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Transmission-Line Properties of a Strip on a
Dielectric Sheet on a Plane

HAROLD A. WHEELER, FELLOW, IEEE

Abstract—The subject is a strip Iiue formed of a strip and a

parallel ground plane separated by a dielectric sheet (commordy
termed “microStrip”). Building on the author’s earlier papers [1],
[2], all the significant properties are formulated in explicit form for
practical applications. This may mean synthesis and/m analysis.
Each formula is a close approximation for all shape ratios, obtained
by a gradual transition between theoretical forms for the extremes of
narrow and wide strips. The effect of thickness is formulated to a

second-order approximation. Then the result is subjected to numeri-
cal differentiation for simple evaluation of the magneticloss power
factor from the skin depth.

The transition formulas are tested against derived formulas for

overlapping narrow and wide ranges of shape. Some of these formulas
are restated from the earlier derivations and others are derived
herein. The latter include the second-order approximation for a

narrow thin strip, and a close approximation for a narrow or wide
square cross section in comparison with a circular cross section.

Graphs are given for practical purposes, showing the wave resist-
ance and magnetic loss for a wide range of shape and dielectric. For
numerical reading, the formulas are suited for programming on a
digital pocket calculator.

I. INTRODUCTION

o NE FORM of strip line is naturally suited for the

simplest fabrication in a printed circuit. It is the

familiar type made of a dielectric sheet with a shield-plane

conductor bonded on the bottom side and a pattern of strip

lines on the top side.

The purpose of this paper is to present some improved

formulas and graphs, including not only the wave resistance

but also the losses. The effect of strip thickness is simply

formulated to, enable the evaluation of magnetic loss.

In the vernacular, this type of line is termed “microstrip,”

a term which is avoided in this scientific article because it is

commonly used without a clear definition and is not self-

descriptive. Apparently it was intended to be a short desig-

nation for “microwave strip line.” The “microwave”

description is ambiguous and only partially relevant. Fur-

thermore it does not distinguish from the “sandwich” form

of a microwave strip line.
Here also the descriptive term “wave resistance” is used in

preference to the nondescriptive term “characteristic

impedance.”

The subject strip line may be described as half-shielded, by

the ground plane on one side, as distinguished from the

sandwich type, which is fully shielded, by ground planes on

both sides. The half-shielding is adequate for some practical
purposes, because the external field is relatively weak and

does decay with distance.
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A peculiarity y of the half-shielded line is the mixture of two

different dielectrics. One is the material of the sheet between

the strip and plane. The other is the air above the sheet. The

simple rules of conformal mapping are restricted to a

uniform dielectric or to some discrete boundaries that are

different from the subject configuration. Various other

approaches have been directed to this problem.

The first close approximation for this strip line with mixed

dielectric was published by the author in 1965 [2]. It is based

on some rigorous derivations for a thin strip by conformal

mapping. These are supplemented by some logical concepts

for interpolation between the extremes of dielectric. The

uncertainties of interpolation are small enough to meet

design requirements within practical tolerances. The result

is a collection of formulas and charts which are complete for

the wave resistance of a thin strip.

The loss power factor (PF = l/Q) in a strip line has

components of electric loss in the dielectric and magnetic

loss in the conductor boundaries. These were not treated in

the early paper but have been addressed by some other

authors in the meantime.

In the frequency range where a strip line may have a

length comparable with the wavelength, the magnetic loss is

usually the dominant component. It is largely dependent on

the strip thickness, so the formulas for a thin strip do not

suffice. This loss PF can be evaluated from knowledge of the

inductance of the line, which is independent of the dielectric.

This evaluation can be made with the aid of the

“incremental-inductance rule,” published by the author in

1942 [3]. Other authors have applied this rule to the

formulas of the early papers [13], [17] with the first-order

thickness effect stated therein.

In the sandwich line, it has been simpler to evaluate its

properties, for various reasons. First, the homogeneity y of the

dielectric avoids the problem of mixed dielectric, which is

relevant for wave resistance. Second, the symmetry and

two-sided shielding cause much greater decay of a field with

distance. The symmetry simplifies the evaluation of the

thickness effects, so those have been published, including the

magnetic-loss PF [8]. These give an indication of trends in

the subject line, but not quantitative values.

As in most of the previous articles, only the lowest mode of

wave propagation in the line shall be considered, and,
furthermore, only at frequencies so low that there is negli-

gible interaction between the electric and magnetic fields.

This is valid if the transverse dimensions are much less than
half the wavelength in the dielectric. This mode may be

termed the “quasi-TEM mode, ignoring second-order

effects of dispersion and surface-wave phenomena.
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After the following list of symbols, the configuration will

be defined and the scope of this article will be indicated.

II. SYMBOLS

The units are MKS rationalized (meters, ohms, etc.).
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dielectric constant of the sheet of material

separating the strip and the ground plane.

1 + q(k – 1) = effective dielectric constant

of all space around the strip.

(k’ – 1)/(k – 1)= effective filling fraction of

the dielectric material.

377 = 120rc = wave resistance of a square

area of free space or air.

wave resistance of the transmission line

formed by the strip and the ground plane (of

perfect conductor) separated by a sheet of

dielectric k.

R without dielectric (k= 1).

RI subject to skin depth d in a real conductor.

I/@ = L~/& = speed ratio in mixed dielec-

tric k relative to free space or air.

width of the strip conductor.

height (separation) of the strip from the

ground plane.

thickness of the dielectric sheet.

thickness of the strip conductor.

effective width of a strip with some thickness.

width of an equivalent thin strip (t+ O).
w’ – w = width adjustment for thickness.

width adjustment with mixed dielectric k.

skin depth in the conductor.

l/Q = magnetic PF of the strip line.

electric PF of the dielectric material k.

effective PF of mixed dielectric k’.

P + 8/h = ph/6 = normalized p.
rate of attenuation (nepers/meter).

wavelength in free space or air.

guide wavelength in mixed dielectric k’.

2.718 = base of natural logarithms.

c? = natural exponential function.

log. x = natural logarithm.

anticosh x = cosh” 1 x.

antisinh x = sinh -1 x.

antisin x = sin – 1 x.

The following table translates some symbols from the
author’s earlier papers.

[1] [2]

w, h? t, Aw 2a, b, Ab, 2Aa
R of 1 strip R of 2 strips (twice as great)
(A- )(B- ) ( )( ) formulas

III. A STRIP LIF.TEON A DELECTRIC

SHEET ON A PLANE

Fig. l(a) shows the cross section of the subject line. It

corresponds to the 1965 article [2] except for the translation

to “practical” parameters. The latter are the wave resistance

‘~ IJ ~——————
STRIP ~ t–8 t—————

fi\\\\\\\N\\\\Y 1111~1’+\ I I t I (

(a)

(b) (c) /

Fig. 1. A strip line parallel to a plane. (a) Rectangular cross section. (b)
Cross-section square or inscribed circle. (c) Cross-section small square

or equivalent circle.

R of the asymmetric model (single strip and ground plane)

and the descriptive dimensions w,h,t. Here the thickness is

featured, and the equivalence between a practical strip and a

wider theoretical thin strip (a perfect conductor with a

thickness approaching zero). This equivalence is described

in terms of the width adjustment Aw.

For evaluation of the magnetic-loss PF, the skin effect is

indicated in dashed lines. These boundaries are recessed by

one half the skin depth (6/2) so they indicate the actual

center of current. The actual boundary is the theoretical

current center in a perfect conductor. The change between

one and the other is involved in the computation of the

magnetic PF. It is assumed that all conductive boundaries

are nonmagnetic and have equal conductivity and skin

depth.

As an extreme case of strip thickness, a square cross

section is introduced, as shown in Fig. 1(b) and (c). These are

related to a circular cross section in either of two ways, the

inscribed circle (b) or the equivalent circle (c). Each is found

to be helpful in some studies, mainly because the circle yields

to simple exact formulation for comparison with an approx-
imation for the square. Both will be used for reference.

