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Preface

The stripline junction circulator is a unique nonreciprocal device, which is embodied
in many pieces of microwave equipment. The text is devoted to the theory and prac-
tice of this class of circulator. It starts with a chapter on the architecture of stripline
circulators, and chapters on the tensor permeability in a magnetic insulator, and on
the spatial shape demagnetizing factors of magnetic insulators. It continues with
chapters on the scattering, eigenvalues, and admittance descriptions of the circulator
as well as on its degree-1 and degree-2 one-port circuits. These chapters embody
various classic experimental procedures for the characterization of the classic circu-
lator. It proceeds with a block of chapters dealing with properties of gyromagnetic
planar cloverleaf, wye, irregular hexagonal, and triangular resonators and the use
of magnetic walls. The lumped element single junction circulator is dealt with as a
preamble to dealing with the distributed circulator in that it embodies all the theoreti-
cal considerations of the general problem. Synthesis of the classic junction using a
disk resonator is dealt with separately, as is the important Green’s function and the
finite element method. Special attention is devoted thoughout to bridging the gap
between its circuit and electromagnetic descriptions. These chapters are followed
by one that deals with circulators employing triangular and irregular hexagonal gyro-
magnetic resonators. A separate chapter provides a detailed investigation of the fre-
quency responses of the classic circulator using very weakly, weakly, strongly, and
very strongly magnetized disk resonators. Still another chapter is devoted to the
theory of the negative permeability circulator. The text continues with two chapters
on circulators using wye resonators and a chapter on the little understood four-port
single junction. A block of three chapters deals with the synthesis problem and the
frequency responses of reciprocal and nonreciprocal junctions. The last two chapters
but one are devoted to the fabrication of UHF and microstrip circulators. The last
chapter deals with some discrepancies between idealized or theoretical models and

xv



practice. A number of important topics such as spinwave instabilities and nonlinear
effects in magnetic insulators have been omitted from the text in order to keep
what is already a large volume in check. These topics are in every case already in
place in a number of classic textbooks. Inevitably, some works, which have appeared
elsewhere, have been duplicated for the sake of understanding.

xvi PREFACE



CHAPTER ONE

Architecture of Symmetrical
Stripline Junction Circulators

1.1 INTRODUCTION

The three-port circulator is a unique nonreciprocal symmetrical junction having one
typical input port, one output port, and one decoupled port. The fundamental definition
of the junction circulator has its origin in energy conservation. It states that the only
matched symmetrical three-port junction corresponds to the definition of the circulator.
A wave incident in such a junction at port 1 is emergent at port 2, one incident at port 2
is emergent at port 3, and so on in a cyclic manner. One possible model of a circulator is
a magnetized ferrite or garnet gyromagnetic resonator having three-fold symmetry con-
nected or coupled to three transmission lines or waveguides. The purpose of this intro-
ductory chapter is to provide one phenomenological description of the operation of this
sort of device, to summarize some of the more common resonator geometries met in its
construction, and to indicate some of its uses. The introduction of any such resonator at
the junction of three striplines produces a degree-1 circulation solution. In practice, the
gyromagnetic resonator is embedded in a filter circuit in order to produce a degree-2 or
degree-3 frequency response. The possibility of realizing a single junction circulator
with more than three ports is understood.

1.2 PHENOMENOLOGICAL DESCRIPTION OF STRIPLINE CIRCULATOR

The geometry of the stripline circulator geometry is depicted in Fig. 1.1. It consists of
two ferrite planar disk resonators separated by a disk center conductor symmetrically
coupled by three transmission lines. The gyromagnetic material is magnetized perpen-
dicularly to the plane of the device by a static magnetic field. An important property of

The Stripline Circulator: Theory and Practice. By J. Helszajn
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this device is that a circulator condition is met whenever all three ports are matched. For
a three-port junction this requires two independent variables. Under certain simplifying
conditions its adjustment can be described in terms of a figure-eight standing wave
pattern within the disk due to the interference of a pair of degenerate field patterns rotat-
ing in opposite directions. When the gyromagnetic junction is unmagnetized, the res-
onant frequencies of the two field patterns are identical. When it is magnetized, the
degeneracy is removed, and the standing wave pattern within the resonator is rotated.
One circulation condition is established by operating between the two split frequencies.
This requirement essentially fixes the radius of the gyromagnetic resonator. The second
condition is met by adjusting the splitting, until the standing wave pattern is rotated
through 308. From symmetry, port 3 is then situated at a null of the standing wave
pattern and is therefore isolated and the junction displays properties akin to that of a
two-port transmission line resonator between the other two ports. This condition
fixes the magnitude of the gyrotropy or the direct magnetic field. Figure 1.2 depicts
the two standing wave patterns under discussion. A third, in-phase mode, also strictly
speaking enters into the description of this type of junction. It has, however, an electric
wall at the periphery of the resonator so that it does not affect the total field pattern there.

The rotation of the standing wave pattern in a gyromagnetic resonator under the
application of a direct magnetic field may be understood by decomposing the linearly
polarized radiofrequency (rf) magnetic field on its axis into counterrotating ones,
which are then split by its gyrotropy. The direction in which the pattern in such a reso-
nator is rotated is fixed by that of the direct magnetic field so that it may be utilized to
realize an electrically actuated waveguide switch.

1.3 ADJUSTMENT OF JUNCTION CIRCULATOR

The operation of any junction may be understood by having recourse to superposi-
tion. It starts by decomposing a single input wave at port 1 (say) into a linear

FIGURE 1.1 Schematic diagram of three-port stripline circulator.

2 ARCHITECTURE OF SYMMETRICAL STRIPLINE JUNCTION CIRCULATORS



combination of voltage settings at each port:
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where

a = exp ( j120) and a2 = exp ( j240)

FIGURE 1.2 (a) Standing wave patterns in (a) demagnetized stripline junction and (b) mag-
netized stripline junction. (Reproduced with permission from C. E. Fay and R. L. Comstock,
Operation of the ferrite junction circulator, IEEE Trans. Microwave Theory Tech., Vol.
MTT-13, pp. 15–27, January 1965.)
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A scrutiny of the first, so-called in-phase generator settings indicates that it
produces an electric field along the axis of the junction. The reflected waves
at the three ports of the junction are therefore in this instance unaffected by
the details of the gyrotropy. A scrutiny of the second and third, so-called coun-
terrotating generator settings indicates, however, that these establish counterro-
tating circularly polarized alternating magnetic fields in the plane of the
junction. A characteristic of a suitably magnetized gyromagnetic insulator is
that it has different scalar permeabilities under the two arrangements. It there-
fore provides one practical means of removing the degeneracy between the
reflected waves associated with these two generator settings. The fields produced
at the axis of the junction by each of these three possible generator settings are
illustrated in Fig. 1.3.

A typical reflected wave at any port is constructed by adding the individual
ones due to each possible generator setting. A typical term is realized by
taking the product of a typical incident wave and a typical reflection
coefficient.
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1
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a2
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a

2
4
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5 (1:2)

An ideal circulator is now defined as

r0 þ r� þ rþ
3

¼ 0 (1:3a)

r0 þ r�aþ rþa
2

3
¼ �1 (1:3b)

r0 þ r�a
2 þ rþa

3
¼ 0 (1:3c)

To adjust this, and other circulators, requires a 1208 phase difference between the
reflection coefficients of the three different ways in which it is possible to excite
the three ports of the junction. One solution is

rþ ¼ exp �j2 f1 þ fþ þ p=2
� �� �

(1:4a)

r�1 ¼ exp �j2 f1 þ f� þ p=2ð Þ½ � (1:4b)

r0 ¼ exp �j 2f0ð Þ½ � (1:4c)
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FIGURE 1.3 Voltage settings on three-port circulator.
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provided that

f1 ¼ f0 ¼ p=2 (1:5a)

fþ ¼ �f� ¼ �p=6 (1:5b)

The in-phase and degenerate counterrotating reflection angles are established by
adjusting the details of the corresponding one-port eigen-networks of the demagne-
tized ferrite section so that the angle between the two is initially 1808. The degenerate
phase angles of the counterrotating reflection coefficients are thereafter separated by
1208 by the gyrotropy of the gyromagnetic region, thereby producing the ideal phase
angles of the circulator. These two steps represent the necessary and sufficient
conditions for the adjustment of this class of circulator.

The relationship between the incident and reflected waves at the terminals of a
network or junction is often described in terms of a scattering matrix. It is therefore
appropriate to reduce the result established here to that notation. The nomenclature
entering into the definition of this matrix is indicated in Fig. 1.4. Its entries relate

FIGURE 1.4 Scattering variables in three-port junction.
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incident and reflected waves at suitable terminal planes of the circuit:

S11 ¼
b1
a1

����a2 ¼ a3 ¼ 0 (1:6a)

S21 ¼
b2
a1

����a2 ¼ a3 ¼ 0 (1:6b)

S31 ¼
b3
a1

����a2 ¼ a3 ¼ 0 (1:6c)

A scrutiny of these definitions indicates that the entries of the scattering matrix may
readily be evaluated once the reflected waves at all the ports due to an incident wave at
a typical port are established. Taking a1 as unity and making use of the results for b1,
b2, and b3 gives the required parameters without ado.

S11 ¼
r0 þ rþ þ r�

3
(1:7a)

S21 ¼
r0 þ arþ þ a2r�

3
(1:7b)

S31 ¼
r0 þ a2rþ þ ar�

3
(1:7c)

The entries of the scattering matrix are therefore linear combinations of the reflec-
tion variables at any port associated with each possible family of generator settings.
One definition of an ideal circulator, which is on keeping with the description of the
junction circulator, is therefore

S11 ¼ 0 (1:8a)

S21 ¼ �1 (1:8b)

S31 ¼ 0 (1:8c)

This solution may be established separately by having recourse to the unitary con-
dition and may therefore be taken as a universal definition of a three-port lossless
junction circulator.

1.4 GYROTROPY IN MAGNETIC INSULATORS

One means of removing the degeneracy between a pair of counterrotating field
patterns is by having resource to a suitably magnetized magnetic insulator. The
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origins of the magnetic effects or magnetization in magnetic insulators are due to the
effective current loops of electrons in atomic orbits and the effects of electron spin
and atomic nuclei (Fig. 1.5). Each of these features produces a magnetic field that
is equivalent to that arising from a magnetic dipole—the total magnetic moment
being the vector sum of the individual moments. In ferromagnetic insulators the pre-
dominant effect is due to the electron spin. A property of this sort of medium is that
while it has, in general, a tensor permeability, it displays scalar permeabilities under
one of three specific arrangements. One solution is a circularly polarized magnetic
field in the plane transverse to the direct magnetic field, which rotates in the same
sense as that of the electron spin; another is one that rotates in the opposite direction.
The scalar permeabilities (m+k) displayed by the medium under these two situ-
ations are simple linear combinations of the diagonal (m) and off-diagonal (k)
entries of the tensor permeability. The absolute values of these quantities are essen-
tially fixed by the frequency of the alternating radio magnetic field and the direct
magnetization of the magnetic insulator and its direct magnetic field. The third
normal mode coincides with a linearly polarized alternating magnetic field along
the axis of the electron spin. It involves no gyromagnetic interaction.

1.5 PLANAR RESONATORS

In the design of any directly or transformer coupled planar circulator, it is essential to
simultaneously reconcile physical, magnetic, and network conditions. It is necessary
in order to do so with acceptable microwave characteristics to adjust either the sub-
strate thickness or the resonator shape of the junction. The substrate thickness is
often specified by the system rather than by the junction design, so that an ideal syn-
thesis procedure is one where the resonator shape can be varied. If this is the case, a
quarter-wave coupled triangular resonator coupled at its corners is best at low fre-
quencies, a disk resonator is best at intermediate frequencies, and a triangular

FIGURE 1.5 Atomic orbit.
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resonator fed midway along its side is most suitable at high frequencies. Figure 1.6
depicts some possibilities. Figure 1.7 shows the construction of circulation solutions
using triangular and wye resonators in terms of the field patterns of the demagnetized
resonators.

1.6 PARALLEL PLATE WAVEGUIDE MODEL OF MICROSTRIP
CIRCULATORS

The usual approach to the design of microstrip passive circuits and circulators using
weakly magnetized resonators is to replace the problem region with imperfect

FIGURE 1.6 Some planar resonators that are suitable for the construction of three-port
circulators.
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magnetic side walls by an equivalent waveguide model. Figure 1.8 indicates a
possible equivalence for a microstrip circulator using a circular resonator. The
concepts entering into this sort of model are well established and need not be
dwelt upon. Once any design is complete, in terms of the equivalent parallel plate
waveguide approximation, it is necessary to invoke the relationship between the
actual and effective parameters of the problem region. Another matter of concern
in the design of such circuits is that if the fringing fields on a typical contour are
excessive then it becomes difficult to preserve the definitions of both the coupling
angle at the terminals of the resonator and its shape. One way to partially avoid
both difficulties is to impose a lower bound on the aspect ratio (r/H ) of the resonator.

FIGURE 1.6 Continued.
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1.7 DROP-IN AND PACKAGING TECHNIQUES

An ongoing activity in the area of microstrip devices is that of integration of the
microstrip circulator or isolator in the subsystem. Some possibilities include an all-
ferrite substrate, a suitable magnetic ferrite region inserted into a nonmagnetic
ferrite plate, a ferrite puck inserted into a hole in a dielectric substrate, and a ferromag-
netic film deposited on a dielectric sheet. The choice of technique used in any given
application will be at least partly determined by cost and size considerations as well as
performance. A number of drop-in techniques have also evolved over the years. One
problem with this sort of fabrication is the transition between the microstrip circuit
and the transmission line. Figure 1.9 shows one possibility that permits a planar reso-
nator to be mounted onto an existing alumina substrate. Figure 1.10 illustrates a ferrite
or garnet resonator embedded in an alumina substrate.

1.8 SWITCHED RESONATORS

The direction of circulation of a circulator is determined by that of the direct magnetic
field. It may therefore be employed to switch an input signal at one port to either one
of the other two. This may be done by replacing the permanent magnet by an

FIGURE 1.8 Equivalent waveguide model of planar disk.

FIGURE 1.9 Mounting arrangement of planar resonator on back of microstripline.

12 ARCHITECTURE OF SYMMETRICAL STRIPLINE JUNCTION CIRCULATORS



electromagnet or by latching the microwave ferrite resonator directly by embedding a
current-carrying wire loop within the resonator. One practical arrangement is illus-
trated in Fig. 1.11. This sort of switch is particularly useful in the construction of
Butler type matrices in phased array systems. The switching power necessary to
actuate this sort of circuit is determined by the stored energy in the magnetic
circuit and the switching time. Switching times between 10 ns and 1 ms are achiev-
able depending on whether the gyromagnetic circuit is internally or externally
magnetized.

1.9 COMPOSITE RESONATORS

The conventional stripline junction relies for one of its two circulation conditions on
an open dielectric resonance in a demagnetized ferrite or garnet geometry. The

FIGURE 1.10 Microstrip circulator on alumina substrate.
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maximum average power that such a circulator can handle is determined by the temp-
erature drop across the thin dimension of the structure and its surface area. The
thermal conductivity of the ferrite material is relatively low. For instance, the
thermal conductivity of WESGO AL-995 ceramic is 29.31 W/m . 8C (70 � 1023

cal . m/s . 8C) and that of beryllia oxide is 219.81 W/m . 8C (525 � 1023 cal . cm/
s . 8C). For ferrites it is 2.09 W/m . 8C (5 � 1023 cal . cm/s . 8C). One way to over-
come this difficulty is to employ composite resonators in the design. Such resonators
have mainly been utilized in the construction of devices capable of handling hundreds
of watts of mean power. Figure 1.12 depicts one planar and one radial configuration.
A further advantage of this class of resonator is that the temperature stability is
improved because many dielectric materials are temperature stable.

The second circulation relates the gyrator conductance, the susceptance slope par-
ameter, and the split frequencies of the junction to the specification of the device—a
large separation between the split frequencies being essential for the realization of
high-quality circulators. Substituting a dielectric for part of the ferrite material

FIGURE 1.11 Details of wire loop in switched resonator.
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reduces the difference between the split frequencies of the junction; a compromise is
therefore necessary between the microwave specification and the power rating of the
device.

1.10 POWER RATING OF GYROMAGNETIC RESONATOR

Important aspects of microwave components are its peak and average power ratings.
The peak power rating is usually fixed by arcing and by nonlinear effects in magnetic
insulators due to spinwave instabilities. The average power rating is restricted by the
temperature rise of the device, which may to some extent be mitigated by cooling it
by forced air or water. The power dissipated in the device has its origin in dielectric
losses and linear and nonlinear magnetic ones and dissipation in the striplines. The
choice of resonator in any particular situation is dictated by one or both of these dif-
ficulties. The family of planar resonators is in general suitable for the construction of
devices with modest mean power ratings. Composite resonators are used where a
compromise between mean and peak power is necessary. Insertion losses on the
order of 0.06 dB are not unusual in practice. The power rating of a typical circulator
is dependent on the choice of resonator, the connector size, the frequency, the band-
width, the available ferrite material, the cooling arrangement, the temperature range,
pressurization, and the outline drawing to mention but some considerations that enter
into any design. It is therefore difficult to compile precise recommendations in any
particular situation.

FIGURE 1.12 (a) Axial composite resonator and (b) radial composite resonator.
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1.11 QUARTER-WAVE COUPLED CIRCULATOR

Any gyromagnetic resonator with threefold symmetry suitably placed at a junction of
three striplines may be adjusted to produce an ideal three-port circulator at a single
frequency. Practical circulators, however, have to operate over finite frequency inter-
vals with a specified ripple level or return loss and isolation. One way to realize a clas-
sical frequency response is to absorb each port of the gyromagnetic resonator into a
two-port filter or matching network. A knowledge of the one-port complex gyrator
circuit of the gyromagnetic junction at a typical port is sufficient for this purpose.
One typical topology is indicated in Fig. 1.13. It consists of a quarter-wave unit
element (UE) in shunt with the gyrator conductance of the junction. Figure 1.14

FIGURE 1.13 Complex gyrator circuit of three-port circulator.

FIGURE 1.14 Topology of three-port circulators using two-port filter circuits.
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depicts the overall schematic arrangement. While a host of network solutions are
possible in practice, the most common arrangement consists of one or more
quarter-wave long impedance transformers. A typical frequency response of a circu-
lator using a single quarter-wave long transformer at each port of the gyromagnetic
resonator is indicated in Fig. 1.15. This sort of topology is a classic network
problem in the literature and much of modern circulator practice rests on an under-
standing of this topic. The actual gain bandwidth of any circulator is fixed in practice
by the quality factor of the gyromagnetic resonator and the topology of the filter
circuit. It fixes the relationship between the isolation or return loss in decibels of
the circulator and its bandwidth. A return loss or isolation of 23 dB (say) and a band-
width of typically 25% is realizable in practice in conjunction with a single quarter-
wave long impedance transformer. A similar return or loss or isolation specification is
readily realizable over a bandwidth of between 40% and 66% using two such
transformers.

1.12 FOUR-PORT SINGLE JUNCTION CIRCULATOR

While the three-port single junction circulator is the most common arrangement met
in practice, four-port ones may also be realized without too much difficulty. Such
junctions, in common with three-port devices, have some of the properties of a
transmission line cavity resonator between ports 1 and 2, and a definite standing
wave pattern exists within the junction with nulls at ports 3 and 4 also. An important
difference between the two, however, is that the four-port device cannot be adjusted
with external tuning elements only. This remark may be understood by recognizing
that a four-port device can be matched without being a circulator. Scrutiny of its
eigenvalue problem indicates that its adjustment requires three independent variables.
These may be established in a systematic way by perturbing the scattering matrix

FIGURE 1.15 Frequency response of quarter-wave coupled junction circulation.
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eigenvalues one at a time on the unit circle until these coincide with those of an ideal
circulator.

The four-port junction may be realized by having recourse to a linear combination
of radial TM+1,1,0 and TM0,1,0 modes. The field patterns in the demagnetized junc-
tion are depicted in Fig. 1.16a,b. The TM0,1,0 mode is tuned to the frequency of the
TM+1,1,0 modes with the help of a thin nonresonant capacitive post at the center of
the junction instead of a resonant one. Figure 1.16c,d indicates the field patterns of the
magnetized junction.

1.13 EDGE MODE CIRCULATOR

A junction that does not rely on a resonant effect in a gyromagnetic resonator is the
edge mode arrangement. This effect is manifested by a suitably magnetized wide strip

FIGURE 1.16 Standing wave solution of four-port single junction circulator: (a) n ¼+1
for unmagnetized ferrite post, (b) n ¼ 0 field patterns for unmagnetized ferrite post,
(c) n ¼+1 field patterns for magnetized ferrite post, and (d) n ¼ 0 field patterns for magne-
tized ferrite post. (Reproduced with permission from C. E. Fay and R. L. Comstock,
Operation of the ferrite junction circulator, IEEE Trans. Microwave Theory Tech., Vol.
MTT-13, pp. 15–27, January 1965.)
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in a microstrip or stripline gyromagnetic line. The substrate is strongly magnetized
perpendicular to the direction of propagation. The structure supports a TE-type sol-
ution in the transverse plane of the form

Ey ¼ A exp(�ax) exp(�jbz) (1:9a)

Hx ¼ z0Ey (1:9b)

Hz ¼ 0 (1:9c)

This solution indicates that the fields decay exponentially across the strip with no
attenuation along the direction of propagation. The line also has the property that
its field pattern is displaced to one side of the strip for one typical direction of propa-
gation. It is displaced to the other side for the opposite direction of propagation. Once
such a mode is established on one edge of the strip at one port, it may be wrapped at
a second port by suitably bending the strip. Figure 1.17 illustrates one three-port
structure. In principle, any number of ports may be connected in this way.

FIGURE 1.17 Topologies of edge mode circulators.

1.13 EDGE MODE CIRCULATOR 19



FIGURE 1.18 Single port amplifier using (a) three-port circulator and (b) five-port
circulator.

FIGURE 1.19 (a) Duplexing using single three-port circulator, (b) duplexing between
closely spaced transmitters, and (c) high-power duplexer using four-port circulators.
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1.14 SINGLE-PORT AMPLIFIERS USING JUNCTION CIRCULATORS

A simplified schematic of a reflection tunnel diode amplifier (TDA) that utilizes a
circulator to separate the input signal from the amplified one is shown in
Fig. 1.18a. When the gain of the amplifier is comparable to the isolation of the
junction, it is often used in conjunction with five-port circulators. One such
arrangement is depicted in Fig. 1.18b. The input and output junctions in this
arrangement are connected as isolators in order to minimize gain variations due
to source and load impedance variations. Here the magnetic field for the input
circulator is sometimes supplied by an electromagnet. Reversal of the magnetic
field in this circuit allows the TDA to be protected from radiofrequency
leakage during the transmitting period by reversing the direction of circulation
during this interval.

1.15 DUPLEXING USING JUNCTION CIRCULATORS

The ferrite circulator may also be used in duplexing systems for simultaneous
transmission and reception of microwave energy with a single antenna. Here ferrite
circulators replace conventional types of duplexing and are suited to both high-
and low-power systems. Circulators are also employed in communication systems
to eliminate mutual interference between closely separated transmitters.
Figure 1.19b gives an example of a single antenna being shared by a number of

FIGURE 1.20 Microwave duplexer employing power splitters, isolators, and filters.
(Courtesy of Dynatech Microwave Technology.)
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transmitters with the help of circulators and bandpass filters (BPFs). Figure 1.19c
illustrates a four-port high-port duplexer that utilizes a reflection limiter to protect
the receiver during the transmission interval. Figure 1.20 illustrates a commercial
duplexer using a power divider, ferrite isolators, and filters.
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CHAPTER TWO

Tensor Permeability in a
Magnetic Insulator

2.1 INTRODUCTION

The nature of the tensor permeability in a magnetic insulator is a classic problem in
the literature. Its existence has its origin in the interaction between a spinning electron
and an alternating radiofrequency magnetic field in a suitably magnetized magnetic
insulator. An important feature of such a gyromagnetic insulator is that the entries
of its permeability tensor exhibit an absorption line when the frequency of the alter-
nating magnetic field intensity coincides with that of the electron spin. This sort of
material may be biased below the absorption line, at the line, or above it. It is of par-
ticular interest in the construction of gyromagnetic resonators encountered in the
design of nonreciprocal circulators and other devices. The diagonal and off-diagonal
elements of this tensor involve, at a specific frequency, the direct magnetization of the
magnetic insulator and the external applied direct magnetic field intensity. A scrutiny
of the different connections between these various quantities indicates the possibility
of imaging six possible relationships between the physical variables under consider-
ation. Of some separate interest in the design of practical devices employing this sort
of material is the temperature stability of the entries of the permeability tensor. This
aspect is considered in some detail in Chapter 26. The occurrence of so-called
low-field loss in a partially magnetized magnetic insulator is also given some con-
sideration. It has its origin in the effective shape demagnetizing fields in individual
magnetic dipoles. Throughout the text the shape demagnetizing factor has been
specialized to that of an infinitely thin plate. Its effect can always be recovered in
any practical situation by scaling the magnetization (M0) by the shape demagnetizing
factor (Nz) in the manner dealt with in Chapter 3.

The Stripline Circulator: Theory and Practice. By J. Helszajn
Copyright # 2008 John Wiley & Sons, Inc.
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2.2 TENSOR PERMEABILITY

A characteristic property of a magnetized magnetic insulator, at microwave
frequencies, is that while it has in general a scalar dielectric constant, it has a tensor
permeability. It has its origin in a magnetic moment precessing about a direct magnetic
field in the manner indicated in Fig. 2.1. Inside a ferrite medium Maxwell’s equations
must therefore be solved in conjunction with this tensor permeability.

mr½ � ¼ I½ � þ x½ � (2:1)

The relative permeability tensor with the direct magnetic field intensity along the
z-coordinate is given by the linearized equation of motion of the magnetization vector
in a number of classic books. Its detailed derivation will not be reproduced here. The
result is

mr½ � ¼
m �jk 0
jk m 0
0 0 1

2
4

3
5 (2:2)

The presence of imaginary off-diagonal components having opposite signs in this
tensor is the basis for a number of important nonreciprocal effects not usually encoun-
tered in a medium with a scalar permeability.

FIGURE 2.1 Spin motion in magnetic insulator.
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[x] is known as the susceptibility tensor. It is defined separately as

x½ � ¼
xxx xxy 0
xyx xyy 0
0 0 0

2
4

3
5 (2:3)

where

xxx ¼ xyy ¼
vmvi

�v2 þ v2
i

(2:4a)

� xyx ¼ xxy ¼
jvmv

�v2 þ v2
i

(2:4b)

v is the radian frequency of the alternating radio magnetic field and

vm ¼ gM0, rad=s (2:5)

vi ¼ g (H0 � NzM0), rad=s (2:6)

M0 is the saturation magnetization (A/m), g is the gyromagnetic ratio (2.21 � 105

rad/s per A/m), v is the radian frequency (rad/s), m0 is the free space permeability
(4p � 1027 H/m), and H0 is the applied direct magnetic field intensity (A/m).

Nz is a z-directed shape demagnetizing factor of the geometry under consideration,
which relates to the external and internal direct magnetic field intensity. It is dealt
with in some detail in Chapter 3.

The entries of the permeability tensor are related separately to those of the suscep-
tibility ones by

m ¼ 1þ xxx (2:7a)

� jk ¼ xxy (2:7b)

The elements of the susceptibility and permeability tensors have a singularity at
v ¼ vi. This singularity is determined by the product of the gyromagnetic ratio
and the amplitude of the internal direct magnetic field. It denotes a resonance
condition and is the principal feature used in the design of YIG filters and other
resonance devices.

If the direct field is perpendicular to the direction of propagation of the alternating
radio magnetic field, it is sometimes more convenient to take the former along
the y-coordinate instead of the z-coordinate. The entries of the permeability
tensor are then mapped into

mr½ � ¼
m 0 �jk
0 1 0
jk 0 m

2
4

3
5 (2:8a)
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If the direct magnetic field is applied along the x-coordinate, then

mr½ � ¼
1 0 0
0 m �jk
0 jk m

2
4

3
5 (2:8b)

The permeability tensor with the direct magnetic field intensity at an arbitrary angle in
the x-z plane is

mr½ � ¼
m cos2uþ sin2u jk cosu (1� m) sinu cosu

�jk cosu m jk sinu
(1� m) sinu cosu �jk sinu m sin2uþ cos2u

2
4

3
5 (2:9)

The diagonal and off-diagonal elements of the permeability tensor are often specified
in terms of a normalized direct magnetization and internal direct magnetic field by

m ¼ 1� ps

1� s 2
(2:10a)

k ¼ �p

1� s2
(2:10b)

where

p ¼ gM0

v
(2:11a)

s ¼ g (H0 � NzM0)
v

(2:11b)

It is sometimes desirable to be able to calculate p and s in terms of m and k by
reorganizing Eqs. (2.10a) and (2.10b). The required results are

s ¼ m� 1ð Þ
k

(2:12a)

p ¼ k m� 1ð Þ2

k2 � 1
(2:12b)

If the independent variables are taken as p and m, then rewriting Eq. (2.10a) gives
s as

s ¼ pþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 4(m� 1)2

p

2(m� 1)
(2:13)

and k is fixed by Eq. (2.10b).
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If p and k are fixed, then s is given by combining Eqs. (2.12a) and (2.12b). The
result is

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p=k

p
(2:14)

There are six possible ways to relate the variables under consideration. Table 2.1 sum-
marizes the situation.

2.3 DAMPING

To stabilize the motion of the magnetization vector at the resonance, a damping term
must be introduced into the equation of motion. A form of phenomenological
damping that is often used for engineering purposes is due to Gilbert. It amounts
to adding an imaginary frequency term ( jva) to the resonant frequency (vi). The
damping term can therefore always be introduced by replacing vi by vi þ jva in
the loss-free components.

The entries of the susceptibility tensor based on the small signal solution of the
equation of motion are then given by

xxx ¼ xyy ¼
�vm(�vi þ jva)

�v2 þ (vi þ jva)2
(2:15)

�xyx ¼ xxy ¼
�jvmv

�v2 þ (vi þ jva)2
(2:16)

The real and imaginary parts of the entries of the susceptibility tensor are defined by

xxx ¼ x0xx þ jx00xx (2:17)

xxy ¼ j(x0xy þ jx00xy) (2:18)

TABLE 2.1 Exact Equations

p, s m ¼ 1� ps=(1� s 2), k ¼ �p=(1� s 2)
k, m p ¼ (m� 1)2=k� k, s ¼ (m� 1)=k
p, k m ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k ( pþ k)

p
, s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=kþ 1

p

p, m k ¼ 1
2
[�pþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 4(m� 1)2

q
], s ¼ pþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 4(m� 1)2

p

�pþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 4(m� 1)2

p
" #1=2

s, k p ¼ k(s 2 � 1), m ¼ 1þ sk

s, m p ¼ (m� 1)(s� 1=s), k ¼ (m� 1)=s
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The phenomenological damping factor a is defined as the difference between
the values of the magnetic field intensity (DH ) at a constant frequency where the
imaginary part, xxx

00 , of the diagonal component xxx of the susceptibility tensor
attains a value that is half of its value at resonance (Fig. 2.2). It is related to the

FIGURE 2.2 Linewidth of ferrites.

FIGURE 2.3 Real part of xxx component, for vm/v ¼ 1 and a ¼ 0.01.
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linewidth (DH ) by

va ¼ gDH=2 (2:19)

The linewidth quoted by the material suppliers therefore provides a useful description
of magnetic losses in ferrites or garnets at resonance. However, it does not adequately
describe dissipation outside the skirts of the main resonance.

FIGURE 2.4 Imaginary part of xxx component, for vm/v ¼ 1 and a ¼ 0.01.

FIGURE 2.5 Real part of xxy component, for vm/v ¼ 1 and a ¼ 0.01.
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The relationships between the real and imaginary parts of the susceptibility
tensor and vm/v, vi/v, and a are plotted in Figs. 2.3–2.6. The variation of k

with the magnetic parameters is the same as that of xxy in Figs. 2.3 and 2.4. The vari-
ation of m with magnetic parameters may be determined from Figs. 2.5 and 2.6 by
noting that xxx ¼ m – 1.

2.4 SCALAR PERMEABILITIES

A unique property of a gyromagnetic medium is that, whereas it is in general
characterized by a tensor permeability, it displays a scalar permeability under one
of three possible situations. It has one value if the alternating magnetic field intensity
rotates in the same sense as the electron spin, another value if it rotates in the opposite
sense, and a value of unity if it is aligned with the axis of the electron spin. One
important application of this phenomenon is the nonreciprocal phase shifter. If the
frequency of the radiofrequency (rf) magnetic field coincides with the natural
precession frequency, the amplitude of the precession becomes particularly large in
the situation for which the electron spin and the alternating magnetic field rotate in
the same direction and the energy absorbed from the alternating magnetic field
displays a maximum.

The eigenvalue equation to be solved is

mH ¼ [m]H (2:20)

m is an eigenvalue, H is an eigenvector, and [m] is the permeability tensor. The
magnetic fields are proportional to the eigenvectors. The three scalar quantities
correspond to the eigenvalues of the permeability tensor. If the direct magnetic

FIGURE 2.6 Imaginary part of xxy component, for vm/v ¼ 1 and a ¼ 0.01.
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field is orientated along the positive z-axis, then

m� mi jk 0
�jk m� mi 0
0 0 1� mi

������

������
¼ 0 (2:21)

The roots of this characteristic equation are

m1 ¼ mþ ¼ m� k (2:22)

m2 ¼ m� ¼ mþ k (2:23)

m3 ¼ mz ¼ 1 (2:24)

The counterrotating solutions are illustrated in Fig. 2.7. The natures of the
eigenvalues and eigenvectors connected with the other two orientations of the direct
magnetic field are deduced in a similar manner.

FIGURE 2.7 Eigensolutions of uniform mode in a magnetic insulator.
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2.5 EFFECTIVE PERMEABILITY AND GYROTROPY

Two quantities that appear in the description of a microwave device based on the
gyromagnetic effect are the gyrotropy (k/m) and the effective permeability (meff).
These are defined in terms of the direct normalized magnetic variables by

k

m
¼ p

s ( pþ s)� 1
(2:25)

meff ¼
m2 � k2

m
¼ ( pþ s 2)2 � 1

s2 þ ps� 1
(2:26)

m and k are the diagonal and the off-diagonal elements of the permeability tensor of
the magnetized magnetic insulator.

Figures 2.8 and 2.9 depict the gyrotropy and effective permeability in terms of p
and s. The condition for resonance of either quantity is

s2 þ sp� 1 ¼ 0 (2:27)

FIGURE 2.8 Gyrotropy versus internal direct magnetic field for parametric values of
normalized magnetization.
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This condition differs from that met in connection with the entries of the permeability
tensor m and k, which is given by

1� s 2 ¼ 0 (2:28)

If p is fixed by the material choice and k/m is fixed by the specification, then s is set
by

s ¼ �pþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 4[1þ p(m=k)]

p
2

(2:29)

and meff is given in terms of p and s by Eq. (2.26).

FIGURE 2.9 Effective permeability versus internal direct magnetic field for parametric
values of normalized magnetization.

2.5 EFFECTIVE PERMEABILITY AND GYROTROPY 33



There are again six different ways in which these quantities may be organized.
These are indicated in Table 2.2.

The description of the elements of the permeability tensor given previously are
only valid provided the material is saturated. This condition is met provided the
internal direct magnetic field intensity Hi is equal to or greater than zero. At saturation

H0 � NzM0 ¼ 0 (2:30)

Nz is a shape demagnetizing factor along the direction of the direct magnetic field
intensity. Its nature is dealt with in some detail in Chapter 3.

2.6 KITTEL LINE

The relationship between the external and internal direct magnetic field intensity in an
ellipsoidal magnetic insulator has been dealt with by introducing the concept of a
shape demagnetizing factor along each coordinate of the magnetic insulator. The
same technique has also been introduced in connection with the internal and external
alternating magnetic fields.

hix ¼ hex � Nxmx (2:31a)

hiy ¼ hey � Nymy (2:31b)

hiz ¼ hez � Nzmy (2:31c)

TABLE 2.2 Exact Equations

p, s k

m
¼ +p

s ( pþ s)� 1
, meff ¼

( pþ s)2 � 1
s ( pþ s)� 1

s, meff

p ¼
�s (2� meff )+

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2m2

eff

q
þ 4(1� meff )

2
,
k

m
¼ +p

s ( pþ s)� 1

p, meff

s ¼
�p(2� meff )+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2m2

eff þ 4(meff � 1)2
q

2(1� meff )
,
k

m
¼ +p

s ( pþ s)� 1

s, k/m
p ¼ s 2 � 1

[+ (m=k)� s]
, meff ¼

( pþ s)2 � 1
s ( pþ s)� 1

p, k/m
s ¼ �p+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 4[1þ p(m=k)]

p
2

, meff ¼
( pþ s)2 � 1
s ( pþ s)� 1

k/m, meff
p ¼ 1� meff

1� (k=m)2

� �
1� s 2

s

� �
,

p(m=k)
�1þ s 2

¼ meff

1� (k=m)2
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The resonance condition of the electron spin is now obtained by retaining these
additional terms in the expansion of the equation of motion of the magnetization
vector. The result is

v2
r ¼ vxvy (2:32a)

vx ¼ g [H0 � (Nz � Nx)M0] (2:32b)

vy ¼ g [H0 � (Nz � Ny)M0] (2:32c)

The Kittel line produced by this arrangement now involves the shape factors Nx, Ny,
and Nz, which are discussed in more detail in Chapter 3. These quantities are related,
in a saturated material, by

Nx þ Ny þ Nz ¼ 1 (2:33)

The trajectory of the electron spin is now elliptically instead of circularly polarized,
with an ellipticity specified by

e2r ¼ vx=vy (2:34)

In the case of a disk or cylinder, the only geometry considered in the text,

Nx ¼ Ny ¼ Nt (2:35a)

Nt �
1
2
(1� Nz) (2:35b)

The values of the demagnetizing factors introduced here may be experimentally
deduced by making measurements of the Kittel line with different orientations of a
particular geometry.

2.7 LOW-FIELD LOSSES IN UNSATURATED MAGNETIC INSULATOR

The general form of Kittel’s resonance equation embodies a contribution to the
natural frequency arising from shape demagnetizing fields within a single crystal
domain even in the absence of a direct field. The origin of this absorption line
may be appreciated by forming Kittel’s resonance equation with H0 ¼ 0.

vr ¼ [(Nx � Nz)(Ny � Nz)]
1=2vm (2:36)
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This relationship determines the lowest frequency at which the resonance condition
may be satisfied in a saturated material. Any effective anisotropy fields must also,
strictly speaking, be introduced into this condition.

In an unsaturated material, however, resonance absorption losses occur at
frequencies up to at least twice the value predicted by Kittel’s equation. The effect
of so-called low-field loss on the shape of the resonance curve at microwave frequen-
cies is illustrated in Fig. 2.10. The discrepancy between the resonant frequencies in a
saturated and unsaturated material comes about because it is not appropriate to apply
Kittel’s formula to a solid unmagnetized ferrite containing randomly orientated

FIGURE 2.10 Effect of low-field losses on the shape of the resonance curve at microwave
frequencies. (Adapted from B. Lax, Frequency and loss characteristics of microwave ferrite
devices, Proc. IRE, Vol. 44, pp. 1368–1386, 1956.)
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domains, although it may be applied to a single uniformly magnetized Weiss domain
within the specimen. This essential restriction arises because the resonance condition
was derived from the equation of motion of the macroscopic magnetization vector,
where it is assumed that all spin dipoles are aligned and can be represented by a
single magnetization vector. If this is not the case, additional demagnetizing
factors must be introduced into Kittel’s equation to account for the random orien-
tation of the Weiss domains.

The contribution of the Weiss domains to the total demagnetizing field may be
determined by considering a nonsaturated medium, which is still divided in such
domains. A detailed investigation of this problem indicates that domain rotation
resonance or so-called low-field loss can occur in the frequency interval between:

0 � v � vm (2:37)

This type of loss may be avoided by either ensuring that the material is saturated or by
reducing the magnetization of the material.

2.8 MAGNETIC BIAS POINTS ABOVE AND BELOW
THE KITTEL LINE

Microwave ferrite devices can operate on either side of the Kittel line. Two separate
demands, however, are placed on the direct magnetic field intensity. One is the
so-called low-field loss and the other is the location of the Kittel absorption line.
These constraints are sometimes difficult to reconcile at ultra-high frequencies
(UHFs) below the Kittel line. The problem under consideration may be appreciated
by restricting the discussion to the Kittel resonance line,

(vr=g) ¼ H0 � NzM0 þ NtM0 (2:38)

In order to avoid low-field loss, it is necessary for the material to be saturated. This
condition is given by

Hl � H0 � NzM0 (2:39)

The direct magnetic field, however, cannot be increased at will without having the
Kittel line intrude on the frequency response of the microwave circuit. It is also
only possible to equally satisfy this condition in an ellipsoidal geometry such as a
sphere or a cigar shaped one. For a nonellipsoidal geometry such as a disk, the
internal field is nonuniform even in the presence of a uniform external one. This
situation is sometimes catered for by introducing a radial dependent demagnetizing
factor Nz(ri).
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Taking the equal sign for the purpose of calculation gives

(vr=g) � NtM0 (2:40)

For a sphere, Nt ¼ 1
3 and

(vr=g) � M0=3 (2:41)

For a disk,

(vr=g) � 0:025M0 (2:42)

At 1 GHz, m0M0 ¼ 0.1071 T for the former case and 1.430 T for the latter case. The
value of the magnetization produced in this way is an upper bound below the Kittel
line and a lower one above it; a more complete description must cater for the effect of
the finite linewidth of the Kittel line:

H0 � nDH=2 below resonance (2:43)

H0 þ nDH=2 above resonance (2:44)

n is the integer that determines the number of half-linewidths above which the absorp-
tion of the Kittel line may be neglected.

2.9 SPINWAVE MANIFOLD

Under some circumstances, a magnetic insulator supports so-called spinwaves. The
frequencies of these spinwaves are primarily determined by an effective exchange
field. This field has its origin in the exchange energy, which is defined as that
tending to orient parallel adjacent spins that are misaligned due to thermal agitation.
A demagnetizing dipolar field is also introduced in connection with the exchange
field in order to cater for demagnetizing effects. The nature of a typical spinwave
is obtained by expanding the equation of motion of the magnetization vector under
the influence of a direct magnetic field and the exchange and dipolar fields.

The frequency of a typical spinwave is

v2
k ¼ (v12

k v21
k ) (2:45)

where

v12
k ¼ g (H0 � NzM0 þ Hex a2k2) (2:46)

v21
k ¼ g (H0 � NzM0 þ Hex a2k2 þM0 sin

2uk) (2:47)
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The polarization of a typical spinwave is illustrated in Fig. 2.11. The spinwave is cir-
cularly polarised for a z-directed spinwave. The ellipticity is

e2k ¼ (v12
k =v21

k ) (2:48)

a is the distance between neighboring spins (m), k is the wavenumber of a typical
spinwave (rad/m), Hex is an equivalent exchange field (A/m) associated with the
exchange energy, uk is the angle (rad) that a typical spinwave makes with the
direct magnetic field, H0 is the direct magnetic field intensity (A/m), M0 is the direct
magnetization (A/m), and Nz is a shape demagnetizing factor.

In order to proceed with a calculation of the spinwave manifold, it is necessary to
have a complete understanding of the parameters entering into its description. The
direct magnetic variables met in connection with the definition of the uniform line
in a magnetic insulator are widely understood and need not be reiterated. The
nature of the variables due to the exchange energy, however, do merit some attention.
This is due to the fact that two different definitions of the exchange frequency have
been introduced in the literature. In the Lax and Button formulation, used here,
the exchange term in the description of the spinwave frequencies is written as the

FIGURE 2.11 Primed coordinate system in transverse plane showing spinwave ellipse.
(Adapted from J. Kemanis and S. Wang, Analysis of high power effects in ferrimagnetics
from the point of view of energy transfer. Part 1. First order instabilities, J. Appl. Phys.,
Vol. 35, pp. 1465–1470, 1964.)
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product of an exchange frequency vex and the product a2k2:

vexa
2k2 (2:49)

vex in the exchange frequency,

vex ¼ gHex (2:50)

Hex is the effective exchange field,

Hex ¼ lM0 (2:51)

and l is the molecular field coefficient.
For YIG material,

Hex ¼ 107Oe ¼ (103=4p)� 107A=m (2:52)

and

l ¼ 5� 103 (2:53)

The formulations employed by Gurewich and separately by Smit and Wijn differ
in that the product a2k2 in the description of the spinwave frequencies is absorbed in
both vex and Hex. These authors define the exchange frequency in the description of
the spinwave frequencies as

vex ¼ g (lM0)a
2k2 (2:54)

The corresponding exchange field is

Hex ¼ (lM0)a
2k2 (2:55)

In practice, the two descriptions produce the same result.
A sketch of the spinwave manifold is indicated in Fig. 2.12. This is a plot of spin-

wave frequency as a function of the wavenumber. Kittel’s equation for the uniform
mode coincides with the middle formula on the axis of this diagram. The uniform
mode can therefore be degenerate with a large number of spinwave modes, provided
the condition vk ¼ vr is satisfied. In the cross-hatched area of this illustration, the
normal modes are the so-called magnetostatic modes.

The existence of spinwaves has been demonstrated in a thin cobalt metallic film
29,440 Å (10210 m) thick. Figure 2.13 indicates some lower order standing spin-
waves in this arrangement. The experiment also enables the determination of the
exchange field of the material.
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2.10 MAGNETIZATION VALUES OF VARIOUS FERRITES

The magnetization of ferrite materials has so far been discussed in terms of a normal-
ized quantity p. In practice, the saturation magnetization (m0M0) of the ferrites and
garnets lies in the range 0.0150–0.5000 T for most commercial materials. For the
garnet materials it is bracketed between 0.0150 and 0.1800 T. For magnesium manga-
nese ferrites the magnetization is between 0.0800 and 0.3800 T; for nickel ferrites it
varies between 0.1000 and 0.5000 T; and for lithium ferrites it lies between 0.0150
and 0.5000 T. Figure 2.14 is a table of the properties of yttrium gadolinium aluminum

FIGURE 2.12 Spinwave manifold for isotropic ferrite ellipsoid. (Adapted from H. Suhl,
The nonlinear behaviour of ferrites at high microwave signal levels, Proc. IRE, Vol. 41,
pp. 1270–1284, 1953.)

FIGURE 2.13 Standing spinwaves in cobaltmetallicfilm29,440 Å (10210 m) thick. (Reprinted
with permission from P. E. Tannenwald and R. Weber, Phys. Rev., Vol. 121, p. 715, 1961.)
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iron garnet with aluminum substitution for iron. Figure 2.15 depicts a similar table in
the case of doped nickel chromium zinc iron spinels.

2.11 THE ORIGIN OF THE UNIFORM LINEWIDTH
IN MAGNETIC INSULATORS

The origins of dissipation in a polycrystalline magnetic insulator involve a spin–
lattice process and a spin–spin one. It is convenient, in order to separate the
various processes, to replace the phenomenological linewidth met in connection
with the Landau–Lifshitz (LL) damping term by a relaxation parameter (T ). This
quantity has the dimensions of time and is analogous to the time constant in a RL
or RC circuit.

1
vT

¼ gDH

2v

� �
(2:56)

or

1
T
¼ gDH

2

� �
(2:57)

FIGURE 2.14 Properties of doped calcium vanadium iron garnets. (Courtesy of Hilteck
Microwave Ltd.)
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The spin–spin process involves the scattering of the uniform mode energy to
spinwaves of the same frequency. The spin–lattice dissipation involves the direct
scattering of the uniform mode energy to the lattice vibrations, where it is dissipated
as heat. There is also a spin–lattice process from the spinwave reservoir to the lattice.
Figure 2.16 is a schematic diagram of these processes. The relaxation directly to the
lattice is often negligible compared with the transfer of energy to the lattice via the
spinwaves. The total relaxation time is

1
T
¼ 1

T1
þ 1
T2

þ � � � (2:58)

The aforementioned processes have been investigated extensively in the literature.
The spin–spin process was experimentally clarified by demonstrating that the
uniform line width of the polycrystalline material exhibited a peak when the

FIGURE 2.15 Properties of doped nickel chromium zinc iron spinels. (Courtesy of Hilteck
Microwave Ltd.)
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frequency of the pump is degenerate with the largest number of spinwaves. This con-
dition is given experimentally and theoretically by

v ¼ 2
3vm (2:59)

The pores of the polycrystalline material and the surface finish of its body provide
two means whereby the energy from the uniform mode may be scattered to the spin-
wave reservoir and the lattice structure. Other contributions arise at large signal level
in the presence of spinwave instabilities and must also be catered for.

In order to understand the connection between the uniform linewidth and the
porosity, it is necessary to allow for internal demagnetizing fields at crystalline
(grain) boundaries due to pores (cavities) between crystallites. These demagnetizing
fields provide a means of coupling energy from the pump to spinwaves of the
same frequency.

The contribution of the pores to the overall linewidth of the material is accurately
given in terms of the porosity ( p) by

(2DH)pore ¼ uM0p (2:60)

where p is defined by

p ¼ n=V (2:61)

u is a constant that is approximately equal to 1, n is the pore volume, and V is the total
volume of the sample.

The porosity is related to the density (d ) by

d ¼ 1� p (2:62)

FIGURE 2.16 Relationships between relative density and uniform linewidth in various
ferrite and garnet materials. (Reprinted with permission from A. G. Gureuch, Ferrites at
Microwave Frequencies, Heywood and Co. Ltd., London, 1960.)
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The dependence of the resonance linewidth on the density of polycrystalline ferrites
is indicated in Fig. 2.17. It shows good agreement between the variables under
consideration.

The anisotropy energy in a single crystal is that which tends to align the magnetic
domains along certain crystalline directions. One effect of the anisotropy in a single
crystal is to shift the resonant frequency by an amount that depends on the
angle between the direct field and the crystal axis. In a polycrystalline sample the angle
varies through all values. The relaxation time involved in this process also manifests
itself as a broadening of the uniform linewidth.

The LL relaxation model employed here assumes identical relaxation times along
the direction of the direct magnetic field and in the plane transverse to it. The more
general case is described by Bloch–Bloembergen (BB) but is outside the scope of
this work.

FIGURE 2.17 Relaxations in polycrystalline magnetic insulators. (Reproduced with
permission from R. C. Fletcher, R. C. Lecraw, and E. G. Spencer, Phys. Rev., Vol. 117,
p. 955, 1960.)
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CHAPTER THREE

Spatial Shape Demagnetizing
Factors of Disk, Equilateral
Triangle, and Irregular
Hexagonal Magnetic Insulators

3.1 INTRODUCTION

The magnetic circuit of nonreciprocal ferrite devices is an important part in any
design. The problem is fairly straightforward provided the direct magnetic field inten-
sity in which the magnetic insulator or ferrite geometry is immersed may be assumed
to be uniform and provided the geometry is an ellipsoid. The relationship between the
external and internal direct magnetic field intensities is then given in terms of shape
demagnetizing factors and the internal direct magnetic field intensity is also uniform.
The simplest example of an ellipsoidal geometry is the sphere. The practical case for
which the external direct magnetic field intensity is nonuniform and the geometry is
not an ellipsoid is, of course, more complicated. An example of a nonellipsoidal geo-
metry is a flat disk. The internal direct magnetic field intensity in this arrangement is
nonuniform even when placed in a uniform field. This situation, in the case of a disk
geometry, is sometimes dealt with by introducing a spatial dependent shape demag-
netizing factor. The purpose of this chapter is to deal with the spatial demagnetizing
factors of single and pairs of disk geometries in infinite space and to provide some
data in finite space. One means of dealing with this problem is to evaluate the demag-
netizing field necessary to saturate the magnetic insulator. This may be done by
having recourse to one of a number of commercial finite element packages. The
radial field distribution in a disk magnetic insulator can be made uniform by either

The Stripline Circulator: Theory and Practice. By J. Helszajn
Copyright # 2008 John Wiley & Sons, Inc.
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shaping the external magnetic structure or by incorporating it in a semispherical pole
piece geometry. Some data on the z-directed demagnetizing factor along the two prin-
cipal axes of triangular and irregular hexagonal geometries are included for comple-
teness. The chapter includes semiempirical descriptions of the entries of the
permeability tensor in a partially magnetized magnetic insulator. It also includes
some remarks about the magnetization in a partially magnetized magnetic insulator.

3.2 SHAPE DEMAGNETIZING FACTORS

The relationships between the magnetic field intensities inside and outside an ellip-
soidal magnetic insulator, in a uniform field, may be dealt with exactly by introducing
so-called shape demagnetizing factors. This is a classic approach and is reproduced
here solely for the purpose of completeness. The internal field inside the geometry
with the field along the z-coordinate is then defined in terms of that outside it by

Hi ¼ H0 � NzM (3:1)

Hi is the magnetic field intensity inside the magnetic insulator (A/m), H0 is that
outside (A/m), M is the state of the magnetization (A/m), and Nz is a shape demag-
netizing factor along the z-axis.

The three shape demagnetizing factors in an ellipsoidal geometry are connected by

Nx þ Ny þ Nz ¼ 1 (3:2)

There are several shapes that are of particular interest in the discussion of microwave
ferrite devices. For a sphere,

Nx ¼ Ny ¼ Nz ¼
1
3

(3:3)

The shape demagnetizing factors of a long cylinder of radius R and length L are
approximately described by

Nz � 1� [1þ (2R=L)2]�1=2 (3:4a)

Nx � Ny ¼
1
2
1� Nzð Þ (3:4b)

and for a thin disk,

Nz � 1� (L=2R)[1þ (L=2R)2]�1=2 (3:4c)

Nx � Ny ¼
1
2
1� Nzð Þ (3:4d)

Figure 3.1 summarizes the demagnetizing factors for some simple ferrite
configurations.
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Another possible relationship for Nz is

Nz ¼ (1þ e2)(e� tan�1 e)=e3 (3:5)

where e is the approximate eccentricity of the ferrite disk:

e ¼ [4(R=H)2 � 1]1=2 (3:6)

3.3 MAGNETIC FIELD INTENSITY AND FLUX DENSITY
IN MAGNETIC INSULATOR

The normal magnetic flux densities are the same on either side of a boundary, but this
is not generally so elsewhere except in the case of a thin plate in a uniform field. This
property of the thin magnetic insulator sheet with the direct magnetic field intensity
perpendicular to its surface may readily be demonstrated as a preamble to investi-
gating some more specific cases. It starts by recalling the relationship, between the
magnetic flux density, the partial magnetization, and the magnetic field intensity

FIGURE 3.1 Shape demagnetizing factors of magnetic insulators.
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(Bi, M, and Hi) inside a magnetic insulator.

Bi ¼ m0(Hi þM) (3:7)

Outside the magnetic insulator the magnetic flux density is given in terms of the
external direct magnetic field intensity (H0) by

B0 ¼ m0H0 (3:8)

Writing Hi in terms of H0 and the shape demagnetizing factor Nz in the first of these
two conditions gives

Bi ¼ m0[H0 � NzM þM] (3:9)

Taking Nz as unity throughout produces the required result without ado:

Bi ¼ B0 (3:10)

This condition is a classic result in the literature.

3.4 THE SPATIAL DEMAGNETIZING FACTOR OF A FLAT DISK
MAGNETIC INSULATOR

The shape demagnetizing factor perpendicular to a flat disk is often assumed to be
independent of the radial coordinate of the geometry. This assumption is only
correct in a ellipsoidal body. One consequence of this feature is that the magnetic
field intensity inside a disk is nonuniform even in the presence of a uniform direct
magnetic field. The exact internal field is

Hi(r) ¼ H0 � Nz(r)M (3:11)

An accurate two part description for the radial variation of the demagnetizing field in
a single flat disk in an infinite uniform field is available in the literature. In the central
region it is described by

Hdem r, 0ð Þ
M

¼�1þ Lf=2Rfð Þ
1þ (Lf=2Rf )2
� �1=2 þ

3 Lf=2Rfð Þ
1þ (Lf=2Rf )2
� �3=2

"

� 3 Lf=2Rfð Þ3

1þ (Lf=2Rf )2
� �5=2

#
r

2Rf

� �2

(3:12)
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At the edge of the disk it is specified by

Hdem r, 0ð Þ
M

¼ � 1
2
� 1

p

� �
tan�1 2Rf

Lf

� �
� 2r

Lf

� �� �
(3:13)

r is the position within the magnetic insulator at which the demagnetizing field is
measured, Rf is the radius of the geometry, and Lf is the thickness. Figure 3.2
illustrates the assembly under consideration.

FIGURE 3.2 Magnetic flux density in flat disk magnetic insulator (Lf/2Rf ¼ 0.10,
Rm/Rf ¼ 10).
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The preceding two expressions may be smoothly connected. This is done for three
different geometries in Fig. 3.3. This illustration suggests that the intercept between
the two equations depends on the aspect ratio. One engineering approximation resides
around r/Rf ¼ 0.825.

The right-hand sides of the relationships in each region may be taken as one
definition of the shape demagnetizing factor there.

Hdem r, 0ð Þ
M

¼ �Nz r, 0ð Þ (3:14)

At r ¼ 0,

Hdem r, 0ð Þ
M

¼ �1þ Lf
2Rf

� �
1þ Lf

2Rf

� �2
" #�1=2

(3:15)

FIGURE 3.3 Closed form shape demagnetizing factor of flat disk magnetic insulator for
parametric values of Lf/2Rf (Rm/Rf ¼ 10).
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and at r ¼ Rf,

Hdem Rf , 0ð Þ
M

¼ � 1
2

(3:16)

One means to verify this two part relationship using a finite element (FE) solver is to
saturate each region:

Hi r, 0ð Þ ¼ 0 (3:17)

This gives

Nz r, 0ð Þ ¼ H0 r, 0ð Þ=M0 (3:18)

This condition provides one means of evaluating the local shape demagnetizing
factor of a disk. Figure 3.4 compares the demagnetizing factor of one geometry
based on the approximate equations with that obtained using an FE solver. The

FIGURE 3.4 Comparison between FE and approximate closed form calculations of shape
demagnetizing factor in flat disk magnetic insulator (Lf/2Rf ¼ 0.10, Rm/Rf ¼ 10).
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FIGURE 3.5 FE calculation of demagnetizing magnetic field intensity of a single disk
magnetic insulator in uniform magnetic field (Lf/2Rf ¼ 0.10, Rm/Rf ¼ 10). Ferrite material:
Br ¼ 167.11 kA/m, Hc ¼ 67.64 A/m, m0M0 ¼ 0.3000 T. Magnet: Br ¼ 692.32 kA/m,
Hc¼636.62 kA/m.

FIGURE 3.6 FE discretization of single disk magnetic insulator.
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spatial flux densities of this arrangement in different regions are indicated in Fig. 3.5
with the insulator saturated on its axis. The FE discretization used to obtain these
results is indicated in Fig. 3.6.

In practice, the magnets may be either larger than, equal to, or smaller than the mag-
netic insulator. The governing equations for the spatial shape demagnetizing factor of
this arrangement is no longer applicable and must be obtained numerically. Figure 3.7
shows the effect of the size of the magnet on the internal magnetic flux density of a disk
magnetic insulator for a givenmagnetization. It indicates that the flux there may be less
than, equal to, or more than that at the axis. At the edge of the disk it becomes asymp-
totic to twice that on the axis of the geometry. This condition is in keeping with the
approximate closed form formulation of the demagnetizing field.

One means of ensuring that a finite ferrite disk is uniformly magnetized is
to place it between semispherical pole pieces with the same magnetization.
Figure 3.8 indicates a solution for one geometry for which the pole piece has the
same radius as that of the semispherical pole.

FIGURE 3.7 The effect of the size of a magnet on the internal flux density in a magnetic
disk insulator. Ferrite material: Br ¼ 167.11 kA/m, Hc ¼ 67.64 A/m, m0M0 ¼ 0.3000 T.
Magnet: Br ¼ 692.32 kA/m, Hc ¼ 636.62 kA/m.
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3.5 THE COUPLED DISK GEOMETRY

The case of a pair of disk magnetic insulators separated by a gap is also of some inter-
est. The purpose of this section is to evaluate the effective demagnetizing field and
shape factor on the axis of the arrangement.

The geometry under consideration is indicated in Fig. 3.9. The gap between the
two disks is defined in terms of a filling factor kf:

kf ¼ Lf=Hf

FIGURE 3.8 Magnetic flux density of composite spherical magnetic insulator with under-
sized pole pieces.
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FIGURE 3.9 Schematic diagram of a pair of flat disk magnetic insulators.

FIGURE 3.10 FE calculation of shape demagnetizing factor on the axis of a pair of disk
magnetic insulators (Lf/2Rf ¼ 0.10, km ¼ 0.1895). Ferrite material: Br ¼ 167.11 kA/m,
Hc ¼ 67.64 A/m, m0M0 ¼ 0.3000 T. Magnet: Br ¼ 692.32 kA/m, Hc ¼ 636.62 kA/m.
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FIGURE 3.11 Magnetic flux density distribution in a pair of disk magnetic insulators in an
asymmetric magnetic field. Ferrite material: Br ¼ 167.11 kA/m, Hc ¼ 67.64 A/m, m0M0 ¼

0.3000 T. Magnet: Br ¼ 692.32 kA/m, Hc ¼ 636.62 kA/m.
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Lf is the length of a typical disk, Hf is the half-space defined by the outside face of a
typical disk and half that of the gap. The case kf ¼ 1 reduces to a single disk of length
2Lf; that for kf ¼ 0 corresponds to a pair of decoupled ones.

The gap or spacing between the magnets is specified by

km ¼ Hf=Hm

The demagnetizing field is again obtained by locally saturating the material at the
symmetry plane of a typical disk. The shape demagnetizing factor is obtained by
having recourse to Eq. (3.12). Figure 3.10 shows the connection between the
shape demagnetizing factor and the filling factor on the axis of the geometry. The
demagnetizing factor is bounded by that of a single disk and that of a cylinder
with half its aspect ratio.

