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Theory and Design of Frequency-Tunable
Absorptive Bandstop Filters
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Abstract— Absorptive bandstop filters are a relatively new class
of bandstop filter, which are able to achieve very high levels of
stopband rejection with relatively low-quality-factor resonators,
in contrast to typical reflective bandstop filters, whose stopband
rejections are limited by the quality factors of their resonators.
This paper performs an in-depth theoretical and practical analy-
sis of this class of filter, presenting design principles for reducing
the sensitivity to process variation, increasing the tuning range
over which the filters can operate with good performance, and
addressing the practical non-ideal effects of implementation,
such as frequency variation of couplings and quality factor.
Four varactor-tuned microstrip bandstop filters are presented to
verify the presented theory. They illustrate the design tradeoffs
between selectivity and tuning range, choice of coupling topology
and tuning range, and show the benefits and drawbacks of
cascading stages to create higher-order filters.

Index Terms— Filters, microstrip filters, resonator filters,
tunable circuits and devices.

I. INTRODUCTION

ONE of the main attractive features of cognitive radio
transceivers is their ability to dynamically adjust oper-

ation parameters such as center frequency, bandwidth, and
modulation type, in order to optimally utilize the available
spectrum [1]. Such transceivers often maximize frequency
flexibility by utilizing very wideband RF front ends, but
this leaves the receiver prone to jamming signals which can
saturate the receiver and block the desired signals of interest.
These jamming signals can come from a variety of intentional
or unintentional sources, and are often dynamic, unpredictable,
and can be many orders of magnitude stronger than the signals
of interest. Tunable bandstop filters, which have the ability
to dynamically suppress a narrow band of frequencies while
maintaining a wide passband, offer a potential solution to this
problem and, as a result, have garnered much research interest
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in recent years. One particular drawback of tunable bandstop
filters, however, is that tunable resonators in compact form-
factors tend to have low unloaded quality factors (QU). Since
the amount of attenuation that a typical bandstop filter can
achieve is limited when low-quality-factor resonators are used,
many of the published tunable bandstop filters fail to provide
the high levels of rejection that are needed in cognitive radio
applications.

A bandstop filter utilizing evanescent-mode cavity res-
onators is presented in [2]. Its maximum attenuation only
ranges from 15–35 dB with a 1.2% to 3.2% fractional
bandwidth. In [3] a varactor-tuned micostrip bandstop filter
is demonstrated with 37–40 dB of stopband attenuation for
a fractional bandwidth of 10%–14 %. Stopband rejection
of 7–27 dB with a fractional bandwidth of 1.6%–3.6% is
presented in [4], which is a bandstop filter implemented
with varactor-tuned substrate-integrated evanescent-mode cav-
ity resonators. Other notable examples of tunable bandstop
filters can be found in [5]–[7].

Two other notable, relatively recent types of bandstop
filters are the N-path filter [8], [9] and the transversal signal-
interference filter [10]. N-path filters have the advantage
of being fully integrated on-chip, can have very narrow
bandwidths, and can be very widely tunable. However, their
ultimate stopband rejection is limited to around 25 dB [8].
Transversal signal-interference filters are able to provide very
sharp stopbands with high levels of rejection, but in general are
not amenable to tunability since their center frequencies are
determined by electrically-long lengths of transmission line.

A new class of bandstop filter which partially overcomes
the aforementioned problems caused by low-quality-factor
resonators was recently introduced in [11]–[13]. This type
of filter achieves its stopband attenuation not by reflecting
incident signals as traditional reflective bandstop filters do,
but by utilizing two signal paths which are 180° out of phase
and result in destructive interference over a narrow bandwidth.
This allows the filter to achieve very large (theoretically
infinite) attenuation in its stopband, regardless of the con-
stituent resonators’ unloaded quality factors. This kind of filter
is called an “absorptive bandstop filter” because it realizes
its increased stopband attenuation by absorbing a portion
of the incident signals which would otherwise be reflected,
although it is not restricted to being perfectly absorptive
and can have both zero and non-zero reflection coefficients
in its stopband. The concept has been utilized by several
authors since, and has been demonstrated in technologies
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such as microstrip [14], [15], lumped elements [16], [17],
and evanescent-mode cavities [18]–[21]. Despite the many
excellent examples of absorptive bandstop filters which have
been published, several aspects of this class of filter have
not yet been investigated. For example, none of the afore-
mentioned papers have discussed how to predict or optimize
the tuning range over which a tunable absorptive bandstop
filter can achieve very large stopband attenuation. Additionally,
there has been no discussion of how to design an absorptive
bandstop filter to meet a certain bandwidth requirement, no
analysis of the design tradeoffs which must be made when
designing such filters, and no step-by-step design procedure
other than an iterative manual optimization process.

In response to these and other knowledge gaps, this paper
seeks to present a detailed analysis of absorptive band-
stop filters which furthers knowledge of this class of filter.
A theoretical foundation for optimizing the tuning range
over which absorptive bandstop filters can achieve (ideally)
infinite attenuation is developed, along with design principles
to increase their robustness to process variations. The tradeoffs
between selectivity and tuning range, and the impact of non-
ideal effects such as coupling dispersion, transmission-line
length variation, and parasitic coupling are examined and
design principles are developed to mitigate these effects.