IV. SCOPE

The thrust of this article is to enable explicit synthesis of a
line to meet some specifications. This is achieved for various

sequences. The wave resistance R is related to the dielectric k
and the shape. On the other hand, the magnetic PF can be

decreased by increasing the size, while the shape has a lesser

effect. The PF is usually a tolerance rather than a requisite.

The wave-speed ratio is taken not to be specified, but rather

evaluated after synthesis of a design of a cross section.

Some graphs are introduced here, for reference in various

sections. They present the relations needed for the purposes
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Fig. 2. The wave resistance of a thin strip on a dielectric sheeton a plane.

of practical design, and can be read close enough for
ordinary purposes. The formulas to be given are intended as

an alternative to the graphs, and also to give further insight

into the relations. The formulas are designed for program-

ming in a small digital calculator such as the HP-25 or

HP-65.

Fig. 2 is a graph of the wave resistance of a thin strip, the

same as previously published [2]. It is made with closest

approximation by complete computation for overlapping

ranges of narrow and wide strips. An alternative to this

graph is the simple empirical formulas to be given for the

entire range of width. The wave-speed ratio (relative to air or

free space) for any width ratio is equal to the ratio of wave

resistance with and without dielectric (R/R1 ).
The effective filling fraction q of the dielectric is also

graphed on Fig. 2 for a mean value of the dielectric constant

(k= 3). It enables an alternative computation of the effective

dielectric constant k’ and the resulting speed ratio (1/~~).

Fig. 3 is a graph of the thickness effect on the wave

resistance without dielectric. The relative effect is less with

dielectric, so the indicated effect is an upper bound. It is a

small effect with respect to wave resistance but has a greater

effect on the magnetic PF. This is generally similar to the

first-order effect of thickness as previously statecl [2] but is
refined and extended to include the second-order effect in

some degree.

Fig. 4 is a graph of the normalized magnetic PF (P = p +

c5/h) as evaluated from the thickness effect. The magnetic PF

is independent of the dielectric and its normalized value is

independent of the size. The thickness parameter t/h is

chosen as being a property of the laminate, specifically the

thickness ratio of the conductive strip and the dielectric

sheet.

New formulas are presented here in the main text without

derivation. Most of them are empirical formulas providing a

gradual transition between narrow and wide extremes.

These are tested against the derived close approximations

for overlapping narrow and wide ranges, which are reviewed

in Appendix VI. Some derivations, not previously available,

are given in Appendixes IV and V. Special emphasis is

placed on some formulas which are “reversible” in the sense

that a formula can be expressed explicitly in a simple form

for either analysis or synthesis.

V. A THIN STRIP WITHOUT DIELECTRIC

The 1964 paper [1] gave the derivation for a wide thin strip

without dielectric, and, incidentally, also gave formulas for a

narrow thin strip. These together covered any width. Explic-

it formulas were given for both purposes, analysis and

synthesis.

Recent studies yielded the discovery that the “narrow”

formula could be put into a form which would also be

asymptotic to the “wide” formula. This is accomplished

while retaining its principal features for “narrow” approxi-

mation. Furthermore, this has been so arranged that the
formula is “reversible.” By this is meant that an explicit

formula for either analysis or synthesis can be converted to

an explicit formula for the other. This conversion is per-

mitted no complication beyond the solution of a quadratic

equation. The resulting formulas are empirical in the sense

that they must be tested against derived formulas in the

“wide” range and in the overlap of “wide” and “narrow.” For
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Fig. 3. The wave resistance of a strip without dielectric, showing the effect of thickness.
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Fig. 4. The magnetic power factor of a strip, showing the effect of thickness.

the thin strip without dielectric, such derived formulas are

the subject of the 1964 paper. The resulting formulas herein

are based on “narrow” derivations which are relatively

simple although the derivation of the second term has not

been published before. It is based on a two-wire second-

order approximation for a narrow thin strip. The overlap of

the “narrow” and “wide” derivations is indicated, by stating
the small error of either at the transition,

The new formulas are to be generalized for dielectric, but

they are first given here in simplest form to show some

features. Reversible formulas are here shown first for syn-

thesis and then for analysis:

~1/h = 8 ~(exP R1130 - 1) + rc2/4
(exp R1/30 – 1)

(1)

RI = 30 in {1 + -$(8h/w’)[(8h/w’) + ~(8h/w’)2 + rc2]}

(2)

where the error is < O.OIR ~

The following are the asymptotic forms for the narrow

and wide extremes: narrow:

w’/h = 8(exp – R1/60)[1 + 1.73(exp – R1/60)2]

R, =60 In (81z/w’ + 1.73(w’/8h)) (3)

wide:

w’/h = 1207rjR ~; R ~ = 120z(h/w’). (4)

In the “narrow” formula, the second-order term has the

proper form but its coefficient is compromised (1.73 instead

of 2) to accomplish asymptotic “wide” behavior.
The asymptotic behavior at both extremes could be

accomplished by any of several variants, yielding somewhat

different behavior in the transition region. The form chosen

was found to give close enough approximation with the

minimum number of terms.

The form of these transitional approximate formulas

shows some points of similarity to the exact formulas for a

round wire near a plane, which are to be given here.



WHEELER : TRANSMISSION-LINE PROPERTIES OF STRIP ON DIELECTRIC SHEET

VI. SQUARE OR CIRCULAR CROSSSECTION

As an extreme departure from the thin strip, a square or

circular cross section is considered, still without dielectric.

Fig. l(b) shows a square or an inscribed circle as the cross

section, with the description in the same terms as Fig. l(a)

(t/w = 1). It is noted that the distance from the plane is

described by the separation height h, not by the distance to

center (which is h + t/2). Hence it is compatible with

separation by a dielectric sheet.

For the narrow case, simple formulations for a square

wire and the equivalent round wire are known. See Appen-

dix III. Fig. l(c) shows this relation and the radius (2h + w)

of the outer circle equivalent to the plane.

For the wide case, the exact formula is known for the

round wire but not for the square one. Therefore a close

approximation for the square wire has been derived and is

presented in Appendix IV.

For the round wire, the exact formula for any width ratio

is known in simple reversible form. By modifying this form, a

reversible empirical formula has been derived for the square

shape. These formulas are presented here. (1?~ without

dielectric is here simplified to R, because here there is no

need for this distinction. )

For round wire without dielectric the exact formulas are

as follows:

2 1
w/h =

cosh R/60 – 1 = (sinh R/120)2

( 2

)

2

= exp R/120 – exp – R/120

4
—
– exp R/60 + exp – R/60 – 2

4 exp – R/60 4 exp R/60

= ~p – R/60)2 = (exp R/60 -17

R = 60 acosh (2h/w + 1)= 120 asinh ~h/w

=60 in [(2h/w + 1)i-~(2h/w + 1)2 -- 1]

—— 120 In (~h/w + ~h/w + 1),

(5)

(6)

For square wire without dielectric the approximate for-

mulas are as follows:

1/0.59 2 + exp – R/60
w/h = —

exp R/60 – 0.21 – exp – R/60

1 2 + exp – Rj60
—

0.1185 exp R/60+ exp – R/60 -%
(7)

‘=601nKA+1+0’
‘J(==T7 (8)

The relative error is <0.025 or < (0.005R + 0.5 Q). If R ~ O,
w/h ~ 38 l/R (near 377/R). Each of these formulas is asymp-

totic in the first- and second-order terms for “narrow” and

the first-order term for “wide.”
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These formulas are intended mainly for the magnetic-loss

PF, for which there is no effect of dielectric, and only the

“analysis” form (R of w/h) is used. The synthesis form (w/h of

R) is shown mainly for academic interest, since it formed the

basis for the empirical formulas for the square wire over the

entire range of width ratio.

In Fig. 1(c), in addition to the equivalent circular and

square cross sections, there are shown some equivalent thin

strips. A round wire far from the piane has an equivalent

concentric thin strip whose width is double the wire

diameter (2.36w). If not so far from the plane, there is a thin

strip of lesser width (w’) which is equivalent by the following

two tests:

a) height above the plane equal to that of the lower side of

the square;

b) equal wave resistance.