The magnetic flux distribution of one arrangement with the symmetry plane of the
ferrites different from that of the magnets is illustrated in Fig. 3.11. The flux densities
inside the two ferrites are now different. This feature is indicated in more detail in
Fig. 3.12.

FIGURE 3.12 Flux densities in different regions in a pair of disk resonators in asymmetric
magnetic field. Ferrite material: Br ¼ 167.11 kA/m, Hc ¼ 67.64 A/m, m0M0 ¼ 0.3000
T. Magnet: Br ¼ 692.32 kA/m, Hc ¼ 636.62 kA/m.
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3.6 THE IRREGULAR HEXAGONAL MAGNETIC INSULATOR

Another magnetic insulator of some interest is either a single or a pair of irregular
hexagonal geometries. Each has two symmetry planes that have to be dealt with sep-
arately. The geometry under consideration is specified in Chapter 16. It is of note that
these two coordinates are not perpendicular to each other. Figure 3.13 depicts the
variation of the demagnetizing factor perpendicular to the plane of the plate along
the inscribed radius of one equilateral geometry in infinite space. The corresponding
results for which the magnetic fields coincide with the inscribed and circumscribed
radii of the magnetic insulator are superimposed separately in this illustration.
The variations of the shape demagnetizing factors along the circumscribed radius
are illustrated separately in Fig. 3.14.

FIGURE 3.13 Shape demagnetizing factors of single irregular hexagonal magnetic insulator
along B-dimension (A ¼ 3.47 mm, B ¼ 15.32, f ¼ 208). Ferrite material: Br ¼ 167.11 kA/m,
Hc ¼ 67.64 A/m, m0M0 ¼ 0.3000 T. Magnet: Br ¼ 692.32 kA/m, Hc ¼ 636.62 kA/m. For
Rm/RA ¼ 10, Rm/RA ¼ 1.00, and Rm/RB ¼ 1.00.
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3.7 REENTRANT MAGNETIC CIRCUITS

One practical application of the magnetostatic solver is in the adjustment of the direct
magnetic circuits of UHF circulators. One common package is the reentrant geometry
with a pair of ferrites between top and bottommagnets. The gyromagnetic resonator con-
sists, in this instance, of either a diskor an irregular hexagonal structure.Anothercommon
geometry consists of sidemagnets instead of top and bottommagnets. In this instance the
resonator must either have a triangular cross section or an irregular hexagonal one. In
general, UHF circuits have to produce normalized magnetization values (B/M ) of the
order of 1.45 or less. Figure 3.15 illustrates the radial variation of B/M in the case of a
pair of disk bodies assembled using top and bottom magnets. Figure 3.16 indicates
one typical irregular hexagonal ferrite geometrywith three sidemagnets. The adjustment
of B/M is in this case achieved by varying the thickness of the pole pieces.

FIGURE 3.14 Shape demagnetizing factors of single irregular hexagonal magnetic insulator
along A-dimension (A ¼ 3.47 mm, B ¼ 15.32, f ¼ 208). Ferrite material: Br ¼ 167.11 kA/m,
Hc ¼ 67.64 A/m, m0M0 ¼ 0.3000 T. Magnet: Br ¼ 692.32 kA/m, Hc ¼ 636.62 kA/m. For
Rm/RA ¼ 10, Rm/RA ¼ 1.00, and Rm/RB ¼ 1.00.
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FIGURE 3.15 Normalized magnetic field intensity in a pair of disk magnetic insulators with
top and bottom magnet configuration. Ferrite material: Br ¼ 101.62 kA/m, Hc ¼ 35.81 A/m,
m0M0 ¼ 0.1780 T. Magnet: Br ¼ 318.31 kA/m, Hc ¼ 266.58 kA/m.

FIGURE 3.16 Normalized magnetic field intensity in a pair of irregular hexagonal
magnetic insulators with side magnet configuration. Ferrite material: Br ¼ 101.62 kA/m,
Hc ¼ 35.81 A/m, m0M0 ¼ 0.1780 T. Magnet: Br ¼ 855.5 kA/m, Hc ¼ 795.77 kA/m.
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3.8 TRANSVERSE DEMAGNETIZING FACTOR OF MAGNETIC
INSULATOR

The finite element method (FEM) may also be utilized to deduce the demagnetizing
factor Nt of a disk magnetic insulator along its principal axis. This may be done by
rotating the geometry 908 in order to place the magnetizing field in its plane
instead of perpendicular to it.

3.9 TENSOR ELEMENTS IN PARTIALLY MAGNETIZED
MAGNETIC INSULATOR

The usual descriptions of the elements of the permeability tensor introduced in
Chapter 2 are only valid provided the material is saturated. This latter condition
coincides with that for which the internal magnetic field intensity Hi is equal to or
greater than zero. At saturation M is equal to M0 and

H0 � NzM0 ¼ 0 (3:19)

The right-hand side in the definition of saturation in a magnetic insulator here and
elsewhere is usually taken to be zero. In reality it is a small positive number equal
to the magnetic field intensity necessary to saturate the hysteresis loop of the material.
This field is usually very small compared to the magnetization of the material and is
frequently neglected compared to it.

The diagonal and off-diagonal elements of the permeability tensor in a magnetic
insulator biased below saturation are described, on the basis of experiment, by
partially magnetized quantities,

kp ¼ k(Mp=M0) (3:20)

mp ¼ md þ (1� md)(Mp=M0)
3=2 (3:21)

where

k ¼ gM0=v (3:22)

md is the relative demagnetized permeability in the magnetic insulator,

md ¼
1
3
þ 2
3
[1� (gM0=v)

2]1=2 (3:23)
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Mp is the partial magnetization (A/m), kp is the partial off-diagonal entry of the
permeability tensor, mp is the diagonal element, g is the gyromagnetic ratio, and k

is the off-diagonal element at saturation.
At saturation

kp ¼ k (3:24)

mp ¼ 1 (3:25)

md ¼ 1 (3:26)

In a partially magnetized magnetic insulator, the real part of the longitudinal
element mz is not equal to unity and must also be modified. One empirical represen-
tation is

mz ¼ m
(1�Mp=M0)5=2

d (3:27)

The partial and saturated elements of the permeability tensor are separately related by

m2 � k2 ¼ m2
p � k2p (3:28)

3.10 PARTIAL MAGNETIZATION IN A MAGNETIC INSULATOR

The tie betweenMp/M0 and B0 may be obtained by having recourse to the connection
between the magnetic flux densities inside and outside the geometry in conjunction
with the magnetic intensities in the same two regions. The situation for which the
direct magnetic field intensity is positive has to be dealt with separately from that
for which it is negative. The result in the former case is obtained by having recourse
to Eq. (3.9)

Mp

M0
¼ Bi � B0

m0M0(1� Nz)
(3:29)

This ratio may be evaluated by first determining Nz as a preamble to constructing the
tie between Bi and B0 using a suitable FE solver. The demagnetizing factor is deter-
mined separately by the flux density B0 at magnetic saturation and the saturation mag-
netization m0M0 of the magnetic insulator.

The partial magnetization with the polarization of the direct magnetization
reversed is the same except for a change of sign.

The material is saturated provided

Mp=M0 ¼ 1
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This condition coincides with

Bi � B0 ¼ m0M0(1� Nz) (3:30)

These two relationships are compatible with those already met in connection with
the description of the internal magnetic flux density in a saturated material.

Bi ¼ m0M0 (3:31)

B0 ¼ Nzm0M0 (3:32)

The first condition is in keeping with the definition of saturation in a magnetic
insulator and the second one provides a definition of the demagnetizing factor of
the geometry.

The partial magnetization Mp is zero provided

Bi � B0 ¼ 0

This is satisfied when the direct magnetic flux densities outside and inside the mag-
netic insulator are identically zero:

Bi ¼ B0 ¼ 0

The robustness of this result may be further verified by utilizing it to evaluateMp/
M0 on the axis of a gyromagnetic flat disk at magnetic saturation. The geometry of the
disk is fixed by the radii of the magnet and ferrite bodies Rm/Rf (¼ 10), by the aspect
ratio of the magnetic insulator Lf/2Rf (¼ 0.10), and by its saturation magnetization

FIGURE 3.17 Disk magnetic insulator partitioned into concentric annular rings.

3.10 PARTIAL MAGNETIZATION IN A MAGNETIC INSULATOR 65



m0M0 (0.3000 T). Bi, B0, and Nz are deduced by having recourse to an FE process as

Bi ¼ 0:3000 T

B0 ¼ 0:2960 T

Nz ¼ 0:985

The magnetization obtained in this way is Mp/M0 ¼ 1.0.
The data in this chapter suggests that the demagnetizing factor in a nonellipsoidal

geometry such as a disk in a uniform field may have significant radial variation. One
way to cater for this feature is to partition the disk into a number of coarse or fine
concentric annular rings with local values of demagnetizing factors and magnetiza-
tion states as a preamble to tackling the microwave problem. Figure 3.17 shows
one possibility.
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CHAPTER FOUR

Scattering Matrix of m-Port
Junction

4.1 INTRODUCTION

The definitions of the two-port gyrator circuit and the nonreciprocal three-port
junction circulator were first articulated by Carlin on the basis of the unitary condition
met in connection with the scattering matrices of these networks. The entries of this
matrix are a set of quantities that relate incident and reflected waves at its ports or
terminal planes, which describe the performance of a network under any specified
terminating conditions. The coefficients along its main diagonal are reflection coeffi-
cients while those along its off-diagonal are transmission ones. The matrix is modi-
fied if one or more of the terminal planes are moved. A scattering matrix exists for
every linear, passive, time invariant network. Figure 4.1 depicts a generalized junc-
tion enclosed by a surface S, which cuts the various transmission lines perpendicular
to the axes and provides a definition for the ports or terminal planes of the structure.
This text, however, is primarily concerned with symmetric m-port junctions. It is
possible to deduce important general properties of junctions containing a number
of ports by invoking such properties as symmetry, reciprocity, and energy conserva-
tion. An important property of the scattering matrix is that the permissible relation-
ships between the entries of a lossless network are readily established by having
recourse to the unitary condition. In particular, it shows that only a matched three-
port lossless junction uniquely defines the properties of the ideal circulator, which
is the topic of this text. The adjustment of such junctions, however, is best dealt
with in terms of the eigenvalue problem in Chapter 5. In the presence of dissipation,
all the existing relationships between the entries of the scattering matrix based on the
unitary condition become invalid. In order to cater for this effect, it is usual to
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introduce a so-called dissipation matrix. A description of this matrix is included for
completeness.

4.2 THE SCATTERING MATRIX

The properties of the scattering matrix of an m-port network developed in this chapter
are essentially restricted to circuits with the symmetries outlined in Figs. 4.2 and 4.3.

FIGURE 4.1 Schematic diagram of m-port junction showing incident and reflected waves.

FIGURE 4.2 Schematic diagram of five-port symmetrical junction.
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Its entries relate suitably chosen incident and reflected waves at the terminals of the
network.

b ¼ Sa (4:1)

ā and b̄ are incident and reflected vectors, which for a three-port network is
given by

a ¼
a1
a2
a3

2
4

3
5 (4:2)

b ¼
b1
b2
b3

2
4

3
5 (4:3)

The corresponding scattering matrix S̄ is described by

S ¼
S11 S12 S13
S21 S22 S23
S31 S32 S33

2
4

3
5 (4:4)

The elements along the main diagonal of this matrix are the reflection coefficients
at the ports of the network; those along the off-diagonal represent the transmission
coefficients between the same ports. Using this nomenclature, the relationships
between the incoming and outgoing waves for a three-port network are therefore

FIGURE 4.3 Schematic diagram of three-port symmetrical junction.
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described by

b1 ¼ a1S11 þ a2S12 þ a3S13 (4:5a)

b2 ¼ a1S21 þ a2S22 þ a3S23 (4:5b)

b3 ¼ a1S31 þ a2S32 þ a3S33 (4:5c)

A schematic diagram of this relationship is depicted in Fig. 4.4.
A typical diagonal element of the scattering parameters of the three-port is defined

in terms of the incident and reflected waves by the preceding equations as

S11 ¼
b1
a1

����
a2 ¼ a3 ¼ 0

(4:6a)

FIGURE 4.4 Definition of incident and reflected waves in three-port junction.
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Typical off-diagonal elements are defined by

S13 ¼
b1
a3

����
a1¼ a2 ¼ 0

(4:6b)

S31 ¼
b3
a1

����
a2 ¼ a3 ¼ 0

(4:6c)

The ai and bi are normalized in such a way that 1
2aia

�
i is the available power at port

i and 1
2bib

�
i is the emergent power at the same port.

ai ¼
1
2

Vi=
ffiffiffiffiffi
Z0

p
þ

ffiffiffiffiffi
Z0

p
Ii

� �
, i ¼ 1, 2, 3 (4:7)

bi ¼
1
2

Vi=
ffiffiffiffiffi
Z0

p
þ

ffiffiffiffiffi
Z0

p
Ii

� �
, i ¼ 1, 2, 3 (4:8)

Adopting these definitions indicates that the a’s and b’s at any port are linear
combinations of the voltage and current variables at the same port. Such linear com-
binations are in fact also met in the description of a uniform transmission line for
which the solution to the transmission line equations is given in terms of forward
and backward traveling waves A exp(2gz) and B exp(gz) by

V¼ A exp(�gz)þ B exp(gz) (4:9)

Z0I ¼ A exp(�gz)� B exp(gz) (4:10)

A scrutiny of Eqs. (4.6b) and (4.6c) indicates that S13 connects port 3 to port 1,
whereas S31 connects port 1 to port 3.

4.3 CIRCULATOR DEFINITION BY MEANS OF CYCLIC
SUBSTITUTION

In the theory of finite groups, an operation, called cyclic substitution, is defined. This
operation is usually illustrated as being performed on a sequence of letters or
numbers. For example, the operation of cyclic substitution (abcd) means that a is
replaced by b, b by c, c by d, and d by a. If this operation is performed on the
sequence bdac, the result is

(abcd) ! bdac ! cabd
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In the scattering relationship between incident and reflected waves the scattering
matrix may be considered as indicating an operation performed on the incident
waves, the result of which yields the reflected waves.

If the operator S̄ corresponds to a cyclic substitution, then the device having such a
scattering matrix corresponds to the intuitive notion of the circulator property.
Consequently, a circulator may be defined as follows: A device, whose scattering
matrix operates on the incident waves so as to produce the same result as the oper-
ation of a cyclic substitution on the incident voltages, is called a circulator.

For a given m-port circulator, different systems of port numbering will lead to
(m 2 1) distinct scattering matrices. In the case of a structurally symmetrical circula-
tor, the number of possibilities may be reduced, however, by specifying a standard
numbering system. For an m-port junction having the symmetry in Figs. 4.2 and
4.3, it is always possible to number the ports to represent the cyclic substitution
(1, 2, 3, . . . ,m).

4.4 THE UNITARY CONDITION

The entries of the scattering matrix have the nature of reflection and transmission par-
ameters so that the amplitude of any of its entries is bounded by zero and unity. The
permissible relationships between these entries will now be deduced. The derivation
of the required result starts by recognizing that the power dissipated in an m-port
network is the difference between the incident power at all ports and the reflected
power at the same ports.

Pdiss ¼
1
2

Xm
i

aia
�
i �

Xm
i

bib
�
i

 !
(4:11)

It may readily be demonstrated that

Xm
i

aia
�
i ¼ (a)T(a�) (4:12)

Xm
i

bib
�
i ¼ (a)T(S)T(S

�
)(a�) (4:13)

The power dissipated in the circuit may therefore be expressed in matrix form as

Pdiss ¼ 1
2(a)

T[I� (S)T(S
�
)](a�) (4:14)

Ī is the unit matrix, (S̄)T is the transpose of S̄, and (ā�) is the conjugate of ā.
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The quantity defined by the preceding equation is a Hermitian form in that the
matrix inside the inner brackets

Q ¼ I� (S)T(S
�
) (4:15)

is its own conjugate transpose.

[I� (S)T(S
�
)]�T ¼ I� (S) (4:16)

All energy functions are in fact either Hermitian or quadratic forms.
Since the power dissipated in a network is always positive, the Hermitian form in

Eq. (4.14) is positive semidefinite.

1
2(a)

T[I� (S)T(S
�
)](a�) � 0 (4:17)

For a reactance function the Hermitian form in the preceding equation is satisfied with
the equal sign. The condition for a lossless junction therefore becomes

I� (S)T(S
�
) ¼ 0 (4:18)

This last statement indicates that the scattering matrix of a dissipationless network is
unitary. It is widely used to establish the permissible relationships between the entries
of the matrix in a reactance network.

4.5 NETWORK DEFINITION OF JUNCTION CIRCULATOR

Many of the properties of junction circulators are best discussed in terms of the scat-
tering matrix of the device introduced in this chapter. The required nomenclature is
defined in Fig. 4.3. It will now be demonstrated that a matched nonreciprocal sym-
metric three-port junction is necessarily a circulator. The scattering matrix of such
a junction is given by

S ¼
0 S21 S31
S31 0 S21
S21 S31 0

2
4

3
5 (4:19)

Evaluating the unitary condition under this assumption indicates that

S21j j2 þ S31j j2 ¼ 1 (4:20)
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and

S21S
�
31 ¼ 0 (4:21)

These two equations are consistent provided

S21j j ¼ 1 (4:22)

and

S31j j ¼ 0 (4:23)

or

S21j j ¼ 0 (4:24)

S31j j ¼ 1 (4:25)

The above relationships indicate that if S11 ¼ 0 (matched condition), then either
jS21j ¼ 1 and jS31j ¼ 0 or jS21j ¼ 0 and jS31j ¼ 1. Either of these two conditions
coincide with the definition of a perfect circulator.

The unitary condition may also be employed to demonstrate that it is impossible to
match a lossless reciprocal three-port junction with threefold symmetry. If the junc-
tion is reciprocal it has the property that its scattering matrix is symmetric:

Sij ¼ Sji (4:26)

If it is matched its diagonal elements must be identically zero:

S11 ¼ S22 ¼ S33 ¼ 0 (4:27)

The scattering matrix for a matched reciprocal three-port junction is therefore

S ¼
0 S21 S21
S21 0 S21
S21 S21 0

2
4

3
5 (4:28)

Evaluating the unitary condition for this scattering matrix indicates that

2S21S
�
21 ¼ 1 (4:29)
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and

S21S
�
21 ¼ 0 (4:30)

These two equations cannot be satisfied at the same time, so it is apparent that it is
impossible to match such a three-port junction. It may be demonstrated separately
that the best possible match for a reciprocal three-port symmetrical junction coincides
with the condition S11¼ 1

3.

4.6 SEMI-IDEAL CIRCULATOR

It is also possible to obtain a relationship between the scattering coefficients of a loss-
less but nearly matched circulator. The scattering matrix for this network is

S ¼
S11 S21 S31
S31 S11 S21
S21 S31 S11

2
4

3
5 (4:31)

Applying the unitary condition gives

S11j j2þ S21j j2þ S31j j2¼ 1 (4:32)

and

S21S
�
31 þ S21S

�
11 þ S31S

�
11 ¼ 0 (4:33)

One solution with S21 close to unity and S11 and S31 small is

S11j j � S31j j (4:34)

The transmission loss is specified by

S21j j � 1� 2 S11j j2 (4:35)

Thus minimum insertion loss corresponds to both maximum isolation and minimum
VSWR looking into any of the three ports.

By virtue of Eq. (4.33), jS21j can be expressed in terms of jS11j and jS31j. The three
quantities in this equation can be interpreted as three vectors that span a triangle. Then
inequality relations such as

S21j j S31j j � S11j j S21j j þ S31j jð Þ (4:36)
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are valid. From these considerations Butterweck deduced that in the jS11j, jS21j
diagram the possible three ports are restricted to a region that is bounded by three
ellipses:

S11j j2 þ S11j j S31j j þ S31j j2 � S11j j � S31j j ¼ 0 (4:37a)

S11j j2 � S11j j S31j j þ S31j j2 þ S11j j � S31j j ¼ 0 (4:37b)

S11j j2� S11j j S31j j þ S31j j2� S11j j þ S31j j ¼ 0 (4:37c)

In Fig. 4.5 this region is given by the shaded area. The origin of the diagram jS11j ¼ 0,
jS31j ¼ 0 represents an ideal clockwise circulator.

4.7 DISSIPATION MATRIX

In the presence of dissipation, the Hermitian form in Eq. (4.14), must be positive real,

Q ¼ I� S
�� �T

S
� �

(4:38)

FIGURE 4.5 The close region of possible lossless and cyclic symmetrical three-ports.
(Reproduced with permission from S. Hagelin, A flow graph analysis of 3- and 4 port junction
circulators, IEEE Trans. Microwave Theory Tech. Vol. MTT-14(5), pp. 243–249, 1996.)

76 SCATTERING MATRIX OF m-PORT JUNCTION



where Ī is a unit matrix, S̄ is the scattering matrix, and Q̄ is a dissipation matrix,
which is defined by

Q ¼
q11 �q21 �q31

�q31 q11 �q21
�q21 �q31 q11

2
4

3
5 (4:39)

In the case of a symmetrical three-port junction, one has

q11 ¼ � S11j j2� S21j j2� S31j j2 (4:40a)

q21 ¼ S11S
�
21 þ S21S

�
31 þ S31S

�
11 (4:40b)

q31 ¼ q�21 (4:40c)

The necessary and sufficient condition for the dissipation matrix to be positive real is
that the principal minors of the dissipation matrix be nonnegative.

q11 � 0 (4:41a)

q11 �q21
�q�21 q11

����
���� � 0 (4:41b)

q11 �q21 �q�21
�q�21 q11 �q21
�q21 �q�21 q11

������

������
� 0 (4:41c)

4.8 TERMINAL PLANES OF JUNCTIONS

A classic network problem is the mapping of the entries of the scattering matrix under
a shift of planes of the network. The required transformation is

S
1 ¼ PSP (4:42)

S is the scattering matrix at the original set of ports, S1 is that at the new set of ports,
and P̄ is a diagonal matrix given by

P¼

exp (� ju1) 0 0 0 0 0
0 exp (� ju2) 0 0 0 0
0 0 exp (� ju3) 0 0 0
0 0 0 exp (� ju4) 0 0
0 0 0 0 exp (� ju5) 0
0 0 0 0 0 exp (� ju6)

2
6666664

3
7777775

(4:43)
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where ui is the electrical length at port i; ui is positive toward the generator and
negative away from it. A scrutiny of the linear transformation of the scattering
matrix indicates that

Sij ¼ Sij exp [� j(ui � u j)] (4:44)

4.9 INSERTION PHASE SHIFT

A desirable quantity in the description of a three-port junction circulator is its phase
shift between ports 1 and 2. The derivation of this quantity starts with a statement
of S21:

S21 ¼
s0 þ asþ þ a2s�

3
(4:45)

where

s0 ¼ �1 (4:46a)

sþ ¼ exp �j2 f1 � Df1 þ p=2ð Þ½ � (4:46b)

s� ¼ exp �j2 f1 þ Df1 þ p=2ð Þ½ � (4:46c)

and

a ¼ exp ( j120) (4:47a)

a2 ¼ exp ( j240) (4:47b)

The quantities s0, sþ, and s2 are the so-called eigenvalues of the problem region and
represent the reflection coefficients of the eigen-networks of the junction. These are
defined in some detail in Chapter 5.

Combining the preceding equations readily gives

S21 ¼
�1þ (cos 2Df1 þ

ffiffiffi
3

p
sin 2Df1) exp (�j2f1)
3

(4:48)

In the vicinity of the circulation condition

2Df1 ¼ p=3
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In the case of a clockwise circulator

S21 ¼
�1þ 2 exp(�j2f1)

3
(4:49)

At the midband frequency

f1 ¼ p=2

and

S21 ¼ �1 (4:50)

Writing S21 as

S21 ¼ S21j j exp �j2f21ð Þ

gives

S21j j ¼
�1þ 2 cos 2f1ð Þ2þ 2 sin 2f1ð Þ2

h i1=2

3
(4:51)

and

tan 2f21 ¼
�2 sin 2f1

�1þ 2 cos 2f1ð Þ (4:52)

In the vicinity of f1 ¼ p/2

tan 2f21 � 2
3 sin 2f1 (4:53)

4.10 SPECIFICATION OF THREE-PORT CIRCULATORS
WITH NONIDEAL LOADS

An ideal circulator is usually specified by its return loss (dB) at any port, its inser-
tion loss (dB) between any two ports in the direction of circulation, and its isolation
(dB) between any two ports in the other direction. The equipment maker, however,
is usually more interested in the overall system specification rather than that of the
circulator between ideal terminations. The VSWR at port 1 of a three-port circulator
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is in practice not only dependent on its specification but also on the load condition
at port 2 and the specification of the termination at port 3. While an exact
formulation of the problem is in principle available, it is too complicated for engin-
eering practice. Upper and lower bounds to the problem in question may be derived
by disregarding any reflection at port 1 in constructing the incident wave at port 2
and by neglecting any secondary reflections at port 1. Practical components are
usually described in terms of a VSWR specification and this is the notation
adopted here.

The required derivation rests on the rules governing the combination of two dis-
crete VSWR S1 and S2 associated with two neighboring discontinuities. The worst
case effective VSWR at port 1 is

Seff ¼
(SCSA)(SCSL)þ 1

SA þ SL
(4:54)

SC is the VSWR of the circulator at any port, SA is that of the antenna at port 2, and SL
is that of the load at port 3. A schematic diagram of the arrangement considered here
is indicated in Fig. 4.6.

This equation may also be readily solved for either SA, SC, or SL in terms of Seff.

SA ¼ �1þ SeffSL
�Seff þ S2CSL

(4:55a)

FIGURE 4.6 Schematic diagram of three-port junction circulator with nonideal loads.
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SL ¼ �1þ SASeff
�Seff þ S2CSA

(4:55b)

and

SC ¼ Seff (SA þ SL)
SASL

� 1

� �1=2
(4:55c)

The derivation of the best possible situation at port 1 is

Seff ¼
S2C þ SASL
SA þ SL

, Srefl � SC (4:56)

and

SA ¼ S2C � SLSeff
Seff � SL

, Srefl � SC (4:57a)

SL ¼ SASeff � S2C
SA � Seff

, Srefl � SC (4:57b)

SC ¼ Seff (SA þ SL)� SASL½ �1=2, Srefl � SC (4:57c)

Figure 4.7 indicates the relationship between the best and worst bounds on the VSWR
at port 1 and the antenna load at port 2 for different circulator specifications and one
typical load condition. The lower bounds in these curves are left blank between the
origin and SA � SC.

The robustness of the approximations utilized in this work has been verified by
introducing either the condition SA ¼ SC or SL ¼ SC in the lower bound relationship.
A scrutiny of each case one at a time indicates that Seff equals SC in keeping with the
exact result.

Seff ¼ SC (4:58)

The lower bound obtained here is in keeping with the definition of the complex
gyrator circuit of this sort of junction when either port 2 or port 3 is terminated in
its complex conjugate load.

Taking the particular case for which SA ¼ SL ¼ SC ¼ 1.22 indicates that Seff is
bracketed between 1.22 and 1.32.
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4.11 SWEPT FREQUENCY DESCRIPTION OF SCATTERING
PARAMETERS

The scattering parameters of a junction circulator may be extracted from a knowledge
of the frequency behavior of various one-port immittance statements. These types of
measurements may also be separately generalized by either forming the input impe-
dance or reflection coefficient at one port of the device with the other two terminated
in various load conditions. The required relationship is given by

rin ¼ S11 þ
(r2 þ r3)Aþ r2r3(B� 2S11A)

1� (r2 þ r3)S11 þ r2r3(S
2
11 � A)

(4:59)

FIGURE 4.7 Upper and lower bounds on effective VSWR of load at port 1 versus VSWR at
port 2 for different circulator and termination specifications. [Reproduced with permission from
J. Helszajn, Standing-wave solution of 3-port junction circulator with 1-port terminated in
a variable short circuit, Proc. IEE, Vol. 126, Part H (Microwaves, Optics and Acoustics),
Mar. 1979.]

82 SCATTERING MATRIX OF m-PORT JUNCTION



where

A ¼ S12S13 (4:60a)

B ¼ S312 þ S313 (4:60b)

Each scattering parameter has both amplitude and phase and r2 and r3 are the reflec-
tion coefficients at ports 2 and 3:

ri ¼
Zi � Z0
Zi þ Z0

, i ¼ 2, 3 (4:61)

The unknown amplitude and phase constants of S11, S21, and S31 may be deduced
from measurements of rin at port 1 by selecting six different load conditions at
ports 2 and 3 and thereafter constructing suitable linear equations from which the
unknown quantities may be calculated. If, for instance, r2 ¼ r3 ¼ 0 in the description
of rin, then the reflection coefficient is given for completeness as

rin ¼ S11 (4:62)

as is readily understood. Figure 4.8 indicates the experimental arrangement.

FIGURE 4.8 One-port experimental arrangement for extraction of scattering parameters.
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CHAPTER FIVE

Eigenvalue Adjustment of
Three-Port Circulator

5.1 INTRODUCTION

The unitary condition introduced in Chapter 4 may be used to define an ideal
circulator but does not give any insight into its physical adjustment. In order
to do so, it is necessary to establish the eigenvalues si and eigenvectors Ui

associated with its scattering matrix description. A study of this problem indi-
cates that the entries of the scattering matrix may be reduced to linear combi-
nations of the so-called eigenvalues of the junction. A typical eigenvalue of a
symmetrical m-port junction is a one-port reflection coefficient or immittance
at any port produced by the application of a typical eigenvector at its ports.
The eigenvectors are unique ways of exciting the junction and are determined
by its symmetry only. The one-port circuits formed in this way are known as
the eigen-networks of the problem region. The adjustment of the ideal three-
port circulator requires that its reflection eigenvalues lie equally spaced on a
unit circle. This condition is both necessary and sufficient and can be achieved
by having recourse to only two independent variables. There are altogether four
possible ideal eigenvalue diagrams of degree-1, each of which is associated
with a unique complex gyrator circuit. One eigenvalue is usually associated
with a so-called in-phase eigenvector and the other two by counterrotating
ones. In a reciprocal three-port junction the latter two eigenvalues are degenerate,
whereas in a nonreciprocal junction these are split by the gyrotropy of the
gyromagnetic resonator.

The Stripline Circulator: Theory and Practice. By J. Helszajn
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5.2 SCATTERING MATRIX, EIGENVALUES, AND EIGENVECTORS

The importance of the eigenvalue problem in network theory, to be described now,
resides in the fact that the entries of a symmetrical or Hermitian square matrix may
always be expressed in terms of the roots (eigenvalues) of its characteristic equation.
One such matrix is the scattering one met in connection with the description of inci-
dent and reflected waves in an m-port circuit.

b ¼ Sa (5:1)

The formulation of the eigenvalue problem starts by examining the solutions of
this standard equation in the case for which the m-dependent variables are related
by a scalar quantity to the m-independent variables

a ¼ Ui (5:2)

b ¼ siUi (5:3)

si is known as an eigenvalue and Ui as an eigenvector.
The eigenvalue equation is now obtained by substituting the two preceding con-

ditions into the original equation. The result is

SUi ¼ siUi (5:4)

This equation has a nonvanishing value for Ui provided

det S� siI
�� �� ¼ 0 (5:5)

where I is a unit vector.
The determinant defined by this equation is a polynomial of degree m and its m

roots are the m eigenvalues of the scattering matrix, some of which may be equal
(degenerate). The corresponding m eigenvectors may be evaluated by substituting
each eigenvalue one at a time into the eigenvalue equation. In the special case of
the symmetrical m-port network considered here, the m-eigenvalues are one-port
reflection coefficients at any port of the junction. For a lossless junction, these lie
in the complex plane with unit amplitude. These eigenvalues can be calculated
once the coefficients of the scattering matrix are specified. The m eigenvectors are
the m possible voltage settings at the ports of the junction and are fixed by its sym-
metry only. The one-port circuits associated with the reflection eigenvalues are
known as the eigen-networks of the device. The eigenvectors are completely deter-
mined by the symmetry of the junction so that a symmetrical perturbation of the junc-
tion alters the phase angles of the eigenvalues but leaves the eigenvectors unchanged.
A schematic diagram of the eigenvalues equation is depicted in Fig. 5.1.
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5.3 EIGENVALUE ADJUSTMENT OF THREE-PORT CIRCULATOR

The eigenvalue arrangement of a reciprocal three-port junction for which S11 is a
minimum coincides with the first of the two circulation conditions of one possible
ideal three-port circulator. It will be derived first.

For a reciprocal three-port junction with threefold symmetry, the scattering matrix is

S ¼
S11 S21 S21
S21 S11 S21
S21 S21 S11

2
4

3
5 (5:6)

The characteristic equation associated with this matrix is

(S11 � si)
3 � 3(S11 � si)S

2
21 þ 2S321 ¼ 0 (5:7)

Its three eigenvalues or roots are

s0 ¼ S11 þ 2S21 (5:8)

sþ ¼ s� ¼ S11 � S21 (5:9)

FIGURE 5.1 Schematic diagram of three-port junction indicating definition of eigenvalue
equation.
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This result indicates that two of the three eigenvalues of a reciprocal three-port junc-
tion are degenerate.

Taking linear combinations of these two equations indicates that the entries of the
scattering matrix can also be written in terms of the eigenvalues as

S11 ¼
s0 þ 2sþ

3
(5:10)

S21 ¼
s0 � sþ

3
(5:11)

It is observed from the first of these two relationships that the reflection coefficient S11
in such a junction is a minimum equal to 1

3

�� �� provided
sþ ¼ �s0 (5:12)

The second of these equations suggests that the condition for which the reflection
coefficient S11 is a minimum coincides with that for which the transmission one
S21 is a maximum. The eigenvalue diagram for this situation is illustrated in Fig. 5.2.

One possible solution for the one-port reflection coefficients that meets the last two
conditions is

sþ ¼ exp �j2 f1 þ
p

2

� �h i
(5:13a)

s� ¼ exp �j2 f1 þ
p

2

� �h i
(5:13b)

s0 ¼ exp �j2(f0)½ � (5:13c)

FIGURE 5.2 Eigenvalue diagram of reciprocal three-port junction for maximum power
transfer.
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provided that

f0 ¼ f1 ¼
p

2
(5:13d)

The reflection coefficients obtained in this way are associated with the one-port short-
and open-circuited transmission lines illustrated in Fig. 5.3. The choice of these sol-
utions will be discussed separately in connection with the description of the eigenvec-
tors of the junction.

The scattering matrix for the arrangement for which S11 is a minimum is now
obtained by combining Eq. (5.10) and Eq. (5.11) with Eqs. (5.13a)–(5.13c). The
required result is

S ¼

1
3

�2
3

�2
3

�2
3

1
3

�2
3

�2
3

�2
3

1
3

2
666664

3
777775

(5:14)

FIGURE 5.3 Eigen-networks of reciprocal three-port junction.

5.3 EIGENVALUE ADJUSTMENT OF THREE-PORT CIRCULATOR 89



The derivation of the eigenvalue diagram of an ideal circulator likewise proceeds
with the definition of its scattering matrix

S ¼
0 S21 0
0 0 S21
S21 0 0

2
4

3
5 (5:15)

where S21has unit amplitude.
The characteristic equation associated with this matrix is given without ado by

�s3i þ S321 ¼ 0 (5:16)

One result for a device for which S21 ¼ 21 is

sþ ¼ exp �j2 f1 þ fþ þ p

2

� �h i
(5:17a)

s�1 ¼ exp �j2 f1 þ f� þ p

2

� �h i
(5:17b)

s0 ¼ exp �j(2f0)½ � (5:17c)

provided that

f1 ¼ f0 ¼
p

2
(5:18a)

fþ ¼ �f� ¼ �p

6
(5:18b)

The three reflection coefficients of an ideal circulator therefore lie equally spaced on a
unit circle in the manner depicted in Fig. 5.4. One possible set of one-port eigen-
networks that is compatible with this solution is indicated in Fig. 5.5.

In what follows it will be demonstrated that the eigenvectors U+ corresponding to
the eigenvalues sþ and s2 produce counterrotating magnetic fields on the axis of the
junction. Such magnetic fields establish different scalar permeabilities in a gyromag-
netic medium so that a practical means of removing the degeneracy between the
reflection eigenvalues exists.

5.4 EIGENVECTORS

The three eigenvectors of the problem region may be established by solving the
eigenvalue equations one at a time. The equation connecting the eigenvector U0
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FIGURE 5.4 Eigenvalue diagram of ideal three-port junction circulator.

FIGURE 5.5 Eigen-networks of ideal three-port junction circulator.
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and the eigenvalue s0 of an ideal three-port circulator is

0 �1 0
0 0 �1

�1 0 0

2
4

3
5

U(1)
0

U(2)
0

U(3)
0

2
64

3
75 ¼ s0

U(1)
0

U(2)
0

U(3)
0

2
64

3
75 (5:19)

where

s0 ¼ exp(�jp) (5:20)

Taking U0
(1) as 1 readily gives one solution as

U(1)
0 ¼ 1 (5:21a)

U(2)
0 ¼ 1 (5:21b)

U(3)
0 ¼ 1 (5:21c)

The eigenvalue equation for the eigenvector Uþ and the eigenvalue sþ is

0 �1 0
0 0 �1

�1 0 0

2
4

3
5

U(1)
þ

U(2)
þ

U(3)
þ

2
64

3
75 ¼ sþ

U(1)
þ

U(2)
þ

U(3)
þ

2
64

3
75 (5:22)

where

sþ ¼ exp(�jp=3) (5:23)

Taking Uþ
(1) as 1 indicates that the solution, in this instance, is given by

U(1)
þ ¼ 1 (5:24a)

U(2)
þ ¼ a (5:24b)

U(3)
þ ¼ a2 (5:24c)
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where

a ¼ exp( j120) (5:25a)

a2 ¼ exp( j240) (5:25b)

The solution of the eigenvalue equation for the eigenvector U2 of the junction is
given without ado by

U(1)
� ¼ 1 (5:26a)

U(2)
� ¼ a2 (5:26b)

U(3)
� ¼ a (5:26c)

The eigenvectors are normalized in such a way that

(U+)TU
�
+ ¼ 1 (5:27)

One solution is therefore described by

U0 ¼
1ffiffiffi
3

p
1
1
1

2
4
3
5, Uþ ¼ 1ffiffiffi

3
p

1
a

a2

2
4

3
5, U� ¼ 1ffiffiffi

3
p

1
a2

a

2
4

3
5 (5:28)

The three eigensolutions of the problem are illustrated in Fig. 5.6. Application of each
eigenvector one at a time reveals the variables s0, sþ, and s2 at any port.

Scrutiny of the magnetic field pattern in the transverse plane one at a time for the
U+ eigenvectors indicates that each is circularly polarized on the axis of the junction
with a different hand. A suitably magnetized magnetic insulator displays different
scalar permeabilities m+k, for such rotating fields so that such a magnetized junction
may be employed to split the degeneracy between the s+ reflection coefficients.
This arrangement therefore provides a practical means for the construction of the
ideal circulator.

A property of a symmetric junction that will now be verified is that a single
signal at any port establishes all the eigenvectors of the problem region with equal
amplitudes. This statement may be demonstrated without difficulty by constructing
a linear combination of the eigenvectors associated with the problem under
consideration.

1
0
0

2
4
3
5 ¼ 1

3

1
1
1

2
4
3
5þ 1

3

1
a

a2

2
4

3
5þ 1

3

1
a2

a

2
4

3
5 (5:29)
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FIGURE 5.6 Eigensolutions of three-port circulator.
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The equality is met provided the following identity is satisfied:

1þ aþ a2 ¼ 0 (5:30)

The eigenvectors are fixed by the junction symmetry; a symmetric perturbation of the
junction alters the phases of the eigenvalues but leaves the eigenvectors unchanged.

5.5 SCATTERING MATRIX OF THREE-PORT JUNCTION CIRCULATOR

One technique that is often employed in the analysis of a symmetrical m-port network
is to express the entries of its matrix description in terms of the solutions of more
simple (usually one-port) circuits that reflect the symmetry of the problem region.
One unique decomposition may be achieved by adopting the eigenvectors of the
network for this purpose. The one-port circuits established in this way are known
as the eigen-networks of the problem region. The eigenvalues of the scattering
matrix are then the reflection coefficients associated with these eigen-networks.
Furthermore, the entries of the scattering matrix are now reduced to simple linear
combinations of these same eigenvalues. This procedure will now be demonstrated
in connection with the description of the three-port junction circulator by considering
each eigenvector one at a time as a preamble to laying out a more universal mathe-
matical technique.

The required relationship between the scattering parameters and the eigenvalues of
the problem region starts by constructing the incident and reflected waves for the first
triplet of voltage settings or eigenvector.

b1
b2
b3

2
4

3
5 ¼

S11 S21 S31
S31 S11 S21
S21 S31 S11

2
4

3
5

1
3
1
3
1
3

2
4
3
5 (5:31)

This gives

b1
1
3

� � ¼ S11 þ S21 þ S31 (5:32a)

b2
1
3

� � ¼ S31 þ S11 þ S21 (5:32b)

b3
1
3

� � ¼ S21 þ S31 þ S11 (5:32c)

The reflection coefficient at each port is therefore identical and in this instance is
denoted by r0:

b1
1
3

� � ¼ b2
1
3

� � ¼ b3
1
3

� � ¼ r0 (5:33)
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where

r0 ¼ S11 þ S21 þ S31 (5:34)

The factor 13 in the definition of the incident waves stems from the fact that each port is
simultaneously excited.

Taking the second triplet of voltage settings or eigenvector gives

b1
b2
b3

2
4

3
5 ¼

S11 S21 S31
S31 S11 S21
S21 S31 S11

2
4

3
5

1=3
a=3
a2=3

2
4

3
5 (5:35)

or

b1
1=3ð Þ ¼ S11 þ aS21 þ a2S31 (5:36a)

b2
(a=3)

¼ S11 þ aS21 þ a2S31 (5:36b)

b3
(a2=3)

¼ S11 þ aS21 þ a2S31 (5:36c)

provided a3 ¼ 1.
The reflection coefficient at each port is again the same. Denoting it by rþ gives

rþ ¼ S11 þ aS21 þ a2S31 (5:37)

Likewise

r� ¼ S11 þ a2S21 þ aS31 (5:38)

The required result is now established by taking suitable combinations of r0, rþ, and
r2. Taking S11 by way of an example indicates that

S11 ¼
r0 þ rþ þ r�

3
(5:39a)

as asserted.
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The other two relationships are obtained without ado:

S21 ¼
r0 þ arþ þ a2r�

3
(5:39b)

S31 ¼
r0 þ a2rþ þ ar�

3
(5:39c)

The entries of the scattering matrix are therefore simple linear combinations of the
one-port variables or eigenvalues revealed by the different eigenvectors of the
problem region as asserted.

If the network is reciprocal, then

rþ ¼ r� (5:40)

and

S11 ¼
r0 þ 2rþ

3
(5:41a)

S21 ¼ S31 ¼
r0 � rþ

3
(5:41b)

in keeping with Eqs. (5.10) and (5.11).

5.6 DIAGONALIZATION

If the eigenvectors and eigenvalues are known, it is possible to expand the coeffi-
cients of the scattering matrix using a simple mathematical technique. This may be
done by using the following similarity transformation:

S ¼ UlU
�1

(5:42)

The columns of the matrix U are constructed in terms of the eigenvectors Ui of the
problem region, and U21 is the inverse of U. The matrix l̄ is a diagonal matrix with
the eigenvalues of S̄ along its main diagonal. If the eigenvectors of S̄ are linearly inde-
pendent and S̄ is a real symmetric or Hermitian matrix, it may be demonstrated that

U
�1 ¼ (U

�
)T (5:43)

where (U�)T is the transpose of the complex conjugate ofU. The relationship between the
eigenvalue and the coefficients of the scattering matrix is then obtained by multiplying
out the similarity identity.
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The diagonalization procedure will now be developed in the case of an ideal cir-
culator circuit by constructing the square matrices U and (U�)T in terms of the eigen-
vectors of the problem region.

U ¼ 1ffiffiffi
3

p
1 1 1
1 a a2

1 a2 a

2
4

3
5 (5:44)

U
�� �T¼ 1ffiffiffi

3
p

1 1 1
1 a� (a�)2

1 (a�)2 a�

2
4

3
5 (5:45)

In forming the matrixU in terms of them eigenvectors of the problem region, care has
been taken to ensure that the resultant matrix is symmetrical.

The diagonal matrix l is constructed using the eigenvalues of S:

l ¼
s0 0 0
0 sþ 0
0 0 s�

2
4

3
5 (5:46)

Diagonalizing the matrix S gives

S11 S21 S31
S31 S11 S21
S21 S31 S11

2
4

3
5 ¼ 1

3

1 1 1
1 a a2

1 a2 a

2
4

3
5

s0 0 0
0 sþ 0
0 0 s�

2
4

3
5

�
1 1 1
1 a� (a�)2

1 (a�)2 a�

2
4

3
5 (5:47)

The required result is in accord with that described by Eqs. (5.39), (5.40), and (5.41).
The eigenvalues appearing in the scattering description of the junction correspond

to one-port reflection variables. Such variables are displayed at any port provided the
generator settings coincide with the corresponding eigenvectors.

This result again indicates that the reflection eigenvalues of an ideal three-port
junction circulator are displaced by 1208 on a unit circle.

5.7 DISSIPATION EIGENVALUES

One way to cater for dissipation in an m-port symmetrical junction is to introduce a
dissipation matrix. If the scattering and dissipation matrices have common eigen-
vectors, the respective eigenvalues are related by the following theorem. If

QUi ¼ qiUi
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then

f (Q)Ui ¼ f (qi)Ui

where Ui is an eigenvector.
This theorem may be used to deduce the eigenvalues of the dissipation matrix in

terms of those of the scattering matrix.
Making use of the relationship between the two matrices in Chapter 4 gives, in the

case of the three-port junction,

q0 ¼ 1� s0s
�
0 (5:48a)

qþ1 ¼ 1� sþ1s
�
þ1 (5:48b)

q�1 ¼ 1� s�1s
�
�1 (5:48c)

The last three equations may be used to construct the scattering matrix in terms of the
eigenvalues of the dissipation matrix. In a lossless junction, the amplitudes of the
scattering matrix eigenvalues are unity, while if the junction is lossy the amplitudes
will depart from unity.

The above discussion indicates that the eigenvalues of the dissipation matrix rep-
resent the dissipation associated with each possible way of exciting the junction.
These eigenvalues are real quantities that become zero when those of the scattering
matrix become unity.

The entries of the dissipation matrix are

q11 ¼
q0 þ qþ þ q�1

3
(5:49a)

q12 ¼
q0 þ aqþ1 þ a2q�1

3
(5:49b)

q13 ¼
q0 þ a2qþ1 þ aq�1

3
(5:49c)

Here, q11 represents the total dissipation of the junction, and q12 is a complex quantity
that determines the allowable relationships between the scattering parameters.

In practice, the entries of the dissipation and scattering matrices may be evaluated
directly by relating their eigenvalues to the loaded and unloaded Q-factors of the
junction eigen-networks.
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5.8 EVALUATION OF DEGENERATE COUNTERROTATING
EIGENVALUE

One possible way in which the degenerate eigenvalue s1 of a reciprocal three-port
junction can be experimentally deduced without the need to fabricate its eigen-
network consists of placing a sliding short-circuit at port 2 and a matched load at
port 3. The variable short-circuit is varied until there is total reflection at port 1.
The reflection coefficient at port 1 is then the eigenvalue s1. This technique is
especially appropriate in the case of a waveguide junction for which the reference
terminals are usually ill defined. The experimental arrangement is shown in Fig. 5.7.

The derivation of this technique starts with the relationships between the incoming
and outgoing waves at the three ports of the junction.

b1
b2
b3

2
4

3
5 ¼

S11 S21 S21
S21 S11 S21
S21 S21 S11

2
4

3
5

a1
a2
a3

2
4

3
5 (5:50)

where for a reciprocal three-port junction

S11 ¼
s0 þ 2s1

3
(5:51a)

S21 ¼
s0 � s1

3
(5:51b)

FIGURE 5.7 Experimental arrangement for measurement of degenerate reflection eigen-
value s1.
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In the arrangement considered here a variable short-circuit at port 2 is located at a
suitable plane in order to decouple port 3 from the other two. The conditions to be
satisfied are

b2 ¼ a2 exp [�j2(fþ p=2)] (5:52)

and

a3 ¼ b3 ¼ 0 (5:53)

f is the electrical length between the position of the short-circuit and the reference
plane of b2/a2. Introducing the second condition into Eq. (5.50) gives

b1 ¼ S11a1 þ S21a2 (5:54a)

b2 ¼ S21a1 þ S11a2 (5:54b)

0 ¼ S21a1 þ S21a2 (5:54c)

Scrutiny of the third of these three equations indicates that the waves a1 and a2 at ports
1 and 2 are out-of-phase there.

a1=a2 ¼ �1 (5:55)

Examination of the first and second equations separately indicates that the network
between ports 1 and 2 formed in this way is symmetrical. Substituting the above con-
dition into Eqs. (5.54a) and (5.54b) indicates that

b1=a1 ¼ S11 � S21 ¼ s1 (5:56)

and

b1=a1 ¼ b2=a2 (5:57)

respectively. The reflection coefficient at port 1 is then the degenerate eigenvalue s1 of
a junction:

s1 ¼ exp [�j2(fþ p=2)] (5:58)

This measurement therefore provides a means of measuring s1 with reference to the
short-circuit position. The planes at port 1 at which the standing wave is zero are

5.8 EVALUATION OF DEGENERATE COUNTERROTATING EIGENVALUE 101



known as the characteristic planes of the junction. The characteristic plane is defined
by the short-circuit positions given by f ¼ 0, p, 2p, and so on.

It is of note that the condition a ¼ b3 ¼ 0 is compatible with that met in the devel-
opment of the degenerate counterrotating eigen-network; namely, V3 ¼ I3 ¼ 0.

5.9 EVALUATION OF IN-PHASE EIGENVALUE

The phase angle of the in-phase eigen-network of a demagnetized junction may be
measured directly using the eigenvalue approach by applying equal in-phase
signals at the three ports of the junction. It may also be deduced by making use of
the relationship between the scattering variable S11 and the in-phase and degenerate
counterrotating eigenvalues s0 and s1.

In a lossless device for which the in-phase eigen-network may be synthesized by
an open-circuited network and the degenerate counterrotating ones by short-circuited
ones,

s0 ¼ 1 exp(�j2f0) (5:59)

s1 ¼ 1 exp [�j2(f1 þ p=2)] (5:60)

and

S11 ¼ S11j j exp(�j2f11) (5:61)

where

S11j j ¼ (VSWR)� 1
(VSWR)þ 1

(5:62)

The reflection phase angle f0 may be evaluated using Eq. (5.51a) by forming one of
four possible relationships between the independent variables jS11j, f11, and f1.

2f0 ¼ cos�1 (3 S11j j cos 2f11 þ 2 cos 2f1) (5:63a)

2f0 ¼ 2f1 þ pþ cos�1 9 S11j j2� 5
4

 !
(5:63b)

2f0 ¼ 2f11 þ cos�1 3 S11j j2� 1
2 S11j j

 !
(5:63c)
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The first identity is constructed by taking a linear combination of s0 and s0�, and the
other two are obtained by forming the products of S11S�11 and s1s1�. The first relationship
forf0 requires a knowledge of all three independent variables, whereas the second two
need only a measurement of jS11j and a knowledge of f1 or f11.

The fourth relationship between f0, f1, and f11 may also be formed by
eliminating jS11j by Eqs. (5.63a) and (5.63b). The result at 2f1 ¼ p involves f0

and f11 only:

cos2 2f0 þ (4� 4 cos2 2f11) cos 2f0 þ (4� 5 cos2 2f11) ¼ 0 (5:64)

S11 may be evaluated by terminating the two output ports by matched loads in the
manner indicated in Fig. 5.8, and s1 may be determined by decoupling port 3 from
port 1 by placing a variable short-circuit at port 2 as already described in connection
with Fig. 5.9. The angles of the scattering variables may be located at the reference
plane of the junction (ds/c) by replacing the resonator by a metal plug. The result for
f11 is

2f11 ¼ (4p=lg)(ds=c � dmin) (5:65)

where dmin is the position of a minimum in the VSWR along the line.
A similar relationship applies to 2f1 þ p.

2f1 þ p ¼ (4p=lg)(ds=c � dmin) (5:66)

FIGURE 5.8 Experimental arrangement for measurement of S11.
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5.10 SPLIT FREQUENCIES OF GYROMAGNETIC RESONATORS

Useful information about junction circulators may also be deduced from a knowledge
of the frequency variation of the reflection coefficient at port 1 with ports 2 and 3 ter-
minated in matched load. This method is particularly attractive with swept frequency

FIGURE 5.9 Eigenvalue diagrams of magnetized circulator. (Reproduced with permission
from J. Helszajn, Microwave measurement techniques for junction circulators, Trans. IEEE
Microwave Theory Tech., Vol. MTT-21, pp. 347–351, 1973.)
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instrumentation. The two split frequencies of the device coincide with the frequencies
for which

S11j j ¼ 1
3

(5:67)

which corresponds with a VSWR of 2:1 or a return loss of 9.5 dB. The derivation of
this condition begins by making use of the standard relationship between the scatter-
ing parameters and its eigenvalues:

S11 ¼
s0 þ sþ þ s�

3
(5:68)

It continues by replacing s0 by

s0 ¼ �1 (5:69)

and by recognizing that the required result coincided with the conditions for which
either sþ or s2 is in antiphase with s0.

The first condition gives

S11j j ¼ sþ
3

���
��� (5:70)

and the second condition gives

S11j j ¼ s�
3

���
��� (5:71)

The required result is obtained by recalling that

sþj j ¼ s�j j ¼ 1 (5:72)

Figure 5.9 depicts the required eigenvalue diagrams.

5.11 PHASE ANGLE OF IN-PHASE EIGENVALUE

A scrutiny of the relationship between the reflection coefficient at port 1 of the termi-
nated circulator and the eigenvalues of the junction indicates that the amplitude of the
former takes the value of 1

3 whenever any two of the three eigenvalues are in anti-
phase. The angle of the reflection coefficient is then that of the remaining eigenvalue.
The in-phase reflection angle at discrete frequencies is obtained by setting the arith-
metic mean of the counterrotating eigenvalues to zero.

sþ þ s� ¼ 0 (5:73)
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Introducing this condition into the relationship between the reflection coefficient at
port 1 of the junction and the eigenvalues of the problem region gives the required
result.

jS11j ¼
1
3

(5:74)

f11 ¼ 2f0 (5:75)

In obtaining this result S11 is defined as

S11 ¼ jS11j exp (�jf11) (5:76)

The angles f11 of the reflection coefficient S11 and that of the in-phase eigen-network
2f0 are therefore equal in this situation. This condition is satisfied in the vicinity of
the midband frequency at a value of gyrotropy for which the return loss has a single
value of 9.5 dB and at two discrete frequencies above this value of gyrotropy. The
immittance of the terminated circulator at each of these points is essentially real.
The eigenvalue diagram at which the former condition applies is depicted in
Fig. 5.10.

FIGURE 5.10 Extraction of in-phase reflection angle (f11 ¼ f0, S11j j ¼ 1
3
, g .

ffiffiffi
3

p
).
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5.12 ADJUSTMENT OF TRIPLE POLE CIRCULATOR

The usual eigenvalue adjustment of the classic circulator involves the extraction of
a pair of degenerate counterrotating impedance poles and one impedance zero. This
may be understood by recalling that the reflection eigenvalue of a typical eigen-
network has a value of þ1 at a typical impedance pole and a value of 21 at a
zero. It is also understood that this sort of adjustment is associated with a
degree-1 frequency response. It is, however, not unique. Another realization is
based on the extraction of an impedance pole from each eigen-network. Its adjust-
ment is tied to a degree-2 frequency response. The various steps involved in this

FIGURE 5.11 (a) Initial location of eigenvalues for wideband junction. (b) Location of
eigenvalues after first circulation for wideband junction. (c) Location of eigenvalues after
second circulation adjustment for wideband junction. (d) Location of eigenvalues after third
circulation adjustment for wideband junction. (Reproduced with permission from J. Helszajn,
Wideband circulator adjustment using n ¼+1 and n¼ 0 electromagnetic-field patterns,
Electron. Lett., Vol. 6, pp. 729–731, Nov. 12, 1970.)
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solution are illustrated in Fig. 5.11. It involves access to three instead of two inde-
pendent variables. A phenomenological adjustment of this sort of circulator in terms of
the TM0,1,0 and TM+1,1,0 in a simple disk gyromagnetic resonator with the top and
bottom electric walls and a magnetic node wall is indicated in Fig. 5.12.

FIGURE 5.12 Phenomenological adjustment of triple pole circulator using the TM0,1,0 and
TM+1,1,0 modes in a disk resonator. (Reproduced with permission from J. Helszajn, Three
resonant mode adjustment of the waveguide circulator, Radio Electron. Engineer, Vol. 42,
No. 4, pp. 1–4, Apr. 1972.)
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CHAPTER SIX

Impedance Matrix of Junction
Circulator

6.1 INTRODUCTION

There are in general six different ways in which the boundary conditions of a
circulator can be introduced. Its scattering matrix and its immittance matrices
provide three possible descriptions and the corresponding eigenvalues provide
three others. The actual choice in any particular situation is usually determined
by the physical problem. It is always possible to construct the scattering matrix
of a junction but its impedance or admittance matrix need not be realizable. It
has already been seen that a knowledge of the scattering matrix of the junction
together with the unitary condition is sufficient for its definition and that one of
its corresponding eigenvalues is all that is required for its adjustment. One-port
equivalent circuits, however, separately require a definition of one of its immit-
tance matrices. There are altogether four degree-1 circuits and four degree-2.
This chapter includes the derivation of each commonly encountered degree-1
and degree-2 circuits. It also develops the quality factor of the basic circulation
arrangement in terms of the gyrotropy of the gyromagnetic resonator as well as
other fundamental conditions met elsewhere in the text in connection with the
operation of the stripline circulator.

An impedance matrix can be constructed after each symmetrical adjustment of the
impedance eigenvalues of the junction. This means that it is possible, in principle, to
form (m 2 1) equivalent networks, each of which corresponds to the (m 2 1) eigen-
value adjustments of the matrix.

The Stripline Circulator: Theory and Practice. By J. Helszajn
Copyright # 2008 John Wiley & Sons, Inc.
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6.2 IMPEDANCE MATRIX OF JUNCTION CIRCULATOR

The derivation of equivalent circuits requires a knowledge of an immittance rather
than the scattering description of the network. The impedance matrix of a three-
port symmetrical but nonreciprocal network is

Z ¼
Z11 Z12 Z13

Z13 Z11 Z12

Z12 Z13 Z11

2
4

3
5 (6:1)

This matrix can be diagonalized to reveal the eigenvalues of the junction in a similar
way to that met in connection with the scattering one. This may be done by noting
that the eigenvectors of S are also those of Z since the two commute. Hence

Z ¼ UzU
�1

(6:2)

where z̄ is a diagonal matrix with the eigenvalues of the impedance matrix Z. It is
here assumed that the matrix Z exists. This statement requires that the matrix I 2 S
is nonsingular. The voltages and currents on this sort of circuit are indicated in
Fig. 6.1.

FIGURE 6.1 Voltage and current variables on three-port circulator.
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Following the procedure outlined in Chapter 5 to derive the relationships between
the scattering coefficients and its eigenvalues, one obtains in the case of the Z matrix

Z11 ¼ Z22 ¼ Z22 ¼
Z0 þ Zþ þ Z�

3
(6:3a)

Z12 ¼ Z23 ¼ Z31 ¼
Z0 þ aZþ þ a2Z�

3
(6:3b)

Z13 ¼ Z21 ¼ Z32 ¼
Z0 þ a2Zþ þ aZ�

3
(6:3c)

The magnetic field in the transverse plane for the in-phase set of the generator settings
(U0) is zero on the axis of the junction while the electric field along the axis is a
maximum there. A possible one-port equivalent circuit in this instance is an open-
circuited one. The solution for the counterrotating generator settings (Uþ and U2)
produces counterrotating circularly polarized magnetic fields in the transverse
plane on the axis of the junction and produces an electric field that is zero there.
One-port short-circuited transmission lines are therefore possibilities in this instance.
The eigensolutions of a three-port junction and the three eigen-networks of the circuit
are identical to those met in connection with the scattering matrix of the junction,
with the scattering variables replaced by immittance ones.