First, the topology of an absorptive bandstop filter is
presented, and relevant equations are derived in detail. The
tradeoffs between various performance metrics such as band-
width, tuning range, and sensitivity are examined, and practical
design considerations are presented. A comparison of the
relative benefits and drawbacks of higher-order versus lower-
order filters is made. Lastly, a step-by-step design procedure
is presented, and several varactor-tuned microstrip absorptive
bandstop filters are designed, fabricated, and measured to
validate the theory and design principles presented in this
paper.

II. DESIGN PRINCIPLES OF ABSORPTIVE FILTERS

A. Analysis of a Two-Pole Absorptive Bandstop Filter

A schematic representation of a two-pole absorptive band-
stop filter is shown in Fig. 1(a). This circuit was first disclosed
in [12] and [13], and the following analysis in Section II.A
bears similarities to that in [12] and [14] but is included
here for the completeness of this paper and to introduce the
different notation and terminology used in this paper.

The filter consists of two resonators (represented as the
solid circles labeled “1” and “2” in Fig. 1) coupled to a
source-to-load transmission line of length θ with coupling
coefficients kE1,2, and coupled to each other with cou-
pling coefficient k12. Though represented as shunt-parallel
RLC resonators in Fig. 1(b), the resonators can be imple-
mented as any resonators which have parallel-RLC equiv-
alent circuits near resonance. The coupling elements are
implemented as admittance inverters whose characteristic
admittances (3)-(4) are equal to their respective coupling
values scaled by the resonator and system characteristic
impedances as defined in [22]. With the sign convention used
in this analysis, positive coupling provides a +90° insertion

Fig. 1. (a) Schematic representation of a two-pole absorptive bandstop
filter. (b) Equivalent circuit of (a). Source-to-load coupling is implemented
by a transmission line of characteristic impedance Z0 and electrical length θ ,
coupling elements are implemented by admittance inverters, and resonators
are represented as parallel RLC resonators.

phase whereas negative coupling yields a −90° insertion
phase. The source-to-load coupling is assumed to be an ideal
TEM transmission line. The source and load, represented in
Fig. 1 as hollow circles labeled “S” and “L”, have impedances
which are assumed in this analysis to be identical to the char-
acteristic impedance of the transmission line. The expressions
in Fig. 1 are defined as follows:

Yres1,2 = 1

Z R

(
1

QU
+ p ± j B

)
(1)

p = j

(
ω

ω0
− ω0

ω

)
(2)

J12 = k12/Z R (3)

JE1,2 = kE1,2/
√

Z0 Z R (4)

Z R = √
L/C (5)

ω0 = 1/
√

LC (6)

QU = R

ω0 L
= ω0 RC (7)

Yres1,2 represents the admittance of each resonator, and is sim-
ply the parallel combination of the admittances of the inductor,
capacitor, and resistor which comprise each resonator, slightly
rearranged and reduced using the definitions for the bandstop
frequency variable (2), the resonators’ impedances (5), and
the resonators’ unloaded quality factors (7). The capacitors
are differentially tuned by a factor of 1 ± B , which allows
for asynchronous tuning of the resonators if B is chosen
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to be nonzero. The frequency-invariant reactance B in
equation (1) which appears as a result of this differential capa-
citance tuning is only approximate – in reality the reactance
would have frequency dependence, but in the narrowband case
it can be approximated as constant. Equations (2) and (5-7)
are derived from [23].

To obtain the transmission and reflection coefficients
(S21 and S11) of the circuit in Fig. 1(b), first the elements
in the bottom branch of the circuit (the resonators and cou-
pling elements) are cascaded together by multiplying their
ABCD matrices. The resulting matrix is converted into its
equivalent Y-parameter matrix [24], which is then added to
the Y-parameter matrix of the transmission line due to their
parallel configuration. The resulting Y-parameter matrix is
converted into its equivalent S-Parameter matrix [24]. The
resulting transmission and reflection coefficients are given
in (8)–(10), as shown at the bottom of this page. Inspection
of (8) shows that S21 = 0 at the filter’s center frequency
(ω = ω0, or alternatively p = 0) when

1

Q2
U

+ B2 + k2
12 + k12kE1kE2 sin θ = 0. (11)

The filter has theoretically infinite attenuation even with
finite-QU resonators if this equation is satisfied, and thus
it is the governing equation for absorptive bandstop filters.
The mechanism by which absorptive bandstop filters achieve
infinite attenuation can be seen by examining the poles and
zeros of S21. For simplicity, the highpass prototype equivalent
of (8) is used, which can be obtained by redefining (2) as
p = jω. Equations for the poles and zeros can be found
in [14]. Fig. 2(a) shows the poles and zeros of both a two-pole
reflective bandstop filter and a two-pole absorptive bandstop
filter. The reflective filter has a double zero which is offset
from the jω axis due to the use of finite-QU resonators, and
thus has limited attenuation. The absorptive filter’s interres-
onator coupling, along with the asynchronous tuning of its
resonators, splits the zeros, restoring one zero to the origin
while moving the other zero to the left in the complex plane.
Thus the absorptive filter has infinite attenuation at its center
frequency, but has less selectivity than a lossless two-pole
bandstop filter which has two zeros at the origin. When B = 0,
k12 = 1/QU , and θ = 90°, as in the case of the perfectly-
matched absorptive filter, the two poles fall on top of one
of the zeros. This cancels a pole/zero pair, leaving one pole

Fig. 2. Poles and zeros of S21 for (a) Reflective and absorptive bandstop
filters, and (b) Reflective and perfectly-matched absorptive bandstop filters.
In the case of the perfectly-matched absorptive bandstop filter, a pole and a
zero cancel each other out, leaving a single pole/zero pair which corresponds
to an ideal 1st order bandstop filter.

and one zero – corresponding to a lossless 1st order bandstop
filter.