The indicated geometric proportionality of the two strip

widths is of interest in kind but not in degree, because their

difference becomes substantial for a square so wide that the

simple rules of equivalence are failing.

The lesser thin strip, compared with the square, deter-

mines the width adjustment here associated with the

thickness of the square.

VII. A THIN STRIP WITH DIELECTRIC

The 1965 paper [2] gave the derivation for a thin strip with

dielectric. Two sets of formulas covered wide and narrow

strips, with close agreement in the transition region. The

reversible formulas given above are here adapted to dielec-

tric. Asymptotic behavior is achieved for the following

conditions:

a) narrow strip, low-k and high-k extremes, with a logical

interpolation therebetween;

b) wide strip, all k.

The resulting empirical formulas are found to track the

derived for~ulas- over the entire range of width and

dielectric:

w,h=8/[expt&@)-llW+*

[exp(~=b] ‘9)
+1’(3[(14YkK)‘=&
‘m+211 ’10)

The error is < 0.02R (or < O.OIR over most of range).

The analytic form gives R (fork) and R ~(for k = 1), from

which the speed ratio is

R/Rl = l/@< 1. (11)

Therefore no other formula is needed for the speed ratio. The

simpler formula (2) for R ~ may be used, but that is no

advantage if the more general formula is recorded in a

program for numerical computation.
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While the effective filling fraction q [2] of the dielectric is

not required in the procedures given here for design compu-

tations, it is a matter of some interest. Particularly, it is a

factor in the electric-loss PF to be formulated. Schneider

[14] has given an ingenious simple empirical formula, based

on [2], which is close enough for practical purposes:

( )‘=~l+&” (12)

Compared with the derived formulas for narrow and wide

ranges (for a mean value, k = 3) the departure is <0.02. It is

a simple transition between the bounds (~,1 ). It lacks the

shape that is peculiar to either extreme, which is contained in

the derived formulas.

VIII. STRIP THICKNESS AND THE Loss POWER FACTOR

The earlier papers did not make any attempt to evaluate

conductor loss, because it is not determined in the limit of a

thin strip. However, there was given a width adjustment for

the edge effect of a small thickness. From this adjustment,

some other authors have formulated the losses to be ex-
pected, and their reduction by thickness [13], [17].

This subject has been reviewed. The width adjustment has

been verified for small thicknesses of a narrow strip, and has

been formulated more closely for a wide strip. A single

formula is given here for the entire range of width. Also it is

adapted to moderately large thicknesses (up to a square

cross section for a narrow strip).

The loss PF (PF = I/Q) of the magnetic field (bounded by

the conductors) is evaluated by the rule proposed by the

author in 1942 [3]. This “incremental-inductance rule” is

based on differentiation of the inductance relative to the skin

depth 6 in the conductor boundaries, as indicated in Fig. 1.

In a transmission line with perfect boundaries and no

dielectric material, the inductance is proportional to the

wave resistance. Only the relative change is significant, so

the rule is here applied to the wave resistance R ~.This avoids

the nuisance of magnetic units and surface resistivity.

A great simplification is now available by numerical

differentiation. This was not available in the slide-rule

computations of earlier days so analytical differentiation

was necessary, however cumbersome. It was used by the

other authors. It is no longer needed. What is needed is an

analytic formula giving the wave resistance in terms of all
dimensions but without dielectric.

The edge effect related to the strip thickness is here

described in terms of the extra width Aw of a thin strip

having equal wave resistance RI without dielectric. This is

indicated in Fig. 1.

The first-order effect of a small thickness is given in the

1965 paper, for the extreme cases of narrow and wide strips.

Three advances are here presented:

a) a refinement for the wide strip (Appendixes I and II),

b) a unified formula for the entire range of width,

c) a second approximation for greater thickness, within

some restrictions.

The resulting formula is expressed in terms of the actual

width w or the equivalent-thin-strip width w’. As mentioned

above, these relations are based on free space, without

dielectric:

Aw=~ln

‘ z * ’13)

or

“n* ’14)

This adjustment enables a width conversion either way

between equivalent strips with or without thickness.

The development of this formula for the wide and inter-

mediate regions has been enabled by complete computation

of a few examples (Appendix II). These were accomplished

by the technique of conformal mapping. Specifically, a few

shapes (w,h,t) of rather small thickness were evaluated by

numerical integration of the space gradient. This process is

laborious and required some ingenuity near some bounds of

integration.

Three examples so evaluated were sufficient to indicate

two features implicit in this formula.

a) For a wide strip, the previous formula (1965) is refined

in respect to its second-order effect. The ratio

previously included as 2h/t is here changed to 4h/t. The
former ratio was based on unlimited width, and the

change is an adaption to the limited width.

b) The “narrow” and “wide” formulas appear to be upper

bounds, as would be expected. Furthermore, the qua-

dratic sum of the two inverse ratios fits the sample

points.

The adaptation of this formula for a greater thickness has

been enabled by derivations for a square cross section. The

extra numbers (+1. 10 or – 0.26) are chosen to match the

square condition (t = w) for a narrow strip. The formula is a

close approximation for moderate thicknesses (t< h) of a

wide strip. (Another formula has been derived for a wide

strip of square cross section, Appendix IV.)

For loss computation, the actual width and thickness (w,t)

are converted to the width of an equivalent thin strip

(w’ = w + Aw). Then the thin-strip formula (R, of w’) can be

used for differentiation with respect to the actual dimensions
(w,h,t).

As indicated in Fig. 1, each dimension is incremented by

~ d and the same formula is used again to obtain R& Then

the (small) loss PF is computed by the incremental-

inductance rule:

R6 – RI
p=

D
= 1 –R1/R~= In Rb/Rl < L (15)

A normalized form for loss PF is proposed, which gives

the effect of shape, independent of the size, frequency, and

conductor material. It is normalized to the height h:

P = p + (d/h)= p(h/c5) p = P(ti/h). (16)
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The reference (d/h) is the nominal PF of a very wide strip.

In computing the normalized PF P, the value of the skin

depth is immaterial if it is sufficiently small to approach the

limiting behavior of the skin effect (which is usually of

interest). Also it must not approach the sensitivity of the

computer. In a computer giving ten decimal places, a fair

compromise is 6/h = 0.0001. Then the skin effect is well

represented if all dimension ratios exceed 0.001.

For evaluation of a resonator made of a strip line, the loss

PF (or dissipation factor or l/Q) is usually the most

significant factor. The wave R is incidentally relevant in the

circuit application of the resonator. The loss PF of the

magnetic field is evaluated by the simplest formulas (R ~and

Aw without dielectric). For any shape, the value of P enables

a computation of the size of the cross section to realize a

value of p:

h = Pti/p = P8Q. (17)

The graphs in Fig. 4 show the loss PF in terms of P for a

wide range of shapes. The common reference is the height h

and the thickness ratio t/h because they may be fixed by a

dielectric sheet and a conductive sheet bonded thereto.

For small thicknesses, the loss PF exceeds the reference

value, as would be expected. Also the amount of excess is

greater for lesser thickness, as a result of the current

concentration at the edges. For example, reducing the

thickness from square to t/h= 0.02 may double the PF (in

the moderately narrow range).

An unexpected result is the loss PF being less than the

reference value for a wide strip of substantial thickness. This

happens because part of the magnetic energy is beyond the

region bounded by the height. This part has boundaries

further apart, and hence a lesser value of loss PF.

In Fig. 4, the two lowest curves give the loss PF for square

and circular cross sections of the same width. It is less for the

latter, the lower bound for the wide extreme being one half

the reference value (P+ ~). In the narrow region, it is less

because of the following.

a) The two shapes are known to have equal skin resist-

ance [9].

b) The circular shape has greater reactance. The propor-

tionate wave resistance is greater by 60 in 1.18 = 10 ~;

this is denoted, “the rule of 10 !2”

If the thickness is comparable with the height, the relevant

restriction may be the overall height (h + t), perhaps for

reasons of clearance space. Also the width maybe restricted.