The open-circuit parameters of the single four-port junction are likewise related to
the impedance eigenvalues of the network by

Z11 ¼ Z22 ¼ Z33 ¼ Z44 ¼
Z0 þ Zþ1 þ Z�1 þ Zþ2

4
(6:4a)

Z12 ¼ Z23 ¼ Z34 ¼ Z41 ¼
Z0 þ jZþ1 � jZ�1 � Zþ2

4
(6:4b)

Z13 ¼ Z24 ¼ Z31 ¼ Z42 ¼
Z0 � Zþ1 � Z�1 þ Zþ2

4
(6:4c)

Z14 ¼ Z43 ¼ Z32 ¼ Z21 ¼
Z0 � jZþ1 þ jZ�1 � Zþ2

4
(6:4d)

6.3 EIGENVALUES OF IMMITTANCE MATRICES

A typical immittance matrix of the junction may be constructed in terms of the scat-
tering matrix, without the need to invert matrices by having recourse to the connec-
tions between the various eigenvalues. This may be done by making use of the
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following theorem, which has already been introduced in Chapter 5. If

SUi ¼ siUi (6:5)

then

f (S)Ui ¼ f (si)Ui (6:6)

This theorem will first be applied to deduce the relationship between the eigen-
values of the S and Z matrices. The bilinear transformation between the two
matrices is

S ¼ Z� Z0�I
� �

Zþ Z0�I
� ��1

(6:7)

Z0 is the characteristic impedance of the ports.
Making use of the above theorem immediately produces the classic relationship

between si and Zi:

si ¼
Zi � Z0
Zi þ Z0

(6:8)

Writing Zi in terms of si gives

Zi
Z0

¼ 1þ si
1� si

(6:9)

Zi is an absolute eigenvalue that satisfies the eigenvalue equation

ZUi ¼ ZiUi (6:10)

The derivation of the relationship between the eigenvalues of the scattering and
admittance matrices starts again with the bilinear relationship between the two:

S ¼ Y0I� Y
� �

Y0�Iþ Y
� ��1

(6:11)

The connection between the eigenvalue in this instance is given without ado by

si ¼
Y0 � Yi
Y0 þ Yi

(6:12)
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The corresponding linear transformation between Yi and si is given by

Yi
Y0

¼ 1� si
1þ si

(6:13)

Yi is a normalized eigenvalue that satisfies the eigenvalues equation defined by

YUi ¼ YiUi (6:14)

6.4 COMPLEX GYRATOR IMMITTANCE OF
THREE-PORT CIRCULATOR

The complex gyrator immittance of the three-port junction circulator is a fundamental
quantity in its description. It is defined by

Zin ¼ V1=I1 (6:15)

with

V3 ¼ I3 ¼ 0 (6:16)

The origin of this definition may be understood by writing down the voltage–current
relationships of the network:

V1

V2

0

2
4

3
5 ¼

Z11 Z21 Z31
Z31 Z11 Z21
Z21 Z31 Z11

2
4

3
5

I1
I2
0

2
4

3
5 (6:17)

The required result is

Zin ¼ Z11 � Z2
21=Z31 (6:18)

The condition at port 2 is then given by

Zout ¼ V2=(�I2) ¼ Z�
in (6:19)

This relationship indicates that terminating each port of the junction by Zin� in a cyclic
manner is sufficient to match the device. Figure 6.2 illustrates the schematic diagram
of this arrangement.

If the frequency variation of the in-phase impedance eigenvalue Z0 may be neg-
lected compared to those of the degenerate or split ones, then it is possible to
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deduce an especially simple model for this class of device (see Fig. 6.3). The required
realization starts by assuming that

Z0 ¼ 0 (6:20)

It continues by developing the open-circuit parameters under this condition:

Z11 � Zþ þ Z�

3
(6:21a)

Z21 � � Zþ þ Z�

6

� �
þ j

ffiffiffi
3

p Zþ � Z�

6

� �
(6:21b)

Z31 � � Zþ þ Z�

6

� �
� j

ffiffiffi
3

p Zþ � Z�

6

� �
(6:21c)

FIGURE 6.2 Definition of complex gyrator circuit. (Reproduced with permission from
J. Simon, Broadband strip-transmission line Y junction circulators, IEEE Trans. Microwave
Theory Tech., Vol. MTT-13, pp. 335–345, May 1965.)

FIGURE 6.3 Schematic diagram of degree-1 complex gyrator circuit.
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The immittance eigenvalues here and elsewhere in the text are pure imaginary
numbers. Forming Yin instead of Zin gives

Yin ¼
1
Zin

¼ Z31
Z11Z31 � Z2

21

(6:22)

Noting that

Z11Z31 � Z2
21 ¼ �ZþZ�=3

gives

Yin ¼
(Zþ þ Z�)þ j

ffiffiffi
3

p
(Zþ � Z�)

2Zþ Z�

or

Yin ¼
Yþ þ Y�

2

� �
� j

ffiffiffi
3

p Yþ � Y�

2

� �
(6:23)

The imaginary and real parts of Yin are therefore related to the sum and difference of
the split admittance eigenvalues in a surprisingly simple way:

jBin ¼
Yþ þ Y�

2

� �
(6:24a)

Gin ¼ �j
ffiffiffi
3

p Yþ � Y�

2

� �
(6:24b)

Figure 6.4 gives an experimental Smith chart representation of the complex
gyrator circuit of one arrangement for parametric values of H0/M0. Figures 6.5
and 6.6 indicate the same data in Cartesian form. The solid lines in these illustrations
indicate the best fit on the experimental data. The normalized susceptance slope par-
ameter, b0, of the complex gyrator circuit, in the vicinity of the midband frequency
(v0 ¼ 2p f0), is separately obtained from Fig. 6.5 by forming

b0 ¼ v

2
@ b

@ v

����
v¼v0

(6:25)

The quality factor of the complex gyrator circuit may be calculated in terms of b0

and g without ado.
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One equivalent circuit of the three-port junction circulator is therefore a simple
one-port LCR network. This classic result is illustrated in Fig. 6.3. Furthermore, a
knowledge of Yþ and Y2 is sufficient to describe this class of device.

6.5 SYNTHESIS OF JUNCTION CIRCULATORS USING
RESONANT IN-PHASE EIGEN-NETWORK

While the in-phase eigen-network of a three-port junction circulator may often be
idealized by a frequency-independent short-circuit boundary condition at its input
terminals, it may also be adjusted to exhibit a series resonance there. The complex
gyrator impedance in this instance is approximately given by

Zin �
8Z0 � (Zþ þ Z�)

6
þ j

(Zþ � Z�)

2
ffiffiffi
3

p (6:26)

The in-phase eigenvalue Z0 has been idealized by a short-circuit boundary condition
in forming the real part of the gyrator immittance but has been retained in describing
its imaginary part. This impedance is readily realized in the form indicated in Fig. 6.7

FIGURE 6.4 Smith chart representation of complex gyrator circuit of 2.0 GHz circulator for
different magnetizing fields (c ¼ 0.22 rad, 2R ¼ 25.4 mm).
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by expanding Zin as

Zin ¼ Z1 þ 1=Y1 (6:27a)

where

Z1 � 4Z0=3 (6:27b)

Y1 �
(Yþ þ Y�)

2
� j

ffiffiffi
3

p (Yþ � Y�)
2

(6:27c)

The nature of the second term in this expansion is obtained provided the following
assumption holds:

(Yþ � Y�)
4YþY� � �1 (6:28)

FIGURE 6.5 Cartesian representation of normalized gyrator conductance of circulator for
different magnetizing fields using complex gyrator method (c ¼ 0.222 rad, 2R ¼ 25.4 mm).
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The latter condition is met in the vicinity of the midband frequency, which is
defined by

Yþ þ Y� ¼ 0

The equivalent circuit in Fig. 6.7 reduces to the usual approximation by omitting the
Z0 term in the derivation. This circuit has the nature of a bandpass filter, which may
be adjusted to display a reflection or transmission characteristic akin to that of a
quarter-wave coupled junction with its in-phase eigen-network idealized by a
short-circuit boundary condition.

6.6 EQUIVALENT CIRCUIT OF THREE-PORT CIRCULATOR

An equivalent three-port circuit based on ideal gyrators can be synthesized from
the impedance matrix by having recourse to simple matrix addition. Making use of
the bilinear mapping between the reflection eigenvalues of an ideal circulator and

FIGURE 6.6 Cartesian representation of normalized gyrator susceptance of circulator for
different magnetizing fields using complex gyrator method (c ¼ 0.22 rad, 2R ¼ 25.4 mm).
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the impedance eigenvalues gives

Z0 ¼ 0 (6:29a)

Zþ � j
ffiffiffi
3

p
Z0 (6:29b)

Z� ¼ j
ffiffiffi
3

p
Z0 (6:29c)

The open-circuit parameters of an ideal circulator are therefore

Z11 ¼ 0 (6:30a)

Z12 ¼ R0 (6:30b)

Z13 ¼ �R0 (6:30c)

FIGURE 6.7 Schematic diagrams of degree-2 complex gyrator circuits.
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The corresponding impedance matrix of an ideal three-port circulator is

Z ¼
0 R0 �R0

�R0 0 R0

R0 �R0 0

2
4

3
5 (6:31)

Making use of the rule of matrix addition indicates that

Z ¼
0 R0 �R0

�R0 0 R0

R0 �R0 0

2
64

3
75 ¼

0 R0 0

�R0 0 0

0 0 0

2
64

3
75

þ
0 0 �R0

0 0 0

R0 0 0

2
64

3
75þ

0 0 0

0 0 R0

0 �R0 0

2
64

3
75 (6:32)

FIGURE 6.8 Topology of degree-2 three-port junction circulator in terms of two-port
gyrator circuits.
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The first impedance matrix represents an ideal gyrator circuit connected between
ports 1 and 2 of the junction. The other two matrices represent similar gyrator circuits
between ports 2 and 3 and ports 3 and 1. The equivalent circuit is shown in Fig. 6.8.

6.7 QUALITY FACTOR OF JUNCTION CIRCULATOR

The real part of the complex gyrator admittance of a three-port junction circulator is
sometimes written in terms of the susceptance slope parameter of the degenerate
counterrotating eigen-networks and the resonant frequencies of the split eigen-
networks. The relationship obtained here appears naturally in both Bosma’s and
Fay and Comstock’s developments. It is separately employed to define the quality
factor of the complex gyrator circuit solely in terms of the split frequencies of the
gyromagnetic resonator. This approach is of special interest in the network
problem of the device. The derivation of the required formulation begins by writing

Yþ � �j(Y1 þ DY1) cot(u1 � Du1) (6:33a)

Y� � �j(Y1 � DY1) cot(u1 þ Du1) (6:33b)

u1 + Du1 are the electrical lengths of the split eigen-networks:

u1 + Du1 ¼ (p=2)(1þ d+) (6:34)

The normalized frequency variables d+ are separately expanded about the frequen-
cies v+ of each eigen-network:

d+ ¼ v� v+

v+
(6:35)

The admittance +DY1 represents the perturbations of the split wave or characteristic
admittances of the substrate.

At u1 ¼ p/2,

Yþ ¼ j(Y1 þ DY1) tan(pdþ=2) (6:36a)

Y� ¼ j(Y1 � DY1) tan(pd�=2) (6:36b)

Introducing these relationships into the normalized real part of the complex gyrator
admittance readily produces the desired result:

G �
ffiffiffi
3

p
B0 vþ � v�

v0

� �
(6:37)
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provided

tan(pd+=2) � (pd+=2)

B0 is the absolute value of the susceptance slope parameter of the degenerate counter-
rotating eigen-network.

B0 ¼ pY1=4 (6:38)

Equation (6.37) is also sometimes written

1
QL

¼ G

B0 ¼
ffiffiffi
3

p vþ � v�
v0

� �
(6:39)

This relationship permits any one of the above variables to be deduced from a know-
ledge of the other two. It is a recurring identity in the description of the conventional
three-port circulator.

The imaginary part B of the complex gyrator circuit may be evaluated separately
from B0 without difficulty. The result, in the vicinity of the midband frequency, is

B ¼ 2d (4B0=p) (6:40)

where

d ¼ (v� v0)=v0 (6:41)

6.8 DEGENERATE COUNTERROTATING EIGEN-NETWORK (S1)

While the degenerate eigenvalue may be represented by an equivalent transmission
line, a knowledge of its exact topology is desirable for numerical purposes. One poss-
ible way to do so will now be derived. The derivation of this eigen-network starts by
placing a magnetic wall at port 3 of the junction and constructing the relationship
between the other two ports in the manner indicated in Fig. 6.9. This gives

I3 ¼ 0 (6:42)

and

V1

V2

V3

2
4

3
5 ¼

Z11 Z12 Z12
Z12 Z11 Z12
Z12 Z12 Z11

2
4

3
5

I1
I2
0

2
4

3
5 (6:43)
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Z11 and Z12 are linear combinations of the eigenvalues of the three-port circuit in the
usual way.

Z11 ¼ (Z0 þ 2Z1)=3 (6:44a)

Z12 ¼ (Z0 � Z1)=3 (6:44b)

Z0 is the in-phase eigenvalue and Z1 is the degenerate counterrotating one.

FIGURE 6.9 Construction of degenerate eigen-network.
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The connection between ports 1 and 2 of the reduced symmetrical network in
Fig. 6.9 is then given by

V1

V2

� �
¼ Z11 Z12

Z12 Z11

� �
I1
I2

� �
(6:45)

The in-phase and out-of-phase eigenvalues Zo/c and Zs/c of the new circuit are
now deduced by taking the sum and difference of the open-circuit parameters:

Zo=c ¼ Z11 þ Z12 (6:46a)

Zs=c ¼ Z11 � Z12 (6:46b)

Evaluating these quantities in terms of the eigenvalues of the original circuit
indicates that

Z 0
1 ¼ (Z0 � Z1)=3 (6:47a)

Z 0
2 ¼ Z1 (6:47b)

This result indicates that the out-of-phase eigen-network of the reduced two-port
circuit coincides with that of the degenerate counterrotating one of the original
three-port circuit.

It is also recognized that a knowledge of Z1 and the in-phase eigen-network of the
reduced two-port circuit may be employed separately to evaluate the in-phase eigen-
network of the original three-port junction.

It is of separate note that for the out-of-phase eigen-network

I1 ¼ �I2

and the voltage at port 3 is

V3 ¼ 0

in addition to the condition I3 ¼ 0 at the same port. If this is the case, then

V1=I1 ¼ V2=I2 ¼ Z11 � Z12 (6:48)

in keeping with the eigenvalue problem.
The experimental arrangement in question is shown in Fig. 6.10.
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6.9 IN-PHASE EIGEN-NETWORK

The one-port in-phase eigen-network is also a classic circuit, which may be fabricated
separately. Figure 6.11 indicates this circuit in the case of a junction using a planar
disk resonator. It is obtained by partitioning the circuit with appropriate magnetic
walls. This one-port circuit accurately displays the admittance and reflection eigen-
values of the circuit provided its boundaries are idealized by perfect magnetic
walls. It therefore represents the simplest test fixture for the characterization of this
eigen-network. A shortcoming of this eigen-network, however, is that the open
walls exposed by this boundary condition are ill defined in practical circuits.

FIGURE 6.10 Experimental arrangement for measurement of degenerate reflection eigen-
value s1.

FIGURE 6.11 Topology of in-phase eigen-network.
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The phase angle of the in-phase eigen-network of a demagnetized junction may be
measured directly using the eigenvalue approach by applying equal in-phase signals
at the three ports of the junction or by making use of the relationship between the
scattering variable S11 and the in-phase and degenerate counterrotating eigenvalues
s0 and s1:

S11 ¼ (s0 þ 2s1)=3 (6:49)

One possible way in which the eigenvalue s1 of a reciprocal three-port junction can be
experimentally determined without the need to fabricate its eigen-network consists of
placing a sliding short-circuit at port 2 and a matched load at port 3. The variable
short-circuit is varied until there is total reflection at port 1. The reflection coefficient
at port 1 is then the eigenvalue s1. This technique is especially appropriate in the case
of a waveguide junction for which the reference terminals are usually ill defined.

6.10 SPLIT EIGEN-NETWORKS OF JUNCTION CIRCULATOR

An especially simple method to obtain the split admittance eigen-networks of a
circulator for which the in-phase eigen-network may be idealized by a short-circuit
boundary condition at the terminals of the junction can be deduced from a knowledge
of its complex gyrator circuit. This quantity is defined by Eqs. (6.24) and (6.25) by

Yin ¼ Gþ jB (6:50)

The split admittance eigenvalues may now be evaluated by taking linear combi-
nations of the real and imaginary parts of the complex gyrator admittance. The
result is

Yþ ¼ j(Bþ G=
ffiffiffi
3

p
) (6:51a)

Y� ¼ j(B� G=
ffiffiffi
3

p
) (6:51b)

The susceptance of the degenerate counterrotating eigenvalues is negative at Yþ and
positive at Y2. B is a pure real number and Y1 is a pure imaginary number.

jB ¼ Y1 (6:52)

The split frequencies may also be determined from this sort of data by recognizing
that these coincide with the frequencies at which the split admittance eigenvalues
are zero:

Y+ ¼ 0 (6:53)
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The two frequencies therefore coincide with the conditions

G ¼ �B=
ffiffiffi
3

p
, v ¼ v� (6:54a)

G ¼ þB=
ffiffiffi
3

p
, v ¼ vþ (6:54b)

One experimental arrangement, in keeping with the definition of the complex gyrator
circuit, is obtained by decoupling port 3 from port 1 by adjusting a triple stub tuner at
port 2. It is illustrated in Fig. 6.2.

The immitances of the complex gyrator circuit at the split frequencies are given
without ado by

Yin ¼
Yþ
2

� j

ffiffiffi
3

p
Yþ
2

, v ¼ v� (6:55a)

Yin ¼
Y�
2

þ j

ffiffiffi
3

p
Y�
2

, v ¼ vþ (6:55b)

6.11 GYRATOR CONDUCTANCE OF CIRCULATOR

A relationship between the reflection coefficient at port 1 and the normalized gyrator
conductance g with ports 2 and 3 terminated in 50 V loads also exists. Its derivation
starts with the relationships in Chapter 5 between the one-port reflection coefficient
and the reflection angles associated with each possible eigen-network.

At midband

f0 ¼ f1 ¼ p=2 (6:56)

and for symmetrical splitting

f� ¼ �fþ (6:57)

One relationship is now constructed by evaluating S11 in terms of its reflection eigen-
values and making use of the bilinear transformation between the scattering and
immittance eigenvalues:

S11 ¼
1� 3 tan2(fþ)
3þ 3 tan2(fþ)

(6:58)
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A second relationship is obtained by forming the gyrator conductance in terms of the
admittance eigenvalues:

g ¼ G=Y0 ¼
ffiffiffi
3

p
tan (fþ) (6:59)

It is now possible to eliminate fþ between S11 and g. The result in terms of the
VSWR is

(VSWR) ¼
��3þ g2

��þ ��1� g2
����3þ g2

��� ��1� g2
�� (6:60)

For g larger than unity

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(VSWR)� 1

p
(6:61)

For g smaller than unity

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� (VSWR)
(VSWR)

r
(6:62)

FIGURE 6.12 Relationship between VSWR and gyrator conductance of junction circulator.
(Reproduced with permission from J. Helszajn, Microwave measurement techniques for junc-
tion circulators, IEEE Trans. Microwave Theory Tech., Vol. MTT-21, pp. 347–351, 1973.)
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The connection between (VSWR) and g is indicated in Fig. 6.12. Whether g is larger
or smaller than unity is determined by whether there is a voltage maximum or
minimum at the load. The condition on this curve for which g equals zero and the
VSWR equals 2 coincides with that of a demagnetized junction.

6.12 THE GYRATOR NETWORK

The basic two-port circuit met in connection with nonreciprocal networks is the
gyrator one introduced in Chapter 4.

It will now be demonstrated that both the impedance and admittance matrices exist
for such a network. The impedance eigenvalues are

Zþ
R0

¼ 1þ sþ
1� sþ

¼ 1þ j

1� j
¼ j (6:63a)

Z�
R0

¼ 1þ s�
1� s�

¼ 1� j

1þ j
¼ �j (6:63b)

The corresponding admittance eigenvalues are the reciprocal of the impedance eigen-
values.

Yþ=Y0 ¼ R0=Zþ ¼ �j (6:64a)

Y�=Y0 ¼ R0=Z� ¼ j (6:64b)

FIGURE 6.13 Schematic diagram of two-port gyrator network using (a) impedance gyrator
and (b) admittance gyrator.
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The admittance matrix is now diagonalized using Eq. (6.2)

Y ¼ 1
2

Yþ þ Y�ð Þ j Yþ � Y�ð Þ
�j Yþ � Y�ð Þ Yþ þ Y�ð Þ

� �
(6:65)

The result, in terms of the original variables, is

Y ¼ 0 Y0
�Y0 0

� �
(6:66)

The Y matrix schematic of the two-port gyrator is illustrated in Fig. 6.13a. The result
for the Z matrix is

Z ¼ 0 �R0

R0 0

� �
(6:67)

The Z matrix schematic of the two-port gyrator is depicted in Fig. 6.13b.
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CHAPTER SEVEN

The One-Port Topology of the
Degree-1 and Degree-2
Terminated Circulator

7.1 INTRODUCTION

The ideal symmetrical three-port circulator is a matched lossless nonreciprocal
junction with one decoupled port and perfect transmission between the other two.
The possibility of transforming a general nonreciprocal three-port junction into an
ideal circulator by the addition of external two-port circuits at each port has also
been demonstrated separately. A possible model of a nonideal circulator in terms
of an ideal three-port circulator with two-port reactive elements connected at each
port has also been proposed. The immittances at port 1 that enter into the descriptions
of the terminals of a three-port junction circulator are either its gyrator immittance,
already dealt with in Chapter 6, or that with ideal resistive loads at ports 2 and 3.
The notion of the gyrator immittance is appropriate in the synthesis of degree-2 or
degree-3 circulators while that of the terminated one is appropriate in the optimization
problem. The topology of the terminated circulator is the topic of this chapter. Its
purpose is to synthesize its one-port topology in the admittance plane in the case
for which ports 2 and 3 are terminated in real resistive loads and in the case for
which the ports are loaded by broadband matching networks. This is done in terms
of the eigenvalues of the problem region under the assumption that the in-phase
eigen-network may be idealized by a short-circuited boundary condition and an
ideal two-port gyrator circuit. The real part circuit, also dealt with in Chapter 6,
and those at the split frequencies of the counterrotating eigenvalues are also
deduced as a preamble to realizing the general circuit. The one-port circuit obtained
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in this way is compatible with existing experimental procedures. This equivalent
circuit is sometimes referred to as a degree-1 circuit in that its frequency response cor-
responds to that of a Chebyshev specification with the same degree. The chapter also
includes the equivalent circuit of a degree-2 arrangement. Its frequency response
coincides with an equal ripple degree-2 Chebyshev specification.

7.2 INPUT IMMITTANCE OF TERMINATED CIRCULATOR IN
TERMS OF OPEN-CIRCUIT PARAMETERS

The input impedance at port 1 of a symmetrical three-port circulator with ports 2 and
3 terminated in matched loads is of interest in its characterization. The schematic
diagram of the arrangement in question is shown in Fig. 7.1.

The derivation of the required result starts with a statement of the voltage–current
relationship at the ports of the junction:

V1

V2

V3

2
4

3
5 ¼

Z11 Z12 Z13
Z13 Z11 Z12
Z12 Z13 Z11

2
4

3
5

I1
I2
I3

2
4

3
5 (7:1)

It continues by terminating ports 2 and 3 in ideal real loads. These two conditions are
satisfied provided

V2 ¼ �I2Z0 (7:2a)

V3 ¼ �I3Z0 (7:2b)

FIGURE 7.1 Schematic diagram of three-port circulator.
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Combining the SE equations gives

(V1=I1) ¼ Z11 þ Z12(I2=I1)þ Z13(I3=I1) (7:3a)

(�I2=I1) Z0 ¼ Z13 þ Z11(I2=I1)þ Z12(I3=I1) (7:3b)

(�I3=I1) Z0 ¼ Z12 þ Z13(I2=I1)þ Z11(I3=I1) (7:3c)

The impedance Zin at port 1 is now defined as

Zin ¼ V1=I1 (7:4)

The required result is readily deduced by rearranging the preceding equations:

Zin ¼ Z11 þ
Z3
12 � Z�3

12 þ 2Z12Z�
12(Z11 þ Z0)

(Z11 þ Z0)2 þ Z12Z�
12

(7:5)

In obtaining this result use has also been made of the fact that

Z13 ¼ �Z�
12 (7:6)

This important identity may be verified by having recourse to Eqs. (7.7b) and (7.7c)
in the next section.

7.3 INPUT IMPEDANCE OF TERMINATED CIRCULATOR IN
TERMS OF EIGENVALUES

It is preferable for the purpose of synthesis to express the input immittance of the ter-
minated circulator in terms of its eigenvalues rather than by its open-circuit
parameters. Its derivation begins by expressing the open-circuit parameters of the
junction in terms of its in-phase (Z0) and counterrotating (Z+) eigenvalues and it
continues by assuming that the in-phase eigen-network may be realized by a
frequency independent short-circuit boundary condition at the terminals of the
junction. The open-circuit parameters of the circulator then reduce to those met in
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connection with the development of the complex gyrator circuit of the junction in
Chapter 6.

Z11 ¼
Zþ þ Z�

3
(7:7a)

Z12 ¼
�(Zþ þ Z�)

6
þ j

ffiffiffi
3

p
(Zþ � Z�)

6
(7:7b)

Z13 ¼
�(Zþ þ Z�)

6
� j

ffiffiffi
3

p
(Zþ � Z�)

6
(7:7c)

Introducing these relationships into the one-port impedance function of the termi-
nated circulator at port 1 gives

Zin ¼
Z0 (Zþ þ Z�) Z0 þ 2ZþZ�½ �

2(Zþ þ Z�) Z0 þ ZþZ� þ 3Z2
0

(7:8)

The phenomenological eigen-networks in question are indicated in Chapter 5.
The first element in the realization of the immittance of the circuit is assumed, in

this work, to be a shunt element. Forming Yin in terms of Zin gives

Yin ¼ 1=Zin (7:9)

The required result is given in terms of the counterrotating admittance
eigenvalues by

Yin ¼
Y2
0 þ 2Y0(Yþ þ Y�)þ 3YþY�

2Y0 þ (Yþ þ Y�)
(7:10)

The same result may also be readily deduced by having recourse to the reflection
coefficient S11 and the bilinear transformation between reflection and impedance.
This gives

3S11 ¼ �1þ Y0 � Yþ
Y0 þ Yþ

� �
þ Y0 � Y�

Y0 þ Y�

� �
(7:11)

and

Yin ¼
1� S11
1þ S11

(7:12)
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S11 is also given in terms of the original variables by

3S11 ¼
Y2
0 � (Yþ þ Y�)Y0 � 3YþY�
Y2
0 þ (Yþ þ Y�)Y0 þ YþY�

(7:13)

The corresponding admittance is in keeping with Eq. (7.10).
A property of the terminated circulator is that the reflection coefficient at the split

frequencies of the counterrotating eigen-networks coincides with a 9.5 dB point in
the return loss. This property is displayed by S11 without ado in keeping with the
result in Chapter 5.

S11j j ¼ 1
3
, Yþ ¼ 0 (7:14a)

S11j j ¼ 1
3
, Y� ¼ 0 (7:14b)

It is appropriate to note that Y+ throughout the text are pure imaginary quantities.

7.4 GYRATOR CIRCUIT

Before attempting to extract an ideal gyrator circuit in the synthesis of a one-port
immittance function with an admittance Yin, it is perhaps worthwhile to recall its
definition,

Y ¼ 0 G0

�G0 0

� �
(7:15)

The mapping between the input and output terminals of an ideal gyrator circuit starts
with the voltage–current relationship at its port.

I1
I2

� �
¼ 0 G0

�G0 0

� �
V1

V2

� �
(7:16)

It continues by expressing the output voltage in terms of the load condition:

I2 ¼ �V2Yout (7:17)

The relation between the input and output terminal is

Yin ¼ I1=V1 ¼ G2
0=Yout (7:18)

The topology of the gyrator circuit is indicated in Fig. 7.2.
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The gyrator conductance of the ideal two-port gyrator is given in terms of its
eigenvalues by

G0 ¼ (�j=2)(Yþ � Y�) (7:19)

where

Yþ ¼ �jG0 (7:20a)

Y� ¼ jG0 (7:20b)

As will be seen in a later section, the gyrator conductance met in the synthesis of a
three-port junction is defined by

G0 ¼ �j
ffiffiffi
3

p
=2

� �
(Yþ � Y�) (7:21)

If the impedance eigenvalues rather than the admittance eigenvalues are the indepen-
dent variables, then

G0 ¼
j

ffiffiffi
3

p

2

� �
Z� � Zþ
ZþZ�

� �
(7:22)

7.5 REAL PART CONDITION

In order to facilitate the synthesis procedure it is helpful to first establish the topology
of the one-port immittance function at the midband frequency. This condition is met
provided

Yþ þ Y� ¼ 0 (7:23)

FIGURE 7.2 Topology of ideal two-port gyrator.
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The corresponding admittance at port 1 is then described by

Yin ¼
Y2
0 þ 3YþY�

2Y0
(7:24)

In the case of an ideal circulator

Y+ ¼ + jY0=
ffiffiffi
3

p
(7:25)

and

Yin ¼ Y0 (7:26)

A scrutiny of this one-port immittance function indicates that it does not at first sight
embody a gyrator element. In order to reveal such a network it is necessary to have
recourse to the following identity:

(Yþ � Y�)
2 ¼ (Y2

þ þ Y2
�)� 2YþY�

or

1
2

(Y2
þ þ Y2

�)

YþY�
� (Yþ þ Y�)2

YþY�

� �
¼ 1

In the present situation

Yþ ¼ �jG

Y� ¼ jG

or

YþY� ¼ G2

Y2
þ ¼ �G2

Y2
� ¼ �G2

where G is an arbitrary real constant.
Combining the preceding equations gives

(Y2
þ þ Y2

�)=YþY� ¼ �2 (7:27)
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and

YþY� ¼ �j
(Yþ � Y�)
YþY�

� �2
(7:28)

The one-port immittance of the terminated circulator may therefore be written in
terms of the gyrator conductance of the three-port circulator defined by Eq. (7.26):

Yin ¼ Y0=2þ G2=2Y0 (7:29)

The gyrator conductance of the three-port circulator is defined in Eq. (7.24).
The required circuit is indicated in Fig. 7.3. The junction is demagnetized when

the gyrator conductance is zero. The input admittance is then

Yin ¼ Y0=2 (7:30)

This admittance may also be written, with u ¼ 908, as

Yin ¼ Y2
0=2Y0 (7:31)

This result is in keeping with the equivalent circuit of the H-plane reciprocal junction
in Fig. 7.4.

For the normalized input conductance gin larger than unity,

gin ¼ Gin=Y0 ¼ (VSWR) (7:32)

The corresponding gyrator conductance is

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(VSWR)� 1

p
(7:33)

For gin smaller than unity,

gin ¼
Gin

Y0
¼ 1

(VSWR)
(7:34)

FIGURE 7.3 Real part realization of terminated circulator.
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In this instance, the gyrator conductance is given by

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� (VSWR)
(VSWR)

r
(7:35)

This classic result provides one means of experimentally evaluating the gyrator con-
ductance of this class of circulator and is in keeping with the result in Chapter 6.
While the topology at port 1 of the terminated circulator deduced here is a proper rep-
resentation of its input admittance, it does not specifically embody the separate con-
tributions of ports 2 and 3. One way of doing so is to terminate ports 2 and 3 by
different load conditions as a preamble to synthesis. The general form of the reflec-
tion coefficient form which this quantity may be realized can readily be established.

7.6 SYNTHESIS OF COMPLEX ADMITTANCE OF TERMINATED
CIRCULATOR

The synthesis of the one-port complex immittance of the terminated circulator is the
subject of this section. It begins by extracting an admittance, Y0/2, from Yin. The
remainder admittance is

Yin ¼
3(Yþ þ Y�)Y0 þ 6YþY�

2Y0 þ (Yþ þ Y�)

FIGURE 7.4 Equivalent circuit of H-plane three-port reciprocal junction.
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The synthesis procedure continues by removing an admittance, 3(Yþ þ Y2)/4, from
Yin. The extraction of this term produces a remainder admittance given by

Yin ¼
G2

2Y0 þ (Yþ þ Y�)

This admittance is readily realized by an ideal two-port gyrator circuit terminated
by a parallel combination of 2Y0 and (Yþ þ Y2). The required topology is depicted in
Fig. 7.5. The shunt elements in front of the gyrator circuit coincide with the one-port
immittance of the isotropic junction. The effects of the gyrotropy are represented by
the two-port gyrator circuit and its complex load.

The real and imaginary parts of the input admittance of the terminated circulator
may readily be constructed by decomposing Yin in a second Foster form:

Yin ¼
Y0
2
þ 3(Yþ þ Y�)

4
þ G2

2Y0 þ (Yþ þ Y�)
(7:36)

The real and imaginary parts of this quantity are

Gin ¼
Y0
2
þ 2G2Y0
4Y2

0 þ (Yþ þ Y�)2
(7:37)

Bin ¼
3(Yþ þ Y�)

4
� G2(Yþ þ Y�)2

4Y2
0 þ (Yþ þ Y�)2

(7:38)

Specializing this relationship to a degree-1 circulator in the vicinity of its midband
frequency indicates that

Gin ¼ Y0 (7:39)

Bin ¼ (Yþ þ Y�)=2 (7:40)

FIGURE 7.5 Complex admittance realization of terminated circulator.

140 ONE-PORT TOPOLOGY OF THE TERMINATED CIRCULATOR



provided

G ¼ Y0 (7:41)

(Yþ þ Y�) ,, 2Y0 (7:42)

This suggests that the susceptance, in the vicinity of the midband frequency of the
degree-1 terminated circulator, coincides with that of the complex gyrator circuit of
the three-port circulator. Elsewhere, the susceptance slope parameters of the two
arrangements bear no obvious relationship.

7.7 TOPOLOGIES OF TERMINATED CIRCULATOR AT THE
SPLIT FREQUENCIES

The equivalent circuit of the terminated circulator at the split frequencies is also of
some interest. It provides one means of experimentally evaluating the susceptances
of the split counterrotating eigen-networks of the topology. The two circuits are
indicated in Fig. 7.6. These are obtained by inspection from Fig 7.5. The realization
of a typical result starts by putting Y2 ¼ 0 in Yin in Eq. (7.10). This gives

Yin ¼
Y2
0 þ 2Y0Yþ
2Y0 þ Yþ

(7:43)

It continues by extracting an admittance Y0/2 from Yin. The remainder admittance is

Yin ¼
3Y0Yþ

4Y0 þ 2Yþ
(7:44)

The synthesis procedure proceeds by forming Zin from Yin:

Zin ¼
4Y0 þ 2Yþ
3Y0Yþ

(7:45)

The required decomposition is

Zin ¼
2Z0
3

þ 4Zþ
3

(7:46)
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The result can also be deduced from the general solution in Fig. 7.7 by recognizing
that the gyrator conductance is now defined by

G ¼ ( j
ffiffiffi
3

p
=2)(Yþ) (7:47)

FIGURE 7.6 Topologies of terminated circulator at split frequencies in terms of two-port
gyrator circuits.

FIGURE 7.7 Topologies of terminated circulator at the split frequencies.
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The reflection coefficient of either arrangement is in keeping with the conditions in
Eq. (7.14). The solution at v ¼ vþ follows without ado.

7.8 DEGREE-2 TOPOLOGY

One way to broadband a directly coupled (degree-1) circulator is to introduce a
matching circuit at each port. The most common arrangement consists of a single
quarter-wave long impedance transformer. This structure is referred to as a
degree-2 topology in that its frequency response is associated with a degree-2
Chebyshev polynomial. The extension of the degree-1 problem to that of the
degree-2 one is straightforward. Figure 7.8 indicates the configuration in question.
The derivation of the required result begins by replacing the load conditions at
ports 2 and 3 by

V2=�I2 ¼ V3=�I3 ¼ ZL (7:48)

FIGURE 7.8 Schematic diagram of a degree-2 three-port circulator.
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ZL is the input impedance at the resonator terminals of a unit element (UE), termi-
nated in the characteristic impedance of the arrangement.

ZL ¼ Dþ jCZ0
AZ0 þ jB

(7:49)

The ABCD parameters coincide with a UE of impedance Z0 and electrical length u.
The one-port equivalent circuit at the resonator terminals is then realized by replacing
Y0 in the degree-1 circuit by YL. The arrangement of the circulator at the terminals of
the overall network is obtained separately by mapping the resonator terminals through
the two-port circuit defined by the ABCD parameters of the matching circuit.
Figure 7.9 depicts the one-port circuit obtained in this way.

FIGURE 7.9 Equivalent circuit of a degree-2 circulator.

144 ONE-PORT TOPOLOGY OF THE TERMINATED CIRCULATOR



CHAPTER EIGHT

Cutoff Space of
Cloverleaf Resonators
with Magnetic Walls

8.1 INTRODUCTION

An important planar resonator with a magnetic side wall and top and bottom electric
walls with the symmetry of the three-port junction circulator is the cloverleaf geome-
try. In practice, some other possible structures of the three-port circulator, to be dealt
with separately, include disk, triangular, wye, ring, and irregular hexagonal geo-
metries. The purpose of this chapter is to employ the finite element method to
analyze the cloverleaf gyromagnetic resonator with either threefold or fourfold sym-
metry. It involves the construction of an energy functional, which when extremized
produces the required eigenvalues and eigenvectors of the problem region. These
topologies are of value in the design of three- and four-port junction circulators
and other circuits. It is completely fixed by two radii. The chapter includes the
descriptions of the cutoff space and the field patterns of this type of isotropic
circuit with threefold and fourfold symmetries. This is done for the first four
modes of each configuration. The mode notation employed in the description of
this geometry is that met in connection with a simple circular geometry. The
chapter also provides calculations on the split cutoff space of gyromagnetic cloverleaf
resonators with threefold symmetry.
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8.2 CLOVERLEAF RESONATOR

The schematic diagram of the cloverleaf circuit with threefold symmetry discussed in
this chapter is illustrated in Fig. 8.1. It may be described by two radii. Figure 8.2
depicts the coordinate system employed here as well as three typical configurations.
The minimum outside radius is related to the inside one by

Ro(min) ¼ (
ffiffiffi
3

p
=2)Ri (8:1)

FIGURE 8.1 Topology of cloverleaf planar resonator with threefold symmetry.

FIGURE 8.2 (a) Coordinate system used in description of cloverleaf resonator with threefold
symmetry. Topology of cloverleaf resonator with (b) minimum surface area Ro/A ¼ 0.86,
(c) Ro/A ¼ 1.0, and (d) Ro/A ¼ 3.0.
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One feature of the cloverleaf geometry is the possibility of coupling to it either at the
intersection of the lobes employed to define its geometry or at its extremities. The
former possibility affords some degree of miniaturization in the layout of microwave
junction circulators. Figure 8.3 indicates the relationship between the aspect ratio of
the resonator and the ratio of its radii. The choice of any coupling port is related
of course to the external Q-factor of the circuit. This problem, however, is outside
the scope of this work.

8.3 FINITE ELEMENT METHOD

The solution of the cloverleaf circuit with top and bottom electric walls and a mag-
netic side wall investigated in this chapter is not compatible with a closed form for-
mulation. It provides a good example of the use of the finite element method.

The mathematical formulation of the finite element method relies on the construc-
tion of an energy functional, which is then discretized and extremized to form a vari-
ational solution of the problem. One suitable functional for the isotropic problem
region, which has a magnetic wall boundary condition included as a natural term, is

F(Ez) ¼
ð ð

S

� rtEzj j2þ k2e Ezj j2
h i

ds (8:2)

FIGURE 8.3 Relationship between aspect ratio of cloverleaf resonator with threefold
symmetry and the ratio of the possible coupling port radii.
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S is the surface of the planar circuit. r t is the transverse differential operator in
Cartesian coordinates. The wavenumber (ke) is defined in the usual way by

k2e ¼ k201f (8:3)

where

k0 ¼ 2p=l0 (8:4)

and 1f is the relative dielectric constant of the dielectric substrate.
The finite element method commences by subdividing the surface of the planar

circuit into a number of elementary triangles, m. It continues by approximating the
true field solution, Ez, within each triangular finite element by a trial function expan-
sion of the form

E0
z(x, y) ¼

Xn
k¼1

ukak(x, y), k ¼ 1, 2, . . . , n (8:5)

where ak are a suitable set of real basis functions that embody the spatial variation of
the problem and uk are complex coefficients that represent the unknown fields at the
nodes of the finite element mesh.

The number of nodes, n, within each triangle is defined by the degree, q, of the
approximation problem as

n ¼ (qþ 1)(qþ 2)=2 (8:6)

The eigenvalue problem is now established by extremizing the energy functional
using the Rayleigh–Ritz procedure. The required eigenvalue equation is

[D]f gU ¼ k2e [B]U (8:7)

The elements appearing in the matrices [B] and [D] are defined by

Bij ¼
ð ð

S

(ai � aj)ds (8:8)

Dij ¼
ð ð

S

(rtai) � (rtaj)
� �

ds (8:9)

where

i ¼ 1, 2, 3, . . . , p and j ¼ 1, 2, 3, . . . , p

Once the basis functions have been selected the general matrix eigenvalue
problem may be solved for the p eigenvalues ke

2 and p eigenvectors U. The eigen-
values are the normalized cutoff frequencies of the resonator and the eigenvectors
are discrete values of the approximated field at the finite element nodes. U is a
column matrix whose dimension is equal to the number of nodes in the finite
element mesh.
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8.4 CUTOFF SPACE OF ISOTROPIC CLOVERLEAF RESONATOR
WITH THREEFOLD SYMMETRY

The relationship between the details of the circuit and the cutoff wavenumbers for the
dominant mode and a number of higher order modes for a resonator with magnetic
walls is illustrated in Fig. 8.4. The number of discrete triangles in the finite
element mesh is designated by the integer m, the number of nodes within each tri-
angle by the integer n, the degree of the approximation problem is denoted by the
integer q, and the number of nodes within the final mesh by p. This kind of
problem produces p eigenvalues and p eigenvectors. The finite element mesh utilized
in the solution of this circuit is illustrated in Fig. 8.5. The independent mesh variables
are given for this arrangement by

q ¼ 2 and m ¼ 57

and the dependent one by

n ¼ 6

The number of nodes before assembly is

m� n ¼ 342

FIGURE 8.4 Cutoff space of cloverleaf planar resonator with threefold symmetry with mag-
netic side walls.
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and, after merging coincident nodes, the number reduces to

p ¼ 160

The cutoff numbers of the first four modes in this type of resonator for the condition
in Eq. (8.9) are given by

ke(Ro þ Ri) ¼ 1:59, Ro ¼
ffiffiffi
3

p
=2

� �
Ri

ke(Ro þ Ri) ¼ 3:88, Ro ¼
ffiffiffi
3

p
=2

� �
Ri

ke(Ro þ Ri) ¼ 4:05, Ro ¼
ffiffiffi
3

p
=2

� �
Ri

ke(Ro þ Ri) ¼ 4:24, Ro ¼
ffiffiffi
3

p
=2

� �
Ri

One possible notation for this type of circuit may be established by recognizing
that as Ro/Ri increases, its cutoff space is asymptotic to that of a circular disk reso-
nator. If this convention is adopted, then the modes of the cloverleaf resonator may
be referred to as limit TMmno modes of the disk resonator. In this nomenclature m
refers to the number of half cycles of the magnetic field along the azimuthal direction,
n refers to the number of half cycles along the radius of the circuit, and o indicates that
there is no variation of the fields along the axis of the resonator.

FIGURE 8.5 Finite element mesh for cloverleaf planar resonator with threefold symmetry.
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8.5 CUTOFF SPACE OF ISOTROPIC CLOVERLEAF RESONATOR
WITH FOURFOLD SYMMETRY

A cloverleaf resonator with fourfold symmetry with magnetic and electric side walls
may also be visualized without difficulty. Figure 8.6 illustrates its topology.
Figure 8.7 depicts its construction and three typical geometries. This geometry is
defined by variables Ro and A. Its minimum outside radius is

Ro(min) ¼ A=2 (8:10)

FIGURE 8.6 Topology of cloverleaf planar resonator with fourfold symmetry.

FIGURE 8.7 (a) Coordinate system used in description of cloverleaf resonator with four-
fold symmetry. Topology of cloverleaf resonator with (b) minimum surface area Ro/A ¼ 0.5,
(c) Ro/A ¼ 0.757, and Ro/A ¼ 2.5.
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The finite element mesh used in the analysis of this resonator is indicated in Fig. 8.8.
This mesh is described by

q ¼ 2

m ¼ 76

n ¼ 6

m� n ¼ 456

p ¼ 213

The cutoff numbers of this type of circuit with top and bottom electric walls bounded
by a perfect magnetic wall are indicated in Fig. 8.9. The mode nomenclature in this
instance may also be deduced by referring to a simple disk resonator. A notable
feature of this circuit is that as the ratio Ro/A decreases from the disk resonator
limit, the degenerate n ¼ 2 modes are split by the geometry.

The cutoff numbers of the first four modes in this resonator, for the condition in
Eq. (8.10), are given by

ke Ro þ
Affiffiffi
2

p
� �

¼ 1:76, Ro ¼
A

2

ke Ro þ
Affiffiffi
2

p
� �

¼ 2:18, Ro ¼
A

2

FIGURE 8.8 Finite element mesh for cloverleaf planar resonator with fourfold symmetry.
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ke Ro þ
Affiffiffi
2

p
� �

¼ 4:03, Ro ¼
A

2

ke Ro þ
Affiffiffi
2

p
� �

¼ 4:52, Ro ¼
A

2

8.6 FIELD PATTERNS IN CLOVERLEAF RESONATORS

The equipotential lines of the first four modes in an isotropic cloverleaf resonator
with threefold symmetry for three different aspect ratios are indicated in
Figs. 8.10–8.13. The symmetric (n ¼ 0 limit) mode, illustrated in Fig. 8.10, has the
property that it has a magnetic wall on both the axis and on the open side wall of
the planar resonator. The fundamental (n ¼ 1 limit) mode is indicated in Fig. 8.11.
Its field pattern, unlike the symmetric mode, displays an electric wall on the axis
of the circuit. As the ratio Ro/Rt approaches its lower bound, its field pattern reduces
to that of the fundamental mode in a symmetric wye resonator with threefold symmetry.
The first two higher order (n ¼ 2 and n ¼ 3 limit) modes encountered in this type of
resonator are shown separately in Figs. 8.12 and 8.13. The equipotential lines of
both these modes also exhibit an electric wall along the axis of the resonator.

FIGURE 8.9 Cutoff space of cloverleaf planar resonator with fourfold symmetry with
magnetic side wall.
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The electric field distributions for the first four modes in a cloverleaf
resonator with fourfold symmetry are depicted in Figs. 8.14–8.17. This is,
again, done for three typical geometries. The symmetric n ¼ 0 limit mode

FIGURE 8.10 Equipotential lines of cloverleaf resonator with threefold symmetry, for n ¼ 0
limit disk (Ro/A ¼ 0.86, 1.0, 5.0). (Reproduced with permission from J. Helszajn and D. J.
Lynch, Cut-off space of cloverleaf resonators with electric and magnetic walls, IEEE Trans.
Microwave Theory Tech., Vol. MTT-40, No. 8, pp. 1620–1629, 1992.)
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in this sort of circuit displays once more a magnetic wall at the center of
the resonator, whereas the n ¼ l and n ¼ 2 limit modes have an electric
wall there.

FIGURE 8.11 Equipotential lines of cloverleaf resonator with threefold symmetry, for n ¼ l
limit disk mode Ro/A ¼ 0.86, 1.0, 5.0). (Reproduced with permission from J. Helszajn and D.
J. Lynch, Cut-off space of cloverleaf resonators with electric and magnetic walls, IEEE Trans.
Microwave Theory Tech., Vol. MTT-40, No. 8, pp. 1620–1629, 1992.)
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FIGURE 8.12 Equipotential lines of cloverleaf resonator with threefold symmetry, for n ¼ 2
limit disk mode (Ro/A ¼ 0.86, 1.0, 5.0). (Reproduced with permission from J. Helszajn and D.
J. Lynch, Cut-off space of cloverleaf resonators with electric and magnetic walls, IEEE Trans.
Microwave Theory Tech., Vol. MTT-40, No. 8, pp. 1620–1629, 1992.)
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FIGURE 8.13 Equipotential lines of cloverleaf resonator with threefold symmetry, for n ¼ 3
limit disk mode (Ro/A ¼ 0.86, 1.0, 5.0). (Reproduced with permission from J. Helszajn and
D. J. Lynch, Cut-off space of cloverleaf resonators with electric and magnetic walls,
IEEE Trans. Microwave Theory Tech., Vol. MTT-40, No. 8, pp. 1620–1629, 1992.)
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FIGURE 8.14 Equipotential lines of cloverleaf resonator with fourfold symmetry, for n ¼ 0
limit disk mode (Ro/A ¼ 0.86, 1.0, 5.0). (Reproduced with permission from J. Helszajn and
D. J. Lynch, Cut-off space of cloverleaf resonators with electric and magnetic walls,
IEEE Trans. Microwave Theory Tech., Vol. MTT-40, No. 8, pp. 1620–1629, 1992.)
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FIGURE 8.15 Equipotential lines of cloverleaf resonator with fourfold symmetry, for n ¼ 1
limit disk mode (Ro/A ¼ 0.86, 1.0, 5.0). (Reproduced with permission from J. Helszajn and
D. J. Lynch, Cut-off space of cloverleaf resonators with electric and magnetic walls,
IEEE Trans. Microwave Theory Tech., Vol. MTT-40, No. 8, pp. 1620–1629, 1992.)
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FIGURE 8.16 Equipotential lines of cloverleaf resonator with fourfold symmetry, for n ¼ 2
limit disk (lower) mode (Ro/A ¼ 0.86, 1.0, 5.0). (Reproduced with permission from J. Helszajn
and D. J. Lynch, Cut-off space of cloverleaf resonators with electric and magnetic walls, IEEE
Trans. Microwave Theory Tech., Vol. MTT-40, No. 8, pp. 1620–1629, 1992.)
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FIGURE 8.17 Equipotential lines of cloverleaf resonator with fourfold symmetry, for n ¼ 2
limit disk (upper) mode (Ro/A ¼ 0.86, 1.0, 5.0). (Reproduced with permission from J. Helszajn
and D. J. Lynch, Cut-off space of cloverleaf resonators with electric and magnetic walls, IEEE
Trans. Microwave Theory Tech., Vol. MTT-40, No. 8, pp. 1620–1629, 1992.)
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8.7 GYROMAGNETIC CLOVERLEAF RESONATOR

The functional met in connection with the gyromagnetic circuit is a standard result in
the literature. It differs from that of the isotropic problem region in that it involves an
additional contour integral term:

F(Ez) ¼
ð ð

S

rtEzj j2�k2e Ezj j2
h i

ds� j
k

m

ð

j

Ez
@Ez

@t
dt (8:11)

This functional has the magnetic wall boundary condition included as a natural term.
s is the surface of the planar circuit, j represents the periphery, and t is the boundary
tangent defined in a counterclockwise direction. m and k are the diagonal and off-
diagonal elements of the tensor permeability. When the gyrotropy k/m is set to
zero the functional reduces to that of an isotropic resonator.r t is the transverse differ-
ential operator in Cartesian coordinates. The wavenumber (ke) is defined in the usual
way by

k2e ¼ k20meff1f (8:12)

where

meff ¼
m2 � k2

m
(8:13)

1f is the relative dielectric constant of the ferrite or dielectric substrate.
The discretization and extremization of this functional proceed in a like manner to

that of the isotropic problem region. The details are dealt with in Chapter 15.

8.8 SPLIT CUTOFF SPACE OF GYROMAGNETIC CLOVERLEAF
RESONATOR WITH THREEFOLD SYMMETRY

The split mode chart of a gyromagnetic cloverleaf resonator is also of some interest.
Figure 8.18 depicts the relationship between the splitting of the dominant pair of
degenerate modes and the aspect ratio of the resonator for six different values of
gyrotropy. It is obtained by retaining the gyrotropy term in the functional described
in Eq. (8.11).

Scrutiny of this result indicates that the gyromagnetic effect in this type of resonator
depends on the aspect ratio and the gyrotropy of the geometry and that there are a
number of different combinations of these variables for a given gyromagnetic
effect. Another feature of this result is that the splitting between the dominant pair
of degenerate modes in a weakly magnetized cloverleaf resonator is proportional, in
the usual way, to the gyrotropy of the material. The angle between the degenerate
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split radial wavenumbers of the resonator approaches that of a simple disk in an orderly
fashion.

(keR)þ � (keR)�

(keR)
¼ 2n

(keR)2 � n2
k

m

� �
(8:14)

The quality factor of a junction circulator using such a planar resonator is related to
the gyrotropy by

1
QL

¼
ffiffiffi
3

p (keR)þ � (keR)�

(keR)

� �
(8:15)

Values of QL between 2 and 2 1
2 are suitable for the design of quarter-wave coupled

devices with modest specifications. This suggests that the normalized wavenumbers
must be bounded by

0:231 ,
(keR)þ � (keR)�

(keR)

� �
, 0:288

FIGURE 8.18 Split radial wavenumbers of weakly magnetized gyromagnetic cloverleaf
resonator. (Reproduced with permission from J. Helszajn and D. J. Lynch, Cut-off space of
cloverleaf resonators with electric and magnetic walls, IEEE Trans. Microwave Theory
Tech., Vol. MTT-40, No. 8, pp. 1620–1629, 1992.)
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One attractive feature of the cloverleaf resonator is the possibility of coupling to it at
the terminals defined by the intersection of the lobes used in its construction.
Adopting a value of (Ro/Ri) ¼ 1.0, for instance, indicates that the interval defined
by the normalized split cutoff numbers can be accommodated with

0:40 � (k=m) � 0:60

Once the quality factor of this type of device is established, a knowledge of its sus-
ceptance slope parameter is sufficient for design. This quantity is defined by the reso-
nator shape, its thickness, and the choice of coupling terminals. Its solution is not at
this time available in the open literature.

8.9 STANDING WAVE SOLUTION OF CIRCULATORS
USING CLOVERLEAF RESONATORS

The standing wave solution of a planar junction circulator using this type of resonator
is also of some interest. It may be obtained by taking a suitable linear combination of
the modes of the isotropic circuit. Figure 8.19 shows the construction of such a sol-
ution for the dominant mode in such a gyromagnetic cloverleaf resonator. An ideal
circulator may be formed with this type of circuit with ports attached to either two
possible triplets of terminals.

FIGURE 8.19 Standing wave circulation solution of circulator using dominant mode in
cloverleaf resonator with threefold symmetry (Ro/A ¼ 1.0). (Reproduced with permission
from J. Helszajn and D. J. Lynch, Cut-off space of cloverleaf resonators with electric and mag-
netic walls, IEEE Trans. Microwave Theory Tech., Vol. MTT-40, No. 8, pp. 1620–1629,
1992.)
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CHAPTER NINE

Standing Wave Solution
of Wye Gyromagnetic
Planar Resonator

9.1 INTRODUCTION

An important planar resonator that has the symmetry of the three-port junction circu-
lator is the wye resonator with top and bottom electric walls and a magnetic side wall.
This sort of resonator consists of a central circular region symmetrically loaded by
three open-circuited transmission lines. One exact means of dealing with such a struc-
ture is to have recourse to various numerical techniques. The method utilized here is
based on the decomposition of the problem region into a symmetrical three-port
region bounded by three open-circuited lines. The resonant frequencies of the sym-
metrical and counterrotating families of modes of the overall circuit are then obtained
by satisfying the boundary conditions between the impedance eigenvalues of the cir-
cular region and the impedance of a typical open-circuited stub. Some calculations
based on a finite element solver are included for completeness. It provides one
means of constructing standing wave solutions of the various modes of the geometry.
A closed form description of a wye resonator consisting of an inner gyromagnetic
region to which are connected three stubs is included separately. It provides one
means by which the split frequencies of the resonator under the application of the
gyrotropy may be approximately deduced. Although it is difficult to visualize rotation
of the equipotential lines in a magnetized wye resonator, it is nevertheless possible to
do so at one of two possible triplets of ports. This may be done by taking suitable
linear combinations of those of the demagnetized geometry. The first two circulation
modes of the geometry are dealt with.

The Stripline Circulator: Theory and Practice. By J. Helszajn
Copyright # 2008 John Wiley & Sons, Inc.
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9.2 CUTOFF SPACE OF WYE PLANAR RESONATOR

The equipotential lines and cutoff numbers of the first three modes of a wye resonator
have been computed by having recourse to a finite element program. The schematic
diagram of the resonator under consideration is depicted in Fig. 9.1. The coupling
angle of a typical stub is, in this geometry, restricted to p/3 rad. It is defined by
its width (W ) and length (R). The geometry is subdivided into 13 triangular elements
and a third order polynomial approximation is made to the EM fields in each triangle.
The degree of the polynomial is fixed by the volume of labor involved in setting up
the matrix problem. The number of triangles chosen is determined by the fact that the
amount of computer time taken to solve the problem is not linearly dependent on the
number of triangles. A typical segmentation of a wye resonator is illustrated in
Fig. 9.2. The equipotential lines of the fundamental TM mode in this resonator are
indicated in Fig. 9.3. Its cutoff number has also been computed. It is specified by

kR ¼ 1:643 (9:1)

where

k ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
momr1f1r

p
(9:2)

1r is the relative dielectric constant, mr the relative permeability of the ferrite material,
and v is the radian frequency (rad/s). This cutoff number applies for W/R ¼ 0.4.

FIGURE 9.1 Schematic diagram of wye resonator.
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Figures 9.4a and 9.4b depict the first symmetric and the first higher order TM
standing wave patterns in this type of geometry. The cutoff numbers of these two
modes are

kR ¼ 3:33 and kR ¼ 4:91

FIGURE 9.2 Segmentation of wye resonator into finite elements.

FIGURE 9.3 Equipotential lines of dominant mode in wye resonator.
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The equipotential lines of the symmetric mode in Fig. 9.4a has a maximum value
both at the center and at the end of the stub and has a zero approximately midway
along the stub at

kR � 1:67

FIGURE 9.4 (a) First symmetric mode in wye resonator; (b) first higher order dominant
mode in wye resonator. (Reproduced with permission from J. Helszajn, Standing wave solution
of planar irregular hexagonal and wye resonators, IEEE Trans. Microwave Theory Tech., Vol.
MTT-29, No. 6, pp. 562–567, 1981.)
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The standing wave solution in Fig. 9.4b is also suitable for the construction of a three-
port planar circulator.

The fields at the nodes have been normalized so that the field distribution of
a typical mode satisfies the condition

ð ð
f2
a ds ¼ 1 (9:3)

The resonant modes produced by the program are orthogonal.

9.3 STANDING WAVE SOLUTION OF JUNCTION CIRCULATORS
USING WYE RESONATORS

The equipotential lines of the dominant mode in the isotropic resonator have the
symmetry encountered in the construction of planar circulators on magnetized
substrates. It may therefore be utilized in the construction of a three-port
planar junction circulator. Circulation solutions in magnetized wye resonators
may be constructed by taking a linear combination of two standing wave pat-
terns of the demagnetized wye resonator with one pattern rotated through
1208. This construction is depicted in Fig. 9.5 in the case of the dominant
mode. It indicates that an ideal circulation condition can be realized by coupling
to the wye resonator at one of two triplets of ports in the manner illustrated in
Fig. 9.6. The arrangement in Fig. 9.6a produces a widely used commercial
quarter-wave coupled three-port junction circulator whose outside radius is on
the order of a quarter-wave at the operating frequency of the device.
Figure 9.7 indicates the frequency response of one commercial quarter-wave
coupled device. The standing wave solution for the first higher order circulation
mode in a wye resonator is depicted in Fig. 9.8.

9.4 RESONANT FREQUENCIES OF UE LOADED DISK
MAGNETIZED RESONATORS

One possible variation of the wye resonator is the disk-stub gyromagnetic
arrangement consisting of a circular plate to which are connected three short
UEs. The frequency may be deduced in this instance by visualizing it as a cir-
cular region loaded by three UEs or by a six-port arrangement with three of its
ports closed by magnetic walls and the other three terminated by suitable stubs.
The equivalence between the two models suggests that the first six impedance
poles of the problem region are strictly speaking necessary in order to reproduce
the boundary conditions of the resonator. The topology under consideration is
indicated in Fig. 9.9. It is fixed by a coupling or shape angle (c) and the
ratio of the radii Ri and Ro. Its degenerate or split resonance may be deduced
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by resonating the stubs with the eigen-networks of the circular gyromagnetic
region. The description of a typical impedance pole of an m-port symmetrical
region is a standard result in the literature.

FIGURE 9.5 Equipotential lines for dominant mode in wye circulator. (Reproduced with
permission from J. Helszajn, Standing wave solution of planar irregular hexagonal and wye
resonators, IEEE Trans. Microwave Theory Tech., Vol. MTT-29, No. 6, pp. 562–567, 1981.)
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FIGURE 9.6 Circulation terminals of wye resonator: (a) “aa” terminals; (b) “bb” terminals.
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FIGURE 9.7 Frequency response of a quarter-wave coupled wye resonator. (Reproduced
with permission from J. Helszajn, Standing wave solution of planar irregular hexagonal
and wye resonators, IEEE Trans. Microwave Theory Tech., Vol. MTT-29, No. 6,
pp. 562–567, 1981.)

FIGURE 9.8 Equipotential lines for the first higher order circulation mode in wye resonator.
(Reproduced with permission from J. Helszajn, Standing wave solution of planar irregular
hexagonal and wye resonators, IEEE Trans. Microwave Theory Tech., Vol. MTT-29,
No. 6, pp. 562–567, 1981.)
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If the loosely coupled junction is visualized as a symmetrical six-port network
with alternate ports open-circuited, then the eigenvalues at the reactive walls of the
three-port network are given in terms of the poles of the six-port one by

Z0 � Z0 þ Z3
2

(9:4a)

Zþ � Zþ1 þ Z�2

2
(9:4b)

Z� � Z�1 þ Zþ2

2
(9:4c)

FIGURE 9.9 Schematic diagram of wye resonator using circular disk loaded with UEs.
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If the eigenvalues are written in terms of the impedance poles of the three-port
network, the result is

Z0 � Z0 þ Z3 (9:5a)

Zþ � Zþ1 þ Z�2 (9:5b)

Z� � Z�1 þ Zþ2 (9:5c)

A typical pole of a three-port symmetrical isotropic junction is given by

Zn ¼
j3chrZr

p

sin nc

nc

� �2 J 0n(kRi)
Jn(kRi)

� ��1

(9:6)

It is useful, for the purpose of computation, to write this quantity as

Zn ¼
j3chrZr

p

sin nc

nc

� �2 Jn�1(kRi)
Jn(kRi)

� n

kRi

� ��1

(9:7)

The connection between the two descriptions may be derived by having recourse to
the Bessel relationship:

xJ 0n(x) ¼ x Jn�1(x)� nJn(x) (9:8)

The shape or coupling angle of a typical strip (c) is defined by

sinc ¼ (W=2Ri) ð9:9Þ

hr is the constituent wave impedance of the substrate:

hr ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
mr=1f

p
(9:10)

Zr is the characteristic impedance of a typical stripline:

Zr ¼ 30p ln
W þ t þ 2H

W þ t

� �
(9:11)

The phase constant (k) has the meaning in Eq. (9.2). W, t, and H are the linear
dimensions of the uniform striplines.
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Useful polynomial approximations for the Bessel functions J0(x) and J1(x) for x
between 0 and 3 are

J0(x) ¼ 1� 2:2499997(x=3)2 þ 1:2656208(x=3)4 � 0:3163866(x=3)6

þ 0:0444479(x=3)8 � 0:0039444(x=3)10 þ 0:0002100(x=3)12

J1(x) ¼ x
�
0:50� 0:56249985(x=3)2 þ 0:21093573(x=3)4 � 0:03954289(x=3)6

þ 0:00443319(x=3)8 � 0:00031761(x=3)10 þ 0:00001109(x=3)12
�

and the recurrence formulas

Jnþ1(x) ¼
2n
x
Jn(x)� Jn�1(x)

J�n(x) ¼ (�1)nJn(x)

are sufficient for computational purposes.