Many combinations of kE1,2, k12, B, QU and θ can provide
valid solutions to (11), and thus it is instructive to examine
the bounds placed on each variable, and to see how the
choice of each variable affects the filter’s transfer function.
It should be noted that in the following analysis, the coupling
coefficients (kE1,2, k12) and quality factor (QU ) are assumed
to be frequency-independent, and the transmission line
length (θ) is assumed to be linearly proportional to frequency.
While this is not precisely true in practice, this simplification
is often sufficiently accurate in narrowband designs and is an
important analysis step. Fine tuning and frequency-dependent
effects are analyzed in Section III.

B. Limits on External Coupling

The limits on external coupling (kE1 and kE2) can be
found by solving (11) for kE1 and kE2, which yields the

S21 =
e− jθ (p2 + 2

Q p + B2 + k2
12 + 1

Q2
U

+ k12kE1kE2 sin θ)

p2 + 4+(
k2

E1+k2
E2

)
QU

2QU
p + je− jθkE1kE2(k12 + 1

2 kE1kE2 sin (θ)) + 1
Q2

U
+ 1

2QU

(
k2

E1 + k2
E2

) + B2 + k2
12 + j B

2 (k2
E1 − k2

E2)

(8)

S11 = − 1
2

(
k2

E1 + e−2 jθk2
E2

)
p + μ

p2 + 4+(
k2

E1+k2
E2

)
QU

2QU
p + je− jθkE1kE2(k12 + 1

2 kE1kE2 sin (θ)) + 1
Q2

U
+ 1

2QU

(
k2

E1 + k2
E2

) + B2 + k2
12 + j B

2 (k2
E1 − k2

E2)

(9)

μ = − je− jθk12kE1kE2 + e−2 jθk2
E2

(−2 + 2 j B Q + k2
E1 Q

)
4Q

− k2
E1(2 + 2 j B Q + k2

E2 Q)

4Q
(10)
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following equation:

kE1kE2 = −
1

Q2
U

+ B2 + k2
12

k12 sin θ
(12)

This equation is similar to equation (8) in [12], with the
important exception that it allows kE1 and kE2 to be different,
both in magnitude and in sign. This provides two very useful
insights about absorptive bandstop filters. First, it shows that
the filter can still achieve infinite attenuation even with small
variations in external coupling due to manufacturing variations
as long as (12) can still be satisfied. Second, it shows that the
relative polarities of kE1, kE2, and k12 dictate the length of
transmission line which must be used.

For the signs of both the left- and right-hand sides
of (12) to be consistent, the sign of the quantity
kE1kE2k12sinθ must be negative. Therefore if either one or
three of the variables kE1, kE2, and k12 are negative, then
sin θ must be positive (0° < θ < 180°. However, if all of
the aforementioned variables are positive, or two of them are
negative, then sin θ must be negative (180o < θ < 360o). This
is a key fact because as shown in Section II.D, the length of
source-to-load transmission line is critical when maximizing
the tuning range of the filter.

Though they can differ in sign as dictated by the physical
coupling structure, the magnitudes of kE1 and kE2 are usually
chosen to be equal for the sake of simplicity (i.e. kE1 =
kE = ±kE2). For a given k12, QU, and θ , the minimum kE

which will allow ideally infinite attenuation is

kE,min =

√√√√ 1
Q2

U
+ k2

12

k12 sin θ
, (13)

which occurs when B = 0. For any value of kE larger
than (13), B can be chosen by asynchronously tuning the
resonators such that (12) is still satisfied. Minimizing (13) with
respect to k12 and θ shows that the absolute minimum possible
value for kE for a given QU is

k∗
E,min = √

2/QU , (14)

obtained when k12 = 1/QU , and θ = 90°. If these values
are substituted into (9), it can be seen that the filter has
zero reflection coefficient, and thus is a perfectly-matched
absorptive bandstop filter [12]. When kE is larger than this
absolute minimum value, the reflection coefficient is nonzero,
and increases with increasing kE as shown in Fig. 3.

C. Limits on Interresonator Coupling

Solving (11) for k12 yields the following equation:

|k12| = 1

2

[
k2

E |sin θ | ±
√

(k2
E sin θ)

2 − 4

Q2
U

− 4B2

]
(15)

All solutions for k12 come in pairs due to the quadratic
nature of the equation. When B = 0, the two solutions
represent the maximum and minimum allowable values of k12
for given kE , QU , and θ . For all values of k12 between
these extrema, B can be chosen by asynchronously tuning
the resonators such that (15) is satisfied. Fig. 4 shows the

Fig. 3. (a) The effect that kE has on bandwidth and reflection coefficient.
(b) Variation of maximum reflection coefficient (at ω = ω0) with kE . k12 =
1/QU and θ = 90° in both figures. At the minimum value of kE (

√
2/QU ),

the filter is perfectly matched and has zero reflection coefficient. When kE
is increased beyond its minimum value, the reflection coefficient becomes
nonzero and increases with kE . In each case the filter has infinite attenuation
at its center frequency.

maximum and minimum allowable values for k12 plotted
versus kE , for several values of QU . Note that when kE is
equal to its minimum value (14), there is only one possible
value for k12, whereas for kE greater than (14) a range of
values of k12 are possible. This is an important fact for
designs which are robust to process variations. If the minimum
kE is chosen, then any slight variation in QU , k12, or kE

will not allow infinite attenuation. This can make the design
process particularly challenging, because it is often difficult
to accurately predict the unloaded qualify factor of tunable
resonators. By choosing kE larger than its minimum value,
however, the design is desensitized to process variations, and
small variations in kE , QU , or k12 can be compensated by
asynchronously tuning the resonators. However, this comes at
the expense of decreased selectivity as is seen in Section II.E.