Then the thickness ratio has an optimum value. This is

found by minimizing a related normalized PF defined as

follows :

Pkt=Ph; t— = P(l + t/h)= (p/c$)(h + t) (18)

Square: w/h near 0.55, min P~, == 1.65 (19)
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Fig. 5. Relations which determine the speed ratio.

section is one which is bounded by these two dimensions and

has a certain thickness (t/h < 1). The extreme optimum is a

peculiar rounded shape bounded by these dimensions.

IX. STRIP THICKNESS WITH DIELECTRIC

The effect of strip thickness is formulated above, but

without the effect of dielectric. A width adjustment for

thickness may be made in the synthesis for a specified wave

resistance with dielectric.

The width of an equivalent thin strip is defined as one

which is wider by the amount which yields an equal value of

wave resistance. This involves both inductance and capaci-

tance. The width adjustment for the former is independent of

dielectric. That for the latter is less for a greater dielectric

constant, because the thickness of the edge is somewhat

spaced from the dielectric.

To approximate this effect, the width adjustment is

divided in two equal parts, and one part is decreased by the

factor l/k. The modified value becomes:

Aw, = 1 + I/k Aw

2’
w = w’ — Aw’. (21)

The entire width adjustment Aw is effective for wave

resistance without dielectric (k = 1) or for inductance alone.

For capacitance alone, the entire width adjustment would be

decreased by the factor l/k.

Fig. 5 shows the behavior of the width adjustment without

or with dielectric. Especially it shows its graphic determina-

tion from Figs. 2 and 3. The full value of Aw is effective

without dielectric, decreasing the wave resistance R ~equally

by decreasing inductance and by increasing capacitance. Its

amount is represented by the horizontal separation of the

upper pair of curves, both shown in Fig. 3. The effect of
dielectric with a thin strip is represented by the separation of

the upper curves (R ~,R) in the upper and lower pairs, both

Circular: w/h near 0.50, min P~, ==1.56. (20) shown in Fig. 2. The reduced amount of width adjustment

with dielectric is constructed and projected downward to

Within specified bounds of the overall height and width (not give the lesser horizontal separation of the lower pair of

less than the overall height), the optimum rectangular cross curves.
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The speed ratio for a thin strip is R/R ~ from Fig. 2. The

interpolation for mixed dielectric, taking account of

thickness, gives a greater speed ratio from this construction.

The latter locates a point on the lower curve of the ‘lower

pair, not shown elsewhere.

As will be seen in a procedure and example to be given, the

indicated numerical sequence yields all the quantities from

the graphs in Figs. 2 and 3. Or they maybe computed in this

sequence by these formulas:

Sequence Formulas

1 (9)
2 (2)
3 (14)
4 (21)
5 (l~~f)

6

In this sequence, 2-3 is the width adjustment downward

from the upperbound for a thin strip. A parallel dashed line

shows also the width adjustment upward from a strip with

thickness. The former will be used in a synthesis procedure,

the latter in analysis. The amount of the adjustment is

designated alike in both (Aw/h) although it may differ

slightly (too little for any practical significance).

X. ATTENUATION

The rate of attenuation with distance in a transmission

line is simply expressed in terms of the average PF (magnetic

p and electric p’) and the wavelength 1~ in the line:

(22)

In words, this is the average PF (nepers) per radian length.

The magnetic PF is evaluated by the skin effect, as described

above.
The electric PF p’ of the effective dielectric in the line (k’)

can be expressed in terms of the various parameters

involved:

speed ratio:

(23)

filling fraction:

kr–l

~ [(R,/R)’ – 1]
a=k–l=k–l

(24)

electric PF:

~, = ~k

l/q – 1
l+T

bounds:

uqpk

Pk

‘k’p’> 1+1/k ‘~pk”

(25)

(26)

The electric PF p’ is seen to be within (~+ ~) of the

dielectric-material PF pk, and usually it is nearer the upper

bound. Therefore the electric PF is only slightly less than

that of the material, so the complete formulation is not

critical and may be unnecessary. If desired, it can be

computed (as above) from R/R ~ and pk.

Either attenuation or PF may be deduced from the other.

However, it is preferable to evaluate the magnetic PF

directly, because it is independent of the dielectric and the

speed ratio. In a wide range of situations, it represents nearly

all of the loss PF.

XI. PROCEDURES FOR COMPUTATION

The formulas are intended for useful applications, which

may be theoretical and/or practical. As brought out in the

earlier papers, “synthesis” and “analysis” are the alternative

objectives, the former for practical design and the latter for

evaluation of a configuration (the classical textbook

approach). Both are needed here for a practical design to

meet some specifications and tests. Therefore a few

procedures and examples will be outlined to show the use of

these formulas in arriving at a practical design.

The first few procedures start with the synthesis of a line to

meet a specification of wave resistance. The subsequent

evaluation of speed ratio and skin effect are inherently

analysis, but the procedures build on the synthesis.

First Procedure: On a specified printed-circuit board, find

the width for a 50-f2 line:

a)

b)

c)

d)

e)

f)

specify properties of a dielectric sheet with metal faces:

k=2.5, h=lmm, t=O.l mm;

specify wave resistance: R = 50 Q;
width of thin strip by (9) or Fig. 2: w’/h = 2.85;
width adjustment (without dielectric) by (14) or Fig. 3:

Aw/h = 0.15;

effect of dielectric by (21): Aw’/h = O.10;

width by (21): wjh = w’/h – Aw’jh = 2.75; w = 2.75

mm.

Second Procedure: For the same line, evaluate the speed

ratio, referring to Fig. 5:

g) no. 1 in sequence, c) above: w’/h = 2.85;
h) no. 2, find R; of thin strip by (2) or Fig. 2 or 3:

R; = 71.5;

i) no. 3, d) above: Aw/h = 0.15, w“/h = w’/h –
Awjh = 2.70;

j) no. 4, e) above: Aw’/h = 0.10, w/h= w’/h –
AwfJh = 2.75 ;

k) no. 5, by Fig. 3: RI = 71, or can be computed by the

“fourth procedure”;

1) speed ratio= R/Rl = 50/71 = 0.70.

Third Procedure: For the same line, evaluate the magnetic

PF and the attenuation from this cause, referring to Fig. 4,

Appendixes VII and VIII:

m)

n)

find the normalized PF by Fig. 4: P = 1.10; or it may

be computed by (16) using a nominal small d and

numerical differentiation;

specify the frequency (or wavelength 2.): ~= 1 GHz,

20 = 0.3 m;
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o) specify the conductivity (or material) of the metal

boundaries: copper;

p) evaluate the skin depth by (62) or [7]: d =: 2.1 flm;

q) compute the PF by (16): p = 0.0023 ❑= 2.3 roil,

Q = 440;

r) compute the attenuation rate from PF, speed ratio,

etc., by (22): a = 0.034 Np/m or 0.30 dB/rn.

If used for a long line, the attenuation rate may be

significant. If used for a resonator, the PF and speed ratio are

relevant.

In the third procedure, if one is concerned with only one

example (size, shape, materials, frequency) the actual skin

depth may be used directly, then the procedure assumes this

order: (n,o,p) (m,q,r).

A lesser PF may be required, or it may be desired to

explore the compromise between the loss PF and the height

and/or thickness. The first-order relation gives the PF
inversely proportional to size (h,t,w). A closer evaluation

may require complete computation of various examples,

then interpolation.

The following example and procedure are mlodified to

develop from analysis only. In particular, the width adjust-

ment corresponds to the dashed line in Fig. 5.

Another Example: Design a resonator to be made of a

square wire bonded to a printed-circuit board Similarly

lettered items refer to the foregoing procedures:

a) k=2.5, h=lmm, t=w;

m) from Fig. 4: near-minimum P = 0.8 for w/h = 2,

w=t=2 mm;

p) 6 =2.1 pm;

q) p = 0.0017= 1.7 roil, Q = 590.

The speed ratio can be evaluated by the following procedure.

It is found to be 50/67= 0.75.

Fourth Procedure: For any configuration, fincl the speed

ratio. For a thin strip, see (11) and Fig. 2 for the simple rule.

