC-J RnR,. In the limit of small R" 
fmax becomes infinite, but the risetime of the elementary RTD pulse generator of fig. 13 
does not go to zero; the circuit does not use the device efficiently. 

The traveli':!g-wave RTD (TWRTD) pulse generator (fig. 14), is a series of RTDs 
loading a line of impedance ZL at electrical spacings r L . The equivalent circuit is shown in 
fig. 14b; a synthetic transmission line of impedance 20 =~L/(C+CJ and Bragg 
frequency wper = 2 I ~ L( C + C L) is formed. The TWRTD is loaded by the nonlinear shunt 
conductance I(V). 

The TWRTD has been analyzed by Ilinova [16] and Vorontsov [17]. Given bias 
voltage \-j, and bias current lb (fig. 14c) the RTDs present a negative net resistance over 
the range of voltages V; to \1;, and thus provide gain. Outside this gain region, the RTDs 
present a positive net resistance, and provide attenuation. During propagation, a large­
amplitude sinusoidal input signal evolves into a square wave. After a sufficient propagation 
distance the transition times are inversely proportional to fmax' with 
'1;0-90 = (In O. 9 -In 0.1)2C-J RnR, = 0.70 I fmax if leV) is approximated by a cubic 
polynomial in V [16,17]. Transition times are limited by fmax' and the TWRTD uses the 
RTD efficiently. TWRTD transition times will be substantially smaller than lumped­
element RTD pulse generator risetimes if R, « Rn. 

Traveling-wave RTD pulse generators were fabricated using AIAs/GaAs Schottky­
collector resonant-tunneling-diodes (SRTDs) [18]. The SRTD (fig. 15), is a modified RTD 
with the top-ohmic contact and its associated N+ contact layer replaced by a direct 
Schottky contact to the space-charge layer, thereby eliminating the associated series 
resistance. There is consequently a substantial increase in fmax . SRTDs have a high ratio of 
Rn I R" particularly if the Schottky contact width is reduced to submicron dimensions, and 
therefore TWRTD pulse generators using SRTDs will exhibit significantly shorter 
transition times than lumped-element SRTD pulse generators. 
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Traveling-wave RTD pulse generators have been fabricated, incorporating SRTDs with 
1 11m minimum dimensions and Imax == 450 GHz. Figure 16 shows the TWRTD output 
measured by an NLTL-based active wafer probe; with a 40 GHz, 3 V peak-peak input, a 
3.8 ps transition time is measured. Performance of the present monolithic device is 
severely degraded by transmission-line losses arising from poor cell layout. With reduced 
transmission-line losses and with the use of 0.1 11m Schottky contact width SRTDs having 
Imax == 900 GHz [18], 1 ps TWRTD transition times should be attainable. We are currently 
developing InGaAsI AlAs SRTDs with O.I-l1m Schottky contact width. These should attain 
lmax = 2 - 3 THz; TWRTDs using InGaAs/AIAs SRTDs should be able to attain transition 
times well below 1 ps . 
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Figure 13. Lumped-element RTD pulse 
generator (a), RTD current-voltage 
characteristics (b), large-signal (c) and 
small-signal (d) circuit models, and pulse 
generator equivalent circuit model (e). 
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CONCLUSIONS 
Due to limitations in pulse generation technology, microwave instruments have not kept 

pace with advances in millimeter-wave transistors. Nonlinear wave propagation devices use 
very wideband Schottky or resonant-tunnel-diodes for electrical pulse generation. Shock­
wave NL TLs have generated subpicosecond electrical pulses and have enabled the 
development of sampling circuits with bandwidths beyond 500 GHz. Soliton impulse 
compressors may supplant shock-wave NLTLs for applications requiring higher power 
levels, while traveling-wave pulse generators using Schottky-collector RTDs may compete 
with NLTLs in the subpicosecond regime. The devices are simple, inexpensive millimeter­
wave integrated circuits, yet have unprecedented bandwidth. Several commercial 
microwave instruments now use NLTLs. Using the NLTL, systems for on-wafer and free­
space millimeter-wave and sub-millimeter-wave measurements will evolve. 
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INTRODUCTION 

Generation and detection of THz electromagnetic radiation is one of the 
recent "Hot" topics in the photonics and optoelectronics community.l During 
the rapid development of picosecond and femtosecond laser sources in the 
early 80's, several different optoelectronic techniques for generating broadband 
electromagnetic pulses were developed.2-8 In particular, the development of 
chirped laser amplifiers allowed the generation of femtosecond 
electromagnetic pulses with peak power greater than one megawatt.9 These 
pulses will have a significant impact on far-infrared spectroscopy and 
materials characterization. 

Currently there are two basic approaches for generating THz beams 
utilizing ultrafast laser pulses: photoconduction and optical rectification. The 
photoconductive approach uses photoconductors as transient current sources 
for radiating antennas. These antennas include elementary Hertzian dipoles, 
resonant dipoles, tapered antennas, transmission lines, and large-aperture 
photoconducting antennas. Optical rectification uses electro-optic crystals as a 
nonlinear medium. Rectification can be a second order (difference frequency 
generation) or higher order nonlinear optical process depending on the optical 
fluence. In principle, photoconductive generation of THz beams can have a 
gain greater than unity because the laser pulse acts as a trigger to switch the 
photoconductor and the radiating energy is presumably coming from the 
electrostatic energy stored in the photoconductor. Currently, the largest power 
ratio of THz to laser beam yet demonstrated was over 2% using biased 
photoconductor switches.9 

In this paper we report our recent measurement of optically induced 
THz electromagnetic radiation via photoconduction. We have studied THz 
radiation from different metallic electrodes with different geometries. We also 
report the experimental results from unbiased semiconductors with different 
surface and interfacial conditions, including chemically etched surfaces and 
metal/ semiconductor interfaces. 
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GENERATION AND DETECTION OF THz BEAMS 

The experimental setup is a conventional time-resolved pump-gate 
optoelectronic coherent sampling arrangement which has been widely used in 
many research laboratories recently and is described elsewhere.5 Figure 1 
schematically illustrates this arrangement. A cw Ar laser pumped mode­
locked Ti:sapphire laser was used as the source of optical pulses. The laser 
produced an output pulse energy greater than 10 nJ at a repetition rate of 76 
MHz with a pulse duration less than 150 femtoseconds. 

bias 

THz beam 
gale 

CJL beam ,".-
detector 

emitter 

Figure 1. Generation and detection of THz electromagnetic radiation via a photoconducting 
antenna. 

The laser wavelength was centered at 820 nm and the beam was split into two 
parts by a beamsplitter with a 0.05/0.95 reflection/transmission ratio. The 
stronger optical beam, with a diameter of approximately 6 millimeters, passed 
through a variable time delay stage, and illuminated the sample unfocused. 
The weaker optical beam, typically less than 30 mW, was used for optical 
gating the photo conducting detector. The radiated submillimeter-wave beam 
in the forward direction was focused onto the photoconductor attached to a 50 
11m dipole antenna. A photocurrent was generatep in the antenna when the 
submillimeter-wave radiation spatially and temporally overlapped the optical 
gating pulse. Temporal measurement was achieved by varying the time-delay 
between the excited laser pulse illuminated the emitter (strong optical beam) 
and the trigger laser pulse focused on the detector (weak optical beam). All 
measurements were taken at room temperature. 

PHOTOCONDUCTING EMITI'ERS 

We have tested THz radiation from a set of 4-mm photoconductive gap 
antennas. The antennas consisted of several emitters with electrode widths of 
5, 10, 50, and 500 Ilm, respectively. Figure 2 shows the layout of the antennas. 
The length for each emitter was 1 cm. Gold electrodes were deposited on a 3" 
SI GaAs wafer bye-beam evaporation and their thickness was about 3000 A. A 
200 V DC bias was applied across the antenna. and the pump pulses were 
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normally incident. Characterization of the different emitters was achieved by 
translating the antenna across the optical beam. 

SO 11m SOOlim 
10llm 1 

4mm 

T 
Laser beam I- 1 em --1 

Figure 2. Schematic illustration of a cascaded photoconductive emitter. The photoconductive 
gap is 4 mm, and the width ofthe electrodes are 5, 10, 50, and 500 ~, respectively. 
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Figure 3. Temporal waveform ofTHz radiation from an emitter (4-mm photoconductive gap) 
with 5 ~ wide and 1 cm long electrodes. 

Figure 3 plots the temporal waveform of THz radiation from the emitter 
with 5 ~m wide electrode. Figure 4 plots the peak amplitude of THz beam 
versus the width of the electrodes. 
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Figure 4. Peak values of THz signal from emitters versus electrode width. 
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The temporal THz waveforms from these emitters remained unchanged, 
except for minor variations in amplitude. For example, from the 500 J.UIl to the 
5 !lm emitter, the latter of which possessed only 1% of the electrode surface 
area of the former, the amplitude of the THz signal decreased by only 19%. One 
reason for the decrease in THz signal from the narrow electrode emitter is due 
to the voltage drop along the transmission line (electrodes). Since most of the 
energy radiated from the emitters is pre-stored in the photoconductor gap, the 
width of the electrode will not play an important role in the strength of the 
emitted radiation. 

In addition to testing THz emission versus variation in electrode width, 
we also measured emitted THz field strength from photoconductive emitters 
with different metallic electrodes. Metals, such as Au, Al, Ag, and Cu, were 
used as electrodes on semi-insulating GaAs. Further, both ohmic and Schottky 
contact planar electrodes were also tested. We found that as soon as the optical 
beam spot covered the photoconducting gap between the electrodes, there was 
no significant variation in the amplitude of THz emission from antennas 
different metal electrodes, regardless of ohmic or Schottky contact. This 
observation is consistent with our results from the planar antennas with 
different electrode widths. 

THz RADIATION FROM CHEMICALLY ETCHED GaAs 

Since most of the electrostatic energy is stored in the photoconducting 
gap of the antenna rather than the electrodes, it is interesting to study THz 
radiation from semiconductors with the different mechanical and/or chemical 
surface/interfacial treatments. We measured the THz emission from a variety 
of unbiased GaAs samples with various chemical etching treatments and 
compared the signal strength with that from unbiased and unetched GaAs. 
Etching GaAs can change its surface electronic properties by removing 
residuals and/or modifying surface morphology. We observed a small increase 
in THz emission when the GaAs wafer were etched. 

Wet chemical etching usually involves the reaction of the etchant with a 
surfaces and subsequent removal of the resulting products. The GaAs surface 
can be made smoother in mass-transport-limited regime, where the etch rate 
is controlled by the rate at which reactant species can reach the surface (or the 
rate at which reactant products can be removed), and rougher in reaction-rate­
limited regime, where the etch rate is limited by the rate of chemical reaction 
occurring on the surface. Almost all GaAs etchants operate by first oxidizing 
the surface and then dissolving the oxide, thereby removing both of gallium 
and arsenic atoms. The etch rate may be limited by the rate of chemical 
reaction or the rate of dissolution. In our experiment, the common GaAs 
etchant, H2S04-H202-H20, was used. Here, hydrogen peroxide is the oxidizing 
agent and sulfuric acid dissolves the resulting oxide. GaAs will not be etched 
by either H202 or H2S04 alone. We used etchant H2S04-H202-H20 series with 
the ratios of 1:1:8, 1:8:1, 8:1:1 and 3:1:1, corresponding to the etching rate of 1.3, 
14.6, 1.2 and 5.9 JllllImin for <100> GaAs [11. 

We investigated THz radiation from etched GaAs using an experimental 
which has been described elsewhere[21. It was found that the THz signal from 
the etched GaAs depends on both etchant composition and etching depth. 
Figure 5 plots the peak value of the THz signal measured from GaAs wafers 
etched in a solution of H2S04:H202:H20 = 1:8:1. The data therein is the 
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normalized percent change in signal strength with respect to an unetched 
GaAs reference wafer. 
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Figure 5. Normalized percent change in THz signal strength from unbiased, etched GaAs. 

The change in THz emission from etched GaAs depends on etch ant 
composition. Varying the etchants can increase the signal by as much as 30% 
or as little as only a few percent. This range may be due to undetermined 
modifications of the surface field. For the planar photoconducting antenna, 
this change is expected to be small. 

METAUGaAs INTERFACES 

In addition to planar biased photoconducting antennas, 
measured THz emission from unbiased metallGaAs interfaces. 

we have also 
We observed 

an anomalous behavior in THz emission from these interfaces. In contrast to 
THz radiation generated at normal incidence where the amplitude of the THz 
signal d,ecreases with increasing metal film thickness, at oblique incidence we 
observe increasing THz emission with increasing metal thickness, where the 
signal reaches a maximum near a thickness of 80 A. 

Conducting layers of Au, Ag, W, Ni, Pt, AI, Cu, Sn, Pb, Ti, AuGe, and (; 
were deposited on <100> semi-insulating (SI) GaAs substrates. THz signals 
from bare GaAs and metallGaAs samples exhibited opposite polarity. 

A 3" <100> semi-insulating GaAs wafer was cleaved into several 
rectangular pieces about 5 mm x 12 mm. On each sample, a metal film was 
deposited on half the GaAs surface, and half of the surface was left uncoated 
as a reference. Thermal evaporation, sputtering and E-beam evaporation were 
all used to deposit metal films on the GaAs. Before deposition, the wafer was 
cleaned by the conventional degrease and oxide removal procedure. 

Undoped SI GaAs wafers from several vendors were tested and no 
significant difference in THz emission was observed. The direction of the 
electron flow in the bare GaAs was "calibrated" using both a p-i-n diode and a 
biased photoconducting antenna. In the undoped part of the SI GaAs wafers, 
we observed that the electrons moved into the substrate, in the surface 
depletion field. 

At moderate optical power, the THz radiation measured from the metal 
film/GaAs samples has the same polarity compared with that from the bare 
GaAs wafer. However at higher optical power, the radiated field flips its 
polarity. The opposite polarity of the major peak in the THz waveforms emitted 
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from the metal filmlGaAs samples indicates an opposite carrier transport 
direction to that in the weakly n-type SI GaAs. It is not clear that why the 
polarity of the THz signal flips after metal is deposited on weakly n-type SI­
GaAs. This is because, based on the conventional Fermi level "pinning" effect, 
the surface energy band bending in the bare wafer and that at the metallGaAs 
interface are both expected to be the same direction. 

We also measured the THz emission from GaAs p-i-n and n-i-p diodes. 
The direction of electron flow in the intrinsic layer is inward for p-i-n diode 
and outward for n-~-p diode, consistent with the band bending model. Most of 
our undoped GaAs substrates (weakly n-type) showed same electron flow, 
similar to that of the p-i-n diode. One possible explanation is that the electron 
flow toward the metal film may be a manifestation of the breakdown in 
electrostatic equilibrium resulting from ultrafast carrier injection following 
femtosecond optical excitation. This is similar to the effect of electron 
movement toward the metal film to align the Fermi levels immediately after 
the metal film and the semiconductor make contact. Therefore, a plausible 
mechanism for the polarity flip may be the presence of longitudinal interfacial 
plasmons. 

We further measured the THz radiation from weakly p-type SI InP and 
metallInP samples. We did not observe a THz polarity flip between these 
samples. Currently the polarity flip between THz signals emitted from metal 
filmlGaAs and bare GaAs can not be satisfactorily explained. 

To further explore the effect of metal film, we measured the THz 
radiation emitted from Au filmlGaAs samples versus film thickness. Au was 
deposited on all dOO> SI GaAs samples using E-beam evaporation. The 
thickness of the Au films ranged from 15 A to 105 A in steps of 15 A. The 
samples were then mounted on a linear translation stage with their front 
surfaces aligned to the same plane, thus equalizing the propagation delay 
between samples, something which is necessary for consistent temporal 
waveform measurements. 

10~---------------------' 
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Figure 6. Peak value of THz radiation generated from AulGaAs samples at normal 
incidence (under applied B field), and at a 45° angle of incidence 

Figure 6 displays the peak value of THz radiation generated from these 
samples at normal incidence (under applied B field), and at a 45° angle of 
incidence. At normal incidence, the THz signal decreases as the gold 
thickness increases. This is expected since less optical energy can be 
transmitted through the thicker, reflecting gold film. However, at oblique 
incidence, the Au/GaAs samples with thicker metallic films, which have 
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larger optical reflectivities, exhibited stronger THz emission in the forward 
direction. As seen in Figure 6, at oblique incidence, the THz signal increases 
with film thickness until it saturates near 80 A. The saturation thickness 
appears insensitive to the angle of laser incidence. 

PUMP·PROBE·GATE EXPERIMENT 

Figure 7 shows the basic geometry of this pump-probe-gate method. The 
angle between the pump and probe beams was set to 30° to avoid interference 
from the pump beam into the detector. The probe pulse was delayed 50 
picoseconds after the pump pulse. The pump beam creates photocarriers in 
the surface of semiconductor, the THz radiation generated by the probe beam is 
detected by the ultrafast dipole detector which is triggered by the gate beam. 
Pump-probe-gate experiment provides information of carrier dynamics in the 
photoconductive semiconductors.10 

probe 
GL gate .­

detector 
sample 

Figure 7. Experimental setup of optically induced THz electromagnetic radiation by using a 
pump-probe-gate technique. 

In this arrangement we have measured the THz emission from both GaAs 
wafers and metal film/GaAs interfaces. 
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Figure 8. Temporal waveforms of THz signal from bare GaAs with and without pump beam. 
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In our temporal waveform measurements, the variable delay synchronously 
shifts both the pump and probe pulses with respect to the gate pulses. As seen 
in Figures 8 and Figure 9, the pump beam alters the THz emission from these 
samples. For bare GaAs, the pump beam slightly modifies the magnitude of 
the THz radiation generated by the probe beam, but as shown in Figure 9, for 
metal filmlGaAs interfaces both the phase and amplitude of the THz waveform 
were changed. 
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Figure 9. Temporal waveforms ofTHz signal from AulGaAs with and without pump beam. 
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INTRODUCTION 

Molecular beam epitaxy (MBE) of arsenides such as GaAs or AlGaAs with typical group 
III and As fluxes, but with a substrate temperature in the range of 200°C to 300°C, results in 
the incorporation of excess As in the epilayer; 1 annealing at temperatures of 600°C or higher 
causes the excess As to precipitate.2-5 The fmal average size and corresponding density of the 
As clusters is controlled by the temperature and duration of the anneal,6-7 while the amount of 
excess As in the epilayer is controlled by the substrate temperature during MBE.8 This 
composite material, consisting of semi-metallic As clusters in a semiconductor matrix, exhibits 
very interesting electrical and optical properties. The composite is semi-insulating due to the 
internal Schottky barriers associated with the As clusters.9,lO In addition, the composite 
exhibits reasonable mobilities and in some cases sub-picosecond lifetimes, making it an 
attractive material as a high-speed photoconductor. ll-15 The lifetime of photogenerated 
carriers is very dependent on the spacing of the As clusters and can be tuned from less than 
200 fs to over 10 ps with anneal.16 The lifetime varies as the square of the average spacing 
between precipitates, which indicates the lifetime may be controlled by diffusion of carriers to 
the As precipitates where they recombine. In addition, when the composite is used as a 
photoconductive switch to generate and detect freely propagating bursts of electromagnetic 
radiation, the radiated intensity increases with either substrate growth temperature 17 or with 
anneal temperature, indicating an increase in carrier mobilites. In this paper we present details 
of the control of the lifetime in these composites and use of the material to launch 
electromagnetic pulses. In addition, we introduce a technique to form composites using ion­
implantation of metals-such as Fe and Ni-into GaAs and a subsequent anneal to nucleate 
clusters. 

SAMPLE PREPARATION 

The epilayers used in this work were grown in a Varian GEN II MBE system on (100) 
semi-insulating GaAs substrates. The group III to AS2 beam equivalent pressure was around 
20. Initially a GaAs buffer layer was grown at a substrate temperature of 600°C-in some 
cases this was followed by a thin AlAs lift-off layer also grown at a substrate temperature of 
600°C. The growth temperature of the epilayers containing excess As varied from 220°C to 
320°C depending on how much excess As was desired in the epilayer. After film growth the 
substrates were cleaved into samples. The desired As cluster density in a sample was set by 
annealing in an AG Associates rapid thermal processor at temperatures ranging from 650°C to 
lOoo°C. For the samples for carrier lifetime measurements the epilayers were removed using a 
lift-off technique and placed on transparent glass slides.18-20 
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Standard photolithography and lift-off techniques were used to define metallization 
patterns. The metallization for samples for launching electromagnetic pulses was a coplanar 
hom antenna. This antenna structure was an ohmic contact to the epilayer formed by alloying 
Au/GelNi, which could then be switched photoconductively. 

Transmission electron microscopy (TEM) was performed on some of the samples in 
order to determine the As cluster density and average diameter. These results are summarized 
in Fig. 1 and Tables 1-3. As see in Fig. 1, using the substrate temperature during MBE and 
the subsequent coarsening anneal one can easily control the composite structure. 

Table 1. As cluster spacing, As cluster average diameter, and carrier lifetime resulting from a 
30 s anneal at the temperatures indicated for a GaAs epilayer containing 0.9% excess As. 

Anneal 
Temperature coq 

700 
800 
900 
1000 

As Cluster 
Spacing CA) 

396 
509 
619 

769* 
*values obtained with linear extrapolation. 

As Cluster average 
diameter CA) 

102 
132 
167 

189* 

Carrier Lifetime (ps) 

2.8 
5.1 
7.1 
10.3 

Table 2. As cluster spacing, As cluster average diameter, and carrier lifetime resulting from a 
30 s anneal at the temperatures indicated for a GaAs epilayer containing 0.3% excess As. 

Anneal 
Temperature eq 

650 
700 
750 
800 
900 

As Cluster 
Spacing (A) 

405* 
500* 
595 

690* 
880 

*values obtained with linear interpolation or extrapolation. 

As Cluster average 
diameter CA) 

69* 
86* 
103 

120* 
154 

Carrier Lifetime (ps) 

2.3 
3.7 

6.5 
10.0 

Table 3. As cluster spacing, As cluster average diameter, and carrier lifetime resulting from 
a 30 s anneal at the temperatures indicated for an Al0.25Gao.75As epilayer containing 0.2% 
excess As. 

Anneal 
Temperature Cq 

650 
700 
750 
800 
900 

As Cluster 
Spacing (A) 

500 
523 
604 
724 
885 

As Cluster average 
diameter (A) 

47 
79 
88 
105 
138 

COMPOSITE FORMATION USING ION-IMPLANTATION 

Carrier Lifetime (ps) 

4.2 
5.6 
8.9 

12.3 
20.4 

Claverie et al.21 demonstrated the fabrication of composites of As clusters in GaAs by 
As-implantation and thermal annealing. Composite structures with ErAs precipitates in GaAs 
have also been reported.22 We have formed FeAs and NiAs2 precipitates in GaAs by ion­
implantation and thermal annealing. This technique may allow further tailoring of composite 
properties in addition to affording lateral control of carrier lifetimes. 

GaAs samples were implanted with] x 1016 ions/cm2 of Fe or Ni at an energy of 170 ke V 
and at room temperature. The samples were annealed at 950°C for 30 sec or at 600°C for 30 
min with a GaAs proximity cap. TEM analysis revealed a composite structure consisting of 
metal clusters in a GaAs matrix. The size of a typical precipitate is 35 nm in diameter with 
moire fringes clearly seen as shown in Fig. 2 for the Ni implanted sample that was annealed at 
950°C for 30 s. However, precipitates within about 40 nm of the surface are smaller (6 nm in 
diameter) with larger (90nm) precipitates protruding from the surface. The precipitates are not 
all spherical-some of the precipitates appear faceted. Microdiffraction experiments clearly 
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Figure 1. Density and average size of As clusters in three different epilayers as a function of 
temperature for a 30 s anneal. Two of the epilayers are GaAs, one containing 0.3% and the 
other 0.9% excess As. The third epilayer is AlO.2SGao.7SAs containing 0.2% excess As. 

of 

Figure 2. Transmission electron microscope image of a GaAs region that was implanted 
with Ni and annealed for 30 s at 950°C. 
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show the presence of extra spots in the diffraction pattern, which were identified as being due 
to orthorhombic FeAs or NiAs2 in a particular orientation with respect to the GaAs matrix. 
The (004) X -ray rocking curves of the annealed samples showed only a sharp substrate peak 
and no extra peak as observed before annealing. This indicates that most of the strain in the 
matrix was relaxed by precipitation. The optical properties of these new composites are yet to 
be explored. Preliminary Hall effect measurements on the Fe and Ni implanted samples that 
were annealed at 950°C for 30 s showed they are both p-type with carrier concentrations of 
2.5x1017 cm-3 and 7.5x1017 cm-3, and mobilities of 179 and 252 cm2/V-sec, respectively. 
The carrier concentrations and mobilities could not be determined for the samples annealed at 
600°C for 30 min because they were too resistive. The ability to form these composites with 
different metals may allow an additional degree of control of the composite properties due to 
the different Schottky barriers associated with different metallGaAs interfaces. 

CARRIER LIFETIMES 

The carrier lifetimes were determined using a pump-probe measurement of differential 
transmission. A Coherent Mira 900f titanium:sapphire laser was used to produce -125 fs 
pulses tuned to a wavelength of 866 nm for measuring the GaAs epilayers and tuned to a 
wavelength of 720 nm for measuring the Alo.25Gao.75As epilayer. These wavelengths were 
chosen to provide photons of energy about 10 me V above the bandgaps so as to probe the 
states near the conduction and valence band edges. The pulse from the titanium:sapphire laser, 
which was running at 73 MHz, was split into a pump and probe beam. The pump beam had 
an average power of 100-200 mW and was focused to a spot size of approximately 50 llm. 
The probe beam had an average power of 4-5 mW and was focused to a slightly smaller spot. 
The pump beam fills the conduction band states thereby reducing the absorption. As the 
electrons recombine the absorption increases back to its equilibrium value. This transient in the 
absorption is measured as a function of time using the probe beam, which is delayed relative 
to the pump beam by using an Aerotech linear translation stage to vary the optical path length. 

The transient responses-plotted as normalized differential transmissions-are shown in 
Fig. 3 for the GaAs epilayer containing 0.9% excess As for different anneal conditions. The 
carrier lifetime is determined by fitting the transient in Fig. 3 with an exponential. In order to 
insure the fit is dominated by carrier recombination rather than carrier cooling or system noise, 
the fit portion is 1.5 ps after the peak to the point where the transient reaches 10% of the final 
value. The results of carrier lifetime versus precipitate spacing are shown in Fig. 4 and Tables 
1-3 for the GaAs epilayer containing 0.9% excess As, the GaAs epilayer containing 0.3% 
excess As, and the AI0.25GaO.7SAs epilayer containing 0.2% excess As. These results indicate 
an increase in carrier lifetime with increase in precipitate spacing. 

In order to interpret the data in Fig. 4, assume a single recombination center. The carrier 
lifetime can be described by, 

't=_l-
aNvt 

where a is the capture cross section of the trap, N is the number of empty traps and Vt is the 
electron thermal velocity. If we suppose the trap is the As cluster, then the capture cross 
section is proportional to the area of the precipitate and proportional to the cluster spacing. 
This model doesn't quite describe the observed trends because the GaAs epilayer with 0.3% 
excess As has a shorter carrier lifetime than the GaAs epilayer with 0.9% excess As when the 
cluster spacings are the same. For the same As cluster spacing one would have expected the 
GaAs epilayer with 0.9% excess As to have the shorter carrier lifetime because the As clusters 
are larger-hence the capture cross section a is larger. Possibly in addition to the As clusters, 
there are other point defects playing a role in determining the carrier lifetimes. Alternatively, 
the As clusters are the main recombination sites and the free carriers are transported to the 
clusters by diffusion. This would result in the recombination time varying as the square of the 
spacing between clusters as illustrated in Fig. 4-the variation of lifetime in the three films for 
a given As cluster spacing being due to differences in mobilities. For the same As cluster 
spacing, the GaAs region between As clusters in the epilayer with 0.9% excess As should 
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Figure 3. Normalized differential transmission measurements of low-temperature-grown 
GaAs showing the dependence of the decay of the differential transmission on the As cluster 
coarsening anneal. The anneals were of duration 30 s at the temperatures indicated. The 
normal GaAs film is 1 11m MBE material implanted with lxl012 cm-2 protons in order to 
assure recovery to equilibrium between laser pulses. 
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have a lower mobility than the GaAs region between As clusters in the epilayer with 0.3% 
excess As. 

USE AS A PHOTOCONDUCTIVE SWITCH 

A mode locked Nd-YLF laser was used to generate infrared pulses that were compressed 
and frequency doubled to produce 5ps, 527-nm pulses of 200 mW average power at a 
repetition rate of 76 MHz. These pulses were used to photoconductively switch coplanar-strip 
hom antennas that were fabricated on GaAs epilayers containing As cluster, as described 
earlier, so as to launch and subsequently detect electromagnetic pulses. 

The fIrst experiment consisted of three fIlms that were grown at substrate temperatures of 
220, 250, and 270°C, which results in a progressive decrease in the As density. These three 
fIlms were annealed in the MBE system before removal at 600°C for 20, 45, and 50 minutes 
respectively to cause the excess As to precipitate. As one goes from the 220°C grown sample 
to the 270°C sample, there is a corresponding increase in the carrier lifetime and carrier 
mobility as the As cluster density decreases. The peak radiated signal is strongly dependent on 
the growth temperature, increasing with decrease in As cluster density. The transmitted 
waveforms had peak radiated fIelds of 800, 2400, 3500 for the antennas fabricated on 
epilayers ·grown at substrate temperatures of 220, 250, and 270°C. This enhancement in 
radiated fIeld intensity occurred without a loss of pulse bandwidth. 

As a second experiment, antennas were fabricated on an epilayer grown at 270°C that was 
cleaved into three pieces that were annealed for 30 s but at three different temperatures, 700, 
800, and 900°C. There is a progressive decrease in the As cluster density as one goes from the 
700°C annealed sample to the 900°C annealed sample with a corresponding increase in carrier 
mobility and lifetime. Measurements were performed using these three antennas as 
transmitters and a separate antenna fabricated on the epilayer grown at 220°C and annealed for 
20 minutes at 600°C as the receiver. The transmitted waveforms had peak radiated fIelds of 
800, 2300, 4500 for the antennas fabricated on wafers annealed at 700, 800, and 900°C. The 
duration of the waveforms was not strongly dependent on the anneal temperature such that the 
900°C anneal enhances radiated fIeld intensity signifIcantly without sacrifIcing bandwidth. 

SUMMARY 

We have demonstrated the ability to engineer composites of metallic As clusters in 
arsenide semiconductor matrices by using the substrate temperature during MBE to set the 
amount of excess As in the epilayer and a subsequent nucleation/coarsening anneal. The 
carrier lifetime was shown to be a strong function of the As cluster spacing and hence a 
controllable parameter. These composites were used to photoconductively switch coplanar­
strip hom antennas. There was a strong increase in peak radiated pulse intensity with decrease 
in As cluster spacing probably due to an increase in carrier mobility. Although carrier lifetimes 
increase with increase in As cluster spacing, for our applications with 5 ps excitation pulses 
this did not adversely affect the shape of our radiated pulses for the composites we 
investigated. Therefore, for a given application as a photoconductive switch, one can engineer 
the composite structure for optimum carrier lifetime and mobility. An interesting alternative for 
forming composites with other metals using ion implantation followed by a 
nUcleation/coarsening anneal was also demonstrated. 
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THE USE OF OPTICALLY TRIGGERED, HIGH GAIN GaAs 
SWITCHES FOR UWB PULSE GENERATION 

ABSTRACT 

G. M. Loubriel, F. 1. Zutavem, M. W. O'Malley, 
R. R. Gallegos, and W. D. Helgeson 

High Power Electromagnetics Department 
Sandia National Laboratories 
Albuquerque, NM 87185-1153 

A high peak power impulse pulser that is controlled with high gain, optically triggered 
GaAs Photoconductive Semiconductor Switches (PCSS) has been constructed and tested. 
The system has a short 50 Q line that is charged to 100 kV and discharged through the 
switch when the switch is triggered with as little as 90 nJ of laser energy. The laser that is 
used is a small laser diode array whose output is delivered through a fiber to the switch. 
The current in the system has rise times of 430 ps and a pulse width of 1.4 ns when two 
laser diode arrays are used to trigger the switch. The peak power to the load is, at least, 44 
MW. The small trigger energy and switch jitter are due to a high gain switching 
mechanism in GaAs. This experiment also shows a relationship between the rise time of 
the voltage across the switch and the required trigger energy and switch jitter. 

INTRODUCTION 

This research has focused on optically triggered, high gain GaAs switches for high speed, 
high power electronics and optoelectronics. The practical significance of this high gain 
switching mode is that the switches can be activated with very low energy optical 
triggers. 1 For example, this work will show that a 90 nJ optical pulse has triggered 
switches that have delivered 44 MW for -1 ns in a 50 Q system, and previously we have 
switched 6 MW for -100 ns in a 0.25 Q system.2 The GaAs switches used in this 
experiment are lateral switches: they have two contacts on one side of a wafer separated 
by an insulating region of intrinsic material (see Figure 1). At electric fields below 4 
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kV/cm, the GaAs switches are activated by the creation of, at most, one electron hole pair 
per photon absorbed. This linear mode demands high laser power, and after the light is 
extinguished, the carrier density decays in 1- 10 ns. At higher electric fields these 
switches behave very differently. The high field induces carrier multiplication so that the 
amount of light required is reduced by as much as five orders of magnitude 1,2. This high 
gain mode is characterized by fast current rise times (-400 ps) and filamentary currents 
with densities of several MNcm2 and diameters of 50- 300 !lm (from the photographs of 
recombination radiation). In the "on" state there is a characteristic, constant field across 
the switch called the lock-on field. The switch current is circuit-limited provided the 
circuit maintains the lock-on field.2 Table 1 shows the results from this experiment and 
the best results that we have achieved (in other work) with the high gain GaAs switches 
when triggered with either compact laser diode arrays or with flashlamp-pumped lasers. 
The works of many others has been presented at various conferences.3 

contact 

/ 
LI ______ I __ ... ____ - ........ ! semic ond uctor 

Figure 1. Schematic of the lateral switches that are used in this study. Light illumination is either uniform 
(as shown) or through a small fiber optic line that ends near one of the contacts. 

Table 1. Summary of results from tests with high gain GaAs switches. The first column 
shows the results described here, the second column includes results from previous tests. 

This Exp. Other* 
Switch Voltage (kV) 100 155 
Switch Current (kA) 1.0 5.2 
Peak Power (MW) 44 120 
Rise time (ps) 430 430 
R-M-S iitter (ps) 150 150 
Optical Trigger Energy (nI) 180 90 
Repetition Rate (Hz) 1,000 1,000 
Electric Field (kV/cm) 67 100 
Device Lifetime (No. pulses) NA 500,000 
* Not all the results are simultaneous. 
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EXPERIMENTAL SETUP 

The circuit that was used in these tests is shown in Figure 2. It operated in bursts of up to 
5 pulses at a repetition rate of 1 kHz. We charged a nominally 1.0 ns long, 47 n, parallel 
plate transmission line. This line is discharged with either one or two switches into a 50 n 
load. We measured the voltage on the transmission line and the current through the load. 
A typical transmission line voltage waveform is shown in Figure 3. The voltage on the 
line, shown at 100 ns/div., rose to a peak value with a charge time of 210 ns. At this point 
the laser activated the switch and the line voltage dropped. If only one switch was 
triggered, the resulting load voltage was a monopulse. If both switches were triggered 
simultaneously the load current was a monocycIe (bipolar pulse). Previous studies show 
that, as the switched field increases, the switch rise time decreases and the trigger energy is 
reduced.2 We used switches with an insulating region of 1.5 cm at a voltage of 100 kV. 
At this voltage, the energy on the charge line was 54 mJ. Because the fields across the 
switch were above air breakdown the switches were immersed in a dielectric liquid 
(Fluorinert®). To avoid corona and breakdown, the transmission line was in SF6 gas. 

Laser 
_----I Diode 

Fiber Optic 
Line (2) 

Array 

Switch Holder (2) 

Laser 
Diode 
Array 

R'oad 
50 Ohms 

Figure 2 . Schematic of the circuit that was used in these experiments. A short (l ns), 47 n transmission line 
(the charge line) was charged to high voltage at a burst repetition rate of I kHz. Two switches were used on 
either side of the line to discharge the line into a 50 n load. 
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Figure 3 . The voltage on the charge line. The waveform is displayed at 20 kV/div. (0 is one division from 
the top) and at 100 ns/div. The charge time is 210 ns and the peak voltage is 100 kV. When the voltage 
reaches its peak value of 100 kV the laser diode arrays triggers the switch (at the center of the waveform) 
discharging the line. 
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Two laser diode arrays were used to trigger the switches. Each consisted of three laser 
diodes coupled to a 300 /lm fiber optic. Each array delivered 90 nl in 4.2 ns at 876 and 
857 nm to a spot near the positive high voltage (100 kV) side of the switch. For other 
tests, these same laser diode arrays were configured to produce a longer pulse (20 ns) with 
larger energy (1.8 fll) and power (90 W). The waveforms for the laser output are shown in 
Figures 4 and 5 for the 90 nJ and 1.8 fll configurations, respectively. 

All the monitors were calibrated. The calibration of the low bandwidth voltage monitor 
was straightforward. We assume the calculated values of the impedance of the system. 
The calibrations of the load resistor and current viewing resistor in parallel with it were 
carried out at low voltages and at low bandwidth. For this system, charged to 100 kV with 
a line impedance of 47 Q and a load resistor of 50 Q, the maximum current that we expect 
is 1.0 kA. We measured up to 1.3 kA. Because the electrical skin depth at the high 
frequencies is smaller than at the frequencies where the current viewing resistor is 
calibrated, it's resistance may be higher than measured. This affects the calibration and 
may be the reason why the currents are too high. Using the high value of 1.3 kA for the 
current, the peak power switched is 84 MW. Using the charge voltage of 100 kV and an 
estimate of the switch voltage drop (9 kV, although it could be as low as 6 kV), the peak 
power is 44 MW. 

Laser 
Diode 0 

Output 
(Arbitrary 

Units) 
() 10 20 30 40 

TIME ( 5 ns/division) 

Figure 4. The output (arbitrary units) from the laser diode arrays configured in such a way that the total 
energy in the pulse is 90 nJ. The pulse duration is 4.2 ns. The peak power is 21 W. 
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Figure 5. The output (arbitrary units) from the laser diode arrays configured in such a way that the total 
energy in the pulse is 1.8 pl. The pulse duration is about 20 ns. The peak power is 90 W. 
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RESULTS 

In the first set of tests both laser diode arrays were used to activate one switch and obtain a 
monopulse. The highest current measured with this system is shown in Figure 6. The 
width of the current pulse and its peak value depend on the time delay between when the 
two laser diodes are triggered. When both diodes are triggered to produce simultaneous 
current pulses, the current is largest and the current pulse width is smallest. The highest 
current (figure 6) was 1.3 kA with a rise time of 430 ps and a pulse width of 1.4 ns. As 
discussed above this current is too high. With one laser diode activating one switch the 
current is about 1.1 kA with a rise time of about 770 ps and a pulse width of 1.8 -1.9 ns. 
The switched power can be obtained from the switched voltage (100 kV), the system 
impedance (47 Q), the load resistance (50 Q), and the voltage drop across the switch (9 
kV, although it may be as low as 6 kV): 44 MW. 

Load 
Current 
(Amps) 

-0 I 

-0 2 

-0 l 

-04 

-05 

" 40 60 80 100 120 140 160 180 200 220 

TIME(ns) 

Figure 6. The current through the 50 n load when both laser diodes are used to trigger one switch. This is 
the fastestrisetime (430 ps) and the smallest width (1.43 ns) that we measured. 

The difference in current waveforms when we use one laser versus two may be due to two 
different reasons: a difference in the switch inductance and a the dynamics of the high 
gain process. Our circuit simulations show that the current risetime for a total inductance 
of 18 nR would be about 430 ps with a width of 1.3 ns. An inductance of 40 nR results in 
a rise time of 740 ps with a width of 1.6 ns. Thus it may be possible that one filament with 
an inductance of 40 nR results in one current waveform and two filaments with about half 
the inductance create a faster current pulse with a faster rise and smaller width. The 
problem with this scenario is that the inductance we expect, based on the pictures of the 
filaments that gave rise to these current waveforms, is much smaller. In this setup the 
inductance of a filament is estimated to range from 15 nR to 21 nH for filament radii of 
300 ~ to 50 ~m, respectively, assuming that the filament keeps that radius for 1.5 cm. 
The pictures show a filament that starts small but ends with a width of about 1 cm. The 
inductance would be much smaller (4 nR). Thus, there are other factors contributing to 
the different waveforms. One possibility is that the gain in one filament may be affected 
by the presence of the other filament resulting in a faster process: the lower current 
density in each filament may allow it to create more carriers, especially if there is an upper 
bound in the carrier density. Another possibility is that both filaments are generating 
carriers and thus the time required for their combined resistance to drop from 2Z to 'Z12 
(where Z is the impedance of the system) is reduced by a factor of two. 
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The second set of tests utilized both laser diodes, each triggering one switch, to produce a 
monocycle. Figure 7 shows the current waveform. In theory, with ideal switching, the 
monocycle should be composed of two monopulses of opposite polarity each with half the 
pulse width. Thus, we expect a monocycle composed of a negative and positive pulses 
with a width (each) of 0.9 ns. What we observe is a width of 1.0 ns for the negative pulse 
and 1.3 ns for the positive pulse. The reason for this is a timing error of about 200 ps. 
The minimum width should occur when both switches are triggered simultaneously. It is 
very important to trigger both switches at the same time to obtain full voltage and to obtain 
the proper waveform. In our tests, the switch jitter did not allow us to always reproduce 
the waveform of Figure 7 even with identical starting conditions. 

Load 
Current 

400 

200 

(Amps) -200 

~400 

-600 +--"T"'"~..,.~...,-.......,r--~,....-...--...,.--+ 
210235 26.0285310335360385410 

TIME(ns) 
Figure 7. The current through the 50 n load when each of the two laser diodes is used to trigger one switch. 

Low jitter triggering at 90 to 180 nJ of optical energy depends on the rise time of the pulse 
charging (voltage) waveform. We tested this effect in a experiment where the first to last 
timing spread was recorded for different voltage rise times (210, 590, and 865 ns) and 
different laser energies (90 nJ and 1.8 J.1l). Neither laser energy triggered the switch with 
the 865 ns rise time. The 90 nJ did not trigger the switch when the voltage rise time was 
590 ns. The 1.8 J.1l did trigger the switch when the rise time was 590 ns but only about 
half the time. The first to last timing spread was 6 ns for one ten pulse sequence and up to 
100 ns in others. For the 213 ns rise time both laser energies resulted in timing spreads of 
< 1 ns. The experiment shows a relationship between the rise time of the voltage across 
the switch, the required trigger energy, and switch jitter. This is in marked contrast to the 
switch rise time for linear photoconductivity where the drop in switch resistance is 
dependent only on the laser pulse and the carrier lifetime. Note that the dielectric 
relaxation time, pt, is 11.6 ~s. Thus, these effects are occurring at times that are much 
shorter than the relaxation time. It may be possible that the effect that we observe is 
related to trap filling in the GaAs because trap filling affects the electric field distribution. 

CONCLUSION 

This study has shown that it is possible to obtain high peak power (>40 MW) impulses in 
a system with an impedance of 50 Q using laser diode triggered PCSS operated in the high 
gain mode. The system was operated at a burst repetition rate of 1 kHz. The system is 
very small because laser diode arrays of very small energy output (90 nJ) were utilized to 
trigger the switches. The ability of the laser diodes to trigger the switches was enhanced 
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by fast (210 ns) charging of the transmission line which the switch discharges. An added 
benefit of the faster charging was a small switch jitter (150 ps). The small jitter may allow 
the use of these pulsers in transmitter arrays. 
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INTRODUCTION 

The bandwidth limitations of an "ultra-wideband, short-pulse" circuit is quantified by the 

temporal response of the electronic circuit. The upper bandwidth limit of an electronic circuit 

is determined by the maximum rate of current change in the circuit which is further defined by 

the ratio of the circuit voltage to the circuit inductance. Thus, "ultra-wideband" pulse 

generation requires a large voltage and a small inductance. Once the operating voltage is 

maximized and the inductance is minimized for a particular system, the circuit temporal 

response is then limited by charge carrier transit time and stray capacitance in active circuit 

devices. 

This paper discusses the investigation and development of compact, "credit card" size 

impulse generators with megawatt range, peak power levels using common electronic 

components and moderate source voltages. Methods of reducing the power supply voltage, 

increasing the pulse output voltage, and reducing the effective device charge carrier transit 

time are reported. These short pulse generators have direct application as impulse transmitter 

sources, applications in electro-optic control applications as well as optical source, injection 

laser driver applications. Recent low pulse rate performance will be reported as well as 

development plans for high pulse rate operation. In addition, a number of applications of the 

compact impulse generator technology will be presented, including the control of much 

higher power non-linear photo-switched systems. 
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BACKGROUND 

Moderate voltage (several kV) pulses with sub-nanosecond rise and fall times have many 
applications in electro-optical gating devices as well as drivers for semiconductor injection 
lasers and ultra-wide band radiation sources. Series or parallel arrays of injection lasers 
driven by these impulse generators can be used to replace solid state lasers in many 
applications that require efficient, small, but high power optical pulses. This paper discusses 
two approaches for generating very short impulses, both unipolar and bipolar, using readily 
available semiconductor switches. 

Pulse Generator - Compressor System 

The first method of generating an UWB impulse for moderate power levels(O.5-1 MW) 
and high pulse rates (1-10 MHz) uses a high pulse rate MOSFET semiconductor switch to 
produce a relatively slow (1-2 ns) voltage transition that is then compressed in a non-linear 
transmission line. 

The operating voltage ofFETs with the closure characteristics desired for UWB impulse 
generation is limited to several hundred volts per device. Increasing the individual device 
voltage increases the device closure time. Thyristors, at least commercially available silicon 
thyristors, that operate at several kilovolts, have switching times in the tens of nanosecond 
range. Note that thyristors fabricated with other materials such as Gallium Arsenide, GaAs, 
have been demonstrated with switching times of less than 1 ns and several hundred volts. 
The closure time of conventional Bipolar junction and FET semiconductor switches are 
limited (1-2 ns) by carrier transit times that increase as the device operating voltage is 
increased. Therefore, these devices are not appropriate for direct generation of sub-l00 ps 
electrical impulses. 

The schematic of the FET pulse generator and non-linear transmission line pulse shaping 
circuit is illustrated in Fig. I. In this arrangement, the high pulse rate capability of the FET is 
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Figure 1. Illustration of FET pulse generator and non-linear transmission line pu!se sharpener 

complemented by the pulse sharpening behavior of the non-linear transmission line, fabricated 
from reversed biased diodes. The output pulse tail is clipped by a TRAPATT diode to 
generate a single, very short duration impulse. Pulse shaping using this approach has been 
previously demonstrated by several groups, 1, 2 ,but the energy transfer efficiency, or the 
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ratio of the initially stored energy to the energy deposited by the single pulse in the load is 
low. 

The several kV transition is then input into a lumped element, non-linear transmission 
line that is fabricated from lumped element inductors and voltage dependent capacitors in the 
form of variactor diodes. The depletion capacitance of a reverse biased, pn junction diode 
varies as 

(1) 

where V d is the reverse diode voltage, V 0 is the inherent pn junction voltage, Co is the 

capacitance at V d =0, and n is a number in the range 0.33 to 4. Thus the capacitance in the 

transmission line is a function of the voltage on the line. The impedance of a constant 
element, lumped element transmission line is given by 

I 

z=(~:J (2) 

where Ls is the transmission line section inductance and Cs is the section capacitance. In the 

non-linear or voltage dependent capacitance case, the impedance becomes 

(3) 

In variable impedance transmission lines, the voltage gain is determined by the square root of 
the change in impedance from the nominal value. In the case described above, the ratio of the 
output voltage, Vo to the input voltage, Vi, or the voltage gain is then 

Vo = (ZO)1I2 = (V do _ )n!4 
V· z· V 1 1 1 0 

(4) 

where the value of V do is much larger than Yo. In this case, for a peak value of V do = 1000 

Vo and n = 0.5, the voltage gain is approximately 3. Thus for an input voltage of 1 kV, the 

output voltage would be about 3 kV. 
A simulation of an 18 section, non-linear transmission line section in a circuit similar to 

that shown in Fig. 1 is illustrated in Fig. 2. An input pulse with a risetime of two ns and a fall 
time of IOns is compared with the output of an 18 stage non-linear transmission line. Note 
from Fig. 2, that the voltage gain is approximately two and the risetime of the output pulse is 
in the 100 ps range. Also note that after the first peak, the pulse has a large tail and that only 
a small fraction, less than 10% , of the energy originally stored in the pulse capacitor is in the 
first pulse. 

The last section of the system illustrated in Fig. I is a pulse tail clipping circuit that is 
based on a TRAPAIT (Transient Plasma Avalanche Transit Time) diode. The TRAPAIT 
diode will close after the peak of the voltage to short out the energy in the compressor pulse 
tail resulting in an energy transfer efficie,ncy of less than 10 percent. In this fashion, a fast 
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risetime and fast fall time, short pulse can be generated. The limits on energy ftransfer 
efficiency are thus due to the long pulse tail generated by the initial switch. In general, the 
energy transfer efficiency improves as the initial pulse length approaches the transit time 
through the non-linear transmission line section. 
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Figure 2. Illustration of Non-linear transmission line pulse shaping 

The simulation shown in Fig. 2 is for a 100 Ohm load. The previous equations 
indicate that the square root of the ration of the output impedance to the imput impedance of 
the nonlinear transmission line is equal to the pulse compression or the voltage gain. In the 
case of the circuit shown in Fig. 2, an output impedance of 100 Ohms would require the 
input FET to switch into an effective impedance of 25 Ohms, increasing the current 
magnitude and risetime requirements of the FET switch. 

The limited voltage and the limited energy transfer efficiency of the FET pulse 
generator-compressor system led us to consider other alternative. 

Transient Wave Erection Marx Pulse Generator 

The Marx circuit, illustrated in Fig. 3., in which capacitors are charged in parallel and 
discharged in series to obtain voltage gain has been used in many high voltage applications. 
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In common application, one or more of the initial series switches are closed with an 
external signal and the switching transients are used to close the remaining series switches. 
In Fig. 3, the switches are usually spark gaps which close when the transient voltage exceeds 
the breakdown voltage of the gas between the electrodes. Note that the stray capacitance 
illustrated in Fig. 3 is essential for transient switching. The switching transients serve to 
charge the stray capacitance before the output switch self closure such that the rise time is 
essentially due to the discharge of the stray capacitance into the load. The pulse duration is 
then due to the major capacitors and the stray inductance in the system. 

TRAPATT or Avalanche Drift Diode Operation 

For a semiconductor based pulse generator with sub-ns closure requirements, spark 
gaps, thyristors or common FETS are not viable. However, TRAPATT (Transient Plasma 
Avalanche Transit Time) diodes function in much the same method as a spark gap. 
TRAPATT diodes, invented in the U.S. in the 1960's, have been developed by Russian 
engineers as avalanche drift diodes. A TRAPATT diode, biased near its breakdown voltage, 
can be made to switch in sub-ns time scales by increasing the voltage at and raising the 
voltage at a rate greater than 1012 volts/second 3 

Avalanche drift diodes or TRAPATT diodes are used as self closing peaking switches in 
pulse charged circuits 4 S 6 similar to that shown in Fig. 4, in which the voltage across a 
peaking diode is 
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Figure 4. Diode Peaking Circuit 
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rapidly increased by pulse charging a charge transmission line as illustrated in Fig. 5. The 
reversed biased diode supports the increase in voltage for a delay period and then 
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Figure 5. Diode Pulse Charge and Switching Waveforms4 
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transitions to a reverse conduction mode. The waveforms shown in Fig. 5 also illustrate the 
Soviet SOA in this technology in that the diodes can produce voltage pulses of approximately 
1.7 kV into a 50 Ohm load. The pulse rate of this device is limited by the thyratron pulse 
charge system. 

The TRAPATT closure mode is anomalous in that the reversed biased, p+-n-n+ diode 
switching time is much less than the time required for a carrier to traverse the intrinsic 
semiconductor region, even at the maximum possible drift velocity. TRAPATT switching, 

illustrated in Fig. 6., occurs when the p+-n-n+ 
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Figure 6. Illustration ofTRAPATT Switching Mode 

n+ f-

+ 

structure is reversed biased such that a large electric field is applied to the semiconductor 
material. In the reverse biased condition, the semiconductor is depleted and thus the density 
of free carriers is small, even at moderate temperatures, such that the possibility of avalanche 
multiplication is minimized. Closure is initiated when an additional, rapidly rising voltage 
pulse is applied to the diode to increase the electric field to several times the semiconductor 
dielectric strength for a few ns as illustrated in the top part of Fig. 6. Most of the voltage 

impulse appears at the reverse biased, p+n junction near the cathode, where the injected 
carriers and the very high electric fields produce a avalanche ionized, elec';ron-hole plasma 

46 



region. The lower portion of Fig. 6 illustrates the propagation of the ionized region toward 
the flow of holes from the anode, leaving behind a high density electron-hole plasma, at a 
velocity than can be several orders of magnitude greater than the saturated carrier drift 

velocity. In this manner, the high voltage p+-n-n+ device can close in a short period of 
time compared to the saturated carrier drift time. Soviet technology has demonstrated this 

performance in both GaAs and Si p+n n+ diodes. 
Furthermore, the avalanche switching in GaAs diodes has been visualized 7 when 

operating in the peaking mode. Image converter camera data has observed 200 micron 
diameter, relatively diffuse conduction at lower voltages that results in ns closure with 

effectively saturated carrier drift velocities of 107 cm/s. As the voltage is increased, the 
channel diameter drops to approximately 20 microns and the average current density reaches 

MAlcm2 which damages the semiconductor structure. The postulated closure mechanism is 

thought to be due to streamer propagation at velocities in the 109 cmls range. 
Additional work at the loffe Physiotechnical Institute has observed extended conduction 

in a n+p-nn+ structure. 8 By selectively doping the anode or positive contact to enhance hole 
injection the extended conduction voltage can be can be reduced to 500 volts when the initial 
withstand voltage was over 2 kV. 

The scaling of the conduction area in high voltage avalanche diodes has been 
investigated by the loffe group9 . This work reported the design of avalanche diodes with an 

active area of 2 cm2 and a percent avalanche conduction area of approximately 50 %. The 
design of an avalanche diode operating at 3-6 kV and a working current of 1250 A is 

predicted. In addition, this work indicates that an avalanche diode with an area of 23 cm2 
can be operated in an avalanche mode with forward avalanche current densities up to 100 

A/cm2 while the reverse current densities can be as low as I A/cm2 . 

TRAPATT Diode Marx Pulse Generator Circuit 

Combining the common Marx circuit and the TRAPATT diode switches enables the 
design of an impulse circuit that is initiated with a common FET switch as illustrated in Fig. 7. 
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The circuit is designed such that the stray capacitances on the output side of the TRAP ATT 
diode switches are sufficiently large to insure that that terminal remains at ground while the 
diode voltage is increased. The Marx circuit output voltage is approximately, 

(5) 
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where N. is the number of Marx capacitor stages, Vc is the charging voltage, Vd , is the 
TRAPATT conduction voltage. For example, a six stage Marx with a charging voltage of 
500 volts, a diode conduction voltage of 100 volts can be used to generate an output impulse 
of2400 volts. Furthermore, a 500 volt FET can be used to switch the first stage. 

The output impedance of the Marx, after all the switches have been closed, is determined 
by the series inductance and series capacitance or 

(7) 

The output from a 6 stage Marx circuit charged to 500 volts per stage is shown in Fig. 8 
into a load of 50 Ohms. Approximately 40% of the energy originally stored in the capacitors 
is delivered to the load. The waveform of Fig. 8 corresponds to a conduction drop of 
approximately 100 volts per diode and a characteristic output impedance of approximately 
6.5 Ohms. 
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Output Pulse from Six Stage TRAPATT Diode Switched Marx Circuit 

We have designed and tested a six stage, TRAPATT diode switched, Marx, TDSM, 
Circuit that generates a 2400 volt, bipolar output pulse with single cycle duration of 
approximately 750 ps. The TRAPATT diode switched Marx circuit is more energy efficient 
than a pulse generator-non-Iinear pulse compressor system and can be designed to have a 
much lower output impedance than other approaches. Scaling studies indicate that a TDSM 
circuit, scaled to 13 stages will generate a 5000 volt impulse with a half period of 500 ps and 
an output impedance of 10 Ohms. 

Additional investigations will determine the feasibility of high recharge and/or pulse 
rates. 
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INTRODUCTION 

In developing a pulsed ultra-wideband (UWB) radiation system some of the primary 
requirements are short pulse-width,jitter-free operation, and portability. The optical system 
which we present addresses all of these issues. 

The optically triggered UWB pulser consists of several units. The heart off the pulser is 
a photoconductive switch (PCS)l. The PCS works on the principle of picosecond 
photoconductivity2. When illuminated with an optical pulse, the conductivity of a 
photoconductor will rise in response to the electron-hole pairs generated by absorbed 
photons. The rise in conductivity can easily be on the order of picoseconds if a picosecond 
rise-time optical pulse is used. Furthermore, the triggering of the PCS occurs without jitter 
compared to the optical pulse. Thus we can generate a fast-risetime pulse optically and use 
the PCS to generate a fast-risetime electrical pulse. The electrical pulse is then sent to a UWB 
antenna where it is radiated into free space. 

The key feature of this technique is the jitter-free nature of the electrical pulses which 
are produced. If a mode-locked laser is used as the optical trigger, we note that the laser 
repetition rate is locked in synchronization with a master oscillator (frequency synthesizer). 
Hence, external electronics can easily be synchronized to the laser pulse-train through the 
master oscillator. 

This is important when we consider the problem of noise. Since the energy of a UWB 
pulse is spread throughout the spectrum, the power spectral density of the UWB pulse can 
easily be near or below the noise floor; this may be a desirable property if the signal is to be 
secure. One very basic noise reduction technique which allows one to recover a signal from 
below the noise floor consists of synchronously averaging together the received signal for 
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multiple pulses. If the received pulses are temporally coherent, as they are in this optical tech­
nique, the signal to noise ratio can be improved by averaging. If the pulse-repetition rate is 
high enough, the averaging can be completed in real-time. Our custom laser provides a 530 
Hz repetition rate allowing real-time averaging of the received signal. 

Another advantage of the jitter-free nature of optical triggering is that multiple switches 
can be triggered from the same optical pulse train, each driving a separate antenna. Thus, a 
temporally phased array can be built to produce steerability and increased directivity. By 
using fiber optic delay lines, the phasing between eaeh antenna ean be adjusted. 

Finally, the jitter-free nature and high repetition rate may be exploited by controlling the 
laser drive electronics (oscillator frequency and Pockels Cell driver delay) to provide pulse 
position modulation. Thus, pseudo-random noise (pn) codes could be used to drive the sys­
tem in a spread-spectrum communications system3. 

The major barrier to employing a practical system is portability. Many commercially 
available mode-locked picosecond lasers require almost a whole room full of space, not to 
mention special hook-ups to power and city water. However, with the recent development of 
semiconductor diode array technology it has beeome possible to develop a portable picosecond 
laser which is compact (fits on a small table) and requires only a standard wall plug connec­
tion. 

The first step in this work was to develop such a portable laser. This laser was then 
tested as the optical trigger for a GaAs PeS driving a conical UWB antenna. In this paper we 
present the results from this completed system as well as design considerations involved in 
each of the following subsystems: optical driver, PCS, pulse forming network (PFN), and 
antenna. 

OPTICAL DRIVER 

In order to activate a photoconductive switch we desire a short pulse (less than 100-ps), 
high energy (>5IlJ), and high repetition rate (>100 Hz) laser which is portable. In order to 
guarantee small size, gas-laser or flashlamp pumps are clearly excluded. These are bulky and 
require external connections to cooling water. However, a semiconductor diode array laser is 
ideal, with CW powers on the order of Watts commercially available. Also, the laser gain 
medium must not require external cooling; it must exhibit excellent thermal conductivity and 
not suffer from ill effects such as thermal lensing. Finally, a regenerative amplifier must be 
included to produce pulse energies high enough to trigger a PCS. 

These considerations were all included in our present optical driver design which is 
shown in Fig. 1. The optical driver consists of two sections, an oscillator and a regenerative 
amplifier. Both use Nd:YLF (A = 1.053 Ilm) as a gain medium. A fiber coupled, IW CW 
Spectra Diode Labs semiconductor diode array laser (A = 795 nm) is used as a pump for 
both sections. This significant cost and weight savings is achieved by pumping the amplifier 
with the V polarization of the pump beam and the oscillator with the H polarization of the 
pump after rotation back into the V plane with a half-wave plate. The oscillator cavity is 
mode-locked at a frequency of 53 MHz and produces a stable 106 MHz pulse train of 40-120 
ps pulses at an average power of 100 mW. An autocorellation trace of the 40 ps FWHM 
pulse is shown in Fig. 2. 

A computer controlled stabilization system is included which maintains a constant 
phase-lock between the phase of the AO modulator drive signal and the oscillator pulse train. 
The 53 MHz acousto-optic modulator (AOM) drive signal is frequency doubled to 106 MHz. 
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Figure 1. Optical driver for the pulser. The lower cavity is the oscillator and the upper cavity is the 

regenerative amplifier. M: mirror, HWP: Half-wave plate, PBS: Polarizing beam-splitter, 1FP: thin film 
polarizer, PC: Pockels cell, L: lens, ET: etalon, DC: output coupler. 
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Figure 2. Autocorrelation trace of the 40 ps full width half-maximum (FWHM) optical pulse from the 
oscillator of the optical driver. 
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A photodiode is used to sample the cavity pulse train which is also 106 MHz. Both of these 
signals, the pulse train and the frequency doubled AOM signal, are mixed down to I MHz 
with a common local oscillalor and fed to a phase comparator. The phase comparator 
produces a DC error voltage corresponding to the phase shift between lhe optical pulse train 
and lhe AOM drive signal. This DC voltage is sensed by a digital to analog converter and is 
used to make small corrections to the AOM drive frequency in order to maintain a constant 
phase shift or constant error voltage. This technique ensures a stable optical pulse. As shown 
in Fig. 3, after running the laser for an 8 hour period, the pulse shape remains stable as the 
drive frequency is changed by the stabilization system. However, if the drive frequency is 
returned to its original frequency a broader, noisier pulse is produced. This type of 
stabilization system is required if the laser is to be employed in the field. 

The Pockels Cell in the regenerative amplifier traps a single pulse from the oscillator 
pulse train and amplifies this pulse using a regenerative or multi-pass technique. The 
regenerative amplifier produces a 530 KHz pulse train of amplified, 5-20 IlJ , 40-120 ps 
pulses which are then used to drive a PCS. To the author's knowledge this is the only 
semiconductor diode-pumped system which combines an oscillator and regenerative amplifier 
in one unit. 

At this point, no effort was made to further reduce the size of the cavity (0.5 m x 2m), 
however, il is possible to fold the cavity, using up a great deal of the empty space which re­
mains. We believe that a size reduction on the order of at least 30% is yet possible. 
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Figure 3. Sampling oscilloscope traces of the optical pulse from the oscillator of the optical driver when 

initially tuned up (a), after 8 hours with active stabilization (b), after 8 hours without stabilization (c). 

PHOTOCONDUCTIVE SWITCH AND PULSE FORMING NETWORK 

The photoconductive pulser generates an UWB pulse by employing a PCS as a closing 
switch in a PFN. While the PCS is open, energy is stored in a combination of inductive, 
capacitive, or transmission line (TL) elements in the PFN. This energy is then delivered to a 
load (or antenna) when the PCS is triggered via a laser pulse into its closed state. 
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Figure 4. Charged transmission line pulse-forming networks used in this experiment. (a) Pulse is delivered 

to a matched load. (b) Pulse is delivered to an ultra-wideband (UWB) antenna and received by an identical UWB 

antenna spaced 10 ern away. 

For example, a charged transmission line PFN is shown in Fig 4(a). The TL is 
charged to the voltage, Vo, while the switch is open. In this case, forward and reverse 
voltage traveling waves are set up in the TL each with amplitude Vo12. When the switch is 
closed, the forward traveling wave is transmitted to the load, while the reverse traveling wave 
is reflected in-phase from the charging resistor, Rc. Hence, a square pulse of amplitude 
VL = Vo12 and length t = 2l1c is delivered to the matched load, RL. A variety of other PFN's 
are possible, for example, a current charged transmission line using a photoresistive 
superconducting opening switch4. 

A variety of semiconductors can be employed as a PCS including Si, GaAs, ZnSe, 
diamond, and SiC. However, only Si and GaAs are responsive to the 1.053 f..Lm wavelength 
which is delivered by the optical driver. Si, however, exhibits problems with thermal 
runaway and must be operated under pulsed bias. Hence, GaAs is the best choice for our 
application. 

In this work a 1 mm thick piece of bulk GaAs with a 3.5 mm2 square cross section 
was used as the PCS. The PCS was used in the PFN shown in Fig. 4. The TL was charged 
to an initial voltage of Vo = 200 V and discharged into an ultra-wideband antenna when 
triggered by an optical pulse. 

UL TRA-WIDEBAND ANTENNA 

There are a several types ofUWB antennas that are available including self-complemen­
tary structures5, spirals6, log-periodic, bowtie and conicaL We chose to employ a conical 
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monopole antenna (CMA) for two reasons. First, the CMA operates in the TEM mode with a 
characteristic impedance, Za, determined by the cone angle. Thus, the antenna was matched 
to the 50 n characteristic impedance of the TL by choosing a cone angle of e = 47" (see Fig. 
4(b)). Second, analytical expressions exist for the radiated and received pulse in the time-do­
main if the round-trip time in the CMA is short compared to the risetime of the driving pulse. 
In this case the radiated far field, Ezrad(t) is given by7: 

Erad (t +r Ie) = ~ 3a 2 eos(a)d 2 V t (t) 
" Z. 4 nre2 dt 2 

(1) 

where Zo is the impedance of free-space, c is the speed of light in a vacuum, r is the field 

location, Vt(t) is the antenna voltage at the feed point, and a and a are the cone half angle and 
length respectively. Similarly for a short receiving antenna the voltage at the terminals, Vr(t), 
is given by7: 

3a 2 eos(a)dE Iad (t) 
V (t) = z 

r 2e dt 
(2) 

Note that if CMA's are used for both transmission and reception, the received voltage 
corresponds to the first time derivative of the field or the third time derivative of the 
waveform at the input to the transmitting antenna. 

We custom built an identical pair of CMA's for transmitting and receiving. The cone 
length, a, was 2.3 cm (see Fig. 4(b)) and a cone angle of 47" was used. Both CMA's were 
mounted above a common ground plane and separated by 10 cm. The receiving antenna was 
then connected to the input of a sampling oscilloscope. Since the 40-120 ps pulse-width of 
the optical pulse is of the same order as the round-trip time in the CMA, 2at/c= 153 ps, we 
expect the triple differentiation to be approximate in this case. 

RESULTS 

The CMA, PCS, and optical driver described above were tested in both of the circuits 
shown in Fig. 4. The high repetition rate (530 KHz) and temporal coherence of the pulse 
train allowed the pulse shape to be viewed in real-time on a sampling oscilloscope utilizing 
signal averaging to reduce noise. The pulse delivered to the matched 50 n load is shown in 
Fig. 5. The average power delivered to the matched load is -5 mW with a peak power of 
16W. The pulse radiated and received by the CMA's is also shown in Fig. 5. The spectral 
content of the received pulses is derived from the discrete Fourier transform of the received 
waveform and is shown in Fig. 6. 

Note that the received signal has significant spectral content from 0-3 GHz. Hence, the 
system is truly UWB, covering multiple bands of the microwave spectrum simultaneously. 
Although we received the pulses at a distance of 10 cm with a simple sampling oscilloscope, 
more sophisticated reception techniques which exploit the temporal coherence of the pulses 
should allow the pulses to be received at much greater distances, perhaps many kilometers. 

This prototype pulser demonstrates the feasibility of this technique in producing UWB 
pulses and opens up a number of areas for future exploration. Next, we hope to integrate the 
PCS, PFN, and UWB antenna monolithically onto a single substrate of GaAs. We also hope 
to explore triggering of multiple switches simultaneously with fiber-optic delivery of the laser 
pulses to the PCS in order to form a phased-array. Modulation of the pulse repetition fre­
quency for application to spread-spectrum communications is another area of interest. 
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CONCLUSION 

The design of an ultra-wideband, optically triggered, portable, jitter-free, high­
repetition rate pulser was discussed. A prototype pulser was built and tested. Pulses with 
significant spectral content from 0-3 GHz were generated, radiated, and received. A custom 
built-portable, 40-120 ps pulse width, 530 KHz repetition-rate mode-locked laser and 
amplifier was used as a trigger for a GaAs PCS in a pulse-forming network. Matched conical 
antennas were used as transmitting and receiving antennas. This work demonstrates the 
feasibility of utilizing photoconductive switches for the generation high-repetition rate, jitter­
free UWB pulses for applications such as UWB radar. We are now exploring integration of 
the pulse-forming network, PCS, and UWB antenna onto a single substrate. It may then be 
possible to drive a phased array of such switch/antennas from a single optical driver. 
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IDGH-POWER IMPULSE GENERATORS FOR UWB APPLICATIONS 

J. Oicles, M. Staskus, and P. Brunemeier 

Power Spectra Inc. 
Sunnyvale, CA 94086 

INTRODUCTION 

With the advent of increasingly sophisticated signal acquisition and processing, 
impulse techniques are finding growing use in ultrawideband (UWB) applications; 
particularly for foliage- and ground-penetrating radar. Practical applications are emerging 
which require impulse transmitter power well beyond that available from established 
sources, such as avalanche transistor arrays. These devices also have significant limitations 
in other performance parameters, including repetition rate, timing stability and reliability. 

We have shown that gallium arsenide semiconductor developments over the past ten 
years can be applied the UWB impulse transmitter problem. GaAs has several advantages 
for high-speed power switching. It can be obtained with very high volume resistivity; in 
excess of 107 O-cm. Furthermore, it is a direct-band-gap material, enabling efficient and 
rapid photoconductivity modulation. One example is the ability to reliably initiate 
avalanche conduction in a bulk material by external illumination. This is the basis of the 
Bulk Avalanche Semiconductor Switch (BASSTM), developed over the past 13 years. 

ENABLING TECHNOLOGIES 

The BASS is a closing switch optimized for short-pulse generation. The device itself 
is a simple structure in which current is conducted through the bulk material, which is 
typically about 1 mm thick. Photonic triggering enables this elegant design. This allows 
pulsed voltage hold-off to the 20-kV range. As a blocker of dc voltage, the BASS will 
withstand up to 12 kV and presents an off resistance of several gigohms. Current-handling 
ability is dependent on operating parameters, and can range from a few hundred amperes 
to over a kiloamp. A schematic representation of the BASS is given in Figure 2. 

More recently, a lower-power high-speed switch has come into use at Power Spectra. 
As with the BASS, this GaAs thyristor is manufactured on-site. Voltage hold-off capability 
of this device is in the 500-800 volt range, with current-carrying abilities from tens to 
hundreds of amperes. 
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Figure 1. Class 10 galliwn arsenide processing facility 

The main performance parameter of interest which the BASS and GaAs thyristor share 
is switching speed. Both turn on in approximately 100 picoseconds. The BASS is 
somewhat faster than the thyristor. For most UWB radar applications, device switching 
speed in this range does not materially affect spectral output. Impulse generators based on 
these devices typically use the switch to discharge a transmission line structure. This 
approach can provide a variety of waveforms and can be highly efficient. To date, the most 
significant waveforms have been a unipolar, square pulse ("video pulse"), a bipolar 
monocycle, and a fast rise, exponentially decaying unipolar pulse. Other outputs, such as 
multi-cycle ringing waveforms, can also be generated. 

DEVICE RELIABILITY 

For most applications, the outstanding performance of these switching devices is of 
little interest unless they are reliable. The high voltage and current ratings of the BASS 
present major device design and fabrication problems. Many factors contribute to achieving 
device lifetimes approaching 1010 shots, which translates to WOO hours of operation at 
several kilohertz. Test and evaluation techniques are being continually refined to better 

Laser 

+v 

Figure 2. Simplified BASS topology 
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predict reliability of devices. Lifetime and reliability improvements have come from 
systematic identification and elimination of wearout mechanisms, combined with precision 
semiconductor processing for device-to-device repeatability. Single-crystal GaAs material, 
which we purchase from a variety of sources as the starting point for device manufacture, 
is now readily available at a quality level consistent with our needs. 

The most important barrier to gathering reliability information is testing. Packaging 
parameters are often the weak link in circuit life. The combined photonic and electronic 
behavior of the BASS makes it an elusive candidate for accelerated life testing, or step­
stress testing. With a single device repetition-rate limitation of around 10 kHz, 
accumulating more than 108 shots on a routine basis is impractical. Reliance on statistical 
extrapolation techniques is therefore important. 1 

BASS MODULE 

An impulse generator based on the BASS is called a BASS Module. Within this 
module are the basic elements required to charge the transmission line structure and 
accurately trigger its discharge. Figure 3 shows these elements in simplified form. 
Hardware examples of these various elements are depicted in figures 4-6. 

laser 
Driver 

Lawr p--...... 

r ~., ....... 
\ Power The ~::'" 

Power In" C 00' . -----+ 0 llIoner 

Figure 3. Key components of a BASS Module 

The extraordinary timing stability of a BASS-based generator is demonstrated by 
Figure 7. Here, video pulse waveforms taken at 2 billion and 3 billion shots are overlaid. 
The waveforms are virtually identical except for a time shift of less than 100 psec. 
Experience tells us that this time shift is largely due to the limits of instrumentation 
stability. Interpulse jitter values below 10 psec allow large numbers of BASS devices to 
be ganged together to achieve the high power levels required for many applications. 

Thyristor timing performance approaches the BASS. Triggering is current driven, 
requiring from a few milliamperes to about 1 A, depending on the size of the device. 
Turn-on follows after a few nanoseconds of delay. Jitter is highly dependent on materials 
and manufacturing processes, which are still being refined . Our goal is to be able to 
conduct high-yield manufacturing of devices with jitter performance under 20 psec rms. 

1. M.H. Hennan, et. aI., "Lifetime of BASS Devices in 50-Ohm Video Pulser Circuits," SPIE Proc. 1873 , 
1993, pp. 39-48 
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Figure 4. PC board carrying fine timing circuitry and semiconductor laser driver capable of triggering six 
BASSes. Laser array and high-speed driver are mounted on thick-film hybrid module. Timing over a 
4O-nsec range is settable in 5-psec increments under external computer control. 

Prototype devices have demonstrated the feasibility of this goal. 

A great deal of effort has gone into packaging of these semiconductor devices and 
associated circuits. Realizing the full potential of the BASS in microwave generator circuits 
has been particularly challenging. Design preferences for high-frequency circuits such as 
close spacing and convenience of planar geometries, are in fundamental opposition to 
requirements for high voltage circuits. In the latter case, the designer is driven to wide 

Figure 5. AIL-solid-state pulsed power conditioning module capable of supplying up to 18 kV to microwave 
generator. Integral fault detection and automatic shutdown circuitry protects both modulator and BASS 
devices, while enhancing large-system reliability by allowing shutdown of a single array element without 
significant effect to overall transmitter performance. 
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Figure 6. Multi-BASS Microwave Generator with integrated finline radiator 
assembly. 

spacings and rounded geometries to reduce field enhancement. Resolving these conflicts 
has required both innovative solutions and meticulous attention to detail. The selected 
baseline approach is a planar geometry using thick-film hybrid packaging. This method 
favors high-frequency design while being cost effective. Other merits include ease of 
prototyping and volume manufacturing. A number of techniques are used to deal with the 
effects of high voltage in these designs. In a fortuitous reverse of most conflicting 
requirements, the use of ceramic substrates is favorable to both high-frequency and high­
voltage design considerations. Organic insulating materials, which exhibit poor rep-rated 
pulsed-power performance, are avoided. Glass passivation is used to exclude air from areas 
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Figure 7. Demonstration of BASS timing stability. Both are 50-0 video pulser waveforms at 11 kV. 
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where high fields would otherwise cause ionization. Ultraviolet imaging has been a 
powerful experimental tool to evaluate corona in developmental circuits. 

TEST METHODOWGY 

Lessons learned over ten years of BASS system development underscore the need to 
consider the complex interrelationships between high voltage modulator, laser trigger and 
microwave generator. Time-domain measurements have proven the most revealing for 
circuit characterization and development. These measurements can be Fourier transformed 
to study performance in the more accepted frequency domain. 

A major challenge has been to accurately use samplers and digitizers in the presence 
of switching transients of > 105 kV t p.s and > 103 kAt p.s. Related considerations are 
electromagnetic interference with other spectrum users in the community and exposure of 
personnel to electromagnetic radiation. Operation in shielded enclosures is of course the 
prime technique for avoiding problems. Accurate instrumentation also requires meticulous 
attention to grounding schemes and the use of ground planes in the setup. For higher 
power testing, a screen room is used in addition to shielded test boxes and system 
packaging. 

SYSTEMS DEVELOPMENT 

Power Spectra has been producing BASS-based impulse generator systems in prototype 
quantities for the past five years. The progression in performance over this time is 
significant, if not remarkable. Figure 8 provides a summary of the most significant of these 
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Figure 9. The BASS-OIX, a compact O.5-MW impulse generator 

developments. The BASS 103 employs a single device and is still in use today for 
evaluation purposes . It is now joined by the BASS-01X (Figure 9) , which provides roughly 
the same performance in a much smaller, lower cost package. Techniques have been 
developed to shrink size further, so that megawatt-level pulsers could be put into "Coke 
can"-sized modules if the need arises. 

Array techniques were proven in the GDU (Ground Demonstration Unit), for which 
Power Spectra supplied The Boeing Company, Defense and Space Group, with the 
microwave generators and high voltage modulator. It showed that short-pulse electric fields 
from multiple generators could be effectively added in space, provided that timing 
uncertainties are adequately controlled. This led to Project 92, which benefitted greatly 
from the GDU experience. 

Figure 10. A J-GW steerable, phased array of 144 impulse generators 
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Figure 10 shows a I-GW array composed on 144 identical, 7-MW Generator Module 
(GM) elements. A plexiglas mockup of one of the GM's is depicted in Figure 11. The 
small size of the BASS-based microwave generator avoids signal-distorting cables by 
facilitating direct connections between microwave generators and radiating elements. 

Figure 11. Model of generator module with integrated fiIiline radiators 

THYRISTOR-BASED PULSERS 

The same pulse-generation techniques developed based on the BASS can be applied 
to circuits using the GaAs thyristor. The resultant modules are 2-3 orders of magnitude 
lower in peak output power but otherwise exhibit similar spectral characteristics. 
Repetition-rate capability is about a factor of 10 higher for the thyristor. Our latest 
thyristor based module, the PGS40I, is depicted in Figure 12. All that is required for 
operation is 5-12 VDC and a TTL-compatible trigger signal. This module is the precursor 
to a thick-film hybrid version with similar performance which will have a volume of 
approximately 3 cm3 . 
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Figure 12. PGS401 GaAs-thyristor-based Impulse Generator Module 
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MEASUREMENTS OF DIELECTRIC PROPERTIES OF LIQUIDS 

ABSTRACT 

Peter Fuks and Gunnar Larson 

Department of Electromagnetic Theory 
Royal Institute of Technology 
100 44 Stockholm, Sweden 

A method for measuring the dielectric properties of liquids has been developed. 
The measurements (transmission or reflection) are performed in time domain using a 
special TEM sample holder. From the measured data the complex permittivity is 
calculated. The results show good agreement with data obtained using frequency domain 
experiments. 

INTRODUCTION 

The dispersive properties of polar liquids in the microwave range can be modelled 
using the Debye model. Values of the relaxation time at room temperature vary from 
picoseconds to nanoseconds. From the measured transmission or reflection data the 
susceptibility kernel can be calculated using a robust algorithm described in ref. 1. The 
algorithm solves a Volterra equation of the second kind and the only ill-posedness is due to 
deconvolution of measured data. The deconvolution is necessary because the algorithm 
requires the response to a delta pulse as input. When the susceptibility kernel is known the 
complex permittivity as a function of frequency, which is a more commonly used quantity, 
can be calculated using Fourier transform. 
Since the algorithm is restricted to one-dimensional case, a TEM sample holder is necessary. 

SAMPLE HOLDER 

The sample holder is the key component of the system. An open structure was 
selected with process-control applications in mind. The sample holder is simply immersed 
into the liquid instead of filled and drained as in more conventional designs. The 
transmission line between the connectors, see Figure 1, has an outer conductor consisting of 
two parallel plates with about 5.5 mm spacing and sufficiently large to be considered infinite 
in extent. The inner conductor is a U-shaped wire of 3 mm diameter. Thus the line is 
essentially a slab line which in tum can be derived from a co-axial line by conformal 
mapping. One of the more tricky manufacturing problems is to minimize reflections at the 
co-ax - slabline transition. However careful machining allows us to make this reflections 
smaller than those of the commercial connectors. The design of the sample holder allows for 
easy exchange of the inner conductor. In this way, the length of the sample can be varie by a 
factor 2.5 and thus matched to the specific attenuation and relaxation time of different liquids 
and the reconstruction accuracy can be optimized. 
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Figure 1. Sample Holder. 
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Figure 2. Reflection Experiment Setup. 
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MEASUREMENTS 

The measurements were performed using a typical TDR or TDT set up, except that a 
gaussian shaped pulse was used instead of the usual step. See Figure 2 and 3. 
In a transmission experiment the input impulse (rise time 30 ps) transmitted through the 
empty sample holder is first recorded as a reference. In a reflection experiment the reference 
is obtained by reflection from a short. The sample holder is then immersed into the liquid 
and a new recording is made. Except for samples with very high attenuation transmission 
experiments are better, mainly because one avoids the interference of the ringings of the 
input pulse reflected from the solid-liquid interface. The rest of the paper will describe the 
transmission case. 

The processing of the data consists of the following steps: 
I. The algorithm requires the response to a delta pulse. In general, the measured data must 
be deconvolved with the stimulus. However, the time constants of the tested liquids 
(alcohols) are at least one order of magnitude longer than the incident pulse. This makes it 
possible to calculate the impulse response by simple scaling of the acquired data. An 
example is shown in Figure 4. The first part of the response (of the order of the risetime of 
the input pulse) will of course be distorted. This creates minor high frequency ripple. Also, 
aberrations present in the system will not be removed. By careful selection of components 
aberrations were kept below ±2% which gives acceptable accuracy. For liquids with shorter 
relaxation times conventional deconvolution can be used. 

2. The algorithm requires the optical permittivity which is calculated using the time delay 
between the leading edges of the input pulse and the transmitted pulse. For liquids with long 
relaxation time this delay is difficult to measure accurately. However, the processing is quite 
insensitive to errors of several percent of the permittivity value. 

3. The initial value of the kernel must be estimated. For low loss liquids or short samples 
this value can be calculated from the attenuation of the directly transmitted pulse. This is 
often not necessary because even estimates with very large errors gives reconstructions 
converging to the true kernel after 30-50 ps. 

4. Now the algorithm can be used to obtain the susceptibility kernel, Figure 5. Using the 
Fourier transform the results can be presented in a number of formats including complex 
permittivity as function of frequency, Figure 6 and 7 and Cole plot, Figure 8. The results 
agree very well with data obtained using fixed frequency measurements, ref. 2. 
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TRANSMISSION AND SCATTERING OF SHORT EM PULSES 

ABSTRACT 

K. Min, R. Orgusaar, and E. Youngblood 

AF Wright Laboratory, Annament Directorate 
Eglin AFB, Florida 32542 

This paper describes preliminary efforts to measure transmission and scattering of short pulses of 
electromagnetic radiation through various media of interest. This work is being done at the Armament 
Directorate of Wright Laboratory, Eglin AFB and will be followed with a more extensive effort in 
cooperation with sister laboratories. 

Material of interest include sand, soil, concrete, brick and metal. Sources used are [1] Grant Applied 
Physics HYPS impulse generator and [2] ANRO custom built UWB transmitters. Antennas utilized are 
TEM horn, dipole, and several other in-house experimental designs. Attenuation and reflection behaviors 
for varied thickness of each material are quantified and comparcd. Signature extraction from the 
scattering data is onc of significant goals. 

INTRODUCTION 

Propagation of ultra-short EM pulse through lossy media is of our recent interest. A few articles [1,2] 
report deeper penetration of ultra-short EM pulse through media, and a number of analytical works 
describe highly localized space-time behavior of pulsed bcam[3-5]. 

An in-depth literature search revealed no actual transmission or scattering data on the materials of 
interest. It was our decision to conduct a series of simple phenomenology studies on transmission and 
scattering of these EM short pulses through several materials with available sources at Eglin Air Force 
Base. Several types of antennas have been experimented. Good penetrations better than expected of EM 
short pulses through concrete and sand layers have been observed. Probable media identification through 
scattered pulse analysis is also envisioned. 

Short pulse sour::es used in the tests had the pulse duration not longer than a few ns, and peak voltage 
ranges from 10 V to a few KV. Two of sources had pulse duration of about 150 ps. It was very 
encouraging to observe a 10 V peak voltage short pulse penetrating through layers of concrete and sand, 
and providing a detectable transmitted pulse signal. Experimental set ups will be described, results 
obtained be presented, and the discussions and future plan will follow. 
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DEVICES USED IN TilE EXPERIMENTS 

Sources Used are (1) Grant Applied Physics HYPS sou[ce,(2) AVfECH A VH-S-1-H source, (3) ANRO 
S-band source(2.5 GHz), (4) ANRO L-band source(1.2 GHz), and (5) ANRO UHF source(600 MHz). 
Antennas utilized include (1) TEM horns, (2) dipoles, and (3) experimental antennas. 

The HYPS source is a solid state high voltage pulse source delivering a maximum 2500 voltage edge and 
minimum of 1000 voltage edge into a 50 ohm load with a rise time less than 150 ps, and a maximum 
repetition rate of 1 KHz. The A V TECH source has a maximum amplitude of 10 V with a pulse duration 
less than 130 ps and the PRF is 500 KHz. Peak voltage of the ANRO sources are approximately 200 V, 
and receiving antennas at 1 meter separation should observe 10-12 volts peak to peak (1.2 ns duration) 
for S-band, 14 volts peak to peak (3.5 ns duration) for L-band and 16 to 18 peak to peak (5.2 ns 
duration), respectively. 

TEM horns used are custom built by E-System3, Inc. Dipoles are designed by ANRO Engineering for 
each source and receiver. Experimental antennas tried are helical types and variation of TEM hom 
types. 

For transmission experiments, we utilized (1) cinder block walls, (2) concrete walls with steel rebar 
reinforcement, (3) sand filler between two concrete walls, and (4) multiple concrete walls with air gap 
between them . 

Scattering was measured from (1) concrete wall, (2) steel plate, (3) plastic plate, (4) wooden plate, and 
others. 

Detection of the pulse was carried out by using (1) Tektronix SCD5000 transient event digitizer, and (2) 
Tektronix 7104 sampling scope with a 5-4 sampling head. A HC-l00 plotter is used for the hard copy of 
the digital data and Polaroid camera was used for a hard copy of analog data. 

Figure 1 shows some of the sources and antennas. HYP5 source is on the bottom shelf, and ANRO S­
band, L-band, and UHF sources are on the top shelf from right to left, respectively. A TEM transmission 
antenna is also shown in the picture. 

Figure 1 
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DESCRIPTION OF EXI'ERIMENTS 

[I] Transmission Testing in Building 432 (I) 

Figure 2 describes the experimental configurations for measurements taken in building 432 for 
the first set of tests. The first test was to penetrate one cinder block wall of thickness 19 cm. The 
receiving antenna was placed on the hallway outside the conference room and the source inside the room 
as depicted in the top of the drawing. After the observation of detectable transmiued pulse. the sour,e 
was moved to the hall way on the other side of the room as shown in the figure in the middle. 
After pulse detection through two walls. the source was moved to the other side of the third wall as 
shown in the bouom figure. A successful penetration of three walls by shon pulses was observed. 
These pencuations were carried with (I) AVTECH impulse source. and (2) ANRO sources as well. 
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(2) Transmission Testing at Range A-22 
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These data sets were taken in the open-air range where projectile firing tests arc usually 
conducted. Several hard targets were available to test pcnetration and scattering A typical set up for the 
penetration is shown in the Figure 3. In the figure. 0.91 m thick sand is filled between two 0.31 m thick 
concrete walls. Photographs of some of these targcts arc shown below. A detectable pulse transmitted 
through this multilayer configuration. 

Figure 4 
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13 J Transmissiun Testing in Building 432 (II) 

These sets of data were (;.\ken using different eonfiguratiuns in the same building 432. Up 
to four cinder blocks penetration of short EM pulses were observed. Figures 5 iIIustralCs the set up for 
the measurements. It is noteworthy to point out that there are two metal plates(l/8 • thick each) on the 
direct path of the pulses. The source was placed first behind one wall, then moved to Dick's office (2 
walls), then to conference room (3 walls), and finally to the hallway (4 walls), successively. The 
receiving antenna was kept in the same location in the laboratory. The farthest distance between the 
source and the receiver in this set up was 11.36 meters. For all configurations, detectable transmitted 
pulses were observed. 
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[41 Transmission Testing at Vitro Test Facility 

This facility is almost ideal for the transmission testing through multiple layers. Figur~ 6 
depicts the layout of the facility. Each bay with a steel door is separalCd by 0.31 m thick concrelC wall 
with steel rebar. The width of each bay is shown in the figure. The receiving antenna and SCD5000 were 
placed in the leftmost bay, while the source and the transmitting antenna were moved from one bay to the 
next, starting from the second bay. As the source was moved further and the pulse penetrated through 
more layers, the deteeted pulse amplitude became smaller. The delCctcd sharp pulse shape was distinct 
and the time delays involved were exactly what they should be to confirm that all the observation were 
direet paths for impulse sources. For ANRO sources, greater pulse spreading were observed for UHF and 
L-band source upon multiple layer transmissions. 
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[5) Scattering Test in Building 432 

The first scattering measurement was carried out with the A VTECH source in the laboratory in 
Building 432. Experimental set up is depicted in the Figure 7. As shown in the results scction, a sharp 
scattered pulse was clearly observable. Data collected showed very liule isolation between antennas for 
this test setup. Further work will be done on antenna pallem measurements and isolation techniques for 
these designs. 
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161 Scattering Test in Vitro Test Facility 

A more extensive effort in scallering with a more intense source (HYPS) was carried out in the vlrno 
test facility hallways. As shown in the Figure 8, a configurution with a transmiuer closer to the 
scauering screen and the receiver far from the screen, was tried. Insertion of a metal plate between two 
antennas to increase antenna isolation was effective. The scauering screen was portable so that a distance 
from the antennas would be varied easily, and the scattering materials were easily replaced. A small 
difference in the scattered pulse forms from different mailer is showing potential media classification 
through analysis of scauered pulses. 

SCATTERING OF ULTRA SHORT PULSE 
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PRELIMINARY IU:S\JI.TS 

Typical results obtained in the transmission experiments are shown in Figures 9 through 12. Note that 
the attenuation through lossy material is not as severe as one ordinarily expects It is encouraging to see 
the trend which may suggest that the shorter the pulse width, the lesser is the attenuation, so Utat Ihere: is 
a possible penetration of short pulses through thick layers of material. The signal on the transmitter side 
is the clear air response over on equivalent distance to the test setup, while the signal on the receive side 
is the actual recorded response. 
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Some of scattered pulses from varied material arc shown in the Figures 13 through 15. Note the 
difference in the scattered pulse forms shown in the figures. It is suggestive to be able to classify the 
matcrialthe EM pulses arc scattered from. Extensive further study is needed 10 confirm this point. 
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CONCLUSION 

Based on the preliminary studies we conducted, we can draw following conclusions. 

TRANSMISSION 

1. Electromagnetic short pulses penetrate well through concrete walls and sand. 
2. Ultra short pulse preserves pulse width upon transmission through concrete and sand. 
3. UHF pulses appears to spread more than impulse form of pulse upon penetrating through multiple 

layers. 
4. Further measurements are necessary to confmn the preliminary observations. 

SCATTERING 

1. Scattering of electromagnetic short pulse from sevcral material have bcen measured. 
2. Scattered pulses from a variety of material show differences. 
3. Probable media identification through scattered pulse analysis envisioned. 
4. Further testing is required to confmn the above observations. 

FUTURE WORK 

Extensive studies on possible time-space localization of extremely short EM pulse need to be furthered so 
that we understand and fully clarify any realistic less attenuating EM pulses through lossy media. If we 
can confinn a good penetration of short pulse through thick and dense media, it will open a wealth of 
applications to detect and locate variety of buried objects. 
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INTRODUCTION 

There has been considerable research recently into the generation, propagation, and 
detection of short electromagnetic pulses for a variety of applications from impulse radar to 
communications. This area has come to be known by the title "ultra-wideband" research, 
and encompasses many disciplines including analytical and numerical electromagnetic 
modeling, antenna and array design, signal processing, broadband circuit design, and 
switching technology. The generation of fast electromagnetic transients or impulses 
ultimately depends on high-speed voltage switching. A switch can be used to switch a pulse­
forming line and generate an ultrafast electrical impulse which is then fed into an ultra­
wideband antenna and radiated; or the switch and antenna can be integrated, whereby the 
antenna serves as the energy storage medium which radiates directly when discharged by the 
fast switch. This is illustrated for two generic impulse geneT'ltors in Figure 1. Ultrafast EM 
impulse generation requires nanosecond or sub-nanosecond switching speeds. For high­
power impulse generation, switches operating at kilovolt levels and greater are necessary. 
Achieving ultrafast, kilovolt switching has required special techniques and new technologies. 
It is this area which is the subject of this article. This paper is a survey of the approaches 
toward ultrafast high-voltage pulse generation that have been pursued at the U.S. Army 
Pulse Power Center, as well as previous work with which the authors have been associated. 
Switching· techniques, such as semiconductor photoconductive switches and conventional 
sparkgaps, and pulse generator circuit topologies will discussed 

Considerable research into photoconductive switches has been performed at the Pulse 
Power Center and elsewhere. Photoconductive semiconductor switches have become 
increasingly useful for the optical generation and control of electrical signals. The basic 
design and operation of a photoconductor is simple: the conductance between two terminals 
on a piece of semiconductor material is modulated by the absorption of optical radiation in the 
gap between the electrodes. This creates mobile electron-hole pairs free to carry current 
under the influence of a bias voltage applied to the terminals. Before illumination with light, 
the photoconductor is "ofP', i.e., the gap conductance is low and little current flows between 
the electrodes. After illumination, the switch is "on", the gap has become conductive and 
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Figure 1. Generic impulse radiators showing role of switch. In a), a biased pulse-forming line, e.g. 
transmission line, is switched into an antenna. In b), the antenna is the energy storage medium and is 
integrated with the switch. 

current can flow from electrode to electrode. A schematic of a circuit containing a 
photoconductor is ~hown in Figure 2. If a short-pulse laser is used to excite a 
photoconductive switch, the transition time from off- to on-state, or switch rise time will be 
quite sharp, on the order of the the laser pulse width. Picosecond laser induced 
photoconductivity in Cr:GaAs was first reported by Jayaraman and Lee in 19721. Auston 
first demonstrated picosecond switching using Si, in 19752, which made possible the 
operation of ultrafast (subnanosecond) optoelectronic switches, sometimes called "Auston" 
switches. Sub-picosecond switch rise times have since been demonstrated3. An extremely 
attractive feature of photoconductive switches is that they can be used at fairly high voltages 
(multikilovolts) 4,5. The speed and high voltage handling capability of photoconductive 
switches is superior to that of any other device and they have found applications in many 
areas. The first applications of high-power, picosecond, photoconductive switching were 
for use in the laser fusion facility at the Laboratory for Laser Energetics (LLE) of the 
University of Rochester. A completely optoelectronic prepulse suppression scheme based on 
photoconductive switches was used with LLE's OMEGA laser system6. Some practical 
configurations for photoconductive switches are shown in Figure 3. 
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Figure 2. Generic semiconductor photoconductor in a circuit. A block of semiconductor is connected to the 
circuit through two metallic electrodes. V 0 is the bias voltage. Switch dimensions I, w, and d range from 
microns to centimeters depending on application. The switch may be triggered by laser illumination from 
overhead into the bulk of the switch, or through apertures in the contacts. 
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While several semiconductors have been investigated for use as high-voltage 
photoconductive switches, the two most popular materials are Si and GaAs, due to both 
suitability and availabili~. GaAs is particularly suited for high-voltage applications due to its 
high resistivity ( p >10 Q-cm). High resistance is desired so that the off-state, or "dark" 
current, is small. GaAs can hold off a higher bias voltage than Si and is less susceptible to 
thermal runaway than Si (p-105 Q-cm) and other less resistive materials. Both Si and GaAs 
have been extensively investigated for use as photoconductive switches. 

SILICON SWITCHES 

In order to investigate the behavior of photoconductive switches under high bias 
conditions, a switching circuit capable of repeatedly delivering voltage pulses of 20-30 
kilovolts was constructed and is shown schematically in Figure 4. This particular set-up at 
LLE utilized a Si switch configured in the coaxial geometry shown in Figure 3(c), and 
consisted of a high-voltage bias pulser, charge resistor, switch holder and switch, load 
resistor, and associated connecting cables. The switch is a 1 em diameter, 3 rom (-1/8 in.) 
thick right circular cylinder of silicon. The faces of the Si cylinder are gold coated for contact 
to the switching circuit. Spring-loaded copper contacts connect.the switch to the center 

High Resistivity Semiconductor 

Dcorr€»g?y 
Pulse :.JL ~ '"'" 

"~oPflcal Pulse 

a b c 
Figure 3. Three different geometries for photoconductive switches. (a) Coaxial geometry where the 
semiconductor element has replaced a portion of the center conductor, (b) stripJine geometry where the switch 
bridges a gap in a stripline on a dielectric material. (c) stripline geometry where the stripline is directly on 
the semiconductor substrate. 

conductor of RG2l8 coaxial cable. An electro-optic, electric field sensitive crystal (LiTaQ:3) 
is placed in the switch holder for high-speed voltage measurements. What is not shown is 
the laser system required to produce the optical pulses needed to activate the switch. For 
these experiments, an amplified mode-locked Nd:YAG laser producing near-infared pulses 
(A.= 1.064 11m) with a pulse width of -150 ps at a pulse repetition rate (PRF) of 1 kHz was 
used. Figure 5(a) shows switched waveforms at various bias voltages obtained using 
capacitive probes placed near the load. The waveforms display the "staircase" typical of 
charge-line pulser operation when there is an impedance mismatch. 

The switched waveforms in Figure 5(a) should display sub-nanosecond rise time, 
although this is not seen due to the resolution of the capacitive probes. To observe the 
switch rise time on a faster time scale, electro-optic sampling7 was utilized. This optical 
technique utilized the LiTa03 crystal placed in the switch holder. Briefly, an optical "pump­
probe" experiment is performed wherein one laser pulse activates ("pumps") the switch, the 
switched electric field perturbs the birefringence of the electric field sensitive crystal, and a 
second, synchronous laser pulse probes the crystal birefringence. By adjusting the timing 
between pump and probe laser pulses, the temporal evolution of switched field in the crystal 
can be recorded. Figure 5(b) shows results of electro-optic measurements of the rise time of 
the Si switch at a bias of 19 kY. 
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Figure 4.Photoconductive switch testbed utilizing switch in a coaxial geometry. (a) Complete set-up. 
(b) Switch holder detail. This is an specific example of the generic charge:line pulser. 

GALLIUM ARSENIDE SWITCHES 

After initial success using Si as a photoconductive switch material, investigation began 
into GaAs because the material properties of GaAs indicate it should make an excellent 
switch. GaAs switches with various electrode geometries were investigated. At fIrst, it was 
thought that GaAs, with a bandgap of 1.42 eV, could not be activated with relatively 
common and inexpensive pulsed Nd:YAG and Nd:YLF lasers with a wavelength = 1.064 
!lm (1.17 eV). It was found, however, that GaAs switches could be readily switched by 
these lasers due to the presence of the mid-gap defect trap labeled EL28. One particularly 
interesting GaAs design was a vertical (contacts on opposite sides of semiconductor material) 
electrode configuration similar to the previously described coaxial Si switch was 
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Figure 5. Switched voltage wave forms for coaxial Si switch: (a) measured with capacitive probes at a 
constant optical energy of ISO J1l for various bias voltages. (a) 1.1 kV; (b) 5.1 kV ; (c).12 kV; (b) 
measured electro-optically, at various optical energies. 
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Figure 6. GaAs photoconductive switch with opposite gridded electrodes. 

investigated. In GaAs switch, though, the electrodes were gridded, so that the switch could 
be illuminated through the contactsg. This gridded switch is shown in Figure 6. The switch 
was used in a coaxial housing with the triggering laser light being directed onto the gridded 
contact via an optical fiber. These switches were quite large, with thicknesses up to 10 mm. 
Bias voltages up to 35 kV were switched using this type of switch. 

Extending the operating lifetime of photoconductive switches has been a major concem. 
The switches typically fail at the metal electrode-semiconductor interface. With the gridded 
switches, one could observe sparking from the semiconductor to the metal grid, eventually 
resulting in the complete loss of the metal grid. It was suspected that this was due to an 
enhancement of the electric field near the contacts. Modeling and electric field probing 
(discussed briefly later) indicated that this was indeed the case1O. To alleviate this condition, 
shallow doped regions (thicknesses « f) were implanted beneath each contact to produce 
p-i-n and n-i-n devices. Ultrafast GaAs switches with this doping structure have been 
shown to have enhanced shot lifetimes (in excess of 1()6 shots) at peak powers of - 1 MW. 
Research continues into determining the ultimate lifetime of these switches. 

SWITCH CARRIER DYNAMICS 

As GaAs switches have been used to switch ever increasing bias voltages, some 
unusual, unexpected behavior has been observed. It was observed that GaAs has two modes 
of operation. There is a low-field, or "linear" mode, where the voltage across the switch 
drops to zero as the laser pulse is applied, and after the laser pulse, the voltage recovers as 
the photogenerated carriers recombine at their characteristic rate. There is also a high-field, 
or "nonlinear" mode, where the switch voltage drops to zero during the laser pulse duration 
and tries to recover but does not regain its initial value. Instead, it locks on to some 
intermediate value, and continues to conduct current. The bias field has to be greater than a 
threshold value of 3 to 8 kV/cm for lock-on to occur. This threshold depends on the 
material preparation. This persistent current behavior is clearly seen in Figure 7, which 
shows oscilloscope traces of the switched output for bias voltage close to the lock -on 
threshold for this sample, 2 kV, and above the lock-on threshold, 3 kV. At 2-kV bias, the 
switch exhibits linear behavior, switching voltage only for a time consistent with normal 
recombination. At 3-kV bias, lock-on behavior is observed, with the switched output 
decaying normally until, at the onset of lock-on, the output voltage "restarts" for a second 
period of conduction lasting as long as the charging circuit supplies charge. 
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The mechanism for lock-on is not understood. The threshold bias field for lock-on, 
3 - 8 kV/cm, roughly corresponds to the threshold field for negative differential resistivity 
(NDR) in GaAs, and this suggests some connection between the two effects. Also, lock-on 
has been reported in Fe:InP, another semiconductor exhibiting NDR, and lock-on is not 
observed in Si or Au:Si, materials which do not exhibit NDR II. The Gunn effect alone can 
not be responsible for lock-on as it does not create carriers. An unknown carrier-generating 
process somehow connected to the Gunn effect may be responsible for lock-on. It is known 
that NDR can result in the formation of high-field regions (or Gunn domains) in GaAs which 
repeatedly traverse the sample from the cathode to the anode. Propagating domains have 
been observed in samples of GaAs that were heavily doped to reach the critical carrier 
concentration, and domain formation is the basis for the well known Gunn diode. Carriers 
may be generated in these high-field regions through impact ionization whereby electrons are 
accelerated by the high fields to sufficient energy (-2 eV) to create more electron-hole pairs 
and seed an avalanche, if the domain field is high enough (100-200 kV/cm). This effect can 
be explained by a phenomenological argument if we assume that at sufficient average field, a 
low light level trigger pulse supplies the critical carrier concentration for high-field domain 
formation. Avalanching produces the carriers which explain the trigger gain. If too many 
carriers are created, the resistance of the switch drops too low for the circuit to supply the 

b 

Figure 7. Oscilloscope traces of switched output wave form of planar GaAs switch monitored at the lood 
using current probe for (a) -2.0 kV bias, just at lock-on threshold; and (b) -3.0 kV, above lock-on threshold. 
The time scale is 20 ns/div. 

lock-on field across the switch. Then the domains disappear and normal carrier 
recombination occurs 12. 

Computer simulation studies and experimental work has been performed to provide 
more insight into the mechanism for lock-on. A model of photoconductive switch behavior 
that is based on the time-dependent, drift-diffusion equations and carrier continuity equations 
was developedl3. The equations were appropriately modified to represent a photoconductor 
in operation and then solved numerically with boundary conditions and operating parameters 
that are consistent with high-speed switching of a practical, high-voltage, photoconductive 
switch in an external circuit. High-field, non-linear effects, such as negative differential 
resistivity in GaAs and impact ionization, are included in the model. Simulations were run 
using the physical parameters of GaAs switches for which experimental data was also 
available. Simulation of the evolution of the electric field inside a planar GaAs switch with a 
0.25 em electrode gap biased at -6 kV is shown in Figure 8(a). As the time after the arrival 
of the 150-ps wide excitation pulse progresses the field across the switch collapses as the 
switch becomes more conductive. As the carriers in the switch recombine (times> -I ns), 
the field becomes strongly enhanced at the contacts, with a field spike beginning to form at 
the cathode. In fact, in the simulations, the field at the cathode is higher than the initial bias 
field of 24 k V /cm. As time progresses, this high field domain can be seen to be moving 
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toward the ground contact. To verify these theoretical results, a two-dimensional electro­
optic probe was used to image the electric field in GaAs switches during switch operation. A 
LiTa03 crystal, covering the entire active area of the photoconductive switch, coupled the 
surface electric field with the polarization of an optical probe pulse. The optical probe was 
imaged onto a two-dimensional detector array, producing snapshots of the surface field with 
200 ps time resolution and 3 ~m spatial resolution. Field profiles obtained with this system 
are shown in Figure 8(b). There is good qualitative agreement with the simulations, and 
electric field domain formation, as predicted by the model, is seen the experimental field 
profiles, as well. 

Experimental verification of the existence of high-field domains in a GaAs 
photoconductive switch biased above the lock-on threshold lend credence to the model for 
lock-on that is based on avalanche processes in high-field domains. Still, the mechanism 
remains undetermined. The problems associated with lock-on have been one factor in the 
search for new and perhaps better materials for high-voltage optical switches. 

SILICON CARBIDE SWITCHES 

Silicon carbide (SiC), a wide bandgap (2.9 eV) semiconductor, supports a voltage 
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Figure 8. Time evolution of electric field profiles in GaAs switch obtained from simulations in (a), and 
experimentally in (b). The switch electrode gap was 0.25 em and the bias was - 6 kV. Note the field 
enhancement forming at the cathode on the right in both (a) and (b). 

gradient an order of magnitude higher than silicon, and has the potential to make power 
devices which operate at 6 times higher temperature. SiC has been under investigation 
recently at the PPC for use in photoconductive switches. The low dark resistivity of 
currently available SiC material make it unsuitable for use as a bulk photoconductive switch. 
Junction devices, such as pn -diodes and pnpn -thyristors must be used to have any 
practical voltage hold-off. The switching properties of both commercial SiC pn -diodes and 
in-house fabricated SiC thyristors in a 50-Q charge-line circuit of varying charge line length 
were investigated. This circuit is similar to that used with the Si switches described earlier 
(Figure 4). A frequency quadrupled, mode-locked Nd: Y AG laser producing -150 ps pulses 
in the near-ultraviolet (A== 266 nm) was used to trigger the devices. The devices tested are 
shown schematically in Figure 9. Representative results areshown in Figure 10. These 
results demonstrate the first operation of an ultrafast SiC optoelectronic switch and also the 
first demonstration of a SiC thyristor. Maximum bias voltage was several hundred volts for 
the pn-diode and -100 volts for the thyristor. These values will increase as better junctions 
can be fabricated. Kilovolt devices are likely within a year. 
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Figure 9. SiC junctions devices used as photoconductive switches. (8) pn - diode (b) pnpn - thyristor 

.l!l 225 V bias 

1so 
200 V bias 

~ 60 150 V bias 
~ 
g 40 

100 V bias 
u 
~ 20 50 V bias B 
.~ 

rn 
0 5 10 15 20 

a time (nanoseconds) 

~ 100 VDC 
0 40 
G 90VDC 

cJ) 30 SOVDC Ol 

~ 60VDC 
0 20 > 
u 20VDC cJ) 10 .s:: 10VDC 
B .;: 
rn 0 

0 50 100 150 200 

b time (nanoseconds) 

Figure 10. Representative switching results with (8) pn -junction diode and (b) pnpn- thyristor. The 
length of the charge line was 10 ns for (8), and 100 ns for (b). 
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NOVEL MODULATORS 

The availability of ultrafast switches has made the use of some innovative modulator 
designs, previously used at long pulse lengths, viable for ultrafast regime. At the PPC, one 
modulator which is particularly interesting uses a radial transmission line fashioned on a 3-
inch GaAs wafer. This device is diagrammed in Figure 11. Essentially, the device consists 
of a charged parallel plate capacitor, fonned by two circular metal plates metalized on a thick 
GaAs wafer, with the wafer acting as the capacitor dielectric. The ground shield of a coaxial 
cable is connected to one plate of the capacitor. The center of the other plate and the cable 
center conductor can be electrically connected when the intervening GaAs is driven 
conductive by a laser pulse. When the switch at the plate center is activated on a time scale 
much less than the electrical transit time of the capacitor, the capacitor behaves as a radial 

Figure 11. 
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Side view of radial transmission line pulser fabricated on 3-inch GaAs wafer. 

Figure 12. 
GaAswafer. 

Spiral wideband radiator integrated with photoconductive switch at "feed point" on 3-inch 
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transmission line. As charge from the outer radius travels toward the center to discharge out 
the cable, the resultant current sees an increasing impedance. This increasing impedance 
gives rise to a voltage increase at the output cable and there is gain associated with the radial 
structure. In practice, output voltages equal to the bias voltage (up to 10 kV) have been 
obtained with this modulator, which is twice that which can be obtained with a traditional 
line-type modulator at the same bias, similar to a Blumlein design. What is significant is that 
this modulator incorporates energy storage, switch, and voltage transformer on a single 
semiconductor wafer, a very compact pulse generator. Note doped layers (discussed 
previously) are used to improve the switch operating lifetime. 

Taking the idea of system integration one step further, the PPC has been investigating 
the possibility producing nanosecond electromagnetic pulses using a device with the radiator, 
energy storage, and switch all on the same wafer. This work is an attempt to extend 
previous optoelectronic antenna work14 to the kilovolt bias regime. One integrated EM 
pulser design, with a wideband spiral radiator fabricated on a 3-inch GaAs wafer is shown in 
Figure 12. A photoconductive switch is formed at the "feed point" between the two spiral 
arms by the GaAs substrate. The two arms of the antenna are charged and an ultrafast EM 
pulse is radiated when the "feed point" of the spiral is driven conductive by an ultrafast laser 
pulse, similar to the generic antenna depicted in Figure 1. Low radiation efficiency due to 
losses in the substrate still needs to be addressed. 

SPARKGAPS 

While work continues on semiconductor optoelectronic switches, the PPC has also been 
advancing the state of the art of conventional pulsed switches, such as the spark gap. 
Subnanosecond spark gaps are not new, but the PPC has recently developed an ultrafast 
sparkgap which is of extremely simple construction and has a convenient electrode geometry 
perfect for connection directly to a large coaxial cable (e.g. RG218) in a low-inductance 
arrangement for high-speed switching. The spark gap uses only forced air to clear the gap 
(as opposed to exotic pressurized hydrogen) and, combined with a coaxial cable pulse 
forming line, produces an inexpensive ultrafast pulse generator for "throwaway" tactical 
applications. A pulse generator using this sparkgap and coaxial cables in a Blumlein 
arrangement, shown in Figure 13, was developed. This generator can produce 2S-kV pulses 
with a 7-ns pulsewidth and an - SOO-ps risetime. An oscilloscope trace showing the rise 
time ofthe output pulse from this generator is shown in Figure 14. This pulse generator is 
intended for applications that require ultrafast risetime, but do not have stringent timing jitter 
requirements. 

24V~ 

HV 

Capacitor 
Charging 
Power 
Supply 

main 
SG 

LJ Enable Pulse 

PFL 

Load 

Sharpening Gap 

Figure 13. Cable Blumlein pulser using ultrafast sparkgap switches. Designed for tactical utility, the 
system can be powered from a 24-V DC source. 
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Figure 14. Oscilliscope hace (voltage versus time) of output pulse from cable Blumlein spaIkgap-based 
pulser showing voltage risetime. The timescale is lns/div. The vertical scale is SkV /div. Note Ihe 
subnanosecond risetime and jitter inherent to sparkgap-based pulsers. 

DISCUSSION 

This article has presented a brief survey of ultrafast switching activity at the PPC. This 
continues to be an active area of research at the ppc. Future work will focus primarily on 
developing practical and reliable switches and modulators using the more mature Si, GaAs, 
and sparkgap technologies. New areas, however, will still be explored, and the wide­
bandgap semiconductors, such as SiC, will be investigated for their great potential for use in 
power devices. It is the overall objective of this research activity to develop the requisite 
ultrafast pulsed power systems for use in future EM impulse systems for radar, 
communications, and defense applications. 
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INTRODUCTION 

The need for better environmental characterization and protection has focused new 
attention on geologic formations with unusually high electrical resistivities. Dry igneous 
bedrock, tight metamorphic bedrock and crystalline salt have attracted attention as potential 
repositories for chemical and nuclear waste. In addition, many landfills and chemical storage 
facilities are sited in or above a hard, resistive bedrock whose intricate fracture networks 
disperse leaked toxic chemicals and complicate cleanup and containment operations. 

Borehole radar can be a useful tool at these sites for imaging electromagnetic contrasts 
caused by geology, contaminants, voids, and other materials that may be present at some 
distance from the borehole. In this paper field data acquired in single hole (reflection) and 
hole-to-hole (transmission) geometries with a prototype borehole radar tool are used to 
provide examples of detection of subsurface signals and their subsequent processing and 
interpretation. Single-hole reflection measurements from two sites indicate reflectors that can 
be interpreted as water-filled fracture zones in crystalline bedrock. Reflections from radial 
distances in excess of 100 ft. from the borehole are indicated at both sites. Examples such as 
these contribute to the ongoing process of defining the utility of borehole radar and refining 
the method for environmental applications. 