The ability to compensate for variations in kE , k12, QU ,
and θ by asynchronously tuning the resonators has previously
been noted in [12]. However, this analysis shows for the first
time the range of values of kE and k12 that can be compensated
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Fig. 4. Maximum and minimum allowable values for interresonator
coupling (k12) plotted versus external coupling (kE ) and unloaded quality
factor (QU ), obtained from (15) with B = 0. At the minimum value of kE
(
√

2/QU ), there is only one permissible value for k12 (1/QU ). A broader
range of values for k12 can be used when kE is increased beyond its
minimum value, providing design flexibility and decreased sensitivity to
process variations.

by asynchronous tuning, and that the design robustness can be
increased by increasing the value of kE

D. Tuning Range

Since (11) depends on the electrical length of the through-
line (θ), which is proportional to frequency, it can only have
solutions for a certain range of frequencies. Solving (11)
for θ with B = 0 yields the minimum and maximum allowable
values of θ for a given QU , k12, kE1, and kE2:

θmin = sin−1

⎛
⎝

1
Q2

U
+ B2 + k2

12

k2
E k12

⎞
⎠ + n180° (16)

θmax = 180° − θ1 + n360° (17)

where n is an even integer if the sign of kE1kE2k12 is negative,
and an odd integer if the sign of kE1kE2k12 is negative.

With an ideal, dispersionless transmission line, the electrical
length (θ) of the transmission line is linearly proportional
to frequency. The ratio of θmax/θmin is equivalent to the
ratio fmax/ fmin , and this ratio can tell us the tuning range
of the filter – that is, the range of center frequencies for
which (11) can be satisfied. This ratio, designated as the tuning
range (T R), is

T R = θmax

θmin
. (18)

If one seeks to design a widely-tunable absorptive bandstop
filter, it is desirable to know how the choice of design
parameters affects the tuning range, and how to increase the
tuning range. The tuning range increases monotonically with
QU and kE , as shown in Fig. 5. However, it can be shown
that there is an optimal value for k12 which maximizes (18):

k12,opt = 1
/

QU (19)

This optimal value of k12 can be seen in Fig. 6, which plots
tuning range as a function of k12 for different values of kE .
It should be noted that this is the same value of k12 which
minimizes kE , as in equation (13).

Fig. 5. Tuning range plotted versus external coupling with (a) a nominally 90°
and (b) a nominally 270° source-to-load transmission line. Interresonator
coupling k12 is the 1/QU.

Fig. 6. Tuning range plotted versus interresonator coupling with
(a) a nominally 90° and (b) a nomninally 270° source-to-load transmission
line. QU = 100.

By observing the limits on the numerator and denom-
inator of (18), the absolute maximum tuning range can
be determined. If kE is chosen arbitrarily large and
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a nominally 90° line is used, then it can be seen that θmax
approaches 180° and θmin approaches 0°. The maximum tuning
range is then 180o/0o or ∞ : 1, indicating that if kE is
chosen to be large enough an arbitrarily large tuning range
can be achieved. In practice however, the tuning range is
limited by how large kE can practically be realized. If the
nominal θ is 270°, then as kE becomes infinitely large,
θmax approaches 360° and θmin approaches 180°. The ideally
maximum tuning range is then 360°/180°, or 2:1. This shows
that the maximum possible tuning range for a filter with a
nominally 270° through line is one octave, although in practice
the finite physically-realizable values of kE will result in less
than a 2:1 tuning range. Though a filter with a 90° line cannot
provide an infinite tuning range when practical coupling values
are considered, it will always provide a larger tuning range
than a filter utilizing a 270° through-line for a given kE , QU ,
and k12. The same procedure shows that further increasing
lengths of transmission line result in further decreasing tuning
ranges. It is clear that if a wide tuning range is desired, the
length of through-line should be chosen as short as possible.
A 90° through line is always preferable from this perspective,
but in practice it is not always possible. As explained in
Section II.A, the required length of transmission line depends
on the relative signs of the coupling elements, and some filter
technologies have no flexibility in the sign of the coupling
elements or must sacrifice complexity or performance in order
to change the coupling sign. In other situations, particularly
at high frequencies and in designs on high-permittivity sub-
strates, a 90° transmission line might be too short to practically
implement between the resonators. Thus, it is necessary to
investigate the performance of absorptive filters which utilize
nominally 270° through-lines.

E. Bandwidth

Bandwidth is a critical design parameter of bandstop filters,
and thus it is important to determine the dependence of
bandwidth on the various filter design variables. The X-dB
bandwidth of the filter (defined as the bandwidth of the filter
at an attenuation level of X dB) can be obtained from (8):

BW =
√

1

R

[
L A (2 + K ) − 2 + 1

2

√
16 + Z

]
(20)

Z =
(

K 2 − 4
)

[4 (2 − L A) + K (4 + K ) (1 − L A)] L A

(21)

R = Q2
U (1 − L A) (22)

K = k2
E QU (23)

L A = 10− X
10 (24)

The transmission line length θ is set equal to 90° in order to
simplify the equations. If kE = √

2/QU , as in the case of
a perfectly-matched absorptive bandstop filter as described in
Section II.B, then equation (20) reduces to

BW = 2/(Qu

√
10

X
10 − 1) (25)

which identical to the equation for the bandwidth of absorptive
bandstop filters derived in [12].