The following gives the effect of thickness:

a) specify configuration: k = 2.5, w = 2.75 mm, h = 1

mm, t= 0.1 mm, w/h = 2.75, t/h = 0.1;

b) width adjustment (without dielectric) by (14) or Fig. 3:

c)

d)

e)

f)

Awjh = 0.15, wflh = 2.90;

wave resistance (without dielectric) by (2) or Fig. 2 or

3: R1 =71;

effect of dielectric by (21): Aw’/h = 0.7, Aw/h = 0.10,

w’/h = 2.85;

wave resistance (with dielectric) by (10) or Fig. 2:

R = 50;

speed ratio: R/R ~ = 0.70.

The speed ratio is slightly greater than that for a thin strip of

the same width.
If resonance (small PF or high Q) is the principal objective

(rather than wave resistance) a different procedure maybe

indicated. The following outline gives some relevant

considerations.

a) Choose between a specified printed-circuit material

(h,t) and the alternative of an attached thick strip

639

(which may have a square or circular cross section).

The latter &ffers a les~er PF.
,

b)

c)

d)

e)

f)

h)

i)

If a thick strip is to be afforded, specify the bounds of

the space (overall height and width, h + t and w).

Specify whether the conductor (strip or whatever) is to

be supported in contact with a dielectric sheet. If so,

specify the height of the latter (h).

Subject to these restrictions, choose a cross section

giving near-minimum P~, (18).

If using a strip of small thickness t,a lesser PF is

obtainable by greater width w and greater height h.

If using a square cross section in contact with a

dielectric sheet (t/h = w/h), the least PF is obtainable

by a moderately wide shape (say w/h near 3).

If using a round wire in contact, a lesser PF is

obtainable by greater width (diameter), but little re-

duction is obtainable beyond a moderate width (say

w/h near 3).

If using a square or round wire with no need for

contact, the least PF is obtainable by a width near one

third the overall height.

If a rectangular space is specified, with the width not

less than the overall height, the least PF obtainable

with a rectangular cross section requires some

thickness less than one third the overall height.

There is usually not available an explicit formula for the

synthesis to realize a specified value of the loss PF. The

graphs in Fig. 4 can be applied to this problem. Knowing

the skin depth 6 and specifying the material (h,t), a value of
the loss PF p requires the P computed from (16). In Fig. 4,

this value of P determines the shape ratio w/h and hence the

width w. If this P is lower than a practical curve, the size (h,t)

may be increased to permit a greater value of F’.

XII. CONCLUSION

The transmission-line properties of a strip parallel to a

plane, with or without an intervening dielectric sheet, are

evaluated in simple formulas, each one adapted for all shape

ratios. The formulas relating the width/height ratio with

wave resistance are stated explicitly for both analysis and

synthesis, with or without dielectric. The wave-speed ratio

and the magnetic-loss PF are stated from the viewpoint of

analysis, which is usually what is needed.

The advance over previous publications appears mainly

in two areas:

a) a relation is expressed explicitly by a single simple

formula for the entire range of the shape ratio;

b) the width adjustment for thickness is formulated and

used for evaluation of the magnetic loss.

Each formula is an empirical relation obtained by designing

a gradual transition between known simple formulas for

both extremes of narrow and wide shapes.

All formulas are designed for ease of programming on a

pocket calculator such as the HP-25 or HP-65. Particularly,

the digital calculator enables the numerical differentiation

(for loss evaluation) which is here used to realize a great
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simplification. While beyond the scope of this article, the

writer would welcome inquiries relating to programs for the

HP-25, some of which may be available on request.

The subject line, formed by a strip parallel to a plane, has

presented problems of evaluation which are much more

difficult than those of the strip between two planes (sand-

wich line). That configuration is symmetrical and the dielec-

tric is homogeneous, so even the thickness effects have

yielded to straightforward formulation [8]. The asymmetri-

cal strip line is here formulated in a manner that is competi-

tive, although necessarily involving mixed dielectric.

While there is always room for further progress, the

graphs and formulas presented here are complete in that

they offer the option of graphical or numerical reading for

the all numerical values that may be needed for design

purposes. Preliminary estimating is usually aided most by

the graphs.
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APPENDIX I

BEHAVIOR OF THE WIDTH ADJUSTMENT

FOR THICKNESS

Formulas (13) and (14) for the width adjustment are based

on some asymptotic relations and a transition therebetween.

Asymptotic formulas for narrow and wide extremes were

given in the early papers [1], [2]. Here a revision of the wide

formula and an integrated formula with a simple form of

transition were presented. This appendix is a graphical

description of the behavior of this adjustment, for the

purpose of visualizing the transition and some associated

relations.

Fig. 6(a) shows a graph foT a constant ratio of

thickness/height (t/h). This may be the practical situation

when designing for a printed circuit to be made by etching a

conductive sheet bonded to a dielectric sheet. The width

adjustment ratio zAw/t is plotted on the width ratio w/h. The

scales are, respectively, linear and logarithmic, to give
straight lines for the sloping graphs.

The normalized form for the width adjustment takes out

the principal dependence on thickness, so one can see the
variations of the coefficient which is dependent on shape. A

higher value indicates a greater coefficient (responsive to

thinness) but the amount of the adjustment is still nearly

proportional to thickness.

There are two upper bounds (UB’S) for this coefficient,

based on the narrow and wide asymptotic behavior. The

level upper line is based on the wide extreme, the edge-field

pattern being influenced mainly by the proximity of the

shield plane. The sloping lower line is based on the narrow
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Fig. 6. The behavior of the width adjustment for thickness. (a) Transi-

tion between narrow and wide. (b) Family of transitions.

extreme, the edge-field pattern being influenced mainly by

the proximity of the two edges.

A smooth transition at the knee is provided by a quadra-

ture combination in formula (13). This is validated by some

computations to be described in Appendix II, indicated as

three points on the curve. This validation requires a change

in the wide formula, from the “old” in [2] to the “new” in (13).

The computed points indicated that the level UB should be

raised by a factor of two under the logarithm, as seen. (This

factor is not exactly determined, but two appears to be the

nearest and simplest number that might be indicated, and it

may have an exact basis.) This is regarded as a refinement of

the previous rule, whose derivation ignored the second-

order interaction between the edges far apart. It is noted that

the transition occurs in the vicinity of a width ratio some-

what less than unity (w/h = l/z).

The asymptotic relations are based on the limiting condi-

tion of a thin strip. Formula (13) includes an adaptation

(w/t + 1.1) which extends the close approximation to the

square condition. This introduces another curved transition

at the foot of the graph, raising the curve from the “square”

point (t/w = 1). While beyond the present scope, it is noted

that the curve has a minimum near the foot and approaches

a higher level (z) in the narrow extreme (w/t < 1).

Fig. 6(b) is a diagram showing a family of such graphs. For

greater thickness, the knee’ is closer to the foot of the graph,

so the two curved transitions would merge as the thickness

approaches the square shape. Then their separate descrip-

tions become indefinite, so the validity of formula (13) is
further tested on square shapes, as evaluated in Appendixes

III and IV.

APPENDIX 11

SMALL-THICKNESS EXAMPLES BY

CONFORMAL MAPPING

Formula (13) gives the width adjustment for thickness. It

is an empirical transition between the narrow and wide
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Fig. 7. Conformal mapping of the cross section of the strip line. (a)
Contour in space. (b) Space gradient. (Each area equals dimension in
space.)

extremes of the asymptotic behavior in the limit of a thin

strip. The first-order relations for these extremes have been

known [2] but not the behavior in the transition regions.

Also there is found a second-order effect requiring a revision

for the wide extreme.

The validation of this formula, especially in the transition
region, is provided by some complete computations ofa few

examples by a procedure based on conformal mapping. The

contour of the cross section is mapped on a straight line. The

space gradient on this line is integrated to evaluate

the dimensional ratios on the contour. Rather than implicit

elliptic integrals, numerical integration is used. Even that is

confronted by difficulties of integration where there is an

infinite value and/or slope at either bound (co,@, or ~@.

Fig. 7 shows the essentials of the conformal mapping of

the cross section of the strip line. The actual contour, Fig.