A BRIEF REVIEW OF SUBSURFACE RADAR WORK 

Most of the activity in subsurface radar has been performed with systems which operate 
from the ground surface. These "ground-penetrating" radar systems, have been successfully 
applied to the detection of shallow buried objects (Morey, 1974; Ulriksen, 1982; Das et al., 
1985), mapping of fractures, ground water and surface oil spills (Ulaby and Batlivala, 1976; 
Davis and Annan, 1989), and delineation of glacial ice layers (Harrison, 1970; Annan and 
Davis, 1976). Unfortunately, the range of these measurements is frequently limited to 
depths less than about 60 ft. due to conductive earth at and near the surface. If the layers 
near the surface are highly resistive, depths up to about 130 ft. can be achieved (Davis and 
Annan, 1989). Several environmental problems require information about formation features 
at much greater depths. 

Radar surveys from a single borehole (reflection) or mine have been collected using 
systems operating at center frequencies ranging from a few megahertz to several hundred 
megahertz. This geometry eliminates the effects of the highly attenuative, near surface, 
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conductive layer(s). The rock layers above the instrument also shield the system from the 
ambient (radio frequency) cultural noise that may be present in surface measurements. In 
highly resistive formations, the range of these systems has far exceeded that of surface radar 
systems. For example, some of the earliest measurements made from boreholes in 
piercement-type salt domes have detected reflecting flanks located almost 1000 ft away from 
the borehole (Rolser et al., 1972). Other studies, from galleries and boreholes in salt domes 
and salt mines, have identified reflecting horizons at distances of nearly 2000 ft. (Stewart and 
Unterberger, 1976; Unterberger, 1978; Mundry et aI., 1983). Reflections from 
hydraulically-conductive fractured zones up to 330 ft. away from the borehole were 
identified in surveys in crystalline rock (Sandberg et ai., 1991; Olsson et al., 1992 ). 
Measurements around a dolomite mine have revealed chambers 100 to 130 f1. from the 
instrumentation (Dolphin et al., 1974). 

Hole-to-hole (transmission) surveys have detected air and water-filled, underground 
cavities (Ballard, 1983). Additional cross-hole work in salt and granite has been performed. 
(Wright et al., 1984; Wright et al., 1986; Sato and Thierbach, 1991; Sandberg et al., 1991; 
Wright et al., 1993 ). 

ENVIRONMENTAL APPLICATIONS OF BOREHOLE RADAR 

Many sites of environmental interest are geologically well suited to borehole radar 
measurements. Highly resistive dry, rock, formations are commonly considered as sites for 
subsurface storage of high level radioactive waste and other hazardous materials. For 
example, dry volcanic tuffs located above an extremely deep water table at Yucca Mountain 
in Nevada are currently under consideration as a potential site for nuclear-waste storage 
(Nelson, 1993). A similar, national-scale project in the United Kingdom is focusing on tight 
granitic bedrock. The chemical and nuclear waste storage tanks at the Hanford nuclear-fuel 
processing site are buried in a dry, gravel formation. Most of the northeastern United 
States, where many of the older landfills and industrial sites are located, is underlain by 
fractured metamorphic and igneous bedrock with resistivities of several thousand ohm­
meters 

A common problem shared by all of the above examples is the need to locate fluid flow 
in a resistive host rock. This information can then be used to 1) optimize the location of 
waste repositories 2) monitor migration of contaminant plumes 3) site wells for remediation, 
and 4) assist in the development and management of fractured rock reservoirs. 

Recently there has been increased interest in mining salt domes and in using caverns 
dissolved in the salt for storage of natural gas and hazardous waste (Bersticker, 1963; 
Halbouty, 1979). Determination of the extent and three-dimensional shape of the salt is a 
basic safety and environmental concern in both of the above cases. The extremely high 
resistivities of crystalline salt (103-1()6 ohm-m) makes it a superior medium for deep probing 
with borehole radar. Furthermore, the large electrical contrasts between the resistive salt and 
more conductive surrounding layers provide strong radar reflections. 

It is presently difficult to evaluate the role of borehole-radar measurements in 
environmental applications. Radar performance in resistive formations can be fairly well 
estimated, due to the limited variation of physical properties. Predictions of performance in 
resistive rocks containing contaminants are less reliable; contaminants frequently occur as 
mixtures of various unknown components and may be finely dispersed throughout the rock 
thus altering the overall rock properties. More field and laboratory measurements are needed 
to more fully characterize the utility of borehole radar for environmental applications. 

THE BOREHOLE RADAR TOOL 

Several years ago, a prototype borehole radar tool was built for geophysical surveys in 
salt deposits. (Nickel et al., 1.983). Recently, this too.l was refurbishe~ an~ used ~s a 
research device to study pracncal aspects of radar loggmg. The transDlltter IS a vertical 
electric dipole antenna located at the bottom of the tool (Fig. 1 ). A repetitive, high voltage, 
step function generates pulses with spectral content pc;:aked at about 30 MHz and with ~~ful 
energy extending from about 1 to 100 MHz (apprOXImately -15 dB cutoffs). The recelVlng 
antennas are located above the transmitter. They are composed of two wire loops, 
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constituting two orthogonal, horizontal, magnetic dipoles and a linear vertical electric dipole 
(Sender, 1987). Thus, the system may be categorized as an ultrabroadband, bistatic, 
impulse radar. 

k k 

Figure 1. A schematic diagram of the antenna system of the radar tool. The field lines are also schematic 
and are included simply to convey a sense of the electric dipole field patterns of the transmitter. k is the wave 
vector, B is the magnetic field vector, and E is the electric field vector. 

In an unbounded, homogeneous medium, the radiation pattern of the transmitter is 
azimuthally invariant. Thus, a one-dimensional scan of the tool along the borehole axis 
illuminates the full space without the need to physically rotate the tool. The azimuthal 
locations of reflectors can be determined by processing the responses of the orthogonal loop 
antennas. The +- 180 degree angular ambiguity inherent in crossed antenna systems is 
resolved by comparing the phase of the vertical electric dipole signal with that of either of the 
loop signals. A compass device provides the azimuthal bearing of the tool relative to 
magnetic north. The depth and radial distance (from the borehole) of reflectors may be 
determined by one of several techniques for processing the time "moveout" of signals as a 
function of tool position (Hannuth, 1981). 

101 



MEASUREMENTS AT MOODUS CT 

Fractured, crystalline bedrock penetrated by the 4800 ft. deep well at Moodus, CT 
provided an excellent opportunity for radar logging. The metamorphic bedrock consists 
mainly of gneisses and schists and is of Paleozoic to Precambrian age (Hornby, 1992). No 
data on their resistivities are available; however, values of several thousand ohm-meters 
would be typical for these rock types. Although the nominal porosity of the formations is 
close to zero, there is strong evidence that the region near the well contains several permeable 
fractured zones (Hornby, 1992). These were the targets for single-hole (reflection) 
measurements. 
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Figure 2. Unprocessed single-hole (reflection) wavefonns acquired by the radar tool using the electric dipole 
receiving antenna. Traces are 10 feet apart and labeled every 50 feel 

A series of unprocessed time traces, acquired by the vertical electric dipole receiver, for 
transmitter positions from 700 to 890 ft. below the ground surface is shown in figure 2. The 
trace spacing is 10 ft.; the time interval between data points is 1.61 ns (nanoseconds) and the 
spacing between the transmitter and the receiver was 34.5 ft. Note that the horizontal axis 
measures the time after the direct arrival. The direct arrival is generally the first waveform 
arrival and may be thought of as the signal that propagates directly from the transmitter to the 
receiver without undergoing reflection from discrete targets in the medium. In these tests, 
there was no external trigger to link the received signals to the firing of the transmitter. 
Hence, the reception of the direct arrival served as the zero time reference for all the data 
traces. 
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At depths of 830 to 870 ft., coherent signals occur at ~bout ~80 ns. At depths of700 to 
810 ft. coherent signals occur at about 500 ns. Weaker sIgnals In the 780 to 800 ft. depth­
range and at about 720 ns, are well resolved. Within ~ach of these depth-!a~ge.s, there is 
relatively little moveout from trace-to-trace and good sIgnal coherence. ThIS Indlc~tes t~at 
these signals are returns from nearly vertical sub planar reflectors. Hence, theIr radIal 
distances from the borehole can be approximated by: 

p=[(DvT/2) + (vT/2)2]0.5 (1) 

where v is the wavespeed in a uniform background formation, T is the time after the direct 
arrival and D is the spacing between the transmitter and receiver. We have assumed specular 
reflection and have neglected any effects of the borehole fluid. In this case the latter 
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Figure 3. A replotting of the data of Fig.2 after using the non-linear formula (I) to convert arrival times 
into radial distances, p, from the borehole. Traces are 10 feet apart and labeled every 50 feet. 

assumption is reasonable since the borehole diameter is much smaller than the wavelength of 
the radiated signal and the radial position of the reflectors. A formation velocity of 0.42 ftlns 
was estimated from the moveout of isolated reflectors measured from two logging scans 
made with different transmitter-receiver separations (34.5 ft. and 14.8 ft,). 

Applying formula (1) to the data, results in !'\g. 3, and reveals that the two families of 
strong reflectors are located roughly 95 and 120 feet from the borehole. Deeper reflectors are 
found more than 165 feet from the borehole. Being from the vertical electric dipole receiver, 
these data contain reflection signals from all azimuthal directions; it is not possible to 
distinguish the direction to a reflector or the trend of a reflector. Combining the vertical 
electric dipole data with the data from the two orthogonal magnetic dipoles provides this 
information, thereby increasing the geologic information and enhancing the geologic 
interpretation. 
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For example, two different geologic interpretations of the two coherent, subvertical and 
subplanar reflectors, highlighted in Fig. 4, are possible: (a) the apparent radial offset of 25 
feet between nearer and further reflectors is indicative of a subhorizontal fault, offsetting a 
single subvertical, subplanar reflector, with a consistent trend; or (b) the two coherent 
reflections originate from different directions (not 180 deg. apart), and appear offset in 
figures 2 through 4 as a result of the superposition of signals from all azimuths (because the 
vertical dipole receiver is omnidirectional in its reception), and are therefore unlikely to be 
related to one another through faulting but may be indicative of isolated, discontinuous, 
fracturing. 
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Figure 4. A window of the data of Fig. 2, highlighting two families of reflectors for azimuthal analysis. 

Azimuths were calculated using the average amplitude of time samples within a 
sliding time window (equivalent to a 7 ft radial distance), to account for the time character of 
the received waveforms. The variation of azimuth obtained by applying the azimuthal 
calculation over a number of time windows on a given trace is indicated by the symbol 
associated with that trace (Fig. 5). Amplitude filtering was used to ensure that only azimuths 
in the zones of interest were obtained. 
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Figure 5. Calculated azimuths for four of the traces at depths of 800,810,850, and 860 feet in figure 4. 
The variation of azimuth obtained by applying the azimuthal calculation over a number of time windows on a 
given trace is indicated by the symbol associated with that trace. 

Results of the azimuthal processing (Fig.5) show the radially deeper reflections are 
from an azimuth almost due west of the borehole, whereas the shallower reflections are from 
an azimuth in the southeast qUadrant Because of the subvertical orientation of the reflectors 
(and their ranges relative to the source-receiver offset), the azimuth to a reflector is a good 
approximation to the normal to the trend of the reflector, assuming specular reflection. Thus, 
the isolated discontinuous fracturing interpretation (b) is indicated. 

MEASUREMENTS AT MIRROR LAKE, NEW HAMPSHIRE 

Single-hole (reflection) and hole-to-hole (transmission) data were collected in 
fractured bedrock at Mirror Lake in central New Hampshire. Access to the boreholes on this 
environmental monitoring site was provided through the US Geological Survey's Water 
Resources Division as part of their program to characterize hydraulic flow in fractured rock. 
Many of the wells at Mirror Lake have been surveyed with borehole radar devices developed 
by the USGS in Denver (Wright et al., 1993) as well as with the ABEM borehole radar tool 
(Haeni, et al., 1993). At the location of our measurements, the so-called "FSE" well field, 
the subsurface lithology was mostly granite, pegmatite and schist (Wright, et al., 1993). 

A gray-scale image of data from the vertical electric dipole receiver, collected in single 
hole (reflection mode) is shown in Fig. 6. The tool was logged at 1800 ft/hour giving a 3 ft. 
depth sample interval between successive traces, for each antenna. At this logging speed, the 
tool moved about 0.5 feet between the beginning and the end of each wavefonn; however, 
because the wavelength at the dominant frequency of the pulse is roughly 9 feet in this 
medium, the "blurring" effect is considered negligible. The vertical scale shows the distance 
from the top of the FSE-4 well casing to the midpoint between the transmitter and receiver 
(total separation of 34.5'). The horizontal scale has an arbitrary zero that is set to be roughly 
100 nsec prior to the direct arrival. 
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Figure 6. An unprocessed single-hole (reflection) borehole radar image from the Mirror Lake FSE-4 well 
using dala from the electric dipole receiver. 

The direct arrival, with its characteristic bipolar shape, is plainly evident as the three 
nearly vertical stripes at the beginning of each trace. Later arrivals are from formation 
reflectors and indicate an intricate network of scatterers. Unfortunately, complicating the 
picture are some direct arrival multiples produced by impedance mismatch ringing in the 
electronics. These are visible as vertical stripes underlying the later time data. This effect is 
somewhat magnified by the fact that many of the strongest signals in this plot are at the 
saturation level of the AID converter. Still, even in this unprocessed noisy data, many true 
reflectors are evident from their moveouts. For example, the strong feature at a depth of 315 
ft. (trending along the arrow at the top of Fig. 6) has the characteristic shape of a steeply 
dipping fracture that intersects the borehole. The presence of a steeply dipping fracture at 
this depth is supported by the borehole televiewer log (Paillet, 1993). At depths greater than 
315 f1. the symmetric limb of this reflector is partially obscured, perhaps by strong 
scattering. The feature at a depth of about 300 f1. and an arrival time of about 600 ns is 
roughly 100 f1. from the borehole and can be interpreted as a fracture that does not intersect 
the borehole, or intersects the borehole above 125 ft. 

Hole-to-hole (transmission mode) data were collected after separating the battery 
powered transmitter from the receiving antennas and electronics. Transmission waveforms 
acquired between wells separated by 42 ft. are ploued in Fig. 7. The transmitter was 
stationary at a depth of 179 ft. in the water-filled well FSE-l; the receiver logged in FSE-4 
(also water-filled). Unstacked voltages, detected in the electric dipole receiver, are plotted as 
functions of receiver depth (from the top of the well casing) and estimated elapsed time 
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(relative to the firing of the transmitter). Because there was no trigger used to establish an 
absolute time reference, the time delay of the first arrival is artificial and was estimated by 
dividing the transmitter-receiver separation by an average wavespeed measured from 
reflection measurements in FSE-4. The measured wavespeed was nearly constant at 0.34 
ft./ns for the entire length of FSE-4. 
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Figure 7. A hole-to-hole (transmission) dataset produced by placing a stationary transmitter in well FSE-l 
and logging the electric dipole receiver in well FSE-4. The separation between wells was 42 ft. 

It is worth noting that these data show that strong transmitted signals are received even 
when there are more than 100 feet of rock between the transmitter and receiver and the 
elevation angle of the receiver is about 65 degrees relative to a horizontal plane containing the 
transmitter. Departure of the estimated curve from symmetry about the 179 ft. depth may 
indicate velocity variations with depth, within the plane of the two wells. A strong event is 
present at about 425 ns. Unfortunately, we are not presently able to interpret all of the later 
time arrivals due to concerns about the electronics ringing described above. 

CONCLUSIONS 

Detection of subsurface signals and subsequent processing and interpretation of these signals 
is demonstrated on field data acquired in single hole (reflection) and hole-to-hole 
(transmission) geometries with a prototype borehole radar tool. Single-hole reflection 
measurements from two sites indicate reflectors that can be interpreted as water-filled fracture 
zones in crystalline rock. Reflections from radial distances in excess of 100 ft. from the 
borehole are indicated at both sites. In resistive rock, borehole radar can be a useful tool for 
imaging electromagnetic property contrasts caused by geology, contaminants, voids, and 
other materials that may be present in the subsurface but are not near the borehole. 
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EVOLUTION OF THE ARMY RESEARCH LABORATORY 
ULTRA-WIDEBAND TEST BED 

Marc A. Ressler and John W. McCorkle 

Microwave Sensors Branch 
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2800 Powder Mill Road 
Adelphi, MD 20783 

INTRODUCTION 

For over 20 years, the US Department of Defense has recognized the need and has applied 
resources to develop systems to find targets in foliage. In large measure these early efforts 
were disappointing because of the lack of appropriate technologies. Recent developments in 
Analog-to-Digital (AID) converter technology, source technology, and signal processing 
power have presented new opportunities in this area. The Army Research Laboratory 
(ARL) began a research program to determine the feasibility of bringing these emerging 
technologies together to analyze the problem of seeing through an inhomogenous medium. 
The results of these studies indicated that continuing work in this area and sponsoring 
enabling technologies could produce a realizeable system. Thus, ARL is presently engaged 
in the Ultra Wide Band (UWB) Foliage Penetration (FOPEN) Synthetic Aperture Radar 
(SAR) program to support this work. The particular implementation ARL is pursuing in 
UWB is an impulse (very short pulse) approach. This is an exploratory development 
program aimed at measuring and analyzing the basic phenomenology of impulse radar and 
the propagation effects of targets, clutter, and targets embedded in clutter. Past efforts have 
fallen short in that they have failed to detect targets with a probability of detection (PM and 
probability offalse alarm (Pra) that were useful for military applications. In order to obtain 
acceptable Pd and Pfa levels, real target and clutter statistics must be collected, and specific 
detection logic must be developed. To this end, ARL has developed a testbed facility to 
allow the collection of repeatable data at the Adelphi, MD, site. 

This work has applications in the commercial sector for such tasks as remote sensing for 
forest cultivation and harvesting and-with the promise of ground penetration capabili­
ties-cable and pipeline detection, oil and water table detection, roadwaylbridge fault 
detection, and environmental remediation. In addition to in-house work we are sponsoring 
work with Electro Magnetic Applications, Inc. (EMA), in the area of wideband antennas, 
with Houston Area Research Center (HARC) to do three-dimensional SAR measurements 
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of model scenes and generate computer simulations, and with Ohio State University (OSU) 
for algorithm development in the areas of interference rejection, clutter characterization, 
and target analysis. We have a Cooperative Research and Development Agreement (CRDA) 
with Boeing to share their source technology and our data collection and analysis. We are 
also funding Lincoln Laboratory to collect and analyze data and are working with 
Polytechnic University through an Army Research Office (ARO) program to examine 
ARMA techniques for target identification. This paper will present an overview of the ARL 
UWB rooftop testbed with lessons learned, results of tests, and future plans. 

INITIAL SYSTEMS DEVELOPMENT 

The original antenna design (Figure 1) was produced by the National Institute of Standards 
and Technology (NIST) in Boulder, CO. Each antenna is a linear 200-ohm TEM 
horn-open sides with 200 ohms from the throat to the opening-that is 1.2 m long, with 
an additional 0.5 m of resistively loaded parallel plate section on the radiating end. The 
parallel-plate section improves the return loss at the high frequencies by, in simple terms, 
absorbing some of the energy reflected at the open aperture. We constructed an impulse 
transmitter in the back of the antenna assembly. This consisted of high-voltage supplies to 
charge the antenna and a 300 Ibs/in2 hydrogen-pressurized reed capsule to discharge the 
antenna and form the pulse that is transmitted. Control of charge polarity was provided as 
was an internal oscillator option, so that a free-running transmitter with a pulse repetition 
frequency (PRF) of approximately 20 Hz was available. The whole circuit was operated on 
28 VDC, allowing the transmitter to be placed in the field and run on batteries. 

Figure 1. TEM hom antenna with relay transmitter installed 
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The through-the-air signature of this transmitter and its spectrum, are shown in Figure 2. 
The low-frequency rolloff is due to the limits of the antenna, while the high-frequency 
rolloff is due to the limited frequency response of the receiver-a Tektronix DSA 602 
connected to a similar antenna. To obtain this signature the transmitter was elevated to 
delay multipath ground bounce by approximately 25 ns. One of the problems with an 
outdoor range in a suburban locale is the amount of radio frequency interference (RFI) that 
is present, due mostly to broadcast stations. With a coverage band of 40 to 1000 MHz, this 
system receives most of the RF generated by broadcast and two-way radio services. 
Figure 3 shows the activity in this frequency range as received by the rooftop system. To 
improve the quality of the data of Figure 2, one thousand records were averaged. Each of 
these records was formed by the DSA 602 operating at a 25-GHz equivalent sampling rate; 
this translates to approximately 12,500 pulses being integrated. Similar tests, with less 
integration, were performed to obtain a measure of attenuation and phase errors through 
foliage from 32 points along the roof A time-aligned surface plot of a transmitter in the 
clear is shown in Figure 4. Notice the high signal-to-interference visible in the early-time 
response-this is due to the integration of multiple pulses. The peak of the received signal is 
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Figure 2. Time and spectrum of relay transmitter. Dotted lines show double-exponential model of signal 

relatively constant in cross range, demonstrating the wide beamwidth of the antennas. Most 
of the amplitude loss near the ends of the path is attributable to range-law effects. 
Attempts to use the reed capsule transmitter in a radar mode failed. In reality the 
pressurized mercury capsule was acting as a spark gap device, and multiple pulse firings 
would occur as the ballistics of the reed produced an ever-decreasing gap size until 
mechanical closure occurred. A scope image of this effect is shown in Figure 5 and shows 
that the secondary firing occurring during the time data acquisition would be taking place in 
the receivers. Since the receiver protector circuit would be in the low-loss state at the time 
of the secondary firing, large voltages would be presented to the GaAs FET preamplifiers 
mounted in the receive antennas, possibly destroying the preamplifiers. 

As part of our eRDA, Boeing loaned us a Power Spectra BASS 103 (Bulk Avalanche 
Silicon Switch) pulser. It generated a 600-ps-wide pulse with less than 150-ps rise and fall 
times at an amplitude of 5 kV into 50 ohms. The antennas were modified to include an 
ARL-designed high-power balun (Figure 6), which transforms the 50-ohm line impedence 
to the antenna feedpoint impedence of 200 ohms. These baluns have a -I-dB passband of 
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Figure 3. Typical Intereference as received by the rooftop testbed. 

Figure 4. Time aligned one-way samples from 32 positions in aperture 
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Figure 6. Wide band Coaxial Balun 

300 kHz to 2 GHz. Problems remained, as the BASS appears as an open circuit after it has 
fired. Any energy reflected from the antenna echoes up and down the feedline, producing a 
low-frequency ringing as observed in Figure 7a. A series RL circuit was shunted across a 
portion of the resistively loaded parallel-plate portion of the antenna to better match the 
antenna at low frequencies. An improved circuit that actually runs through the foam 
between the antenna plates produced acceptable performance. The one-way response of this 
transmitter-antenna combination is shown in Figure 8. The short pulse has less low­
frequency energy than the relay-driven transmitter, but more high-frequency energy. The 
output is approximately the derivative of the pulse and appears to be a doublet of 
approximately l.3-nsec duration due to the lowpass nature of the DSA 602 amplifiers. 
Examining the signal with a 6-GHz bandwidth oscilloscope (Figure 9) shows the signal to 
have distinctive positive and negative pulses occurring at the edges of the driving pulse. 

- - - - -S. 81Y 

a b 

Figure 7. Ringing in transmit antenna due to mismatch. (a) unmodified antenna. (b) modified antenna 
(note gain is ten times that in (a)) 
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Figure 9. BASS transmitter as seen on 6 GHz oscilloscope 

UWBTESTBED 

Since accurately repeatable measurements are expensive to make from an airborne platform, 
the strategy selected was to use a rooftop, rail-guided, laboratory-based measurement 
system for collecting clutter and clutter plus target signatures. An elevated track 115 meters 
long was built on the roof, providing 104 meters of active aperture for the testbed. A laser 
level is used to keep the guide rail for the track straight to ±3 mm and level to ±6 mm. A 
motorized cart provides mounting space for the instrumentation and supports the antenna 
panel. A block diagram of the system is shown in Figure 10. The computers are 80486-
based systems with 200 megabyte hard drives for program development and storage and 
600 megabyte magneto-optical (MIO) disks for data storage. The master computer 
communicates with the slave computer, both of which are running similar software, and 
controls operation of the timing and control and the acquisition system. The master 
computer drives the cart in 5-cm steps down the length of the track. The motor/servo 
system is capable of positioning to hundredths of a millimeter, but chain drive backlash and 
temperature effects on the wheels and track can generate cumulative errors. An infrared 
rangefinder allows regular checking of position so corrections can be made to have the cart 
maintain its position along the track. The rangefinder allows an accuracy of 2.5 mm to be 
maintained as the cart moves down the roof 
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The timing and control circuit (T &C) is an ARL-designed programmable gate-array-based 
system that provides drive signals to the transmitters and to receiver protectors. The T &C 
jitters the pulse repetition interval (PRI) to minimize interference to nearby receivers and 
effectively reduce interference to the radar system from other transmitters by ensuring the 
interfering signal is not coherent with the radar transmitter. Experiments with radio and TV 
receivers 100 m from the transmitter have shown no noticeable degradation of broadcast 
reception. The T &C has options to support polarity as well as polarization diversity, 
selectable burst lengths, and programmable pre-triggers and delays to allow its use with a 
wide variety of transmitters and receiver protection schemes. A socketed programmable 
memory chip provides the basic PRI reference information, and the choice of single, 
repeating, or bursts of pulses is available. 

The span of frequencies the radar covers requires a direct baseband receiver system. A 
preamplifier is located in each receive antenna and feeds the receiver through I-dB step 
attenuators. The receivers are a pair of upgraded Tektronix DSA 602A digitizing 
oscilloscopes used as 8-bit 2-Gsls (gigasamples per second) analog-to-digital (AID) 

IEEE4BB 
Antenna 

Figure 10. Block diagram of system 

converters. The computers communicate with the AIDs over two IEEE-488 buses that 
allow setting gain and time delay to position the instrumented region wherever it is desired 
in the test area. These instruments also measure the time between the trigger and the AID 
clock edges, which allows the software to maintain system coherency. 

A fully polarimetric system was desired which required four of the TEM horn antennas, two 
for transmit and two for receive. As can be seen in Figure 11, the transmit antennas are 
linearly polarized at ±45° instead of horizontally and vertically (this was a holdover from the 
design for the relay-driven antennas where the mercury-wetted relay needed to stay mostly 
vertical). Because the radar is pointed north we refer to these polarizations as west and east, 
to designate the direction that the E-vector is angled from the vertical. With few naturally 
occurring objects having a 450 orientation, the returns in the two receivers tend to have the 
same amplitude from naturally occurring clutter. The receive antennas are virtually identical 
to those used for transmitting with the addition of a low noise preamp and a PIN diode 
receiver protector. The antennas are mounted in a nonconducting frame that can be rotated 
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Figure 11. Rooftop testbed on track 

left and right to provide more illumination at specific edges of the image area. The frame is 
mounted on a hinged plate. The plate is constructed of aluminum honeycomb and is covered 
with anechoic foam; the plate can be rotated up and down to aim the antennas at the desired 
target region. Figure 12 shows a photograph of the target area visible from the rooftop 
track. 

DATA PROCESSING 

A Sun SPARC IE-based VME cardcage system is used to provide the processing power for 
the signal processing required to form the SAR image. Currently there are six CSPI 
Supercard (iS60 based) array processors available for this system, and there are plans to 
replace some of these with a pair of quad i860 cards to further increase throughput. The 
system has an optical disk drive to read the radar data, a 2-GByte hard disk drive, and a 
1/4 in. tape for back up. A Silicon Graphics Iris Crimson workstation (including a display 
processor for real-time coordinate transformation operations and filtering in color and 
saturation space) is networked with the signal processor and is used for viewing the image. 
The Silicon Graphics also has a 4-mm DAT drive that is used for providing backup of the 
raw data from the optical disks. This provides a convenient means for data exchange among 
other agencies and academia. A Sun SP ARC 2 workstation and an S0386-based 33-MHz 
PC are used for program development for the signal processing and operational systems. 

The 2-GHz clock in the DSA 602A runs continually and is not locked to the transmit 
timing; samples are taken at the next available clock cycle. This is equivalent to a jitter in 
the received sample, which amounts to a loss at higher frequencies. Figure 13a shows how 
sampling can give a poor estimate of a high-speed signal. As mentioned earlier, the DSA 
602A stores the time delay between the trigger and sample times. These data can be used to 
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Figure 12. Photograph of central target area for the radar 

unfold multiple data records and interleave them to produce a better estimate of the signal, 
as shown in Figure 13b. The samples are interleaved into 32 offset time bins for all the 
pulses in a position for an effective 64-Gs/s rate. The data for each bin are averaged, then 
low-pass filtered and decimated back to an equivalent 16 Gs/s. The data are then scaled by 
,2 to account for range-law effects, and high-pass filtered to remove any residual antenna 
ringing effects. All the interleaving and averaging are coherent with the radar transmitter but 
incoherent with any interfering signals. This is the major source of signal-to-interference 
rejection that takes place in the radar. ARMA and FFT models that allow elimination of 
interference on a pulse-by-pulse basis have been tried, but the integration approach is the 
most computationally efficient. Application of FFT -based rejection algorithms to integrated 
data shows little additional improvement and presents the problem of excising desired signal 

a b 

Figure 13. (a) Effects of sampling (b) Sample interleaving 
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returns. However, work in this area is continuing, since we will not have the luxury of 
transmitting a few hundred pulses per position in a airborne platform. 

For the data illustrated below, there were 2048 samples taken per pulse, covering a range 
swath of 150 m; at each position, 1024 pulses were transmitted-512 pulses for each 
polarization. The 9 GBytes of data recorded in one run are stored on 16 MlO disks. 
Straight back-projection is used to form SAR image. The resulting image is 2048 pixels 
wide by 4098 pixels deep, covering an area that is 225 by 150 m; image intensity represents 
the magnitude of the radar cross section. Normally, in a noncoherent radar, a diode 
detector, followed by a low-pass filter, performs the magnitude function. In a coherent 
radar, in-phase and quadrature (/ and Q) channels are derived at baseband, from which the 
magnitude can be calculated as the vector sum. For the UWB data, a UWB envelope 
detector is needed. The raw amplitude plot in Figure 14 can be thought of as I, and by 
applying a Hilbert transform (which shifts all frequencies by 90°) to these data, we can 
generate the Q channel. This Hilbert-transform technique thus becomes our UWB envelope 
detector, producing the magnitude plot of Figure 14. 
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Figure 14. Top: Raw signal Bottom: Magnitude 

A sample image is presented in Figure 15. The images produced by this process are too 
large to be reproduced here, so a subset will be presented. To encompass more data in this 
image, the results have been distorted so the pixels are not square. The imagery presented 
here is for the WW (west transmit/west receive) polarization channel and darker pixels 
represent higher radar cross section. The test was performed in January when the trees were 
defoliated. For this test, a number of canonical targets (corner reflectors and simple tubing 
"dipoles") were arrayed at the edge of the treeline, along with a number of commercial 
vehicles located in the parking lot area. In addition, an 8-ft-square corner reflector was 
placed 40-m deep in the woods. The four dark regions in the lower portion of the picture 
are the parking islands shown in Figure 12. The two black spots in the upper portion of the 
image are due to the direct and ground-bounce multipath to the 8-ft triangular plate corner 
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reflector. The 45° line to the right of the -lO-dB scale marker in Figure 15 is a pickup truck 
parked in the grass. There are two more pickup trucks that didn't move during the test and 
they are located near the center of the image. The one to the left is a small stake-body truck 
with the back end facing the radar. The two dark spots are due to the tailgate and the rear 
of the cab. The truck to the right has a camper back, and its front end-the major source of 
signal return-is facing the radar. A pair of dipoles are mounted about 20 m to the left and 
right of the comer reflector. The one to the right is a west-oriented dipole (i.e., co­
polarized) and presents a large signal return. The dipole to the left is cross-polarized and 
produces little return. 

An interesting characteristic of UWB radar systems is that their measured resolutions, in 
both range and cross-range, are a function of the frequency content of the target 
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Figure 15. 8AR Image - to increase displayed data the horizontal dimension has been compressed 2: 1 

backscatter. Analysis of narrow bandwidth radars can assume "point" scattering in the 
spatial domain or white scattering in the frequency domain, since the cross section of a 
target is essentially constant over the narrow frequency range of the radar. Scattering for 
UWB systems, however, is more complex, so to speak. The response of a resonant scatterer 
to an incident wideband pulse will generally be composed of two temporally distinct parts, 
referred to as the early-time (driven) response and the late-time (resonant) response. The 
early-time response is the echo of the incident pulse, caused by local currents being driven 
on the surface of the object; alone, it does not convey a great deal of information about the 
scatterer. The late-time response is a ringdown of the natural frequencies of the target 
excited by the incident pulse. These natural frequencies are a function of the electrical 
dimensions of the object, and for a dipole-like target typically consist of the odd harmonics 
of this dimension. This resonant response offers the promise of being able to perform 
automatic target recognition (ATR) in a manner that is basically aspect independent. A 
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number of pattern-matching techniques have been tried, and a wavelet approach seems the 
most promising. 
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Figure 16. West Dipole image and range profile 

The magnitude image has limited use here as it loses phase information, so this information 
is obtained by analyzing the bipolar SAR amplitude map. Since the resonant response is 
delayed in time from the driven response, the dipole ringing appears in range pixels "behind" 
the driven response of the target. Figure 16 shows an excerpt of Figure 15 centered about 
the west dipole (in this image the color scale is reversed so that white is the maximum cross 
section). A range profile through this part of the image produces the amplitude response 
shown in Figure 16. The early and late responses can be seen here. A template was 
constructed from these data, representing a synthetic ringdown for the dipole. This ideal 
waveform has generally poor correlation performance with the actual noisy dipole 
signatures as would be the case with spatially matched filters. Projecting the synthetic 
ringdown onto a frequency-space transform basis (such as a Fourier or wavelet basis), 
creates a set of spectral coefficients that we refer to as the "spectral template." A subset of 
the image data is similarly decomposed, creating a second set of spectral coefficients. These 
two sets of coefficients are individually vectorized, and a simple correlation coefficient is 
generated from the two coefficient vectors, and serves as the target identification metric. 
The wavelet bases used were the Haar function (an orthonormal wavelet basis) and a 
Gaussian function (a nonorthogonal basis). The basic Gaussian function, which exhibited 
high probability of recognition with relatively low false-alarm rates, was employed as the 
target recognizer, but remained computationally complex. The Haar function exhibited a 
high false alarm rate, but, when modified to detect the early time response, served admirably 
as a target cuero The Gaussian recognizer searched for the ringdown within a neighborhood 
of pixels behind the target cue. Inclusion of this target cueing stage reduced processing time 
by a factor of 14. Since we are not trying to reconstruct the original signal, only the 
decomposition operation needs to be performed. Thus the transform bases employed in the 
analysis do not need to uniquely span the signal space, nor even span the signal space at all. 
Thus, the bases were reduced to increase computational efficiency and performance. The 
basis functions that were removed corresponded to noise-only subbands; a minimum 
number of basis functions were removed, since elimination of excess basis functions tended 
to substantially increase false-alarm rates. This approach was tried on a number of data sets, 
including ones in which the dipoles were up to II meters deep in the wooded area. The 
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probability of identifYing the dipoles was approximately 90%, including dipoles cross­
polarized to the illuminating field. 

CURRENT AND FUTURE WORK 

Power Spectra has constructed a new BASS device/charge line for our use that produces a 
fast rise time (-70 ps) and a slow, almost exponential, fall time (-3ns) to increase the low­
frequency content of the transmitter. The transmitter output for this waveform is shown in 
Figure 17. The peak output power of this device is five times higher than the previous unit, 
allowing us to integrate fewer pulses and retain the same signal-to-interference ratio. This 
has also resulted in tests that take one-quarter of the time to run, and use one-fourth of the 
number ofMlO disks. 

········'l·········j········: ... " .... : .. ...... ! .... , .... :",.1 .. " ... . 
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Figure 17. Modified transmitter pulse 

We have improved the antenna matching by replacing the shunting series RL circuit with 
one constructed of nichrome wire and distributing the remaining required resistance in 
multiple locations down the length of wire. Yet careful examination shows there is still 
enough reflected signal in the antennalbalun combination to generate a single delayed echo 
in the images (the return loss is high enough that any other echoes are below the 
background noise level). A set of "wings" has been added to the end of the TEM hom to 
improve the impedance match across the frequency band (see Figure 18). An improved set 
of coaxial baluns with better low-frequency response (-6-dB at DC) has been constructed 
and installed in the winged antenna. One-way tests were performed with the two antenna 
configurations, and the time and frequency responses are shown in Figure 19. Note that the 
winged antenna has a higher specific output, averaging close to 4 dB higher than the 
standard antenna. The improved low-frequency content in the new BASS transmitter helps 
compensate for the low-frequency droop visible in Figure 8. 

Although correlating the return signal with the transmitted waveform would effectively 
eliminate the echo, the problems are: (1) accurately measuring the transmitted signal, free of 
any close-in multipath and (2) the computational load this places on the signal processing. 
Because of this, work is continuing in the areas of improved antenna and balun design. The 
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Figure 18. Modified TEM horn with low frequency "wings" 

Figure 19. (a) One-way response of new transmitter with standard and modified antenna (b) Frequency 
response compared to original relay-based transmitter 

most recent version of the balun does not use cable at all; rather it produces the appropriate 
line impedances and smooth junctions by implementing the balun in a combination of 
stripline and microstrip (Figure 20). Figure 21 shows the combined response of the balun 
and antennas and demonstrates a return loss in excess of 20 dB is possible with the winged 
version of the antenna. Still, tests are planned to measure the transmitted waveform in the 
complete radar configuration on the cart by suspending a comer reflector from a crane, 
about 60 ft above the ground. This should keep the multipath due to ground bounce far 
enough away from the transmit signal to get a good measurement of the transmitted 
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Figure 20. Striplinelmicrostlip 50 ohm to 200 ohm balun. 
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Figure 21. IDR test of combined balun-antenna system 

waveform. Subtracting a similar measurement made without the comer reflector in place 
should remove the effects of direct echoes from nearby objects. 

The data-acquisition system is being upgraded to one based on a high-speed digitizer from 
Analytek. This will allow the PRF to be raised to almost 1 kHz. A VME card cage 
processor system is being constructed to replace the existing 80486-style computers. It will 
control the cart and download the data from the high-speed digitizers directly into array 
processors that will perform the interleave and average functions. This not only reduces the 
post processing requirements, but means that fewer MlO disks will be needed to record the 
data. 
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ULTRA-WIDEBAND IMPULSE SAR 

FOR FOLIAGE AND GROUND PENETRATION 

David Buseck, Joel Kositsky, and Roger Vickers 

Geoscience and Engineering Center 
SRI International 
Menlo Park, CA 94025-3493 

INTRODUCTION 

SRI International has designed and fielded ultra-wideband (UWB) impulse radar sys­
tems on a wide variety of platforms and for a large number of applications since the early 
1970s. Early work included archaeological exploration in Egypt, rain forest terrain surveys 
in Indonesia, and a helicopter survey of the Alaska pipeline. These early projects typically 
involved downward-looking line profiles, but more recently SRI began to develop synthetic 
aperture radar (SAR) systems for both foliage- and ground-penetration applications. The 
current hardware is known as FOLPEN IT (second generation FOLiage PENetration). 

Our airborne systems have demonstrated the ability to locate vehicles and other objects 
under trees, and have also demonstrated ground-penetrating radar (GPR) capabilities. 
Ground-based SAR platforms have demonstrated high-resolution detection of buried mines. 
This paper will briefly describe the collection hardware and will discuss some of the pro­
cessing that is performed on the raw data before the imaging algorithms are applied. We 
will also show some examples of images and hidden-target detection that have been 
achieved. 

Both the airborne and ground-based systems described use synthetic aperture tech­
niques, ultrawide bandwidths (> 100%), and impulse sources. However, there are several 
differences in their respective hardware and some differences in the processing, so the two 
platforms will be described separately. The non-real-time processing software for both sys­
tems will also be described, and the paper will close with examples of the types of detection 
capabilities that have been demonstrated. 

HARDWARE DESCRIPTION 

Airborne Radar 

The airborne system is mounted on a twin-engine Beech aircraft (Queen Air). The 
dipole antenna arrays are mounted on the undersides of the wings, and the hardware is 
mounted in two equipment racks in the passenger section of the craft. 

125 



Transmitter. The transmitter is a custom dual-thyratron pulse generator. The unit has 
six parallel 50 Q outputs with adjustable peak: pulse voltages from 3 to 10 kV, for a peak: 
power of about 12 MW. 

The basic pulse-generating circuit is of the capacitor discharge type, using two parallel 
high-reliability ceramic thyratrons. The high-voltage outputs are passed through specially 
designed ferrite sharpening lines to improve the risetime of the leading pulse edge. Each 
sharpener consists of a coaxial line having ferrite magnetic material incorporated into the 
dielectric structure. This introduces a nonlinear amplitude function into the propagation 
characteristics of the line such that the leading edge of the pulse is greatly sharpened from a 
nominal risetime of 6.5 ns to one of less than 600 ps. 

Antennas. The transmit and receive antennas are each nine-element dipole arrays 
mounted on the undersurface of the aircraft wings. Each array is squinted by using appro­
priate delay cables to place the center of the beam pattern at a 45° depression angle. The 
Queen Air has a low-wing design, so the fuselage does not appreciably interfere with the 
arrays' fields of view. The dipoles are positioned as far as possible from the wing edges and 
the engine nacelles to minimize edge effects. 

Two types of dipoles have been used: resistive and conductive. The resistive antennas 
have a wider bandwidth (as defined by the -3 dB points), but the conductive antennas are 
more efficient over the entire band. Both types of antennas have similar mechanical designs 
and baluns, and both radiate only horizontally polarized energy. To suppress sidelobes pro­
duced by the nine-element arrays to the -40 dB (two-way) level, a Dolph-Chebyshev ampli­
tude taper was incorporated by appropriately splitting and attenuating the pulse power to 
each dipole in the transmit array, and by similarly combining the power from the receive 
elements. 

Receiver. The FOLPEN II radar receiver is a dual-frequency unit operating in the VHF 
band. It has an instantaneous bandwidth of 200 MHz and can operate at center frequencies 
of either 200, 300, 350, or 400 MHz. Alternate pulses can also be selected to be at any two 
of the available frequencies. The output from the receiver is in the form of in-phase and 
quadrature-phase (I & Q) coherent baseband signals for use by a high-speed analog-to­
digital converter and a special SAR signal processor. 

Processing. The processor is a custom designed and built unit that perfonns the timing 
and synchronization, the real-time image generation, and several other functions on the 
FOLPEN II SAR. The processor was designed to acquire, process, and display SAR data in 
real time. It can construct reasonable-quality SAR images (with 1 m x 1 m resolution) in 
real time for target identification and on-line data quality evaluation, and produce even 
higher quality SAR images in postprocessing. 

Ground-Based Radar 

SRI has fielded several configurations of vehicle-mounted radars. The results described 
here were generated using a radar mounted in a 20 ft trailer that is towed by a pickup truck. 
The transmit and receive horn antennas are mounted on the roof of the trailer and are slanted 
to a 30° depression angle. 

Transmitter. The radar transmitter is an impulse generator of solid-state design using 
an array of transistors operating in avalanche mode. It is capable of generating highly repro­
ducible 2 kV pulses with a risetime of 120 ps. The pulse width can be readily changed to 
peak: the transmitter spectrum at any preselected point within the band. 
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Antennas. The transmit and receive antennas are identical horns of a double-ridged 
waveguide design. The operating frequency range of these antennas is from 200 to 
2000 MHz. At 1000 MHz, the horn's gain is 12 dB. Any linear polarization can be achieved 
by simply rotating the horns, although we usually mount them to provide HH or VV polar­
izations. Vertical polarization, optimal for ground-penetrating work, reduces the effects of 
clutter and provides more useful scattered energy from subsurface targets. However, HH 
polarization can be better at detecting long, horizontally oriented targets such as shell cas­
ings. The HH polarization data may also be useful in conjunction with VV data to increase 
the signal-to-clutter ratio in postprocessing. 

Receiver. The raw RF return signals are digitized at 2 Os/s. The digitized data are 
recorded into random access memory (RAM) on a DOS-based computer. Typically we 
record 512 samples of 8-bit data per pulse. Each pulse is triggered by a shaft encoder 
attached to one of the trailer's tires; the system is usually set to provide 12.5 mm spacing 
between pulses. The maximum acquisition length depends on the amount of RAM present, 
and is currently approximately 215 m. 

PROCESSING SOFTWARE 

Most of the processing software described here is the same for both the airborne and 
ground-based systems. The additional steps required for the ground-based systems are 
described at the end of the section describing the trimodal filter. 

Trimodal Filter 

Three separate processing functions are combined in a trimodal software filter that cor­
rects the raw data for problems with pulse dispersion, radio-frequency interference (RFI), 
and digital aliasing. The filter takes the form 

K(f) eNU ) 

S(f) 

where K(f) is a Kaiser window, ¢if) is the phase of the measured system impulse response, 
and S(f) is an RFI spectrum. 

The first part of the filter (eilPif) deals with pulse dispersion. The bandwidth of the 
UWB/SAR used by SRI is very large. Therefore frequency-dependent components and 
delays throughout the system can result in significant dispersive effects over the bandwidth. 
Pulse compression is a method used to compensate for these dispersion effects in software 
by using the impulse response of the system. A fast Fourier transform (FFT) of the system 
impulse response is performed, and the complex conjugate is calculated to determine the 
inverse phase. The calculated phase inversion of the impulse response is then applied, on a 
pulse-by-pulse basis, to the raw data. 

The first step of the pulse compression process is therefore to generate an impulse 
function file to be convolved with each pulse of the raw SAR data. Ideally, the impulse 
response of a system should be measured under laboratory conditions. With a system as 
complex as these radars, the impulse response must be approximated from field data. The 
impulse function is generated by evaluating the image of a 5 m reference corner reflector. A 
preliminary image is made of a retroreflector in an open area. The location of the peak 
retroreflector response is measured, and a profile of the corresponding pulse is taken 
through the peak. The profile is evaluated to determine the most likely boundaries between 
the actual pulse and the surrounding noise, and all responses outside the boundaries are 
zeroed. This response profile is then used to compress the raw data. 
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An alternate method for collecting the system response data for the airborne radar has 
recently been explored and appears to give excellent results. The aircraft is banked over a 
large, smooth, body of water at the radar look angle. The specular return from the water 
then gives us the system response without the uncertainty of the properties of the 
retroreflector. 

The second part of the trimodal filter compensates for RFI. Since the radar operates in 
the 100 to 500 MHz range, we are subject at times to significant interference from television 
and FM radio broadcasts. This type of interference can cause significant disruption of the 
images generated. An RFI spectrum file is generated by averaging the FFr of WOO or more 
pulses of the raw data. A persistent RF noise source is stable in frequency space, while the 
target and clutter data will vary as the airborne platform travels. Therefore, the target data 
are averaged out, and the RFI spectrum remains. The RFI spectrum file is then used to 
remove the interference spikes by dividing each pulse of the raw data by this spectrum. 

The third part of the trimodal filter uses an anti-aliasing Kaiser window on the FFr of 
each pulse. Unlike a square window, the Kaiser window does not introduce sidebands in the 
time domain, and it does not distort the phase of the signal (this is important because the 
phase information is used in the imaging algorithm). 

In addition to the processing described above, data collected from the trailer require 
clutter reduction and conversion of the raw RF data into baseband I and Q components. 
Analysis of ground-based data reveals persistent echoes at specific ranges. Some of these 
echoes originate at the sides of the trailer and some from the ground under the antennas. An 
average pulse, or an average for each range of interest from the whole data set, is obtained 
and subtracted from the original data. Generally, it is assumed that the signals from the dis­
crete targets to be imaged do not significantly contribute to this average, but this assumption 
is not always true. Instances when the assumption is not true occur when strong and long­
lasting targets exist in the field of view (e.g., walls, chain-link fences). Because the average 
can be strongly affected by these kinds of targets, clutter removal can seriously degrade the 
image. To solve this problem, the operator examines the raw data for areas (in terms of 
pulse and sample numbers) that are free from strong echoes, and determines the average to 
be subtracted based on these areas. After signal clutter removal, the raw data are converted 
into I and Q components at baseband frequencies. In a hardware implementation, this pro­
cess is analogous to mixing, down-converting, and coherent detection. In software, this is 
accomplished by performing an FFT on the de cluttered data, shifting the various frequency 
components to the desired baseband, and inverse transforming. 

Motion Compensation 

Motion compensation using global positioning system (GPS) data is an important, 
although not vital, part of generating SRI's SAR images. We are able to generate clear, 
well-focused images from portions of the raw data without using any motion compensation. 
However, high-quality imagery requires constant aircraft velocity over the region of 
interest-a requirement that is not achievable in practice for extended periods of time. 
When the true velocity is known to within a few centimeters per second (as can be achieved 
with differential GPS), it is possible to generate well-focused larger images. 

Imaging Software 

We use a flexible image production and analysis tool that was developed in-house to 
generate images from raw SAR data. It takes baseband I & Q data from an acquired data file 
and creates ground images by coherently integrating data along target paths. Most of the 
computationally intensive operation in this process (data indices and phase correction) are 
pre-calculated so that image production may be reduced to a series of table lookups and 
complex multiplications and additions. Images can be displayed in amplitude, power, or dB 
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mode, each of which is useful for different functions. For example, amplitude displays often 
give the best visualization of features such as clearings and roads in a forest, power displays 
emphasize hidden targets, and logarithmic (i.e., dB) displays are useful for quantitative 
measurements and comparisons. 

RESULTS 

Foliage Penetration 

The foliage-penetration characteristics of the SRI radar are demonstrated graphically 
by the radar image (Figure 1) of several trucks parked along a roadway in a dense hardwood 
forest. The trucks were placed against the edge of the road so that they were not optically 
visible from the 450 look angle of the radar. The forest appears as a series of points; each 
point is an individual tree. Roads and clearings are darker areas in the image. The trucks 
appear as elongated bright blobs along the edge of the road that runs the length of the 
image. Additional processing steps (currently being developed) can reduce the tree clutter 
and further enhance the detection capabilities. 

Figure 1. Radar image of several concealed trucks parked along a road. 

A demonstration of the RFI-reduction capabilities of the trimodal filter uses data that 
were collected at a site with significant noise from nearby air-traffic control and television 
transmitter facilities. The horizontal stripes in Figure 2 (a) are the result of this high RFI 
environment, and the bright spot in the middle is a calibration target that had been placed 
along a roadway. Running the raw data through the trimodal filter to reduce the RFI results 
in the image of Figure 2 (b) where the calibration target is clearly visible, and variations 
between forest and clearing are also visible; no variations were evident before processing. 

Ground Penetration 

Minefields are an important target for GPR systems. SRI has demonstrated mine 
detection from both its airborne and trailer-based radars. The results from the trailer-based 
system are described here. 

129 



(a) (b) 

Figure 2. (a) Radar image from a site with high RFI noise. 
(b) Same data imaged using the trimodal filter to remove the RFI. 

The targets in the test minefield were actual mines without the detonators. They were 
arranged in diamond patterns as shown in the ground truth diagram in Figure 3. The surface 
was covered with small scrub, and the mine locations were not apparent visually. The 
results of SAR processing for both horizontal and vertical polarizations are shown in 
Figure 4, where the peaks are all located over mines. (In the VV image we can also see the 
vertical rebar that was used to delineate the test plot.) Note the improved signal-to-clutter 
ratio in the VV polarized data. Every metal mine and many of the plastic mines in this test 
(the data displayed here are from one of about 35 different sites) were detected. Based on 
the signal returns from this experiment, and making some assumptions about the electro­
magnetic properties and the homogeneity of the soil, we calculate that we could detect 
mines or other metal objects of a similar size that are buried as deep as 2 m . 
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HH Polarization 

VV Polarization 

Figure 4. Wire grid display of images generated from llli and VV polarization SAR data. 

CONCLUSIONS 

SRI International has recently fielded two UWB pulse radar systems and has demon­
strated both foliage- and ground-penetration capabilities. Vehicles under dense tree cover 
have been located from an airborne platform, with additional detection power available 
from a series of post-processing clutter- and noise-reduction algorithms. Buried objects of 
various kinds have been detected from both the airborne and a ground-based system, and 
impressive results have been shown from a test minefield using a trailer-mounted SAR. 
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ULTRA-HIGH-RESOLUTION RADAR DEVELOPMENT 

SUMMARY 

Chester Phillips, Paul Johnson, Kristine Garner, Gene Smith, Alex Shek, and 
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Thermo Trex Corporation, 9550 Distribution Avenue 
San Diego, California 92121 

Soon Leong 

Naval Surface Warfare Center, Dahlgren Division 
AN/SPY-I System Branch 
17320 Dahlgren Road, Dahlgren, VA 22448-5110 

An Ultra-High Resolution Radar (UHRR) has been developed by ThermoTrex 
Corporation (TTC) for demonstration of Ultra-Wide-Band Radar technology. The TTC 
radar has been developed at Miramar, California under contract to the Naval Surface 
Warfare Center, Dahlgren Division, and is sponsored by ARPA's Defense Sciences Office. It 
is an L-band Track-While Scan (TWS) radar with a nominal detection range of 25 + 
kilometers on a 1 sqm. target, a range resolution of about 1 foot, and a capability to auto­
detect and auto-track. The radar is configured into a mobile laboratory for field operations. 
It will be used to demonstrate feature recognition on aircraft and for low altitude, low cross 
section target detection and track over water. 

The radar contains many unique features including the capability of auto detect and 
of tracking up to 100 air targets simultaneously. It has a constant false alarm rate receiver 
followed by an all digital signal processor with a sampling rate of 3 gigahertz. A tracking 
computer on the output of the signal processor has the ability to automatically detect and 
track (ADT) targets and provide the range and location of all target features for "non­
cooperative target recognition" (NCTR) analysis. The radar is equipped with an "adaptive 
clutter velocity lock" (ACYL) followed by a "moving target indicator" (MTI) with up to 
30 dB of cancellation of stationary targets. The ACYL indicator can provide velocity 
compensation for wave motion in sea clutter environments. To augment the ADT features, 
the radar also provides for detection inhibit regions controlled by the track computer. 
These capabilities are supported by transmit and receive antennas with 25 dB gain excited 
by an 80,000 volt impulse driver with up to 10 kc prf capability. The radar's 3 dB 
bandwidth is 500 MHz limited by the impulse source since the antenna and receiver are 
much wider. This provides a range resolution of about 12 inches and the system has 
demonstrated an instantaneous dynamic range of greater than 100 dB. 

SYSTEM DESCRIPTION 

Figure 1 is a photograph of the mobile laboratory at the TIC development site in 
Miramar, CA. The system block diagram is shown in Figure 2 and is the basis for the 
following description of system detail. 
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Figure 1. Mobile ultra-high resolution radar laboratory at TTC development site. 
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Figure 2. System block diagram. 

ANTENNA DESIGN 

Two 8 ft . parabolic antennas are used on a common pedestal to search the 
environment and track targets in a TWS mode at a 6 second data rate. The antennas have a 
measured pulse gain of 25.6 dB, low sidelobe responses and a measured 3 dimensional 
pulse beam width of 9.5 0 by 1.5 nanoseconds. Figure I showed the two antennas mounted 
on a central column which contains the impulse transmitter. These antennas rotate at 6 rpm 
under normal operation although speed is a variable which may be set by the radar control 
computer. A fourteen bit digital shaft encoder measures and passes the antenna position to 
the control computer. 

The key element in the antenna is a constant phase center feed shown in more detail 
in Figure 3. The feed uses a 50 ohm coax input and is well matched with VSWR less than 
1.5 to lover substantially all of the band from 500 to 2000 megahertz. The coax input 
junction is housed in an oil bath to prevent corona destruction of the coax cable. The feeds 
have been extensively tested at the 160 megawatt pulse level without corona or voltage 
breakdown. Both high power and low power versions have been developed with the 
primary difference being the oil bath for the higher power model and the use of smaller 
coax without oi l for the lower power model. 
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Figure 3. High power constant phase center impulse feed. 

While the feed looks like a fat dipole it is more equivalent to an open ended wave 
guide with a 10 dB front to back ratio and 4.7 dB forward pulse gain. Conservation of 
energy indicates that the generation of a 1.5 cycle rf pulse from a unipolar dc impulse will 
cause at least 5 dB of peak signal loss depending on impulse characteristics (note that this is 
not an energy loss, it is a peak signal loss). Moreover, the unradiated low frequency 
components of the impulse causing another 6 dB of peak pulse signal loss compared to the 
input impulse voltage from the 500 picosecond test pulser. Figure 4 is a photograph of the 
received signal time domain response taken with a Tektronics 602A digital signal analyzer. 
The source for this measurement was a 23 watt peak, Picosecond Pulse Lab impulse source 
with a 500 picosecond HWHM (half width half magnitude). It was radiated from a transmit 
feed located in the far field (i.e.142 feet) and was received through the receiving antenna. 
Figure 5 is a photograph of the spectral response of this same signal. It shows a -6 dB 
spectral response at 500 and 1100 megahertz with a slightly asymmetric spectrum with 
maximums in the spectral response occurring between 600 and 800 megahertz. This 
response includes two antennas but does not include any of the receiver effects. While the 
feed has a much broader bandwidth, the impulse source limits the high frequency response. 

Figure 4. Time domain response from feed 
in far field received through 8 foot dish antenna 
20 millivolt and 1 nanosecond per division. 

Figure S. Frequency response from feed in 
far field received through 8 foot dish antenna 5 
dB vertical and 244 MHz horizldiv. 

One of the primary tenets and perhaps more controversial aspects of the antenna design was 
that in a non-dispersive antenna, the various spectral components of a bipolar impulse 
would travel as a group and that antenna beam width and gain would be established on the 
basis of the bipolar wavelength of the group and not on the magnitude of the various 
spectral components. All of our pattern calculations and measurements, including beam 
width and absolute gain have confirmed this. In fact, our definition of transmit antenna 
gain and receive effective area is based on the pulse response and not on frequency. 
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· . Careful a~alysis of the cab.le losses, transmit pulse power and the received voltage 
Indicated a receive aperture effiCiency of 77 percent and an absolute gain on the received 
1.5 cycle (wavelength = 1.15 feet) pulse of 25.6 dB. (180 millivolt peak to peak signals 
were delivered to a 602A DSA from an 8 feet diameter dish receive antenna with the 23 watt 
impulse source located 142 feet distant with a transmit antenna gain of 4.7 dB and various 
cable and spectral mismatch losses of 16 dB (spectral mismatch = 6 dB, unipolar to 1.5 
cycle peak signal losses of 5 dB and cable loss = 5 dB.) Separate measurements showed an 
antenna beam width on the 1.5 cycle impulse of 9.5 0 and less than 1.5 nanoseconds. This 
measurement compares very closely to a gain of 25 dB using the standard approximation 
for gain from beam width measurements of 30,000/(bw)2. 

Two antennas are employed since very high transmit/receive isolation is necessary to 
prevent receiver fratricide and there are no available duplexers than can handle the impulse 
source. Isolation between the antennas was measured at 60 dB peak below the 80 kV 
impulse which represents a peak received voltage due to cross-talk of about 80 volts. While 
the receiver contains an active diode switch for protection, the passive limiters following the 
TIR switch appear capable of handling this voltage for receiver protection. 

IMPULSE TRANSMITTER 

An impulse transmitter, developed and manufactured by Science Research Laboratory 
under contract to ARPA is the primary source of rf energy. The SRL pulser outputs an 
80,000 volt, 160 megawatt, 1.5 nanosecond pulse with a 350 picosecond rise time impulse 
into the 50 ohm antenna where it is differentiated to provide a 1.5 cycle radiated pulse. 

Figure 6 is a photograph of the pulser electronics mounted on the pedestal in the rear 
of the mobile lab. The impulse source is a shock-line about to inches in diameter and 
about three feet long with a small diameter shock line output section about 4 feet long. It is 
not visible in the photograph since it is located inside the aluminum antenna support 
column located on the rotational center of the pedestal. Prime power for the transmitter is 
brought on the pedestal through slip rings at the base. The timing trigger for the impulse 
source comes from the timing module and is brought on the pedestal through a dual 
channel rotary joint with the second rotary joint channel dedicated to carrying the receive 
signal off the pedestal to the receiver. 

Figure 6. View of impulse transmitter electronics mounted on antenna pedestal. Impulse source 
located inside aluminum support column in center of pedestal. 

RECEIVER DESIGN 

The receiver design is dominated by three major considerations. These 
considerations are: 

I . The fourth power variation of target return versus range. This would not be a big 
concern if the radar was not a surveillance radar since variable attenuators could control the 
centering of the dynamic range with target range. However, attenuators with the requisite 
speed to cope with the R4 variation for a radar covering a range from 300 meters to 30,000 
meters (1004 = 80 dB) plus a 20 dB variation in target size proved to be very noisy and 
unusable because of excess receiver noise which they generate. While a low noise linear 
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amplifier with a linear range from thermal noise to about + 10 dBm is feasible, we found 
none at the onset of our development and the logical choice was a logarithmic video 
receiver for dynamic range considerations. 

2. Available NO converters with the speed to cope with the 3 gigahertz continuous 
sample rate appear to be about 8 bits which is more than adequate for a log video receiver. 
If a linear receiver were used, the NO requirement would escalate to about 14 bits but with 
the log video compression, current 8 bit technology fills the need. 

3. The objective of performing general surveillance with the radar requires that 
continuous noise normalization be done to cope with the vagaries of RFI and clutter. A 
constant false alarm rate (CFAR) noise normalization on the output of a linear receiver is 
extremely complex while noise normalization on a log receiver is simply a matter of high 
pass filtering which removes the mean noise background. 

As a consequence of the requirements and system considerations, a log-video receiver 
was chosen and built. Figure 7 plots the dynamic range of the receiver as a function of 
input signal power. In principle, the dynamic range should be about 140 dB but it was not 
tested beyond the 100 dB variation shown. 
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Figure 7. Output video voltage as a function of input power. 

DIGITAL SIGNAL CONDITIONING 

Figure 8 is a composite photograph of digital signal conditioning equipment built for 
the UHRR system. The functions of timing, NO conversion, clutter velocity compensation, 
clutter cancellation, sensitivity time control and automatic detection and target data 
extraction are handled by this equipment. The function of the signal processor is to 
condition the signal so that computer processing for tracking and target recognition may be 
performed. 

Six AID boards are interleaved to provide a continuous 3 gigahertz sampling and 
storage capability for a 1 millisecond radar scan. The basic AID element is the Tektronix 8 
bit NO converter with a 235 picosecond sampling window. On each board, the input signal 
is AID converted at 2 nanosecond intervals and the digitized samples multiplexed for 
storage and MTI subtraction in 8 parallel 62 megahertz channels. Paralleling the boards 
provides continuous data sampling at 333 picosecond intervals. For MTI applications. the 
entire received sequence for the first MTI transmission (over a 100 mile interval) is stored 
on the NO board. The stored information is subtracted from the second pulse in real time 
as the second signal is received. This MTI storage and subtraction is done on the AID 
board. 

The MTI residue is passed from the NO board to two parallel pulse processor boards 
which perform target data extraction functions. Twelve of these boards are used within the 
system. The board design makes extensive use of electronically programmable logic 
arrays. 

The pulse processor is basically a threshold board but the threshold is independently 
controllable by the radar control computer in 16 nanosecond range intervals. This control 
capability is basically a control on the signal to noise ratio criteria that triggers a transfer 
window of target data to the computer but it also provides both a STC function and an ADT 
function for the radar. 

The window of target data detected by the threshold board is specified in width by the 
computer but it is typically a few hundred range cells centered on the target detection. Up 
to 64 such target detection windows per range sweep of the radar may be transferred to the 
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Figure 8. Composite of digital signal conditioning equipment built for the UHRR system. 

tracking computer. To further provide for control of false alarms, the pulse processor also 
provides the capability to inhibit regions in which detection transfers to the computer may 
occur. This capability can be used to prevent detection of cars and trucks on a road that 
might be within the radar field of view. The objective of the thresholding and the data 
acquisition window is to limit the amount of data that the tracking computer must handle to 
only those targets which pass the MTI, clutter inhibit and the threshold tests but it allows 
enough data to be transferred to allow for target identification. 

A critical necessity is very accurate time alignment of the two received pulse 
sequence's in order for the MTI to work. The automatic clutter velocity lock (ACYL) 
board is an ancillary to the AID board. Its function is to adapt to timing errors and 
automatically perform time alignment between the MTI pulse returns by performing a 
continuous correlation between the two received pulse sequence's of the MTI in offset range 
cells (similar to early-late gates in a tracker). As the time alignment slips in one direction, a 
positive correlation signal is generated. As time alignment slips in the other direction. a 
negative correlation signal is generated. The result is that the sum of the two correlation's 
generates a time error signal which is used as a servo control on the timing cf the sampling 
clock of the AID. Such a circuit is absolutely necessary for operation in a sea clutter 
environment since the ocean waves have a net motion which must be removed for effective 
cancellation of sea clutter. 

Any modem radar must have precise control of timing signals and the ability for the 
control computer to modify the form and nature of timing and signal routing within the 
radar and one of the boards shown in the signal processor composite photo performs this 
function. This is performed in a state machine built so that timing functions are controlled 
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both by the sequence specified by the computer and also by the range clock. The basis for 
all timing on this board is a precise 500 megahertz oscillator and programmable delays for 
the timing signals requiring greater accuracy than the 2 nanosecond fundamental clock 
timing. 

RADAR CONTROL TRACKING AND POST DETECTION PROCESSING 

Radar control is managed by a RadiSys 486 computer. The RadiSys computer 
performs both display and control functions while received target processing is done in a 
Pentek dual C-40 processor. The computers are mounted in a VME rack along with the 
receiver and all of the other signal processing elements. 

There are several displays which the computer can present to the operator. There is a 
windows type of interface environment on the computer to provide for control of the 
system. The target data displays are in general of three types, one is a synthetic PPI 
presentation for viewing target tracks. In the synthetic PPI display, the location of a target 
track is shown by a symbol with a vector leader indicating speed and heading. A second 
type of video is a simple "B" scope display which is equivalent to a continuous sampling 
oscillosope. A third type of display is the equivalent of many parallel oscilloscope displays 
with each track of the display corresponding to a different angle. We call this an "angle 
waterfall" display. 

INITIAL SYSTEM PERFORMANCE CHARACTERIZATION 

Some of the performance characterization has already been identified in the above 
discussion of system elements (i.e. transmitter power, spectrum of the signal, antenna gain, 
beam width, resolution, wave forms, etc.) but complete radar operation has yet to be 
established. As of this writing, we are still completing system integration with the final 
integration tasks between the AID converters and pulse processor. Currently, we are testing 
the radar using the 23 watt impulse source without the integration between the pulse 
processor and the AID converter. The expected transmit pulse power density using the 80 
kV pulser is too high to operate without significant risk to unprotected electronic 
equipment at our current location. From the data in an "angle-waterfall" display, we 
changed the coordinate system to polar to generate the conventional PPI display shown in 
Figure 9. This display centers on our location and the dark rings are target responses of 
greater than 15 dB SIN. 

An overlay showing the location of features around the TTC site combined with 
threshold video in a PPI display is shown in Figure 10. The figure shows that virtually all 
features seen by the radar are actually valid targets and moreover it shows that false alarms 
in the threshold video are extremely small. The radar recorded identifiable features from 
objects within its beam. To the left side, (i.e. north) of the PPI we are overlooking a 
number of lower buildings and we primarily see features on the roof tops. To the northeast 
we are looking at a large food warehouse and the structural features of the building are 
quite visible. These features include vertical support members about 25 feet apart on the 
east-west face and also some prominent light fixtures on the north-south top of the 
building. Directly east, we are looking over a parking lot and some of the light poles are 
visible in the PPI. To the southeast and south is a more complex ensemble of buildings, 
roof tops, parking lots, fences, etc. bordering Miramar Road and the Miramar Naval Air 
Station. 

In order to acquire the PPI data we integrated 4000 pulses at each angle for a total 
equivalent impulse power of less than 100 kW peak in a single pulse (i.e. radiated power 
equals approximately 9 kW peak effective (allowing for losses) although 25.6 dB of 
antenna gain should be applied to this value for an ERP determination of 3.3 megawatt 
peak effective radiated power). Angle separation between transmit beams was 2.6° for these 
measurements and the measured beam width was 9.5°. The PPI displays the threshold 
video, that is to say that all signals above a fixed magnitude (after application of sensitivity 
time contro\' STC) are displayed at a fixed level. 

RFI was very significant at our development site. The threshold video shown in the 
PPI was obtained with an average RFI background level of - 40 dBm at the receiver input 
(i.e. -38 dB above thermal noise). (Some angles were much higher than average and others 
were lower.) It is patently evident from the display that RFI does not confuse the radar 
picture but less obvious is that it suppressed target sensitivity by the 38 dB of excess noise. 
In this respect, the PPI display also shows that the system dynamic range is very good and 
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that the log-video normalization of the noise background works exceedingly well. Few sites 
will ever display more RFJ than we measured here and most test sites should be significantly 
lower. 

Another obvious feature of this PPJ display is that the beam width of less than 10° can 
be confirmed by the width of the detection ring at each target location. Virtually all rings 
are less than 10° wide. 

I 

~ (I f 

...... N 

-

?/ 

II "' 
~ 

I 

I 11!: 
I !' f l4 ~ 

\. 

Figure 9. PPI display of threshold video with superimposed aerial photo (North is towards left). 
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INTRODUCTION 

Microwave radars operating from ship and land-based platforms typically view 
the ocean surface at grazing angles below a few degrees. Consequently, it is important to 
understand the behavior of electromagnetic waves scattered from the ocean surface in this 
angular regime. Ocean scattering at larger grazing angles (200 to 700 ) is well understood 
in terms of a two-scale or composite surface scattering model (CSM) [1], where 
backscatter is predominantly due to the presence of wind-generated capillary-gravity 
wavelets superimposed on larger gravity waves. The larger waves tilt and strain the bragg 
waves and therefore only contribute to the backscattered signal in an indirect manner. 
Low grazing angle (LOA) backscatter is less well understood and exhibits characteristics 
that cannot be explained using these "conventional" composite surface models [2]. Sea 
spikes are high-contrast (>20 dB) scattering events frequently observed in high resolution 
(-10 m) horizontally polarized radar returns [3] having amplitudes 10-20 dB higher than 
bragg model predictions and doppler shifts significantly larger than those predicted by 
two-scale models [4]. The physical mechanisms responsible for these scattering features 
are currently unknown, although evidence suggests they are caused by scatterers near the 
crests of steep or breaking waves [5]. LOA backscatter from the sea appears to be highly 
sensitive to such effects as sharpening of long wave crests and wave breaking, and may 
therefore be sensitive to the long wave variability caused by submesoscale features such 
as oceanic fronts and eddies making this scattering regime important for remote sensing. 

Our knowledge of LOA ocean scattering is currently limited by a lack of 
measurements. Ultrawideband (UWB) radars with several OHz of waveform bandwidth 
are needed to resolve the smallest scale scattering structures on the surface, but radars 
operating with more modest bandwidth can be used to resolve important scattering 
regions on the larger waves. A microwave radar with 100 MHz bandwidth, for example, 
achieves 1.5 m range resolution and is therefore capable of resolving crest, trough, and 
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slope regions from individual gravity waves several meters long. Such systems, utilizing 
- 1% bandwidth and considered high resolution from the long wave point of view, can 
potentially contribute to our understanding of LGA scattering phenomena. 

Northeastern University and the Naval Research Laboratory have developed a 
high resolution polarimetric radar for low grazing angle ocean scattering studies from 
ship and land-based platforms. The radar operates at X-band and transmits narrow (10 
nSEC) pulses for 1.5 meter range resolution profiling of ocean waves to ranges beyond 1 
km. The system transmits vertically (V) and horizontally (H) polarized pulses on alternate 
pulse repetition intervals and simultaneously measures the V and H components of the 
backscatter wave for determination of the Mueller matrix [7]. Phase coherence is 
maintained in the transmitted waveform on a pulse-to-pulse basis allowing for 
measurement of doppler spectra as well as the radial velocity of the scatterers. The design 
and hardware configuration of this radar have been described in detail elsewhere [8]. In 
this paper we describe doppler spectra and instantaneous scatterer velocity measurements 
of ocean waves at VV and HH polarizations obtained with this sensor installed at a shore 
site overlooking the Cheaspeake Bay. The measurements were obtained during changing 
wind and wave conditions as a storm passed offshore and illustrate the radar's capability 
to resolve different scattering mechanisms along the long wave profile. Results of these 
measurements provide new insights into the LGA ocean surface radar scattering process. 

RADAR SYSTEM DESCRIPTION 

A functional block diagram of the radar is shown in figure 1, and major system 
specifications are summarized in table 1. The radar is divided into four subsystems: the 
transmitter; the antenna, duplexers, and polarization switching circuitry; a pair of 
identical receiver channels; and a computer control and data acquisition system. A 
component-level diagram of the microwave circuitry is shown in figure 2. The 
transmitter generates 2 kW peak-power pulses of width 10 nSEC at a 9.3 GHz carrier 
frequency. A ferrite circulator switch routes the transmitted signal to the horizontal and 
vertical ports of a dual polarized antenna on succesive pulse repetition intervals, and 
identical receivers measure the horizontal and vertical components of the backscattered 
field. In this configuration, the system is capable of measuring the scattered wave stokes 
vector after each transmitted pulse and the scattering or Mueller matrix after two 
transmitted pulses. A high-speed data acquisition system samples the dual-polarized in­
phase and quadrature video signals from successive range gates and stores the raw data 
samples on high density tapes for off-line analysis. A 12-bit Analytek waveform 
digitizer is used to continuously sample the backscatter signals from 64 range cells for 
extended observation periods. An i860 processor-based computer and interface circuit 
enable an Exabyte tape drive system to record the digitized data. The Exabyte drive can 
store 2.5 hour long data records on a single tape having a storage capacity of 5 Gbyte. 
An IBM-compatible personal computer (80486) is used to configure the radar, antenna, 
and digitizer subsystems. 

DUAL POLARIZED SEA CLUTTER MEASUREMENTS 

High resolution sea clutter measurements were performed simultaneously at VV 
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Figure 1. Functional block diagram of the X-band Polarimeter. 

Table 1. Radar operating parameters 

Operating Frequency: 
PRF: 
Pulse Width: 
Peak Power: 
Intermediate Frequency: 
IF Bandwidth: 
Noise Figure: 
Gain: 
Detectors: 
Antenna Polarization: 
Antenna Diameter: 
Half-power beamwidth: 
AID Sampling rate: 
Digitizer Resolution: 
Data Storage: 

9.3 GHz 
100-1000 Hz 
10-20 nSEC 
2kW 
1.2 GHz 
200 MHz 
14 dB 
60 dB 
I,Q demodulators 
Dual linear 01 and H) 
2 meter parabola 
1 degree 
50- 500 MHz 
12 bits 
g mm Exabyte Drives 
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and HH polarizations from a shore site overlooking the Chesapeake Bay on August 28, 
1992. The radar was installed on a cliff, 35 m above sea level, the antenna beam directed 
perpendicular to the shoreline and into the incoming wind and waves. Visual 
observations revealed a wave field consisting mainly of long-crested wind waves 5 m to 
20 m long propagating perpendicular to the shoreline. The wind velocity increased from 
7 mls to 10 mls during the measurement period due to the passage of an offshore storm. 
Non-breaking waves were observed at the beginning of the experiment , progressing to a 
significant number of breaking crests as the storm passed. Figure 3 shows the variation 
in clutter power versus range and time observed over a typical 10 second period as 
several long-crested waves propagate through the measurement region. These 
measurements were performed at a range of 700 m and grazing angle of three degrees. 
The alternating bands of high and low clutter power observed in the image correspond to 
scattering from the wave crest and trough regions, respectively . The large-amplitude VV 
echo is nearly constant along the crests and follows the wave in range and time. In 
contrast, the HH echo exhibits significant variability along the crests, with short duration 
(approx I second) spikes 15-20 dB above the background crest values. 

Horizonlal Polarlzallon Ver1lcal Polarization 

0" 6 
'" .!!l. 

'" <> 
J§ 4 J§ 

2 

·60 ·45 ·30 ·15 
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Figure 3. Range-time images showing simultaneous variation in received power for VV (right) and HH 
(left) polarizations. Several long-creSied waves are observed passing through a 20 m measurement area at 
a range 700 m from the radar antenna. 

Figures 4 and 5 show simultaneous backscattered power (linear scale) and 
doppler spectra versus time for a single range cell at VV and HH polarizations. These 
doppler spectra were obtained by computing consecutive short-time (250 mSEC) Fourier 
Transforms (STFT) of the coherent video return over a 10 second observation period. 
The doppler spectra illustrate how the surface scatterers are moved about by the orbital 
motion of the long waves as well as other drift currents. The largest echo amplitudes 
occur 0 to 0.5 seconds prior to the largest doppler shifts (largest scatterer radial 
velocities) indicating these echoes are caused by scatterers located either on the crests 
or on the forward slopes of the long waves. In generaL the maximum scatterer velocity is 
larger for HH than VV polarization. This is consistant with Trizna's [5) analysis of low 
resolution clutter measurements. 
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Figure 4. Simultaneous received power (linear scale) and STFf doppler spectra for VV polarized sea 
clutter return from non-breaking waves. 
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Figure 5. Simultaneous received power (linear scale) and STFf doppler spectra for HH polarized sea 
clutter return from non-breaking waves. 

Figures 6-8 shows the typical behavior observed for longer waves (- 20 m) with 
breaking crests. VV and HH scattering for this case are not significantly different from 
each other as shown in the range-time display of figure 6. The effects of wave breaking 
are evident in the STFT doppler spectra shown in figures 7 and 8. Scatterer velocities 
between 3 and 4 mls are observed at the times of maximum scattered power and may be 
the result of scatterers being thrown forward of the breaking wave crest. Additional 
experiments will be performed to verify this hypothesis. 

CONCLUSIONS 

Additional insights into the LGA ocean scattering problem can be obtained using 
multiple polarization measurements performed with high resolution radars. The 
measurements reported in this paper were made with a 9.3 GHz radar transmitting 10 
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nSEe pulses at vertical and horizontal polarizations. Spectral analysis of these 
measurements indicates that sea spikes occur at the crests of the long waves. 
Measurements of non-breaking waves are consistant with a multiple mechanism 
hypothesis where different types scatterers dominate the crest returns at VV and HH 
polarizations, with larger doppler velocities exhibited for HH polarization. Breaking 
waves exhibit similar behavior for VV and HH polarizations, with large scatterer 
velocities observed at the breaking crests for both polarizations. Additional 
measurements will be performed using this sensor to further understand ocean surface 
scattering in the LGA regime. 
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Figure 6. Range-time images showing simultaneous variation in received power for VV (right) and HH 
(left) polarizations for breaking waves. --.~~.~.~.~.~.~-~.~-; 
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Figure 7. Simultaneous received power (linear scale) and STFf doppler spectra for VV polarized sea 
clutter return from breaking waves. 
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Figure 8. Simultaneous received power (linear scale) and S1FT doppler spectra for HH polarized sea 
clutter return from breaking waves. 
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ULTRA-WIDEBAND, POLARIMETRIC RADAR STUDIES OF 
SPILLING BREAKERS 

Mark A. Sletten and Dennis B. Trizna 

Code 5303 
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1. Introduction 

Until recently, experimental sea clutter research has utilized CW or narrowband 
radar systems. While such experiments can yield useful information on the statistical 
properties of electromagnetic backscatter from the sea surface at a particular radar 
frequency, it is difficult, if not impossible, to use such data to predict the characteristics 
of ultrawideband sea clutter. This paper describes an ultrawideband, polarimetric radar 
system designed specifically for this task and presents data from recent investigations into 
the scattering properties of breaking waves in a wavetank. In addition to allowing the 
characterization of these scattering events, the system's resolution, bandwidth, and 
polarimetric capabilities can be used to infer the scattering mechanisms involved. 

Section 2 describes the radar system. In Section 3, representative results from 
recent investigations into the scattering properties of breaking waves are presented, and 
Section 4 describes preliminary tests on models which indicate that small plumes or bores 
near the breaker crests are the dominant scatterers. 

2. Radar System Description 

The radar used is an ultrawideband, polarimetric system based on a microwave 
time-domain reflectometer (TOR). The system uses the fast risetime voltage step and 
precise timing afforded by the TDR to produce coherent microwave pulses with energy 
in the 6-12 GHz band. Figure 1 contains a block diagram of the TDR system. The 20 
ps risetime TDR step is filtered and amplified by a 1 watt, 6-12 GHz transmit amplifier 
and the resultant microwave pulse is switched between the horizontal and vertical inputs 
of a dual polarized, ultrawideband (1.7-18 GHz) antenna by means of a PIN diode 
switch. The resultant pulse length produced by this system is of the order of several 
RF wavelengths and contains significant energy across the 6-12 GHz band. The echo 
produced by a flat calibration plate is shown in Figure 2. A second antenna, switch and 
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Figure 1. Block diagram of the ultrawideband, polarimetric TOR radar. 

amplifier chain is used in the receive channel to allow collection of the VV, HH, HV and 
VH waveforms during four consecutive 4 ms periods. The equivalent time sampling 
method is used to construct the RF coherent reflected pulse. Typically, 128 samples are 
used to define each waveform over a 2.5 ns (equivalent) time period. Four milliseconds 
are required to collect a single waveform (2.5 ms of data collection followed by a 1.5 
ms recovery period), resulting in an effective system pulse repetition frequency (PRF) 

o 2 

Time (ns) 

Figure 2. RF echo received by the TOR radar system from a flat calibration plate. 

of 62.5 Hz per polarization if the full scattering matrix is desired. In the case of 
programmed breakers in a wavetank, however, the wide, uniform crests produce little 
depolarization and thus the VH and HV (cross-pol) echoes are typically 20 dB or more 
below the VV and HH (co-pol) echoes. Consequently, little information is lost by 
collecting only the co-pol echoes. This has the advantage of increasing the effective 
system PRF to 125 Hz per polarization, and the radar was thus operated in this manner 
in the experiments discussed later in this paper. 

The system calibration as well as most of the data analysis takes place in the 
frequency domain. A Fast Fourier Transform (FFT) is used to transform the raw RF 
waveforms into the RF frequency domain where targets with known frequency and 
polarimetric responses can be used for calibration. Both magnitude and phase 
information is retained, and a technique has been developed to account for the effect of 
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the target (ie, breaker) motion on the polarimetric response. The final result of the data 
processing is a time history of the polarimetric properties of the scattering feature over 
the 6-12 GHz band. More information on the system and its calibration can be found in 
References 1 and 2. 

3. Wavetank Experiment Results 

Experiments were conducted at the University of Delaware College of Marine 
Studies wavetank facility in Lewes, Delaware to investigate the ultrawideband, 
polarimetric properties of breaking waves. The wavetank used measures 40 meters in 
length by 1.5 meters width with a typical water depth of 0.75 m. A programmable 
paddle-type wavemaker is available to produce both steady-state, long wave trains as well 
as frequency chirped wave packets which can be programmed to break at specific points 
along the tank. A variable speed blower is also available for the generation of wind 
waves. In this paper, only experiments involving chirped paddle waves will be 
discussed. Several experiments have investigated waves produced by a combination of 
steady-state paddle and wind waves and are discussed elsewhere3.4. The chirp bandwidth 
of the wave packets was 0.5 to 1.0 Hz with maximum wave heights in the 10 cm range. 
The gain of the programmable wave maker was adjusted to produce waves with a range 
of breaking strengths, although all breakers were of the spilling type, as opposed to the 
more energetic plunging type. All measurements were conducted at a mean grazing 
angle of approximately 10 degrees. As an example of the data collected in these 
experiments, Figure 3 shows the RF echoes produced by a typical breaker. The echoes 
are presented as waterfall plots with 8 ms between successive waveforms and a total 
elapsed time of approximately 0.1 s. The movement of the scattering feature through the 
radar range cell is apparent from the horizontal shift of successive waveforms. Strong 
echoes are observed for both polarizations. However, the most salient feature of Figure 
3 is the different echo shapes for the two polarizations: the VV echo is relatively broad 
while the HH echo is substantially more localized in time. Close comparison of 
corresponding VV and HH waveforms shows a common location of the leading edges, 
indicating a common scattering source. 

The frequency domain provides an alternative format to display the ultrawideband 
data embodied in Figure 3. Figure 4 contains contour plots of the VV and HH 
magnitudes as well as the relative phase difference between the two polarizations as a 
function of RF frequency and time. These plots are obtained from the FFf's of the 
waveforms in Figure 3. These plots are also normalized with respect to a flat plate to 
reflect the proper relative magnitudes and phases between the two polarizations and 
between frequencies for a given polarization. The difference in the frequency content 
for the two polarizations is clear. The VV energy is concentrated in the 7-8 GHz range 
whereas the HH energy lies near 10 GHz. From Figure 4c, the HH-VV phase difference 
is approximately 70 degrees over the time/frequency range where good overlap exists 
between the orthogonally polarized echoes. These characteristics are rather distinctive 
and may provide a means of discriminating between clutter and targets in future radar 
systems. As shown in the next section, the bandwidth difference indicates that a "double 
bounce" scattering mechanism associated with a bore or plume may be responsible. 

4. Scattering from Physical Models of Breaking Waves 

In order to investigate the nature of the measured polarimetric radar response, 
physical models of breaking waves were constructed and their scattering response 
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Figure 3. Waterfall plot of the VV and HH echoes produced by a spilling breaker. 

measured using the TDR radar system. Earlier analytical work by Wetzels indicates that 
a raised "plume" on the front face of a breaker might give rise to a frequency and 
polarization sensitive radar cross-section, and so a metal model of such a feature with an 
underlying geometry similar to that observed in the wavetank was devised and 
constructed. Figure 5 is a cross-section of the model. The underlying wave shape is 
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Figure 4. VV and HH magnitudes and HH-VV phase difference versus time for the spilling breaker of 
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Figure s. Cross section of the metal breaker model. Four different plume positions are indicated. 
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formed by a flexible metal sheet supported by a wooden form, the geometry of which 
was modelled after wavetank video images collected by Bonmarin6• A small plume or 
bore, modelled by a 7 mm diameter cylinder suitably draped with metallic foil, was 
placed at various positions near the crest and front face of the underlying shape, as 
indicated in the figure. This sequence of positions spans the range of plume positions 
expected during the actual wavetank experiments. The width of the model is 25.4 cm, 
and the height is approximately 13 cm. The TDR system has a pulse width sufficiently 
short to allow separation of the echoes produced by the terminating edges of the model 
and that produced by the plume. All radar measurements were made with the plane of 
incidence in the plane of the figure and at a grazing angle of 10 degrees. 

Figure 6a shows the normalized echo spectra produced by the model with the 
plume positioned slightly forward of the wave crest, as indicated by the arrow in Figure 
5. The VV and HH waveforms from which these RF spectra were derived are shown 
as insets. (These waveforms have been normalized separately to enhance detail.) For 
comparison, horizontal cuts through Figures 4a and 4b near the peak VV and HH echoes 
are reproduced in Figure 7h. The relative positions of the peaks in the spectra can be 
seen to agree qualitatively. In both cases, the HH response is peaked at a higher 
frequency than is the VV. The time domain manifestation of this difference can be seen 
in the waveforms. The VV echoes are relatively smooth and broad while the HH echoes 
are more localized and irregular, especially in the later rf cycles. This behavior can be 
attributed to the re-entrant, or "double-bounce", character of the assumed scatterer. 
Qualitatively, the total echo can be considered to be the coherent sum of a direct echo 
from the plume and one which first reflects off the front face of the underlying wave. 
The different boundary conditions for the two polarizations on the front face give rise to 
the different pulse shapes, or equivalently, the different frequency responses. This 
qualitative explanation is simply an ultrawideband extension of the multipath analysis 
used by Wetzel. 

While the model and the wavetank breaker qualitatively exhibit the same 
bandwidth/polarization characteristics, differences exist regarding the relative magnitudes. 
(The absolute signal strengths of Figure 6a are significantly stronger than those for 6b 
and the spectra in 6a and 6b are normalized to different levels.) While it is hypothesized 
that the geometry of the scatterer plays a dominant role in the determination of the 
frequency response, the finite conductivity of the water is expected to play an important 
role as well in the case of the wavetank breaker. Particularly at low grazing angles, the 
magnitude and phase of the reflection coefficient for water at microwave frequencies 
deviate significantly from those of a perfect conductor1. Thus the agreement between the 
model and wavetank measurements should be expected to be only qualitative, even if the 
geometric cross-sections were identical. In addition, the model is perfectly uniform 
across its 25 cm width, whereas the plume or bore present on the wavetank breaker is 
probably less coherent and thus a weaker scatterer. 

5. Summary 

An ultrawideband, polarimetric radar system constructed from off-the-shelf 
components has been developed for use in sea scatter research. Wavetank experiments 
utilizing this instrument indicate interesting frequency and polarization characteristics 
which may eventually lead to improved clutter suppresion. Simple modeling of these 
results indicates that small plumes or bores dominate the scatter from weakly breaking 
waves. 
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In this continuation of our paper in the last conference proceedingsl, we consider further 
developments in the area of Impulse Radiating Antennas (IRAs). First, we consider definitions of gain in 
the time domain, which are important for optimizing the performance of IRAs. A reasonable definition of 
gain must be equally valid in transmission as in reception. Such a definition leads naturally to a transient 
radar equation, which we discuss. Next, we consider how to optimize the feed impedance in a reflector 
IRA. If we use our simple model of IRA performance, the gain of an IRA is always better at lower 
impedances. But this implies larger feeds with more aperture blockage. To resolve this, we refine our 
simple model to account for feed blockage. We also consider the radiation pattern of 1RAs, and we provide 
simple calculations. Finally, we provide a sample experiment which confirms our theory of IRA operation. 

L REVIEW OF IRA DESIGN 

By now there exists a considerable body ofiiterature concerning the design ofIRA'sl-I'. There are 
two fundamental types of IRA, the reflector IRA and the lens IRA (Figure l.l). The reflector IRA consists 
of a paraboloidal reflector fed by a conical TEM feed and terminated in an impedance that maintains a 
cardioid pattern at low rrequencies. The lens IRA consists of a simple TEM hom with a lens in the aperture 
for focusinglS,26. Either design is fed by a voltage source that is ideally shaped like a step function, but is in 
practice shaped like a fast-risetime impulse with a slower decay. In addition, either design normally has a 
dielectric lens at the apex to maintain voltage standoW6,27. Although there is some feed blockage 
associated with the reflector design, there is a considerable penalty in weight associated with the lens 
design. Thus, until lightweight dielectrics (real or artificial) with appropriate loss and dispersion properties 
are found, lens IRAs will likely be confined to applications with small apertures. 

The step response of a reflector IRA on boresight consists, to first order, of a prepulse followed by 
an impulse. The magnitude of the prepulse is determined by transmission line techniquesl,8, and it lasts for 
the round-trip transit time of the feed, 2Flc, where Fis the focal length of the reflector, and c is the speed of 
light. The magnitude of the impulse is found by aperture integration1,s. The total response is 

V D { c } E(r,t) = ..2..-- Ba(t-2Flc)--[u(t)-u(t-2Flc)] 
r 41rcfg 2F 

(1.1) 

where D is the diameter of the reflector, fg = Zfeed I Zo' Zo is the impedance of free space, Vo is the 
magnitude of the driving voltage step launclled onto the feed, r is the distance away from the antenna on 
boresight, and u(t) is the Heaviside step function. Furthermore, Ba(t) is the approximate Dirac delta 
function3, which approaches a true Dirac delta function as r approaches infinity. This is a high-impedance 
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approximation based on the aperture integration described by Baum5. Later, we provide a correction for 
lower impedances. Note that the above equation can be expressed in terms of an arbitrary driving voltage as 

D {dV(t-2FIC) C } 
E(r,t) = --- -[VU)-VU-2Flc)] (1.2) 

41rrcfg dt 2F 

where Vet) is the voltage launched onto the feed. 

r 
o 

1 

Matching Circuit , 

Figure 1.1. A reflector IRA (left) and a lens IRA (right). 

Lens 

IL GAIN DEFINITION IN THE TIME DOMAIN 

If we are to optimize the feed impedance of the IRA, it will be necessary to provide a good 
definition of that quantity which is to be optimized. The definition of gain in the frequency domain is 
already well established as an IEEE standard18. However, no analogous definition has been developed in 
the time domain. There have been a number of attempts to clarify this point, however, none have provided 
a definition that is consistent with reciprocity. That is, none of the definitions are as meaningful in 
reception as in transmission. We propose here a definition that meets this criterion. 

Since the exact definition of gain is so critical, it is useful to consider its definition in the frequency 
domain. According to the IEEE standard the definition is as follows: 
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gain; absolute gain (of an antenna in a given direction). The ratio of the radiation intensity, in a 
given direction, to the radiation intensity that would be obtained if the power accepted by the 
antenna were radiated isotropically. 
NOTES: (I) Gain does not include losses arising from impedance and polarization mismatches. (2) The 
radiation intensity corresponding to the isotropically radiated power is equal to the power accepted by the 
antenna divided by 41[. (3) If an antenna is without dissipative loss, then in any given direction, its gain is 
equal to its directivity. (4) If the direction is not specified, the direction of maximum radiation intensity is 
implied. (5) The term absolute gain is used in those instances where added emphasis is required to 
distinguish gain from relative gain; for example, absolute gain measurements. 

directivity, partial (of an antenna for a given polarization). In a given direction, that part of the 
radiation intensity corresponding to a given polarization divided by the total radiation intensity 
averaged over all directions. 
NOTE: The (total) directivity of an antenna, in a specified direction, is the sum of the partial directivities for 
any two orthogonal polarizations. 

radiation pattern; antenna pattern. The spatial distribution of a quantity which characterizes the 
electromagnetic field generated by an antenna. 
NOTES: (I) The distribution can be expressed as a mathematical function or as a graphical representation. 
(2) The quantities which are most often used to characterize the radiation from an antenna are proportional to, 
or equal to, power flux density, radiation intensity, directivity, phase, polarization, and field strength. (3) The 
spatial distribution over any surface or path is also an antenna pattern. (4) When the amplitude or relative 
amplitude ofa specified component of the electric field vector is plotted graphically, it is called an amplitude 
pattern, field pattern, or voltage pattern. When the square of the amplitude or relative amplitude is 
plotted, it is called a power pattern. (5) When the quantity is not specified, an amplitude or power pattern is 
assumed. 



Let us point out some features of these definitions. First, we note that gain is independent of 
source mismatch. In fact, antenna gain is independent of all source parameters with the exception of 
frequency. In the time domain, we might consider replacing a dependence upon frequency with a 
dependence upon risetime, peak derivative, or Full Width Half Max (FWHM) of the driving function. 
Second, we note that the definitions of gain and directivity assume one is looking at the total radiation in a 
given direction. If one were considering the effects of polarization, one would use a partial gain, or partial 
directivity. Next, we note that gain is normalized to the "power accepted by the antenna," while directivity 
is normalized to the "total power radiated by the antenna." Antenna gain takes into account antenna losses, 
while directivity does not. 

It is interesting to note here that all the terms here are defined solely for transmit mode--there is no 
mention of the antenna being used as a receiver. This is all that is needed because there is a simple 
relationship between an antenna's transmitting and receiving properties in the frequency domain. To 
convert a transmit pattern to a receive pattern, one merely multiplies by IIjOJ, which is a constant in the 
frequency domain where s = jOJ. However, this corresponds to an integral in the time domain, so in the time 
domain the conversion is not as simple. 

gain is 
Let us associate some equations with the above definitions. According to Stutzman and Thiele19 

G(O",OJ) = 4nU(O",OJ) 
P,n (OJ) 

(2.1) 

where U(O",OJ) is the radiation intensity in Watts/steradian, and Pinero) is the power accepted by the 
antenna. Furthermore, antenna pattern is 

F(O",OJ) = U(O",OJ) (2.2) 
U(omax "max ,OJ ) 

where U(Omax"max'OJ) is the radiation intensity in the direction of maximum radiation (boresight). 
In order to extend the definition of gain into the time domain, we must express the radiated and 

received fields in terms of the incident voltage (in transmission) and the incident field (in reception). The 
diagrams showing the relevant quantities are shown in Figure 2.1. Note that there is a resistive load that is 
matched to the characteristic impedance of any feed transmission line attached to the antenna port. (This 
will also be matched to the IRA feed, which is itself a conical transmission line.) This is analogous to the 
use of scattering parameters in circuit theory. 

t VI (t) 

== ---=7 
Vs (t) 

Zc 
Matched 
Source Antenna 

Zc Vrec (t) 

== Vrec(t) ~ F= 

Matched 
Zc 

Load Antenna 

Figure 2.1. A transient antenna in transmit mode (top) and receive mode (bottom). 

First we describe the relevant equations in the frequency domain. Because of the resistive 
termination matched to the feed line, in transmission V,(t)=Vs(t)/2. Instead of referring to port voltages, we 
will refer to voltage waves, in the spirit of S-parameters in microwave theory. Thus, the transmitted and 
radiated fields are, according to Baum 7 
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Transmit 

Receive (2.3) 

Reciprocity 

where 1r is the direction of radiation and y=slc .. The time domain analogs of these equations are 

Transmit Eradef,t) = [;F,{i'r,t)o]Vt(t-rIC) 

E-+ (-+) - [It ~(-+I ') d ,] dVt(t-rl c) r rod r,t - rt r,t t 0-'-'----'-
o dt 

(2.4) 

Receive Vrec(t) = hr(~,t) ? E;nc(t) 

-+-+ Il" d-+ -+ 
Reciprocity pt(l"t)o = _0_ 1, ·-ht(-I,,I)o 

27rZc dt 
where the 0 operator indicates a convolution and the dot product convolution operator? implies a sum of 
the convolution of each component of the vectors. Note that the units of h(t) are meters/second. Note also 

that the function J~ fii (1,., t') dt' is the step response in transmission, which has been characterized for 

reflector IRA's (earlier in this paper) and for TEM horns by Farr and Baum9. Finally, note that hr(~,I) is 
just the step response in transmission times some constants. 

We can now drive the antenna with a standard waveshape, such as the integral of a Gaussian (in 
transmission) or a Gaussian (in reception). Because of the above reciprocity relationship in the time 
domain we can establish a correlation between the transmit and receive cases. We now propose a gain 
defined in terms of norms as 

Reception: Transmission 

27fc 

G(O,¢) = G(O,?) = lim (2.5) 
r->oo 

where Ie is one of two orthogonal polarizations. The above two definitions are guaranteed to be equal if 
the driving voltage wave shape in transmission is the integral of the incident electric field in reception. One 
can think of the norm of a function as one of several commonly used characteristics of a time domain 
function, such as the peak of the function (oo-norm), the integral of magnitude ofthe function (I-norm), or 
the square root of " energy" in the function (2-norm). By way of review, a norm must satisfy three 
fundamental properties, 

Ilf(t)11 {= 0 ifff(t)~O, Ilaf(t)11 = lalllf(t)11 II!(t)+g(t)11 ~ Ilf(t~Hg(t)11 (2.6) 
> 0 otherwise 

Recall also the definition of p-norms, 

If«)ijp • [~f«jP "']"'. (2.7) 
t 

The choice of the norm will usually be tied to the experimental system. Thus, if a transient radar receiver 
responds to the peak magnitude of the received signal, then one should use the oo-norm in the gain 
definitious. 

There are a number of other characteristics of this gain definition that should be noted. The units 
of gain are meters, which is different than the unitless gain of the frequency domain. Furthermore, the 
trausient gain is dependent upon (1) the shape of the waveform, and (2) the choice of the norm. Thus, a 
transient gain must always be specified in relation to these two parameters. Note also that gain is a function 
of risetime (of step-like waveform in trausmission) or FWHM (of impulse-like waveform in reception). 
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Thus, gain is a function of risetime in the time domain, as it is a function of frequency in the frequency 
domain for s = j OJ. Note also that it is trivial to extend these concepts to two polarizations. Furthermore, 
one can assign the term antenna pattern to the variation of this gain as a function of angle. 

One can apply bounds to all of the convolutions shown in (2.4), by taking the norm of both sides of 
the equation. For example, consider the equation for reception in (2.4). Ifwe take the norm of both sides of 
the equation we find an upper bound on the received voltage as 

Ilv nc(t~1 = II [hr(t;.t) ~ ] E;nc(t) ~ S I h,(t;,t) ~ 1111E;nc(t)11 (2.8) 

where IIhr(t;,t) ~ II has to be interpreted in the sense of a norm of a dyadic (matrix) convolution. This is 

much simpler to understand one polarization at a time, so if we assume Einc(t) = 1p Einc(t) then 

IV nc(t)~ = ~ [h,(1;,t).t;,o] E;nc(t) II s II h,(1;, t). t;,0 1IIIE;nc(t~1 (2.9) 

Thus, if some norm is applied to the incident field and to the antenna system response, then one can place 
an upper bound on the norm of the received voltage. Finally, we invoke the property that the p-norm of a 
convolution operator is less than or equal to the I-norm of the impulse response24, or Ilg(t)o~~lg(t)ll' 
Thus we find, for a single polarization, 

IIVnc(t)~p s ~ h,(1;,t).1p It IIE;nc(t)llp (2.10) 

This establishes a bound on the p-norm of the received voltage for a given incident field polarization. Note 
that in general we will not want to restrict ourselves to using p-norms, but if one chooses to one can invoke 
a nice simplification. Similar bounds can be applied to the transmit equation. 

It may be useful to compare our gain definitions to those proposed by other authors. O. Allen, et 
al, have proposed a definition of gain in transmission mode as 20 

4;rr2 fOIl I Elrons(e,;) 12 dt 
G(e,;) = ~oo (2.11) 

Zo Loov;nput(t) Iinput(t) dt 

This is somewhat related to our earlier definition of gain if one uses the square of the 2-norm, however, 
there is no time derivative in the denominator. It is simple to show that without a time derivative, this 
definition of gain is not meaningful in receive mode. 

A related family of figures of merit has been proposed by R Ziolkowski, for use in near field 
arrays21. He proposes a figure of merit that relates the radiated energy at a location in the near field to the 
total energy accepted by the array. This is similar to the definition of gain proposed by Allen et al., 
although somewhat different in detail. Ziolkowski does not consider reciprocity, but it is not yet clear how 
to do so in the near field. Recall that even in the frequency domain, gain is not defined in the near field. 
Thus, these figures of merit were likely not meant to be a rigorous replacement for antenna gain in the time 
domain. It should also be noted that Ziolkowski uses norm concepts to arrive at his figure of merit, much in 
the same spirit as we use them here. 

Now that we have established a gain definition, it is appropriate to apply it to a transient radar 
equation. Consider Figure 2.2, which shows a transmitting antenna, a scattering object, and a receiving 
antenna. For the moment we provide the equations for the most general case, including all polarizations 
and allowing for different transmit and receive antennas. Later, we will simplifY by allowing only a single 
polarization, with identical transmit and receive antennas in the same location. 

One can calculate the radiated field in terms of the voltage wave launched onto the antenna feed as 

inc 
;!rad.,. Po.......,. dV (t-rl c) 
l! (r,I"t) = --I, . htrans(l"t) 0 (2.12) 

2;rrZc dt 

where r is the distance from the transmitting antenna to the scatterer, Zc is the feed impedance, and 1;, is 
the direction of the radiated field. The scattered field is 

~scat , ~ 1 +to ~...." 0 -::.raJ ..,.. 
E (r ,I;,t) = - A(I"lj,t) . l! (r,lr,t' -(r +r')1 c) 

4;rr 
(2.13) 

163 



\\ 
Escat(r', t:, I) 
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Figure 2.2. The configuration for a transient radar equation. 

where r' is the distance from the scatterer to the receiving antenna, t: is the angle of incidence of the 
scattered wave on the receiver, and A(1;.,1;,I) is the scattering dyadic length as a function of time23. 

Finally, the received voltage wave is 

Vrec(l) = hrec(t:,t)? iscat(r',t:,t-(r+r')lc) 
Putting it all together, we find a total response of 

7ee 1 ~ ~ o .... ~-:+ o~ '""" 
V (t) = 2 2 h,.ec(lj,f). A(lr,lj,l) . Jil7anilr,f) 0 

SII" r eig 

Finally, the above equation may be bounded by 

dV jnc (t-(r +r')1 e) 

dt 

~Vrec(t)1I ~ SlI"2r;eIg II hrec (4,t) 0 1111 A(4,tt) 0 1111 hhnru (tt) 0 1111 dV::(t) " 

(2.14) 

(2.15) 

(2.16) 

These last two equations may be considered a time domain analog of the standard radar equation in the 
frequency domain. 

Let us now simplify the above equations in a variety of ways. First, we assume that the transmit 
and receive antennas are located in the same position (monostatic case), and that their characteristics are 
identical. Thus, t;. = - t: and hrec(t;., I) = hlrans(t;., I). In addition, we consider for simplicity only one 
component of the radiated and received field, for example, the horizontal or h component, and assume that 
the vertical or v component is zero We can then convert the radar equation to 

1 dVinC(I-(r+r')le) 
Vrec(l) = 2 2 hh(l) 0 Ahh(l) 0 hh(l) 0 (2.17) 

SII" r eig dt 

where the convolutions commute, if one wishes. One can then establish a bound on the received signal, 

Ilvrec (I~ ~ 2 ; II hh(t)o hh(t)o ~ I Ahh(IH II dV
inc 

(I) II (2. IS) 
SII" r eig dt 

Note the interesting double convolution hh(l)ohh(l)o, whose norm is a part of the bound on the received 
voltage. 

m. OPTIMIZATION OF REFLECTOR IRA FEED IMPEDANCE 

If one applies our definition of gain to the impulsive portion of the simple model of the reflector 
IRA, one arrives at a gain of DI(2/g 112). This suggests that the gain always gets better at lower feed 
impedances. This leads to increasingly fatter antenna feeds with more feed blockage, so we reach a 
contradiction. 

The problem arises because the approximate model for the impulsive portion of the field was 
developed by ignoring feed blockageS. Recall that the surface integral was calculated by converting an 
aperture surface integral to a contour integral around the border of the aperture. Consider Figure 3.1, which 
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shows one-fourth of the aperture that must be integrated. On the left is the contour that was integrated 
originally'. A better aperture (for two arms), which accounts for feed blockage is shown in the center. 
Often one will use four arms instead of two, in order to reduce the feed impedance, so we also show on the 
right a contour appropriate for the four-arm configuration. 

1'y 1'y 

7X 7X 7X 

Figure 3.1. The old contour for the aperture integration (left), and the corrected contours for a two-arm 
(center) and four-arm (right) configurations. 

To claritY the point, we review some of the theory of radiation from apertures. Consider the an 
aperture field that turns on suddenly with a step-function time dependence. We construct a complex 
aperture electric field function whose real and imaginary parts correspond to the x and y components of the 
aperture electric field. This complex field is expressed in terms of a complex potential functions. Thus, 

E(x,y) = E(,) = Ex - j Ey = - :: ~~) (3.1) 

'=x+jy, w(,) = u(,)+jv(,), /g = t.u/Av 
where the complex potential function can be found in Smythe22. In the above formulation, Av is the change 
in v around one of the conductors, and Au is the difference in u from one conductor to the other. It was also 
shown that the radiated field on boresight isS 

Erad(r,t) = Vo ~t5a(t-rlc) 
r 21fc/g 

ha = - /g ffs Ey(x,y) duly = - ~ fv(y) fly (3.2) 
Vo a Av C 

a 
In the above equation, Sa is the portion of the aperture that is not blocked by the feed, and C a is the contour 
around this aperture. All contour integrals in this paper are in the counterclockwise direction. A high­
impedance approximation was made which claimed that feed blockage could be iguored, and that the 
portion of the contour integral along the conducting wire was very small. Under this approximation the 
integral is calculated as ha = DI2. This provided the impulsive portion of the radiated field in (1.1) A more 
accurate integral, however, excludes the portion of the aperture integral that is blocked by the feed, as 
shown in the center and right of Figure 3.1. Note that Figure 3.1 shows one-fourth of Ca' 

We have plotted the value of ha for a two-arm circular cone configuration using the imf,roved 
contour in Figure 3.2. Our plot is for a radius of 1 meter. The gain, using the I-norm, is just hJIg 1'2 and 
this is also plotted in Figure 3.2, again for a reflector with a radius of 1 meter. The gain is a slowly varying 
function that peaks around 312 n at a value of 0.85 m. Note that for this type of antenna, it is not necessary 
to specify the driving waveform in order to specify a gain, since all waveforms give the same result. 

If one uses four arms, then there is slightly more feed blockage, but the input impedance is reduced 
by a factor of two. This makes it considerably easier to build a balun to match the impedance of the feed 
line, which is typically 50 n. We plot for this configuration ha and gain as a function of feed impedance in 
Figure 3.3. Note that the gain peaks at 406 n, at a value of 0.81 m. If one has two 400 n feeds in parallel, 
the net input impedance is 200 n, which is a convenient value of impedance for the output of a balun with a 
1:4 impedance rati04. Thus, the peak in gain near 400 n is fortuitous. 

This concept can be extended to a variety of other cases, including different feed geometries, for 
example, feeds constructed out of flat plates that are either coplanar or facing. Many of these other cases 
have been developed by Farr13. 
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Figure 3.2. Plots of the effective height ha of the aperture (left) and the gain (right) as a function of feed 
impedance for a reflector IRA with two circular cone feeds. 
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Figure 3.3. Plots of the effective height ha of the aperture (left) and the gain (right) as a function of feed 
impedance for a reflector IRA with four circular cone feeds. 

IV. ANTENNA PATI'ERN OF A REFLECTOR IRA 

The simplest definition of an antenna pattern in the time domain is simply to plot the gain as we 
defined it earlier in this paper as a function of angle. In order to calculate the gain as a function of angle, 
one must first calculate the radiated field as a function of angle. Recall that to calculate the field on 
boresight, we used the integral of the electric field over the entire aperture. To calculate the step-response 
radiated field off boresight, one can show from time delay considerations that the radiated field off­
boresight at a given point in time is proportional to a line integral of the electric field over the aperture. 
This radiated field varies as the value of the line integral sweeping across the aperture. (Figure 4.1). Thus, 
the step-response radiated far fields in the H- and E-planes are proportional to the normalized potentials 
cl>(h) and cl>(e), which are defined as 

(h) -1 f (e) -1 f 
ell (x) = - C ( )Ey dy (Jj (y) = - c ( Ey dx 

Vo 1 x Vo 2 y) 
(4.1) 

where the contours C1(x) and C2(y) are shown in Figure 5.1. 

) 
Figure 4.1. The location of the line integrals C1(x) and C2(y) as a function of position in the aperture. 

To evaluate the above integrals, we use the fields and potentials for round wires. Thus the 
potential function is22, 
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w(0 = 2jarccot«(la) = In(~:~:), (=x+jy (4.2) 

and the fields are calculated from this potential from (3.1). After substituting into (4.1), we find 

<l>(h) (x) = 1 -a sech(7I' /g):S; x,.;; a sech(7I' /g) \

11 (ifg) arcsech(-x I a) - a :s; x:s; - a sech(71'fg) 

11 (ifg) arcsech(xl a) asech(7I'/g)";;x,,;; a (4.3) 

(e) _ {1/(2/g ) lyj:S;a 
<l> (y) - 0 else 

The details of the radiated field calculation have been worked out by Farr and Baum13. The final result for 
the radiated field in the E- and H- planes as a function of time is 

ifh)(r t) = r -Vo cot(O) (J)(h)(~J ' 1f.."\r,O,t) = ±~ -Vo 1 (J)(e)(~J (4.4) 
, Y r 271' sin(O) r 271'sin(O) sin(O) 

where 0 is the angle from boresight. These are plotted in Figure 4.2 for round-wire feeds at 400 n. Note 
that feed blockage has been ignored in this formulation. 
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Figure 4.2. Step response of the radiated field in the H-plane (top) and E-plane (bottom). 

Now that we have the step response, we must find the band-limited step response before calculating 
the gain. This is necessary because the step response is ill-behaved on boresight, where it becomes an 
approximate delta function. Since the p-norm of the approximate delta function only exists for the I-norm, 
we have more flexibility in our choice of norms by converting to the band-limited response. We do so by 
driving the antenna with the integral of a Gaussian waveform with a finite risetime. We then convolve the 
step response with derivative of the driving voltage (a Gaussian). Thus, we have for the driving voltage 
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dV(t) Vo -:r(tlld)2 
--=-e 

dt td 
(4.5) 

f dV(t') 
V(t) = t --dt', 

-00 dt' tlO-90 = 1.023 td (4.6) 

where tFWHMis the Full Width Half Max of dVldt, and tlO-90 is the 10-90% risetime of Vet). Note that we 
have expressed this conveniently in terms of the derivative risetime, which is inversely proportional to the 
radiated field for these types of antennas. The definition of the derivative risetime of a waveform is 

max (V(t» 

td = max(dV(t)/ dt) 
(4.7) 

The radiated field is now calculated simply from 
I dV(t) step 

E(r,O,tjJ,t) = ---oE (r,O,tjJ,t) (4.8) 
Vo dt 

where Estep (r, O,tjJ,t) is the step response in the E- or H-plane, as calculated above. We can reduce the 
number of cases that need to be calculated by defining a rise parameter T d as 

td ctd 
Td = - = - (4.9) 

fa a 

where a is the aperture radius. All problems with equal rise parameters have the same shape radiated field. 
Thus, all problems with the same Td can be characterized by a single curve with proper scaling. 

The antenna pattern is now just our previously defined gain measured as a function of angle in the 
E- and H-planes, as defined in the transmission case of (2.5). Note that the gain has units of meters, and 
that the gain is normalized to the radius of the antenna. For our calculations we have used the oo-norm, or 
the peak of the radiated field, although many other norms might be suitable. Note also that because we 
have been careful with our definition of transient gain, our results also apply to the antenna in receive mode 
with a Gaussian incident field. 

A sample problem has been solved using this technique, and the results are shown in Figure 4.3. 
We find that the antenna pattern is broader in the H-plane than in the E-plane, because the antenna feed is 
narrow in the H-plane and wide in the E-plane. 
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Figure 4.3. Gain (oo-norm) in the H- and E-planes as a function of angle. For this plot, Zc = 400 n, and 
Td= 0.1 (e.g., a = 0.3 m and td= 0.1 ns). 