Fig. 7. Dependence of (a) 3-dB and (b) 50-dB fractional bandwidths on
external coupling and unloaded quality factor.

The dependence of 3-dB and 50-dB bandwidths on kE and
QU are shown in Fig. 7. The bandwidth has a strong depen-
dence on kE , and a weaker dependence on QU . Although high
levels of attenuation can be achieved regardless of resonator
quality factor, higher selectivity (narrower 3-dB bandwidth
and larger 50-dB bandwidth) can be achieved with higher-QU

resonators.
The dependence of 3-dB bandwidth on the length of the

through-line (θ) can be obtained through simulation, and
is shown in Fig. 8. For a nominally 90° through-line, the
bandwidth variation with respect to θ is minimal for realistic
values of θ which will be encountered in a tunable filter.
However, when a nominally 270° through-line is used, even a
filter with a tuning range of 1.5:1 can experience bandwidth
variations of 20% or more. The choice of k12 has very little
effect on bandwidth, as long as it is chosen according to (15).

Because the tuning range and the bandwidth are both
strongly dependent on kE , it is possible to examine the
maximum tuning range for a given bandwidth, and vice versa.
A plot of bandwidth vs. tuning range for several values of
QU is shown in Fig. 9. From this graph it can be seen that in
order to increase tuning range by increasing kE , the bandwidth
must also be increased. However, if higher QU resonators can
be used, the same tuning range can be obtained with a smaller
bandwidth. This effect is much more prominent for filters with
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Fig. 8. Effect of through-line length (θ) on 3-dB bandwidth. QU = 100,
k12 = 0.01.

Fig. 9. Relationship between tuning range and minimum (a) 3-dB and
(b) 50-dB fractional bandwidths. Larger tuning ranges require larger values
of kE , which results in wider bandwidths. |k12| = 1/QU .

nominally 270° through-lines, which are limited to a maximum
possible tuning range of 2:1.

F. Higher Order Filters

Although a two-pole absorptive bandstop filter is able
to achieve large maximum attenuation, it can only do so
over a very narrow bandwidth. For example, the two-pole

Fig. 10. Schematic of a four-pole absorptive filter created by cascading two
two-pole sections with a 90° transmission line between sections. Undesired
inter-stage coupling is represented with the dashed line (k23).

Fig. 11. (a) Comparison of 2-pole filter response with 4-pole response
which have equal 3-dB bandwidth (purple trace) and equal 40-dB bandwidth
(orange trace). (b) Comparison of bandwidths for 2-pole, 4-pole, and 6-pole
filters. QU = 100, θ = 90° , and k12 = 1/QU in both graphs.

filter in Fig. 11(a) only has a 0.14% 50-dB bandwidth for
a 3-dB bandwidth of 9.7%. If high attenuation is required
over a wider bandwidth, the order of the filter can be
increased by cascading two or more two-pole stages. In general
90° transmission lines are required in order to have a symmet-
ric filter transfer function [25], due to the impedance mismatch
between the stages. However, in cases where the two-pole
stages have very small reflection coefficients (as discussed
in Section II.B), the impedance mismatch between stages
is less pronounced and the exact length of the inter-stage
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Fig. 12. Effect of parasitic inter-stage coupling (k23) on filter performance.
Even very small amounts of parasitic coupling can degrade filter performance
by limiting the maximum achievable equiripple attenuation level.

transmission line becomes less important. For example,
in [14] and [15], approximately 30° long inter-stage transmis-
sion lines are used. The increased selectivity of higher-order
filters is shown in Fig. 11(a), in which the four-pole filter
(purple trace) has a 12× greater 50-dB bandwidth (1.7%) than
the two-pole filter, for the same 3-dB bandwidth. This comes at
the expense of a smaller tuning range and increased passband
insertion loss, however. It can be seen in Fig. 11(b) that
four- and six-pole filters require smaller external cou-
pling (kE ) values than a two-pole filter for an equivalent
3-dB bandwidth, and this reduces the center-frequency tuning
range over which the filter can achieve high attenuation as
discussed in Section II.D.

It is critical to prevent coupling between the stages when
cascading 2-pole stages to form higher-order filters. Parasitic
coupling between the two adjacent resonators of the separate
stages (k23 in Fig. 10) reduces the maximum level of attenu-
ation by a pole-splitting effect. Fig. 12 shows the maximum
attenuation states of a four-pole filter with various levels of
parasitic inter-stage coupling.