7(a), is described on the space plane (x + jy = z) in terms of

the shape dimensions w,h,t whose ratios determine the

properties. This contour is mapped on a straight line, Fig.

7(b). On the scale of this line u is graphed the space gradient

(or inverse field gradient) on the contour. The area under the

space gradient in each interval is equal to the dimension on

the contour.

The space gradient is formulated by inspection, as
follows :

z= lc?z/dul =
[1 – (u/u, )’][1 – (L@,)”] ‘1’ (27)

[1 - (u/u3)’][1 - (u/u4)q

Only the area ratios are significant, so the scale is arbitrarily

chosen for simplicity.

The analytic integration would involve elliptic integrals.
There is a constraint that precludes an explicit solution. The

upper and lower faces of the strip must have equal width

(WO= w), to be realized by proportioning one of the critical

values on the straight line.

Numerical integration is simple in concept and has been

found useful in computing a few examples. Some special

TABLE I

COMPUTED EXAMPLES

~ ~ 2— J_

‘1
188.5 133.7 88.5

‘4
1.414 1.1 1.01

U12
0.7368 0.7774 0.8412

u. 0.8867 0.8720 0.8988
L

‘1 0.5267 0.6520 0.7648

w’/h 0.348 0.879 2.020

w/h 0.237 0 .754 1.894

tlh 0.0755 0.0816 0.0838

Aw/h 0.111 0.125 0.126

Aw/t 1.48 1.53 1.51

(14) 1.47 1.55 1.56

dif. +.01 -.02 -.05

rules have been devised for closer convergence near the

singular points which correspond to the angles of the

contour. The result is a close approxirpation in cases where

the singular points are not too closely spaced.

The wave resistance is determined by the gaps in the

straight line, both sides of center. For the upper half-plane,

(1 + 1.14k2

)

~~ I-kz

K’(k)
1P p

n

R = *RC K(k) =

(

1 + 1.14(1 – k’)ln 16

‘)

,, (28)

rc l–kz

in which k = I/uA.

The latter (empirical) formula has a relative error <0.005.

It has the correct center value, skew symmetry, and asymp-

totic behavior at both extremes. A closer simple iorm~la for

a wide strip is

R=
607r2 607c2

8 ‘~”
(29)

In —
in I/k

In —
in u+

If l/k = U4 <1.4, the relative error is < 0.00IR.

Three examples have been computed. They are sum-

marized in Table I, numbered in order of increasing width.

The first is a critical shape (Rl = 377/2) while the others are

chosen to give a range of widths in the transition region.

These three examples have comparable values of the

thickness ratio (t/h near 0.08). This ratio is small enough to

be representative of small thicknesses (t/h <1 and w/h < 1).

Its value is the basis for the graph in Fig. 6(a), and the three

points are plotted in relation to the curve of formula (13).

The close agreement is regarded as confirmation of that

formula (for small thicknesses), especially in the transition

region which does not have a clear theoretical basis. This

result was the objective of the complete computation of

these few examples.

APPENDIX III

EQUIVALENT SQUARE AND CIRCULAR

CROSS SECTIONS

The extreme thickness of a narrow strip line is taken to be

a square cross section (t/w = 1). Therefore the formula for
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width adjustment contains a constant which assures a close

approximation up to this thickness. Its derivation is based

on the relations among three equivalent concentric cross

sections, the square, the circle, and the thin strip, shown to

scale in Fig. 1(c). Their dimensional ratios are such as to give

equal values of capacitance and inductance (assuming a

small skin depth) and the resulting wave resistance (all in

free space).

Starting with the square (of width = w), the equivalent

circle has a diameter which is greater in the ratio:

— r(5/4)

4912nr(7/4)
— = 1.1803 = 1/0.8472. (30)

The equivalent strip has a width which is double this

diameter.
In Fig. l(c), the large dashed arc is the circular boundary

equivalent to the ground plane (radius = 2h + w).

Based on these equivalents, a narrow strip of square cross

section has the following wave resistance:

R= 60 ln~~ww— = 60 in 1.70(2h/w + 1)= 60 in 8h/w’

(31)

in which

2.36w

“=l+w/2h”

In terms of width and thickness, the corresponding adjust-

ment is

‘W=W’-W=W(RL-1)=W’(+.3
is

(32)

In formula (13) or (14) forAw, the constant+ 1.1 or –0.26

inserted to give the correct value for a narrow strip of

square cross section.

From another viewpoint, Fig. l(b) shows cross sections of

a square and an inscribed circle (having equal width). In the
narrow case, these have wave resistances differing by

60 in 1.18 = 9.93 (near 10 Cl). (33)

This is denoted, the “10-f2 rule” for these two cross sections.

They are known to have equal skin resistances [9] so the loss

PF of the circular wire is less in the inverse ratio of its greater

reactance and wave resistance.

APPENDIX IV

WIDE SQUARE CROSS SECTION

The wide square cross section is here evaluated in simple

terms by invoking a variety of techniques in four regions of

each of the two active quadrants. These regions are

described in Fig. 8(a). Each is to be evaluated first in terms of

normalized capacitance C, which is the simplest concept for

the boundaries involved. The dimensions are referred to the

height (h= 1).

The first region, 1, is taken to be filled with uniform field:

c1 = W12. (34)
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Fig. 8. Derivation for a wide square cross section. (a) The four regions in
one quadrant. (b) Analysis of the corner region.

The third region, 3, is taken to be filled with logarithmic

field, which is described by radial lines and concentric

circles:

C,= ~ln (1 + w/2). (35)

The second region, 2, is the excess in the transition

between 1 and 3, taking into account the nearby distortion in

both of those regions. The upper and lower boundaries

(corner and straight line) are mapped on parallel straight

lines. Then the relative displacement of far points evaluates a

“stretch which represents the excess in the transition. This

is divided in two parts for the two directions from the corner.

Fig. 8(b) shows this result diagrammatically. Region 2 is

represented by 1A and 3A, the respective extensions of the

adjacent regions. The validity of this viewpoint resides in the

fact that the distortion from the transition decays rapidly in

either direction, and also tends to average out. The resulting
value of the transition region is

C2=~(l–ln2)+~ln~

2
=—

()
1 – In ~ = 0.483.

7C n
(36)

The fourth region, 4, is closely related to an inscribed

circle, as shown. The region around the inscribed circle

would contribute 1

., .,
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For ease of computation, this ratio can be approximated

by

()(c.) = ~ 1’3<1.
1 + 2/w

(38)

Between the inscribed circle and the equivalent circle (of

1.18 times the radius) the nominal capacitance is that of one

ciuadrant:

[c.] = *
in 1.18

= 9.49= 1/0. 105. (39)

This is,used to increase (C3) to approximate the capacitance

of the square in this quadrant:

1
cd=

l/(c4) – l/[c4]
<1.12. (40)

The resulting wave resistance of the two quadrants

(restoring w to w/h) is

R=
3’77

2C1 + 2c~ + 2C3 + 2C4

377.
:2 “

w/h + 0.966 + ~ in (1 + w/2h) +
(1+ 2h/w)l/3 -0.1

(41)

This formula is best for a wide square cross section. The

best for narrow is formula(31) for the equivalent round wire

shown in Fig. l(c). Their effective overlap is indicated by

their close values for a transition shape (w/h= 1):

1) wide (41) above: 94.91;

2) narrow (31): 95.11 (close lower bound);

3) all (13) (2): 95.32.

The intermediate value is believed to be the closest approxi-

mation for this case.

APPENDIX V

NARROW THIN STRIP

For a narrow thin strip (without dielectric) there is here

derived the second-order approximation stated without

proof in the early papers [1], [2]. It is based on a pair of small

wires equivalent to the strip. It forms the basis for the simple

formulas (l), (2) for any width.

Fig. 9(a) shows a single round wire of unit radius and its

known equivalent thin strip whose width is 4 units. It is

described on the z plane. It is to be transformed to another

plane, z’= ~~.