FIGURE 9.10 Cutoff wavenumber for the fundamental mode in demagnetized wye
resonator.
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The characteristic equation for the frequencies of the resonator is obtained by reso-
nating the degenerate impedance eigenvalues using suitable open-circuited uniform
transmission lines. The characteristic equation for the first two pair of degenerate
resonances is now established by constructing a transverse resonance condition
between the radial and uniform lines:

Z+ ¼ jhr Zr cot (kL)

L is the length of a typical open-circuited stub:

L ¼ Ro � Ri (9:12)

The required condition is

3c
p

� �
sin c

c

� �2 J0(kRi)
J1(kRi)

� 1
kRi

� �� ��1

þ 3c
p

� �
sin 2c
2c

� �2 J1(kRi)
J2(kRi)

� 2
kRi

� �� ��1

� cot (kL) ¼ 0 (9:13)

for n ¼ 1 and 2.

FIGURE 9.11 Comparison between closed form and FEM calculations of cutoff space of
wye resonator.
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The first two modes of the circular region have been retained in this formulation.
The mode chart of the demagnetized wye resonator is depicted in Fig. 9.10 for n ¼ 1.

The agreement between the calculations undertaken here and some FEM
calculations is indicated separately in Fig. 9.11.

9.5 THE GYROMAGNETIC CUTOFF SPACE

The split cutoff space of a gyromagnetic resonator with m-ports is also readily estab-
lished. The description of a typical pole of this sort of problem region is also a classic
result in the literature.

Zn �
j3chrZr

p

sin nc

nc

� �2 Jn�1(kRi)
Jn(kRi)

� n
1þ k=m

kRi

� �� ��1

(9:14)

FIGURE 9.12 Split frequencies of planar gyromagnetic wye resonator in kR space using
closed form formulation (c ¼ 0.20 rad, Ri/Ro ¼ 0.20, 0.40, and 0.60).
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The corresponding cutoff numbers of the split gyromagnetic space are fixed by

3c
p

� �
sin c

c

� �2 J0(kRi)
J1(kRi)

� 1þ k=m

kRi

� �� ��1

þ 3c
p

� �
sin 2c
2c

� �2 J�3(kRi)
J�2(kRi)

þ 2
1þ k=m

kRi

� �� ��1

� cot(kL) ¼ 0 (9:15)

for n ¼ þ1 and n ¼ 22;

3c
p

� �
sin c

c

� �2 J�2(kRi)
J�1(kRi)

þ 1þ k=m

kRi

� �� ��1

þ 3c
p

� �
sin 2c
2c

� �2 J1(kRi)
J2(kRi)

� 2
1þ k=m

kRi

� �� ��1

� cot(kL) ¼ 0 (9:16)

for n ¼ 21 and n ¼ þ2.
m and k are the usual diagonal and off-diagonal entries of the permeability tensor.

The ratio of k and m is known as the gyrotropy of the problem region.

FIGURE 9.13 Split frequencies of planar wye resonator in kR space using closed form
formulation (c ¼ 0.40 rad, Ri/Ro ¼ 0.20, 0.40, and 0.60).
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Figure 9.12 indicates the split mode chart with Ri/Ro ¼ 0.20, 0.40 and 0.60 and
cs ¼ 0.20 rad obtained by disregarding the n ¼+2 modes. Figure 9.13 depicts
another result. The opening between the split branches is essentially independent
of the shape angle but deteriorates rapidly below Ri/Ro ¼ 0.40. A typical result
based on a finite element solver is indicated in Fig. 9.14.

9.6 OPEN-CIRCUIT PARAMETERS OF CIRCULATORS
USING WYE RESONATORS

In order to obtain the open-circuit parameters of a circulator using a wye resonator, it
is necessary to construct its eigenvalues at its input terminals. The required mappings
between the eigenvalues at the circular gyromagnetic region and those at the
terminals of the UEs are given by

Z0 ¼ hrZr
Z0 þ jhrZr tan kL

hrZr þ jZ0 tan kL

� �
(9:18a)

Z+ ¼ hrZr
Z+ þ jhrZr tan kL

hrZr þ jZ+ tan kL

� �
(9:18b)

FIGURE 9.14 Split frequencies of planar wye resonator using finite elements.
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The eigen-networks formed in this way are depicted in Fig. 9.15.
The relationships between the open-circuit parameters of the overall junction and

the eigenvalues of the problem region are described in the usual way by

Z11 �
Z0 þ Zþ þ Z�

3
(9:19a)

Z21 �
Z0 þ aZþ þ a2Z�

3
(9:19b)

Z31 �
Z0 þ a2Zþ þ aZ�

3
(9:19c)

where

a ¼ exp( j120)

a2 ¼ exp( j240)

a3 ¼ 1:0

FIGURE 9.15 Eigen-networks of circulator using wye resonator.
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For a weakly magnetized resonator with the in-phase eigen-network idealized by a
short-circuit boundary condition,

Yin ¼
Yþ þ Y�

2

� �
� j

ffiffiffi
3

p Yþ � Y�

2

� �
(9:20)

9.7 THE SHORT UE

The nature of the stubs loading the circular region of the resonator may be understood
by having recourse to the equivalent circuit of a typical UE. The equivalent circuit in
question is depicted in Fig. 9.16. Its entries are given by

Z1 ¼ Z3 ¼ Z0tanh(gl=2) (9:21a)

Z2 ¼
Z0

sinh(gl )
(9:21b)

Neglecting dissipation and replacing a typical trigonometric function by its small
angle approximation gives

tanh(gl) ¼ jbl (9:22a)

sinh(gl) ¼ jbl (9:22b)

This gives

Z1 ¼ Z3 � jZ0(bl=2) (9:23)

Z2 � �jZ0=bl (9:24)

FIGURE 9.16 Equivalent circuit of uniform transmission line.
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Z0 and b are defined in terms of inductance and capacitance per unit length of the
line by

Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(mrL0=1rC0

p
) (9:25)

b ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mr1rL0C0

p
(9:26)

Combining the previous relationships gives

Z1 ¼ Z3 ¼ jv(mrL0l)=2 (9:27a)

Z2 ¼ �j=v(1rC0l) (9:27b)

A scrutiny of these relationships indicates that a high impedance line UE may be
represented by a series inductor equal to twice that of either series branch:

Z1 ¼ Z3 � j
v(mrL0l)

2
(9:28a)

Z2 � 0 (9:28b)

FIGURE 9.17 Equivalent circuits of high and low impedance uniform transmission lines.

182 STANDING WAVE SOLUTION OF WYE GYROMAGNETIC PLANAR RESONATOR



Likewise, a low impedance line may be approximated by a shunt capacitance:

Z1 ¼ Z3 ¼ 0 (9:29a)

Y2 ¼ 1=Z2 ¼ jv(1rC0l) (9:29b)

The equivalent circuits under consideration are indicated in Fig. 9.17.
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CHAPTER TEN

Planar Resonators with Triplets
of Radial and Circumferential
Magnetic Walls

10.1 INTRODUCTION

Planar resonators with threefold symmetry and with top and bottom electric walls and
a magnetic side wall may be perturbed by suitable triplets of radial and circumferen-
tial magnetic walls. Figure 10.1 illustrates the two possibilities under discussion. The
effect of a triplet of radial magnetic wall ridges on the cutoff space of a disk resonator
may be understood by employing duality between a planar circuit with a magnetic
wall boundary condition and a circular waveguide at cutoff with three metal ridges
with an electric wall boundary condition. Its effect is to perturb its cutoff space
except for its symmetric branches. This latter feature may be understood by recogniz-
ing that the current induced in the metallization by the location of a typical radial
magnetic wall is, for this type of mode, parallel to such a wall and is therefore unaf-
fected by it. The effect of a triplet of circumferential slots is discussed separately. A
careful consideration of the effects of the two orthogonal families of walls suggests
that these provide independent means of perturbing each type of eigen-network enter-
ing into the design of a three-port junction circulator. As the slots define magnetic
walls, these are not expected to radiate. This is in keeping with practice. One
means of investigating either geometry is, again, the finite element method. Planar
resonators of triangular shape are also finding increasing use and this circuit has
also been analyzed. This chapter also includes statements about the loaded
Q-factor of circulators using a triplet of radial walls in circular and triangular
plates. It therefore provides a complete description of circulators using weakly
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magnetized planar resonators symmetrically loaded with magnetic wall ridges. Some
experimental mode charts, obtained in this way at S-band on disk and triangular cir-
cuits, are superimposed on the theoretical results in Figs. 10.5 and 10.6. The compari-
son between theory and experiment disregards any perturbation in frequency of the
resonant mode due to the effects of imperfect magnetic wall boundary conditions
or that of coupling of the striplines to the junction.

The geometry of the disk circuit is fixed by the thickness t of the center conduc-
tor (0.40 mm), the width of the magnetic wall ridges (0.80 and 1.80 mm), the
ground plane spacing 2H (4.00 mm), and the radius of the disk (10.70 mm). The
length of the ridge was varied between 0 and 10 mm. The garnet material had a
magnetization (m0 M0) of 0.0550 T and a dielectric constant of 15.1. The triangular
resonator has similar linear dimensions with the exceptions of the side of the tri-
angle (A), which was 18.4 mm, and the material, which had a magnetization (m0

M0) of 0.0600 T.

10.2 DOMINANT MODE CHARTS FOR PLANAR RESONATORS
WITH RADIAL MAGNETIC WALL RIDGES

The cutoff spaces of planar circuits with top and bottom electric walls and magnetic
side walls with magnetic wall ridges may be understood by using duality at cutoff
between a planar circuit with magnetic walls and an equivalent waveguide with elec-
tric walls. The two circuits dealt with in this section are illustrated in Fig. 10.2. The
dualities between the planar disk and triangular resonators and the corresponding
waveguides are illustrated in Fig. 10.3.

The two circuits under consideration can be readily analyzed by having recourse to
a standard finite element calculation. The finite element discretization of each geome-
try is depicted in Fig. 10.4. The inherent flexibility of the finite element method
allows different resonator shapes and magnetic wall ridges to be characterized
without difficulty. The resonator is here subdivided into 21 triangles and a fourth

FIGURE 10.1 Planar resonator loaded with triplets of radial and circumferential walls.
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order polynomial approximation is made to the fields in each triangle. The mode
charts obtained in this way, for two different magnetic wall ridge sizes, are illustrated
in Figs. 10.5 and 10.6.

The cutoff number for the dominant mode of the circular configuration in the
absence of electric or magnetic ridges is given by

kR ¼ 1:841 (1:917) (10:1)

The cutoff numbers for the triangular configuration is

kA ¼ 4p
3

(4:227) (10:2)

FIGURE 10.2 (a) Planar disk resonator with three symmetrical magnetic wall ridges. (b)
Planar triangular resonator with three symmetrical magnetic wall ridges.
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FIGURE 10.3 (a) Duality between planar disk resonator with magnetic wall ridges and
circular waveguide with electric wall ridges. (b) Duality between planar triangular resonator
with magnetic wall ridges and triangular waveguide with electric wall ridges.

FIGURE 10.4 Discretization of planar resonators loaded by radial magnetic walls.
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R is the radius of the planar disk or circular waveguide (meters), A is the length of the
side of the planar triangular resonator or waveguide (meters), and k is the radial propa-
gation constant (rad/s):

k ¼ 2p
l0

ffiffiffiffiffiffiffiffiffiffiffiffi
1fmeff

p
(10:3)

1f is the relative dielectric constant, meff is the relative effective permeability of the
substrate, and l0 is the free space wavelength (meters). The quantities in parentheses
in Eqs. (10.1) and (10.2) refer to the computed values obtained by having recourse to
a dedicated FE solver.

A feature of a triplet of radial magnetic walls is that the in-phase mode of the reso-
nator is not perturbed by the introduction of such magnetic walls. This may also

FIGURE 10.5 Theoretical and experimental mode chart for planar disk resonator with
magnetic wall ridges. (Reproduced with permission from J. Helszajn, R. D. Baars, and
W. T. Nisbet, Characteristics of circulators using planar triangular and disk resonators symme-
trically loaded with magnetic walls, IEEE Trans. Microwave Theory Tech., Vol. MTT-28,
pp. 616–621, June 1980.)
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be understood with reference to the in-phase eigen-network, as shown in Fig. 10.7.
It indicates that for narrow ridges the magnetic wall coincides with the magnetic
wall boundary condition of the eigen-network.

10.3 HIGHER ORDER MODE CHARTS IN PLANAR RESONATORS
WITH RADIAL MAGNETIC WALL RIDGES

The effects of three symmetrically located magnetic walls on the first two higher
order modes in disk and triangular planar resonators with top and bottom electric
walls have also been investigated. The cutoff numbers of the unperturbed modes

FIGURE 10.6 Theoretical and experimental mode chart for planar triangular resonator with
magnetic wall ridges. (Reproduced with permission from J. Helszajn, R. D. Baars, and W. T.
Nisbet, Characteristics of circulators using planar triangular and disk resonators symmetrically
loaded with magnetic walls, IEEE Trans. Microwave Theory Tech., Vol. MTT-28,
pp. 616–621, June 1980.)
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are given by

kR ¼ 3:054 (3:165) (10:4)

kR ¼ 3:832 (3:879) (10:5)

The corresponding values for the triangular geometry are

kA ¼ 4p
ffiffiffi
3

p
(7:328) (10:6)

kA ¼ 8p
3

(8:448) (10:7)

FIGURE 10.7 The in-phase eigen-network of a circulator using a planar disk resonator
(a) unperturbed and (b) loaded with radial ridges. (Reproduced with permission from
J. Helszajn, R. D. Baars, and W. T. Nisbet, Characteristics of circulators using planar triangular
and disk resonators symmetrically loaded with magnetic walls, IEEE Trans. Microwave Theory
Tech., Vol. MTT-28, pp. 616–621, June 1980.)
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Figures 10.8 and 10.9 depict the mode spectrum of the first three modes versus the
length of the magnetic walls for disk and triangular resonators, respectively.

A separate study of the field patterns in such planar resonators indicates that the
first higher order mode in the case of a triangle is a symmetric one, whereas in the
case of a planar disk resonator it is the third rather than the second mode that is
the symmetric one. The magnetic walls have little or no effect on the symmetric
modes of each geometry. This feature may be understood by recognizing that the
magnetic walls are in each instance perpendicular to the magnetic field so that the cur-
rents in the center conductor are parallel to the magnetic walls. This result is in
keeping with the in-phase eigen-network in Fig. 10.7.

FIGURE 10.8 Theoretical mode spectrum for planar disk resonator with magnetic wall
ridges (Reproduced with permission from J. Helszajn, R. D. Baars, and W. T. Nisbet,
Characteristics of circulators using planar triangular and disk resonators symmetrically
loaded with magnetic walls, IEEE Trans. Microwave Theory Tech., Vol. MTT-28,
pp. 616–621, June 1980.)
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10.4 FAY AND COMSTOCK CIRCULATION SOLUTION

Two definitions of the quality factor of the complex gyrator circuit of a weakly mag-
netized junction have been introduced in the text. One is based on the gyrotropy of the
magnetic insulator; the other is based on the physical details of the structure
under consideration. One circulation solution due to Fay and Comstock is obtained
by reconciling the two descriptions. The perturbation of the former description
by the introduction of a triplet of magnetic walls is the topic of the next
section. This shift in the quality factor may be inferred by having recourse to
perturbation theory.

One of the two definitions of the loaded Q-factor (QL) of a resonator employed by
Fay and Comstock is

QL¼
v0U0

Pr1 þ Pr2 þ Pr3
(10:8)

FIGURE 10.9 Theoretical mode spectrum for planar triangular resonator with magnetic wall
ridges. (Reproduced with permission from J. Helszajn, R. D. Baars, and W. T. Nisbet,
Characteristics of circulators using planar triangular and disk resonators symmetrically
loaded with magnetic walls, IEEE Trans. Microwave Theory Tech., Vol. MTT-28,
pp. 616–621, June 1980.)
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U0 is the stored energy, v0 is the radian resonant frequency, and Pri is the power
dissipated in a typical termination. In the case of a circulator,

Pr1 ¼ Pr3 ¼ 0 (10:9)

The quality factor obtained in this way in the case of a circulator using a disk reso-
nator is given in Chapter 16 in the absence of magnetic wall ridges by

QL ¼ 1:48101rv0R2

Y0H
(10:10)

Y0 is the conductance at the output stripline and also that looking into the resonator
circuit, and H is the thickness of each ferrite disk.

FIGURE 10.10 Theoretical and experimental loaded Q-factor of a circulator using planar
disk resonators with magnetic wall ridges. (Reproduced with permission from J. Helszajn,
R. D. Baars, and W. T. Nisbet, Characteristics of circulators using planar triangular and disk
resonators symmetrically loaded with magnetic walls, IEEE Trans. Microwave Theory Tech.,
Vol. MTT-28, pp. 616–621, June 1980.)
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Once H is set by QL, the width of the striplines is approximately defined by the
output conductance in the usual way:

Y0 ¼ 30p ln
W þ t þ 2H

W þ t

� �� ��1

(10:11)

A statement of the quality factor in terms of the split frequency of the function on the
gyrotropy of the resonator completes the Fay and Comstock solution. The
corresponding quantities in the cases of apex and side coupled triangular resonators
are also available in Chapter 16.

10.5 QUALITY FACTOR OF CIRCULATORS USING PLANAR
RESONATORS WITH TRIPLETS OF RADIAL MAGNETIC WALLS

The relation between the shift in resonant frequency and the change in the stored
energy in a planar resonator with top and bottom electric walls and a magnetic
side wall due to the introduction of magnetic walls may be obtained by having
recourse to perturbation theory.

FIGURE 10.11 Theoretical and experimental loaded Q-factor of a circulator using a planar
triangular resonator loaded with magnetic wall ridges. (Reproduced with permission from
J. Helszajn, R. D. Baars, and W. T. Nisbet, Characteristics of circulators using planar triangular
and disk resonators symmetrically loaded with magnetic walls, IEEE Trans. Microwave Theory
Tech., Vol. MTT-28, pp. 616–621, June 1980.)
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The governing condition, assuming that the original and perturbed alternating
fields are similar and that the introduction of magnetic wall ridges does not signifi-
cantly perturb the electric field, is

Dv0

v0
¼ �DU0

U0
(10:12)

Dv0 and DU0 denote the shift in resonant frequency and the change in stored energy
of the cavity, respectively. The sign in the preceding equation is compatible with a

FIGURE 10.12 Planar disk and triangular resonators with three symmetrical hole-slot con-
figurations. (Reproduced with permission from J. Helszajn, R. D. Baars, and W. T. Nisbet,
Characteristics of circulators using planar triangular and disk resonators symmetrically
loaded with magnetic walls, IEEE Trans. Microwave Theory Tech., Vol. MTT-28,
pp. 616–621, June 1980.)
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change in magnetic wall boundary condition instead of an electric one in a circular
cavity and is consistent with experiment.

The perturbation formulation introduced here is usually used to calculate the shift
in resonant frequency of a resonator from a calculation of the energy stored and the
change in the stored energy. The change in stored energy is here obtained in terms of
the unperturbed stored energy and a calculation of frequency obtained from a finite
element analysis. It is therefore expected that the perturbation formulation of the
loaded Q-factor should be accurate over a larger interval than is normally found to
be the case when applying the theory in the standard manner.

FIGURE 10.13 Experimental mode chart for a planar triangular resonator with a hole-slot
tuning arrangement. (Reprpduced with permission from J. Helszajn, R. D. Baars, and W. T.
Nisbet, Characteristics of circulators using planar triangular and disk resonators symmetrically
loaded with magnetic walls, IEEE Trans. Microwave Theory Tech., Vol. MTT-28,
pp. 616–621, June 1980.)
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FIGURE 10.15 Perturbation of in-phase TM010 mode by circumferential slots. (Reproduced
with permission from J. Helszajn, I. Macfarlane, M.McKay, A. Bunce, J. Sharp, andM. Hocine,
Planar resonators with three-fold symmetry with triplets of circumferential walls, IEE Proc –
Microwaves, Antennas and Propagation, Vol. 152, No. 5, pp. 285–291, October 2005.)

FIGURE 10.14 In-phase eigen-network loaded with circumferential slots.
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The derivation of this result starts by replacing Eq. (10.8) by

QL � DQL ¼ (v0 � Dv0) (U0 � DU0)
Pr2

(10:13)

The required result is now obtained by combining the two preceding equations:

Q0
L ¼ QL (1� (Dv0=v0))

2 (10:14)

Q0
L is the loaded Q-factor at the perturbed frequency (v0 2 Dv0) of the resonator, v0

is the unperturbed radian frequency of the resonator, QL is the loaded Q-factor of the
unperturbed resonator, and Dv0 is the shift in the resonant frequency of the resonator
due to the introduction of the radial magnetic walls.

FIGURE 10.16 Mode chart of disk resonator loaded by circumferential magnetic walls
(c ¼ 1058). (Reproduced with permission from J. Helszajn, I. Macfarlane, M. McKay,
A. Bunce, J. Sharp, and M. Hocine, Planar resonators with three-fold symmetry with triplets
of circumferential walls, IEE Proc. Microwaves, Antennas and Propagation, Vol. 152,
No. 5, pp. 285–291, October 2005.)
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Figure 10.10 shows the correlation between measurement and theory in the case of
a circulator using a planar triangular resonator loaded with magnetic ridges.
Figure 10.11 depicts the same result for a circulator using a planar disk resonator.
The agreement between theory and experiment is adequate for engineering purposes
up to s/R (or s/Ri) equal to about 0.60.

10.6 EXPERIMENTAL MODE CHARTS OF CIRCULATORS USING
PLANAR RESONATORS SLOT–HOLE

Figure 10.12 shows a hole-slot center conductor configuration having an extended
tuning range. Its mode chart, obtained on an above-resonance UHF circulator, is
depicted in Fig. 10.13. The dual waveguide geometry for this configuration is under-
stood by inspection.

FIGURE 10.17 Impedance zero fixture. (Reproduced with permission from J. Helszajn, I.
Macfarlane, M. McKay, A. Bunce, J. Sharp, and M. Hocine, Planar resonators with three-
fold symmetry with triplets of circumferential walls, IEE Proc. Microwaves, Antennas and
Propagation, Vol. 152, No. 5, pp. 285–291, October 2005.)
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10.7 CIRCUMFERENTIAL MAGNETIC WALL

One means of perturbing the degenerate counterrotating eigen-networks of a
symmetrical three-port junction is to locate a triplet of radial magnetic walls into its
central plate in the mannar indicated in Fig. 10.1. While this type of wall alters the
cutoff number of the counterrotating eigen-networks, it leaves that of the in-phase
one unperturbed. Another possible triplet of magnetic walls is circumferential ones
around the resonator plate. Such slots do not affect the counterrotating modes provided
these are located in the inner region of the plate, where the degenerate magnetic fields
are essentially circularly polarized but have, however, a strong influence on the in-
phase eigen-network. The in-phase eigen-network under consideration is indicated
in Fig. 10.14. Some experimental data of the effect of a triplet of circumferential
slots on the first symmetric mode for parametric values of u are summarized in

FIGURE 10.18 TM010 impedance zero in u, kr plane. (Reproduced with permission from J.
Helszajn, I. Macfarlane, M. McKay, A. Bunce, J. Sharp, and M. Hocine, Planar resonators with
three-fold symmetry with triplets of circumferential walls, IEE Proc. Microwaves, Antennas
and Propagation, Vol. 152, No. 5, pp. 285–291, October 2005.)
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Fig. 10.15. Figure 10.16 separately summarizes themode charts of the first threemodes
in such a resonator in the r/R, u space.

10.8 IMPEDANCE ZERO

In order to adjust a three-port junction circulator it is necessary not only to realize
a pair of degenerate counterrotating impedance poles at its terminals but also
to place a virtual in-phase or symmetric impedance there. One way to establish
this latter condition is again to introduce a triplet of circumferential slots in the
resonator plate. The experimental fixture is a resonator plate in a bifurcated
cavity with an electric rather than a magnetic side wall. The necessary arrange-
ment is illustrated in Fig. 10.17. The TM010 solution in the u, r/R plane is indi-
cated in Fig. 10.18.

202 TRIPLETS OF RADIAL AND CIRCUMFERENTIAL MAGNETIC WALLS



CHAPTER ELEVEN

Unloaded Quality Factors
of Junction Circulators

11.1 INTRODUCTION

One model of a junction circulator is a gyromagnetic resonator at the junction of three
transmission lines. A knowledge of its counterrotating unloaded quality factor and
split frequencies is sufficient to specify both the gain bandwidth and the insertion
loss of the device. One means of measuring these quantities consists of forming
the immittance at port 1 by open-circuiting ports 2 and 3 of the circulator. The con-
stituent resonator established in this way displays the impedance poles of the problem
region without ado. These poles have, in the presence of dissipation, both real and
imaginary parts. A characterization of the latter quantities and that of the loaded
quality factor of the gyrator circuit are the main endeavors of the chapter. Both the
unloaded split quality factors and the loaded quality factor vary with the gyrotropy
so that each quantity has to be established separately in terms of the direct magnetiza-
tion and direct magnetic field intensity. The chapter summarizes some experimental
data on a stripline arrangement using a simple disk gyromagnetic resonator biased
below the Kittel line. This is done for a number of coupling angles that the ports
subtend at the terminals of the resonator.

11.2 EIGENVALUE DIAGRAMS OF SEMI-IDEAL CIRCULATION

The effects of dissipation on the performance of three-port circulators has been dealt
with in a number of publications. The purpose of this section is to examine its inser-
tion loss parameter in terms of the eigenvalues of its dissipation matrix.
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The insertion loss of symmetrical circulators is given in terms of the reflection
eigenvalues of the junction by

S21 ¼
s0 þ asþ þ a2s�

3
(11:1)

where

s0 ¼ (1� q0=2) exp (�j2f0) (11:2a)

sþ ¼ (1� qþ=2) exp �j2(fþ þ p=2)
� �

(11:2b)

s� ¼ (1� q�=2) exp �j2(f� þ p=2)½ � (11:2c)

q0 and q+ are the in-phase and counterrotating eigenvalues of the dissipation matrix
(Q). In this discussion the angles of the reflection eigenvalues are specialized to those
of an ideal circulator.

f0 ¼ p=2 (11:3a)

fþ ¼ p=2� p=6 (11:3b)

f� ¼ p=2þ p=6 (11:3c)

FIGURE 11.1 Eigenvalue diagrams of lossy circulator.
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It is furthermore assumed that the dissipation of the in-phase eigen-network may be
neglected compared to those of the split counterrotating ones.

q0 ¼ 0 (11:4)

The adjustment of the lossy three-port circulator is not unique. One possible
adjustment optimizes the return loss but produces a finite isolation. Another idealizes
the isolation but results in a finite return loss. Still another produces equal but finite
values of return loss and isolation. Four possible eigenvalue diagrams are illustrated
in Fig. 11.1. A lumped element representation of the eigen-networks of a three-port
junction circulator in the presence of damping terms is indicated in Fig. 11.2.

11.3 CONSTITUENT RESONATOR

One means of investigating the gyromagnetic space of a three-port circulator is to
form its constituent resonator. A feature of this circuit is that its impedance coincides
with the one-port network defined by the main diagonal of the original impedance
matrix of the three-port junction. It therefore displays all the poles of the problem
region. It is obtained at one typical port by open-circuiting the other two.

Z11 ¼
V1

I1

���I2 ¼ I3 ¼ 0 (11:5)

FIGURE 11.2 Lumped element eigen-networks of lossy three-port circulator.
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It is separately understood that Z11 may be expanded in terms of the in-phase Z0 and
counterrotating Z+ impedance eigenvalues of the junction. This gives

Z11 ¼
Z0 þ Zþ þ Z�

3
(11:6)

Each eigenvalue can be expanded separately in terms of the in-phase and counter-
rotating impedance poles of the problem region in a first Foster form without ado.

Z0 ¼ Z0 þ Z3 þ � � � (11:7a)

Zþ ¼ Zþ1 þ Z�2 þ � � � (11:7b)

Z� ¼ Z�1 þ Zþ2 þ � � � (11:7c)

Figure 11.3 illustrates the experimental constituent arrangement.
A one-port first Foster expansion in terms of the poles of the problem region of Z11

is shown separately in Fig. 11.4. The characters of the split unloaded Q-factors of the
dominant split modes of a gyromagnetic resonator may be revealed by introducing
damping terms in the idealized first Foster form expansion of the constituent resona-
tor. If the split frequencies of the dominant pair of counterrotating poles are suffi-
ciently separated, then the unloaded Q-factor of each pole may be experimentally
evaluated using standard one-port techniques.

FIGURE 11.3 Definition of constituent resonator.
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11.4 UNLOADED, EXTERNAL, AND LOADED Q-FACTORS

The insertion loss of a two-port resonant network is often expressed in terms of an
unloaded, an external, and a loaded quality factor. Since an ideal circulator has
some of the features of a transmission line cavity between two of its ports, it is appro-
priate to do so here also.

In defining the Q-factor, the power that is dissipated within the circuit is normally
separately expressed from that within the external circuit. The total power dissipated
within the circuit is described by an unloaded Q-factor, QU. This quantity is defined
in terms of the resonant frequency of the junction, v0, and the stored and dissipated
energies of the circuit:

QU ¼ v0 (energy stored in the circuit)
power dissipated in circuit

(11:8)

If coupling ports, loops, or probes are introduced into the resonator, the power
dissipated in each load may be expressed separately by a single external quality
factor, Qex,n, defined by

Qex,n ¼
v0 (energy stored in the circuit)

power reflected at port n
(11:9)

The total dissipated power is described by a loaded Q-factor, QL, given by

QL ¼ v0 (energy stored in the circuit)
power dissipatedþ power reflected at all ports

(11:10)

FIGURE 11.4 First Foster form of constituent resonator.
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It is readily demonstrated that

1
QL

¼ 1
QU

þ 1
Qex,1

þ 1

Qex,2

þ � � � (11:11)

Equations (11.8) and (11.9) are usually expressed in abbreviated form as

QU ¼ v0U0

Pd
(11:12)

Qex,n ¼
v0U0

Pr,n
(11:13)

U0 is the energy stored in the circuit, Pd is the power dissipated in the circuit, and Pr,n

is the power dissipated in the external terminations.

11.5 MEASUREMENT OF UNLOADED SPLIT Q-FACTORS

The unloaded quality factor of a one-port resonator may be deduced experimentally
in more than one way. One method involves a determination of whether the resonator
is over- or undercoupled, a measurement of the midband VSWR and the frequencies
at which the return loss is 3 dB below its midband value. The other method proceeds
in a similar manner except that the loaded quality factor is obtained by a measurement
of the phase of the reflection coefficient instead of its amplitude. The two methods
produce identical results.

The first of the two methods makes use of the connection between its loaded (QL),
external (Qex) and unloaded (QU) quality factors. The quantities appearing in this
relationship may be evaluated experimentally by making use of some standard con-
ditions. Before doing so, it is recalled that a cavity is either undercoupled, critically
coupled, or overcoupled. If it is overcoupled then

VSWR ¼ R

n2Z0
(11:14a)

and

1
QL

� �
¼ 1

Qex

� �
(1þ VSWR) (11:14b)

1
QL

� �
¼ 1

QU

� �
1þ VSWR

VSWR

� �
(11:14c)
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where

1
QL

� �
¼ +

v0

v0 � v

� �
(11:15)

The preceding equations are compatible provided

VSWR ¼ Qex

QU

� �
(11:16)

VSWR is the voltage standing wave ratio at resonance, and v is the radian frequency
at which the power reflected is 3 dB down on its value at resonance. It is readily
recognized that the two descriptions of VSWR in Eqs. (11.14a) and (11.16) are
one and the same.

If the resonator is undercoupled then

VSWR ¼ n2Z0
R

(11:17a)

and

1
QL

� �
¼ 1

Qex

� �
1þ VSWR
VSWR

� �
(11:17b)

1
QL

� �
¼ 1

QU

� �
(1þ VSWR) (11:17c)

The latter two equations are again compatible provided

VSWR ¼ QU

Qex

� �
(11:18)

The loaded quality factor entering into the experimental determination of the
unloaded quality factor of the resonator is not to be confused with that of the
complex gyrator circuit.

The quality factors of a one-port cavity may also be deduced from a Smith chart
display of its frequency response. Figure 11.5 shows one typical construction. The
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quality factors in question are defined in terms of the frequency markers by

Qo ¼
fres

( f6 � f5)
(11:19a)

Qext ¼
fres

( f4 � f3)
(11:19b)

QL ¼ fres
( f2 � f1)

(11:19c)

11.6 EXPERIMENTAL DATA

Some experimental data on the split unloaded quality factors of the dominant pair of
split modes of a simple gyromagnetic disk resonator are summarized in this section.
This is done for a number of materials and for a number of different coupling angles

FIGURE 11.5 Smith chart display. Loci Qo, Qext and QL of one-port cavity.

210 UNLOADED QUALITY FACTORS OF JUNCTION CIRCULATORS



that the strips subtend at a typical port. The experimental arrangement is the one-port
circuit obtained by open-circuiting ports 2 and 3 of the circulator.

Figure 11.6 indicates the relationships between the direct magnetic flux density
and the lower and upper split unloaded quality factors of the arrangement.

FIGURE 11.6 (a) Upper and (b) lower unloaded quality factors of gyromagnetic disk
resonator for parametric values of coupling angles (m0M0 ¼ 0.0400 T). (Reproduced with per-
mission from J. Helszajn, T. Vincent, and B. Pierce, Unloaded quality factors of junction circula-
tors, IEE Proc. Microwaves, Antennas and Propagation, Vol. 152, No. 2, pp. 82–88, April 2005.)
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This is done for three typical coupling angles, c ¼ 0.33 rad, c ¼ 0.49 rad, and c ¼

0.64 rad. The results apply to a gyromagnetic resonator biased below the main Kittel
resonance. The ground plane spacing is adjusted in each instance to maintain the feed
impedance at 50 V. The material employed in obtaining this result is a garnet one
with a magnetization m0M0 equal to 0.0400 T. The operating frequency is 2.0 GHz.
A scrutiny of this data suggests that the split unloaded Q-factors show some depen-
dence on the coupling angle. This feature is no doubt related to the ground plane
spacing of the resonator. Since the main endeavor of this work is the effect of the
magnetization on the split unloaded Q-factors of the circuit, the work on the other
materials is restricted to the intermediate coupling angle. The aspect ratio of the reso-
nator (R/L) is 3.0. Figure 11.7 depicts, for completeness sake, the relationship
between the direct magnetic field intensity and the external quality factor for para-
metric values of coupling angle. Figure 11.8 illustrates a typical frequency response.
Figure 11.9 depicts the upper and lower unloaded quality factors for materials with
m0M0 ¼ 0.0400 T, 0.0550 T, 0.0680 T, and 0.0800 T for a constituent resonator
with a coupling angle equal to 0.49 rad. The composition of the garnet is in every
instance a gadolinium aluminum doped material. This material may be fired with
values of saturation magnetization (m0M0) between 0.0400 T and 0.1400 T. The
3 dB linewidth (m0 DH ) is typically 0.0070 T; its spinwave linewidth (m0DHk) is
about 0.0004 T. The dielectric constant varies between 14 and 15 for the materials
in question. One property of these results is that the unloaded quality factor of
each lower branch shows a significant degradation as the direct magnetic field

FIGURE 11.7 Split external quality factors of gyromagnetic resonator (m0M0 ¼ 0.0400 T).
(Reproduced with permission from J. Helszajn, T. Vincent, and B. Pierce, Unloaded quality
factors of junction circulators, IEE Proc. Microwaves, Antennas and Propagation, Vol. 152,
No. 2, pp. 82–88, April 2005.)
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increases. This may be understood by recognizing that, in keeping with the frequency
response in Fig. 11.8, these branches encroach on the skirt of the uniform Kittel line.
Another feature of these results is that the unloaded quality factors of the upper and
lower branches deteriorate as the direct magnetization is increased. In obtaining this
data all the measurements have been kept at a frequency of about 2.0 GHz by adjust-
ing individually the radii of the different ferrites in order to cater for the permeability
effects of the magnetization.

11.7 INSERTION LOSS OF JUNCTION CIRCULATORS

The insertion loss (L) between ports 1 and 2 of a junction circulator is defined in
terms of the amplitude of the transmission parameter (S21) by

L(dB) ¼ �20 log10
1
S21

����
���� (11:20)

The fundamental aspects of dissipation in a junction circulator are best discussed
in terms of its dissipation eigenvalues. For engineering purposes, however, it is pre-
ferable to do so in terms of equivalent loaded and unloaded quality factors. The

FIGURE 11.8 Frequency response of constituent resonator for a typical direct magnetic
field.
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FIGURE 11.9 (a) Upper and (b) lower unloaded quality factors of gyromagnetic disk
resonator (m0M0 ¼ 0.0400 T, 0.0550 T, 0.0680T , and 0.0800 T). (Reproduced with permission
from J. Helszajn, T. Vincent, and B. Pierce, Unloaded quality factors of junction circulators, IEE
Proc. Microwaves, Antennas and Propagation, Vol. 152, No. 2, pp. 82–88, April 2005.)
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required result in terms of the magnetic parameters of the resonator is given by

L(dB) � �20 log10 1þ QL

Qeff

����
���� (11:21)

QL is the quality factor of the complex gyrator circuit, and Qeff is the effective
unloaded quality factor associated with the gyrotropy of the gyromagnetic resonator.

The effective midband unloaded Q-factor (Qeff) appearing in the insertion loss
function is defined in terms of the split unloaded ones and the gyrotropy by

1
Qeff

¼ 1
2

m� k

m

� �
1
Qþ

U

� �
þ mþ k

m

� �
1
Q�

U

� �� �
(11:22)

m and k are the diagonal and off-diagonal entries of the permeability tensor in
Chapter 2.

The unloaded quality factors, in a gyromagnetic resonator biased below the Kittel
line, are not in practice too unequal. This condition corresponds to the eigenvalue
diagram in Fig. 11.1b. If this is the case, then

1
Qeff

� 1
2

1
Qþ

U

þ 1
Q�

U

� �
(11:23)

The situation in an above-resonance circulator is somewhat more difficult in that

Qþ
U = Q�

U (11:24)

In this sort of device Qeff increases while QL decreases as the direct magnetic field is
reduced. A compromise between bandwidth and insertion loss is therefore necessary
in practice. This situation corresponds to the eigenvalue diagram in Fig. 11.1d.

The loaded quality factor of the complex gyrator circuit, QL, is given separately in
the usual way in terms of the split frequencies of the gyromagnetic resonator and else-
where in this text

1
QL

¼
ffiffiffi
3

p vþ � v�
v0

� �
(11:25)

The loaded quality factor and insertion loss of a typical commercial junction
circulator are

QL ¼ 2.5 and L(dB) ¼ 0.25

The effective unloaded quality factor necessary to meet this specification is

Qeff ¼ 87

If

QL ¼ 2:0
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FIGURE 11.10 Effective unloaded quality factor versus magnetic field intensity.
(Reproduced with permission from J. Helszajn, T. Vincent, and B. Pierce, Unloaded quality
factors of junction circulators, IEE Proc. Microwaves, Antennas and Propagation, Vol. 152,
No. 2, pp. 82–88, April 2005.)

FIGURE 11.11 Loaded quality factor of complex gyrator circuit.
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FIGURE 11.12 Split frequencies of gyromagnetic resonator versus magnetic field intensity.

FIGURE 11.13 Relationship between insertion loss of junction circulator and normalized
magnetization. (Reproduced with permission from J. Helszajn, T. Vincent, and B. Pierce,
Unloaded quality factors of junction circulators, IEE Proc. Microwaves, Antennas and
Propagation, Vol. 152, No. 2, pp. 82–88, April 2005.)
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and
L(dB) ¼ 0:50

then
Qeff ¼ 35

In order to construct the insertion loss of the circulator it is necessary to calculate the
effective quality factor of the gyromagnetic resonator and the loaded quality factor of
the complex gyrator circuit. Figure 11.10 depicts the relationship between the effective
quality factor and direct magnetic field intensity for each material utilized in this work.
Figure 11.11 indicates the loaded quality factor. This latter quantity is obtained in terms
of the split frequencies of the resonator. Figure 11.12 gives a typical plot. The insertion
loss of the overall circulator may be deduced once Qeff and QL are established.
Figure 11.13 shows the relationship between the insertion loss and the normalised mag-
netization of the gyromagnetic resonator for two typical values of QL.

The nature of the relationship between the insertion loss and the normalized
magnetization is similar to that met in connection with the design of below-resonance
ferrite phase shifters. It is apparent from this result that the use of materials with values
of normalizedmagnetization above 0.60 is unsuitable for the design of low loss circulators.

11.8 INSERTION LOSS OF UHF CIRCULATORS

A simple technique whereby the intrustion of the Kittel line on the passband of a cir-
culator may be established is a topic of this section. It consists of displaying the return
loss of the circulator at port 1 with ports 2 and 3 open circuited. The displacement
of the reflection coefficient from the rim of the charts is a qualitative measure of
the dissipation of the junction. Its deviation from a constant displacement indicates
the intrusion of the skirt of the Kittel line onto the passband.

The connection between the return loss of the constituent circuit and that of the
circulator has not been formally derived at this time. One semiempirical relationship
based on a sample of five above-resonance units at 2 GHz is

L(dB) ¼ A(RL) dB

where

A ¼ 1=4:6

taking RL as 1.0 dB by way of example gives L(dB) as 0.23 dB.

11.9 SCATTERING MATRIX OF SEMI-IDEAL CIRCULATORS

Semi-ideal circulators are those for which dissipation exists. In such circulators either

S11 ¼ 0, S21 = 1, and S31 = 0 (11:26a)
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or

S11 = 0, S21 = 1, and S31 ¼ 0 (11:26b)

The first situation is obtained when the angle between sþ1 and s21 is less than 1208.
The second case is obtained when it is larger than 1208.

The scattering parameters are given in terms of the dissipation eigenvalues
introduced in Chapter 4:

3S11 ¼ �1þ 1� qþ1

2

	 

exp(�j2fþ)þ 1� q�1

2

	 

exp( j2fþ) (11:27a)

3S21 ¼ �1þ a 1� qþ1

2

	 

exp(�j2fþ)þ a2 1� q�1

2

	 

exp( j2fþ) (11:27b)

3S31 ¼ �1þ a2 1� qþ1

2

	 

exp(�j2fþ)þ a 1� q�1

2

	 

exp( j2fþ) (11:27c)

FIGURE 11.14 Relationships between scattering parameters of semi-ideal circulator.
(Reproduced with permission from J., Helszajn, Dissipation and Scattering Matrices of
Lossy Junctions, IEEE Trans. Microwave Theory Tech., Vol. MTT-29, pp. 779–782, 1972.)
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where it has been assumed that the splitting is symmetrical:

f�1 ¼ �fþ1 (11:28)

In semi-ideal circulators S11 and S31 are completely determined by S21 provided it
is assumed that the amplitudes of sþ1 and s21 are equal. This means that the latter
quantity can be obtained simply by measuring either S11 or S31.

The first case to be considered is that in which the angle between sþ1 and s21 is
such that S11 ¼ 0. This condition is obtained by setting S11 ¼ 0. The second case
to be considered here is that for which the angle between sþ1 and s21 is such that
S31 ¼ 0. This condition is obtained by setting S31 ¼ 0. The two possibilities are
illustrated in Fig. 11.14.
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CHAPTER TWELVE

The Lumped Element Circulator

12.1 INTRODUCTION

One common engineering preoccupation is that of miniaturization. The classic means
of breaking the relationship between the wavelength and the size of a microwave
circuit is to have recourse to lumped element technology. The purpose of this
chapter is to deal with the theory of the classic lumped element circulator. Its adjust-
ment is a straightforward eigenvalue problem so that it provides an excellent introduc-
tion to that of the more demanding distributed configuration. It consists of a ferrite
disk with three coils wound on it so that the alternating magnetic fields of the coils
are oriented at 1208 with respect to each other. A direct magnetic field intensity is
applied normal to the plane of the assembly. Both series and shunt junctions have
been described in the literature but this chapter deals exclusively with the former con-
figuration. One possible planar coil structure of the shunt geometry is an interwoven
mesh arrangement of three short sections of short-circuited stripline at 1208, which
are insulated from each other. If the striplines are electrically short the energy
within the strips is essentially magnetic. The degenerate resonances of the junction
are then established by connecting shunt capacitances at the three terminals, while
the gyrator impedance is set by adjusting the direct magnetic field.

Circulators using hybrid technology comprised of lumped elements and distribu-
ted circuits have also evolved over time. One possibility is a distributed resonator
matched by a printed lumped element network; it will be dealt with in some detail.
Another is an undersized resonator loaded by a lumped element shunt capacitor at
each port. It may be matched by either an alternate line distributed transformer or
again by a lowpass lumped element circuit. Still another means of miniaturizing
the resonator is of course the introduction of radial magnetic walls. This chapter
includes the development of the equivalence between a lowpass lumped element

The Stripline Circulator: Theory and Practice. By J. Helszajn
Copyright # 2008 John Wiley & Sons, Inc.
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matching network and an alternate line transformer. It also brings together design
equations and experimental results on a number of UHF circulators.

12.2 LUMPED ELEMENT CIRCULATOR

One circulator geometry that can readily be analyzed using the eigenvalue method is
the lumped element configuration; Fig. 12.1 illustrates series and shunt possibilities.
The symmetrical but nonreciprocal element can be wires or strips. The usual arrange-
ment consists of a ferrite disk with three strips wound on it so that the radiofrequency
(RF) magnetic fields of the strips are oriented at 1208 with respect to each other.
A direct magnetic field is applied normal to the plane of the disk. If the short-circuited
striplines are electrically short, the energy within the disk geometry is essentially
magnetic. The configuration dealt with here is the shunt structure. The degenerate res-
onances of the junction are established by connecting shunt capacitances at its term-
inals, while the impedance level of the device is fixed by suitably adjusting the
gyrotropy. The voltage–current relationships at the terminals of the mesh structure
are described by

V1

V2

V3

2
4

3
5 ¼ jvL0

mi �mi

2
�mi

2

�mi

2
mi �mi

2

�mi

2
�mi

2
mi

2
66664

3
77775

I1
I2
I3

2
4

3
5 (12:1)

Here L0 is the inductance of each constituent mesh and mi is the initial permeability of
the ferrite region.

The impedance eigenvalues of the network are

z0 ¼ 0 (12:2a)

zþ ¼ j3vL0mi=2 (12:2b)

z� ¼ j3vL0mi=2 (12:2c)

The solution consists of one nondegenerate eigenvalue and a pair of degenerate ones.
The corresponding admittance eigenvalues of this network are the reciprocal of the
impedance ones:

y0 ¼ 1 (12:3a)

yþ ¼ 2=j3vL0mi (12:3b)

y� ¼ 2=j3vL0mi (12:3c)

These eigenvalues can be adjusted to coincide with those of the first circulation
condition by adding shunt capacitances at each port.

y0 ¼ 1 (12:4a)

yþ ¼ jvC þ 2=j3vL0mi ¼ 0 (12:4b)

y� ¼ jvC þ 2=j3vL0mi ¼ 0 (12:4c)
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This adjustment establishes the isotropic resonances of the junction. The second
circulation condition is now met by splitting the degenerate admittance eigenvalues
with a suitable gyromagnetic material until these coincide with those of an ideal

FIGURE 12.1 Schematic of lumped element circulator: (a) shunt network and (b) series
network.
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circulator. Making use of the scalar permeabilities defined in Chapter 2 gives

y0 ¼ 1 (12:5a)

yþ ¼ jvC þ 2= j3vL0(m� k) (12:5b)

y� ¼ jvC þ 2= j3vL0(mþ k) (12:5c)

The first and second circulation conditions are now established by recalling the
boundary condition in the eigenvalue plane of the ideal circulator:

y0 ¼ 1 (12:6a)

yþ ¼ �jY0=
ffiffiffi
3

p
(12:6b)

y� ¼ jY0=
ffiffiffi
3

p
(12:6c)

The real and imaginary parts of the complex gyrator admittance at midband are

Y0 ¼
ffiffiffi
3

p

v0L

k

m

� �
(12:7)

and

v2
0LC ¼ 1 (12:8)

where

L ¼ 3
2meffL0 (12:9)

meff ¼
m2 � k2

m
(12:10)

These two relationships fix the circulation conditions for this type of circulator.

12.3 COMPLEX GYRATOR CIRCUIT OF LUMPED
ELEMENT CIRCULATOR

The equivalent circuit of a lumped element circulator near its circulation condition
may be obtained by forming the input admittance of the circuit in terms of its
eigenvalues,

Yin ¼
yþ1 þ y�1

2

� �
þ j

ffiffiffi
3

p yþ1 � y�1

2

� �
(12:11)

which applies with s0 ¼ 21.
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The split eigenadmittances for the lumped element circulator are given from the
previous section by

yþ1 ¼ j vC � 1
vL

� �
� j

vL
� k
m

(12:12a)

y�1 ¼ j vC � 1
vL

� �
þ j

vL
� k
m

(12:12b)

The result is

Yin ¼
ffiffiffi
3

p

vL
� k
m

þ j vC � 1
vL

� �
(12:13)

The imaginary and real parts of this equation are compatible with the first and
second circulation conditions deduced in the previous section. The general form of
the admittance of the network is therefore

Yin ¼ Y0 þ jv0C
v

v0
� v0

v

� �
(12:14)

FIGURE 12.2 Equivalent circuit of lumped element circulator using frequency independent
two-port gyrators.

12.3 COMPLEX GYRATOR CIRCUIT OF LUMPED ELEMENT CIRCULATOR 225



An approximate equivalent network for this equation is an ideal circulator available at
any frequency with an admittance y1 connected at each port. This is shown in
Fig. 12.2.

12.4 GAIN-BANDWIDTH PRODUCT OF LUMPED
ELEMENT CIRCULATOR

An important quantity of any circulator is its gain-bandwidth product. This quantity is
fixed by the loaded quality factor of the complex gyrator admittance of the circulator.
The task of this section is to determine this quantity. It is defined by

QL ¼ B0=G (12:15)

The susceptance slope parameter (B0) is defined in terms of the imaginary part (B) of
the complex gyrator admittance by

B0 ¼ v0

2
@B

@v

����
v¼v0

¼ 1
v0L

¼ v0C (12:16)

Combining this equation with the real part condition of the complex gyrator admit-
tance gives QL in terms of the magnetic variable:

QL ¼ B0

Y0
¼ 1ffiffiffi

3
p m

k

� �
(12:17)

FIGURE 12.3 Geometry of lumped constant circulator using short-circuited striplines.
(Reproduced with permission from Y. Konishi, Lumped element Y circulator, IEEE Trans.
Microwave Theory Tech., Vol. MTT-13, No. 6, pp. 852–864, 1965.)
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The gyrotropy is related separately to the difference between the two split resonant
frequencies of the junction by

k

m

� �
¼ vþ1 � v�1

v0
(12:18)

The loaded Q-factor of the junction is therefore also given in terms of the split
frequencies vþ1 and v21 by

1ffiffiffi
3

p
QL

¼ vþ1 � v�1

v0
(12:19)

which is a general result.

FIGURE 12.4 Junction inductance of stripline lumped element circulator for t/b ¼ 0.025.
(Reproduced with permission from J. Helszajn and M. McDermott, The inductance of a
lumped constant circulator, IEEE Trans. Microwave Theory Tech., Vol. MTT-18, No. 1,
pp. 50–52, 1970.)
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An expression for the Q-factor in terms of the junction specification may also be
derived. It is given by

QL ¼ B0

Y0
¼ r � 1

2dmax
ffiffi
r

p (12:20)

where r is the VSWR and 2dmax is the full bandwidth (v2 2 v1)/v0.
The former quantity is deduced by making use of the connection between the

reflection coefficient and the VSWR:

VSWR ¼ 1þ rj j
1� rj j (12:21)

12.5 INDUCTANCE OF CONSTITUENT LUMPED
ELEMENT RESONATOR

One possible planar configuration of the coil arrangement of the shunt arrangement is
a mesh with elements insulated from each other. This geometry is shown in Fig. 12.3.

The inductance of a typical mesh may readily be calculated in terms of its geome-
try once its characteristic impedance is available. This impedance corresponds to half
that of the even mode of two coupled striplines. It may be deduced in terms of the
static capacitance per unit length of the geometry, provided the fields on the line
may be assumed to be pure transverse ones.

FIGURE 12.5 Lumped element circulator using interdigital capacitors. (Reproduced with
permission from R. H. Knerr, A thin film lumped element circulator, IEEE Trans.
Microwave Theory Tech., Vol. MTT-17, No. 12, pp. 1152–1154, 1969.)
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Figure 12.4 shows s/b versus L0/2R for parametric values of W/b, for the case
where t/b ¼ 0.025. For t/b small, the inductance is not strongly dependent on it.
The mesh arrangement requires that t/b should be kept small; otherwise, it is not
possible to interweave it. In the illustration R is the ferrite radius and L0 is the induc-
tance of the constituent resonator. Figure 12.5 illustrates a lumped element circulator
using planar interdigital capacitors.

12.6 MAGNETIC VARIABLES OF LUMPED ELEMENT CIRCULATOR

At UHF frequencies the lumped element circulator is usually biased above the main
resonance to prevent the onset of so-called low field loss, discussed in Chapter 2.

The gyrotropy and the effective permeability are given by

k

m
� 1

s

� �
p=s

1þ p=s
(12:22a)

and

me � 1þ p=s (12:22b)

provided s . 1 and p. 1.
k/m is proportional to the center frequency, and me is independent of it, under the

same approximations. This means that the gyrator impedance is independent of

FIGURE 12.6 Performance of 240MHz, degree-1 circulator. (Reproduced with permission
from J. Helszajn and F. M. Aitken, U.H.F. techniques for lumped constant circulators, Electron.
Eng., pp. 53–59, Nov. 1973.)
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frequency and that the center frequency of the device can readily be tuned by altering
the lumped capacitance at the terminals of the junction. Another property of the
device is that since the bandwidth is proportional to k/m the former is proportional
to the center frequency.

Figure 12.6 depicts the experimental response of one circulator at 240 MHz.
Figure 12.7 shows the same geometry retuned to 480MHz by altering the terminal
capacitances only. The experimental bandwidth at this frequency is approximately
twice that obtained at 240MHz (in keeping with the fact that the bandwidth is
proportional to the center frequency of the device).

12.7 DEGREE-2 LUMPED ELEMENT CIRCULATOR

The bandwidth of the junction can be improved by connecting matching circuits at
each port. One topology is obtained by embodying the gyrator network into a
degree-2 bandpass filter in the manner indicated in Fig. 12.8. The details of this sol-
ution will now be deduced.

The unknowns in the degree-2 problem are the gyrator conductance and the
quality factors of the series matching network and the complex gyrator circuit. The
given quantities are the maximum VSWR and the character of the frequency
response. The amplitude squared of the reflection coefficient is finite at the
midband and bandedge frequencies and zero at finite frequencies. While the solution
of this type of problem is a straightforward synthesis problem, the method employed
here is the coefficient comparison method.

FIGURE 12.7 Performance of 480MHz, degree-1 circulator. (Reproduced with permission
from J. Helszajn and F. M. Aitken, U.H.F. techniques for lumped constant circulators, Electron.
Eng., pp. 53–59, Nov. 1973.)
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The derivation of the required result starts with the description of the amplitude
squared of the reflection coefficient:

rinj j2 ¼ 12 T2
n (x)

1 þ 12T2
n (x)

(12:23)

The ripple level 1 is related to the VSWR by

1 ¼ (VSWR)� 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VSWR

p (12:24)

The Chebyshev polynomial of degree-2 is

T2(x) ¼ 2x2 � 1 (12:25)

jrinj is a maximum at x ¼ 0 and 1; it is zero at x ¼ 0.707. This gives three con-
ditions from which the unknowns of the problem may be deduced:

rinj j ¼ VSWR� 1
VSWRþ 1

, x ¼ 0 (12:26a)

rinj j ¼ 0, x ¼ 0:707 (12:26b)

FIGURE 12.8 Schematic of degree-2 circulator.
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rinj j ¼ VSWR� 1
VSWRþ 1

, x ¼ 1:0 (12:26c)

The condition jrinj ¼ 0 may also be replaced by

I.P. (Zin) ¼ 0 (12:27a)

R.P. (Zin) ¼ Z0 (12:27b)

The derivation now proceeds by forming the input impedance of the circuit,

Zin ¼ Z1 þ 1=Y1 (12:28)

where

Z1 ¼ j2dX0
s (12:29)

Y1 ¼ G þ j 2dB0
p (12:30)

and

d ¼ v � v0

v0
(12:31)

X0 and B0 are the reactance and susceptance slope parameters of the series and parallel
resonators of the filter circuit. The condition at x ¼ 0 gives

Y0=G ¼ VSWR (12:32)

The first impedance condition gives

Qs ¼ (VSWR)Qp (12:33)

where

Qs ¼ v0Ls=Z0 (12:34)

Qp ¼ v0Cp=G (12:35)

and

v2
0 LsCs ¼ 1 (12:36)

v2
0 LpCp ¼ 1 (12:37)

The second impedance condition readily gives

2dminQp ¼ (VSWR � 1)1=2 (12:38)

232 THE LUMPED ELEMENT CIRCULATOR



The first minimum in the reflection coefficient occurs at

(2dmin) ¼ (2dmax)=
ffiffiffi
2

p
(12:39)

The gain-bandwidth product of the circuit is therefore specified by

2dmaxQp ¼
ffiffiffi
2

p
(VSWR� 1)1=2 (12:40)

The amplitude squared of the reflection coefficient is now given by

rinj j2 ¼ [(VSWR� 1)� (VSWR) (2dQp)2 ]2 þ [(VSWR� 1)(2dQp)2]2

[(VSWRþ 1) � (VSWR)(2dQp)2]2 þ [(VSWR þ 1)(2dQp)2 ]2
(12:41)

This quantity displays the appropriate frequency response of the filter specification.
Figure 12.9 indicates the response obtained with such a network at 480MHz for

the basic response in Fig 12.7. The bandwidth for VSWR ¼ 1.22 is improved from
about 5% to about 18%. Figure 12.10 illustrates the quality of one experimental
complex gyrator circuit.

FIGURE 12.9 Performance of 480MHz, degree-2 circulator. (Reproduced with permission
from J. Helszajn and F. M. Aitken, U.H.F. techniques for lumped constant circulators, Electron.
Eng., pp. 53–59, Nov. 1973.)
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12.8 DEGREE-3 LUMPED ELEMENT CIRCULATOR

A lumped element circulator with a degree-3 Chebyshev characteristic has also been
realized. It consists of one series resonant circuit and one parallel resonant circuit con-
nected in a first Cauer form in the manner indicated in Fig.12.11. The element values
of this topology may be obtained from first principles or may be deduced by having
recourse to a suitable lowpass to bandpass transformation. The results, based on the
latter procedure, are

Ls ¼
2y 2

y 2 þ 3
4

 !
R2
0C (12:42)

Cs ¼ 1=v2Ls (12:43)

Lp ¼ 1=v2C (12:44)

Cp ¼ C (12:45)

y ¼ (4=12)1=4 � (4=12)�1=4 (12:46)

12 ¼ (r � 1)2=4r (12:47)
r is the VSWR and 1 is the ripple level.

FIGURE 12.10 Schematic of degree-3 circulator.
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In this situation the terminal impedance of the circulator is equal to that of the
generator.

The bandwidth is increased by a factor of 4.25 for r ¼ 1.22 and by a factor of 8.42
for r ¼ 1.065.

12.9 QUASI LUMPED ELEMENT CIRCULATORS

A number of quasi lumped element circulators have also evolved over time in order
either to overcome the restricted power rating of the lumped element circulator or
to facilitate fabrication. One such geometry is a suitably magnetized undersized
gyromagnetic region symmetrically loaded with quasi lumped element capacitors
matched by an alternating impedance transformer. A similar or conventional dis-
tributed resonator matched by a lumped element circuit is another possibility.
The general arrangement consists of a semidistributed resonator and a similar match-
ing circuit. The equivalence between a lowpass filter circuit and the alternate line
transformer is demonstrated separately.

FIGURE 12.11 Complex gyrator of lumped element circulator. (Reproduced with per-
mission from V. E. Dunn and R. W. Roberts, Miniature VHF and UHF circulators use
lumped element design, Microwaves, pp. 46–47, Dec. 1963.)
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One example of a 1.0 GHz circulator built on a 1.0 mm by 25�25 mm alumina
substrate is illustrated in Fig. 12.12. A ferrite disk with a magnetization m0M0

equal to 0.1100 T is inserted into the substrate. The direct magnetic field intensity
is not stipulated but a gyrator impedance of 180V is given for the purpose of match-
ing to the 50V ports of the junction. The topology of the matching network is a
lowpass lumped element impedance transformer. Its circuit is indicated in
Fig. 12.13. The nature of this matching network may be understood by taking the
reference terminals at the gyrator circuit instead of the more usual generator one
and by separately making an equivalence between the lumped element circuit and
the alternate line transformer.

12.10 LOWPASS MATCHING CIRCUIT

A lumped element matching circuit akin to the alternate line transformer is a lowpass
filter. The required equivalence between the two is deduced by making a connection
between an electrical short high impedance line and a series inductance and a low
impedance line and a shunt capacitance.