III. DESIGN OF MICROSTRIP ABSORPTIVE

BANDSTOP FILTERS

To verify the preceding design principles and demonstrate
a practical design example, four microstrip-based absorptive
bandstop filters were designed. All filters were implemented
with varactor-tuned, grounded quarter-wave microstrip res-
onators, chosen for their ease of implementation, ability to
achieve wide tuning range, compact size, and wide spurious-
free response. All filters were designed to operate over a
1.25 to 2.5 GHz tuning range. Filters A and B were designed
to demonstrate that the required length of source-to-load
through-line depends on the sign of the couplings as stated in
Section II.B, and that using a nominally 90° through-line
results in a wider tuning range than using a nominally 270°
through-line. Filter A utilizes positive mutual inductance as
interresonator coupling, which provides +90° insertion phase
and thus requires a nominally 270° through-line. Filter B
reverses the sign of interresonator coupling by reversing the

Fig. 13. Layout and dimensions of the designed filters. All dimensions are
in millimeters. VB1,2,3,4 denote the varactors’ bias voltages.

position of the grounding via, and thus requires a nomi-
nally 90° through-line. The 3-dB bandwidths of Filter A and
Filter B are equal: 5% at 1.5 GHz. Filter C utilizes a 90°
through-line and is identical to Filter B with the exception of
a narrower 3-dB bandwidth: 2.5% at 1.5 GHz. It illustrates
the tradeoff between bandwidth and tuning range, as it has
a narrower bandwidth and thus a smaller tuning range than
the otherwise-identical Filter B. The fourth filter (Filter D)
consists of two Filter Cs cascaded to form a four-pole filter,
and illustrates increased selectivity with the penalty of reduced
tuning range when compared to a 2-pole filter, as discussed
in Section II.F. A detailed design procedure for Filter B
is shown next. The design procedures for the other filters
are omitted for brevity, but are essentially identical to the
procedure used to design Filter B.

First, the varactors and the dimensions of the resonators
were selected to yield the desired tuning range using a standard
design procedure such as in [23]. MACOM MA46H202 GaAs
hyperabrupt tuning varactors were chosen for their high QU
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Fig. 14. Frequency dependence of interresonator coupling, extracted from
electromagnetic simulations.

and wide tuning range (0.6-6pF, QU = 2000 at 50 MHz).
Using the information in the varactor’s datasheet and electro-
magnetic simulation of the microstrip resonators, the unloaded
quality factor was estimated at different frequencies in order
to aid in choosing the interresonator coupling coefficient.

Design curves for interresonator coupling (k12) versus fre-
quency for different resonator spacings were calculated from
electromagnetic simulation according to the method in [26]
and are plotted in Fig. 14. The optimal value of k12 (1/QU )
which allows for the minimum value of kE was calculated
using the estimated values of QU , and is also plotted in
Fig. 14. It decreases with increasing frequency because of
the frequency dependence of the resonator’s unloaded quality
factor, and it is clear that it has the opposite trend as the actual
values of k12 which increase with frequency. Because smaller
values of QU and kE increase the design’s sensitivity to the
choice of k12 (see (15) and Fig. 4), k12 should be chosen such
that it is equal to its optimal value at the lowest frequency of
the tuning range, where QU and kE are the smallest. From
the graphs in Fig. 14, the interresonator coupling gap g12
was initially chosen to be 0.25 mm in order to provide a
coupling coefficient of 0.02 at 1.25 GHz, the optimal coupling
coefficient for a resonator QU of 50. This serves as a starting
point for fine tuning later in the design process.

The through transmission line length was initially chosen
to be 29 mm long (90° long at 1.9 GHz, the mid-point of the
filter’s tuning range), measured from the outside extremities
of the resonators. Choosing the through-line to be 90° at
the center of the tuning range minimizes the deviation of
its electrical length from a quarter wavelength, which is the
required length of transmission line for a symmetric bandstop
filter response [25]. This also serves as a starting point for fine
tuning later in the design process.

Once the frequency-dependent values of Qu and k12 are
known and the transmission line length has been chosen,
the minimum value of kE required to obtain an absorp-
tive response can be calculated from equation (13). Fig. 15
shows the minimum required values of kE for nominally 90°
(Filter B) and 270° (Filter A) through-lines, along with kE

extracted for several values of gext . The method in [27] is

Fig. 15. Minimum required external coupling (KE,min ) and simulated exter-
nal coupling values for different coupling gaps (gE X T ). For all frequencies
where the actual value of KE is greater than K E,min the filter can achieve
an absorptive response g12 = 0.15 mm.

used to extract kE from simulations. Due to the frequency-
dependence of k12, kE , and QU , the equation developed for
calculating the tuning range (18) cannot directly be used.
However, from these design curves the tuning range can
be determined by noting the frequency range for which the
simulated value of kE is greater than the minimum required
value of kE . It is evident that in all cases the tuning range
for a nominally 90° through-line is greater than a nominally
270° line for an equal kE value, and that increasing kE

increases the tuning range.
Finally, the interresonator coupling gap g12 and the length

of the through transmission line were fine-tuned in order to
maximize the filter’s tuning range by maximizing the range
over which kE was greater than kEmin . It was found that due
to the strong frequency dependence of kE , the low end of
the filter’s tuning range was limited due to low values of kE

and QU , whereas there was no limit on the high end of the
filter’s tuning range because both kE and QU were both much
larger at these frequencies. The transmission line length was
increased to 38 mm to further improve the lower limit of the
filter’s tuning range, at the expense of slight asymmetry of the
filter’s transfer function at the upper end of its tuning range
where the transmission line is significantly longer than the
quarter wavelength required for a symmetric transfer function.

This design procedure is convenient in that it approaches
the design of each design parameter individually, based on
the design principles presented in this paper. Each of these
parameters can be evaluated without performing EM simula-
tions of the entire filter, and minimal fine-tuning of the entire
circuit is required at the end of this process. This is in contrast
to the design procedures presented in [14] and [15], which
manually optimize the circuit without the guidance of clear
design principles.