V. SAMPLE MEASUREMENTS 

Finally, measurements ofa reflector IRA, a lens IRA (Figure 1.1), and a TEM hom were made on 
a tabletop scale model17, where half the antenna was built on a ground plane. The lens IRA without the 
lens is just a simple TEM hom, so measurements were made both with and without the lens for comparison. 
The reflector was 58 cm in diameter with an FID of 0.48, The reflector IRA had a single feed arm in the 
"facing plates" configuration with an input impedance of 200 n, which would correspond to 400 n for a 
full model. The TEM hornllens IRA was 61 cm in diameter at its aperture, and the length of the TEM 
hornllens IRA feed section was 72 cm. The feed impedance of the TEM hornllens IRA was 94.25 n, which 
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would correspond to 188.5 n for a full antenna. The antennas was driven by a 40 V step function with a 
nominal 10-90% risetime of 100 ps. A" limited angle of incidence, limited time" sensor16 was used to 
detect the signal in replicative mode. The sensor was placed on boresight at a distance of 6.1 m from the 
aperture of the reflector IRA and 5.2 m from the aperture of the TEM hornllens IRA. 

A sample measured waveform for the reflector IRA is shown in Figure 5.1, along with theoretical 
predictions. One sees in this data a prepulse, an impulse, and an undershoot immediately following the 
impulse. The theory describing the undershoot is still being developed, but the theory of the prepulse and 
impulse already exist. When taking into account the feed blockage, there was a difference of five percent 
between the prediction and measurement of the waveform peak. 

Sample measured waveforms for the lens IRA and TEM hom are shown in Figure 5.2, along with 
theoretical predictions for the lens IRA. Note that the lens provides about a factor of two improvement in 
the radiated field. Note also that the predications and measurements of the peak field for the lens IRA agree 
to within six percent. 
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Figure 5.1 Experimental results (left) and predictions (right) for the reflector IRA. Note that the scales on 
the scope are 500 pS/division horizontal and 50 m Vldivision vertical. Since the effective height 
of the sensor is 0.95 cm, this corresponds to a vertical scale of 5.26 Vlmldivision. 
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Figure 5.2 Experimental results (left) for TEM hom and lens IRA. Theoretical results for the lens IRA 
are on the right. Note that the scales for the measurements are 500 pS/division horizontal and 
100 mVldivision vertical. Since the effective height of the sensor is 0.95 em, this corresponds 
to 10.5V1m1division vertical. 

VL CONCLUSION 

We have considered here a number of extensions to the theory of IRAs. First, we developed a 
definition of gain that is as meaningful in reception mode as it is in transmission mode. This led to a radar 
equation in the time domain. Furthermore, we developed an approach for optimizing the feed impedance of 
reflector IRAs. We have also found a simple way of calculating the antenna pattern of reflector IRAs. 
Finally, we provided measurements which confirmed our predictions. 
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AXIAL FIELD OF A TEM-FED UWB REFLECTOR ANTENNA: 
PO jPTD CONSTRUCTION 

Yahya Rahmat-Samii and Dah-Weih Duan 

Department of Electrical Engineering 
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Los Angeles, CA 90024-1594 

INTRODUCTION 

Recent interests in utilizing antenna systems for radar applications are being fo­
cused on the antenna's ultra wide band (UWB) operation capabilities. One possible 
configuration for realizing UWB antenna is to employ a spherical TEM launcher as 
the feed to illuminate a paraboloidal reflector1 . An example of the TEM-fed reflector 
antenna is depicted in Figure I, in which the TEM-launcher is assumed to have four 
blades although in practice other numbers of the blades may be used. Proper charac­
terization of the radiated field along the axial direction is important for assessing the 
impulse responses of such TEM-fed reflector antennas. The challenging issues in this 
task include the evaluation of the diffracted fields from the edge of the reflector, and 
the scattered field caused by the spherical TEM-launcher's blades. 

The objective of this paper is to present a PO/PTD (Physical Optics/Physical 
Theory of Diffraction) analysis for the TEM-fed wide-band reflector antennas. As 
a result, with a general spherical incident field representation, closed-form formulas 
are obtained for both the PO field and the PTD fringe field of the reflector and the 
TEM launcher's blades. These formulas will facilitate characterizing the time-domain 
response of these UWB reflector antenna systems. 

POjPTD DIFFRACTION ANALYSIS 

General formulation of the PO /PTD diffraction analysis is summarized in this 
section. The time convention ejwt is assumed and suppressed. All formulas are presented 
for observations made in far-field zone. Due to page limitations, only the final results 
are presented in this paper, and the reader is referred to the literature2 for details. 
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symmetric 
paraboloid 
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z 

Figure 1. An example configuration of the UWB TEM-fed reflector antenna. 

Physical Optics 

In Physical Optics, the current on the scatterer surface is assumed to be 

J PO = {2n x Hinc, in the lit region 
0, in the dark region (1 ) 

The PO scattered field, EPo , is constructed by using the PO current JPo in the radiation 
integral. Instead of presenting the general formula of the PO field, however, we assume 
that the observation is made along the axis of the antenna, which is usually defined as 
the z-axis. In this situation, the PO field becomes 

- jkr 

-jkZo -e - (xx + frf))' r J Po ejki.r'd'L, 
47rT iE (2) 

1, E PO -zx 
Zo 

(3) 

k w..jJ-Lo€o, Zo = f¥o (4) 

where k is the free space wave number, Zo is the free space impedance, and the operation 
(xx + iiii) in (2) can be read as "the transverse-to-z components of". These equations 
define the axial PO fields that are of our interest. Notice that the surface 'L, may 
represent the reflector surface or that of the TEM-launcher's blades. 

Physical Theory of Diffraction 

The PO field (2) and (3) has taken into consideration part of the diffraction effect 
caused by the edge of the scatterer. In order to improve the accuracy of PO, the other 
portion of the edge diffracted field is modeled by a "fringe field" in the Physical Theory 
of Diffraction using asymptotic techniques. The total scattered field in PTD consists 
of the PO field and the fringe field: 

(5) 

The key idea of PTD is as follows. It is assumed in PTD that, in the high frequency 
regime, edge scattering is a local phenomenon, and therefore the diffracted field of a 
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Figure 2. The incident angles and observation angles that are required in the calculation of the PTD 
fringe field. 

curved edge can be approximated by the sum of those contributed by the differential 
edge elements. Based on the same locality principle, each edge element is modeled by 
a local tangential straight edges. With these assumptions, the problem of determining 
the edge diffraction of a scatterer that has an arbitrarily curved edge is reduced to that 
of a straight edge, which is a canonical problem with exact solution. The key issue of 
PTD is to obtain a high frequency asymptotic development of the fringe field radiated 
from a differential edge element of a straight edge. 

In this paper, the PTD3,4,5 is extended to the whole angular range of [0,211"J for 
the incident azimuthal direction. This extension is valuable for practical applications 
because the restriction on the orientations of the local coordinate systems is lifted. In 
order to facilitate PO/PTD analysis of reflector antennas, the general PTD fringe field 
formulas are specialized to scatte1'e1'S with thin edges, and the resultant fringe fields Efr 
and Hfr for axial observations are: 

-jkr 

_e_ f [B'(E~CFo + ZoH~cGo) + ¢'ZoH~~cG1>l dkZ.r'dl 
411"1' iL' . . (6) 

1 A Efr -1'X 
ZO 

(7) 

where Fo, Go, and G1> are usually referred to as the "diffraction coefficients"2. Notice 
that a prime is attached to the unit vectors in (6) in order to emphasize that these 
vectors are defined with respect to each local coordinate system, and may vary along 
the edge of the scatterer. The fields E~c and H~~c are also defined with respect to the 
local coordinate systems. The integral~ in (6) a~d (7) are one-dimensional, along the 
edge of a curved scatterer L. The diffraction coefficients are functions of the angles of 
the incident waves (the "incident angles" 8; and </ID and those of the observation point 
(the "observation angles" 8' and </I'). The definitions of the incident and observation 
angles are depicted in Figure 2, in which it is seen that for a thin scatterer the local 
tangential edge is simply a half plane, and that the z-axis of the local coordinate system 
is defined to be tangential to the edge of the scatterer, while the x-axis is situated on 
the tangential half plane, pointing "inward" at a right angle to the edge. 

173 



symmetric X,X! 
-,-_",,:- reflector 

f , 
I , 

D 

.......... I \ 
I \ 

'............ : \ y~ 

-------~{~-"---J~'-::,7""::::__;_\ -

reflector 
edge L 

,~ \ 

/'Y \ 
\ 
\ I 

\ A 1--
,-, <..... aperture 

Figure 3. Antenna geometry and the coordinate systems. 

ANALYSIS OF THE REFLECTOR 

The previously published asymptotic formulas for the PO field of symmetric (body 
of revolution) reflector antennas6 are singular for boresight (the axial direction) obser­
vation, and hence not useful for solving our problem. In this section, the PO /PTD 
diffraction analysis is applied to determine the axial field of a symmetric paraboloidal 
reflector. Closed-form formulas are derived for both the PO field of the reflector and 
the fringe field from the edge of the reflector. 

Axial PO Field of the Reflector 

Let us consider the reflector antenna geometry Figure 3, in which a symmetric 
paraboloidal reflector (denoted by "E") with a circular aperture (denoted by "A") is 
illuminated by a feed situated at the focal point of the paraboloid. Using the feed 
field model: 

{ 

[O,A(B,) cos¢J,- ¢,B(B,) sin ¢J,] , 

Efeed = e-jkrj • [~{~(B!)Sin¢J,+~,B(B,)COS¢J,], 
r, Tz [B,A(B,) - ¢J,jB(B,)] , 

djf [O,A(B,) + ¢,jB(B,)] , 

one may show that the PO field (2) can be reduced to 

xrpol feed 

YrPol feed 

RHCP feed 

LHCP feed 

e- jk(z+2F) 11 A(B) + B(B ) 
E~~ = p. . (-jkF)· , , d(cosB,) 

z coso. 1 + co~B, f 

I 

(8) 

(9) 

where Bs = 2 arctan (D/4F) is the sub tended angle of the reflector (see Figure 3), and 

r xI-pol feed 
-y YrPol feed p = x+/y RHCP feed (10) 
v"i' 
7! LHCP feed 

2 ' 

is the polarization vector. Notice that the sense of circular polarization has been re­
verted upon reflection from the reflector. The integral I in (9) is easy to evaluate 
numerically since it has a slowly varying integrand and a finite integration interval. 
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Nevertheless, there are several functional forms of A(OJ) and B(OJ) (cosq OJ, for exam­
ple) that allow closed-form evaluation of [. 

The validity of (9) can be justified in two ways. Firstly, we find that for large 
focal length F, equation (9) is consistent with a closed-form formula previously de­
rived for the axial field of a circular disc1 that has uniformly distributed surface cur­
rent. Secondly, the field computed using (9) is compared with the result obtained 
by numerical integration. For example, using the antenna configuration D = 10>', 
F = 5>', and an x-polarized cosq 0 feed with ql = 4.3, and q2 = 2.8, one obtains 
E~~ = -xjO.606 x 1O-5volts/ >. at the point r = ZI06 >.. It is observed that the ampli­
tude of the axial PO field (9) has kl-dependence, which becomes singular at the high 
frequency limit (k ---t 00). This behavior is consistent with that predicted by the Ge­
ometrical Optics (GO). Equation (9), however, provides a more accurate quantitative 
characterization of this singularity. 

The Fringe Field of the Reflector 

Given the antenna geometry of Figure 3 and the feed field (8), one may calculate 
the fringe field defined in (6). The result is 

E~~fI = p. . - sin...!.. 1 - sin...!.. . [A(O.) - B(O.)] 
e-jk(r+2F) 1 0 ( 0 ) 

r 2 2 2 
(11) 

where the polarization vector p are identical with that appears in the axial PO field 
(10). The validity of (11) has been justified by comparing with numerical integration. 
For example, using the antenna configuration D = 10>', F = 5>', and an x-polarized 
cosq 0 feed with ql = 4.3, and q2 = 2.8, one obtains the axial PTD fringe field E7.,fl = 
-xO.877 x 1O-8volts/ >. at the point r = ZI06 >.. It is observed that the amplitude of the 
axial fringe field (11) has kO-dependence. 

ANALYSIS OF THE TEM LAUNCHER'S BLADES 

In addition to the effect of the reflector rim diffraction studied and presented in a 
previous section, we investigate the diffraction effect of the spherical TEM-launcher's 
blades in this section for purpose of characterizing the axial field of a TEM-fed parabo­
loidal reflector antenna. The goal is to obtain closed-form formulas for the PO field 
and the PTD fringe field scattered from the blades. 

For convenience of discussion, we assume that the TEM launcher has "trans­
verse blades", which have maximum projections on the reflector aperture. Consider 
a paraboloidal reflector with diameter D and focal length F as shown in Figure 4. For 
a point Po on the edge of the reflector, let us define the plane of the blade as the plane 
which contains the line segment OPo and the tangent of the reflector rim at Po. Next, 
let us imagine a cylinder having the z-axis as its axis and a diameter D. We call this 
cylinder the "O.-cylinder". The intersection of the O.-cylinder and the blade plane is an 
ellipse. A transverse blade is defined to be the portion of the intersection ellipse that 
subtends an angle 'l/Jh on each side of the line segment OPo. 

The Axial PO Field of a Transverse Blade 

The field incident on the blades must be assumed before one can calculate the PO 
field and the PTD fringe field of the blades. In this paper, we assume a feed (primary) 
field and calculate the field reflected by the reflector using Geometrical Optics (GO) 
analysis. This reflected (secondary) field, which is found to have a uniform phase front, 
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Figure 4. Geometry of a transverse blade. 

are taken as the incident field on the blades. Precisely, if we use the primary field (8) 
withe the simplification that A(Bj) = B(Bj), the incident field is found to be 

Eine 
e- jkrf 

(12) -p--A(Bj) 
Tj 

H ine 1. Eine -zx 
Zo 

(13) 

where the polarization vector p is defined in (10). Notice that the assumption of a 
symmetric feed pattern is not so restrictive as it may appear to be. It is not only because 
the TEM-launchers produce rather symmetric field patterns, but also because the half 
angle of a blade is usually a.s small a.s several degrees, within which the asymmetric 
feed pattern can not be experienced completely. In other words, a blade sees only the 
portion of the field pattern that is "local" to its vicinity, and hence the application 
of a symmetric pattern that mimics the field in the blade's vicinity becomes a good 
approximation. 

Using the incident magnetic field (13), one may calculate the PO field (2), and the 
result is 

where 

e- jk(r+2F) 1 A(B ) 
p. .(jkF)·f(1/Jh;Bs)·21 'B dcosB, 

T cosO, 1 + cos j 

f(1/Jh;Bs) == L(1/J~;Bs) > 0 
21l" sm Bs 

(14) 

(15) 

and L is the arc length between [-1/Jh,1/Jh] for an ellipse with semi-axes 1 and sinBs. 
It is clear that the PO field of the blade tries to cancPi that of the reflector in a 

fraction determined by the function f( 1/Jh; Bs). This is a manifestation of the "blockage" 
or "shadowing" effect of the blade. In a conventional treatment of the blockage in 
PO analysis, the current on the reflector surface that is under the projection (or, the 
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Figure 5. The function !(1/Jh;{)s) (solid lines) and its linear approximation (dots). 

shadow) of the blade is set to zero. It is interesting to calculate the amount of blockage 
predicted by (14), and compare it with the conventional treatment. To achieve this, let 
us approximate !('ljih; as) by 

!(7/Jh; as) c::: 
7r sin as 

(16) 

when 7/Jh ~ 1, which is almost always the case in a TEM-fed antenna. This approxi­
mation is plotted in dotted lines in Figure 5, compared to the exact values of !(7/Jh; as). 
it is seen that (16) is a very good approximation when 7/Jh is small (say, less than 5°) 
and when the F / D ratio of the reflector is not unreasonably large (less than 2, for 
example). On the other hand, one finds that the right side of (16) is exactly the ratio 
of the projection of the blade on the x-V plane to that of the reflector. These results 
provide a satisfactory justification for the conventional treatment of the blockage. 

The Fringe Field of a Transverse Blade 

In order to construct the PTD fringe field of a transverse blade, we erect the local 
coordinate systems along the edges of a transverse blade as depicted in Figure 6. The 
fringe field of a transverse blade is the combination of those from the two edges, and 
the resultant formula is 

e-jk(r+2F) 1 19s 
E~ade = fIr. . sin a: 1 (cos </1: 1 + cos 27/Jp) • - A(a, )da, (17) 

r " 27r 0 

where 8:,1 and </1:,1 are the incidr,nt angles, the angle 'ljip is defined as 7/Jp = arctan (2d/ D), 
and the polarization angle pfr is given by 

Afr -=-x.~in 27/J + Y cos 27/J, YrPol feed {

X cos 27/J + y sin 27/J, x ,-pol fr,r,d 

p = X;)/e j21/J, RHCP feed 

X1! e-j21/J, LHCP feed 

(18) 

Notice that 27/J-dependence of the polarization vpctor. This is resulted from the sum­
mation of the two fringe field components. For the same reason, the sense of circular 
polarization has also been rr,versed compared to that of the PO fidd (14), (10). 
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Figure 6. Local coordinate systems defined on the edges of a blade. 

CONCLUSIONS 

The radiated field along the axial direction of a TEM-fed symmetric paraboloid 
reflector antenna is studied using the techniques of PO /PTD. As a result, with a general 
spherical incident field representation (8), closed-form formulas are derived for 

• the PO field of the reflector (9), 

• the PTD fringe field from the edge of the reflector (11), 

• the PO field of a transverse blade (14), and 

• the PTD fringe field of a transverse blade (17). 

These results can be used in the determination of the time-response of the UWB re­
flector antennas. 
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ULTRA-WIDEBAND IMPULSE RECEIVING 
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INTRODUCTION 

Impulse antennas are antennas that are intended to either transmit or receive very 
short pulses of electromagnetic energy. As is well known, short pulses have extremely 
wide bandwidths; hence, impulse antennas by their very nature must be wideband. 
However, in order to maintain signal fidelity, the bandwidth of an impulse antenna 
cannot be defined in the conventional manner. Unlike wideband continuous wave (CW) 
antennas, it is very important that the impulse antenna not introduce significant phase 
distortion into the signal. 

When viewed as a receiver, the effective length of an antenna is a useful concept. 
Effective length is defined by 

(1) 

where w is the frequency in radians, Vac(w) is the open circuit voltage at the antenna 
terminals, and Ei(w) is the component of the incident electric field at some reference 
point on the antenna having the same polarization as the receiving antenna would 
transmit in the direction of arrival. The usual negative sign which appears in the 
definition of (1) has been omitted with the understanding that Ei(w) has proper polarity 
to match the positive polarity of Vac. For example, the Ei(w) considered for broadside 
incidence on a vertical thin-wire dipole would point down, assuming that the positive 
reference for v;,c was the top terminal of the dipole relative to the bottom terminal. 

Clearly, in order to generate an output voltage that is a high fidelity reproduction of 
an incident impulsive electric field, an antenna with a constant effective length across 
the bandwidth, and not constant gain across the bandwidth as in CW applications, is 
required. The gain G and effective length Le] f of an antenna are related by! 

(2) 
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where T)o is the intrinsic impedance of free space, f is the frequency in Hz, c is the 
speed of light in vacuum, and Rr is the antenna radiation resistance. Clearly, a fre­
quency independent gain requires both frequency independent radiation resistance and 
an effective length inversely proportional to frequency, while a frequency independent 
effective length and a frequency independent radiation resistance imply that gain in­
creases as the square of the frequency. In addition to a frequency independent effective 
length, a linear phase shift across the bandwidth is required in order to minimize signal 
distortion due to dispersion. 

TEM HORN ANTENNA DESIGN 

A number of different structures have been investigated for impulse reception. Of all 
of the structures investigated to date, the TEM horn2,3 holds the greatest promise for 
combining directionality, maximum effective length, broadest bandwidth, and minimum 
size in a single antenna. The TEM horn has the advantage of a robust, physically simple 
design. The TEM horn designed for this paper consists of two triangular conductors 
with an included angle of about 10 degrees. Attached to the open end of the two 
triangular conductors is a section of resistively loaded parallel plate waveguide. The 
function of the parallel plate section of the antenna is to minimize reflections (especially 
lower frequency components) from the end of the structure with the result that ripple 
in the magnitude of the frequency domain sensitivity of the antenna is reduced. The 
TEM horn designed for this paper is approximately 78.8 cm x 22.9 cm x 9.4 cm. 

The aperture width-to-height ratio is determined by the desired impedance of the 
antenna, which in this case is lOOn so that the upper and lower half of the antenna 
can each be attached to the center conductor of a 50n coaxial transmission line for 
balanced operation. The TEM horn with a parallel plate extension can be modeled 
as a parallel plate transmission line with a constant impedance transition from the 
aperture to the apex of the TEM horn. The impedance of a parallel plate transmission 
line is determined by the width-to-height ratio of the two parallel conductors. Similarly, 
since for the transition region (the TEM horn) the width of the conducting elements 
and the separation between the two elements decrease in the same proportion, the 
width-to-height ratio of the two TEM horn conductors does not change from that of 
the parallel plates, and impedance in this region is approximately constant4 • These 
conclusions regarding impedance assume that only the TEM mode is present and that 
the slope of the triangular portion of the horn is gradual. These assumptions infer that 
the fields in the local cross section of the tapered horn can be approximated by the 
fields in a uniform parallel plate microstrip line. The aperture width-to-height ratio of 
the TEM horn is obtained from the width-to-height ratio of a microstrip transmission 
line since the image of the upper portion of the TEM horn is simply the lower portion, 
so the actual TEM horn is exactly equivalent to one-half of the horn above a perfect 
ground. 

Since the aperture width-to-height ratio is determined by the desired impedance of 
the antenna, this fixed ratio places an upper limit on the height of the antenna for an 
antenna of fixed length since the difference in path length between the length of the 
antenna from the apex to the center of the aperture and the length of the antenna along 
the longitudinal edge of the triangular section must be less than one-half wavelength for 
all frequencies of operation; otherwise, there is destructive interference among compo­
nents of the signal arriving over different paths. As aperture height increases, aperture 
width must increase in order to maintain the desired aperture width-to-height ratio, 
and for a fixed length antenna the aforementioned path length difference also increases. 
Consequently, the frequency at which this path length difference approaches one-half 
wavelength decreases with increasing aperture height. 
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The dominant mode of the TEM horn is the TEM mode. Longitudinal lines etched 
in the horn surface disrupt the induction of currents across the horn, hence acting as 
a mode filter to prevent the creation of transverse electric (TE) modes5 • As a result, 
a second high-frequency limitation of the TEM horn is determined by the frequency 
at which the second order transverse magnetic (TMo2) mode is excited4,5. In analogy 
with parallel plate waveguides, we expect this frequency to be inversely proportional to 
the height of the aperture. Consequently, as aperture height increases, the frequency 
at which the TMo2 mode can propagate decreases. Hence, there are two separate 
phenomenon, both related to aperture height, that limit the high-frequency response of 
a TEM horn. Since increasing the aperture height also increases sensitivity, there is a 
fundamental trade-off between the high-frequency limit of the antenna and sensitivity 
for all TEM horn antennas. 

The sensitivity of an antenna is the ratio of the voltage at the output terminals of 
the antenna to the electric field vector component which would be transmitted in the 
direction of arrival, as measured at some specified location, say at the antenna aperture. 
Ideal sensitivity, in the context of received power, is obtained when the load impedance 
is conjugate matched to the antenna impedance. Hence, sensitivity is a parameter 
related to the receiving characteristics of an antenna and the attached load, as well 
as the direction of arrival for the incident field. These definitions assume an incident 
plane wave field. As previously mentioned, sensitivity is closely related in concept to 
effective length. Sensitivity, HR , which acts as the receiving transfer function of the 
antenna, has units of length, and is defined by 

(3) 

where VR(W) is the voltage at the antenna terminals when the antenna is loaded with 
impedance ZR(W) and the.output impedance of the antenna is Z22(W), This expression 
results due to the voltage divider action of Z22 in series with ZR. 

For receiving impulsive signals, the ideal antenna has a sensitivity function with 
constant magnitude and negative slope linear phase shift corresponding to a fixed time 
delay for all spectral components. An empirical expression for the frequency response 
of the complex sensitivity of the TEM horn has been obtained4. Based on suggestions 
to improve this result6 , we obtain 

HR(W) = C(w)expfjP(w)] (4) 

where 

C(w) 
-h-= [(sin(WT/2))4 _ 2 (sin(WT/2))2 cos(wT/2) coswD + ( cos(wT/2) )2] 1/2 

WT/2 wT/2 1 - (wT/7r)2 1- (wT/7r)2 
(5) 

is the magnitude of HR(w) normalized by the antenna aperture half-height h and 

P( ) t [ 
1~(~i/:}~ sin(wD) 1 

w = arc an -:---:-~-:-'i,::-cc:..L_--:-----

( Sin(WT/2))2 _ cos(wT/2) cos(wD) 
WT/2 1-(wT/7f}2 

(6) 

is the phase of HR(w). In (5) and (6), T = 2L/c, D = T/2 - T, and 

T=~~1.39(~) 
7r fTEol 7r v'IOc (7) 
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For a practical TEM horn, T » T which implies that D ~ T/2. Taking this into 
account, we can show that in the low-frequency limit (5) becomes 

C(W) ~ hwD 
wT 

for "2" « 1 (8) 

which we can use to obtain an expression for the length of the TEM horn as 

L~ C 

47rh6dB 
(9) 

where h6dB is the frequency at which the magnitude of the sensitivity is 6 dB down 
from its passband value at the low end of the passband. The low-frequency cutoff of 
the TEM horn will be defined by h6dB. It is clear from (9) that the low-frequency 
cutoff of the TEM horn is inversely proportional to its length. According to (9), we 
find that for the TEM horn discussed here h6dB ~ 42.8 MHz with a corresponding 3 
dB frequency of 85.4 MHz. 

As mentioned previously, the function of the resistively loaded parallel plate sec­
tion of the antenna is to minimize reflections from the end of the structure. Ideally, 
the resistance should increase continuously from its minimum value at the end of the 
triangular section of the antenna to its maximum value at the antenna aperture. This 
behavior is approximated by seven rows of discrete resistors. Location of the rows is 
arbitrary except that the first row occurs as close as physically possible to the triangu­
lar section of the antenna, and the spacings between each of the rows are all different. 
The first restriction is to minimize a sensitivity distortion that will occur at a frequency 
corresponding to the round trip travel time from the end of the triangular section to 
the first row, and the second restriction is to eliminate resonances that will occur if any 
row spacing are equal. 

IMPULSE RECEIVING ANTENNA MEASUREMENTS 

We will now consider the experimental assessment of impulse receiving antenna 
performance. Impulse antenna measurements were made in the Transient Electromag­
netics Laboratory7,8 using the configuration depicted in Fig. 1. The Z-parameter model 
shown in Fig. 2 represents the linear interactions between transmit and receive antenna 
voltages. In this representation, Vo(w) in series with ZT corresponds to the Thevenin 
equivalent of the step pulse source. Since ZT == Zo == 50n in our case, the pulse source 
voltage is measured across a voltage divider into a Zo load and, for all practical pur­
poses, VT(t) = vo(t)/2. Our goal is to use the measured step voltage VT(t), as well as 
the measured voltage at the receiving antenna VR(t), to deduce the sensitivity transfer 
function, HR(w). The incident electric field generated by the transmitting antenna at 
the far-field location of the receiving antenna is given by9 

Ei() jkoTfo -jkorL () Vo(w) w = --e 1 w 
47rr ZT(W) + Zll(W) 

(10) 

where ko = w / c is the wavenumber, r is the distance between transmitting and receiving 
antennas, Zll(W) and L1(w) are the input impedance and effective length, respectively, 
of the transmitting antenna. The receiving antenna effective length, L2(w), generates 
an open circuit voltage L2(W)Ei(w). Voltage division across the output impedance 
Z22(W) and the load impedance ZR(W) produces VR(w) which is the Fourier transform 
of the measured load voltage VR(t). Substituting (10) into the definition for effective 
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Figure 1. Impulse Antenna Laboratory. 
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Figure 2. Z-Parameter Model. 
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length of the receiving antenna (1) and referring to Fig. 2, we get the received voltage 
across the load impedance 

j koTJo -jkor () YO () Zn(w) 
VR(W) = -4-e L1 W Z () Z ( )L2 W Z () Z ( ) 'lrr T w + 11 wnw + 22 W 

(11) 

where ZR(W) is the receive antenna load impedance, Z22(W) is the impedance of the 
receiving antenna, and L2 is the effective length of the receiving antenna. 

If the transmit and receive antennas are identical, then L1 (w) :: L2(w) and Z11 (w) :: 
Z22{W) :: Zin(W). Also assuming that ZT == ZR == Zo, we get 

Vn{W) jWTJo -jkor[H ( )]2 --::---e nW 
VT{w) 27rCr Zo 

(12) 

where VT(w) :: ~ Vo(w) is the measured transmitter voltage into the Zo matched load. 
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Solving for the sensitivity function, we obtain 

(13) 

where JWTJo/21rCTZo = J81rf/r, with f in GHz, r in meters, and Zo = 50!}. 
The preceding also gives us a method whereby the incident electric field can be 

obtained by measurement. Substituting (3) and (13) into (10) and recalling that 
Zl1(W) = Z22(W) while ZT = ZR = Zo, we get 

(14) 

The transmitted and received voltage are measured in the time domain, and VT(W) 
and VR(w) are obtained by fast Fourier transform (FFT). These results are then used 
in (13) and (14) to obtain HR(w) and Ei(w), respectively. The incident electric field in 
the time domain is obtained from Ei(w) by inverse FFT. 

EXPERIMENTAL RESULTS 

When only one antenna of the type to be tested is available then its impulse char­
acteristic can be measured by employing one of two additional antennas which had 
been separately calibrated using the identical pair technique of (13). A more accurate 
procedure to evaluate HR(W) is to use two identical test antennas, if they are available. 
This eliminates the extra step of the calibration measurement and ensures that the 
responses are over the full passband of the test antennas. 

The transmit antenna input voltage, the electric field incident on the receiving 
antenna obtained from (14) and the appropriate measurements, and the transient re­
sponse of the TEM hom are shown in Figs. 3, 4 and 5, respectively. As can be seen, the 
TEM horn is a very fast responding structure, with almost perfect differentiation upon 
transmission and high-fidelity reproduction of E-field to output voltage upon reception. 
The extra ripples are due for the most part to imperfections in the input step pulse. 
Upon further processing, the data provides the estimate of sensitivity function HR(w). 
In Fig. 6, the magnitude of the empirical sensitivity given by (5), adjusted to account 
for losses in the balun, is plotted against the measured sensitivity. As can be seen, 
agreement is very good over the bandwidth of the antenna. The ideal sensitivity of the 
prototype TEM hom is -26.6 dB-meter. The magnitude of the empirical sensitivity is 
within 3 dB of the ideal over a range from about 70 MHz to about 7 GHz. It is expected 
that the empirical results are more representative of actual antenna performance for 
frequencies below 7 GHz, well within the desired operating range of the antenna. The 
nearly flat response from 100 MHz up to 5 GHz with linear phase explains the excellent 
dispersion free characteristics observed for these antennas. 

CONCLUSIONS 

A test procedure to evaluate the transient response characteristics and the frequency 
domain complex sensitivity of an ultra-wideband antenna has been developed. The 
procedure requires, in addition to the test equipment, only a single impulse antenna; 
although, results are improved when two identical impulse antennas are available. A 
resistively loaded, TEM hom was designed to have theoretical sensitivity with uniform 
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Figure 6. Comparison of Computed and Measured Sensitivity for Loaded TEM Horn. 

magnitude to within ±3 dB and linear phase from 70 MHz to 8 GHz. Two such 
horns were fabricated and their measured sensitivity was found to agree very well with 
theoretical results. The measurements further indicate that these prototype antennas 
are capable of receiving an incident impulsive electric field having a time duration of 
less than 100 ps with virtually no distortion. 

Efforts are underway to extend the response of the prototype antenna to cover both 
lower and higher frequencies as well as to increase its sensitivity. 

REFERENCES 

1. J. D. Kraus, Antennas, Second ed. New York: McGraw-Hill, 1988. 
2. M. Kanda, "The effects of resistive loading of 'TEM' horns," .IEEE Trans. on Elec­

tromagnetic Compatibility, vol. EMC-24, pp. 245-255, May 1982. 
3. M. Kanda, "Time domain sensors for radiated impulsive measurements," IEEE 

Trans. on Antennas Propagation, vol. AP-31, pp. 438-444, May 1983. 
4. A. R. Ondrejka, J. M. Ladbury, and H. W. Medley, "TEM horn antenna design 

guide," National Institute of Standards and Technology, unpublished report. 
5. S. Evans and F. N. Kong, "TEM horn antenna: input reflection characteristics in 

transmission," lEE Proceedings, vol. 130, pt. H, no. 6, pp. 403-409, Oct. 1983. 
6. A. Ondrejka, National Institute of Standards and Technology, personal communi­

cation, November 1992. 
7. M. A. Morgan and B. W. McDaniel, "Transient electromagnetic scattering: data 

acquisition and signal processing," IEEE Trans. Instrum. Meas., vol. IME-37, pp. 
263-267, June 1988. 

8. M. A. Morgan and N. J. Walsh, "Ultra-Wideband Transient Electromagnetic Scat­
tering Laboratory," IEEE Trans. Antennas and Propagation, vol. AP-39, pp. 1230-
1234, Aug. 1991. 

9. R. E. Collin, Antennas and Radiowave Propagation. New York: McGraw-Hill,1985. 

186 
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INTRODUCTION 

The finite-difference time-domain (FDTD) method has been used to analyze a number 
of antennas for pulse radiation. In complexity, these antennas range from simple metallic 
monopoles to more complicated resistively loaded structures such as the bow-tie and TEM 

hom [1]-[10]. Almost all of these analyses have been for antennas in the transmitting mode, 
where the internal reflections and pulse distortion on radiation were of concern, see Figure 
lea). There has been very little discussion of these antennas in the receiving mode, see Fig­
ure l(b). 

V:xc (t) -1 Erad (t) 
Vrx (t) -1 Einc (t) 

+ + - -, -, 
Far Field Plane Wave 

a b 

Figure 1. Schematic drawings for (a) transmitting antenna, and (b) receiving antenna. 

Reciprocity can be applied to the results for a transmitting antenna to determine the 

behavior of the same antenna on reception. To illustrate this point, we will consider the sim­
ple dipole antenna shown in Figure 1. When excited by the voltage wave v + in the trans­

mission line, the antenna radiates the electric field Erad at broadside. Wh:~cplaced in the 

incident plane wave with electric field E InC parallel to the dipole, the antenna produces the 
voltage wave v- in the transmission line. Notice that v+ and v- represent traveling 

~ = ~ 
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waves in the direction toward the antenna (+) and in the direction away from the antenna (-); 
they are not the total voltage at the terminals of the antenna. From reciprocity, the quantities 
for transmission and reception are related in the frequency domain by 

(1) 

- 1 Jad 
V rx (co) oc jco~ (co) , (2) 

which in the time-domain implies 

t 
V-· (t) oc f Erad (t') dt' . 

rx -00 

(3) 

In words, this expression says that an antenna receives a waveform that is the integral of the 
waveform it radiates, provided it is excited on transmission and reception by signals that 
have the same waveform. A few examples will illustrate this point: for an electrically short 
dipole 

2 

Erad (t) oc -;'v+ (t), 
dt exc 

and for an ideal TEM hom antenna 

~ad (t) oc :t V;xc (t) , 

both (4) and (5) satisfy (3). 

(4) 

- inc 
V (t) oc E (t) ; 

rx 
(5) 

An ideal transmitting antenna is one that radiates a waveform that is the same as the 
excitation, i.e., 

Jad + 
~ (t) oc V (t) . 

exc 
(6) 

From (1), this antenna will receive a signal that is the integral of the incident waveform, 

t . 

V- (t) oc f EtnC (t') dt' , 
rx _00 

(7) 

inc + 
or when E (t) oc V (t) , 

exc 
t 

V- (t) oc f V+ (t') dt' . 
rx -00 exc 

(8) 

In the remainder of this paper, we will examine several antennas to see how closely 

their responses. approach (6) and (7). In both the transmitting and receiving cases, the excita­
tion, V + or inc, will be the differentiated Gaussian pulse shown in Figure 2: 

exc 

(9) 
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Figure 2. Unit amplitude, differentiated Gaussian pulse. 

All results are detennined using the FDTD method with Vee's original, rectilinear, orthogo­

nal mesh [11]. Even though the antennas considered are rotationally symmetric, this symme­
try is destroyed in the receiving case; thus, a fully three-dimensional grid is necessary: 360 x 
180 x 180 cells. The surface of the grid is truncated by a Liao 3rd order absorbing boundary 
condition [12], and the results for the radiated field are detennined using a near-field to far­
field transformation [1], [5], [13]. The transmission line is included using the simple, one­
dimensional model described in [14]. The dimension for all of the antennas to be discussed 
are the same as those previously described in a series of papers that dealt with the transmit­
ting case only [1], [2], [4]. 

NUMERICAL RESULTS FOR TERMINAL QUANTITIES (RECIPROCITY) 

First we will consider the simple, metallic, cylindrical monopole; the geometries and 
results for transmission and reception are shown in Figure 3. In these figures, time is scaled 
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Figure 3. Metallic, cylindrical monopole. (a) Radiated electric field at broadside. (b) Received voltage for 
plane wave incidence (insets show results for an infinitely long monopole). 
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by the parameter 't a' which is the time for light to travel the length of the monopole. The 
radiated electric field is seen to consist of an initial signal which resembles the waveform of 
the excitation, followed by a series of pulses that are due to reflections at the open-end and 
feed-point of the monopole. Similarly, the received voltage is seen to resemble the integral 
of the incident field *, followed by a series of pulses also due to the end reflections. These 
initial signals are the same as those for the infinitely long monopole, which are shown in the 
insets. Notice that even the results for the infinitely long monopole are not those for the 
ideal transmitting antenna, i.e., close examination shows that the radiated field and the 
received voltage are not exactly a differentiated Gaussian pulse and its integral, a Gaussian 
pulse, respectively. One may think that the differences are a result of the mismatch between 
the characteristic impedance of the transmission line and the impedance of the antenna; 
however, this is not the case. As shown in Figure 4, the received current at the center of a 
finite or infinite wire with no feeding transmission line is distorted in a similar manner; this 
effect has been verified by analysis [15]. 
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Figure 4. (a) Schematic drawing for metallic wire. (b) Received current at center of wire. 

Notice that two results are shown for the receiving case in Figure 3(b): the voltage 
obtained directly from the FDTD analysis of the receiving antenna (solid line), and the volt­
age obtained using the reciprocity relation (8) with the FDTD analysis of the transmitting 
antenna (dashed line, open circles). The two results are essentially identical. Similar agree­

ment will be shown for the other antennas to be discussed. 
The results in Figure 5 are for a monopole with resistive loading designed to eliminate 

the reflection from the open-end (Wu-King profile) [2]. The end effects are nearly elimi­
nated; however, the initial signals, both on transmission and reception, are again not those 
for the ideal transmitting antenna. This is particularly evident for the receiving case where a 
large tail is appended to the "Gaussian like" initial pulse. 

Figures 6 and 7 are for conical monopole antennas whose angle was chosen so that the 
impedance of the corresponding infinite, metallic cone was equal to that of the characteristic 
impedance of the feeding coaxial line [4]. As for the cylindrical monopole, the metallic, 

*. The signal is negative because of the convention adopted for the voltage in the coaxial line: center conduc­
tor positive with respect to the outer conductor. 

190 



E 1.0 1TTT"ITTT"ITTT"ITTT"ITTT"ITTT"ITTT"ITTT"ITTT"rTTTI 

~ 
"C 
CD 0.5 
u:::: 
o .;:: 

~ 0.0 I--"+p--..o:t~------i 
ill 
"C 
$ -0.5 
as 
'5 as 

End Effect 

a: -1 .0 LLLL ................................. u.u..LLLL ............................. 

-0.50.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 

:;­
g 
Q) 

~ 0 fIIti,.,.--.::IIIIIiII------t 
~ 
"C 

.~-1 -- FDTD Rx Simulation 

e - 0 Reciprocity Prediction 
Q) 
o 
Q) 

a: 
-2 LLLL ................................ I.I.LI.<u.u.. ............................. 

-0.50.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 

tI'ta 

Figure 5. Resistive, cylindrical monopole (Wu-King Profile). (a) Radiated electric field at broadside. 
(b) Received voltage for plane wave incidence. 
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Figure 6. Metallic, conical monopole. (a) Radiated electric field at broadside. (b) Received voltage for plane 
wave incidence (insets show results for an infinitely long monopole). 
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conical monopole of finite length, Figure 6, shows end effects, both on transmission and 

reception. However, the initial signals (which are the same as for the infinite cone) are seen 
to satisfy the requirements for the ideal transmitting antenna, i.e., a differentiated Gaussian 
pulse on radiation and a Gaussian pulse on reception. This behavior is a consequence of the 
infinite cone being an ideal TEM transmission line 

Figure 7 shows results for a resistively loaded, conical monopole. This antenna was 

specifically optimized to be an ideal transmitting antenna [4]. The resistive loading was 

used to reduce the end effects observed in Figure 6. As can be seen in Figure 7, the radiated 
waveform now more closely resembles the waveform of the excitation (differentiated Gaus­

sian pulse), and the receive voltage now more closely resembles the integral of the incident 

field. 

The small difference between the radiated waveform and the excitation, shown in Fig­
ure 8(a), was deemed acceptable for the transmitting antenna. On reception this difference is 

essentially integrated, as shown in Figure 8(b), and produces the tail seen on the received 
waveform in Figure 7(b). 
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Figure 8. Optimized, resistive, conical monopole. (a) Radiated field with waveform of excitation subtracted. 
(b) Integral of (a). 

VISUALIZATION OF ELECTRIC FIELD 

In the preceding section, we saw that reciprocity relates the terminal quantities, v;xc 
and v- ,for an antenna on transmission and reception (8). However, reciprocity says noth-rx 
ing about the current in the antenna and field surrounding the antenna. Knowledge of these 
quantities is most helpful when one is interested in understanding physical mechanisms and 

optimizing an antenna for a desired performance. In our earlier work, we showed how gray 

scale plots of the magnitude of the electric field in the space surrounding transmitting anten­

nas could provide physical insight into the process of radiation [1]-[5], [10]. Here we will 

show that similar gray scale plots provide insight into the process of reception. 
Figure 9 shows gray scale plots for the magnitude of the scattered electric field in the 

space surrounding the metallic and resistively loaded (Wu-King profile), cylindrical mono­

poles, when a plane wave is incident from the left. The scattered field is directly related to 
the current/charge in the antenna and shows the details of the reception. If the total field 
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were plotted, the field of the incident plane wave would mask these details. For each 
antenna, plots are shown for three successive times after the incident wave has passed. For 
the metallic monopole, pulses of charge travel along the antenna being reflected at the open­
end and drive point. A ring of radiation is produced upon each reflection. Clearly, the resis­

tive loading greatly reduces the reflections from the open-end; thus, the only ring of radia­
tion remaining is the one caused by the initial interaction of the induced charge with the feed 
point. For both monopoles, there is a scattered wave, which appears to be cylindrical near 

the antenna, that is caused when the plane wave encounters the monopole. 
Figure 10 shows similar gray scale plots of the scattered electric field for the metallic 

and the optimized conical monopoles. At the first time (on the left), the incident plane wave 

has encountered the antenna, and it is about halfway down the left-hand side of the cone. At 
the last time (on the right), the incident plane wave has passed the antenna. Clearly, the opti­
mization has greatly reduced the scattered field which arises due to the discontinuity at the 

rim of the cone. 
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ANTENNAS AND ELECTRIC FIELD SENSORS FOR TIME DOMAIN 
MEASUREMENTS: AN EXPERIMENTAL INVESTIGATION 

ABSTRACT 

C. Jerald Buchenauer and Raley Marek 

Phillips Laboratory/WSR 
Kirtland AFB, NM 87117 

Diagnostic requirements for many time-domain electromagnetic measurements may 
be satisfied by passive sensors that generate accurate signals proportional to the incident 
electric field for some finite clear time. The reciprocity principle implies that such sensors, 
when used as transmitting antennas and driven by step-function signals, radiate accurate 
impulsive fields for the same clear time. Sensor or antenna behavior after the clear time may 
be of little interest. Examples of such devices are given that combine more conventional 
antennas with open transmission lines. In designs that have highly directional properties, 
antenna effective height heff' risetime 1)., and clear time tc may be chosen independently. 

INTRODUCTION 

Alternatives to the popular D-dot and B-dot time-differentiating E-field sensors are 
of interest for measuring low-amplitude or nonrepetitive radiated-field signatures having 
ultra wide bandwidths and moderately long durations. A sensor with desirable properties 
might generate a signal that accurately replicates the incident electric field and preserves its 
time integral for some finite clear time tc' after which it might respond in an arbitrary manner 
consistent only with a possible requirement on the damping of resonances (a fre~uency 
domain requirement). Some E-field sensors of this type have recently been described .2, and 
other types were used to verify the predicted behavior of impulse radiating antennas3•4. This 
work describes several sensor designs and provides experimentally optimized design and 
performance data. 

TRANSMISSION LINE E-FIELD SENSORS 

The behavior of a ground-plane-mounted transmission-line E-field sensor is illustrated 
in Fig. 1. The transmission-line electrode is assumed to be highly conducting, thin compared 
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with other system dimensions, and everywhere perpendicular to the incident electric field. 
After the step-function electromagnetic wave passes, the electrode is raised to an electrical 
potential hE. No net surface currents flow on the electrode, and no appreciable scattering of 
the incident wave occurs until (at t=O) the wave passes the feed point, where a yet unspecified 
electrical structure (?) transports a signal current to the ground-plane output port. The prompt 
early-time response of the signal current depends critically upon the design of this 
transmission-line to feed-point connection and upon the fields in the immediate proximity that 
are incident upon this structure. The bulk of our work focuses on optimizing the design of this 
structure for specific application requirements. The late-time (1T«t~tc) sensor response is 
insensitive to the incident-wave propagation direction and is determined by the properties of 
the open transmission line and its ability to propagate without reflection an outward traveling 
wave. The measured signal current, which drives this outgoing wave, persists unaltered so 
long as no reflection returns to the feed point If the line is of unifonn impedance Z, the signal 
amplitude will be 

v = heffE, where heff = hZt!(Zo+Z). (1) 

The signal V is delivered to the feed impedance Zo for a clear time equal to twice the electrical 
length of the line tc = 2L/c, where c is the speed of light. For matched impedances (Z=Zo), 
the signal is V = hE/2 during the clear time and rapidly approaches zero thereafter. 

Field sensors were tested and optimized with the calibration-system test configuration 
of Fig. 2. The large 89-0 TEM-hom electrode over the ground plane was driven by a 
Picosecond Pulse Labs Model 10050 pulse generator. The output pulse was a step with a 10-
volt amplitude and 45-ps risetime. Sensors under test were mounted under the electrode at a 
signal feed point 116 cm from the TEM-hom antenna feed point. Sensor signals were 
measured with a Tektronix 11801A digital sampling oscilloscope with Model 24 and 26 
remote sampling heads mounted directly beneath the sensor feed point. The measurement­
system risetime was detennined to be 48 ps by integrating signals from vanishingly small D­
dot probes. Measured risetime data were corrected for instrumental response by the 
quadrature method. The E-field incident upon sensors was a 1/R spherical step wave of 
amplitude 40.5 vim at the sensor feed point. Perpendicular to the propagation direction the 
E-fields changed quadradically with displacement from the symmetry axis. On the ground 
plane they fell by 4% at a distance half way to the projected edge of the electrode, and above 
the ground plane they increased by 4% at an elevation of half of the electrode height5. 

Compensation for the field gradients was required for some measurements. The flat-top step 
field persisted for a clear time of 1.5 ns with a small extension of the hom electrode. Signals 
observed after this time were ignored because boundary reflections perturbed the fields in the 
test region. 

An example of a transmission-line E-field sensor design due to Carl Baum2 is shown 
in Fig. 3. In this circular-cone bistripline E-field sensor, a 50- 0 cone connects the feed point 
to the center of a parallel-plate transmission line of impedance 2Z and length 2L. The 
transmission line delivers signal currents to the cone from both ends with a net effective 
source impedance Z. Figure 4 shows the step response of an impedance-matched (Z=Zo=500) 
version of this sensor to a wave propagating parallel to the ground plane at three different 
angles of incidence <1>. Also shown is the response of the cone alone, which is similar to that 
of a D-dot sensor. The addition of the transmission line enhances and prolongs the late-time 
response. Because the cone is symmetrical, there is no early-time <I> dependence. However, 
because of radial field gradients due to the finite source distance (R=116 cm), slight 
differences in the late-time signals are seen for nonzero incident angles. The fractional errors 
introduced by this effect are no larger than about (L/2R) 1 Sin<l> I. The main advantage of this 
probe is that it is insensitive to radial field gradients when the transmission line lies at constant 
R, and because of the resulting mirror symmetry, it is insensitive to first-order field gradients 
in the transverse direction as well. 
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Figure 3. A circular-cone bistripline E-field sensor. 
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Figure 5 shows the step response of this sensor for different transmission-line widths 
and impedances. The late-time signal amplitudes scale with Z according to Equ. 1. Signal 
overshoot and early-time aberrations appear minimal for a transmission-line impedance 2Z 
near 86 0, rather than for the matched condition of 100 O. It is perhaps not an accident that 
this optimal condition occurs when the base diameter of the cone 2. 145b is about equal to the 
width 2a of the transmission line. A better transition might be a 50-0 elliptical cone with a 
base minor diameter equal to the width of the 100-Q line. Corrected sensor risetime data are 
summarized in Fig. 5. After quadrature correction for instrumental response, the sensor 
risetimes appear to increase monotonically with decreasing impedance Z. Both sensor 
sensitivity and risetime are proportional to the height b and can not be chosen independently. 
This necessarily results from the sensor's omnidirectional response characteristic. For the 
matched case (Z=Zo), the risetime is 1.6b/c, where c is the speed of light. Alternative 
transmission-line to feed-point connections using triangular plates at various angles produced 
inferior risetime results. 

Sensors similar to the cone bistripline sensor with submillimeter effective heights are 
often used to measure very intense electric fields. The feed-point connection is not critical to 
the risetime under these circumstances because the sensor risetime is usually better than 
required. The feed-point coaxial center wire may simply be extended to connect to the 
transmission line directly. However, early time signal aberrations are strongly influenced by 
the exact nature of this connection, and they are very difficult to correct when the physical 
height of the line is less than the radius of the feed-point coaxial line. To accurately maintain 
the submillimeter physical height, a solid dielectric must often be used. The sensor response 
is radically altered by the dielectric, and it can provide useful results only under special 
conditions. 

Figure 6 shows one version of a dense-dielectric-supported stripline sensor. It is half 
of a bistripline sensor. Its sensitivity and risetime must be determined by empirical 
calibration. Acceptable performance is achieved only when the incident-wave direction is 
perpendicular to the stripline axis, and the dielectric extends a distance L' of several widths 
2a and heights b beyond the end of the stripline electrode. Under these conditions, the sensor 
risetime is limited by the time of flight of the wave across the width 2a, and the clear time is 
2Uceff' where ceff is the effective wave speed for this composite stripline. 

Figure 7 shows the step response of this sensor constructed on teflon for <1>=0 and 
several lengths L'. The midtrace aberration diminishes with increasing L'. This is an end 
effect that occurs on a dielectric strip of fmite length because the electrode is not raised to a 
constant potential along its length after passage of the incident wave. Net longitudinal surface 
currents begin flowing near the end as the wave traverses the width of the line, thus generating 
the aberrant signal at time UCeff. This effect diminishes with increasing L' as electrical 
conditions approach those for a infmite dielectric strip. Figure 8 shows the same step response 
for three angles of incidence <1>. At <I> = 90° the space wave overruns the slower strip line wave, 
creating a major negative precursor signal. The sensor should only be used at normal 
incidence, where the corrected measured risetime is 125 ps for this 2.6-cm-wide stripline. 

Sensors with highly directional properties that allow sensitivity, risetime, and clear 
time to be chosen independently are shown in Figs. 9 and 10. They consist of two flat-plate 
conical electrodes joined at their intersection line: the first with its vertex at the feed point; and 
the second, if it were extended, with its vertex at the source point. These TEM-horn 
transmission-line sensors produce accurate results when properly configured for a specific rf­
source direction and distance. 

To provide quantitative design information for these sensors it was necessary to 
perform a risetime scaling study for relevant TEM-horn configurations. Figure 9 shows the 
experimental configuration and defines the parameters used in this study. It is generally 
understood that the risetime of a TEM horn is determined by the difference between the times 
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Figure 7. Step response of the dense-dielectric­
supported stripline E-field sensor of Fig. 6 with 
four different dielectric end-lengths L'. The 
relative dielectric constant of the teflon substrate is 
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Figure 9. TEM-horn tapered-trans mission-line E­
field sensor for spherical wave measurements, and 
the experimental configuration and parameters 
used to characterize the performance of TEM 
horns and TEM-horn transmission-line E-field 
sensors in the calibration test system of Fig. 2. 
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supported E-field sensor of Fig. 6 for three angles 
of incidence cI> and L'=O. This sensor should be 
used only with cl>=0! 

Figure 10. TEM-horn transmission-line free-space 
E-field sensor with lens for plane wave 
measurements. 
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of flight of signals along the direct path S and some properly weighted average over indirect 
paths S'. It has been shown theoreticalll,6 that a vary narrow hom (aIb~O) exactly integrates 
with respect to time a plane-wave E-field signature for a time [1-Cos6:kVc. This effect is 
evident in the receiving-response data of Fig. 11 for vertical flat-plate horns, and it can be 
understood by applying the reciprocity principle to the impulse transmitting response of the 
hom electrode depicted in Fig. 12. For each value of alb the receiving response is a linear 
ramp for a time t) ::::dtlc, after which the slope decreases and becomes negative no later than 
time ~::::d:zlc. When operated as a transmitting antenna an inhomogeneous spherical TEM 
wave emerges from the feed point at t = 0 and expands at the speed of light as an impulsive 
radiated field. At time t) the wave begins to pass the near edge of the electrode, where the 
surface charge decelerates. At time ~ the wave passes the far comers of the electrode, and by 
this time all of the surface charge has reversed direction and is returning back to the feed 
point. Because the charge density is roughly uniform behind the reflected wave front, the 
charges move after time ~ with an average velocity of approximately c/2. This is evident in 
the step receiving responses of Fig. 11 where the negative slopes after ~ are about half of the 
positive slopes before t). The peak response must occur between t) and ~, and t) approaches 
~ in the limit as aIb~O. In this limiting case the 10 to 90% risetime is rigorously given by 

Lim tn..,(10-90%) = 0.8[S'(x=O)-SVc. 
aIb-D 

Using Equ. 2 as a guide, we define the risetime for the general case to be 

ly = tn..,(10-90%) = 0.8[S'(S,b,d,x)-SVc, 

where the indirect path length S' of Fig. 9 is given by 

S'(S,b,d,x) = v1d2 +x2] + v1b2 +i+<S_v'(d2_b2»2]. 

(2) 

(3) 

(4) 

For the simplified case of a plane wave (S~oo) incident upon a small-angle hom (a«d and b«d), 
Equ. 3 may be rewritten as 

(5) 

We see from Equs. 1 and 5 that sensor sensitivity and risetime can be chosen independently 
if TJ remains bounded. 

The step responses of TEM horns with different dimensions were measured with the 
test system of Fig. 2. Figure 13 shows the step responses of several small-angle horns with 
and without transmission-line extensions, which clearly flatten the response characteristics 
after the initial rise. The measured risetimes were corrected for instrumental response and 
used in Equs. 3 and 4 to determine values of the scaling parameter x/a. Figure 14 shows the 
measured values of x/a plotted versus the hom aspect ratio alb. The data cover the important 
range of hom impedance between 50 and 100 O. Values of x/a lie between 0.5 and 1.0, they 
increase slowly with increasing alb for the small angle horns (6~30j, and they are 10 to 25% 
higher for the hom transmission-line sensors than for the horns alone. The values of x/a may 
be used in Equ. 5 to estimate risetimes. However, they do not include skin-loss effects, which 
will be dominant for very small hom angles a. When risetimes are limited by skin losses it 
becomes necessary to use some sort of lens as is shown schematically for the free-space E­
field sensor of Fig. 10. 

TEM-hom transmission-line sensor step-response fidelity depends upon source 
location or local field gradients. A sensor designed for plane waves, with a fixed transmission 
line width 2a and height b, will exhibit a slight droop in its step response when receiving 
signals from a source at finite distance. If the effect is small, it may be compensated for 
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Figure 11. Step responses of vertical (9=90°) flat-plate TEM horns of different dimensional ratios alb 
defined in Fig. 9. Dimensions in cm are b=d=5; L=O; and S=116. The retarded times for the events 
defined in Fig. 12 are t1=[S'(S,b,d,0)-Sl/c=170.5 ps, and t2=[S'(S,b,d,a)-Sl/c where S' is given by Equ. 4. 
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Figure 12. Behavior of a triangular flat-plate TEM-horn electrode driven by a current impulse at its apex 
at t=O. The event times t1=d/c and t2=djc are in the real time of the system. 
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Figure 13. Step responses of three small-angle TEM horns measured with and without tapered 
transmission-line extensions. Parameters are defined in Fig. 9. Dimensions in cm are b=5; d=lO; and 
S=116. The tapered transmission-line extensions (L>O) flatten the response after the initial rise. 
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computationally or by adjusting sensor dimensions. Figure 15 shows the spherical-wave step 
responses of sensors with constant transmission-line widths 2a but differing end heights band 
b'. The transmission-line height at the hom is b, and the height at the open end is b'. These 
lines will not generally be of uniform impedance or lie on equal-potential surfaces in the field 
of the incident wave. However, small changes in the b's merely change the slope of the clear­
time response. Figure 16 compares the spherical-wave step response of a properly tapered 
sensor with that of constant-width sensors. By adjusting both b and b' the responses can be 
made identical. The fractional measurement errors encountered by using parallel-plate TEM­
hom transmission-line sensors with sources at fmite distance R will be no larger than U2R 
where R is measured from about the center of the transmission line section. 

Figure 17 shows a comparison between the step responses of a TEM-hom 
transmission-line sensor A and a cone bistripline sensor B. The risetime of A is less than the 
measurement resolution of about 25 ps and is estimated from Equ. 5 to be 14 ps. The 
measured risetime of B is 74 ps after correction. Each sensor has some unique advantages. 
However, it is possible to combine the directional fast-responding properties of A with the 
field-gradient insensitive properties of B. Figure 18 shows one obvious but crude attempt at 
such a synthesis. The hom of A is abruptly joined to the bistripline of B, creating two right­
angle bends, which the outgoing wave must follow. The bends appear to be very severe 
transmission-line discontinuities, which would cause severe reflections at high frequencies. 
Yet the device works fairly well, and this requires some careful explanation. The risetime is 
determined primarily by the hom section. The response flatness during the clear time is 
determined by the propagation of an outgoing wave, which must in part traverse the right 
angle bends. High-frequency components of this wave may radiate outward from these bends, 
but this is satisfactory because they will not return to the feed point. But most importantly, 
the outgoing wave at its inception is already deficient in high-frequency content. This can be 
seen from the signal following the clear time in trace A of Fig. 17. The signal is generated at 
the line of intersection between the hom and transmission line when the incident wave passes 
over it. For small angle horns this transition is very gradual, and the currents thus generated 
are slowing rising. Consequently, the outgoing wave has diminished high-frequency content 
and can propagate around the sharp bends with little reflection. The same argument can not 
be applied to reflections caused by impedance mismatch at the feed point. These reflections 
will have high-frequency content and may be very difficult to eliminate. Figure 19 shows the 
step response of a nominally matched 50-0 TEM-hom bistripline E-field sensor. The 
midtrace aberrations are sensitive to submillimeter changes in the feed point dimensions as 
shown and cannot be entirely eliminated. It is therefore desirable to correct the fault of the 
right-angle-bend design. 

Figure 20 shows an improved TEM-hom bistripline E-field sensor design. The device 
was configured empirically by making transmission-line modifications while monitoring 
reflections with a time-domain reflectometer (TDR). This sensor will give superior 
performance as a fast replicating E-field sensor in the presence of field gradients. It will also 
cause much less degradation to the incident wave from skin losses along the length of very­
long transmission lines, as has been observed in some cases with the sensors of Figs. 9 and 10. 
Figure 22 shows TOR traces for 89-0 versions of these sensors before and after optimization. 
Figure 23 shows the step responses of these sensors. The midtrace aberration due the feed­
point impedance mismatch has been eliminated by the TOR optimization procedure. The 
strip line deviates from its nominal width 2a' near the hom aperture. At the line of contact 
with the hom, the stripline is first wider and then narrower than 2a' for a short distance near 
the end of the bend region. The wider regions compensate for the mutual interaction between 
the two halves of the stripline, and the narrower regions compensate for multipath effects near 
the bends. In addition to traversing the length of the line, the outgoing wave in the form of 
a space wave takes a shortcut around the inside comers of the bends. The resulting multipath 
effects create some nonlocalizable behavior, which complicates the TOR optimization 
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Figure 14. Risetime scaling parameter x/a versus alb for TEM horns with and without transmission lines. 
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Figure 15. Spherical-wave step responses of TEM-horn transmission-line E-field sensors with 
transmission lines of variable heights b and b', but constant widths 2a. Dimensions in cm are 2a=5.1; 
d=10; L=15.2; and 5=116. 
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Figure 16. Comparison of the spherical-wave step 
responses ofTEM-horn transmission-line E-field 
sensors with constant widths 2a and variable 
heights b and b' for (A) b=b'=2.56 em and (B) 
b=2.42 em and b'=2.205 cm. with (C) a TEM-horn 
mpered-transmission-line E-field sensor with 
b=2.56 cm. Dimensions in em are 2a=5.1; d=IO; 
1.=15.2; and S=116. 

Figure 18. TEM-horn bistripline E-field sensor 
with abrupt transition section. 
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Figure 20. TEM·hom bistripline E·field sensor 
with TDR-optimized transition section. 

seem" . 

890-+ . 

o 
leem" 
"dlv 

-492mll.--___'__---'-___'__---'-___'__~___'_ _ ___'__ 
192.8ns IB4.Bns 

Figure 22. TOR traces of the TEM-hom 
bistripline E-field sensors of (A) Fig. 20 after and 
(B) Fig. 18 before TOR optimization, and TDR 
traees of the TEM-hom folded-bistripline E-field 
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Figure 21. TEM-hom folded-bistripline E-field 
sensor with TOR-optimized transition section. 
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Figure 23. Step responses of the TEM-hom 
bistripline E-field sensor of (A) Figs. 20 after and 
(B) Fig. 18 before TDR optimization. Dimensions 
in em are 2a=5.1; 2a'=1.06; d=7.3; L=13.2; 
e=2.54; (A) b=2.51; and (B) b=2.56. Step 
responses of the TEM-hom folded-bistripline 
E-field sensor of Fig. 21 (C) after and (0) before 
TDR optimization. Dimensions in em are 2a=5.0; 
b=2.57; d=8.0; e=6.8; L=14; and (C) 2a'=2.55; 
2a"=0.66; and (D) 2a'=2aH =1.06. 
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procedure, but the present design parameters appear to be near optimal. 
A compact TEM-horn folded-bistripline E-field sensor design is shown in Fig. 21. The 

dotted lines show the initial stripline shape, and the solid lines show the final shape after TOR 
optimization. The large differences are attributed to very large multipath effects, which cause 
the optimal line-width profile to change along its entire length whenever the line length L is 
changed. The optimization procedure is difficult, and the fmal result may not be unique. 
Figure 22 shows the TOR traces for one design before and after optimization. Figure 23 
shows the step responses for the same devices. 

The prompt-response directivity of TEM-horn transmission-line E-field sensors is 
similar to that of the horns alone. The risetime increases as the angle of incidence measured 
from boresight approaches the magnitude of the horn throat angles. Incident angles should 
be small compared with Arcsin[(./(a2 +b2))/dJ to preserve the risetime response. E-plane 
incident angles should be smaller than e = Arcsin[b/dJ. otherwise a negative precursor signal 
is observed, which is similar to that shown in Fig.8. 

CONCLUSIONS 

Some practical replicating E-field sensor/antenna designs have been described and 
tested. Future improvements are likely to incorporate optics to decrease risetimes in the 
presence of skin losses. Opportunities exist to dampen late-time resonances without 
compromising clear-time performance by adding variable widths of thin constant-surface­
resistivity sheets to the edges of transmission lines. Moreover, some desirable step response 
waveforms have been observed for compact replicating E-field sensor designs that 
compromise all of the previously mentioned properties. They exhibit horrendous multipath 
effects, their transmission lines radically deviate from equal-potential surfaces in the incident 
field, and their TOR traces look terrible. Without a discernable design procedure such devices 
may appear enigmatic and hard to quantify, but they do provide us with opportunities for 
future innovation. 
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INTRODUCTION 

Currently wideband antennas are chosen from the class of frequency independent antennas such as 
planar spirals, conical spirals, log-periodic, bi-conical, bow-tie antennas, TEM horns, and Vivaldi tapers. 
All of these antennas require some radiating elements to be of very small dimension to achieve millimeter 
and sub-millimeter wave operation, limiting the maximum radiated power capability. Any increase in the 
minimum feature size will decrease the high frequency limit thereby reducing the antenna's overall 
bandwidth. 

In this proposed design, a tapered TEM 'hom' is terminated with a conical spiral antenna so that the 
small feature size associated with the high frequency operation is replaced by a structure capable of 
handling higher power, while maintaining minimal reflections thus producing a hybrid antenna structure 
capable of supporting high power over a wide frequency spectrum. The antenna can be driven with a 
high speed laser controlled solid-state switch or other high frequency generator. 

This antenna design is in the prototype stage and is currently being modeled with NEC, an 
electromagnetic CAD software package. Preliminary results will be presented along with possible 
applications. 

The category of antennas generally referred to as "wideband antennas" consists of planar and 
conical spirals [1], log-periodic arrays [2], Vivaldi tapers [3], bowtie horns, etc. There have been recent 
attempts to combine two wideband antenna types in order to realize ultra-wideband operation [4,5]. In the 
antenna presented herein, a bowtie-hom antenna is terminated with a conical spiral antenna, thus 
extending the low-frequency cutoff of the structure, conceptually resulting in an ultra-wideband radiator. 
The intent of the present design is to drive the antenna with a high-speed, laser-controlled solid-state 
switch situated across the quasi-parallel bowtie hom conductors. 

Antenna Design and Modeling 

The smallest dimension of the bowtie hom determines the upper-frequency limit of the structure, and 
also determines its power-handling capability. The lower-frequency limit of the structure is determined 
the largest diameter of the conical spiral. To minimize ret1ections at the bowtie hom to conical spiral 
transition, the conductors must follow a smooth and continuous path, matching the tangential derivative all 
along the transition. To accomplish this, a novel structure which is actually a section of a Cornu spiral 
was modeled and also fabricated in the laboratory. 
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Figure 1. Wire Model Representation of the Hybrid Antenna. 

Figure 2. Expanded View of Tapered Hom Model. 
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Figure 6. Photograph of the Antenna Prototype. 
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Figure 7. Measured Radiation Pattern for 12.250 Ghz. 

A representative structure ( figure 1) was modeled and analyzed using the Numerical Electromagnetics 
Code (NEe) [6]. Fi:;:ure 2 is a closer view of the bowtie hom structure. In order to be compatible with 
NEC, the structure was modeled with wires. The wires making up the arms of the spiral run only in the 
direction of the spiral curve. This has been shown to be a valid approximation by Atia and Mei in their 
integral equation formulation of conical spiral antennas [7]. This also was tested by simulating the antenna 
with and without crosshatching wires. The two different cases showed little difference in current 
distribution or radiation pattern. A further consideration for modeling the antenna surfaces with wires is 
the wire radius. The generally accepted rule for wire diameter is that the set of wires representing a square 
grid must have a total surface area of twice the square grid area being modeled [8]. Using this rule, the 
wire diameters in the spiral portion of the antenna must increase exponentially. 

Computation of input resistance from 2 to 19 GHz is shown in figure 3. In the lower portion of the 
band, the input resistance varies around 180 ohms,the theoretical input resistance of a conical spiral of 
these dimensions predicted by Dyson [1]. At the upper portion of the band, the input resistance climbs 
toward 377 ohms but then begins to decrease slowly above 17 GHz. This may be explained by leakage 
from the parallel plate waveguide region. Representative modeled radiation patterns are shown in figure 4. 
Note that the polarization is frequency dependent: at the higher frequencies where the bowtie hom is the 
predominant radiator, polarization is ellipticaVnear linear. In the lower frequency. conical spiral regime. 
polarization is elliptical/near circular. 

Testing 

The modeled antenna structure was fabricated in the laboratory. and the return loss was measured 
using an HP85lOC network analyzer. The return loss results are shown in figure 5. Measured radiation 
patterns were taken and are shown in figure 7. A photograph of the antenna structure is shown in figure 
6. It should be noted that this design was not intended to be driven by a constant or swept source, rather 
by a laser controlled or other switch. Work will have to be done in order to transform the parallel plate 
balanced mode to a coaxial unbalanced mode for connection purposes. Preliminary studies are underway 
to explore the use of ultra-wideband baluns [9]. A test of the prototype antennas power capability was 
conducted at the EPSD pulse power center. A 250 amp 25kv pulse across a one hundred ohm load was 
applied to the antenna with no arcover or heating. Relative radiation measurements were taken at various 
points around the sheilded room where the pulse testing took place. 
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Conclusion 

This work is in its early stages and wideband tests of the power handling capability will be 
conducted shortly. The antenna presented here was designed for proof of principle, and scaled versions 
for millimeterwave operation will follow. 1be antenna proposed is a viable alternative to the bulky "TEM 
horn" currently used for high power radiation. 
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This study represents a preliminary examination of the use of tapered periodic edge 
treatments to reduce wideband edge diffraction from a knife edge for both principle 
polarizations. The tapers were designed with the aid of the Periodic Moment Method and 
then experimentally measured. The design was also numerically verified using Finite 
Difference Time Domain techniques. 

DESIGN METHODOLOGY 

The first design described in this article uses the capacitive properties of thin strips for 
parallel polarization. The second design uses the inductive properties of thin slots for 
orthogonal polarization. Since the tapers are to be ultimately used in antenna designs, the 
tapers are designed and tested at near grazing incidence. To this end, the measurements 
were performed to approximate a two dimensional knife edge with plane wave incidence 
and a far field observation point. 

Ground 
Plane Edg", spacing = 3 3 5 mils 
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Spacmg 
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Figure 1. Capacitive taper design with constant center to center spacing. 

The tapers were designed using the Periodic Moment Method (PMM) for doubly­
infinite structures. The code used was PMM Version 3.0 by Henderson [1]. The runs were 
conducted on a 33 MHz 486DX. To use this code, local periodicity was assumed for the 
taper design. By taking values along the taper and assuming local periodicity, the 
reflection coefficient was found as a function of position on the taper. Due to the length to 
width ratio of 8:1 required by PMM, the reflection coefficients near free space could not be 
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calculated for the capacitive taper, and the reflection coefficients near the ground plane 
could not be calculated for the inductive taper. 

For the capacitive taper, the edge near the ground plane is more challenging than the 
free space edge. The difficulty is to develop a design that has large capacitance (low 
impedance) over a bandwidth of 2-18 GHz. The reflection coefficient for the ground plane 
side should be very close to unity over the bandwidth. For the inductive taper, the free 
space edge is the more difficult of the two. The difficulty is to develop a design that has 
large inductance (high impedance) over a similar bandwidth. The transmission coefficient 
at the free space edge should be very close to unity over this bandwidth. The tapers were 
photo etched with a 5 milli-inch (mil) minimum line width onto a 10 mil dielectric 
substrate having a dielectric constant of 4.5. 
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Figure 2. Reflection coefficient vs frequency for ground plane edge of taper consisting of two thin strip 
arrays with constant center to center spacing of 335 mils, and a strip width of 330 mils. 

Figure 3. The inductive taper design using skewed slots. 

As shown in Figure 1, the capacitive taper design has a constant center to center 
spacing with varying Ship widths. This design has a second array of thin strips on the 
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bottom of the dielectric substrate in order to increase the capacitance. The bottom array is 
the same as the top array except that it is offset by half of a center-to-center spacing. The 
widest strip is 330 mils wide, has a 5 mil gap, and produces a large reflection coefficient 
over the entire bandwidth as shown in Figure 2. The strip widths are linearly tapered from 
330 to 5 mils. Therefore, the center to center spacing for this capacitive design is 335 mils. 
Two different tapers were built with lengths of 15 and 30 cm. 
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Figure 4. Reflection coefficient vs frequency for free space edge of taper 
consisting of a skewed slot array with slot length of 350 mils. 
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Figure 5. Reflection coefficient vs length of taper; well behaved over most of the frequency range. 

As shown in Figure 3, the inductive taper is a skewed slot array. The slots have a 
constant slot width of 5 mils with varying slot lengths. The distance between slots is the 
length or the width plus the minimum line width of 5 mils. As shown in Figure 4, the 
longest slots have a low transmission coefficient over the bandwidth and are 350 mils long. 
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Therefore the inductive taper has strip lengths varying from 5 to 350 mils. However, the 
transmission coefficient has a good match only in the band of 8-10 GHz. Again, two tapers 
were built with lengths of 15 and 30 cm. 
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Figure 6. Reflection coefficient vs length of taper for the inductive taper. 

Top View 
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Figure 7. Platform used for antenna measurements. 
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As shown in Figure 5, the capacitive taper design has resonances that occur at 

approximately the same position on the taper. The lower frequencies begin to approach the 
resonance sooner and have a more gradual slope. At resonance, the impedance approaches 
-Co> and the ground plane is exactly matched to free space. On the ground plane side of the 
resonance, the reflection coefficient, in decibels (dB) decreases from zero to large negative 
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values. On the free space side of resonance, the reflection coefficient increases toward the 
free space edge. The reflection coefficient is still fairly low at the end of the taper over 
most of the frequency range. The ground plane interface is still a scattering source due to a 
low reflection coefficient for low frequencies and a second resonance for high frequencies. 
This taper displays the best reflection and impedance characteristics over the frequency 
range of all of the designs considered. 
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Figure 8. Comparison of urn and measured results from the knife edge showing additional 
scattering when the observation angle is less than 30 deg into the shadow region. 
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Resonances occur in the inductive taper due the finite length of the elements. As 
shown in Figure 6, as the frequency increases, the resonance slowly moves back toward the 
ground plane because the slot lengths decrease in that direction. At resonance, the 
impedance approaches +00 and the ground plane is exactly matched to free space. On the 
free space side of the resonance, the reflection coefficient increases toward the free space 
edge of the taper. The taper works best for about 8 GHz when the resonance occurs near 
the end of the taper. For frequencies less than 8 GHz, when no resonance occurs on the 
taper, the taper does not work as well because of the high reflection coefficient at the free 
space edge. Above 10 GHz, when the resonance occurs on the taper, but not on the end, 
there can be additional scattering from the free space edge if the reflection coefficient at the 
free space edge is high. 
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Figure 9. Azimuth pattern of capacitive design at 10 GHz showing 
improvement for angles greater than 30 deg into the shadow region. 
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MEASUREMENTS 

Since the results of this study are intended to lead to better tapering mechanisms for 
antennas, the tapers needed to be effective at near grazing incidence. To study the 
effectiveness of the taper designs, a platform was designed to simulate a semi-infinite thin 
ground plane. Figure 7 shows the setup for the antenna platform. To minimize edge 
diffraction from the sides of the ground plane, an AEL horn was mounted at the apex of a 
triangular plate. For stability, the triangular plate was then mounted on a 2 inch Styrofoam 
substrate. The source antenna was then mounted to the apex of the triangle by a wooden 
bracket. Since the distance from the antenna to the edge is more than SA, the plane wave 
incidence approximation is fairly valid. 

Total Field vs Frequency (Capacitive Design #2) 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

0 

-10 Azimuth Angle = 90 

iii' 
-20 

-30 

--No Taper 

--- Short Taper ::2. 
l! 
L! 
S 
~ 

iii' 
:!!. 

l 
S 
~ 

-40 

-50 

-60 

-70 

-80 
-90 

Frequency (GHz) 

Figure 10. Frequency sweep for capacitive design at 90 deg into the shadow region showing a 10 dB 
reduction in the frequency range of 6-16 GHz at 90 deg into the shadow region. 
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Figure 11. Frequency sweep for capacitive design at 120 deg into the shadow region showing a 5 dB 
improvement in the frequency range of 6-16 GHz at 120 deg into the shadow region. 

The total field was measured for a variety of angles and frequencies. For all 
measurements, the angles recorded were bistatic, because the source was fixed off the 
triangular ground plane to about 4.7 deg from grazing. The source horn was rotated to 
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have either parallel or orthogonal polarization with respect to the long edge. The horn was 
mounted at the apex of the ground plane by a small wooden bracket that was bonded to the 
structure. The antenna was rotated to the proper polarization and then bolted into the 
wooden bracket. The taper was attached to the Styrofoam substrate with masking tape. 
The interface between the taper and the ground plane was copper taped to reduce scattering 
from the discontinuity. 
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Figure 12. Frequency sweep for capacitive design at 150 deg into the shadow region showing no 
improvement in the entire frequency range for 150 deg into the shadow region. 
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Figure 13. Comparison of U1D and measured results from the knife edge showing 
additional scattering for the region less than 30 deg into the shadow region. 
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The capacitive taper exhibits a notable improvement over a bare edge. The edge 
diffraction from the platform with no taper is compared to Uniform Theory of Diffraction 
(UTD) results for a knife edge with an incidence angle of 4.7 deg off the ground plane. As 
shown in Figure 8, a comparison of the UTD and measured results show scattering sources 
other than the knife edge in the region less than 30 deg into the shadow region. For both 
the long and short tapers, Figure 9 displays noticeable improvement for the region greater 
than 30 deg into the shadow region. Figures 10, 11, and 12 show the frequency scans of 
the capacitive design at observation angles of 90, 120, and 150 deg respectively. The 
design works well over the frequency range of 5-15 GHz, which agrees with the results 
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from Figure 5. The taper does not seem to be effective for the region less than 30 deg into 
the shadow region. This is most likely due to additional scattering sources rather than 
actual deficiencies of the taper. 

iii' 
~ 
3i! 
GI 
u:: 

~ 

-90 

2 

0 
-10 
-20 
-30 

-40 
-50 
-60 
-70 
-80 
-90 

-100 

-80 -70 -60 -50 -40 -30 -20 -10 

-30 

-40 

r--____ --,-50 

---No Taper 

- - - Short Taper 
-60 

------LongTaper -70 

-80 

Azimuth Angle (degrees) 

Figure 14. Azimuth pattern of inductive design at 10 GHz showing a limited 
improvement for 15 to 30 deg into the shadow region. 
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Figure 15. Freqnency sweep for inductive design at 90 deg into the shadow region showing 
no improvement over the entire frequenc y range at 90 deg into the shadow region. 

With the inductive taper, the edge diffraction from the platform with no taper is 
compared to UTD result~ for a knife edge with an incidence angle of 4.7 deg off the ground 
plane. Figure 13 shows the comparison of UTD and measured results indicating scattering 
sources other than the knife edge. The scattering from the knife edge is dominant for 
angles greater than 30 deg into the shadowed region. Figure 14 shows the azimuth cut of 
the inductive design at 10 GHz. Limited improvement is displayed in the region less than 
30 deg into the shadow region. This improvement does correspond to the results shown in 
Figure 6. Figures 15, 16, and 17 give the frequency scans of the inductive design at the 
observation angles of 90, 120, and 150 deg respectively. The only reduction in diffraction 
occurs for the near shadow regions. This taper might have worked better for the region less 
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than 30 deg into the shadow region, but it is believed that the additional scattering from the 
test fixture might be overshadowing the effectiveness of the taper. 
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Figure 16. Frequency sweep for inductive design for 120 deg into the shadow 
region showing no improvement over the entire frequency range. 
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Figure 17. Frequency sweep for inductive design at 150 deg into the shadow region showing no 
improvement over most of the frequency range. Only 3·10 GHz showed moderate improvement. 

FDTD VALIDATION 

A two dimensional TE(z) FDTD code by Luebbers [2,3] was used to verify the 
capacitive taper. This code was run on a Silicon Graphics workstation. To ensure that the 
10 mils thick dielectric slab could be modeled by the code, the cell size was set to 0.4244 
mm by 0.4244 mm giving time steps of 1 psec. The dielectric constant for the Styrofoam 
was set to 1.02 and the dielectric constant for the substrate was set to 4.5. The entire grid 
size for the FDTD run was 4300 by 700. The runs for this model required over 50 MB of 
memory and several hours of run time. The observation angles modeled were 90, 60, 30, 0, 
-30, -60, and -90 deg. The time domain results were then Fourier transformed to echo 
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width. Figure 18 illustrates the case for the incident field at 170 deg and the far field 
observation angle at -90 deg. 
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Figure 18. Comparison of FDID Results for Taper. The graph above shows improvement for the capacitive 
taper design up to 13 GHz. The incident field was at 170 deg and the far field observation angle was -90 deg. 

FDTD supported the measurements since no noticeable reduction was made in 
diffraction until the observation angle was greater than 30 deg into the shadow region in 
both the FDTD model and the measurements. The FDTD results show improvement for 
the long taper over the short taper only for frequencies less than 6 GHz. This result agrees 
with the measurements. The type of taper (linear, binomial, triangular, etc.) is only 
significant when the taper is electrically short. The FDTD results suggest that the 
capacitive taper is effective in the frequency range of 2-13 GHz. This result tends to 
support the experimental data, where the capacitive taper is effective in reducing deep 
shadow fields in the frequency range of 6-16 GHz. 
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Also the FDTD results show additional scattering for the untapered design in the 
shallow shadow region. FDTD was then used in an attempt to isolate the sources of 
additional scattering. First slope diffraction was considered, but since the source was 
simple, no slope diffraction could occur. Second, the scattering from the 2 inch thick 
Styrofoam was considered. FDTD was used to determine the scattering from the 2 inch 
thick Styrofoam alone (without the ground pllme or taper design) as a function of the 
dielectric constant. The FDTD results from the dielectric substrate alone showed 
considerable scattering in the region less than 30 deg in the shadow region as shown in 
Figure 19. Also this scattering is evident over the entire bandwidth as shown in Figure 20. 
Therefore, at least part of the additional scattering is due to scattering from the Styrofoam 
substrate. 
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Figure 20. Scattered field from the Slyroroam substrate aloue vs frequency. 

No code was readily available to test the inductive taper since the inductive taper is 
periodic and not constant in the z direction. Singly-periodic codes do exist and future 
studies could involve their use to study this taper. 

CONCLUSIONS 

The capacitive taper is highly effective over the frequency bandwidth of 6-16 GHz. 
One way to improve the performance of the capacitive taper is to use discrete wire 
segments rather than strips [4]. Successive rows of wire segments can be interdigitated 
resulting in a larger bandwidth. 

The inductive taper does not appear to be highly effective. The reason for this is not 
due to a poor design of the taper but rather the geometry chosen for demonstration. The 
diffraction from a trailing edge at near grazing incidence for orthogonal polarization (soft 
case) is not nearly as high as it is for parallel polarization (hard case). Therefore the 
observed improvements due to the addition of edge treatment for orthogonal polarization 
are not as great as for parallel polarization. If the inductive taper had been demonstrated 
for more appropriate geometries, its apparent effectiveness would have been more 
comparable to that of the capacitive taper. 

For better modeling of the tapers, singly-periodic PMM codes could be used. This 
would allow the tapers to be designed without having to assume local periodicity. To 
improve the modeling of the platform using FDTD, the entire structure (including the 
source antenna) should be modeled using a three: dimensional total field FDTD code. This 
would alleviate the plane wave incidence and the two dimensional approximations. By 
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modeling the entire structure, the unwanted scattering mechanisms would be easier to 
determine. 

In addition to the bistatic measurements performed in this study, monostatic 
(backscatter) measurements would also be of interest. Monostatic measurements would be 
much easier to perform and would not require such a large structure for measurements. 
Other future work would be to attach the tapers directly to antennas much like edge cards. 
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TAPERED PERIODIC SURFACES: 
A BASIC BUll..DING BWCK FOR BROADBAND ANTENNA DESIGN 

Errol K English 

Mission Research Corporation 
3975 Research Blvd. 
Dayton, Ohio 45440 

INTRODUCTION 

Tapered Periodic Surfaces ( TPS ) is a new technology which should prove to be a very 
useful component in the design of broad band antennas. Antennas which employ TPS 
technology have the potential not only for broad bandwidth and low VSWR, but also a low 
side lobe radiation pattern which is very stable over a broad band of frequencies. Tapered 
Periodic Surfaces (TPS) exhibit two fundamental properties: 

1.) Diffraction Control: TPS provides a tapered impedance surface similar to a tapered 
resistive surface or tapered R-card. The difference is that a TPS is a tapered reactive 
surface and could be thought of as a tapered jX card. 

2.) Frequency Compensation: TPS effectively behaves as an electrical conductor 
which changes size as a function of frequency. Therefore, radiating elements and/or 
apertures can be designed which become effectively smaller with increasing frequency. 
Thus, TPS can maintain a constant electrical size (in wavelengths) resulting in a radiation 
pattern which is very much constant over a very large bandwidth. 

TPS technology has many potential antenna applications: high power microwaves, high 
power countermeasures, ultra wide band antennas, low side lobe antennas, and laboratory 
uses such as compact range feed antennas and reflectors. 

PHYSICAL DESCRIPTION 

A tapered periodic surface (TPS) is a lattice of wire or slot elements with progressively 
shorter lengths from one edge of the surface to the other. Typically, the TPS is produced by 
printed circuit methods. The elements are embedded in, or reside on a composite substrate. 
The periodic surface elements may be of any type: linear, four-legged-unloaded, four­
legged-loaded, three-legged, etc. The elements may be spaced in a relatively sparse grid or 
an extremely dense grid depending on the application. 
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Slot and Wire Type TPS 

Figures 1 shows a TPS of wire segments. This example is referred to as a parallel type 
because the wire segments are parallel to the direction of the taper. The edge with the long 
elements is the baseline or low impedance edge while the edge with the short elements is the 
terminal or high impedance edge. 10 an analogous manor, an orthogonal type TPS has wire 
segments which are oriented orthogonal to the direction of taper. Note that the TPS of 
Figure 1 is designed only for linear polarization. If a wire TPS for arbitrary polarization is 
desired, an element type such as three legged or four legged might be used rather than the 
simple linear elements. However, the greatest bandwidth is obtained by superimposing a 
parallel type and an orthogonal type TPS one behind the other. 

10 the case of a slot TPS, the edge with the short elements is the baseline or low 
impedance edge while the edge with the long elements is the terminal or high impedance 
edge. As in the case of the wire TPS, the parallel and orthogonal descriptions refer to slot 
element orientation relative to the direction of taper. An orthogonal slot TPS and a parallel 
slot TPS may not be superimposed one behind the other. The use of one precludes the 
other. If a taper for arbitrary polarization is desired, slot elements such as three legged or 
four legged must be used in a single surface. 

General 

The TPS dimensions depend greatly on the specific application and the frequency range 
of operation. Typically, for applications in the microwave frequency band (2 to 18 GHz), 
the length of the taper may be anywhere from 2 to 24 inches. Also, the element width and 
the gap width are typically in the vicinity of 0.002 inches to 0.020 inches for broad band 
applications. 

The length of the longest segments of the TPS, is typically chosen to be approximately 
1J2 or less, at the center of the operating frequency band. The length of the shortest 
segments is chosen to be a vanishingly small fraction of a wavelength at the highest 
operating frequency. 

The thickness of the substrate supporting the TPS is application dependent but is 
typically between 0.002 inches to 0.020 inches. Good substrate materials have a fairly low 
dielectric constant and loss tangent. Typical substrate materials include fiberglass/epoxy, 
fiberglass/PTFE, polyimide film, polyester film, and polycarbonate film 

PURPOSE AND OPERATIONAL DESCRIPTION 

Diffraction Control 

One purpose of a tapered periodic surface is to provide a gradual transition from a 
good conductor (i.e. metal) to free space. Abrupt termination of a conducting edge gives 
rise to a very strong diffiacted field when illuminated by an externally impressed EM wave. 
A tapered periodic surface provides a gradually tapered surface impedance eliminating the 
abrupt termination and thereby significantly reducing diffiacted fields. Figure 2 illustrates 
the use of a TPS at a metal edge. 

Functionally, a tapered periodic surface performs in a fashion similar to a tapered or 
graded resistive film (sometimes referred to as an R-card or edge card). Ideally, a tapered 
resistive film transitions impedance from Z = 0 O/sq to Z = CXJ O/sq assuming real (resistive) 
values. TPS tapers provide similar impedance transitions assuming imaginary (reactive) 
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values. A wire TPS transitions from Z = 0 nlsq to Z = -j 00 Q/sq along a path of increasing 
capacitive reactance. A slot TPS transitions from Z = 0 Q/sq to Z = -+j 00 Q/sq along a path 
of increasing inductive reactance. 

A periodic surface of closely spaced wire segments will be highly reflective (almost 
identical to solid metal) over a wide frequency range centered at the frequency where the 
segments are approximately "./2 (a half-wavelength). When the periodic surface is highly 
reflective, its surface impedance is very close to 0 Q/sq (the same as a perfect conductor). 
This is the situation at the baseline edge of a wire TPS. As the segments are gradually 
shortened across the width of the TPS, the wire segments are increasingly below resonance, 
the surface impedance (purely reactive) increases, and the electromagnetic wave reflection 
gradually decreases. This gradual tapering of reflection is responsible for significantly 
reduced levels of diffracted EM fields. 

The following example illustrates an example of diffraction control using a wire TPS. 
A parallel type TPS of straight wire elements was designed for broad band use (2 to 18 
GHz). At the baseline edge, the elements are 0.295 inches long, 0.002 inches wide, and 

- ------ ------ ------ ------ -----
Figure 1 Parallel type Tapered Periodic Surface of wire segments 

spaced in a skewed grid with a side-by-side periodicity of 0.004 inches. The length of the 
elements are linearly tapered to zero over a 12 inch length. Figure 3 shows this TPS 
attached to the edge of a solid sheet of copper. The solid copper and the TPS are supported 
by a thin glass/epoxy substrate and backed by foam (0.25"). This is incorporated into a test 
article for ReS testing (Figure 3). 

The ReS testing was conducted with the illumination at normal incidence to the metal 
edge. Also the polarization is parallel to the plane of incidence (orthogonal to the metal 
edge, i.e. the hard diffraction case). Figure 4 shows the mono static ReS at 30 above 
grazing for the TPS attached to the trailing metal edge. The Res of an abruptly terminated 
trailing metal edge is also shown in Figure 4 for comparison. The TPS reduces the 
diffracted field in the mono static direction by approximately 25 dB over the entire 2 to 18 
GHzband. 
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Figure 2 A Tapered Periodic Surface used to gradually transition from metal to free space 
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Figure 3 ReS test article used to evaluate the diffraction reduction effectiveness of a TPS 



Frequency Compensation 

Frequency compensation is a very important property of the TPS which is not shared by 
the tapered R-Card. Since the TPS is a periodic surface, it is frequency sensitive, a property 
which is very advantageous. This property may be exploited on a variety of broad band 
antenna applications. 

If we think of a TPS as being highly opaque (conductive) at one end and highly 
transparent (non-conductive) at the other end, then there is some point in between where 
the transmission is at its halfway point or -3 dB point. This -3 dB position of the taper 
varies with frequency. Therefore the TPS effectively behaves like a conductor from its 
conductive end to the -3 dB point of the taper. The equivalent conductive length of the 
TPS varies monotonically with frequency. This is true for both wire and slot TPS. 

The equivalent conductive length of a wire TPS increases with increasing frequency 

-20 

f\ Cn~au<MCj ~~~ w·ln IP<; ".alm"~1 

-50 (\ ~ " JVI~,~( VI! \ 
_60 L-~~LL~~ ____________ ~ ____ ~-2~~~~~===z==~~ 

2 6 8 10 12 14 16 18 

Frequency (GHz) 

Figure 4 ReS spectrum of an 18 inch wide metal edge terminated with a 12 inch long broad band Tapered 
Periodic Surface, 30 above grazing, E-parallel. (bare metal edge case also shown ) 

while that of a slot TPS decreases. Figures 5 depicts this situation for a slot TPS. This 
"equivalent conductor" with its frequency dependent length is the basic building block for 
many broad band antenna applications. 

ANTENNA APPLJCA TIONS 

TPS has many different antenna applications. TPS may be used anywhere a gradual 
transition from solid metal to any surface impedance (including free space) is desired to 
reduce electromagnetic field diffraction effects. TPS may be used in any application where a 
tapered resistive surface might otherwise be used. However, the real advantage of a TPS 
which is not shared by a tapered R card is frequency compensation. Several applications are 
described below. 
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Horn Antenna 

TPS may be used as extensions to the walls of a hom antenna (see Figure 6). A 
standard hom antenna has relatively high side lobes and back lobes in the E-plane due to the 
strong edge diffraction at the aperture. TPS applied to the edges of the solid metal walls 
greatly reduces this diffracted energy. A slot TPS may be designed such that the effective 
length (as well as the effective aperture size) of the hom decreases with increasing frequency 
thereby maintaining a frequency independent gain or beam width as well as low side lobes. 

Figure 7 shows measured E-Plane patterns of two X-band hom antennas. Both horns 
have the same flare angle and the same "effective length" producing approximately the same 
half power beam width. The pattern with higher side lobes is of a typical hom with metal 
walls. The other pattern in Figure 7 is of a hom with walls terminated by TPS. Notice the 
vastly improved side and back lobe performance of the hom using TPS. 

Parabolic Reflector Antenna 

Figure 8 shows how TPS would be used as an edge treatment of a parabolic reflector. 
In this application, TPS reduces the side lobes and back lobes of the far field pattern in a 
manner very similar to that of the hom antenna. 

In the case of a compact Res range, the focused fields are used to illuminate test 
articles at a short distance of only a few focal lengths from the reflector. Here, the 
diffracted fields of a standard reflector can seriously perturb the focused fields in the testing 
or quiet zone. The application of TPS will greatly reduce the diffracted fields thereby 
preserving the plane wave purity of the focused field. 

Broad Band Low Side Lobe Tapered Aperture 

A tapered aperture is one method of obtaining a radiation pattern with low side lobes 
which is relatively insensitive to frequency. Figure 9 shows a simple experimental set up to 
explore this idea. A broad band radiator is completely enclosed inside of a cavity. All of the 
cavity walls are opaque except for the tapered aperture wall. The tapered aperture uses a 
TPS of wire segments which taper from the perimeter toward the center of the aperture. At 
the center of the aperture the surface is almost perfectly transparent. Near the edge, the 
aperture is totally opaque. The effective aperture distribution just outside the cavity is 
carefully tapered via the TPS to produce a pattern with very low side lobes. Also, since the 
TPS is frequency dependent, the effective size of the tapered aperture decreases as the 
frequency increases, thereby stabilizing the pattern with respect to frequency. 

Broad Band Traveling Wave Antenna 

Slot TPS may be used as a broad band traveling wave antenna (see Figure 10). This 
structure is similar to a center fed dipole radiator which is several wavelengths long. Since 
the surface impedance of the radiating element gradually increases away from the feed 
terminals, there is very little reflection from the ends of the antenna. Hence, the radiating 
currents are predominantly traveling rather than standing. The traveling wave currents are 
gradually tapered to zero at the ends of the radiator providing low side lobes. Also, the 
tapered slot surface radiator becomes effectively longer at lower frequencies and provides 
frequency compensation analogous to the tapered aperture application. Other geometries in 
which a slot TPS might be configured as a radiating structure include; conical antennas, V 
dipoles, leaky wave antennas, and flared notch radiators. Several TPS radiators can also be 
placed in array configurations for increased flexibility of the radiation pattern. 
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Figure 5 The equivalent conductive length of a slot Tapered Periodic Surface decreases with frequency. 
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Figure 6 Tapered Periodic Surfaces used as terminations on the E-plane walls of a horn antenna 
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Figure 9 Example of a broad band, low side lobe tapered aperture. The test fixture consists of an absorber 
lined metal box with a flared notch antenna radiating through the tapered aperture 
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INTRODUCTION 

Discontinuities in multilayer PCBs and chip packages neglected earlier require special 
consideration at higher operating frequencies. Digital transmission frequencies of 620 
MHz, 1.2 GHz and 2.4 GHz are currently in use. The discontinuities include via holes, 
coupling between lines, crossovers, line bends, SMA connectors and wirebonds. It is 
possible to solve Maxwell's equations numerically for such structures and observe their 
behavior. This can lead to not only avoiding effects such as dispersion, reflection, 
resonances, coupling and radiation, but also to the development of simpler models for the 
discontinuities to be implemented in computer aided design CAD 1. 

The FDTD2 is now a well established numerical method for solving microwave 
circuit structures. The versatility of the method lies in the number of physical features it 
incorporates. The FDTD method implemented here includes the ability to define non 
equidistant cartesian cells and variation from cell to cell of metal thickness, conductivity 
(0), and dielectric constant (Er), including, additionally the presence of a Mur's first order 
absorbing boundary condition (ABC)3. For curved structures the staircase approximation is 
used, where sufficient discretization causes minimal discrepancy. 

Figure 1 shows a sketch of the presently used wirebond configuration. Although 
several material parameter as well as conductor discontinuities are to be seen in such a 
package, the wirebond is the predominant one affecting transmission. In a commonly used 
128 pin package wirebond lengths vary between 1-2 mm. This may have a minimal effect 
at the operating frequencies listed earlier, but for higher transmission rates that are 
undoubtedly required in the future a general investiagtion into the wideband behavior of 
wirebonds is necessary, especially with regard to the advantages to be gained through 
further miniaturization. The FDTD is ideally suited to conduct such a wideband 
investigation. 

239 



Once the appropriate computational parameters for the FDTD are determined, the 
material parameters linked to the wire bond are varied to investigate the wirebond behavior. 
Structures are computed in the FDTD in a cartesian grid to obtain S parameter, field 
distribution at a time instant and continuous time field variation information. The S 
parameter results with respect to the length s (Figure 3) for two different dielectric 
constants, variation of the dielectric constant and variation of micros trip line width are 
provided. Comparison of results with measurement shows the extremely accurate modeling 
offered by the FDTD. 

Figure 1. Integrated Circuit (IC) package mounted on a mulitlayer PCB showing the placement of a 
wirebond. 

Once the S parameters are computed in this way, the next step consists of utilizing the 
computed results in order to derive a much needed simpler model, which can be used in an 
easy to run non-computationally intensive simulation of the system. For this purpose an 
equivalent circuit is proposed by considering the electromagnetic behavior of the wirebond. 
Since there is no unique equivalent circuit solution, it is possible to optimize the equivalent 
circuit values until a near perfect agreement in S parameters is achieved between FDTD 
and equivalent circuit. As this equivalent circuit is based on FDTD results, it can be 
referred to as a full wave circuit. The wideband development of equivalent circuits for these 
wirebonds is undertaken for a variety of wirebond based geomtries. 

Figure 2. Discretization of the wirebond structure. including an expanded view of the wire geometry. Height 
and width modeled with one discretization (~. !:J.y respectively). length with between 3 and 12 (!:J.z) 

MICROSTRIP BASED WIREBOND DISCRETIZATION AND COMPUTATION 
TIME 

As seen in Figure 2 the wirebond is approximated by three straight two dimensional 
sections. The wirebond height and width are modeled with 1 discretization step in the x and 
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y directions respectively. The horizontal section has between 3 and 12 discretizations 
depending on the length of the wirebond. 

1 
___ ' -is '_-=Iw 
Top view •• c.L 

.. , .JiiH£lh 
Figure 3. Dimensions associated with the wirebond structure. (s = gap length, L = wire length (s+O.25mm), H 
= wire height, w = line width, h = substrate thickness) 

The FDTD gaussian pulse used produces a ilt of 0.0544 picoseconds, which provides 
information up to about 70 GHz. For these structures with 4000 time steps, a CPU time of 
about 7 hours is attained on a HP90001735 workstation. If an extension of this frequency 
range is required a smaller ilt can be chosen, this would require finer discretization in the z 
direction such that the narrower time pulse still occupies the mandatory 20 space steps. 
This results not only in a greater mesh, but a larger number of time steps, as the oscillations 
from the shorter pulse need to decay. This can drastically increase the CPU time. Tests 
conducted on a Fujitsu 2600, 5 Gflop vectorized machine demonstrated that no saving in 
time could be achieved in comparison to the workstation. This is due to the inherent 
suitability of the FDTD algorithm to parallel machines. 

MEASUREMENTS ON WIREBONDS 

The emphasis here is to establish the suitability of different lengths of wirebonds by 
measuring their transmission and reflection characteristics in a given frequency range. The 
standard 128 pin IC package houses 1-2 mm wirebonds. Yet these lengths may be 
unsuitable for future systems requiring transmission rates in the higher GHz range. 

Several wirebond structures with variation of s shown in Figure 3 for lengths of 
0.5mm, lmm, 2mm, and 4mm connecting microstrip lines on a duroid 6010 substrate (tr = 
10.8, tano = 0.0024, w = 0.55, h = 0.635, H = 0.l4mm) are measured using Thru Reflect 
Line TRL 4 techniques. The measurements in Figure 4a,b show the magnitude of reflection 
'SIll and transmission IS121 respectively. A rapid increase in reflection and decline in 
transmission is noticed as the wire length increases. In fact the wirebond shows a band stop 
filter behavior, where the stop band moves down slowly in frequency as the wire length is 
increased. This indicates that in order to move the stop band further up in the frequency 
range and allow a low pass behavior, wire lengths below around 0.5mm are required. 
Figure 4c and 4d compare the FDTD with measurement for the 0.5mm and 2mm cases. The 
shaded area shows the measurement range. Here an extremely good agreement results. 
Again the band stop pattern is seen for the 2mm case where the FDTD is able in addition to 
show the better transmission properties of the wirebond above 50 GHz. 

In order to develop truly wide band equivalent circuits (up to 30GHz) however using 
S parameters, it is decided necessary to concentrate on wirebond lengths below Imm. As 
can be seen in Figure 4, lengths above Imm present a bandstop starting at around 100Hz 
and although suitable for presently used transmission frequencies, they will be unsuitable 
for usage in a higher wideband frequency range. 
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The above observations lead to focusing attention on modeling structures with s 
values below O.5mm in the analysis which follows. 
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Figure 4a. Measurement (gated) of IS III for 
variation of s. 
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Figure 4c. Comparison of FDTD and 
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Figure 4b. Measurement (gated) of IS121 for 
variation of s. 
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Figure 4d. Comparison of FDTD and 
Measurement (TRL) IS 121 for variation of s. 

By using a finite difference technique in the frequency domain5, it is possible to 
observe the time harmonic field distribution in the vicinity of the wirebond. The magnetic 
and electric fields represent inductive and capacitative behavior respectively. Additionally, 
the geometry of the microstrip based wirebond itself is used to interpret an equivalent 
circuit. Once the equivalent circuit in Figure 5 is derived, the element values are varied 
until its S parameters in magnitude and phase fit those gained by the FDTD. 

C2 

II ± L 

Figure S. Equivalent Circuit representing Wirehond structure. 
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Equivalent Circuit Values for Variation of Wirebond Length s 

Figure 6a with w = 0.55, h = 0.635, H = 0.14mm shows the magnitude of reflection 
IS III for s variation. Here it is seen that the reflection increases with the length s. 

The transmission IS121 in Figure 6b similarly is seen to suffer with the increase of s. 
This effect is due to the dominating inductive behavior of longer lengths of wirebond, 
which presents a higher overall impedance to the pulse in the frequency range. The ripple 
effect in IS 121 from the FDTD is due to the Gibb's phenomena caused during the FFf of the 
time domain pulse. Yet the results show that both the reflection and transmission 
characteristics upto around 20 GHz make both s lengths implementable. 

Further, the equivalent circuit values in Table 1 are derived corresponding to the fitted 
S parameters also shown in Figure 6. The inductance L is seen to clearly increase with the 
length s and to a lesser extent the capacitance Cl. Variation of Rand C2 have a less 
significant effect on the circuit's S parameters. The S parameter agreement between FDTD 
and equivalent circuit is excellent. 
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Figure 6a. IS III from FDTD and Eq. Cire. for 
variation of s with Er = 10.8. 
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Figure 6b. IS121 from FDTD and Eq. Cire. for 
variation of s with Er = 10.8. 

Table 1. Element values derived for variation of s with er = 10.8 

s/mm Cl/pF C2/pF L/nH RjQ 

0.1 0.025 0.0055 0.26 0.19 
0.2 0.028 0.005 0.35 0.21 
0.5 0.03 0 .0045 0.52 0.22 

Equivalent Circuit Values for Variation of Wirebond Length s With er = 5 

The value er = 5 is chosen here as it occurs in chip packages. The propagation 
characteristics shown in Figure 7 a and 7b for reflection IS 111 and transmission IS 121 
respectively (w = 0.55, h = 0.635, H = 0.14nun) provide similar information to the previous 
case, except for the transmission IS 121 which does not show as big a change between s 
lengths. This means that with a lower dielectric constant, s lengths slightly longer than 0.5 
nun can be used. Here again S parameter agreement with equivalent circuit is excellent as 
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shown in Figure 7 and the circuit values derived are shown in Table 2. The element values 
vary in a similar way to the last case. 
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Figure 7a. IS III from FDTD and Eq. Cire. for 
variation of s for with Er = 5. 
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Figure 7b. IS121 from FDTD and Eq. Cire. 
variation of s with Er = 5. 

Table 2. Element values derived for variation of s with Er = 5 

S/mm Cl/pF C2/pF L/nH R/~l 

0.1 0.008 0.0055 0.23 0.19 
0 .5 0 .015 0.0045 0.49 0 .22 

Table 3. Element values derived for variation of Er 

Cr Cl/pF C2/pF L/nH R/O 

5 0.008 0.005 0.23 0 .22 
10.8 0.025 0 .005 0 .26 0 .22 

Equivalent Circuit Values for Variation of Wirebond Dielectric Constant Er 

Figure Sa and Sb show that IS1l1 and ISI21 characteristics respectively are better for 
the lower value of dielectric material in the frequency range (w = 0.55, h = 0.635, s = 
0.5mm, H = 0.I4mm). Some ripple in the ISI21 values for Er = IO.S is seen. This is, as 
mentioned earlier, due to the truncation of the DC offset error, which causes a ripple when 
the FFf is applied. Yet the exact curve can be thought of as following a path in the middle 
of the ripple. Again the agreement between S parameters for equivalent circuit and FDTD 
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is excellent as seen in Figure 8 and the equivalent circuit values are given in Table 3. The 
higher dielectric constant as expected requires a higher Cl value. 
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Figure 8a. IS 111 from FDID and Eq. Cire. for 
variation of Er 
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Figure 8b. IS121 from FDTD and Eq. Cire. for 
variation of Er 

Equivalent Circuit Values for Variation of Wirebond Microstrip Line Width w 

The connecting lines may vary in width, to this end two different line widths are 
chosen. With tr = 5, h = 0.635, s = O.lmm, H = O.l4mm, the results in Figure 9a and 9b 
show that the effect of the discontinuity worsens with increase in the rnicrostrip line width. 
The band stop for the 0.55mm width lies further up in the frequency range as for the 
0.85mm line width. S parameter agreement with equivalent circuit is shown in Figure 9, 
where the ripple in IS 121 is once again due to the Gibb's effect. Element values derived are 
in Table 4. The capacitance C I increases in value with a broader rnicrostrip line as the 
surface area is larger. 
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Figure 9a. IS111 from FDID and Eq. Cire. for 
variation of w 
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Table 4. Element values derived for variation of w 

w/mm C1/pF c2/pF L/nH RIG 

0.55 0.008 0.0055 0.23 0.19 
0.85 0.012 0.0055 1 0.27 0.19 

CONCLUSION 

The FDTD is used successfully to compute wirebond structures. This is verified 
through the good agreement achieved with measurements. The variation of the material 
parameters associated with the wirebond structure in the FDTD comprehensively analyses 
wirebond behavior up to 80 GHz. For lengths of s above 0.5mm, the inductance dominates 
the impedance presented by the wirebond and indicates its unsuitability for implementation 
in wideband applications. Moreover, it is shown that ultra wideband equivalent circuits can 
be derived quite straightforwardly for an assortment of wirebond structures with material 
parameter variation. The excellent agreement between equivalent circuit and FDTD S 
parameters is attained upto 30 GHz by considering wirebond lengths under Imm. If longer 
lengths of wire were to be considered, not only would a bandstop effect preclude 
transmission but this would also lead to S parameter agreement only being possible in a 
narrower frequency range. For a specific geometry, with variation of one dimension or 
material parameter, it is possible to approximately linearly interpolate circuit element 
values. 
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ABSTRACT 

The Finite-Difference Time-Domain algorithm is a powerful method for analyzing 
the electromagnetic wave behavior in a complicated microwave structure. This method, 
however, is a memory intensive and time consuming operation due to spatial and temporal 
discretization. Here the FDTD is augmented with Diakoptics and System Identification 
algorithms in order to reduce the computational cost. Furthermore, the FDTD algorithm is 
extended to include the analysis of nonlinear and active regions. Theoretical development 
and numerical examples are presented. 

I. Introduction 

It is well known that the Finite-Difference Time-Domain (FDTD) is a powerful 
method for analyzing the electromagnetic wave behavior in a complicated geometry. This 
method, however, is a memory intensive and time consuming operation. Recently, we 
have utilized several techniques to alleviate these deficiencies. Specifically, we have 
implemented the FDTD Diakoptics method to use numerical Green's function to replace 
large computational volume with its impulse response. Hence, the memory requirement is 
drastically reduced. For reducing the computational time, we have implemented a method 
based on the system identification (SI) technique. A reduction of computation time of a 
factor of ten can readily be attained. In addition, we have analyzed complex microwave 
structures which can include active devices by means ofFDTD environment. 

In this paper, an overview of the FDTD Diakoptics, application of system 
identification to the FDTD algorithm, and application of FDTD to nonlinear and active 
regions are presented. Several examples which illustrate these methods are included. 
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II. Reduction of computational requirements 

The computational cost in terms of processing time and memory requirements can be 
reduced using the FDTD Diakoptics and and System identification. Analysis of a 
computationally large circuit can be accomplished by dividing the circuit structure into 
several small modules. Each module can be analyzed separately, and the mutual interaction 
of the modules are included by proper treatment of the circuit boundaries, [l] This method 
essentially reduces the memory requirements for FDTD simulations. The System 
identification method is used to reduce the simulation time required to characterize a 
microwave structure. This is achived by matching a model to the input and out signals 
used for structure characterization. The FDTD simulation terminates when the model 
parameters are computed using a Least-Squares algorithm [2] and [3]. 

The time-domain Diakoptics uses time-domain convolution for connecting modules. 
This convolution requires the knowledge of the impulse responses of the circuit segments. 
These impulse responses are in effect the numerical Green's functions. 

11.1 FDTD DIAKOPTICS 

Time-Domain Diakoptics originates from the linear circuit theory. Once input and 
output ports are identified, the system output yen) of a passive structure can be determined 
from the convolution of the system impulse response hen) and the input X(n). This 
indicates that the complete two-port linear passive structure can be replaced by its impulse 
response hen). Similarly, multi-port linear passive region in the field calculation can be 
replaced by an impulse response matrix [g]. The multi-port convolution is defined 

N K 

Ym(k)= II g(m,n,k-k')Xn(k') 
n=lk'=O 

where g(m,n,k') is the impulse response (or the time-domain Green's function) at port 
"m" at time t=k' due to the unit excitation at port "n" at t=O. 

The computation of the numerical Green's function is performed by applying an 
impulsive source at the input port of the passive structure. If the impulse response over a 
limited frequency range is required, the frequency band-limited response can be computed 
by applying a deconvolution process between the structure output and the input signal 
which spans the frequency range of interest. 

11.2 System Identification 

The computed time signal at an appropriate location in the computational volume and 
the corresponding input signal can be interpreted as the input and output signals of a 
discrete linear system. This linear system description is 
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Figure 1. 

Figure 2. 
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using Diakoptics. The current distribution is identical with both methods. 
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K M 

y(n) = - L ak y(n-k) + L bm x(n-m) (2) 
k= 1 m=O 

The output signal is completely known when the model parameters (ak, bm) are computed. 
The parameter space is taken to be large enough to allow the convergence of the model 
output to the FDID simulated field values. Equation (2) can be written in a compact form 

y(n) = (Xl (n-l) eo (3) 

where T stands for Transpose, and <II is a vector containing the present and past values of 

the input and output which can be considered as data. The vector 90 contains the system 
parameters and uniquely defines the properties of the linear system such as the resonance 
frequencies. Equation (3) represents the output of a linear system as the inner product of 

the <II and the parameter vector. Using the available data vector <II, the output signal can be 
estimated in terms of the estimated system parameters 

" T" y(n) = <II(n-l} 9(n-l) (4) 

The difference in Equations (3) and (4) is minimized with respect to the system parameters 
to arrive at a parameter update law 

(5) 

T 
P(n) = P(n-l) _ P(n-l} <11('; 1} <II(n-1} P(n-1} , P(O) = I 

<II(n-l) P(n-I) <II(n-I) 
(6) 

where P(n) provides an orthogonal projection search in the parameter space which results 

in rapid parameter convergence [3], E>(n) is the computed parameter vector, and e(n) is the 
discrepancy between the estimated output and the FDID computed field value. 
Computation of Equations (5) and (6) requires only vector addition and multiplication, and 
results in minimal additional cost to the FDID computation. We note that the system 
parameters converge to their fmal values when the output error is sufficiently small. 

11.3 RESULTS 

The FDID Diakoptics is used to analyse a shorted parallel plate waveguide including 
discontinuities, Figure 1. The Diakoptics methodology is applied sequentialy to obtain the 
impulse response of the passive segments of the structure. The source region is simulated 
using the FDTD mthod. Figure 2. shows the comparison of this simulation with the 
MWSPlCE. An efficient method to implement the Diakoptics is the use of the System 
Identification method to compute the impulse response of selected segments. Figure 3. 
shows a comparison of the MWSPICE with the FDID simulation including the Diakoptics 
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Figure 3. 

Figure 4. 
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The simulated results for a rectangular waveguide with TE 10 excitation 
shows the improvement produced by this method. 
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and System Identification. For this simulation, the FDID algorithm is applied only to the 
region between the dashed lines. This methodology can also be used as a wide-band 
absorbing boundary condition. Figure 4. shows the reflection levels due to different 
absorbing boundary conditions. This method provides a uniformly low return loss over a 
wide band of frequencies. 

III. Modeling Passive and Active Structures 

The FDID algorithm can be used to analyze a wide class of passive microwave 
structures such as open and closed waveguides including arbitrary discontinuities. Figure 
5 shows the S-parameter computed for a coupled microstrip line using the FDID and the 
Spectral Domain methods.. The agreement between these two methods are excellent for 
this case, [4]. 