FIGURE 12.12 Miniature circulator using lumped element lowpass filter circuit.
(Reproduced with permission from P. Barsony, Miniature strip-line circulators and isolators,
International Conference On Microwave Ferrites, SMOLENICE, 1972.)

FIGURE 12.13 Equivalent circuit of miniature circulator using a lumped element lowpass
filter circuit.
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The inductance of the high impedance line is determined in terms of its
impedance by

vmrL0 ¼ b(mr1r)Zhigh (12:48)

The capacitance of the low impedance line is fixed by its impedance by

v1rC0 ¼ b(mr1r)=Zlow (12:49)

The phase constant is defined by

b(mr1r) ¼ k0
ffiffiffiffiffiffiffiffiffi
mr1r

p
(12:50)

Zhigh and Zlow may be obtained in terms of the overall specification of the device and
the details of the gyrator circuit.
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CHAPTER THIRTEEN

The Stripline Circulator
Using a Gyromagnetic
Planar Disk Resonator

13.1 INTRODUCTION

The classic stripline circulator consists of two ferrite planar disk resonators separated
by a disk center conductor symmetrically coupled by three transmission lines. The
gyromagnetic material is magnetized perpendicularly to the plane of the device by
a static magnetic field. Its geometry is depicted in Fig. 13.1. An important property
of this device is that this condition is met whenever all three ports are matched. For a
three-port junction this requires two independent variables. Under certain simplifying
conditions its adjustment can be described in terms of a standing wave pattern within
the disk due to the interference of a pair of degenerate field patterns rotating in oppo-
site directions. When the gyromagnetic junction is unmagnetized, the resonant
frequencies of the two field patterns are identical. When it is magnetized, the degen-
eracy is removed, and the standing wave pattern is rotated. One circulation condition
is established by operating between the two split frequencies. This requirement essen-
tially fixes the radius of the gyromagnetic resonator. The second circulation
condition is met by adjusting the splitting between the degenerate modes, until the
standing wave pattern is rotated through 308. From symmetry, port 3 is then situated
at a null of the standing wave pattern and is therefore isolated. The junction then
displays properties akin to that of a two-port transmission line resonator between
the other two ports. This condition fixes the gyrotropy of the resonator.
Figure 1.2a in Chapter 1 illustrates the field pattern in a demagnetized three-port
junction while Fig. 1.2b depicts the same field pattern rotated through 308.
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There are in general six different ways in which circulator boundary conditions can
be applied. This may be done in terms of the scattering, impedance, and admittance
matrices and also in terms of the corresponding triplets of eigenvalues. In practice the
choice is determined by the physical problem. Although it is always possible to con-
struct the scattering matrix of any junction, it is not always possible to construct a
corresponding impedance or admittance matrix. The method adopted in this
chapter is based on the development of the impedance matrix.

13.2 MODE CHART OF GYROMAGNETIC DISK RESONATOR

A knowledge of the modes in a gyromagnetic resonator provides some valuable
insight into the operation of junction circulators. If a magnetic field is applied along
the axis of a planar disk, its two dominant counterrotating modes are no longer
resonant at the same frequency. In addition, the standing pattern formed by the rotating
field patterns is rotated within the disk. The derivation of the cutoff space and field
patterns in a magnetized ferrite substrate proceeds in essentially the same way as for
the isotropic problem, except that the permeability takes on a tensor form.

[mr] ¼
m �jk 0
jk m 0
0 0 1

2
4

3
5 (13:1)

FIGURE 13.1 Schematic diagram of three-port stripline circulator.
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The magnetic field components Hr and Hf in the plane of such a resonator are
readily expressed in terms of the electric field Ez by having recourse to Maxwell’s
first curl equation, provided it is assumed that the alternating fields do not vary in
the z-direction:

Hr ¼ vm0me j
1
r

@Ez

@f

� �
� j

k

m

@Ez

@r

� �� �
(13:2)

Hf ¼ vm0me j
@Ez

@r

� �
þ j

k

m

1
r

@Ez

@f

� �� �
(13:3)

where me is the effective permeability of the gyromagnetic substrate and the other
quantities have the usual meanings:

me ¼ (m2 � k2)=m (13:4)

One solution for Ez that satisfies the wave equation is

Ez ¼ AnJn(ker) exp( jnf) (13:5)

An is now different for n positive and negative. Combining the preceding relation-
ships gives

Hr ¼ �Anzez0
nJn(ker)
ker

� k

m

� �
J 0n(ker)

� �
exp( jnf) (13:6)

Hf ¼ �jAnzez0 J 0n(ker)�
k

m

� �
nJn(ker)

ker

� �
exp( jnf) (13:7)

The wavenumber is defined by

ke ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
101rm0me

p
(13:8)

The relative wave admittance is given separately by

ze ¼ 1=he ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1r=me

p
(13:9a)

The absolute admittance of free space is

z0 ¼ 1=h0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
10=m0

p
(13:9b)

The cutoff space under consideration is now established by imposing a magnetic wall
boundary condition at r ¼ R:

Hf(R) ¼ 0 (13:10)
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The ensuing characteristic equation fixes both the cutoff space and poles of the
problem region:

J 0n(keR)�
k

m

� �
nJn(keR)

keR
¼ 0 (13:11)

Thus there are two roots for the planar magnetized disk resonator:

(keR)�nj (13:12a)

(keR)þnj (13:12b)

These define two resonant frequencies:

vþnj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
101rm0me

p
R ¼ (keR)þnj (13:13)

v�nj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
101rm0me

p
R ¼ (keR)�nj (13:14)

FIGURE 13.2 Mode chart of gyromagnetic disk resonator. (Reproduced with permission
from H. Bosma, On stripline Y-circulation at UHF, IEEE Trans. Microwave Theory Tech.,
Vol. MTT-12, pp. 61–72, 1964.)
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The resonant frequency of the isotropic disk, for which k/m is zero, lies between the
two split frequencies:

vnj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
101rm0me

p
R ¼ (kR)nj (13:15)

Figure 13.2 indicates the mode chart of such a gyromagnetic disk resonator. One
experimental chart is indicated in Fig. 13.3. The standing wave patterns of the first
three modes in an isotropic disk resonator are illustrated in Fig. 13.4.

If the gyrotropy is small the difference between a pair of resonances is
determined by

(DkeR)nj �
2n(keR)nj
(keR)2nj � n2

� k

m

� �
(13:16)

This equation states that the splitting of a pair of resonant frequencies is proportional
to the gyrotropy for k/m small.

Another important result of the arrangement under consideration is that the field
patterns associated with counterrotating field patterns in a ferrite disk are rotated

FIGURE 13.3 Experimental mode chart of below-resonance stripline circulator.
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as the junction is magnetized. The direction in which this takes place is
determined by that of the direct magnetic field intensity. If the dominant mode
pattern is rotated by 308, one of the ports is completely decoupled, and
transmission occurs between the other two ports. In this configuration the three-
port junction behaves as a circulator. This situation has already been noted in
Chapter 1. The Bessel functions met in this work are defined for calculation
purposes in Chapter 9.

FIGURE 13.4 Standing wave patterns in planar disk resonator.
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13.3 IMPEDANCE MATRIX OF THREE-PORT
JUNCTION CIRCULATOR

The derivation of the impedance matrix of the junction circulator requires a know-
ledge of the electromagnetic problem. The original boundary conditions adopted in
the description of a planar circuit are that the magnetic field is a constant over the
width of each microstrip or stripline and zero elsewhere. The electric fields are
taken as the average values of Ez over the ports at r ¼ R and are assumed arbitrary
elsewhere. The derivation of the required result starts with a statement of the magnetic
fields of the problem region.

�c , f , c, Hf ¼ H1

�1208� c , f , c� 1208, Hf ¼ H2

1208� c , f , cþ 1208, Hf ¼ H3

elsewhere, Hf ¼ 0.
c is known as the coupling angle of the circulator:

sinc ¼ W=2R (13:17)

W is the width of the stripline at a typical port of the junction. It is assumed that the
center conductor thickness t is zero. The schematic of the configuration studied is
shown in Fig. 13.5.

The amplitude constant An in the description Ez is determined by expanding the
magnetic field on the boundary into a Fourier series with respect to f:

Hf ¼
X1
n¼�1

bn exp( jnf) (13:18)

where

bn ¼
sin nc

pn
H1 þ H2 exp

j2pn
3

� �
þ H3 exp

�j2pn
3

� �� �
(13:19)

In obtaining this result the problem region in the construction of bn has been broken
up to correspond to the various disjointed sections of the boundary under consider-
ation. The constant An can now be evaluated by comparing the two descriptions for
Hf at r ¼ R.

The result is

An ¼
jheh0 sinc

pn

� � H1 þ H2 exp
j2pn
3

� �
þ H3 exp

�j2pn
3

� �� �

J 0n keRð Þ � k

m

� �
n Jn keRð Þ

keR

� � (13:20)
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The derivation of the required impedance matrix of the junction continues by
imposing the boundary condition of the electric fields at the ports.

E1 ¼
1
2C

� � ðC

�C

Ezdf ¼ h11H1 þ h12H2 þ h13H3 (13:21a)

E2 ¼
1
2C

� � ð �2p=3þC

�2p=3�C

Ezdf ¼ h13H1 þ h11H2 þ h12H3 (13:21b)

E3 ¼
1
2C

� � ð2p=3þC

2p=3�C
Ezdf ¼ h12H1 þ h13H2 þ h11H3 (13:21c)

FIGURE 13.5 Schematic diagram of junction circulator using disk resonator.
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The wave impedance matrix of the circulator is therefore defined by

h ¼
h11 h12 h13
h13 h11 h12
h12 h13 h11

2
4

3
5 (13:22)

where

h11 ¼
X1
n¼�1

hn

3
(13:23a)

h12 ¼
X1
n¼�1

hn exp( j2pn=3)
3

(13:23b)

h13 ¼
X1
n¼�1

hn exp(�j2pn=3)
3

(13:23c)

A typical pole is described by

hn ¼
j3heh0c

p

sin(nc)
nc

� �2 J 0n(keR)
Jn(keR)

� k

m

� �
n

keR

� ��1

(13:24)

The impedance entering into the solution so far is that of the wave impedance of
the junction. Its characteristic impedance is obtained by replacing the free space
impedance h0 by the characteristic impedance Zr of the striplines.

Zr ¼ 30p ln
W þ t þ 2H

W þ t

� �
(13:25)

W is the width of a typical coupling line, H is the resonator thickness of each
half-space, and t is the thickness of the center conductor. W, H, and t are in
meters.

The preceding relationships are both necessary and sufficient for the description of
the impedance matrix of the junction.

13.4 EIGENVALUE SOLUTION

A detailed scrutiny of the open-circuited parameters indicates that each may be
broken up into linear combinations of in-phase and counterrotating eigenvalues or
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poles in keeping with Chapter 6. The relationships between the former two
quantities are

h11 ¼
h0 þ hþ þ h�

3
(13:26a)

h12 ¼
h0 þ ahþ þ a2h�

3
(13:26b)

h13 ¼
h0 þ a2hþ þ ah�

3
(13:26c)

where a ¼ exp(2j2p/3).
The triplet of eigenvalues of the problem region may be revealed by constructing

the classic linear combinations of the open-circuit parameters. This gives

h0 ¼
X1
n¼�1

hn 1þ exp �j
2p n

3

� �
þ exp j

2p n

3

� �� �
(13:27a)

hþ ¼
X1
n¼�1

hn 1þ a exp �j
2p n

3

� �
þ a2 exp j

2p n

3

� �� �
(13:27b)

h0 ¼
X1
n¼�1

hn 1þ a2 exp �j
2p n

3

� �
þ a exp j

2p n

3

� �� �
(13:27c)

The in-phase impedance eigenvalue h0 is zero for all n except n ¼ 0, +3, +6, . . .
Likewise the rotating eigenvalue hþ is zero for all n except n ¼ 1, 2 2, 4, . . . and
the other rotating eigenvalue h2 is zero except for n ¼ 21, 2, 24, . . . . Thus

h0 ¼
X

hn, n ¼ 0, +3, +6, . . . (13:28a)

hþ ¼
X

hn, n ¼ 1, �2, 4, . . . (13:28b)

h� ¼
X

hn, n ¼ �1, 2, �4, . . . (13:28c)

Each of the 3 one-port reactances or eigenvalues h0, hþ, and h2 appearing in the
descriptions of the open-circuit parameters of a junction circulator may be expanded
in terms of its poles in a first Foster or partial fractions form in the manner indicated in
Fig. 13.6. This means that a knowledge of a typical pole is sufficient for the construc-
tion of any of the triplet eigenvalues.

A typical eigenvalue may also be directly deduced by replacing the arbitrary
boundary conditions at the ports used so far by ones that coincide with each
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eigenvector one at a time. A typical pole may be obtained by constructing the self-
impedance of the junction at port 1 with ports 2 and 3 open-circuited.

The scattering matrix of the circulator may be constructed once the corresponding
eigenvalues are at hand. These are related to the impedance eigenvalues by the classic
bilinear relationship between the two.

s0 ¼
P

hn � h0P
hn þ h0

, n ¼ 0,+3,+6, . . . (13:29a)

sþ ¼
P

hn � h0P
hn þ h0

, n ¼ 1,�2, 4, . . . (13:29b)

s� ¼
P

hn � h0P
hn þ h0

, n ¼ �1, 2,� 4, . . . (13:29c)

The use of these identities avoids the need to invert the impedance matrix in order
to construct the scattering matrix.

FIGURE 13.6 First Foster form realization of in-phase and counterrotating eigen-networks.
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13.5 COMPLEX GYRATOR CIRCUIT

The adjustment of the three-port junction circulator is often posed in terms of its
midband cutoff number and its gyrator resistance or conductance. These two con-
ditions coincide with the real and imaginary parts of the complex gyrator admittance
of the device. This quantity is defined in terms of its open-circuit parameters by
setting V3 ¼ I3 ¼ 0. The result is

Zin ¼ Z11�Z2
12=Z13 (13:30)

The one-port equivalent circuit of a junction circulator using a resonator with a
magnetic wall boundary is normally a shunt resonator in parallel with the gyrator con-
ductance of the device. It is therefore usual to apply the boundary conditions in terms
of its admittance.

Yin ¼ 1=Z in (13:31)

The two classic circulator boundary conditions are therefore given by

Im(Yin) ¼ 0 (13:32a)

Re(Yin) ¼ Y0 (13:32b)

FIGURE 13.7 First circulation condition of stripline circulator. (Reproduced with permission
from K. Whiting, Design data for UHF circulators, IEEE Trans. Microwave Theoru Tech., Vol.
MTT-15, pp. 195–198, Mar. 1967.)
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FIGURE 13.8 Second circulation condition of stripline circulator. (Reproduced with per-
mission from K. Whiting, Design data for UHF circulators, IEEE Trans. Microwave Theory
Tech., Vol. MTT-15, pp. 195–198, Mar. 1967.)

FIGURE 13.9 First circulation condition of weakly magnetized stripline circulator.
(Reproduced with permission from K. Whiting, Design data for UHF circulators, IEEE
Trans. Microwave Theroy Tech., Vol. MTT-15, pp. 195–198, Mar. 1967.)
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The first of these equations determines the center frequency of the junction whereas
the second gives the gyrator conductance.

The field of solutions displayed by the circulator is at first sight quite complicated.
In general it may be divided into a very weakly magnetized space, a weakly magne-
tized space, a moderately magnetized space, and a strongly magnetized space. It also
contains a very strongly or edge mode solution in the case where the gyrotropy
exceeds unity. Graphical solutions of these two conditions are depicted in Figs.
13.7 and 13.8. Expanded versions of the same solutions in the vicinity of the
origin are indicated in Figs. 13.9 and 13.10.

13.6 SINGLE POLE CIRCULATION SOLUTION

The frequency responses of the first seven poles of a weakly magnetized junction are
illustrated in Fig. 13.11. One feature of this illustration is that all degenerate poles
except the symmetric ones are split by the gyromagnetic effect. Also, one equivalent
circuit for the dominant in-phase pole is an open-circuited stub and the equivalent
circuits for the dominant pair of split counterrotating ones are short-circuited ones
as asserted.

FIGURE 13.10 Second circulation condition of weakly magnetized stripline circulator.
(Reproduced with permission from K. Whiting, Design data for UHF circulators, IEEE
Trans. Microwave Theory Tech., Vol. MTT-15, pp. 195–198, Mar. 1967.)
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Another classic feature of this result is that the in-phase eigen-network may some-
times be neglected compared to those of the split counterrotating ones.

One plausible solution in the vicinity of the first dominant pair of split modes is
obtained by retaining single poles for the counterrotating modes and idealizing the
in-phase mode by an impedance zero in the description of the complex gyrator circuit.

Z0 � 0 (13:33a)

Zþ ¼ Zþ1 (13:33b)

Z� ¼ Z�1 (13:33c)

FIGURE 13.11 Frequency response of eigenvalues of three-port circulator (k ¼ 0.30).
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The first of these three conditions is consistent with the assumption employed
in deriving the approximate nature of the complex gyrator admittance of the
circulator.

Yin ¼
Yþ þ Y�

2

� �
� j

ffiffiffi
3

p Yþ � Y�
2

� �
(13:34)

The two circulation conditions of the device are now deduced by evaluating this
quantity. Making use of the relationship between impedance and admittance on a
one-port readily gives the required result.

Yin ¼
pzeYrffiffiffi
3

p
(keR)c

c

sinc

� �2
k

m

� �
� jpzeYr

3c
c

sinc

� �2 J 01(keR)
J1(keR)

� �
(13:35)

The first circulation condition is now obtained by setting the imaginary part of Yin
to zero:

J 01(keR) ¼ 0 (13:36)

The first root is given by

(keR)1,1 ¼ 1:84 (13:37)

The second circulation condition is satisfied by setting the real part of Yin to Y0. The
result is

Y0 ¼
pzeYrffiffiffi
3

p
(1:84)c

c

sinc

� �2
k

m

� �
(13:38)

13.7 FREQUENCY RESPONSE OF WEAKLY MAGNETIZED
CIRCULATOR

A complete characterization of a network also requires a knowledge of its frequency
response. One possibility is to plot the real and imaginary parts of the complex
gyrator circuit. Another is to form its susceptance slope parameter (B0) and its
loaded Q-factor (QL). The former quantity is defined by

B0 ¼ v0

2
dB

dv

����v¼v0 : (13:39)

The latter quantity is specified by

QL ¼ B0=G (13:40)

G is the real part of the complex gyrator admittance.
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The evaluation of B0 is facilitated by noting the following identity, which is in the
vicinity of a typical root.

J 0n(x)
Jn(x)

¼ 1
x

x� xmn
xmn

� �
x2mn � n2
� �

n is the order of the Bessel function, m is its root.
The required results are given in terms of the original variables by having recourse

to Eq. (13.35):

B0 ¼ zeYr
c

c

sinc

� �2 (keR)21,1 � 1

2(keR)1,1

" #
(13:41)

and

G ¼ pzeYrffiffiffi
3

p
(keR)c

c

sinc

� �2
k

m

� �
(13:42)

The loaded Q-factor is then given by

QL ¼ 1ffiffiffi
3

p
(keR)21,1 � 1

2

" #
� m

k

	 

(13:43)

Two classic conditions met in the description of this class of device are now
obtained by writing the preceding equation in terms of the two split frequencies of
the gyromagnetic resonator. The required relationships are readily obtained by
having recourse to Eq. (13.16):

1ffiffiffi
3

p
QL

¼ vþ1,1 � v�1,1

v1,1
(13:44)

and

G ¼
ffiffiffi
3

p
B0 vþ1,1 �v�1,1

v1,1

� �
(13:45)

The normalized bandwidth (2d0) of this sort of circuit is related to its loaded
Q-factor (QL) and the voltage standing wave ratio (VSWR) at its bandedges by

2d0 ¼
(VSWR� 1)

QL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VSWR

p (13:46)

where

2d0 ¼
v2 � v1

v0
(13:47)

v1,2 are the bandedge frequencies, v0 is the midband frequency.
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13.8 VERY WEAKLY MAGNETIZED GYROMAGNETIC RESONATOR

The validity of the closed form description of a junction circulator employing a very
weakly magnetized disk resonator is the topic of this section. It may be verified by
comparing it with some numerical calculations using the first seven poles of the
problem region. Such a calculation is summarized for parametric values of the coup-
ling angle in Chapter 28. It indicates that the quality factor of the junction is indepen-
dent of the coupling angle as long as the gyrotropy is bracketed between 0 and 0.25. It
also suggests that the closed form description shows significant deterioration when
the gyrotropy equals 0.35. The quality factor displayed by such a junction with a
gyrotropy equal to 0.25 is about 2.30. This value is compatible with the synthesis
of quarter-wave coupled junction circulators with 20 dB ripple levels over some
25% or with 26 dB ripple levels over 18%. Figure 13.12 illustrates one typical fre-
quency response.

FIGURE 13.12 Frequency response of complex gyrator admittance (k ¼ 0.30).
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CHAPTER FOURTEEN

Green’s Function Description
of Junction Circulator

14.1 INTRODUCTION

The open-circuit parameters of m-port gyromagnetic circuits may be formed in one of
a number of ways as is now understood. One classic means of doing so is to employ
the Green’s function of the problem region. This quantity may be constructed without
difficulty once the eigenvectors and eigenvalues of the decoupled circuit are estab-
lished. The latter quantities can always be deduced by having recourse to the finite
element method. One gyromagnetic geometry for which a Green’s function exists
in closed form is that of a disk planar resonator. It has been employed by Bosma
in his development of the theory of the classic three-port circulator. The procedure
starts by defining the Green’s matrix of the circuit in terms of the eigenfunctions
of the homogeneous gyromagnetic circuit. It continues by calculating the electric
fields at the ports in terms of this quantity. The construction of a typical open-
circuit parameter is then obtained by forming the product of the line integrals of
the fields over the ports under consideration. The calculation of the eigensolutions
of an irregular gyromagnetic circuit using the finite element method is dealt with
in the next chapter.

14.2 GREEN’S FUNCTION MATRIX OF JUNCTION CIRCULATOR

Before proceeding with the calculation of the open-circuit parameters of a gyromag-
netic circuit using the Green’s method, it is worthwhile to define a Green’s matrix. It
is also desirable to seek some possible relationships between its entries. For any
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three-port circuit this type of matrix may be written

G(f jf0) ¼
G11 G12 G13

G21 G22 G23

G31 G32 G33

2
4

3
5 (14:1)

The quantity f refers to the observation point and f0 to the source point, both of
which are assumed in this work to reside on the periphery of the circuit.
Figure 14.1 indicates the situation.

A classic device based on a gyromagnetic resonator symmetrically coupled by
three transmission lines is the junction circulator. If the ports are located at 2p/3,
p/3, and p in the manner indicated in Fig. 14.2, then the entries of the Green’s

FIGURE 14.1 Definition of source and observation points in the definition of the Green’s
function.

FIGURE 14.2 Schematic diagram of three-port junction circulator.
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matrix are defined by

G11 ¼ G �p

3

���� p

3

� �
(14:2a)

G12 ¼ G �p

3

���p
3

� �
(14:2b)

G13 ¼ G �p

3

���p
� �

(14:2c)

G21 ¼ G
p

3

���� p

3

� �
(14:2d)

G22 ¼ G
p

3

���p
3

� �
(14:2e)

G23 ¼ G
p

3

���p
� �

(14:2 f)

G31 ¼ G p

���� p

3

� �
(14:2g)

G32 ¼ G p
���p
3

� �
(14:2h)

G33 ¼ G p

���p
� �

(14:2i)

In the absence of dissipation

G(f0jf) ¼ �G�(f0jf) (14:3)

The cyclic symmetry of a three-port circulator requires the following additional
condition to be fulfilled:

G fþ 2p
3

���f0 þ
2p
3

� �
¼ G(fjf0) (14:4)

Making use of the preceding identities permits the Green’s matrix of a symmetric
three-port circulator to be described using only two entries,

G(f jf0) ¼
G11 G12 �G�

12
�G�

12 G11 G12

G12 �G�
12 G11

2
4

3
5 (14:5)
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It is also useful in this type of problem to identify the eigenvalues of the Green’s
matrix. These are related to the entries of the matrix by

G0(fjf0) ¼ G11(fjf0)þ G12(fjf0)þ G13(fjf0) (14:6a)

Gþ(fjf0) ¼ G11(fjf0)þ aG12(fjf0)þ a2G13(fjf0) (14:6b)

G�(fjf0) ¼ G11(fjf0)þ a2G12(fjf0)þ aG13(fjf0) (14:6c)

where

a ¼ exp ( j(2p=3)) (14:7a)

a2 ¼ exp ( j(4p=3)) (14:7b)

The entries of the Green’s matrix are therefore linear combinations of its eigen-
values.

G11(f jf0) ¼
G0(f jf0)þ Gþ(f jf0)þ G�(f jf0)

3
(14:8a)

G12(f jf0) ¼
G0(f jf0)þ aGþ(f jf0)þ a2G�(f jf0)

3
(14:8b)

G13(f jf0) ¼
G0(f jf0)þ a2Gþ(f jf0)þ aG�(f jf0)

3
(14:8c)

G0(fjf0) and G+(fjf0) are related to the so-called in-phase and counterrotating
eigen-networks of the circuit. A typical pole of the Green’s function is then

Gn(f jf0) ¼ 1
3 [G

0(f jf0)þ Gþ(f jf0)þ G�(f jf0)] (14:9)

The boundary condition in a gyromagnetic circuit with a magnetic wall is given by

@G(f jf0)
@n

� j
k

m

@G(f jf0)
@t

¼ 0 (14:10)

For a reciprocal and symmetrical network

G13(f jf0) ¼ G12(f jf0) (14:11)
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and

Gþ(f jf0) ¼ G�(f jf0) (14:12)

The eigen-networks of the reciprocal circuit are shown in Figs. 14.3 and 14.4. The
direct evaluations of these geometries provide an independent check on any
calculations.

FIGURE 14.3 In-phase eigen-network.

FIGURE 14.4 Degenerate counterrotating eigen-network.
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14.3 WAVE IMPEDANCE MATRIX OF THREE-PORT CIRCULATOR

The open-circuit parameters of any gyromagnetic circuit may be calculated once its
Green’s function is available. Such a function exists for a gyromagnetic disk in closed
form. The intention of this section is to deduce the open-circuit parameters of a
symmetrical three-port junction circulator using such a resonator. This is done as a
preamble to dealing with the general problem in Chapter 15. The electric field
midway on any port at the observation point due to a distribution of unit point
source is given by the superposition integral

Ez(R, f) ¼
ð

C
G(f jf0)Hf(R, f0) df0 (14:13)

The required Green’s function on the periphery of a gyromagnetic disk will not be
derived here but may be shown to be given in terms of Bessel functions of the first
kind of order n by

G(f jf0) ¼
�jheh0

2p

X1
�1

J 0n(kR)
Jn(kR)

� k

m

� �
n

kR

� ��1

exp[� jn(f� f0)] (14:14)

m and k are the usual diagonal and off-diagonal elements of the permeability tensor,
he is the relative wave impedance in the magnetic insulator, and ke is the wavenumber
in the same medium.

The Green’s function defined by this relationship assumes that the electric fields at
the center of the conductors are constants there and that the magnetic fields over the
center conductors are fixed by

Hf ¼ H1, �p=3� w , f , �p=3þ w (14:15a)

Hf ¼ H2, p=3� w , f , p=3þ w (14:15b)

Hf ¼ H3, p� w , f , pþ w (14:15c)

The coupling angle (w) is determined by the width (W ) of the center conductors and
the radius (R) of the gyromagnetic disk by

sinw ¼ W=2R (14:16)

The nomenclature employed here is illustrated in Fig. 14.2.
The wave impedance matrix of the junction then has the symmetry of the Green’s

matrix

h ¼
h11 h12 h13
h13 h11 h12
h12 h13 h11

2
4

3
5 (14:17)
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A typical entry in this matrix may be defined by taking the constant magnetic term in
Eq. (14.13) over the strips outside the integral sign:

h(fjf0) ¼
ð

C
G(fjf0) df0 (14:18)

Evaluating this quantity at f0 ¼ p/3 between f ¼ p/3+f by having recourse to
Eq. (14.14) readily gives

h11 ¼ h
p

3

���p
3

� �
¼ jheh0c

p

Xn¼1

n¼�1

sin nc

nc

� �
J 0n(keR)
Jn(keR)

� k

m

� �
n

keR

� �� ��1

(14:19a)

Taking f ¼ p/3, f0 ¼ p/3, and f ¼ p/3, f0 ¼ p gives the other two parameters.

h12 ¼ h
p

3
p

3

���
� �

¼ jheh0c

p

Xn¼1

n¼�1

sin nc

nc

� �
J 0n(keR)
Jn(keR)

� k

m

� �
n

keR

� �� ��1

� exp
j2np
3

� �
(14:19b)

h13 ¼ h
p

3

���p
� �

¼ jheh0c

p

Xn¼1

n¼�1

sin nc

nc

� �
J 0n(keR)
Jn(keR)

� k

m

� �
n

keR

� �� ��1

� exp
�j2pn

3

� �
(14:19c)

The two preceding equations are obtained by noting that, with the field source at
either port 2 or 3, the integration around the periphery of the circuit is restricted to the
port interval at port 1. The impedance poles appearing here differ from those met in
connection with the mode matching approach by a factor of sin(nc)/nc. This is due
to the fact that the electric field is here taken as that midway between the ports,
whereas it is taken as the average over the ports elsewhere.

A scrutiny of these relationships indicates that a typical pole in the description of
the wave impedance eigenvalue is defined by

hn ¼
j3heh0c

p

sin nc

nc

� �
J 0n(keR)
Jn(keR)

� k

m

� �
n

keR

� �� ��1

(14:20)

The mode chart of this function has been evaluated in Chapter 13 and will not be
repeated here.
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If h12 or h13 is expanded to reveal common factors 1, a, and a2, then the open-
circuit parameters may be expressed in terms of the eigenvalues of the matrix by

h11 ¼
h0 þ hþ þ h�

3
(14:21a)

h12 ¼
h0 þ ahþ þ a2h�

3
(14:21b)

h13 ¼
h0 þ a2hþ þ ah�

3
(14:21c)

The eigenvalues of the problem region are expanded in terms of its poles by
separately collating the in-phase and counterrotating poles.

h0 ¼ h0 þ h3 þ h�3 þ h6 þ h�6 þ � � � (14:22a)

hþ ¼ h1 þ h�2 þ h4 þ h�5 þ � � � (14:22b)

h� ¼ h�1 þ h2 þ h�4 þ h5 þ � � � (14:22c)

The retention of the first six poles is usually assumed sufficient for the description of
this class of problem.

It is preferable, for engineering purposes, to be able to describe the open-circuit
parameters of the junction in terms of the characteristic impedance at the ports
rather than by the wave impedance as already observed elsewhere in the text.

The relationship between the two matrix descriptions is again accomplished by
replacing h0, in any wave impedance function, by Zr.

Ze ¼ heZr (14:23)

The characteristic impedance of the junction is now obtained by introducing this
substitution into the wave impedance description of the junction.

Z ¼
Z11 Z12 Z13
Z13 Z11 Z12
Z12 Z13 Z11

2
4

3
5 (14:24)

Once the open-circuit parameters of any circuit are known, the other circuit quantities
are given in the usual way. In particular, scattering parameters are given in terms of
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the respective eigenvalues by

S ¼ I� Z

Iþ Z
(14:25)

and

S11 ¼
s0 þ sþ þ s�

3
(14:26a)

S12 ¼
s0 þ asþ þ a2s�

3
(14:26b)

S13 ¼
s0 þ a2sþ þ as�

3
(14:26c)

The reflection eigenvalues are related to the impedance ones by relationships similar
to that in Eq. (14.25).

14.3 WAVE IMPEDANCE MATRIX OF THREE-PORT CIRCULATOR 265





CHAPTER FIFTEEN

Finite Element Formulation
of Junction Circulator

15.1 INTRODUCTION

The construction of the open-circuit parameters of regular isotropic and gyromagnetic
m-port circuits based on a Green’s function formulation has been dealt with in
Chapter 14. It requires statements of the eigenvalues and eigenvectors of the
problem region. The direct evaluation of these quantities using the finite element
method is the topic of this chapter. It involves constructing an energy functional
that, when discretized and extremized using the Rayleigh–Ritz procedure, produces
the required eigensolutions of the geometry. One classic discretization involves
partitioning the structure into triangular elements. The extremized fields at the
nodes of the triangle associated with each eigenvalue represent the corresponding
eigenvector. The classic three-port junction circulator is again taken by way of an
example. The FE procedure outlined here is verified by reproducing some calcu-
lations on the first and second circulation conditions of a junction using a simple
disk gyromagnetic resonator. This is done as a preamble to investigating the
complex gyrator circuits of circulators using regular hexagonal and triangular reso-
nators for which solutions based on separation of variables techniques are not poss-
ible. The task is completed once the equivalence between the closed form
eigenfunctions dealt with so far and those based on the finite element method is
established. A typical computer program consists of one suite that calculates
the eigenvalues and eigenvectors of the homogeneous problem using the finite
element method and a second one that calculates the open-circuit parameters by
forming the line integrals of the Green’s function over the ports of the network.
Another numerical procedure that has been used to characterize the classic planar
junction circulator is the contour integral method. It is appropriate provided the
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task is restricted to the description of the fields on the contour of the structure. This
chapter also includes some calculations on the complex gyrator circuit of a junction
using a triangular resonator based on this approach.

15.2 GREEN’S FUNCTION ANALYSIS USING
FINITE ELEMENT METHOD

If the Green’s function of an isotropic or gyromagnetic planar problem cannot be
expanded in terms of closed form eigensolutions, it can always be constructed by
having recourse to a variational method. The Green’s function on the periphery of
the circuit is related to the source coordinate j0, which is assumed to reside on the
periphery of the circuit, and that of the observer j point, which is also assumed to
reside there, by

G(jjj0) ¼ jvm0meffH
Xn
a¼1

f�
a(j )fa(j0)
k2a � k2

(15:1)

The factor in the denominator polynomial appearing in the definition of
the Green’s function may readily be revealed in the closed form descriptions
of the open-circuit parameters of the circulator developed in Chapters 13 and
14. This may be done by expanding the ratio xJ0n(x)/Jn(x) in the vicinity of a
typical pole:

xJ 0n(x)
Jn(x)

¼ x� xmn
xmn

� �
x2mn � n2
� �

The desired result is obtained by recognizing that the factor Jn(x)/J0n(x) rather than
J0n(x)/Jn(x) appears in a typical pole in the first Foster expansion of Davis and Cohen
or Bosma solutions,

J 0n(x)
Jn(x)

� ��1

¼ 1
x2mn � n2

2xmn
x2 � x2mn

� �

provided

xþ xmn � 2xmn

In the variational method the eigensolutions coincide with the stationary values of
the energy functional met in connection with the finite element method. The solution
to this problem poses no particular difficulty. Provided the magnetic field is a
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constant, a typical open-circuit parameter between any two ports on the contour of the
circuit is given by

Zij ¼
1

WiWj

ð

Wj

ð

Wi

G(jjj0) dWi dWj (15:2)

The nature of the impedance variable defined here differs from that employed in con-
nection with the separation of variable solution in that the latter definition produced
the wave impedance of the circuit whereas the variational approach employed here is
in terms of the characteristic impedance at the ports of the problem region.

In order to proceed with the evaluation of the open-circuit parameters of the
problem, it is useful to recognize the following equality:

ð

Wj

ð

Wi

f�
a(j )fa(j0) dWi dWj ¼

ð

Wi

f�
a(j ) dWi

ð

Wj

fa(j0) dWj (15:3)

where

ð

Wi

f�
a(j ) dWi and

ð

Wj

fa(j0) dWj

are line integrals of the field variables over the ports i and j, respectively.
The derivation of the required matrix notation begins by expressing the field vari-

ables f�
a(j) and fa(j0) over the ports in polynomial form:

fa(j ) ¼
Xn
k¼1

akuk, k ¼ 1, 2, 3, . . . , n (15:4a)

f�
a(j ) ¼

Xn
k¼1

aku
�
k , k ¼ 1, 2, 3, . . . , n (15:4b)

In the finite element problem ak are the basis functions that contain the spatial vari-
ation within each element of the region in question, while uk are the field variables at
the nodes.

Making use of this observation gives

ð
Wi

f�
a(j ) dWi ¼

Xn
k¼1

u�k

ð

Wi

ak dWi (15:5a)

ð

Wj

fa(j0) dWj ¼
Xn
k¼1

uk

ð

Wj

ak dWj (15:5b)
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In forming these quantities all nodes other than those on the ports in question are dis-
regarded and the spatial variations of the fields over the strips are embodied in the
shape functions only.

The development continues by noting the following additional equalities:

ð

Wi

f�
a(j ) dWi ¼

Xn
k¼1

u�kv
i
k ¼ (U

�
a)

TV
i

(15:6a)

ð

Wj

fa(j0) dWj ¼
Xn
k¼1

ukv
j
k ¼ (Ua)

TV
j

(15:6b)

where

vik ¼
ð

Wi

ak dWi (15:7a)

v j
k ¼

ð

Wj

ak dWj (15:7b)

The desired relationship for a typical open-circuit parameter is now obtained by
replacing the line integrals in the definition of this quantity by the preceding
matrix operations. This gives

Zij ¼
jheZrke
W

X1
a¼1

(U
�
a)

TV
i
(Ua) TV

j

k2a � k2e
(15:8)

provided

Wi ¼ Wj ¼ W (15:9)

Zr is the free space characteristic impedance of the line, and he and ke are defined in
the usual way by

he ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
me=1f

q
(15:10)

ke ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0me101f

p
(15:11)

The desired form for a typical open-circuit parameter is now obtained by having
recourse to the following identity:

(Ua)
TV

j ¼ (V
j
)TUa (15:12)
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The required result is

Zij ¼
jheZrke
W

Xn
a¼1

(U
�
a)

TV
i
(V

j
) T (Ua)

k2a � k2e
(15:13)

For a stripline transmission line H in Eq. (15.1) is replaced by 2H.

15.3 NORMALIZED EIGENFUNCTION

In order to proceed with a calculation of the open-circuit parameters of a planar
circuit, it is also necessary to associate the u field variables at the nodes over the
ports with a normalized eigenfunction,

ðð

S
fa(r)f

�
a(r) ds ¼ 1 (15:14)

Writing the eigenfunctions in polynomial form and noting that the spatial variation of
the problem is represented by the basis functions gives

Xn
i¼1

Xn
j¼1

uiu
�
j

ðð

S
(aia

�
j ) ds ¼ 1 (15:15)

A typical surface integral appearing in the preceding equation is readily recog-
nized as the Bij element met in connection with the construction of the finite
element method:

Bij ¼
ðð

S
(aia

�
j ) ds (15:16)

Adopting this notation then gives

Xn
i¼1

Xn
j¼1

uiBiju
�
j ¼ 1 (15:17)

If U ¼ diag[ui] then the required matrix statement is

U[B]U
� ¼ I (15:18)

The nature of this operation may readily be appreciated by way of an example by
expanding a typical eigenfunction in polynomial form. If a degree-2 approximation
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problem is adopted to represent f(x, y), then

f(x, y) ¼ a1(x, y)u1 þ a2(x, y)u2 (15:19)

Introducing this approximation into the normalization condition ensures that the
eigenfunctions are both orthogonal and suitably normalized.

ðð

S
{[a1(x, y)u1 þ a2(x, y)u2][a1(x, y)u

�
1 þ a2(x, y)u

�
2]} dx dy ¼ 1 (15:20)

The development of the desired insight continues by expanding the preceding
equation:

ðð

S
u1u

�
1a1(x, y)a1(x, y)þ u1u

�
2a1(x, y)a2(x, y)

�

þ u2u
�
1a2(x, y)a1(x, y)þ u2u

�
2a2(x, y)a2(x, y)] dx dy ¼ 1 (15:21)

Since the spatial variation of f(x, y) in each finite element is only contained in the
definition of the basis functions, its coefficients or the field variables may be taken
outside the integral sign. Making use of this consideration then gives

u1

ðð

S
[a1(x, y)a1(x, y) dx dy

� �
u�1 þ u1

ðð

S
[a1(x, y)a2(x, y) dx dy

� �
u�2

þ u2

ðð

S
[a1(x, y)a2(x, y) dx dy

� �
u�1 þ u2

ðð

S
[a2(x, y)a2(x, y) dx dy

� �
u�2 ¼ 1

(15:22)

or

X2
i¼1

X2
j¼1

uiBijuj ¼ 1 (15:23)

as asserted.
A similar development indicates that the coefficients of the basis functions may be

taken outside the line integrals appearing in the definition of the open-circuit
parameters of the network.

15.4 FINITE ELEMENT PROCEDURE

One means of evaluating the cutoff space of a gyromagnetic resonator is to have
recourse to a variational method. The finite element method is one of many attractive
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procedures. Figure 15.1 illustrates a typical finite element segmentation in the case of
a regular hexagonal resonator. The number of nodes within each finite element tri-
angle is defined by the degree of the approximation problem. For degree-1 and
degree-2, all such nodes lie on the boundary of the triangle, whereas for degrees
greater than 2 some nodes lie within the triangle. For this sort of problem the solution
to Maxwell’s equations is based on a variational method, which consists of extremiz-
ing the energy functional of the problem region.

F(Ez) ¼
ðð

S
rtEzj j2� k2 Ezj j2

h i
ds� j

k

m

ð

j

Ez
@Ez

@t
dt (15:24)

This functional satisfies both the wave equation and a magnetic wall boundary con-
dition on the geometry.

@Ez

@n
� j

k

m

� �
@Ez

@t
¼ 0 (15:25)

When the gyrotropy k/m is set equal to zero, the functional reduces to that of an iso-
tropic resonator with an ideal magnetic side wall. The solution continues by approxi-
mating the true field Ez by the trial function expansion,

E0
z ¼

Xq

i¼1

uiai(x, y) (15:26)

ai(x, y) is a suitable set of real basis functions that contain the spatial variables of the
problem and ui are the complex coefficients that represent the electric fields at the
nodes of the finite element mesh and are the unknowns of the problem. The functional
of the problem region is now extremized by substitution of the trial function into the

FIGURE 15.1 Discretization of hexagonal resonator.
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energy functional and applying the Rayleigh–Ritz condition:

@F(E0
z)

@ui
¼ 0, i ¼ 1, 2, . . . , q (15:27)

The functional of the problem region has the nature of a quadratic form so that this
amounts to separately minimizing each contribution. This step reduces the problem to
a set of simultaneous equations, which may be expressed in a general matrix eigen-
value problem as

[D]þ j
k

m
[C]

	 

U ¼ k2[B]U (15:28)

The matrices Bmn, Cmn, and Dmn are standard quantites in the literature:

Dmn ¼
ðð

S
(rtam)(rtan) ds (15:29)

Bmn ¼
ðð

S
(aman) ds (15:30)

Cmn ¼
ð

j

am
@an

@t

� �
dt (15:31)

The vector U is a column matrix containing the trial fields at the nodes of the finite
element mesh.

Once the basis or interpolation functions have been selected the general matrix
eigenvalue problem may be solved for the q eigenvalues k and the q eigenvectors
U of the problem region. The eigenvalues are its normalized cutoff frequencies
and the entries of the eigenvectors are the discrete values of the approximated field
at its finite element nodes.

15.5 COMPLEX GYRATOR CIRCUIT OF JUNCTION CIRCULATOR

While the discussion so far is quite general, it will now be specialized to the calcu-
lation of the open-circuited parameters of a junction circulator. The geometry under
consideration is a planar irregular gyromagnetic resonator with top and bottom elec-
tric walls and a magnetic side wall at the junction of three striplines.

Two circulation conditions are employed to describe a junction circulator. The
classic solution is usually posed in terms of the complex gyrator impedance or admit-
tance of the device introduced in Chapter 6 and this is the approach adopted here. One
condition determines kR from the imaginary parts of either immittances. The other
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gives R or G from the real parts of either immittances. The frequency variation of the
complex gyrator circuit is described in the vicinity of its midband frequency by its
susceptance slope parameter (B0) and loaded Q-factor (QL). The susceptance slope
parameter is evaluated graphically in terms of its definition:

B0 ¼ v0

2
@Bin

@v

����v0
(15:32)

The loaded Q-factor is defined separately in the usual way by

QL ¼ B0=G (15:33)

Figures 15.2 and 15.3 compare some results deduced using the finite element
method with those based on the analytical solution in Chapter 13 in the case of a

FIGURE 15.2 Comparison between finite element and closed form solutions for circulator
using disk resonator (first circulation solution). (Reproduced with permission from
R. Lyons and J. Helszajn, A finite element analysis of planar circulators using arbitrarily
shaped resonators, IEEE Trans. Microwave Theory Tech., Vol. MTT-30, pp. 1964–
1974, 1982.)
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junction using a classic disk resonator. The finite element result has been calculated
by retaining the first 10 eigenfunctions of the problem. The agreement is best for large
coupling angles and less good for small values. One explanation for this discrepancy
is that smaller coupling angles excite higher order modes more strongly, and these
higher order modes tend to be computed less accurately by the finite element
program. The discretization utilized here is indicated in Fig. 15.4.

The first and second circulation solutions for circulators using disk, triangular, and
regular hexagonal coupled resonators are tabulated in Tables 15.1–15.3. These tables
are again computed by retaining the first 10 eigenfunctions of the geometry. The
physical details entering into the description of these various shapes are summarized
in Chapter 16 with A replaced by B and B replaced by A. It is observed that at certain
points in the tables (e.g., a triangle 0.70 , k/m , 0.85) the values keffR and Gin/Yf
take the value 0. This indicates that no circulation condition was identified with
keffR, 3.0. In certain cases, Gin/Yf takes a negative value. At these points, the
lowest circulation condition represents rotation in the opposite direction.

FIGURE 15.3 Comparison between finite element and closed form solutions for circulator
using disk resonator (second circulation solution). (Reproduced with permission from
R. Lyons and J. Helszajn, A finite element analysis of planar circulators using arbitrarily
shaped resonators, IEEE Trans. Microwave Theory Tech., Vol. MTT-30, pp. 1964–
1974, 1982.)
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The values of Gin and Bin are normalized to Yr. This quantity is defined by

Yf ¼
ffiffiffiffiffi
1f

p
Yr (15:34)

Yr is the admittance of an air spaced planar transmission line whose width is defined
by the coupling angle at the terminals of the resonator; 1f is the relative dielectric con-
stant of the gyromagnetic resonator.

15.6 CONTOUR INTEGRAL METHOD

An important means of establishing the open-circuit parameters of a planar circuit,
besides the finite element method, is the contour integral method. It differs in that
it involves segmenting the contour of the circuit instead of discretizing its surface.
A shortcoming of the contour integral method is that it does not allow the fields
inside the resonator to be calculated. The numerical approximation of the contour
integral is obtained by dividing the periphery of the circuit into N segments, each
of width W, and forming the field (electric) in each element one at a time by locating
sources (magnetic) at every point along the contour.

FIGURE 15.4 Discretization of disk resonators.
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TABLE 15.1 A First and Second Circulation Conditions for Circulator
Using a Disk Resonator

First Circulation Solution for Disk Circulator

c 0.200 0.300 0.400 0.500 0.600 0.700 0.800

k/m keff R keff R keff R keff R keff R keff R keff R

0.10 1.862 1.859 1.857 1.854 1.851 1.848 1.846
0.15 1.864 1.859 1.852 1.845 1.839 1.833 1.828
0.20 1.869 1.859 1.847 1.834 1.821 1.810 1.801
0.25 1.880 1.861 1.840 1.818 1.798 1.780 1.766
0.30 1.903 1.869 1.833 1.798 1.767 1.741 1.720
0.35 1.968 1.889 1.826 1.772 1.729 1.693 1.665
0.40 2.206 1.968 1.823 1.741 1.681 1.636 1.600
0.45 2.216 2.180 1.842 1.711 1.630 1.572 1.529
0.50 2.228 2.224 2.192 1.664 1.564 1.497 1.448
0.55 0.000 0.000 0.000 1.605 1.487 1.414 1.361
0.60 2.193 2.187 2.171 1.532 1.402 1.325 1.270
0.65 2.162 2.136 2.071 1.443 1.308 1.230 1.175
0.70 2.518 2.064 1.884 1.305 1.204 1.133 1.078
0.75 2.342 1.941 1.692 1.190 1.088 1.023 0.972
0.80 2.328 1.762 1.469 1.068 0.969 0.907 0.859
0.85 2.375 1.519 1.235 0.927 0.836 0.779 0.736
0.90 1.973 1.214 0.976 0.756 0.679 0.631 0.594
0.95 0.904 0.812 0.654 0.530 0.477 0.442 0.415

Second Circulation Solution for Disk Circulator

c 0.200 0.300 0.400 0.500 0.600 0.700 0.800

k/m Gin/Yf Gin/Yf Gin/Yf Gin/Yf Gin/Yf Gin/Yf Gin/Yf

0.10 0.495 0.335 0.255 0.210 0.181 0.162 0.149
0.15 0.750 0.505 0.383 0.314 0.271 0.242 0.223
0.20 1.010 0.676 0.511 0.417 0.359 0.320 0.295
0.25 1.282 0.850 0.637 0.517 0.443 0.394 0.363
0.30 1.580 1.029 0.760 0.612 0.522 0.463 0.427
0.35 1.980 1.223 0.882 0.701 0.593 0.526 0.484
0.40 3.011 1.500 1.001 0.780 0.656 0.580 0.534
0.45 2.685 1.728 1.079 0.837 0.706 0.623 0.572
0.50 2.828 1.803 1.350 0.893 0.749 0.660 0.606
0.55 20.000 20.000 20.000 0.935 0.782 0.689 0.633
0.60 3.073 1.775 1.282 0.963 0.806 0.712 0.654
0.65 3.511 1.721 1.225 0.979 0.823 0.728 0.670
0.70 0.830 1.688 1.234 0.969 0.833 0.745 0.687
0.75 0.234 1.474 1.177 0.971 0.834 0.749 0.694
0.80 20.429 1.356 1.154 0.972 0.839 0.755 0.700
0.85 20.278 1.279 1.135 0.968 0.840 0.758 0.704
0.90 1.320 1.240 1.119 0.961 0.838 0.758 0.706
0.95 1.651 1.244 1.109 0.950 0.833 0.755 0.707

Source: R. Lyons and J. Helszajn, A finite element analysis of planar circulators using arbitrarily shaped
resonators, IEEE Trans. Microwave Theory Tech., Vol. MTT-30, pp. 1964–1974, 1982. Reproduced
with permission.
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TABLE 15.2 First and Second Circulation Conditions for Circulator
Using a Triangular Resonator

First Circulation Solution for Triangular Circulator

c 0.200 0.300 0.400 0.500 0.600 0.700 0.800

k/m keff R keff R keff R keff R keff R keff R keff R

0.10 2.455 2.450 2.444 2.438 2.432 2.428 2.426
0.15 2.451 2.438 2.423 2.409 2.396 2.597 2.382
0.20 2.448 2.421 2.392 2.366 2.346 2.331 2.323
0.25 2.458 2.402 2.351 2.312 2.283 2.262 2.250
0.30 2.504 2.386 2.301 2.247 2.210 2.183 2.166
0.35 2.536 2.383 2.241 2.174 2.127 2.089 2.061
0.40 2.524 2.518 2.175 2.095 2.040 1.996 1.961
0.45 2.493 2.492 2.101 2.007 1.946 1.897 1.857
0.50 2.448 2.445 2.021 1.916 1.849 1.795 1.751
0.55 1.993 1.910 1.845 1.790 1.743 1.703 1.671
0.60 1.990 1.837 1.756 1.691 1.638 1.593 1.557
0.65 2.263 1.767 1.662 1.586 1.525 1.475 1.431
0.70 0.000 1.703 1.559 1.473 1.407 1.353 1.305
0.75 0.000 2.042 1.444 1.352 1.284 1.230 1.182
0.80 0.000 0.000 1.309 1.209 1.142 1.090 1.046
0.85 0.000 0.000 1.154 1.054 0.990 0.941 0.900
0.90 2.690 2.508 0.948 0.861 0.808 0.766 0.731
0.95 0.631 0.634 0.865 0.931 0.583 0.547 0.518

Second Circulation Solution for Triangular Circulator

c 0.200 0.300 0.400 0.500 0.600 0.700 0.800

k/m Gin/Yf Gin/Yf Gin/Yf Gin/Yf Gin/Yf Gin/Yf Gin/Yf

0.10 1.706 1.095 0.780 0.583 0.448 0.347 0.268
0.15 2.562 1.629 1.146 0.849 0.649 0.503 0.391
0.20 3.444 2.144 1.476 1.079 0.820 0.637 0.500
0.25 4.431 2.640 1.755 1.262 0.956 0.745 0.590
0.30 5.703 3.142 1.974 1.398 1.057 0.829 0.663
0.35 7.066 3.797 2.134 1.497 1.143 0.916 0.754
0.40 7.323 5.322 2.243 1.566 1.200 0.969 0.804
0.45 221.798 5.174 2.310 1.604 1.236 1.004 0.841
0.50 7.199 4.965 2.348 1.629 1.262 1.033 0.870
0.55 4.847 2.835 1.960 1.489 1.197 0.993 0.836
0.60 5.556 2.915 1.998 1.518 1.222 1.016 0.861
0.65 10.533 2.979 2.014 1.535 1.242 1.042 0.893
0.70 20.000 3.130 2.025 1.542 1.253 1.057 0.913
0.75 20.000 5.718 2.029 1.537 1.251 1.059 0.917
0.80 20.000 20.000 2.067 1.556 1.265 1.069 0.925
0.85 20.000 20.000 2.052 1.540 1.255 1.064 0.923
0.90 1.454 1.031 1.996 1.501 1.230 1.048 0.913
0.95 3.585 2.438 2.765 2.541 1.249 1.054 0.915

Source: R. Lyons and J. Helszajn, A finite element analysis of planar circulators using arbitrarily shaped
resonators, IEEE Trans. Microwave Theory Tech., Vol. MTT-30, pp. 1964–1974, 1982. Reproduced
with permission.
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TABLE 15.3 First and Second Circulation Conditions for Circulator
Using a Regular Hexagonal Resonator

First Circulation Solution Using Regular Hexagon

c 0.200 0.300 0.400 0.500 0.524

k/m keff R keff R keff R keff R keff R

0.10 2.004 2.003 2.002 2.000 1.999
0.15 1.997 1.994 1.990 1.985 1.984
0.20 1.985 1.981 1.974 1.965 1.963
0.25 1.973 1.965 1.953 1.938 1.934
0.30 1.960 1.946 1.928 1.905 1.899
0.35 1.945 1.924 1.896 1.863 1.856
0.40 1.930 1.897 1.857 1.813 1.803
0.45 1.917 1.866 1.811 1.754 1.742
0.50 1.913 1.829 1.755 1.686 1.671
0.55 0.000 1.783 1.688 1.608 1.592
0.60 2.348 1.726 1.610 1.522 1.504
0.65 2.267 1.653 1.519 1.426 1.407
0.70 2.151 1.551 1.413 1.321 1.302
0.75 2.012 1.854 1.276 1.184 1.174
0.80 1.849 1.691 1.166 1.064 1.051
0.85 1.660 1.484 1.028 0.928 0.914
0.90 1.464 1.218 0.838 0.764 0.753
0.95 1.093 0.880 0.602 0.539 0.530

Second Circulation Solution Using Regular Hexagon

c 0.200 0.300 0.400 0.500 0.524

k/m Gin/Yf Gin/Yf Gin/Yf Gin/Yf Gin/Yf

0.10 0.569 0.375 0.276 0.216 0.205
0.15 0.853 0.361 0.413 0.323 0.306
0.20 1.133 0.744 0.546 0.426 0.404
0.25 1.407 0.921 0.674 0.524 0.496
0.30 1.661 1.082 0.786 0.604 0.571
0.35 1.915 1.241 0.897 0.685 0.646
0.40 2.155 1.388 0.997 0.758 0.713
0.45 2.375 1.516 1.083 0.820 0.771
0.50 2.583 1.619 1.151 0.871 0.818
0.55 20.000 1.693 1.199 0.910 0.856
0.60 3.079 1.739 1.229 0.938 0.884
0.65 2.881 1.759 1.245 0.957 0.903
0.70 2.739 1.753 1.248 0.968 0.915
0.75 2.462 1.720 1.231 0.955 0.910
0.80 2.374 1.648 1.239 0.961 0.915
0.85 2.350 1.617 1.237 0.964 0.918
0.90 2.314 1.623 1.223 0.960 0.916
0.95 2.018 1.577 1.237 0.962 0.914

Source: R. Lyons and J. Helszajn, A finite element analysis of planar circulators using arbitrarily shaped
resonators, IEEE Trans. Microwave Theory Tech., Vol. MTT-30, pp. 1964–1974, 1982. Reproduced
with permission.
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Subdividing the contour into n equal segments and partitioning the ports into p
segments gives

tanf ¼ p
3

ffiffiffi
3

p

n
, p and n odd or p and n even

In both cases Wn may be expressed in terms of the side A of the triangle by

A ¼ nWn=3

Some lower ordered segmentations are depicted in Fig. 15.5. Also tabulated on
these illustrations are the values of coupling angle corresponding to some typical
combinations of p and n. In selecting a lower bound for n, care must be taken to
ensure not only that it is sufficient to represent the first pair of split modes in the mag-
netized resonator, but also that it is adequate to reproduce the second (and indeed
third) pair of split modes of the resonator. Adopting a lower bound for n of 36 is
equivalent to sampling a sine wave every 108 in the case of the dominant pair of
degenerate modes and 208 and 308, respectively, for the next two pairs of degenerate

FIGURE 15.5 Definition of coupling angles for n even and p ¼ 2 and 4. (Reproduced with
permission from J. Helzsajn, Contour-integral equation formulation of complex gyrator admit-
tance of junction circulators using triangular resonators, IEE Proc., Vol. 32, Pt. H, No. 4, 1985.)
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modes. Inspection of Fig. 15.5 indicates that a representative range of coupling angles
is obtained by taking n and p even, although n odd and p equal to 1 is appropriate for
the realization of small values of f.

The two circulation solutions and the complex gyrator parameters of a circulator
employing a side-coupled triangular resonator, obtained using the contour integral
method with n ¼ 18 and 36, are tabulated in Tables 15.4 and 15.5. This is done
for different values of the magnetic variable k between zero and unity with a coupling
angle equal to 0.52 rad.

The entries in these tables that have been left blank are those where either no
solutions are located with kA � 4.2 (narrow coupling angles) or where the results

TABLE 15.4 Complex Gyrator Circuits of Circulators Using Triangular
Resonators (c 5 0.52, f 5 0.71, n5 18)

k kA G B0 QL

0.05 4.073 0.227 Yf 5.651 Yf 24.89
0.10 4.057 0.450 Yf 5.274 Yf 11.72
0.20 3.989 0.857 Yf 4.301 Yf 5.02
0.30 3.856 1.169 Yf 3.270 Yf 2.80
0.40 3.654 1.345 Yf 2.575 Yf 1.91
0.50 3.378 1.403 Yf 2.086 Yf 1.47
0.60 3.037 1.413 Yf 1.761 Yf 1.25
0.67 2.760 1.442 Yf 1.596 Yf 1.11
0.80
0.90
1.00

Source: J. Helszajn, Contour-integral equation formulation of complex gyrator admittance of junction
circulators using triangular resonators, IEE Proc., Vol. 32, Pt. H, No. 4, 1985.

TABLE 15.5 Complex Gyrator Circuits of Circulators Using Triangular
Resonators (c 5 0.52, f 5 0.71, n5 36)

k kA G B0 QL

0.05 4.067 0.138 Yf 3.389 Yf 24.56
0.10 4.045 0.275 Yf 3.196 Yf 11.61
0.20 3.938 0.529 Yf 2.599 Yf 4.91
0.30 3.748 0.720 Yf 2.080 Yf 2.89
0.40 3.490 0.836 Yf 1.719 Yf 2.06
0.50 3.184 0.899 Yf 1.457 Yf 1.62
0.60 2.839 0.934 Yf 1.249 Yf 1.34
0.67 2.598 0.943 Yf 1.198 Yf 1.27
0.80
0.90
1.00

Source: J. Helszajn, Contour-integral equation formulation of complex gyrator admittance of junction
circulators using triangular resonators, IEE Proc., Vol. 32, Pt. H, No. 4, 1985.
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were deemed untrustworthy. Detailed data on the susceptanceslope parameter and
loaded Q-factor are not available in the literature for this device. Yf in these tables
has the meaning in Eq. (15.38).

The circulation data in these tables displays the classic relationship between the
magnetic variables and the complex gyrator circuit for small k. A similar correlation
between the apex-coupled triangular resonator closed form and the contour integral
method has also been mentioned. The weakly magnetized model of the device
already exhibits significant deterioration at k ¼ 0.30, so that it is not adequate for
everyday engineering. The full theory here is essential.

If all the independent variables may be freely chosen, then the loaded Q-factor
may be fixed by the magnetic variables, the quality of the complex gyrator circuit
may be set by the coupling angle, and the absolute level of the circuit can be adjusted
by varying the ground-plane spacing.
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CHAPTER SIXTEEN

Circulators Using Triangular
and Irregular Hexagonal
Planar Resonators

16.1 INTRODUCTION

An important gyromagnetic resonator met in the design of symmetrical three-port
junction circulators is the triangular geometry. This sort of resonator may be
coupled symmetrically by one of two possible triplets of ports. One purpose of
this chapter is to provide a detailed description of its properties. Of import are its
cutoff space, its mode nomenclature, and its dominant and higher order standing
wave patterns. The stored energy of a typical solution is also of interest. Its circulation
solution is developed separately in terms of this quantity and the power dissipated in
port 2 under the assumptions that the conditions at the other two ports correspond to
those of an ideal circulator. This is done by assuming single poles in the descriptions
of the counterrotating eigen-networks and by separately neglecting the stored energy
associated with the in-phase eigen-network. The standing wave solution of the ideal
circulator is constructed by taking a suitable linear combination of those of the iso-
tropic problem region under the assumption that the in-phase eigen-network may
be idealized by a frequency independent short-circuit at the terminals of the junction.
A perturbation description of the split frequencies of the resonator under consider-
ation is also reproduced. A statement of this quantity and one of its quality factor
is sufficient for the description of the complex gyrator circuit of the circulator.
Calculations on the complex gyrator circuit of this class of circulator based on the
contour integral method is available in Chapter 15. Another planar resonator,
which has two triplets of ports with threefold symmetry, that may be employed in
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the construction of the three-port junction circulator is an irregular hexagonal geome-
try. It is also dealt with in detail. An important property of both the regular hexagonal
and triangular resonators is that each of their possible triplet of ports displays different
values of susceptance slope parameter. Thus there are altogether four discrete values
available for design. Furthermore, the shape angle of the irregular hexagonal resona-
tor may be used separately to interpolate between the two possible values of triangu-
lar geometry.