An alternative design procedure is to simply calculate the
achievable tuning range for all practical values of gE XT

and g12, and then choose combination that yields the desired
tuning range. The tuning range of the filter can be determined
by numerically calculating the range of frequencies for which
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Fig. 16. Contour plot indicating the achievable tuning range of Filter B for
various combinations of gE X T and g12.

the left-hand side of (11) is greater than zero. This can be done
by utilizing the frequency-dependent values of QU , θ, and the
kE and k12 which result from a given combination of gE XT

and g12. Though it is not practical to extract the frequency-
dependent values of kE and k12 for every value of gE XT and
g12, one can extract the frequency-dependent coupling values
for a few values of gE XT and g12, then interpolate between
these points to obtain the rest of the values. Because kE and
k12 are well-behaved functions of gE XT and g12, it was found
that extracting kE and k12 for three to four values of gE XT

and g12 provided sufficient accuracy. Using this method, the
contour plot in Fig. 16 indicating the achievable tuning range
as a function of gE XT and g12 was created. From this plot,
it can be seen that larger tuning ranges require smaller values
of gE XT , which correspond to larger values of kE . Also, the
optimal value of g12 decreases as the tuning range increases,
because the optimal k12 is approximately 1/QU at the lower
end of the tuning range, and thus k12 increases as tuning range
increases.

Using this design process, Filters A and B were designed
with the same external coupling coefficient in order to have
the same bandwidth (gE XT = 0.15 mm in Fig. 15, for
a 3-dB bandwidth of approximately 5% at 1.5 GHz) and
Filters C and D were designed with a smaller external coupling
coefficient for a narrower bandwidth (gE XT = 0.25 mm in
Fig. 15, for a fractional bandwidth of approximately 2.5%
and 3.5%, respectively, at 1.5 GHz). The final dimensions of
all filters are shown in Fig. 13.

The procedure for designing tunable absorptive bandstop
filters with the minimum 3-dB bandwidth for a given tuning
range can be summarized as follows:

1) Select resonators and tuning elements to cover desired
frequency range, choosing a resonator topology for
which the sign of kE1kE2k12 is negative so that a 90°
through-line can be used.

2) Extract k12-versus-frequency and QU -versus-frequency
curves, and choose k12to be equal to 1/QU near the
lower end of the desired tuning range.

Fig. 17. Photograph of fabricated filters. Clockwise from top: Filter D,
Filter A, and Filter B. Filter C is not shown because it is nearly visually
indistinguishable from Filter B, as shown in Fig. 13.

Fig. 18. Simulated and measured response of Filter B when tuned
to 1.6 GHz.

3) Plot kE,min calculated from (13) using frequency-
dependent values of QU and k12, choosing the through-
line to be 90° (or 270°, as dictated by the coupling signs)
near the center of the desired tuning range.

4) Extract kE -versus-frequency curves, and choose the low-
est value of kE which is larger than the kE,min curve over
the desired frequency range.

5) If necessary, fine-tune k12 and θ in order to maximize
the filter’s tuning range by using simulated kE and
calculated kE,min curves, as in Fig. 15.

IV. EXPERIMENTAL VALIDATION

The filters were fabricated on 0.787-mm thick Rogers
RT/Duroid 5880 substrate (εr = 2.2± 0.02, tan δ = 0.0009),
and measured using a Keysight N5230C PNA. The varactors
were biased between 4 and 22 V with a Keysight N6705B
voltage source, using series 10 k � resistors to provide RF iso-
lation between the resonator and the power supply, and shunt
56 pF capacitors to provide AC grounds for the varactors.
A photograph of Filters A, B, and D is shown in Fig. 17.
Fig. 18 shows the measured frequency response of Filter B
tuned to 1.6 GHz, illustrating its high-attenuation stopband
and well-matched, low-loss passband. It has less than 0.2 dB
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Fig. 19. Measured attenuation in stopband of filter.

passband insertion loss up to 3 GHz. As expected, the filter
is able to achieve very high attenuation in its stopband
(over 90 dB), although the bandwidth at high levels of
attenuation is limited. Fig. 19 shows the measured attenuation
plotted versus offset from the filter’s center frequency. The
filter has a 4.9% 3-dB bandwidth, 1.8% 10-dB bandwidth,
0.15% 30-dB bandwidth and 0.0015% 70-dB bandwidth. The
measured attenuation is limited by the noise floor of the
network analyzer, which is also plotted in Fig. 19.

In order to verify the design principles of Section II and
the design procedure of Section III, the measured responses
of each of the filters when tuned over their entire tuning
ranges are shown in Fig. 20. As expected from the theory
in Section II.D, Filter B has a wider tuning range than Filter
A due to its use of a nominally 90° instead of 270° through-
line (1.45:1 versus 1.27:1). Additionally, Filter B also has a
wider tuning range than Filter C due to its larger bandwidth
(1.45:1 versus 1.24:1). The high-attenuation tuning range of
each filter is smaller than designed because the quality factors
of the varactors used were much lower than specified in the
datasheets. The extracted quality factor of the varactors varied
from 34 to 87 between 1 and 2 GHz, compared to the QU of
77 to 220 specified in the datasheet. When the extracted value
of varactor QU and the slight fabrication dimensional errors
are taken into account, the measured results match simulation
very well in Fig. 18.