This transformation is here performed about one end of

the strip cross section, and the result is seen in Fig. 9(b). An

equal strip survives but the wire becomes a pair of smaller

wires. This pair provides a second-order approximation to
the far field of the strip. (This simple equivalence has not

been seen by the author in any of the many published

exercises in conformal mapping.) It is noted that the smaller

wires are not strictly circular in cross section, but that is

irrelevant in the use of the concept herein.
Fig. 9(c) shows the thin strip (or equivalent pair of wires)

and its image in a ground plane. From this g~ometry, the

z PLANE

I I I I I
o 1 2 3 4

(a)

W= z’ PLANE

~“’”oo’

o 1+%2

HALF–CURRENT CENTER J

(b)

*“’*

~+,~:
“T—.—+)+”+-2–

1 /1! I

Fig. 9. The pair of small wires equivalent to a thin strip. (a) Thin strip

and equivalent round wire. (b) Thin strip and equivalent pair of round
wires. (c) Thin strip and its image in a ground plane.

mean distance between one pair of current centers and the

other pair is increased to

2h’ = ~2h~(2h)2 + w2/2 = 2h[l + ~(w/h)2]1i4

= 2h[l + &(w/h)2 – . “ “]. (42)

The narrow-strip formula becomes

R = 60 in 8h/w

=30 in [(8h/w)~(8h/w)2 + 8] (43)

This is a reversible formula, giving the following for

synthesis:

~exp R/15 + 16 + 4
w/h = 8 (44)

exp R/30 “

For a narrow strip, the 4 term is of the second order

(exp R/30) and the 16 is of the fourth order (exp R/15)

relative to the first order (exp R/60).

A modification of the above formula gives a simpler form

which has a linear slope for R a O, while retaining the

second-order approximation:

exp R/30 -t 2
w/h = 8

exp R/30 – 1 “
(45)

In the limit, wfh + (@)240/R = 416/R.

This is not far from the desired 377/R. The latter result can

be obtained by substituting a slightly lesser value (n2/4 –

1 = 1.467) for the constant 2. Asymptotic behavior for a

wide strip is then realized at the cost of a slight deficiency in

the second-order term. The result is the simple formula (1)

giving a close approximation for any width.
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The two preceding formulas are extremely close (the

relative difference is <0.0002) in the narrow range

(w/h < 2). The first term of error is proportional to (w/h)’.

Their average has a relative error <0.003 if w/h <4. The

second formula is closer for greater widths, and therefore

probably for all widths. The corresponding formula for

analysis is (2) except change nz to 12.

‘1’hn exercise is a striking example of the technique of

higher order approximation and its application to obtain a

simple and versatile empirical formula with support from

various theoretical relations.

APPENDIX VI

PREVIOUSLY DERIVED FORMULAS

Any empirical formula must be validated by comparison

with derived formulas. These are typically more complicated

and/or restricted as to the range of the width ratio,

Here are some such formulas for a thin strip, selected from

the earlier papers, (A- #) referring to the first [1] and (B-#)

referring to the second [2], They are stated in a form that is

convenient for computation, to provide a comparison test
for the more recent empirical formulas covering the entire

range of the width ratio. They are converted to the dimen-

sions used herein (w, h, etc.).

Every one of the derived formulas is essentially the first

few terms of a series converging in the extreme of a narrow or

wide shape (and small thickness). Therefore a “narrow” or

“wide” identity is necessary. The transition between the two

occurs for a shape which may be “borderline” for close

approximation by either. Hopefully the two kinds will

overlap to give a covq-age for all shapes. As stated in the

early papers and as supported by more recent studies, the

transition occurs near w/h = 1. The more sophisticated

formulas give substantial overlap.

For a narrow thin strip without dielectric, the second-

order approximation was not supported by a derivation.

One is given here in Appendix VI. Formula (45) and the

corresponding modification of (2) are presented as the

closest approximation known to date. It provides overlap of

the wide range. The relative error is < 0.003R if w/h <2.

For a wide thin strip without dielectric, the first paper

yields a remarkably close approximation with overlap of the

narrow range. The synthesis form is an explicit formulation.

Specify

RI < 60n = 188

(A-l), (A-45) d = ~RC/Rl = 592/Rl > rc (46)

(A-67) d = d’ + (2d’)2 exp – (2d’) > z (47)

(A-1O) C=~(d– 1)2 – 1 =~d(2d – 1) (48)

(A-68) w/h = ~ [c – acosh (d – 1)]

=~[c–ln (c+d-1)]>0.3. (49)

The two preceding approximations give a large overlap.

They are closest near R ~ = 126 or w/h = 1, where the

relative difference is 0.0005R ~. For the graphs in Fig. 2, the

computation of any one point is made with the formula

judged to be the closer of the two; if so, its relative error is

less than this amount.

A comparison of these two formulas can be made in

explicit form by the following sequence:

1) wide (49): wlh from R ~~;

2) narrow (2)

(modified): RI. from w/h;

3) ratio: R1n/RIW = 1 + relative

difference. (50)

The relative difference of RI is the significant comparison.

A thin strip with dielectric likewise has different formula-

tions for narrow and wide. The effective dielectric constant k

depends on the shape w/h and on the dielectric k. One

sequence can be used for explicit formulations in any case:

1) specify: Rl;

2) compute (45): w/h ;

3) specify: k;

4) compute

(53), (57), (52): q, k, R = R1/@;

5) graph: R for k, wfh. (51)

The “effective filling fraction” [2], defined as follows,

depends mainly on the shape and less on the-dielectric:

//-1

‘=k–l’
k=l+q(k– 1), (52)

Because it has only second-order dependence on the dielec-

tric, a simple formula for a mean value of k is sufficient for

practical purposes. A mean value (k = 3) is chosen because it

places the effective dielectric k’ midway between the ex-

tremes (for 1< k < co) and within the midrange of practical

values. Some formulas will be stated for this mean value,

with a supplemental term which may be ignored, having a

factor (l/k – ~). It is graphed in Fig. 2 in terms of w/h directly

and R ~ indirectly.

The shape dependence of the filling fraction was derived in

terms of the wave resistance without dielectric (R-l) and is

most simply expressed in those terms. This R ~and the actual
shape w/h are related by various formulas. The filling

fraction is here expressed in very simple form from the

previous derivations for narrow and wide.

For a narrow thin strip with dielectric, the effective

dielectric constant is formulated as follows. The shape is

introduced in terms of the wave resistance without dielectric

(Rl):

‘B-32)( B-44) ‘=~+:(lnf+M

The relative error is < 0.00IR,.
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–(’nf”+n$~,=k+l+~k–l
(B-32), (B-45) —

2 RI 2“

(54)

The relative error is <0.01 of E if R’ is > 70; w/his <3; q is
<0.72.

For a wide thin strip with dielectric, the effective dielectric

constant is formulated in terms of parameters defined above

and here:

(B-8) d = :Rc/R, = 592/R, > IT, R, <188

$:A:) (A-16),

S’ = 0.732[aco:h (d – 1) – acosh (0.358d + 0.598)]

(55)

(B-25) s“ = in 4-1- l/(2d - 1)

= 0.386 – l/(2d – 1) (56)

[ 1(B-4) q = 1- ~ acosh (d – 1) - s“ + ~ . (57)

The relative error is <0.01 (estimated).

For the mean case (k = 3), this result is approximated

very closely by the simple formula

~=l_!!ilnl!!.
592 RI

(58)

The overlap between the two simple formulas (53) and (58)

occurs near RI = 100 or w/h = 1.5.

The narrow and wide simple formulas for the mean case

can be integrated and supplemented by an adjustment for

any k, as follows:

The relative error is <0.01 of k. The first term is altransition

between the narrow and wide extremes. The second term is a

very close adjustment for the intermediate range. The last

term is negligible in the practical effect on k, so it serves

mainly to indicate the weakness of the dependence on k.