16.2 EIGENFUNCTIONS OF EQUILATERAL TRIANGLE

A planar circuit for which a circulation solution may be established in closed form is
that of the equilateral triangle illustrated in Fig. 16.1. One solution for the electric
field that satisfies the homogeneous Helmholtz differential equation inside the
resonator is

Ez (u, v, w) ¼ Am, n, ‘T(u, v, w) (16:1)

The function T(u, v,w) is defined as

T(u, v, w) ¼ cos
4p‘ffiffiffi
3

p
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2
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FIGURE 16.1 Schematic diagram of equilateral triangle.
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T(u, v,w) satisfies the wave equation, as is readily verified:

@2

@x2
þ @2

@y2
þ k2m,n,‘

� �
T(u, v, w) ¼ 0 (16:3)

where

km,n,‘ ¼ (4p=3A)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ mnþ n2

p
(16:4)

A is the side of the triangle, and

mþ nþ ‘ ¼ 0 (16:5)

It is observed that the interchange of the three digits m, n, ‘ leaves the cutoff number
km,n,‘ and field patterns unchanged.

The coordinate system employed here is indicated in Fig. 16.2. One possible
solution is described with a ¼ 0, b ¼ 1208, and g ¼ 2408 by

u ¼ x (16:6a)

v ¼ � x

2
þ

ffiffiffi
3

p

2
y (16:6b)

w ¼ � x

2
�

ffiffiffi
3

p

2
y (16:6c)

FIGURE 16.2 Coordinate system of planar equilateral triangle. (Reproduced with permission
from X. Schelkunoff, Electromagnetic Waves. New York: Van Nostrand, 1943, p. 393.)
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FIGURE 16.3 Coordinate transformations of equilateral triangle. (Reproduced with per-
mission from X. Schelkunoff, Electromagnetic Waves. New York: Van Nostrand, 1943,
p. 393.)
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FIGURE 16.4 Equipotential lines of dominant T0,120,240 (x, y) solution. (Reproduced
with permission from J. Helszajn and D. S. James, Planar triangular resonators with
magnetic walls, IEEE Trans. Microwave Theory Tech., Vol. MTT-26, pp. 95–100,
Feb. 1978.)
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A second solution is obtained with a ¼ 1208, b ¼ 2408, and g ¼ 3608, giving

u ¼ � x

2
þ

ffiffiffi
3

p

2
y (16:7a)

v ¼ � x

2
�

ffiffiffi
3

p

2
y (16:7b)

w ¼ x (16:7c)

The third solution coincides with a ¼ 2408, b ¼ 3608, and g ¼ 1208 but is not
necessary for the present discussion.

u ¼ � x

2
�

ffiffiffi
3

p
y

2
(16:8a)

v ¼ x (16:8b)

w ¼ � x

2
þ

ffiffiffi
3

p
y

2
(16:8c)

FIGURE 16.5 Linear combination of T1,21,0 (x, y) dominant solutions.
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The three possible orientations of the equilateral triangle are shown in Fig. 16.3.
The dominant solution coincides with m ¼ 1, n ¼ 1, ‘ ¼ 0. It is illustrated in
Fig. 16.4.

It may be demonstrated separately that the solution m ¼ 1, n ¼ 21, ‘ ¼ 0 satisfies

T0,120,240(x, y)þ T120,240,360(x, y)þ T240,360,120(x, y) ¼ 0 (16:9)

This relationship is summarized graphically in Fig. 16.5.

16.3 TM FIELD PATTERNS OF TRIANGULAR PLANAR RESONATOR

The TM-mode field components in a triangular dielectric resonator having no vari-
ation of the field patterns along the thickness of the resonator are given by

Ez ¼ Am,n,‘T(x, y) (16:10a)

Hx ¼
j

vm0me

@Ez

@y
(16:10b)

Hy ¼
�j

vm0me

@Ez

@x
(16:10c)

Hz ¼ Ex ¼ Ey ¼ 0 (16:10d)

where Am,n,‘ is a constant. Figure 16.1 shows the geometry of the planar resonator
under discussion.

T(x, y), in the case of a planar resonator with top and bottom electric walls and
magnetic side walls, may be obtained by duality from its existing description met
in connection with a TE mode with electric side walls. Aligning the orientation of
the triangle with a ¼ 0, b ¼ 1208, g ¼ 3608 gives

T(x, y) ¼ cos
2pxffiffiffi
3

p
A
þ 2p

3

� �
‘

� �
cos

2p (m� n)y
3A

� �

þ cos
2pxffiffiffi
3

p
A
þ 2p

3

� �
m

� �
cos

2p (n� ‘)y
3A

� �

þ cos
2pxffiffiffi
3

p
A
þ 2p

3

� �
n

� �
cos

2p (‘� m)y
3A

� �
(16:11)
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The complete standing wave solution is

Ez ¼ Am,n,‘T(x, y) (16:12a)

Hx ¼
�jAm,n,‘

vm0me

2p (m� n)
3A

cos
2pxffiffiffi
3

p
A
þ 2p

3

� �
‘

� �
sin

2p (m� n)y
3A

� ��

þ 2p (n� ‘)
3A

cos
2pxffiffiffi
3

p
A
þ 2p

3

� �
m

� �
sin

2p (n� ‘)y
3A

� �

þ 2p (‘� m)
3A

cos
2pxffiffiffi
3

p
A
þ 2p

3

� �
n

� �
sin

2p (‘� m)y
3A

� ��
(16:12b)

Hy ¼
�jAm,n,‘

vm0me

2p‘ffiffiffi
3

p
A
sin

2pxffiffiffi
3

p
A
þ 2p

3

� �
‘

� �
cos
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þ 2pmffiffiffi
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p
A
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2pxffiffiffi
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p
A
þ 2p

3

� �
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� �
cos

2p (n� ‘)y
3A

� �

þ 2pnffiffiffi
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p
A
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2pxffiffiffi
3

p
A
þ 2p

3

� �
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� �
cos

2p (‘� m)y
3A

� ��
(16:12c)

The interchange of the three digits m, n, ‘ leaves the cutoff number km,n,‘ unchanged;
similarly, the field patterns are retained, without rotation.

16.4 TM1,0,21 FIELD COMPONENTS OF TRIANGULAR
PLANAR RESONATOR

The field patterns of the dominant mode in a planar triangular resonator are given by
Eq. (16.12) with m ¼ 1, n ¼ 0, ‘ ¼ 21. The result is

Ez ¼ A1,0,�1 2 cos
2pxffiffiffi
3

p
A
þ 2p

3

� �
cos

2py
3A

� �
þ cos

4py
3A

� �� �
(16:13a)

Hx ¼ �jA1,0,�1ze cos
2pxffiffiffi
3

p
A
þ 2p

3

� �
sin

2py
3A

� �
þ sin

4py
3A

� �� �
(16:13b)

Hy ¼ j
ffiffiffi
3

p
A1,0,�1ze sin

2pxffiffiffi
3

p
A
þ 2p

3

� �
cos

2py
3A

� �� �
(16:13c)

where

k1,0,�1 ¼ 4p=3A (16:14)

ze ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
101r=m0me

p
(16:15)
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Figure 16.6 is a sketch of the magnetic and electric fields for the dominant TM1,0,21

mode in a triangular resonator.

16.5 TM1,1,22 FIELD COMPONENTS OF TRIANGULAR
PLANAR RESONATOR

In addition to the dominant mode the next higher order mode in a planar triangular
resonator has also been investigated. This mode is a symmetrical or in-phase one
for which the field pattern is given in Fig. 16.7. It is obtained with m ¼ 1, n ¼ 1,
‘ ¼ 22; T(x, y)m,n,‘, and km,n,‘ are in this instance described by

T(x, y)1,1,�2 ¼ cos 2
2pxffiffiffi
3

p
A
þ 2p

3

� �
þ 2 cos

2pxffiffiffi
3

p
A
þ 2p

3

� �
cos

2py
A

� �
(16:16)

k1,1,�2 ¼ 4p=
ffiffiffi
3

p
A (16:17)

A property of this mode is that it has a maximum at the origin, unlike the
T(x, y)1,0,21 mode, which has a zero there. This maximum is given by

T(0, 0)1,1,�2 ¼ �3=2 (16:18)

FIGURE 16.6 TM1,0,21 dominant mode field pattern in triangular resonator with magnetic
walls. (Reproduced with permission from J. Helszajn and D. S. James, Planar triangular reso-
nators with magnetic walls, IEEE Trans. Microwave Theory Tech., Vol. MTT-26, pp. 95–100,
Feb. 1978.)
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It is easily verified that this mode is symmetrical:

T(0, A=2
ffiffiffi
3

p
)1,1,�2 ¼ T(� A=4

ffiffiffi
3

p
, A=4)1,1,�2

¼ T(� A=4
ffiffiffi
3

p
,� A=4)1,1,�2 (16:19)

16.6 ELECTRIC FIELD PATTERN IN CIRCULATOR USING
TRIANGULAR RESONATOR

The geometry of a triangular resonator makes it difficult to visualize rotation of the
TM1,0,21 mode in order to satisfy the boundary conditions of an ideal circulator.
One possible way to construct the electric field distribution is by taking a linear com-
bination of two TM1,0,21 standing wave solutions with one of them rotated through
1208 with respect to the other. The demonstration of this construction starts with a
statement of that for the dominant mode in the u, v, w plane:

T u, v, wð Þ ¼ 2 cos
2puffiffiffi
3

p
A
þ 2p

3

� �
cos

2p v� wð Þ
3

ffiffiffi
3

p
A

� �
þ cos

4p v� wð Þ
3

ffiffiffi
3

p
A

� �
(16:20)

FIGURE 16.7 TM1,1,22 field pattern in triangular resonator with magnetic walls.
(Reproduced with permission from J. Helszajn and D. S. James, Planar triangular resonators
with magnetic walls, IEEE Trans. Microwave Theory Tech., Vol. MTT-26, pp. 95–100,
Feb. 1978.)
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One field pattern in the x, y plane is given with a ¼ 0, b ¼ 1208, and g ¼ 2408:

T x, yð Þ0,120,240 ¼ 2 cos
2pxffiffiffi
3

p
A
þ 2p

3

� �
cos

2py
3A

� �
þ cos

4py
3A

� �
(16:21)

A second solution is obtained with a ¼ 1208, b ¼ 2408, and g ¼ 3608:

T x, yð Þ120,240,360 ¼ 2 cos
2pffiffiffi
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� x
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ffiffiffi
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p
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3

p
y

2

� �� �
(16:22)

The third field pattern is obtained with a ¼ 2408, b ¼ 3608, and g ¼ 1208 but is not
necessary for the present discussion.

One standing wave solution that is in keeping with a phenomenological descrip-
tion of a circulator using a triangular resonator is given by

T 0(x, y) ¼ T(x, y)0,120,240 � T(x, y)120,240,360 (16:23)

Figure 16.8 illustrates the construction of the standing wave solution for the
circulator using the equipotential diagram of the isotropic resonator. The standing
wave solution defined by Eq. (16.23) can also be written in terms of counterrotating
variables as

T 0(x, y) ¼ Tþ(x, y) exp ( jp=6)þ T�(x, y) exp (�jp=6) (16:24)

where

T 0(x, y)+ ¼ 1
3 [T(x, y)

0,120,240 þ T(x, y)120,240,360 exp (+j120)

þ T(x, y)240,360,120 exp (+j240)] (16:25)

The result for the TM+
1,0,�1 mode is

T+(x, y)1,0,�1 ¼ 1
2
exp +j

4py
3A

� �
þ cos

2pxffiffiffi
3

p
A
þ 2p

3

� �
exp +

j2py
3A

� �
(16:26)
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It is easily verified that

T+ �A=
ffiffiffi
3

p
, 0

� 	
1,0,�1

¼ 3
2

(16:27)

T+ A=2
ffiffiffi
3

p
, A=2

� 	
1,0,�1

¼ 3
2
exp (+j120) (16:28)

T+ A=2
ffiffiffi
3

p
, �A=2

� 	
1,0,�1

¼ 3
2
exp (+j240) (16:29)

FIGURE 16.8 Sum and difference of dominant T0,120,240 (x, y) and T240,0,120 (x, y) solutions.
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The in-phase mode is constructed in a similar way in terms of the TM1,1,22

nomenclature as

T(x, y)1,1,�2 ¼ 1
3 T(x, y)0,120,240 þ T(x, y)120,240,360 þ T(x, y)240,360,120

 �

(16:30)

The meanings of these field settings are illustrated in Fig. 16.9.

FIGURE 16.9 Definitions of T0(x, y), Tþ
m,n,l (x, y), and T2

m,n,l (x, y) spatial functions.
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Figure 16.10 indicates the theoretical and experimental electric field distribution at
the edge of a loosely coupled circulator.

The constructions of the standing wave solutions in an irregular hexagonal reso-
nator are akin to those of the related triangular geometries.

16.7 STORED ENERGY

An important quantity in the description of any resonator is its stored energy. It is
defined by

U0 ¼ 2H
ð ð

s

1
2
101fE

2 ds (16:31)

Emay be written in terms of the linear combinations of the T functions in Eq. (16.23)
or (16.24). Adopting the latter possibility gives

E ¼ A1,0,�1[T
þ(x, y) exp ( jp=6)þ T�(x, y) exp (�jp=6)] (16:32)

where T+(x) is stipulated in Eq. (16.26).

FIGURE 16.10 Electric field on the periphery of circulator using triangular resonator.
(Reproduced with permission from J. Helszajn and D. S. James, Planar triangular resonators
with magnetic walls, IEEE Trans. Microwave Theory Tech., Vol. MTT-26, pp. 95–100,
Feb. 1978.)
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The stored energy, after some algebra, is given by

U0 ¼ 101fA1,0,�1H

ðA=2 ffiffi
3

p

�A=2
ffiffi
3

p

ð(x= ffiffi
3

p
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ffiffi
3
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4py
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2pxffiffiffi
3

p
A
þ 2p

3

� ��

� cos
2py
3A

þ p

6

� ��2
dy dx (16:33)

The required result is now obtained by evaluating the right-hand side of Eq. (16.33):

U0 ¼ 0:64101fA1,0,�1A
2H

where H is the thickness of each half-space of the triangular region. This solution has
been verified using a conversational numerals multiple-integration package available
as a standard time-sharing utility on a Burrough’s B5700 digital computer. The com-
puted answer is

U0 ¼ 0:649519 (16:34)

Table 16.1 summarizes the energies for various higher order modes of the resonator.

16.8 THE IRREGULAR HEXAGONAL RESONATOR

The topology of the irregular hexagonal resonator is illustrated in Fig. 16.11. One
triplet of ports reduces the problem region to a side-coupled triangular resonator
and the other maps it into an apex-coupled triangular one. The existing literature

TABLE 16.1 TMm,n,l Modes and Stored Energies for Triangular Resonators

Sequence Number m, n, ‘
Ð
s T(x, y)

2
m,n,‘ ds

1 (dominanat) 1, 0, 21 (9
ffiffiffi
3

p
)/2

2 (symmetric) 1, 1, 22 (9
ffiffiffi
3

p
)/2

3 2, 22, 0 (9
ffiffiffi
3

p
)/2

4 1, 2, 23 (9
ffiffiffi
3

p
)/4

5 3, 23, 0 (9
ffiffiffi
3

p
)/2

6 2, 2, 24 (9
ffiffiffi
3

p
)/2

7 1, 3, 24 (9
ffiffiffi
3

p
)/4

8 2, 3, 25 (9
ffiffiffi
3

p
)/4

9 1, 4, 25 (9
ffiffiffi
3

p
)/4

Wm,n,‘ ¼
A2
m,n,‘101rA

2H

24

ð
S
[T(x, y)m,n,‘]

2 ds
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contains papers that give the frequency response of some specific geometries based
on the contour integral method or the point matching one, papers that give statements
on the two circulation conditions by having recourse to the finite element method.

The physical variables entering into the description of this sort of geometry are the
shape angle of the resonator, f; the side dimensions of the resonator, A, B; and its
circumscribed radius, r, respectively. The shape angle takes the value 08 for a triangle
and the value 608 for a regular hexagonal one.

The details of a typical coupling port are described by the width (W ) of the coup-
ling strip, by the coupling angle (c), and by the radius (R) subtended by the coupling
angle on the periphery of the resonator. The required relationships between these
physical variables for the two possible triplets of ports of the problem region are

W ¼ 2r cos (f=2) tanc, apex-coupled resonator (16:35)

W ¼ 2r cos (60� f=2) tanc, side-coupled resonator (16:36)

respectively.
The physical variables entering into the description of the two possible triplets of

ports are indicated in Fig. 16.12.

FIGURE 16.11 Mapping between regular and irregular hexagonal resonators.
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16.9 CUTOFF SPACE OF PLANAR IRREGULAR HEXAGONAL
RESONATOR

One means of deducing the cutoff space of a planar irregular hexagonal resonator is to
have recourse to the finite element method. The case where f ¼ 08 is a triangle and
that for which f ¼ 608 is a regular hexagon. The modes of the irregular hexagon
resonator are designated TMm,n,‘ limit modes. This nomenclature is consistent with
that used to describe the modes in a triangular resonator. The cutoff numbers for
the first three regular hexagon modes are

(kr)1,0,�1 ¼ 2:00

(kr)2,�2,0 ¼ 3:35

(kr)1,1,�2 ¼ 4:20

FIGURE 16.12 Physical variables of irregular hexagonal resonator.

16.9 CUTOFF SPACE OF PLANAR IRREGULAR HEXAGONAL RESONATOR 301



and for the triangle resonator;

(kr)1,0,�1 ¼ 2:45

(kr)1,1,�2 ¼ 4:15

(kr)2,�2,0 ¼ 4:85

m, n, ‘ satisfy

mþ nþ ‘ ¼ 0

FIGURE 16.12 Continued.
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A graph of the cutoff numbers of the first three modes versus the apex angle of the
smaller triangle contained within the hexagon is illustrated in Fig. 16.13. It indicates
that the symmetric TM1,1,22 limit mode is degenerate with the TM2,22,0 limit mode.
One polynomial representation of the cutoff space of the irregular resonator is

kr ¼ a0 þ a1fþ a2f
2 þ a3f

3 (16:37)

where

a0 ¼ 2:45

a1 ¼ �2:85� 10�2

a2 ¼ 6:5� 10�4

a3 ¼ �5:0� 10�6

and k has the usual meaning.
The details of the discretization employed in the case of the regular isotropic

hexagonal resonator illustrated in Fig. 16.14 are

p ¼ 2

n ¼ 6

m ¼ 90

n� m ¼ 540

q ¼ 211

FIGURE 16.13 Mode chart of regular hexagonal resonator.
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p is the degree of the polynomial within each finite element triangle, n is the number
of nodes inside each finite element triangle, m is the number of triangles, n � m is the
total number of nodes before assembly of the finite element mesh, and q is the number
of nodes after assembly of the mesh.

The equipotential lines of the TM modes of the regular hexagonal resonator with
a perfect magnetic wall boundary condition at its periphery reduce to those of the
triangular geometry and are not reproduced here.

16.10 SPLIT FREQUENCIES OF IRREGULAR HEXAGONAL RESONATOR

The split frequencies of the regular gyromagnetic hexagonal resonator are depicted in
Fig. 16.15. The details of the finite elementmesh utilized in this calculation are specified by

p ¼ 2

n ¼ 6

m ¼ 24

n� m ¼ 148

q ¼ 73

One polynomial approximation for the split frequencies of this sort of weakly mag-
netized resonator based on the finite element solution of six different shape angles
(f) is given by

vþ � v�
v0

� �
m

k

� 	
¼ a0 þ a1fþ a2f

2 þ a3f
3 þ a4f

4 þ a5f
5, 0 � k

m
� 0:30

(16:38)

FIGURE 16.14 Discretization of regular hexagonal resonator.

304 TRIANGULAR AND IRREGULAR HEXAGONAL PLANAR RESONATORS



where

a0 ¼ 0:55

a1 ¼ 12:64� 10�3

a2 ¼ �12:98� 10�4

a3 ¼ 65:15� 10�6

a4 ¼ �12:59� 10�7

a5 ¼ 8:29� 10�9

and f is in degrees.
The right-hand side of this polynomial approximation reduces to 0.55 in the case

of the triangular resonator and to 0.838 in the case of the regular hexagonal geometry.

FIGURE 16.15 Split frequencies of regular hexagonal gyromagnetic planar resonators using
FE process. (Reproduced with permission from J. Helszajn and R. W. Lyon, Mode charts of
magnetised and demagnetised planar hexagonal resonators on ferrite substrates using finite
elements, IEE Proc., Pt. H, pp. 420–422, Dec. 1984.)
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The result for a regular hexagonal resonator is given by

vþ � v�
v0

� �
m

k

� 	
¼ 0:84, 0 � k

m
� 0:30 (16:39)

The relationship between the split frequencies of the triangular resonator and its
gyrotropy has previously been evaluated using perturbation theory. The result is

vþ � v�
v0

� �
m

k

� 	
¼

ffiffiffi
3

p

p
, 0 � k

m
� 0:30 (16:40)

A comparison between these two relationships indicates that the split frequencies of
the hexagonal resonator are somewhat larger than those of the equilateral one. This
observation is in keeping with measurements.

The tie between the split frequencies and the coupling angle of a regular hexagonal
resonator is indicated in Fig. 16.16. This relationship is plotted here in terms of the

FIGURE 16.16 Quality factor of coupling angle irregular hexagonal resonator for parametric
values of c(f¼ 608). (Reproduced with permission from J. Helszajn, M. Mckay, and D. J.
Lynch, Complex gyrator circuit of a junction circulator using weakly magnetised planar irregular
hexagonal resonator, IEE Proc. Microwave Antennas Propag., Vol. 143, pp. 532–538, Dec. 1996.)
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quality factor of the complex gyrator circuit instead of its split frequencies by making
use of the connection between the two. This condition is given in Eq. (16.51) and
elsewhere in the text. It suggests that the coupling angle at the terminals of the reso-
nator has only a second order effect on the opening between the split frequencies and
the gyrotropy of the magnetic insulator.

16.11 QUALITY FACTOR OF CIRCULATOR USING
APEX-COUPLED TRIANGULAR RESONATOR

The approach utilized here to obtain the loaded Q-factor of a weakly magnetized
junction follows that employed by Fay and Comstock. This quantity is defined by

QL ¼ v (stored energy)
power dissipatedþ power radiated

(16:41)

The quality factor deduced in this way in terms of the physical geometry of the junc-
tion must be compatible with that obtained in terms of the split frequencies of the
gyromagnetic resonator but must not be confused with it.

In the case of a three-port circulator,

QL ¼ vU0

Pr1 þ Pr2 þ Pr3
(16:42)

U0 is the stored energy in the two disks and Pri is the power radiated out into a typical
stripline. For an ideal circulator

Pr1 ¼ Pr3 ¼ 0

The total radiated power at port 2 is defined by

Pr2 ¼
V2
r2

R0
(16:43)

or

Pr2 ¼ E2
r2H

2Y0 (16:44)

Y0 is the conductance at the output stripline and also that looking into the resonator
circuit, and Er2 is the electric field amplitude at the output port. The electric field
for an apex-coupled equilateral gyromagnetic triangle is given at x ¼ A/2

ffiffiffi
3

p
,

y ¼ 2A/2 by

Er2 ¼ (3
ffiffiffi
3

p
=2)A1,0,�1 (16:45)

The power at the same port is then given by

Pr2 ¼ (27=4)A2
1,0,�1 � H2Y0 (16:46)
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The quality factor is evaluated in this instance as

QL ¼ 0:095101fvA
2=Y0H (16:47)

This may be compared with the value for a simple disk, which is described by

QL ¼ 1:48101fvR
2=Y0H (16:48)

16.12 CIRCULATOR USING SIDE-WALL-COUPLED
TRIANGULAR RESONATOR

The symmetry of the triangular resonator indicates that it also supports a triplet of
ports along the side walls of the triangle. Inspection of Fig. 16.9 suggests that a
combination of TM1,0,21 modes also satisfies this coupling arrangement. Its solution
relies on the same field patterns as the apex-coupled one and has the same operating
frequency.

The evaluation of the Q-factor for this geometry proceeds as in the previous
section. The field pattern and the stored energy are identical to those of the
apex-coupled arrangements, but the electric field at port 2 is different. Its value at
(A/2

ffiffiffi
3

p
, 0) is

Er2 ¼ (
ffiffiffi
3

p
=2)A1,0,�1 (16:49)

The corresponding quality factor is

QL ¼ 0:855101fvA
2=Y0H (16:50)

The Q-factor of this geometry is 9 times that of the apex-coupled circulator and 3
times that of the conventional disk arrangement.

16.13 GYRATOR CONDUCTANCE

A complete description of a junction circulator also requires one of the gyrator con-
ductance. Its derivation proceeds by developing one more description of the quality
factor of the junction. One such formulation in terms of the split frequencies of the
gyromagnetic resonator is

1
QL

¼
ffiffiffi
3

p vþ � v�
v0

� �
(16:51)
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Combining the two formulations in the case of the apex-coupled geometry produces
the required circulation condition and fixes the gyrotropy of the junction.

ffiffiffi
3

p vþ � v�
v0

� �
¼ Y0H

0:855101fvA2
(16:52)

The gyrator conductance is now obtained by solving the preceding relationship for
Y0. The result is

Y0 ¼
ffiffiffi
3

p
0:855 keAð Þ2z0zeff

keH

vþ � v�
v0

� �
(16:53)

where

z0zeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
101f=m0meff

p
(16:54)

The solution for the side-coupled geometry is

Y0 ¼
ffiffiffi
3

p
0:095(keA)2z0zeff

keH

vþ � v�
v0

� �
(16:55)

FIGURE 16.17 Relationships between normalized susceptance slope parameter B0/Yeff
product and aspect ratio for irregular resonator, p ¼ 0.28. (Reproduced with permission from
J. Helszajn, M. Mckay, and D. J. Lynch, Complex gyrator circuit of a junction circulator
using weakly magnetised planar irregular hexagonal resonator, IEE Proc. Microwave
Antennas Propag., Vol. 143, pp. 532–538, Dec. 1996.)
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The difference between the split frequencies of a triangular resonator based on a per-
turbation formulation is given by Eq. (16.40).

The corresponding result in the case of a junction using a disk gyromagnetic
resonator is

Y0 ¼
ffiffiffi
3

p
0:740(keR)2z0zeff

keH

vþ � v�
v0

� �
(16:56)

16.14 SUSCEPTANCE SLOPE PARAMETERS OF DISK AND
TRIANGULAR RESONATORS

Equations (16.47) and (16.48) may be used to extract the absolute susceptance slope
parameter of the two geometries:

B0 ¼ QLY0 ¼
0:855(keA)2z0zeff

keH
(16:57)

B0 ¼ QLY0 ¼
0:095(keA)2z0zeff

keH
(16:58)

FIGURE 16.18 Relationships between normalized susceptance slope parameter B0/Yeff
product and aspect ratio for irregular resonator, p ¼ 0.28. (Reproduced with permission from
J. Helszajn, M. Mckay, and D. J. Lynch, Complex gyrator circuit of a junction circulator
using weakly magnetised planar irregular hexagonal resonator, IEE Proc. Microwave
Antennas Propag., Vol. 143, pp. 532–538, Dec. 1996.)
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The corresponding result for a disk is

B0 ¼ QLY0 ¼
0:740(keR)2z0zeff

keH
(16:59)

The latter result due to Fay and Comstock reduces to that due to Bosma in Chapter 11
in the limit of wide strips. This may be done by recalling that the ground plane
spacing of the junction must be consistent with the definition of the characteristic
impedance Zr of the strips at the terminals of the junction.

A scrutiny of the expressions in the preceding equations indicates that the sus-
ceptance slope parameters of irregular planar resonators vary with both the ground
plane spacing and the shape angle. The connection between the susceptance slope
parameter and the shape factor of an irregular hexagonal resonator is indicated in
Fig. 16.17.

Some data on the susceptance slope parameter of a number of circulators using
disk-, side-, and apex-coupled triangular resonators with different ground plane spa-
cings are summarized in Fig. 16.18. It compares the calculations deduced here with
some experimental ones obtained by measuring the 20 dB bandwidth of different cir-
culators. The case of the disk resonator, due to Bosma, is also plotted. The agreement
between theory and experiment suggests the susceptance slope parameters of disk and
triangular resonators may be calculated with reasonable accuracy.

FIGURE 16.19 Definition of reference terminals of junction circulator.
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The A dimension, in the case of the triangular resonator, was held constant at
28 mm and its thickness was varied between 1.27 and 3.175 mm. Its center frequency
was approximately 2.25 GHz. The radius, in the case of the disk resonator, was held
constant at 9.9 mm and its thickness was again varied between 1.27 and 3.175 mm.
The center frequency of this arrangement was 2.8 GHz. The data on the side-coupled
resonators is restricted to the 3.175 mm substrate as it was not possible to obtain a
reliable measurement on the other substrates because of the relatively large values
of susceptance slope parameter displayed by these geometries. The material used
in these circulators had a magnetization m0M0 equal to 0.0400 T and a dielectric
constant of 1f equal to15.3.

FIGURE 16.20 Experimental relationships between transmission phase and frequency for
parametric values of shape angle of irregular hexagonal resonator. (Reproduced with
permission from J. Helszajn, W. D’Orazio, and M. Caplin, Insertion phase and phase slope
parameter of microwave junction circulators, IEE Proc. Microwaves, Antennas and
Propagation, Vol. 151, pp. 54–60, Feb. 2004.)

312 TRIANGULAR AND IRREGULAR HEXAGONAL PLANAR RESONATORS



16.15 TRANSMISSION PHASE ANGLE OF DEGREE-1 CIRCULATOR

The insertion phase of a junction circulation using an irregular hexagonal gyromag-
netic resonator is the topic of this paper.

The geometry employed here is a degree-1 stripline circulator using an irregular
hexagonal gyromagnetic resonator operating at about 2.0 GHz. This sort of topology
may be described by one radius (r) and one shape angle (f) in the manner indicated
in Fig. 16.12. The shape angles employed in this work are 08, 308, 508, and 608,
respectively. The circumscribed radii are 16.54, 13.84, 13.72, and 13.54 mm and
the thickness is 1.65 mm. The saturation magnetization of the material m0M0 is
equal to 0.0475 T.

One important aspect in the calibration of the insertion phase of a two-port
network is the determination of its reference terminals. In practice, the electrical refer-
ence terminals do not coincide with the physical planes. The calibration procedure

FIGURE 16.21 Experimental relationship between susceptance slope parameter and shape
angle of irregular hexagonal resonator. (Reproduced with permission from J. Helszajn, W.
D’Orazio, and M. Caplin, Insertion phase and phase slope parameter of microwave junction
circulators, IEE Proc. Microwaves, Antennas and Propagation, Vol. 151, pp. 54–60,
Feb. 2004.)
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employed here, in order to obtain the insertion phase between ports 1 and 2 of the
junction, commences by assuming that this is the case. The required condition is
then established by aligning the reflection coefficient at port 1 with a constant conduc-
tance circle. Figure 16.19 depicts one typical situation.

Figure 16.20 indicates the relationship between the insertion phase and the fre-
quency for parametric values of the shape angle of the irregular hexagonal resonator.
The one between the susceptance slope parameter and the shape angle of the resona-
tor is illustrated separately in Fig. 16.21. Separate measurements were undertaken at
the 17 dB, 20 dB, and 23 dB points of the return loss.
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CHAPTER SEVENTEEN

Operation of the Tracking
and Semitracking
Stripline Circulators

17.1 INTRODUCTION

An important stripline circulator solution, which has a nearly frequency independent
resistance over an octave band, is the tracking one. Its first circulation condition
coincides with the frequency at which the two counterrotating eigen-networks
exhibit complex conjugate immittances and the in-phase eigen-network may be ideal-
ized by a nearly frequency independent short-circuit. This boundary condition pro-
duces a unique coupling angle and is satisfied by describing the eigenvalue of the
in-phase eigen-network in terms of the n ¼ 0, +3 modes or poles and those of the
counterrotating ones in terms of the n ¼ þ1, 22, and n ¼ 21, þ2 modes or
poles. The second circulation condition merely involves the calculation of the
gyrator resistance using the counterrotating eigenvalues. Two other essential require-
ments for the operation of this sort of circulator are that the ferrite material is saturated
and that its gyrotropy is bracketed by 0.50 � k � 1.0 over the frequency interval in
question. In a circulator, using a weakly magnetized resonator, the in-phase eigen-
network is adequately described by the n ¼ 0 mode or pole (although it is often
idealized by a frequency independent short-circuit) and the counterrotating ones by
the n ¼ þ1 and –1 modes or poles. The eigenvalue problem for which the eigen-
networks are restricted to single resonator modes or poles is readily extended to
the situation for which higher order modes or poles are necessary by recognizing
that these may be realized in a first Foster form expansion of the resonator poles.
Using the rotational properties of the eigenvectors it is possible, by inspection, to

The Stripline Circulator: Theory and Practice. By J. Helszajn
Copyright # 2008 John Wiley & Sons, Inc.
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distribute the poles of the problem region among the counterrotating and in-phase
eigen-networks. This notation has the advantage that existing literature, which has
been formulated in terms of eigen-networks, supporting single resonator modes, is
readily extended in the case where higher order modes of the junction are required
to satisfy the boundary conditions at terminals. One important field of semitracking
solutions in the vicinity of the tracking has also been formulated. It is given special
attention.

17.2 EIGENVALUES OF TRACKING CIRCULATORS

The boundary conditions of a symmetrical three-port junction circulator may be
described either in terms of its scattering, impedance, or admittance matrices, or in
terms of the corresponding reflection, impedance, or admittance eigenvalues. The
three sets of eigenvalues are the scalar variables of three one-port networks known
as the eigen-networks of the junction. A physical understanding of the junction
requires the identification of the eigenvalue problem.

The derivation of the tracking solution of the three-port junction circulator is facili-
tated by segregating its in-phase and counterrotating poles between the impedance
eigenvalues of the junction. Inspection of the electromagnetic problem indicates
that this may be done by realizing the junction eigen-networks in a first Foster

FIGURE 17.1 First Foster form realization of eigen-networks of three-port junction
circulator.
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form (rather than in a second Foster form) one-port reactance network in the manner
illustrated in Fig. 17.1.

Z0 ¼
X

Zn, n ¼ 0, +3, +6, +9, . . . (17:1)

Zþ ¼
X

Zn, n ¼ þ1, �2, þ4, �5, þ7, . . . (17:2)

Z� ¼
X

Zn, n ¼ �1, þ2, �4, þ5, �7, . . . (17:3)

This formulation has the advantage that once the required terms in each summation
have been determined, the other eigenvalues and matrix relations are readily evalu-
ated in the normal way.

Yq ¼ 1=Zq (17:4)

Sq ¼ (Y0 � Yq)=(Y0 þ Yq) (17:5)

with q ¼ 0, þ, 2.
The open-circuit impedance parameters of the three-port junction are expanded in

terms of the eigenvalues in the usual way.

Z11 ¼
Z0 þ Zþ þ Z�

3
(17:6)

Z12 ¼
Z0 þ a Zþ þ a2Z�

3
(17:7)

Z13 ¼
Z0 þ a2 Zþ þ a Z�

3
(17:8)

The admittance matrix does not normally exist at the terminals of the junction in the
case of a conventional stripline circulator.

In the case of a disk resonator the poles of Zþ, Z2, and Z0 are defined by the coup-
ling angle c and the thickness H of each half-resonator in keeping with the develop-
ment in Chapter 13:

Zn ¼
j3

ffiffiffiffiffiffiffiffi
meff

p
Rfc

p

sin nc

nc

� �2 Jn�1 (kR)
Jn(kR)

� n
1þ k=m

kR

� �� ��1

(17:9)
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where

Rf ¼ Rr=
ffiffiffiffiffi
1f

p
(17:10)

Rr ¼ 30p ln
W þ t þ 2H

W þ t

� �
(17:11)

k ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffi
1fmeff

p
=l0 (17:12)

sinc ¼ W=2R (17:13)

and the other variables have the usual meaning. The schematic diagram of the
classic planar circulator using a simple disk resonator discussed here is depicted in
Chapter 13.

A scrutiny of the poles entering into the description of the eigenvalues of the
problem region indicates that all the poles have a zero at the origin except for the
n ¼ 0, which has a pole there. This may readily be appreciated by noting the asymp-
totic form of Jn(x) as x goes to zero.

Jn xð Þ � 1
n!

x

2

� �n
(17:14)

An essential prerequisite for the operation of the tracking circulator is that the
ferrite material is saturated. This implies that

k ¼ vm=v (17:15a)

m ¼ 1 (17:15b)

and

meff ¼ 1� (vm=v)
2 (17:15c)

where

vm ¼ gM0

g ¼ 2.21 � 105 (rad/s per A/m),M0 is in A/m, v is in rad/s, m0 ¼ 4p � 1027 H/m,
and m ¼ 1 in a saturated material.
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Making use of the preceding relationships allows Eq. (17.12) to be expressed as

k ¼
vm

ffiffiffiffiffiffiffiffiffiffiffiffi
1fmeff

p

ck

� �
¼ km

ffiffiffiffiffiffiffiffiffiffiffiffi
1fmeff

p

k
(17:16)

where km ¼ vm/c, and c is the free space velocity.

17.3 COMPLEX GYRATOR CIRCUIT

The nature of the gyrator impedance of the circulator is the topic of this section. It is
defined in Chapter 6 by

Zin ¼ Z11 � Z2
12=Z13 (17:17)

This equation is deduced by writing V3 ¼ I3 ¼ 0 in obtaining Zin in terms of the open-
circuit parameters.

In what follows, it is useful to express the real and imaginary parts of the preceding
condition in terms of the eigenvalues of the problem region. The results are

Rin ¼
jB(B2 � 3A2)
3(A2 þ B2)

(17:18a)

Xin ¼ Z0 þ A(B2 � 3A2)
3(A2 þ B2)

� �
(17:18b)

where

A ¼ (�1=2)(Zþ þ Z�)þ Z0 (17:19)

B ¼ (
ffiffiffi
3

p
=2)(Zþ � Z�) (17:20)

The eigenvalues Z0, Z2, and Zþ are pure imaginary numbers, so that the imaginary
part in the expression of the complex gyrator impedance is the gyrator resistance, and
the real part is the reactance part of Zin.

Figures 17.2 and 17.3 illustrate the two standard circulation conditions obtained by
retaining the first seven poles of the eigenvalues (n ¼ 0, +1, +2, +3) in the descrip-
tion of the gyrator impedance according to the scheme in Eqs. (17.1)–(17.3). The
illustrations are obtained by setting the imaginary part of the standard complex
gyrator impedance (or admittance) equal to zero and computing the corresponding
real part.

The classic circulation solution is approximately defined by jk/mj in the interval 0
to 0.50 on these illustrations (with c variable) and its three eigen-networks shown in
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FIGURE 17.2 First circulation solution of junction circulator using disk resonator.
(Reproduced with permission from J. Helszajn, Theory of tracking circulators, IEEE Trans.
Microwave Theory Tech., Vol. MTT-29, pp. 700–707, July 1981.)

FIGURE 17.3 Second circulation solution of junction circulator using disk resonator.
(Reproduced with permission from J. Helszajn, Theory of tracking circulators, IEEE Trans.
Microwave Theory Tech., Vol. MTT-29, pp. 700–707, July 1981.)
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FIGURE 17.4 Eigen-networks of stripline circulator with off-diagonal entry k of per-
meability tensor in vicinity of zero.

FIGURE 17.5 Eigen-networks of stripline circulator with off-diagonal entry k of per-
meability tensor in tracking circulator.
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FIGURE 17.6 Comparison between exact and approximate first circulation solutions of
junction circulator using disk resonator. (Reproduced with permission from J. Helszajn,
Theory of tracking circulators, IEEE Trans. Microwave Theory Tech., Vol. MTT-29,
pp. 700–707, July 1981.)

FIGURE 17.7 Comparison between exact and approximate second circulation solutions of
junction circulator using disk resonator. (Reproduced with permission from J. Helszajn,
Theory of tracking circulators, IEEE Trans. Microwave Theory Tech., Vol. MTT-29,
pp. 700–707, July 1981.)
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Fig. 17.4 support the n ¼ 0, þ1, 21 resonances of the disk resonator. These are the
Bosma and Fay and Comstock solutions. The Wu and Rosenbaum tracking solution
requires the n ¼ 0, +1, +2, and +3 modes for its description and operates with the
magnetic variable jkj between 0.5 and 1 with the coupling angle c � 0.55, but no
closed form representation is available for it. For 0 � c � 0.50, the solution of
kmR is ill defined for k/m � 0.50, and this region is left blank in Figs. 17.2 and
17.3. Figure 17.5 depicts the corresponding eigen-networks.

An approximate equivalent circuit of the complex gyrator has been derived in
Chapter 11. It is verified here. This has been done by expressing the imaginary
part of the input impedance in terms of its real part as a preamble to neglecting the
in-phase term in the description of the real part.

The agreements between the two circulation conditions, for c ¼ 0.52, based on the
approximate real and imaginary parts of the complex gyrator circuit and the exact
quantities are depicted in Figs. 17.6 and 17.7.

17.4 THREE EIGEN-NETWORK THEORY OF TRACKING CIRCULATOR

The purpose of this section is to show that the first Wu and Rosenbaum boundary
condition coincides with the frequency at which the two counterrotating eigen-
networks have complex conjugate immittances, and the in-phase eigen-network
has a short-circuit boundary condition. The second boundary condition is approxi-
mately satisfied by assuming that the counterrotating eigen-networks support the
n ¼ þ1, 22 and n ¼ 21, þ2 resonator modes.

The first condition may be demonstrated by simultaneously satisfying

Z0 ¼ Z0 þ Zþ3 þ Z�3 ¼ 0 (17:21a)

Zþ þ Z� ¼ (Zþ1 þ Z�2)þ (Z�1 þ Zþ2) ¼ 0 (17:21b)

The first equation ensures that Z0 displays a short-circuit boundary condition at the
input terminals of the device, and the second one ensures that the operating frequency
coincides with that at which the two counterrotating eigen-networks exhibit complex
conjugate immittances. The simultaneous solution of these two conditions is a unique
solution to Eq. (17.18). The first seven entries in Table 17.1 give the required result
over the whole field of variables. It is apparent from this data that the Wu and
Rosenbaum solution given by c � 0.522 rad, k/m � 0.67, and kR � 1.465 is a com-
patible with the three eigen-network theory articulated here.

Once the first circulation (frequency) is satisfied, the second one (gyrator level)
may be calculated by having recourse to the real part of the complex gyrator
impedance,

Rin ¼ j
Zþ � Z�

2
ffiffiffi
3

p
� �

(17:22)
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where

Zþ � Zþ1 þ Z�2 (17:23a)

Z� � Z�1 þ Zþ2 (17:23b)

Evaluating Zn, the counterrotating poles of the problem region, with c ¼ 0.52244,
kR ¼ 1.46503, and k/m ¼ 0.67, yields

Zþ1 ¼ �j1:88869Rf

Z�1 ¼ þj0:45920Rf

Zþ2 ¼ þj1:30413Rf

Z�2 ¼ þj0:12537Rf

The corresponding eigenvalues are

Zþ ¼ �j1:76332Rf

Z� ¼ þj1:76333Rf

and the gyrator conductance is

Rin ¼ 1:01805Rf

in agreement with the appropriate entry in column 7 of Table 17.1. Evaluating Rf in
Eq. (17.10) with 1f ¼ 15.3 and Rr ¼ 50V gives the gyrator resistance of the circulator
as

Rin ¼ 13:00V

For completeness, the magnitudes of the in-phase poles are

Z0 ¼ �j0:35593Rf

Zþ3 ¼ þj0:30928Rf

Z�3 ¼ þj0:04666Rf

The in-phase eigenvalue is therefore equal to zero as asserted:

Z0 ¼ 0

The eigenvalues and poles at the circulation conditions are tabulated in Table 17.2.
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Figure 17.8 indicates the variationof the real and imaginaryparts ofZinwith frequency
for this boundary condition. It shows that its equivalent circuit in this case is well
behaved, as asserted. It is of note that the loaded Q-factor obtained graphically from
this illustration is in excellent agreement with the value tabulated in Table 17.1. The
gyromagnetic space of the tracking solution is indicated by the shaded area in Fig. 17.9.

17.5 SYNTHESIS OF SEMITRACKING STRIPLINE JUNCTION
CIRCULATORS

The tracking gyrator circuit is characterized by a nearly frequency independent
conductance over approximately an octave frequency band. However, it is not an

FIGURE 17.8 Variation of real and imaginary parts of tracking circulator with k/m ¼ 0.67,
kR ¼ 1.46, c ¼ 0.52. (Reproduced with permission from J. Helszajn, Theory of tracking
circulators, IEEE Trans. Microwave Theory Tech., Vol. MTT-29, pp. 700–707, July 1981.)
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optimum solution in so far as the network problem is concerned in that a complex
rather than a real gyrator circuit is to be preferred. A field of semitracking solutions
can in fact be realized in the vicinity of the tracking one by perturbing either the coup-
ling angle of the junction or its magnetization. The two most important parameters in
the synthesis of a semitracking circulator are again the quality factor of the junction
and the frequency interval over which its complex gyrator circuit has a nearly fre-
quency independent conductance and a nearly constant susceptance slope. Once
these quantities are fixed (by the coupling angle of the resonator and its gyrotropy),
it is merely necessary to adjust the absolute levels of the real and imaginary parts of
the junction (with the aid of the ground plane spacing) to meet the required network
specification. A description of the junction in terms of its complex gyrator admittance
and loaded Q-factor is therefore again necessary and sufficient. Although no closed
form result is in general available, it may be derived graphically from a knowledge of
the frequency response of the device. A detailed investigation of this problem indi-
cates that a host of semitracking solutions may be realized in the vicinity of the track-
ing one by properly adjusting the details of the junction. One possibility is the design

FIGURE 17.9 Gyromagnetic mode chart of the tracking circulator.
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of a degree-3 equal ripple frequency response over one octave. The bandwidth of
semitracking circulators is restricted to about 75% unless some precautions are
taken to avoid so-called low-field loss. One way to avoid this type of loss is to
ensure that every region within the ferrite resonator is equally magnetized. A
feature of quarter-wave coupled circulators using semitracking junctions is that the
relative dielectric constant of the transformer regions is small compared to that of
the ferrite material. This is a somewhat fortunate situation in that it ensures that the
usual assumed magnetic wall boundary condition between the circulator ports is con-
sistent with practice and ensures fair agreement between theory and experiment.

17.6 SEMITRACKING CIRCULATION SOLUTIONS

Circulator solutions using semitracking gyrator circuits may be constructed by
varying the coupling angle (c) and/or the gyrotropy (k/m) of the resonator about
the values given by the Wu and Rosenbaum tracking solution. A complete description
of this class of device requires a knowledge of the complex gyrator circuit and loaded
Q-factor of the junction. These quantities are evaluated in this section by having
recourse to a calculation of the complex gyrator admittance of the circulator in the
neighborhood of the first circulation condition of Davies and Cohen. It is also necess-
ary to investigate to what extent these variables hold over the desired frequency inter-
val of the device. This may be done numerically by expanding the two circulation
conditions in the vicinity of the first one. This expansion is also necessary in order
to analyze the frequency response of quarter-wave coupled devices.

The complex gyrator circuit in the admittance plane is described in terms of its real
and imaginary parts in Eqs. (17.18a) and (17.18b) by

Gin ¼
Rin

R2
in þ X2

in

(17:24a)

Bin ¼
�jXin

R2
in þ X2

in

(17:24b)

The second of the two conditions defines the planar circuit in terms of c, k/m, and
kR, and the first fixes the absolute conductance level in terms of the free space admit-
tance (Yr) defined by the resonator terminals.

The susceptance slope parameter is determined graphically from a knowledge of
Bin in the vicinity of the first circulation condition:

B0 ¼ k0R

2
Bin(d)� Bin(�d)

k0R(1þ d)� k0R(1� d)

� �
¼ Bin(d)� Bin(�d)

4d
(17:25)

17.6 SEMITRACKING CIRCULATION SOLUTIONS 329



d is the frequency deviation about v0:

d ¼ (v� v0)=v0 (17:26)

Finally, the quality factor (QL) of the circuit is calculated by forming

QL ¼ B0=G0 (17:27)

Table 17.3 depicts semitracking solutions with k/m and c in the neighborhood of the
tracking one. Such semitracking solutions are particularly attractive for the design of
octave band devices.

Intermediate values of c and QL may be approximated in terms of the first two
terms of a Taylor expansion or by some more elaborate interpolation procedure.

ci ¼ ci�1 þ
ci�1 � ciþ1

Qi�1 � Qiþ1
Qi � Qi�1ð Þ (17:28)

i indicates the required quantities; i 2 1 and i þ l refer to the known quantities.
The physical variables in the tables may be understood by constructing an

example. One possibility is defined by

k ¼ vm=v � 0:6

m ¼ 1

c � 0:7 rad

kR ¼ 1:35 rad

The absolute gyrator conductance and susceptance slope parameter displayed by the
above variables are

G ¼ 0:7089Yf
B0 ¼ 0:4445Yf

where

Yf ¼ Yr
ffiffiffiffiffi
1f

p

The corresponding quality factor is

QL ¼ 0:6263

Yr is the free space conductance of a typical port at the junction. In a directly coupled
junction it is usually chosen as 0.02 mhos, but in a quarter-wave coupled one, with
(n2 1) transformer sections, it is used to adjust the gyrator conductance by varying
the ground plane spacing H in order to satisfy the network problem. The dielectric
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TABLE 17.3 Circulation Conditions for Semitracking Circulators

c kR G B0 QL

k ¼ 0.525, m ¼ 1

0.543� 1.6610 0.8880 Yf 0.4333 Yf 0.4880
0.550� 1.6453 0.8727 Yf 0.4480 Yf 0.5138
0.575� 1.6018 0.8238 Yf 0.4855 Yf 0.5894
0.600� 1.5685 0.7841 Yf 0.5074 Yf 0.6472
0.625 1.5413 0.7506 Yf 0.5197 Yf 0.6924
0.650 1.5183 0.7219 Yf 0.5253 Yf 0.7275
0.675 1.4985 0.6971 Yf 0.5267 Yf 0.7543
0.700 1.4810 0.6763 Yf 0.5233 Yf 0.7739

k ¼ 0.575, m ¼ 1

0.538� 1.6062 0.9302 Yf 0.3486 Yf 0.3486
0.550 1.5727 0.9011 Yf 0.3628 Yf 0.4021
0.575 1.5241 0.8507 Yf 0.4118 Yf 0.4842
0.600 1.4879 0.8098 Yf 0.5446 Yf 0.5446
0.625 1.4589 0.7757 Yf 0.5905 Yf 0.5905
0.650 1.4347 0.7466 Yf 0.6254 Yf 0.6254
0.675 1.4139 0.7216 Yf 0.4670 Yf 0.6513
0.700 1.3956 0.7002 Yf 0.4689 Yf 0.6697

k ¼ 0.600, m ¼ 1

0.535� 1.5740 0.947 Yf 0.2772 Yf 0.2927
0.550� 1.5290 0.9093 Yf 0.3305 Yf 0.3634
0.575� 1.4794 0.8598 Yf 0.3834 Yf 0.4453
0.600 1.4428 0.8192 Yf 0.4138 Yf 0.5051
0.625 1.4136 0.7852 Yf 0.4319 Yf 0.5500
0.650 1.3892 0.7561 Yf 0.4416 Yf 0.5839
0.675 1.3682 0.7313 Yf 0.4452 Yf 0.6089
0.700 1.3498 0.7098 Yf 0.4445 Yf 0.6263

k ¼ 0.625, m ¼ 1

0.531� 1.5384 0.9537 Yf 0.2433 Yf 0.2552
0.550 1.4806 0.9151 Yf 0.3053 Yf 0.3336
0.575 1.4313 0.8666 Yf 0.3581 Yf 0.4133
0.600 1.3949 0.8267 Yf 0.3897 Yf 0.4714
0.625 1.3658 0.7930 Yf 0.4083 Yf 0.5150
0.650 1.3414 0.7642 Yf 0.4185 Yf 0.5475
0.675 1.3205 0.7396 Yf 0.4224 Yf 0.5712
0.700 1.3021 0.7183 Yf 0.4220 Yf 0.5876

k ¼ 0.650, m ¼ 1

0.550 1.4281 0.9818 Yf 0.2853 Yf 0.3107
0.575 1.3799 0.8715 Yf 0.3372 Yf 0.3870

(Continued )
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constant 1t of the dielectric region adjacent to the junction may be employed to set the
admittance Yn21 of the quarter-wave transformer adjacent to the junction.

Yn�1 ¼
ffiffiffiffi
1t

p
Yr (17:29)

A knowledge of the quality factor although mandatory is not sufficient, however, in
that it is also necessary to ensure that the complex gyrator circuit is well behaved over
the frequency interval of interest. Figure 17.10 illustrates the frequency response of
the semitracking solution under consideration. It indicates that the frequency charac-
teristics of semitracking solutions using disk resonators are exceptionally well
behaved and are indeed appropriate with the design of octave-band devices.

The results in Table 17.3 marked by an asterisk are not suitable for the design of
such devices in that the junctions defined by these boundary conditions have a rever-
sal in the direction of the circulation at the high frequency end of the band.

17.7 SYNTHESIS OF DEGREE-3 CIRCULATOR

The general matching theory in which VSWR(min) is allowed to deviate from unity
suggests that a precise realization of the susceptance slope parameter may not be as
critical as historically supposed. One engineering decision is to fix VSWR(min) in
terms of VSWR(max) by

VSWR(min) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VSWR(max)

p
(17:30)

TABLE 17.3 Continued

c kR G B0 QL

0.600 1.3442 0.8324 Yf 0.3685 Yf 0.4427
0.625 1.3155 0.7993 Yf 0.3872 Yf 0.4844
0.650 1.2915 0.7708 Yf 0.3972 Yf 0.5153
0.675 1.2708 0.7465 Yf 0.4013 Yf 0.5376
0.700 1.2525 0.7255 Yf 0.4009 Yf 0.5527

k ¼ 0.670, m ¼ 1

0.522 1.4650 0.9830 Yf 0.1735 Yf 0.1765
0.550 1.3834 0.9200 Yf 0.2726 Yf 0.2963
0.575 1.3367 0.8744 Yf 0.3228 Yf 0.3692
0.600 1.3017 0.8359 Yf 0.3533 Yf 0.4227
0.625 1.2737 0.8034 Yf 0.3717 Yf 0.4626
0.650 1.2501 0.7755 Yf 0.3816 Yf 0.4921
0.675 1.2296 0.7513 Yf 0.3855 Yf 0.5131
0.700 1.2115 0.7303 Yf 0.3850 Yf 0.5272

�The results in Table 17.3 marked by an asterisk are not suitable for the design of such devices in that the
functions defined by these boundary conditions exhibit a reversal in the direction of circulating at the high
frequency end of the band.
Source: J. Helszajn, Synthesis of octave-band quarterwave coupled semi-tracking junction circulators, IEEE
Trans. Microwave Theory Tech., Vol. MTT-43, pp. 573–578, Mar. 1995. Reproduced with permission.
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A typical solution is described by VSWR(max) ¼ 1.04 and 2d0 ¼ 0.66. Its network
solution is

G ¼ 0:0661

B0 ¼ 0:0291

QL ¼ 0:4407

Y1 ¼ 0:0249

Y2 ¼ 0:0453

FIGURE 17.10 The real and imaginary parts of the complex gyrator circuit with m ¼ 1,
k ¼ 0.60, c ¼ 0.70 rad, Zr ¼ 60 V, kR ¼ 1.3498. (Reproduced with permission from
J. Helszajn, Synthesis of octave-band quarterwave coupled semi-tracking junction circulators,
IEEE Trans. Microwave Theory Tech., MTT-43, pp. 573–578, Mar. 1995.)
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Table 17.3 indicates that the boundary conditions required to satisfy this value of QL

are not unique. One solution is

k ¼ 0:650

c ¼ 0:600

kR ¼ 1:3442

G ¼ 0:8324 Yf
B0 ¼ 0:3685 Yf

Yf may be evaluated using either G or B0. In the procedure adopted here it is obtained
by reconciling the two statements for G.

Taking 1f as 14.7 and making use of the definition of Yf leads to

G ¼ 3:206 Yr

Equating the values of G determined by the network and EM problems gives the
following relationship:

0:06612 ¼ 3:406 Yr

Solving this equation for Yr yields

Yr ¼ 0:0206

An important quantity in the design of a junction circulator is the value of the
dielectric constant of the region adjacent to the resonator. Unfortunately, this quantity
is not an independent variable. In practice it is dependent on both the overall speci-
fication of the device and the semitracking solution adopted for its realization. The
evaluation of this quantity will now be undertaken. It is determined from a knowledge
of Yr and Yn21. The result is

1d ¼ (Y2=Yr)
2 ¼ 4:8

The nearest integer value for 1d is 5. If 1d does not correspond to an integer or com-
mercial value the design must be repeated with a different ripple level or with a differ-
ent choice of semitracking solution in Table 17.3.

The width of the striplines adjacent to the resonator is calculated next in terms of c
once the radius of the resonator has been formed from a knowledge of the center fre-
quency of the device and kR. Finally, the thickness H of the resonators is evaluated
from a knowledge of W and Yr.

One feature of the ideal semitracking solution of circulators using disk resonators
is that the dielectric constant of the transformer region adjacent to the resonator lies
approximately between 3 and 6. The use of such low values of dielectric constant
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adjacent to the resonator is helpful in reproducing the assumed magnetic wall bound-
ary condition between the ports of the junction. Failure to accurately do so leads to
some uncertainty in the definition of the effective coupling angle of the junction
(defined by the transmission lines and the resonator circuit) and of the radius of
the resonator. There is also some corresponding modification in the susceptance
slope parameter and to a lesser extent in the conductance of the complex gyrator
circuit. Fortunately, the field of solutions of the semitracking subspace outlined
here permits some laxity in the definition of the former parameters and the
network problem can accommodate some uncertainty in the latter quantities if the
minima in the reflection coefficient are not forced to pass through zero.

17.8 FREQUENCY RESPONSE OF QUARTER-WAVE COUPLED
CIRCULATORS

The frequency response of a quarter-wave coupled circulator may be traced by
forming the reflection coefficient at the input terminals of its one-port complex
gyrator network. The topology in question is illustrated in Fig. 17.11a. The frequency

FIGURE 17.11 (a) Topology of quarter-wave coupled complex gyrator circuit.
(b) Frequency response of n ¼ 3 network with nonzero minima in the reflection coefficient.
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FIGURE 17.12 Theoretical frequency response of two section quarter-wave coupled semi-
tracking junction with m ¼ 1, k ¼ 0.67, c ¼ 0.70, G ¼ 0.077, B0 ¼ 0.0404, QL ¼ 0.527, Zr ¼
36.50V, 1d ¼ 3.50. (Reproduced with permission from J. Helszajn, Synthesis of octave-band
quarterwave coupled semi-tracking junction circulators, IEEE Trans. Microwave Theory Tech.,
MTT-43, pp. 573–578, Mar. 1995.)

FIGURE 17.13 Experimental performance of the two-section, quarter-wave coupled,
octave-band, circulator. (Reproduced with permission from J. Helszajn, Synthesis of octave-
band quarterwave coupled semi-tracking junction circulators, IEEE Trans. Microwave
Theory Tech., MTT-43, pp. 573–578, Mar. 1995.)
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response of the degree-3 solution is shown in Fig. 17.11b. This allows the frequency
response of the quarter-wave coupled junction to be displayed without difficulty:

Ginj j2 ¼ [ARin � Z0(D� CXin)]2 þ [Bþ AXin � Z0CRin]2

[ARin þ Z0(D� CXin)]2 þ [Bþ AXin þ Z0CRin]2
(17:31)

A, B, C, and D are the parameters of the overall region. The ABCD parameters of a
typical transformer region are

A ¼ cosu (17:32a)

B ¼ Yt sin u (17:32b)

C ¼ (sin u )=Yt (17:32c)

D ¼ cos u (17:32d)

u is the electrical length of the transformer:

u ¼ (p=2)(1þ d) (17:33)

d is the normalized radian frequency variable in Eq. (17.26).
Y0 is the characteristic impedance of the generator circuit and Yt is that of the

quarter-wave-long transformer:

Yt ¼ Yr
ffiffiffiffi
1t

p
(17:34)

Xin and Rin are the imaginary and real parts of the complex gyrator impedance, and 1t
is the relative permittivity of the transformer impedance adjacent to the junction.