The FDID method can be extended to include nonlinear and active regions embedded 
in distributed circuits [5]. Here we describe the steps we have implemented to produce a 
stable algorithm, and we use this algorithm to simulate an active antenna, [6] and [7]. This 
method is used to simulate a three-dimensional microwave circuit containing an active and 
nonlinear device. Figure 7 shows a two element active antenna which is examined. Each 
patch is excited by a separate Gunn Diode and therefore the circuit really consists of two 
oscillators. However, the two oscillators are strongly coupled through a length of 
transmission line. The active current is given by the polynomial 

(7) 

The coefficients were determined experimentally from measurements at 10.48 GHz 
(the patch resonance frequency) to be Gl = 0.0252 ohm-l and G3 = 0.0265 ohm-l V-2, 
and the capacitance was determined to be C= 0.2 pF. The series resistance was estimated 
to be R=l.O ohm. Note that instead of using complicated model for Gunn diode which 
would incorporate the correct dispersive behavior, we are using a simplified model which 
is approximately correct over a narrow frequency range and ensures that the active device 
cut-off frequency is bellow the mesh cut-off frequency. This simplification is justified by 
the highly resonant nature of the circuit, which limits the possible frequencies of interest. 

To incorporate the package diodes into the FDTD mesh, we use an equivalent active 
region which extends over three vertical cells between the microstrip and the ground plane 
(Figure 6), and occupies only one cell in the horizontal or x-y plane. We model the entire 
active region as a single diode. The total voltage across this diode is given by 

(8) 

Here n represents the time step increment, and (is,js) are indices in the x, y plane for the 
two active regions (s= 1,2). This time average voltage is then fed into our active device 
model (Figure 8) which then calculates the total current by 

(9) 
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Figure 5. 
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Figure 7. 

Figure 8. 
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with 

Ao = 2RC +;:\t + R ;:\t F(Y:), Al = 2RC - At + R;:\t F(Y:), A2 = 2 ;:\t, 

A3 = C, A4 = ;:\t F(Y:), As = C + ;:\t F(Y:) 

where (.) denotes the derivative of the dependent current source with respect to the voltage. 
A forward differencing scheme with time averaging has been used in order to produce 
stable oscillations. This process is described in more detail in [6]. The current is then fed 
back as a source into the FDTD cells in the active regions. For each active region (s= 1, 2), 

£ £ In+1 + In 
;:\t~+I(is' js' k) = ;:\t~(is' js' k) + L[Hx ,Hy] - 2L\x ;:\y 

The term L[Hx, Hy] is 

I I I I 

(10) 

Hn+- (. . 1 k) Hn+- (. . k) Hn+- (. . k) H n+- (. 1 . k) x 2 Is, Js-' - x 2 Is, Js, + Y 2 Is, Js' - -"'/ 2 Is- ,Js, (11) 
;:\y ;:\x 

Equations (8) and (9) are then used in (10) in order to obtain a stable FDTD algorithm in 
the active region [7]. This algorithm is stable for circuits e!llbedded with nonlinear active 
regions which we have considered. 

111.1 RESULTS 

By using the modified FDTD algorithm described above, we have simulated the two 
element active antenna shown in Figure 1. A small amount of numerical noise is 
introduced into the FDTD mesh, and oscillations build up until a steady state frequency of 
12.4 GHz is achieved. The simulation results compares well with the experimental 
measurement which is 11.8 GHz and the frequency. The 5 percent discrepancy in the 
predicted frequency can be attributed to modelling errors in the geometry description and 
measurement of the Gunn diode parameters. The stable mode is an odd mode which can be 
seen clearly in Figure 7, where we show the steady state voltage across each diode as a 
function of time. Figure 8 shows the distribution of the z component of the electric field at 
the dielectric-air interface. 

IV. CONCLUSION 

In this paper an enhanced Finite-Difference Time-Domain algorithm is presented. 
The Diakoptics and System identification algorithms have the potential of reducing the 
computational cost effectively through reducing the memory requirements and simulation 
time, respectively. The FDTD algorithm is also applied to problems which include 
nonlinear and active properties. It is noted that care must be taken in order to insure the 
stability of the algorithm. The modified FDTD algorithm is used to analyze a two element 
active antenna. The simulation has remarkably produced the proper steady state behavior 
which is indicated through measurements. 
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INTRODUCTION 

The dynamical evolution of an electromagnetic pulse as it propagates through 
a homogeneous, isotropic, locally linear, temporally dispersive medium is a classical 
problem of electromagnetism. If the medium was nondispersive, an arbitrary plane 
wave pulse would propagate unaltered at the phase velocity of the wave field in the 
medium. In a dispersive medium, however, the pulse is modified as it propagates due 
to two interrelated effects. First of all, each spectral component of the initial pulse 
propagates through the dispersive medium with its own phase velocity vp = c.> /B(c.» so 
that the phasal relationship between the various spectral components of the pulse 
changes as it propagates. For a narrowband pulse whose bandwidth satisfies the 
inequality llc.>/c.>c< <1, the pulse envelope propagates with the group velocity Vg = 
(dB(c.> )/dc.> rl at the carrier frequency c.> c' provided that the frequency dispersion of the 
loss over the bandwidth of the pulse is negligible. Here c.>Dy(c.> )/c is the real-valued 
wavenumber of the electromagnetic plane wave field in the dispersive medium with 
real-valued index of refraction Dy(c.». Secondly, each spectral component is absorbed 
at its own rate so that the amplitudinal relationship between the spectral components 
of the pulse changes as it propagates. Although this effect may be negligible for 
narrowband pulses whose bandwidth is removed from the material absorption bands, 
it is not negligible otherwise. Taken together, these two simple effects result in a 
complicated change in the dynamical structure of the propagated field due to an input 
broadband pulse. 

The rigorous analysis of dispersive pulse propagation phenomena is complicated 
by the unavoidable fact that the phasal and absorptive parts of the medium response 
are connected through the physical requirement of causality.l For an initial pulse with 
a sufficiently rapid rise-time these effects manifest themselves through the formation 
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of well-defined precursor fields2-4 whose evolution is shown here to be completely 
determined by the dispersive properties of the complex index of refraction of the 
medium. 

The precursor fields (or forerunners) were first described by Sommerfeld2 and 
Brillouin3,4 in their seminal analysis of optical signal propagation in a single resonance 
Lorentz model dielectric. Unfortunately, their analysis errantly concluded that the 
amplitudes of these precursor fields were, for the most part, negligible in comparison 
to the main signal evolution and that the main signal arrival occurred with a sudden 
rise in amplitude of the field. These misconceptions have unfortunately settled into the 
standard literature on electromagnetic theocY,6. The recent analysis7.9 of linear 
dispersive pulse propagation that is based upon modern asymptotic techniques10-14 has 
provided a complete, rigorous description of the dynamical field evolution in a single 
resonance Lorentz model dielectric. In particular, this analysis has clearly shown that 
the precursor fields that result from an input unit step function modulated sirsnal are 
a dominant feature of the field evolution in the mature dispersion regime, 5 which 
includes all propagation distances that are greater than one absorption depth in the 
medium at the input signal frequency. In addition, the modern asymptotic 
description 7-9 has provided both a precise definition and physical interpretation of the 
signal velocity in the dispersive medium15. This proper description of the signal velocity 
is critically dependent upon the correct description and interpretation of the precursor 
fields. 

The central importance of the precursor fields in both the analysis and 
interpretation of linear dispersive pulse propagation phenomena is also realized in the 
study of ultrashort pulse dynamics. The asymptotic theory clearly shows that the 
resultant pulse distortion for an input rectangular envelope pulse is primarily due to 
the precursor fields that are associated with the leading and trailing edges of the pulse 
of arbitrary duration16. The interference between these two sets of precursor fields 
naturally leads to asymmetric pulse distortion. The precursor fields also play a 
fundamental role in the descri?tion of ultrashort Gaussian pulse propagation. The 
uniform asymptotic description! clearly shows that an ultrashort Gaussian pulse evolves 
into two distinct pulse components in a Lorentz model dielectric, the leading pulse 
component being a generalized Sommerfeld precursor and the trailing pulse component 
being a generalized Brillouin precursor field. 

The analysis of the present paper focuses on the general description of the 
precursor fields associated with the propagation of an input plane wave, rapid rise-time 
signal with fixed carrier frequency in a general homogeneous, isotropic, locally linear, 
causally dispersive dielectric medium that occupies the half-space z ~ O. The unit step 
function modulated signal is chosen as a specific example in order that the analysis may 
focus solely on the mediums' influence on the precursor dynamics. The description is 
provided by the modern asymptotic theory7-9 which relies upon the dynamical behavior 
of the saddle points of the complex phase function that appears in the exact integral 
representation of the propagated field. The saddle point dynamics primarily depend 
upon the high and low frequency structure of the dispersion relation for the dielectric 
medium which is obtained here directly from the general Kramers-Kronig relations for 
the complex dielectric permittivity. Material dispersion dependent conditions for the 
appearance of the Sommerfeld and Brillouin precursors are obtained. These general 
conditions are exemplified by both the Debye and Rocard-Powles models of rotational 
polarization phenomena and the Lorentz model of resonance polarization phenomena 
in lossy dielectric media. 
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FORMULATION OF THE PROBLEM FOR A PLANE WAVE PULSE 

The exact integral representation of a propagated plane wave pulse in the half­
space z ~ 0 is given bl,18 

1 _ ~<I>(..,,8) 

A(z,t) = -f f(w)e C dw, 
21t C 

(1) 

where 

(2) 

is the temporal Fourier spectrum of the initial pulse f(t) = A(O,t) at the plane z=O. 
The quantity A(z,t) represents either the scalar optical field or any scalar component 
of the electric or magnetic vector of the electromagnetic field whose spectral amplitude 
A(z,(,) ) satisfies the dispersive Helmholtz equation 

(~+.e(w»)A(z,w) = 0 , 

The complex wavenumber appearing here is given by 

k(w) = ~n«(,) 
c 

where c denotes the speed of light in vacuum, and where 

n( (,) = (j.L€( W »)'h 

(3) 

(4) 

(5) 

is the complex index of refraction of the dielectric medium occupying the half-space 
z ~ 0 with complex-valued, relative dielectric permittivity f «(,) ) and constant, real-valued 
relative magnetic permeability fJ, = 1. The complex phase function cf>(w ,8) appearing in 
the integral representation given in Eq. (1) is given by 

4>(w,8) = i~(k«(,)z-wt) = iw(n(w)-6) , 
z 

(6) 

where 6 = ct/z is a dimensionless parameter that characterizes any particular space­
time point (z,t) in the plane wave field. Finally, if f(t) =0 for t<O, then the integral 
expression given in Eq. (1) is taken to be a Laplace representation in which the 
contour of integration C is the straight line w = w' + ia with a being a fixed positive 
constant that is greater than the abscissa of absolute convergenceS for the function f(t) 
and where (,)' = 8t(w) ranges from negative to positive infinity. Here 8l(. ) denotes the 
real part of the quantity in parenthesis. 

A case of particular interest is that of a pulse-modulated sine wave of fixed real 
signal frequency (,) c that is given by 

fit) = u(t)sin(W}) , (7) 

where u(t) is the real-valued envelope function of the initial pulse. The propagated 
field is then given by 

1 {ia+~ ~<I>("'.6)} 
A(z,t) = -8l if. u«(')-w )e C dw , 

21t Ja-~ C 

(8) 

where u( w) is the temporal frequency spectrum of the initial pulse envelope function 
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at the plane z=O. For a unit step function modulated signal, the initial pulse envelope 
is given by the Heaviside unit step function u(t)=O for t<O, u(t)=1 for t>O; the 
external current source for this field abruptly begins to radiate harmonically in time at 
t=O at the plane z=O and continues indefinitely with a constant amplitude and 
frequency. The Laplace transform of this initial pulse envelope is u(c.» "i/c.> so that 
the integral representation of the propagated disturbance is 

1 {;,,+- 1 .!t( .. ,6) I 
A(z,t) = --81 J. --e C dc.> 

21t ;,,-- c.>-c.>c 
(9) 

for z O!: O. This propagated signal representation is precisely the one treated by 
Sommerfeld2 and Brillouin3,4 in their classical treatment of dispersive pulse propagation 
and remains as one of the most fundamental canonical problems in the study of linear 
dispersive pulse dynamics. 

If the initial time behavior A(O,t)=f(t) of the field at the plane z=O is zero for 
all time t < 0 and if the model of the material dispersion is causal, then the propagated 
field A(z,t) as given either by Eqs. (1) or (8) is zero for all values of (I =ct/z< 1 with 
z ~ O. This important result was first proved by Sommerfeld2 for a unit step function 
modulated signal in a single resonance Lorentz model dielectric and was later extended 
by Oughstun and ShermanS to an arbitrary plane wave pulse. The general proof 
follows the method of proof of Jordan's lemma19. 

Unfortunately, the method employed for the space-time domain (I < 1 cannot be 
applied to evaluate the integral representation of A(z,t) for (I~ 1, and no other exact 
method of analysis is presently known. Because all of the features of dispersive pulse 
propagation of interest occur in the space-time domain (l0!: 1, accurate analytic 
approximations of A(z,t) are required. The most accurate approximation technique 
that is currently known is provided by the modern asymptotic theory7.14. 

The first step in the asymptotic analysis of the propagated field A(z,t) is to 
express the integral representation of A(z,t) in terms of an integral I(z,9) with the same 
integrand but with a new contour of integration P(9) to which the original contour C 
may be deformed7•9. By Cauchy's residue theorem, the integral representation of A(z,t) 
and the contour integral I(z,9) are related by 

A(z,t) = I(z,6)-81[21tiA(6)] , (10) 

where 

A(6) = E ~s l...!..j'(c.»e ~t( ... e)l 
p c.> -c.>" 2n 

(11) 

is the sum of the residues of the poles that were crossed in the deformation from C to 
P«(I), and where I(z,9) is defined by 

(12) 

For the asymptotic evaluation of the contour inte~ral I( z,9) as z .... 00, the path P(9) is 
chosen as a union of the set of Olver-type paths7.1 with respect to the saddle points of 
the complex phase function rp (c.>,9). The contour P(9) must evolve continuously for all 
(I O!: 1. The condition that rp(c.>,9) be stationary at a saddle point is simply 
that rp' «,),9) = 0, where the prime here denotes differentiation with respect to (,), so 
that from Eq. (6) 
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n(c.»+c.>n'(c.»-6 = 0 . (13) 

The roots of this equation then give the desired saddle point locations in the complex 
c.> -plane. Not all saddle points may be appropriate in this asymptotic description 
because the Olver-type paths with respect to them may not be deformable to the 
original contour C owing, for example, to the presence of the branch cuts of <t> (c.> ,6); 
such saddle points are said to be inaccessible, otherwise they are said to be accessible. 
Throughout this analysis, the dominant accessible saddle point (or points) refers to the 
saddle point (or points) that has the largest value ofX(c.> ~) =Bt[<t>(c.> MJ at it, and hence, 
has the least exponential attenuation associated with it. Because of the general 
symmetry relations 7,8 

n(-c.» = n'(c.>') , (14a) 

<I>(-c.>,6) = <I>'(c.>·,6) , (14b) 

if c.>j is a saddle point solution of Eq. (13), then so also is -<.r.> 'j' where the asterisk 
denotes the complex conjugate. If c.> j and -<.r.> 'j are the dominant accessible saddle points 
at a given value of 6 and if they are isolated from each other and all other saddle 
points of <t> (c.> M at that value of 6, then the asymptotic behavior of I( z,e) as z ~ 00 is 
obtained from Olver's theorem7-10 as 

I(z,e)-Bt J[ c ]ft...c.>j)e ~~"J>9) 1 -21tz<l>(2)(c.>p6) 

• [ -2.,.0:( -~ / ,all< -~/)< ,,, -·;'·l· (15) 

The dynamical evolution of the saddle points then provides a complete description of 
the dynamical evolution of the transient field behavior associated with dispersive pulse 
propagation. If the dominant saddle point c.> j is also dominant over all the pole 
contributions given in Eq. (11) at some particular value ofe =ct/z, then the propagated 
field A(z,t) oscillates with an instantaneous frequency that is approximately given by 
the real part of that saddle point location Bt (c.» and the attenuation of the field 
amplitude at that space-time point is determined by the real part of the complex phase 
function evaluated at that saddle point location as X(c.>j,e)/c._ 

The residue contribution to A(z,t) is nonzero only if f(c.», or u(c.>-c.», has 
poles. Consider the case of the pulse-modulated sine wave given in Eq. (7), in which 
case Eq. (11) becomes 

Res I i ~~"'.9)1 A(e)=L c.>=c.> -u(c.>-c.>.)e C • 

P P 21t 
(16) 

If the envelope function u(t) of the initial field A(O,t) at the plane z=O is bounded for 
all time t, then u(c.>-c.>c) can have poles only if u(t) does not tend to zero too fast 
as t ~ 00. Hence, the implication of a nonzero residue contribution is that the field 
A(z,t) oscillates with angular frequency c.> c for positive times t at the plane z = 0 and will 
tend to do the same at larger values of z for large enough t. As a result, this 
contribution to the asymptotic behavior of the propagated field describes the steady 
state behavior of the signal whose arrival is determined by the dynamics of that 
dominant saddle point that becomes exponentially negligible in comparison to the pole 
contribution.s 
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GENERAL SADDLE POINT DYNAMICS FOR CAUSALLY DISPERSIVE 
DIELECTRICS 

The physically correct analysis of the entire dynamical field evolution in 
dispersive pulse propagation is critically dependent upon the model of the frequency 
dependence of the linear medium response. In order to maintain strict adherence to 
the fundamental physical principal of causality, it is essential that any model chosen for 
the medium response be causal. Due to the analyticity properties of €«(,» as 
expressed by Titchmarsh's theorem!, the frequency dependence of the dielectric 
permittivity is required to satisfy the relation 

1 foo €(I')-1 
€«(,» = 1+----: -"-d(, 

1U -00 (-(,) 

(17) 

where the principal value of the integral is to be taken. The real and imaginary parts 
of this relation then yield the pair of Kramers-Kronig (or dispersion) relations 

(18a) 

(18b) 

where €«(,» = €,«(,» + i€j«('». 

The care that must be taken in any determination of the approximate functional 
behavior of the frequency dispersion of the dielectric permittivity through the use of 
the dispersion relations (18) is aptly described by' the following paraphrased statement 
from Landau and Lifshitz2o: "For any function €,«(,» that is consistent with all physical 
requirements, i.e. one which is in principle possible. This makes it possible to use 
(18a) even when the function €j«('») is approximate. On the other hand, Eq. (18b) 
does not yield a physicallY (!ossible function €;C(,» for an arbitrary choice of €,((,» , 

since the condition €j«(') ):>0 for finite (,)' >0 is not necessarily fulfilled." Hence, in 
any attempt at obtaining the approximate behavior of the real and imaginary parts of 
the dielectric permittivity in a specified region of the complex (,) -plane, specific care 
must be given to the mathematical form of the dispersion relations (18) in order that 
physically meaningful results are obtained. 

For a nonconducting medium the absorption identically vanishes at zero 
frequency so that, from Eq. (18b) 

€j(O) = -1.foo €,(()-l d( = 0 . (19) 
1t -00 ( 

The medium absorption also identically vanishes at infinite frequency, as can be seen 
from the dispersion relations (18). Hence, with little or no loss in generality, one can 
safely assume that the frequency dependence of €' «(,) ') along the positive (,) , -axis is 
such that the loss is significant only within a finite frequency domain [(,) 0' (,) m)' where 

o < < (,)0 < (,)m < < 00 • (20) 

For all nonnegative values of (,)' outside of this domain the medium absorption is then 
negligible by comparison. Attention is now focused on the two special regions of the 
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complex <.> -plane wherein the dielectric permittivity is reasonably well-behaved, these 
being the region about the origin that is specified by the inequality 1<.>1< <<'>0 and the 
region about infinity 1<.>1> ><.> m' It is from these regions that the classical Sommerfeld 
and Brillouin precursor fields have their mathematical origin. 

The Region about the Origin; k,,1 < < 6) 0 

Since €j( C) vanishes at e = 0, one may expand the denominator in the integrand of 
Eq. (18a) for small 1<.>1 in a Maclaurin series, so that 

= 1 +l.Jw €jm (1-<.>IC)- ldC 
1t -m C 

- ~ .IJ~€jm 
= 1+ L..J c.>'- -dC . 

j=O 1t -w CN 

(21) 

The validity of this expansion relies upon the fact that when lei :::; 1<.>1 and the 
expansion of (1- <.> /0-1 in the integrand breaks down, €j(C) is very close to zero and 
serves to neutralize this behavior. Due to the odd parity of €j(C) , one then obtains 
the expansion 

€,( <.» ;; 1 + L ~2j<.>2j (22) 
}=O 

with coefficients 

~." lJ~€lOdC , 
2} 1t -~ C2}+1 

(23) 

which is valid for 1<.>1 < <<.> o. 
Since €r(O does not vanish when e =0, the same expansion technique cannot 

be used to obtain a lo~ frequency, expansion of Eq. (18b). However, by use of the 
symmetry relation €r( <.> ) = €r( -<.> ) , that equation may be rewritten as 

2f.~€rm-l €j(<'» = -<.>- ---de , 
1t 0 C2_<.>2 

(24) 

which explicitly show~ that €j(O) =0 . Furthermore, for an attenuative medium one 
must have that €l<'> ):;:0 for all <.>'~O. For small 1<.>1 one may then take the 
approximation 

(25) 

where 0 I is a nonnegative real number. 
Hence, for sufficiently small values of 1<.>1 < <<'>0' the complex dielectric 

permittivity may be approximated as 

(26) 

where €. = 1 + ~o is the static dielectric permittivity of the material. The complex index 
of refraction in the small frequency region about the origin is then given by 
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[ 2] 1 ~I 2 
+ - P +- (,) 

26 2 2 ' o 60 

(27) 

where 

(28) 

is the static index of refraction of the dielectric. 
With the approximation given in Eq. (27) for the complex index of refraction in 

the region about the origin, the saddle point equation (13) becomes 

2 . 4~1 260 
(,) + l-(') - -(6-60> = 0 (29) 

3«1 3«1 
2 2 

where «I '" P2 + ~1/60 . The roots of Eq. (29) then yield the approximate near 
saddle point locations (,)sp'/ given by 

2~1. 
(,)sp.(6) = ±.(6) - -l , (30) 

N 3«1 

with 

[ 2]'" 1 60 ~l 
.(6) = - 6-(6-60>-4-

3 «I «~ 
(31) 

This is precisely the form of the first approximation for the near saddle point locations 
in a single resonance Lorentz model dielectric3,4,7,8 as well as in a double resonance 
Lorentz model dielectric21 • The s~~e point dynamics are thus seen to depend upon 
the sign of the quantity «I = P2 +~1/60· For a Lorentz model dielectric, 82 is typically 
positive so that a 1 > 0; such a medium will be called here a Lorentz-type dielectric. On 
the other hand, for a Debye model dielectric (as well as for the Rocard-Powles 
extension of the Debye model), 82 is typically negative so that a 1 < 0; such a medium 
will be called here a Debye-type dielectric. The dynamical evolution of the near saddle 
points must then be treated separately in these two cases. 

The Case a 1 > 0; The Lorentz-Type Dielectric. For values of 6 in the domain 
specified by 1 <8 <6 l' with 

(32) 

(33) 

and the two near saddle points lie along the imaginary axis, symmetrically situated 
about the point (,) =-(26 1/3al)i, and approach each othFr along the imaginary axis as 
8 increases to 8 l' Only the upper near saddle point SP N is relevant to the asymptotic 
analysis?,8 over this 6-domain. With this substitution Eq. (6) yields, with the 
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approximation of Eq. (27), 

<!>(c.>sp;>6) .. - (::: - 1",(6)1){6-60 

_ .!.6J2a1 _ 1"'(6)1)[~ 
2 '3u1 u\ 

-[p,. ~J::: -I~(.j~ 
(34) 

for 1<6<6\. At6=6 1, ",(6\)=0 and the two near saddle points have coalesced into 
a single second-order saddle point at 

(35) 

and the approximate phase value at this point is given by 

4a3 
( a2l <!>(C.>SP,V'6\) .. ---/- P2+-i . 

9u 16o 60 

(36) 

Finally, for 6 >6 1 the two near saddle points have moved off of the imaginary axis and 
are symmetrically situated in the lower-half of the complex co-plane with respect to the 
imaginary axis, where 

2a,. 
- -I , 

3u1 

(37) 

where ",(6) is real-valued over this 6-domain. The approximate phase behavior at 
these saddle point locations is then found to be given by 

(38) 

for 6 >61" Hence, the complex phase function due to the near saddle points is 
nonoscillatory for 1 <6!>6 1• while it has an oscillatory component for all 6 >6 1 .. Notice 
that the accuracy of these approximations for the near ,add~ point dynamics rapidly 
diminishes as 6 becomes much different than 6 0, since c.>sp; will then no longer be 
small in comparison to c.> o. An accurate description of the near saddle point evolution 
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that is valid for all 0 > 1 can only be constructed once the behavior of n(c.> ) is explicitly 
known in the region of the complex c.> -plane about the first absorption peak at c.> 0' as 
has been done in References 7,8 for a single resonance Lorentz medium. 

The preceding re:sults remain valid in the special case when 0 1 = 0; in that 
case €j varies as c.> 3 or higher about the origin. The approximate saddle point 
equation (29) is then still correct to O(c.>2) and, for values of c.> not too different from 
c.> 0> the approximate saddle point locations are now simply given by 

c.>sp,(O) II ± -°(0-00> . (
20 )'h 

N 3132 
(39) 

The same dynamical evolution is then obtained but with the two near saddle points 
coalescing into a single second-order saddle point at the origin when 0 =0 0, Clearly, 
Eqs. (34),(36), and (38) remain valid in this case with 0 1 =0. This is the only special 
situation that can arise in this case since neither 130 nor 132 can vanish for a causally 
dispersive dielectric (the trivial case of a vacuum is of course excluded). 

The Case a 1 < 0; The Debye-Type Dielectric. For a Debye-type dielectric, a 1 < 0 
so that 

2a~ 
61 = 00 - 310: t180 

(40) 

and 0 1 <0 o. Application22 of the method of proof of Jordan's lemma 19 shows that if the 
initial time behavior A(O,t)=f(t) of the plane wave field at the plane z=O is zero for 
all time t < 0, then the propagated field in a Debye-type dielectric is zero for all values 
of 0 =ct/z<6 1, with z ~ O. This is due to the fact that the absorption does not go to 
zero as 0 .... co for a Debye medium. As a consequence, one need only consider the 
saddle point dynamics for 0 >0 1, From Eqs. (30)-(31) the two near saddle point 
locations are seen to be given by 

(41) 

and move away from each other along the imaginary axis as 0 increases above c.> l' 
Only the lower near saddle point c.>sp~ is relevant to the asymptotic analysis over this 
c.>-domain. With this substitution Eq. (6) yields, with the approximation of Eq. (27), 

(42) 

for 0 >0 l' Hence, the complex phase function due to the near saddle point is 
nonoscillatory for the Debye-type dielectric. Similar results22 hold for the Rocard-
Powles extension of the Debye model. 2 2 

In the highly unusual event that at =0, in which case 132 =-6 1/00, the 
approximation given in Eq. (27) for the complex index of refraction yields a single first-
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order saddle point that moves down the imaginary axis linearly with e as 

80 
cusP (8) .. i-(e-eo> . 

N 25 1 

(43) 

It seems appropriate to call a material for which ex 1 = 0 a transition-type dielectric. A 
more accurate description of the near saddle point dynamics in this singular case 
requires that the expansion given in Eq. (27) be extended to the term containing <.) 3. 

The Region about Infinity; kall > ><.)m 

Since €j(C) vanishes ate = ±oo, the denominator in the integrand ofEq. (l8a) may then 
be expanded for large 1<.)1 as 

€,(<.) = 1-l.f~€j(C)(1-"cur1dC 
1t -~ cu 

(44) 

The validity of this expansion relies upon the fact that when lei 2: 1<.)1 and the 
expansion of (l-C /<.) r1 in the integrand breaks down, €lC) is very close to zero and 
serves to neutralize this behavior. Due to the odd parity of €j(O ,one then obtains 
the expansion 

(45) 

with coefficients 

(46) 

which is valid for 1<.)1> >cu m' Notice that the first coefficient ~ is nonvanishing for any 
lossy dielectric. 

Since €,(0-1 also vanishes at e = ±oo, the same expansion procedure may be 
applied in the integrand of Eq. (18b), which may be rewritten in the form given in 
Eq. (24), to yield 

(47) 

with coefficients 

(48) 

which is valid for lcul > >cu m• 

There are then two distinct classes of dielectrics that are distinguished by the 
value of the zeroth-order coefficient 

. 2f~ bo = - (€,(C)-1)de . 
1t 0 

(49) 
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For the first cla.ss, b~ .. O, which is characteristic of a Debye-type dielectric. For the 
second class, bo =0, which is characteristic of a Lorentz-type dielectric. These two 
cases are now treated separately. 

The Case bo"O; The Debye-Type Dielectric. In this case the complex-valued 
dielectric permittivity in the region about infinity is given approximately by 

(50) 

where bo .. 0, and the associated complex index of refraction is then given by 

Yo b~ 1[ b~211 n«(,) = (e(<.» • l+i--- ~-- - • 
2(') 2 4 (,)2 

which is valid for 1(')1> >(,)m' With this substitution the saddle point equation (13) 
becomes 

O-l-.![~- b~21J_=o . 
2 4 (,)2 

(52) 

The location of these distant saddle points in the comple~2<'> -plane is then seen to be 
critically dependent upon the sign of the quantity (~-bo /4). For a simple Debye 
model dielectric with relaxatiQll time 7" and static permi!tivity e.. • the coefficients 
appearing here are given by bo =(e .. -1)/'t and ~=(I-e)/'t, in which case 

·2 
b. 

~-- <0 
4 

(53) 

and is equal to zero only when €$ (i.e., the trivial case of a vacuum). The 
approximate distant saddle point locations are then given by 

(,)sp'(O) • ±i_K_ • (54) 
D (O-I)'h 

where ~ = (b~2/4 -0;>/2. The distant saddle points are then symmetrically situated 
with respect to the origin and lie along the imaginary axis. They mov6)in toward the 
origin as 9 increases from unity. The upper dis1.ant saddle point <'>sp;( is then seen 
to evolve into the lower near saddle point (,)sp;ltJ) as9 approaches 9 1, while the lower 
distant saddle point is irrelevant to the asymptotic analysis.22 

The Case b~ =0; the Lorentz-Type Dielectric. The Lorentz-type dielectric is 
distinguished by the fact that bo is identically zero, in which case one has the sum 
rule23 

f'(€,(C)-l)dC = 0 . (55) 

The dielectric permittivity in the region of the complex (,) -plane about infinity is then 
given approximately by 

(56) 
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and the associated complex index of refraction is then given by 

n«a) = (e«a))% .. 1 
2 (a) ( (a) +ib;/a2) 

(57) 

which is valid for 1(a)1> >(a)m' With this substitution the saddle point equation (13) 
becomes 

= 0 . (58) 

The roots of this equation then yield the approximate distant saddle point locations 

( 
'2jYa. a2 b2 b2 

(a) .(6) .. ± ---- -i- . 
sPD 2(6-1) 4a; 2a2 

(59) 

This is precisely the first approximate form for the distant saddle point locations in 
both a single resonance Lorentz model dielectric3,4,7,s as well as in a double resonance 
Lorentz model dielectric21• These saddle points are symmetrically situated about the 
imaginary axis and lie along the line (a) = -ib;/2a2, As 9 increases from unity, they 
move in from infinity along this line. With this substitution in Eq. (6), along with the 
approximation given in Eq. (57), the complex phase function at these two distant saddle 
point locations is found to be given approximately by 

~(.,,,,;.O) • - ~ (O-I)+i(2o,(O-I»)i" ~ (0-1) j . (60) 

Notice that the accuracy of these approximations for the distant sa?cdle point behavior 
rapidly diminishes as 9 becomes much larger than unity, since (a)sp~ will then no 
longer be large in comparison to (a) m' A completely accurate description of the distant 
saddle point evolution with (a) that is valid for all (a) can only be constructed once the 
behavior of n( (a) ) is explicitly known in the region of the complex (a) -plane about (a) m' as 
has been done in References 7,8 for a single Lorentz medium. 

DISCUSSION AND CONCLUSIONS 

With this general understanding of the approximate behavior of the dynamics 
of the near and distant saddle points of the complex phase function cf> «a) ,9) and its 
behavior at them, the asymptotic description of the propagated field A(z,t), particularly 
its precursor fields, may now be constructed. The asymptotic description presented 
here is general in the sense that the complex phase behavior has been approximately 
described only in the two regions I(a)k <(a) 0 and 1(a)1> > (a) m of the complex (a) -plane. 
The behavior in the region (a)~I(a)I~(a)m can be very complicated21,22 and can only be 
described with sufficient detail for a specific model of the dielectric dispersion. 
Nevertheless, based upon the detailed analyses presented in References 21 and 22, it 
is asserted here that the complex phase behavior in the regions about the origin and 
about infinity of the complex (a) -plane is sufficient to describe the predominant features 
of the precursor field evolution. 

The complex phase behavior for a causal dielectric in the regions 1(a)1 < < (a) 0 and 
1(a)1> > (a) m separates into two distinct classes: the Lorentz-type dielectric and the 
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Debye-type dielectric. For a Lorentz-type dielectric boththe distant and near saddle 
points plus additional middle saddle points, contribute to the asymptotic behavior of 
the propagated field (9), which may be written as 

(61) 

as z .... co. The asymptotic behavior of the component field A.(z,t) is due to the 
expansion about the two distant saddle points alone and is referred to as the first, or 
Sommerfeld, precursor field. From Eqs. (59)-(60) it is seen that the instantaneous 
frequency of oscillation of the Sommerfeld precursor is approximately given by the real 
part of the distant saddle point location. The front of the Sommerfeld precursor 
arrives at 8 = 1 with an infinite angular frequency. As 8 increases from unity the 
amplitude of this first precursor rapidly builds to a peak value and thereafter decays 
as the attenuation factor increases and the instantaneous frequency of oscillation chirps 
downward. The asymptotic behavior of the component field AB(Z,t) is due to the 
expansion about the near saddle points alone and is referred to as the Brillouin 
precursor field. From Eqs. (33)-(38) it is seen that the Brillouin precursor is 
nonoscillatory for 1 <8:s;8 1 and has a peak amplitude near the space-time point 80 

where there is no exponential attenuation. As 8 increases above 9 1 the Brillouin 
precursor becomes oscillatory with an instantaneous oscillation frequency that chirps 
upward and a decreasing amplitude as the attenuation factor monotonically increases. 
The asymptotic behavior of the component field Ay,,(z,t) is due to the expansion about 
any additional saddle points that may appear in the intermediate frequency domain 
6) 0 <6) <6) m. A condition for the appearance of such a middle precursor is given in Ref. 
21 for a double resonance Lorentz model dielectric. The final contribution A.,(z,t) is 
due to the poles at 6) =6) c that may be crossed in deforming the original contoud to the 
path P(9). This contribution to the asymptotic behavior of the propagated field 
describes the steacy state behavior of the propagated signal that oscillates at 6) =6) c. 

For a Debye-type dielectric only the near saddle points, plus additional middle 
saddle points, contribute to the asymptotic behavior of the propagated field (9), which 
may be written as 

A(z,t) = Alz,t) + Am(z,t) + Ac(z,t) , (62) 

as z .... co. There is now no Sommerfeld precursor and the field arrives with the 
evolution of the Brillouin precursor. Unlike what occurs for the Lorentz-type dielectric, 
the Brillouin precursor is now nonoscillatory for all 8 > 1. The remaining contributions 
have the same interpretation as for the Lorentz-type dielectric. 

A general dielectric may be of the Debye-type in the region about the origin and 
of the Lorentz-type in the region about infinity, as is the dielectric permittivity of triply­
distilled liquid wate~. In that particular case Eq. (61) applies but with the oscillatory 
portion of the Brillouin precursor quenched by interference with the contribution due 
to a saddle point that evolves in the intermediate frequency region. In spite of the 
presence of four resonance lines for this complicated dielectric, there is no middle 
precursor. 
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UNIFORM ASYMPTOTIC DESCRIPTION OF GAUSSIAN PULSE PROPAGATION 
OF ARBITRARY INITIAL PULSE WIDTH 
IN A LINEAR, CAUSALLY DISPERSIVE MEDIUM 

Constantinos M. Balictsis' and Kurt E. Oughstun 

Department of Computer Science and Electrical Engineering 
University of Vermont 
Burlington, Vermont 05405 

INTRODUCTION 

Modern asymptotic techniquesl - 4 have recently been utilizedS- 9 in order to obtain an 
approximate analytic evaluation of the classical, exact integral representation of the propagated 
field due to an input ultrashort, Gaussian-modulated harmonic wave in the mature dispersion 
region of a single resonance Lorentz medium. A straightforward consideration of the behavior 
of the classical complex phase function appearing in this integral representation showed7,9 that 
these asymptotic techniques cannot be applied when the space-time parameter ()' is less than 
unity. In order to circumvent this difficulty, the input ultrashort Gaussian envelope must be 
chosen to be centered around a time that is sufficiently larger than the initial pulse width. It was 
also shown 7-9 that the classical, analytic, nonuniform asymptotic approach to this problem, 
which was presented in References 5 and 6, is only qualitatively accurate in its description of 
the dynamical evolution of the propagated field as a result of the use of approximate analytic 
expressions for the saddle point locations and the derivatives of the classical complex phase 
function at them 10. Although these approximate analytic expressions are adequate for 
instantaneous rise/fall-time input pulses, they are not of sufficient accuracy for input pulses 
with an exponentially-varying spectrum and consequently need to be improved using 
numerical techniques. However, even this improved classical asymptotic approach with 
numerically determined saddle point locations breaks down for two narrow ()' -ranges when 
two of the conditions of Olver's theorem1,2, upon which this approach is based, are violated. 
In order to overcome this difficulty, the appropriate uniform asymptotic techniques3,4 have 
subsequently been employed. The accuracy of the classical asymptotic description of ultrashort 
Gaussian pulse propagation was completely verified7- 9 through a comparison with the 
corresponding results of two different numerical experiments: the first is based upon Hosono's 
algorithm 11,12 for the numerical inversion of Fourier-Laplace transform-type integrals, while 
the second is a numerical implementation of the asymptotic method of steepest descents2,13,14 . 

• Currently performing his two year military service. Correspondence address: 
Vasileos Georgion 30, 54640 Thcssaloniki, Greece. 

273 



As the initial width of the input Gaussian envelope is broadened above the characteristic 
relaxation time of the single resonance Lorentz medium, the classical asymptotic description 
of the propagated pulse dynamics becomes increasingly inaccurate at some fixed, albeit large, 
value of the propagation distance. It is then clear that this asymptotic description needs to be 
generalized in order to become uniformly valid with respect to the initial pulse width. The 
modified asymptotic approach that is presented in this paper provides the required 
generalization, resulting in a uniformly valid description of Gaussian pulse propagation of 
arbitrary initial pulse width in a single resonance Lorentz model dielectric. This approach 
unifies9 the opposite limiting descriptions that are provided by methods which are only valid 
either in the sub-femtosecond regime5- 7,10,15 or in the quasimonochromatic (or 
slowly-varying envelope) regime16- 22, reducing to them in the appropriate, respective limits. 

THE MODIFIED ASYMPTOTIC APPROACH TO GAUSSIAN PULSE 
PROPAGATION OF ARBITRARY INITIAL PULSE WIDTH 

The Modified Integral Formulation of Gaussian Pulse Propagation in a Single Resonance 
Lorentz Model Dielectril: 

Consider an input unit-amplitude, Gaussian-modulated harmonic wave of constant, but 
otherwise arbitrary, applied carrier frequency We 2: 0 and initial pulse width 2T > 0 that is 
given by 

f(t) = exp{ - C -;. to f}sin(Wct + 1jJ) , (1) 

which is propagating in the positive z-direction through a linear, homogeneous, isotropic, 
temporally dispersive, nonhysteretic medium filling the semi-infinite space z 2: 0 where there 
are no external charge or current sources. Here, the input Gaussian envelope at the plane z = 0 
is centered around the time to and is considered to extend over all time. The phase constant 1jJ 
is chosen to be zero for an input Gaussian-modulated sine wave, while it is chosen to be 7r /2 
for an input Gaussian-modulated cosine wave. The modified, exact integral representation of 
the propagated field is then given by 

(2) 

Notice here that throughout this paper the notation Re{.} represents the real part, while the 
notation Im{.} represents the imaginalY part of the quantity inside the curly brackets. The 

modified complex spectral amplitude U M appearing in Eq. (2) is given by 

(3) 

and is independent of w, while the modified complex phase function rJ>M(w, 9') appearing in 
Eq. (2) is given by 
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(4a) 

(4b) 

where c denotes the vacuum speed of light. The quantity e' = e - (cto/z) = c(t - to)/z 
denotes a retarded, nondimensional parameter characterizing any space-time point in the 
propagated field evolution. Equations (2)-(4) then constitute the modified integral formulation 
of Gaussian pulse propagation8,9. The original contour of integration C appearing in Eq. (2) 
may be taken to be either the real frequency axis or any other contour in the complex w-plane 
that is homotopic to this coordinate axis. The classical complex phase function ¢(w, e') 
appearing in relation (4b) is given by5-10,12,14,15 

¢(w,e') = iw[n(w) - e'] . (5) 

It is immediately evident from Eqs. (4) and (5) that both (/JM(w, e') and ¢(w, e') are functions 
of the complex frequency wand also depend upon the chosen dispersive medium. The modified 
complex phase function (/JM(W, e') also depends upon the carrier frequency and initial wjdth 

of the input pulse as well as upon the dis!ance of propagation. The complex wave number k( w) 
appearing in relation (4a) is given by k(w) = (w/c)n(w), where new) denotes the complex 
index of refraction of the dispersive medium occupying the half-space z ~ O. Hereafter, the 
causal, single resonance Lorentz model is chosen to represent this medium because of its central 
role in past and current research5- 10,12,15,16,18,20,21. This phenomenological model regards a 
dispersive dielectric as an ensemble of identical damped harmonic oscillators with number 
density N, each of which has mass m, charge e and unbounded resonance frequency woo The 
complex index of refraction is then given by 

1/2 

new) = {I - 2 ~2 + '20 } , 
w - Wo I W 

(6) 

where b2 = 4nNe2/m is the square of the plasma frequency of the medium and a is an 
associated phenomenological damping constant. For this medium, n( w) as well as both ¢( w, e') 
and (/JM(W, e') are holomorphic functions in the entire complex w-plane except at the two 

1/2 
branch points w' ± = ± [w~ - 02 ] - io where n(w) vanishes, and also at the two branch 

1/2 
points w ± = ± [w~ - 02 ] - io where new) becomes infinite, with wi = w~ + b2• The 

line segments w' _w _ and w +w' + are the branch cuts of new), as well as of both ¢(w, e') and 
(/JM(w,e'). 

Description of the Modified Asymptotic Approach to Gaussian Pulse Propagation 

Consider the asymptotic evaluation of the modified, exact integral representation (2) for 
fixed, but otherwise arbitrary, values of the initial pulse width 2Tand carrier frequency We of 
the input Gaussian-modulated harmonic wave, and at a sufficiently large, but otherwise 
arbitrary, fixed propagation distance z in a single resonance Lorentz medium. The modified 
asymptotic approach begins with a determination of the dynamical evolution of the saddle 
points SPMI<' k = 1,2, ... ,5, of (/JM(w, e') as a function of e', in the complex w-plane, whose 

respective locations are denoted by wsPMie'). An evaluation of the real part of the modified 
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complex phase function X JJ,W, (}') = Rei c1>,w( w, (}') I at each of these critical points then 
determines their relative dominance for each value of ()'. This information is then used in an 
examination of the isotimic contours of the real part of the modified complex phase function 
X~w, (}') in order to deduce for each of the saddle points of c1>M(w, (}') the regions in the 
complex w-plane where X~w, (}') attains values that are less than its value at the respective 
saddle point for a given value of ()'. The next step in this asymptotic procedure is to apply 
Cauchy's residue theorem23 in order to deform the original integration path C appearing in the 
modified, exact integral expression of the propagated field into a new path ~«(}') which passes 
through all of the relevant9,10 saddle points of c1>~w, (}') for a given value of ()'. As ()' varies 
continuously in its domain ()' E (- 00, + 00), the deformed path ~«(}') is required to move 
continuously in the complex w-plane so as to pass through all the relevant saddle points of 
c1> M( w, (}') for any given value of ()' in such a manner that it may be divisible into a superposition 
of paths ~ Mi(}'), each being an Olver-type path (Le., a path along which all of the conditions 
of Olver's theorem are maintained) with respect to a single, relevant saddl,: point SP Mk which 

it may only cross once. Since the constant modified spectral amplitude U M is holomorphic 

everywhere in the complex w-plane, this step in the modified asymptotic approach allows the 
original contour integral A(z, t), which is taken along C, to be written finally as a superposition 
of deformed contour integrals I Miz, (}'), each of which has the same integrand as A(z, t) but 
is taken along the respective component path ~Mi(}') of ~«(}'), in the form 

for any given value of ()'. The summation over k extends only over those saddle points of 
c1>~w, (}') that are relevant at the particular value of ()' considered. The final step in the 
modified asymptotic approach is to apply the appropriate asymptotic techniques to evaluate 
each of the deformed contour integrals I Miz, (}') appearing in Eq. (7). 

For a single resonance Lorentz medium the saddle points SP Mk> k = 1,2, ... ,5, of 
c1>M(W, (}') are isolated and offirst-order for all values of ()', irrespective of the characteristics 
of the input Gaussian pulse and the distance of propagation in this dispersive medium. A 
straightforward application of Olver's theorem to each of the deformed contour integrals 
I Miz, (}') appearing in Eq. (7) then results in an asymptotic description of the propagated field 
that is uniformly valid for all values of ()' and is given by the general expression 

A(z, t) = I A Miz, t) 
k 

(8) 

for sufficiently large values of the propagation distance z, where each term AMiz, t), which 
results from the application of Olver's method1,2 to the respective term I Miz, (}') appearing in 
Eq. (7), is given by 

asz-+ oo . 
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Notice that the dependence of the modified complex phase function cPM(w,O') upon the 
distance of propagation z is not permissible in Olver's method. Indeed, according to the first 
condition of Olver's theorem, in order to obtain an asymptotic evaluation of a contour integral 
having the same generic form as the modified, exact integral expression of the propagated field 
for sufficiently large values of the parameter z, the complex phase function must be independent 
of z; this condition serves to ensure that the phase function does not vanish as z tends to infinity. 
From Eq. (4) it is evident that this is not the case, since 

lim (cPM(W, 0')1 = ¢(w,O') , 
z ....... + ex) 

(10) 

where the classical complex phase function ¢(w, 0') strictly maintains all ofthe conditions in 
Olver's theorem. As a consequence, the first condition in Olver's theorem may be relaxed for 
the particular case of the modified complex phase function considered here. 

As an example, the modified asymptotic approach is now applied in order to evaluate the 
propagated field due to an input Gaussian-modulated cosine wave with initial pulse width 

2T = 2. 0 fsec and carrier frequency We = 5 . 75 X 1016 sec - \ at a propagation distance 
z = 1 . 0 11m in the single resonance Lorentz medium originally chosen by Brillouin15, so that 

Wo = 4.0 X 1016 sec-I, b2 = 20.0 X 1032 sec- 2 and c5 = 0.28 X 1016 sec-I. The 

dynamical evolution of the five saddle points of cP M( w, 0') in the complex w-plane as a function 
of 0' is illustrated in Fig. 1; it is clear that they are all isolated and of first-order for all values 

Wi = Im{w} (x 1016 sec-I) 

7.5 

SPM5 : SPM1 : SPM2 \ ' \ ' 

0.0 ----------, -------------:- ----------h -----:- -
w-r ' 

\ (}rcMl =: 5 .6198 
w' _ 

-7.5 

- 7.5 0.0 7.5 

wr = Re{w} (x 1016 sec-I) 

Figure 1. Dynamical evolution of the saddle points SPMk, k = 1,2, ... ,5, of the modified complex phase 
function ~(w,(}') in the complex w-plane, for an input unit-amplitude Gaussian-modulated 
cosine wave with initial pulse width 2T = 2.0 {sec and carrier frequency We = 5.75 X 1016 sec-I, 
at a propagation distance z = 1.0 pm in a single resonance Lorentz medium. The arrow on each 
path indicates the direction of motion ofthe respective saddle point as (}' increases over the domain 
(}' E [-10.0, + 10.0). Here, the quantities (}rcM> and WrcM>, k = 1,2, denote the space-time parameter 
value and the real frequency value, respectively, where the trajectory followed by the 
corresponding saddle point SPMk of ~(w,(}') intersects the real frequency axis. 

of 0'. The exact, numerically determined behavior of the real part of the modified complex 

phase function at the saddle point locations X~WSPMk' 0') = Re{ cP~WSPM" O')}, 
k = 1,2, ... ,5, is illustrated in Fig. 2. This figure readily allows for an accurate determination 
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2.0 
I 

0.0 
XM<WSPMl' tJ·) -, - ~ ------'\- - - - - - - . - - - - - - - - - - -

I 

x.<w"'~,~ I , , ~"'W6') I 
, 

I 

- e' I 

XM<WSPM4' ) ~ I 

I 

I 

- 4.0 

I 

X~WSPM5' e') I , 

'" 
I 

I , 

-31 I 4-} \6 
I 

- 10.0 

-2.0 1.0 
- 10.0 0.0 10.0 

e' 
Figure 2. Behavior of the real part of the modified complex phase function at the saddle point locations 

XM(wspMl,O')=Re{<P,v(wspMl,O')}, k = 1,2, ... ,5, for an inpnt unit-amplitude Gaussian-modulated 
cosine wave with initial pulse width 2T = 2.0 fsec and carrier frequency We = 5.75 X 1016 sec-l, 
at a propagation distance z = 1.0 p.m in a single resonance Lorentz medium. This behavior is 
illustrated for values of 0' in the domain O'E[ -10.0,+ 10.0); notice here the values of 0' where 
the curves XM(w.pMl,O '), k = 1,2, ... ,5, intersect. This diagram illustrates the relative dominance of 
the saddle points of <P,v(w,O ') for each value of 0'. 

of the relative dominance of these saddle points for each value of e'. For example, at 
e' = - 2 , 0 the most dominant saddle point is SP M3' followed by SP M2' then by SP MI' and 
then by SPM4, while SPM5 is the least dominant saddle point at this value of e'. The isotimic 
contours of the real part of the modified complex phase function XM<w, e') at two different 
values of the space-time parameter e' are illustrated in Fig. 3. An examination of the two 
diagrams appearing in this figure allows the determination of the relevant saddle points of 
If>M(w, e'), through which the deformed path ~(e') must pass, for any given value of e'. For 
example, it is evident from the top diagram in this figure that at e' = - 2 . 0 the deformed path 
~ passes through all the saddle points except SPM3 which, albeit the most dominant saddle 
point, is irrelevant in the asymptotic analysis at this value of e' and thus is not considered; SP M2 
is then the relevant, dominant saddle point of If> M( w, e') at this value of e'. A straightforward 
application of Olver's theorem to each of the deformed contour integrals I Miz, e') taken along 
each of the respective component paths ~ Mk comprising the deformed path ~ at each value of 
e', each of which passes through a corresponding single, relevant saddle point SP Mk of 

If>M(w, e') at that value of e', results in a uniformly valid asymptotic description of the 
propagated field that is given by the following sequence of expressions: 

(11a) 

when - 00. < e' ~ - 3 . 7, 

(11b) 

when - 3 . 7 < e' ~ 4 . 1, and 
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- 7.5 0.0 7.5 

w, = Re{w} (X 1016 sec-I) 

XM(w,O') (X 1016) : ____ -100.0 (SPMS) 
____ -86.2 ____ -75.0 (SPM4) ____ -61.0 ____ -50.0 

____ -25.0 (~~~J -7.92 (~~~~-4.74 --- 0.00 (SPMl) 7.76 

- 7.5 0.0 7.5 

w, = Re{w} (X 1016 sec-I) 

X~w,f)') (X 1016): ____ -100.0 (~~~~-86.6 (~~~4!_65.0 ____ -50.0 ____ -25.0 

(~~~J-5.40 (~~~~ -3.59 (SPM2)_1.41 ___ 0.00 __ 5.00 

Figure 3. Isotimic contours of the real part of the modified complex phase functionXM(w,O') in the complex 
w-plane, for an input unit-amplitude Gaussian-modulated cosine wave with initial pulse width 
2T = 2.0 fsec and carrier frequency We = 5.75 X 1016 sec-I, at a propagation distance z = 1.0 11m 
in a single resonance Lorentz medium, In the top diagram the space-time parameter is equal to 
0' = -2.0 while in the bottom diagram it is equal to 0' = +5.0. In each of these diagrams the bold 
dashed line depicts the new integration path 9l to which the original integration path C is deformed 
at the respective value of 0' (for Gaussian pulse propagation the original integration path C 
coincides with the real frequency axis); the deformed path 9l is comprised of a superposition of 
component paths 9lMk each passing through the respective single, relevant saddle point SPMk of 
<PM(W,O') with respect to which it is an Olver-type path. Notice that in the top diagram only the 
four saddle points SPM2, SPM1, SPM4 and SPMS are relevant to the asymptotic analysis, whereas 
in the bottom diagram all five saddle points are relevant. 
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(llc) 

when 0' > 4. 1. Each of the terms AMlAz, t) appearing here is given by Eq. (9). 

DISCUSSION 

For a single resonance Lorentz medium the dynamical evolution of the propagated field in 
Gaussian pulse propagation of arbitrary initial pulse width may be described using the general 
expression given in Eq. (8), namely 

A(z,t) = LAMlAz,t) , 
k 

(12) 

where the summation index k refers only to those saddle points of the modified complex phase 
function (/>M(w, 0') that are relevant at the particular value of 0' considered. Each of the terms 
AMlAz, t) appearing in Eq. (12) represents a single pulse component of the propagated field 
A(z, t) that is given by Eq. (9) and is due to the asymptotic expansion about the respective single, 
relevant saddle point SPMk of (/>~w, 0'). If SPMI is the relevant, dominant saddle point of 
(/>~w, 0') in the O'-interval LJOMI, then AM~Z, t) is the dominant pulse component of A(z, t) 
over this 0' -range. The evolution with time of the instantaneous frequency of oscillation of 
AM~z, t) in the O'-interval LJOMb as well as that of A(z, t) in this O'-range, is then given by the 

real part of the respective relevant, dominant saddle point location Re\wSPM'(O')} as it evolves 

with time in the complex w-plane. Moreover, in the O'-interval LJOMb the envelope of the 
dominant pulse component A Ml(z, t) of the propagated field A(z, t), as well as that of A(z, t) in 
this O'-range, attains its peak value when the trajectory followed by the respective relevant, 
dominant saddle point SP Ml intersects the real frequency axis in the complex w-plane; the 
quantities O'CM1 and w'CM/ denote the space-time parameter value and the real frequency value, 
respectively, at the intersection point. This point of intersection then marks the frequency of 
oscillation of the envelope peak of this pulse component which is denoted by 
w, = Re{w} = wpeakM,' while it occurs at 0' = ()peakM/ E LJOMI-

A detailed numerical study9 of the dynamics of the saddle points SP Mh k = 1,2, ... ,5, of 
the modified complex phase function (/>M(w,O') revealed that either SPM1 or SPM2 is the 
relevant, dominant saddle point of (/> M( w, 0') in any given O'-interval of primary interest, so 
that either AM1(z, t) or AM2(Z, t), respectively, is the dominant pulse component of the 
propagated field A(z, t) over this 0' -range. Attention may then be focused exclusively on the 
two saddle points SPMh k = 1,2, and the corresponding two pulse components AMiz, t), 
k = 1,2, of A(z, t). For an input Gaussian-modulated harmonic wave with a very large initial 
pulse width 2T > > 1/ d, and/or at a very short propagation distance z in the mature dispersion 
region of a single resonance Lorentz medium, the dynamical evolution of the propagated field 
is dominated by the single pulse component that is due to the asymptotic contribution of the 
corresponding single relevant, dominant saddle point of (/> M( w, 0') whose trajectory crosses the 
real coordinate axis in the complex w-plane closest to the applied carrier frequency Wc- In this 
case, the significant frequency components that are present in the spectrum of the propagated 
field are those that lie in a narrow spectral region about the carrier frequency. However, as the 
initial pulse width 2T is decreased, and/or as the propagation distance z is increased, both terms 
AMI (z, t) and A M2(Z, t) may be significant in certain O'-intervals, and the propagated field 
A(z, t) may break up into two pulse components; in the extremely ultrashort pulse regime 
2T < < lid these are the well known5- 9 generalized Sommerfeld and generalized Brillouin 
precursor fields. In this case two ranges of frequency components may be present in the 
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propagated field spectrum; one is located above, while the other is located below the absorption 
band of the dispersive medium. 

This behavior is clearly seen in Figures 4 and 5 which illustrate the dynamical evolution 

A~~~~~~ ________ ~ ____________ ~~~~~~~ 
2.0 =Wpeaks 5!6.4347X I O sec-I 

0.0 

= 2.7212 

1.0 3.0 5.0 
0' 

O . O -r--------~mm 

1.0 3 . 0 5.0 
0' 

Figure 4. The dynamical field evolution due to an input unit-amplitude Gaussian-modulated cosine wave 
with initial pulse width 2T= 2.0fsec and carrier frequency We = 5.75 X 1016 sec-I at a propagation 
distance z = 83.92z.i = 1.0 11m in a single resonance Lorentz medium, where Zd is the absorption 
depth at the carrier frequency. Here, the input Gaussian envelope at the plane z = 0 is chosen to 
be centered at the time to = 15.0T, The experimental result of the Hosono code is shown in the top 
diagram, while the respective modified numerical asymptotic theory result is shown in the bottom 
diagram. 

of the propagated field amplitude, and its instantaneous frequency of oscillation, respectively, 
for the same input field considered in the example presented in the preceding section. Figure 
4 clearly shows that the result of the modified asymptotic approach, which is referred to here 
as the modified numerical asymptotic theory and is illustrated in the bottom diagram of Fig. 4, 
is in excellent agreement with the corresponding result obtained from a purely numerical 
experiment, which is referred to here as the Hosono code and is illustrated in the top diagram 
of the figure. According to the modified asymptotic approach, the propagated field is essentially 
comprised of a single pulse component that is due to the asymptotic contribution of the saddle 
point SP M2 (see Fig. 1), which is the single relevant, dominant saddle point of I/> M(w, 0') for 
all 0'; this pulse component is then denoted by AM2(z,t). Its envelope peak occurs at 
Opeak = '2 . 7210 and it oscillates with instantaneous frequency 

M2 

wpeak == 6 . 4347 X 1016 sec -1. According to Fig. 1, the trajectory followed in the complex 
M2 

w-plane by SP M2 intersects the real frequency axis at the real, positive frequency value 

W'CM2 = 6 . 4291 X 1016 sec-I, which is in very close agreement with the instantaneous 
oscillation frequency value wpeakM2' and this intersection occurs at the space-time point 
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OSCILLATION FREQUENCY (X 1016 sec- 1) 

6 . 60 +: Modified numerical asymptotic theory , 

6.15 

[ 2 2]1/2 w1 - 0 , 
.. -- -- ............ --_ .... ----- -- .. -- -_ .... -, 

5.70 
lij .. _----------------------- ..... _---------- ... _------

- 10.0 
()' 

1.0 
0.0 10 .0 

Figure 5. Evolution of the instantaneous angular frequency of oscillation for the dynamical field evolution 
due to an input unit-amplitude Gaussian-modulated cosine wave with initial pulse width 
2T = 2.0 [sec and carrier frequency We = 5.75 X 1016 sec-1 at a propagation distance 
z = 83.92z.i = 1.0 IJm in a single resonance Lorentz medium, where Zd is the absorption depth at 
the carrier frequency. Here, the input Gaussian envelope at the plane z = 0 is chosen to be centered 
at the time to = 1S.0T. The evolution of the instantaneous oscillation frequency is illustrated for 

values of 9' in the domain 9' E [-10.0,+ 10.0]. The crosses denote the frequency of oscillation 
values that were determined from the modified numerical asymptotic theory, whereas the solid 
line denotes the real part of the location of the single relevant, dominant saddle point of the 

modified complex phase function, as a function of 9' . 

(}rCM2 = 2.7411, which is in similar agreement with the space-time value (}peakM2' Moreover, 
according to the results illustrated in Fig. 5, the time evolution of the instantaneous oscillation 
frequency of the propagated field, evaluated here using the modified asymptotic approach, is 
given almost exactly by the real part of the relevant, dominant saddle point location 

Re{wSPM2«(}')} as it evolves with time in the complex w-plane. 
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INTRODUCTION 

The mathematical formulation of electromagnetic wave phenomena in lossy, dispersive 
media is well known and understood. Furthermore, the interpretation of Poynting's 
theorem as a statement of conservation of energy for the coupled electromagnetic field­
medium system is widely accepted l . However, its interpretation with regards to the 
thermal energy generated by a given electromagnetic field in a lossy medium is fre­
quently misunderstood and incorrectly applied if the material is dispersive (as required 
by causality). Poynting's theorem for a source-free region of space may be expressed 
as* 

- rIf s (r, t) . hda 
'jfs~ ~ 

UJ rrr (£(r t). a12(r" t) + H(r t). a§(r" t)) dv 
~47l'~ JJJv ~ ~, at ~ ~, at 

+ JJfv.zc(r"t)·f(r"t))dv (1) 

The generally accepted interpretation of Poynting's theorem identifies the left-hand side 
of this equation as the influx of radiant electromagnetic power into the region enclosed 
by the surface S and the right-hand side of this equation as the combined power densities 
of the combined electric and magnetic field and medium systems within that region. 
Controversy ensues when attempts are made to separate these power densities into 
their dissipative and reactively-stored components. The appropriate general form of 

* The double-bracket notation (.( used in this paper contains the conversion factors for the gaussian 
system of units. For MKS units, the bracketed factors are to be disregarded. 
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this separation may be formally stated by the relation 

. (2) 

The three new terms that are introduced on the right-hand side of this equation (2) con­
stitute a more detailed interpretation of the power densities appearing on the left-hand 
side of that equation. The energy density Ue(r" t) represents the sum of the electric field 
energy density and the energy density that is reactively stored in the coupled electric 
field-medium system. Analogously, the energy density UmCr, t) represents the sum of 
the magnetic field energy density and the reactively-stored energy density of the cou­
pled magnetic field-medium system. The energy densities that are said to be reactively 
stored are eventually converted back into electromagnetic energy and contribute to the 
propagating field. The third term, Q(r" t), appearing on the right hand side of equation 
(2) represents the dissipated power density of the field that has been converted into 
thermal power. This thermal power density is known as the evolved heat2 • 

Many engineers and physicists consider the power dissipation in a lossy dielectric 
to be given by one of the following expressions: 

~_1 ~ W f"IEI2 
411" 2 ' 

or -21 (J'IEI2 

The first of these expressions neglects the material dispersion, the second also neglects 
dispersion and represents a time-averaged power density which is only applicable to 
cw-fields, and the third expression is the same as the second, except that it labels the 
lossy part of the dielectric response function as conductivity. 

Barash and Ginzburg2 have shown that the general separation described in equation 
(2) may not be accomplished except for the most trivial cases of a non-dispersive 
medium and monochromatic fields. They have further demonstrated that it is necessary 
to specify a dynamical medium model which clearly identifies its loss mechanisms in 
order to arrive at an explicit expression for the evolved heat. In this paper, a closed­
form expression is presented for the evolved heat in a non-magnetic, non-conductive, 
lossy dielectric which is described by the classical Lorentz model. Numerical results of 
the evolved heat for various cases of ultra-short rectangular pulses are presented which 
demonstrate the need for this proper accounting of dispersion effects when considering 
short-pulse electromagnetic heating of dielectrics. 

EVOLVED HEAT IN A LORENTZ-MODEL DIELECTRIC 

The Lorentz model is a classical atomic model which describes a linear dielectric 
material as a collection of neutral atoms with electrons that are elastically bound to 
their nuclei. This model is intended to describe any dielectric that is dominated by elec­
tronic polarization effects so that the electric displacement vector may be approximated 
by 

(3) 

where E(r" t) represents the induced macroscopic polarization vector. For this sim­
plified medium, the equation (2) for the separation of power densities into lossy and 
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reactive components becomes 

~ 1 ~ a fO~?(r"t) ( ) aE(r"t) _ aUe(r"t) Q( ) -- +Ert· - + rt 
47l" at 2 - -' at at -' 

(4) 

and the evolved heat is thereby defined as the lossy component of the quantity 

( a1?(r"t)) 
.(;:.,t) . at 

If the number density of electrons of mode j is given by Nj, then the macroscopic 
polarization vector may be written as 

E(r"t) = E Nj(l!)r.,t)) 
j 

(5) 

where the spatial averaging process is indicated by the brackets ( .). Here, l!)r.,t) is 

the induced microscopic polarization moment that is defined by the expression 

P .(r" t) = -e r,).(t) , 
-) 

(6) 

where r,/t) is the position vector of an electron of mode j relative to its mean equi­
librium position, hereafter referred to simply as the position vector. The macroscopic 
polarization vector may now be written as 

so that its time derivative is given by 

aE(r" t) __ " . a( r,/t)) a - eL..JN) a t . t 
) 

(7) 

(8) 

The microscopic electric field is linked to the position vector by the dynamical 
equation of motion for the electron. For the Lorentz model, this equation of motion is 
given by 

(
d2r(t) dr .(t) ) 

- e~ (r" t) = m ;;2 + 28j -~t + w;r,/t) (9) 

where e is the magnitude of the charge of the electron and m is its mass. The undamped 
resonance frequency is specified by Wj and 8j is the phenomenological damping factor 
which accounts for all loss mechanisms. It is these loss mechanisms which generate 
the evolved heat. The subscript j = 0,2,4, ... indicates the specific oscillator mode of 
the molecule. If the number density of electrons is not too great, then it is reasonable 
to approximate the spatial average of the microscopic electric field to be equal to the 
macroscopic electric field. Under this assumption, the macroscopic electric field may 
be related to the spatially averaged electron position vector by 

(10) 
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Since the evolved heat is the lossy component of the quantity (f(z;,t)' 8?::87,t)), we 

take the scalar product of equation (8) and the middle term of the right-hand side of 
the above equation to yield 

Q(r t) = 2m'" N8Ia(r)t))12 
-' ~ J J at 

j 

(11 ) 

With the definition for the square of the plasma frequency, given by 

(12) 

the evolved heat may then be written as 

(13) 

This equation (13), was first derived by Barash and Ginzburg 2. In the presence of an 
external electric field, the position vector of the electron is governed by the microscopic 
equation of motion (9), Upon solving this equation for the position vector as a function 
of the electric field yields 

1 100 elm -iwt r:(t) = -2 2 2 '8 ~(r:,w) e dw 
J 7r -00 W - Wj + 2z jW 

(14) 

The spatial average of the electron position vector is then given by 

1 100 elm 
(r:/ t )) = 27r -00 w2 _ wJ + 2i8j w ![(r:,w) e-iwt dw (15) 

and its time derivative may be expressed as 

a( r:J.(t)) = _1 Joo -iwe/m 
at 27r -00 w2 - w; + 2i8j w 

§(r:, w) e-iwt dw (16) 

The general expression for the evolved heat density in a multiple resonance Lorentz 
medium may now be written as 

Q(r:,t)=2~L. b2lil~jOO -iw §(r:,w)e-iwtdwI2 (17) 
" J J 27r -00 w2 - wJ + 2ilij w 

The integral appearing in this equation (17) has no known, exact, closed-form solution, 
with the obvious exception of the trivial case of a monochromatic field. It is, however, 
possible to apply asymptotic methods of analysis to arrive at an approximate closed­
form solution. The saddle point dynamics that are critical in the development of the 
asymptotic theory may also be used to explain all of the features observed when purely 
numerical methods are used to generate quantitative results for specific cases of interest. 
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ASYMPTOTIC EXPANSION OF THE EVOLVED HEAT IN A 
SINGLE RESONANCE LORENTZ MODEL DIELECTRIC 

For a single-resonance Lorentz model dielectric, equation (17) for the evolved heat 
reduces to 

b2511 100 -iw . 12 Q(r,t) = -2 - 2 2 2'5 E(r,w)e-·wtdw 
~ 7r 27r -00 W - Wo + t W ~ ~ 

(18) 

The integral which needs to be evaluated is then given by 

m ar-/t ) 1 100 -iw --- - - !!!(r.,w)e-iwtdw 
e at - 27r -00 w2 - w5 + 2i5w .- .-

(19) 

which is proportional to that component of the electron velocity which is due to the 
external electric field. The electromagnetic field considered here is a linearly polarized, 
plane-wave field that is propagating through an infinite, source-free Lorentz medium in 
the positive z direction. This class of fields satisfy the vector Helmholtz equation such 
that the propagated spectrum of the electric field component is expressed in terms of 
its initial spectrum at the plane z = ° by 

!2(z,w) = !2(O,w)eikz (20) 

where k is the complex wave number that is defined by k(w) = ~ n(w), where n(w) is 

the complex index of refraction of the dielectric. In order to facilitate the asymptotic 
analysis, the dimensionless space-time variable 0 = !f is introduced so that equation 

(19) may be rewritten as 

m ar)t) 1 100 -iw 
-;;~ = 27r -00 w2 _ w5 + 2i5w !2(O,w) e~<I>(w,6) dw (21) 

where 
~(w, 0) = iw[n(w) - 0] (22) 

is called the complex phase function. The electromagnetic field is specified by the 
temporal behavior of its electric field vector at the z = ° plane and is taken here to be 
given by 

f(O, t) = sin (wet) [u(t) - u(t - T)] X (23) 

where u(t) is the Heaviside unit-step function. This then represents a rectangular 
envelope electromagnetic pulse of initial time duration T and carrier frequency We' The 
spectrum of this initial field is given explicitly by 

!2(O,w) = ~ [_1_ (1 _ ei(w+we)T) __ 1_ (1- ei(W-We)T)] X. (24) 
2 w +we w -We 

Since the electric field is real-valued and the Lorentz model of the dielectric dispersion 
is causal, they obey the symmetry relations E(O,-w) = E*(O,w*) and ~(-w,O) = 
~'(w', 0). Upon substitution of the expression (24) for the initial electric field spectrum 
into equation (21) and exploiting these symmetry relations, there results 

m a( l:.j(t)) 1 "D {1°O iw 1 ( .( _ )T) ~.I.( 8) } - = - ,,,,,e -- 1 - e' W We e c'l' W, dw 
e at 27r -00 w2 - W5 + 2i5w w - We (25) 
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where Re{·} indicates the real part of its complex valued argument. A final simpli­
fication of this expression may be made by treating this pulsed field as the difference 
between a unit-step modulated field and a delayed unit-step modulated field, as given 
by 

m {)( r./t)) • 
{) = [I(z, 0, 0) - I(z, OT, T)]x 

e t 
(26) 

where 

I(z,OT, T) -,,,e e -- ec ,T W 1 'D {-iwcT 100 iw 1 !!:<I>(w 9 )d } 
211" -00 w2 - w~ + 2i6w w - We 

Is(z, OT, T) + h(z, OT, T) + Ic(z, OT, T) (27) 

and OT = c( t - T) / z. It is therefore only necessary to determine the behavior of 
I(z, OT, T) for arbitrary T :::: O. The evolved heat due to a step-modulated carrier field 
in a single resonance Lorentz medium is then given by 

b26 
Q(r., t) = 211" I[I(z, 0, 0) - I(z, OT, T)]1 2 (28) 

No exact method of analysis is presently known for the evaluation of this integral over 
the space-time domain 0 :::: 1 where the field evolution occurs. The best alternative is 
provided by the modern asymptotic theory3-6. Oughstun and Sherman7- 9 have pro­
vided a detailed investigation of the asymptotic analysis of integrals which have the 
same kernel as the integral that appears in equation (25). Because of this, complete 
derivations of the final asymptotic expressions are not included here, but a description 
of how the various signal components are manifested within the integral representation 
are presented. 

ASYMPTOTIC METHOD OF ANALYSIS 

The integral appearing in equation (25) is of the canonical form 

A(z,o)=~ roo A(0,w)e~<I>(w.9)dw . 
211" }-oo 

(29) 

The first step in the asymptotic analysis of the propagated field A(z, t) is to express the 
integral representation of A(z, t) in terms of an integral I(z, 0) with the same integrand 
but with a new contour of integration P(O) to which the original contour C may be 
deformed. By Cauchy's residue theorem, the integral representation of A(z, t) and the 
contour integral I(z,O) are related by 

A(z, t) = I(z,O) - Re [211"i A(O)] (30) 

where 

(31) 

is the sum of the residues of the poles that were crossed in the deformation from C to 
P(O), and where I(z,O) is defined by 

I(z,O) = ~Re{ r A(0,w)e~<I>(W.9)dw} 
211" }P(9) (32) 
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For the asymptotic evaluation of the contour integral I(z,O) as z -+ 00, the path P(O) 
is chosen as a union of the set of Olver-type [6] paths with respect to whichever saddle 
points of the complex phase function </J(w,O) are necessary to intersect in order to 
form a complete contour P(O) that is homotopic to C. Each Olver-type path yields 
an asymptotic contribution to the integral. However, only those paths associated with 
the dominant saddle point (or points) make significant contributions for large values 
of the parameter z / c. The dominant saddle point is defined as that saddle point with 
the greatest value of X(w, 0) = Re[</J(w, 0)] at it and hence has the least exponential 
attenuation associated with it. 

For a single-resonance Lorentz medium, there are two pairs of saddle points and 
each pair is associated with a component of the medium's impulse response which gives 
rise to a transient precursor field. One saddle point pair remains distant from the 
origin in the complex w-plane and begins at w = ±oo - 2i8 when 0 = 1 and then 
chirps down in frequency in the lower half w-plane to end up at the outer branch­
point zeroes of the phase function. These distant saddle points are associated with 
the Sommerfeld precursor field which is stimulated by the spectral components of the 
signal that are above the plasma frequency of the medium. The other saddle point 
pair begins along the imaginary w-axis and approach each other as 0 increases. After 
coalescing into a single, second-order saddle point at 0 = 01 , these two saddle points 
move off of the negative imaginary axis and towards the branch point singularities of 
the phase function. This saddle point behavior characterizes the quasi-static buildup 
and subsequent oscillation of the Brillouin precursor field that chirps up in frequency. 
The total field may then be represented as the sum of three field components as 

I(z,O) = Is(z, 0) + h(z, 0) + Ie(z, 0) (33) 

where the subscripts s, band c signify the Sommerfeld, Brillouin and signal compo­
nents, respectively, where the signal component is due to the residue of the pole at 
w = We that is first crossed in deforming the contour C to P(O) when 0 = Os. 

A detailed description of the asymptotic expansion of integral (27) may be deter­
mined by substituting the spectral amplitude function 

. T -lW u(w - we) = e-'W ' ------0---
w2 - w~ + 2i8w w - We 

(34) 

for the spectral amplitude function u( w-we ) that appears in equation (l. 7) of references 
[8] and following the development presented in that paper. 

CALCULATIONS AND DISCUSSION 

In order to verify the accuracy of the asymptotic expansion of the integral represen­
tation of the propagated field that is given by equation (33), a numerical determination 
of the evolved heat was made through the use of an inverse-Laplace transform algorithm 
which serves as a basis of comparison for the asymptotic description. This numerical 
code is based upon an extension of an algorithm developed by HosonolO which has been 
corrected and tested for accuracy in its application to the problem of dispersive pulse 
propagationll . The specific case adopted for all calculations considered here is that 
of a pulse of carrier frequency We = 1 X 1016 sec-I, which is just below the resonance 
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frequency Wo = 4 X 1016 sec-1 of the medium considered here and which excites a strong 
Brillouin precursor. The asymptotic behavior of the evolved heat for a 10 oscillation 
rectangular envelope pulse at a propagation distance of 3 absorption depths is shown 
by the solid curve in Fig. 1 and is seen to be in very good agreement with the numeri­
cal calculations indicated by the dotted curve in the figure. This then establishes the 
accuracy of the asymptotic code that is used here. 

- asymptotic code 
. . . .. numerical code 

5 

A 
: 

It 

:~N ./1/ V\v 
~.4 1.5 1.6 

u 
1.7 

Theta=c*t!z 

A ~ 

\AI 
1.8 

: 

:1'\ 
1.9 2 

Figure 1. The evolved heat of a rectangular envelope electromagnetic pulse in a Lorentz 
medium at a propagation distance of 3 penetration depths. 

Consider first determining the penalty in accuracy that is made when dispersion is 
neglected in a given ultra-wideband electromagnetic heating calculation. This is best 
approached through a consideration of several different sets of calculations that depict 
the evolved heat at various penetration depths in the lossy medium. The first such dis­
play is presented in Fig. 2 which shows a 10 oscillation pulse at four different absorption 
depths. The carrier field dominates the pulse at the smallest propagation distance, but 
then attenuates at a far greater rate than the Brillouin precursor which carries energy 
much further into the medium. The observed asymmetry of the leading and trailing 
precursors is due to their different initial conditions. While the medium is quiescent at 
the onset of the field, the trailing precursor begins with a quasi-harmonically oscillat­
ing medium. As the carrier field decays into the medium, the leading and trailing edge 
precursors are seen to become symmetric. 
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Figure 2. The evolved heat of a rectangular envelope electromagnetic pulse in a Lorentz 
medium at propagation distances of 1,3,5 and 10 penetration depths. 

Analogous numerical calculations of the evolved heat have also been made wherein 
the frequency dispersion was neglected in such a manner that the complex index of 
refraction was assumed to be independent of the frequency and equal to that of the 
dispersive model's index of refraction evaluated at the carrier frequency. This quantity 
is called here the evolved heat of the carrier and, when subtracted from the evolved heat 
of the fully dispersive model, yields a quantity that may be considered to be the evolved 
heat of the precursor fields alone. Although this is not a precisely true definition, it is 
sufficiently accurate to provide a valid quantitative measure of the dramatic difference in 
attenuation rates that the two field components have. Figure 3 illustrates the separate 
thermal heating profiles as a function of the penetration depth of both the carrier field 
and the precursor fields for a 10 oscillation ultra-wideband pulse. It is clearly seen that 
large errors can result from neglecting the transient phenomena, especially at greater 
propagation depths. Even though it may be argued that the field is negligible at 8 
penetration depths, at which distance the carrier power is down 70 dB, the evolved 
heat of the precursors at this depth is 40 dB above the carrier at -30 dB. In some 
particular electromagnetic shielding situation, this could result in a serious error. 

As a final point of observation, it is clearly important to realize that the pulse need 
not be ultra-short for these effects to be manifested, while it must be ultra-wideband. 
This is clearly seen in figure 4 which depicts the ratio of the heat density generated by 
the precursor fields to the heat density generated by the carrier field versus the number 
of oscillations present in the pulse at various propagation depths. Once the field has 
traveled a few absorption depths, the carrier is so greatly attenuated that even a pulse 
of 30 or more oscillations would be poorly described as being monochromatic, provided 
that its spectrum is ultra-wideband. 
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Figure 3. Net heat densities generated by the precursors and the carrier field vs. propagation 
distance for a 10 oscillation rectangular envelope electromagnetic pulse in a Lorentz medium. 
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Figure 4. The ratio of the the net heat density generated by the precursors to the net heat 
density generated by the carrier for the case of a rectangular envelope electromagnetic pulse 
in a Lorentz medium at a propagation distance of 3 penetration depths. 
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PROPAGATION OF UWB ELECTROMAGNETIC 

PULSES THROUGH DISPERSIVE MEDIA 

Steven L. Dvorak and Donald G. Dudley 

Electromagnetics Laboratory 
ECE, Bldg. 104, University of Arizona 
Tucson, AZ 85721 

INTRODUCTION 

An efficient method for the analysis of ultra-wideband (UWB) electromagnetic 
pulses propagating through dispersive media is indispensable in applications involving 
high-power and UWB radar systems. In such systems, it is often necessary to model 
propagation through plasmas (i.e., the ionosphere) and in waveguides. If a simple 
cold-plasma model is utilized for the ionosphere (i.e., the plasma is characterized by 
a plasma cutoff frequency), then the dispersion is analogous to that exhibited in a 
single-mode, homogeneously-filled waveguide. 

In this paper, we derive closed-form expressions for the fields associated with 
a double-exponential, UWB electromagnetic pulse which is propagating in a sim­
ple plasma. We begin the paper by demonstrating that the inverse Fourier trans­
form representations for the transient field components satisfy second-order, non­
homogeneous, ordinary differential equations. We then solve these differential equa­
tions to obtain expressions involving complementary incomplete Lipschitz-Hankel in­
tegrals (CILHIs) of the first kind. Alternate techniques have been used by other 
authors to obtain equivalent transient expressions (see Dvorak and Dudleyl for his­
torical background). However, the differential equation technique, which is developed 
in this paper, can also be applied to problems where the other techniques break downl . 
This general technique can also be extended to other transient sources which possess 
analytical Fourier transforms involving transcendental functions and "pole" terms. 

The closed-form expressions, which are derived in this paper, are valuable for 
studying propagation of UWB signals in waveguides and the ionosphere. They provide 
an efficient forward model for these transfer functions since they only involve special 
functions with known convergent and asymptotic series expansions. The standard 
procedure for computing the response for UWB radar systems involves the use of a 
fast Fourier transform (FFT). In order to better understand the advantages of the 
closed-form solutions, we compare their computational features with a FFT technique. 
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DERIVATION OF THE TRANSIENT FIELDS 

We model the ionosphere as a homogeneous, cold, lossless plasma with the plasma 
cutoff frequency w; = Ne2/(meo), where N represents the number of free electrons 
in a unit volume, m is the mass of an electron, and e denotes the charge. If we ignore 
the earth's magnetic field and assume that a transient source located at z = 0 excites 
a x-polarized plane wave which propagates in the z-direction, then the transient fields 
can be represented as1,2 

Ez(z,t) = 21 JOO Ez(0,w)ej(wt-(z/clyw2_w~)dwj z;::: 0 
'If -00 

(1) 

and 

JOO . /w 2 -w2 
Hy(z,t) = -21 Ez(O,w) Y' p ej(wt-(z/clyw2_w~)dwj z;::: 0, 

'If "10 -00 w 
(2) 

where 

Ez(O, w) = L: Ez(O, t)e-iwtdt, (3) 

c = II yl-'oeo, and "10 = J 1-'01 eo· 
The electric field impulse response for the plasma (i.e., Ez(O, t) = bet)) is obtained 

in closed form by using equation 29.3.92 from3: 

wpzJt (wpJt2 - (zlc)2) 
Ex(z,t) = bet - zlc) - H(t - z/c) j z;::: 0, (4) 

cJt2 - (z/c)2 

where H(t) denotes the Heaviside unit step function. This result has been previously 
obtained by numerous authorsl. Unfortunately, the corresponding magnetic field 
cannot be represented in terms of Bessel functions. But it can be written as 

where 

-1 Be(O) 
Hy(z, t) = --:;; a(z/c) 

__ 1_jOO ei (wt-(z/clyw2 - wn 
e(cx)-2 . (.) dw. 

'If) -00 W-)CX 

(5) 

(6) 

It is also possible to obtain closed-form field expressions for more complex tran­
sient sources1. For example, we now demonstrate that the electric and magnetic fields 
associated with a double-exponential pulse excitation, 

(7) 

can be represented in terms of CILHls. For the case of the double-exponential pulse 
excitation, 

Ez(z,t) = A[e(cxt} - e(cx2)]j z;::: 0 (8) 

and 
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where e( 0:) is defined in (6) and 

1 100 ei (wt-(z/clvw2 - w't) 
f(o:) = - dw. 

2n -00 (w - jo:)Jw2 - w~ 
(10) 

The inverse Fourier transforms in (6) and (10) can be evaluated using various 
techniques1. In this paper, a technique, which is similar to the one used in\ is 
employed to find a differential equation for the general integral (10). First we make 
the change of variables, t = (cosh if/wp, z/c = (sinh if/wp, and ( = wpJt2 - (z/c)2, 
thereby yielding 

(11) 

and 

e(o:) = -. - wp--", + cosh if[o:f(o:) + H((e-.p /wp)Jo(O] . 1 { 8f(0:) } 
smhif u( 

(12) 

Using equation 29.3.92 from3, we find that f satisfies the following second-order, 
nonhomogeneous, ordinary differential equation: 

( d2 (0:) d (0:)2 . 2 ) d(2 + 2 cosh if wp d( + Wp - smh if f(o:) 

= -~ (e-2.p6((e-.p /wp) + H((e-.p /wp)[o:Jo(O - wpcoshifh(O]) . (13) 
wp 

The method of variation of parameters5 can be used to show that1 

f(a)=H(t-z/c){H(_a+)ea+(+ 1 [(o:zlc-tJa2+w~) 
J0:2 + w~ 2wpJt2 - (z/c)2 

.ea+(.Jeo(a+, 6+, 0 - (mlc + tJ 0:2 + w~) ea-(.Jeo(a_, L, 0] }, (14) 

where the CILHIs are defined as6 

(15) 

The lower limit of integration in the above integral is chosen as 6± = 00 when a± 2::: 0 
or 6± = -00 when a± < O. Substitution of this expression into (12) yields 

e(o:)=H(t-z/c){H(-a+)ea+e+ 1 [(o:z/c-tl0:2+w~) 
2wpJt2 - (zlc? V 

.ea+eJeo(a+, 6+, 0 + (m/c + tJ 0:2 + w~) ea-eJeo(a_, 6_, On. (16) 

These expressions, when used in conjunction with (8) and (9), provide closed-form 
expressions for the transient fields associated with a double-exponential pulse propa­
gating through a simple plasma. 
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Figure 1. The double-exponential pulse excitation which is used as the boundary condition at z=O.O 
m. The double-exponential pulse parameters are chosen as 0<1 = 1.0 X 107 , 0<2 = 1.0 X 108 , and 
A = 1.435. (a) Source transient response. (b) Source frequency spectrum. 

NUMERICAL RESULTS 

We consider the problem of an UWB double-exponential pulse propagating 
through a cold plasma to demonstrate the usefulness of the results that have been 
developed in this paper. We assume that the plasma is homogeneous and can be 
characterized by the plasma cutoff frequency, Wp = 1.0 X 107 sec. -1. The parameters 
in the UWB double-exponential pulse given in (7) are chosen as al = 1.0 X 107, 

a2 = 1.0 X 108, and A = 1.435. The time history and the frequency response for the 
source are shown in Figure 1. 

To demonstrate the computational aspects of the closed-form formulas, we in­
vestigate the UWB double-exponential pulse after it has propagated to the location 
z = 100.0 m in the plasma. The transient electric field at z = 100.0 m is shown 
in Figure 2a. The results in Figure 2a were computed using the closed-form CILHI 
expressions given in (8) and (16). The required CILHIs were computed using the 
algorithm outlined inl. As is clearly illustrated by Figure 2a, the early-time portion 
of this dispersed signal contains the high-frequency information. The low-frequency 
components, which travel slower, form the late-time portion of the signal (i.e., the 
signal relaxes to the plasma cutoff frequency). The plasma transfer function is plotted 
in Figure 2b for z = 100.0 m. Figure 2b clearly shows that the plasma acts like a 
high-pass filter. Frequencies below the plasma cutoff frequency are greatly attenu­
ated, and the amount of attenuation approaches a constant value at low frequencies. 
Furthermore, the portion of the spectrum above the plasma cutoff frequency remains 
unattenuated as the pulse propagates through the plasma. 

An alternate representation for the transient electric field is obtained by convolv­
ing the impulse response (4) with the source response (7): 

Ex(z,t) = AH(t - z/c){ e-a1 (t-z/c) _ e-a2 (t-z/c) 

1t-z/c [' '] wpzh (wp.j(t - tip - (z/c)2) } 
- e-a1t _ e-a2t dt' . z::::: O. 

o c.j(t - t')2 - (z/c)2 ' 
(17) 

In order to check the results in Figure 2a, we used a numerical integration algo­
rithm to compute (17). We found the results to be in excellent agreement with those 

300 



600 

a; 
:§ 500 .. .. ., 
.a 400 

o 
~ 300 .. .. 
..! 200 
~ 
.c 
U 

" 

Frontal cortex 

___ 1 mg/kg,p.o (n=5) 
-0- 3 mgfkg,p 0 ("=5) 
-4r- 10 mglkg,p.o. (n=5) 

JTp·2942 

60 30 0 30 60 90 120 150 180 210 240 

Time aUer drug admlnlslrallon (mm) 

a 

600 

500 

400 

Hippocampus 

-.- 1 mg/kg,p.o. (0=3) 
--0- 3 mg:kg,p.o. (n=3) 
~ 10 mg/kg,p.o. (n=3~ I • 

60 30 0 30 60 90 120 150 180 210 240 

Tlma alter drug admlnlslr8Uon(mln) 

b 
Figure 2. The time-history for the electric field at the location z = 100.0 m and the corresponding 
plasma transfer function. (a) Transient response. (b) Plasma transfer function. 

obtained using the closed-form expression involving CILHIs (i.e., they agreed to at 
least three significant digits in all cases tested). The CILHI representation has the 
advantage that it is much more efficient computationally than numerical integration. 
At the same time, it also possesses all of the advantages inherent to an adaptive 
numerical integration algorithm, i.e., you input the problem parameters, the loca­
tion in the plasma, and the time, and the algorithm returns accurate transient field 
data. Because of the accuracy of the CILHI results, we use them as "exact" data for 
comparison purposes in this section. 

FFT techniques are routinely employed to evaluate inverse Fourier transforms 
which are similar to the one in (6). Application of FFT techniques to this example 
illustrates a number of problems which are encountered when FFT techniques are 
used to compute dispersed UWB pulses. Because of the large signal spread in both 
the frequency and time domains (see Figures 1 and 2), a large number of sample points 
must be employed when using a FFT in order to minimize aliasing. If the frequency 
spectrum is sampled out to fmax = 3.0 X 108 Hz, then a FFT with 32,768 points yields 
results which are indistinguishable from the results plotted in Figure 2a provided they 
are plotted on the same scale. However, closer inspection shows that even with this 
large number of points, the FFT results are aliased (Figure 3). In Figure 3a, we 
increase both the maximum sample frequency and the number of sample points by 
a factor of two in order to better model the high frequency content of the signal. 
The increases lead to more accurate early-time results, but there is still substantial 
aliasing in the early-time signal. In order to investigate aliasing in the late-time results 
(Figure 3b), we sample the spectrum finer at low frequencies by holding the maximum 
sample frequency constant while increasing the number of points. As expected, this 
reduces the aliasing in the late-time response. The large number of sample points, 
which are required to minimize the effects of aliasing in the FFT data for dispersed 
UWB pulses, severely limits the usefulness of the FFT technique. This problem 
can be avoided by using the closed-form CILHI expressions. In addition, the CILHI 
expressions can be used to investigate a portion of the transient waveform, whereas 
the entire time history is computed when using a FFT. 

The magnetic field can also be computed by either applying a FFT (see (9) 
and (10)) or by using the CILHI representation (14). However, this case will not be 
discussed because of space limitations. 
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Figure 3. A comparison between the results computed using the closed-form CILHI expressions and 
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Figure 4. Spectrograms generated by applying short-time Fourier transforms to the transient electric 
field data at z = 100.0 m. (a) 0.3 /lS Hanning 'Nindow. (b) 1.0 /lS Hanning window. 

Short-time Fourier transforms are useful for obtaining further information about 
dispersed pulses. The short-time Fourier transform is defined by 

Xs(t,w) = I: h(t - r)X(r)e-jWT dr (18) 

where h(t) is a window function. Narrow time windows emphasize the transient 
behavior while wide windows better model the frequency response, e.g., Xs(t,w) = 
X(t)e- jwt for h(t) = oCt) and Xs(t,w) = X(w) when h(t) = l. 

In order to demonstrate the power of the short-time Fourier transform, we apply 
it to the transient electric field data computed at the location z = 100.0 m (Figure 
2a). Spectrograms associated with 0.3 IlS and LOlls Hanning windows are shown 
in Figures 4a and 4b, respectively. Relief maps for these two window sizes are also 
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Figure 6. Relief map for the short-time Fourier transform data produced by a 1.0 I's Hanning window. 
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provided in Figures 5 and 6. Figures 4a and 5 clearly show the oscillatory behavior 
in the tail of the transient pulse. Likewise, Figures 4b and 6 indicate that the high 
frequency components of the signal arrive at early times and the signal relaxes to the 
plasma cutoff frequency at late time. 

CONCLUSIONS 

We have demonstrated that the transient electric and magnetic fields associated 
with a uniform plane wave propagating through a cold plasma can be expressed in 
closed form in terms of CILHIs. We assumed a double-exponential pulse excitation 
in this paper, but similar results can also be derived for other transient source ex­
citations. The CILHI representations are equivalent to Neumann series expansions 
which were previously derived by other authors. However, we demonstrated that two 
relatively new series expansions for the CILHIs1 can be used to accurately and effi­
ciently compute the time history of the electric field at any location in the plasma. 
The differential-equation-based method which we developed for computing the inverse 
Fourier transforms is also more general than the methods developed by previous au­
thors. 

In order to demonstrate the computational advantages associated with the closed­
form ILHI representations, we made comparisons with results obtained using a FFT. 
Due to the long tails in both the time and frequency domains, we found that a large 
number of sample points are required to compute the transient response using a FFT. 
The closed-form ILHI representations are much easier to use than the FFT, and they 
do not require much more computation time for the same number of points. When 
only looking at a portion of the waveform, the CILHI representations are actually 
more efficient than the FFT since you can compute a smaller number of points. 

The dispersion model which we investigated in this paper is relatively simple. 
More complex dispersion models are required to handle a number of problems 7• Thus, 
we are currently extending these techniques to handle the more complex Lorentz and 
Debye dispersion models. 
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DISTORTION OF FAST PULSBS BY NON-TIM 
EFFBCTS IN COAXIAL CABLES 

Jon Barth and John Richner 

Barth Electronics, Inc. 
1300 Wyoming St. 
Boulder City, NY 89005 

INTRODUCTION 

While designing fast pulse low distortion coaxial components we have 
found limitations that must be observed when using large, low loss coax 
lines for Ultra Wide Band (UWB) pulse transmission. These effects seem to 
be unreported in the time domain literature. The purpose of this paper is 
to make others in this industry aware of these problems and also to 
detail some of the types of coax constructions that will avoid 
distortions of pulse transmission. 

The generation of high amplitude, ultra fast pulses is so difficult 
and costly that the transportation of those pulses should be done with 
minimal degradation of amplitude or risetime from all causes. The 
following information will outline some of the effects of Time Delay 
Distortion of pulses that can be generated in coaxial transmission lines. 

LARGB COAXIAL TRANSMISSION LIIIS 
USED BEYOND "CUTOPP" 

Large coaxial transmission lines can be used to minimize losses for 
fast UWB pulses. They are usually not used in Radio Frequency/Microwave 
(RF/MW) at frequencies above where they support higher order waveguide 
propagation modes. Information on the excess loss from these real but 
very narrow band width resonances is well known and published in the 
RF/MW literature. Large coax can be used in the time domain at risetimes 
that contain frequencies far higher than would be used in the frequency 
domain. The definition of CUTOFF frequency for coaxial lines in the 
frequency domain is defined by the location of the first higher order 
mode. Any noticeable amounts of this effect can be avoided in time domain 
UWB because energy is spread across tremendously wide bandwidths. Large 
coaxial lines that would support many narrow bandwidth higher order modes 
can be used because an UWB pulse has so little energy in the frequency 
band of each of these higher order modes. The higher order mode shock 
excitation of these narrow resonances by a step function (typically 2MHz 
at 8GHz) can be prevented. 

We have been able to avoid these TE and TM mode generation problems 
in large coaxial cable when using a step risetime as fast as 20 ps. for 
reflection or transmission measurements. 

An example of the possibilities for large diameter coaxial 
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transmission lines. 1s a straight six foot long air insulated pulse 
transformer which we have designed and built. It uses a three inch 
diameter outer conductor to transform a 50 ohm impedance pulse with 50 
picosecond risetime down to 0.5 ohms. We were careful to observe some 
basic rules listed below. and there was no evidence of any resonances at 
the highest sensitivities. Therefore. any resonances were below 0.1% of 
the amplitude of the time domain pulse. 

TEST METHOD 

We use a Hewlett Packard Model 54120 sampling oscilloscope. This 
scope provides on-screen digital measurements and normalization. A 
calibration procedure records a step function through a coaxial system 
path. The scope then adds or subtracts to the pulse what is needed to 
form that step function into a perfect gaussian step function. 
This calibrated addition or subtraction to the pulse becomes the basis 
for "normalization". The internal mathematical procedure also provides a 
perfect reference pulse for a range of input rlsetimes. This "norllalized" 
input pulse can be passed through a Device Under Test (OUT) to determine 
the exact distortion produced by that component at the desired risetime. 

Normalization provides two benefits. Pirst. it eliminates the 
'system' from the measurement. by mathematically factoring out the system 
losses. Second. it allows the pulse to be Gaussian filtered to any rise 
time. which is the equivalent of using a slower or slightly faster rise 
pulse into the OUT and displaying the resultant output pulse. We have 
compared the HP scope normalization results with other methods of 
risetime spoiling. and have found the scope to be very accurate. as long 
as the calibration practices are carefully followed. This feature of the 
scope has been invaluable to us as a perfect and adjustable risetime 
reference. 

DISTORTION OF FAST PULSBS TRAVERSING A BEND IN TEll LINES 

The risetime degradation and extra ringing from a single half turn of two 
feet of 1/2 inch dia. coax is only slightly noticeable with risetimes as 
fast as 30 ps. Risetime degradation can however become very troublesome 
in large coax. used for minimal loss. when formed in tight bends. The 
amount of this effect at any affected risetime depends on the diameter of 
the coaxial conductors and the radius of the cable bend. 

Most of our work requires type N connectors so we use precision 3.5 
am to type APC-N adapters on the head of the sampling scope. To compare 
the risetime pulse out of channel _1 to the terminating channel _4 of our 
HP 54120 sampling scope. we built a very low loss coaxial jumper. See 
Pig. 1. 

Fig. 1 Pig. 2 
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It had a 0.250 inch dia. copper tube inner conductor with a 90 degree 
0.750 inch radii on either end to line up with the 4 . 500 inch center to 
center spacing between the two sampling head connectors . 

The ends of the 0.250 inch dia. copper inner conductor and 0 . 575 
dia. aluminum outer conductor 50 ohm line. had a 3 degree inner conductor 
and a 7 degree outer conductor taper down to the 7 mm . APC-N connectors. 
The Time Domain Reflection coefficient (TOR) was less than 3% from the N 
connector through the taper. the 0 . 250 in. dia. bent line and the other 
taper section and N connector . The pulse risetime into this low loss 
jumper was 36.8ps. with a 2 .6% overshoot . The output pulse was very 
distorted with 14.7% overshoot after a significantly slowed risetime of 
59.4 ps . We have seen slowed risetimes for unknown reasons many times 
before. but the response of this jumper finally helped in our 
understanding of previous problems. 

Desiring more coax bend distortion information. we built another low 
loss 50 ohm single 180 degree bend with a 2.250 inch radius and the same 
0.250 inch dia . copper inner conductor. See Fig 2. This coaxial line bend 
produced a faster risetime of 47.8 ps. with 12.1% overshoot. with the 
same 36.8 ps input risetime. 

This information made us suspicious of the output risetime and 
overshoot of our model 732 pulse generator. The output of the coaxial 
reed switch was 50 ps . with a small amount of overshoot . To provide the 
shortest output pulse width. the charge line was a straight short 
connection to one end of the reed switch . The output of the switch fed 
into a 0.188 inch dia copper inner conductor that immediately makes a 180 
degree bend with a 0 .750 inch radius . It then travels by a straight line 
to the output connector . This relatively large diameter inner conductor 
provides low loss and withstands the 6kv DC charge voltage . See Fig. 3. 

Fig. 3 

From the information learned about curved coaxial lines. we tested the 
output of the switch by simply reversing the output and the charge line 
connectors. This arrangement allows the output pulse to travel straight 
out to the connector labeled "Charge Line" without a bend in the output 
line . The risetime improved from 50 ps. to slightly less than 40 ps. with 
almost no overshoot . 

The only theoretical analysis of curved coaxial transmission lines 
has been done by Krempasky in the frequency domain for lines small enough 
to avoid higher order modes . [1] 

PROPOSED TIME/DIMENSION RATIO 

For rule of thumb information on the potential problems described. 
we would like to propose a concept of Rise Time Length. (RTL). This is an 
empirical formula that provides an electrical dimensional to relate to 
the physical dimensions of the coaxial transmission line. 
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RTL= c*RTI.;er 

Rise Time Length = velocity of light times the 10% to 90% risetime 
divided by the square root of the dielectric constant of the medium . 

This is similar to the wavelength calculation for RF/MW; but it 
should be different to avoid confusion and multiple conversions in the 
different characteristics of the time domain. 

COILED DBLAY LINES 

The same causes of short radius coax bend time distortions have 
similar but smaller effects with longer lengths of larger bend radius 
coiled delay lines. 

Figure 4 . shows the gaussian step response of a 20 ns. long 1/2 inch 
foam delay line in the form of one large 6 foot loop with a 50 ps input 
risetime. The slower pulse response with overshoot is the pulse response 
through this same coax, coiled into a 13 inch diameter with four turns. 
The slower rise time of Fig 4 . is 55 . 2 ps . with 2.4% overshoot. 

Functionl· 10.00 .volte/c1iv 
th. of .. 30.00 lNolta/d1v 

Fig. 4 

Notice that the bottom 14% of the pulse has has been affected with a 
slower rate of rise which will cause problems if this coax were to be 
equalized. This time distortion occurs in any type of coax construction 
and can be reduced by using a figure 8 patterns when packing up a long 
delay line. 

We uncoiled this delay line and then wound it into a three section 
figure 8 with six tighter loops. This form produced a faster risetime of 
52 .6 ps . with an overshoot of the same 2 . 4%; but with the same slower 
rate of rise at the bottom 14% of the pulse. 

COAXIAL CABLB IlBASUREJIBIiTS 

Over the years we have acquired and tested the risetime of a number 
of different types of coaxial cables. The results we present are for 
different cable constructions that are very close to a nominal 1/2 inch 
size. The cables used for risetime comparisons had inner conductors that 
had a diameter range of .161 to . 189 inch with the outer conductor inner 
diameter range of .432 to .481 inch. These cables would therefore be 
expected to have about the same losses and risetimes for equal lengths . 

Most of the skin effect loss is in the inner conductor, and solid 
copper or copper clad aluminum is used for the lowest loss. Copper for 
the outer conductor and inner conductors has the lowest losses from skin 
effect. Straight soft tubular aluminum outer conductor has only slightly 
higher losses, is less expensive and is flexible. The slightly higher 
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resistivity of an aluminum outer conductor adds very little risetime 
degradati on. 

Although many of these types of coax were not designed for fast 
risetime use. they perform well if coaxial connectors can be made with 
reduced reflections. Major reflections of most connectors supplied for 
these cables can degrade the risetiae through the cable. We aodified the 
existing connectors or made coapletely new connectors to achieve accurate 
risetime measurements. 

Several cable samples of various constructions all with about 20 ns 
delay length were tested for risetime . associated overshoot and pulse 
risetiae degradation. The system reference for normalization was done 
using 1/2" aluaifoam coax as the standard for comparative measurements 
with the other coaxial cables. Therefore when "normalization" is 
performed on the test samples for other input pulse risetime. the 
waveshape yielded is the theoretical pulse waveshape for the indicated 
input pulse risetime minus the losses of the calibration cable. 

The calibration cable risetime losses are assumed to be typical for 
non-distorting 20 ns 1/2" copper/aluminum/polyethylene delay lines. This 
enabled measurements to be taken that show the time delay distortions in 
the cable without the resistive risetime losses. The output pulse 
waveshape for the 1/2" alumitoam (System). the 1/2" corrugated outer 
jacket type. and the 1/2" helical dielectric support type are shown in 
Figures 5. 6. and 7 respectively. 
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Fig. 7 1/2" Helical insulator 

All three waveforms were normalized to the aIumifoam at 50 ps. risetiae, 
and were recorded at 75 ps. per division. The results of the measurements 
of all of the 1/2" diameter range coax samples are shown in Table 1. 
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COAX CABLE COMPARISON 

20ns Nomi na 1 
Length Cables 

COAX TYPE 

RF -44 1/2" ALUMIFOAM *(1) 

1/2" ALUMIFOAM *(2) 

TIMES LMR-600 

PRODELIN 
6 PE TUBE DIELECTRIC 

CABLEWAVE FLC 12-50 1/2" 
CORRUGATED OUTER JACKET 

Table 1 
Norma 1 i zed Norma 1 i zed Norma 1 i zed Norma 1 i zed 
SOps input 75ps input lOOps input 200ps input 

Rise Over- Rise Over- Rise Over- Rise Over­
Time shoot Time shoot Time shoot Time shoot 
(ps) (%) (ps) (%) (ps) (%) (ps) (%) 

49.6 0.98 73.8 0.49 99.0 0.49 198.8 0.00 

50.4 0.00 75.4 0.00 100.4 0.00 200.4 0.00 

51.2 2.48 76.2 0.49 101.1 0.49 202.0 0.00 

58.0 7.84 76.6 1. 96 100.4 0.49 200.0 0.00 

60.4 I1.B8 78.0 3.92 100.2 1.46 199.0 0.00 

HELICAL DIELECTRIC SUPPORT 148.0 23.30 149.2 20.00 156.0 15.10 205.0 4.40 
FROM HP DELAY LINE *(3) 

*(1) Low loss gas blocked cable used at the Nevada Test Site. 
*(2) System calibration done with this coax, see explanation in report body. 
*(3) Normalized to 375ps input rise, Rise Time = 367.0ps, Overshoot = 0.00 %. 

TIME DELAY DISTORTIONS BY NON UNIFORM 
CONSTRUCTION OF COAXIAL CABLES 

There are three basic non-uniform coax constructions that cause time 
delay distortions: Helical dielectric inner conductor support, 
Corrugations in copper outer conductor for flexibility, and Spline 
supported inner conductor. The helix insulator and corrugated outer 
conductor create a slow wave structure that cause non-absorptive risetime 
degradations. These time delay distortions of risetime, are caused by the 
faster parts of the risetime being slowed in time more than slower parts. 
The time delays increase in a continuous manner for increasing 
frequencies. The longest delays are at the highest frequencies. If the 
ringing continues for more than a few observable cycles, the frequency of 
the ringing will be seen to increase past the front rise of the pulse. 
This is an obvious result of the higher frequencies having more delay. Of 
course if a long enough cable is used and the losses at the ringing 
frequencies are high, the ringing will be much attenuated, but the excess 
risetime loss from from time distortion will remain. 

These pulse responses would be almost impossible to equalize. This 
is not due to series or shunt resistive losses, but simply due to 
additional time delay of the faster (higher frequencies) parts of the 
risetime. The high frequency ringing can be highly attenuated in longer 
lengths, and may not be present with slower risetime pulses. 

HELICAL INSULATOR SUPPORT OF THE INNER CONDUCTOR 

Coax from a HP delay line with a helical plastic support of the 
inner conductor creates the most time delay distortion. This cable slows 
the risetime by time delay distortions of the faster parts of the 
risetime. It also creates ringing at the top of the pulse from the 
delayed faster parts of the risetime. 

This construction is also used in "Spirafll" and "Flexwell" which 
are registered trademarks of Cablewave Systems in 3/8, 1/2, 7/8, 1 5/8 
inch and larger cable sizes, and "HeHax" which is a registered trademark 
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of Andrew Corporation in 1/2. 7/8. 1 5/8. inch dia. & larger cable sizes. 
Some of these constructions also have a corrugated outer conductor. This 
coax construction was originally produced by Phelps Dodge under the name 
of "Styroflex". A very thorough frequency domain analysis of the complex 
characteristics of its operation (in the exact 1/2 inch size that we 
measured) was done by J. Griemsmann of Microwave Res. lnst .• Polytechnic 
lntst. of Brooklyn. N.Y. [2] 

His analysis identified an attenuation band between 13.3 and 14.4 
GHz. Our time domain measurements identified large amplitude ringing that 
started at 3.1 GHz and increased to 7 GHz. There are probably some non­
linear phase delays beginning in this frequency range; but Griemsmann 
does not identify it. 

CORRUGATED OUTER CONDUCTOR COAX 

Time domain pulse fidelity in coax cables is also distorted by 
corrugated outer conductors. Corrugated outer conductor construction 
distortions do not have as much time delay distortion as the above 
described helical insulated inner conductors. The copper outer conductor 
is corrugated to allow flexing without metal fatigue. Outer conductor 
periodicity in a 1/2" size has a slow wave characteristic that begins to 
create time delay distortions with risetimes faster than 100 ps. 

"Heliax" is the registered trademark of Andrew and "Flexwell" is the 
registered trademark of Cablewave. Both types of coax have very low loss 
for RF/MW and use a solid inner conductor and a corrugated copper outer 
conductor with foamed polyethylene inner conductor support. 

The foam dielectric provides low dielectric losses and the 
relatively large diameter copper or copper clad aluminum inner conductor 
provides low series resistance losses. 

SPLINE DIELECTRIC INNER CONDUCTOR SUPPORT 

Spline dielectric inner conductor supports seem to have the least 
excess pulse distortion of those cables that exhibit time delay 
distortions. By comparison they could be classified as minor. We have not 
tested a true molded Spline supported inner conductor coaxial cable; but 
we have the pulse response through a coax with the inner conductor 
supported by six polyethylene tubes. This dielectric support should be 
close enough to a spline dielectric construction of a 1/2 inch size to 
provide a similar pulse response. But as with the other non-uniform coax 
constructions its time domain pulse response would probably suffer more 
at high RTL/dia. ratios. 

There is a simple HP 41C calculator program that will predict the 
risetime from RF losses at three or more frequencies. [3]. 
These calculations are only accurate for uniform coax constructions that 
do not have the time delay distortions previous described. 

CONCLUSION 

The basic rule-of-thumb from all of this information. is that if 
overshoot is created by the coax lines of a system. the risetime is 
slowed as a consequence. There is also a direct correlation between 
overshoot amplitude and excess risetime time distortion for similar sizes 
of coax. This is most noticeable in shorter lengths of cables-that do not 
have significant resistive losses in the conductors and dielectric. 

Our information is not thorough for all sizes and construction types 
of coax; but it does provide some information to warn time domain users 
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of some of the pitfalls of blindly transposing frequency domain cable 
loss to the time domain. 

Coax is made less lossy by reducing the amount of dielectric 
material between the inner and outer conductors for two reasons. One, the 
dielectric material is more lossy than an air dielectric. Two, with less 
dielectric material and a lower dielectric constant, the inner conductor 
for the same impedance is larger and provides less series resistance 
losses. Both of these methods create desirable low RF/MW loss and time 
domain losses. Large coax for time domain should only use dielectric 
material uniformly distributed to support the inner conductor. 

The use of cables with helical supported inner conductor should be 
avoided when 0.500 inch diameter coaxial cables are used for risetimes 
faster than 200 ps. The best coax for use in wide band pulse applications 
is one that has a solid center conductor and a uniform outer conductor. A 
uniform dielectric axially and circumfrentially, solid or foamed, avoids 
the above mentioned time distortions. With the possible variation in foam 
density, variations in length can cause slight time distortions; but this 
can be easily found with TOR testing. Foil with over-braid outer 
conductors in place of the solid outer conductor for cables allows more 
flexibility and also perform quite well. Non uniform construction or 
cables that have a periodic conductor axial variations or dielectric 
constant variations in the axial or circumference should be avoided for 
RTL/diameter ratios near one. 

"Foamflex" which is a registered trade mark of Cablewave Systems has 
a solid copper clad inner conductor, polyethylene foam dielectric and a 
solid aluminum outer conductor and is available in 1/2 and 7/8 inch 
sizes. "AIUllifou" is a registered trademark of Times Microwave Systems 
and has the same construction and is available in 1/4, 3/8, 1/2, 3/4 and 
7/8 inch dia. sizes. These cables have uniform construction with minimal 
time delay distortions. 

Unexpected results in large systems can be avoided if samples of the 
coax are first tested at the voltages and risetimes to be transported. 

Lower loss in ultra wide bandwidth time domain can use much larger 
coaxial line sizes. Minor higher order narrow resonances of coax in UWB 
can be ignored as long as a few basic rules for the use of large coaxial 
lines are observed. 
1. Be careful of the bend radius in large (coax) TEM Lines with fast 

pulses. 
2. Use TEM Lines with constructions that do not create non-TEM modes. 

A. Avoid corrugated or non uniform conductors in the direction of 
propagation SP Line. 

B. Avoid non uniform dielectric insulation around the circumference of 
coax lines. 

C. Use tapered lines when changing TEM Line sizes, and avoid abrupt 
dielectric constant changes. 
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ULTRA-WIDEBAND SHORT-PULSE INTERACTION WIm MATTER: 

DYNAMIC mEORETICAL APPROACH 
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B.P.no2, F33114, Le Barp, France 

INTRODUCTION 

In previously published works1,2,3, we considered the time dependence of transient 
photoconductivity effects (L.T.P. model: Local Transient Photoconductivity) induced on the 
surface of semi-conducting materials impinged by ultrashort EM pulses. Some simulations of 
both frequency and relaxation time dependences involving the local displacement currents due 
to electronic transitions resulting from high EM fields effects were summarily published. Other 

authors4 have formely presented a tentative to model by applying a Monte Carlo dynamics in 
the calculation of electronics properties to explain the transient EM response of As-Ga 
material. 

In order to model this type of interaction, we have previously taken into account the 
photoconductivity induced by two types of surface electronic processes: tunnel conductivity 
and "overshoot" velocity effects induced by high EM field effects. This new contribution has 
two purposes: 

- integrate the ultra-wide band features of our studied time profiles of EM short pulses, 
- extend our model to the interaction of ultrashort pulses with real dielectrical surface in 

the hypothesis of conductive, dispersive and dielectric lossy behaviors of material (restrictively 
no radiative). 

To improve our dynamic model, we are pursuing our theoretical investigations studying 
the influence of the following considerations: 

- Stark effect on weakly-bounded electrons due to the high EM field have consequence 
for inducing high degenerative states of electronic energy, 

- different types of electronic interactions and damping or relaxation processes to 
distinguish free carriers and weakly bounded carriers behaviors, 

1. J-F. Eloy. "Interaction des impulsions E-M ultra-courtes avec la matiere" Journees d'Etudes 
"Optiques et Microondes", IEEE-MTT, chapitre franc;;ais, November 1992 ,Seillac (Fra). 

2. J -F. Eloy." A new approach to theoretical models of ultrashort photoconductivity effects 
induced by electromagnetic missiles in interaction with matter" .SPIE Proceedings,I8 72, 
Intense Microwave Pulses,(1993),pp.315-324. 