One simple example is here reviewed in Table II as a test

of various derivations for a thin strip without dielectric. It is

a shape (w/h = 1) which is in the region of transition

between narrow and wide approximations. The wave resist-

ance R ~is based on free space (1207c). The items are listed in

order of increasing error from the first. The derivation is

described with respect to its development from the extreme

of narrow and/or wide strip. The following notes give further

comments.
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TABLE II
COMPARISON OF FORMULAS FOR ONE EXAMPLE

Identification Derivation Rl (OhltlS) _Error

(s) [14] unrestricted 126.553 0

(W.1) (43) narrow 126.533 -.020

(w.2) (2) (modified) narrow 126.528 -.025

(w.3) [11 (A-68) wide 126.473 -.042

(w.4) [11 (A-66) narrow 126.641 +.088

(W.5) (2) narrow-wide 126.310 -.243

(K) [16] wide 127.857 +1.304

(w.6) [1] (A-71) wide 124.424 -2.129

(s)

(W.1)

(W.2)

(W.3) (W.4)

(W.5)

(K)

Schneider’s example is derived rigorously

from elliptic integrals and is taken to be

“exact” for purposes of comparison. Its rela-

tion to the other items tends to confirm its

validity.

This is the derivation based on the pair of

wires equivalent to a narrow thin strip. It is

the closest approximation (the relative error

is <0.0002).

This is similar to (W. 1) but modified to a form

suitable for matching the wide extreme. It is

the reverse of formula (45).

These are the closest approximations given in

the 1964 paper. They bracket the correct

value within a relative difference of +0.0007.

Their computation is much easier than (S).

This is the only item providing a rather close

approximation over the entire range of shape.

Kaden’s “wide” formula is an approximation

to his derivation from elliptic integrals. The

error (about 1 percent) indicates that this

shape is “borderline” for his approximation.

It is comparable with (W.6) in its explicit form

and in simplicity, and gives a closer

approximation.

This concludes a summary of the earlier formulas,’and

some more recent, as required for the above procedure. They

are adequate for a set of close computations for a thin strip

with any dielectric. These may be used for checking any

empirical formula such as those proposed herein. They are

used for the graphs in Fig. 2.

APPENDIX VII

COMPUTATION OF Loss BY

NUMERICAL DIFFERENTIATION

In practical applications of a strip line, the PF of conduc-

tor loss is usually determined by the skin effect. Some simple

rules are applicable if the skin depth d is much less than the

least transverse dimension. One is the “incremental-
inductance rule” stated by the author [3]. It relates the skin

loss with the inductance, by a formula based on

differentiation.

In a transmission line made of perfect conductors, the

wave resistance without dielectric (R ~) is uniquely related to

the inductance, so that formula may be used instead. Then
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the loss PF of the skin effect may be expressed as follows:

Rb – RI
p= ALfL= R = 1 –R1/R8~ 1. (60)

Ls

The incremental-inductance rule is here represented by the

relative increment of inductance (AL/L) that would be

caused by removing a thickness (6/2) from the face of every

conductor bounding the field. The wave resistance (R ~)for a

perfect conductor would be increased in the same ratio if the

boundary were modified in the same manner. Then this

change (from RI to R6) is used to compute the PF.

The elegant application of the incremental-inductance

rule was stated in terms of the analytic differentiation of an

inductance formula in terms of a simple continuous func-

tion. In its more general application, such a formula may not

be available. The rule is still useful if the inductance varia-

tion is formulated continuously over a range of dimensions.

Such a formula can be subjected to analytic differentiation,

but the resulting expression may be much more complicated

than the inductance formula from which it is derived. This

has been the experience of some workers who have taken

this approach in evaluating the loss PF in a strip line [13],

[17].
In the meantime, the advent of the digital calculator has

opened up a new opportunity for the differentiation of a

complicated formula. It enables a close approximation of

the derivative by computing a small finite difference. The

basic formula is used twice, which requires little more effort

in a programmable calculator. The versatility of this

procedure reaches a peak in the Hewlett-Packard pocket

models, HP-25 and HP-65. The convenience and availabil-

ity of the HP-25 provided the author with the tools and

incentive to prepare this paper.

Having stated the objective of numerical differentiation

by finite differences, the programming is routine. Fig. 10

shows the flow chart of one such program. It serves to bring

out the application of some features available in the HP-25.

It includes as the principal subroutine, some formula for R ~
in terms of the transverse dimensions. After incrementing

the dimensions in accord with the skin effect, this subroutine

is traversed a second time for R& The relative increase is

interpreted as the PF in direct or normalized form. The

following features of the program are notable.

The skin depth 6 may be evaluated and then utilized to

give the PF p for any example. The more versatile nor-

malized PF P may be obtained by arbitrarily choosing a

small difference (say d = 0.0001). Then the result

approaches the analytic derivative. The value of the differ-

ence cancels out in the normalized form. The number of

decimal places in the small difference maybe somewhat less

than one half the number available in the computation. The
skin depth or small difference is entered once in one register

(R4) where it need not be renewed unless a change is desired.

The dimensions w,h,t are entered in assigned registers

R0,R1,R2. For the second computation, each dimension is

incremented by ~ c5.Each dimension is between two con-

dfictor faces so the removal of 6/2 on each face requires that

DIRECT ( p FROM 8). NORMALIZED (P),

&

47
ENTER

w IN RO

h IN RI

t IN R2

RUN

&
&

YES
R7=0

NO

(1) (2)
RECYCLE FINISH

RI IN R?
CALCULATE

p=l-R4/R8

Ea%l I
—-r---’ ”-’

8 =SMALL VALUE

(SAY .0001)

D
ENTER

w/h IN RO

h=l IN RI

t/h IN R2

QCALCULATE
P=p+8/h

I I

Fig. 10. F1OW chart for computing the loss power factor by numerieal

differentiation.

the dimension be changed by 6, either increased or de-

creased. The increment is entered by arithmetic in the

register.

Conditional branching is required at the end of each

execution of the R ~subroutine. One register (R7) is vacated

until the end of the first execution, then occupied by R ~,

which signals the eqd of the second. This serves also to retain

R ~ for comparison with R&
If the program storage is inadequate for the principal

subroutine and also the transitional subroutines, one or

more of the latter is easily performed manually.

In Fig. 10, the right-hand column of notes describe the

program changes for the normalized form.

APPENDIX VIII

FORMULAS FOR THE SKIN DEPTH

Here are some formulas for the skin depth in nonmagnetic

conductors [3], [7]:

= ().()291~A/ci = & -. (61)
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In copper (a= 58 Mmho/m):

6,= 3.81~~ ~m =
r

4.36 kHZ

f
mm

‘r’”
=~mm==mm. (62)

Symbols used in (61) and (62) are defined below.

(s). = 2nf = radian frequency (radians/second).

~ = wavelength in free space (meters).

RO = l/GO = wave resistance of a plane wave in a

square area in free space (ohms).

Vo = magnetivit y (magnetic permeability y) in free

space (henries/meter).

G = I/p= conductivity in copper (mhos/meter).

R. = 377 = 1207CQ.

Po = 0.47t = 1.257 pH/m.

APPENDIX IX

RECENT ARTICLE ON WIDE STRIP

WITH THICKNESS

Subsequent to the preparation of this paper, the author

has seen a recent article related to the subject [19]. W. H.

Chang has described an ingenuous and powerful approxi-

mation based on conformal mapping. To that extent, it has

something in common with the author’s 1964 paper [1].

Some thickness is accommodated at the expense of some

refinements in other respects. The result is a very useful

approximation for wide strips with thickness. To yield this in

analytic form is a major achievement. Moreover, it appears

that his result may be closely bracketed by further apprecia-

tion of his approximation.

Relevant to the present paper, Chang gives a table of

examples computed from his formula and also by a numeri-

cal approximation from W. J. Weeks [18]. The agreement is

very close. Most of those examples fall within the range of

validity of the present paper, formulas (1), (2), (13), (14)

without dielectric. The agreement is well within 0.0 lR. The

formulas herein offer a close approximation for any width.

They are based on a thin strip with width adjustment for

thickness. Chang’s formulas for a wide strip are remarkable

for including the width and the thickness in one formula.
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The small-thickness examples reported in Appendix II are

in the range of marginal approximation by Chang, so they

have not been compared,
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