The frequency response of the n ¼ 3 network is obtained with

A ¼ cos2u� (y02=y01) sin
2u (17:35a)

B ¼ (1=y01 þ 1=y02) sin u cos u (17:35b)

C ¼ ( y01 þ y02) sin u cos u (17:35c)

D ¼ (�y01=y02) sin
2uþ cos2u (17:35d)

Figure 17.12 illustrates a typical calculation.
The performance of a 2.6–5.2 GHz device developed prior to the development of

the full theory is indicated in Fig. 17.13.
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CHAPTER EIGHTEEN

Complex Gyrator Circuit of
Negative Permeability Tracking
and Semitracking Circulators

18.1 INTRODUCTION

The shortcoming of either the tracking or semitracking solution of the junction
circulator is that the bandwidth of the former is restricted to about 66% and the
latter to about 80%. These sorts of circulators are associated with a gyrotropy that
varies between 0.50 and 1.0 and with an effective permeability that is positive over
the full frequency range. In order to extend the bandwidth beyond these values, it is
necessary to allow the gyrotropy to vary between 0.50 and 1.50. One difficulty at
first sight with this approach is that the effective permeability of the gyromagnetic
resonator becomes negative when the gyrotropy exceeds unity; another is that low-
field loss exists unless special attention is given to the profile of the internal direct
field. The first feature poses no particular mathematical difficulty and the second
can be avoided in practice or at least minimized by ensuring that the ferrite or garnet
material is saturated. One way to avoid the latter shortcoming is to embody semisphe-
rical pole pieces in themagnetic circuit with the samematerial as that of the ferrite reso-
nator. In this way the bandwidth of the junction can be extended from about 80% to
100%. The purpose of this chapter is to develop the complex gyrator circuit of the
device. It involves replacing the usual Bessel functions of a typical pole by ones
with imaginary argument under the assumption that the resonator is uniformly magne-
tized. The substitution of the usual Bessel functions by modified ones permits the
analysis of this type of circulator to proceed without difficulty. When the effective

The Stripline Circulator: Theory and Practice. By J. Helszajn
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permeability meff approaches zero and k approaches m, the pole descriptions in the
two Bessel planes approach the same value for meff , 0 and meff . 0.

A common 100% device is a 6–18 GHz circulator. In the design of this sort of
junction the negative permeability region extends from 6 to 9 GHz and the positive
one covers the 9–18 GHz band. The center frequency is 12 GHz and coincides
with k ¼ 0.75. This chapter reproduces the tracking complex gyrator half-space
defined by the positive permeability region and separately investigates that defined
by the negative one. The semitracking rather than the tracking solution is again the
optimum one.

Another gyromagnetic resonator of some interest is made up of an inner disk with
one value of magnetization and an outer sleeve with a lower value. The effective per-
meability of the inner region may be negative or positive; that of the outer region is
restricted to a positive value.

18.2 NEGATIVE PERMEABILITY GYROMAGNETIC RESONATOR

The effective permeability in a saturated magnetic insulator is positive when the nor-
malized magnetization ( p) is less than unity, zero when it is equal to unity, and nega-
tive provided the normalized magnetization exceeds unity. It is again positive above
the Kittel line. The previous situation implies that, for a given magnetization, the per-
meability is negative at low frequencies, zero at a specific frequency determined by
the magnetization of the material, and positive above this frequency. A similar
picture is obtained at a single frequency if the magnetization is kept constant and
the normalized direct magnetic field intensity (s) is varied.

To characterize the cutoff space of the negative permeability gyromagnetic reso-
nator, it is necessary to replace the Bessel functions of the first kind appearing in its
characteristic equation by modified ones. It is appropriate in the derivation of the
required result to rewrite the existing characteristic equation in the following form:

Jn�1(+ jkeR)
Jn(+ jkeR)

� n

+jkeR

� �
1þ k

m

� �
¼ 0, meff � 0 (18:1)

The wavenumber in the preceding equation is defined by

ke ¼ ko
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1f (�meff )

p
, meff , 0 (18:2)

The required characteristic equation is now deduced by making use of the connec-
tion between the Bessel functions of the first kind and the related modified ones.
The result is

(+j)
In�1(keR)
In(keR)

� n

keR

� �
1þ k

m

� �� �
¼ 0, meff , 0 (18:3)
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The (+j) factor is retained in order not to lose information in the development of the
poles of the problem region, which are dealt with separately.

The modified Bessel function is related to the standard Bessel one by

In(x) ¼ Jn( jx)=( j)
n

I�n(x) ¼ In(x)

Useful polynomial approximations for the first two modified Bessel functions are

I0(x) ¼ 1þ 2:249 999 7
x

3

� �2
þ 1:265 620 8

x

3

� �4
þ 0:316 386 6

x

3

� �6

þ 0:044 447 9
x

3

� �8
þ 0:003 944 4

x

3

� �10
þ 0:000 210 0

x

3

� �12

I1(x) ¼ x 0:50þ 0:562 499 85
x

3

� �2
þ 0:210 935 73

x

3
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The description of the modified higher order Bessel functions can be deduced by
having recourse to the recurrence condition:

2n
x

� �
In(x) ¼ In�1(x)� Inþ1(x)

It is also of note that

I(�x)odd
I(�x)even

¼ (�1) I(x)odd
I(x)even

A similar identity applies to the ratio of even to odd polynomials.
The effective permeability (meff) is specified in terms of the diagonal (m) and

off-diagonal (k) elements of the permeability tensor in the usual way.

meff ¼ m 1� (k=m)2
� 	

(18:4)

This quantity is positive provided the gyrotropy (k/m) is less than unity:

(k=m)2 � 1 (18:5a)
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It is zero provided it is equal to unity:

(k=m)2 ¼ 1 (18:5b)

It is negative when it is larger than unity:

(k=m)2 � 1 (18:5c)

meff and k/m are, in general, functions of both p and s in keeping with the
development in Chapter 2.

meff ¼
( pþ s)2 � 1
s ( pþ s)� 1

(18:6)

k

m

� �
¼ p

s ( pþ s)� 1
(18:7)

where

p ¼ vm=v (18:8a)

s ¼ g (H0 � NzM0)
v

(18:8b)

The only case considered here is that of a magnetic insulator at saturation below
the Kittel line

s ¼ 0 (18:9)

The corresponding effective permeability and gyrotropy are

m ¼ 1 (18:10)

meff ¼ 1� k2 (18:11)

k ¼ p (18:12)

g is the gyromagnetic ratio (2.21�105 rad/s per A/m), M0 is the magnetization
(A/m), v is the radian frequency (rad/s), and m0 is the free-space permeability
(4p � 1027 H/m).

Figure 18.1 indicates the mode chart obtained in this way with the polarity of the
gyrotropy positive. It is identical for each of the two possible roots of 21 introduced
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in connection with the definition of the wavenumber. An interesting feature of the fre-
quency of TM1,1,0 and the TM2,1,0 modes is that these decrease for k between 0.50
and 1.0 but increase thereafter.

Recall that the mode chart in Fig. 18.1 applies to a decoupled gyromagnetic reso-
nator. In the presence of ports, the actual situation is somewhat more complicated in
that it also involves the coupling angle as discussed elsewhere.

18.3 IMPEDANCE POLES OF VERY STRONGLY
MAGNETIZED JUNCTION

In order to proceed with a calculation of the complex gyrator circuit in the negative
permeability region of a strongly magnetized gyromagnetic function, it is necessary
to construct a typical pole of the problem region. The required impedance pole in the
modified Bessel plane is

Zn ¼
�j3heffZrc

p

sin nc

nc

� �2 In�1(keR)
In(keR)

� n

keR

� �
1þ k

m

� �� ��1

(18:13)

FIGURE 18.1 Cutoff space of gyromagnetic resonator in positive and negative permeability
half-spaces (after A. P. Gibson).
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The wavenumber has the meaning met in connection with the development of the
cutoff space. The wave impedance is similarly defined by

heff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(�meff )

1f

r
(18:14)

The change in sign of the pole in the modified Bessel plane is of note. The eigen-
values, open-circuit parameters, and the two circulation conditions of the junction
may be constructed once the poles of the problem region have been evaluated.

For calculation purposes, it is usual to introduce the following substitution in the
pole formulation of the problem region:

heffZr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(�meff )

p
Zf (18:15)

where

Zf ¼ Zr=
ffiffiffiffiffi
1f

p
(18:16)

Zr is the characteristic impedance of the strips at the termination of the resonator, 1f is
the relative dielectric constant of the ferrite material.

18.4 CIRCULATION SOLUTION USING NONDEGENERATE
RESONATOR MODES

An interesting feature of the circulation solutions summarized in Table 17.1 in
Chapter 17 is that the gyrator resistance, with the variable k in the vicinity of
unity, is essentially made up by a pair of counterrotating poles of the junction that
are not degenerate in the demagnetized state. In this it differs from the usual result
met with k in the vicinity of the origin for which the gyrator resistance involves a
pair of split degenerate poles. The state of affairs under consideration may be under-
stood by perusing Table 17.2, which gives the amplitudes of the impedance poles and
eigenvalues over the complete range of the gyrotropy. It is readily apparent from this
data that the gyrator level in the tracking interval is mainly established by the TM1,1,0

and TM2,1,0 modes of the resonator. This is all the more so with the variable k in the
neighborhood of unity. The eigen-networks for the latter situation are depicted in
Fig. 18.2. The intersection between the n ¼ 21 and n ¼ þ2 branches of the magne-
tized cutoff space of the gyromagnetic resonator in Fig. 18.1 may be taken as the
boundary between the two types of solutions. It is separately observed from
Table 17.2 that the idealization of the in-phase eigen-network is satisfied for each
value of the off-diagonal entry k provided the angle c subtended by the stripline
at a typical port of the resonator is equal to about 0.52 rad. The purpose of this
work is to examine the solution in the case for which k exceeds unity. In order for
the transition between the two regions to be seamless, it is necessary that the
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FIGURE 18.2 Eigen-networks of junction circulator using nondegenerate counterrotating
poles (k0 in vicinity of unity).

FIGURE 18.3 Standing wave solution of junction circulator using nondegenerate TM1,1,0

and TM2,1,0 counterrotating modes.
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counterrotating Zþ1 and Zþ2 poles in the first Foster expansion of the counterrotating
eigenvalues should again be the dominant poles. It will be seen that this is the case.

18.5 STANDING WAVE SOLUTION OF CIRCULATOR USING
NONDEGENERATE RESONATOR MODES

The fact that the TMn,1,0 modes with n ¼ þ1 and þ2 may be used to construct a cir-
culation solution may be appreciated by recognizing that the split TMn,m,0 modes
produce a circulator that circulates in the opposite direction to that using n ¼+2
modes with n ¼+1. This feature implies that the lower branch of the split +1
modes rotates in the opposite direction to that of the n ¼+2 and may therefore be
employed to construct an acceptable circulator solution. This possibility may be ver-
ified by checking that the corresponding eigenadmittances form a complex conjugate
set, and that a standing wave solution can indeed be constructed using only the
TM1,1,0 and TM2,1,0 modes. The construction of such a standing wave solution is
indicated in Fig. 18.3.

18.6 NEGATIVE PERMEABILITY TRACKING SOLUTION

The tracking solution developed in the previous chapter ensures that the in-phase
eigen-network displays an electric wall at the terminals of the resonator and that
the counterrotating ones have complex conjugate immitances there.

The two tracking circulation conditions with the gyrotropy on either side of unity
are determined in terms of the eigenvalues of the problem region by

Z 0 ¼ 0 (18:17a)

Zþ þ Z� ¼ 0 (18:17b)

and

R ¼ j (Zþ � Z�)=2
ffiffiffi
3

p
(18:18)

The number of poles necessary to reproduce the boundary conditions at the ports is
an open question. The choice adopted here corresponds to that employed in the
description of the positive permeability half-space, except that the TMm,n,0 modes
with negative values of the integer n have been omitted. While the latter modes do
not at first sight reveal poles in the negative permeability cutoff space of interest,
these still have finite reactances there that have to be considered. At first sight the
omission of these terms does not produce any significant variation of the result.
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The poles in the expansion of the eigenvalues in the present work are

Z0 � Zþ3 þ Z0 (18:19a)

Zþ � Zþ1 (18:19b)

Z� � Zþ2 (18:19c)

The first tracking condition fixes the relationship between the coupling angle (c) and
the radial wavenumber (kR) for a given value of the off-diagonal element k. It pro-
duces a unique value of the coupling angle. The second sets the gyrator resistance.

The solutions of the first condition of a circulator using a negative permeability
gyromagnetic resonator produce unique values of kR and c for each value of k.
Taking k ¼ 1.10 by way of example gives kR ¼ 0.879 and c ¼ 0.416. The corre-
sponding poles are

Z0 ¼ �j 0:443Rf

Zþ1 ¼ �j 1:728Rf

Zþ2 ¼ j 1:728Rf

Zþ3 ¼ j 0:443Rf

The in-phase eigenvalue is equal to zero as asserted.
The second circulation condition merely involves the calculation of the gyrator

resistance. It is usual to represent the real part condition by the gyrator conductance
instead of its resistance.

G ¼ 0:957Yf

The two circulation conditions of the tracking solution for kR in the negative per-
meability space bracketed by k between 1.0 and 1.50 are tabulated in Table 18.1.
The first solution lies approximately halfway between the TM1,1,0 and the TM2,1,0

poles of the problem region. The reactances of the poles are equal in amplitude
with opposite sign under the same condition. These are indicated in Table 18.2.
These two tables in conjunction with Tables 17.1 and 17.2 provide the complete

TABLE 18.1 Circulation Conditions of Negative Permeability Tracking
Junction Circulator

k c kR R G B0 Q

1.1 0.416 0.879 0.9976 Rf 1.0024 Yf 0.0097 Yf 0.0097
1.2 0.395 1.256 1.0089 Rf 0.9911 Yf 0.0231 Yf 0.0233
1.3 0.376 1.553 1.0187 Rf 0.9816 Yf 0.0384 Yf 0.0391
1.4 0.358 1.811 1.0261 Rf 0.9746 Yf 0.0558 Yf 0.0573
1.5 0.342 2.046 1.0340 Rf 0.9671 Yf 0.0752 Yf 0.0777
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FIGURE 18.4 Effect of in-phase poles on complex gyrator circuit in negative permeability
half-space.

TABLE 18.2 Impedance Poles of Negative Permeability Tracking Junction
Circulator

k/m Z0 Z1 Z2 Z3

1.05 2j0.4427 Rf 2j1.7195 Rf j1.7206 Rf j0.4416 Rf

1.10 2j0.4529 Rf 2j1.7311 Rf j1.7248 Rf j0.4522 Rf

1.15 2j0.4627 Rf 2j1.7386 Rf j1.7359 Rf j0.4626 Rf

1.20 2j0.4723 Rf 2j1.7465 Rf j1.7488 Rf j0.4725 Rf

1.25 2j0.4809 Rf 2j1.7548 Rf j1.7560 Rf j0.4813 Rf

1.30 2j0.4898 Rf 2j1.7654 Rf j1.7634 Rf j0.4895 Rf

1.35 2j0.4975 Rf 2j1.7721 Rf j1.7718 Rf j0.4974 Rf

1.40 2j0.5043 Rf 2j1.7786 Rf j1.7757 Rf j0.5044 Rf

1.45 2j0.5115 Rf 2j1.7849 Rf j1.7851 Rf j0.5115 Rf

1.50 2j0.5177 Rf 2j1.7899 Rf j1.7920 Rf j0.5181 Rf
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FIGURE 18.5 Effect of in-phase poles on complex gyrator circuit of junction circulator.

FIGURE 18.6 First circulation condition of nontracking negative permeability junction
circulator.
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solution of the poles, eigenvalues, and complex gyrator circuit of the 100% band
tracking junction circulator.

One useful approximation met in the derivation of the frequency response of the
complex gyrator circuit of the junction circulator is obtained by idealizing the in-
phase eigenvalue in the descriptions of both its real and imaginary parts. While the
former approximation is valid for the case under discussion, the latter one is not.
Figure 18.4 indicates one solution with and without the in-phase term. The equivalent
circuit, obtained by retaining the in-phase term in the description of the imaginary
part of the gyrator circuit, has a series element of value 4Z 0/3 in cascade with the
usual complex gyrator circuit involving simple linear combinations of Yþ and Y2.
It is illustrated in Fig. 18.5. Figure 18.6 indicates the connection between kR and k

for parametric values of c obtained by disregarding the tracking condition placed
on Z0. The corresponding relationship between the gyrator conductance and the
gyrotropy is illustrated separately in Fig. 18.7.

It may occasionally be useful to construct tracking circulators with narrow coup-
ling angles. In order to do so it is desirable to independently adjust the in-phase eigen-
network. One independent variable that allows Z0 to be tuned without perturbing the

FIGURE 18.7 Second circulation condition of nontracking negative permeability junction
circulator.
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other resonator modes is a thin metal post through the center of the resonator or the
introduction of circumferential slots in the disk metallization in the manner outlined
in Chapter 10.

18.7 FREQUENCY RESPONSE

The exact circulation conditions, in the nontracking situation, are obtained by con-
structing Gin and Bin in terms of the real and imaginary parts of the complex
gyrator impedance.

Gin ¼
Rin

R2
in þ X2

in

(18:20)

and

Bin ¼
�jXin

R2
in þ X2

in

(18:21)

Rin and Xin are defined in terms of the impedance eigenvalues in the usual way in the
previous chapter.

In order to display the frequency response of a typical pole or that of the complex
gyrator circuit, it is necessary to write the frequency dependent magnetic variables in
its description as

k ¼ k0(v0=v) (18:22)

jmeff j ¼ 1� k2


 

 (18:23)

keR ! keR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2j j
1� k20


 



s
v

v0

� �
(18:24)

It is also useful to define a normalized frequency variable

(v=v0) ¼ 1þ d (18:25)

where

d ¼ (v � v0)=v0 (18:26)
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The midband variables are

k0 ¼ (vm=v0) (18:27)

jmeff j ¼ 1� k20 (18:28)

keR ¼ k0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k20


 

1f

q
R (18:29)

The susceptance slope parameter and the quality factor of the complex gyrator circuit
may readily be evaluated once the frequency response of the circuit is established.
These quantities are included in Table 18.1. A typical frequency response is depicted
in Fig. 18.8. The frequency variation of the poles is illustrated in Fig. 18.9.
The midband gyrotropy is k0 equal to 1.25.

The calculation undertaken here on the frequency response of the complex gyrator
circuit of the tracking solution in the negative permeability half-space indicates that

FIGURE 18.8 Frequency response of negative permeability tracking circulator (k0 ¼ 1.25).
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the ideal in-phase condition is not only satisfied at the midband frequency but also
elsewhere. Figure 18.9 indicates that this is surprisingly the case.

18.8 COMPLEX GYRATOR CIRCUIT OF 100% CIRCULATOR

The design elements of the complex gyrator circuit of the 100% junction circulator
are summarized in this section. The midband frequency of the device under consider-
ation is taken as 12 GHz and the lower and upper bandedge frequencies are at 6 and
18 GHz, respectively. The permeability of the gyromagnetic resonator is negative
between 6 and 9 GHz and positive between 9 and 18 GHz. The corresponding gyro-
tropy varies between 1.50 and 0.50. The situation under consideration is depicted in

FIGURE 18.9 Frequency responses of impedance poles of negative permeability tracking
circulator (k0 ¼ 1.25).
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Fig. 18.10. The permeabilities at 6, 12, and 18 GHz of the 100% circulator are
illustrated in Fig. 18.11. The gyrotropy at 12 GHz is

k0 ¼ 0:75

The corresponding magnetization is given by

gM0

v
¼ 0:75

FIGURE 18.10 Frequencies and gyrotropies of 6–18 GHz circulator. (�Design frequency is
12 GHz.)

FIGURE 18.11 Effective permeabilities of 6–18 GHz circulator.

354 COMPLEX GYRATOR CIRCUIT



The tracking geometry of the microwave circuit is uniquely defined by

kR ¼ 1:2968 and c ¼ 0:5045

The complex gyrator circuit is specified separately by

B0 ¼ 0:1067Yf
G ¼ 1:0012Yf
QL ¼ 0:1069

The absolute values of G and B0 are fixed by Yr once the topology of the matching
network is selected and the gain-bandwidth product is specified by QL.

The frequency responses of the tracking solution and its poles are illustrated in
Figs. 18.12 and 18.13. The glitch in this frequency response coincides with the

FIGURE 18.12 Frequency response of tracking circulator (c ¼ 0.5051 rad, kR ¼ 1.3060
rad, k0 ¼ 0.75).
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degeneracy between the Z21 and Zþ2 in the positive permeability half-space. In
practice the frequency responses of the semitracking solutions rather than the tracking
one are preferable. Figures 18.14 and 18.15 indicate the corresponding solutions.
The complex gyrator circuit of this solution is described by

B0 ¼ 0:3279Yf
G ¼ 0:7882Yf
QL ¼ 0:4160

One realizable ripple specification is

VSWR(max) � 1:15

VSWR(min) � 1:06

FIGURE 18.13 Frequency responses of impedance poles of tracking circulator (c ¼ 0.5051
rad, kR ¼ 1.3060 rad, k0 ¼ 0.75).
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In order to avoid low-field loss in the negative permeability region, it is necessary to
embody semispherical pole pieces in the magnetic circuit with the same material as
that of the ferrite resonator. Figure 18.16 indicates the arrangement. The possibility of
using a ferrite ring with a lower magnetization around the ferrite disk has been
mentioned in this context.

18.9 COMPOSITE GYROMAGNETIC RESONATOR

Another means of ensuring that every part of the gyromagnetic resonator is saturated
is to use a composite resonator consisting of a ferrite disk with one value of magne-
tization, surrounded by a ferrite ring or sleeve with a lower value. The structure under
consideration is depicted in Fig. 18.17. The derivation of its cutoff space is a straight-
forward process. The case where one or the other region displays a negative per-
meability must be treated separately from that for which both regions have positive

FIGURE 18.14 Frequency response of semitracking solution (c ¼ 0.65 rad, kR ¼ 1.0707
rad, k0 ¼ 0.75).
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permeabilities. The most simple case is that for which the permeability is positive in
each region. The development of its characteristic equation starts by writing down the
electric field inside the ferrite disk:

Ez ¼
X1
n¼�1

AnJn(k1r) exp( jnf) (18:30)

The f component of the magnetic field Hf, is

Hf ¼ �j

vm0me1

@Ez

@r
þ j

k1

m1

1
r

@Ez

@f

� �
(18:31)

FIGURE 18.15 Frequency responses of impedance poles of semitracking solution
(c ¼ 0.65 rad, kR ¼ 1.0707 rad, k0 ¼ 0.75).
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FIGURE 18.16 Gyromagnetic resonator using semispherical pole pieces. (Reproduced with
permission from E. F. Schloemann, Proc. IEEE, Vol. 76, No. 2, Feb. 1988.)

FIGURE 18.17 Schematic diagram of composite resonator.

18.9 COMPOSITE GYROMAGNETIC RESONATOR 359



The required result in terms of the original variables is

Hf ¼
X1
n¼�1

�jAnz0z1 J 0n(k1r)�
k1

m1

nJn(k1r)
k1r

� �
exp( jnf) (18:32)

where

k1 ¼ k0
ffiffiffiffiffiffiffiffiffiffiffi
1fme1

p
(18:33a)

z1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1f=me1

p
(18:33b)

The solution for the electric field Ez in the ferrite ring is given by the following
expression:

Ez ¼
X1
n¼�1

An[BnJn(k2r)þ CnYn(k2r)] exp( jnf) (18:34)

where

k2 ¼ k0
ffiffiffiffiffiffiffiffiffiffiffi
1rme2

p
(18:35a)

z2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1f=me2

p
(18:35b)

where Bn and Cn are constants, and Yn(kr) and Jn(kr) denote Bessel functions of order
n of the first and second kinds, respectively.

In the most simple case the direct magnetic field in the outside ring is in the same
sense as that of the inner disk but its magnetization is different. The f component of
the magnetic field, Hf, in the ferrite ring is

Hf ¼
X1
n¼�1

�jAnj0j2 J 0n(k2r)�
k2

m2

nJn(k2r)
k2r

� �
Bn

�

þ Y 0
n(k2r)�

k2

m2

nYn(k2r)
k2r

� �
Cn

�
exp( jnf) (18:36)
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The constants Bn and Cn can be expressed in terms of the physical variables by using
the conditions that Ez and Hf are continuous at r ¼ ri:

BnJn(k2ri)þ CnYn(k2ri) ¼ Jn(k1ri) (18:37)

Bn J 0n(k2ri)�
k2

m2

nJn(k2ri)
k2ri

� �
þ Cn Y 0

n(k1ri)�
k2

m2

nYn(k1ri)
k2ri

� �

¼ J 0n(k1ri)�
k1

m1

nJn(k1ri)
k1ri

� �
(18:38)

The two families of roots for the uncoupled resonator are deduced in the usual way by
imposing a magnetic wall at r ¼ r0:

Hf(r ¼ r0) ¼ 0 (18:39)

This gives

J 0n(k2r0)�
k2

m2

nJn(k2r0)
k2r0

� �
Bn þ Y 0

n(k2r0)�
k2

m2

nYn(k2r0)
k2r0

� �
Cn (18:40)

The description of the cutoff space in the case for which the permeability of the inner
region is negative proceeds by replacing the Bessel function of the first kind in that of
the magnetic field intensity by modified ones.

A typical pole is

Zn ¼ �ja2nheZr
[BnJn(k2r)þ CnYn(k2r)]

J 0n(k2r)þ
k2

m2

nJn(k2r)
k2r

� �
Bn þ Y 0

n(k2r)þ
k2

m2

nYn(k2r)
k2r

� �
Cn

� �

2
664

3
775

�1

(18:41)

an is a term ratio connecting the terminal of the eigen-resonator to those of the
eigen-network.

a2n ¼
3c
p

� �
sin nc

nc

� �2

(18:42)

18.9 COMPOSITE GYROMAGNETIC RESONATOR 361





CHAPTER NINETEEN

Synthesis of Wideband Planar
Circulators Using Narrow
Coupling Angles

19.1 INTRODUCTION

A drawback of the classic tracking solution of the junction circulator using a planar
disk resonator is that it requires a wide coupling angle for its realization. While many
practical devices appear to respect this solution, many more apparently do not.
One way to cater for this discrepancy is to place open instead of magnetic walls at
the boundaries between the ports of the circuit. One approximation that goes some
way to reconcile theory and practice is obtained by loading the complex gyrator termi-
nals with lumped element capacitances. The nature of the lumped element variable is
not unique and one way to realize it is to make use of the fringing capacitance at the
boundary of a dielectric resonator with one value of relative dielectric constant and a
substrate with a higher value. Such a hybrid resonator displays a c, k, kR, v,QL, B0,G
(coupling angle, off-diagonal element of the permeability tensor, radial wavenumber,
frequency, loaded Q-factor, susceptance slope parameter, gyrator conductance) space
that contains circulation solutions that are outside those of the conventional field, are
exceptionally well-behaved, have narrow coupling angles, and exhibit values of
loaded Q-factors that are compatible with the synthesis of quarter-wave coupled
devices. The magnitude of this fringing capacitance is dependent on both the thick-
ness of the resonator and the relative dielectric constant of the substrate of the trans-
former region. In practice both these quantities can be varied by altering the topology
of the matching network and the specification of the overall device. This means that a
range of practical solutions is in fact available. The saving grace in many
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experimental efforts is of course the fact that the network problem accommodates
some uncertainty in the absolute level of the gyrator immittance provided the
minimum ripple level of the specification is not tied down.

19.2 COMPLEX GYRATOR CIRCUITS OF CIRCULATORS
USING RADIAL/LUMPED ELEMENT RESONATORS

The space described by the classic solution of a junction circulator using a simple
planar disk resonator is usually fixed by two independent variables and one depen-
dent variable. The two independent ones are the coupling angle (c) and the value
of the off-diagonal element (k) of the permeability tensor, the dependent variable
is normally the radial wavenumber (kR). This classic situation contains a multiplicity
of solutions, some of which are well behaved over some frequency interval while
others are not. One result that is rather ill behaved is obtained with c ¼ 0.25 rad
(say) and k ¼ 0.67 (say) for which the independent variable kR ¼ 1.99. The
frequency response of its complex gyrator circuit, illustrated in Fig. 19.1, has a
characteristic resonance within its passband and therefore, at first sight, is of little
value in the design of commercial devices. Although its character may be altered
by either varying the coupling angle or the magnetic variables, the ensuing response

FIGURE 19.1 Frequency responses of complex gyrator circuit for c ¼ 0.25, k ¼ 0.67,
kR ¼ 1.99, Zr ¼ 50 V, 1f ¼ 15, and v0C ¼ 0. (Reproduced with permission from
J. Helszajn and R. D. Baars, Synthesis of wide-band planar circulators using narrow coupling
angles and undersized disk resonators, IEEE Trans. Microwave Theory Tech., Vol. MTT-39,
pp. 1681–1687, Oct. 1991.)
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more often than not will still be inadequate. Scrutiny of this problem indicates that
for c , 0.26 rad, kR only exists for k � 0.40. For c . 0.26 rad, it exists for all values
of k between 0 and 1.

One way to alter this situation is to replace the distributed resonator by a mixed
distributed radial/lumped element arrangement. This geometry displays a new
useful field of solutions and permits the radial wavenumber (kR) to be employed
as an independent instead of a dependent variable. It is satisfied by replacing the con-
ventional first circulation condition, obtained by setting the imaginary part of the
complex gyrator immittance to zero,

Bin ¼ 0 (19:1)

with

Bin þ jv0C ¼ 0 (19:2)

Bin is the susceptance of the distributed disk circuit, and jv0C is that of a lumped
capacitance at each port. In this instance, the topology of the gyrator circuit is
indicated in Fig. 19.2.

Figure 19.3 indicates the real and imaginary parts of the distributed complex
gyrator admittance for the situation employed in obtaining the frequency response
in Fig. 19.1 but with kR equal to 1.30. This equivalent circuit is well behaved over
a considerable frequency interval but its resonant frequency is outside the range
under consideration. However, it may now be readily centered by adding a shunt
lumped element susceptance at each port of the device in keeping with the condition
in Eq. (19.2).

Figure 19.4 displays the frequency response of one solution. It is symmetrical
about its center frequency and both its gyrator conductance and susceptance slope
parameter are exceptionally well behaved over the frequency response under con-
sideration. It should therefore be of value in the synthesis of quarter-wave coupled
devices. In obtaining the data in Figs. 19.1, 19.3, and 19.4, the first six poles of
the circuit have been retained.

FIGURE 19.2 Schematic diagram complex gyrator circuit using distributed radial/lumped
element resonator.
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In Eq. (19.2) jv0C is written separately as

jv0C(1þ d) (19:3)

where d is the normalized frequency variable

d ¼ (v� v0)=v0 (19:4)

v is the usual frequency variable (rad/s) and v0 is the center frequency (rad/s).
Table 19.1 gives some (but not necessarily the best) circulation solutions for one

choice of radial wavenumber. The first four entries in this table determine the bound-
ary conditions of the junction and fix the first circulation condition of the circuit; the
next three entries define the complex gyrator circuit of the device for the situation for
which Zr ¼ 50 V. The absolute value of the lumped element susceptance required to
meet the first circulation condition is primarily dependent on the choice of the radial
wavenumber. The most significant parameter in the description of this kind of circuit
is of course the value of the loaded Q-factor displayed by the solution. This quantity
fixes the gain bandwidth of the device, in keeping with the material in Chapter 25.
The values displayed by the solutions tabulated here are in fact all suitable for the

FIGURE 19.3 Frequency response of complex gyrator circuit for c ¼ 0.25, k ¼ 0.67, kR ¼

1.30, Zr ¼ 50V, 1f ¼ 15, and v0C ¼ 0. (Reproduced with permission from J. Helszajn and
R. D. Baars, Synthesis of wide-band planar circulators using narrow coupling angles and
undersized disk resonators, IEEE Trans. Microwave Theory Tech., Vol. MTT-39, pp. 1681–
1687, Oct. 1991.)
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synthesis of devices with degree-3 equal ripple frequency responses over an octave
band or more. Of some interest is the fact that the quality factor of the circuit increases
as kR decreases. This would suggest that only a modest decrease in the radial wave-
number is sufficient to significantly alter the character of the complex gyrator circuit
of the circulator. Such solutions are also associated with small values for the lumped

TABLE 19.1 Circulation Solutions for One Choice of Radial Wavenumber

k0 c kR B0 G B0 QL

0.500 0.200 1.3 0.086 0.123 0.089 0.724
0.500 0.250 1.3 0.067 0.100 0.074 0.733
0.500 0.300 1.3 0.055 0.089 0.058 0.752
0.525 0.200 1.3 0.082 0.128 0.080 0.628
0.525 0.250 1.3 0.064 0.105 0.067 0.638
0.525 0.300 1.3 0.052 0.090 0.058 0.652
0.550 0.200 1.3 0.079 0.133 0.071 0.536
0.550 0.250 1.3 0.061 0.109 0.060 0.547
0.550 0.300 1.3 0.049 0.093 0.052 0.562
0.575 0.200 1.3 0.076 0.138 0.062 0.449
0.575 0.250 1.3 0.058 0.113 0.052 0.460
0.575 0.300 1.3 0.046 0.097 0.046 0.476

FIGURE 19.4 Frequency response of complex gyrator circuit for c ¼ 0.25, k ¼ 0.67, kR ¼

1.30, Zr ¼ 50V, 1f ¼ 15, and v0C ¼ 0.0495. (Reproduced with permission from J. Helszajn
and R. D. Baars, Synthesis of wide-band planar circulators using narrow coupling angles
and undersized disk resonators, IEEE Trans. Microwave Theory Tech., Vol. MTT-39,
pp. 1681–1687, Oct. 1991.)
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element circuits. Note also that the values of the gyrator conductance displayed in this
table are essentially independent of the radial wavenumber.

The complex gyrator admittance of one experimental junction using an undersized
disk resonator at the junction of three 50 V air lines over the frequency interval
1.0–2.0 GHz and parametric values of the direct magnetic field is indicated in
Fig. 19.5. The topology of this geometry has a coupling angle (c) of 0.30 rad, an
off-diagonal element (k) with a nominal value of 0.70, and a radial wavenumber
(kR) of 1.21. The theoretical value of k applies to a saturated material—a condition
seldom established in practice. This result was obtained by decoupling port 3 from
port 1 by placing a variable mismatch at port 2. The gyrator conductance and the sus-
ceptance slope parameter of this junction are nearly constants over the full experimen-
tal frequency interval. It is also apparent that the magnitude of the real part intersects
the theoretical value at approximately the direct field required to saturate the garnet
material. The agreement between the theoretical and experimental values of the

FIGURE 19.5 Experimental Smith chart of undersized resonator (kR ¼ 1.2, c ¼ 0.30,
k ¼ 0.67, Zr ¼ 50 V). (Reproduced with permission from J. Helszajn and R. D. Baars,
Synthesis of wide-band planar circulators using narrow coupling angles and undersized disk
resonators, IEEE Trans. Microwave Theory Tech., Vol. MTT-39, pp. 1681–1687, Oct. 1991.)
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susceptance slope parameters (and therefore loaded Q-factors) while less good is still
gratifying. The value of the lumped element susceptance required to center the exper-
imental data in Fig. 19.5 is likewise in keeping with that calculated in Table 19.1. The
slight deterioration in the complex gyrator circuit at the low frequency extremity of
the band may in part be attributed to the onset of low-field loss.

19.3 SYNTHESIS OF QUARTER-WAVE COUPLED
JUNCTION CIRCULATORS USING DISTRIBUTED/LUMPED
ELEMENT RESONATORS

The physical design of quarter-wave coupled junction circulators with equal ripple
frequency responses is not complete until both the network specification and the top-
ology of the junction are stipulated. The network problem fixes the characteristic
impedance (Zr) at the terminals of the resonator and the relative dielectric constant
(1t) of the transformer region in the normal way from a knowledge of the loaded
Q-factor and the relationship between the ripple specification and the bandwidth.
The aspect ratio of the resonator (R/H ) is also fixed once the coupling angle (c)
and the impedance (Zr) at the resonator terminals are stipulated. If the thickness of
the center conductor is neglected then the required relationship is

R

H
¼ 1

sin (c) [anti ln (Zr=30p)� 1]
(19:5)

Table 19.2 summarizes some network solutions corresponding to the entries in
Table 19.1 for the case of a topology employing two quarter-wave long impedance
transformers. The first three entries are therefore common in the two tables; the
next two entries specify the relative dielectric constant of the transformer region

TABLE 19.2 Network Solutions

k0 c kR B0 1t R/H W

0.500 0.200 1.3 0.086 15.9 4.85 0.760
0.500 0.250 1.3 0.067 10.4 5.35 0.755
0.500 0.300 1.3 0.055 7.5 5.72 0.748
0.525 0.200 1.3 0.082 20.0 3.58 0.819
0.525 0.250 1.3 0.064 13.1 3.99 0.812
0.525 0.300 1.3 0.052 9.4 4.32 0.804
0.550 0.200 1.3 0.079 24.9 2.20 0.884
0.550 0.250 1.3 0.061 16.4 2.57 0.875
0.550 0.300 1.3 0.049 11.7 2.88 0.864
0.575 0.200 1.3 0.076 30.5 1.43 0.954
0.575 0.250 1.3 0.058 20.1 1.74 0.945
0.575 0.300 1.3 0.046 14.4 2.02 0.931
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and the aspect ratio of the resonator. These quantities are not unique but are depen-
dent on the network specification. The entries in this table satisfy the network
problem with S(min) ¼ 1.05 and S(max) ¼ 1.15 over one octave band or more.
Fairly large values for the relative dielectric constant of the transformer region,
narrow coupling angles (in contrast with the conventional solution), and practical
ground plane spacings are features of these solutions. Scrutiny of the network
problem indicates that quite small changes in the ripple specification can produce
fairly large variations in both these quantities. The last entry in Table 19.2 is the band-
width for the network problem adopted. The problem of establishing the required
lumped element susceptance is of separate issue. One possibility is to make use of
the fringing capacitance at the terminals of the semi-ideal magnetic wall of the
open gyromagnetic resonator. If this is the approach adopted, then the only entries
that need to be considered in these tables are those for which R/H leads to practical
ground plane spacings (say, 1.5 � R/H � 4) and for which the lumped element
susceptance can be realized.

Figures 19.6 and 19.7 depict the frequency responses of the gyrator circuit over an
80%band for one situationwithout andwith lumped element susceptances at each port.
Figure 19.8 indicates the frequency response of a degree-3 quarter-wave coupled
device using this solution. The aspect ratio of this resonator is 2.75, the radial wave-
number is 1.40, and the value of the lumped susceptance is 0.0557 S. The relative
dielectric constant of the transformer region is 16.7. The classic solution, in the
absence of any fringing effects, is described by k ¼ 0.67, c ¼ 0.53, and kR ¼ 1.57.

FIGURE 19.6 Frequency responses of complex gyrator circuit forc ¼ 0.24,k ¼ 0.525, kR ¼

1.40, Zr ¼ 50V, and v0C ¼ 0. (Reproduced with permission from J. Helszajn and R. D. Baars,
Synthesis of wide-band planar circulators using narrow coupling angles and undersized disk
resonators, IEEE Trans. Microwave Theory Tech., Vol. MTT-39, pp. 1681–1687, Oct. 1991.)
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FIGURE 19.7 Frequency responses of complex gyrator circuit for c ¼ 0.24, k ¼ 0.525, kR ¼

1.40,Zr ¼ 50V, andv0C ¼ 0.056. (Reproducedwith permission fromJ.Helszajn andR.D.Baars,
Synthesis of wide-band planar circulators using narrow coupling angles and undersized disk reso-
nators, IEEE Trans. Microwave Theory Tech., Vol. MTT-39, pp. 1681–1687, Oct. 1991.)

FIGURE 19.8 Frequency response of degree-3 junction forc ¼ 0.24, k ¼ 0.525, kR ¼ 1.40,
and v0C ¼ 0.056. (Reproduced with permission from J. Helszajn and R. D. Baars, Synthesis of
wide-band planar circulators using narrow coupling angles and undersized disk resonators,
IEEE Trans. Microwave Theory Tech., Vol. MTT-39, pp. 1681–1687, Oct. 1991.)
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19.4 MIXED DISTRIBUTED RADIAL/LUMPED ELEMENT RESONATOR

The required form of the lumped element discontinuity at the resonator terminals is
not unique and may be obtained in a number of different ways. Here we make use of
the naturally occurring fringing capacitance at the edge of a resonator embedded in a
suitable dielectric substrate (Fig. 19.9). The value of this capacitance is a function of
both the aspect ratio (R/H ) of the resonator and the relative dielectric constant of the
substrate at the boundary of the open resonator. The equivalent circuit of this arrange-
ment consists of an undersized radial resonator loaded by a lumped element capaci-
tance. This geometry in fact arises naturally in the design of quarter-wave coupled
devices, since the impedance level of the transformer section adjacent to the junction
is usually realized by loading the free space impedance defined by the resonator term-
inals with a material with an appropriate dielectric constant. In practice, it is a com-
plicated function of all these variables and a solution to the characteristic equation,
which is compatible with the network problem, is therefore not at first sight
assured. It also differs for each of the three eigen-networks of the junction—a
problem that awaits resolution. A preliminary scrutiny of this problem and the prac-
tical device described in the next section suggests that by itself it can essentially
provide, as asserted, a means of realizing mixed distributed radial/lumped element
resonators that are compatible with the construction of the class of octave-band circu-
lators discussed here. This is especially so if the relative dielectric constant of the sub-
strate material is comparable or larger than that of the garnet resonator and if the
aspect ratio of the resonator is bracketed by 1.5 � R/H � 4.0.

Figure 19.10 depicts the radial wavenumber k0R
ffiffiffiffiffiffiffiffiffiffi
1fmd

p
of the dominant mode of a

loosely coupled garnet resonator embedded in a medium with a relative dielectric
constant 1d for parametric values of R/H. The demagnetized permeability in this
quantity has the meaning defined in Chapter 2. It is furthermore assumed that the
ratio of the demagnetized and effective radial wavenumbers is on the order of unity.

Scrutiny of the experimental frequency response in Fig. 19.5 indicates that its
radial wavenumber must be lowered by a factor of about 0.75 in order to center it.
One way this may be achieved is by introducing a lumped susceptance equal to
about 0.06 (S) at each of its terminals. Another possibility is to make use of the
natural fringing capacitance at the boundary between a disk resonator and a suitable

FIGURE 19.9 Equivalent circuit of disk resonator embedded in a dielectric region.

372 SYNTHESIS OF WIDEBAND PLANAR CIRCULATORS



dielectric substrate. A solution to this problem is not assured but inspection of
Fig. 19.10 indicates that constant R/H curves between 1.75 and 2.62 provide a
number of such solutions for 1d between 15 and 25. Any discrepancy between the
required discontinuity and that displayed by the junction may in practice be accom-
modated by loading the junction with appropriate magnetic walls.

Scrutiny of this graph suggests that the required fringing susceptance specified in
Eq. (19.2) is nearly naturally met by the solution summarized by Figs. 19.6–19.8. In
practice, not only is the dominant mode modified by the presence of open walls but
the other higher order modes of the problem region are also. The effect is to perturb
the overall gyromagnetic space of the geometry.

19.5 1–2 GHz DEVICE

A 1–2 GHz device based on the topology outlined here, using the junction described
in Fig. 19.5, has in fact been partly experimentally developed prior to the theory

FIGURE 19.10 Resonant frequency of loosely coupled stripline resonator embedded in
dielectric substrate. (Reproduced with permission from J. Helszajn and R. D. Baars,
Synthesis of wide-band planar circulators using narrow coupling angles and undersized disk
resonators, IEEE Trans. Microwave Theory Tech., Vol. MTT-39, pp. 1681–1687, Oct. 1991.)
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outlined here and optimized thereafter. It is described by

c ¼ 0:27

k ¼ 0:70

kR ¼ 1:21

R=H ¼ 2:77

1d ¼ 25

Some possible theoretical entries that are suitable for the design of a wideband
device, which straddle these physical parameters except for the value of k, are
given by the entries in row seven in Table 19.1. A perusal of Figs. 19.5 and 19.10
separately indicates that this solution approximately satisfies the first circulation
solution of the circulator.

The discrepancy between the two values of the normalized magnetization (k) of
the garnet material may be understood by recognizing that its value at magnetic sat-
uration (k) represents in practice an upper bound on its actual value kp. The two

FIGURE 19.11 Frequency response of quarter-wave long transformer coupled junction
using mixed distributed radial/lumped element resonators. (Reproduced with permission
from J. Helszajn and R. D. Baars, Synthesis of wide-band planar circulators using narrow coup-
ling angles and undersized disk resonators, IEEE Trans. Microwave Theory Tech., Vol. MTT-
39, pp. 1681–1687, Oct. 1991.)
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values of the normalized magnetization are related by

kp ¼
M

M0

� �
k (19:6)

where M is the actual magnetization of the material, and M0 is its value at magnetic
saturation. If M is taken as the remanence value of the hysteresis of the material loop,
then

M=M0 ¼ 0:70 (19:7)

and the value of kp in this example is consistent with those appearing in Table 19.1.
Figure 19.11 illustrates a typical response at one port of the device. Some fine trim-

ming of the junction and or the fringing capacitance with the aid of transverse mag-
netic walls in the manner indicated in Fig. 19.12 was employed in obtaining this
result; otherwise all the variables are within 15% of the theoretical values. The inser-
tion loss between any two ports is less than 0.35 dB over the full frequency interval.

19.6 SYNTHESIS OF WEAKLY MAGNETIZED
UNDERSIZED JUNCTIONS

In a weakly magnetized junction for which the in-phase eigen-network can be ideal-
ized by a short-circuit boundary condition, the situation is fairly simple. The first
circulation condition is determined by the sum of the counterrotating eigenvalues
and the second one involves the difference between the two. In this simplified

FIGURE 19.12 Schematic diagram of disk resonator loaded with magnetic walls.
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situation the characteristic equation takes the form in Eq. (19.2) with the phenomen-
ological dynamical capacitance replaced by that associated with the dominant mode
of the resonator; the gyrator conductance may be assumed to be unaffected by the
fringing capacitance provided the dynamical relative dielectric constant of the reso-
nator is not too different from that of the ferrite or garnet material. The complex
gyrator circuit is invariably better behaved as a consequence of this type of offset.
A simple correction to the radius of the resonator therefore goes some way to
satisfy the first two circulation conditions of the device as is sometimes assumed.
However, it does leave something to be desired insofar as its susceptance slope par-
ameter is concerned. This is especially the case if the junction is not weakly magne-
tized, as is more often than not the case.
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CHAPTER TWENTY

Complex Gyrator Circuit of
Three-Port Circulators Using
Gyromagnetic Resonators with
Sixfold Symmetry

20.1 INTRODUCTION

A common resonator met in the design of three-port circulators is an undersized
circular gyromagnetic disk symmetrically loaded by six stubs. This sort of junction
may be reduced to a symmetrical three-port circulator by either open- or short-
circuiting three of the stubs. The description of the port relationships is usually
expressed in terms of either its open-circuit or scattering matrices or its impedance
or scattering eigenvalues. A knowledge of any one of these formulations is suffi-
cient for that of any of the other ones. The procedure adopted in this chapter is
based on a formulation of the open-circuit parameters and the complex gyrator
circuit of the open-circuit arrangement. It begins by constructing the open-circuit
parameters of the six-port network in terms of its eigenvalues by having recourse
to symmetry considerations only. The required parameters of the three-port circula-
tor are then obtained from those of the six-port one by terminating a symmetrical
triplet of ports by magnetic walls. The derivation is completed by recalling the
description of a typical eigenvalue of a symmetrical m-port gyromagnetic plate.
The important condition for which the in-phase eigen-network lies midway
between the split counterrotating ones is given special attention. While a solution
to the problem is not assured, some such solutions are indeed displayed by this
geometry. If the resonator has sixfold symmetry then the maximum coupling

The Stripline Circulator: Theory and Practice. By J. Helszajn
Copyright # 2008 John Wiley & Sons, Inc.
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angle (c) at the circular region is restricted to p/6 rad. This value is half that met in
the design of the classic planar resonator using a simple disk resonator. The geo-
metry under consideration provides one means of adjusting the quality factor of the
classic tracking solution using a simple gyromagnetic disk. The topology of the
resonator under consideration is illustrated in Fig. 20.1.

20.2 EIGENVALUES AND EIGENVECTORS OF m-PORT SYMMETRIC
PLANAR JUNCTION CIRCULATOR

If the eigenvectors and eigenvalues of anm-port junction are available, it is possible to
recover the coefficients of the related matrix using a simple mathematical technique.
This may be done by having recourse to the similarity transformation in Chapter 5.

The diagonalization procedure will now be developed in the case of an idealm-port
symmetric circuit by constructing the square matrices U and (U�)T in terms of the
eigenvectors of the problem region. The eigenvectors of an m-port symmetrical junc-
tion can be derived from symmetry conditions only. The required result is

(Un)q ¼
exp [� j2pn(q� 1)]=mffiffiffiffi

m
p (20:1)

m is the number of ports, q is the port location, and n refers to the mode nomenclature
of the resonator.

If m ¼ 6 then n and q are given by

n ¼ 0, 1, �1, 2, �2, 3 (20:2)

q ¼ 1, 2, 3, 4, 5, 6 (20:3)

FIGURE 20.1 Schematic diagram of six-port planar gyromagnetic circuit with six-fold
symmetry.
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The eigenvectors of a six-port symmetric junction are therefore described by

Uþ2 ¼
1ffiffiffi
6

p

1

b5

b4

b3

b2

b

2
666666664

3
777777775
, Uþ1 ¼

1ffiffiffi
6

p

1

a5

a4

a3

a2

a

2
666666664

3
777777775
, U0 ¼

1ffiffiffi
6

p

1

1

1

1

1

1

2
666666664

3
777777775

(20:4a)

U�1 ¼
1ffiffiffi
6

p

1

a

a2

a3

a4

a5

2
666666664

3
777777775
, U�2 ¼

1ffiffiffi
6

p

1

b

b2

b3

b4

b5

2
666666664

3
777777775
, U3 ¼

1ffiffiffi
6

p

1

g5

g4

g3

g2

g

2
666666664

3
777777775

(20:4b)

where

a ¼ exp( j60) (20:5a)

b ¼ exp( j120) (20:5b)

g ¼ exp( j180) (20:5c)

The square matrix [U ] with the eigenvectors of the problem region along its
columns is given by

[U] ¼ 1ffiffiffi
6

p

1 1 1 1 1 1
1 a a2 �1 (a�)2 a2

1 a2 (a�)2 1 a2 (a�)2

1 �1 1 1 1 �1
1 (a�)2 a2 1 (a�)2 a2

1 a� (a�)2 �1 a2 a

2
6666664

3
7777775

(20:6)

In forming the matrix U in terms of them eigenvectors of the problem region, care has
been taken to ensure that the resultant matrix is symmetrical.

The diagonal matrix containing the impedance eigenvalues is

Z ¼

Z0 0 0 0 0 0
0 Z�1 0 0 0 0
0 0 Z�2 0 0 0
0 0 0 Z3 0 0
0 0 0 0 Z2 0
0 0 0 0 0 Z1

2
6666664

3
7777775

(20:7)
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Since the matrix [U ] is symmetric it satisfies

[U]�1 ¼ [U�]T (20:8)

The required open-circuit parameters are now obtained by having recourse to the
similarity transformation in Chapter 5. The results are

Z11(6) ¼
(Z0 þ Z3)þ (Zþ1 þ Z�2)þ (Z�1 þ Zþ2)

6
(20:9a)

Z12(6) ¼
(Z0 � Z3)þ (Z2 � Z�1)bþ (Z�2 � Z1)b2

6
(20:9b)

Z13(6) ¼
(Z0 þ Z3)þ (Z1 þ Z�2)bþ (Z�1 þ Z2)b2

6
(20:9c)

Z14(6) ¼
(Z0 � Z3)þ (Z2 � Z�1)þ (Z�2 � Z1)

6
(20:9d)

Z15(6) ¼
(Z0 þ Z3)þ (Z1 þ Z�2)b2 þ (Z�1 þ Z2)b

6
(20:9e)

Z16(6) ¼
(Z0 � Z3)þ (Z2 � Z�1)b2 þ (Z�2 � Z1)b

6
(20:9f)

20.3 OPEN-CIRCUIT PARAMETERS OF A THREE-PORT CIRCULATOR
WITH THREE-FOLD SYMMETRY

The open-circuit parameters of the required three-port circulator formed by open-
circuiting ports 2, 4, and 6 may be deduced by introducing the appropriate boundary
conditions at the ports in question.

I2 ¼ I4 ¼ I6 ¼ 0 (20:10)

The voltage–current relationships at the various ports are then specified by

V1

V2

V3

V4

V5

V6

2
6666664

3
7777775
¼

Z11 Z12 Z13 Z14 Z15 Z16
Z16 Z11 Z12 Z13 Z14 Z15
Z15 Z16 Z11 Z12 Z13 Z14
Z14 Z15 Z16 Z11 Z12 Z13
Z13 Z14 Z15 Z16 Z11 Z12
Z12 Z13 Z14 Z15 Z16 Z11

2
6666664

3
7777775

I1
0
I3
0
I5
0

2
6666664

3
7777775

(20:11)
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The port variables at ports 1, 3, and 5 are given without ado by

V1

V3

V5

2
4

3
5 ¼

Z11 Z13 Z15
Z15 Z11 Z13
Z13 Z15 Z11

2
4

3
5

I1
I3
I5

2
4

3
5 (20:12)

It is convenient, in what follows, to relabel the ports to conform to those of a standard
three-port circulator. If this is done, then the new open-circuited parameters are

FIGURE 20.2 Schematic diagram of wye resonator using short- and open-circuit stubs.
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described in terms of the old ones:

Z11(3) ¼ Z11(6) (20:13a)

Z12(3) ¼ Z13(6) (20:13b)

Z13(3) ¼ Z15(6) (20:13c)

Scrutiny of the open-circuit parameters of the three-port circuit indicates that if the
poles of the six-port with the same coefficients are collated then

Z11(3) ¼
Z0(6)þ Zþ(6)þ Z�(6)

6
(20:14a)

Z12(3) ¼
Z0(6)þ bZþ(6)þ b2Z�(6)

6
(20:14b)

Z13(3) ¼
Z0(6)þ b2Zþ(6)þ bZ�(6)

6
(20:14c)

where

Z0(6) ¼ Z0(6)þ Z3(6) (20:15a)

Zþ(6) ¼ Zþ1(6)þ Z�2(6) (20:15b)

Z�(6) ¼ Z�1(6)þ Zþ2(6) (20:15c)

and b has the meaning previously noted.
The possibility of short-circuiting ports 2, 4, and 6 instead of open-circuiting these

ports is also understood. Figure 20.2 indicates this situation.

20.4 EIGENVALUES OF SYMMETRICAL m-PORT GYROMAGNETIC
RESONATOR

The poles in the description of the eigenvalues of the open-circuited parameters of a
symmetrical m-port gyromagnetic disk are a standard result in the literature. A typical
pole is described by

Zn(m) ¼
jmheZrc

p

sin nc

nc

� �2 J 0n(kR)
Jn(kR)

� k

m

� �
n

kR

� �� ��1

(20:16)

where m ¼ 6 for a six-port circuit.
Some useful identities between the Bessel functions for the purposes of calcu-

lation are available in Chapter 9.
c is the coupling angle at a typical port of the terminals of the junction:

c ¼ W=2R (20:17)
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where

he ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
me=1f

p
(20:18)

and

Zr ¼ 30p ln
W þ t þ 2H

W þ t

� �
(20:19)

W is the width of the center conductor (in meters), H is the thickness of each garnet
resonator (meters), R is the radius (meters), and t is the thickness of the center con-
ductor (meters).

A feature of some import in the description of this class of circuit is the depen-
dence of the gyrotropy of the gyromagnetic resonator on the frequency. For a
saturated material

m ¼ 1 (20:20)

meff ¼ 1� k2 (20:21)

k ¼ vm

v0

� �
v0

v

� �
(20:22)

where

vm ¼ gM0 (20:23)

FIGURE 20.3 Typical impedance pole of gyromagnetic resonator with six-fold symmetry.
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g is the gyromagnetic ratio (2.21 � 105 rad/s per A/m), M0 is the saturation magne-
tization (A/m), v0 is the midband frequency (rad/s), and v is the frequency (rad/s).

Figure 20.3 indicates the frequency variation of a typical impedance pole met in
connection with a symmetrical junction with sixfold symmetry.

20.5 AUGMENTED EIGENVALUES

The resonator under consideration consists of a radial gyromagnetic region symmetri-
cally loaded by uniform gyromagnetic transmission lines. The open-circuit parameters
at the terminals of the junction can be calculated once the eigenvalues of the problem
region are established. In this instance, the eigenvalues at the outer set of terminals are
related to those of the inner set in a straightforward way. This may be done by mapping
each inner eigen-network through a section of transmission line of electrical length u

and characteristic impedance heZr. The required transformation is

Z 0
L ¼ AZL þ B

CZL þ D
(20:24)

where

A ¼ cosh u (20:25a)

B ¼ heZrsinh u (20:25b)

C ¼ sinh u
heZr

(20:25c)

D ¼ cosh u (20:25d)

This transformation is illustrated in Fig. 20.4. Introducing this bilinear transform-
ation between the eigenvalues at the two planes under consideration gives

Z 0
0(6) ¼ heZr

Z0(6)þ heZr tanh u

heZr þ Z0(6) tanh u
(20:26a)

FIGURE 20.4 Mapping between impedances at input and output planes of uniform
transmission line.

384 COMPLEX GYRATOR CIRCUIT OF THREE-PORT CIRCULATORS



Z 0
�1(6) ¼ heZr

Z�1(6)þ heZr tanh u

heZr þ Z�1(6) tanh u
(20:26b)

Z 0
þ1(6) ¼ heZr

Zþ1(6)þ heZr tanh u

heZr þ Zþ1(6) tanh u
(20:26c)

FIGURE 20.5 Eigen-networks of six-port planar gyromagnetic circuit with six-fold
symmetry.
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Z 0
�2(6) ¼ heZr

Z�2(6)þ heZr tanh u

heZr þ Z�2(6) tanh u
(20:26d)

Z 0
þ2(6) ¼ heZr

Zþ2(6)þ heZr tanh u

heZr þ Zþ2(6) tanh u
(20:26e)

Z 0
3(6) ¼ heZr

Z3(6)þ heZr tanh u

heZr þ Z3(6) tanh u
(20:26f)

u is the electrical length of the unit element (UE):

u ¼ jk0
ffiffiffiffiffiffiffiffiffiffiffiffi
1fmeff

p
‘ (20:27)

FIGURE 20.6 Eigen-networks of three-port planar gyromagnetic circuit with six-fold
symmetry.
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and Zr is its characteristic impedance and he has the meaning met in connection
with the definition of the eigenvalues. Figure 20.5 indicates the eigen-networks of
the six-port network. Figure 20.6 gives those of the three-port circuit.

20.6 TRACKING SOLUTION

A circulation condition that is always of some interest in the design of wideband
circulators is the tracking solution dealt with in Chapter 17. Its first circulation con-
dition coincides with that for which the in-phase eigen-network lies between the two
split counterrotating ones. It is satisfied provided

Z0(3) ¼ 0 (20:28)

Zþ(3)þ Z�(3) ¼ 0 (20:29)

If c is fixed by the topology of the circuit as p/6, then the available physical variables
for the adjustment of this boundary condition are k, u, or kR. While a solution to this
problem is not assured, one possibility is described by

k ¼ 0:66, u ¼ 0:2074 rad, kR ¼ 1:126 rad

20.7 COMPLEX GYRATOR CIRCUIT

The complex gyrator immittance is again defined in terms of the open-circuit
parameters of the three-port circuit in the usual way by

Yin ¼ 1=Zin (20:30)

Zin ¼ Z11 � Z2
12=Z13 (20:31)

The real and imaginary parts of Yin are described in terms of Rin and Xin in
Chapter 17.

The frequency response obtained in this way for d0 ¼+0.33 for the tracking
solution stipulated in the previous section is displayed in Fig. 20.7.

In this instance, the complex gyrator circuit is described by

G ¼ 0:0221V�1, B0 ¼ 0:0003, and QL ¼ 0:0158

A feature of the resonator under consideration is that the loaded Q-factor of its semi-
tracking solution may be adjusted by varying the length of the stubs. One possible
solution that is compatible with the synthesis of an equal ripple degree-3 octave
band circulator is

k ¼ 0:62, u ¼ 0:279 rad, and kR ¼ 1:379 rad

20.7 COMPLEX GYRATOR CIRCUIT 387



FIGURE 20.7 Complex gyrator circuit of planar junction using resonator with six-fold
symmetry (k ¼ 0.66, u ¼ 0.2074 rad, c ¼ p/6 rad, kR ¼ 1.126 rad). (Reproduced with per-
mission from J. Helszajn and Y. Lapointe, Complex gyrator circuit of 3-port circulators
using gyromagnetic resonators with six-fold symmetry, IEE Proc. Microwaves Antennas
Propag., Vol. 148, pp. 318–322, Oct. 2001.)

FIGURE 20.8 Complex gyrator circuit of planar junction using resonator with six-fold sym-
metry (k ¼ 0.62, u ¼ 0.2790 rad, c ¼ p/6 rad, kR ¼ 1.379 rad). (Reproduced with permission
from J. Helszajn and Y. Lapointe, Complex gyrator circuit of 3-port circulators using gyromag-
netic resonators with six-fold symmetry, IEE Proc. Microwaves Antennas Propag., Vol. 148,
pp. 318–322, Oct. 2001.)
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In this instance, the absolute elements of the complex gyrator circuit are
specified by

G ¼ 0:278 V�1, B0 ¼ 0:0139, and QL ¼ 0:5020

Figure 20.8 depicts the solution in this situation.
A property of the complex gyrator immittance of a junction circulator is that it is

not a positive real function in that it contains gyrator circuits in addition to the usual
positive elements. This means that the variation between its real and imaginary parts
is not constrained to positive slopes.
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CHAPTER TWENTY-ONE

Open-Circuit Parameters
of Circulators Using Side-
Coupled Wye Resonators:
An Impedance Pole Approach

21.1 INTRODUCTION

The circulator described in this chapter consists of a 6-port nonresonant gyromagnetic
disk with three open-circuited gyromagnetic stubs and three coupling ports with two
degrees of threefold symmetry. Figure 21.1 shows two typical arrangements. A feature
of either geometry is that it may readily be quarter-wave coupled to produce a compact
commercial package. This type of function may be analyzed by forming a 6 � 6 impe-
dance matrix for the central nonresonant disk region defined by the three open-
circuited stubs of the resonator circuit and the three coupling intervals of the terminals.
A careful scrutiny of its open-circuited parameters suggests that these quantities may
be expressed in terms of linear combinations of the poles met in connection with each
symmetrical sextet of ports. The boundary conditions at the terminals of the three
stubs are subsequently used to reduce the 6 � 6 matrix to the required 3 � 3 impe-
dance matrix at the ports of the circulator. The complex gyrator impedance of the cir-
culator is then constructed with the help of this matrix and the standard circulator
conditions thereafter satisfied. The impedance poles associated with each
constituent junction are the classic result so that all calculations may proceed
without difficulty.