3. J-F. Eloy. "New Analytical Approach of the Electronic Transient Effects Induced on Semi­
Conducting Material Surfaces by Different E-M Missiles Patterns". PIERS'93, 
Pasadena(CA),July 1993. 

4. G.M. Wysin, D.L. Smith and A. Redondo. Picosecond response of photoexcited GaAs in 
a uniform electric field by Monte Carlo dynamics. Phys. Rev. B, 38, 17 ( Dec. 1988) 
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- various rise-times of EM pulse patterns ( in the case of Gaussian double derivative 
profiles or Morlet wave). 

Concerning this last parameter, our center of interest is studying the shift of dynamic 
response of material involved by different values of the a and ~ coefficients in the following 
analytical expression for the EM field: 

DSG = a .[ b - n.( t left )<X ] . exp- s.( t left )~ (1 ) 
where the coefficients are: cft = 10-12; a = 1; b = 2; T] = 4 and s = l;a = 2 and 6; ~ = 4 and 
6, (see figure 1, different graphic representations of EM pulse profiles). 

E *lOA (Vim) 
'1=2; 4=4 ; "= 2, 6 

-~:-I---+---4.:~-t( * 10-12 3.) 
-2 

E *lOA (Vim) 
')=1; c}o6; ~ 2,6 

2 

~-.el~~-+-~ ....... --t( >I< 10-12 3.) 
-2 -1 2 

}'igure 1. Different studied pulse patterns versus numerical factors 

BASIC THEORY 

Theoretical and Phenomenological Considerations. 

In the hypothesis of a lineary polarised planar EM wave, we previously assumed a strong 
correlation between the electronic transition yields and the "overshoot" carriers velocities 
(electron in balistic trajectory covers a part of its orbit during a short time less than 10-13 s.) 
induced by the high EM field effects on the surface of materials. Concerning optical frequency 
range effects, E. Mazur et al.5 are assuming the rise-up of permittivity induced by laser­
interaction is due to the collapse of electronic band by high yields of photo-carriers injection in 
the conduction band. 

Similar effects of electronic energetic states perturbation are respectively named on the 
one hand Stark effect on liquid and plasma at microwave frequencies, on the other hand Franz-
Keldysh effect6 on semi-conductor surfaces at IR and optical frequencies. 

For ultrashort time durations of interaction « 10-12 s.), we used a general expression of 
transient overshoot-velocities of electrons, vn[E(t)], as written in (2): 

5. P. Saeta , J.K. Wang, Y. Siegal, N. Bloembergen and E. Mazur. Ultrafast electronic 
disordering during femtosecond laser melting of GaAs. Phys. Rev. Lett.,67,(8),1991 

6. S.I. Kirillova, V.E.Primachenko,and O.v. Snitko.Phys.Stat.Sol (a),88(1985),pp.647-654. 
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[E( ] - ~nJ"E + Eft)] + v th [(E + Eft)) I Eno]~ 
Vn tl - ~ 

1 + [(E + ETt)) IEnol (2) 
,where Eno = electric field threshold of overshoot, E(t) = applied a-c field, 

E = external static field, vth = thermal electron velocity, Ilno = electron mobility , 

13 = overshoot coefficient (= 4, for As-Ga in bulk material). 
Knowing the electronic current, J n : 

where: nte = transient density of carriers, q= charge of electron; 

and: 

Whence: 

_ 1 (oln OJp ) Onte Bt =V· In I q= - ---
q OZ OZ 

(3) 

(4) 

_a _N_ei_(t_) = 1..: (qNeo. vn[E(t)] - qNpo. vp[E(t)]) 
at q uZ (5) 

In our new way of calculation, we intend to differentiate the different zero-times,e, of 
both exciting and accelerating processes of electrons involved in the induced displacement 
currents. Therefore, to distinguish the different time of integration, t-e, we use in place of 
previous formulation (3), the following expression: 

it O~le) ( ) 
In = q Neio· Vn[~t)] + q. ~t --at. Va t-8 d3 

( 6) 
After this step of calculation, we proceed with a Taylor series development at tenth time 

order of the analytical expression,ve ' before carrying out a windowed time integration. 

Therefore by operating on a Fourier transform, we selected exclusively the study of EM field 
linear effect. But, we can introduce our new considerations about different types of relaxation 
processes to take into account the ultralarge bandwidths of studied EM pulses. In this way, we 
obtain the Fourier transforms of transient free carriers density or excited states of electronic 

A 
dipoles to introduce, N(w), in the following dispersive relationships. 

Considerations of EM Properties 

In our simulated high EM field interaction, to take into account: 
-on the one hand, the ultra-large but different frequency bandwidths of the studied ultra­

short pulse shapes, 
-on the other hand, the frequency dependence of EM properties of considered materials, 

we need to introduce some dispersion relationships characteristic of both contributions 
involved into the local displacement currents by means of the both conductivity due to the free 
carriers displacements and induced polarizability due to the bounded dipolar oscillators. Four 
types of polarization are identified: electronic, ionic, at the interface (ex.: grains interface) 

and by orientation 7. 
The frequency dependences of EM properties dues to these different origins of the both 

polarization and photoconductivity ( ruled by relaxation and damping phenomena) can be 
identified as two kinds of carriers behaviour: Lorentz type as resonant dipoles and Debye type 

7. P. Leveque. " Diffraction d' ondes electromagnetiques transitoires par des obstacles en 
presence de milieux dielectriques a pertes" ,Thesis of Limoges Univ.,Fr,no: 14-94,Feb.94. 
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as relaxing dipoles or carriers ruled by the following expressions of complexe indices, n*( w ): 

for Lorentz damping time 

3. n*2(oo)-1 - Nq~ .r. (I fj ) 
n*2(oo)+2 Eo·me 1 oo~roo2+iYjoo 

* "-where: m e = equivalent mass of electron; N <=> N(w); 

w = wave frequency; Wo j e resonance frequency; 

EO = vacuum permittivity; Vj = 1ITr with Tr= damping time. 

for Debye relaxation time 

"­
,where: T = relaxation time of electron and N <=> N(w) 

(8) 

(7) 

The figures 2 and 3 illustrate these different Lorentz and Debye frequency dependences 
with the frequency step of our F. T. numerical discrimination, in the giga-terahertz ranges. 

£(pol)p (1'1) 

-13 
1. 10-14 

7.5 10-14 
5. 10-14 

2.5 1 0 t-r.......;~==o._---14 w= *1.2*10"11 

-2.5 10 
30 40 50 60 

Figure 2: Real and imaginary parts of Lorentz coefficient for weakly bounded-carriers: 
wor 10 12 Hz and damping time: Tr = 10-12 s. 

£(w)el. ,Debye 

w= *1.2*10"11 
10 20 30 40 50 60 

Figure 3: Real and imaginary parts of Debye coefficient with a relaxation time, Tr= 10-13 s. 

After applying these different analytical expressions following the considered type of 
electron-phonon interaction, we calculate the complex indices. Then, our last step of 
calculation consists in finding the Inverse Fourier transform to obtain successively the 
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transient indices, permittivity, reflectivity and absorptivity. 
By this approach, we reach the transient properties ( percussional values) resulting from 

the sum of different contributions ( conductivity, polarizability, dielectric loss ). 

RESULTS OF SOME NUMERICAL COMPUTATIONS 

The main purpose of our work is to simulate the influences of various types of 
parameters which depend on EM pulses and electronic behaviors: 

- EM field strength, (E-M field amplitude comprised between 104 to 107 VIm), 
- resonance frequency, damping and relaxation times ( T r: from 10-13 s. to 10-11 s.), 

- rise-times of EM ultra-short pulses (in the hundred femtoseconds range), 
- pre-curved time profile of EM pulse. 

Jf.(t) c:.. -11 , 
Neo=lo"~lm3;Es=tlO Vim; ~=10 s.;vs=lOmis 

20. r 
3. 1020 .. ' , 

2.5 102 0 
2. 1020 

1.5 1020 
1. 1019 
5. 10 

10 20 30 40 50 60 

" Epsil: E 

45 
40 
35 
30 
25 
20 
15 
+----------"-=_. V10-13 

10 20 30 40 50 60 

Figure 4. Correlated transient carriers density and imaginary part of induced permittivity, 
C', dependence on time for Neo=1014 elm3, and weakly-bounded carriers governed by 
Lorentz damping time. 

For our calculation, we considered the well-known features of such type of material as 
As-Ga. and used the following material data: 

-electron mobility :Ilno = 0.12 m2 I V.s ; Ilpo = 0.03 m2 I V.s ; Er = 13 

, -thermal velocity of electron: vth =106 mls; - overshoot electrical field: Eno=3.105 VIm. 
In the figure 4, we present a calculation result of transient complex permittivity by 

assuming the initial intrinsic electron density in As-Ga sample to be 1014 elm3. 

We present below some other significant results of transient reflectivity dependence on 
time for the both previously noted dielectric characteristics and EM pulses features. 

a)-EM field strength effect (figure 5). 

As first example of numerical results, we have previously studied the dependence of 
surface properties on the EM field strength. In these calculations for a resonance frequency: 
1010 Hz. and Lorentz damping time: lO-11s, we are assuming a free carrier density of 1014 

elm3 (at the origin of interaction time) 
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I<'igure 5. Correlated transient carriers density and induced reflectivity, Rs ' dependence on 

time for Neo= 1014 e1m3, and numerical coefficients of EM pulse time profile: (1=2 and' =4. 

b)· EM resonance frequency, damping and relaxation times dependencies ( figures 6 to 9 ). 

Our results show a strong difference of transient properties between these two types of 
carriers: - on the one hand for weakly-bounded carriers governed by Lorentz damping time 
(figure 6 and 7: curves comparison for two different resonance frequencies; figure 7 and 8: 
curves comparison for two different damping times), - on the other hand for free carriers 
governed by Debye relaxation time (see figure 9). It is possible to model for the integrated 
behaviors of two types of carriers (weakly-bounded and free) in the same material volume. In 
case, we observe the main contribution is due to the weakly-bounded carriers in the range of 
wideband of studied pulse patterns. 

Rs 11r G:.. .'11 '" 
Neo=10 e/m3;Es=2!1 O-Vlm;t=10 s.;vs=lOmls 

t*10-13 
10 20 30 40 50 60 

Figure 6. Reflectivity dependence on time for resonance frequency: worlOlO Hz and 

damping time: T r = 10-11 s.;for weakly-bounded carriers governed by Lorentz damping time. 
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Figure 7. Reflectivity dependence on time for resonance frequency: Worl012 Hz and 

damping time Tr = 10-11 s. ; for weakly-bounded carriers governed by Lorentz damping time. 
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Figure 8.Reflectivity dependence on time for resonance frequency: Woj= 1010 Hz and 

damping time T r = 10-12 s. for weakly-bounded carriers governed by Lorentz damping time. 
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Figure 9.Reflectivity dependence on Debye relaxation times: Tr = 10-13 s. and Tr = 10-11 s. 
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c)-EM pulse rise-time effect ( transient reflectivity dependence on both rise-times and time 
profiles of EM pulse shown in figures 10 a and lOb). 

E *10" (Vim) 

--~-"'+----I---~~---1('" 10-12 s.) 
-2 2 

Figure lOa. EM time profile for EM field= 2*106 VIm; coefficients values: 8=1, a=2,b=1 
Rs 

t*10-13 
10 20 30 40 SO 60 

Figure lOb. Transient reflectivity dependence on both rise-times of EM pulse shown in 
figure lOa, for Neo=1014 elm3 and weakly-bounded carriers governed by Lorentz damping 

time: Woj= 1010 Hz; Ty-= 10-12 s .. 

CONCLUSION 

With regard to our theoretical approach, our results of computation work reveal a 
strongest influence of short rise-times in case of interaction between ultrashort EM pulses and 
surface of dielectrical material. We also observe the highest rise-up of surface reflectivity in 
case of increasing weakly-bounded carriers density induced by the transient variations of 
displacement currents. The contribution of lossy properties is more significant than the 
enhancement of conductivity due to the short relaxation time of free carriers in the Debye 
model. 

In our next studies, we intend to compare and experimentaly validate the contribution of 
the both overshoot and Stark effects applied to the microwave frequency ranges. 
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RADIATION CHARACTERISTICS OF COLLIMATED, 
ULTRA-WIDEBAND, VOLUME SOURCES 
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2Department of Electrical Engineering 
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Tel-Aviv 69978, Israel 

I. Introduction 

A growing interest has arisen in the area of ultrawidebandf short pulse radiation, propagation 
and diffraction (see [1] and references therein). Several schemes of ultrawideband excitation 
and radiation have been investigated [2-4]. Experimental studies have also been conducted and 
physical systems for ultrawidebandfshort pulse radiation have been developed, some of them 
based on optoelectronic technology (see reviews in [1]). Important applications are anticipated 
with respect to this relatively new technology, for both commercial and military purposes. Ap­
plications of interest include soft-damage and hard-damage weapons, communication systems, 
radar systems and remote sensing. 
This paper briefly summarizes certain aspects of ultrawidebandfshort pulse radiation with 
an aim to examine the possibility of generating highly energetic and directive far-field short 
pulses in a selected direction for tracking radar applications. A particular scheme of excitation 
for continuously distributed three-dimensional sources is explored and tested using canonical 
prototypes. In order to aclIieve high directivity the pulsed sources are excited with a progressive 
delay in the main beam direction. We introduce analysis techniques in the frequency domain 
as well as directly in the time-domain. A direct relation between the pulsed source distribution 
and the pulsed radiation is derived in terms of a Radon transform of the source distribution. 
Typical computations of the radiation pattern as a function of both frequency and position are 
presented and compared with time-domain results corresponding to the emission of impulse 
like fields in a given, selected direction. Calculations of the global gain of the radiating system 
as a function of position are also presented, which suggest the possibility of obtaining high 
values of radiation efficiency with the scheme of excitation proposed in the report. 
Several types of signals are classified as ultrawideband1. Throughout this report we restrict 
our attention to the radiation of short pulse fields, due to the possible advantage of ultrawide­
bandfshort pulse antennas over narrowband antennas in radar applications requiring extremely 
fine range resolution and improved target signature. In particular, we are interested in the effi­
cient generation offar-field short pulses in a selected direction in order to obtain high angular 

1 Ultrawideband signals are those with a percentage bandwidth above 25 percent. 

321 



resolution. Efficiency can be defined either in terms of the total energy gain of the pulsed ra­
diation pattern, or in terms of the peak amplitude of the pulse within a specified time-window 
(Le., the pulse at angles away from the main direction may have long duration, as long as 
its has a weak peak). Both definitions are used to determine the performance of the pulsed 
collimated source distributions proposed. 
In this work we are concerned with source synthesis for the time-dependent scalar wave equa­
tion: 

( 1 fj2) ,,2 -~ 8t2 u(r, t) = -q(r, t) (Ll) 

where c is the uniform wave speed in the medium. The source distribution q(r,t) is assumed 
to be confined in a finite domain around the origin in a three dimensional coordinate space 
r = (x, y, z). We shall assume that it has the space-time separable form 

q(r, t) = qo(r)J(t - r· ro/c) (1.2) 

This model assumes that all sources have the same pulse-shape J(t) but different strength 
qo(r). A progressive delay r· role has been added to maximize the radiation in a specified 
direction ro where ro is a unit vector. Without loss of generality we shall also assume that 
ro == z. Here and henceforth we use a caret over a vector to denote a unit vector while a caret 
over a field constituent defines a frequency domain constituent. We also normalize the space 
distribution qo(r) so that 

(1.3) 

II. Frequency domain analysis and synthesis 

1. The radiation pattern 

In this chapter we explore source synthesis from a frequency domain point of view. The 
frequency spectrum is denoted by a caret and defined via the Fourier transform 

u(r,w) = J dteiwtu(r,t) 

The spectrum of the source distribution (1.2) with ro = z is given by 

q(r,w) = qo(r)!(w)eikz.r 

where k = wle'and !(w) in the Fourier transform of J(t). 
In the far zone the radiated field has the form 

ikr 
u(r,w) N -4e g(r,w) 

7rr 

where r = Irl and r = r/r (Fig. 1) and 

g(r,w) = J d3r'q(r',w)e-ikr.rl 

is the radiation pattern in the direction r. For the sources in (2.2) we therefore obtain 

where 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

is the spatial Fourier transform of qo(r'). Thus the radiation pattern g(r,w) defines the source 
distribution at spectral points 

K = k(r - i) == ke (2.7) 
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Fig. 1. Volume source distribution. 

At a given w, this condition defines, as a function ofr, a sphere of radius k = wlc centered at 
K = -ki. Two such spheres are plotted in Fig. 2: They correspond to WI and W2 - the lowest 
and highest frequencies in j(w) respectively. For a given r = (e,IP), condition (2.7) defines in 
the K-domain a line along which w is a linear parameter. It has the unit vector direction 

(2.8) 

The magnitude of e is given by 
~ = lei = 2sine/2 (2.9) 

2. Parametrization of the radiation pattern 

The effect of the longitudinal dimension L on the radiation pattern is demonstrated in Fig. 2. 
It is assumed that the longitudinal and transverse dimensions of CJo are L and a, respectively 
(Fig. 1). Consequently, typical dimensions of ijo(K) are L-l and a-I, respectively. We consider 
first the case of a wide source with a ;» L (Fig. 2(a». For small k such that 2kL <: 1, the 
equi-w spheres senses non-negligible contributions from the function ijo(K) for observation 
directions near the negative z axis (see kl sphere in Fig. 2). In this case, the radiation pattern 
has a backward radiating lobe in addition to the main lobe in the forward direction. Making 
2kL> 1 eliminates this back radiating lobe (see k2 sphere in Fig. 2(a». 
It is also seen that the width Sew) of the main beam is controlled by the source width a. To 
quantify this parameter we note that for r ~ i (small 9) we have (see (2.8)-(2.9» e = eo where o is a unit vector in the 9 direction. Thus, in the main beam direction g(r,w) ~ j(w)ijo(keO). 
It follows from Fig. 2(a» that Sew) is obtained from kS ~ a-I, giving 

(2.10) 

For elongated sources with L ;» a, on the other hand, the spectral structure is sketched in 
Fig. 2(b). As expected there is no backward radiating lobe. Here the main beam width is 
controlled by the length parameter L via !k(!S2) ~ !L-l (see Fig. 2(b», giving 

0(w) ~ 2(kL)-1/2 (2.11) 

Finally we note that for e -+ 0 such that e <: 0(w), we may use in (2.5) ijo(ke) ~ ijo(O) = 1 
(recall that qo in normalized as in (1.3». Hence 

u(r,w)lo=o = f(w) (2.12) 
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K-space representation for (a) A wide aperture source distribution (a::> L) and (b) An elongated 
source distribution (L ::> a). The shaded region represents the function qo(K): Referring to Fig. 1, 
it has typical dimensions a- 1 and L-1• Two constant-", spheres are shown: One at "'1 and the 
other at "'2 - the lowest and highest frequencies in 1(",). The main beam angle e are indicated 
at "'2. The line identified by the unit vector ~ and the spectral angles (9K ,4JK) is a typical 
constant observation direction (1') line. 

3. Gain of an ultrawideband pulse 

In the frequency domain, the radiation gain is defined as 

G(r,w) = S(r,w)/E(w) (2.13) 

where 

S(r,w) == u(r,w)47rr21 = 41 ly(r,wW 
r ...... oo 7r 

(2.14) 

and 
(2.15) 

are the spectral densities of the energy flux per solid angle and of the total radiating energy, 
respectively. 
The radiation gain for ultrawideband pulses should be defined in terms of the signal norm [5]. 
Two convenient choices are the infinity norm (the peak amplitude) and the L2 (or energy) 
norm. Here we shall consider the gain definition in terms of energy norm 

IIf(t)1I == J dt If(t)12 = 1100 
-- dw If(w)12 

7r 0 
(2.16) 

Consequently we define the radiation gain as 

G(r) = S(r)/ E (2.17) 

where 
(2.18) 

and 
E== d2rS(r)=- dwE(w) 1 1100

-

4w 7r 0 
(2.19) 

are the radiation energy flux per solid angle and the total radiation energy, respectively. 
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4. Special case: Sources with axial symmetry 

We restrict our numerical examples to sources with axial symmetry with 

qo(r) = qo(p, z) (2.20) 

where p = ~. The spectral distribution also has axial symmetry and is calculated via 

(2.21 ) 

where we use K = (Kp,Kz ) and Jo in the zero order Bessel function. The axially symmetric 
radiation pattern g«(J,w) is given now by (2.5) with (Kp,K.) = k(sin(J,cos(J -1). 
An important illustrative example is provided by a uniform source distribution that has the 
shape of an ellipsoid whose radial and axial axes are a and L, respectively. To comply with 
the normalization in (1.3), we take the source magnitude to be 

qo(r) = l/V, 
1 

V=-1ra2 L 
6 

(2.22) 

at point r inside the ellipsoid, and zero otherwise. V is the ellipsoid volume. We consider both 
an oblate (a > L) and a prolate (a < L) spheroids. Assuming that the axis of symmetry is z, 
we obtain 

For small X, this expression behaves like 

iio(Kp, K.) = 1 - 110X2 + O(X4). 

(note that iio(O) = 1 as expected). 

(2.23) 

(2.24) 

Figs. 3(a,b) show the radiation pattern §«(J,w) for two typical ellipsoids with a/L = 5 (wide 
aperture) and a/ L = 1/5 (an elongated source), respectively. The radial coordinate in the 
figures is the frequency while the azimuthal coordinate is the observation direction (J. To 
compare the radiation patterns of these distributions. we shall assume that all have the same 
volume V. We therefore use the normalized frequency coordinate w = kVl/3 where V is given 
in (2.22). In this figure it is assumed that l(w) = 1. 

Radiation pattem vs frequency and angle of observation (1-0.2) Radiation pattem vs frequency and angle 01 observation (1=5) 

f' to. 
1°' .. 

o .. 

Fig. 3. The radiation pattern g(O,w) for a spheroidal source distribution. 

(a) Oblate spheroid a/ L = 5. 

(b) Prolate spheroid a/ L = 1/5. 

kl (Zlkdl 

The radial and the azimuthal coordinates are the normalized frequency k V l / 3 and the 
direction O. 

15 
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III. Time domain analysis and synthesis 

1. The radiation pattern 

In this section we explore the radiation characteristics of the volume sources as expressed 
directly in the time domain. The radiation integral is given by 

( ) J.3 I q(r',t - Rle) 
u r,t = a-r 47fR ' R = jr-r/j 

In the far radiation zone, we use R =~ r - r . r', obtaining 

u(r,t) = g(r,t - rle)/47fr 

where the time-dependent radiation pattern 

g(r, t) = J rfrl q(r', t+ r· r'le) 

is the time-domain analog of g(r, w) of (2.4). 
For the special case of the pulsed source distribution in (1.2) we obtain 

g(r, t) = f(t) * goer, t) 

where 
goer, t) = J rfrl qo(r/)o(t - rl . (r - z)/e) 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

is the radiation pattern due to an impulsive source. Using E = r-z as in (2.8)-(2.9), we obtain 

go(r, t) 

(3.6) 

where ilo(e,p) in the Radon transform of qo(r): It is the projection of lJo(r) along the plane r·e = p perpendicular to the unit vector e. A schematization ofEq. (3.6) is depicted in Fig. 4. 
An interpretation of this expression is shown in fig. 5: An impulsive plane wave propagates 
along the z axis and is reflected toward r by planes perpendicular to e. The field at time t is 
contributed therefore by the plane r· e = -et/e. Fig. 4 also shows a parametrization of the 
radiation pattern. If the object dimension in the e direction is A(e), then the pulse length in 
the r direction is given by 

T(r) = eA(i)/c 
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(3.7) 

Fig. 4 

Schematization of Eqs. (3.6) and (3.7). ifo(e) is the Radon transform along the e axis obtained 
by integrating qo(r) on surfaces orthogonal to l. The radiation patterng(i, t) is related to ifo via 
the scaling in (3.6). 



Fig. 5. Physical interpretation of (3.6). 

The pulse magnitude, on the other hand, is proportional to ~-1 (see (3.6». Thus, in the litnit 
r -+ z, ~ ~ (J -+ 0 and gOer, t) -+ oCt). Thus, as also follows from (2.13), 

g(r, t)ls=o = J(t) (3.8) 

2. Parametrization of the radiation pattern 

In this section we consider the radiation pattern from a uniform source distribution with the 
shape of a rectangular box with transverse dimensions a x a and length L (Fig. 6). The source 
magnitude is I/O = l/V with V = a2 L being the box's volume. Specificilly, we shill contrast 
the radiation pattern for a fiat and an elongated box (L <: a and L :> a, respectively), keeping 
the box volume V constant. 
We shill consider the radiation pattern in the major plane (x,z). From (3.6) we find that the 
pulsed radiation pattern has the trapezoidal shape in Fig. 7 with 

This pulse energy is given by 

tan~<a/L 
tan~>a/L 

IIgoll2 = ~U2(T + 2Tt} 

hence the energy radiation pattern S(r) = (411")-1119011 2 is given by 

{ 

2 1 L 
C asin9 - 3" a2cos2!' S«(J) - _ 2 - 811" 1 _ ! a cos ~ 

Lsin2 ! 3 £2 sinl!, 
2 2 

tan~<a/L 

tan~>a/L 

(3.9a) 

(3.9b) 

(3.ge) 

(3.10) 

(3.11 ) 

We shall explore the radiation pattern for different length ratios l = L/a, assuming the same 
volume V (Le., the same source energy). \Ve therefore use a = v1/ 3£-1/3 and L = v1/ 3£2/3 
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giving for U(O) 

U 0 - __ 2' c {f1/3/ cos .!1. 

()- W 1/ 3 1/£2/3sin~, 

and for S(O) 

tan ~ < £-1 

tan ~ > £-1 

tan ~ < £-1 

tan~ > £-1 

(3.12) 

(3.13) 

Fig. 8( a) shows a plot of the radiation pattern for three cases: a)£ = 5 (a long distribution with 
small aperture, b) £ = 1 (a cube) and c) £ = 1/5 (a flat distribution with wide aperture). The 
relatively strong backward radiation in the small £ case is expected since in the flat distribution 
limit (£ .... 0) the radiation is symmetrical with respect to the z = 0 plane. Less expected is 
the stronger pulse in the main beam direction which is obtained with larger I. (i.e., narrower 
aperture) case. In fact from (3.11) one finds for 0 .... 0 

1 1.1/ 3 
S(O) = -cV-I / 3 -

871" 0 
(3.14) 

The elongated source also exhibits higher directivity in the main beam direction as can be seen 
from the normalized radiation pattern in Fig. 8(b) S(O) = S(O)/S(O+), where 0 = 0+ is the 
smallest value of (J used in Fig. 8. Finally, Figs. 9(a,b) show the peak amplitude pattern and 
the normalized peak amplitude pattern for the same cases as in Fig. 8. 
It follows that a long but narrow distribution provides in the overall a better radiation pattern 
than a wide aperture distribution with the same total volume and the same source energy. 

Fig. 6. Rectangular box source distribution . 

.... I .... ~--T 
Fig. 7. The pt..Jse-shape for a rectangular box source. 
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5(6)/5(0+) 

10',----------------- 10',-----_-_--_-_-_--_-~ 

5(6) 

10' 

,,' ~ ~ 
-------------

10'~ ,,' 
0 05 15 25 35 0 15 25 35 

ANGLE 9 ANGLE 9 

Fig. 8 

(a) The radiation pattern 8(8) and (b) the normalized radiation pattern 8(8) for the source 
distribution in Fig. 6 with impulsive excitation. Three length ratios are contrasted: L/a = 5, 
L/a = 1 and L/a = 1/5. 

U( 9) jU( 0+) 

10'1 
U(6) 

,,' 

25 35 

ANGLE 9 ANGLE 9 

Fig. 9 

The same as in Figs. 8(a,b) but for the peak amplitude pattern and for the normalized peak 
amplitude pattern, respectively. 
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IV. Conclusions 

We considered ultrawideband/short-pulse radiation from volume source distributions. We 
assumed that all source elements generate the same pulse shape but may have a different 
amplitude. Furthermore, to generate collimated radiation, we also assumed that the source 
elements are progressively delayed in the direction of the main beam. The beam direction can 
therefore be controlled electronically in terms of the relative delays of the source elements. 
We presented a framework for analysis of the relation between the pulsed radiation pattern and 
the source amplitude distribution. The analysis was performed in both the frequency domain 
and the time domain. However, the time domain route in Sec. III presents a direct geometrical 
relation between the pulsed radiation pattern in terms of a Radon transform of the source 
function taken along slanted planes that define a local reflection law between the main beam 
direction and the observation direction (see Fig. 5). Via computer simulations we elucidated 
the role of the spatial distribution of the source in generating highly directive pulsed beams. 
It has been demonstrated that elongated distributions provide more directive pulsed radiation 
than wide aperture distributions with the same volume, i.e. the same source energy (see Figs. 8 
and 9). For elongated distributions, however, the main beam direction is already defined by 
the source axis. Hence, they have limited performance in applications involving beam steering 
via elements delay. Beam scanning capabilities can be preserved by using a spherical volume 
distribution, or even a spherical surface distribution, which would share both advantages of 
high directivity and resolution as well as multi angle scanning. 
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CALCULATIONS OF DISPERSION CURVES AND 

TRANSMISSION SPECTRA OF PHOTONIC CRYSTALS: 

COMPARISONS WITH UWB MICROWAVE PULSE EXPERIMENTS 

ABSTRACT 

K M. Leung, Y. Qiu, L. Carin, and D. Kralj 

Weber Research Institute 
Polytechnic University 
Brooklyn, NY 11201 

A combined plane-wave and finite difference method for the calculation of 
dispersion curves and transmission spectra of photonic crystals is presented. The overall 
problem is decomposed into a field problem of determining the plane wave scattering 
from an individual crystal layer and a conventional one dimensional network problem of 
combining this scattering to obtain the band structure of the entire crystal or the 
transmission properties of a crystal with a finite thickness. Results of the calculation are 
compared with our experimental data measured using ultrawide-band microwave pulses 
for a two-dimensional photonic bandgap crystal. 

INTRODUCTION 

The layer-KKR method has recently been used to compute the properties of 
photonic crystals. [1] However, the earliest account of such a method seems to be that of 
Marcuvitz who employed techniques developed for guided electromagnetic waves to 
calculate electronic band structures. [2] This method was re-invented in condensed­
matter physics in late 1960's to study low-energy electron diffraction in conventional 
electronic crystals. 

In this method, one considers a D-dimensional crystal as a stack of (D-1)­
dimensional crystals. The scattering of waves within an individual (D-1 )-dimensional 
crystalline layer is treated using multiple-scattering methodP] The scattering properties 
of the entire crystals are then obtained with the help of a layer-doubling scheme. [4] [5] 

[6] This method has several advantages compared with other methods. One can 
calculate not only the dispersion curves for the allowed bands but also the attenuation 
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lengths for frequencies lying with the bandgaps. The matrices involved are substantially 
smaller than those required for the plane-wave method. [7] Unlike the conventional 
KKR method, [81 a root searching procedure is not needed to obtain the dispersion 
curves. Reflection and transmission characteristics of crystals of finite thicknesses can 
also be computed. Moreover, material dissipation effects can also be studied. In 
addition, one effectively works in a dimension one less than the actual physical 
dimension, and hence provide a more compact description and a more efficient 
computation. 

These advantages are also shared by a recent finite-element method.f91 However, 
in our experiment using ultrawide-band microwave pulses, the transmission spectra 
often have substantial strength even at frequencies a few times the fundamental 
bandgap. The finite-element method often has instability problems at these higher 
frequencies. 

The only drawback of the layer-KKR method is that the "atomic" shape must be 
either spherical for three-dimensional crystals or cylindrical for two-dimensional 
crystals, because only for these atomic shapes are the T-matrices known analytically. 
This drawback is circumvented here by using plane wave expansion within the plane of 
the crystalline layer, taking advantage of the periodicity of the crystal within this plane. 
The resulting equations are essentially one-dimensional, and can be solved using a 
variety of numerical techniques. 

We shall first consider the general formalism and then specialize to two­
dimensional crystals. We are interested here in a special two-dimensional crystal, as 
shown in Fig. 1, which has a common photonic bandgap for both the 1E and TM waves. 
As far as the band structure of the infinite crystal is concern, one can obviously use the 
layer-KKR method. However, we are also interested here in the scattering properties, 
which depend somewhat on the actual arrangement of the surface layer, and one cannot 
simply consider the "atom" as cylindrical. Therefore a method such as the one describe 
here is necessary. 

We will first consider the scattering of electromagnetic waves with a one­
dimensional crystalline layer of the crystal. A fourth-order Runge-Kutta method is used 
to solve the relevent differential equations. These results are then used to build up a 
two-dimensional crystal by stacking these layers in succession. The transmission 
coefficient is computed by solving a one-dimensional network problem, and the complex 
band structure is also computed from the eigenvalues of an eigenvalue equation. An 
experiment using ultra wide-band microwave pulses is carried out, and the results are 
compared with those computed using our present method. Agreement between theory 
and experiment is in general very good. 

GENERAL FORMALISM 

We consider monochromatic wave of frequency w and omit the time-dependent 
factor e-;wt from all the fields. From Maxwell's equations, the electric and magnetic 
fields obey the equations 

VxH = -ik oeE, (1) 

and 

VxE=iko#tH, (2) 

where we have defined ko =w/c. We choose to define the xy-plane to be parallel to one 
of the crystallographical plane of the photonic crystal. For band structure calculation, 
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Figure I. A schematic drawing of the photonic bandgap crystal of interest here. 
The shaded region is made up of a non-absorbing material of dielectric constant 
12.25, and the remaining regions are filled with air. The actual crystal used in our 
experiment has 10 identical crystalline layers (instead of just 4 shown here), a 
lattice spacing of a =4.75 mm and the radius of the holes R =O.48a. 

one can in principle work with any lattice plane. However, in calculating the 
transmission amplitude through crystals of a finite thickness, this plane should be 
parallel to the actual surface plane of the crystal. Periodicity within this plane defines a 
two-dimensional lattice and its associated reciprocal lattice. Within the xy plane, the 
fields must obey Bloch's theorem and therefore they can be expressed in terms of two­
dimensional plane-waves. For the electric field, we have 

E(r)=Eei(k,+K)'PEK(z), (3) 
K 

where k, is the component of the wavevector transverse to z, and the 
coefficients depend on z and are given by 

E () f dp -i(k, +K),pE( \ 
K Z = ~ e rJ-

Fourier 

(4) 

In these equations, p is a two-dimensional position vector within the xy plane, K is a 
reciprocal lattice vector of the two-dimensional periodic structure, and ~ is the area of 
the 2-D primitive cell. A similar set of equations can be written down for the magnetic 
field. 

Using the above plane-wave expansion for the fields, we obtain from Eq. (1) an 
infinite set of coupled first order ordinary differential equations. For example, the x­
component of Eq. (1) becomes 

iGyHk(z)..ozHk(z) =-ikoEK,eK-K'(z )E"k(z), (5) 

where G=-k, + K, and 
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(6) 

We assume that the reciprocal lattice vectors, K, are ordered in some fashion, and we 
use matrix notation to rewrite this equation together with the remaining equations 
derived from Eqs. (1) and (2) as 

iGyW (z )-BzHY (z) = - ik oc(z )EX (z), 

BzHx (z )- iG xHz (z ) = -ik oc(z )E Y (z ), 

iGxHY (z)- iGyHX(z) =- ikoc(z )EZ(z), 

iGyE z (z )-BzEY (z ) = ik OJl,f[X (z ), 

Bz£X(z)- iGx£Z(z) =ikopllY (z), 

iGxEY (z)- iGyEX(z) =ikopllZ(z). 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

Out of the six field components, only four are independent. For example, we can 
eliminate E Z and HZ to get 

Gyl-'-l [Gy£X(z)-GxEY(z)]-ikoBzHY(z) =k5c(z)E X(z), (13) 

Gxl-'·l [GxEY(z)-Gy£X(z)] + iko BzHx (z) =k5c(z)EY(z), (14) 

Gyc-l(z)[GyHX(z)-GxHY(z)] + ikoBzEY(z) =k5 pllx (z), (15) 

Gxc-1 (z ) [GxHY (z )_GyHX (z )]- ikoBzEX(z) =k5plly (z). (16) 

In reality this infinite system of differential equations must be truncated. If N plane­
waves are kept, then this is a system of first order differential equations with 4N 
unknowns. It can be solved by a multitude of numerical methods. 

In the special case of two-dimensional problems where the dielectric constant and 
the fields are independent ofy, terms involving Gy can all be dropped. The result is 

BzHY(z)=ikoc(z)£X(z), (17) 

ikoBzHX(z) = [k5c(z )-Gxl-'-lGx]EY(Z), 

BzEY(z) =-ikopllX(z), 

-ikoBzEX(z) = [k5p.-Gxc-1 (z )Gx]Hy (z). 

We can eliminate EX and HX to obtain 

-Bzl-'-lBzEY(z) = [k5 c(z)-Gxl-'-l Gx]EY (z), 

-Bzc-1(z )BzilY(z) = [k51-'-Gxc-1(z)Gx]HY(z). 

(18) 

(19) 

(20) 

(21) 

(22) 

These equations resemble those for one-dimensional scalar waves except for the fact 
that c and the field components are actually matrices. If we define 

u (z)J EY (z), for TE (23) lilY (z), for TM 

and 

(24) 

then these equations can be rewritten in the form 
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a (U) = ( 0 p(z») (U)==M(z)(U) 
Z v q(z) 0 v v ' (25) 

where we have defined 

(26) 

(27) 

SCATTERING BY A SINGLE SLICE 

We now consider the scattering of a single crystalline layer perpendicular to the 
z-axis in the region between z 0 and z 1. We assume vacuum on either side of this layer. 
If we let '¢ to denote the y-component of the electric field for TE wave or the y­
component of the magnetic field for TM wave, then we have 

for z <zo, and 

01. -~[ol.+ iItK(Z-Z,) +01.- -iItK(z-z,)] i(kt+K»: 
~>-~~~>e ~>e e , 

K 

(28) 

(29) 

for z > z 1. Here we simply denote Kx by K. 
The continuity of the tangential component of the electric and magnetic fields at 

Zo yields 

(30) 

and 

iK(t/J~-t/J~)=V(zo), (31) 

where K is a diagonal matrix with elements V k; -(kt + K)2 if k; > (kt + K)2, and 
iV (kt +K)2_k; ifk~ «kt +K)2. The same condition atzl yields 

t/J~ +t/J; =u (z d (32) 

and 

(33) 

The fields and their derivatives at Zo and z 1 must be related through a transfer 
matrix T such that 

(34) 

The T matrix can be obtained by solving Eq. (25). A good way of doing that is to 
employ an adaptive fourth-order Runge-Kutta method. 

The fourth-order Runge Kutta method is used to advance the vector (u (z) v (z» 
from a given z to z + h, where h is the step size. The basic procedure is given by 

(u (z+ h ~ _ () (U (z ») 
v(z+h~ -T z v(z) , (35) 
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where 

1 
T(z)=1+ 6 (R I +2Rz+ 2R3+R4) (36) 

h Rl 
Rl =hM(z), Rz=hM(z +2)(1+ 2 ), 

h R z 
R3 =hM(z + 2 )(1 + 2)' R4 =hM(z +h )(1 + R3)' (37) 

By combining Eqs. (30) and (31) with Eq. (34), we obtain 

[~~) =tU 1:--11
] T(z)(i~ -i~) [~~]=(~ ~) [~~l (38) 

From this equation, we obtain the result 

t/lt =At/l~ +Bt/l; (39) 

and 

t/l< =Ct/l~ +Dt/l; (40) 

where 

(41) 

A and C are the transmission and reflection matrix, and can be used to calculate the 
transmission and reflection coefficients of any given slice of the crystal. 

SCATIERING BY A SEQUENCE OF SLICES 

The scattering properties of a sequence of slices can be obtained from a 
knowledge of the scattering matrix elements of the individual slice. We will denote the 
matrix by AI, B h C 1 and D 1 for the first slice, and by A 2, B 2, C 2 and D 2 for the 
second slice, and so on. From Eqs. (39) and (40) we can write 

t/lt+l =Aj tPt +Bj t/lj +1 

t/lj =Cj t/lt +Dj t/lj +to 

(42) 

(43) 

for any layer j. For a crystal having N layers, we obtain from the above equation the 
result 

t/ltJ+l =AN t/li +BN t/lN +1, (44) 

t/li=CNt/li+DNt/lN+b (45) 

where 
- - - - -1 -

AN=ANAN_l +ANBN-l(1-CNBN-l) CNAN_b (46) 
- - --1 

BN=BN+ANBN-l(1-CNBN-l) DN, (47) 
- - - - -1 -

CN=CN-1 +DN-1(1-CNBN-d CNAN-h (48) 
- - --1 

DN=DN-I(1-CNBN-l) DN, (49) 
- - - -
Al =Ab BI =Bb CI =Cb DI =D 1• (50) 
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COMPLEX BAND STRUCTURE OF PHOTONIC CRYSTALS 

The band structure of a photonic crystal infinite in all directions can be calculated 
within the present formalism. We need to integrate Eq. (25) from Zo to Zl' As for the 
calculation of the transmission coefficient, this interval is divided into n segments. From 
Eqs. (39) and (40), we have the relation 

t/J; +1 =A 1,n t/J{ +B 1,n t/J~ +1' 
t/Ji =Cj t/J; +Dn t/J~ +1-

Bloch's theorem implies the result 
.1. ± _ ik-82 .1. ± 
'Pn +1 -e 'P1, 

where k=k(x+kzz is the wavevector. We find, using Eqs. (51)-(53), the result 

[ Al,n B 1,n] [t/J{) =e ik'82 [ t/J{) 
-Di~nCl,nAl,1I Di~n(1-C1,nB1,n) t/J~ +1 t/J~ +1 . 

(51) 

(52) 

(53) 

(54) 

This is an eigenvalue equation from which kz can be determined for any given 
frequency, w, and transverse wavevector, k/. The eigenvalues are in general complex. 
Allowed bands are represented by real values of kz and forbidden bandgaps are 
represented by complex values of kz . Thus the above result yields not only the band 
structure of the crystal but also the attenuation length within the bandgaps. 

SCATTERING BY A CRYSTAL OF FINITE THICKNESS 

The scattering properties of a single crystalline layer of thickness equal to the 
width of a unit cell in the z-direction can be combined to yield the scattering properties 
of a crystal composing of exactly Nlayers. We use Eqs. (44) and (45) to write 

(55) 

and 

(56) 

Note that these equations do not involve terms containing t/J tv + 1 because there should 
be no incident wave approaching the last layer from the right. For a wave of unit 
amplitude incident onto the crystal from the left, we have 

t/Jl+ = OK, o. (57) 

For TE wave, the electric field points along the y-direction. It is easy to see that the 
transmission amplitude, defined by T-= I Efron/Eine I far to the right of the crystal, is 
given by 

T=J~' I t/JtJ +l,K 1 2 , (58) 

where the prime over the summation sign signifies that only those terms for which 
k~ > (k( + K)2 are to be summed. For TM wave, the electric field in general lies in the 
xz-plane. Experimentally, only the x-component of the electric field far to the right of 
the crystal is measured. Therefore we define a transmission amplitude by 
T-= I E:rw,/Eillc I. It is easy to show that: 
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Figure 2. The band structure for the propagation of TM wave along the z­
direction. The solid curves are the theoretical result, and the dots are the results 
obtained from our experiment. 

COMPARISON BE1WEEN THEORETICAL AND EXPERIMENTAL RESULTS 

(59) 

Theoretical results for the complex band structure and the transmission amplitude 
for TM wave are computed using Eqs. (54) and (59), respectively. In both cases, we 
find that the results converge with no more than 11 plane waves, even at the highest 
frequency of interest here. We choose zp)o coincide with the left surface of the actual 
crystal, and z 1 is located a distance "3 a to the right of Zo. The actual crystal is 
composed of 5 such crystalline layers. An adaptive fourth-order Runge-Kutta method is 
used to solve Eq. (25). The step size h is chosen adaptively to guarantee that the flux is 
conserved to better than one part in 10-5. We take advantage of the reflection 
symmetry about the plane half way between Zo and z 1 to reduce the computational time 
for this step by one half. 

The measurements were performed by using photoconductively switched antennas 
to generate freely propagating bursts of radiation with instantaneous bandwidth from 
10-90 GHz. Coplanar-strip horn antennas fabricated on oxygen-damaged silicon 
photoconductors were switched using optical pulses from a mode-locked, pulse 
compressed, frequency doubled Nd-YLF laser. Details of the experimental setup can be 
found in a recent publication. [10) 

As shown in Fig 2, the band structure agrees very well with the result deduced 
from the experimental data. As in the previous studies,[U) [12) there are a number of 
fairly flat bands which do not show up in the experimental result. It was pointed out 
that the missing bands represent modes which are symmetrical under reflection about 
the z-axis. Therefore they are not excited by an incident plane wave which obviously has 
this symmetry. 
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As shown in Fig. 3, the theoretical and experimental results for the transmission 
amplitude agree reasonably well with each other. Because of the finite frequency 
resolution peaks narrower than 3.3 GHz in width cannot be resolved by the experiment. 
The rapid oscillations in the computed result are due to Fabry-Perot interference from 
the front and back surfaces of the crystal, and are not seen in the data. The three low 
tranrnission regions are due to the forbidden bandgaps of the crystal. The measured 
result within the pass bands are lower than the theoretical prediction. This we believe 
to be due to finite crystal size in the transverse direction. 
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Figure 3. The transmission amplitude as a function of frequency. The dashed line 
represents the reference pulse, the dotted curve shows the measured results in 
the presence of the crystal, and the solid curve is the theoretical result. 

CONCLUSION 

A new method having all the advantages of the layer-KKR method but capable of 
handling arbitrary "atomic" shapes is presented here. Detailed calculations and 
experiments were conducted for a special two-dimensional photonic bandgap crystal 
which possesses an absolute gap in two-dimension. Excellent agreement between theory 
and experiment is obtained for the dispersion curves and transmission amplitude for TM 
wave. 

Compare with the usual plane wave method, our present method requires far 
fewer number of plane waves, even after considering the fact that plane wave expansion 
is used here in one less dimension. This high degree of efficiency is expected because 
even at the highest frequency of interest here, only three plane waves are actually 
propagating. The remaining plane waves are evanescent waves with ItK imaginary. Most 
of these evanescent waves decay from Zo to almost zero before reaching z 1. There are 
also many more "atomic" shapes for which the transverse Fourier transform of the 
dielectric function can be obtained analytically whereas the full Fourier transform has to 
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be computed numerically. This adds to the efficiency of the present method. We also 
note that the present method can also be used to treat materials with losses, and it does 
not encounter convergence problems even when the dielectric mismatch becomes very 
large. 
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AN ULTRA-WIDEBAND PHOTONIC CRYSTAL 

ABSTRACT 

K. Agi,l E.R. Brown,2 C.D. Dill,2 O.B. McMahon,2 and K.I. Malloyl 

lCenter for High Technology Materials 

University of New Mexico 

Albuquerque, NM 87131 

2Lincoln Laboratory, Massachusetts Institute of Technology 

Lexington, MA 02173-9108 

We report the fabrication and characterization of a novel photonic crystal in which 

multiple face-centered-cubic (fcc) crystals of different lattice constants are stacked in 

tandem. This results in a photonic stop band that is broadened well beyond that achievable 

with a single lattice periodicity. The sample reported here is comprised of two fcc crystals 

having photonic stop bands centered around 16.5 and 21.5 GHz, respectively. K-band 

feedhoms were used to transmit and receive radiation through the sample. A network 

analyzer was used to measure S21 and S11 between 14 and 26 GHz. The overall stop band 

is approximately the superposition of the individual stop bands of the component fcc 

crystals. 

A photonic bandgap (PBG) structure is a periodic arrangement of dielectric material 

that exhibits a frequency stop band in three-dimensions.! The original PBG structure, 

developed by Yablonovitch, was a face-centered-cubic (fcc) arrangement of quasi­

spherical air atoms in a dielectric host. The fabrication of this crystal consisted of precisely 

drilling holes in a dielectric block of Stycast-12 (three holes drilled 35° off normal and 
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Figure 1. Top view of three successive layers of the component fcc component crystal. The circles 

represent the cylindrical basis drilled into each layer. The top layer is shown as lightly shaded. the middle 

layer is intermediately shaded and the bottom layer is the dark shaded. 

342 



rotated azimuthally by 120°) 2. The shape, depth and location of the bandgap are 

determined by the shape of the atoms, their periodicity, and the dielectric constant of the 

host in a photonic crysta1. PBG structures are in many ways analogous to semiconductors 

with forbidden energy gaps. 

Recently, we have devised a new, more robust method of fabricating a photonic 

crystal) It consists of a vertical stack of dielectric slabs, each slab containing a two­

dimensional triangular lattice of cylindrical air atoms. In principle, the cylindrical air atoms 

could provide a wider stop band due to their larger electromagnetic scattering cross section 

in comparison with the quasi-spherical atoms used in the past. This pattern is achieved 

very simply by simultaneously drilling vertical holes through all the plates on a milling 

machine. To obtain a three-dimensional PBG structure, the plates are stacked one on top of 

the other in an offset manner. To obtain the fcc arrangement, the repeat unit consists of 

three slabs (A,B,C) in which the second slab (B) is aligned such that each atom lies directly 

above the center of the triangular unit cell in the fIrst layer. The third slab (C) is aligned 

such that the atoms lie directly above the remaining unit cells in the fIrst layer. A top view 

of the stack is shown in Fig. 1. The fcc lattice results when the triangular lattice constant t 

is related to the slab thickness, s, by t = .Jfs. Hence, the conventional lattice constant, a, 

for the fcc is given by a = .fit. The robust nature of the new crystal is manifested by the 

ease of fabrication and mechanical stability associated with drilling vertical holes. 

To obtain the ultra-wideband (UWB) photonic crystal, multiple fcc crystals with 

different lattice constants are stacked vertically as shown in Fig. 2(a). This will result in a 

photonic stop band which is much broader than that achievable with a single lattice 

constant. The host material for the crystals is a synthetic low-loss dielectric such as 

Stycast, whose permittivity of 13 remains constant over the frequency range of interest. 

The patterns are drilled in the respective Stycast slabs in a single milling operation. The 

sections of a given lattice constant are then clamped together. 

The electromagnetic response of the system is characterized in both transmission and 

reflection. K-band feedhorns were used to transmit and receive electromagnetic radiation 

through the sample. An HP 8510 network analyzer was used to measure the microwave 

reflection coefficient, S11, and transmission coefficient, S21, from 14 to 26 GHz. The 

experimental set up is shown in Fig. 2(b). 

As a frrst demonstration, we have constructed a UWB crystal with two lattice 

constants. The triangular lattice constant for the fIrst periodicity is t=0.778 cm and the 

dimensions of the sheets used are 15.2 cm x 15.2 cm x 0.635 cm. The triangular lattice 

constant for the second periodicity was t=O.622 cm with the dimensions of the plates being 

15.2 cm x 15.2 cm x 0.508 cm. The sample reported here consisted of two fcc crystals 

whose stop bands were centered about 16.5 GHz for the t=O.778 cm crystal and 21.5 GHz 

for the t=O.622 cm crystal. Transmission measurements for the these crystals are shown in 

Fig 3(a) and (b) respectively. 

In order to maintain the offset, three alignment holes are drilled in the comers of the 

slabs. The alignment holes are positioned at the apex of an equilateral triangle with side 
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(8) 

Port 1 K-band 

21 GHz 
crystal 

16GHz 
crystal 

Network 
Analyzer 

(HP 8510) 

/horn 

UWB-PBG lIIIIIIIII ./ structure 

1-----' 'K-band 
Port 2 horn 

(b) 

Figure 2. (a) Diagram of UWB photonic crystal. The holes are drilled perpendicular to the face of the 

slabs. (b) Experimental set-up for transmission (S21) and reflection (Sll) measurements. The photonic 

crystal is rotated off normal to obtain 1E polarization measwements and azimuthally to obtain TM 

polarization measwements. 
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I = .:h. Since there are two separate periodicities in the UWB crystal, the alignment holes 

of one component crystal do not coincide with the holes of the other. One way to 

overcome this is to drill a set of global alignment holes. However, here we chose to use a 

series of small pins passing through each of the individual alignment holes, then clamping 

the entire structure together. The UWB-PBG structure consists of only one unit cell (3 

sheets) for each periodicity. It has been shown elsewhere that as the number of units cells 

is increased, the depth of the gap is increased 3 

For the UWB crystal, transmission (S21) results taken along the [111] direction (L­

point in the Brillouin zone), shown in Fig. 3c, indicate that the overall stop band is 

approximately the superposition of the individual stop bands. S21 measurements were also 

taken in the [110] direction (K-point in the Brillouin zone) (Fig. 4) and [210] direction (W­

point in the Brillouin zone) (Fig. 5). All measurements indicate that the overall stop band is 

the superposition of the component stop bands. 

Reflection (Sll) measurements for the UWB crystal and the component fcc crystals 

are shown in Fig. 6. The reflection coefficient increases inside the stop band for all cases. 

S 11 measurements for the UWB crystal indicate that the overall stop band is again the 

superposition of the respective stop bands of the component crystals. Due to the 

complexity of doing Sll measurements, only normal incidence (L-point) was considered 

here. However, for the 16.5 GHz crystal, reflection measurements in other directions can 

be found elsewhere} 

In summary, we have fabricated and characterized a novel UWB photonic crystal. 

Our fIrst sample, which consisted of two fcc crystals stacked in tandem, displayed an 

overall stop band that was approximately the superposition of the component crystals. This 

stop band is broadened well beyond that achievable with a single crystal. Currently, we are 

investigating methods of integrating photonic crystals with antennas and other microwave 

printed circuits such as microstrip and coplanar strip transmission lines. 
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WAVE HIERARCHIES FOR PROPAGATION IN 
DISPERSIVE ELECTROMAGNETIC MEDIA 

Peter G. Petropoulos 

Armstrong Laboratory, AL/OES 
Brooks AFB, Texas 78235-5220. 

INTRODUCTION 

In this talk we introduce the concept of a wave hierarchy whereas waves of different 
type (e.g., non-dispersive, dispersive, diffusive, higher-order dispersive and diffusive) co­
exist in a spatial domain and each order manifests itself in mutually exclusive regions 
by appearing as dominant over the others in a sequence which depends on the material 
properties. In this talk we will derive the wave hierarchy governing the propagation 
of arbitrary electromagnetic pulses in dispersive media whose dielectric properties are 
modeled by a conduction current mechanism, and by two types of polarization current 
mechanisms. A single partial differential equation will be shown to govern the evolution 
of the electric field. This single equation will exhibit 5 wave types, i.e., a hierarchy. 
Each wave type will be seen to be associated with a distinct speed and with a strength 
coefficient whose order of magnitude will determine when the associated wave order 
will dominate the response in the dielectric. Detailed results of the general procedure 
will be given in the Analysis section for a one relaxation Debye medium model. Our 
analysis will identify a "skin-depth" of length O(CooTmin) m for pulses incident on the 
air/dielectric interface, where T min is the shortest relaxation time, and Coo is the infinite 
frequency phase velocity (the wavefront speed). In this short interval the pulse will be 
shown to travel with the wavefront speed, and to decay exponentially according to a 
telegrapher's equation. Past this shallow depth ('" 0(10-3 ) m for a single relaxation 
Debye model of water) we will show that the main disturbance satisfies an advection­
diffusion equation and that it travels with a sub characteristic advection speed equal 
to the zero frequency phase velocity ('" coo /9 for the water model). Since this work 
emerged out of our efforts in the area of numerical simulations in the Applications 
section we will indicate some ramifications for efforts aimed at developing accurate 
numerical schemes for modeling propagation in dispersive media. Such schemes are 
expected to be useful in studies whose goal is to include short-pulse phenomena in a 
future update of the IEEE RF exposure standard. Computer codes for this delicate 
application will have to be robust and accurate in many ways since they will be re­
quired to represent the geometrical features found in the human body and at the same 
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time resolve a wide range of timescales exhibited by the various tissues composing the 
human body. Our work so far has been concerned only with the behavior of numerical 
approaches in light of realistic dispersive properties determined from experimental data 
for permittivity as a function of frequency. 

ANALYSIS 

In a dielectric half-space whose dispersion is modeled with a Drude conduction 
current mechanism, and Debye and Lorentz polarization current mechanisms, Maxwell's 
equations are 

8E 
8z 
8H 8pD 8pL 

= {h-J- Tt - at 

rD8pD + pD = 
8t fo{3E 

82pL 1 8pL 2 L 
8t2 + rL at + WoP = fo'1E, 

(1) 

where r C , rD, rL are respectively the conduction, Debye, and Lorentz mechanism 
relaxation times, a, {3, 7 are respectively the conduction, Debye, and Lorentz mecha­
nism strengths, and Wo is the resonance frequency of the Lorentz mechanism. In (1), 
1-'0 and Eo are respectively the vacuum permeability and permittivity, and 1000 is the 
infinite frequency permittivity of the dielectric. Subsequently, the wavefront speed in 
the dielectric is Coo = 1/ ./10001-'0. 

We proceed by eliminating the magnetic field and by taking time derivatives in the 
current and polarization equations. Our system now is 

(2) 

82 1 8 2 L 
(8t2+rL8t+Wo)Pu = E0'1Eu. 

Next we apply the operator (rc£+l)(rD£+1)(£.+~£+w!) to both sides of the first 
equation in (2)' and use the second, third, and fourth equations in (2) to eliminate from 
the resulting high-order partial differential equation the time differentiated current and 
polarization variables. A rearrangement of the various terms, which now involve only 
the electric field, gives the equation we seek, i.e., 

M 

L {3n8tt-n(8tt - c!8.,., + an81)E = 0, (3) 
n=O 
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where M = 4, an = 0 for n = 0, ... , 3, and the f3n, en, and a4 are complicated expressions 
involving the dielectric's parameters. It must be noted here that Co = Coo and C4 = 
vpha.e(w = 0). Also, since only a4 # 0, the conduction mechanism will manifest itself 
in the late time evolution and will be preceded by non-dispersive and Debye/Lorentz 
dispersive wave orders. The air/dielectric interface is at x = 0 and the total electric 
field for x < 0 satisfies Ett - c2 E",,,, = 0, where c is the speed of light in vacuum. 

Now we specialize the procedure for a Debye dielectric modeled with one relaxation 
mechanism. In this case Maxwell's equations are coupled only to the fourth equation 
in system (1). The resulting equation for the electric field is: 

(4) 

In (4), €. is the static permittivity, T is the relaxation time, and Co is the phase velocity 
at zero frequency given by 1/ V€.!-'o' It is important to mention that for pure water the 
coefficient €./€ooT is 0(1013 ) thus allowing use of asymptotic methods for the extraction 
of simpler equations which will describe the early and late time pulse evolution in the 
dielectric with a prescribed E(x = O,t) = g(t) (signaling problem). Omiting details, 
which will be presented elsewhere, the early time (up to t ~ T) evolution is governed 
by 

while the late time (t > T) evolution is governed by 

€ooT( 2 2) Et + coE", = -2- Coo - Co E",,,,. 
€. 

(5) 

(6) 

A set of typical medium parameters for pure water throughout the microwave is €oo = 
€o, €. = 80€0, T = 8 picoseconds. 

The largeness of €./€ooT is common when one considers experimental data for the 
real and imaginary parts of the permittivity of tissue and water. Therefore one expects 
equation (5) to be important only in a very thin layer near an air/dielectric interface 
which is illuminated with an incident signal. Elsewhere, we have shown that this thin 
layer is O(CooTmin) m deep when an M relaxation model is used to represent experimen­
tal permittivity data. This is derived from the generalization of (4) for M relaxation 
Debye dielectrics: L,~of3n{)f!-n({)tt - c~{)",,,,)E = O. For the M = 1 water model this 
distance is Coo T ~ 2 mm. In this thin layer, which is reminiscent of the frequency do­
main skin depth, the pulse decays exponentially with depth at a fixed time instant (or 
with time for fixed spatial location) along the characteristic x = coot and travels with 
the infinite frequency phase velocity. All of the very high frequency information decays 
exponentially but can always be found on, and just behind, the light characteristic 
in the dielectric. Thus, even in Debye models there is a contribution to the response 
which resembles the well studied Sommerfeld precursor found in Lorentz dielectrics. 
After this short depth, the response is concentrated around the sub characteristic ray 
x = cot. Further, by examining the advection-diffusion equation (6) we see that the 
response satisfies a heat equation in a frame moving with speed Co. Thus the peak of 
the response (found on the ray x = cot) will decay algebraically as X- 1/ 2 (or C 1/ 2), 

and the spatial support of a (initially) compact pulse propagating in the dielectric will 
grow as t 1/ 2• Most importantly, the peak of the pulse response will travel in most of 
the dielectric with the speed Co, i.e., with the phase velocity at zero frequency. This 
part of the response resembles the Brillouin contribution to the response in Lorentz 
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dielectrics. In Debye dielectrics the group velocity concept has no meaning. The group 
velocity is superluminal for frequencies above the relaxation frequency in the dielec­
tric and subluminal (but of higher value than the phase velocity) below the relaxation 
frequency. In numerical simulations with a variety of pulses (with and without d.c. 
frequency content) only the speeds Coo and eo have been observed. 

APPLICATIONS 

We determined that the pulse response in a relaxing dielectric half-space is mainly 
a diffusion wave traveling with the DC phase velocity of harmonic waves, eo, and 
that the fastest speed, Coo (the infinite frequency phase velocity), is important only 
in a thin layer near the illuminated air/dielectric interface. For the M = 1 model 
of water permittivity this thin layer is 0(10-3 ) m, and eo ~ coo /9. These findings 
are important for understanding the behavior of existing numerical methods for pulse 
propagation in relaxing media. Elsewhere we have shown that the timestep , tlt, for 
Debye finite-difference schemes is required to finely resolve the relaxation phenomena 
in the dielectric for reasonable accuracy. Now we show how to choose the spatial cell 
size for these schemes by considering the slow speed, Co, which develops in a short 
length and dominates over the remainder of the spatial domain. We can associate a 
wavelength to a fixed frequency I which will exist in the "skin-depth," and later on 
in the evolution of the response, i.e., Aoo = coo/I and Ao = eo/I, and so it will be 
Ao < Aoo. Since the spatial discretization of existing schemes has to resolve the shortest 
length scale in a calculation, it turns out that tl:c has to resolve (finely for long-time 
simulations) the scale Ao which develops after a short time in the simulation. This 
results in a very small cell, much smaller than the one obtained when the spatial cell 
size needs only to resolve the longer length Aoo. In addition, these schemes were derived 
with strictly hyperbolic wave phenomena in mind so they require the Courant number 
v = coo!lt/!l:c to be 0(1). As a result, due to the requirement that !It resolves the 
smallest relaxation time, it may be that the spatial cell size needs to be reduced further 
than that obtained by considering the scale Ao as described above. This indicates that 
it may be fruitful to consider schemes that allow one to increase the cell size in order to 
reduce the timestep. In summary, the analysis points towards schemes for hyperbolic 
problems that are stable for Courant numbers v ::; vo ~ eo/coo, Le., towards schemes 
that are 2nd-order accurate in time and 4th-order accurate in space. These schemes are 
very accurate for tlt = 0(1)tl:c2 , and even look more "physical" since they possess a 
diffusion-like scaling of the finite time and space variables which is required for such high 
accuracy (in diffusion t ~ 0(1):c2 ). However, for realistic problems even these (2 - 4) 
schemes may be computationally prohibitive. Our current research is aimed towards 
the development of numerical methods that include the influence of these offending 
short relaxation times cales without fully resolving them. 
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A TIME DOMAIN RADAR RANGE EQUATION 

H. W. Lorber 

Lockheed Aeronautical Systems Company 
Marietta, GA 30063-0649 

INTRODUCTION 

When one tries to use the Radar Range Equation (RRE)I to analyze an ultra­
wideband, short-pulse radar system, complicating issues arise based on the distortion of the 
transmitted pulse waveform by the transmitting antenna, the target, and the receiving 
antenna. The antennas are under the control of the designer who can minimize their effects 
on the pulse waveform, but usually distortion of the pulse by the target is something the 
system designer must accept. Target distortion is especially pronounced when the target 
contains cavities or ducts where the incident pulse can reverberate for a while before return­
ing to the radar. Under these conditions, the very concept of a radar cross section (J" for the 
target becomes questionable. The common formulation, adapted to define an instantaneous 
RCS, 

(1) 

where RR is the range to the radar receiver and pinc and p"at are the power densities 
incident on the target and scattered by it onto the receiving antenna, is often meaningless in 
the time domain. At late times, when the incident power density has dropped to zero, the 
target may still be scattering, causing the radar cross section as formulated in (1) to become 
infinite. 

The most straightforward way to address the radar system problem in the time domain 
is to work with field amplitudes and current waveforms (as opposed to voltage waveforms, 
to facilitate Method-of-Moment analyses) rather than power or energy exclusively. In this 
paper, frequency- and time-domain quantities are defined and relations among them are 
derived. This foundation then enables us to proceed quickly to derive the entire RRE, fol­
lowing the development of Shubert and Ruck,2 go on to discuss the target detection prob­
lem, and then define time-domain versions of the RCS, receiving antenna aperture area, and 
transmitting antenna gain. For the antenna analysis, the recent review paper of Lamensdorf 
and Susman, and their references,3 are useful, but a slightly different approach is used here, 
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based exclusively on impulse responses of the radar target, antennas, and receiver. This 
approach is then shown to result in upper bounds on the received signal energy. 

FREQUENCY DOMAIN 

The RRE is often written as 

where Pr 

Gr 

0-

AR 
S 
Rr 
RR 

is the power of the transmitter into the transmitting antenna, 
is the power gain of the transmitting antenna, 
is the radar cross section (RCS) of the target, 
is the effective aperture area of the receiving antenna, 
is the signal power into the receiver, and where 
is the range from the transmitting antenna to the target, and 
is the range from the target back to the receiving antenna. 

(2) 

Losses are not shown explicitly but are included in Gr and AR . This form of the RRE 
assumes the steady state at the transmitter, target, and receiver, such that the leading-edge 
pulse transients have all settled down and trailing-edge transients have not yet begun. In the 
steady state there is assumed to be only one frequency, llJo' 

In terms of the complex current IT between the transmitter and its antenna, whose 
impedance is ZT' we have for the transmitter power, 

(3) 

where ]r is the complex current normalized to the antenna impedance. Similarly, for a 
receiver input impedance ZR' the received signal power is given by 

(4) 

In addition to the complex voltages, and their normalized counterparts, we have the 

complex transmitting antenna current gain gr, defined such that Gr = /gl, with similar 

relations for RCS, 0- = /S/2, and receiving antenna aperture area, AR = /iiR /2. 
In terms of these complex current and field quantities, the RRE becomes 

(5) 

TIME DOMAIN: PRELIMINARIES 

The current through the transmitting antenna port at time t can be expressed as Ir(t), 
which in the narrow-band, long-pulse case can be allowed conveniently to be complex. This 
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function of time is related to a complex current amplitude per unit of frequency band­
width-a current spectral density-through the Fourier transform 

(A-s, A/.HZ). (6) 

As an example, let IT(t) be a narrow-band pulse current, expressed as iT(I)eJwo', 
where iT(I) can be complex. Specifically, let the pulse be rectangular, oflength T and con­
stant complex amplitude IT' such that 

for - Tl2 <I < T12, 
otherwise, 

Then, by (6), the pulse current spectral density is 

(A). 

Analogous to (6), we can define the nonnegative real energy spectral density 

(J-s, JIHz), 

where JT(aJ):== jT(aJ)~ReZT(aJ). This enables us to express the total pulse energy as 

1 f'" A 1 f'" 1 A 12 WT :== - w;.(aJ)daJ ==- JT(aJ) daJ 
21i -'" 41i -'" 

(J). 

(7) 

(8) 

For the example of the long rectangular pulse, we can use its current spectral density in 
(7) and (8) to obtain 

which is readily seen to be the useful energy of the long rectangular pulse transmitted into 
the antenna. Consequently, with reference to the frequency-domain discussion, for the 
example of the long, rectangular pulse, we have IT == IT and IT~ReZT(aJo) == JT • For this 
special case, then, we have a clear correspondence between the time- and frequency-domain 
currents. 

The approximate result for the energy of the long rectangular pulse assumes that the 
transmitting antenna is well designed such that, over the frequency spectrum of the pulse, 
the antenna impedance is nearly constant, approximated by its value at the center frequency. 
However, this use of a center frequency may not be readily applicable for an ultra-wideband 
short-pulse radar. For this case it is often more appropriate to work with the antenna's 
characteristic or surge4 impedance ZOT which, for a well-designed radar, can be assumed 
real and frequency independent, with the transmitter well-matched to the antenna. The 
transmitter current waveform is then normalized such that 
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(9) 

Since the transmitter is matched to its antenna, the current waveform IT or JT is that of the 
pulse wave traveling from the transmitter to the antenna. Any wave traveling from the an­
tenna back to the transmitter is absorbed there, and its current is not included in (9). 

Let the impulse response of the transmitting antenna be the function gT' expressed in 
units of reciprocal time, such that the incident magnetic field strength at the target, a great 
distance Rr away, due to radiation emitted at time I, is 

(Nm), (10) 

with gT zero for negative argument. Here c is the speed of light and 17:= 41l"X 107 c '"" 377 
ohms is the TEM plane-wave impedance. Since H mc depends strongly on the derivative of 
the current IT or Jp the graph of gT resembles a doublet, like the derivative of 

exp{ -t( 7:f .. y}. Using (9), we can abbreviate (10) as 

(11) 

TUMEDONUUN: RREDEIDVATION 

The impulse response of the radar target, analogous to that of the transmitting antenna, 
is the function s, expressed in units of length per unit time. This function of time is defined 
such that the scattered electric field incident on the receiving antenna, a great distance RR 
away from the target, is expressed explicitly in terms of the magnetic field incident on the 
target at time [t]T' as 

HSCa1([t] +R /c)=_I_(Hlnc*s)([t] ) :=_1 -f'" HlnC(t')s([t] -t')dt'. (12) 
T R ~47iR; T ~47iR~ _00 T 

Using (11) in (12), and taking the appropriate abbreviations, we have 

(13) 

where [t]11/ :=t+(Rr+RR)/C. 
Just as with the transmitter and its antenna, the receiver is assumed to be well matched 

to its antenna, such that the receiver input admittance seen by the receiving antenna matches 
its own characteristic impedance ZOR. The current waveform through the receiver port is 
therefore determined by the scattered magnetic field H scat incident on the antenna and the 
antenna's impulse response aR . Consistent with (9), the normalization of the receiver input 

signal current waveform is given by Js(t) := Is (t)JZ;;. 
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The impulse response of the receiving antenna is the function aR , expressed in units of 
length per unit time. This function of time is defined in terms of the scattered magnetic field 
at the receiving antenna aperture, such that the normalized received signal input current is 
given by 

We can use (13) to rewrite this result as 

(15) 

thus giving us the normalized receiver input signal current waveform in terms of the normal­
ized transmitter output current waveform. By (8) and Parseval's identity, we can express 
the total receiver input signal energy in terms of the L2 -norm as 

Ws := Ills II:, := 1: l;([t]m )dt, giving us, from (15), 

(J). (16) 

This is the time-domain RRE that was sought. It is clearly analogous to the corresponding 
single-frequency RRE (5). 

In a companion paper in this volume,5 Farr et al. introduce a radar equation based on a 
different norm from that used in (16) but exhibiting the same sort of application of the 
Schwartz inequality that will be considered below. In addition, they use reciprocity to relate 
the impulse responses of an antenna used for both transmitting and receiving. Converting 
their notation to that used here, we have for the monostatic case, with the same antenna 
used in both roles (so that RT = RR and ZOT = ZOR)' 

2 daR 
g=-­

T ../n-c df . 
(17) 

As Farr et al. point out, integration of (17) relates aR to the step response of the antenna 
when used for transmitting. 

APPLICATION: TARGET DETECTION IN NOISE 

Receiver Design 

The discussion that follows draws freely on the text by Wozencraft and Jacobs 6 and is 
based on a receiver with the following description. The receiver's input signal current, plus 
additive white gaussian noise, passes through a filter with impulse response hR (expressed in 
units of reciprocal time) which is matched approximately to the input signal waveform given 
in (15)-approximately, because this waveform is shaped in large part by the target, which 
may be beyond control. The normalized filtered output current for the i-th transmitted pulse 
is 
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if Target is Absent, 

if Target is Present, 
(18) 

where J RSi ([I ]m) : = (J Si * hR )([ I lm) is the normalized filtered signal current and where, at 

the same time, J RNi is the normalized receiver noise current. To combat this noise, taking 
advantage of limitations of target speed relative to the radar, the receiver adds the filtered 
output currents from some maximum practical number n of single pulses and squares the 

resultant sum JR ([I lm): = L~=l JRi ([I lm) to make the resulting random process non­

negative. (In creating the sum, time is normalized, that is, assumed to start over for each 
pulse.) The receiver then integrates the squared sum over the interval of 
[I]m := 1+(14 +RR)/C for which I e(O,ol). Here Of is at least long enough to account for 

the receiver output return signal from a point target and preferably no longer than necessary 
to capture the return from the longest anticipated target. Finally, the receiver creates a non­
negative random variable 

(1). (19) 

and compares its value to a threshold detection criterion level Wa such that 

if ~ 6t = 0, the receiver indicates ' {dv"} {" Target is Absent " 
. > Wa "Target is Present. " 

(20) 

(The borderline case may be decided either way.) 
Good design dictates that the receiver filter impulse response hR be appreciably differ­

ent from zero only within the integration interval 01. We can characterize JRN• as a zero­
mean gaussian process due to additive white noise at the receiver input port with a noise 
temperature of TN kelvin, such that the spectral density of the white noise is tkTN watts per 
hertz. This passes through the receiver filter, giving J RN. a correlation function 

RRNi (1) = tkTN L: hR(t' - .)hR( .)dt'. Here k,., 1.38 X 10-23 joules per kelvin is Boltzmann's 

constant. The mean receiver output noise power for a single pulse interval is 
(PN ) := RRN. (0) watts. since the noise-current process is gaussian and scalar with zero 

mean, its square is r-distributed with 1 degree of freedom. 
Since the signal-plus-noise process is gaussian and scalar with nonzero mean, its 

square is noncentral-t , also with 1 degree of freedom. The density function of the random 

variable J; ([t]m) is then 1 

(21) 

The density function for the square of JR ([I lm) for the condition Target is Absent follows 

directly from (21) with JRSi ([t]m) set to zero. 

The effect of integration of the squared receiver output current has attracted the atten­
tion of researchers off and on since the early 1940s. The problem has been solved in closed 
form by Schwartz,8 for the pure noise case of "time-averaged noise power" for the receiver 
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noise correlation function RRNi (,) = e-al~, but the case of signal plus noise has been 
addressed more recently as the "linear-quadratic-gaussian" or LQG problem in the control­
theory literature. In particular, Liberty and Hartwig9 report on the development of compu­
tationally efficient methods for calculating the low order cumulants of the receiver output 
~.6t and matching these in approximating density functions. However, the setting of opti-

mal detection criteria Wo and the determination of corresponding error probabilities depends 
on the tails of the density functions of ~.6t for the cases of signal plus noise and noise 

alone. The approximating density functions may not be able to match these tails with any 
certainty. Consequently, to the knowledge of the author, approximate engineering solutions 
to the optimal detection problem remain to be found by numerical experiment. 

KEY RADAR SYSTEM PARAMETERS 

Narrowband, long-pulse radars have antennas and targets characterized usefully in 
terms of their gains, effective apertures, and cross sections: simple positive scalars based on 
power levels and densities. However, the quest for similarly useful, simple, positive scalar 
characterizations based on levels and densities of energy for ultra-wideband, short-pulse 
applications has proved difficult so far. Proposals have been advanced by Lamensdorf and 
Susman 3 and by Farr et al. 5 among others. The short development that follows proposes yet 
another alternative, based exclusively on the L2 -norms of the impulse responses. These 
provide upper bounds on received signal energy, are consistent with conventional 
frequency-domain definitions, and are characteristic of the target or antenna in question 
rather than the waveform used in a specific radar system to excite it. 

Radar Cross Section (RCS) 

We can apply the Fourier transform to both sides of{l2) to obtain 

(Nm-Hz). (22) 

As in (6), the caret (-:- ) indicates the Fourier transform, with fisc., and k nc magnetic field 
spectral densities. We can use fisca, and refer to (7) and (8) to define the spectral energy 
density and the energy per unit area scattered onto the receiving antenna as 

(23) 

and 

wsca' := _1 Joo W(co)dco =..!LJ'" lfisca, (co)1 2 dco 
21r -00 41r -00 

(24) 

and similarly for wmc and wmc . 

As mentioned in connection with (12), the target impulse response s is expressed 
in terms of length per unit time, and so its Fourier transform s is expressed in units of 
length. Solving (22) for s(co), taking the absolute square, and using (23) we obtain 
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(25) 

which is very much like (I), the standard formula for RCS. The limit of infinite range in (I) 
ensures that the scattered field is taken in the far, Fraunhoffer, zone. In the subsequent 
development (25) will be cited as though the limit is taken there. 

To make the discussion ofRCS more explicitly relevant to the target impulse response, 
let the incident waveform be an impulse of amplitude Amc, arriving at time 14 / c; that is, 
Hinc(t')=Ainco(t'-RT/c) amperes per meter. Since the integral of the 8-function is 

dimensionless, the 8-function is expressed in units of reciprocal time, and the amplitude Ainc 

is expressed in the same units as the magnetic field spectral density. 
The Fourier transform of the incident magnetic field impulse is frnc = AinCe-JailTiC, and 

so, by (22), the spectral density of the scattered field is 

(Aim-Hz). (26) 

In addition, the spectral energy density of the incident impulse is t(A inc r .,., joules per hertz. 

These relations, together with (23), used in (25), and that in turn in (24), give us 

(27) 

Parseval's identity enables us to rewrite this result as 

(28) 

This form is very similar to that of (1). Accordingly, we can define ~ as the ultra­
wide band, short-pulse ReS of the target. The numerator on the right hand side is the 
energy at the receiving antenna in the scattered waveform due to excitation of the target by 
an impulse. The denominator, the spectral energy density of this impulse, is constant across 
the frequency band of interest. It plays the same role as white noise in signal processing 
theory. In both cases the total impulse energy and white noise power, integrated over the 
entire frequency spectrum, are infinite. However, since the spectrum of interest is finite, any 
infinite integration domain is purely a notational convenience. 

Like (1), the definition in (28) has the advantage of depending on the target's size, 
shape, and aspect, but not on the radar, with one exception: polarization. Polarization is 
neglected here to keep the discussion simple but can be introduced just as in the single­
frequency case. Even when the polarizations of the incident and scattered fields are time 
dependent, we can express s, in terms of orthogonal incident and scattered polarization basis 
vectors, as a 2 x 2 matrix whose elements are functions of time. 

Measurement. The most straightforward tool for measuring s(t) and ~ is a time­
domain impulse test range. However, such a range is limited in dynamic range, not only by 
receiver noise but by impurity of the emitted waveform. In particular, a relatively weak 
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target feature slightly downrange from a strongly scattering feature can be masked by a 
similarly weak trailing edge transient of the emitted pulse scattered by the strong feature. 
Conventional coherent test ranges are free of such waveform-impurity problems. 
Subsequent digital processing of complex sampled-frequency data enable us to determine 
s(t) and L for ideal exciting impulses. Consequently, the remainder of this discussion covers 
the measurement of s(t) and L on a coherent, stepped-frequency test range. 

Consider a target of overall length L, along which we want to resolve features as 
closely spaced as I, and which may be as much as 30-dB apart in magnitude. Following 
standard ISAR imaging procedures, we can use Hanning (cos2 ) weighting and sample over 

a total bandwidth of I10J :=4trc//; 11/ :=2cll. Then, to facilitate use of the Fast Fourier 
Transform, we need N ~ L / 1 equally spaced frequency samples, where N is a power of 2. 

For zero center frequency, we sample from 11/ / N to 4f / 2 = c / I, and-since the 
target impulse response s(t) is real-for each positive sampling frequency /; =;4/ / N, the 
target scattering spectral density s(OJJ equals the complex conjugate of s( -OJJ, and for 

;=0, s(O) = O. This gives us N samples, from OJ-(N-I)/2 through zero to OJNI2 , with N/2 
complex measurements. To ensure causality of the impulse response derived from the 
measured complex s(OJJ, we may need to apply processing described by Sarkar et al.1O 
Finally, to correct for the Hanning weighting, we need to apply a positive correction of 

to the time domain RCS calculation. For the corresponding impulse response calculation, 
the Hanning (cos2) weighting factor, equal to 1 for zero frequency, results a convolution of 

the ideal impulse response with a window function whose integral, like that of a o..function 
is 1. Correction for the weighting is needed, therefore, only for the RCS calculation. 

Antennas: Transmitting Gain and Receiving Aperture Area 

As with the RCS, we can define antenna transmitting gain and receiving aperture area 
as the L2-norms of the corresponding impulse responses: 

and 

(30) 

where Ar and A- are amplitudes of the magnetic-field and transmitter current and mag­
netic field impulses exciting the antennas. (Recall the relation of gr and aR given in (17).) 

Application: Upper Bounds on Receiver Signal Output 

Since convolutions commute, we can apply (IS) in the definition of the normalized 
receiver current J RSi' and that in (19) to express the integrated receiver output in the 
absence of noise as 
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(31) 

The Schwartz inequality applies to the numerator, and so we can immediately apply the 
definition given in (31) of the time-domain ReS to obtain the upper bound 

(32) 

Looser bounds on the receiver output can be written in terms of the transmitting antenna 
gain and receiving antenna aperture area, in addition to the Res. The impulse responses 
provide a more accurate indication of system performance, however. For more on this, see 
the paper by Farr et al. 5 

DISCUSSION 

The time-domain RRE (16) is clearly analogous to its conventional frequency-domain 
counterpart (5). The impulse responses in (16) are similar to their frequency-domain coun­
terparts in (5) and can be applied similarly to assess the ability of an ultra-wideband, short­
pulse radar to detect target returns in receiver noise. The key radar system parameters, such 
as Res and transmitting antenna gain can be defined in the time domain in terms of the 
integrals of the squares of the corresponding impulse responses. Being integrals, they 
obscure the effects of the antennas and target on the shape of the radar pulse, but, being L2_ 
norms, these parameters can provide upper bounds on the receiver signal output. 
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TRANSMISSION OF AN UNDISTORTED BROADBAND 
PULSED·SINC·BEAM 

ABSTRACT 

Its'hak: Dvir and Pinchas D. Einziger 

Technion- Israel Institute of Technology 
Department of Elecnical Engineering 
Technion City, Haifa, Israel 32000 

The general solution of an Undistorted Broadband Pulsed-Beam, which supports a 
predetermined broadband time-signal at a single observation plane, is demonstrated for a 
rectangular source distribution generating the Undistorted Broadband Pulsed-Sinc-Beam 
(UBPSB). Analytic expressions as well as graphic simulation results in the frequency and 
time domain are presented. 

INTRODUCTION 

Pulsed-beams characterized by space-time localization of the Electromagnetic energy 
hold much promise in applications such as, ultra-wide bandwidth pulsed-driven array-elements, 
covert broadband communication, and high resolution detection, classification, and 
reconstruction of objects. A major problem in some of this applications is the strong distortion 
of the pulsed-beam time-envelope, due to the space-time dispersion associated with the 
propagation mechanism of the broadband signal. This distortion is unavoidable even in 
homogeneous nondispersive media. 

Recently, we have proposed a rigorous synthesis method to overcome the distortion 
problem by properly designing the space-time source disnibution to generate the Undistorted 
Broadband Pulsed-Beam (UBPB)l.2. This method, obtained through an analytic closed-form 
inversion of the pulsed-beam radiation integral, can support an undistorted time-envelope at a 
single observation plane (z = zo)' I.e. the time-envelope of the pulsed-beam at this plane is 
exactly the same as the broadband time-signal, s(t), which is predetermined at the source 
plane (z=O), except for an attenuation factor and a propagating delay. The source distribution 
of the tangential field 
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k = rolc (1) 

for each source point r'~(x',y',O), at the aperture plane, z = 0, and for each frequency 
component, ro, is expressed in terms of the source distribution at a typical frequency, 
et(r',roo), and consists of three frequency dependent terms: focusing, scaling, and amplitude. 
The location of the observation z = Zo plane, which is perpendicular to the axis of propagation, 
can be varied continuously from the near-field zone to the far-field zone by controlling the 
focusing term. In the far-field zone, where Zo ~ 00, the last two terms are in agreement with 
the scaling rules of the Fourier transform. In this case the same energy for each frequency 
component is mairitained, e.g., for frequency component that is higher than the typical frequency 
the source distribution of the typical frequency is compressed, while the amplitude is increased 
by the same factor. 

Since the field distribution of UBPB in the frequency domain at the observation z = Zo 

plane is frequency independent, except for a linear phase term, and coincides with the 
observation field distribution of the typical frequency at that plane, the spatial field-distribution 
of the UBPB can be synthesized by modifying the classical spatial ftItering techniques, to 
construct a localized space-time field with a predetermined pattern. 

A RECTANGULAR SOURCE DISTRIBUTION 

In this paper we consider an example of the general solution (1) in the two dimensions 
(x,z). A single tangential component of the source-distribution-vector, et(r',roo), is taken to 
be a rectangular with a finite support width, llo 

where, po. (X')~{OI x' '5, au/2 
otherwise 

The following source-distribution is obtained: 

where 

(2) 

(3) 

(4) 

The source plane consists of low-pass ftIters with spatial-dispersive quadratic phase, 
where the frequency characteristics of each ftIter is depended on the location of the transverse 
point at the source plane. The phase term of the ftIters, which is negligible at the far-field 
zone, can be varied to determine the z = Zo plane location. 

The source distribution (3) generates the UBPSB observation-field at point r=(x,y,z) 

(5) 
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Figure. 1 Transverse distribution of the UBPSB 
The amplitude distribution verses the transverse distance xlo •• for three time·hannonic beam components of 

the UBPSB is shown at the following planes: (a) zlz. =0.1; (b) zlz. =0.95; (c) z = z.; (d) zlz. =5. The three 

frequencies are the minimum(solid line). typical (dashed line). and maximum (dotted line) frequencies of the 

broadband time-signal. Only at the unique z = z. plane. the amplitude field distribution of the pulsed-beam is 
frequency independent. 
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Figure, 2 Time-envelope of the UBPSB al observation !JOints on-axis and off-axis 
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The amplitude of the time-envelope of the UBPSB in the base-band is shown for observation points on-axis 
x = O(a,c,e,g), and off-axis x/ao = 0.4 * z/z. (b,d,f,h), al the same planes as in Fig.I. Only at the unique z = z. 
plane the time-envelope has the same time-variation as the given broadband time-signal, therefore it is undistorted. 
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where the Fresnel integral is defined] 

~ 

F( '6)!!..fi7i I dx' exp( ix,2), 
o 

(6) 

with the following definitions 

(7) 

(8) 

The UBPSB field at the Z = z. plane (for observation point r=fo)' is reduced to the typical 

(Ol = Olo) time-harmonic beam-field except for a linear phase term, exp[i{Ol-Olo}i'./C]' This 

term in the time domain, produces a propagation delay, t - r. / c, without causing any distortion 
in the time-signal. The amplitude of the time-signal at each point at that observation plane is 
detennined by the shape of the typical time-harmonic beam-field, E t {f., Olo}, which is 
shown in Fig.1c.ln this figure the amplitude distribution verses the transverse distance x/ao, 
for three time-harmonic beam components of the UBPSB is shown at the following planes: 
(a) z/zo =0.1; (b) z/zo =0.95; (c) z = zo; (d) z/zo =5. The three frequencies are the minimum, 
typical, and maximum frequencies of the broadband time-signal. For other plane locations, 
(such as z/zo =0.1, z/zo =0.95, z/zo =5, as shown in Fig. la,b,d) the observation field of the 
UBPSB in the frequency domain is not frequency independent, thus distortion in the time-signal 
is expected. 

The time-envelope of the UBPSB is shown in Fig.2 for observation points located on 
the same planes as in Fig.I. Notice that. the time-signal which emerges earlier from points 
off-axis (x/ao = 0.4 '" z/z.), has different time-variations than the time-signal emerges from 
points on-axis (xftlo = 0). This can be seen in Fig.2a and Fig.2b for the observation points 
x/ao=O, and x/ao=0.08, located on the plane z/zo=O.l, near the aperture, respectively. 
While distortion in the time-envelope still can be realized at points x/ao=O, and x/ao =0.76, 
at the plane zlzo =O.9S, near the plane zlzo =1, as shown in Fig.2c and Fig.2d., respectively, 
the distortions are disappeared at points on the z = Zo plane. This property, which hold for all 
points at this plane, is demonstrated in Fig.2e and Fig.2f. for the points on-axis, x/ao=O, and 
off-axis, x/ao =0.8, respectively. In fact, the time-envelope of the UBPSB at this unique 
plane has the same time-variation as the broadband time-signal, s(t), that is given at the 
aperture plane by its constant spectral content 

S(Ol) = {I Ol E [Olmin'~max] . 
o otherwise 

(9) 

The ratio of the maximum to the minimum frequency is taken to be 100, and the typical 
frequency is the mean value of the minimum and the maximum frequencies. Finally, far 
away from both the aperture plane, and the z = Zo plane, at z/zo =5 plane, distortions of the 
time-signal can be seen, as shown in Fig.2g and Fig.2h, for points x/ao=O, and x/ao=4, 
respectively. 
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DISCUSSION 

The Undistorted Broadband Pulsed-Beam is characterized by the ability to construct a 
given broadband time-signal at all points, which belong to a single observation plane 
perpendicular to the axis of propagation. The location of this plane can be anywhere in the 
near-field zone or the far-field zone. The attenuation factor of the amplitude of the time-signal 
at each point on this plane can be predetermined by using classical spatial-filtering techniques. 

In this paper the source-distribution is taken to be a rectangular with finite support. 
Therefore, the field-distribution at that observation plane is directed by the propagation rules 
of a time-harmonic beam, which at the far-field zone has the shape of a sinc function. In the 
simulation example the location of that unique plane is taken to be in the near (Fresnel) zone 
(see Fig.lc), therefore the amplitude distribution at thr, z = z." plane is localized in the 
transverse axis, around the propagation axis. 

One approach to implement the solution is by constructing an array-elements driven by 
frequency dependent array-filters. Through spatial-sampling of expression (3) the frequency­
band, the amplitude, and the phase of each filter, adjoined to each element, are determined. 
As a result a prototype of a low-pass filter with quadratic phase term is obtained. The 
frequency band of the filter is decreased as the distance from the location of the element to 
the on-axis point is increased. Notice that the phase term is negligible at the far-field zone. 

Although, only at a single plane the time-signal is undistorted, the space-time localization 
property of the pulsed-beam energy is exist at the proximity of the z = Zo plane, as can be 
perceived from Fig. I b. 

Therefore, it is believed that the general class of UBPB solutions can be used in those 
applications mentioned above, where the time-envelope of the pulsed-beam has to be maintained 
undistorted at a single plane, and in addition, the localization property of the transmission 
energy in space-time at the proximity of that plane is required. 
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MAXWELLIAN ANALYSIS OF THE PULSED MICROWAVE DOUBLE 
SLIT EXPERIMENT 

ABSTRACT 

-

S. Jeffers\ R.D. Prosser, W.e. Berseth3, G. Hunter4• and 1. Sloan 5 

1.3andSDepartment of Physics and Astronomy, Centre for 
Research in Earth and Space Science, York University, 
Toronto, Canada 

2'Consultant, Highgate, London, England 

4Department of Chemistry, Centre for Earth and Space 
Science, York University, Toronto, Canada 

Maxwell's equations have been solved for a variety of diffraction and interference 
geometries, e.g. edge, single and double slits. In the case of the double slit geometry, the 
Poynting vector field distribution exhibits symmetry with respect to an axis perpendicular to and 
bisecting the double slits. This feature of the solutions has led to a prediction that if a pulsed 
microwave double slit experiment were conducted then only one pulse would be detected at 
off-axis positions behind the double slit. We have constructed a suitable square wave pulse 
centered on 10 Ghz and followed its propagation through the double slit system. Maxwell's 
equations have been solved for each component. Superimposition of the solutions yields fringes 
with diminishing contrast with off-axis distance. The solutions also show that at off axis 
positions behind the double slit, two pulses will be detected by a suitably fast detector in accord 
with the conventional interpretation. 

INTRODUCTION 

The famous double slit experiment remains as characterized by Feynman (I 951) "the 
mystery at the heart of quantum mechanics". The resolution accepted by most physicists is 
incorporated in what is commonly known as the Copenhagen Interpretation and entails an 
irreducibly dualistic view of matter. Wave or particle attributes are revealed by a particular 
experimental exploration of a quantum system. These attributes are deemed to be mutually 
excluding. This is the essence of Bohr's Principle of Complementarity. There have been some 
recent claims of experimental situations in which violations of this principle have been advanced 
(Ghose et al 1992). Here we examine one such claim which is based on a quasi-classical model 
of photons previously advanced by one of us (Prosser 1976). 

Many treatments of diffraction and interference phenomena consider electromagnetic 
radiation to be characterized by a scalar amplitude only. Scalar diffraction theory yields the 

371 



spatial distribution of diffracted amplitude which agrees with experimental results over a wide 
range of distance behind the diffracting aperture. This analysis breaks down at distances close 
to the diffracting aperture comparable to the wavelength of the incident radiation. The full 
classical analysis of the diffraction of electromagnetic radiation must incorporate the vector 
nature of the radiation. Braunbek and Laukian (1952) gave such an analysis which yielded 
amplitude, phase and the Poynting vector of the diffracted radiation from an edge within one 
wavelength of the edge. This was extended by Prosser out to 8 wavelengths. Jeffers et al (1992) 
have extended these calculations to a large range of distance behind the diffracting aperture. 

EXACT SOLUTIONS TO MAXWELL'S EQUATIONS 

Maxwell's equations were solved exactly for the case of a uniform plane wave incident on 
an infinitesimally thin, infinitely conducting sheet of semi-infinite extent bounded by a straight 
edge by Sommerfeld (1980). Braunbek and Laukien (1952) expressed Sommerfeld's solution 
in the form of intensity and phase distributions which were computed for a region extending to 
one wavelength from the diffracting edge. Prosser (1976) extended these calculations out to 
eight wavelengths plotting amplitude, phase and Poynting vector. The undulations seen in the 
Poynting vectors were interpreted as diffraction and interference effects but not in the 
conventional sense; i.e. in the case ofthe double slit the lines of energy flow (Poynting vectors) 
do not cross the axis of symmetry. It was thus concluded that no radiation which passes 
through one slit actually interferes with radiation which passes through the other slit in the 
conventional interpretation. This feature of the solution is similar to the quantum potential 
account of the double slit for non-relativistic particles given by Bohm et al (1978) and 
Vigier (1986). 

The incident plane electromagnetic wave propagates in the positive y direction with the 
semi-infinite plane in the xz plane with the edge along the z axis. The magnetic vector is parallel 
to the diffracting edge with the electric vector in the xy plane. 
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For normal incidence, Sommerfeld's solution gives:­
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The time dependency e lc.lt has been dropped. 11.. is the wavelength, r and <p are polar 

coordinates in the xy plane. Equation 1.1 may be written in amplitude and phase form as: 

H - H .... i'Ylr,cI» 
z- Ir,'t') e 

The components of the Poynting vector are 

S = lRe(H . EO) 
"2 z y 

S = -lRe(H. E 0) 
y 2 z" I 

The direction of the Poynting vectors are obtained from: 

~= r(S"coscjJ+Sysin",> 

/I cjJ (SycosIjI-S"sinljl) 

1.4 

1.5 

1.6 

This equation can be integrated by making substitutions from equations 1.1,1.3 and 1.5. 

All the calculations were performed using FORTRAN-77 on a 80486 mM PC-compatible 
with plots produced using the graphing capabilities of the S-PLUS statistics package. These 
calculations apply to the full range of distances and thus include both the classical Fresnel and 
Fraunhofer regions. 

THE SINGLE SLIT SOLUTION 

In the single slit geometry, the slit edges are at x=a,b running parallel to the z axis. 
Equations l.3 and 1.4 give the solution for a half plane extending from x=o to +00. Following 
the notation of Prosser (1976), we refer to this solution as +410. For a half plane extending from 
x=a to x= +00, the solution +41 a is obtained by substituting x-a for x in + 410. Similarly for the half 
plane from x=b to x=-oo, the solution. 4Ib is obtained by substituting b-x for x. The free space 
solution IPr is the limiting form of .IP. as a--+oo. The solution for the case of a perfectly 
conducting and infinite plane is represented by 41, and is obtained from the limiting form of + 41. 
as a--+ _00. Prosser(1976) shows that the sum .IP'= +IP. + .4Ib - 4Ir represents an approximate 
solution to Maxwell's equations which satisfies the boundary conditions for a slit from a to b 
in an infinite plane which is infinitesimally thin and perfectly conducting. Detailed plots of the 
solutions for amplitude,phase and Poynting vector distribution for both the edge and single slit 
geometries are given in Jeffers et al (1992). Here we are primarily concerned with the double 
slit solution. 

THE DOUBLE SLIT SOLUTION 

The double slit solution is obtained using the single slit solution. A second slit is 
added with edges at x=-a, -b, with the solution .41'. The single slit solution for this slit is 
designated as 41"= + 41' + _ 41' - 41,. The solution is then the exact solution for the double slit if 
the solutions +41' and _41' are exact single slit solutions and where 41, is included to give 
continuity of the field components across the apertures. Fig 1 shows the field amplitude 
distribution behind the double slits and Fig 2 shows the Poynting vector field distribution in the 
plane perpendicular to the slits. 
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The Poynting vector field distribution shows symmetry with respect to an axis which 
bisects the slits and is perpendicular to the slits. This has been interpreted (Prosser, 1976) as 
indicating that none of the electromagnetic energy which goes through one of the slits crosses 
this boundary and actually interferes with the radiation from the other slit. This would, if true, 
contradict the classical analysis of interference phenomena. Prosser (1976) has proposed an 
experimental test ofthis proposal which is essentially a pulsed microwave version of the double 
slit experiment. The essential idea is to regard a pulse as a linear superposition of many 
monochromatic components. The assertion that no energy crosses the axis of symmetry is 
assumed to hold for each component and thus for the pulse as a whole. If a double slit 
experiment is now performed the prediction is that a suitably fast detector placed behind the 
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The field amplitude 
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Figure 2 
The Poynting vector 

field distribution 
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slits and off-axis would only ever detect one pulse whereas the standard treatment would 
predict two pulses whose separation would increase as one goes further off-axis. 

The analysis given above applies to monochromatic radiation with zero frequency 
dispersion and essentially infinite spatial extent. It represents the steady state solution to 
Maxwell's equations whereas the pulsed version of the experiment generates transient solutions. 
Fig 3. shows the relevant geometry and Fig 4 shows a plot of the path difference (in units of 
flight time for electromagnetic radiation nsecs) for the following geometry: slit width = 3 cm, 
slit separation= 100cm, frequency of the radiation = 10 Ghz , distance behind the double 
slit = 10m, distance off-axis = 0 to 50 m, in the plane parallel to the slits. 
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The time of flight difference is 3 nsecs for a distance of 30 meters off-axis. We have 
constructed a pulse of electromagnetic radiation from a superposition of 600 frequencies 
ccentered on 10 Ghz. The frequency distribution is shown in Figure 5, and its' fourier transform, 
which is the pulse itself, is shown in Fig 6. 
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Figure 6 

Maxwell's equations have been solved for each component and the solutions 
superimposed. The result is shown in Fig 7. The parameters chosen were such as to give a large 
number of fringes per unit distance in the observation plane. In this figure we show the resulting 
fringe system for three sections extending from -3500), to 3500). and from 31500), to 38500), 
and lastly from 91000). to 98000). . 
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We also show the predicted energy detected as a function of time for these three positions 
in the interference plane. Close to the axis one detects only one pulse (and 100% contrast 
fringes), at intermediate distances one sees two superimposed pulses such that one can tell from 
the leading edge of the superposition that that radiation came from the closer slit and also that 
the trailing edge came from the other slit. However in the central region of overlap such path 
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information cannot be obtained-in this region one sees fringes with intermediate contrast. At 
a distance of 91000).. off-axis, one now resolves two distinct pulses and has certain path 
information but now the fringe contrast is essentially zero. In fact the relationship between 
fringe contrast and the ratio of path difference in time of flight units to pulse width shows 
complete reciprocity. The ratio path difference in time offlight units to pulse width is a measure 
of the degree of distinguishability between the two pulses. Fig 8 shows the fringe contrast 
plotted against this ratio. 

CONCLUSIONS 

A Maxwellian analysis of the double slit experiment is given. Steady state and transient 
solutions are presented. The transient solutions show that at off-axis positions behind the 
double slits in general two pulses will be detected. The degree of distinguishability between the 
two pulses is inversely related to the fringe contrast. This analysis is in accord with conventional 
accounts of interference phenomena. 
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ADVANCES IN FINITE-DIFFERENCE TIME-DOMAIN 
METHODS FOR ENGINEERING ELECTROMAGNETICS 

Allen Taflove 

Department of Electrical Engineering and Computer Science 
McCormick School of Engineering, Northwestern University 
Evanston, Illinois 60208-3118 

INTRODUCTION 

This paper summarizes my group's latest work in applying finite-difference time-domain 
(FD-TD) techniques for Maxwell's equations to model complex electromagnetic wave 
interactions. Our perspective, based upon two decades of continuous work in this field, is 
that FD-TD provides an electromagnetic modeling framework that is so robust that merely 
activating a set of auxiliary time-dependent differential equations (contained within 
subroutines) for physical quantities associated with the electromagnetic field permits the 
article being modeled to be switched from a jet fighter to a digital electronic circuit to a 
photonic device. The augmentation of FD-TD in this manner gives it enormous capability in 
modeling nonlinear electronic and photonic phenomena that are central to ultrahigh-speed 
device behavior. We will focus on four primary technical developments: 
1. Large/complex structure modeling. It is currently feasible to embed a model of a full­

scale jet fighter within an FD-TD space grid to compute the airplane's induced surface 
electric currents and narrowband or wideband scattering response for radar frequencies 
up to at least 500 MHz. Locally body-conforming contour-path elements 1 are used to 
achieve a smooth-surface electromagnetic model of the airplane. 

2. Validation I extension of Berenger's absorbing boundary condition (ABC). 2,3 

For 2-D and 3-D grids, Berenger "perfectly matched layer" absorbers have been 
demonstrated to have less than 111000 the reflectivity of any previous ABCs used in the 
FD-TD community. 

3. Development of a hybrid FD-TDISPICE technique for nonlinear circuit elements.4 

Lumped-circuit behavior of linear and nonlinear active devices has been directly 
incorporated into a generalized 3-D FD-TD Maxwell's equations model by constructing 
local software links between the FD-TD element and appropriate SPICE kernels. 

4. Continuing Developments in Sub-Picosecond Optics.5,6 

The auxiliary differential equation method has been refmed to accurately provide FD-TD 
models of materials having multiple Lorentzian relaxations. Further, new modeling 
results have been obtained for colliding spatial solitons and for corrugated GaAlAs thin­
mm structures to be used for Bragg-soliton photonic switches. 

381 



LARGE I COMPLEX STRUCTURE MODELING 

It is currently feasible to embed a model of a full-scale jet fighter within an FD-ID space 
grid to compute the airplane's induced surface electric currents and narrowband or wideband 
scattering response for radar frequencies up to at least 500 MHz. An example of this is 
shown in Fig. I, which depicts snapshots of the surface electric current distribution on a full­
size Lockheed VFY-21S fighter aircraft for monochromatic illuminating radar frequencies of 
100 MHz and 500 MHz at nose-on incidence. 

(a) lOOMHz 

(b) 500MHz 

Figure 1. Surface current distribution on a full-size Lockheed VFY -218 figbter aircraft for nose-on plane­
wave incidence. Currents were computed using a Cartesian FD-ID mesb with locally body-conforming 
contour-path elements.! 
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This 3-0 model was implemented using an almost-completely-structured Cartesian 
FD-TO mesh with locally body-conforming contour-path elements l to achieve a smooth­
surface electromagnetic model of the airplane. The software incorporated Lockheed ACAD™ 
as part of the user interface that automatically generated the contour elements, and Cray 
MPGS™ to provide the color visualization of the computed surface currents. Only a change 
of one Fortran statement would be needed to convert the modeled illumination from 
monochromatic to a wideband pulse having a bandwidth greater than 500 MHz. Complete 
near-field and far-field time histories for this pulse response would be available with no 
software changes. 

VALIDATION I EXTENSION OF BERENGER'S 
ABSORBING BOUNDARY CONDITION 

Over the past ten years, FD-TO solutions of Maxwell's equations have been extensively 
applied to model open-region electromagnetic wave scattering problems. Here, a primary 
challenge has been in the area of absorbing boundary conditions (ABC's) at the outer grid 
boundaries. Existing analytical ABCs such as Mur,7 superabsorption,8 and Lia09 provide 
effective reflection coefficients in the order of -35 to -45 dB for most FD-TO simulations. To 
attain a dynamic range of 70 dB, comparable to that of current RCS measurement 
technology,40-dB more accurate ABCs are needed than currently exist. 

Such an advance appears to be at hand with the recent publication of Berenger's 
"perfectly matched layer (PML) for the absorption of electromagnetic waves."z PML 
involves creation of a non-physical absorber adjacent to the outer grid boundary that has a 
wave impedance independent of the angle of incidence and frequency of outgoing scattered 
waves. In 2-0, Berenger reported reflection coefficients for PML as low as 1/3000th those 
of standard second and third-order analytical ABCs such as Mur. 

We have confirmed these remarkable claims and also extended and verified PML for 3-0 
Cartesian FD-TO grids.3 Indeed, PML is >40 dB more accurate than second-order Mur, and 
PML works just as well in 3-0 as it does in 2-0. It should have a major impact upon the 
entire FO-TO modeling community, leading to new possibilities for high-accuracy 
simulations especially for low-observable aerospace targets. The following briefly 
summarizes key elements of Berenger's published 2-0 PML theory and our contributions. 

Two-Dimensional TE Case 

Consider Maxwell's equations in 2-0 for the transverse electric (TE) case with field 

components E~, Ey , and H.. If (1 and (1. denote, respectively, electric conductivity and 

magnetic loss assigned to an outer boundary layer to absorb outgoing waves, it is well 
known that: 

(1le. = (1·1 Il. (1) 

provides for reflectionless transmission of a plane wave propagating normally across the 
interface between free space and the outer boundary layer. Layers of this type have been 
used in the past to terminate FD-TO grids. lo However, the absorption is thought to be at 
best in the order of the analytical ABC's because of increasing reflection at oblique angles. 

The PML technique introduces a new degree of freedom in specifying loss and 

impedance matching by splitting H. into two sub-components, HtJ< and Hzy • Here, there are 

four (rather than the usual three) coupled field equations: 
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(2) 

(3) 

Consider a sinusoidal plane wave propagating in a PML medium with the electric field 

vector of amplitude, E., forming an angle tP with respect to the y axis. The four field 
components are: 

E = E cosmejDJ(t-a:r:-/ly) 
y • '1' (4) 

H = H ejDJ(t-a.-/ly) 
a Po ' 

H = H ejDJ(t-a.-/ly) 
ToY ToY. 

(5) 

where a and f3 are complex constants. (Note that the TM case is obtained by duality, with 

E. split into E .. and EToY .) Substituting Eqs. 4 and 5 into Eqs. 2 and 3 and solving for a 
and f3, we obtain: 

where: 

a = ~JI..e. (1- j Gz )costP , 
G me. 

f3 = ~JI..~(I-j~)sintP 
G me. 

1- jG;r;/OJE. 
w. = 1- jG;/mJl.. ' 

(6) 

(7) 

Designating lfI as any component of the field, with lfI. its magnitude and c the speed of 
light: 

. ( xCos;+,sin;) O'xcos; 0'" sin., J{Q t - ---z ---y 
lfI = lfI. e cG e •• cG e '.cG z = ~JI..le. I G (8) 

where Z is the wave impedance. 

Now, let each pair (ax' a/) and (ay' a/) satisfy Eq. 1. Then, w;r;' wy ' and G equal 
one at any frequency, and the wave components and the wave impedance ofEq. 8 become: 

. ( ;r;cos_+ysln;) a,cos; a,sln; 
JtD t- ---x ---y 

lfI = lfI.e c e e.c e B.C , Z = ~JI..le. (9) 

Eq. 9 shows that the wave in the PML medium propagates with exactly the vacuum speed of 
light, but decays exponentially along x and y. Eq. 9 also shows that the wave impedance of 
the PML medium exactly equals that of vacuum regardless of the angle of propagation or 
frequency. 

In a 2-D TE grid (x and y coordinates), Berenger proposes a normal free-space FD-TD 
computational zone surrounded by a PML backed by perfectly conducting (PEC) walls. At 
both the left and right sides of the grid (xmin and Xmax ), each PML has ax and ax'" matched 

according to Eq. 1 along with with ay = ay'" = 0 to permit reflectionless transmission across 
the vacuum-PML interface. At both the lower and upper sides of the grid (Ymin and Ymax)' 
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each PML has ay and ay'" matched according to Eq. 1 along with ax = ax'" = O. At the four 

comers of the grid where there is overlap of two PML's, all four losses are present (ax' ax"', 

a y' and a y'" ) and set equal to those of the adjacent PML's. Berenger proposes that the loss 

should increase gracefully with depth, p, within each PML as u(p):::; umax(pl S)", where S 
is the PML thickness and a is either ax or ay. This yields a PML reflection factor of 

(10) 

which reduces to a key user-defined parameter discussed later, R(O):::; e-2a..,81(0+I)e.c, the 
theoretical reflection coefficient at normal incidence for the PML over PEC. While R ... 1 for 
grazing incidence, this has not been a problem in actual FD-TD simulations since such a 
wave is near normal on the perpendicular PML boundaries and is almost completely 
absorbed. 

The attenuation to outgoing waves afforded by a PML medium is so rapid that the 
standard Yee time-stepping algorithm cannot be used. The following is an explicit 
exponentially differenced time advance2 suitable for this situation: 

E 
'
0+1 -a/ule E '" 1 (-aA"e 1)(H 10+112 H 1"+112 ) :::; e· +-- e • - -

y i,j+1I2 y i,j+112 Udx % i+ll2,j+1I2 % i-ll2,j+112 
(11) 

Extension to the Full-Vector Three-Dimensional Case 

This subsection and the next represent the contributions of my group to the Berenger 
PML theory. In three-dimensions, all six Cartesian field vector components are split, and the 
resulting PML modification of Maxwell's equations yields 12 equations, as follows: 

aH", ° a(E .. +E,,) 
J1o---at+UyH",:::; - Oy , aHzz °H 

J10 at + (1% >t 
a(Eyz +Eyz ) 

= oz 
(12a) 

oH" ° o(E", +E,z) oHy~ • o(E .. +E,,) 
J1o--at+ u%H" = J10 --at + U~Hy~ = dz ox 

(12b) 

oH.. 0H o(Ey~ + Ey%) oH" ° o(E", +E>t) 
J10 ot + (1~ .. = - J10 --at + uyH" = ax Oy 

(12c) 

oE", o(H .. +H,,) oEI!Z E = _ o(Hy~ +Hyz ) 
Eo --at + UyE", = 

Oy Eo dt + (1% >t dZ 
(13a) 

oE,. o(H", +H>t) dEy~ _ o(H .. +H,,} 
Eo --at + (1.Ey• = oz E0--at+(1~Ey~ -- ox 

(13b) 

oEp E- o(Hy~+Hy%) oE" = _ o(Hxy + H>t) 
Eo ot + (1~ .. - ox Eo --at + (1yE" Oy 

(13c) 

PML matching conditions and grid structure analogous to the TE and TM cases are utilized. 
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Numerical Experiments 

Following our published method, 11 we conducted numerical experiments that 
implemented the PML ABC in Cartesian cubic-cell FD-TD grids, including for the flrst time 
3-D grids, and compared its accuracy versus well-characterized Mur second-order ABCs. 
Cases discussed here include: (1) 2-D TE grid, vacuum region = 100 x 50 cells; and (2) 3-D 
full-vector lattice, vacuum region = 100 x 100 x 50 cells. 

The experiments involved exciting a pulse source centered within the vacuum region of a 
test grid, 0T. The excitation was a "smooth compact pulse" having an extremely smooth 

transition to zero (its flrst flve derivatives vanishing). 0T was terminated by either second­
order Mur or by a PML backed by PEC walls. A benchmark FD-TD solution having zero 
ABC artifact was obtained by running a large mesh, OB' centered upon and registered with 

0T' and having an outer boundary so remote as to be causally isolated from all points of 
comparison between the grids. 

The error of the computed flelds in 0T due to nonphysical reflections by the grid's 
imperfect ABC were obtained by subtracting the fleld at any point within this grid (and at any 
time step) from the fleld at the corresponding space-time point in 0B. The error could be 
measured locally, i.e, plotted versus position along a line or plane parallel to the test ABC. 
Or, the error could be measured globally as the sum of the squares of the error at each grid 
point of 0T. 

Fig. 2a graphs the global error energy for the 2-D TE grid for both Mur and PML. The 
Mur ABC is standard second-order, and the PML thickness is 16 cells. At n = 100 time 
steps, the PML global error energy is about 10-7 that of Mur, dropping to a microscopic 
10-11 times that of Mur at n = 500. 

Fig. 2b compares the local electric fleld error due to Mur and 16-1ayer PML for the 3-D 
FD-TD grid, as observed at n = 100 time steps along the x axis at the outer boundary of 0T. 
Along this straight-line cut, the local electric fleld error due to PML is in the order of 10-3 that 
ofMur (i.e., down about -60 dB) at a time when the ABC is being maximally excited by the 
outgoing wave. 

In both the cases of Figs. 2a and 2b, we studied the effect of varying PML thickness 
and the R(O) parameter for a quadratically-graded loss with depth. For a fixed PML 
thickness, we fmd that reducing R(O) by increasing the PML loss monotonically reduces 
both the local and global errors. However, this beneflt levels off when R(O) drops to less 
than 10-5. We also observe a monotonic reduction of local and global error as the PML 
thickness increases. Here, however, a signiflcant tradeoff with the computer burden must be 
factored, as discussed next. Overall, the method is very insensitive to the choice of R(O) and 
therefore losses for R(O) < 10.5, indicating robustness. 