The performance of the four-pole filter (Filter D) is com-
pared to that of the wide-bandwidth two-pole filter (Filter B) in
Fig. 21. The two filters have identical 10-dB bandwidths, but
as expected the four-pole filter has greatly increased selectivity,
with a 20× greater 50-dB bandwidth (9.84 MHz versus
492 kHz) and a 22% smaller 3-dB bandwidth (184 MHz
versus 237 MHz). As seen in Fig. 20, however, the maxi-
mum attenuation of Filter D is maintained over a narrower
tuning range than Filter B (1.9 to 2.3 GHz, as compared to
1.59 to 2.3 GHz) because a smaller value of kE is needed
to obtain the same 10-dB bandwidth. Additionally, Filter D
had a higher level of passband insertion loss than did Filter B
(0.55 dB compared to 0.2 dB at 3 GHz) due to the longer
lengths of transmission lines used.

Fig. 20. Measured transmission responses of all filters tuned across their
frequency ranges.

Fig. 21. Comparison of two- and four-pole filters. The four-pole filter exhibits
greatly increased selectivity, but does not maintain high attenuation over as
large of a frequency range as the two-pole filter.

The two-pole filter would be well-suited for applications
in which a narrow bandwidth of high attenuation is needed,
but over a wide tuning range. In contrast, the four-pole
filter would be better-suited for applications in which high
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Fig. 22. Plot of varactor bias voltages versus center frequency, and resonator
frequency offset versus center frequency. At and below the lower limit of
the filter’s high-attenuation tuning range, the resonator offset is zero and the
resonators are synchronously tuned. Above this lower limit, the resonators are
asynchronously tuned to achieve large stopband attenuation.

levels of stopband rejection are needed over a relatively wide
bandwidth, but a wide frequency tuning range is not needed.
In between these two extremes, the optimal choice of filter
order depends on the stopband bandwidth and tuning range
dictated by the specific application, and whether or not the
additional complexity, size, and loss of a four-pole filter can
be tolerated.

The two bias voltages required to tune Filter B are shown in
Fig. 22. The two bias voltages are nearly identical across the
whole tuning range. Also shown in Fig. 22 is the frequency
offset between the two resonators across its tuning range. It can
be seen that at and below the lower limit of the filter’s high-
attenuation tuning range (∼1.585 GHz), the frequency offset
is zero and the resonators are synchronously tuned. Above
this lower limit, the resonators are asynchronously tuned in
order to realize high levels of stopband attenuation. This is
in agreement with the analysis of Section II, in which it was
asserted that the frequency offset between the resonators was
zero (B = 0) at the limits of the filter’s tuning range, and
that the resonators would be asynchronously tuned (B �= 0)
between the upper and lower limits of the filter’s tuning
range. The maximum frequency offset between the resonators
is 30 MHz, or 1.4% at 2.1 GHz.

Lastly, the sensitivity to variations in tuning voltage is
examined. Although the filters are able to achieve extremely
high levels of stopband attenuation when correctly tuned,
errors in tuning voltage will degrade this response. Fig. 23
plots the maximum stopband attenuation versus tuning voltage
error for 1.7, 1.95, and 2.3 GHz center frequencies. The
sensitivity of stopband rejection to error in tuning voltage
decreases as the filter’s center frequency is increased. This
is to be expected, since a varactor’s capacitance becomes
less sensitive to change in bias voltage as its bias voltage
is increased, due to the nonlinear C-V curve of the varactor.
With the relationship between bias voltage error and maximum

Fig. 23. Effect of error in bias voltage on filter attenuation. Measurements
are when filter is tuned to 1.7 GHz, with a nominal varactor bias of 9 V.

attenuation known, it is possible to determine how precise
the controlling digital-to-analog converter must be in order to
achieve a certain guaranteed level of attenuation. For example,
it can be noted that at its most sensitive state (1.7 GHz), the
maximum attenuation is greater than 40 dB when the tuning
voltage error is less than 20 mV. If this voltage error is split
between the two varactors, then the required precision for
the tuning voltage is 10 mV. Considering that the maximum
tuning voltage is 22 V, 10 mV equates to approximately 11 bits
of precision. Using similar calculations, it can be determined
that 12, 14, and 16 bits of precision are required to achieve
guaranteed stopband attenuation levels of 47 dB, 60 dB,
and 80 dB, respectively. Though measurements are not shown
for bias errors greater than 20 mV, the data could be extrapo-
lated or additional measurements could be taken to determine
the suitability of lower-precision voltage sources.

V. CONCLUSION

In this paper, a detailed analysis of absorptive bandstop
filters has been performed, in which theory and simula-
tions are used to derive and demonstrate their operating
principles, design considerations, performance tradeoffs, and
limitations.

A simple but general step-by-step design procedure has
been proposed for the first time, taking into account non-ideal
effects such as frequency-dependent couplings and quality
factors. The theory and design principles derived are generic
and not specific to a given technology, and thus can be
used to design a wide variety of absorptive bandstop filters.
Several varactor-tuned microstrip filters have been designed to
demonstrate the design principles and tradeoffs derived in the
paper. A comparison is made between filters with different
coupling structures and bandwidths to illustrate their effects
on tuning range, and the performance of a two-pole filter is
compared to that of a four-pole filter to show its increased
selectivity. The filters designed and demonstrated are able to
achieve very high levels of stopband isolation (> 90 dB), over
as wide as a 1.45:1 tuning range.
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