Table 1 compares ABC effectiveness and computer burdens for second-order Mur and 
PML of varying thickness for the 3-D grid. Here, the arithmetic average of the absolute 
values of the local electric fleld errors over a complete planar cut through the grid at y = 0 and 
n = 100 is compared for Mur and PML. The last two columns indicate the potential 
advantage if the free-space buffer between the scatterer and the outer grid boundary were 
reduced by either 5 or 10 cells relative to that needed for Mur, taking advantage of the 
essential invisibility of the PML ABC. From these results, a PML layer 4 to 8 cells thick 
appears to present a good balance between ABC effectiveness and computer burden. 
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Figure 2. Comparison of the error level of the Berenger PML ABC (16 cells) with the Mur second-order 
ABC. (a) Global error energy within a 100 x 50 cell 2-D TE grid plotted as a function of time step number; 
(b) Local error along the x-axis at the outer boundary of a 100 x 100 x 50 cell 3-D grid (time step = 1(0). 
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Table 1. Tradeoff of PML advantage over second-order Mur vs.computer resources 
for a 3-D base grid of 100 x 100 x 50 cells. 

Avg. Local Field 
Error Reduction Computer If Free-Space Buffer IfFree-Space Buffer 
Relative to 2nd- Resources (One Reduced 

ABC. OnIerMur CPU Cray C-9ID By SeeUs 

Mur 1 (0 dB) 10 Mwd, 6.S sec 

4-layerPML 22 (27 dB) 16 Mwd, 12 see 11 Mwd, 11 see 

8-layerPML 580 (55 dB) 23 Mwd, 37 see 17 Mwd, 31 sec 

16-layer PML 5800 (75 dB) 43 Mwd, 87 see 33 Mwd, 74 sec 

DEVELOPMENT OF A HYBRID FD·TD/SPICE TECHNIQUE 
FOR NONLINEAR CIRCUIT ELEMENTS 

Reduced 
By lOeeUs 

7Mwd, lOsee 

12 Mwd, 27 see 

25 Mwd, 60 see 

In collaboration with Drs. Michael Jones and Vince Thomas of Los Alamos National 
Laboratory, we have found that the lumped-circuit behavior of linear and nonlinear active 
devices can be directly incorporated into a generalized 3-D FD-TD Maxwell's equations 
solution.4 We employ FD-TD sub grid models of transistors and digital logic gates that 
efficiently incorporate all important aspects of their circuit physics, including nonlinearities at 
inputs and outputs as well as device parasitics. These subgrid models for individual nonlinear 
elements are obtained by constructing local software links between the FD-TD Maxwell's 
equations code and appropriate SPICE kernels that translate between the 3-D linear vector 
electromagnetic field physics and the nonlinear circuit physics. 

We expect a wide range of digital and analog applications well into microwave 
frequencies for this new simulation software. This includes self-consistent modeling of the 
operation of complex GHz-regime digital assemblies mounted in 3-D multilayer circuit 
boards and multichip modules where all electromagnetic wave "artifacts" of the circuit 
embedding (such as coupling, radiation, ground loops and ground bounce) are accounted. 

Basis 

The following discussion will serve as the basis for the linking of Maxwell's equations 
to SPICE. Consider first the relation of circuit quantities (voltage, current, and impedance) 
to field quantities (electric and magnetic fields). For simplicity, consider an x-directed 
microstrip line parallel to an x-y oriented ground plane, where the line is excited by a 
Gaussian voltage pulse. The voltage excitation can be provided by specifying a Gaussian-

pulse time history for a group of co-linear electric field components (here, E:) bridging the 
gap between the ground plane and the strip conductor at the desired source location. The line 
voltage and current, V and I, at any point, x, along the line can be obtained from the 
resulting propagating E and H fields by implementing the path integrals: 

V(t, x) = f E(t,x)·dL, I(t, x) = tH(t,x).dL (14) 
Cv C1 

Here, the contour path for V extends from the ground plane to the microstrip, while the 
contour path for I extends around the strip conductor at its surface. The characteristic 

impedance, Zo, of the microstrip can then be found by forming the ratio of the discrete 

Fourier transforms of V and I: 
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Zo{co,x) = 1'[V(t,x)]/1'[I(t,x)] (15) 

Tests of this method have shown FD-TO computed circuit quantities to be in the order of 1 % 
agreement with textbook values for canonical problems. 

Now, consider Ampere's Law: 

Vxli - aD = Je + 7ft (16) 

FD-TO methods integrate Eq. (16) in time to time-march the vector electric field. For circuit 

problems, the local current density, J e' in an FD-TO cell can be related to device current by 
simply mUltiplying by the cell face area. Noting that, for general current-voltage non­
linearities, J is a function of the electric field, E, we rewrite Eq. (16) as: 

aE -- -EYe +J(E) = VxH (17) 

A time-marching relation for the electric field can be obtained by treating Eq. (17) as an 
ordinary differential equation in time with the right-hand side constant, but keeping the time 

dependence for J(E). For many simple cases (the resistor, capacitor, inductor, and diode), 
this equation can be integrated analytically. Tests with analytic solutions for these simple 
circuit components show excellent agreement with SPICE simulations. 

However, for complex circuits, J is a complicated nonlinear function of the electric 
field, its derivatives, and its neighboring values, and analytic results are not possible. In 
principle, this functional dependence could be written down for each circuit component that 
one wished to model, and Eq. (17) could be integrated numerically at each grid point where a 
sub grid circuit model was desired. In practice, this approach would be cumbersome and 
require much development 

Now, it is well known that the circuit simulator SPICE gives the current through a 
circuit element as a function of the voltage across the device. Thus, in effect, SPICE can be 
used to give J as a function of the electric field It. This value of J can be used in Eq. (17) 
and a separate numerical integration could be done to provide the difference equation for 
Ampere's Law. However, an even simpler and more robust prescription can be obtained by 
rewriting Eq. (17) as 

dV c- +I(V) = I 
dt 

(18) 

where V is the voltage across the circuit device, C = EA I dx is a grid-cell capacitance (A is 

the area of the finite-difference cell and dx is its height), I(V) (= AJ(E» represents the 

current flowing through the lumped circuit, and I represents the total current V x H. Eq. 
(18) can be represented as an equivalent circuit consisting of a current source in parallel 

with a capacitor. Thus, instead of using SPICE just to determine J (E), SPICE can be used 
to directly integrate Eq. (18) (which is just Eq. (16) rewritten). In this way, the lumped 
element can be an arbitrarily large SPICE circuit whose description can be contained in a 
standard SPICE me. Further, all of the extensive device models in SPICE can be used 
directly in the FD-TO simulation without the need to duplicate the model development; and 
the efficient circuit integration methods used in SPICE are also directly available without 
user-implemented integration schemes. 
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Preliminary Results 

To date, we have implemented this approach with very good success. First, we 
compared FD-TO/SPICE and pure SPICE simulations for microstrip lines terminated with 
individual resistors, capacitors, inductors, and diodes. Then, we progressed to multi­
element single-port circuit loads. All showed excellent agreement with an appropriate pure 
SPICE model. 

We next considered a more general case, the nonlinear two-port network. For a variety 
of analog and digital networks of this type, we have demonstrated excellent agreement 
between FD-TO/SPICE results for voltages and currents and benchmark data. Fig. 3 shows 
one such simulation, a nonlinear UHF transistor amplifier built on a two-layer circuit board. 
This figure shows excellent agreement between the transistor base voltage time-waveform 
computed using FD-TO/SPICE and a pure SPICE model that was carefully constructed to 
properly account for the distributed transmission line aspects of the circuit construction. 

It appears that our methodology permits a self-consistent simulation of the flow of 
electromagnetic wave energy in both directions through an arbitrary nonlinear two-port 
network embedded within a virtually arbitrary 3-D metallic and dielectric structure. The 
nonlinear network can be analog or digital and extremely complicated. It contains all of the 
circuit physics (coupled linear and nonlinear equations) that the SPICE kernel solves to 
obtain the coupled input and output voltages. We see nothing to prevent this approach from 
being extended in a straightforward manner to arbitrary nonlinear multi-port networks. 
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Figure 3. Comparison of the transistor base voltage computed by FD-ID/SPICE and pure SPICE for a 
stripline-mounted nonlinear VHF amplifier. 
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CONTINUING DEVELOPMENTS IN SUB-PICOSECOND OPTICS 

Auxiliary Differential Equation Method for Multiple Lorentzian Relaxations 

We have refined the method of auxiliary ordinary differential equations12 (ODE's) to 
accurately provide PD-TD models of materials having multiple Lorentzian relaxations. Here, 
a system of coupled ODE's (with one ODE per Lorentzian) governs the dispersion.5 The 
method is straightforward and can be easily extended to arbitrary numbers of Lorentzians. 

For an n-resonance dispersive dielectric, we write for each vector component of E: 

D = EoE+ P 

Here, the polarization is expressed as a sum of N terms: 

N 

P = LF; 
j=1 

where each Pi term is a convolution integral: 

t 

F; = Eo! %j(t--r)E(-r)d-r 
o 

and each %j is a Lorentzian in frequency: 

co~h, 
%j(co) = 2 .8 I 2 

COj - ] JCO - co 

(19) 

(20) 

(21) 

(22) 

In Eq. 21, we assume zero values of the electromagnetic field and the kernel functions for 

t S O. It can be shown that %j(t) satisfies the following ODE: 

where it is assumed that Xi(t = 0) = 0 and X/ (t = 0) = co; hi. Knowing 

D_~NF, 
E= .4.Ji-l l 

Eo 
we can write for each resonance term: 

(23) 

(24) 

(25) 

Consider as an example the three-resonance case. This results in the following system 
of three coupled ODE's: 

(26a) 

(26b) 

(26c) 
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Applying a second-order accurate fmite-difference scheme, this system can be solved to fmd 

the latest values of each polarization term, 1;, F;.. and r; by inverting the following set of 
simultaneous equations: 

.,..+1 J:'II+1 J:'II+I (",,+1 ""-I) (""-I ""-I) 4 "" p;n-I lltrl +Clr2 +Clr3 =cI U +U -ci r2 -r3 + rl +gl I 

C r,+1 + n_F,n+1 + C F,n+1 - C (Dn+1 + D"-I) - c (r.-I - r.-I )+ 4F: +g r.-I 
21 -..223-2 213 222 

J:'II+I J:'II+I ",,+1 (",,+1 ",,-I) (",,-I ""-1) 4F,n ",,-I C3r l + C3r 2 + ~r3 = C3 U + U - C3 rl - r2 + 3 + g3r 3 

where 

(27a) 

(27b) 

(27c) 

a j = 2 + OjAt + co; M2(1 +bj), cj = co;M2bj, gj = -2 + OjM - co; M2(1 +bJ (28) 

With the updated values, ~+1, P;+I. and 11;+1, now available, we can obtain the 

updated electric field from Eqn. 25 as: 

E'+I = .!.( D"+I - r,+1 - F:+I - F:+I ) (29) 
Eo I 2 3 

Having determined E'+I, the solution process given by the normal Yee leapfrog algorithm 
{Hn+1I2 , En+l} ~ {Hn+3/2} and subsequently {D"+I, Hn+312 } ~ {D"+2} is implemented. 

Then, Eqs. 27-29 are again applied, yielding {Dn+2} ~ {E"+2}. At this point, it is clear by 

induction that the entire process can be iterated an arbitrary number of times. 
The dispersive FD-TD algorithm summarized above was validated by modeling the 

reflection of a Gaussian pulse incident on a half-space of a dispersive dielectric medium. 
Fig. 4 shows the validation results for FD-TD modeling of a single highly undamped 
Lorentzian resonance in the optical range: E .. =o = 4.0, f. = 2 X 1014 Hz, 0 = 8 X lO13s-l • 

Here, the FD-TD reflection coefficient versus frequency was computed by taking the ratio of 
the discrete Fourier transforms of the reflected and incident pulses. These data were then 
compared to the exact values at corresponding discrete frequencies obtained by simple 
monochromatic impedance theory. Agreement was within 0.1 %. 

Fig. 5 shows a similar level of agreement (0.1 %) relative to the exact solution for three 
arbitrarily chosen, moderately undamped Lorentzian resonances in the optical range: 
(~=3, it =2x1014 Hz, 01 =2x1014s-I ); (b2 =3, h =4x1014 Hz, O2 =4X1014s-I ); and 

(b3 = 3, h = 6 X 1014 Hz, 03 = 6 X 1014s-I ). 

Comparison with the Recursive Convolution Method 

We have compared the accuracy and grid resolution requirement of dispersive FD-TD 
algorithms using the auxiliary differential equation (ADE) algorithm summarized above and 
the widely-used recursive convolution (RC) algorithm.13 We considered exactly the test 
problem of Ref. 13 wherein a Gaussian pulse of spatial width W = 9.6 mm (between the 
0.001 amplitude points) having spectral content to about 80 GHz is incident in vacuum upon 
a dispersive half-space characterized by a pair of moderately damped Lorentzian relaxations 
of frequencies 20 and 50 GHz. Fig. 6 graphs a snapshot of the transmitted pulse 
propagating within the half-space after 1,300 time steps for both the RC and ADE 
algorithms. Results for the RC method are given for two grid resolutions, coarse (WI Ax = 
64) and fme (WIAx = 256), while results for the ADE method are given only for the coarse 

resolution, WIAx = 64. It is seen for this case that the RC method requires a space resolution 
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about 4 times as fine as that of the ADE method to obtain the same transmitted pulse shape. 
For FD-TD simulations where it is important to accurately calculate the pulse waveform 
transmitted into a dispersive medium, this result implies a computer storage advantage for the 
auxiliary differential equation method in one dimension of about 4: 1 relative to the recursive 
convolution approach; in two dimensions an advantage of about 16:1; and in three 
dimensions an advantage of about 64:1. 

40.0 I 
/1 

~~ 30.0 /1 Imaginary 
II 
I 

C:- 20.0 u: .s; 
£: .§ 

10.0 /1 Q) 

c.. 
1\ Q) 

.:: 
./ \. ro 0.0 ~-

Qi 
a: 

-10.0 

-20.0 
O.Oe+OO 3.0e+14 6.0e+ 14 9.0e+14 1.2e+1S 

Frequency (Hz) 

1.00 

0.80 

1: 
Q) 

.(3 • Exact 

~ 0.60 
~- FD-TO 

0 
0 
c 
0 
:g 
~ 0.40 
(j; 
a: 

0.20 

0.00 

O.Oe+OO 3.0e+14 6.0e+14 9.0e+14 1.2e+15 

Frequency (Hz) 

Figure 4. Validation of the auxiliary-differential-equation dispersive FD-lD algorithm. (a) Complex 
permittivity for a single highly undamped Lorentzian relaxation in the optical range; (b) Comparison of 
FD-lD and exact reflection coefficients for a wave impinging upon a half-space comprised of this material. 
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Figure 5. Validation of the auxiliary-differential-equation dispersive FD-ID algorithm. (a) Complex 
permittivity for three moderately undamped Lorentzian relaxations iu the optical range; (b) Comparison of 
FD-ID and exact reflection coefficients for a wave impiuging upon a half-space comprised of this material. 
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New Modeling Results for Colliding Spatial Solitons 

We have conducted first-time calculations from the time-domain vector Maxwell's 
equations of spatial optical soliton propagation and mutual deflection, including carrier 
waves, in a two-dimensional homogeneous nonlinear dielectric medium. 6 Nonlinear 
SchrOdinger equation (NLSE) models predict that a nair of co-propagating, in-phase spatial 
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Figure 6. Comparison of the grid resolution requirement of dispersive FO-TO algorithms usirlK we 
auxiliary differential equation (AD) and the recursive convolution (RC) approaches for the test problem of Ref. 
13 (Gaussian pulse of spatial width W = 9.6 mm incident in vacuum upon a dispersive half-space characterized 
by a pair of moderately damped Lorentzian relaxations of frequencies 20 and 50 GHz). Snapshot of the 
transmitted pulse propagating within the half-space (surface at grid cell = 5(0) after 1,300 time steps. Results 
for the RC method are given for two grid resolutions, coarse (Ax = W/64) and fine (Ax = W1256), while 
results for the AD method are given only for the coarse resolution, Ax = W/64. 

solitons interact by periodically attracting, coalescing, repelling, and then re-coalescing. This 
disagrees with our new, extensively tested, FO-TO solutions of Maxwell's equations that 
show that optically narrow spatial solitons undergo only a single beam coalescence before 
diverging to arbitrarily large separations. This phenomenon indicated by FO-TO modeling 
provides a mechanism for constructing femtosecond all-optical switches spanning less than 

100 J.UD. in length in an existing type ofeoming glass. 
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Consider 2-D calculations of propagating and mutually interacting optical spatial 
solitons. The calculations are for a propagating sinusoidal beam that is switched on at t = 0 
in a bulk 2-D nonlinear dielectric with no = 2.46 and n2 = 1.25 X 10-18 m2tw. These are the 

parameters for Corning glass Type-RN. The beam has a carrier frequency of 2.31 x 1014 Hz 

(A. = 1.3 Jlm), and an initial hyperbolic secant distribution of its transverse electric field 
having an intensity beam width (FWHM) equal to 0.65 Jlm. Its initial peak electric field 

intensity is 6.87 x 109 VIm. The computational domain is 95 x 31 Jlm. 

In one Maxwell's equations calculation (Fig. 7a), we simulated the parallel co­
propagation of two equal-amplitude spatial solitons separated by 1.05 Jlm center-to-center, 

where the solitons have a carrier phase difference of 1t radians. The computation provided 
the beam-to-beam repulsion expected from NLSE.14 

In a second Maxwell's equations calculation (Fig. 7b), we simulated the parallel co­
propagation of two equal-amplitude spatial solitons, but here the solitons have in-phase 
carriers, i.e., a carrier phase difference of zero. NLSE models predict that the two beams 
interact by alternately attracting, coalescing, repelling, and then re-coalescing. If the two 
beams have the appropriate amplitudes and spacing, the attraction and repulsion is periodic. 
Aitchison et al. 15 indicate that two in-phase fundamental solitons with an input amplitude 
distribution of 

(30) 

oscillate with a period of 
2zo sinh(2xo I w)cosh(xo I w) 

z = 
p 2xo I W + sinh(2xo I w) 

(31) 

Figure 7. FD-ID Maxwell's equations calculations of spatial solitons in Type RN Coming glass. Beam 
parameters: A. =1.3 IJ.m; beamwidth (FWHM) = 0.65 IJ.m; peak electric field = 6870 V/lJ.m; initial 
separation = 1.05 IJ.m. (a) Repulsion indicated for relative carrier phase = n; (b) Single coalescence and 
subsequent divergence indicated for relative carrier phase = O. 
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based on the NLSE theory of Oesem and Chu. 16 Here, w is the characteristic width of the 

hyperbolic secant; Xo = 1.42w ; 2xo is the center-to-center separation of the two beams; 

and Zo = ,.2now2 / It is the usual soliton period. For the choice of parameters used in the 

FO-TO Maxwell's equations simulations, the predicted repetition period is zp = 9 Il m . 

However, as shown in Fig. 7b, the FD-TO calculations show only a single beam coalescence 

and then subsequent beam divergence to arbitrarily large separations, for an effective zp = 00. 

It was desired to understand why the nonlinear FD-TO MaxweU's equations model did 
not agree with the NLSE prediction in this case. The fIrst possibility considered was that the 
FO-TO simulation was flawed because of its inadequate grid resolution and/or inadequate 
decoupling of the beam interaction region from the very weakly reflecting outer grid 
boundaries. In a series of exploratory modeling runs on the Cray, the space/time resolution 
of the FO-TO grid was progressively refIned, and the FO-TO grid was progressively 
enlarged to better isolate the beam interaction region from the grid outer boundaries. These 
changes gave results identical to those of the original FD-TO model. Therefore, the original 
FO-TO model was concluded to be numerically converged and suffIciently free of the outer 
boundary artifact to yield plausible results. 

The second possibility considered was that the ratio of beam width to wavelength was 
below the limit of applicability of NLSE. Because it is known that additional terms in the 
NLSE are required to model higher-order effects for temporal solitons,17 it was reasoned that 
basic NLSE modeling of co-propagating spatial solitons would be more physically 
meaningful if the two beams were widened relative to the optical wavelength while 
maintaining the same ratio of beam width to beam separation. This would reduce higher­
order diffraction effects, hopefully bringing the test case into the region of validity for the 
simple NLSE model. 

To test this possibility, two new FD-TO simulations were conducted where the intensity 

beamwidth, Bp and separation parameters of the simulated beams were each doubled and 

then doubled again, keeping the dielectric wavelength, ltd' constant. After the first 
doubling, the FD-TO-predicted spatial solitons began to qualitatively show the re-coalescence 
behavior predicted by NLSE, but with a 38% longer period of fe-coalescence than the NLSE 
value. This FD-TO simulation is shown in Fig. 8. 

Figure 8. FD-ID simulation showing restoration of the beam re-coalescence behavior after doubling the 
intensity beamwidth and separation parameters of the simulated beams, but keeping the wavelength constant. 
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After the second doubling of beam width and beam separation, the PD-TO and NLSE 
predictions for repetition period zp showed much better agreement, differing by only 13%. 
Results for these numerical experiments are shown in Table 2. 

Table 2. Progressive agreement of PD-TO and NLSE results for periodicity of 
co-propagating spatial solitons as the ratio of the beamwidth to wavelength increases. 

B[,FWHM 
BIIAd 

zp (pm) zp (pm) 
(JIIILl r:n.sE EIl:Ill Differeore 

0.65 1.22 9 00 00% 

1.3 2.46 34 47 38% 

2.6 4.9 135 153 13% 

It was concluded that there is a strong likelihood that co-propagating, optically narrow 
beams have only a single coalescence and then indefinite separation. The PD-TO model 
appears to properly predict the behavior of beams in nonlinear media both in the regime 

where the standard NLSE model breaks down (BI I Ad < = 1) and the the regime where the 

standard NLSE model is valid (B[ I Ad »1). The paraxial approximation inherent to 

NLSE, according to Lax et al,1S accounts only for zeroth-order diffraction effects. Since the 
PD-TO model implements the fundamental Maxwell's curl equations in multi-dimensions, 
PD-TO makes no assumption about a preferred scattering direction. It naturally accounts for 
energy transport in arbitrary transverse directions and should be exact for the computed 
optical electromagnetic fields up to the limit set by the grid resolution and Nyquist sampling 
theory. 

The single-time spatial soliton coalescence behavior indicated by the PD-TO modeling 
studies discussed above provides the basis for a possible all-optical switch. This pulsed 
spatial soliton switch would consist of a Kerr-type nonlinear interaction region with a pair of 
input and output waveguides on each side. Optical signal and control pulses would be fed in 
at the left edge, interact in the nonlinear medium, and then couple into receptor waveguides. 
In the absence of the control beam, the signal beam would propagate with zero deflection. In 
the presence of the control beam, and depending upon its carrier phase relative to the signal 
pulse, there would be either a single coalescence and then deflection to a collecting 
waveguide, or deflection without coalescence.* Fig. 9 shows the results of FO-TO 
simulations of the dynamics of this proposed switch, providing snapshots of the computed 
electric fields of lOO-fs pulsed signal and control spatial solitons (having zero relative phase) 
at the simulation times of 86 fs, 258 fs, 344 fs, 430 fs, 516 fs, and 602 fs. 

"'The device of Fig. 9 differs from the all-optical spatial-soliton switch proposed by Shi and Chi 14 which did 
not take advantage of the single-coalescencelsingle-divergence phenomenon, used continuous-wave excitation, 
and asswned a nonphysicaJly high nonlinear coefficient 
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Figure 9. Snapshots of the FD-ID-computed electric fields of l00-fs pulsed signal and control spatial 
solitons at the simulation times of 86 fs, 258 fs, 344 fs, 430 fs, 516 fs, and 602 fs for zero relative carrier 
phase between the pulses_ The single-time spatial soliton coalescence behavior is indicated by FD-ID 
modeling for ultrashort optical pulses as well as continuous beams. 

New Modeling Results for Corrugated GaAIAs Thin-Film Structures 

In collaboration with Prof. S.-T. Ho of Northwestern University, we are modeling and 
experimentally testing the operation of physically small (sub-millimeter) nonlinear all-optical 
switches constructed of GaAIAs. Several switches of this type were constructed in 
December 1993 at the Cornell National Sub-Micron Facility, and, in spring 1994, will be 
tested in Prof. Ho's lab, which is equipped with sophisticated femtosecond lasers. These 
photonic switches have the potential to provide a range of digital logic functions for optical 
pulses of less than 100 fsec duration. 
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One switch to be tested consists of a corrugated thin-film channel above a substrate. 
Conventional scalar-field (non-Maxwell's equations) perturbation theory predicts that this 
structure provides a stop-band characteristic to an incident optical signal pulse. This is also 
indicated by our preliminary FD-TD modeling. However, the existing perturbation theory 
cannot accurately treat the physics of corrugations deeper than about 0.1 times the thickness 
of the film, whereas FD-TD modeling can do so quite easily. Work is ongoing to compare 
the FD-TD and perturbation theory results to determine the regime where each is applicable. 

When, in addition, an orthogonally polarized optical pulse of adequate intensity is co­
propagated through this corrugated thin-film structure in its nominal stopband, a gap soliton 
is formed which permits the combined pulse to propagate completely through the corrugated 
region. This potentially yields a compact all-optical AND gate with projected peak optical 
powers of 100 - 1000 watts. By summer 1994, the operation of this photonic gate will be 
the subject of both nonlinear FD-TD modeling and experimental measurements. 
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ANECHOIC CHAMBER ABSORBING BOUNDARY CONDITION 
FOR UWB APPLICATIONS 

Abstract 

Tolga Giirel and Carey M. Rappaport 

Center of Electromagnetic Research 
Department of Electrical and Computer Engineering 
Northeastern University 
Boston, MA 02115 

A novel absorbing boundary condition (ABC), to be used with finite-difference time-domain 
(FDTD) solution of electromagnetics radiation and scattering problems, is described and 
analyzed. This novel lattice termination algorithm is based on anechoic chamber absorber 
foam geometry, with specially simulated electric and magnetic conductivity, chosen to prevent 
reflections and simulate infinite, open free-space. The advantage of this novel absorbing 
boundary over currently used ones is that it prevents reflections from much wider incident 
angles. The absorbing boundary can hence be placed much closer than previously possible 
since incident waves need not to be normal to the novel absorbing boundary for absorption, 
yielding great amount of savings in the memory usage and computation time, especially on 
massive parallel supercomputers. Thus this novel absorbing boundary may greatly improve 
the general applicability of computational electromagnetics. 

Introduction 

Minimizing the amount of computational space between the scatterer and the mesh termina­
tion has long been a difficulty in numerical electromagnetics. When simulating the scattering 
of electromagnetic waves, it is important that the free space surrounding the scattering object 
is numerically terminated to prevent reflections back to the scatterer. Further, for very short 
time pulses, this absorbing boundary must be relatively insensitive to frequency. Several types 
of ABCs, have been reported [1,2] which annihilate the scattered normally incident field. The 
effectiveness of these currently-used ABCs decreases with increasing incidence angle, which 
demands that they are positioned far enough away from the scatterer so that all scattered 
rays are almost perpendicularly incident on the ABC. 

More general absorbing boundary conditions which cancel waves incident from angles 
other than normal to the boundary [3,4,5] have been proposed. These ABCs apply approxi­
mate solutions to the wave equation at the radiation boundary, with annihilation for multiple 
discrete angles. Unfortunately, for each additional angle of annihilation, the order of the 

403 



differential operator increases. The number of grid points in the vicinity of the boundary 
which must be included in the higher-order difference operation thus increases. Although a 
wide range of incident angles can be absorbed with these absorbing boundary conditions, the 
resulting complexity at the boundary may become prohibitive. 

I , 
..., 
I 

/ Nann"rlncidlnl RaJ 
I 

Oblique RaJ 

Figure 1. Picture of the novel sawtooth ABC 

Sawtooth Anechoic Chamber-Based ABC 

The underlying idea of this novel ABC, seen at Figure 1, is obtained from the carbon-loaded 
anechoic chamber pyramid absorber. The steeply slanted lossy material faces absorb some of 
the incident energy in the first incidence and redirect any reflected waves into other pyramids 
for additional absorption. The net effect of the wall of pyramids is to absorb all incident 
waves. Sin~e incident waves from all directions are absorbed, the anechoic chamber absorber 
work well to prevent reflections. 

The essential improvement of the novel absorbing boundary is its ability to prevent 
reflections of waves incident over a wide angular range. While the most popular ABCs only 
absorb waves which are normally or almost normally incident, this novel ABC absorbs almost 
all waves from ±30 degrees about normal [6]. 

The material characteristics of the novel absorber used in the computer modelling is 
defined in such a way that it has magnetic conductivity (um ) as well as electric conductivity 
(u.). Therefore, in the frequency domain, the permittivity (f) and permeability (IL) of the 
absorbing material are chosen to be complex and lossy : 

(1) 

(2) 

where / = u./Wfo, IL" = Um/WlLo, j = A and W is the radian frequency. 
Ray analysis of the novel ABC [6] indicates that with the appropriate choices of /, 

/, IL' and IL", all of the waves normally incident on the novel ABC, which is a wall of 
equilateral triangles, will be normally incident at the second bounce to the adjacent triangle. 
The values of permittivity and permeability are selected for a perfect impedance match at the 
normal incidence. A ray normal to the sawtooth ABC is traced to the face of a equilateral 
triangle, reflected according to Snell's law, traced to the adjacent triangle, and makes a normal 
incidence to that face. The wave encountering the second triangle face normally will have 
no reflection if the wave impedance of the absorber medium, Equation (3), is the same as 
incident medium, which is free-space in our considerations. 

l 1 .. 11 

IL IL - JIL 
7] = -; = 7]0 -,--.-" 

< f - Jf 
(3) 
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Characteristic impedance 17 is equal to 170, regardless of the frequency, if and only if the follow­
ing condition is satisfied between real and imaginary parts of permittivity and permeability 

, " 
!!,==/-I" ==1 
( ( 

(4) 

which implies (1'./(0 == (l'm/ /-10. Imaginary parts, /' and /-I", are chosen large enough so that 
the wave quickly decays in the absorber medium as it propagates, however not so large that 
the decaying field is inadequately sampled on the mesh. 

FDTD Formulation From Maxwell's Curl Equations for Lossy 
Medium 

Maxwell's two curl equations, modified to take both electrical ((1'.) and magnetic conductivities 
((I'm) into account, are given by : 

8B 
VxE==---(I' H 8t m 

8D 
V X H == fit + (I'.E 

(5) 

(6) 

Using these two curl equations, the frequency independent wave equation for source-free 
lossy region is found as : 

(7) 

where U is either E or H. Defining the relaxation time constant and using relation (4) gives: 

(0 /-10 
T==-==-

(1'. (I'm 
(8) 

which has the units of time. The wave equation (7) simplifies to : 

( 2182281) 
V --(-+--+-) U==O 

c2 8t2 T 8t T2 
(9) 

which gives the second order time domain wave propagation differential equation in lossy 
medium. It can also be written as 

( 181) ( 181) V - -( - + -) . V + -( - + -) U == 0 
c 8t T C 8t T 

(10) 

Equation (10) is satisfied with two oppositely propagating plane waves in the lossy medium. 
Both waves have an exponential decay factor of e-t/ T in the lossy medium. Thus waves behave 
the same in the lossy medium as in the free space, but have frequency independent decay. 
A wave to decays to e-1 of its initial amplitude in T time units. If the electric conductivity 
increases, the relaxation time constant, T, becomes smaller. This results in faster decay in 
the lossy medium. 

Considering two dimensional rectangular TM polarization, electric field is defined as f 
polarized so magnetic field is x and fi polarized, i.e., E == fEZ! H = xHx + fiHy • For these 
components of electric and magnetic fields, the two curl equations reduce to : 

8Ez == -1-'0 8Hz: - (l'mHx 
8y 8t (11) 

(12) 
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OHy OHx EJEz -- - -- = £0-- + a E EJx EJy EJt e z 
(13) 

Applying forward difl'erencing to Equation (13) for an uniform rectangular grid with 
(x,y,t) = (itl.x,jtl.y,ntl.t) and tl.x = tl.y = h, we obtain: 

(1-~) .ill ( 1 1 En(' ') 2<0 En-1(; ') + <oh Hn-2(; + _ ') 
z t,} = 1 + ~ z .,} 1 + ~ y • 2,} 

2c:o 2fo 

Hn-~(, 1 ') Hn-~(" 1) Hn-t(" 1)) 
y 1- 2'} - x t,} + 2 + x I,} - 2 (14) 

and similarly for Hx and Hy in Faraday's law [7), 
To terminate the lossy sawtooth absorbing boundary condition at its exterior, a lossy 

termination based on the Engquist-Majda ABC [2) is derived using the appropriate one­
way lossy wave equation piece of the two-way wave equation (10), For positive x-directed 
propagation: 

En+1(i+ 1 ') = En(i+ 1 ')( 1- r - s) + En(i ,)(_r_) z ,} z ,} 1 + S z ,} 1 + S (15) 

where r is the Courant stability constant, ctl.t/h, and s is defined as tl.t/2T, It is easy to 
define this boundary condition along the sides of the grid, This ABC does not introduce extra 
calculations beyond the usual Engquist-Majda ABC, is suitable for parallel programming and, 
best of all, it is not a function of frequency, The second order lossy version of the Mur ABC [8] 
for terminating the lossy layer is also derived by using the appropriate one-way wave equation 
(12) in [8) with the substitution (f)/EJt + l/T) for a/f)t, For a boundary defined at i = imax , 

it is given: 

Ezn+1(i + I,}') En(i + 1 ,)(1- r - S) + En(i ,)(1 + r - S) 
z. ,] l+r+s z ,} l+r+s 

En+l(i,j)(I-r+S)+f1Oc r (Hn+1/2(i+ 1,j+ 1/2) 
z l+r+s 21+r+s x 

+ H;:+1/2(i,j + 1/2) - H;:+1/2(i + 1,j - 1/2) - H;:+1/2(i,j -1/2)}16) 

FDTD Simulation 

Two dimensional FDTD simulation of this equilateral triangle sawtooth absorbing layer is 
examined in this section, The results of a normally incident TM wave, interacting with an 
array of 10 thin scatterer strips shown in Figure 2 are presented, The plane wave simulated 
as a Rayleigh pulse in time domain, shown at Figure 3, with unity amplitude is given by: 

(17) 

where t is time variation and Wm is the center frequency of the Rayleigh pulse, which is 
chosen as 30 GHz, The corresponding magnetic field components, which follow directly from 
Faraday's law, have the same time dependence but being orthogonal to electric field and 
reduced in magnitude by the free space impedance T) = 377f2-

The computational domain is chosen as an uniform rectangular grid of points (i, j), 
Unit size of the uniform rectangular grid is chosen as h = OAmm, Each thin strip has a 
width of 4mm, i.e, 10h, and separation between two adjacent thin strips is 16mm, i.e, 40h, 
Choosing the Courant stability constant, ctl.t/ h, as 0,5, tl.t is found as 2/3 10-12 seconds, or 
2/3 picoseconds, 

The first result, shown at 5,a, shows the received scattered signal from the 10 thin strip 
array with the Rayleigh pulse plane wave normal illumination propagating from bottom to 
top of the figure, at an observation point of 10mm, 25h, down from the right corner of the 
strip array (on the incident field side), This result was generated for us by Lawrence Carin of 
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Figure 2. Problem geometry in Carin's grid 

Polytechnic University [9] by first calculating the induced current on the strips using FDTD. 
The rectangular grid used in this calculation has dimensions of 20mm or imax = 50 in depth 
and 220mm or jmax = 550 in width, as shown in Figure 2. The free-space second order Mur 
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Figure 3. Picture of the incident Rayleigh pulse 

boundary condition [8] is defined along the sides of the grid used. Once the induced currents 
are found through FDTD calculation, scattered field at any desired observation point in the 
space is calculated using the Kirchhoff diffraction formula. The scattered field shows the 
received signal from each individual strip, in the form of 10 negative replicas of the incident 
pulse, very clearly. 

200 
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j 

Figure 4; Racetrack boundary surrounding 10 thin strips array 

Figure 4 shows a racetrack shaped sawtooth ABC proposed in this paper. This novel 
sawtooth ABC can be defined to surround any scatterer shape, and thus eliminates sharp 
corners. The width and separation of the sawteeth in the racetrack boundary is 10h. The 
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Figure 5_ Carin's data (a) and Racetrack data (b) 

racetrack is placed 60h away from the 10 thin strips scattering array, leaving the observation 
point completely in the free space, which is 25h away from the right corner of the strip array in 
the incident field side, as in Carin's case. The dimensions of the grid are chosen as imax = 221 
and jmax = 651. This lossy racetrack layer is terminated by the lossy second order Mur ABC 
along to the sides of the grid to decrease the reflections further. The conductivity of the 
lossy sawtooth racetrack ABC is chosen as 0" = (o/200~t. The received scattered signal at 
the same observation point as in Figure 5.a with the racetrack ABC surrounding the array is 
given in Figure 5.b. 

Figure 6. 
maximum 
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Error in Carin's data (a) and racetrack data (b) as a fraction of incident pulse 

Although the two figures 5.a and 5.b appear very similar, there are important differences. 
Figure 6 shows errors made with the two ABCs. Figure 6.a shows the error in Carin's case 
while Figure 6.b shows the sawtooth racetrack boundary error with respect to the reference 
free-space case. The free-space case is the one where there are no reflections from the sides of 
the grid used within the observed time frame. This reference case, which gives the error-free 

408 



scattered field at the observation point, is obtained by using a free space grid similar to the 
one used in Carin's case but so large that the possible reflections from the sides are not seen 
until 800 picoseconds. 

In Figure 6.a, the worst error is more than 4%. The first peak around 30 picosecond is 
due to the effect of the reflections from the right of the grid shown in Figure 2. This effect is 
about 2%. The 4% reflected signal is due to specular reflections from the second order Mur 
ABC at the bottom of the domain at Figure 2. 

In Figure 6.b shows the error for the racetrack case, terminated by second order lossy 
Mur ABC, Equation (16), at the edges of the grid. The error is lower in this case, with 
the worst reflection of 0.7%. Reflection from the sawtooth verteces is only 0.2%. If the 
conductivity is increased, the worst reflection, due to the reflection from the bottom edge, 
will decrease, but the initial racetrack reflection will increase. Therefore the conductivity 
value must be optimized to balance these errors. 

Error in large lree-apace Mur .... 
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Figure 7. Error in large free-space Mur case as a fraction of incident pulse 

In Carin's case, the relatively small size rectangular grid is used with respect to the one 
used in the racetrack case. Although the second order free-space Mur ABC is defined along the 
sides of the rectangular grid in Carin's case, it still introduces more than 4% reflection. Figure 
7 shows the error in Carin's case using the same grid size as in the racetrack case defining the 
second order free-space Mur ABC grid termination. In this case, the worst error is 1.22%, 
which is 3.5 times better than Carin's case. This error starting about 250 picoseconds is due 
to the reflection from the bottom edge of the grid (i = 1). For lossy Engquist-Majda ABC, 
Equation (15), the reflection is not as good as in the lossy Mur case, however it is easier to 
implement on a massively parallel supercomputers. Using the lossy racetrack sawtooth ABC, 
which has the advantage of having a smoothly varying geometry to surround any kind of 
scatterer and flexibility of conductivity, along with the same type of ABC, reduces the error 
by a factor of 2. 

Conclusions 

An improved ABC based on anechoic chamber absorber foam prevents reflections from a 
wide range of incidence angles, and hence could be positioned very close to scatterer. The 
reduction of unimportant computational space leads to savings of computer memory and 
CPU time, especially useful for supercomputer applications. In the test case considered here, 
the novel ABC absorbs almost all of the incident field, regardless of the dominant frequency 
components and incidence angles of the scattered waves. Based on the presented results, 
this novel ABC is effective at terminating the lattice. It may be placed in front of the 
other ABCs by defining them in their lossy versions to increase their effectiveness without 
appreciably increasing the computer time. One particular advantage of this ABC is that it 
can be positioned around a scatterer of any shape by merely specifying the boundary location. 
Since this ABC's characteristics are entirely specified in time domain, it is also particularly 
well-suited for UWB applications. 
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Abstract 

The principles of the field theoretic foundation of the transmission line ma­
trix (TLM) method are discussed. The three-dimensional TLM method with 
condensed symmetric node and with independent electric and magnetic current 
density fields is derived. This is done by discretizing the in homogenous Maxwell's 
equations using the method of moments with subdomain base functions. 

I INTRODUCTION 

The computer aided design of monolithic integrated microwave and millimeterwave cir­
cuits requires the full-wave modelling of distributed passive circuits. The transmission 
line matrix (TLM) method has proven to be a very powerful method for the electro­
magnetic field modelling of circuits with general structure 11]. Until now, there have 
been only a few investigations about the theoretical foundations of the TLM method. 
Originally TLM is based on the analogy between the electromagnetic field and a mesh 
of transmission lines [2]. We have derived the two-dimensional TLM method and the 
three-dimensional TLM method with condensed symmetric node introduced by Johns 
directly from Maxwell's equations 13,4,5] using the method of moments 16] and the 
Hilbert space representation of the TLM method 17]. 

In TLM, the continuous space is discretized by introducing a TLM mesh with 
the TLM nodes as the elementary element. The electromagnetic field is represented 
by wave pulses scattered in the nodes and propagating on transmission lines between 
neighbouring nodes. This picture of TLM stresses the analogy to the network concept. 
When deriving TLM from Maxwell's equations, the wave amplitudes have to be related 
to transverse electric and magnetic field components. Therefore, in contrast to the one­
dimensional case where the introduction of wave amplitudes is a formal substitution 
of variables, the introduction of wave anlplitudes in two- or three-dimensional space 
requires at first the introduction of any set of curves of reference (for two-dimensional 
TLM) or surfaces of reference (for three-dimensional TLM). The propagation of the 
TLM wave pulses is normal to these curves and surfaces, respectively. Accordingly, 
the boundaries of the elementary TLM cells are formed by the curves or surfaces of 
reference. In each boundary surftlce seperating two TLM cells, a sampling point for 
the tangential electric and magnetic field components is chosen. The sampling of the 
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tangential electric and magnetic field components in the cell boundary surfaces yields a 
correct bijective mapping between the electromagnetic field components and the TLM 
wave anlplitudes. This mapping is called the cell boundary mapping [31. In the network 
model of TLM, in each smnpling point, one port is assigned to each polarization. By 
this way, an elementary multiport is assigned to each TLM cell. The term TLM cell 
describes the geometrical object in the continous space, whereas the term TLM node 
is used for the abstraet network model representing the relations between the wave 
amplitudes in the smnpling points of a TLM cell. 

In this paper, the three-dimensional TLM method with condensed symmetric 
node and with independent electric and magnetic current density fields is derived from 
Maxwell's equations with electric and magnetic current density terms. In this case, the 
distributed electric and magnetic current density fields are independent of the electro­
magnetic field and consequently, Maxwell's equations are inhomogeneous. The electric 
and magnetic field components as well as the components of the electric and magnetic 
current densities are represented by an expansion of sub domain base functions. The 
same sub domain base functions as in the field theoretical derivation of TLM for homo­
geneous media [31 are used for the field components as well as for the components of 
the current densities. Furthermore, the same test functions are applied to the inhomo­
geneous Maxwell's equations to obtain the discretized field equations for electric and 
magnetic field components. The electric and magnetic field components are sampled in 
the cell boundary surfaces of a TLM cell. Therefore, using the same expansion func­
tions for the components of the current densities, the components of the electric and 
magnetic current densities are also sampled in the cell boundary surfaces. 

II THE TLM METHOD WITH ELECTRIC AND MAGNETIC 
CURRENT DENSITIES 

The inhomogeneous Maxwell's equations with the electric current density j and the 
magnetic current density jm may be written in cartesian components as 

8Hz 8Hy 1 8E", . ( 
8y - 8z Zoc 7ft + J", 1) 

8Hz 8Hz 

8z - 8x 

8Hy 8H", 
8x - By 

8E. 8Ey 

By - 8z 

8E", 8Ez 

8z - 8x 

1 8Ey . 

Zoe 7ft +Jy (2) 

1 8E. . 
Zoc 7ft + J. (3) 

Z/8H", . 
- 0 cTt - Jm'" (4) 

Z / 8Hy . = - 0 cTt - Jm.y (5) 

(6) 

The impedance Zo = V /1O/f.o represents the wave impedance of the free space, the 
velocity c = 1/ ..jP,of.o the wave propagation velocity of the free space. We expand 
the electric and magnetic field components in the same way as described in [31. The 
components of the electric and magnetic current densities are expanded in an analogous 
way in 
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+00 
L dtm+1/2,n Fl~m+l/2,n(X) Tk(t) 

k,l,m,n=:;-oo 

+00 
+ L kjtm,n+1/2 ~m,n+1/2(X) Tk(t) 

k,l,m,n=-oo 

+00 
L di+l/2,m,n FJ'+1/2,m,,,(X) Tk(t) 

k,l,m,n=-oo 

+00 
+ L kjf,m,n+1/2 Ftm,n+1/2(X) Tk(t) 

k,l,nl.,n=-oo 

+00 
L kjt+1/2,m,n Fl~1/2,m,n(X) net) 

k,l,fn,n=-oo 

+00 
+ L kjl,m+1/2,n Fl~m+l/2,n(X) Tk(t) 

k,l,Ul,n=-OO 

+00 
j"",,(x, t) L kU",ll.m+l/2,n Fz~m+l/2,n(X) Tk(t) 

k,I,711,fJ.:;;-OO 

+00 
+ L kUmlf.m,n+l/2 Fz~m,n+1/2(X) Tk(t) 

k,l,fn,n=-oo 

+00 
L kUmJr+l/2,m,n F;~1/2,m,n(x) Tk(t) 

k,l,ut,n.=-oo 

+00 
+ L ku",lr,m,n+1/2 F;~m,n+1/2(x) Tk(t) 

k,l,m"n,=-oo 

+00 
L ku",lt+l/2,m,n Fl~1/2,m,n(X) Tk(t) 

k,l,fn,n=-oo 

+00 
+ L kUmlf.m+l/2,n Fl~m+l/2,n(X) Tk(t) (7) 

k,l,tll.,u=-oo 

where dt"", and k[j",irm n with Jt = x, y, z represent the expansion coefficients. The 
left inde~ k denotes th~ 'discrete time coordinate related to the time coordinate via 
t = kb.t, where b.t represents the time discretization interval. The right indices l, m 
and n denote the discrete spa.ce coordinates in x-, y- and z-direction related to the 
space coordina.tes via x = lb.l, y = mb.l and z = nb.l, where b.l represents the space 
discretization interval. The field expansion of the field components and the current 
densities is the same with respect to space. Concerning the discrete time coordinate k, 
the expansion functions Tk(t) are shifted by half a time interval, b.t/2, with respect to 
the field components. The expansion functions in time, Tk(t), are given by 

Tk(t) = 9 (~t - k) 
where the triangle function g(x) is defined by 

g(x) = { 1 ~Ixl for Ixl < 1 
for Ixl 2: 1 

(8) 

(9) 

The use of the functions Tk provides a piecewise linear approximation [6l of the exact 
solution of Maxwell's equations with respect to the time coordinate. The base functions 
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Fi,m, .. (X) with It = X, y, z are given by 

Fl~"±1/2, .. (X) 

F'f± 1/2, ... , .. (x) 

I1m,n±1/2(X) 

Fl±1/2,m, .. (X) 

F'i,m±1/2,n (X) 

x 
H( tl.x -l) F,"±1/2".(Y, z) 

x = H( tl.x -l) Fm ,n±1/2(Y, z) 
y = H(tl.y - m) l'l±1/2,,,(X,Z) 
y 

H( tl.y - m) l'l,,,±1/2(X, z) 

z 
H( tl.z - n) l'l±1/2,m(X, y) 

Z = H(tl.z - n) l'l,m±1/2(X,y) 

with the rectangular pulse function defined by 

for Ixi < 1/2 
for Ixl = 1/2 
for Ixl > 1/2 

and the two-dimensional triangle base fWlctions 

where 

l'l±1/2,m(X, y) 

l'l,m±1/2(X, y) 

x y 
w(- -l~ 1/2,- -m) 

tl.x tl.y 
x y 

w(- -l,- - m~ 1/2) 
tl.x tl.y 

w(x, y) = g(x - y) g(x + y) 

(10) 

(11) 

(12) 

(13) 

Expanding the electric and magnetic field components using the functions Ft'mn(X) 
provides a step approximation [6] in jI.-direction and a piecewise linear approxi~~tion 
in the diagonal directions of the plane perpendicular to the It-direction. 

We insert the field expansions in the inhomogeneous Maxwell's equations and sam­
ple the equations using delta test functions and their spatial derivatives. As an example, 
we consider eq. (1). Sampling aHz/ay with delta functions in space and time yields 
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1111 a:z 6(t - ktl.t) 6(x -ltl.x) 6(y - mtl.y) 6(z - ntl.y) dx dy dz dt 

+00 

L k'+l/2HI~+l/2,ml,n! 
k' ,I' ,m' ,n'=-oo 

+00 +00 
xii 6(x -ltl.x) 6(y - mtl.y) al'l/+l/~;"(X'Y) dx dy 

-00-00 

+00 +00 

X 1 6(z - ntl.z) H( ;z - n') dz J 6(t - ktl.t) Tk'+1/2(t) dt 
-00 -00 

+00 
+ L k'+l/2Hi-,m/+l/2,n' 

k',l',m',n'=-oo 
+00+00 

X 1 J 6(x -ltl.x) 6(y - mtl.y) al'l/,m/~~2(X'Y) dx dy 
-00 -00 



+~ +~ 

x J 6(z - n~z) H(;z - n') dz J 6(t - k~t) Tk'+1/2(t) dt 
-~ -~ 

2~Y (k+1/2H~m+1/2.n - k+1/2H~m-I/2.n + k-I/2H/~m+1/2,n - k-I/2H~m_I/2,n) 
(14) 

Sampling 8Hy/8z, 8E,,/8t and j" in a similar way, we obtain 

k+1/2Etm+I/2,n + k+1/2 E tm-I/2,n + k+1/2 Etm,n+1/2 + k+1/2E i,m,n-I/2 

- k-I/2Ei.m+1/2,n - k-I/2 E tm-I/2,n - k-I/2Ei.m,n+1/2 - k-I/2E tm,n-I/2 

~tZ (." ." +." +'" ) + oC kJI,m+I/2.n + kJI .... -I/2,n kJI, ... ,n+I/2 kJI.m,n-I/2 

2~tZoc (Hz HZ HZ HZ) 
~ k+1/2 1,.n+1/2,n - k+1/2 l,m-I/2.n + k-I/2 l.m+I/2.n - k-I/2 l,m-I/2,n 

2~tZoc (HY HY If.' If.') + ~ k+1/2 1 •• n,n-I/2 - k+1/2 l.m.n+1/2 + k-I/2 l.m ... -1/2 - k-I/2 l,m, .. +1/2 

where we have chosen 
~x = ~y = ~z = ~l 

Sampling the dual equation (4) yields 

~tc ( r,; ]" r,; ]" r,; ]" r ,; ]" ) + To kL/ ... l,n.+1/2,,. + kL/m /,m-I/2,n + kL/"",m,"+1/2 + kL/m l,m,n-I/2 

~~( W W W W) Zo~l k+1/2 l,m-1/2, .. - k+1/2 l,n.+1/2,n + k-I/2 l,m-I/2,n - k-I/2 1, ... +1/2,,. 

We choose 
2Z~tc 

Zo~l = 1 
as well as 

which yields the well-known relations [8] 

Zo= Z and 
C 

2Zo~tc = 1 
Z~l 

c'n 2 

(15) 

(16) 

(17) 

(18) 

(19) 

where we have introduced the mesh pulse velocity c". = ~l/ ~t and the wave impedance 
Z of one of the six identical TLM anns of one condensed symmetric node. With this 
choice, we are able to apply the cell boundary mapping [3] to derive the discretized field 
equations for wave amplitudes. 

Using the TLM Hilbert space representation [7], the three-dimensional TLM 
method with condensed symmetric node and with independent electric and magnetic 
current density fields is given by 
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Ib) = T 8 la) - ~ T" (1 + 8) IjE) + ~ Til (D + 8') P IjM) (20) 

with the scattering ma.trix 8 of the condensed symmetric TLM node given by 

with (21) 

as well as with the matrices 

[d 0 ;] d~ [1 
1 0 

!1 D= 0 d with 
0 0 

(22) 
0 0 o 0 
0 1 

p~ [~ 
0 

~] p~ [! 0 0 

~1 -1 0 
p with 

0 -1 
(23) 

0 
0 0 

and 

S'o' ] 
S'o ~ [ =i 

0 1 

-11 S'~ [~o' 8'0 
0 ¥ 

0 8'0 with -2 (24) 1 0 
8'0 8'OT 0 -¥ 

-2 0 

The electric field vector IjE) and the ma.gnetic field vector IjM) are elements of the 
Hilbert space 1iw given by the cartesian product of C12 , 1im and 1it , 

1iw = C12 I8i 'H.",18i 1it (25) 

The electric current density vector IjE) combines all electric current density components 
of the complete discretized space. It is given by 

+00 
IjE) = ZoLll L: 

k,l,m,n=-oo 

k liY]I-l/2,m,n 
k liY]I+l/2,m,n 
k liz]l-l/2,m,n 
k lizh+l/2,m,n 

k lizkm-l/2,n 
k !.iz]I,m+l/2,n 
k li",Ir,m-l/2,n 
k li"']I,m+l/2,n 
k li"']I,m,n-1/2 
k li"']I,m,n+l/2 
k liY]I,m,n-1/2 
k liY]I,m,n+l/2 

The magnetic current density vector IjM)' defined by 
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Ikjl,m,n) . (26) 



+00 
IjM) = t.1 L 

k,l,m,n=-oo 

k LimzLI/2,m,n 

k Limz]I+I/2,m, .. 

k LimY]I-I/2,m,n 

k LimY]I+I/2,m,n 

k Limxh,m-I/2, .. 

k Lit11X]I,m+I/2,n 

k Limz]l,m-I/2, .. 

k Limz]l,m+I/2,n 

k LimY]I,m,n-I/2 

k LimY]I,m,n+I/2 

k Lit11X ]1,m,n-I/2 

k Limx]l,m,n+I/2 

Ik;l,m,n) (27) 

summarizes all magnetic current density components of the discretized space. The 
twelve-dimensional complex vector space CI2 is the space of the vectors combining 
the twelve electric or twelve magnetic current density components of the TLM cell with 
the center at the discrete coordinates (l, m, n) at the discrete time coordinate k. Us­
ing Dirac's bra-ket notation [9], a system of orthonormal space domain base vectors 
II, m, n) in the Hilbert space 'H", is introduced. To each node with the discrete coor­
dinates (l, m, n), a base vector Il, m, n) is assigned. In the Hilbert space 'Ht , the base 
vector Ik) corresponds to the discrete time coordinate k. 

In the same way, the vector of all incident wave amplitudes 

la) = kal,m,n Ik;l,m,n) (28) 
k,l,1n.,n=-oo 

with 

and the vector of all scattered wave amplitudes 

+00 
Ih) = L kbl,m,n Ik;l,m,n) (29) 

k,l,1u.,n=-oo 

with 

are introduced as elements of the Hilbert space 'Hw. The product space 'Hw allows to 
describe the complete sequence of the discretized field by a single vector. The orthonor­
mal base vectors of 'Hm @ 'Ht are given by the ket-vectors Ik; l, m, n). The bra-vector 
(k; l, m, nl is the Hermitian conjugate of Ik; l, m, n). The orthogonality relations are 
given by 

(30) 

The time shift operator T increments k by 1 i.e. it shifts the field state by t.t in the 
positive time direction. Applying the time shift operator to a vector Ik; l, m, n), we 
obtain 

T Ik;l,m,n) = Ik+ l;l,m,n) (31) 

In the same way, the half time shift operator T,. is defined by 
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Th Ik; Tn, n) = Ik + 1/2; m, n) (32) 

Using the TLM method with independent electric and magnetic current density 
fields, we may apply the equivalence principle [10] in the TLM analysis of microwave 
circuits. Considering the spatial distribution of the expansion functions, the relations 

and 

. 2 (n x H) 
J = III 

2 (n x E) 
III 

(33) 

(34) 

enable to impress arbitrary electric and magnetic fields. The vector n represents the 
unit vector perpendicular to the surface in which the electric and magnetic current 
densities, j and jrn, respectively, are impressed. 

III CONCLUSION 

The three-dimensional TLM method with condensed symmetric node has been derived 
directly from Maxwell's equations using the method of moments. Independent electric 
and magnetic current densities have been introduced in the TLM method by discretiz­
ing the inhomogeneous Maxwell's equations with distributed, independent electric and 
magnetic current density fields. By this way, the TLM method has been derived from 
first principles of field theory. Furthermore, we have shown that the correct electro­
magnetic field modelling by TLM requires the sampling of the tangential electric and 
magnetic field components as well as the components of the tangential electric and 
magnetic current density fields in the cell boundary surfaces. 
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LOCALIZED SHORT·PULSE SCATTERING FROM COATED CYLINDRICAL 
OBJECTS: EXPERIMENTAL MEASUREMENTS AND NUMERICAL MODELS 

James G. Maloney, Morris P. Kesler, and Eric J. Kuster 

Signatures Technology Laboratory 
Georgia Tech Research Institute 
Atlanta, GA 30332 

INTRODUCTION 

This paper presents some results of our investigations into transient scattering from 
finite cylindrical targets. One unique feature of this work is that the vector field measure­
ments were performed with non-planar excitation in the near-field of the target (localized 
measurements). Two electromagnetic models were developed to predict the transient 
near-field scattering and were validated by extensive comparison to measurements. One was 
a finite-difference time-domain (FDTD) model, while the other was based on the method of 
moments technique. The complexity of the field behavior in the near-field region provided a 
challenge for the model validation efforts. In this paper we discuss the measurement tech­
niques, the electromagnetic models, and present the results of representative scattering mea­
surements to highlight some of the interesting behavior which was observed. 

MEASUREMENT SYSTEM AND GEOMETRIES 

The transient scattering measurements were performed in a variety of measurement 
configurations. In contrast to most conventional scattering measurements which strive for 
plane wave excitation and far-field reception, we used geometries in which the transmit and 
receive antennas were located close to the scatterer. Targets investigated included conduct­
ing cylinders, conducting cylinders with circumferential slots, and coated cylinders. The tar­
get dimensions were comparable to the wavelengths contained in the incident fields. 

The basic measurement configuration consisted of a transmitting antenna, a scattering 
object, and a receiving antenna. The transmitting antenna was driven by an electrical pulse 
generator (Avtech AVH-HVI-C), which produced approximately 500 ps pulses (full width 
at half maximum) with an amplitude of 100 volts. Spectrally, the pulse delivered to the 
transmitting antenna had significant frequency content extending to about 3 GHz. A plot of 
a typical pulse (after propagating through 20 feet of semi-rigid coax) is shown in the left plot 
of Figure 1. Conical and bi-conical antennas were used for both the transmitting and receiv-
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ing antennas. Each had a height (or half-height for the bi-conical antennas used in off 
ground plane configurations) of 1" and a 30° half angle. Conical antennas were chosen 
because of a broader bandwidth and greater sensitivity than simple wire-dipole antennas. 
Off ground plane measurements required the use of a broadband hybrid coupler to convert 
the pulse generator output to a balanced signal to drive the bi-conical antenna and to create 
an unbalanced signal from the receive antenna. The right plot of Figure 1 shows the spec­
trum of the received signal when using the pulse generator and 1" conical antennas sepa­
rated by 12" on the ground plane. The natural high pass filtering effect of the radiating and 
receiving antennas causes this signal to be peaked in frequency at around 1 GHz. 
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Figure 1. Typical pulse from the Avtech pulse generator(left) and spectrum of the received signal (right). 

In addition to the antennas and the pulse generator, a scattering measurement also 
requires the use of a measurement apparatus. The measurements reported here utilized a 
sampling oscilloscope (Tektronix CSA803 with an SD-26 sampling head). This system pro­
vides an effective measurement bandwidth of 20 GHz and, with averaging, can measure sig­
nals below 1 mV in amplitude. For a typical scattering measurement, the received signal in a 
10 ns window was averaged 512 times for each data acquisition. The elapsed time for a sin­
gle measurement depends on the repetition rate of the pulse generator and was less than one 
minute for our set-up. The data acquisition process was controlled by a desktop personal 
computer, and the data were transferred to more powerful computers for processing and 
comparison to model predictions. 

Ground plane measurements were performed using an 8' x 8' aluminum ground plane 
on which the antennas and scattering object were placed. The conical antennas were con­
tacted through the back side of the ground plane and could be located at a number of sites 
near the center of the ground plane. The size of the ground plane limited the clear measure­
ment window to approximately 8 ns. For measurement configurations not involving the 
ground plane, low density styrofoam was used to position the antennas and scattering 
objects. The two coaxial lines used to connect to the terminals of each antenna were oriented 
to minimize their effect on the measurement. The length of these coaxial lines and the height 
of the styrofoam blocks limited the clear measurement window for these free space mea­
surements to approximately IOns. 

Scattering measurements on the ground plane were performed in two basic geometries, 
identified as the equilateral and offset configurations. In the equilateral configuration, the 
transmit antenna, receive antenna and the centerline of the scattering object were located at 
the vertices of an equilateral triangle with side lengths of 12". For the offset configuration, 
the antennas were also spaced apart by 12", but the center of the scattering object was offset 
towards the receiver. In cartesian coordinates, the transmitter was located at (0,0), the 
receiver at (12",0), and the center of the scatterer at (9",10"). 

The off-ground plane geometries allow a wider variety of measurement configurations. 
The orientation and location of the antennas are not limited as on the ground plane, and 
cross-polarized scattering measurements are possible. Measurements were performed in a 
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number of different configurations, and representative data from a few of these configura­
tions will be presented. 

ELECTROMAGNETIC MODELS 

Most electromagnetic codes today are used only to predict the far-field electromagnetic 
behavior of an object because of two reasons. First, the desired electromagnetic properties 
of the object are specified only in the far-field, and second, near-field prediction is more dif­
ficult, partly because of the rapid field variations possible. However, the complexity of the 
near-field behavior provides a means for rigorous validation of a code. A code may correctly 
predict the far-field, but fail in some aspect of near field prediction. It may also be necessary 
for the code to account for mutual coupling between the target and antennas. Localized mea­
surements focus on the near-field behavior and are useful for validating codes capable of 
near-field prediction. 

We have used localized measurements to validate two EM scattering codes, an FDTD 
model and a body of revolution, method of moments (MoM) code. The two codes are funda­
mentally different in several ways. First, the MoM code solves for the scattering one fre­
quency at a time, whereas the FDTD code solves for the scattering in the time domain. 
Another key difference is that the FDTD code is capable of including the antennas explicitly 
in the scattering computation, while the MoM code assumes point dipole excitation and 
computes the field at specified points. Our results illustrate that this can cause disagreement 
between the measured and predicted results for some configurations, but not for others. 

The FDTD model used the Yee lattice with 114" cubical cells. l This cell size corre­
sponds to greater than 40 cells/wavelength at the peak frequency of the measurements. The 
targets and antennas were modeled using a staircase approximation. A transmission line 
feed model was developed for connecting to the antennas2, allowing the model to determine 
the output transient voltage waveform given the input voltage pulse. Liao boundary 
conditions3 were used at the edges of the computational space, with at least 30 cells between 
any object and the boundary. 

The body of revolution MoM model was a modification of the plane wave scattering 
from a dielectric coated, conducting body of revolution detailed by Huddleston.4 The modi­
fication was to allow dipole field excitation at an arbitrary location, and computation of the 
scattered field at any desired point. Triangular basis functions were used with more than 90 
triangles per wavelength at the peak frequency. For the angular functions, we found that 
including 11 Fourier modes was sufficient for good results. 

Calibration 

The quantities which can be measured experimentally are the voltage pulse sent to the 
transmitting antenna, and the received voltage waveform on a transmission line connected 
to the receiving antenna. Comparison to experiment thus requires that the model results be 
expressed in terms of these voltages. Some models, such as the FDTD model, are capable of 
modeling the transmission line and the antenna feed structure to predict the received voltage 
waveform given the input voltage pulse. For these cases direct comparison is possible, but 
can be difficult because the results can be extremely sensitive to the exact implementation 
details of the antennas and their connections. In addition, this level of modeling detail may 
be impractical on larger problems. The MoM model, on the other hand, takes as input a 
dipole moment or dipole current, and predicts the scattered field at the location of the 
receiving antenna. Validation of this model requires that these variables be related to the 
experimentally measured voltages. These relationships are also sensitive to precise experi­
mental details. 
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In our validation efforts, we have chosen to experimentally determine these relation­
ships using a transfer function approach. Consider the basic experimental arrangement con­
sisting of a transmitting antenna, a receiving antenna and a scatterer. A voltage generator is 
connected to the transmitter through a transmission line, and the received voltage is mea­
sured on a transmission line connected to the receive antenna. In the frequency domain, the 
received voltage can be related to the input voltage using a product of transfer functions, 

(1) 

The relationship between the input and output voltages is expressed as the product of 
three transfer functions; one relating the input voltage to the dipole moment of the transmit­
ting antenna (HTX (ro», one relating this moment to the field at the receiving antenna 
(Hfield (ro», and one relating this field to the voltage on the transmission line (HRX (ro». 
The details of the antenna implementation are contained in the two antenna transfer func­
tions which are functions of the antenna impedances, with the field propagation and scatter­
ing contained in Hfield (ro). 

Consider the clearsite situation (no scatterer present); we can use this case to experi­
mentally determine the product of the transmit and receive transfer functions. The received 
voltage (in the frequency domain) can be expressed as 

,,meas 
V es (ro) = H RX (ro) HDipole (ro) H TX (ro) Yin (ro) 

where HDipole (ro) is the field (including the near-field terms) of a short dipole. Thus, 

v;.eas (ro) 

HTX(ro)HRX(ro) Yin (ro) = H () 
Dipole ro 

(2) 

(3) 

where v;.eas (ro) is the Fourier transform of the measured clearsite response. Using this 
experimentally determined product, the predicted MoM output with a scatterer present is 

_MoM -l[,,meas Hfield (ro) J 
VOUI (t)= FT Ves (ro)H. (ro)· 

DIpole 
(4) 

The MoM code is used to generate Hfield (ro), and (4) is used to relate this to the exper­
imentally relevant voltages. This simple result shows that in this formalism the only thing 
needed to experimentally characterize the antennas and to compare the predicted and mea­
sured scattering is a measured clearsite output. Using this technique, the comparisons 
between measurement and code predictions will focus on the effects of the scatterer and not 
on how well the antennas are modeled. In fact, as long as the antenna radiation pattern is 
dipole-like, the actual shape of the antenna is not important. We used both wire dipoles and 
conical antennas in validating our MoM predictive model. 

The FDTD model is more flexible in that it can model the antennas directly and include 
the transmission line feeds. Thus it can directly predict the received voltage given the input 
voltage pulse. Validation of this model does not require the transfer function approach since 
the transfer functions are implicit in the model. However, comparisons between predicted 
and measured results are easier if a calibration procedure is used. This procedure is similar 
to the transfer function approach and is discussed next. 

As mentioned before, the basic scattering measurement involves transmitting and 
receiving antennas and a scattering object. Given the measurement geometry, antenna struc­
ture, and the time-waveform used to excite the transmitter, the FDTD model can predict the 
received waveform. The shape and orientation of the antennas as well as the coaxial feed 
structure are explicitly put into the computation. Thus, the model predictions are dependent 
on the exact antenna structure, the connection to the antenna, and the input signal. Absolute 
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comparison is possible between the model predictions and measured results, however, accu­
rate representation of the experimental configuration in the model is critical. Small changes 
in the antenna orientation, especially near the feed structure, can significantly affect the 
model results. Accurate modeling of the precise experimental conditions requires a small 
FDTD cell, limiting the size of the scattering measurement which can be practically mod­
eled. In addition, other sources of frequency dependent loss, such as cables or the directional 
couplers used in the free space configurations, must be accounted for. 

A 2D (rotational symmetry) version of our FDTD code was validated by absolute com­
parison of model predictions with careful experimental measurements. However, most of 
our measurements require 3D models (no rotational symmetry). To relax the demands 
required for modeling the precise details of the experiment, a frequency dependent calibra­
tion factor was used. This factor accounts for any imprecisely known variations in the 
experimental configuration, such as those mentioned above, and facilitates the comparisons 
between the experimental results and model predictions. The calibration factor is deter­
mined by the ratio, in the frequency domain, of a measured result with no scatterer present 
to that predicted by the FDTD model. For the most part, the calibration factor is not a strong 
function of frequency within the pulse bandwidth. In the ground plane case, the factor is 
approximately 0.8. This implies that there is an additional source of loss which is unac­
counted for in the experiment. This loss may be in the connection to the antennas at the 
ground plane. Although these connections were carefully made, we have no independent 
way of measuring the loss they introduce. The relative flatness of the calibration factor over 
the spectrum of the measurement indicates that the experimental configuration is being 
closely modeled by the FDTD code. 

All of the FDTD predictions shown in this report utilize the calibration factor. This 
simply means that the FDTD clearsite predictions are adjusted, in the frequency domain, to 
match the measured clearsite result. When a scattering object is present, the predicted results 
are adjusted with the same frequency dependent factor before comparison to the measured 
scattering. This procedure provides a reasonable means for testing the accuracy of the 
FDTD results, while making the experimental procedures simpler and not unduly limiting 
the problem size which can be simulated. The calibration factor approach has difficulty in 
situations where small changes in the antenna orientation cause large changes in the 
received signal, such as with cross-polarized antennas. 

Model Validation 

As an example of the level of agreement obtained between the models and the mea­
surement, consider a scattering measurement using conical antennas and a finite conducting 
cylinder (6" x 6") as the target. The measurement geometry was the offset configuration on 
the ground plane. Figure 2 shows the received signal with no scatterer present (left plot), and 
the net scattering from the cylinder in this configuration along with the predictions from the 
two models (right plot). All of the results presented in this paper will show the net scattered 
signal, (i.e. the clearsite signal has been subtracted out) to highlight the effects of the scat­
terer. In some measurement geometries, the net scattered signal was significantly smaller 
than the direct signal, so the subtraction procedure was necessary to provide a fair compari­
son to the predicted scattering. The scattered signal is delayed with respect to the direct sig­
nal, and the early-time return (specular bounce) has a shape similar to the direct signal. Note 
that both models accurately predict the scattering in this situation. Similar agreement was 
obtained in a variety of other measurement configurations. 

Some particular geometries proved more difficult in the near-field for the MoM model. 
Figure 3 compares the net scattering from a conducting cylinder (6" x 6") in the offset 
geometry (left) and in the equilateral geometry (right). The left plot is the same as Figure 2, 
but on an expanded scale, and good agreement is evident for both models. However, note 
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the differences in the equilateral configuration (right plot). In this case, the MoM prediction 
is good except for a region following the main scattered signal, while the FDTD model cor­
rectly predicts the scattering even in this region. The disagreement is caused by multiple 
scattering between the cylinder and the antennas, which is not accounted for in the MoM 
model. In the offset configuration, the multiple scattering paths are not coincident in time, 
and the agreement is better. This example indicates the level of modeling detail which is 
necessary in the near-field and illustrates that localized measurements provide a challenging 
test for electromagnetic codes. 
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Figure 2. Received signal with no scatterer (left) and net scattered signal from a 6" x 6" cylinder in the 
offset position compared to model predictions (right). See text for details. 
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Figure 3. A comparison of the net scattering from a 6" x 6" cylinder in the offset (left) and equilateral (right) 
positions with the model predktions. The FDTD correctly predicts the multi-bounce effects in the right plot. 

Because of the inherent ability to model the multiple scattering phenomena, the FDTD 
model was selected for further development. This included adding materials modeling capa­
bility for dielectric, magnetic, and dispersive media. The remaining data will compare the 
measured results with the FDTD predictions only. Data from representative measurement 
configurations has been selected to highlight the effects of some of the target features 
revealed by the localized measurements. 

OTHER MEASUREMENTS 

Complex-Shaped Cylinders 

Figure 4 illustrates the effect of a slot on the localized scattering from a cylinder. The 
left plot shows the net scattered signal from a solid, 6" diameter, 6" long cylinder in the off­
set position on the ground plane (dashed curve). This plot also contains the scattering pre­
dicted by the FDTD model (solid curve). When the cylinder is slotted at the base (1" wide 
and 2" deep), the scattering is changed to that shown in the right plot. The FDTD predictions 
are also shown (solid curve). Note the differences in the two cases; the scattering from the 
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slotted cylinder is smaller and continues to oscillate longer than that from the solid cylinder. 
This may be caused by energy which is guided around the cylinder inside the slot. The 
FDTD model predictions are in close agreement with the measured results. 

Figure 5 shows how the scattered signal is changed as the depth of the slot is increased. 
The left plot shows the net scattering from a 6" x 6" cylinder with a 1" wide, 1" deep slot 
located at the base. When the slot depth is increased to 2", the net scattered signal is as 
shown in the right plot. For this data, the equilateral measurement configuration on the 
ground plane was used. As expected, the deeper slot has a more significant impact on the 
result, causing a more sustained oscillation in the scattered signal. 
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Figure 4. Net scattering from a solid cylinder (left) and a slotted cylinder (right) in the offset configuration. 
The solid curves are the FDTD predictions. 

0.3 

0.2 

~ .. 0.1 

1 0.0 
~ 
I}. .Q.l 
li z 

.Q.2 

.Q.3 
0 

- Calculaled 
---- Measured 

2 3 4 5 6 7 8 9 10 
Time (nanoseconds) 

0.10 - Calculaled 
---- Measured 

0.05 

0.00...-----"". 

.Q.OS 

.Q.l0 

2 3 4 5 6 7 8 9 10 
Time (nanoseconds) 

Figure 5. A comparison illustrating the effect of slot depth on the scattering. Left plot is for a 1" wide, 1" 
deep slot, while the right plot is for a 1" wide, 2" deep slot. 

Free space measurements were also made using cylinders with 2 slots. Figure 6 com­
pares the net scattering from a solid cylinder (right plot - FDTD computation) to that from a 
double slotted cylinder (left plot). For this co-polarized configuration, both antennas were 
oriented along the (0,0,1) direction with the transmitter located at (6",0,0) and the receiver at 
(-6" ,0,0). The target cylinders were oriented along the (1,0,0) direction and were centered at 
(0,13" ,2.875"). In the FDTD computation for the right plot, the solid cylinder had a diameter 
of 6" and was 11" inches long. The double slotted cylinder had the same overall dimensions, 
but also had 2" wide, 2" deep slots centered 3 inches from both ends. With this configura­
tion, there is not a significant difference between the scattering from the solid and slotted 
cylinders. The field incident on the cylinder induces currents which mainly run around the 
cylinder, and thus are not substantially perturbed by the slots. The slight disagreement in the 
early-time (2-3 ns) between the measured and predicted net scattering is caused by drift and! 
or jitter in the oscilloscope triggering which prevents perfect subtraction of the direct signal. 
This is occurring near the peak slopes of the direct signal. 

Significant changes are evident when the orientation of the antennas is rotated by 90°, 
resulting in a radial measurement configuration. Figure 7 shows the results obtained when 
the antennas were oriented along the (1,0,0) direction. The locations of the antennas and cyl-

427 



inders were unchanged. In this case, currents were induced along the length of the cylinder, 
and the slots caused considerable ringing in the scattered signal. 
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Figure 6. Comparison of the scattering from a double slotted cylinder (left) and solid cylinder (right) using 
co-polarized antennas oriented as shown. The solid curves are the FDTD predictions. 
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Figure 7. Comparison of the scattering from a double slotted cylinder (left) and solid cylinder (right) using 
antennas rotated 90° as shown. The solid curves are the FDTD predictions. 

Material-Coated Cylinders 

We also performed transient near-field scattering measurements on finite conducting 
cylinders with various material coatings. Three materials were used to coat the conducting 
cylinders; a low-loss diele.ctric, lossy dielectric, and a magnetic material. The FDTD model 
was modified to include the capability of modeling these types of materials. In addition, 
accurate measurements of the electromagnetic characteristics of the materials were per­
formed. Any frequency dependent properties were modeled as Debye resonances to allow 
efficient implementation in the FDTD code. This was accomplished using an approach sim­
ilar to that developed by Luebbers,s but with some modifications.6 

The complex permittivity of the lossy dielectric material could be adequately repre­
sented as a single Debye resonance along with a DC conductivity, 

Edc -E~ cr 
E(ro) = l+jroto +E~+jro 

(5) 

The left plot in Figure 8 shows the measured permittivity along with the fit (dots). The 
parameters used in the fit were cr = 47.12x109S/m, Edc = 9.75Eo' E~ = 1.57Eo' and 
to = 201.1 ps. 

The magnetic material was also dispersive, having a permeability which could be mod­
eled as a single Debye resonance, 

J.I. (ro) (6) 
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The right plot in Figure 8 shows the measured permeability along with the Debye fit (dots). 
The parameters used in this fit were !!dc = 5.31!!0' !!~ = 1.49!!0' and to = 56.74 ps. The 
relative permittivity of this material was constant at approximately 15.5. 
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Figure 8. Measured permittivity for the lossy material used to coat the cylinders (solid line - left plot). The 
dots are the single term Debye and constant (J fit used in the FDTD model. The right plot shows the measured 
permeability for the magnetic material along with the single term Debye fit. 

As mentioned before, scattering measurements were also performed on cylinders 
coated with these materials. Figure 9 shows the effects of a 0.5" thick dielectric coating 
(E, == 9) on the scattering from a 3" x 6" cylinder. For this measurement, the transmitter and 
receiver were both oriented in the (1,0,0) direction, with a transmitter position of (0,0,0) and 
a receiver position of (-6.75",0,0). The uncoated cylinder was centered at (-3",6.25",-2.8") 
and oriented along the (1,0,0) direction, while the coated cylinder was 0.5" higher at 
(-3",6.25",-2.3"). The left plot shows a comparison of the scattering from the coated and 
uncoated cylinders. The coating reduces the initial scattered signal, and energy coupled into 
the dielectric layer causes a sustained oscillation in the late-time response. A comparison of 
the measured and predicted net scattered signal from the coated cylinder using the FDTD 
model is shown in the right plot and indicates good agreement. 
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Figure 9. Left: A comparison of the scattering from an uncoated and dielectric coated cylinder. Right: 
Measured net scattering from the coated cylinder compared to the FDTD model predictions. 

A magnetic coating had a more dramatic effect on the scattered signal. Figure 10 illus­
trates this point. The measurement configuration for this data was the offset configuration 
on the ground plane. In this case, the 3" x 6" cylinder was treated with a 0.5" magnetic coat­
ing. The left plots shows the effect of the coating; it significantly reduced the amplitude of 
and delayed the scattered signal. There are also continued oscillations at later times. A com­
parison of the measured signal with the FDTD model predictions is shown in the right plot. 
Again, good agreement is obtained, indicating that the dispersive properties of the magnetic 
material have been properly accounted for in the FDTD modeling. 

One final measurement configuration involves a slotted cylinder with the lossy mate­
rial covering the cylinder and slot. Figure 11 shows data taken in the equilateral configura­
tion on the ground plane. A 6" diameter, 6" long cylinder with a 2" wide, 2" deep slot in the 
center was used in this measurement. The lossy material was wrapped around the cylinder to 
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Figure 10. Left: A comparison of the scattering from an uncoated and magnetic coated cylinder. Right: 
Measured net scattering from the coated cylinder compared to the FDTD model predictions. 

provide a 3/4" thick coating. The left plot in the figure compares the net scattering from the 
coated (dashed) and uncoated (solid) cylinders. The difference between the curves is signif­
icant, as the scattering from the coated cylinder is dominated by the specular bounce at the 
outer surface. There is little penetration into the slotted region. The scattering from the 
coated cylinder is similar to the scattering from a solid conducting cylinder (the differences 
are subtle). Comparison between the model predictions and the measured results for the 
coated case are shown in the right plot. Excellent agreement is again obtained between the 
FDTD model predictions and the measUrement. 
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Figure 11. Left: A comparison of the scattering from an uncoated and lossy coated slotted cylinder. Right: 
Measured net scattering from the coated cylinder compared to the FDTD model predictions. 
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PULSE SCATTERING BY ROUGH SURFACES 

ABSTRACT 

Akira Ishimaru, Lynn Ailes-Sengers, Phillip 
Phu, and Dale Winebrenner 

Department of Electrical Engineering 
University of Washington 
Seattle, WA 98195 

This paper first presents a general formulation of the scattered pulse from rough sur­
faces in terms of the two-frequency mutual coherence function. We define the two-fre­
quency surface cross section per unit area. We then present an example of the 
two-frequency mutual coherence function using the Kirchhoff approximation for the surface 
with moderate rms slope. 

The results show the effects of the illumination area. The coherence bandwidth 
increases as the illumination area decreases, resulting in shorter pulse broadening. We 
report results from Monte Carlo simulations and millimeter wave experiments at 75-100 
GHz, involving rough surfaces with given statistics. The simulations and experiments show 
good agreement with the theory. 

We also consider rough surfaces with higher rms slopes. This is the region where 
enhanced backscattering takes place, caused by the multiple scattering of waves on the 
rough surface. This multiple scattering results in the narrowing of the two-frequency 
mutual coherence function and the broadening of the scattered pulse in the backscattered 
direction. The effects of the illumination area, non-Gaussian spectrum, and rms slopes are 
investigated and comparisons are made with Monte Carlo simulations and millimeter wave 
experiments, showing good agreement. 

INTRODUCTION 

There has been an increasing interest and need for understanding the characteristics of 

pulses scattered from rough surfaces.1-6 Examples are the ocean acoustic scatter, SAR 
remote sensing of the earth surfaces, and the effects of surface clutter on imaging and target 
detection. There has also been a strong interest in optical remote sensing of rough surface 
characteristics utilizing the angular and frequency correlations of the scattered wave. 
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This paper presents a theory of pulse scattering by rough surfaces which is based on the 
two-frequency mutual coherence function. It should be noted that the frequency character­
istics of the conventional scattering cross section for rough surfaces cannot give the pulse 
characteristics, and it is necessary to study the correlation of the scattered field at two differ­
ent frequencies. This leads to the coherence bandwidth and the pulse broadening. 

This paper first presents a general formulation for the two-frequency mutual coherence 
function and the two-frequency scattering cross section. We then use the first order Kirch­
hoff approximation as an example to show the effects of the illumination area and the sur­
face characteristics. We also indicate the study relating to the surface with the rms slope 
close to one where backscattering enhancement takes place. This is the region where we 
need the second order Kirchhoff approximation with shadowing corrections. 

PULSE SCATTERING AND THE TWO-FREQUENCY SCATTERING CROSS 
SECTION 

Let us first consider an incident wave \{Ii (t) and its Fourier transform \{Ii (Ol) . 

Also consider the scattered wave \{Is (t) and its Fourier transform \{Is ( Ol) . 

The temporal mutual coherence function r(t"t2) of the scattered wave is then given by 

and we define 

(1) 

(2) 

(3) 

The function r( Ol, ,0l2) is called the "two-frequency mutual coherence function" and repre­

sents the correlation between the scattered waves at two different frequencies. Note also the 

Wigner distribution W(t,Ol) of r(tl't2) is related to r(0l,,0l2) = r(Olc,Old): 

where Ole = (Ol, +0l2)/2, Old = 0l,-0l2' t = (t, +t2)/2,and td = t,-t2 · 

The incident power Pi (t) is given by? 
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1 ff- - * -iill!! +iillz! P. (t) = 'P. (t) 'P* (t) = --2 'Pi (0)1) 'Pi (0)2) e 
I I I (21t) 

(5) 

(6) 

where 

The scattered power Ps (t) is given by 

(7) 

(8) 

where r(0)1'0)2) = (Tr (0)1) Tr * (0)2) > is the two-frequency mutual coherence function. 

In many practical applications, r(0)1'0)2) is a slowly varying function of 

O)c = (0)1 + 0)2) 12, called the "wide-sense stationary uncorrelated scattering channel 

(WSSUS)".l In this case, (8) is simplified to give 

(9) 

where 

For example, if the incident pulse is a Gaussian modulated pulse, 

(10) 

then 
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If Pi (t) = () (t) , then Pi (ill d) = 1, and therefore the scattered pulse P s (t) is the Fourier 

transform of the two-frequency mutual coherence function r (ill d)' From the above, it is 

clear that the pulse scattering problem is reduced to the problem of finding the two-fre­
quency mutual coherence function. 

THE TWO-FREQUENCY MUTUAL COHERENCE FUNCTION FOR ROUGH 
SURFACES 

As an example of the two-frequency mutual coherence function, we consider a scalar 
wave 'I' (f') scattered by a rough surface based on first order Kirchhoff approximation (Fig­

ure 1.)7 

Figure 1. Rough surface height f(x,y) and incident Kj and scattered K wave 

vectors. 

The scattered wave is given by! 

where 

1 + cos8icos8s - sin8isin8scos<ps 
f = ----=-...,---,,------::-...,---

cos8i (cos8i + cos8s) 

The two-frequency scattering cross section cr (k, k') is then given by 
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We therefore get 

0' (k, k') = 41tR2 [('1"P'*) - (\{') (\{")*] 
S 

( kk'COSO.COSO ) 
0' (k k') - ei (k - k') R 1 S f f' R R' I , - 1t CO CO 

I = H dS J dS' [ (e- iiH + iii' . f') - (e-iii . f) (e iii' : t') ] 

S S 

(12) 

(13) 

where ii = Ks - Ki = v + v zZ' and f = x + f z. Now we note that assuming Gaussian 

distribution for the surface height f (x, y) , 

where 

._ ._" -i(vd·x +v ·xd) --21 [cr2(yZ+y,Z)-2B(Xd)Y y' ] 
(e-lU.f+lU ·f) = e C C C Z Z Z 

Vd = v-v' 

Xd = x-x' 

Vc = (v+v')/2 

Xc = (x + x') /2 

We therefore get 

(14) 

(15) 

(16) 

The function <I> s 1 represents the effect of the illumination area. For example, if the incident 

beam" Gau.- we .,. the 0-;'" illumin.tiOD ( e+ ~i -~m ond obtom 

(17) 

For a beam of size Lo ' we get Lx = Lol cosOi , and Ly = Lo. The function <1>1 repre-
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sents the effect of the surface height correlation. If the rms slope is less than 0.4, we have 

(18) 

On the other hand, if the rms slope is 0.4-0.5, we use the geometric optics approximation 
and obtain 

_ [-- (v z - v'z) 2cr2] [ nl2 J [ V;12] 
<1>1 - exp 2 ---2 exp 2 . 

. v v' cr 4 v v' cr z z z z 

(19) 

Similar formulations for the one-dimensional rough surface are given in reference 7. It is 
also possible to extend the above results to include the second order Kirchhoff approxima-

tion with shadowing corrections8-11 and the polarization effects. 

COMPARISON BETWEEN THE ANALYTICAL SOLUTION, NUMERICAL, AND 
EXPERIMENTAL RESULTS FOR THE TWO-FREQUENCY MUTUAL COHER­
ENCE FUNCTION 

Figure 2(a) shows the calculated mutual coherence function for one-dimensional 

a b 

Figure 2. (a) Calculated two-frequency mutual coherence function versus scattering angle and frequency 

difference for h = 11.. and I = 31.. at 100 GHz (A. = 3mm). The illumination distance is 13.31... The 

angle of incidence Sj = 20°. (b) Monte Carlo simulations for the two-frequency mutual coherence func­

tion for the same conditions as (a). 
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rough surfaces when the rms height h = I A., the correlation distance I = 31.., and the inci­

dent angle 9i = 20°. In Figure 2(b), the mutual coherence function is obtained with Monte 

Carlo simulations based on the integral equation formulation. 12 The results show close 
agreement between the analytical solution and the Monte Carlo simulations. We have also 
conducted millimeter wave experiments and compared with Monte Carlo simulations, see 
Figure 2. The detailed explanation for Figure 2. and Figure 3. are given in reference 7. 

a b "\ 
0 ~ 

0 

-t. 
0 

~ 
~ C'\ 

0 

"-- 0 

Figure 3. Comparison of the mutual coherence function for (a) experimental and (b) numerical results for 
the same conditions as Figure 2. 

CONCLUSION 

In this paper, we presented a general formulation of pulse scattering by rough surfaces 
in terms of the two-frequency mutual coherence function. As an example, we used the first 
order Kirchhoff approximation to show that the two-frequency mutual coherence function 
depends on the illumination area as well as the surface statistics. The illumination area 
determines the coherence bandwidth and the broadening of the pulse. We also showed com­
parison between the analytical results and the Monte Carlo simulations. We conducted mil­
limeter wave experiments showing good agreement with Monte Carlo simulations. 

In this paper, we showed only the first order Kirchhoff approximation and therefore the 
theory is applicable only to the surfaces with moderate slopes. For the surface with the rms 
slope close to one, we used the second order Kirchhoff approximation with shadowing cor­
rections and obtained good results in agreement with Monte Carlo simulations. We also 
showed numerically that the two-frequency mutual coherence function is almost indepen­
dent of the center frequency for the rough surfaces under consideration, and therefore this 
corresponds to the "WSSUS" channel. 
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SHORT PULSE SCATTERING FROM WIRES AND CHAFF CLOUDS 

Yanping Guo* and Herbert Uberall 

Department of Physics 

Catholic University of America 

Washington, DC 20064 

INTRODUCTION 

The scattering from a conducting wire of an ultra-wide band pulse with one-cycle­
sine waveform has been investigated. There exists a similarity between the spectrum of the 
one-cycle-sine waveform and the characteristic spectrum of the wire, which is calculated 
based on Einarsson's second order formula. This similarity in the spectra entails a possible 
resonant response of the wire to a pulse of this kind. Scattered pulses are obtained by the 
Fourier transform algorithm; and by appropriate choice of the duration of the one-cycle-sine 
waveform, resonances in backscattering, bistatic scattering, and specular scattering are 
observed. It is found that the resonant scattering is directly associated with the excitation 
of a very strong traveling wave on the wire. 

A formalism will also be given for evaluating transient scattering from an ensemble 
of thin conducting wires, as in a chaff cloud used for electromagnetic countermeasures. 
The bistatic scattering expression is derived in the ground-based system, and both the linear 
and circular polarizations of the transmitter and receiver are considered. For an incident 
N -cycle-sine pulse, distorted pulses backscattered from a chaff cloud consisting of up to 
a thousand wires are calculated. The chaff cloud is modeled with a Gaussian distribution 
in wire location. The echo pulse distortion is shown to provide information on the features 
of the chaff cloud. 

SCATTERING FROM A THIN, PERFECTLY CONDUCTING WIRE 

The electromagnetic field scattered by a thin conducting wire may be calculated 
from Einarsson's second order formula! for an incident plane wave at an arbitrary fre­
quency. Plotting the scattered electric field versus frequency, or versus x (the ratio of 

• Present address: Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723. 
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Fig. l. Characteristic spectrum of the wire at 30" incidence (large solid curve); spectrum of one-cycle sine 
pulse (dotted curve), and their overlap (lower solid curve). 

wire length £ to wavelength A), one obtains the characteristic spectrum of the wire. This 
characteristic spectrum indicates how the field amplitude is scattered by the wire at each 
frequency. Since a transient impulse is the synthesis of a series of harmonics with a certain 
spectral or amplitude distribution pattern (the length of which varies with the impulse 
duration), the largest transient scattering will occur for those transient impulses which have 
an amplitude distribution similar to the wire's characteristic spectrum; such resonance takes 
place for a maximum overlap (lowest curve in Figure 1) of impulse and wire spectrum. 

The characteristic spectrum of a finite conducting wire (Fig. 1, top curve) looks very 
much like the spectrum of a one-cycle sine waveform (Fig. 1, dotted curve). By 
appropriately choosing the impulse duration, the occurrence of resonant scattering of the 
wire by the sine waveform has been noted2• Figure 2 shows the backscattered resonant 
response of the wire at 30 degree incidence with respect to the wire axis, and the 
corresponding spectrum, together with the characteristic spectrum of the wire (top curve) 
and the spectrum of the incident sine waveform (dotted curve) for a pulse duration leading 
to maximum overlap of both are shown in Fig. 1. The response is evaluated through 
inverse Fourier transform of the scattered field in the frequency domain. 

The response waveform can be interpreted by the concept of traveling waves. When 
the incident impulse front reaches the endpoints of the wire, it generates a wave emitted 
in all directions, and in addition a traveling wave propagating along the wire. Each time 
the traveling wave reaches an end of the wire, some of its energy is radiated and the 
remainder is reflected back along the wire, continuing back and forth until its strength is 
exhausted due to the radiation. 

Usually for non-resonant scattering, a large response is obtained only in the case of 
specular scattering, because in this case each part of the wire produces a reflection besides 
the scattering from the ends. Shown in Fig. 3 are the responses of 45° specular scattering 
at non-resonance (a), and at resonance (b). It is observed in the response of Fig. 3(a), that 
the first pulse contributed by the scattering from the ends and by the reflection from the 
whole wire has a very large amplitude, while the subsequent pulses have very small 
amplitudes: they are the waves radiated by the traveling wave when traveling to the wire 
ends. This demonstrates that in the case of non-resonance, most of the energy incident onto 
the wire is reflected, and only a very small portion of the energy is transformed into a 
traveling wave. In contrast, in the case of resonance as shown in Fig. 3(b), the amplitude 
of the first pulse is less than that in Fig. 3(a). However, the subsequent pulses have quite 
large amplitudes, only slightly smaller than the first one. This means that at resonance a 
large amount of energy is not reflected immediately such as in the non-resonant case, but 
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Fig. 2. Backscatter resonant response of the wire at 30° incidence. 

it goes into the excitation of a very strong traveling wave, and is then gradually radiated 
off as the traveling wave propagates back and forth between the wire ends. 

TRANSIENT SCATTERING FROM CHAFF 

For theoretical evaluation of the scattering from a chaff cloud, the cloud is modeled 
as consisting of N conducting wires which are distributed in the atmosphere according to 
a Gaussian radial distribution with the densest part in the center of the cloud, and which 
are randomly oriented. The average spacing between wires (measured by wavelength ,,-), 

:!.. '" 1.123( 321t) ~_I_~ 
t... 3 It... 

N"J 
(I) 

is estimated under the consideration that O.76N wires are within the sphere of radius 2.0Scr 
where cr is the standard deviation of the Gaussian distribution3. It is reported3 that coupling 
among wires is negligible if the average spacing is greater than two wavelengths. In the 
following evaluation the coupling effect is not considered, assuming that the average 
spacing is not less than the carrier wavelength of the incident transient wave. 

The scattering is considered in a ground-based system4, i.e., the x-y plane is parallel 
to the horizontal plane. The center of the chaff cloud is at the origin, and the ith wire's 
position and orientation is described by dl(d.i,dyiAJ and (E\'~i)' respectively. The distance 
from the chaff cloud to the transmitter and the receiver is taken much greater than the 
dimension of the chaff cloud. The spherical coordinates of the transmitter and receiver are 
(ro,eT>~T = 0) and (r,eR,~tJ, respectively, as shown in Fig. 4. The polarizations of the fields 
are specified by the unit vectors '\T (=-eF ) and evi=-eeT) for the incident, and ehR(=eetJ for 
the scattered field, where e$T' eeT> e$R' and eeR are the unit vectors of the spherical 
coordinates. 

The transient response of the chaff cloud may be obtained by first deriving the 
scattered field in the frequency domain with the application of Einarsson's formula for 
scattering by a single wire, and then taking the inverse Fourier transform. Expressions of 
transient response of the chaff cloud for an incident M-cycle sine waveform of duration 't 

given in Ref. 5 are cited here; they are valid for arbitrarily polarized transmitters and 
receivers: 
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Fig. 3. Response of specular scattering at 45° incidence: (a) non-resonant, (b) resonant. 

T = ct - r 
-y-

_ c't 
TOe - MI 

(2) 

(3) 

(4) 

(5) 

and S(0 j,0oj) is the amplitude function scattered from a single wire given in Einarsson's 
formula l 
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z 

Fig. 4. Geometry of the ground-based system. 

(6) 

with 
(7) 

cose = sin8sin8R cos( ~-~J + cos8cos8R, (8) 

and P( UTi,URi) is a function related to the polarization state of the transmitter and the 
receiver with 

(9) 

(10) 

(11 ) 

(12) 

For linearly polarized transmitter having an angle OT with respect to ehT and linearly 
polarized receiver having an angle OR with respect to ehR (Fig. 4), 

(13) 
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Fig. 5. Backscatter response of a 1000 wire chaff cloud to a 40- cycle sine wave fonn with 1/Ac=0.47. 

and for a circularly polarized transmitter (fkr) and circularly polarized receiver (/lJ, where 
/lr,/lR = + I for right circular and fkr,/lR = - 1 for left circular, 

(14) 

and for linear to circular and circular to linear, respectively, 

(15) 

(16) 

A numerical example of the backscattered transient response from a chaff cloud of 
1000 wires calculated from a random set of wire location and orientation parameters is 
presented in Fig. 5. We noteS that the form of the transient echo depends strongly on the 
size of the cloud and on the distribution of the chaff wires contained in it, so that the 
observed echo will provide information on the properties of chaff clouds. 

SUMMARY AND CONCLUSIONS 

Transient scattering from thin conducting wires may be calculated using Einarsson's 
formula. The arrival time series of echo pulses generated by a wideband incident pulse 
may be interpreted in terms of traveling waves propagating along the wire, and a strong 
resonance effect is noted for an appropriate duration of the incident pulse. The echo time 
form from a cloud of chaff wires is characteristic for the size and wire distribution of the 
cloud, and may be used to obtain information about the cloud's geometry and density 
distribution. 
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INTRODUCTION 

The detennination of radar cross-sections (RCSs) of targets of simple shape has received 
much attention and is now a well-studied problem area.i,2 Traditionally, the analytical 
treatment has used material compositions of the targets with only small amounts of absorp­
tion of incident signal power, if any at all. By coating a given target with a thin layer with 
suitable electromagnetic properties the RCS can be reduced to some extent, and it is of in­
terest to investigate not only the radar cross-section reduction (RCSR) itself but also its ef­
fect on the scattering of pulses of short duration. We study the scattering interaction of 
ultra-wideband (UWB) electromagnetic pulses of short duration with a spherical target. 
The target is either a perfectly conducting sphere or such a sphere coated with a thin, homo­
geneous dielectric (Diillenbachl,2) layer. For the dielectric layer, two different, hypotheti­
cal, materials are specified. We begin by characterizing each dielectric layer by computing 
the reflected power when a plane, perfectly conducting plate coated with the layer is illumi­
nated by a continuous wave (CW) at nonnal incidence in a selected frequency band. Each 
one of the coatings is then applied on the perfectly conducting sphere, and the (monostatic) 
RCS is computed, and we compare it with the returned power of the coated plate. 

As we demonstrated earlier6,7 the target resonances that can be extracted from an echo 
backscattered from a target when a short pulse (from an impulse radar) is incident on it, can 
be used to identify the target. These transient interactions were analyzed in the time­
frequency domain using a pseudo-Wigner distribution (PWD). The feasibility of the PWD 
became more obvious when it was compared with the standard spectrum (or, the RCS) of 
the considered echo returns. Thus, using a PWD we extend the analysis of the target fea­
tures by examining the backscattered echo when each of these spherical targets is illumi­
nated by a short, broad-band pulse of the same type that was used in Refs. 6 and 7. The 
computational machinery illustrated here with the Wigner-type distributions can be imple­
mented with any of the other distributions members of the bilinear class.1l ,l2 
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STEADY-STATE SCATTERING 

Backscattering from spherical targets 

If steady-state, continuous plane electromagnetic waves are incident on the North pole 
(defined by the spherical coordinate 9 = 0) of a perfectly conducting sphere of radius a at 
the distance r from the origin of the sphere, the backscattered electric far-field (ril>a) can be 
written in the form: 1,5 

E - E a ( .h '.h) i(rof-kr) + (9 - 0 ) 
se - ~o 2r eacos'l'-e, SIn 'I' e J~ -,x, (1) 

where Eo is the amplitude of the incident field, w the angular frequency, k = w / c the wave 
number in the surrounding medium taken to be free space, c being the speed of light in free 
space. Moreover, ea and e, are unit vectors in the colatitude direction 9 and azimuth direc-

tion $, respectively. The form-function, f~ (9 = O,x), in the backscattering direction is 
given by: 

+ (0 x) = J.. ~(-1)" (2n+ 1)[- 'If " (x) + 'If~(X)] 
J~' ix ~ SIlex) s~(x)' 

(2) 

where the Sommerfeld functions 'If" (x) == X j" (x), S" (x) == X h~2) (x) of the non-dimensional 
frequency x == ka = 2rca / /.. are defined by the spherical Bessel functions of the first kind and 
the spherical Hankel functions of the second kind, respectively. The (normalized) radar 
cross-section (RCS) is then defined by 

(3) 

The modifications of Eq. (2) that result from applying a dielectric coating of thickness 
d to a perfectly conducting sphere of radius a can be found, mutatis mutandis, in Ref. 5, 
where the coating was assumed to be nonmagnetic. The outer radius of the coated sphere is 
here: a + d, and the partial wave solution for the form-function in this case will contain 
Sommerfeld functions, '1',,0, SIlO, of the arguments: x == k(a+ d), XI == kl(a+d) = mIx, and 
x2 == kla = mlxal(a + d), where kl = mlk is the wave number in the dielectric coating of re­
fractive index mI' In terms of the relative dielectric permittivity and magnetic permeability, 

the index of refraction is defined by ml = ~£r)lr , and it is, in general, a function of the an­

gular frequency w. A distinguishing quality of dielectric coatings for reducing the Res of 
objects is that the index of refraction is a complex-valued function of the frequency due to a 
complex permittivity or permeability, or both. The introduction of a magnetic permeability 
different from unity is accounted for by replacing the index of refraction ml by the relative 
admittance Y,. = ~ at the eight places in Eqs. (7) of Ref. 5 where it occurs as a factor. 

The presence of complex arguments, often with a large imaginary part, in the form­
function severely restricts successful numerical evaluation using traditional algorithms for 
the Bessel functions, since the ordinary recurrence relations become unstable. To surmount 
the difficulties, we use an algorithm for calculating the spherical Bessel functions of the 
first kind that was developed by Lentz,8 which is based on a continued fraction of the ratios 
j,,-tCz) / j" (z). The spherical Bessel functions of the second kind, or spherical Hankel func­
tions of the second kind, are then calculated using the cross products (Ref. 9, Eq. 10.1.31): 
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where the latter equation is but a reformulation of the former. 

Normal incidence on a coated plane plate 

We consider a perfectly conducting plate (of infinite extent) coated by a homogeneous di­
electric layer of thickness d with a CW illuminating the surface at normal incidence. It can 
be shown that the reflection coefficient in this case assumes the form: 2 

1 Y (1 Y) -i2k,d 
R 12M - r - + r e 

= e 1 + Y,. - (1- Y,. ) e -i2k,d . 
(5) 

The modulus of the reflected power is then given by IRI2. 

TRANSIENT SCATTERING 

We generalize the analysis to pulsed incidences5-7 by introducing a Fourier transform pair 
g(t) H G(ro), where g(t) is the incident pulse and G(ro) its spectrum: 

+= += 

J . 1 J . G(ro) = g(t)e-'OlI dt ~ g(t) = 21t G(ro)e"'" dro. 

The backscattered electric far field can then be shown to assume the form: 

+= 

Esc(O,t) = Eo ~(e9 cosej>-e. sinej» J G(ro) fro (9 = O,ro)ei(OlI-kr) dro, 
2r 

(6) 

(7) 

where positive values are given to the arrival time at the observation point for backscattered 
pulses, if r is chosen to be larger than 2a. 

When using the discrete-time Fourier transform lO (DFf) in numerical calculations 
where the incident pulse is given in the form of a discrete-time series, which is assumed 
periodic, the above formulation of the continuous-time Fourier transform pair is conven­
iently converted to: 

N-J N-l 

G(k) = Lg(n)e-i(2XIN)kn ~ g(n) = ~ L G(k)ei(2XIN)kn, 

n=O k=O 

(8) 

where the sequences g(n) and G(k) both contain N elements. 

TARGET RESPONSES IN THE TIME-FREQUENCY DOMAIN 

The analysis of the returned echoes has been traditionally done in the frequency domain.1-4 
A recent method of processing that seems to be gaining acceptance is to work in the com­
bined time-frequency domain. This approach seems to give the most information since it 
can display the evolution of the identifying resonance features of the scatterer and their am­
plitudes as surfaces in a general time-frequency-amplitude in 3-D space. Usually, projec­
tions of a number of contour levels of these 3-D surfaces are shown in the 2-D time-
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frequency plane. The evolution of signature features is extracted by any of the many distri­
butions that are members of the general bilinear class,Il.12 which includes the distributions 
attributed to Wigner, Ville, Margenau-Hill, Kirkwood-Rihaczek, Choi-Williams, etc., each 
with its own characteristics though sharing the essential properties of time-frequency distri­
butions. The (auto-) Wigner distribution (WD) of the function f(t): 

- -
Wt<oo,t) = J f(t+~)f"(t-~)e-iOlt 1ft = 2 J f(t H)f" (t_'t)e- i2Ort 1ft (9) 

is a member of the general bilinear class that shares with some other time-frequency distri­
butions the property of preserving the time and frequency energy marginals of a signal, i.e., 
integration of the WD over the frequency variable at a generic time (or, over the time vari­
able at a generic frequency) yields the signal's instantaneous power at that time (or, energy 
density spectrum at that frequency»)2 Another property of the WD, which is desirable for 
target recognition purposes, is its ability of concentrating the features of a function in the 
combined time-frequency domain. 

Digital evaluation of the WD of continuous-time functions requires are-formulation 
of Eq. (9) to its analogue for discrete-time functions. Existing algorithms for FFf can then 
be adapted to the discrete Wigner distribution. Analogous to Eq. (6h, the discrete-time 
version of Eq. (9h, for a sequence fen) containing N elements is: 

N-J 

Wt<k,l) = 2 Lf(l +n)f" (l_n)e- i (4X'Nlkn, (10) 
.=0 

where k, I = 0,1,2, ... N -1 represent frequency and time, respectively, and f(l + n - N) is 
substituted for f(l+n) whenever l+n>N. Comparing Eq. (10) with Eq. (6h shows that 
the WD is periodic with period 1t, rather than 21t as is the case for the DFf. Thus, aliasing 
is in general present in the WD even when the sampling rate satisfies the Nyquist criterion. 
An approach to avoid aliasing, which we will use here, is to use the "analytic function" 
when computing the WD. This function is defined by: f. (n) = fen) + i f(n), where fen) is a 

given real-valued function and f(n) is the discrete Hilbert transform lO•6 of fen). When 
analytic functions are used, the distribution in Eq. (9) or (to) is often called the Wigner­
Ville distribution. 

Practical applications of the WD are limited by the presence of "cross-terms." The 
cross-terms attributed to the bilinear nature of the distribution, generate features that lie 
between two auto-components and can have peak values larger than those of the auto­
components. However, using the analytic function f.(n) eliminates cross-terms between 
positive and negative frequency components. It is possible to suppress the remaining cross­
terms by weighting the function before evaluating the WD using a window function. This 
window function can be made to slide along the time axis with the instant 1 at which the 
WD is being evaluated. Different window functions will place different weights on the 
time segments of the time-varying function f, which will imply different physical interpre­
tations of the resulting pseudo-Wigner distribution (PWD). Another important property of 
the window function is that, if narrow enough, it suppresses the influence of noise on the 
PWD. If w/(t) is the window function, the PWD of f(l) is: 

-«'/00,1) = 2 J f(tH)f" (t- 't)w/ ('t)w/(-'t)e- i2Ort d't, (11) 
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and the corresponding discrete pseudo-Wigner distribution (DPWD) is given by 

N-I 

Wj(k,I) = 2 Lf(1 + n).f* (/- n)wj (n)w/(_n)e- i (4nIN)kn. (12) 
n=O 

A convenient window function is a Gaussian of the form: W j (t) = exp( -a (2), where a is a 

positive real number that controls the width of the time window. 

NUMERICAL RESULTS 

We examine the effect of dielectric coatings on the backscattered pulses returned by target 
when the applied coatings are made of two different hypothetical materials. Coating "A" is 
a nonmagnetic (i.e., J.1, = 1) lossy dielectric layer with relative permittivity E, = 15 - 5i and 
thickness 5 mm, and coating "B" has the magnetic permeability J.1, = 18 - 9i, permittivity 
E, = 20 -1 Oi, and thickness 5 mm. The electromagnetic properties of the coating materials 
are assumed to be independent of the frequency in the broad band of 0 ~ f ~ 10 GHz, which 
is not an entirely realistic assumption, but is made here for convenience. 

Figure 1 (left main plot) displays the reflected power when a plate covered with coat­
ing A is illuminated at normal incidence, and the insert plot shows the response of the 
coated plate to an ideal impulse (i.e., a Dirac pulse). We notice the narrow-banded absorp­
tion of this type of coating, which has an echo reduction better than 30 dB within an ex­
tremely narrow band centered about 3.9 GHz. Figure 1 (right plot) displays the monostatic 
RCS of a perfectly conducting sphere of radius a=250 mm with the same type (viz., A) of 
coating applied. Comparing the left and right plots of Fig. 1 we see that the modulus of the 
ReS of the coated sphere (right main plot) agrees very well with the reflected power of the 
coated plate (left main plot) for frequencies above -3 GHz. At lower frequencies the ReS 
exhibits the peaks and dips characteristic of the influence of the secondary, surface-wave 
returns, which can be seen in the impulse response of the target (right insert plot) in the in­
terval of time: 5 < ( < 7 ns. A closer examination of the lower-frequency portion of the 
ReS reveals that the RCS relative to the ReS of the uncoated sphere (cf., Ref. 1, p. 148) 
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Figure 1. The left main (insert) plot displays the reflected power (impulse response) when a plate with coat­
ing A is illuminated at normal incidence. The right main (insert) plot displays the normalized Res (impulse 
response) when a perfectly conducting sphere of radius a=250 mm with coating A is illuminated in monostatic 
mode. 
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Figure 2. The left main (insert) plot displays the reflected power (impulse response) when a plate with coat­
ing B is illuminated at normal incidence. The right main (insert) plot displays the normalized ReS (impulse 
response) when a perfectly conducting sphere of radius a=250 mm with coating B is illuminated in monostatic 
mode. 

reaches peak values that are almost twice as large in a 1 GHz band around the frequency 2 
GHz. We also notice that only a slight amount of RCSR (viz., a single dB, as is apparent 
from Fig. I, main plot) is sufficient at higher frequencies for the contribution to the RCS of 
secondary echo returns to be annihilated. 

In the present work, all calculations of reflected power and RCS are carried out using 
4096 equal frequency steps. To avoid aliasing errors each impulse response is computed 
from the respective electric field in the frequency domain after lowpass filtering has been 
performed using a second-order Butterworth filter with a cutoff frequency of 8.5 GHz and, 
since the time-domain functions should be real-valued, the reversed complex conjugate se­
quence has been appended. 

For comparison with the RCSR achieved with the aid of a coating with a broad effi­
ciency band we contrast these results with the corresponding results when coating B is ap­
plied to a plate (Fig. 2, left plots) and to a sphere of radius a=2S0 mm (Fig. 2, right plots). 
The reflected power of the coated plate (left main plot) is practically identical to the 
normalized RCS for the coated sphere when the frequency is larger than about 1 GHz, and 
at lower frequencies the occurrence of peaks and dips in the RCS again reveals the influ­
ence of the secondary echo returns. The impulse response of the coated plate and the initial 
return of the impulse response of the coated sphere (Fig. 2, insert plots) have very low 
amplitudes compared with the cases displayed in Fig. 1, and they can both be seen to be 
comprised of one (tiny) portion that has been reflected at the outer surface of the coating 
and one portion that has traveled round-trip through the dielectric layer with a time separa­
tion (viz., -<>.63 ns) that corresponds to the speed of propagation in the layer (viz., -15.8 
mm1ns). We remark that the agreement obtained of the reflected power and the RCS in 
broad frequency bands only holds when normal incidence on the coated plate and mono­
static scattering by the coated sphere are considered. 

A theoretical model of pulses being transmitted by an impulse radar can be conven­
iently obtained by filtering an ideal impulse using a Butterworth bandpass filter of suitable 
filter order and cutoff frequencies.6,7 To achieve a broadband, fictitious but realistic, wave­
form for illuminating targets we select a filter order of six and cutoff frequencies of 0.2 and 
5.0 GHz. Figure 3, left plot, displays the waveform (insert plot) and its spectrum (main 
plot) that results from this design. As the first target to be illuminated with the designed 
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Figure 3. The left main (insert) plot displays the spectrum (impulse response) of the designed incident pulse. 
The right plots display the surface plot and its plane projection contour plot of the PWD when a perfectly 
conducting sphere of radius a- 250 mm is illuminated in monostatic mode by the designed pulse. 

pulse we choose an uncoated perfectly conducting sphere of radius 250 mm. We compute 
the modulus of the PWD of the backscattered pulse using a window size specified by 
a = 0.5 (nsy2, and we display it using the 3-D surface plot and its plane 2-D projection 
contour plot in Fig. 3, right plot. The grid planes display the waveform and power density 
spectrum of the returned pulse using linear scales. We contrast this PWD of the perfectly 
conducting sphere with the PWD for the same target when it is covered with coating A (or 
B) in Fig. 4, left plot (or right plot). The relative strength of the returned pulses (best no­
ticed in the impulse responses in Figs. 1 and 2, insert plots) are not evident from the PWD 
plots, since arbitrary units are used for all plotted functions to more clearly exhibit the reso­
nance features of the PWDs. We conclude from those PWDs that resonance features can be 
best extracted at low frequencies where, possibly, the RCSR is not strong enough to sup­
press the effect on the RCS of the secondary echo returns. 

Figure 4. The left (right) plots display the surface plot and its plane projection contour plot of the PWD 
when a perfectly conducting sphere of radius a=250 mm covered with coating A (B) is illuminated in mono­
static mode by the designed pulse, 
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CONCLUSIONS 

We have studied the scattering interactions when a wavefonn is incident on a few targets of 
simple shape, in the traditional frequency and time domains, and also in the combined time­
frequency domain using a pseudo-Wigner distribution. In the latter case, the wavefonn in­
cident on the targets was a short, ultra-wideband pulse resulting from a filter design tech­
nique we developed. We have demonstrated the close relation between the backscattering 
RCS of a simple target and the power density spectrum of an infinite plate at nonnal inci­
dence when both are covered with the same type of coating made of a microwave absorbing 
material. We have also demonstrated the distinctive differences in the target responses that 
are characteristic of low-frequency incidences. 

Comparing the PWDs of a simple target without any coating or with one of two dif­
ferent applied coatings clearly demonstrated that the coating itself, although reducing the 
RCS, could contribute to resonance features in the target's signature at low frequencies that 
could be used for target recognition purposes. It also follows from our analysis that an ab­
sorbing coating would make resonance features insignificant at higher frequencies when 
there is even a slightest amount of absorption present. 
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1. INTRODUCTION 

Multiresolution properties of the cardinal B-splines and the high-degree of vanishing mo­
ments of their corresponding B-wavelets, along with the flexibility and near-optimality 
of their time-frequency windows, make them suitable for the time-frequency analysis 
of signals consisting of a wide range of frequency components. In most of the applica­
tions, one needs to compute the integral wavelet transform (IWT) of the signal only 
at certain scales. The standard wavelet decomposition algorithm (sometimes called 
the fast wavelet transform (FWT) algorithm), based on certain digital samples, say 
s(k/2N ), k E 'll, of a signal s(t), can be applied with real-time capability to give the 
IWT values of s( t) on the scale levels a = 2-j , and j $ N -1. However, this information 
on the IWT of s(t), on such a sparse set of dyadic points (k/2j, 1/2j ) in the time-scale 
domain, is sometimes insufficient to give the desirable time-frequency analysis of the 
function s(t). 

The objective of this paper is to describe a very efficient algorithm called the fast 
integral wavelet transform (FIWT) algorithm, based on real-time spline interpolation 
introduced in our recent work [1] for computing the IWT on a dense set of the time­
scale domain with any compactly supported spline-wavelet as the analyzing wavelet. 
As a very important application, we will see how this algorithm can be applied to 
give real-time performance to compute the IWT values on "any" scale levels different 
from 2-i . Based on the duality principle and an FIR change-of-bases algorithm, the 
compactly supported spline-wavelets can be used, both as a basis function to give a 
desirable waveform, and as an analyzing wavelet, to give a near-optimal time-frequency 
localization window for the IWT. To compute the IWT at the inter-octave scales, the 
signal is mapped into the inter-octave approximation subspaces spanned by B-splines 
with non-dyadic knot sequence. This, however, does not affect the two-scale relation, 
and hence, the filter coefficients for the inter-octave scales remain the same as those of 
the octave level. As a result, unlike the methods based on direct integration or FFT, 
the computation complexity of the present method is scale independent. 
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The B-wavelets, also called spline wavelets are semi-orthogonal (s.o.) in the sense 
that they are orthogonal relative to different octave scales. We wish to point out here 
that any biorthogonal wavelet, which is not s.o., cannot be used for the algorithm 
presented here since in that the duality principle cannot be applied on a finite scale 
and change-of-bases is not possible. Furthermore, orthonormal (o.n.) wavelets are not 
suitable for inter-octave scale interpolation. However, the duals of the spline-based s.o. 
wavelets do not have compact supports. Therefore, in order to reconstruct the original 
signal efficiently and to to be able to apply the B-spline algorithm to plot the graphs 
of the functions at various levels, it is desirable to introduce another change-of-bases 
that will map the dual coefficients back to the original B-spline or B-wavelet series 
representations. A method is presented in this paper to obtain such a mapping. A few 
examples are included to illustrate the applications of our algorithm. 

2. STANDARD WAVELET DECOMPOSITION 

A function 4> E L2 := L2(IR.), called a scaling function, is said to generate a multireso­
lution analysis (MRA) if, by defining 

lti := closL2{2j/24>(2jt - k): k E 7l}, j E 7l, (1) 

it follows that 

(2) 

(For a precise definition of MRA, see [2, p. 16]). For each j, since lti C lti+h there 
exists a unique orthogonal complementary wavelet subspace Wj of lti in lti+l such that 

(3) 

A function .,p E Wo is called an s.o. wavelet corresponding to the scaling function 4> if 
it generates the spaces Wj, namely: 

j E 'fl. (4) 

It is well known that any mth order cardinal B-splines Nm is a scaling function that 
generates an MRA. In this paper we consider only these scaling functions Nm • The 
s.o. wavelet.,pm with minimum support that corresponds to Nm is called the mth order 
B-wavelet (see [2, p. 183-184]). Since the integer translates of Nm and also of .,pm for 
m > 1 are not orthonormal families, we need their duals Nm and ;fim, respectively. 
Here, duality means the biorthogonality conditions 

(5) 

Both Nm(t) and .,pm(t) are related to Nm(2t) by the so-called "two-scale relations", 
namely: 

(6) 

The sequences ({pd, {q!:}) are the "reconstruction sequences" with finite length [2, 
p. 200]. It is clear from (3) that a function in lt1 can be written as the sum of functions 
in Vo and Woo This can be achieved by writing the corresponding bases as 

Nm(2t -.e) = l)a2k-tNm(t - k) + ~k-l.,pm(t - k)}, .e E 7l. (7) 
k 
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The sequences ({ad, {bk }) are the "decomposition sequences" with infinite length, al­
though they decay exponentially fast. According to the "duality principle" [2, p. 156], 
the roles of the decomposition and reconstruction sequences can be "interchanged" as 

(8) 

As a consequence of (3), the approximation SM E VM of a given S E 12 (for suffi­
ciently large M) has a unique orthogonal decomposition 

where 

M' 
S ~ SM = L rM-n + SM-M' , MI > 0 , 

n=l 

{ Vj 3 Sj(t) = Ek c{Nm(2~t - k) = Ek ~~m(2~t - k)j 
Wj 3 rj(t) = Ek d1¢m(2J t - k) = Ek d1¢m(2J t - k). 

With ({pd, {qd) as the decomposition sequence, we have 

{ 
.,J-l ,,1 .,J 
C"k = wi 2Pi-2kCL j 
d-j-1 ,,1 .,J 

k = wi 2ql- 2kCL , 

where 

2-j/2J~ = (WWmSj) (~, ;j) 

(9) 

(10) 

(11) 

= (WwmSM)(~';j)' M-MI$i<M, kE71, (12) 

and the IWT of SM with respect to some analyzing wavelet 'ifJ is defined as 

1 Joo (t - b) (WwsM)(b,a) := Va SM(t)¢ -a- dt, a> O. 
-00 

(13) 

In (13), b is the translation parameter and a, the dilation parameter. The last equality 
in (12) is a consequence of orthogonality of the decomposition in (9). The mapping 
{cO ~ {i{} can be obtained by introducing a "change-of-bases" sequence as described 
in [1,3]. 

3. FINER TIME-SCALE RESOLUTION 

Observe that the IWT given by (12) is at (k/2 j , 1/2j ) which is sufficient in the sense 
that the original function can be reconstructed from these coefficients. However, in 
many applications such as wideband correlation processing [4] used in some radar and 
sonar applications, it is often necessary to compute the IWT at a dense set of the 
time-scale domain. Furthermore, by maintaining the same time resolution at all the 
binary scales, the aliasing and the time variance difficulties associated with the standard 
wavelet decomposition can be circumvented. As will be seen later, computation of the 
IWT at binary scales may be able to separate all the frequency contents of a function 
appropriately. Some work in this direction are reported in [5], [6]. For details, see [1],[3]. 
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In order to compute the IWT at (n/2M, 1/2i ) observe that 

(W"'mSM) G~, ;i) = (W"'mSM, .. ) (0, ;i)' M - M' 5 j < M, k E 7l, (14) 

where SM,.. .- SM (t + 2:) . 

It can be shown that shifting the function SM(t) by n/2M towards the left is equivalent 
to shifting the original sequence {<f} by n towards the left. More generally, we have 

(15) 

Thus by shifting the input sequence {<f} appropriately and then applying the standard 
wavelet decomposition algorithm to the shifted input sequence we can obtain the IWT 
values at (n/2M,I/2i ). Another way of computing the IWT at these values is given in 
[11,[61 that does not require the shifting of the input sequence. 

For the purpose of computing the IWT at the inter-octave scales, we define an 
inter-octave parameter 

2N 
a .. = a .. ,N := n + 2N ' N > 0 and n = 0, ... ,2N - 1. (16) 

Here n = 0 corresponds to the octave scales. For each n, the approximation and wavelet 
subspaces are defined as 

{ V;,.. := closL2{(2ia .. )~cP(2i.a .. t - k) : k E 7l), 
Wi,.. := closL.{(21a .. )''IjJ(23a .. t - k) : k E 7l}, 

j E 7lj 
j E 7l. 

(17) 

The above choice of a .. gives 2N -1 additional scales between two consecutive octave 
scales. It is clear that for each n, in order to proceed with the decomposition algorithm, 
we need to map S to SM, .. instead of SM. However, if M is sufficiently large then SM is 
a good approximant of S and, therefore, for practical purposes, it is sufficient to map 
SM to SM, ... 

where 

Observe that 

M' 
S t---+ SM t---+ SM, .. = L: rM-j, .. + SM-M', .. , M' > 0, 

;=1 
(18) 

(19) 

(20) 

In order to compute the IWT at (k/(2Ma .. ),I/(2;a .. » we proceed in the same way as 
the one for the octave scales. 
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4. GRAPH OF THE FUNCTIONS 

For the purpose of obtaining the graph of the functions at binary or inter-octave scales 
from the computed spline coefficients and the wavelet coefficients, we have to use for­
mulas in (10) and (19) involving Nm and ;fim. Since Nm and ;fim do not have compact 
supports, it is desirable to map the dual coefficients ({CJ:},{dO) and ({CJ:,n},{di,n}) 
to ({ci},{4}) and ({ctn},{dtn}), respectively, so that we can use Nm and 1/Jm which 
have compact supports. This mapping is also important for efficient reconstruction 
algorithm. It is sufficient to obtain the mappings {cn to {cn and {dZ} to {d2}. The 
same mapping holds for inter-octave scales as well. For convenience, from now on, we 
drop the superscript O. 

{c,,} ~ {cd. Our objective is to write 

s(t) = L c"Nm(t - k) = L CkNm(t - k) (21) 

" " 
By taking the Fourier transform of (21), we get 

(22) 

where the hat over a function implies its Fourier transform and C(w) and C(w) are the 
symbols of {c,,} and {cd respectively, defined as 

C(w):= Lc"e-ikwj C(w):= LCke-ikw. (23) 
k k 

The dual scaling function Nm is given by 

..!..- Nm(w) . /2 
Nm(w) = ENm(z2)' z=e-'W (24) 

where ENm(Z2) = L:k INm(w + 27rkW '" 0 for almost all w since {Nm(· - k)} is a stable 
or Riesz basis of Va. ENm(W) is called the Euler-Frobenius Laurent series and is given 
by 

m-l 

ENm(Z) = L INm(w + 27rk) 12 = L N2m (m + j)zi. (25) 
k j=-m+l 

It is clear that by multiplying (25) by zm-l, we can get a polynomial of degree 2m - 1 
in z. 

Combining (22), (24) and (25) and taking the inverse Fourier transform, we get 

It can be shown that 

({i:n} * {gn})(k) 

= L9lklzk, Izl = l. 
k 

Pm 
"A ,k+Vm 

gk = Um L." i"i , k;::: OJ 
i=l 

1 
where Ai = -......,,-2:------

Ai rrj~i, #i( Ai - Aj) 

(26) 

(27) 

(28) 

(29) 

459 



and).i : i = 1, ... , 2Pm are the roots of (25) with 1).;[ < 1 and Ai).2Pm+l-i = 1 for 
i = 1, ... ,Pm. Here, Urn = (2m -I)! and Pm = m-l. 

{dk } ~ {dk }. Here our objective is to write 

r(t) = L dk;Jm(t - k) = L dk7/Jm(t - k) (30) 
k k 

Replacing Nm by 7/Jm in (24) we can get the relationship between 7/Jm and ;Jm. Proceeding 
in the same way as before, we get 

It can be shown that 

(31) 

(32) 

The expression for hk has the same form as that of 9k with U m -((2m - 1)!)3, 
Pm = 2m - 2, and ).i being the roots of (31). 

5. EXAMPLES 

The IWT gives the time-scale representation of a function. The time-frequency rep­
resentation can be obtained by finding an appropriate constant c such that l/a = cf. 
Based on the "center" [1,3] of the wavelet and a number of numerical experiments, we 
find c = 1.5 to be suitable for cubic spline wavelet. 

Fig. 1., shows the inter-octave scale decomposition of a function consisting of three 
sinusoids with frequencies 1092, 546 and 273 Hz, whereas Fig. 2. gives the octave scale 
decomposition of the same function. For both the figures we have chosen cubic spline 
wavelet with n = 1 and N = 2 and mapped the function into Vis,l for Fig. 1. and 
V1S for Fig. 2. However, because of the space limitation, some of the graphs have not 
been shown. It is clear that, for the functions with frequencies not corresponding to 
the octave scales, the standard algorithm does not give good function representation at 
various scales. Our algorithm works for inter-octave scales as well as octave scales. 

Fig. 3. gives the centered integral wavelet transform (CIWT) of a truncated si­
nusoidal function with perturbed data using cubic spline wavelet. The CIWT of a 
function is obtained by shifting the IWT values of (13) towards the right by at" where 
t" = (2m - 1)/2 [1,3]. This shift is necessary to ensure that the time-frequency plot 
indicates the locations of changes in the function behavior properly. 
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Figure 1. Inter-octave scale decomposition of the signal set) using cubic spline wavelet. 
The time-axis is in seconds and the frequency axis, in Hz. n = 1, and N = 2; Q n = 
2N I(n + 2N); a = 1/(2i on); l/a = 1.5[. 
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Figure 3. CIWT of a truncated sinusoidal function with perturbed data using cubic spline 
wavelet . 
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INTRODUCTION 
Differential forms of Maxwell's equations are generally solved utilizing the 

finite difference and the finite element method. These techniques transform the operator 
equation to a matrix equation and then a sparse-matrix solver is used to solve the 
problem. However, one of the problems with these techniques is that as the dimension 
of the problem increases, the size of the matrix equation increases and typically the 
condition number of the system matrix grows as O(f,) [where O(f,) (denotes "of the 
order of f,", where h is the discretization stepJ. This is in contrast to the Electric Field 
Integral Equation utilized in the Method of Moments where the growth of the condition 
number of the system matrix is O( t) and for the Magnetic Field Integral Equation the 
growth of the condition number can be independent of h. The above holds as long 
as the Integral Equations have a unique solution (i.e. the problem is not solved at a 
frequency corresponding to an internal resonance of a closed structure) [1]. 

Integral forms of Maxwell's equations are generally solved by the Method 
of Moments [2] using subdomain basis functions. As opposed to the sparse system 
matrix that arises in solving the differential forms of Maxwell's equations, the inte­
gral equation approach invariably provides a full system matrix. However, for integral 
equations the size of system matrix is much smaller than for differential equations. The 
objective of this paper is to investigate how the choice of the wavelet basis influences 
the the solution of the two forms of Maxwell's equations. 

Wavelets have been studied extensively over the last two decades by both 
mathematicians and engineers resulting in some excellent documentation [3J, [4], [5J 
explaining the various mathematical subtleties and their properties. Hence, a discussion 
on wavelets and their properties is not presented here. 

The principles of dilation and translation are central to the concepts of 
wavelets. The objective of this paper is to demonstrate that if these principles are 
introduced into the choice of basis functions in a Finite Element Method, most of the 
system matrix can be made diagonal. In this case the growth of condition number can 
be checked by proper scaling. However, for integral equations, the choice of a subdomain 
basis is more advantageous than the choice of the wavelet basis. Some numerical results 
are presented the illustrate the issues. 
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In the following section it is shown, that for the I-D Laplace's equation, 
the system matrix can be made nearly diagonal. A numerical example is presented. 

UTILIZATION OF WAVELET BASIS IN DIFFERENTIAL EQUATIONS 

In the solution of operator equations, particularly differential equations, 
the concepts of dilation and shift in the choice of the hybrid basis functions (a combina­
tion of scaling functions and wavelets) could provide some computational advantages. 
As an example consider the I-D Laplace's equation i.e. 

Jlu 
dx2 = F(x) a<x<b (1) 

where u is the unknown to be solved for the given excitation F. The boundary condi­
tions are left undefined at this point because it can be either Dirichlet [homogeneous, 
i.e. u(aorb) = 0, or inhomogeneous, u(a) = A and u(b) = B] or Neumann type [homo­
geneous, i.e. ~(x = a, b) = 0 or inhomogeneous ~(x = a) = C, ~(x = b) = D]. 

The formulation of the solution technique is independent of the nature 
of the boundary conditions. However, the boundary conditions are needed for the 
complete solution of the problem. 

Galerkin's method is now used to solve (1) which gives the fundamental 
equations of the Finite Element Method. Hence consider the weighting function v(x) 
which multiplies both sides of (1) and the product is integrated by parts from a to b to 
yield: 

fb du dv du(x) du(x) J.b 
- Ja dx dx dx + ~I.,=av(a) - ~1"=bV(b) = a v(x)F(x)dx (2) 

Next it is assumed that the unknown u(x) can be represented by a com­
plete set of basis functions {tPi(X), tPOl(X), tP02(X)} which have first order differentability. 
Then 

N 

u(x) ~ UN(X) = L:aitPi(X) + aOltP01(x) + a02tP02(X) (3) 
i=l 

and ai,aOl and a02 are the unknowns to be solved for. Basically, the functions tPi(X) 
satisfy the homogeneous boundary conditions and tPOl(X), tPo2(X) take care of the inho­
mogeneous Dirichlet conditions. 

In Galerkin's procedure, the weighting functions v( x) are the basis func­
tions. Therefore, 

(4) 

Substitution of (3) and (4) into (2) results in a system of equations which 
can be written in the following matrix form 

al 
< tP~,tP~ > < tP~, tP; > ... < tP~, tP'rv > < tP~,tP~l > < tP~'tP~2 > a2 
< tP;,tP~ > < tP;,tP; > ... < tP;,tP'rv > < tP;,tP~l > <¢;'¢~2> 

aN 
< ¢~., ¢~ > < ¢~l' ¢; > ... < ¢~l' ¢'rv > < ¢~l'¢~l > < ¢~l'¢~2 > 
< ¢~2' ¢~ > < ¢~2'¢; > ... < ¢~2'¢'rv > < ¢~2'¢~l > < ¢~2'¢~2 > aOl 

a02 
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e) 

x=a x=b 
Figure 1. The Wavelet Basis and the Subdornain Basis 
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< F,tPl > 0 
< F,tP2 > 0 

-- (5) 
< F,tPN > 0 
< F,tPOl > du I -J; x=a 

< F,tP02 > ~Ix=b 

or equivalently 
ZA=Y (6) 

In equation (5) the superscript denotes the first derivative of the function and 
< c, d > denotes the classical Hilbert inner product, i.e. 

rb -< c,d >= Ja c(x)d(x)dx 

where the over bar denotes complex conjugate. 
The solution of (5) then provides the unknowns ai, aOl and a02. The crux 

of the problem, therefore, lies in the solution of large matrix equations. The stability of 
the solution of matrix equations is dictated by the condition number of the matrix and 
by the number of effective bits t with which the solution is carried out on the computer. 

Specifically, in the solution of (6) if t:J.Z is the error in the matrix Z and 
the error in Y is t:J.Y, then the corresponding error in the solution (t:J.A) is bounded by 
[6] 

IIt:J.AII < c(Z) [1It:J.YII II t:J.Z II] 
lAII- 1 - VNc(Z)2- t M + lZiI (7) 

where N is the dimension of the matrix and the norm is defined as the 
Euclidian norm. It is therefore clear that the choice of the basis functions, which 
determines the condition number of the matrix, has a tremendous influence on the 
efficiency and accuracy on the solution of (5). 

The problem with the Finite Element Method lies in the solution of a large 
matrix equation. Also, as the number of basis functions increases, the condition number 
of the matrix also increases. An increase in the condition number of the matrix creates 
variou; types of solution problems. For example, the condition number directly dictates 
the solution procedure, as a highly ill-conditioned matrix prohibits application of a 
direct matrix solver like Gaussian Elimination [7] and a more sophisticated technique 
like Singular Value Decomposition may have to be introduced. There are various ways to 
eliminate the increase of the condition number as the dimension of the matrix increases. 
Mikhlin [8] and Krasnoselskii [9] choose the basis functions such that the growth of the 
condition number is controlled. 

A good way to choose the basis functions is shown in Figure 1. It is 
interesting to point out that these basis functions are similar to the classical triangular 
functions used by Harrington [2] in the Method of Moments. However, unlike the 
Method of Moments, these basis functions are not the subdomain basis functions. In 
the classical subdomain basis functions, the choice would be the seven piecewise triangle 
functions as shown in Fig. l(e). The seven basis functions would consist of the four 
solid line triangular functions and in addition the three dotted line triangular functions 
shown in the same figure. 

In the new basis, which we call the hybrid wavelet basis, we have the seven 
basis functions shown in Fig. l(a-e) marked by tPOl, tP02, and tPl-7. The difference is 
that instead of the three dotted triangular basis functions we have the three nested basis 
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functions cPb cP2 and cP3. In the Finite Element literature these are called Hierarchical 
Basis Functions. The functions cPm and cP02 treat arbitrary boundary conditions. The 
basis functions shown in Fig. l(c-e) are termed the "wavelet" basis as they are the 
dilated and shifted version of the same function [Lorentz and Madych, in press]. These 
basis functions are derived from the Battle-Lamarie type of wavelets. 

The natural question that arises is, what is the advantage of this type of 
the "wavelet" basis over the conventional subsectional basis functions? The disadvan­
tage of the wavelet basis is clear: as opposed to the classical subdomain basis, for cPI, 
cP2 and cP3 more calculations are needed over the domain of interest However, as a final 
solution both the subsectional and the wavelet type basis provide the same information 
content about the approximation. 

In spite of the additional computation, the reason for the choice of the 
wavelet basis is that as the dimension of the problem increases, the condition number 
of the solution matrix does not go up as fast for the wavelet basis. This has been 
rigorously shown by Jaffard [10]. There is another computational advantage which we 
will describe later. 

In summary, the distinct feature of this present approach is a different 
choice of basis functions for the unknown. This choice is different from the classical 
subsection basis. For the approach presented in this paper, the "granularity" of the 
basis function is different for different orders of approximation - some entire domain 
and some sub domain - so that the span of the basis function is complete. 

We now proceed with the solution procedure to describe the other salient 
features. Under the new basis functions we have 

and 

< cP:, cP~1 >= 0 

< cP:, cP~2 >= 0 

Therefore equation (5) reduces to 

<cP~,cP~> 0···0 
o < cP;, cP; > .. ·0 

o 
o 

o 

for i -=f. j 

o 
o 

o o 
o 
o 

0··· < cP'r.,cP'r. > 
0···0 
0···0 

< cP~l' cP~l > < cP~l' cP~2 > 
< cP~2' cP~1 > < cP~2' cP~2 > 

=-

<F,cPI> 
< F,cfJ2 > 

< F,cPN > 
< F,cPoI > 
< F,cPo2 > 

o 
o 

o 
_!&!!. 
d~x=a 
dxx=6 

(8) 
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In the solution of (8) the boundary conditions of the problem are implic­
itly provided. For example if the boundary conditions are purely Dirichlet type then 
aOt and a02 are known and for the Neumann condition the right-hand sides are known 
and aot and a02 are to be solved for. For mixed boundary conditions, a combination 
of the above are required and aOj need to be solved for the jth boundary which has a 
specified Neumann condition. So, from (8) we have 

ai = 

and 

< F,tPi > 
< tP~, tP~ > (9) 

(10) 

where two of the four parameters [aot, a02, :z=" and :.,=hl have been fixed by the 
boundary conditions (Dirichlet, Neumann or mixed) of the problem. 

The application of the "wavelet" basis is now clear. For 1-D problems 
the system matrix can be made almost diagonal, and hence its solution is trivial. 

As an example of the applications of wavelet concepts to differential equa­
tions, consider the following problem. 

tFu . ( ) -=SlnX 
dx2 O<x<2?1" 

u'(O) = 1 

u(211') = 5 

The solution to this set of equations is 

u(X) = - sin(x) + 2x + (5 - 4?1") 

(11) 

(12) 

In summary, if the principles of dilation and shift are utilized in the 
choice of basis functions such that their first derivatives are orthogonal to each other 
then the system matrix can be diagonalized corresponding to the unknowns. So the 
choice of a "wavelet type" basis makes the system matrix almost diagonal, simplifying 
the computational complexity. 

WAVELETS IN INTEGRAL EQUATIONS 

We have seen that choosing a "wavelet type" basis in the solution of 
differential equations can lead to considerable savings in computational complexity. 
But, what of the applications of the same basis to Integral Equations? For example, 
Consider the simple problem of the charge distribution on a thin wire (of length L and 
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radius a) maintained at a constant voltage V. If the wire is assumed to lie along the 
z-axis, the integral equation to solve is [2] 

_1_ fL q(z') dz' = V 
47rfo 10 Ja2 + (z - z')2 

(13) 

In many applications of the Method of Moments, the basis functions for 
the unknown q(z) are the subsectional basis shown in Fig. l(e). In this case the 
condition number of the system matrix is known to be O(i). 

u(x) 

6r------.------.------,------,------,------" 

4 

2 

UIliDa;WawIeY -
Euet Solution ...• 

o~------------------------~------------------~ 

-2 

-4 

~L-------L-------L-----~~----~------~------~~ 
o 2 4 

x 

Fig. 2 compares the true solution with the Finite Element Solution using 
the wavelet basis. Here, the seven basis functions of Fig. 1 (a-e) were used. As can be 
seen, the agreement between the two solutions is excellent. 

The major advantage of the wavelet approach for differential equations 
is that the matrix can be made mostly diagonal. Therefore, the solution is nearly 
instantaneous. However, for the integral equation, diagonalization of the any block of 
the matrix is not possible. This is because the integral operator transforms a function 
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with compact support to a function without compact support. Hence, the savings that 
we might expect, do not occur for the choice of wavelet basis for this case. 

If one considers the numerical solution to the above problem of the charge 
distribution on wire charged to a constant potential, utilizing both sub domain and 
wavelet type bases, then a measure of the efficiency of the solution procedure is how 
the condition number of the system matrix changes with the number of basis functions. 
In Fig. 3, the condition number of the system matrices for the two approaches are 
compared. It is seen that the subdomain basis for the Method of Moments perform 
better than a wavelet type basis. This is not surprising, as Mikhlin has pointed out [8, 
pg. 43] that for the system matrix in a variational method to have a small condition 
number, the basis should be "strongly minimal in the corresponding energy space". 

The rise in the condition number might be explained by the fact that we 
are introducing linear dependencies in the basis functions. For example, 

where 4>MOM(Z) is the middle sub domain basis function when the system matrix is of 
order 3 x 3. 

Since we are dealing with convolution forms of the integral operator, a 
good approach would have been to look at the problem in the transform domain as 
a transform essentially convert·s a convolution to a product and hence "diagonalizes" 
the operator. However, one cannot solve such a problem in the spectral domain as the 
boundary conditions are specified in the original domain. Moreover, the nature of the 
problem is not known outside the region of validity of the integral equation. 
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CONCLUSION 

The principal of dilation, extensively used by the "wavelet concept", can 
be introduced into Finite Element Techniques for efficient choice of basis functions. 
With the new basis functions, the large Finite Element Method system matrices can be 
made mostly diagonal and the computational complexity can be significantly reduced. 
This approach can easily be extended to 2-D and 3-D problems. However, for the 
case of integral equations, the wavelet basis introduces dependencies between the basis 
functions and so unnecessarily increases the condition number of the system matrix. 
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INTRODUCTION 

The wavelet technique has been studied extensively for the last two 
decades by both mathematicians and engineers resulting in some excellent 
documentation [1-4] explaining the various mathematical subtleties and their 
properties. One of the key features of the wavelet technique is how the initial 
function called the "mother" wavelet is designed. In many applications, one may 
be interested in designing the functions based on the data. This can be done 
either by neural networks [5] or by computer optimization [6]. In this paper, we 
present the T-pulse technique for designing the initial function. 

The first section of this paper describes the integral wavelet transform 
and the discrete wavelet transform. The later part describes the T-pulse 
technique. 

THE WAVELET TRANSFORM (CONTINUOUS CASE) 

The integral wavelet transform ofp(t) is defined by WTp: 
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(1) 

where the overbar denotes the complex conjugate and wa.~(t) defines a function 
with respect to two variables a and ~ as 

(2) 

with a *" O. wa~(t) is defined as a window function for reasons to be outlined. 
The center of the window function wet) is defined by the f and the width of the 
window is ~, where 

{I t' w'(t) { 
(3) 

and 

Ilwll = (w; w)112 (4) 

So the function wa.~(t) is a window function with the center at ~ + af and width 
a~. 

In order to see the performance of the wavelet transform in the frequency 
domain, it is necessary to note that from Parseval's relation, namely 

(p; q) = ~ (P; Q) 
21t 

(5) 

where pet) and q(t) are two time functions and P(ro) and Q(ro) are their 
respective Fourier transforms. 

-
WT = ~ J P(ro) Wa.~ (ro) dro 

p 21t 
(6) 

However, 

-J w (t) e -jOlt dt = _1_ e -j~O) W(aro) 
a.~ vTaI (7) 

where W(ro) is the Fourier transform of wet). 
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So 

-
WT =~ J 

p 21t 
~ P(ro) W(aro) ej~m dro 
lal 

(8) 

lfthe window function w(t) in the frequency domain is centered at roO and has 

a width 2Aro, where Aw is analogously defined by (3), then the integral wavelet 
a 

transform of p(t), defined by WTp provides local information in the frequency 
window 

(9) 

lfin this analysis, roO ofW(ro) is assumed to be positive, then the ratio 

[ center frequency = roo/a = ~ 1 
bandwidth 2Aja 2L\. 

(10) 

is independent of the scaling factor a. The class of bandpass filters represented 
by (9) as a function of a has the property (10) and are called constant Q-filters. 
This type of processing is done by the human ear and the eye at least in the 
first stage of signal detection [4]. 

From the wavelet transform given by (1), the original function can be 
recovered by utilizing 

where a > 0, and 

IW(ro) 12 dro 
lrol 

(11) 

(12) 

Hence (12) implies that only certain classes of window functions can be utilized 
in the wavelet transform, namely those windows whose responses decay at least 

as fast as _1_ as ro --+ 00. 

vT<OI 
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Since for any absolutely integrable function W(ro) - the Fourier transform 
of wet) - is continuous, (12) implies 

W(O) = 0 (13a) 

or equivalently 

N N 

J w ... II(t) dt = J wet) dt = 0 (13b) 

i.e. the window function or equivalently now termed the wavelet has no DC 
value. 

In conclusion, to carry out wavelet transform, it is required to deal with 
window functions wet) that are band-pass in nature, so one does not have to deal 
with functions that have finite dc values. However, what is implemented in 
practice is quite different from the above theory as we shall see. 

THE WAVELET TRANSFORM (DISCRETE CASE) 

If in the continuous wavelet transform, one uses integer values for some 
integers k, n (1, 11) and assumes 13 = 2~T (one can assume T = 1, without loss 
of generality for the discrete case) and a = 2\ then the discrete wavelet 
transform of pet) is given by 

(14) 

The inverse transform is given by 

N N 

pet) = E E WTp(k,n) 2-1<12 w(2-k t-nT) 
k=-N nOON 

(15) 

under the condition that the window functions 

(16) 

are orthonormal, i.e. 

(17) 
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where B(·) represents a delta function. The shift integers are chosen in such a 
way that w(2·i<t-nt) covers the whole line for all values of t. The wavelet 
transform thus separates the "object" into different components in its transform 
domain and studies each component with a resolution matched to its scale. 

The wavelet series amounts to expanding the discrete version of pet), 
namely Pd(t) into wavelets wk,n(t) so that 

-
pit) = E ~n wk,n(t) 

k.n=-oo 

(18) 

Ifit is further assumed that the wavelets wk,n(x) are orthogonal [i.e (17) holds], 
then 

(19) 

By comparing (19) with (14) it is apparent that the (k, n)th wavelet coefficient 
of pit) is given by the integral wavelet transform of p if the same orthogonal 
wavelets are used in both the integral wavelet transform and in the wavelet 
series. The problem now at hand is are there any numerically stable algorithms 
to compute the wavelet coefficients Ck n in (19). Specifically, in real life p is not 
a given function but is a sampled function pit). Computing the inner products 
<p; Wk n> then requires a quadrature rule. For the smallest value of k, often 
referred to by the scale parameter, i.e. most negative k, this will not involve 
many samples of p and one can do the computation quickly. For large scales, 
however, one faces large integrals, which might considerably slow down the 
computation of the wavelet transform of any given function. Especially for on­
line implementations, one should avoid having to compute these long integrals. 
One way out is the technique used in multirate/multi resolution analysis, by 
introducing an auxiliary function <I>(x), so that 

w(x) = E dm <I>(2x -m) (20) 
m"'-oo 

and 

-
<I>(x) = E cm 1ll(2x - m) (21) 

m=-oo 

where in each case only a finite number of coefficients Cm and dm are different 
from zero. 

Here III does not have integral zero but wk,n does and III is normalized such 
that 
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J <\lex) dx = 1 (22) 

and we define <\lk.n even though <\l is not a wavelet, i.e. 

(23) 

Since <\lex) satisfies a dilation equation in (21), <\lex) is called the scaling function. 
So from (20) and (23) 

-
(p; wk ) = L dm (p; ~;2D+m) 

So the problem of finding the wavelet coefficients is that of computing 
<p;~. m+m>' Also note that 

-
(p; <\lk n) = L cm (p; <\lk-l'2D.) 

m"-OO 

(24) 

(25) 

so that <p; <\lk n> can be computed recursively starting from the smallest scale 
(most negative k) to the largest. The advantage of this procedure is that it is 
numerically robust - namely - evenly though the wavelet coefficients Ck n (19) are 
computed with low precision - say with a couple of bits - one can still ~eproduce 
p with comparatively much higher precision [2]. 

In summary, what has been achieved is as follows: consider pet) as a 
function of time. The spectrum of pet) have been separated into octaves of 
widths i1wk' as has been described by Vaidyanathan [4] that is the frequency 
band w has been divided into [2l<.rc to 2k+11t] for all values of k, and now we define 
wavelets in each frequency bin i1wk and approximate pet) by it. Ifwe choose for 
example [3] 

<\let) = sin 1tt 
1tt 

wet) = 2<\l(2t) - <\let) 

then the wavelet expansion of pet) with respect to wet) is 

480 

(26) 

(27) 



(28) 

pet) = E pet) = E '1..n wkn(t) 
k k,D J , 

(29) 

The functions wk net) are orthonormal because their bandwidths are non 
overlapping, namely for a fixed k, Pk(ro) - the Fourier transform of Pk(t) has the 
bandwidth ~~, which is [2k1t, 2k+11t]. So the wavelet expansion of a function is 
compete in the sense that it makes an approximation by orthogonal functions 
which have non-overlapping bandwidth. 

The above wavelet and scaling functions, the wavelet coefficients are 
given by £t:Zjn) and hence these values can also be interpreted as the "Nyquist 
rate" samples of each of the frequency channels. This interpretation is generic 
for all Discrete Wavelet Type frequency decompositions. 

For practical application, the summations over k,n in (29) can no longer 
run over infinity, but they have to be truncated to a finite value. The question 
is what happens in that case? From a practical point of view, the "pure" wavelet 
expansion is never used, instead what is used is a hybrid representation. In a 
hybrid representation, 

K N 
pet) .. E E '1..,n Wk,n(t) + a <I>(t) 

kE1 n=l 

(30) 

So (30) represents that the function is approximated both by wavelets and by 
scaling function. All practical numerical implementations of wavelets are ofthe 
hybrid type. It is interesting to note that this hybrid representation does 
produce Gibb's phenomenon of the wavelets are continuous functions, for 
discontinuous functions (30) does not provide any Gibb's phenomenon. As 
concluded by Vaidyanathan [4] even though the continuous wavelet transform 
has a wider scope with deeper mathematical issues, the discrete wavelet 
transform is quite simple and be explained in terms of basic filter theory. 

T-PULSE 

The crux of the problem then in the wavelet analysis lies in the choice of 
the proper scaling function. For radar' applications it is necessary to have 
certain properties which makes the analysis more suitable. In radar 
applications and analysis, it is required that the pulses have no dc component 
as an antenna cannot transmit any dc. In addition, the pulses should have no 
intersymbol interference. This implies that it should be orthogonal to its block 
shifted version. In addition due to proper time-frequency localization it is 
necessary to have the T-pulse limited in time yet 99.9% of its energy localized 
in a narrowband. 

The construction of the T-pulse is carried out in the discrete domain. Let 
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us assume a discrete signal sequence ~m), which is defined for m=O,1,2, ... , Nm-1 
and is identically zero outside these Nm values. Let us assume there are N. 
samples in one baud time (in an approximate way, the baud time is the time 
duration between zero crossings of a signal), then the total number of baud 
times Nc is, 

Ne = NJN. (31) 

The DFT of the signal ~m) is given by 

N -1 
F(k) = _1_ E f(m) en1-j~km) 

~ m=O "r~ t 

(32) 

for k = 0, 1, ... , Nk-l. 
So in the frequency domain, Nk is the total number of samples of the DFT 

sequence F(k). In the frequency domain, if we assume there are Nr samples per 
baud rate (inverse of baud time) then 

N = N ·N t r 8 
(33) 

and increasing Nr increases the resolution in the frequency domain. 
In the T-pulse construction, the objective is to maximize the inband 

energy within the set <I> = (-Nb ::;; k ::;; Nb}. Or equivalently, it minimizes the 
energy outside the Nb samples. In addition, the wave shape has to be orthogonal 
with its shifted version and this will minimize the intersymbol interference. 
This implies that 

Nm -l 
L f(m) fCm+kN.) - ~(k) = 0 

m=O 

for k=O, 1, ... , Ne-l 

(34) 

where o(k) is the impulse function. This guarantees that if the waveform is 
shifted by a baud time or its multiples, then the wave shape is orthogonal to 
itself. Note that when k=O, it is the square of the function itself and no 
constraint need to be put on that. In addition, we need to put in a DC 
constraint, i.e. the waveshape should have no DC component. Hence 
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N -1 
1 m 

N :E f(m) = 0 
m m=O 

(35) 



So the cost function J e, that will be minimized is 

Nc-l 
J A. we Bout + wm e; + .E wp e: 

p=O 

(36) 

where We' Wm and wp are various weights to the errors Eout> em' ep' The weights 
should be adjusted in a search procedure that has been designed to minimize J. 

In addition, 

Bout = out of band energy = B - Bin 

Nb 
If(m) 12 - .E IF(k) 12 

(37) 

k=-Nb 

and 

Nm-l 
em A. .E f(m) (38) 

m=O 

Nm-l 
ep A. .E f(m) f(m +pN.) for p=I, 2, ...• Nc -1 (39) 

m=O 

Equivalently, 

J=W. 

(40) 

N -1 N -1 r N -1 r c m W m 
+.E wp .E f(m) f(m+pN.)-&(p) +~ .E f(m) 

p=O m=O Nm m=O 
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In summary, the following observations are of importance. 

1) Note that the objective is to minimize the cost function J, such that Eout 
is minimum with em=O, and ep=O for p=O, 1, ... , Nc-I. 
2) The weights w., Wm and wp (p=O, 1, ... , N.-I) should be adjusted in a 
search procedure to achieve the above goal. 

The minimization process can be outlined as follows: 
Step 1: Choose an initial guess for f(m) and initial guess for the weights w., 
Wm and wp' p=O, ... , Nc-I. 
Step 2: Compute the gradient of the functional J, with respect to f(m). This 
is given by 

-afj-aJ(m-) =2we Nfl f(m) 1- ~ Nfl f(n)---'_N-:-'k:.....--__ 2~ I 2'1t(n-m) (Nb +.!) I 
m=O k n=O 1 'It(~~m) ] 

N -1 [[ N -1 1 [N -1 1 +2 t wp t f(m)f(m+pN.) -6(P)· t {f(m) +f(m+pN.)} 
p=O m=O m=O 

(41) 

2w Nm -1 
+---f" L f(m) 

Nm m=O 

assuming f(m) is real. 
Next an optimum step length to update the signal sequence f(m) is chosen 

through one dimensional searches. 
Step 3: If the norm of the previous gradient vector is not small enough, go 
to step 2. Otherwise see whether the orthogonality errors lep I for p=I, 2, ... , N.-
1 are small enough. If the errors are small enough stop the process. If the 
errors are still considered to be large, increase each wp (p=I, 2, ... , N.-l) by a 
factor and then go to step 2. 

Note that throughout the process, We is the fixed nonzero value, since the 
absolute value of the total energy is not important. However, w. can be 
increased during the process if the inband energy to generate the T-pulse is 
unexpectedly low. This may happen as the cost function may have more than 
one local minima and increasing We can make one jump out of an undesired local 
minimum. 
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MERGER OF THE WAVELETS AND T-PULSES 

The T-pulse as outlined can be used as the mother wavelet and also as 
a scaling function when the constraint zero mean or em=O is (38) is no longer 
enforced. Since the T-pulse has narrow pulse width it can be easily transmitted 
through conventional dispersive antennas and received by the same structures. 
And the hybrid representation can provide a good analysis of the T-pulse return 
and the transmitted waveform itself can be aT-pulse. 
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EXTENDED RAY ANALYSIS OF ELECTROMAGNETIC WAVE SCATTERING 
FROM 3·D SMOOTH OBJECTS 

Hiroyoshi Ikuno and Masahiko Nishimoto 

Department of Electrical Engineering and Computer Science, 

Kumamoto University, Kurokami 2-39-1, Kumamoto 860, Japan. 

INTRODUCTION 

When a plane electromagnetic short pulse is incident on an arbitrarily shaped smooth 

object, we have observed scattered pulses whose waveforms depend on polarizations of the 
incident pulse and the shape and material of scatterer [I]. To investigate the relation between 

scattered pulses and the shape of scatterer, we have analyzed these waveforms using the 
extended ray theory (ERr) that is a ray theory in the complex coordinate space and found 

several new anomalous aspects among scattered pulses from 2-D objects [1]. 

We develop the ERr for analyzing 3-D scattering problem and apply it to scattering 

from 3-D perfectly conducting smooth objects. First we postulate that scattering processes on a 
perfectly conducting smooth object can be represented in terms of reflection and diffraction 

events which can be evaluated by the Geometrical Optics (GO) ray and the creeping or 
diffracted ray and any scattering process can be decomposed into six elementary processes 
described by reflection and diffraction events on electromagnetic scattering [2]. Second, we 

assume that the scattered field can be calculated by using the real ray and the complex ray in the 

complex coordinate space. For some elementary process considered, we calculate real and/or 
complex scattering centers for a specified incidence angle and an observation point using the 

Fermat's principle. The amplitude and phase of the ray for the elementary process can be 
determined by the rule of the ray theory and/or the GTD such as the law of the conservation of 

energy together with reflection and diffraction coefficients given by Fresnel ones for the 

canonical problem and the ray path length, respectively. It is noted that the scattering center for 

a complex ray can be identified by the physical selection rule [1,2]. In order to clarify the role 

of the complex ray in the ERT, we show that the scattered far field calculated by the ERT 

coincides with that given by the stationary phase method of the complex version. Next we 

check the validity of the ERT solutions by comparing the scattered waveforms given by the 
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ERr with those given by the reference solutions [6]. Both results coincide well with each 
other. This result shows that the role of complex GO and/or creeping rays in the shadow side 
of caustics is very important as well as the 2-D case [2]. Consequently, we can conclude that 
the ERr is a useful technique for analyzing electromagnetic scattering problem by the 3-D 
complicated objects using a very short pulse, because the ERT provides a transfer function of 
the scattering problem over a wide frequency spectrum range. 

COMPLEX RAY TRACING AND FAR SCATTERED FIELD 
CALCULATED BY THE GO RAY 

Here we make the complex ray tracing for the GO ray and show that the far scattered field 
calculated by using the GO ray is equivalent to that of the stationary phase method as exPected 
from the 2-D scattering problem [1]. To do so, we carry out the calculation in the complex 
coordinate space [1]. Let us represent each vector component of a scattered field such as 

P( u, v,t)=A( u, v,t)exp[ -jk(S( u, v )+t)]. ( 1) 

In Eq.(I), the amplitude is given by 

A(u,v,t)=A(u, v) [J(u,v,O)/J(u,v,t) r 1/2, J(u,v,t)=il(x,y,z)/il(u,v,t) (2) 

where J(u,v,t) is the Jacobian of the mapping between the Cartesian coordinate system (x,y,z) 
and the ray coordinate system (u.v,t) and S(u,v) and A(u,v) are the initial phase and amplitude 
of the reflected ray. The initial phase that satisfies the Snell's law is given by 

S(u,v)=-(F 1 r(6 ,«p)sin6coscj>+F2r(6 ,«p)sin6sincj>+F3r(6, «p)cos6) 

where for a given incidence angle (6i,«Pi) and an observation angle (60'«po) we define 

F 1 =[sin(6 0 +6i)/2)cos(6 0-6 i)/2)cos( «Po +«Pi)/2)cos( «Po-«Pi)/2) 

(3) 

-cos(80 +6 i)/2)sin(8 0-8 i)/2)sin( «Po +«Pi)/2)sin( «Po -«Pi)/2) lIE (4a) 

F2=[ sin(6 0+6 i)/2)cos(6 0-6 i)/2)sin( «Po +«Pi)/2)cos( «Po -«Pi)/2) 

-cos(6 0+6 i)/2)sin(6 0-6 i)/2)cos( «Po +«Pi)/2)sin( «Po -«Pi)/2)]E (4b) 

F3=[cos(6 0 +6i)/2)cos(60-6i)/2)]/E (4c) 

Here E is a normalization constant so that the relation F12+Fl+Fl=1 holds, that is, 

E=[(sin(80 +8 i)/2)cos(8 0-8 i)/2)cos( «Po-«Pi)/2» 

+( cos(8 0+8 i)/2)sin(8 0-8 i)/2)sin( «Po -«Pi)/2»+( cos(8 0+8 i)/2)cos(8 0-8 i)/2»] 112 (4d) 

Accordingly we have following relations about the phase of the GO ray as 

sin8icos«Pi+Sin6 ocos«Pi=2F 1 

sin8 isin«Pi+sin8 osin«pi=2F2 

cos8 i+cos8 0=2F3' 
From the ray theory, the ray trajectory can be calculated by 
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x(u,v,t)=x(u,v)+tilS(u,v)/ilx, 

y(u,v,t)=y(u,v)+tilS(u,v)/iJy, 

z(u,v,t)=z(u,v)+tiJS(u,v)/az, 

(5) 

(6a) 



where the initial coordinate, x(u,v), y(u,v), and z(u,v) is given by 

x(u,v)=r(6,cp)sin6coscp, 

y(u,v)=r(6,cp)sin6sincp, 

z(u,v)=r(6,cp)cos6. 

(6b) 

Using Eqs.(2) and (6), we can calculate the Jacobian for the GO ray. Carrying out a tedious 

but straightforward calculation, we can obtain the Jacobian after the calculation of the reflection 

point (6s'cps) on the scatterer surface. From here (6s,I/Is) means (6,1/1) without confusion. At 

the reflection point, we have 

K=I(rcos6+r6 sin6)/(rsin6-r6cos6) 

and 
J=Irl/l/«rsin6-r6oos6)sin6). 

where I, J, and K are defined by 

I=F1cosIjH-F2sinl/l, J=F1sinq,..F2ooscp, and K=F3. 

For the complex reflection point, we impose the following selection rule [1] 

Im(S(6,I/I»<0, 

where we set 

S(6 ,cp)=-(F 1 r(6 ,I/I)sin6cosIjH-F2r(6 ,I/I)sin6sinIjH-F3r(6 ,I/I)oos6). 

Thus we can obtain the Jacobian for the GO ray in the form 

J(U,v,t)=H1+H2t+H3t1· 

(7a) 

(7b) 

(7c) 

(8) 

Since the complete result takes a lengthy form as shown in the Appendix A, here we show 
dominant terms in the far field case 1»1, that is, 

J(u,v,O)/J(u,v,t) 

=t2(412/(rsin6-r6cos6)2sin26)[(r(r-r (6)+2r6 2)«rsin6-r 6cos6 )rsin6-rr cpcp +2r ~ ~sin26 
-«r6rl/l6-2r6rt>sin6-rrl/lcos6)2]/«~+r6 2)~Sin26+~rl/l ). (9) 

It follows from Eqs.(2) and (9) that the amplitude of the scattered field given by the contributed 

GO ray. The amplitude of the scattered field directly depends on the principal radius of 
curvature as shown in the Appendix B. 

On the other hand we have 

S66Scpcp-S 1/16 2=(412/(rsin6-r6cos6)2sin26)[«r2-rr66+2r6 2)(~_rrcpcp +2rl/l 2 

-(rcos6+r6sin6)rcos6)sin26-«rr 1/16-2r 6r t>sin6-rr +COS6)2]. (10) 

Since t is approximately equal to r' for the far field, from Eq.(lO) we have 

«~+r6 2)~sin26+~r/) 1I2/(r'(S66S cpcp-S+6 2) 1I2)=[A(u,v,t)/A(u,v,0)] 112. (11) 

Moreover we have same result about the phase of the scattered field. Therefore we can 

conclude that the scattered far field calculated by the extended ray theory coincides with that 

calculated by the stationary phase method. Consequently a scattered field at (r',60 ,I/Io) given 

by the GO ray can be represented by 

EG=e -jkr'/r'[I(g(6,+)/(S66S cpcp-Scp6 2)1I2»e-jkS(6 ,1/1)], (12) 
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where we take a natural branch for calculating the square root of Eq.(12) in the complex 
version of the method of stationary phase [7] and 

g~8,cjI)=(k12j)[(ir'X(nXHi»Xir']Zo«~+r8 2)~Sin28+r2rcjl2)1I2rsin8 , (13) 

where HI is the incident magnetic field and Zo=(lld£o) 112. In Eq.(13), ir' is a unit vector in 
the r'-direction and n is a unit normal vector on the surface which is given by 

n=(Brsin8coscjH-rr cjlsincjl,Brsin8sincp-rr cjlcoscjl,Arsin8)/( (~+r8 2)~Sin28+~rcjl2) 1/2. (13a) 

It is noted that the relation Eqs.(C3) and (CS) in the Appendix C indicates the reflection law on 
the scatterer surface. Therefore the Extended Ray Theory (ERT) can be considered as a 

complex version of the GTD, since we can derive same conclusion for the diffracted ray. 
Last we mention another feature of the ERr. It is well known that cross-pol components and 

the correction term of co-pol components of the scattering matrix directly depend on the 
difference between the principal curvatures at the scattering center [8-9]. It is noted that the 
ERr plays an important role in the inverse problem [10]. 

FORMULATION OF PROBLEM 

Here we make a brief introduction of the ERr [2] and show a solution method of the 3-
D scattering problem by using the the ERr. 

First we show the key part of the ERT. We postulate that any scattering phenomena can 
be described by two kinds of scattering events such as reflection and/or refraction events and 
diffraction events. Then we can show that any scattering process can be decomposed into six 
elementary processes on the scattering events which are described by three pure events: G, 
Gm+2, and D and three their combination events: DGmD, om+1D, and Dm+10 

(m=0,l,2, ... ) where 0 and D denote the reflection and/or refraction event and the diffraction 
event, respectively, and the superscript m on OmD, for example, means an m-tuple GO event 
[2]. In the ERT, we deal with the 00 ray and the diffracted ray or creeping ray under the two 
assumptions; one is that the diffracted ray flies over the valley between two convex portion of 
the scatterer surface or flies over, touches a surface and makes a reflection near the concave­
convex portion of the scatterer surface and the other is that for the 00 ray and the creeping ray 
we consider the complex ray in the complex coordinate space which is an analytic extension of 
the physical space in addition to the real ray. It is noted that the complex ray plays a significant 
role for scattering from complicated objects such as an indented object, a dielectric object, 

and/or a bubble [1-5]. Under the two assumptions mentioned above, we can construct the ERT 

and analyze electromagnetic scattering from an arbitrarily shaped perfectly conducting 3-D 

object by using the ERT. First we calculate scattering centers according to the Fermat's 

principle for each elementary process when we specify an incidence angle and an observation 

one. Then the phase of the ray in each elementary process can be calculated from an algebraic 

sum of distances between the adjacent two scattering centers for the 00 ray multiplied by the 

free space wavenumber and a distance along the geodesic path for the diffracted ray multiplied 

by the propagation constant of the diffracted ray. Similarly, the amplitude of the ray in the 
corresponding elementary process can be calculated by using the reflection coefficient at the 

scattering center and the Jacobian of two adjacent scattering centers for the GO ray and by 

using the diffraction coefficient and the Jacobian about the diffracted ray for the diffracted ray, 
respecti vel y. 
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Hereafter we show an algorithm for calculating the 3-D scattering problem. When we 
specify an incidence angle and an observation one, we determine all contributed rays in which 
each contributed ray corresponds to one scattering process. Since any scattering processes can 
be expressed by six elementary processes, the scattered field can be calculated by the algebraic 
sum of fields on total contributed elementary processes to the scattered field. The problem is 
reduced to the evaluation of the ray contribution to the scattered field from the six elementary 

processes. Using an appropriate selection rule [2], we can select complex scattering centers 
among complex solutions of the transcendental equation derived by the Fermat's principle. So, 
we can easily calculate GO ray contributions to the scattered field by using the ERT. Next we 
calculate creeping ray contributions to the scattered field. For the convex object, we may 
consider one conventional creeping ray [5]. For the indented object, we assume that the 

creeping ray flies over a valley region between two diffraction points on the two adjacent 
convex part or reflects near the convex-concave portion. Therefore any scattering process 

about the diffraction events in the 3-D scattering problem can be expressed by 4 elementary 
processes, that is, D, DGmD, Gm+1D, and Dm+IG(m=O,l,2, ... ) in the the ERT [2] and the 

scattered field can be calculated by the ERT where the calculation can be carried out in the 
same way as the GTD [4], except for the consideration of the complex rays for both GO rays 

and diffracted rays which may play an important role in the scattering problem for the indented 
object. 

NUMERICAL EXAMPLE 

To check the validity of the ERr, we compare the scattered field by the ERT with that 
given by the reference numerical solution [6]. As an example, we calculate TDG pulse 
responses of a perfectly conducting body of revolution whose surface can be described by 
r=a(l+&Os3cp), (a>O,l>b>O). Now we show a typical example of the backscattering case 
So=Si and CPo=CPi as shown in Fig. 1 in which a complex ring-like reflection point appears on 
the scatterer surface whose reflection point, that does not depend on cP, satisfies 

(FI2+F22)1I2(rcosS+rSsinS)=F3(rsinS-rScosS). (14) 

For the GO ray contribution, we have 

EG=2Iixe-jkr'/r'{l:«~+2rs 2-rrss)/«~+rS 2)(rsinS-rscosS)rsinS))1I2eikS(S,cp)}. (15) 

The diffracted ray contribution in this example can be calculated by using the equivalent edge 
electric current and the equivalent edge magnetic current on the ring-like diffraction point which 
can be evaluated by integrating the creeping ray contributions [5] at the ring-like diffraction 
point about the "direction. The result is as follows: 

ED=Ixe-jkr'/r'[kr(S1 )sinSl/(kr(S2)sinS2) 1I2)e-j3x/4/16k 

x{Dellsincpo~+ZoDmllcoscpo}exp( -2jk(/'12K(S)ds+r(S2)sinS2-r(S l)sinS 1)] (16) 

where K(S) is defined by K(S)=(~+rS 2)3/2/(~+2rS 2-rrSS) and 

De12=2eix/~( (k( K(Sl )K(S2» 112/2) 113 IAi'( -qn)2)exp[ -Ux/6)qn(kl2) 113 f 12K(S)ds»], 

Dm12=2eix/~( (k(K(Sl )K(S2» 11212) 1/3 Iqn'Ai( -qn,)2)exp[ -Ux/6)qn'(kl2) 113 f12K(S)ds»]. 

In Eq.(16), Ai(-x) and Ai'(-x) denote the Airy function and its derivative. and qn and qn' are 
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zero point of the Airy function and its derivative, respectively. As shown in the Fig.2, the ERT 
solution coincides with that given by the numerical reference solution (Yasuura method) [6]. 
This result shows that the complex ray contribution is significant for scattering from the 
indented body [11]. 

Reflected rays from real reflection point 
and ring-like complex reflection point. 

z 

2 3 

Creeping rays 

4 

Fig. 1 Indented body of revolution and rays which contribute to the backscattering. 
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(a) ERT 
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lIT. 
0.0 
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-1.0 

-2.0 

(b) Reference solution (Yasuura method [6] ) 

Fig.2 TOG pulse response ( 8 j = 80= 0, () = 0.15) 

CONCLUSION 

We develop the extended ray theory for 3-D scattering problem and show that the ERT, 
which is an complex version of the ray theory, can evaluate the scattered field even in 

shadowed side of caustic [1]. A typical numerical example shows that the complex ray 
contribution to the scattered field is significant for the indented objects. In the near future we 
will develop an algorithm for calculating the geodesic path [12] and evaluate the creeping ray 
contributions to the scattered field. 
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APPENDIX A 

Partial derivatives SX' Sy and Sz can be expressed by 

Sx=xuSu +xySy +(YuZy -yy~)St' 

Sy=YuSu+yySy+(ZUXy-Zyxu)St' 

Sz=zuSu+ZySy+(xuYy-XyYu)St, 

where St=(l-Su2-S}) 112. 

(AI) 

Substituting relations Su=SuSS+CPuScp and Sy=SySS+CPyScp into Eq.(Al) and using the 
following identities such that 

CPu 2+cp}=(?+rS 2)(Sucpy-Sycpu)2, 

2 2_? 2 2 2 8 u +8 y -( sm 8+rcp )(8 ucpy-8 ycpu) , 

S uCPu +S ycpy=-rer ~(e uCPy -S ycpu)2, 

with (e ucpy-e ycpu)2=1I[(r HS 2)(r2sin2s+rcp2)-(rer~2], we have 

and 

HI =IM/Brsine, (A2a) 

H2=2(l2/B) [(A 2 _B2)( cos2cj1+(r cp/BsinS )sin2cp)-B2(r cp/BsinS )(sin2cp-(r cp/BsinS)cos2cp)] 

-I [( (rcos2cj1+r cpsin2cp)AsinS18+(sin2cp..(r cp/BsinS )cos2cp)r cp cosS) U 

+( (rsin2cp..r cp cos2cp )AsinS IB-( cos2cj1+( r cp/Bsi nS )sin2cp)r cp cosS) V 

+( (cos2cj1+(r cp/BsinS)sin2cp)rsinS+(sin2cp..(r cp'Bsin8)cos2cp)r cpsinS) W 

-«A 2 -B2)sin2cj1+B2(r cp/Bsin8 )cos2cp) U'/B+( (A 2 -B2)cos2cp..B2(r cp/BsinS )sin2cp V '/B 

-(sin2cp-(rcp/Bsin8)cos2cp)AW'j (A2b) 

H3=( 4I3/rB3sin3S) [(r2 +2re 2 -rrSS)(BrsinS-rr cpcp +2rcp 2)sin2S 

-«rer cpe-2rsrcp)SinS-rrcpcosS)2] (A2c) 
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where 

A=rcos6+r6 sin6, 8=sin6-(r61r)cos6, M=(~+r6 2)~Sin26+~rIj>2, 
U=2IB6/B-(2I/BM)(r+r66)r6B~sin26+(2I1BMsin6)B~rlj>(rlj>cos6-r1j>6sin6), 
V=-(2I1BM)«r+r66)r2r6rlj>sin8+(~+r8 2)~(rlj>cos8-rIj>8sin8», 
W=2IA8/B-(2I/BM)(r+r88)r8A~Sin28+(2I/BMSin8)A~rlj>(rlj>cos8-rlj>8sin8 ), 

U'=2IBIj>IB-(2I1BM)(rrl\>+r8r81\»B~sin28-(2I1BM)B~rl\>r", 
V'=-(2I1BM)«rrl\>+r8r81\»~rcp-(~+r8 2)~rcpcp>Sin8, 
W'=2IA I\>/B-(2IIBM)(rr I\> +r 8 r 8cp)A~sin28-(2I1BM)A~r cpr W 

APPENDIX B 

The principal radius of curvature R1and R2 is given by 

lIR1+ lIRz=l {(~sin28s +r/)«~+2r8 2-rr88)+(~+r8 2)(Brsin8+2rcJ! 2-rr~}rSin8 
-2rr8r,(rrcpcos8+(2r8rcp-r61\»sin8)]/«~+r8 2)~sin28+rzrcp2) '/2 (Bl) 

lIRIR2=[(~+2r8 2-rr88)(BrSin6+2rIj>2-rri~sin26 
-(rrcpcos8s+(2r8 rlj>-r81j»sin8s) ;.z]/«~+r8 2)~sin28s+~rl\>2)2. (B2) 

APPENDIX C 

At the reflection point we have 

(Flcoscjl+F2sincp)(rcos8+r8sin8)-F3(rsin8-r8cos8)=O 

(F 1 sincp-F2coscp)(rsin8-r8cos8)sin8=(F 1 coscjl+F2sincp)r cpo 

From Eqs.(Cl) and (C2), we have 

cjF(1j>0+I\>i)/2+tan-1«P-QR)/(Q+PR», 

8=tan-1 [(Pcos( cp-(Ij>o +lj>i)/2)+Qsin( cp-(cpo +CPi)/2)/O]+tan-1(r 8/r), 
where 

O=cos(80 +8i)/2)cos(8 0-8 i)/2), 

P=sin(80 +8 i)/2)cos(8 0-8 i)/2)cos( CPo -CPi)/2), 

Q=cos(80 +8i)/2)sin(80-8i)/2)sin(cpo-'i)/2), 

R=(r,/rsin8)(cos8+(r8/r)sin8)/(sin8-(r8/r)cos8l 

Since the direction cosine of the outward normal vector on the surface is given by 

(Cl) 

(C2) 

(C3a) 

(C3b) 

n=(sin'l')cos1;"sin'l')sin1;"cos'l'), (C4) 

from Eq.(C4) together with Eq.(l3a) we obtain following geometric relations at the reflection 

point as 

cjF!;+tan -I(r ,/(rsin8 -r8cos8)sin8), 

8=tan -l(cos(cp-!;)tan'l')+tan -1(r81r). 

From Eqs.(C3)and (C5), we obtain the law of reflection on the scatterer surface. 
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TIME DOMAIN SCATTERING THEORY: 

THE PHYSICAL OPTICS APPROXIMATION 

Kenneth A. Dreyer 

Geoscience and Engineering Center 
SRI International 
Menlo Park, CA 94025-3493 

INTRODUCTION 

For continuous wave (CW) waveforms, the physical optics (p.o.) model provides a 
basic understanding of the electromagnetic scattering process in high-frequency applica­
tions. Because its scattering equations are mathematically tractable, it is often the 
approximation of choice used to estimate radar cross sections. Based on experience with 
p.o. appproximations for CW waveforms, we decided to apply the p.o. approximation in the 
time domain as a way to quantify and understand scattering of signals from our impulsive 
ultra-wideband (IUWB) radar. 

We choose to develop scattering theory in the time domain, rather than in the 
frequency domain. Our choice is based primarily upon convenience, but also upon the real­
ization that the time domain lends itself naturally to analysis of scattering of signals from 
radars. In principle, it is always possible to transform expressions between the time and 
frequency domains. However, for this application, we found that integration limits 
representing the causality cone are easier to account for in the time domain. Indeed, some 
existing p.o. expressions for scattering in the frequency domain do not retain enough 
information to reconstruct the causality cone in the time domain, although they are perfectly 
adequate to describe scattering of narrow-band CW signals. 

For this paper, we limit our analysis to scattering from flat objects primarily because 
the p.o. approximation results in simple integrals for the scattered waveform. The mathe­
matical form of the model clearly predicts that electromagnetic scattering occurs only from 
the plate's edges. As examples, we compute the scattered field from a semi-infmite plane, a 
semi-infinite strip, a rectangular plate, and a circular disk. Calculated waveforms of the 
scattered field from all of the examples show reradiation only when the incident pulse 
sweeps over a plate's edge. 

We have also obtained solutions to p.o. scattering equations for simple curved surfaces, 
but they are not presented here. Curved surfaces have fewer, if any, discontinuities, and sub­
stantial current flows in the shadow region. Since the p.o. approximation emphasizes scat­
tering from surface discontinuities, and demands that current flow in the shadow region be 
zero, the p.o. approximation is not expected to perform as well for curved surfaces. 
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Because of its importance in the scattering of radar signals, we treat specular scatter 
from flat plates in a separate section. The p.o approximation predicts two kinds of specular 
scatter. "Mirror" reflection that we normally think of occurs only in the Fresnel zone, and is 
characterized by inversion of the incident waveform. Beyond the Fresnel zone, specular 
reflection is characterized by differentiation of the incident waveform. The explanation for 
the difference is that, in the far zone, reradiation from the plate's edges overlaps, leading to 
a time-delayed difference of the waveforms. 

PHYSICAL OPTICS IN THE TIME DOMAIN 

A good way of viewing the p.o. approximation is afforded by extracting the current 
density from the magnetic field integral equation (MFIE),l 

J(r,t) = (.!...-) 2ii x H.(r,t) 
4n I 

+ - - x - + - - J(r,t - R I c) x -- dS, (1) (c) n J [( 1 1 d) - (r - r)] 
4n 2n s R2 cR dr R 

where R = I, - ,'I. The first term on the right of Eq. 1 is, of course, the p.o. term. It 
relates instantaneous current flow over a surface to the impressed magnetic field, and pri­
marily expresses early time behavior of the current flow. The second term on the right of 
Eq. 1 represents the resonant part of the current flow over any perfectly conducting surface 
and comprises the late-time component of the current flow. By writing the current density in 
terms of itself, the relative contribution of the two terms is more easily seen. Depending 
upon signal and target parameters, either component, or both components, may dominate; 
however, their hierarchy of progression does not change. Since the p.o. term is mathemati­
cally much simpler, the early-time behavior of the current flow on a radar target, and conse­
quently, the scattered field, is more readily calculable. 

Using the Green's function for the far-zone field,2 

H=_J..~J['sxsxJl d3x 
s c2 dt Ix - xl 

. S ret 

(2) 

and the p.o. current flow from above, one can derive a general expression relating the far­
zone field scattered from a radar target to the field incident on the target, 

E :l [ (,2 (~") -')] - Q " " " " " r l -s • r E(t)=---o--fsxsxnxixe.f t- -=-+ dA 
s 2ncRsO dt I 2Roc c 

(3) 

In the expression, the incident field is given by Hit) = eiEo!(t), where ei = the 
direction of the incident field, Eo = the amplitude of the incident field, andf(t) = the time 
history of the incident field. 

Other parameters in the expression are r' = the distance from the origin (on or near the 
plate) to a point on the platen, n = the unit vector normal !o the surface of the plate, s = the 
unit radius vector pointing from the plate to the observer, i = the unit radius vector from the 
transmitter to the point on the plate surface, 
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RiO = distance from plate to transmitter, RsO = distance from plate to observer. Figure I 
shows the geometry of the scatter. 

Direction 
to transmitter 

i' 

i 

Direction 
to receiver 

Figure 1. Geometry of scatter and orientation of coordinates. 

It is possible, in principle, to transform Eq. 3 into the frequency domain to find its fre­
quency space p.o. counterpart, and vice-versa. However, the time domain solution is more 
intuitive and appealing because the causal structure naturally appears in the mathematical 
solution. It appears through the integration limits, which are a function of time. This is an 
expression of the fact that target boundaries influence the scattered field within a region 
limited by the speed of light. In contrast, frequency space solutions are built from standing 
waves, in which the boundaries instantaneously influence the solution throughout the scat­
tering surface. Causality is impressed upon the frequency space solution in a nonintuitive 
fashion by applying a (phase) shift operator. Nonetheless, as long as care is taken to pre­
serve the causal nature of the boundary conditions, frequency space solutions hold equal 
mathematical validity. 

By restricting solutions to the p.o. approximation, the reactive portion of the scattered 
field is missing. Currents imposed upon the conducting surface are not allowed to react to 
the surface itself. For example, when a current pulse reaches an edge, it will not simply 
decay with the incident field; some current will be reflected backward and interfere with the 
original current. Some of the current will wrap around the edge and flow in the shadow 
region, and some current will slide along the edge and flow parallel to it. Each of these cur­
rents will separately radiate as they change, creating deviations in the scattered field from 
that predicted by p.o. However, the p.o. model is expected be an accurate approximation to 
reality whenever the wavefront travel time across the plate is much greater than the pulse 
width. Under this condition, resonant effects are expected to generate fields of considerably 
less amplitude than fields predicted by the p.o. model. Even if the condition is not rigor­
ously satisfied, fields radiated from relaxation currents after the pulse has swept across the 
plate may be time isolated and gated out from the prompt fields predicted by p.o. Under 
these conditions, we expect the p.o. model to predict realistic scattered fields. 

SCATTERING FROM FLAT PLATES 

The far field scattered from a flat plate can be written in the suggestive form, 
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= 'v -ft--dt 
2s x s x n x i x e.EO J.min(Vl,Vlmtu) dW ( y ) 

41rcR s max(O,v.(t-tp )) dy Vs ' 
(4) 

where W is the width of the plate measured along the direction of propagation, Vs is the 
apparent speed of the pulse across the plate surface, y is a length variable measured along 
the propagation path across the surface, and tp is the pulse width of the incident field. The 
equation predicts the scattered field to be proportional to the incident field, but weighted by 
the width of the target plate. Clearly, the larger or smaller the change of width along the 
propagation path, the larger or smaller is the scattered electric field. 

As a first example of the use of Eq. 4, we examine scattering from a single straight 
edge. Consider a pulse impinging broadside onto the front edge of a flat, perfectly conduct­
ing plate. For this case, the derivative inside the integral becomes infinite, so 

aw ay -+ W 6(y = 0) , 

where ~ = 0) is the Dirac delta-function. The integral is easily evaluated to be 

_ 2sxSxnxi xe.Eo Es(t) = I v Wf(t) 
41rcR s 

(5) 

Radiation from the trailing edge of the plate is similar. For the trailing edge, the 
derivative becomes 

(6) 

and the scattered field is 

Uxsxnxixe.EO 
I' V 

41rcR s 
(7) 

Adding the two fields together we have 

- 2sxsxnxixe.Eo [ (L)] E (t) = I V f(t) - t--
s 41rcR s v s 

(8) 

Figures 2 and 3 illustrate scattering from the front and trailing edges by plotting the 
incident and scattered field using Eq. 8. Figure 2 plots the incident field and Figure 3 plots 
the scattered field as a function of time as seen by an observer in the far-zone field. The 
scattered field vanishes between the front and rear edges. Under the assumptions of the 
p.o. model, scattering only occurs at edges, i.e., only where the derivative, aWldy, is 
nonvanishing. 

Although this result may appear unusual, it is rooted in sound physics. As the IUWB 
radar pulse sweeps across the front edge of the plate, current is generated on the front 
boundary of the plate surface and flows toward the rear of the plate. Since current is 
produced, a field (the scattered field) is radiated. A similar condition holds at the rear of the 
plate. There, as the IUWB radar sweeps across the edge, current is absorbed, again resulting 
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in a radiated field. But over the body of the strip, under the condition tp < t < Ltv s current is 
neither created nor destroyed, only propagated. Thus, no field is radiated. 
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Figure 2. Time history of incident electric field. 

Monostatic scatter 

Length of plate 10 m 
Width of plate 3m 
Spherical polar angle 30° 
Spherical azimuthal angle 1° 

l Apparent speed of wavefront 3e+08 mls 

o 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 
TIME (5) x10-8 

Figure 3. Scattered field from front and trailing edges of plate. 
Broadside incidence. 

In the case of scattering from a rectangular plate, the derivative, dW / dy, becomes a 
weighting function over the integral of the incident time waveform. To demonstrate, con­
sider a perfectly conducting, flat, rectangular plate of length L and width W, and with an 
incident field impinging upon the plate with spherical polar angles (e, ¢) = (30·, 20·). 

Figure 4 shows the time waveform that is scattered back (monostatic radar). The 
scattered field is computed numerically. The first and second pulses in the scattered 
waveform are identical, except the second is of opposite sign from the first. For a flat 
rectangular plate this holds true, because width derivatives are equal and opposite in the two 
radiating regions. In general, though, for any arbitrarily shaped quadrilateral, equal and 
opposite pulses may not occur. 
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Scattering from a circular disk provides a case for which the derivative, dW/dy, is con­
tinuous across its surface. Figure 5 plots the scattered field. The scattered field is a maxi­
mum near the front and rear lips, where the amplitude of the derivative is a maximum. 
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Figure 4. Scattered field from a rectangular plate. 
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Figure 5. Scattered field from a circular disk. 

SPECULAR REFLECTION 

Variation of the far-zone p.o. scattered field with angle exhibits changes in both the 
amplitude of the scattered field and its shape. Figure 6 charts the backscattered field for four 
different scattering angles. The separation between the leading and trailing pulses decreases 
between 30· and 15°, and begins to overlap at SO. The maximum backscattered field occurs 
at vertical incidence, and is the region of specular reflection. Specular reflection for the 
more general bi-static case occurs whenever the linear terms in the time delay are zero, 

(s - i) • r' = 0 (9) 
c 
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Monostatic scatter 

Length of plate 
Width of plate 
Spherical azimuthal angle 
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TIME (s) x10-B 

Figure 6. Variation of scattered field shape with scattering angle. 

Only the quadratic terms survive, so the general expression for the field becomes 

E (t) = I - f t - --=- dx dy - 2sx§xnxi xe.EO d II ( r,2 ) 

s 4ncRso dt 2Roc 
(10) 

We can exactly integrate the expression above in the case of backscatter specular 
reflection from a circular disk, 

i,lt) :- .,[flt ) - {< -~)l. (11) 

Equation 11 predicts behavior that is very interesting. It provides bounds for "true" 
specular reflection. For 

r2 
__ d_ » t 

p • (12) 

the two pulses are widely spaced. The first pulse undergoes mirror reflection; that is, it 
appears to the observer with no range loss, but with its polarity reversed. The amplitude of 
the second pulse is suppressed if the plate has many irregular edges, giving the appearance 
that the first pulse is the only one seen. 

Interestingly, we can also define the "Fresnel length" from the expression in Eq. 12, 

(13) 

Consequently, "true" specular reflection, as we have defined it above, would only be 
observed in the Fresnel zone. For a 10 m diameter plate and a 5 ns pulse, the zone limit 
would only be about 17 m, and an observer farther away would not discern two distinct 
pulses. 
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A distant observer w()uld not experience "true" specular reflection, but he would expe­
rience a sort of "restricted" specular reflection. For the monostatic case, we can use Eq. 12 
to derive the form seen by an observer in the far zone. In the far zone we have 

so the difference in the waveforms is 

F(t) (14) 

where A is the area of the circular disk. So, the waveform in the far-zone appears as the 
derivative of the IUWB waveform launched by the radar. For the more general bistatic case, 
it is equally easy to show that the far-zone specular reflection is the same as Eq. 14. Setting 
the total time delay equal to zero, 

The integration can be carried out since the term in the integrand is only a function of time 
and not of the coordinates. 
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INTRODUCTION 

In this paper we introduce a new numerical method for the calculation of the 
patterns of electromagnetic scattering produced by bounded obstacles. Our approach 
to this classical problem is based on a rigorous [3] boundary perturbative technique 
which we call method of variation of boundaries (MVB). We have previously used 
this method in the solution of problems of diffraction by gratings [4, 5, 6]. In what 
follows we present preliminary results indicating that the MVB can also produce re­
sults of good numerical accuracy, with limited computational effort, in a variety of 
challenging obstacle-scattering problems. Our algorithms are applicable to obstacle 
problems throughout and above the resonance regime -that is, for obstacle sizes 
ranging from much smaller to substantially larger than the wavelength of radiation. 
This is a critical regime in which high frequency approximations such as geometrical 
optics are not valid. The MVB approach provides fast and accurate solutions even in 
cases in which the boundary of a large scatterer contains a number of protuberances of 
a size comparable to the size of the scatterer itself. Our numerics do not use integral 
equations or Green functions. Instead they solve two- and three-dimensional scatter­
ing problems -involving arbitrary obstacles admitting polar or spherical-coordinate 
parametrizations- by means of analytic continuation, methods of complex variable 
and approximation theory. 

The efforts of a number of authors has provided us with a variety of hybrid methods 
and benchmark solutions in two dimensional [10, 8, 20] and three dimensional [16, 
17, 19] problems. Hybrid methods solve diffraction problems by means of appropriate 
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combinations of integral equations and geometrical or physical optics approximations. 
Integral methods are reliable, and can give reasonable results for a very wide variety 
of scattering configurations. Both the integral approaches and ours are best suited 
to treat scatterers with smooth boundaries. (In our algorithm, corners and edges 
generate additional complex singularities; in the integral methods, they introduce 
non-integrable kernels. These problems are often solved by means which amount, in 
effect, to substituting corners and edges by suitably smooth approximations). The 
present version of the MVB is restricted to scatterers which admit polar or spherical 
coordinate parametrizations, and therefore, is not as general as other methods based 
on integral equations. Within their domain of applicability, however, our algorithms 
do exhibit an excellent performance. 

After discussing some theoretical aspects we will present a few preliminary applica­
tions of our algorithm in the simplest case of two-dimensional scatterers corresponding 
to (large) sinusoidal perturbations of a circle. We have not yet applied our meth­
ods to three-dimensional bounded-obstacle configurations. Based on our experience 
with previous applications of the MVB in the context of two- and three-dimensional 
diffraction gratings, we expect our method will be as efficient and accurate in three 
dimensional problems as it is in two dimensional cases. To illustrate this point we 
reproduce here some earlier applications to three dimensional grating problems, see 
also [5, 6). 

As examples of two-dimensional bounded obstacles we shall consider a square 
with rounded edges and a cross-shaped domain. We shall see, for example, that our 
algorithm can calculate the scattering cross sections of the square with a relative error 
of less than 10-4 for a square of perimeter equal to thirty times the wavelength, P = 
30>', the error being less than 10-6 for perimeters P ~ 20>'. Most other presentations 
in the literature do not provide such definite error estimates. The lowest errors 
reported in connection with integral approaches in two dimensions appear to be those 
of [15). These authors obtained results with errors of order of 10-3 for circles with 
P ~ 10>' in a two dimensional problem which results from treating a sphere as a body 
of revolution. 

THE METHOD OF VARIATION OF BOUNDARIES 

To introduce our method we consider a given perfectly conducting obstacle n 
such as that of Figure 1. A rdated treatment can be given for finitely conducting 
scatterers, and for three dimensional bounded obstacles and diffraction gratings, see 
Figure 2. 

The boundary an of our obstacle is assumed to admit a polar representation 

p = a+ f(8). 

In what follows we shall consider the example of an E-polarized plane wave incident 
on n in the direction of the negative z-axis 

E~i "-iloz H~i "fp -iloz = ze , = y -e . 
J.' 
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Our approach is based on viewing the scattered fields as functions of suitable 
perturbations of the boundary an. More precisely, defining domains n6 by 

our algorithml computes the diffracted fields by means of power series in the vari­
able o. Of course, in principle it is not clear that such power series expansions are 
convergent, or, in other words, that the fields are analytic functions of o. This is 
a subject which caused some controversy, after certain numerical methods based on 
Neumann series were introduced by Meecham, see [13, 18, 14, 31. We have recently 
established [31, however, that the diffracted fields are indeed analytic functions of the 
perturbation parameter o. 

y 

zLx 

Figure 1. The geometry. 

Let u :: u(p, 8,0) denote the z-component of the E-polarized scattered electric 
field corresponding to the obstacle n6• With this notation the property of analyticity 
of the fields implies that the function u can be expanded in series in powers of o. In 
particular it can be shown that u can be represented by a convergent Fourier series 

co 

u(p,8,0):: ~ Br(o)(-itHp>(kp)eirB (1) 
r=-oo 

with analytic coefficients Br(o). Here and in what follows we will denote by H$l>(z) 
(resp. Jr(z)) the Bessel function of the third kind (resp. first kind) and r-th order. 
By analyticity, the coefficients Br(o) can be expanded in power series 

co 

Br(o) :: E d,..rl1'. (2) 
.. =0 

lHere we regard our obstacle as a perturbation of a circular cylinder. It can be advantageous in 
some circumstances to use perturbations from other particular geometries for which exact solutions 
are known, such as, for example, an appropriate elliptic cylinder or ellipsoid. 
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Figure 2. Section of a three dimensional bisinusoidal diffraction grating. 

The coefficients dr., .. which determine the solution completely through (2) and (1), 
can be obtained by differentiation of the perfect-conductor boundary condition 

u(a+5f(8),8,5) _e-ik", I __ -ik(a+6J(B»coa{B) 
p=a+6J(B) - e 

00 

- I: (-i)' J. (k(a + 5f(8))) ei• B (3) 
r=-oo 

satisfied by u. Indeed, since we have 

1 d"B.( ) 
dr.,. = n! d5n 0, 

one can show that the dr.,. 's satisfy the recursive formula 

dr.,q 
q+nF d" J. 

= _kn I: Cn,q_p(-i)P-q dz:(ka)jH~l)(ka) 
p=q-nF 

n-l q+(n-I)F d"-I H(l) 
I: kn- I I: dl,pCn_l ,q_p( -irq dzn-~ (ka)j H~l)(ka), 
1=0 p=q-(n-I)F 

(4) 

where CI,. denotes the roth Fourier series coefficient of the function f(8)I/l1. Thus, 
all the dr.,.'s can be obtained from the initializing values do,q . These, in turn, follow 
directly from known formulae ([2]) for the field scattered by 116 for 5 = 0, that is, by 
a circular cylinder of radius a. They are given by 

(5) 

Formulae (4) and (5) permit one to calculate recursively all the dr.,.'s, and therefore 
the coefficients B. and the field u through analytic continuation, as we will show in 
the following section. Similar calculations lead to analogous recursive formulae in 
two and three dimensional geometries, for all polarizations and for either perfectly 
conducting, dielectric or metallic obstacles or gratings, see also [4, 5, 6]. 
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NUMERICAL RESULTS 

From the description in the previous section, we know that the Fourier coefficients 
Br( 6) corresponding to the field scattered by the domain n. are analytic functions 
of the parameter 5. Furthermore, we have simple recursive formulae that permit 
us to calculate all of the terms in the power series expansion about 6 = 0 of each 
Br. Now we wish to extract the values of the coefficients Br themselves from their 
power series. The obvious approach of summing a truncated series allows one to 
compute the scattered amplitudes only for relatively small perturbations. In the case 
of gratings we have shown [5,6], however, that introduction of Pade approximation 
in our algorithms leads to reliable, accurate and widely applicable scattering solvers. 
As we shall see, the same is true in applications of our method to bounded obstacle 
problems. 

The [LIM] Pade approximant of a function 

00 

B(6) = L dn6" (6) 
n=O 

is defined (see [1]) as a rational function 

whose Taylor series agrees with that of B up to order L + M + 1. A particular [LIM] 
approximant may fail to exist but, generically, [LIM] Pade approximants exist and 
are uniquely determined by L, M and the first L + M + 1 coefficients of the Taylor 
series of B. Pade approximants have some remarkable properties of approximation 
of analytic functions from their Taylor series (6) for points far outside their radii of 
convergence, see e.g. [1]. A preconditioner which, based on conformal transformations 
can produce very substantial improvements in the quality of Pade approximations has 
been introduced recently [7]. 

In order to demonstrate the numerical properties of our algorithms we present 
calculations we performed for three different scatterers. Our first two examples cor­
respond to the two-dimensional bounded obstacles of Figures 3 and 4. We have not 
yet applied our methods to three-dimensional bounded-obstacle configurations; in 
our third example we do present, however, our calculations for the case of a three­
dimensional diffraction grating, see Figure 2. This example will allow us to illustrate 
the capabilities of our algorithms to handle three dimensional configurations and to 
compare the performance of our algorithms in three dimensional problems with that 
of other methods based on integral formalisms. 

The obstacles in Figures 3 and 4 admit a polar representation such as that indi­
cated in Figure 1, and they have been obtained from the perturbation function 

f( 8) = 2 cos( 48) 

for two different values of Ii. The obstacle of Figure 3 corresponds to a choice of 5 
with 41i = 0.15. In Table 1 we give our calculated values for the back-scattering cross 
section (BSCS), forward scattering cross section (FSCS) and total scattered energy 
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(Er IBrI2) corresponding to this scatterer for a number of perimeter to wavelength 
ratios P / >.. The quantity € in the tables is the calculated value for 

which, according to the principle of conservation of energy, ought to vanish [11]. 
Clearly € is a good measure of the relative error in the calculation of the total scattered 
energy, and can thus be expected to be a reasonable indicator of the errors in the fields. 
The results in Table 1 show that, as mentioned in the introduction, our algorithms 
can solve problems involving electrically large obstacles with very good accuracy. 

Figure 3. The domain 0, = ((p,9) : p:5 a + 6/(9)} for a = 1.0, 46 = 0.15 and /(9) = 2 cos( 49). 

Table L Computed values of the back-scattering cr088 section (BSCS), forward scattering cross 
section (FSCS) and total scattered energy (Er lB. 12) for the scatterer of Figure 3: [717] Pade 

approximants. 

PI). BSCS FSCS Energy E 

0.40 5.447E+00 1.009E+Ol 7.326E-Ol 2.3E-07 
0.60 4.402E+00 1.053E+Ol 9.S65E-Ol 8.4E-OS 
O.SO 3.99SE+00 1.1l9E+Ol 1.22SE+00 3.4E-07 
1.00 3.76SE+00 l.l92E+Ol 1.46lE+00 6.9E-07 
4.00 1.463E+00 2.440E+Ol 4.720E+00 6.5E-07 
7.00 1.795E+00 3.S32E+Ol 7.9S0E+00 2.2E-07 

10.00 1.606E+00 5.2S2E+Ol l.l27E+Ol 2.2E-07 
15.00 1.6l6E+00 7.696E+Ol 1.672E+Ol 1.6E-06 
20.00 1.610E+00 1.006E+02 2.2l0E+Ol 3.SE-06 
25.00 1.605E+OO 1.237E+02 2.743E+Ol 1.2E-05 
30.00 1.60SE+00 1.46SE+02 3.274E+Ol 2.2E-04 
35.00 1.57SE+00 1.693E+02 3.S06E+Ol 1.4E-03 
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In Table 2 we give numerical results corresponding to the scatterer of Figure 4, 
which constitutes a much more dramatic perturbation of the circle (40 = 0.75). The 
results of Table 2 show that, even for such a complex large scatterer, our solver 
produces accurate results. 

1.5 

·0.5 0.5 

-1.5 

Figure 4, The domain 06 = {(p,O) : p~ a+6/(O)} for a= 1.0,46 = 0.75 and /(0) = 2cos(40). 

Table 2. Computed values of the back-scattering cross section (BSCS), forward scattering cross 
section (FSCS) and total scattered energy (E. lB. 13 ) for the scatterer of Figure 4: [7/7] Pade 

approximants. 

PI). BSCS FSCS Energy 
0040 7.045E+00 1.151E+Ol 6.323E-Ol 3AE-06 
0.60 5.580E+OO 1.171E+Ol 8A57E-Ol 5.0E-05 
0.80 4.868E+00 1.222E+Ol 1.047E+00 8.0E-05 
1.00 4A70E+00 1.283E+Ol 1.240E+oO 2.2E-04 
2.00 2.171E+00 1.558E+Ol 2.109E+00 5.3E-05 
3.00 8.696E-02 1.963E+Ol 3.047E+00 1.7E-03 
4.00 2.069E+00 2.210E+Ol 3.804E+00 1.2E-03 
5.00 4.378E+00 2.823E+Ol 4.957E+OO 1.6E-02 
6.00 3.611E+00 3.263E+Ol 5.718E+00 6.3E-03 
7.00 1.278E+00 3.905E+Ol 6.925E+00 5.3E-03 
8.00 3.033E-Ol 4.790E+Ol 8.214E+00 9.1E-03 
9.00 4.260E+00 5.167E+Ol 8.705E+00 3.3E-02 
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Finally, let us discuss scattering calculations we performed for three-dimensional 
sinusoidal gratings such as that of Figure 2. In the case of gratings our method is 
based on perturbations from a plane, and the perturbation function corresponding to 
Figure 2 is 

h [(27rX) (27rY)] f(x,y) ="4 cos d + cos d . (7) 

A study of such three dimensional gratings (in copper) was given in [12]. The objective 
of these authors was to design an efficient solar selective grating which is highly 
absorbing throughout the visible region and highly reflecting in the near infrared. 

The results given by our code for sinusoidal gratings in copper are plotted in Fig-

eD a eo b 
a.a 0.8 

a. , 0.' "\ 
0.4 0.4 

0.2 0.2 

A IJ.tmI 0.3 

eo c J \ eD d '\ o. a o.a 

a. , o. , 

0.4 0.4 

0.2 0.2 

0.3 
A 1J.tm1 0.3 

Figure 5. The energy absorbed by a sinusoidal grating in copper with groove depth h = O.20JJrn 
as a function of the wavelength for normally incident light. (a) d = O.7071JJrn; (b) d = O.50JJmj 

(c) d = O.35JJrn; (d) d = O.20JJm: [6/6] Pade approxirnants. 

ure 5. While the general features of these curves are similar to those in [12, Fig. 7.19], 
comparison shows that our graphs differ from those in a number of important details. 
For example the absorbed energy shown in [12, Fig. 7.19 a,b] is below our predictions, 
for the shortest wavelengths, by as much as 20%. This is probably due either to low 
accuracies in the results given by the integral method, or to differences in the values 
used of the refractive index of copper. It must be pointed out that the accuracy 
of the integral approach of [12] has been estimated to be of the order of two digits 
in some problems which are substantially less challenging than the ones considered 
in Figure 5 [9]. The high accuracy of our predictions is shown by the convergence 
study of Table 3. The computing time used for the calculation with n = 13 was of 
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about twenty seconds in a Sparc station IPX. A corresponding five minute calcula­
tion (with n = 21) yields values for the gratings of Figures 5 (a) and (b) and for 
any of the wavelengths considered with no errors of order worse than 10-8 and 10-5 , 

respectively. 

Table 3; Convergence study ofthe absorbed energy for the example in Figures 5(a) and 5(b) 
(copper). The wavelength is fixed at >. = 0.3JJm and the period at d = 0.7071JJm for Figure 5(a) 

and at d = 0.5000JJm for Figure 5(b). ["2"1/"2"1) Pade approximants. 

13 0.66407973570 0.73248902890 
17 0.66442364189 0.72911437001 
21 0.66442218058 0.72918754870 
25 0.66442216062 0.72919146502 
29 0.66442215270 0.72919155477 
33 0.66442215271 0.72919154229 
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CONCEPfS IN TRANSIENTIBROADBAND ELECTROMAGNETIC TARGET 

IDENTIFICATION 

ABSTRACT 

CarlE. Baum 

Phillips Laboratory/WSR 
3500 Aberdeen Avenue SE 
Kirtland AFB, NM 87117-5776 

Electromagnetic transients can be used for target identification to bring out signa­
tures associated with target signatures that would not otherwise be present. For this 
purpose, all polarizations and a wide band of frequencies (perhaps with band ratios of a 
decade or more) can help in the identification. Signatures of interest include both aspect­
dependent and aspect-independent types, covering both early and late times, and high and 
low frequencies relative to the target dimensions. The target features of interest include 
both global and local properties. Symmetries are used to organize the various target 
feature/signature pairs into the various habitats of a zoo. Such symmetries include 
symmetries in the Maxwell equations (time translation with linearity, and reciprocity), 
geometrical symmetries (rotation/reflection and translation), and affine symmetries 
associated with the window location and dilation in temporal wavelets, and filter location 
and dilation in frequency wavelets. The associated techniques can be used to elucidate 
SEM poles (complex natural frequencies), relative location of scattering centers, early­
time asymptotic waveforms, exact scattering results from substructures (e.g. generalized 
cones), and scattering from linear arrays. With the signatures obtained via a target­
identification radar then pattern-recognition techniques can be used to identify the target 
type under observation. 

L INTRODUCTION 

In target identification the problem is to obtain a sufficient amount of the right kinds 
of information from a radar. There are various ways one might approach this problem. A 
common way is imaging, provided one has sufficient angular resolution (such as by SAR 
or ISAR). If, however, one does not have a sufficiently cooperative target for a good 
image, one may need another approach. An alternate to lots of angular information (or 
equivalently a huge antenna aperture) is to have lots of frequency information, whether 
obtained via one or more broadband transients, or a sufficient number of narrow-band 
("single" frequency) looks at the target. 

Building on techniques developed from the 1960s [5] for sensors and simulators 
(extremely high-power transient antennas) for the nuclear electromagnetic pulse (EMP) 
one can design appropriate types of pulse radiating antennas such as the IRA (impulse 
radiation antenna) [11, 13] with band ratios (ratio of upper to lower useful frequencies) of 
over a decade. So one needs to consider how to use the scattering information potentially 
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available for target identification. Note that target identification is here defined as selec­
tion of a target type from a library of targets based on signature information stored in the 
library. 

For an assumed incident plane wave 

~ (inc) -+ -+ _ -+. -+ -+(inc) -+ 
E (r,s)=Eo I p /(s)e-r1 "r,E (r,s)= 

-+ I j' r 
( 

-+-+] Eo Ip / t--c-

t == direction of incidence, Ip == incident polarization (1.1) 

-+ -+ 

S • r == - == propagation constant 
c 

S == n + jOJ == Laplace - transfonn variable or complex frequency 

- == Laplace transfonn (two- sided) (with respect to time, t) 

with r = ° taken as some convenient location in the vicinity of the target, we have the 
far scattered field as 

~(sc) -+ ~ -+ e-rr H -+ -+ ~(inc) -+ 
E (r,s)= E/(r,s) = - A(1o, li;S) . E (O,s) 

4117 

~ -+ 1 H -+ -+ ~(inc)(-+ r) 
E/(r,t) = -A(1o,Ii;t) 9 E O,t--

4117 c 

r == 111 == distance to observer (1.2) 

-+ 
1 0 == direction to observer 

o == convolution with respect to time 

H 

It is the scattering dyadic A (2 x 2 in appropriate coordinates) that contains infonnation 
about the target, so it is this dyadic that we need to construct for various regimes of 
frequency and time. Note that reciprocity (assumed) implies 

(1.3) 

-+ -> 
and in backscattering (1 0 = - 1 i ) this becomes 

H -+ H -+ -+ HT -+ 
Ab(1i,S) == A(-li, li;S) = Ab(1i,S) (symmetric) (1.4) 

ll. PARAMETRIC SCATTERING MODELS AND SIGNATURES 

There are various parametric scattering models [1,10,16] one can use to model the 
scattering dyadic. By a model let us mean some mathematical expression with a set of 
parameters which represents the scattering (whether exact or approximate) over some 
region of time, frequency, etc. (or combinations thereof) [1]. These parameters can be 
scalars, vectors, dyadics, etc. (real and complex). From this let us define a signature type 
as a set of parameters associated with a scattering model, and a signature (of some partic-
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ular target type) as a set of specific parameter values (including aspect dependence) 
associated with a signature type and related scattering model. 

Now these models apply to the various physical features (geometric including 
constitutive parameters, both global and local) of the target. As such, a target type can 
have more than one signature of interest. An important idea is that the parametric models 
are associated with the symmetries in the target features and Maxwell equations. These 
symmetries are then implicitly present in the signatures and the signal processing 
algorithms for bringing out these signatures in the scattering data. This forms the basis of 
a zoo which organizes these things into habitats based on the symmetries involved (by 
analogy with the particle-physics zoo based on quantum symmetries) [16]. This is to be 
distinguished from the target library where the specific signatures are organized by target 
type (e.g., B707, etc.). 

Let us now briefly discuss the various scattering models so that we have some of 
the forms that the signatures can take. Here we consider the usually simpler form these 
take in backscattering, but they also apply to bistatic scattering, in which case the dyadics 
are not in generally symmetric. 

1) Singularity expansion method (SEM) 

a 

+ entire function (transformed to time domain) 

sa == aspect - independent natural frequency (parameter) (2.1) 

ca (Ij) == target polarization vector (aspect - dependent 

parameter, two components) 

tj == initial time (chosen for convenience) 

This has been reviewed recently [4] where one can access the extensive literature. Note 
that this model applies to both global scattering (major body complex resonances) and 
local scattering (substructure resonances). 

2) Generalized cone (dilation symmetry) 

A recently developed model [15] is based on dilation symmetry defined by 

~ 

r' = xr , X> 0 (continuous positive scaling parameter) 

t' = Xt , s' = X-Is 
~ - ~ 

1(r,s) = e (;:!,s') , J;(r,s) = f1(;:!,S') , fi(r,s) = X ~(;:!,s') 
H H --7 

Y s(r,s) = Y s(r',s') == sheet admittance 

In the usual spherical coordinate system (r,(),I/J) the angles are invariant under this trans-
~ ""+ 

formation. This defines a generalized cone with apex at r = 0 as illustrated in fig. 2.1. 
The general scaling of the constitutive parameters in (2.2) admits of various important 
special cases including perfectly conducting cones, uniform frequency-independent 
dielectric cones, uniform resistive sheets on surfaces defined by a relation between () and 
I/J, and combinations of the above. The remarkable result is that provided the orientation 
is such that the first scattered signal to reach the observer comes from the cone apex, then 
the scattering takes the form (has the model) 
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Figure 2.1. General Cone Scatterer. 

.......... C H(C)..... Jt ..... (inc)(..... r} 
Et(r,t)=-K (lj). E 0,1'-- t' 

4nr _ C 

H(C) ..... 

K ( 1 i) = real, symmetric, 2x2 dyadic (parameter) 
containing aspect infonnation 

J{ .. ·)dt' ;;; It;;; aspect - independent temporal integral 
- operator (parameter) 

(2.3) 

This result is exact up to the time that the truncation of the cone can be observed. Note 

here that the order n of temporal integration I~ (n = 1 in this case) is itself a parameter in 
the model. If additional constraints are placed on the media so that there is one dimen-

sion of translation symmetry to give an infinite wedge then n = 1/2 and r-lis replaced by 
-112 

r . Similarly if two dimensions of translation symmetry are imposed to give an 

infmite half space then n = 1 and r -1 is replaced by rO. 

Of great interest is the case of a finite length wedge as in fig. 2.2, since like the 
cone in fig. 2.1 it can describe (at least approximately) substructures on real targets. In 
this case we start with dilation in two dimensions by having the constitutive parameters 
independent of z. In a cylindrical coordinate system ('I',q"z), note that since 'I' = rsin(9) 
dilation in 'I' is just a special case of dilation in r, except that now the coordinate center 
can be taken anywhere on the edge of the wedge. The wedge becomes of finite length by 
introduction of two conical cutting surfaces with apices at PI and P2 on the edge and 
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Figure 2.2. Finite Wedge Scatterer. 

conical 
cutting 
surface 

deleting the material media outside of these surfaces. Centering coordinates successively 
on PI and P2 the finite wedge is a cone in the sense of (2.2) (until truncation and 
multiple-scattering can reach the observer). Then the scattering takes the form 

H --+ H(e) --+ H(C) --+ 
Ab(li,t)=cKl (li)u(t)+cK2 (li)U(t-t2,l) (2.4) 

t2,1;: time signal from P2 arrives at observer after signal from PI 

--+ 
so there are precisely two cone-like terms. For the special case that 1 i is perpendicular 
to the edge (the z axis here) the model becomes 

(2.5) 
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where a new kind of term involving an edge dyadic and n = 0 integration (both 
parameters) appears. This analysis can be extended to finite-dimensioned half spaces in 
which case a third term appears (for normal incidence) involving a time derivative 
(n = -I). 
3) High.frequency method (HFM) 

In this case one has an asymptotic (rather than exact) model [3,10] as 

H -t ~H -t e-stp 

Ab(li,S)= kDp(1i)-;p ass~oo (2.6) 

p 

where p (a parameter) can take on fractional values as well as integers. The tp (also 
parameters) represent the times the observer sees various discontinuities encountered by 
the wave. The real, symmetric dyadic diffraction coefficients (also parameters) contain 
aspect information. 

4) Linear array of scatterers 

H -t H(O) -t l_e-NsTo 
Ab(1i,S)=Ab (1i,S) sf. 

l-e 0 

To == round - trip additional time delay for signals 
from successive scatterers 

~ (0) 

Ab (ii's) = scattering dyadic for one scatterer in array 

(2.7) 

This model [15] is appropriate where mutual interaction between the scatterers can be 
neglected. It can be applied to a linear array of scatterers such as aircraft windows. To is 
a parameter which is aspect dependent. For large N (number of scatterers) this model 
behaves like poles on the j(J) axis at sm = j(J)m = j2mn/To and so the set of Sm (array 
frequencies) is a signature. 

5) Scattering center model 

Recently [6] interest has been shown in a model of the form 

(2.8) 

H(m) 

where the fm are called scattering centers. Often the Ab are taken a~~~~ple 

functions, like delta functions, but the above is more general. Provided the Ab are 
-t -t 

concentrated sufficiently narrow in time one can recover the 1 i' r m (parameters) as a 

signature (aspect dependent). By rotating a target (varying l;) with given -; m in the 
library one can try to match the measured signature. It should be noted that the model 
can be quite approximate since in some cases scattering centers (e.g., specular points) can 

..... 
vary as 1 i is varied. 

6) Low frequency method (LFM) 

There is a low-frequency (dipole) model of the form [3, 16] 
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H H -+ -+ 
li=I-lili (2.9) 

H 
P(s) = electric polarizability 
H 
M(s) = magnetic polarizability 

For perfectly conducting scatterers these polarizability dyadics are frequency indepen­
dent. They have dimension volume and are proportional to the cube of the target linear 
dimensions. 

7) Other 

This list is not exhaustive. The target substructure can have various point symme­
tries (rotation and reflection), or discrete dilation and translation symmetries [4, 14] 
which give special properties (parameters) in the scattering dyadic. 

Summarizing we have part of the zoo in table 2.1. 

Table 2.1. Symmetries in Maxwell Equations and Target Geometry and Constitutive 
Parameters (Zoo, Part 1) 

Symmetry Habitat 

Time translation and linearity 

Reciprocity 

Point symmetries (rotation and reflection) 

Discrete spatial translation 

Continuous dilation (generalized cone) 

Signature Consequences 

s-plane representations (LFM, SEM, HFM) 

H 
Symmetric Ab, principal axes for 
polarization 

H 

Symmetries in A 

Aspect-dependent frequencies 

Target orientation and aspect-independent 
temporal integration 

m. SIGNATURE·BASED SIGNAL PROCESSING 

Now we need to consider what to do with the recorded scattered waveforms. After 
removing various characteristics of the radar one needs to process the data into a form 
suitable for target identification. This has been referred to as wave-oriented signal 
processing [7, 12]. As discussed above this can be sharpened somewhat into signature­
based signal processing, the signatures (based on parametric scattering models) contain­
ing information specific to a particular target type. As we have seen signature types are 
associated with various symmetries in the scatterer and Maxwell equations. So in design­
ing data-processing algorithms for bringing out particular signature types one can utilize 
the symmetries involved and include related symmetries in the data processing. At the 
same time one would like to suppress noise and other signatures (such as from clutter). 

There are various data processing techniques under present consideration [16]. 
Beginning with the two-sided Laplace/Fourier transform (to look for signatures in both 
time and frequency domains), this allows the use of filters (multiplication in frequency 
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domain). An important filter is the E or K pulse [4] which has zeroes in the complex­
frequency plane corresponding to the aspect-independent natural frequencies of particular 
target types. This extinguishes or kills the late time response when applied to the particu­
lar target for which it is designed. An analogous concept in time is a window 
(multiplication in time domain) which can be used to isolate the response of target 
substructures from other parts of the target (under favorable conditions). 

Briefly [16] a temporal wavelet is defined by 

.!.. g (I -(0) = temporal wavelet 
11 11 

J(lo,II) = fOOf(t}.!..g(I-lo)dl 
_00 tIll 

= temporal wavelet transform 

= ~ J f(s') g(-s'td eS'lo ds' 
21rJ Br (3.1) 

f(t} = {JJg(j~t ~~rILoo J:J(to,tI)* ge~lo ) d to d 11 

= inverse transform 

Here to is a translation parameter and tl > 0 is a dilation parameter (an affine 
transformation). Admissable wavelets are limited if one wishes to use the above 
inversion formula. A related transform is the window LaplacelFourier transform in 
which tl is regarded as fixed and e -st is included in the kernel. Similarly a frequency 
wavelet is defined by 

= frequency wavelet transform 

= inverse transform 
(3.2) 

Note here that one is really operating on fUw) and Wo is a translation parameter and 
WI > 0 is a dilation parameter (an affine transformation in frequency). A related 
transform is the filter inverse-LaplacelFourier transform in which wt is regarded as fixed 

and ejOX is included in the kernel. 
These two kinds of wavelets are different in their application to physical problems. 

Our linear, time-invariant system is characterized by a scattering-dyadic convolution 
operator in time domain, this reducing to multiplication in frequency domain. In time 
domain 10 can be used to position the window about some temporal event of interest, 
noting that for short times the target substructures appear at different times in the 
scattering. Then by varying 11 one can look at a portion of the waveform on different 
time scales (multiresolution). This temporal dilation can be compared to the spatial 
dilation discussed in Section 2. In frequency domain one might use a wavelet to look at 
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special parts of the spectrum, i.e. of l(jw). This is appropriate for frequency-like 
signatures such as natural frequencies (SEM) or array frequencies discussed in Section 2. 

The symmetries in these transforms can also be included in the zoo as indicated in 
Table 3.1. 

Table 3.1. Symmetries in Data Processing (Zoo, Part 2) 

Symmetry Habitat 

Time translation 

Space translation related to time translation 
(relativistic invariance) 

Affine transfonnation in time (translation 
and dilation) 

Affine translation in frequency (translation 
and dilation) 

Data Processing 

Two-sided Laplace/Fourier transfonn, and use 
of filters (multiplication in frequency) 

Window (isolates substructures) 

Temporal wavelet (translation to isolate 
substructures, and dilation to obtain substructure 
signature) 

Frequency wavelet (translation to find 
frequency signatures, and dilation to resolve 
individual frequencies) 

IV. PATTERN RECOGNITION USING TARGET SIGNATURES 

Having obtained the signature(s) of some target we need to use this to decide which 
target type this is. This can be viewed as a pattern-recognition problem [2]. Pattern 
recognition has its own terminology beginning with a data feature (a number) and a 
pattern (a vector of data features). A key issue is to decide what shall be the data feature 
of interest for our radar target-identification problem. Referring to our earlier discussion 
this can be taken as a parameter in an electromagnetic scattering model. While a 
parameter can also be a vector, dyadic, etc., it can be split up according to components if 
desired. Then the pattern is a signature or set of signatures. Noting that signatures are in 
general aspect dependent, then for some target type this can be identified with a pattern 
class in which aspect-independent signatures are a common property. So the 
electromagnetic terms can be translated into pattern-recognition terms via a Rosetta stone 
as in Table 4.1. This allows the various pattern-recognition techniques [8, 9] to be 
applied to our problem. 

The pattern-recognition community then defines a pattern-classification system 
which starts with some arbitrary object and transducer. This is directly analogous to our 
desired target-identification system. The translation is given in Table 4.2. Note here that 
other information (e.g. aspect from target track) can be used in the classifier to reduce the 
region of pattern space to be searched. 

V. CONCLUDING REMARKS 

This paper has summarized various concepts and results concerning the use of 
scattering models to define target signatures, and the use of these in tum as target 
identifiers in a radar (pattern classification system). At the present state of the art, this 
gives a general structure (skeleton) to what may become a general class of target­
identification radars. The various pieces have been developed to varied degrees of 
completeness and sophistication. Hopefully, this can serve as some guide to help fill in 
the various pieces. 
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Table 4.1. Correlation of Electromagnetic and Pattern-Recognition Terminology 
(Rosetta Stone, Tablet 1). 

Pattern Recognition 

Object 

Feature (data feature): 
A number (real) 

Pattem (pattern vector, feature vector): 
features as elements 

Pattern class 

Pattern space (pattern hyperspace) 

Membership roster 

Pattern cluster: 
A pattern class with members close 
together in pattern space 

Common property 
(in a pattern class) 

Electromagnetics 

Target (or scatterer) type for one aspect 

Parameter: 
Real, complex, vector, dyadic 

Signature set: 
All signatures for a given target (one 
aspect) 
- Signature is itself a parameter set. 

Target aspect set (class): 
Set of signatures including variation over 
incidence (4x) and polarization (2x) for a 
particular target type 

Domain of all signature sets in target library 

Library of targets with non-intersecting aspect 
sets 

Domain of variation of aspect-dependent 
signature(s) for one target type 

Aspect-independent signatures 

Table 4.2. Radar as a Pattern Classifier (Rosetta Stone, Tablet 2). 

Pattern-Classification System 

Object 

Transducer: 
Senses and records data from the object. 

Feature extractor: 
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Processes the data by measuring certain 
features or properties that distinguish one 
object from another. 

Classifier: 
Takes features and decides which object 
is observed. 

Target-identifying Radar System 

Target: 
Viewed as set of target features (physical) 
for some particular aspect. 

Radar system: 
Includes transmitter, interrogating 
waveforms, scattered waveforms, 
receiver, and recorder. 

Signature-based signal processor: 
Signatures (parameter sets from models) 
are the things of interest in the data. 

Target identifier (discriminator, categorizer, 
classifier): 

Selects one target type (and perhaps the 
target aspect also) from the target library. 
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INTRODUCTION 

The electromagnetic energy backscattered from an unknown target can provide 
information useful for classifying and identifying the target This is commonly accomplished 
by interpreting the radar echo in either the time or the frequency domain. For example, the 
natural resonances of a target are manifested in the frequency domain as sharp, discrete 
events and can be attributed to the unique global features of the target. Similarly, scattering 
centers are manifested in the time domain as distinct time·pulses and can be related to the 
local features on the target. For target characteristics which are not immediately apparent in 
either the time or the frequency domain, the joint time-frequency representation of the radar 
echo can sometimes provide more insight into echo interpretation. The usefulness of the 
time-frequency representation of signals has long been recognized in the signal processing 
arenas. In the electromagnetic scattering community, the joint time-frequency analysis was 
first introduced by Moghaddar and Walton 1,2 to explain the measurement data from an 
open-ended waveguide cavity. In this paper, we present our work 3·9 in the generation and 
interpretation of time-frequency representations of wideband backscattered signals from 
targets, as well as our efforts to improve resolution in the time-frequency plane using 
wavelets and superresolution techniques. Similar efforts along these lines have also been 
reported by other researchers recently 10-12. 

TIME-FREQUENCY REPRESENTATIONS 

The standard tool in generating time-frequency representation of signals is the short­
time Fourier transform (STFT). Using the STFT, we have investigated the scattering 
characteristics of various targets including open-ended waveguide ducts 3,5, inhomogeneous 
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dielectric objects 4, coated plates containing gaps in the coating 6 and finite dielectric 
gratings 7. We found that scattering mechanisms, which may not be immediately apparent in 
the traditional time domain or the frequency domain, become quite revealing in the joint time­
frequency plane. Scattering centers, target resonances as well as dispersive phenomena can 
be simultaneously displayed and identified. They can also be correlated with target scattering 
physics and even extracted individually. 

Shown in Fig. 1 is the time-frequency image of a coated plate with a gap in the coating 
due to a vertically polarized wave at edge-on incidence. The back scattered data is generated 
by numerical simulation as well as measurements carried out by our colleagues from 
CESTA, France. Also plotted along the two axes are the time-domain and the frequency­
domain responses. It is clear that the scattering mechanisms are much more apparent in the 
two-dimensional time-frequency plane than in either the time or the frequency domain. In 
particular, it is observed that the third broad pulse in the time domain actually consists of 
three separate scattering mechanisms (labeled as 3a, 3b and 3c). In the time-frequency plane, 
straight vertical lines (like scattering mechanisms 1 and 3a) indicate non-dispersive 
mechanisms since the time delay is independent of frequency. Slanted curves in the time­
frequency plane (like mechanisms 2, 3b and 3c), on the other hand, are a sign of dispersive 
behavior, which in the coated strip is due to surface wave contributions. The different 
scattering mechanisms identified in the illustrations to the right clearly show that mechanisms 
2, 3b and 3c include surface wave propagation. 
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Figure 1. Time-frequency represenlation of the backscattered dala from a Plexiglas-coated conducting plate 
due to edge-on incidence obtained using the short-time Fourier transfonn. Also shown along the two axes are 
the time-domain and the frequency-domain responses. The illustrations on the right show the scattering 
mechanism interpretation based on the time-frequency display. 

Shown in Fig. 2 is the time-frequency image of a conducting strip coated by a grooved 
dielectric grating containing 12 periods due to a vertically polarized wave at 30° (from 
grazing) incidence. Present in the time-frequency plot are four horizontal lines (labeled Hl­
H4) and four vertically oriented lines (labeled Vl-V4). The straight horizontal lines are band 
limited and correspond to resonances in the structure. These 8 features are related to the 
scattering mechanisms labeled in the illustrations (Figs. 2(a)-(c». The fact that the time­
frequency display shows such distinct features makes it easy to pinpoint the various 
mechanisms, including the Floquet harmonics due to the incident wave, the Floquet 
harmonics due to surface waves, and the diffraction mechanisms due to the edges of the 
plate. In particular, mechanism H4 is quite unique to a finite periodic structure. It is caused 
by the Floquet harmonics due to the surface waves excited by the edges. It cannot be excited 
in an infmite periodic structure. 
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Figure 2. Time-frequency representation of the backscattered data from a conducting strip coated by a 
grooved dielectric grating due to vertical polarization at 300 (from grazing) incidence obtained using the short­
time Fourier transfonn. The finite grating contains twelve periods of equal width with a total length of 
41.5 cm. Each period consists of a 3.46 cm wide by 0.4 cm high triangular groove on top of 0.7 cm 
coating. The dielectric constant of the coating is Er=2.6. Also shown along the two axes are the time­
domain and the frequency-domain responses. The illustrations on the right show the scattering mechanism 
interpretation based on the time-frequency display. including (a) Isto{)roer diffractions and Floquet hannonics 
due to the incident plane wave; (b) interactions involving surface waves traveling to the right; and (c) 
interactions and Floquet hannonics due to surface waves traveling to the left 
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Figure 3. Time-frequency representation of the backscattered data from a 16-element slotted waveguide array 
due to a horizontally polarized wave incident at 300 from nonnal obtained using the short-time Fourier 
transfonn. The entire length of the waveguide is 96 cm which corresponds to 32 wavelengths at 10 GHz. 

We have also applied time-frequency processing to study a three-dimensional slotted 
waveguide array 9. The moment method electromagnetic simulation was facilitated by the 
use of a connection scheme we have developed previously for attacking deep cavity and long 
slot problems 13.14. The connection scheme allows a large structure to be analyzed in pieces 
before the sections are cascaded together. This scheme made possible the simulation of a 16-
element slotted waveguide array which exceeded 32 wavelengths in one dimension at 10 
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GHz. Shown in Fig. 3 is the time-frequency image of the array due to horizontal 
polarization at 30° off-nonnal incidence. Both exterior Floquet hannonics and interior 
waveguide modes are observed in the time-frequency display. They can be related to the 
detailed scattering physics of the slotted array. 

WAVELET PROCESSING 

The STFf is limited by its fixed resolution in both the time and the frequency domain. 
To overcome the fixed resolution of the STFf, we have recently applied the continuous 
wavelet transfonn to derive the time-frequency representation. The wavelet transfonn, when 
properly defmed, can provide variable resolution in time and multiresolution in frequency. 
In the frequency domain, the scattered signal is generally comprised of scattering 
mechanisms with widely different characteristic scales. For example, high-Q resonance 
phenomena are short-lived frequency events, while contributions from non-dispersive 
scattering centers extend over large frequency scales. The wavelet transform technique uses 
multi-scale windows and is more effective at resolving multi-scale events of frequency than 
the STFf. From the time domain point of view, the radar echo typically consists of sharp 
peaks in the early time followed by small ringing in the late time. The peaks in the early-time 
portion of the backscattered signal correspond to isolated scattering centers on the target and 
good time resolution is needed to resolve the scattering centers. The late-time arrivals can be 
attributed to target resonances which manifest themselves as discrete frequency events. 
Good frequency resolution (or coarse time resolution) is needed for isolating the natural 
resonances. The variable time resolution property of the wavelet transform is well suited for 

(a) Open-Ended Waveguide Ducl 
Flat Conducting 
Termination 

..... f--- 2' ---:)o~ 

(b) Normal Incidence 

Short-Time Fourier Transform Wavelet Transform 

(W~P~ ~t :::::::::::::::~I ~I :::;:::t :::::::::::::::~l 0.1 
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Figure 4. Time-frequency representation of the backscattered data from an open-ended waveguide duct 
obtained using the short-time Fourier transfonn and the continuous wavelet transfonn. (a) Target geometty. 
(b) Time-frequency image under normal incidence. (c) Time-frequency image under 45° vertically polarized 
incidence. 
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(c) 45° Incidence 

Short-Time Fourier Transform Wavelet Transform 
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Figure 4 (Cont'd). (c) Time-frequency image under 45° vertically polarized incidence. 

this task. Consequently, the wavelet representation can often provide a better time-frequency 
characterization of the back scattered data than the conventional S1FT. 

Fig. 4 shows a wavelet analysis example of the backscattered data from an open-ended 
duct for both normal incidence and 45° oblique incidence. This structure was first analyzed 
in time-frequency by Moghaddar and Walton 1.2 using the STFT, the Wigner-Ville 
distribution and the autoregressive spectral estimation technique. In the time-frequency 
image, the first vertical line is the non-dispersive diffraction from the rim of the duct mouth. 
The subsequent curves are the mode spectra due to the dispersive propagation in the duct. 
They correspond to the energy which gets coupled into the interior modes of the duct, 
reflected from the end termination and re-radiated from the duct. As Fig. 4 shows, compared 
to the conventional S1Ff, the wavelet transfonn provides a more efficient representation of 
both the early-time scattering center data and the late-time resonances. This effect is more 
pronounced at 45° incidence, as many more closely spaced modes are excited by the 
obliquely incident wave. 

SUPERRESOLUTION PROCESSING 

Most recently, we have been pursuing research into superresolution techniques to 
further improve the Fourier-limited resolution in the time-frequency plane 8. In either the 
S1FT or the wavelet transform, the resolution in the time-frequency display is limited by the 
frequency-extent of the sliding window function, not by the frequency bandwidth of the 
signal. The processing of the data within each time or frequency window using super­
resolution techniques such as Prony's 15 or ESPRIT 16 algorithms therefore appears quite 
attractive. It retains the advantage of simultaneous time-frequency display while completely 
overcoming the resolution issue. However, additional processing consideration is needed 
when, for example, natural resonances are encountered while scattering centers are being 
extracted. 

In the proposed time-frequency superresolution procedure, the extraction technique is 
applied first in the frequency domain. To locate scattering centers, we break up the 
wideband frequency data into many small overlapping segments of narrow band data and 
repeatedly apply superresolution procedure. The results for each segment are weighted 
according to error and then averaged together. This prevents resonances, which will cause 
the method to fail for a small number of segments, from corrupting the overall scattering 
center estimates. Once the scattering centers are found, a similar procedure is used in the 
time domain to locate the resonances. Fig. 5 shows a preliminary example of our work 
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using Prony's algorithm. The target is a conducting strip containing a partially open cavity. 
The time-domain and the frequency-domain responses of the target, obtained using numerical 
simulation, are shown respectively in 5(b) and 5(c). The time-frequency image generated 
using the STFf is shown in 5(d). After applying the superresolution procedure, estimates 
for the five resonances and three scattering centers are found. Fig. (5c) shows that the 
parameter-fitted data (solid curve) are in good agreement with the original raw data (dashed 
curve). Finally, a time-frequency plot of the parameterized backscattered data is given in 
(5e). Because we have completely parameterized the data via a superresolution technique, 
the sharpness of the image is not constrained by the well-known Fourier limit as is the case 
for the STFf image of (5d). We have chosen for each mechanism to appear as either a 
horizontal or vertical line exactly one pixel in width. The intensities of the three vertical lines 
show that the three scattering centers are of differing strengths and have different frequency 
behaviors. The high-Q resonances can be seen to be of much longer duration than the low-Q 
resonances. We have also achieved similar success with an ESPRIT-based algorithm, which 
should be more robust to noise. Extension of this technique to data containing dispersive 
mechanisms is currently under investigation. 

(a) Target 

4 em x 4 em cavity 
w~h 1.5 em opening 

(b) Time Response 
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Time---
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Figure 5. Time-frequency representation of the backscattered data from a conducting strip containing a 
panially open cavity under horizontally polarized mcidence at 25° from grazing. (a) Target geometry. (b) 
Time-domain response. (c) Frequency-domain response. (d) Time-frequency image obtained using the short­
time Fourier transform. (e) Super-resolved time-frequency image. 
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CONCLUSIONS 

Our research to date has shown that the joint time-frequency space is an attractive feature 
space for identifying target characteristics. We have gained considerable experience in 
interpreting the different scattering features in the time-frequency image, including those due 
to aspect-dependent scattering centers, aspect-independent resonances as well as dispersions 
due to such mechanisms as surface waves and leaky interior modes. However, the 
additional insights gained in the time-frequency plane come at the price of loss of resolution. 
We have also achieved preliminary success at using wavelets and superresolution techniques 
to improve the resolution limit in the time-frequency plane. 

There remain many interesting research topics to be explored. For example, neither 
multiresolution nor superresolution techniques have been generalized to deal with data from 
arbitrary targets. The wavelet processing is restrictive in its intrinsic assumption that the data 
consists of early-time scattering center data followed by late-time resonances. For arbitrary 
targets, this assumption will in general not be true. The extension of the superresolution 
procedure to data containing dispersive mechanisms is yet to be attempted. Also, the 
effectiveness of the superresolution procedure in the presence of noise needs to be 
investigated. Once more fully developed, these processing techniques will be excellent tools 
for understanding the scattering phenomenology from computed or measured data. In 
addition, they should find applications in ultra-wideband radar target identification. 
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INTRODUCTION 

An ultra-wideband/short-pulse (UWB/SP) radar has promising potential for target identification 
due to its ultra-high resolution capability and for target detection due to its clutter-suppression 
capability. This paper describes various research topics studied at Michigan State University on 
target identification and detection using a UWB/SP radar. 

First the measurement of transient responses of airplane models illuminated by a short EM 
pulse is described. Then target identification schemes using these primarily early-time target 
responses are discussed These target ID schemes include a time-domain imaging technique, a 
wavelet-transform technique and a neural network technique. Finally, schemes for detecting a target 
in a severe sea clutter environment using the E-Pulse technique or using the relative motion of the 
target are presented. 

MEASUREMENT OF SHORT-PULSE TARGET RESPONSES 

Michigan State University has a ground-screen-based time-domain scattering range and a free­
field, anechoic chamber scattering range. The latter is used to measure high-resolution, early time 
responses of airplane models illuminated by a short EM pulse (about 60 ps width) which is 
synthesized from swept frequency measurements in the range of 2 to 18 GHz. A computer­
controlled rotatable target positioner is capable of orienting the target to a precision of 0.15° in 
aspect angle. The data acquisition procedure is fully computer controlled, with the system transfer 
function deconvolved using a metallic sphere as a known calibration target. A typical set of 
synthesized target pulse responses is given in Figure 1, which shows the transient response of a 
1 :48 scale model B-S8 (63 cm from nose to tail, and 36 cm from wing-tip to wing-tip) for aspect 
angles between 0 to 90 degrees, stepped in a 0.450 increment. 

Using these measured target pulse responses, several schemes for target identification have 
been developed. These include the E-Pulse techniquel•2, a correlation scheme\ a time-domain 
imaging technique, a wavelet transform technique and a neural network technique. The latter three 
are described in this paper. 
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Figure 1. Transient response of 1 :48 scale B·58 aircraft 

TIME-DOMAIN IMAGING TECHNIQUE FOR TARGET IDENTIFICATION 

The short-pulse response of a radar target provides significant information about the positions 
and strengths of scattering centers. If observations are made over a wide range of aspect angles, 
sufficient information is gained to obtain an image of the target. 

Bojarski' proposed a simple inverse scattering identity based on the physical optics 
approximation. He showed that the characteristic function of a conducting scatterer (which is unity 
within the target geometry and zero elsewhere) is given by the three-dimensional inverse Fourier 

transform of the scattered field as a function of the incident plane-wave wave vector fi. If 
scattered field information is only available within a plane, then the two-dimensional inverse 
transform yields the thickness of the scatterer as a function of position in that plane. 

In the MSU free-field scattering range, aspect angle variation is obtained by target rotation. 
It is thus convenient to write the inverse scattering identity in polar coordinates. The thickness is 
then shown to be proportional to the function 

12". dK I 
T .. (p) = Re J J E'(Ko'~i)e-jKoPcao(.-.~ K 0 d~i 

.,,010.0 0 

(1) 

where p is the position vector in the plane of the measurements, ~I is the plane wave incidence 

angle, E' is the back-scattered field measured at frequency w and aspect angle ~;, and 

Ko = 2ko = 2w/c. By performing the integral over Ko and recognizing this as the temporal inverse 
transform, the thickness function is proportional to 

2" 

Tt(p) = J r( -2p COS(~-~iMI)d~i 
o C 

(2) 

where r(t) is the time-integral of the inverse transform of E', i.e. the step response of the target. 
This time-domain physical optics inverse scattering identity has a very clear physical interpretation. 

The quantity - 2pcos( ~ -~;>/c is the two way transittime from the origin of coordinates to the point(p,~) 
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along a plane wave incident at angle cIIt • Thus, the integral (2) is the sum over all aspect angles 

of the step response value corresponding to scattering from the point (p,cII). 
It is possible to enhance the edges of the image by merely using the impulse response (inverse 

transform of E') rather than the step response, since this corresponds to a derivative of the 
thickness response. This has been done in the examples shown in Figure 2. A distinct image of 
each target results, with the edges of the fuselage, wings, etc., being clearly displayed. Note that 
the physical optics approximation does not accommodate the shadowed regions, and thus hidden 
edges such as the rear of the forward wings are not strongly present. 

(al (b) 

(c) (d) 

FIGURE 2. Images of aircraft found using time-domain, physical optics inverse scattering identity. Temporal waveforms 
synthesized from 2-18 GHz ultra-wideband responses, measured at 201 aspeet angles between O· (nose-on) and 1800. 
Information from unlit side supplied by symmetry. Axes are scaled to physical size in m, gray scale is in dB. (a) F-14 
(1:32 scale), (b) A-IO (1:48), (c) B-52 (1:72), (d) TR-I (1 :48). 

WAVELET-TRANSFORM TECHNIQUES FOR TARGET IDENTIFICATION 

The sparse nature of the discrete wavelet transform (DWT) of SP scattering signals allows for 
a significant reduction in the storage of early-time signals. The DWT provides a linear 
transformation of a discretized signal into the "wavelet domain" much in the same manner as the 
discrete Fourier transforms. The signal is represented as a linear combination of wavelet basis 

537 



functions (analogous to sinusoids for the Fourier transform) and can thus be reconstructed by 

N 

s; = LOiW;j 
i=1 

l~i~N (3) 

Here Si is the signal sampled at time 1;, II.i is the amplitude of the jib wavelet basis function, WiJ is 
the jib wavelet basis function sampled at time 1;, and N is the length of the signal (usually a power 
of 2). Wavelet basis functions are constructed so that the wavelet coefficient vector {a;} is sparse 
for a certain class of waveforms (polynomials of a chosen degree). 8ecause of this sparseness, the 
DWT can be used to compress the signal. 

As an example, consider the nose-on (0") response of a 1:72 scale 8-52 sampled at 256 time 
points, as shown in Figure 3. Figure 4 shows the wavelet spectrum {a;} computed using a 256-
point Lemarie DWT5• It is readily seen that only a small subset of the wavelet coefficients are 
significant. Note that the small values of coefficients al29 through ~ is due to an oversampling 
of the data by a factor of about 2. The DWT thus automatically compensates for frequency 
oversampling. 

To see the effects of random noise on the wavelet reconstruction of data, zero-mean white 
Gaussian noise has been added to the nose-on response of the 8-52, resulting in a waveform with 
a signai-to-noise ratio (SNR) of 10 d8. Figure 4 shows the wavelet spectrum of the noisy response. 
Although there is a perturbation of each of the wavelet coefficients, the values of the larger 
coefficients are changed only slightly. Thus, when only a few coefficients are retained in 
reconstructing the response, the result is a much more faithful representation than the original noisy 
waveform, as seen in Figure 3. In other words, much of the noise is represented by perturbation 
of very small wavelet coefficients which are neglected (effectively filtered out) in the 
reconstruction. 

To provide an example of target identification using wavelet-stored data, the SP responses of 
five aircraft models -- 8-52 (1:72 scale), 8-58 (1:48), TR-l (1:48), F-14 (1:48) and Mig-29 (1:48) 
-- were synthesized from frequency-domain measurements at 68 angles between O· and 30·. The 
resulting signals were transformed using a 512 point Lemarie DWT and the spectra truncated to 
the largest 32 components. An identification scenario assumes that the 18· 8-52 response arises 
from an unknown target. The measured response of the 8-52 is correlated with the responses of 
all the other targets, at all aspects, reconstructed from their stored, truncated wavelet spectra. The 
result, shown in Figure 5, provides a correct identification, since the largest correlated output arises 
from the 8-52. Also note that the target can be correctly identified over about a 3° range of angles. 
This gives a measure of the necessary aspect angle discretization needed when storing target SP 
signatures. 

Finally, Figure 6 shows that contaminating the measured target signal with random noise at 
an SNR of 10 d8 does not significantly reduce the identification capabilities of this technique. 
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Figure 3. Nose-on (0") response of 8-52 aircraft 
model and 32 wavelet reconstruction. 
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NEURAL NETWORK TECHNIQUES FOR TARGET IDENTIFICATION 

Neural networks have great potential for storing and retrieving the large number of target 
signatures needed to perform aspect-dependent target identification (Le., identification based on the 
early-time SP response). A number of neural network architectures for target identification were 
simulated, including feed-forward networks trained using back-propagation, and Hopfield networks. 
Particularly good success was observed with correlation associative memories, including generalized 
inverse networks (GI), exponential correlation associative memory networks (ECAM), and cascades 
of these networks (ECAM -GI). The wavelet transform technique described in the previous section 
has also been employed to reduce network size. 

As an example, Figure 7 shows simulation results for the ECAM-GI cascaded network, 
designed to recognize three aircraft (F-14, B-58 and B-52) each at 19 different aspect angles 
between 0° and 90°. The results show that for low noise conditions, each of the 57 responses is 
correctly recognized. In fact, accurate identification is possible at noise levels of a dB SNR. 
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Figure 7. Overall performance of ECAM-G1 cascade 
network, designed to recognize 3 aircraft at 19 aspect 
angles each. 
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Figure 8. Performance of RDM-GJ cascaded 
networks trained to recognize five target models each 
at 19 aspect angles. Analog inputs used. 

More sophisticated networks are also being investigated, including recurrent dynamic 
correlation associative memory networks6•7 (RDM). The performance of a network using the RDM 
technique cascaded with the Generalized-Inverse method (RDM-GI) with fixed analog input is 
shown in Figure 8. This network was trained to recognize five targets (B-52, B-58, F-14, Mig-29, 
TR-l), each at 19 different aspect angles. Superior performance is seen in these figures, with 
better than 95% correct identification at SNR levels as low as -5 dB. 
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DETECTION OF TARGETS IN A SEA CLUTTER ENVIRONMENT USING UWB/SP 
RADAR 

The detection of radar targets near the sea surface using transient signals is made difficult by 
the presence of a strong clutter return from the disturbed sea. However, if the scattering from 
water wave crests is primarily specular within the band of the interrogating signal, the E-pulse 
resonance cancellation technique can be used to eliminate the clutter return, thus increasing the 
probability of detection. 

Assume that the sea surface consists of wave crests of nonuniform heights separated by water 
wavelength A.,. If the scattering from these wave crests is nearly specular, the transient back­
scattered electric field response will be a series of peaks separated in time by approximately 
2A.,cos8./c, where 8. is the incidence angle measured from grazing incidence. Because this is 
analogous to the early-time response from a radar target, a frequency-domain E-pulse can be 
constructed to eliminate the sea clutter as a post-processing step. This enhances the ratio of energy 
in the signal to the energy in the clutter and improves the probability of detecting the target. 

Under certain circumstances the clutter cancellation can also be accomplished in the time 
domain through direct transmission of an appropriate "clutter reducing transmit waveform" 
(CRTW). If the wave crests are fairly similar in height, the time domain scattered field response 
will be nearly periodic, and can be approximated by a sum of complex exponentials. It is then 
possible to create an E-pulse to eliminate the sea clutter directly in the time domain. Furthermore, 
it is possible to shape the E-pulse such that its energy is concentrated within the band of maximum 
target response (perhaps near the dominant target resonance) so that the radar return when this 
pulse is radiated contains both an enhanced target response and an eliminated clutter. Since this 
is not a post-processing step, both the target-to-clutter ratio and the signal-to-noise ratio are 
enhanced. If the E-pulse waveform is too complicated for direct transmission, a simplified version 
can be synthesized and transmitted using a superposition of short-pulse CW waveforms. 

To simulate the potential of the time-domain approach, an aluminum missile model has been 
placed above a conducting aluminum sinusoidal surface, as shown in Figure 9, and illuminated by 
a horizontally-polarized EM wave. The backscattered field has been measured for an aspect angle 
of 30· from the horizontal in the frequency band 1-7 GHz both with and without the missile 
present. The resulting time-domain waveforms, obtained through Fourier inversion, are shown in 
Figure 10. As can be seen, the missile response is embedded within the strong clutter signal, and 
difficult to detect. To eliminate the clutter, a CRTW has been constructed using the clutter 
response, and convolved with the clutter + missile response to simulate its transmission. Figure 11 
shows the result, indicating that the clutter has been reduced significantly, and the target response 
(appearing after about 2 ns) is easily detected. 

Figure 9. Simulated experimental sea surface 
environment. 

540 

Q> 
"0 

~ 
Q. 

1.00 

0.50 

~ 0.00 

~ 
-0 

" a:::: -050 

- sea clutter 
---- sum Signal 

1.0 2.0 3.0 4.0 
Time (ns) 

Figure 10. Measured response of simulated sea 
surface with and without 5 inch missile present. 



In an actual application, it would not be known if the target was present, and thus the CRTW 
might be constructed using both target and clutter information. However, it is speculated that if 
the missile response is small, the resulting CRTW will eliminate the clutter without reducing the 
target response. To test this, a CRTW was created using the clutter + missile response of Figure 10 
and convolved with the same response. The result, shown in Figure 12 demonstrates that while 
the clutter cancellation is not quite as good as when the CRTW was constructed from a pure clutter 
response, the missile response is still detectable over the clutter. 

" " :2 

0.75 

0.. 0.25 

E 
o 

~ 

" ~ -0.25 

~ sea clutier • CRTW of sea clutter 
--.--- sum Signal. CRlW of sea clutter 

10 20 J 0 

Time (ns) 

Figure n. Convolution of measured response of sea 
surface with and without 5 inch missile with CRTW 
created from sea clutter response. 
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SEPARATION OF TARGETS FROM CLUTTER USINGUWB/SP RADAR AND RELATIVE 
TARGET MOTION 

A UWB/SP radar can be used to detect targets which move with different velocities than that 
of the ocean waves. 

Consider a situation where a fast-moving target (e.g., a missile) and a stationary target (e.g., 
a periscope) are in the presence of a slow-moving ocean wave. If the sea surface is interrogated 
by a short EM pulse, the radar return will consist of a periodic series of peaks (the sea clutter from 
the ocean wave) and two peaks representing responses of the moving and stationary targets. When 
another interrogating pulse is sent out after a time interval, the new radar return will have a series 
of peaks shifted slightly due to the slow moving ocean wave, while the peak of the moving target 
will have moved a much larger amount, and the peak of the stationary target will not have moved. 
With repetitive interrogating pulses and each subsequent radar return recorded, a diagram such as 
shown in Figure 13 can be constructed. The horizontal axis is a fast time scale (ns) representing 
the location of targets and ocean wave crests. The vertical axis is a slow time scale (s) representing 
the time when the radar return is received. This diagram clearly shows the traces of moving and 
stationary targets and ocean wave crests. Using this relative motion scheme, targets can be 
separated from clutter, thus facilitating their detection. 

This detection scheme was recently studied by the Naval Command, Control and Ocean 
Surveillance Center using actual measurements. 
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Figure 13. Traces of targets and ocean wave cn-sts constructed using radar returns from repetitive 
interrogating EM pulses. Ocean wave velocity: 1 mis, missile velocity: 100 m/s. 
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INTRODUCTION 

Ultra wide band (UWB) radar scattering measurements may be made directly in 
the time domain using a short pulse radar, or the data may be measured as a function 
of frequency and the response transformed to the time domain. Spectral estimation 
techniques such as Fourier transforms or model based techniques such as autoregressive 
techniques (forward-backward linear prediction for example) or multiple sinusoid tech­
niques (the MUSIC algorithm) may be used to transform from the frequency domain 
to the time domain. 

When radar scattering measurements are made over the large bandwidths that 
can be obtained from an ultra wide band (UWB) system, often it can be seen that 
the target subcomponents have a distinct variation in ReS amplitude as a function of 
frequency. For a scatterer at a particular down range location, this dispersive behavior 
is a frequency domain complex exponential with a decaying or growing amplitude. It 
is a frequency domain damped exponential. Positive damping represents a decrease in 
amplitude with frequency and negative damping represents an increase in amplitude 
with freql1~ncy. This paper will discuss a. m~thod of analysis of such scatterers. 

THEORETICAL DEVELOPMENT 

For the large bandwidths discussed here (UWB systems), the radar scattering from 
certain individual components of the radar target will vary in amplitude as a function 
of frequency over the band of observation. In tIllS study we model the scattering from 
a specific subcomponent of the radar target as 

S(f) = (271})" Ae- j (2)r!I) 

543 



where 

S(f) is the complex voltage scattered from the subcomponent of the target, 

f is the frequency, 

A is t.he amplitud(' of t.h(' snhcompon('nt, 

is time, aud 

0: is the dispersive parameter. 

The dispersive nature of the scatterer is thus given in terms of 0:. We model the 
frequency domain behavior of the scattering from a multicomponent target as a set of 
complex damped exponentials. The locations of the scatterers are proportional to the 
periodicity of the complex exponentials aud the type of scatterer effects the damping 
behavior. 

The dispersive characteristics for various common radar scatterers are given in 
Table 1. The scattering from an aircraft, for example, may be made up of specular terms 
(nose, fuselage), corner terms (wing/fuselage join) and edge terms (wings, stabilizer). 

Table 1: Scattering mechanisms aud associated 0: values. 

Points 0.0 
Corner -1.0 
Edge (infinite) -0.5 
Cylinder face (axial) +1.0 
Cylinder (broadside) +0.5 
Flat plate + 1.0 

In this paper, we develop a technique where we pre-condition the data so that the 
inverse of the dispersive characteristic for various assumptions for 0: is pre-multiplied by 
the data set in the frequency domain. Next, a high resolution model based frequency 
domain to time domain transformation is performed. Each down range profile that 
results is plotted as a gray-scale or color-scale line in a down range versus 0: plot. The 
result after a scan in 0: is a mapping of the down range response of a radar target into 
the down rauge versus 0: domain. It turns out that the model based spectral estimation 
techniques are sensitive to the value of 0:, and that the response forms a peak when the 
value of 0: is matched to the data. 

The "pre-multiplication" technique for extracting the characteristics of the target 
subcomponents is summarized below. 

1. Select an initial damping factor alpha (0:) 

2. Pre-multiply the frequency domain data by f-'" 

3. Use a superresolution algorithm to extract the time domain spectrum 

4. Increment the damping factor 0: 

5. Go to step 2 

At the end of this process, we have a set of time domain spectra (amplitude of the 
power spectra as a function of alpha). Display this set of curves as a three-dimensional 
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Figure 1. Alpha mapping for triangular plate with 45 degree oriented fins. Vertical polar­
ization, 400-900 MHz. 

mapping of power versus time and alpha. A table of the expected behavior of such 
scatterers was given as Table 1 earlier. 

Because the superresolution algorithms are sensitive to the existence of non­
sinusoidal behavior in the data, the mapping so produced will be sensitive to the 
incorrect alpha settings and "hot spots" will only appear when the values of alpha (and 
time) 11ft' correct. 

EXAMPLES 

An example mapping is shown in Figure 1. In this figure, the value of alpha was 
varied from -2 to 2. The ta.rget is a large triangular plate with 45 degree oriented 
fins on the rear as shown in the figure. The radar data were measured from 400-
900 MHz using vertical polarization. The algorithm distinctly recognizes five scattering 
mechanisms. Each scatterer is identified not only by its down range location, but also 
by the associated alpha value. The edge of the triangle and the normally oriented fin 
both have an alpha of one associated with them. Note that the edge of the plate is 
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Figure 2. Alpha mapping for theoretical cylinder scattering. Axial orientation, 1 meter 
diameter,2 meters long, 25 to 400 MHz, FLP order 4. 

7 cm thick, and it seems to behave as a flat plate. The edge of the other fin is very 
thin, and can be seen to scatter with an alpha of -0.5. At 2 ns and at -15 ns there 
are scatterers that are probably associated with measurement range effects (clutter). 

Another example is given in Figure 2. In this figure, we have theoretical scattering 
(method of moments) from a cylinder of size 1 meter diameter and 2 meters long. The 
band of frequencies extends from 25 to 400 MHz. A forward linear prediction (FLP) 
algorithm (order = 4) is used to extract the power spectral estimates (and thus the 
time domain profiles). Note that there are two terms scat tered from the front face 
of the cylinder. Amazingly, this algorithm actually succeeds in separating these two 
terms even though they both occur at the same time. One term is at alpha of 1 and 
represents flat plate scattering and the other is at alpha = - 1.0 and represents corner 
scat tering. 

We also see a term nea,r 7 ns with an alpha that is more difficult to clearly define 
but is probably equal to -1.0. This is direct scattering from the trailing edge of the 
cylinder. There is also a term at 10 us. This is the term that travels completely around 
the rear of the cylinder (a caustic). It has an alpha of approximately -1.5. The really 
interesting thing about these late time scatterers is that we can see that the alpha 
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response is slightly "tilted." As alpha = 0 is approached, the time response becomes 
slightly larger. In fact, detailed studies show that an error in the estimate of the time 
location of these trailing edge terms will occur if the wrong value of alpha is used. Thus 
a time shift (location error) will occur if classical processing (Alpha = 0) is used to 
transform from the frequency domain to the time domain. 

CONCLUSIONS 

This paper has presented a new technique for classifying the subcomponent re­
sponses of a target based on their dispersive characteristics. It is able to individually 
classify the subcomponent terms, even when they occur at the same time. 

Examples for both theoretical and experimental scattering have been given. It was 
shown that if there are two scatterers with different a values at the same down range 
location, then this technique will actually differentiate between them. Also, an impor­
tant example where the down range location of the scatterer varies as the a assumption 
is varied has been shown. This technique represents a new way of characterizing the 
radar scattering from a complex target. As such it represents a new and potentially 
very useful tool for scattering signature understanding. 
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INTRODUCTION 

In inverse scattering, one attempts to determine the internal profile of an in­
homogeneous object from measurement data collected away from the scatterer. For 
example, inverse scattering may be used to locate and image a possible crack or defect 
in a civil structure in the field of nondestructive testing. It is also used to generate 
images of geophysical formations for locating minerals or buried objects such as haz­
ardous wastes. Inverse scattering is used in medical imaging in X-rays as well as 
ultrasonic or CAT scans. There are also military applications for locating and iden­
tifying targets from radar data. Basically, the theory of inverse scattering applies 
whenever waves are used to probe objects for information about their structure. In 
addition to obtaining the image of an object, a quantitative description of the scat­
terer such as its permittivity, velocity, or conductivity profile is also obtainable from 
inverse scattering methods and can contribute invaluable diagnostic information. 

The inverse scattering problem is often quite difficult, especially when wave inter­
actions are present. It is usually non-unique because high spatial frequency portions 
of the object give rise to evanescent waves that cannot be measured. Hence, high 
spatial frequency information of the object is often lost. Multiple scattering causes 
the scattered field to be nonlinearly related to the scatterer. In addition to being 
non-unique and nonlinear, inverse scattering problems are often ill-posed as well due 
to limited measurement data available enforced by the problem geometry. 1 

Many methods have been proposed in the past to solve particular classes of in­
verse scattering problems by making certain underlying assumptions about the object 
or scattering process. For example, in computed tomography (CT),2 a ray picture 
is used whereby it is assumed that waves propagate in straight lines and all diffrac­
tion and multiple scattering effects are ignored. Diffraction tomography (DT)3 takes 
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into account diffraction, but ignores multiple scattering and assumes that the object 
contrast is small. Many methods such as the Gelfand-Levitan-Marchenko methodl 
have been proposed to solve the inverse scattering problem "exactly" for I-D objects 
(objects such as layered media with one-dimensional spatial variations). However, to 
date none of these "exact" methods have been shown to be computationally stable 
for objects with multidimensional spatial variations. Recently developed nonlinear in­
verse scattering algorithms take into account both diffraction and multiple scattering 
effects and are valid for arbitrary multidimensional scattering configurations.4- 3o 

Time-domain data is important for inverse scattering for a number of reasons. 
The first is obviously that the information content available from a transient pulse is 
usually much greater than that available from CW measurements at a few discrete 
frequencies. With the added information, the problem is usually better conditioned, or 
more "well-posed." A second reason is perhaps less widely known. One of the biggest 
problems with conventional diffraction tomography, especially in the area of medical 
ultrasound imaging,lO is the "phase wrapping" problem. When only a few frequencies 
are used to probe an object, and the object space occupies many wavelengths, phase 
changes from one period to the next become wrapped and are hence ambiguous. This 
problem does not exist when transient data is used along with a time-domain inverse 
scattering algorithm such as the Born iterative method (BIM).25 Another advantage 
to using time-domain data is that time gating may be used to eliminate unwanted 
early-time and late-time arrival signals. 

We will review here three nonlinear time-domain inverse scattering scattering 
algorithms that may be used to reconstruct objects directly from time-domain data. 
These algorithms are the Born iterative method (BIM).25 the distorted-Born itera­
tive method (DBIM)24,29 and local shape function (LSF) methods.26- 29 All three of 
these algorithms may be implemented using the full received waveform to reconstruct 
an object profile. Reconstructions using computer simulated data are shown and 
demonstrate that the time-domain nonlinear inverse scattering methods are capable 
of achieving super-resolution imaging. Similar results are shown using real data col­
lected from a prototype step frequency radar (SFR) imaging system developed at the 
University of lllinois. 

BORN ITERATIVE METHOD (BIM) AND DISTORTED-BORN 
ITERATIVE METHOD (DBIM) 

The Born iterative method (BIM) and distorted Born iterative method (DBIM) 
have been proposed and verified as methods of solving the nonlinear inverse scattering 
problem for dielectric and conductive scatterers. l7- 25 In both the BIM and DBIM, the 
field internal to the scatterer is computed iteratively using a computational forward 
scattering solver. The major distinguishing feature between BIM and DBIM, however, 
is that in the BIM, the Green's function used for the inversion is assumed to be that of 
a homogeneous medium, while in DBIM the background Green's function is updated 
at each iteration. 

Both BIM and DBIM have been implemented for both CW and transient excitati­
ons.19- 25 For the CW case, the recursive aggregate T-matrix algorithm (RATMA)23 
as well as the CG-FFT method3l,32 have been used for the fast forward scattering 
solver. For the transient case, a finite difference time domain (FDTD) algorithm is 
usually used as the forward solver.33 One way ofimplementating the BIM for transient 
data25 is to use a FDTD forward solver to generated the field internal to the object, 
convert to the field data to the frequency domain, and solve the inverse problem in the 
frequency domain using the known analytic form for the background Green's function. 
We will not present this method here. Rather, we shall present below a more general 
DBIM formulation that may be implemented entirely in the time domain and includes 
the BIM as a special case. 
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BIM and DBIM in the Time Domain 

Consider the two-dimensional (2-D) scattering problem illustrated in Figure 1. A 
line source of current Jz,n(r, t) produces the electric field Ez,n(r, t) that is scattered 
by a 2-D cylindrical scatterer. We shall use the subscript n to parameterize the 
transmitter number because generally in an inverse scattering measurement there will 
be multiple transmitter locations. The scatterer is characterized by the permittivity 
and conductivity profile fer) + 8f(r), q(r) + 8q(r) and exists in an inhomogeneous 
background medium fer), q(r). That is, the scatterer consists of a perturbation 
8f(r), M(r) in the inhomogeneous background. In the formulation that follows we 
shall assume that 8f(r) and 8q(r) are nonzero only within the support volume Vof 
the scatterer. Hence, the permittivity and conductivity everywhere may be written 
as fer) +8f(r), q(r) +8q(r). This is known as the 2-D Ez-polarization or transverse­
magnetic (TM) scattering problem in an inhomogeneous background medium. 

Une currenl ~ 
E(r), <J(r) 

source ~ 

J",,(r,l) • ~-
~ EM (r,l) 

Electric field E(r) + OE(r) 

<J(r) + oa(r) 

Scatterer 

Figure 1. Two-dimensional TM scattering problem where the 2-D scatterer o€(r), oq(r) con­
sists of a perturbation of the background inhomogeneous medium €(r), q(r). The scatterer 
is excited by the i directed line source of electric current Jz ,n(r, t). 

Since both the line source and scatterer in our model have infinite extent in the 
i-direction, and are z-invariant, the electric field will have only a i-component. The 
vertical component of electrical field Ez,n( r, t) produced by the line source Jz,n(r, t) 
is given as the solution to the scalar wave equation 

[ 2 a2 a] a 
\7 - Jlof(r) at2 - Jloq(r) at Ez,n(r, t) = Jlo a/z,n(r, t) 

a2 a 
+ Jlo8f(r) at2Ez,n(r, t) + Jlo8q(r) atEz,n(r, t) 

(1 ) 

Under the distorted Born approximation, the solution to the above partial differential 
equation (PDE) may be written down as 

Ez,n(r, t) ~ Ez,n(r, t) + 8E:,n(r, t) + 8E~,n(r, t). (2) 
In the above, 

Ez,n(r,t) = _JlojOO dr'jOO dt' g(r,r',t-t') aa,Jz,n(r',t') (3) 
-00 -00 t 

is the incident field in the presence of the background inhomogeneous medium fer), 
q(r) . The terms 8E!,n(r,t) and 8E~,n(r,t) are the scattered fields induced by the 
permittivity perturbation 8f( r) and conductivity perturbation 8q( r) and are given as 

JOO JOO a2 
8E:,n(r, t) = -Jlo dr' dt' g(r, r', t - t') of(r')----nEz,n(r', t') 

-00 -00 at (4) 
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and 

oE;,n(r,t) = -/-t0loo dr'loo dt' g(r,r',t-t') oO"(r') -;Ez,n(r',t'). (5) 
-00 -00 at 

The inhomogeneous medium Green's function g(r, r', t) satisfies 

(6) 

The integral equation given by (2) above is only approximate because the dis­
torted Born approximation24,29,34 has been used in writing Equations (4) and (5). 
The approximation amounts to the fact that the incident field Ez,n inside integrals 
in Equations (4) and (5) has been substituted in place of the total field Ez,n. This 
approximation is equivalent to assuming that the scattered fields oE! n and oE; n 
are weak compared to the incident field Ez,n. The distorted Born approximation alSo 
linearizes the integral equation. Note that the BIM algorithm is derivable from DBIM 
when the inhomogeneous Green's function gk(r, r', t) is replaced by a homogeneous 
medium green's function. 

The distorted Born approximation is used frequently in diffraction tomography 
to perform inverse scattering on objects with weak contrast compared to a known 
background. But instead of applying the distorted Born approximation only once, 
this approximation may be applied repeatedly if the background medium is updated 
at each step. When the distorted Born approximation is used in an iterative fashion, 
the resulting algorithm is known as the distorted Born iterative method (DBIM).2o 
The solution that is obtained from the DBIM solves the nonlinear inverse problem 
and hence is valid for much larger contrasts than if the distorted Born approximation 
were to be applied only once. 

In the DBIM, Ek(r) and O"k(r) are the permittivity and conductivity at the kth 
iteration. Ez n k is the incident field at the kth iteration in the presence of the back­
ground medi~ Ek(r), O"k(r) and are computed numerically using a finite-difference 
time-domain (FDTD) forward solver. The object model parameters Ek(r), O"k(r) may 
be updated at each iteration using an optimization scheme such as the conjugate 
gradient method. 

Equations (4) and (5) above can be thought of as operator forms of the Frechet 
derivatives that map perturbations oEk(r) and 80"k(r) into the field variations 
8E!,n,k(r, t) and 8E~,n,k(r, t). The Frechet transposed operators corresponding to 
these Frechet derivatives map the field perturbations OE!,n,k(r, t) and OE;,n,k(r, t) 
back into the permittivity and conductivity spaces. It can be shown25,29 that these 
Frechet transposed operators are given as 

and 

NR T 
X Lindt' gk(r', r m , t - t') OEz,n,k(rm , T - t'). 

m=l 0 

(7) 

(8 ) 

Both the Frechet derivative and transposed operators are required in a conjugate 
gradient optimization scheme. The Frechet derivative operator is used in computing 
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the conjugate gradient step size for update along a given search direction and may 
be computed with a single call to a FDTD forward solver. The Frechet transposed 
operator is used to compute the gradient and hence the search direction and may be 
computed as a backpropagation followed by a correlation. 

Computer Simulated BIM and DBIM Results 

Permittivity reconstructions were generated using computer simulated data for 
both the BIM and DBIM inversion algorithms. The full-angle bistatic measurement 
shown in Figure 2 was used to generate the forward scattering data using a FDTD 
code. 

Figure 3 shows a BIM reconstruction of two point objects placed 0.1 wavelength 
(1 grid point) apart. The permittivity contrast for this case is 2:1. This result 
illustrates the phenomenon ofsuper-resolution,22,24,25 where objects separated by less 
than 0.5 wavelength may be resolved. Figure 4 shows another BIM reconstruction 
for two cylindrical step discontinuities with a permittivity contrast of 2:1 relative to 
the background medium. The total object diameter for this case is 8.5 wavelengths. 
Apparently, ''phase wrapping" is not a problem here. 

Figure 5 shows a DBIM reconstruction of a smooth permittivity profile with a 
peak contrast of 10:1 and object diameter 1.5 wavelengths. The original object was 
nearly identical to the reconstruction here. A reconstruction of this high contrast case 
was attempted using BIM, but the algorithm did not converge. The DBIM algorithm 
seems to be capable of inverting much larger contrasts than BIM. 
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Figure 2. Full angle bistatic measurement 
configuration for BIM and DBIM com­
puter simulations. 

Figure 3. BIM reconstruction of two point 
objects separated by 0.1 wavelengths with 
a permittivity contrast of 2:1. 

THE LOCAL SHAPE FUNCTION (LSF) METHOD 

LSF Formulation in the Time Domain 

The BIM and DBIM work well for dielectric and conductive media with contrasts 
as great as 10:1. But for metallic scatterers, where the contrast is infinite in theory, the 
linearizing Born approximations that are applied at each step of the BIM and DBIM 
may not be valid. Recently, we have developed a new inverse scattering method known 
as the local-shape-function (LSF) method26- 29 to invert strong metallic scatterers. 
This technique maps a scatterer with infinite conductivity into a problem with a 
scatterer described by a binary function which ranges between 0 and 1. By so doing, 
the extremely nonlinear problem of scattering by a metallic scatterer is mapped into 
another space where the problem is more linear, but still nonlinear. Eventually, it 
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Figure 4. BIM reconstruction of two cylin­
drical step discontinuities with a permit­
tivity contrast of 2:1. The object object 
size is 8.5 wavelengths. 

Figure 5. DBIM reconstruction of a 10:1 
peak permittivity contrast smooth object 
of diameter 1.5 wavelengths. The origi­
nal object is nearly identical to the recon­
struction. 

allows US to iteratively reconstruct metallic scatterers whereas the application of BIM 
or DBIM would converge extremely slowly or not at all. 

Although we have developed LSF theory that applies to both CW and transient 
excitation, the LSF algorithm is more simply derived in the frequency domain.26,27 

First, the scattering region is discretized by dividing the scattering volume V into N 
regions occupying volumes lti, i = 1, ... , N. Then, a binary shape function Ii is 
assigned to each volume lti depending on whether the individual volume contains a 
metallic scatterer. If S represents the total volume occupied by metallic scatterers, 
then we have 

{ I, 
Ii = 0, (9) 

as in Figure 6. 

V/~''-'-''-'-'-''-~ 
o 

V2 

Vw~~~~~~~~ 

VN 

Figure 6. Discretization of scattering object volume {) into N subvolumes Vi, i = 1, ... ,N. 
Surface S indicates the metallic scatterer and the shaded region is where 'Yi = 1. 

We now examine how the local shape function may be implemented as a volu­
metric boundary condition in a FDTD forward solver. Using the FDTD method, a 
scatterer occupying volume V is discretized into many subvolumes lti as in Figure 6. 
We then assume that the scatterer has a homogeneous permittivity and conductivity 
in each subvolume lti. Metallic scatterers may be implemented in one of two ways. 
One method is to simply assign a large conductivity value to the cells where Ii = 1. 
Another way to deal with metallic scatterers is to manually enforce the boundary con­
dition that Ez (ri) = 0 at the locati<;ws ri where "Ii = 1. This boundary condition 
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can be thought of as placing a filamental metallic scatterer at each location Vi where 
"Ii = 1. We call the above a "volumetric boundary condition" because it is applied at 
arbitrary locations where "Ii = 1 inside the volume V. 

Mathematically, the LSF volumetric boundary condition may be written as 

(10) 

where Ti{l) is the single-scatterer T-matrix. ill the case of filamental metallic scat­
terers, 1i{l) = -1. Hence, for "Ii = 1, Equation (10) enforces the boundary condition 
Ez,n(ri' t) = O. E~,n(ri' t) is the incident field on the scatterer at position ri that 
includes multiple scattering effects from other cells lIj, j i= i. We call E~ n(r, t) 
the "ghost field" because it represents the total field that would be produced at ri 
assuming "Ii = 0, or that a metallic scatterer is not present at rio 

Up to this point, we have assumed that "Ii represents a binary variable that is 
either 0 or 1. ill a practical iterative optimization scheme, it is necessary to relax 
this requirement and instead let "Ii be a continuous real variable on the interval [0,1]. 
The inverse scattering algorithm would then produce an image of the variable "Ii as a 
function of 2-D space. 

For brevity, we shall not include the details of the T-matrix formulation of the 
LSF algorithm here, but rather refer the reade;r to the literature.29 The time-domain 
LSF algorithm may be implemented in an iterative algorithm with a structure similar 
to that of the DBIM algorithm. The major difference between the new LSF algo­
rithm and the DBIM algorithm is that the F'rtkhet derivative and Frechet transposed 
operators are different. 

Using the LSF method the Frechet derivative operator may be written as 

OEz,n,k(r, t) = i: dr' loT dt' h(r, r ' , t - t'l o'Yk(r' ) E~,n(r', t'l. (11) 

where h(r,r',t) is the inhomogeneous medium Green's function in the presence of 
'Yk ( r ). The Frechet transposed operator may be written as 

(12) 

In the integral form of the Frechet derivative and transposed operators above, we 
have generalized our definition of the local shape function "Ii to be a function of the 
continuous variable r. 

Computer Simulated LSF Results 

The LSF algorithm was verified by reconstructing computer simulated scatter­
ing data obtained from the inverse Fourier transform the output of a two cylinder 
frequency-domain T-matrix code l . The geometry used in the computer simulation 
results is shown in Figure 7. The scattering object 0 was considered to be contained 
inside a 19.9 cm x 19.9 cm (25 x 25 grid points) region. The background medium was 
assumed to be that of free space. The transmitted waveform had a -3 dB cutoff of 
1.22 GHz, corresponding to a minimum wavelength ~min = 24.5 cm. 

The scattering data of two metallic scatterers, each of radius a = .794 cm 
(.0645~min) and separated by d = 11.2 cm (.458~min) was computed using the an­
alytic formulation. The reconstruction obtained from the LSF method and is shown 
in Figure 8 and that obtained using the DBIM with a conductivity optimization is 
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shown in Figure 9. No convergent solution was obtainable using DBIM with permit­
tivity optimization. In Figure 8, the two metallic scatterers are easily distinguishable, 
while those in Figure 9 are not resolved. 

The relative residual error (RRE) at the kth iteration is defined as 

RRE _ [l:,~;;1 l:,;;'!1 Jg'dt [Ez,n(r, t) - Ez,n,k(r, t)]2 W(t)] 1/2 (13) 
- E~;;l E;;'!l Jg'dt [Ez,n(r, t)]2 W(t) 

where Ez,n(rm,t) is the measured electric field at the mth receiver due to the nth 
transmitter, Ez(rm' t) is the computed solution at the kth iteration and W(t) is a 
time varying gain that is used to to boost the later signal arrivals. The RRE is shown 
in Figure 10 for each iteration step. Only twenty iteration steps were computed and it 
is clear from Figure 10 that while both algorithms converged, the LSF algorithm has a 
much faster convergence that the DBIM with conductivity optimization. The DBIM 
solution leveled off with a RRE of about (0.5), whereas the LSF solution leveled off 
at about (0.15). 

Figure 11 shows a LSF reconstruction of two metallic scatterers that are of the 
same radius as those used in Figure 8, but the separation has been reduced to 
d = 8.42 cm (.344>'min). The two cylinders are still clearly resolved, but it is apparent 
that this separation is at about the resolution limit of this algorithm. 

,------ ------ --- ---- --- ------ --- ---- - ----, , , , , , , , , , , , , , , , , , , , , , , , , , 
, : 

, 

----- -- -- --Z ---- ------ ------ -- ----
FDTD grid boundary 

Figure 7. Geometry for bistatic inverse scattering simulation. Object region is 19.9 cm x 
19.9 em (25 x 25 grid points), d-r = 12.7 em (.517>'min), dR = 13.5 cm (,549>'min)' 

EXPERIMENTAL RESULTS 

A prototype bistatic step-frequency radar (SFR) microwave measurement system 
was developed at the University of illinois to collect scattering data. The system 
operates in the frequency range of 2 - 12 GHz and is intended for nondestructive 
evaluation applications, including the imaging of defects in civil structures such as 
bridges and buildings. Although data is collected in the frequency domain, the system 
we collect data at several (typically 200) evenly spaced frequencies and convert the 
magnitude and phase data in the frequency domain to a time pulse by means of a 
Fourier transform. The details of this data collection system will not be shown here, 
but will be presented in a later paper. However, we will show some results here 
to demonstrate the effectiveness of our inverse scattering algorithms in a practical 
imaging system. 

The arrangement of transmitters, receivers and the object grid for the experi­
ment is as shown in Figure 12. The measurement consists of 5 transmitter locations 
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(a) Original Object (b) Shape Function Reconstruction 

• 
• 

Figure 8. Local shape function reconstruction of two metallic cylinders, each of radius a = 
.794 cm (.0645Amin), separation d = 11.2 cm (.458Amin) using geometry shown in Figure 7. 
The LSF algorithm was applied to the computer-generated scattering data for 20 iterations. 

(a) Original Object (b) Conductivity Reconsruction 

• 
• 

Figure 9. Conductivity reconstruction using the distorted Born iterative method of the same 
object as used in Figure 8. The DBIM was applied to the computer-generated scattering 
data for 20 iterations. 

indicated by a "T" in Figure 12, and 6 receiver locations indicated by an "R". For 
the object functions and reconstructions shown below, the object space consists of 
the 35 x 35 grid point (g.p.) region indicated by a dashed box in Figure 12. 

To illustrate the reconstruction of metallic objects and show the horizontal and 
vertical resolution of our imaging system, two different cases of metallic scattering 
objects were considered. First, we examined two metallic cylinders aligned horizon­
tally, or parallel to the array. The cylinders were separated by 3.2 cm, each with a 
diameter of 0.4 cm. The reconstruction is shown in Figure 13 and it is clear that 
we can resolve this case very well. The second case that we considered consisted of 
the same cylinders with 3.2 cm separation, but in this case aligned vertically. The 
reconstruction is shown in Figure 14, and both cylinders are still well resolved. 

From an inverse scattering theory point of view, metallic scatterers are more 
difficult to reconstruct than dielectric scatterers because the inverse problem is more 
nonlinear. However, from a practical measurement perspective, the reconstruction of 
dielectric scatterers is more difficult because the scattered field is much weaker from 
dielectric scatterers and hence the signal-to-noise ratio is lower. To illustrate that 
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(dashed curve) reconstructions shown in Figures 8 and 9 from computer-generated scattering 
data. 

• 
• 

Figure 11. Local shape function reconstruction of two metallic cylinders more closely spaced 
than those shown in Figure 8. Cylinders are of radius a = .794 cm (.0645>'min) , separation 
d = 8.42 cm (.344>'min) using geometry shown in Figure 7. The LSF algorithm was applied 
to the computer-generated scattering data for 20 iterations. 

we can also measure dielectic scatterers with our prototype data collection system 
and generate quality reconstructions, we have collected data from two different sized 
plastic PVC pipes in air. A reconstruction generated by the DBIM algorithm for a 
PVC pipe of diameter 2.7 cm in air is shown in Figure 15, and the reconstruction of 
a PVC pipe of diameter 4.8 cm is shown in Figure 16. 

CONCLUSIONS 

We have presented here a review of the Born and distorted-Born iteratitive meth­
ods as well as the recently developed local shape function method for nonlinear inverse 
scattering. We demonstrated that these nonlinear inverse scattering algorithms are ca­
pable of achieving super-resolution imaging, and can distinguish objects separated by 
less than 0.5 wavelengths. These time domain algorithms avoid many ill-conditioning 
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Figure 12. Arrangement of transmitters, receivers and object grid experimental data collec­
tion. (Note: drawing not to scale). 
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Figure 13. Experimental data reconstruction showing original object and LSF reconstruction 
of two metallic cylinders of diameter 0.4 cm aligned horizontally with separation 3.2 cm. 
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Figure 14. Experimental data reconstruction showing original object and LSF reconstruction 
of two metallic cylinders of diameter 0.4 cm aligned vertically with separation 3.2 cm. 

problems associated with CW algorithms that use only a few discrete frequencies to 
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DBIM Permittivity Reconstruction 

Figure 15. Reconstruction of microwave data 
from a hollow PVC pipe of diameter 2.7 
cm in air. 
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Figure 16. Reconstruction of microwave data 
from a hollow PVC pipe of diameter 4.8 
cm in air. 

generate a reconstruction. The BIM and DBIM were shown to perform well for di­
electric objects, and the LSF method was shown to give a high-quality reconstruction 
for metallic objects. 

Although we have achieved some very promising results thus far, there is still 
much work to be done in inverse scattering theory, developing better inversion algo­
rithms, and improving data collection technology. The nonlinear inverse scattering 
algorithms presented here are capable of achieving much higher resolution and avoid 
many of the problems associated with previous methods such as computed tomog­
raphy and diffraction tomography. However, most inverse scattering work that is 
currently being done deals with 2-D objects only. Future inverse scattering algo­
rithms should be able to generate 3-D reconstructions if we are to remove modelling 
errors associated with using a 2-D model to approximate 3-D measurements. Work 
in the area of fast scattering solvers will also allow us to solve much larger inverse 
scattering problems. 
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HIGH RESOLUTION 2-D IMAGING WITH SPECTRALLY 
THINNED WIDEBAND WAVEFORMS' 
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INTRODUCTION 

A research program is under way at the Valley Forge Research Center to 
demonstrate that a unique form of pulse compression (when combined with techniques 
developed at VFRC for improved angular resolution) allows the presentation of high 
resolution two-dimensional images from a low bandwidth radar system. The pulse 
compression system provides the required improvement in the range resolution, and ISAR 
with adaptive beamforming for self-calibration purposes is used to achieve high resolution 
in azimuth. This technique was successfully demonstrated at VFRC many years ago [1]. 

The primary problem facing us is obtaining high range resolution with relatively 
narrowband radar set. In order to obtain high range resolution, it is necessary for the 
transmitted signal to have a large bandwidth. But as bandwidths increase, various 
problems arise because of interference from jammers and legitimate users of the spectrum. 
Also, the chance of fmding a completely unused section of spectrum becomes very small. 
One of the ways to solve this problem is to break up the wideband spectrum into a series 
of narrowband frequency components, each representing a small fraction of the total 
bandwidth. The wideband spectrum can then be thinned by eliminating those sections of 
the spectrum that contain interfering signals. A wide band spectrum can be can be 
synthesized by transmitting successive pulses at different frequencies [2]. Another 
motivation for thinning the wideband spectrum is to save data acquisition and processing 
time. 

It has been assumed that a typical high quality radar set may have a bandwidth of 10 
MHz, while high resolution imagery requires more than ten times this bandwidth. By 
shifting the center frequency of the radar pulse by known amounts and processing a 
sequence of pulses within larger bandwidth (usually 100 to 200 MHz) it is possible to 
synthesize a system capable of providing range resolution significantly better than I meter. 

Since the resulting system exhibits classical sidelobes (in both range and azimuth), 
a set of experiments was designed to allow the testing of VFRC developed sidelobe 
reduction techniques. These vary from the traditional weighting algorithms to the use of 
the powerful new CLEAN deconvolution technique in improving the target-to-sidelobe 
ratio. 

EXPERIMENTAL SYSTEM 

The equipment used in this program contains several separate sub-assemblies. An 
HP 83711A frequency synthesizer is used as a reference for both the phase comparator and 

• This work was supported by grant No. N 00014·93-1-0104 from the office of Naval Research. 
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the transmitter (Figure 1). This device is coupled through the RPm bus to the control 
computer to provide programmable frequency steps. It produces an output which is 
variable from 1 to 20 GHz with increments as small as 1 kHz. 

A wideband pin diode modulator is used to form the low-power transmitted pulse. 
The signal from the synthesizer is fed to the modulator where it is shaped into a pulse with 
rise and fall times less than one nsec. The pulse duration and prf are set by an HP 8082A 
pulse generator. Typical values for the ONR experiments are 100 kHz for the PRF and 0.1 
usec for the pulse length. The pulse output from the modulator is applied directly to a 
Hughes TWT Amplifier. These are available for the S, X, and Ku bands. They are 10 
Watt units capable of generating sufficient power for tests at close range. The lab also 
owns lkW TWT Amplifiers at X and Ku bands if additional power is needed. The 
transmit antenna is a wideband dish (2 foot diameter) mounted on the same structure as the 
horn antenna used for the receiver. 

The receiver takes the radar echoes, applies them to a low noise amplifier (2.5 dB 
NF), and sends them to the phase comparator. This is a wideband assembly based on the 
WJ M86C mixer with a bandwidth from 6 to 18 GRz. It contains two mixers with a 90 
degree phase shift applied to the reference port on one channel. Since this reference and the 
transmitted pulse are derived from the same oscillator, they are fully coherent. And with 
two signals of identical frequency applied to the inputs of a mixer the baseband output will 
be a dc level persisting for the duration of the pulse and proportional to the phase difference 
between the inputs. The quadrature signals (I and Q) produced by the phase comparator 
are then applied to the HP 54120T sampling oscilloscope for conversion to digital form and 
temporary storage in RAM. 

The sampling oscilloscope is a very flexible piece of test equipment which allows a 
convenient method of storing the output levels in digital form with 16 bit resolution. It is 
directly controlled from the desktop computer and provides the capability of averaging 
traces for improved SNR. Typically this feature is set to provide 32X integration. The 
only disadvantage of this device is the time required to build traces from individual 
samples. For stationary targets this is not a factor, and the oscilloscope is an ideal interface 
for converting the I and Q signals to digital form. 
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THINNING OF THE FREQUENCY BAND 

Spectral thinning consists of sampling the frequency spectrum (randomly or 
periodically) as shown in figure 2. The s.ampled sub-ban~s ~e used to reconstruct the 
extended bandwidth necessary to produce hIgh range resolutIOn Images. 

Thinning for reduced spectral occupancy has the following advantages: 

a) it minimizes loss of scan rate, 
b) it minimizes RF interference to other users of the spectrum, 
c) the computation time is greatly reduced. 

sub-bands 

Unthinned Spectrum Randomly Thinned Spectrum 

Figure 2. Random thinning of the frequency spectrum. 

To study the effects of spectral thinning on the quality of images (Le., resolution 
and dynamic range), various experiments were performed at the Valley Forge Research 
Center. The targets consisted of comer reflectors in different configurations. The carrier 
frequency for the transmitter was varied from 9.5 GHz to 9.7 GHz in steps of 2 MHz to 
synthesize a bandwidth of 200 MHz. Thus a hundred different carrier frequencies were 
used. The received echoes from the radar set were applied to a phase comparator, and the 
inphase and quadrature output signals were sampled and stored. Both periodic and random 
thinning were used to reduce the portion of the frequency spectrum used. 

PERIODIC THINNING OF FREQUENCY 

In the first thinning experiments the sub-bands that build up the bandwidth are 
sampled in a periodic manner. The image is reconstructed using the smaller set of equally 
spaced sub-bands. Various degrees of periodic thinning were studied. The cost of 
thinning periodically is the appearance of grating lobes in the image. The occurrence of 
grating lobes for periodic arrays is described in [1]. 

The range profile consists of sinc functions at the target locations. The original peak: 
sidelobe level is approximately -13.5 dB. To increase the dynamic range so as to detect 
smaller targets, it is necessary to reduce the sidelobe level. To reduce the sidelobes, various 
kinds of tapers can be used. The taper is applied in the frequency domain, i.e., the sub­
bands farther away from the center of the bandwidth are weighted less according to the 
taper function. The result of applying a raised cosine taper to the frequency band previous 
to periodic thinning is given in Figure 3. The peak: sidelobe level has dropped to -30 dB. It 
agrees with the first order theory which predicts a drop to about -32 dB. 
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Figure 3. The effect of raised cosine taper on the peak. side lobe level (PSL) 

RANDOM THINNING OF FREQUENCY 

The second method of spectral reduction uses random thinning. This also eliminates 
the grating lobes. But the disadvantage is the increase in the average sidelobe level in the 
reconstructed image. As a result of the random selection of frequencies the sinc functions 
lose their structure. An example of a reconstructed range profile before spectral thinning 
and after random thinning is given in Figure 4. Four sub-bands (each 10 MHz wide) are 
chosen randomly from the entire spectrum of width 200 MHz. Thus, effectively only 20% 
of the frequency spectrum is used. It is clear from the figure that the average sidelobe 
level is very high (-12.5 dB). The dynamic range is therefore quite small. 

To increase the dynamic range, a deconvolution technique called CLEAN is used. 
The coherent CLEAN procedure begins by identifying the strongest target in the image [6]. 
Then it subtracts a fraction y of the energy from the strongest target in the following 
manner 

(1) 

where I is the complex image with high sidelobes, f 1 is the point spread function located 
at the coordinates of the strongest source and y is the loop gain. 11 is the image obtained 
after the first iteration. This procedure of subtracting a part of energy of the strongest 
target in the current image is carried on until the image is devoid of all targets. The final 
CLEAN image is obtained by convolving the set of delta functions placed at the different 
detected target locations with the complex mainlobe of the point spread function. 

To implement the CLEAN technique, the complex image of the bearnforming 
target' has been used as the point spread function. At the different steps of the CLEAN 
algorithm, a properly sized complex point spread function is subtracted from the strongest 
target in the current, partially cleaned image. Thus CLEAN has been used in a coherent 
manner [5]. The stopping criterion for CLEAN is a very crucial factor. For this set of 

• The beamforming target is the reference target used to form the phase-correcting weight vector at the 
array [1]. 
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Figure 4. Example of I-D image (range profile) (a) before spectral thinning, 
spectral thinning, using only 20% of the entire spectrum. 

2·D IMAGING 

500 

(b) after 

An experiment was developed to demonstrate the resolving capabilities of the 
system. Three comer reflectors were placed in the target area. Two of them were 
positioned at the same range and separated by 1.5 meters, approximately twice the 
expected 3 dB azimuthal resolving capability of the array. The third reflector was placed 
1.5 meters closer in range than the other two. It was also positioned an additional 1.5 
meters to the right in azimuth to avoid any possibility of geometrical shadowing. Figure 5 
is the 2-D image of the configuration of comers. The entire spectrum has been used to 
reconstruct the image. The image verifies the exact position of each target and 
demonstrates the overall resolution of the system in both dimensions . 

• .i ... 

RANGE 

Figure 5. Isometric and contour plots of 2-D image reconstructed using the entire 
spectrum. 
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s. 

Figure 6 shows the reconstructed image using only 20% of the bandwidth (80% 
random thinning). The high average sidelobe level (in range) results as a consequence of 
spectral thinning. To increase the dynamic range CLEAN has been used. The 
deconvolution has been performed in the range dimension only. The CLEAN image 
(isometric and contour plots) is given in figure 7. A net increase of 11.2 dB is obtained in 
the dynamic range. 

RANGE 

Figure 6. Isometric and contour plots of 2-D image reconstructed using only 20% of the 
entire spectrum. 
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Figure 7. CLEAN Isometric and contour plots of 2-D image reconstructed using only 20% 
of the spectrum. 

CONCLUSION 

In this report a flexible method of pulse compression and various aspects of spectral 
thinning have been studied. The results are quite encouraging. In the case of periodic 
thinning approximately 80% compression of the spectrum has been achieved. This 
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corresponds to 80% reduction in data acquisition and processing time. On applying a 
cosine taper the peak sidelobe level has been reduced to -30 dB. 

The random thinning of the spectrum combined with the CLEAN technique is 
shown to work well in 2-D. A net increase of 11.2 dB in the dynamic range is obtained by 
using coherent CLEAN (in range only) to a 2-D image reconstructed after eliminating 80% 
of the spectrum. In the work completed to date, the improvements generated by these 
procedures have been dramatic. 
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INTRODUCTION 

Because an ultra-wideband waveform provides fine range resolution, it is desirable to match 
this resolution with a correspondingly fine azimuth or cross-range resolution such as for 2-D 
imaging. This implies a large aperture. Large apertures (real or synthetic) suffer from 
geometrical distortions which cause the array to lose mainbeam gain and produce high 
sidelobes. The short-pulse equivalent of the steering vector cannot be implemented as a 
fixed progression of linearly increasing delays. Adaptive calibration is necessary to adjust 
the time delays based on environmental returns. Current GSI research indicates that it is 
possible to temporally align the delays at each element based on impulsive returns from 
targets or clutter. 

Because the bandwidth of a short pulse radar spans a large portion of the electromagnetic 
spectrum, sources such as television and radio broadcasts and phenomena such as lightning 
and spark plug emissions give rise to directional interference. The directionality of the 
interference must be interpreted in a space-time sense since they will often occupy a narrow 
spectral region in addition to a specific spatial location. The large number of potential 
interferers make adaptive cancellation an important consideration. 

The approach to space-time adaptive beamforming for conventional waveforms is to sample 
the received field spatially (a phased array or sampled aperture) and temporally (a tapped 
delay line or digital data collection) and apply an appropriate (adaptively learned) set of 
complex weights. For short-pulse waveforms, the concept of phase becomes less 
meaningful and hence the complex weight approach may no longer be applicable. As we 
progress from wideband to ultra-wideband the traditional half-wavelength antenna element 
spacing and bandwidth-rate waveform sampling become less practical. New and unique 
approaches involving non-uniform and continuously-variable spatial and/or temporal 
sampling intervals may be required. Phase shifts should be replaced by time delays. 
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This paper briefly reviews the mathematics of state-of-the-art digital beamforming. We first 
describe the optimum beamformer in terms of (1) mainbeam gain (coherent signal addition) 
and (2) sidelobe interference suppression and describe adaptive beamforming in terms of 
using (1) returns from a phase synchronizing source to calibrate the array and (2) received 
interference samples to suppress the interference. Next we discuss recent advances in 
adaptive beamforming as applied to conventional waveforms, that if extended to ultra-wide 
bandwidth short-pulse radar. will permit fine angle resolution comparable to the range 
resolution; and we indicate how this extension will be made. We then discuss recent 
advances in adaptive processing algorithms that can take advantage of the enormously large 
number of space-time degrees of freedom available in wideband systems by using few 
"snapshots" or "design samples" to estimate a large number of parameters. 

ADAPTIVE BEAMFORMING108 

Beamforming means weighting an array so as to (1) sense signals from a desired direction 
while (2) attenuating interference from other directions. This dual concept has a convenient 
mathematical description in the narrowband case. The array output is a linear combination 
of the complex voltages received at the array elements 

~N • 
y=~" _lw"e". 

In vector notation, the narrowband beamforming equation becomes 

(1) 

where the superscript h denotes conjugate transpose. 

In the absence of directional interference the complex weight vector, W, is a complex scalar 
times a "steering vector", s. This steering vector contains the phase progression across the 
array needed to form a beam in a given direction. If ea represents the data vector received 
from a unit source at a location defined bye, we are matched to that source if s = ea. More 
generally, s will also include an amplitude taper across the aperture to provide a low 
sidelobe antenna pattern. 

In the presence of directional interference (e.g., intentional or non-intentional jamming), the 
narrowband optimum weight vector is 

(2) 

where R=E{ eoeo "} and eo is a vector of data across the array due to interference (i.e., in the 
absence of signal). In the interference free case discussed above, R = 0 2 I , where 0 2 is the 
element noise variance and I is an NxN identity matrix. In the presence of J strong 
independent directional narrowband interference sources, with J<N, R exhibits J principal 
eigenvectors (corresponding to eigenvalues much greater than 0 2)9. In this case Ro1 may be 
approximated by an operator that projects the steering vector onto the orthogonal 
complement of the space spanned by eo> and the weight vector becomes 

(3) 

where 

(4) 
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with Si = Sh Ui' We call this technique "orthogonal projection".2.10-12 Equation (4) subtracts 
from the quiescent beam a weighted sum of eigenvector beams that cover the interference. 8 

In the above we form the beam using s and then remove interference from that beam. As an 
alternative, we may write equations (1) and (2) as 

y=a:shx 
where 

x= R"l e. 
Here we remove the interference from the received data vector before forming the beam. 13 
This later interpretation is useful when s has to be estimated in the presence ofjamming.8 

In practice, there is insufficient prior information available to apply an optimum weight 
vector ,W, or form an optimum beam, y. The weight vector must be updated adaptively on 
the basis of received signals. Self cohering or adaptive calibration is the process of 
updating or learning the steering vector, s. Interference cancellation or adaptive nulling is 
the process of updating or learning R (or, more precisely, R"l). 

The above discussion is a synthesis of a large body of work by many researchers. Unique 
features of this formulation are: 

(1) the separability of the two aspects of adaptivity resulting in the ability to do both 8 
and 

(2) a simplification of the principal eigenvector approach leading to closed form 
performance predictions. 1·3.10·12 

These predictions, validated by extensive computer simulations,2,13 show that close to 
optimum performance can be attained in wideband systems with many degrees of freedom 
and only few observations from which to adapt. This will lead to a means to adaptively 
filter and cancel interference in ultra wideband systems. But first we will discuss adaptive 
self-calibration techniques that are directly applicable to ultra-wideband short-pulse radars. 

SELF COHERING VIA SPATIAL CORRELATION 8,13.20 

Self cohering has been successfully applied by GSI personnel in a variety of narrow band 
and wide band situations. Whenever the array is distorted mechanically or electrically it 
becomes necessary to estimate s from appropriate data. This is true when large apertures 
are used for fine azimuth resolution, 13·18 when distributed apertures are used for 
survivability,13 and when synthetic apertures are created for two dimensional SAR or ISAR 
imaging. 19,20 

Even when the bandwidth is relatively narrow, a portion of the self cohering process, referred 
to as range bin alignment, is performed in the time domain. 19 For example, when a SAR 
image is created while the radar platform is undergoing a high g maneuver, it is necessary to 
align the pulses in range as well as to correct the pulse to pulse phase errors.20 A highly 
robust procedure is to correlate the returns from succeeding pulses. The delay at which the 
correlation peak occurs provides the pulse to pulse range correction and the phase of the peak 
correlation provides the pulse to pulse or differential phase error. While phase may not be a 
meaningful concept for short-pulse radar, the range correction procedure can be translated 
directly to the ultra-wideband case. 
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INTERFERENCE CANCELLATION VIA ORmOGONAL PROJECTION 

Spatial, Temporal, and Space-Time Processing 1-11 

The "Adaptive Beamforming" discussion presented earlier in this paper is a special case of 
"Adaptive Space-Time Processing". More generally, the received signal is sampled in both 
time and space and the vector e in equation (I) represents a N=mn dimensional vector 
obtained by concatenating n sequences of m samples, each; n is the number of elements and m 
is the number of time samples to be weighted at each element. For beamforming we have 
m=1. For filtering we have n=1. Since radio and TV broadcasts represent narrowband 
interference in an ultra-wideband system, interference cancellation or adaptive nulling should 
be viewed in a space-time sense. Since appropriate spatial sampling and spatial nulling in 
ultra-wideband systems is extremely difficult, we focus our attention on the purely temporal 
(adaptive filtering) counterpart of the Orthogonal Projection Technique described by 
equations (3) and (4). 

Adaptive Filtering by Orthogonal Projection 9.12,21.2' 

Let the interference data vector, due to p narrowband interference sources plus noise, be 
eo = x = [x(O) x(l) ... x(N-I)t , 

with N>p. As an alternative to the customary autoregressive model: 
x(m)=l;t = 1 al x(m-i) + u(m) • 

where u(m) is white noise, we will asume that the interference spans a J dimensional 
subspace of the N dimensional vector space, with p<J<N The eigendecomposition of the 
NxN correlation matrix R can be expressed as 

J N 

R=E{nh}=LO"i+0'2)u/u~+0'2 LU/U~, 
;=1 i=J+l 

where the A.; are the eigenvalues associated with the interference and 0'2 is the noise power. 

If M> N samples are available, we estimate R as being proportional to XXh , where the data 
matrix is given by 

x(l) x(2)· .. X(M~N+l) . [ 

x(O) x(l) ... x(M - N) 1 
X= X(;-l) x(N) x(M-l) 

Instead of inverting an estimate of R for use in (2), we perform a singular value 
decomposition of X and estimate R-l as the projection opperator: 

N J 
2R-1 ~ h I ~ h 0' = 4.<utu/ = - 4.<u/u/ . 

i=J+l i=1 

This leads to (3) and (4), where the uj are the left singular vectors ofX. The advantage of 
this method is that we do not require M>2N data samples. Convergence is determined by 
the degrees of freedom spanned by the interference rather than by the UWB radar returns 
(J«N). 

574 



SUMMARY 

While the mathematical formulation of Adaptive Space-Time Processing (STP) is well 
established for conventional sensor arrays, the extension to ultra-wideband (UWB) systems 
is in its infancy. STP involves (1) matching to a desired signal (focusing) and (2) rejecting 
interference (nulling). Progress has been made in spatial focusing and temporal nulling for 
UWB systems. 

Since UWB systems have bandwidths on the order of the "center frequency", obtaining 
cross-range resolution on the order of the range resolution requires an aperture length on 
the order of the range. Some of the most successful spatial focusing techniques for large 
apertures involve cross-correlating sensor returns. This can be implemented for short-pulse 
systems. 

TV and radio interference are relatively narrow-band and hence low-dimensional. 
Orthogonal projection techniques, developed for spatial nulling in large narrow-band arrays, 
are well suited for ultra-wideband adaptive filtering or temporal nulling. 
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MEASURING MOVING TARGET SPEED AND ANGLE 
IN ULTRA-WIDEBAND RADAR 

Derek E. Iverson 

Boeing Defense and Space Group 
PO Box 3999 Mail Stop 8H-51 
Seattle, WA 98124 

INTRODUCTION 

A large body of technology exists to measure the metric properties (range, angle, 
speed) of moving targets with conventional radar employing narrowband signals. This 
technology is invariably based upon there being one, well defined wavelength which typifies 
the probing signal. This wavelength is then used to reference all phase changes that occur 
during the measurement period and enable coherent processing of the returns. This 
assumption is present in beamforming and in Doppler processing. When one considers use 
of an ultra-wideband radar (UWBR) for this same task, there is a loss of this convenient 
reference as well as the need to address other difficulties due to the probing pulse being 
shorter than typical targets. One either needs to employ purely time domain methods where 
wavelength is ignored or to make use of an appropriate decomposition which allows one to 
recapture the benefits of wavelength based, narrowband processing. Following on the 
analysis of Iverson1, this paper will take the later approach and show how subspace-based 
direction of arrival (DOA) technology with wide-band extensions can be applied to the 
estimation of both the speed and angle of moving targets in an ultra-wideband radar. It is 
then shown how the same wideband extensions can be employed to enable application of 
conventional Doppler processing and beamforming to ultra-wideband radar. 

SUBSPACE BASED DOA WITH WlDEBAND EXTENSIONS 

In the subspace-based DOA problem the task is to use the independently sampled 
responses from a linear, equal spaced, array of identical sensors to measure. the angle of 
arrival of a narrowband signal. If w is the frequency being sensed by sensors with spacing 
of d; sp(w) the signal from the pth source at bearing 8p with a total of P sources; and v(m,w) 
the noise at the mth sensor, then the signal Yd measured at sensor m is as in equation (1). up 
= sin(8p)/c is the slowness of the pth source. 
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P-I 
Yd (m,w) = ~ spew) e- j to Up m d + v(m,w) 

p=O 

The vector of responses from M sensors can be represented as in eqn. (2). 

yew) = [Yd (0,00) Yd (1,00) ... Yd (M-1,w)] 

The narrowband measurement covariance matrix R(w) is defined in equation (3) 

R(w) = E[y(w) y(w)H] 

= A(w,a) Ps(w) A(w,a)H + Ry(w) 

(1) 

(2) 

(3) 

where A(w,a) = [a(w,ao) a(w,al)··· a(w,ap_l)] is the M x P source direction matrix; 

a( w,ap) = [1 e j to up d ... e j w up (M-l) d]H is the direction vector of the pth source; Ps is 
the P x P source spectral density matrix; and Ry is the M x M noise covariance matrix. 

The object of the DOA problem is to determine the bearings of the P sources from 
measurements Yew) of y, P itself being unknown. The M x N data matrix of sensor 
measurements taken at time tj is defined by eqn. 4. 

(4) 

A wide variety of techniques have been proposed for the solution of this problem but some of 
the most popular come under the heading of signal subspace methods, and it is these that will 
be the subject of this paper.2,3 These methods start with either the covariance matrix Rand 
employ eigenvalue decomposition, or with the data matrix Y and employ singular value 
decomposition to determine the bearings. Since it is known that both approaches result in the 
same orthogonal subspace, the choice of which to use may be based upon other 
considerations, such as convenience or memory storage requirements. One can also use a 
higher order cumulant matrix as the starting point and employ eigenvalue decomposition as 
before.4 Without regard to the exact nature of the matrix used, we will call this matrix the 
problem matrix. Thus there are a variety of tools available to solve the narrowband DOA 
problem. 

When the signals are wideband, problems occur in the direct application of these tools. 
Ignoring signal bandwidth produces unsatisfactory results, as does the approach of solving 
the DOA problem in several narrow bands spanning the signal bandwidth and then 
'averaging' the results.5 What is needed is a tec!Iniques to use all of the data to produce a 
good estimate of the problem matrix and then use conventional tools to solve the DOA 
problem once. Krolik and Swingler6 have recently proposed such a technique. This same 
concept was subsequently proposed by Doron 7 as well. The basic idea here is to decompose 
the data at each sensor into a set of narrowband channels. Then resample spatially (from 
sensor to sensor in the same channel) to effectively decrease the sensor spacing in direct 
proportion to each channel center frequency relative to the center frequency of the lowest 
frequency channel. The net result is to make it appear as if the direction vector in each 
channel represents the same narrowband frequency. These vectors, with their 
widebandedness removed, can be combined to produce the equivalent of a single good 
narrowband problem matrix by doing sample covariance averaging or using a resampled data 
matrix as in eqn. (5). 
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(5) 

Alternatively, one might 'go the other way', and extend the lowband signals using model 
based prediction with analogous susequent processing steps. In this paper we consider only 
the resampling approach. 

UWBR VELOCITY ESTIMATION 

The application of these developments to UWBR can be seen from the following 
development. Consider a collection of M pulse returns of N samples each, where M and N 
are considered to be powers of two for convenience. The signal is assumed to consist of the 
contribution due to clutter c and target t. The UWB signal is assumed to be shorter than the 
target, and the convolution of the two (of length D) with allowance for target motion, is 
assumed to be contained within the N samples on every pulse. The target response can be 
embedded into a new zero filled sequence i so that is has the same length as c. The sampled 
signal s is then represented as the sum of c and i, where x is the index of the first non-zero 
sample of i, i.e., the location of the near edge of the target, and i is the pulse index. 

tj = {tj(n)}n = x ... X+D.l; OsxsN.D.l 

c. = {c.(n)} _ 0 N.l lIn - •.• 

i.(n) = ({tj(n)}n = x ... x+D·l; ~ s x s N·D·1 
I 0 ; otherwIse 

s. = c. + t. 
I I I (6) 

If any pulse return is transformed the result will be the sum of the transforms of the two 
component signals. The Fourier transform of eqn. (6) is displayed in eqn. (7), where T(n) is 
the D point transform of t. Note that the transform of t has been modified in two ways from 
its ideal transform: it is multiplied by an exponential proportional to x, its displacement in 
sample space; and its transform has been scaled by a factor accounting for the zero filling that 
occurred in forming i from t. 

(7) 

Now let x = mi + xo' so that the target is in linear motion starting at Xo and traveling at speed 
m samples/pulse interval. Then the spectrum of a pulse return becomes eqn. (8). 

(8) 

Note that the term premultiplying T is phase linear in i from pulse to pulse (the post multiplier 
of T is a constant term which may be ignored). This feature may be used to coherently 
suppress clutter as shown by Iversonl . For our purposes here assume that clutter is totally 
suppressed and one has only to deal with the target component of the signal. The linear 
phase term, when viewed from pulse to pulse in the same filter n, has the same form as a 
source direction vector where speed m now takes the place of slowness times d and i takes 
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the place of array index m. The conversion is made exact in eqn. (9) which derives the 
incremental phase across samples in the same channel n. R is the speed of the target, fs the 
sample rate, fr the pulse repetition frequency (PRF), c the speed of light in the medium, and 
fn the center frequency of the nth channel. 

Atj> = 2Jt nm 
N 

= (2Jt) n (2 It fs) 
N cfr 

M = 4Jt fn (c~J 
(9) 

With this identification made, the application of DOA technology to velocity estimation is 
obvious. We will demonstrate the approach via simulation. Figure 1 presents a pictorial 
description of the processing steps described in this paper. 

Figure 5 Figure 4 

Doppler Processing DOA Type Processing 

Figure 1. Processing diagram for figures of this paper. 

Figure 2 depicts the input data matrix of signal pulses from a single array element 
where the target is an ideal point reflector and the transmitted signal is a sinusoid with a 
Rayleigh density amplitude modulation so that the signal has a relative bandwidth of 1. The 
data simulates a target range rate of -150 m/sec, a PRF of 1000 Hz, a monocycle center 
frequency of 300 MHz and a sample rate of 2 GHz. Figure 3a shows the magnitude of the 
spectrum in the cross range dimension for filters within the bandwidth of the transmitted 
signal. One can clearly see that the Doppler frequency of the higher frequency channels is 
higher than for the lower frequency channels. 
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Figure 2. Wiggle plot of input data to one array element. 
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Figure 3. Cross-range spectral magnitudes: a) before resampling; b) after resampling. 

Figure 3b provides the same view after spatial resampling in the cross-range dimension to the 
frequency of the low signal band. One can now observe that the Doppler of every channel is 
identical. Vectors formed from each channel with samples in the cross range dimension are 
used to form the appropriate problem matrices. Figure 4a is a plot of the singular values 
associated with this matrix. There is only 1 significant non-zero singular value, 
corresponding to the moving target. Figure 4b shows the estimates of velocity found from 
this matrix using a variety of techniques (min-norm (Kumaresan-Tufts), music, maximum 
likelihood (Pisarenko), autoregressive (maximum entropy), and eigenvalue (weighted music) 
methods).2,3 Multiplying the DOA angle output ~cp by the factor of eqn. (10) converts the 
DOA output to equivalent velocity. fc is the center frequency of the waveform and Bf its 
relative bandwidth. 

(10) 
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Figure 4. DOA type processing: a) singular value spectrum; b) estimated target range rate. 

One can observe in Figure 4b that the velocity has been correctly estimated. 

600 

The maximum velocity that can be estimated by this technique is easily derived by 
constraining the incremental phase change at the highest frequency channel before resampling 
to be less than 3t between pulses. The appropriate limit is shown in eqn. (11). 

. cf 
Rmax = 2 fc (B; + 2) (11) 

One can view this constraints as limiting the total motion of the target over the 
observation interval. The appropriate limit can be derived as follows. If Ns is the number of 
samples per pulse and Np the number pulses to be processed together then the ratio of the 
maximum target motion in range to the total swath length of the measurement interval can be 
determined to be eqn. (12). 

(~Rt) Rmax Np Np fs 
max R~ = f [Ns c) = fc (Bf + 2) Ns 

r 2 fs (12) 

It has been shown1 that for baseband sampling of ultra-wideband signals fs;?: fc (Bf + 2). 
Hence it follows that the target motion during a processing interval is limited as in eqn. (13), 
where ks is the oversampling factor (i.e., the factor by which the minimum sample rate is 
exceeded). 

(13) 

For instance, for the preceding example where 16 pulses were used with 128 samples of each 
pulse return, the maximum unaliased target speed is about :1:150 m/sec and the target 
movement limit is about a quarter of the swath in range. 

Once the velocity has been found, the pulse returns for each element can be 
appropriately delayed so that the target appears stationary from pulse to pulse and the pulses 
added together (coherently integrated) to get a composite signal) When this has been done 
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for each array element, one is back to the situation of Figure 2 only now the rows of data 
correspond to element composite returns and the slant of the target returns reflects angular 
information. The solution procedure can be repeated, between elements this time, to 
determine the bearing to the target. Once this bearing is found, one can again delay the 
element composite returns the amount suggested by the target bearing and then sum them 
together to get the a final estimate of the target return signal. From this signal one can 
compute target range. 

Thus by making the identification suggested here and by employing the delay and sum 
concept of coherent integration the entire DOA technology base can be applied sequentially to 
solve the problem of velocity, angle and range estimation of moving targets in an ultra­
wideband radar. 

CONVENTIONAL SPACE-TIME PROCESSING (STP) 

Now that the idea of resampling is understood and is found applicable to ultra­
wideband radar signal processing in the DOA context, it is interesting to observe that one can 
combine it with conventional FFT based processing as well. To start one uses the same data 
as before, such as that shown in Figure 2, transforms each pulse in the range dimension and 
resamples in the cross-pulse dimension as before. Since the phase of each frequency band 
has been preserved by the resampling process, i.e., the first sample of each frequency band 
is unchanged, an inverse range transform will properly recombine the signal bands. Since 
each resampled frequency channel effectively represents the same frequency, the target will 
appear in the same Doppler filter in every channel. Hence performing an inverse range 
transform followed by a cross-range transform will combine all target energy into a single 
cell. Figure 5 provides a demonstration of this fact. This plot represents the magnitude of 
the response from this 2D transform and clearly shows the point spread function mainlobe 
located at the range and Doppler of the target. In order to estimate angle, one would extract 
the waveform corresponding to the correct doppler from each antenna element's processed 
response matrix and in similar fashion proceed as before. This procedure could be made 
adaptive (STAP), as it has for the conventional beamforming problem.8 

- ....... 10 -535 

Figure 5. Result of space-time processing to concentrate target response. 
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SUMMARY 

Conventional Doppler filtering and narrowband DOA technology cannot be applied 
directly to ultra-wideband radar. However, by making use of a resampling technique 
invented to extend narrowband DOA technology to wideband signals, one can not only use 
subspace-based DOA algorithms to compute the velocity and bearing of the ultra-wideband 
response from moving targets, but one can also apply conventional STP and STAP to ultra­
wideband problems as well. 
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Abstract 

This paper presents a technique that combines Prony's original approach together 
with the high resolution eigenstructure based methods to estimate resonant modes 
from scattered noisy data. The problem is equivalent to obtaining best rational 
approximations that fit the actual measurements in a least square sense. 

I. Introduction 

The problem of identifying a linear time-invariant (LTI) systems from measure­
ments of their output responses to a known input excitation, such as a white noise 
source or an impulse function, is of fundamental importance in many areas in engi­
neering. Such an identification naturally allows one to predict the system outputs 
and their resonant modes, and, as a result, this problem has considerable impact in 
many areas. 

Physical systems such as above may not be always linear or time-invariant. Never­
theless, over a reasonable time-interval, the outputs can be assumed to be generated 
by an LTI system, and for an accurate description over a long period it may be enough 
to update the system parameters adaptively. Moreover, the LTI system under consid­
eration may not possess a rational transfer function. In that case it becomes necessary 
to model such systems with reasonable accuracy through a finite-order stable recursive 
model that is optimal in some fashion. Hence, within this approach, physical systems 

tThis research was supported by the Army Research Office under contract DAAH04-93-02-0010. 
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can be parametrized accurately through a finite-order recursive model, provided the 
system output can be used to describe the underlying system in a satisfactory manner. 

A rational system, as the name implies, possesses a transfer function that is the 
ratio of two polynomials. In the discrete case, such a system can be compactly 
described in the z-domain using its transfer function H(z) given byl 

(1) 

where ai, i = 1 -+ p, and bi , j = 0 -+ q represent the system parameters. Such systems 
are known as AutoRegressive Moving-Average (ARMA) models with denominator 
degree equal to p and numerator degree equal to q, or in short, as ARMA(p, q) 
systems. It is not difficult to grasp their physical meaning. When driven by an input 
w(n), to generate the output x(n), as shown in Fig. 1, we have 

p q 

x(n) = - Ealex(n - k) + Eblew(n - k). (2) 
Ie=l Ie=O 

Thus, the present value of the output x(n) depends regressively upon its previous p 

Figure 1. A Linear Time-Invariant (LTI) System 

sample values as well as the running (moving) average generated from (q + 1) past 
samples of the input w(n). 

Clearly, if the system is analytic in Izl < 1, it can be represented by a one-sided 
Taylor series expansion given by 

00 

H(z) = Ehlezle , Izl < 1. (3) 
Ie=O 

Here, {hie} f:o denotes the impulse response sequence that determines the intrinsic 
characteristics about the system. This sequence can be observed when the system is 
excited by an impulse function 5(n). If the input process is a wide-sense stationary 

1We have used the variable:, rather than the usual :-1, for the delay operator. In this represen­
tation, a stable function has all its poles outside the unit circle (1:1> 1). Minimum phase systems 
have all their poles and zeros outside the unit circle, and stable nonminimum phase systems have 
no restrictions on their zeros. The use of the variable z translates all stability arguments to be 
carried out in the compact region Izl $ 1. 
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white noise process w(n) with power spectral density Sw(O) = 0-2, then the power 
spectral density of the output process x(n) is given by 

+00 
Sx(O) = Sw(O)IH(ei9W = 0-2IH(ei9 )12 = L: rkeik9 , (4) 

k=-oo 

where 
l!. 

rk=E[x(n)x*(n+k)], k=O,1, ... ,oo (5) 

represents the kth autocorrelation term of the wide-sense stationary output process 
x(n). If the system is exited by a white noise process w(n), the output correlation rk 
can be expressed in terms of the system impulse response hk as 

00 

rk = E[x(n) x*(n + k)] = L: hi hi+k (6) 
i=O 

If auto correlations alone are used in identification problems, then as is well known, 
systems can be identified only upto their minimum phase equivalent parts [1]. Since 
a good majority of physical systems are not minimum phase, the above minimum 
phase factor corresponding to the original system hardly gives the exact phase char­
acteristics of the system. To overcome this difficulty, instead of using only the output 
autocorrelations rk, we may need to use additional information such as the first-order 
or high-order moments or their combinations. In the next section, we address this 
problem using partial information regarding the impulse response sequence. 

II. Rational System Modeling 

A rational system H(z) such as in (1) can be alternatively represented as 

p 

H(z) = L: _Ck_, Izl < 1 
1.=11 - Zk Z 

(7) 

where zll, Zi1, ... Z;1 represent the poles of the system.2 Notice that for analyticity 
of H(z) in Izl < 1, the poles must be outside the unit circle, or , IZkl < 1, k = 1 -+ p. 
Thus, using (3), (7) gives 

(8) 
otherwise 

2 Zk, II: = 1 ..... p does not have to be distinct. For simplicity, we will only consider the distinct root 
situation in this paper. 
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From (8), given a finite: set of the impulse response, the identification problem reduces 
to evaluating Ck, Zk, k = 1 -+ p. Notice that Zk, k = 1 -+ p appear in (8) in 
a nonlinear manner, and hence direct evaluation of these quantities are in general 
difficult. Moreover, exact modeling is valid only when the orignal system happens 
to be representable as a linear combination of p exponential modes, i.e., the orignal 
system is rational. If the impulse response sequence originated from a nonrational 
system, to obtain a rational approximation such as above, a measure of 'goodness of 
fit' must be assumed, so that the unknown parameters can be selected in a systematic 
fashion by finding the 'best' approximation. Various techniques have been developed 
to solve this problem such as those based on the Singular Value Decomposition (SVD), 
the maximum likelihood (ML), the polynomial method and matrix pencil technique 
[2,3]. 

As is well known, Prony has recognized this problem and ingeniously developed 
an alternate approach where the nonlinearity in (8) is turned into a linear problem 
by exploiting the finite order of a rational system [4, 5]. To see his approach, it is 
best to make use of (1) and (3) to derive a set of equalities that can be used to obtain 
the desired linear equations. Towards this, equating (1) and (3), and comparing 
coefficients of like powers, we get 

(9) 

and 

0= aohr+p + aIhr +p_ 1 + a2hT+p-2 + ... + aphr, r ~ O. (10) 

Notice that (10) represents an infinite set of linear equations in the unknown quantities 
at, a2, ... ap, and the first p equations there can be used to evaluate these unknowns. 
This gives 

ho hI h2 ~-, I ap I ~ hI h2 h3 hp ap_1 hp+1 
h2 h3 h4 hp+1 ap-2 = - hP:+2 (11) 

h2:-2 hp- I hp hp+1 al h2p- 1 

In principle, (11) can be used to solve for at, a2, ... ap • In that case, from (7) 

A(z) = 1 + alz + a2z2 + ... + apzP = (1 - zlz)(l - Z2Z)··· (z - zpz) (12) 

and the poles of the system correspond to the zeros of the denominator polynomial 
A(z). Notice that in Prony's approach, the nonlinear problem of determining Zk, 

k = 1 -+ n from the impulse response has become a linear problem in (11). Once 

588 



the ak's are determined, the numerator coefficients bk's can be evaluated from (9) 
directly. Alternatively, since Zk'S are known, the residues Ck, k = 1 -+ P in (7), can 
be determined from the first p equation in (8) as 

1 1 1 1 CI ho 
ZI Z2 Zp-l zp C2 hI 

z2 
I 

z2 
2 Z;_I Z2 

p C3 = h2 (13) 

p-I 
ZI 

p-I 
Z2 

p-I 
Zp_1 Z:-I Cp hp- I 

If Zk =f. Zi for i =f. j, the Vandermonde matrix in (13) is nonsingular, and a unique 
solution is guaranteed for the unknown residues CI, C2, .•• Cp. 

The Prony equations in (10) in fact says much more about the structure of the 
rational system in (1). To see this, define the Hankel matrices 

k ~ O. (14) 

Then from (11), Hp is singular and H p- I and C p are nonsigular. In fact, 

rank Hp = rank H p - l = rankCp = p. (15) 

Moreover, from the Prony equation in (10) 

(16) 

and consequently if k ~ p, rows/columns beyond the pth row/column in Hk and Ck 
are linearly dependent on their previous rows/columns. Thus, together with (15), it 
follows that 

rank H k- I = rankCk = p, k ~ p. (17) 

Equation (17) shows the rich structure present in a rational system, and it forms the 
necessary and sufficient conditions for an infinite sequence {hdk:o to represent the 
impulse response sequence of a rational system. In principle, the rank condition (17) 
can be used to determine the model order p of the rational system, and then Prony's 
approach can be successfully applied to evaluate the system parameters as described 
before. 
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III. Noisy Data Case 

The situation is however not so ideal if the impulse response data h .. , n ~ 0 is 
corrupted by noise, In that case, the rank conditions in (17) are no longer true, and it 
will be difficult to determine the model orders using that approach. Since measured 
data is always noisy, we may model the observed data as 

, 
x(n) = h" + w(n) = :E C"zk + w(n), (18) 

k=1 

where w( n) represents additive noise that corrupts the impulse response. In this case, 
the problem is statistical, and the principle of maximum likelihood (ML) may be used 
to evaluate the unknown deterministic parameters Ck, Zk, k = 1 -+ P in (18). The ML 
approach first computes the joint probability density function of the observations, 
and then evaluates the log-likelihood function. In principle, the optimal values of the 
unknowns correspond to the peaks of this function, and they can be estimated by 
a search procedure. However for any reasonable value of p, this nonlinear search is 
quite tedious, and alternate suboptimal methods must be developed to obtain good 
solutions to this problem. 

Towards this, once again we can make use of the Hankel matrix H" defined in 
(14). Suppose ho -+ h2 .. are available, and let H = H" represent the symmetric 
Hankel matrix of size (n + 1) X (n + 1) as in (14). Since, H is real and symmetric, 

-T we also have H = H", where H" = H represents the complex conjugate transpose 
of H. To incorporate the structure of h" in (8), define 

1 1 1 1 
Z1 Z2 Z,,-1 Z" 

z~ Z2 
1 

z2 
2 Z;_1 Z2 , (19) 

z" 1 
Z .. 

2 Z;_1 z;, 

and 
C = diag [Cl> C2, ••• , c,,], (20) 

where diag [.] represents a diagonal matrix. Then using (19)-(20), a direct computa­
tion shows that 

H=ZCZT (21) 

and with the help of H = H", we also have 

H = ZC"Z". (22) 

590 



Notice that H is of size (n + 1) X (n + 1) and rank p. Hence, n + 1 - P eigenvalues 
of H are zeros. Since H is symmetric, the corresponding eigenvectors are linearly 
independent and can be chosen to be orthogonal. Let e1> e2, ... e,,+1 represent the 
eigenvectors and ).1> ).2, ... ).,,+1 represent the eigenvalues of H. By rearrangement, 
we can always write 

(23) 

Thus 

(24) 

and 

Hel: = 0, k = p + 1 - n + 1 . (25) 

Using (22) and (25), this gives 

Z· e" = 0 , k = p + 1 _ n + 1 . (26) 

Let 
Vi = [1, Zi, zl, ···zrJ. (27) 

Then from (19) 
(28) 

and using (28) in (26), we get 

(29) 

i.e., the p linearly independent vectors VI, V2, ... vp, in (27) are orthogonal to the 
eigenvectors {ep+1, ep+2, ••. en +1} associated with the zero eigenvalue of H. Thus 

(30) 

From (24)-(25), we also have 

(31) 

since the eigenvectors associated with distinct eigenvalues of a symmetric matrix are 
orthogonal to each other. Finally using (30) and (31), we get that the set of linearly 
independent vectors 

{et,e2,···ep} and {Vl,V2,···Vp} 

span the same subspace of dimension p. As a results, 

p 

ei = :L: dil:V", 
"=1 

(32) 
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or 

(33) 

.0. 
where DiAr = diAr. Thus, 

E=ZD. (34) 

Equation (34) can be used to determine the desired unknowns Z1, Z2, ••• z". For 
example, let El and E2 represent the first and last n rows of E respectively. Then 

(35) 

(36) 

where Zl abd Z2 represent two n x n matrices generated from the first and last n 
rows of Z respectively, with Z is as given in (19). Further 

(37) 

From (36)-(37), the generalized eigenvalues of El with respect to E2 are given by 

(38) 

or the desired eignevalues are given by 

(39) 

From (38), since the eigenvalue of El - ~E2 and (E~E2)-1 E~El - 1'1 are the same, 
for example, the later form can be used to determine the desired pole locations zil, 
i = 1 -+ n, in (39). 

Notice that the above procedure contains a double eigendecomposition procedure, 
and has been observed to work well in presence of noise. Of course, in the absence 
of noise, this prcedure is unnecessary, since the simpler Prony's original approach 
will guarantee the true solutions. However, unlike Prony's approach that determines 
the denominator coefficients aAr, k = 1 -+ P in (11), the present approach directly 
determines the pole locations zj;l, k = 1 -+ p, from the data through a double 
eigendecomposition method. Since, 

(40) 

where UAr > 0 represents the damping factor and WAr the resonant frequency, using (40) 
in (18) it follows that the unknown parameters UAr and WAr appear in the observed data 
in the form of an FM signal in noise, and hence their direct determination from the 
observed data must be superior to Prony's coefficient determination method which 
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only performs like an AM signal in noise. The noisy data is used in H = Hn directly, 
and the above double eigendecomposition procedure is performed to obtain estimates 
for the pole locations %11, %;1, ... %;1. Notice that determination of the model order 
p has to be done using statistical procedures on the set of eigenvalues of H, since no 
clear cut separation as in (24)-(26) will be available in the case of noisy data. The 
lowest eigenvalues of Ii may be grouped together to represent small perturbations of 
the zero eigenvalue of H, and this procedure can be used to obtain a good estimate 
for the model order p. Since Ii uses all available data, the two eigendecompositions 
will smooth out the effect of noise. Once %lc are obtained in this manner, the residues 

o 200 400 600 
(a) Noisy Data (lOdB) 
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........ __ ....... _._ ........ . 
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(e) Noisy Data (lOdB) 

150 
:=::=:::::=::c:::::::::::::::::::::a:::::::::: 
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(d) Resonant Frequencies 

Figure 2. Resonant Frequency extraction of LTI systems from noisy output data 

Clc can be estimated using the least square solution on the whole data set as in (13) 
by making use of (2n + 1) rows there. 

Figs 2.{a)-(b) show results of simulation for a degree six system with poles located 
at e(u.±i< ... ), k = 1 -+ 3 with 0"1 = 0.002, WI = 40°, 0"2 = 0.006, W2 = 60°, 0"3 = 0.005 
and W3 = 110°. Similarly Figs 2.(c)-(d) represent a tenth degree system with poles at 
e(u.:!:;",.), k = 1 -+ 5 with 0"1 = 0.0015, WI = 30°, 0"2 = 0.001, W2 = 45°, 0"3 = 0.003, 
W3 = 80°, 0"4 = 0.002, W4 = 130°, o"s = 0.003 and Ws = 135°. In both cases, 
lOdB SNR is maintained by adding noise as in (18) (see Figs 2(a), 2{c)). A sliding 
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window of width equal to 100 data samples generates the noisy data that is processed 
using the method described in Section III, and the estimated resonant frequencies Wk, 

k = 1,2,··· are plotted in Figs 2(b), 2(d), against the window location. The sliding 
window is sequentially moved to the right in increments of ten data samples. From 
Figs 2(b), 2(d) it is clear that the new method performs quite well in estimating the 
resonant frequencies of LTI systems from noisy impulse response data. 

IV. Conclusions 

This paper presents a new approach to resonant mode extraction by combin­
ing Prony's original approach together with the high resolution eigenstructure based 
methods. The rationality of the original system exhibits certain rank invariant Han­
kel structures, and in the noisy case this is exploited in a least square sense to extract 
the best possible resonant frequencies of the underlying system. 
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INTRODUCTION 
In a host of applications in engineering, it is necessary to obtain infor­

mation about a system over a broad range. In most cases it is not possible to evaluate 
the parameter of interest in closed form. However, either theoretical or experimental 
data is available in a narrow band. Generation of the data over the broadband is not 
possible or may be extremely time consuming. The principle of analytic continuation is 
utilized to extrapolate/interpolate the data over a wide band. The method of Cauchy 
[1] has been chosen in this paper to carry out the analytic continuation. 

The Cauchy method deals with approximating a function by a ratio of 
two polynomials. Given the value of the function and its derivatives at a few points, 
the order of the polynomials and their coefficients are evaluated. Once the coefficients 
of the two polynomials are known, they can be used to generate the parameter over the 
entire band of interest. 

In this paper, Cauchy's method has been utilized to generate broadband 
currents on a body from which its Radar Cross Section (RCS) is calculated. This 
is done from narrowband calculations of the currents. Particularly in the Method of 
Moments [2] generation of the response at each frequency point is very time consuming. 
However, the current and its derivatives with respect to frequency can be calculated 
at a few points using the Method of Moments. Then Cauchy's method can be used to 
extrapolate/interpolate the current over a broad frequency range from which the RCS 
can be calculated. The advantage here is that, to generate the derivative information, 
additional matrix inversions are not requred. 

The choice of polynomial orders is restricted by the information we have. 
While it is true that the more information we have the higher we can choose the orders, 
this is not always desirable. Due to problems in numerical implementations, the choice 
of the order of the polynomials is very important. 

In this paper the Cauchy technique is used to solve the above problem. In 
the application mentioned above the Cauchy technique would save a significant amount 
of pr9gram execution time or computer memory while still producing accurate results 

IThis work was supported in part by the CASE center at Syracuse University and in part by Rome 
Laboratories under contract number F 30602-93-C-0207. 
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over broadband frequencies. The method is tested and numerical results are presented 
along with a few examples of the method as a time-saving device. 

THE CAUCHY METHOD 

Consider a system function H(s). The objective is to approximate H(s) 
by a ratio of two polynomials A(s) and B(s) so that H(s) can be represented by fewer 
variables. 

Hence, consider 

(1) 

Here the given information could be the value of the parameter and its Nj derivatives 
at some frequency points s;, j = 1, ... J. If Hn(sj) represents the nth derivative of H(s) 
at point s = s;, the Cauchy problem is: 

Given H(n)(sj) for n = 0, ... Nj, j = 1, ... J, find P,Q, {ak' k = 0, ... P},and{bk , k = 
O, ... Q}. 

The solution for {ak} and {bk} is unique if the total number of samples 
is greater than or equal to the total number of unknown coefficients P + Q + 2 [1), i.e. 

J 

N == ~)Nj + 1) ;::: P + Q + 2. 
j=l 

By enforcing the equality in equation (1) one obtains 

A(s) = H(s)B(s) (2) 

Differentiating the above equation n times, and evaluating the expressions at point Sj, 
results in the binomial expansion, 

n 

A(n)(sj) = L:nC;H(n-;)(sj)B(;)(sj) (3) 
;=0 

where, 

n n! 
C; = ( _ .)'." n ,.z. 

n! represents the factorial of n. 

Using the polynomial expansions for A(s) and B(s), equation (3) can be rewritten as 

p Q 

L: A(j.n).kak = L: B(j.n).kbk (4) 
k=O k=O 

where 
. k! (k-n) (k ) 

A(j.n).k = (k _ n)!Sj U - n (5) 

n 

B(j.n).k = L:nC;H(n-;)(sj)u(k - i) (6) 
;=0 
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n = 0,1, .... Nj , j = 1, .. J, where u(k) = 0 for k < 0 and = 1 otherwise. 

Define, 

A = A(j,n),O, A(j,n),h ••• A(j,n),P 

B = B(j,n),O, B(j,n),h ••• B(j,n),Q 

[a] = [ aO,ah a2, ... ap ]T 

[b] = [ bo, bI'~'" . bQ ( 

The order of matrix A is N X (P + 1) and that of B is N X (Q + 1). 
Then, equation (4) becomes 

[A]a = [B]b 

or 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

For ease of notation, define [C] == [AI- B]. C is of order N X (P + Q + 2). A Singular 
Value Decomposition (SVD) of the matrix C will give us a gauge of the required values 
of P and Q [3]. A SVD results in the equation 

[U][:E][V]H [ ~ ] = 0 (13) 

The matrices U and V are unitary matrices and E is a diagonal matrix with the singular 
values of C in descending order as its entries. The columns of U are the left eigenvectors 
of C or the eigenvectors of CCH • The columns of V are the right eigenvectors of C or 
the eigenvectors of CH C. The singular values are the square roots of the eigenvalues 
of the matrix CHC. Therefore, the singular values of any matrix are real and positive. 
The number of nonzero singular values is the rank of the matrix in equation (12) and 
so gives us an idea of the information in this system of simultaneous equations. If R 
is the number of nonzero singular values, the dimension of the right null space of C is 
P + Q + 2 - R. Our solution vector belongs to this null space. Hence to make this 
solution unique, we need to make the dimension of this null space 1 so that only one 
vector defines this space. Hence P and Q must satisfy the relation 

R+1=P+Q+2 (14) 

Hence, the solution algorithm must include a method to estimate R. This is done by 
starting out with the choices of P and Q that are higher than can be expected for the 
system at hand. Then we get an estimate for R from the number of non-zero singular 
values of the matrix C. Now, using equation (14) we get better estimates for P and 
Q. Letting P and Q stand for these new estimates of the polynomial orders, we can 
recalculate the matrices A and B. Therefore, we come back to the relation 

[C] [ : ] == [ AI- B ] [ : ] = 0 (15) 
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[e] is a rectangular matrix with more rows than columns. [3]. For reasons 
indicated in the appendix, we choose the method of Total Least Squares (TLS) [4]. The 
appendix also outlines the technique of Total Least Squares. 

APPLICATIONS OF THE CAUCHY METHOD 

The Method of Moments 

The Method of Moments yields remarkably accurate solutions to integral 
equations arising in electromagnetic scattering and radiation problems. It approximates 
the interactions of complicated bodies with a set of smaller, easily solvable interactions. 
The currents are approximated by a linear combination of some known basis functions. 
The problem then reduces to finding the coefficients in the linear combination. This 
approach allows the problem to be written as a matrix equation with the unknown 
coefficients as the solution to the equation. The Method of Moments finds it greatest 
advantage in the widespread use of the computer. But, its major limitation is that the 
system has to be analyzed for every frequency point of interest. If a large system is to 
be studied, the program execution time may be as long as days. 

The Cauchy method can partially solve this problem. The Method of Mo­
ments program could generate information over a limited band from which the Cauchy 
method would generate broadband information. 

Interfacing with the Method of Moments 
The Cauchy method can easily be incorporated as part of a Method of 

Moments program. The Method of Moments converts a linear operator equation into 
a matrix equation of the form 

[V] = [Z][I] (16) 

Here, [I] is the vector of coefficients in the representation of the current as a linear 
combination of basis functions. [V] is the known excitation to the system, while [Z] is 
the matrix that describes the interaction of the currents and the excitation. 

Differentiating the above equation with respect to frequency results in a 
binomial expansion. 

In general, 

[V)' = [Zj'[I] + [Z][I)' 
:::} [I)' = [Zr1 [[V)' - [Zj'[I]] 

;=1 

(17) 

(18) 

In the above equations, [v](n) is the vector with each element of [V] differentiated with 
respect to frequency n times. Similarly, [z](n) is the matrix generated by differentiating 
each element of the matrix [Z] with respect to frequency n times. 

Hence, using a Method of Moments program, we can generate all the 
information needed to apply the Cauchy method. The use of derivative information 
saves execution time because no new matrix inversions are required to generate the 
additional information. Each element of the solution current ([ID vector is treated as 
our function H(s). Given the current and its derivatives at some frequency points, we 
can use the Cauchy method to approximate the current at many more points. 
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Figure 1. Radar Cross Section of a sphere 

Numerical Examples 

To test the Cauchy method, the Echo Areas (Ae) or Radar Cross Sections 
(RC S) of two different pedectly conducting three dimensional bodies were calculated 
over wide frequency bands. A program to evaluate the currents on an arbitrarily shaped 
closed or open body using the Electric Field Integral Equation and triangular patching 
as described in [5) was used. The triangular patching approximates the geometry of 
the sudace of the body with a set of adjacent triangles. The program then uses these 
currents to evaluate the RCS of the body. It was modified to also calculate the first 
four derivatives of the currents with respect to frequency. This information was used 
as input to a Cauchy subroutine. The original Method of Moments program was used 
to calculate the RCS without the Cauchy method. The two RCS plots were compared 
to show the accuracy of the Cauchy method. 

The bodies chosen were a sphere and a disk. In all cases the currents 
and their first four derivatives were evaluated at five frequency points. Hence, the total 
information allows a maximum of 5 x (4 + 1) = 25 coefficients combined in the two 
polynomials of equation (I). In the application of Cauchy method to the Method of 
Moments, it was found that no singular values of the original matrix [AI- B] are zero. 
This is to be expected, since, the current, as a function of frequency, is not a ratio of two 
polynomials. Hence, the higher the polynomial orders we choose, the more accurate the 
approximation would be. Therefore, in this application, the step of estimating R, P, and 
Q, in equation (14) is bypassed. Given the 25 samples, the numerator polynomial was of 
order 11 while the denominator was a polynomial of order 12. Physically we know that 
for stability the numerator polynomial must have lower order than the denominator. 

The motivation to apply the Cauchy method to the Method of Moments 
is to save program execution time. To get an idea of how much time can be saved, the 
program was timed for two of the above bodies and compared to the original Method 
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of Moments program. The two bodies chosen were the sphere and the plate. 
In the first example a sphere of radius 0.3m was analyzed. The sphere was 

triangularized using 182 nodes and 540 edges. Because the sphere is a closed object, this 
results in 540 unknowns in the expansion of the current in terms of the basis functions. 
The currents on the sphere and its first four derivatives with respect to frequency were 
evaluated at five frequency points. The points chosen were in the range .\ = 0.30m and 
.\ = 0.84m at a spacing of 0.135m. Using this information and the Cauchy method the 
current on the sphere was calculated for 51 points in the same frequency range. Using 
these currents the RCS of the sphere was calculated at the 51 frequency points. The 
time taken for this calculation is compared to the time taken by the original Method 
of Moments program to evaluate the RCS at five frequency points in the same range. 

Using the Method of Moments only (for 5 points) 
Interpolating with the Cauchy Method (for 51 points) 

:47mins. 56secs. 
:57mins. 57secs. 

To generate the same information at 51 points the Method of Moments program would 
take approximately 8hrs.8mins. 

In Figure 1 we see the results of applying the Cauchy method to the 
evaluation of the RCS of a sphere. Here the RCS is plotted over a decade bandwidth. 
This bandwidth was broken up into 3 ranges: 

0.6m ~ .\ ~ 1.0m 
1.0m ~ .\ ~ 1.8m 
1.8m ~ .\ ~ 6.0m 

In each of the three ranges the current and its first four derivatives were 
evaluated at five equally spaced points using the Method of Moments program. Using 
this information the polynomials in equation (1) were formed. This rational polynomial 
was used to evaluate the current at 51 points in each range. Also, the original Method 
of Moments program was used to calculate the currents at a few points in the decade 
bandwidth. The currents were used to calculate the RCS of the sphere in this band­
width. As can be seen from the figure, the agreement between the results from the use 
of the Cauchy program and the original Method of Moments program is excellent. 
All programs were executed on an IBM RS6000 platform running AIX. 

The second example is a disk of radius 0.3m. The disk was triangular­
ized using 142 nodes and 460 edges. Of these only 440 were interior nodes. Figure 2 
shows the RCS of the disk over a decade bandwidth. Here too, the decade bandwidth 
was broken up into three intervals and polynomials of order 11 and 12 formed in each 
interval. The rational polynomial was used to evaluate the currents and then the RCS 
of the disk at 51 frequency points in each range. The intervals chosen were: 

CONCLUSIONS 

0.6m ~ .\ ~ 204m 
204m ~ .\ ~ 4.2m 
4.2m ~ .\ ~ 6.0m 

This paper has presented a technique with many practical applications. 
The Cauchy method starts with assuming that the parameter of interest, as a function of 
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Figure 2. Radar Cross Section of a Disk 

frequency, can be approximated by a simple rational polynomial. The method evaluates 
the order of the polynomials and the coefficients that define them. Using this form the 
parameter is evaluated at many frequency points. It is shown that the technique has 
applications to many practical problems. In this paper our foucus has been applications 
to the Method of Moments. However, the Cauchy method has wide applications like 
optical systems, filter analysis, and device characterization, to name a few. In all 
applications the Cauchy method has shown to save time and memory. 

It must be pointed out that the Cauchy method is completely general 
and can be used to extrapolate or interpolate with respect to any variable other than 
frequency. However, in many applications in electromagnetics, frequency is the variable 
of interest. 

Appendix 
Many methods to solve equation (15) are known [3]. The usual approach 

is that of Least Squares (LS). In this, the equation is rewritten as: 

[ AI- B r [ AI- B 1 [ ~ ] = 0 (19) 

The solution for [ : ] is taken as the eigenvector corresponding to the 

zero eigenvalue of the resulting matrix. However, as we have seen, it is important to 
limit the rank of the null space of the matrix [AI- B] to one. But, this approach has 
an extra step of a matrix multiplication. Also, since the eigenvalues are not sorted, it 
is additional work to find the number of non-zero eigenvalues. 

A better approach would be the Total Least Squares(TLS)[4]. In the 
matrix of equation (15), the submatrix A is a function of the frequencies only and 
does not depend on the parameter measured. Hence, this matrix is not affected by 
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measurement errors and noise. However, the submatrix B is affected by the errors. 
To take this nonuniformity into account, we need a QR decomposition of the matrix 
[AI - B] up to its first P + 1 columns. A QR decomposition of the matrix results in 

[ Rll R12] [ a ] = 0 o R22 b (20) 

where, Rll is upper triangular and R22 is completely affected by the noise. Hence, 

and, 
[Rll]a = -[R12]b 

A SVD of R22 results in the equation 

(21) 

(22) 

(23) 

By the theory of the TLS [4], the solution of the above equation is propotional to the 
last column of the matrix V. Hence, we can choose 

b = [V]Q+1 (24) 

This is the optimaL solution even in the case that the matrix R22 does 
not have a null space. This was possible when we applied the Cauchy method to the 
Method of Moments. 

Using this solution for the denominator coefficients and using equation 
(22), we can solve for the numerator coefficients using the conventional LS solution. 
The above TLS approach removes some of the errors of the conventional LS approach. 

It can be shown [4] that for the case where the whole matrix, here R22, 
is contaminated by noise, the TLS is the optimum solution technique. 
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