The geometry under consideration reduces to the classic symmetrical three-
port junction when the coupling angle of a typical stub is made equal to zero. It
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coincides with the classic symmetrical six-port arrangement when the coupling
angles of the circulator ports and stubs are made equal. The class of planar junction
circulators discussed in this chapter may also be handled by having recourse to
various numerical techniques. The finite element method, the contour integral
method, the point matching technique, and the mode matching approach have been
employed.

The method outlined in this chapter, in conjunction with an optimization subrou-
tine, provides perhaps the most efficient way of constructing this type of circulator.

21.2 STANDING WAVE SOLUTION

The gyromagnetic wye resonator is but one of a number of geometries with the
necessary symmetry for the realization of a three-port junction circulator. The

FIGURE 21.1 Quarter-wave coupled wye resonator using (a) stubs and (b) radial stubs.
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nature of this resonator structure may be appreciated by assuming that it consists of
three symmetrically connected quarter-wave long open-circuited stubs. The equipo-
tential standing wave solution of its dominant mode based on a finite element
method calculation in such an isotropic resonator is given in Chapter 9. The difficulty
of visualizing rotation of this standing wave pattern has also been dealt with by taking
a linear combination of two isotropic field patterns. Figure 21.2 reproduces the
standing wave pattern obtained in this way. A scrutiny of this illustration suggests
that an ideal circulation condition can be realized by coupling the resonator at
either of the two triplets of ports, as is now understood. Figure 21.3 depicts the
two possibilities.

21.3 SYMMETRY PROPERTIES OF CIRCULATORS

A circulator using planar wye shaped resonators may be described approximately by
subdividing it into a six-port, central, nonresonant circular region, defined by the
triplet open-circuited stubs of the resonator circuit and the three coupling intervals
of the circulator terminals. The intermediate intervals are assumed open-circuited.
A six-port impedance matrix for the central disk region may be defined in terms of
the voltages and currents at these terminals. A schematic diagram of the junction
under consideration is illustrated in Fig. 21.4. The port nomenclature is chosen
such that the numbering of the circulator corresponds to that of a conventional
three-port device.

The total number of independent entries in the scattering or immittance matrices
representing the six-port circuit under consideration may be deduced by having
recourse to its symmetry. This may be done by satisfying the commutation relation-
ship between the scattering or immittance matrices and the symmetry operators of the
junction. The symmetry operators are matrices that indicate how the terminal fields
transform under reflections and rotations, which map the junction on itself. The

FIGURE 21.2 Construction of standing wave solution of circulator using wye resonator.
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FIGURE 21.4 Coordinate system of circulator using a planar disk resonator.

FIGURE 21.3 (a) High Q connection of junction resonator using a planar disk resonator. (b)
Low Q connection of circulator using a planar wye resonator.
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symmetry operator for a junction rotation of 1208 is

F1 ¼

0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0

2
6666664

3
7777775

(21:1)

The other two rotational operators are specified by

F2 ¼ F2
1 (21:2a)

F3 ¼ F3
1 (21:2b)

F2 and F3 represent junction rotations of 2408 and 3608, respectively.
The general form of the impedance matrix of a six-port network is

Z ¼

Z11 Z12 Z13 Z14 Z15 Z16
Z21 Z22 Z23 Z24 Z25 Z26
Z31 Z32 Z33 Z34 Z35 Z36
Z41 Z42 Z43 Z44 Z45 Z46
Z51 Z52 Z53 Z54 Z55 Z56
Z61 Z62 Z63 Z64 Z65 Z66

2
6666664

3
7777775

(21:3)

Making use of the fact that the symmetry and impedance matrices commute gives

F1Z ¼ ZF1 (21:4)

The general expression for the impedance matrix of a six-port junction with two
degrees of threefold symmetry is therefore described by

Z ¼

Z11 Z12 Z13 Z14 Z15 Z16
Z13 Z11 Z12 Z16 Z14 Z15
Z12 Z13 Z11 Z15 Z16 Z14
Z41 Z42 Z43 Z44 Z45 Z46
Z43 Z41 Z42 Z46 Z44 Z45
Z42 Z43 Z41 Z45 Z46 Z44

2
6666664

3
7777775

(21:5)

Meeting the commutation relations for the other symmetry operators produces a
similar result.
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21.4 OPEN-CIRCUIT PARAMETERS OF A JUNCTION WITH
TWO DEGREES OF THREEFOLD SYMMETRY

The derivation of the 6 � 6 impedance matrix for the central circular region defined
by the terminals of the triplet of open-circuited stubs and the circulator ports is the
topic of this section. Perfect magnetic wall boundary conditions are assumed to
exist at the periphery of the circular region other than at the two triplets of ports.
All of the transmission lines are assumed to propagate a fundamental TEM mode.

Assuming no z dependence and exp ( jvt) time variation, the electric field Ez and
transverse magnetic field Hf in the central circular region are

Ez ¼
Xþ1

�1

AnJn(kr) exp ( jnf), 0 � r � Ri (21:6)

Hf ¼ �j

heh0

Xþ1

�1

An J 0n(kr)�
k

m

nJn(kr)
(kr)

� �
exp( jnf), 0 � r � Ri (21:7)

and

k ¼ (2p=l0)
ffiffiffiffiffiffiffiffiffiffi
1fme

p
(21:8)

h0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
m0=10

p
(21:9a)

he ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
me=1f

p
(21:9b)

l0 is the free space wavelength (meters), v is the frequency (rad/s), 1f is the relative
dielectric constant, and me is the effective permeability of the ferrite material.

me ¼ m2 � k2=m (21:10)

m and k are the entries of the permeability tensor of the ferrite material.
In order to deduce the unknown coefficient An it is necessary to have one other

description of either Ez or Hf. Following Bosma, it is assumed that Hf is constant
over the width of the connecting striplines and stubs and zero elsewhere. The bound-
ary condition at the inner radius of the circular gyromagnetic region is depicted in
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Fig. 21.5 and specified by

�cp

� �
, f , cp

� �
, Hf ¼ H1

2p=3� cp

� �
, f , 2p=3þ cp

� �
, Hf ¼ H2

4p=3� cp

� �
, f , 4p=3þ cp

� �
, Hf ¼ H3

p=3� csð Þ , f , p=3þ csð Þ, Hf ¼ H4

p� csð Þ , f , pþ csð Þ, Hf ¼ H5

5p=3� csð Þ , f , 5p=3þ csð Þ, Hf ¼ H6

The coupling angles cp and cs are defined by

cp ¼ sin�1 Wp=2Ri

� �
(21:11)

cs ¼ sin�1 Ws=2Rið Þ (21:12)

Wp is the width of the connecting stripline, Ws is the width of the open-circuited stub,
and Ri is the radius of the central circular gyromagnetic region.

The unknown amplitude constant An may be found by expanding Hf into an expo-
nential Fourier series with respect to f at r ¼ R in the manner indicated in Fig. 21.5.

Hf ¼
Xþ1

�1

bn exp( jnf) (21:13)

FIGURE 21.5 Boundary conditions of circulator.
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bn is obtained by integrating each contribution about the port in question.

bn ¼
sin ncp

np

� �
(H1a

0
n þ H2a

2
n þ H3a

4
n)þ

sin ncs

np

� �

� H4a
1
n þ H5a

3
n þ H6a

5
n

� �
(21:14)

where

an ¼ exp (�jnp=3)

The unknown coefficient, An, is now obtained by comparing the two descriptions
for Hf at r ¼ Ri. The required result is

An ¼ jheh0bn J 0n(kRi)�
k

m

nJn(kRi)
kRi

� ��1

(21:15)

The average value of the electric field over the connecting striplines and stubs is
now evaluated. It may be obtained by having recourse to Eq. (21.6).

E1 ¼
1

2cp

ðcp

�cp

Ez df

¼ h11H1 þ h12H2 þ h13H3 þ h14H4 þ h15H5 þ h16H6 (21:16a)

E2 ¼
1

2cp

ð2p=3þcp

2p=3�cp

Ez df

¼ h13H1 þ h11H2 þ h12H3 þ h16H4 þ h14H5 þ h15H6 (21:16b)

E3 ¼
1

2cp

ð4p=3þcp

4p=3�cp

Ez df

¼ h12H1 þ h13H2 þ h11H3 þ h15H4 þ h16H5 þ h14H6 (21:16c)

E4 ¼
1
2cs

ð2p=3þcs

2p=3�cs

Ez df

¼ h41H1 þ h42H2 þ h43H3 þ h44H4 þ h45H5 þ h46H6 (21:16d)

E5 ¼
1
2cs

ðpþcs

p�cs

Ez df

¼ h43H1 þ h41H2 þ h42H3 þ h46H4 þ h44H5 þ h45H6 (21:16e)

398 AN IMPEDANCE POLE APPROACH



E6 ¼
1
2cs

ð5p=3þcs

5p=3�cs

Ez df

¼ h42H1 þ h43H2 þ h41H3 þ h45H4 þ h46H5 þ h44H6 (21:16 f)

A careful scrutiny of the preceding equations indicates that the open-circuit
parameters may be written in terms of linear combinations of the impedance poles
of two constituent symmetrical structures. These are obtained by decomposing the
original six-port structure with twofold symmetry into two symmetrical constituent
six-port geometries. Since the nature of these impedance poles is well understood,
the calculations may proceed in terms of known functions.

h11 ¼
X1
n¼�1

hpna
0
n

m
, h12 ¼

X1
n¼�1

hpna
2
n

m
, h13 ¼

X1
n¼�1

hpna
4
n

m
(21:17a)

h14 ¼
X1
n¼�1

sin ncs

sin ncp

 !
hpna

1
n

m
, h15 ¼

X1
n¼�1

sin ncs

sin ncp

 !
hpna

3
n

m
,

h16 ¼
X1
n¼�1

sin ncs

sin ncp

 !
hpna

5
n

m
(21:17b)

h41 ¼
X1
n¼�1

sin ncp

sin ncs

� �
hsna

5
n

m
, h42 ¼

X1
n¼�1

sin ncp

sin ncs

� �
hsna

1
n

m
,

h43 ¼
X1
n¼�1

sin ncp

sin ncs

� �
hsna

3
n

m
(21:17c)

h44 ¼
X1
n¼�1

hsna
0
n

m
, h45 ¼

X1
n¼�1

hsna
2
n

m
, h46 ¼

X1
n¼�1

hsna
4
n

m
(21:17d)

hpn and hsn are the poles of the constituent problem regions of the overall arrange-
ment considered here.

The impedance poles in the description of the open-circuited parameters of
a symmetrical m-port gyromagnetic disk are a standard result in the literature.
The relationship is given by

hn(m) ¼
jmheh0c

p

sin nc

nc

� �2 J 0n(kR)
Jn(kR)

� k

m

� �
n

kR

� �� 	�1

(21:18)

c is cs over the ports defined by the stubs and cp over the coupling ports.
For design purposes, it is preferable to work with the characteristic impedance of

the problem region rather than its wave impedance. This may be done by forming V
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and I at a typical port instead of E and H. This amounts to replacing the wave impe-
dance in the description of a typical pole by the characteristic impedance of the strip
under consideration. Writing a typical pole of the problem region under consideration
in terms of Z0 instead of h0 gives

Zn(m) ¼
jmheZ0c

p

sin nc

nc

� �2 J 0n(kR)
Jn(kR)

� k

m

� �
n

kR

� �� 	�1

(21:19)

where m ¼ 6 for a six-port junction.
Z0 is the free space characteristic impedance of a typical port or stub:

Z0 ¼ 30p ln
W þ t þ 2H

W þ t

� �
(21:20)

W is the width of the center conductor (in meters), H is the thickness of each garnet
resonator (meters) of radius R (meters), and t is the thickness of the center conductor
(meters). The other quantities have the usual meanings.

21.5 CONSTITUENT PROBLEM REGIONS OF A SIX-PORT
JUNCTION HAVING TWO DEGREES OF THREEFOLD SYMMETRY

A scrutiny of the open-circuit parameters of the six-port network with two degrees of
threefold symmetry dealt with here indicates that these only involve the poles of each
constituent problem region and the ratio of the coupling angles of the two geometries.
The open-circuit parameters under consideration reduce to those of a symmetrical six-
port network when the coupling angles are equal. The classic three-port topology is
obtained when the coupling angles of the stubs are zero. Figure 21.6 indicates the
decomposition of the problem region in question. Figure 21.7 illustrates the situation
met in connection with a regular hexagonal resonator. This latter problem may readily
be solved by having recourse to any number of numerical techniques.

The description of the open-circuit parameters may be clarified for the purpose of
calculation by collating the impedance poles of the two families of poles associated
with each sextet of ports into in-phase and counterrotating series.

h11 ¼
(hp,0 þ hp,3)þ (hp,1 þ hp,�2)þ (hp,2 þ hp,�1)

6
(21:21a)

h12 ¼
(hp,0 þ hp,3)þ (hp,1 þ hp,�2)a

2
1 þ (hp,2 þ hp,�1)a

4
1

6
(21:21b)

h13 ¼
(hp,0 þ hp,3)þ (hp,1 þ hp,�2)a

4
1 þ (hp,2 þ hp,�1)a

2
1

6
(21:21c)
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h14 ¼
(g0hp,0 � g3hp,3)þ (g2hp,�2 � g1hp,1)a

4
1 þ (g2hp,2 � g1hp,�1)a

2
1

6
(21:21d)

h15 ¼
(g0hp,0 � g3hp,3)þ (g2hp,�2 � g1hp,1)þ (g2hp,2 � g1hp,�1)

6
(21:21e)

h16 ¼
(g0hp,0 � g3hp,3)þ (g2hp,�2 � g1hp,1)a

2
1 þ (g2hp,2 � g1hp,�1)a

4
1

6
(21:21 f)

h41 ¼
( f0hs,0 � f3hs,3)þ ( f2hs,�2 � f1hs,1)a

2
1 þ ( f2hs,2 � f1hs,�1)a

4
1

6
(21:21g)

h42 ¼
( f0hs,0 � f3hs,3)þ ( f2hs,�2 � f1hs,1)a

4
1 þ ( f2hs,2 � f1hp,�1)a

2
1

6
(21:21h)

FIGURE 21.6 Topology of a six-port constituent disk resonator with (a) coupling ports of
six-port geometry and (b) stubs of six-port geometry.
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FIGURE 21.7 (a) Topology of a six-port irregular hexagonal resonator with two degrees of
threefold symmetry. Topology of a six-port constituent hexagonal resonator with (b) coupling
ports of six-port geometry and (c) stubs of six-port geometry.
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h43 ¼
( f0hs,0 � f3hs,3)þ ( f2hs,�2 � f1hs,1)þ ( f2hs,2 � f1hs,�1)

6
(21:21i)

h44 ¼
(hs,0 þ hs,3)þ (hs,1 þ hs,�2)þ (hs,2 þ hs,�1)

6
(21:21 j)

h45 ¼
(hs,0 þ hs,3)þ (hs,1 þ hs,�2)a

2
1 þ (hs,2 þ hs,�1)a

4
1

6
(21:21k)

h46 ¼
(hs,0 þ hs,3)þ (hs,1 þ hs,�2)a

4
1 þ (hs,2 þ hs,�1)a

2
1

6
(21:21l)

where

fn ¼ sin (ncp)=sin (ncs) (21:21m)

gn ¼ sin (ncs)=sin (ncp) (21:21n)

If the junction has sixfold symmetry then

fn ¼ gn ¼ 1 (21:21o)

hp ¼ hs (21:21 p)

The open-circuit parameters reduce to those met in connection with the six-port
solution.

A minimum of six impedance poles is necessary in the description of this sort of
junction. Not all of the entries appearing in the impedance matrix are positive real
functions.

21.6 3 3 3 IMPEDANCE MATRIX OF CIRCULATORS USING
WYE RESONATORS

The 3 � 3 impedance matrix for the circulator is obtained from the 6 � 6 one by
meeting the boundary conditions on the open-circuited transmission lines comprising
the resonator.

V4

V5

V6

2
4

3
5 ¼ �ZL

1 0 0
0 1 0
0 0 1

2
4

3
5

I4
I5
I6

2
4

3
5 (21:22)

V4,5,6 and I4,5,6 are the voltages and currents at ports 4, 5, and 6 and ZL is the input
impedance of a typical line at r ¼ Ri. This latter quantity is related to the geometry of
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the line and the medium in the region Ri � r � R0. The situation treated here is one
where the lines are uniform and filled with a magnetized ferrite material. In this case
ZL has the form

ZL ¼ �jheZs cot us (21:23)

Zs is the free space characteristic impedance of the stubs and us is its electrical
length.

us ¼
2p
l0

ffiffiffiffiffiffiffiffiffiffi
me1f

p
(R0 � Ri) (21:24)

The possibility of an edge mode effect in the striplines is identified but neglected. The
development outlined here is therefore restricted to a moderately magnetized
arrangement.

Making use of matrix partitioning, the voltage–current relationship for the 6 � 6
impedance matrix at the ports of the gyromagnetic circular region may be written as

V1

V2

V3

�
V4

V5

V6

2
666666664

3
777777775
¼

Z11 Z12 Z13 j Z14 Z15 Z16
Z13 Z11 Z12 j Z16 Z14 Z15
Z12 Z13 Z11 j Z15 Z16 Z14
� � � � � � �
Z41 Z42 Z43 j Z44 Z45 Z46
Z43 Z41 Z42 j Z46 Z44 Z45
Z42 Z43 Z41 j Z45 Z46 Z44

2
666666664

3
777777775
¼

I1
I2
I3
�
I4
I5
I6

2
666666664

3
777777775

(21:25)

This may be rewritten in terms of the following submatrices:

V1

V2

� 	
¼ Z1 Z2

Z3 Z4

� 	
I1
I2

� 	
(21:26)

Z1,2,3,4 are defined by inspection. V1 and I1 are the voltages and currents on the triplet
of circulator terminals and V2 and I2 are the voltages and currents on the triplet of
open-circuited transmission lines.

The 3 � 3 impedance matrix for the circulator is now defined by solving the
preceding equation for V1I1

21. This may be done by having recourse to the
relationship between the submatrices V2 and I2 defined by the boundary condition.
The result is

Z0 ¼ V1I
�1
1 ¼ Z1 � Z2(ZLIþ Z4)

�1Z3 (21:27)
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I is the unit matrix and Z0 is the required 3 � 3 impedance matrix having the form

Z0 ¼
Z 0
11 Z 0

12 Z 0
13

Z 0
13 Z 0

11 Z 0
12

Z 0
12 Z 0

13 Z 0
11

2
4

3
5 (21:28)

The matrix obtained in this way is symmetric. It therefore embodies an eigenvalue
problem. These are given in terms of the open-circuit parameters by

Z0 ¼ Z 0
11 þ Z 0

12 þ Z 0
13 (21:29a)

Zþ ¼ Z 0
11 þ a2Z 0

12 þ aZ 0
13 (21:29b)

Z� ¼ Z 0
11 þ aZ 0

12 þ a2Z 0
13 (21:29c)

Z0, Z+ are pure imaginary quantities.

21.7 SHORT-CIRCUIT PARAMETERS OF QUARTER-WAVE
COUPLED CIRCULATOR

While a knowledge of the open-circuit parameters at the terminals of the gyromag-
netic resonator is sufficient for synthesis purposes, those at the terminals of the impe-
dance transformer are necessary for analysis or optimization. The purpose of this
section is to deal with this situation.

One way to proceed is on an eigenvalue basis. This amounts to mapping each of
the eigenvalues at the terminals of the resonator to those of the impedance transfor-
mer. Note that the impedance matrix at the terminals of a conventional quarter-wave
coupled circulator is ill behaved. It is therefore preferable to work with short-circuit
parameters at these terminals. Figure 21.8 indicates the required transformations.
The necessary bilinear transformations between the immittance eigenvalues at the
two planes are given by

Y0 ¼ Dþ jCZ0

jBþ AZ0
(21:30a)

Yþ ¼ Dþ jCZþ

jBþ AZþ (21:30b)

Y� ¼ Dþ jCZ�

jBþ AZ� (21:30c)
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The required open-circuit parameters are obtained in terms of the eigenvalues at
the terminals of the impedance transformer by

Y11 ¼
Y0 þ Yþ þ Y�

3
(21:31a)

Y12 ¼
Y0 þ a2Yþ þ a4Y�

3
(21:31b)

Y13 ¼
Y0 þ a4Yþ þ a2Y�

3
(21:31c)

While the immittance matrices are appropriate for synthesis purposes, the scattering
parameters are necessary for the purpose of analysis. The relationship between immit-
tance and scattering parameters is a standard matrix operation.

FIGURE 21.8 Eigen-networks of quarter-wave coupled junction circulator.
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CHAPTER TWENTY-TWO

The Four-Port Single Junction
Stripline Circulator

22.1 INTRODUCTION

The three-port single junction circulator is the best understood arrangement but a
four-port one may also be realized without too much difficulty. The purpose of
this chapter is to catalog some solutions. In common with three-port devices, these
junctions have some of the properties of a transmission line cavity resonator
between ports 1 and 2, and a definite standing wave pattern exists within the junction
with nulls at ports 3 and 4 also. An important difference between the two, however, is
that the four-port device cannot be adjusted with external tuning elements only. This
remark may be understood by recognizing that a four-port device can be matched
without being a circulator. The adjustment of this junction may be done in a systema-
tic way by perturbing each of its reflection eigenvalues at a time, on the unit circle,
until these coincide with those of an ideal circulator. Each eigenvalue corresponds
to one of the four possible generator settings or eigenvectors at the ports of the junc-
tion. The two rotating eigen-networks contain the odd poles of the problem region,
the in-phase eigen-network contains the even poles with the symmetry of the
problem region, and the fourth counterrotating eigen-network contains the remaining
even poles. One possible synthesis of the four-port junction circulator involves the
realization of one impedance pole, one pair of split impedance poles, and one impe-
dance zero. The split impedance poles are fixed by the two rotating eigen-networks;
the single impedance pole is chosen from either the in-phase or counterrotating eigen-
network. The impedance zero is assumed satisfied by the remaining eigen-network
without ado provided it is not in the neighborhood of a pole at the frequency
under consideration. The synthesis procedure is facilitated provided the nature of
the field patterns used to construct the device are known. The chapter describes
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two possible geometries based on various combinations of single and degenerate
pairs of TMm,n,0 modes of the isotropic resonator and one that relies on the use of
a suitable degeneracy of the gyromagnetic resonator for its operation.

The chapter also includes the standing wave patterns and cutoff numbers of the
first six modes in a cross planar resonator formed by the junction of four open-
circuited stubs. This sort of planar resonator is encountered in the construction of
the four-port single junction circulator.

22.2 SYMMETRY PROPERTIES OF CIRCULATORS

The total number of independent entries in the scattering or immittance matrices of
the four-port junction under consideration may be deduced by having recourse to
its symmetry. This may be done by satisfying the commutation relation between
the scattering or immittance matrices and the symmetry operators of the junction.
The symmetry operators are matrices that indicate how the terminal fields transform
under reflections and rotations, which map the junction on itself. The symmetry
operator for a clockwise junction rotation of 908 is

F1 ¼

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

2
664

3
775 (22:1)

The other two rotational operators are specified by

F2 ¼ F2
1 (22:2)

F3 ¼ F3
1 (22:3)

F2 and F3 represent junction rotations of 1808 and 2708, respectively.
The general form of the scattering matrix of a four-port network is

S ¼

S11 S12 S13 S14
S21 S22 S23 S24
S31 S32 S33 S34
S41 S42 S43 S44

2
664

3
775 (22:4)

Making use of the fact that the symmetry and scattering matrices commute gives

F1S ¼ SF1 (22:5)
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The general expression for the scattering matrix of a symmetrical four-port junction is
therefore described by

S ¼

S11 S41 S31 S21
S21 S11 S41 S31
S31 S21 S11 S41
S41 S31 S21 S11

2
664

3
775 (22:6)

Meeting the commutation relations for the other symmetry operators produces a
similar result.

Figure 22.1 indicates the topology of the four-port stripline circulator. The conven-
tion with regard to the port numbering in the earlier literature is to label the ports in an
anticlockwise sense. This notation, however, has not been strictly adhered to in the
later engineering literature. The one adopted in this work corresponds to the
former convention.

22.3 SIMILARITY TRANSFORMATION

An important property of any symmetrical network is that its immittance or scattering
parameters can be decomposed into linear combinations of its so-called eigenvalues.
These quantities are one-port scalar variables, which have the nature of the main
diagonal of the matrix under consideration. The connection between the two sets
of variables may be deduced by having recourse to the standard similarity transform-
ation in terms of the eigenvectors of the problem region introduced in Chapter 4. An
ideal four-port circulator has no impedance or admittance matrix so the development
proceeds in terms of its scattering matrix.

S ¼ UlU
�1

(22:7)

The columns of the matrix U are constructed in terms of the eigenvectors Ui of the
problem region, and U21 is the inverse of U. The matrix l is a diagonal matrix

FIGURE 22.1 Schematic of single junction four-port stripline circulator.
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with the eigenvalues si of the scattering matrix along its main diagonal. The relation-
ships between the eigenvalues and the coefficients of the scattering matrix are then
obtained by multiplying out the similarity identity. The eigenvalue equation of the
four-port single junction circulator is illustrated in Fig. 22.2. The port nomenclature
is in keeping with a trigonometric coordinate system.

The eigenvectors may be derived from symmetry conditions only. The result is

(Un)p ¼ 1 exp �j2pn(q� 1)=m½ �ffiffiffiffi
m

p (22:8)

One set of eigenvectors that satisfy the symmetry of the four-port network with
n ¼ 0, þ1, 21, þ2 is

U0 ¼
1ffiffiffi
4

p

1

1

1

1

2
6664

3
7775, U�1 ¼

1ffiffiffi
4

p

�1

j

�1

�j

2
6664

3
7775, Uþ1 ¼

1ffiffiffi
4

p

1

�j

�1

j

2
6664

3
7775, U2 ¼

1ffiffiffi
4

p

1

�1

1

�1

2
6664

3
7775

(22:9)

FIGURE 22.2 Eigenvalue equation of four-port single junction circulator.
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These eigenvectors again have the property that a single input at any one port may
be decomposed into a linear combination of the individual eigenvectors with equal
amplitude.

The eigenvectors under consideration are indicated in Fig. 22.3. A scrutiny of each
of the counterrotating eigenvectors, one at a time, indicates that one produces a clock-
wise rotating magnetic field on the axis of the junction and the other produces a coun-
terrotating wave there. In each case the electric field is zero on the axis of the junction.
The eigenvalues appearing in the description of the scattering coefficients may again
be revealed by having recourse to the diagonalization procedure utilized in the

FIGURE 22.3 Eigenvectors of four-port junction circulator.
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description of the three-port circulator. In this instance the matrix U is given by

U ¼ 1ffiffiffi
4

p
1 1 1 1
1 �j �1 j
1 �1 1 �1
1 j �1 �j

2
664

3
775 (22:10)

The diagonal matrix l has one degenerate pair of eigenvalues and two nondegene-
rate ones:

l ¼

s0 0 0 0
0 sþ1 0 0
0 0 s�1 0
0 0 0 s2

2
664

3
775 (22:11)

The required result is

S11 ¼ S22 ¼ S33 ¼ S44 ¼
s0 þ sþ1 þ s�1 þ s2

4
(22:12a)

S12 ¼ S23 ¼ S34 ¼ S41 ¼
s0 þ jsþ1 � js�1 � s2

4
(22:12b)

S13 ¼ S24 ¼ S31 ¼ S42 ¼
s0 � sþ1 � s�1 þ s2

4
(22:12c)

S14 ¼ S43 ¼ S32 ¼ S21 ¼
s0 � jsþ1 þ js�1 � s2

4
(22:12d)

A scrutiny of the first of these four equations indicates that the spur or trace of the
scattering matrix is equal to the sum of the eigenvalues. This is a general result.

22.4 EIGENVALUE ADJUSTMENT

One property of a single four-port junction circulator is that S11 is equal to zero.
Scrutiny of this condition suggests that the eigenvalues of an ideal four-port single
junction circulator lie equally spaced on a unit circle. One possible synthesis
procedure is indicated in Fig. 22.4. Each eigenvalue diagram may be visualized as
a separate problem. The first one is met provided

S11 ¼ S21 ¼ S41 ¼ 0 (22:13a)

S31 ¼ �1 (22:13b)
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FIGURE 22.4 Eigenvalue adjustment of four-port single junction circulator.
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The second adjustment coincides with

S11 ¼ S21 ¼ S41 ¼ 1
2 (22:14a)

S31 ¼ � 1
2 (22:14b)

The third adjustment satisfies the condition of the ideal circulator without ado:

S11 ¼ S31 ¼ S41 ¼ 0 (22:15a)

S21 ¼ 1 (22:15b)

The reflection eigenvalue of a typical eigen-network has a value of þ1 at a typical
impedance pole and a value of 21 at a zero.

A feature of the four-port circulator is that while the isolation at port 3 is dependent
on the return loss at port 1, that at port 4 is not. This property may be demonstrated by
idealizing the reflection eigenvalues s0 and s2. This gives

S11 ¼ S22 ¼ S33 ¼ S44 ¼
sþ1 þ s�1

4
(22:16a)

S12 ¼ S23 ¼ S34 ¼ S41 ¼
2 þ j (sþ1 � s�1)

4
(22:16b)

S13 ¼ S24 ¼ S31 ¼ S42 ¼
�(sþ1 þ s�1)

4
(22:16c)

S14 ¼ S43 ¼ S32 ¼ S21 ¼
2 � j (sþ1 � s�1)

4
(22:16d)

A scrutiny of these relationships indicates that minimizing S11 is compatible with
minimizing S31 as asserted.

22.5 EIGENVECTORS, EIGENVALUES, AND EIGEN-NETWORKS

In order to proceed with a physical adjustment of the junction, a connection between
the reflection eigenvalues and the physical circuit is necessary. The required connec-
tion is that between reflection and impedance.
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A first Foster expansion of the impedance eigenvalues in terms of the poles of the
problem region is given by

Z0 ¼ Z0 þ Zþ4 þ Z�4 þ � � � (22:17a)

Zþ ¼ Zþ1 þ Z�3 þ Zþ5 þ � � � (22:17b)

Z� ¼ Z�1 þ Zþ3 þ Z�5 þ � � � (22:17c)

Z+ ¼ Zþ2 þ Z�2 þ Zþ6 þ Z�6 þ � � � (22:17d)

The two rotating eigen-networks contain the odd poles of the problem region, the in-
phase one contains the even poles with the symmetry of the problem region, and the
fourth counterrotating eigen-network contains the remaining even poles. The four
eigen-networks of the problem region under consideration are summarized in
Fig. 22.5.

FIGURE 22.5 Eigen-networks of four-port junction circulator.
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The corresponding admittance eigenvalues are

Y0 ¼ 1=Z0 (22:18a)

Yþ ¼ 1=Zþ (22:18b)

Y� ¼ 1=Z� (22:18c)

Y+ ¼ 1=Z+ (22:18d)

The reflection eigenvalues are

s0 ¼ Z0 þ Z0

Z0 � Z0
(22:19a)

sþ ¼ Z0 þ Zþ

Z0 � Zþ (22:19b)

s� ¼ Z0 þ Z�

Z0 � Z� (22:19c)

s+ ¼ Z0 þ Z+

Z0 � Z+
(22:19d)

The ideal eigenvalue diagram involves the realization of one impedance pole, one
pair of split counterrotating poles, and one impedance zero.

The nomenclature used to itemize the eigen-networks of the four-port junction
breaks down for junctions with more than four ports. The lowest impedance pole
in the first Foster expansion of the impedance eigenvalues may be used to describe
the different eigenvalues in the general case.

22.6 PHENOMENOLOGICAL ADJUSTMENT

The synthesis of the four-port single junction circulator involves the realization of a
degenerate pole from each counterrotating eigen-network, a single pole from one of
the other two eigen-networks, and a zero from the remaining one. The actual pole
selection is not unique and more than one realization has been described. In any prac-
tical situation, the physical adjustment is simplified provided the cutoff numbers and
field patterns associated with the various poles are known. Figure 22.6 indicates the
field patterns of the first four modes in a simple disk resonator with top and bottom
electric walls and a magnetic side wall. Its mode chart is given in Chapter 13. A scru-
tiny of this chart indicates that some way of perturbing the poles of the problem region
is necessary in order to realize a four-port single junction circulator. One means of
doing so is to introduce suitable radial or circumferential magnetic walls into the reso-
nator plate. Another is to introduce a capacitance post on the axis of the structure.
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22.7 FOUR-PORT SINGLE JUNCTION CIRCULATOR
USING TM+++++1,1,0 AND TM0,1,0 MODES

Themost straightforward phenomenological adjustment of a four-port single junction cir-
culator is deduced by constructing a linear combination of radial TM+1,1,0 and TM0,1,0

modes in a disk resonator. The poles of the two modes, however, do not coincide.
Some means of tuning one or the other is therefore necessary. One possibility is to tune
the TM0,1,0 pole to the frequency of the degenerate TM+1,1,0 poles with the help of a
thin nonresonant capacitive post at the center of the junction. Once these poles are estab-
lishedwithin the junction, the TM+1,1,0 one is split by the application of a directmagnetic
field until two output ports are decoupled from one input port. The electric fields
employed in this arrangement are given in Fig. 22.7. The illustrations in Figs. 22.7a
and 22.7b depict the standing wave solutions of the TM+1,1,0 and TM0,1,0 modes of
the unmagnetized junction. Figures 22.7c and 22.7d give the same field patterns with
the TM+1,1,0 mode rotated through 458. Adding the amplitudes of the electric fields at
the four ports indicates that circulation takes place between ports 1 and 2 and that ports
3 and 4 are decoupled.

The angle through which the TM+1,1,0 hybrid mode is rotated is established
by taking a linear combination of the electric fields around the periphery of the
ferrite disk.

E R, fð Þ ¼ a01 þ a11 cos t11 þ fð Þ (22:20)

where a01 and a11 are arbitrary constants and t11 is the phase angle through which the
TM+1,1,0 standing wave pattern is rotated.

FIGURE 22.6 Modes in circular resonator with top and bottom electric walls and magnetic
side walls. (Reproduced with permission from H. Bosma, On stripline circulation at U.H.F.,
Trans. IEEE Microwave Theory Tech., Vol. MTT-12, pp. 61–72, Jan. 1964.)
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Applying the boundary conditions of an ideal circulator at the four ports gives

E(R, 0) ¼ a01 þ a11 cos t11 ¼ þ1 (22:21a)

E(R, p=2) ¼ a01 þ a11 cos (t11 þ p=2) ¼ þ1 (22:21b)

E(R, p) ¼ a01 þ a11 cos (t11 þ p) ¼ 0 (22:21c)

E(R, 3p=2) ¼ a01 þ a11 cos (t11 þ 3p=2) ¼ 0 (22:21d)

FIGURE 22.7 (a) TM+1,1,0 field patterns for unmagnetized ferrite post. (b) TM0,1,0 field
pattern in ferrite disk. (c) TM+1,1,0 modes in magnetized ferrite post. (d) TM0,1,0 field
pattern in ferrite disk. (Reproduced with permission from C. E. Fay and R. L. Comstock,
Operation of the ferrite junction circulator, IEEE Trans. Microwave Theory Tech., Vol.
MTT-13, pp. 15–27, Jan. 1965.)
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FIGURE 22.8 Eigenvalue adjustment of four-port junction circulator using split TM+1,1,0

modes.
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The result is

t11 ¼ 458 (22:22a)

a01 ¼
1
2

(22:22b)

a11 ¼ 1=
ffiffiffi
2

p
(22:22c)

The solution obtained in this way is consistent with the field patterns illustrated in
Figs. 22.7c and 22.7d. The eigenvalue diagram in connection with this arrangement
is indicated in Fig. 22.8.

22.8 FOUR-PORT SINGLE JUNCTION CIRCULATOR USING
TM+++++3,1,0 AND TM0,1,0 MODES

The adjustment of one four-port single junction circulator, which relies for its oper-
ation on the use of a degenerate pair of higher order impedance poles, is summarized
in this section. It again consists of a simple gyromagnetic disk at the junction of four
striplines. The direct magnetic field is applied perpendicular to the plane of the reso-
nator in the usual way. The symmetric TM0,1,0 and the radial TM+3,1,0 modes in a
simple planar ferrite disk are used in this arrangement with top and bottom electric
walls and a magnetic side wall. Its experimental adjustment relies on the fact that
the impedance pole associated with the TM0,1,0 mode already lies approximately
midway between those of the split TM+3,1,0 ones.

Figures 22.9a and 22.9b depict the field patterns of the modes in question. The
radial wavenumbers for such a demagnetized ferrite disk are kR ¼ 3.83 for TM0,1,0

and kR ¼ 4.20 for TM+3,1,0. In this instance, the eigenvalue diagram is identical to
that for the previous case except that the +1 poles are replaced by the +3 poles.

An understanding of the phenomenological solution of this arrangement starts
with the distribution of the electric field around the periphery of the ferrite disk of
the four-port circulator

Ez ¼ a0 þ a3 cos 3(t3 þ f) (22:23)

a0 and a3 are arbitrary constants and t3 is the phase angle through which the standing
wave solution formed by the degenerate modes is rotated. The electric fields at the
ports are

Ez(f ¼ 0) ¼ a0 þ a3 cos 3t3 ¼ þ1 (22:24a)

Ez(f ¼ p=2) ¼ a0 þ a3 cos 3(t3 þ p=2) ¼ þ1 (22:24b)

Ez(f ¼ p) ¼ a0 þ a3 cos 3(t3 þ p) ¼ 0 (22:24c)

Ez(f ¼ 3p=2) ¼ a0 þ a3 cos 3(t3 þ 3p=2) ¼ 0 (22:24d)
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The result is

t3 ¼ 158 (22:25a)

a0 ¼
1
2

(22:25b)

a3 ¼ 1=
ffiffiffi
2

p
(22:25c)

Figures 22.9c and 22.9d indicate the field patterns of the modes with the TM+3,1,0

ones rotated by 158 by magnetizing the junction with a direct magnetic field. If the
magnitudes of the electric fields for the two patterns are equal (after rotation) at
the four ports, transmission occurs between ports 1 and 2 and ports 3 and 4 are
isolated.

FIGURE 22.9 (a) TM0,1,0 field patterns for unmagnetized disk. (b) TM+3,1,0 field patterns
for unmagnetized disk. (c) TM0,1,0 field patterns for magnetized disk. (d) TM+3,1,0 field pat-
terns for magnetized disk. (Reproduced with permission from J. Helszajn, Waveguide and stri-
pline four-port single junction circulators, IEEE Trans. Microwave Theory Tech., Vol. MTT-
20, pp. 630–633, 1973.)
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FIGURE 22.10 Eigenvalue adjustment of four-port junction circulator using TM1,2,0 and
TM1,+1,0 modes.
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22.9 FOUR-PORT SINGLE JUNCTION CIRCULATOR USING
TM1,1,0 AND TM1,2,0 MODES

The eigenvalue adjustment of the four-port single junction circulator in Fig. 22.4 is
actually not unique. Another possibility is indicated in Fig. 22.10. The degree of

FIGURE 22.12 Adjustment of four-port junction circulator using TM+1,1,0 and TM2,1,0

modes. (Reproduced with permission from C. E. Fay and W. A. Dean, The four-port single
junction circulator in stripline, PG-MTT, Digest Int. Symp. IEEE, 1966.)

FIGURE 22.11 Four-port single junction circulator using quarter-wave long impedance
transformers.
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splitting between the TM1,+1,0 modes in this arrangement is fixed by ensuring that
the TM1,2,0 eigenvalue intercepts the split TM1,+1,0 ones rather than by the need
to satisfy the gyrator conductance. This condition may be understood by scrutinizing
the mode chart of the disk resonator in Chapter 13. The gyrator conductance is then
separately satisfied by introducing quarter-wave transformers at each port of the
device in the manner indicated in Fig. 22.11. The phenomenological adjustment is
indicated in Fig. 22.12.

22.10 STANDING WAVE SOLUTIONS OF PLANAR X RESONATORS

Symmetrical planar resonators may also be constructed by the symmetrical connec-
tion of any number of quarter-wave stubs. The purpose of this section is to give
the equipotential lines and cutoff numbers of an X resonator formed by the junction
of four open-circuited stubs. This resonator has the symmetry required for the con-
struction of the four-port single junction circulator. Its toplogy is indicated in
Fig. 22.13. Figure 22.14 indicates the equipotential lines of first four-typical
modes of the resonator. The corresponding cutoff numbers are

kR ¼ 1:68

kR ¼ 1:68

kR ¼ 1:86

kR ¼ 3:48

The standing wave solutions of the first two nonsymmetrical modes are
constructed by taking linear combinations of the intersection of two half-wave
long stubs with appropriate open-circuited terminals. These may be interpreted

FIGURE 22.13 Schematic diagram of cross resonator.
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as +458 rotations of the half-wave long resonators. This is also the case for
the first higher order mode except that now the intersecting stubs are 112 wave long
resonances.

Figure 22.15 depicts one possible linear combination of X resonator modes
that is suitable for the construction of a four-port single junction circulator.
This adjustment may be realized experimentally by tuning the cutoff number
of the symmetric mode kR ¼ 3.48 to that of the first nonsymmetric one with
kR ¼ 1.86, with the aid of a capacitive post through the center of the resonator.

The modes of the X resonator are degenerate with those of a planar square reso-
nator with similar magnetic side walls in the limit as the shape angle f subtended
at the origin by the width of the outside terminals approaches 908. The modes of

FIGURE 22.14 Equipotential lines for (a, b) dominant modes in X resonator; (c) first sym-
metric mode in X resonator; (d) second higher order mode in X resonator. (Reproduced with
permission from J. Helszajn, Standing wave solution of planar irregular hexagonal and
wye Resonators, IEEE Trans. Microwave Theory Tech., Vol. MTT-29, No. 6, pp. 562–567,
June 1981.)

22.10 STANDING WAVE SOLUTIONS OF PLANAR X RESONATORS 425



the X resonator may therefore be labeled TMm,n,0 limit modes. The two lowest order
degenerate modes are obtained by a superposition of the TM1,1,0 and TM0,1,0 modes
in a planar square resonator.

22.11 FREQUENCIES OF FOUR-PORT UE LOADED
DISK MAGNETIZED RESONATORS

One possible variation of the cross resonator is the disk–stub gyromagnetic arrange-
ment consisting of a circular plate to which are connected four short UEs. In this geo-
metry, the coupling angle of a typical stub is not restricted to p/2 rad. Its frequency
may be deduced by visualizing it as a symmetric four-port region loaded by suitable
UEs or by a eight-port arrangement with four of its ports closed by magnetic walls
and the other four terminated by suitable stubs. The equivalence between the two
models suggests that the first eight impedance poles of the problem region, strictly
speaking, are necessary to reproduce the boundary conditions of the resonator. The
topology under consideration is indicated in Fig. 22.16. It is fixed by a coupling or
shape angle (c) and the ratio of the radii Ri and R0. Its degenerate or split resonance
may be deduced by resonating the stubs with the eigen-networks of the circular gyro-
magnetic region. The description of a typical impedance pole of an m-port
symmetrical region is a standard result in the text.

FIGURE 22.15 Circulation solution using modes in cross resonator.
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If the loosely coupled resonator is visualized as a symmetrical eight-port network
with alternate ports open-circuited, then the eigenvalues at the reactive walls of the
four-port network are given in terms of the poles of the eight-port one by

Z0 � Z0 þ Z4
2

(22:26a)

Zþ � Zþ1 þ Z�3

2
(22:26b)

Z� � Z�1 þ Zþ3

2
(22:26c)

Z+ � Z�2 þ Zþ2

2
(22:26d)

If the eigenvalues are written in terms of the impedance poles of the four-port
network the result is

Z0 � Z0 þ Z4 (22:27a)

Zþ � Zþ1 þ Z�3 (22:27b)

Z� � Z�1 þ Zþ3 (22:27c)

Z+ � Z�2 þ Zþ2 (22:27d)

FIGURE 22.16 Cross resonator formed by circular gyromagnetic disk symmetrically loaded
by a quartet of UEs.
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A typical pole of a four-port symmetrical isotropic disk junction is given by

Zn ¼
j4chrZr

p

sin nc

nc

� �2 J 0n(kRi)
Jn(kRi)

� ��1

(22:28)

The shape or coupling angle of a typical strip (c) is defined by

sinc ¼ W=2Rið Þ (22:29)

hr is the constituent wave impedance of the substrate:

hr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
meff=1f

p
(22:30)

Zr is the characteristic impedance of a typical stripline:

Zr ¼ 30p ln
W þ t þ 2H

W þ t

� �
(22:31)

The phase constant (k) is

k ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0meff101f

p

meff and 1f are the relative permeability and relative dielectric constant of the ferrite or
garnet material; W, t, and H are the linear dimensions of the uniform striplines.

The characteristic equation for the frequencies of the resonator is obtained by reso-
nating the degenerate impedance eigenvalues using suitable open-circuited uniform
transmission lines. The characteristic equation for the first two pair of degenerate res-
onances is now established by forming a transverse resonance condition between the
radial and uniform lines:

Z+ ¼ jhrZr cot kLð Þ (22:32)

L is the length of a typical open-circuited stub:

L ¼ R0 � Ri (22:33)

The split cutoff space of a gyromagnetic resonator is also readily established. The
description of a typical pole of this sort of problem region is also a classic result in
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the literature. It is given by

Zn �
j4chrZr

p

sin nc

nc

� �2 Jn�1 kRið Þ
Jn kRið Þ � n

1þ k=m

kRi

� �� ��1

(22:34)

m and k are the usual diagonal and off-diagonal entries of the permeability tensor.
The ratio of k and m is known as the gyrotropy of the problem region.
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CHAPTER TWENTY-THREE

Frequency Responses of
Quarter-Wave Coupled
Reciprocal Stripline Junctions

23.1 INTRODUCTION

The adjustment of the classic three-port junction circulator involves two so-called
circulation conditions. The first coincides with the maximum power transfer con-
dition of the reciprocal arrangement; the second merely involves removal of the
degeneracy of its counterrotating eigen-networks. A scrutiny of these two conditions
indicates that the frequency responses of the two arrangements are related so that the
problem of constructing wideband circulators is essentially that of making wideband
reciprocal junctions. The required relationship may be demonstrated once the equiv-
alent circuit of the degree-1 reciprocal junction is derived in terms of the degenerate
admittance eigen-networks or eigenvalues of the three-port network. These eigen-
values coincide with those in the description of the susceptance slope parameter of
the magnetized junction or circulator. The development in this chapter is restricted
to the classic H-plane junction for which the equivalent circuit of the reciprocal junc-
tion is represented as a shunt connection of the three lines. Once the equivalent
network of the reciprocal junction is postulated, it is possible to connect matching
networks at each port and calculate the overall response of the return loss at one
typical port. This is done for degree-2 and degree-3 circuits by taking a suitable
linear combination of the eigenvalues of the junction. The frequency responses are
also deduced at the terminals of each network. This allows the precise experimental
adjustment of each matching network entering into the description of the desired
overall response. The element values for the matching networks are chosen to
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coincide with those in connection with the realization of typical circulators with
overall Chebyshev responses.

23.2 EQUIVALENT CIRCUIT OF RECIPROCAL THREE-PORT JUNCTION

The equivalent circuit of any symmetrical junction may be deduced by starting with
the standard relationship between the reflection coefficient S11 of the scattering matrix
and its eigenvalues. The one-port immittance of the circuit is then obtained by having
recourse to the bilinear relationship between the immittance and scattering variables.
The reflection coefficient at port 1 with ports 2 and 3 terminated in their characteristic
impedances is the trace of the eigenvalues.

S11 ¼
s0 þ sþ1 þ s�1

3
(23:1)

The frequency dependence of the scattering matrix eigenvalues is obtained by
making use of the bilinear relationship between that of the scattering and admittance
eigenvalues:

s0 ¼
1� y0
1þ y0

(23:2)

sþ1 ¼
1� yþ1

1þ yþ1
(23:3)

s�1 ¼
1� y�1

1þ y�1
(23:4)

For a reciprocal junction

sþ1 ¼ s�1 ¼ s1 (23:5)

and

yþ1 ¼ y�1 ¼ y1 (23:6)

In the approximation employed here the in-phase eigen-network is idealized by an
electric wall. This gives

s0 ¼ �1 (23:7)

This condition corresponds to S21 ¼ 21 when the junction is magnetized to form a
circulator. The nature of the normalized degenerate admittance eigenvalue y1 is taken
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as that of a l/4 short-circuited transmission line.

y1 ¼ �j[(4b01 cot u)=p] (23:8)

u ¼ (p=2)(1þ d) (23:9)

d is a normalized frequency variable

d ¼ (�vþ v0)=v0 (23:10)

b01 is the normalized susceptance slope parameter of the degenerate eigen-network,
and u is its radian length. Combining the above relationships gives

S11 ¼
1� 3y1
3þ 3y1

(23:11)

The corresponding input admittance is

Yin ¼ Y0[(1þ 3y1)=2] (23:12)

The equivalent network at u ¼ p/2 is shown in Fig. 23.1. The general circuit is
depicted in Fig. 23.2.

FIGURE 23.1 Equivalent circuit of reciprocal H-plane junction in terms of 908 UEs.
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An approximate relation between the VSWR at one port and the susceptance slope
parameter of the input admittance at the same port is readily derived. This may be
done in the neighborhood of the resonance frequency by replacing the distributed
network by a lumped element one. The required result is obtained by making use
of the bilinear relationship between admittance and reflection coefficient and that
between the latter quantity and the VSWR.

b01 ¼

2
3

VSWR2 � 2:5VSWRþ 1
2VSWR

� �1=2

2d
(23:13)

In obtaining this result y1 in Eq. (23.8) has been replaced by

y1 � �j2db01 (23:14)

23.3 EIGEN-NETWORKS OF RECIPROCAL JUNCTION

The nature of the eigen-networks at the terminals of the three-port network from
which the eigenvalues may be deduced are indicated in Fig. 23.3. The eigenvalues

FIGURE 23.2 Equivalent circuit of reciprocal H-plane junction in terms of ABCD
parameters.
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FIGURE 23.3 Eigen-networks of reciprocal H-plane junction.
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are the usual one-port transmission line variables of the circuit. These are obtained by
applying each eigenvector of the junction one at a time at the ports of the circuit. This
suggests that the in-phase eigen-network has a magnetic wall on the axis, whereas the
counterrotating ones have electric walls there. This sort of circuit has no impedance or
admittance matrices at u ¼ p/2. The scattering matrix, of course, always exists.

A valuable insight into the adjustment of a symmetrical junction may readily be
established by displaying its reflection eigenvalues on a unit circle. Figure 23.4
indicates the eigenvalue diagrams of a three-port reciprocal H-plane junction for
both u ¼ 0 and u ¼ p/2 radians. The latter diagram coincides with the first passband
of the junction at finite frequency.

23.4 REFLECTION COEFFICIENT OF RECIPROCAL JUNCTION

The equivalent circuit of the overall network is shown in Fig. 23.5. Each matching
network is represented in terms of an overall ABCD matrix. The ones studied here
consist of quarter-wave long impedance transformers. The derivation of the reflection
coefficient of the degree-1 reciprocal junction proceeds by taking a linear combi-
nation of its eigenreflection coefficients. The result is

G11 ¼ (g0 þ 2g1)=3 (23:15)

where

gþ ¼ g� ¼ g1 (23:16)

FIGURE 23.4 Eigenvalue diagrams of reciprocal three-port junction.
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and

g0 ¼ exp (� j2f0) (23:17)

g1 ¼ exp[� j2(f1 þ p=2)] (23:18)

f0 and f1 are reflection angles.
In the problem under consideration g0 is associated with a one-port open-circuited

transmission line and g1 with a short-circuit one. The reflection eigenvalues are
related separately to the admittance ones by the usual bilinear mapping between
the two:

g0 ¼
1� y0
1þ y0

(23:19)

g1 ¼
1� y1
1þ y1

(23:20)

FIGURE 23.5 Equivalent circuit of wideband reciprocal junction in terms of ABCD
networks.
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The reflection angles f0 and f1 in the description of the reflection coefficients are
now obtained without ado by introducing the following substitutions into the
above transformations:

y0 ¼ j tan (f0) (23:21)

y1 ¼ j tan (f1 þ p=2) (23:22)

The convention adopted here is to represent the various building blocks by ABCD
parameters. The connection between the two representations is then specified by

j tan (f0) ¼
C þ Dy00
Aþ By00

(23:23)

j tan f1 þ
p

2

� �
¼ C þ Dy01

Aþ By01
(23:24)

A and D are real numbers and B and C are pure imaginary quantities.
The bilinear transformations between the origins of the eigen-networks considered

here and the input terminals can be simplified by introducing the boundary conditions
there:

y00¼ 0 (23:25)

y01 ¼ 1 (23:26)

This gives

j tan (f0) ¼ C=A (23:27)

j tan (f1 þ p=2) ¼ D=B (23:28)

For the degree-1 topology

Aj Bj

Cj Dj

� �
¼ cos u j(sin u)=yj

jyj sin u cos u

� �
(23:29)

yj is the characteristic admittance of the region.

yj ¼ 4b0j=p (23:30)
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The magnitude squared of the reflection coefficient can now be formed as

9 G11j j2¼ cos (2f0)þ 2 cos [2(f1 þ p=2)]f g2 þ sin (2f0)þ 2 sin [2(f1 þ p=2)]f g2

(23:31)

The minimum value for the reflection coefficient is obtained with u ¼ 908 as

rj j ¼ 1
3

(23:32)

This condition corresponds with the maximum power transfer condition through the
junction.

23.5 FREQUENCY RESPONSE OF DEGREE-n NETWORK

The derivation of the frequency response of the degree-2 circuit proceeds by replacing
the Aj Bj Cj Dj parameters of the degree-1 by an overall ABCD description. It is also
necessary to respect the order of the multiplication in forming this matrix. The overall
ABCD matrix is given by

A B
C D

� �
¼ At Bt

Ct Dt

� �
Aj Bj

Cj Dj

� �
(23:33)

Aj, Bj, Cj, and Dj have the meaning met in connection with the degree-1 topology and
At, Bt, Ct, and Dt are those of the overall matching network. For a degree-2 circuit

At ¼ cos u (23:34a)

Bt ¼ ( j sin u)=yt (23:34b)

Ct ¼ jyt sin u (23:34c)

Dt ¼ cos u (23:34d)

where yt is the normalized admittance of the UE. The arrangement under consider-
ation is illustrated in Fig. 23.5.

A degree-3 network is obtained by replacing the single UE by two UEs in cascade.
At, Bt, Ct, and Dt are given, for the degree-2 network, in Chapter 19.

The eigen-networks of the general problem are depicted in Fig. 23.6.
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23.6 DEGREE-1 THREE-PORT JUNCTION CIRCULATOR

The purpose of this section is to deduce a correspondence between the frequency
responses of a three-port reciprocal junction and that of a junction circulator
embedded in the same matching networks. In order to do so it is necessary to
relate the two circuits. The derivation of the equivalent circuit of the three-port junc-
tion circulator starts with the definition of its eigenvalues in terms of the admittance
y1 encountered in the equivalent circuit of the reciprocal junction.

The split counterrotating admittance eigenvalues of an ideal circulator in the vicin-
ity of the circulation frequency are

yþ1 ¼ y1 � j=
ffiffiffi
3

p
(23:35a)

y�1 ¼ y1 þ j=
ffiffiffi
3

p
(23:35b)

FIGURE 23.6 Eigen-networks of quarter-wave coupled reciprocal three-port junction.
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where y1 is the degenerate counterrotating admittance eigenvalue of the reciprocal
junction. The reflection coefficient s+1 of an ideal circulator in the vicinity of the
circulation frequency is now given by

sþ1 ¼
1� ( y1 � j=

ffiffiffi
3

p
)

1þ ( y1 � j=
ffiffiffi
3

p
)

(23:36a)

Similarly, one has for the eigenvalue s21

s�1 ¼
1� ( y1 þ j=

ffiffiffi
3

p
)

1þ ( y1 þ j=
ffiffiffi
3

p
)

(23:36b)

The eigenvalue for which the frequency variation is omitted is again

s0 ¼ �1 (23:36c)

The derivation of the required scattering parameters is facilitated by factoring the
numerator and denominator polynomials of the reflection coefficient in such a way as
to reveal the midband relationships.

sþ ¼ 1� j tan(fþ þ p=2)
1þ j tan(fþ þ p=2)

� �
(1þ j=

ffiffiffi
3

p
)

(1� j=
ffiffiffi
3

p
)

(23:37a)

s� ¼ 1� j tan(f� þ p=2)
1þ j tan(f� þ p=2)

� �
(1� j=

ffiffiffi
3

p
)

(1þ j=
ffiffiffi
3

p
)

(23:37b)

where

1+ j=
ffiffiffi
3

p� 	

1+ j=
ffiffiffi
3

p� 	 ¼ exp +j
p

3

� �

and

cot f+ ¼ 3zeYr cot u
4Y0 + 3zeYr cot u

The preceding equations give the connection between the reflection and transmission
line angles.

sþ and s2 may also be written as

sþ � exp [�j2(f1 � p=6þ p=2)] (23:38a)

s� � exp [�j2(f1 þ p=6þ p=2)] (23:38b)
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The reflection coefficient is now obtained by taking a linear combination of s0, sþ1,
and s21.

S11 ¼
�1þ exp[�j2(f1 � p=6þ p=2)]þ exp[�j2(f1 þ p=6þ p=2)]

3
(23:39)

Neglecting second order terms in y1, the result is given by

S11 � y1=2 (23:40)

The normalized input admittance of the circuit is given in terms of the original vari-
ables by

yin ¼ 1� j [(4b01 cot u)=p] (23:41)

In obtaining this result it has been assumed that

cot fþ � cot f� � (3zeYr=4Y0) cot u (23:42)

An approximate equivalent network for this equation is an ideal circulator available at
any frequency with an admittance y1 connected at each port. This is depicted in
Fig. 23.7.

Writing S11 in terms of the VSWR now gives

b01 ¼
2(VSWR� 1)
2d(VSWRþ 1)

(23:43)

A scrutiny of the two circuits under consideration indicates that each involves the
same variables. The frequency variation of either circuit may therefore be used to
infer that of the other.

Some experimental results in the literature on the frequency responses of such
circuits afford some correlation between theory and experiment. One family of
solutions, in the open literature, for the case of a demagnetized junction, produces
values of susceptance slope parameter given by b01 ¼ 5.65, 3.93, 3.33, 1.84. The
corresponding quantities in the magnetized case are b01 ¼ 6.6, 3.89, 3.51, 1.62.

23.7 DEGREE-2 AND DEGREE-3 CIRCUITS

Some computations on the frequency responses of degree-2 and degree-3 networks
are summarized in this section. The impedance levels employed here coincide with
the design of equal ripple circulators with VSWR ¼ 1.15 and 2d0 ¼ 0.35, 0.50,
0.66. The element values for the networks are given in Chapter 11. The results
are shown in Figs. 23.8 and 23.9 in the case of a degree-2 topology and in
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FIGURE 23.7 Equivalent circuit of ideal circulator.

FIGURE 23.8 Frequency response for degree-2 junction circulator with element values of
r ¼ 1.15 and 2d0 ¼ 0.35. (Reproduced with permission from J. Helszajn, Frequency response
of quarter-wave coupled reciprocal stripline junctions, IEEE Trans. Microwave Theory Tech.,
Vol. MTT-21, pp. 533–537, Aug. 1973.)
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Figs. 23.10–23.12 in the case of degree-3. The frequency responses are given in
each case at the terminals of each network. The frequency behavior at the inter-
mediate transformer terminals in the case of degree-3 is obtained using the
material with yt replaced by y02. This allows the precise experimental adjustment
of each matching network to obtain the overall response. These illustrations
suggest that the bandwidth of the overall reciprocal network is comparable with
that of the junction magnetized to form a circulator. It is also observed that the
frequency responses of the degree-2 and degree-3 reciprocal junctions associated
with identical circulator characteristics are similar. The only difference is that
the slope at the bandedges for the degree-2 network is less than that for the
degree-3 network. Here, the bandwidth of the reciprocal junction refers to that
which coincides with maximum power transfer through the junction. The construc-
tion of wideband circulators is therefore closely related to that of wideband
reciprocal three-port junctions.

23.8 DEGREE-2 CIRCULATOR

The experimental frequency responses of three-port reciprocal and nonreciprocal stri-
pline junctions with degree-1 and degree-2 networks are reproduced in this section.
The degree-1 network consists of a garnet disk with a magnetization of m0M0 ¼

0.0500 T and a dielectric constant of 1r ¼ 14.3 at the junction of three 50 V striplines.

FIGURE 23.9 Frequency response for degree-2 junction circulator with element values of
r ¼ 1.15 and 2d0 ¼ 0.50. (Reproduced with permission from J. Helszajn, Frequency response
of quarter-wave coupled reciprocal stripline junctions, IEEE Trans. Microwave Theory Tech.,
Vol. MTT-21, pp. 533–537, Aug. 1973.)
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FIGURE 23.10 Frequency response for degree-3 junction circulator with element values of
r ¼ 1.15 and 2d0 ¼ 0.35. (Reproduced with permission from J. Helszajn, Frequency response
of quarter-wave coupled reciprocal stripline junctions, IEEE Trans. Microwave Theory Tech.,
Vol. MTT-21, pp. 533–537, Aug. 1973.)

FIGURE 23.11 Frequency response for degree-3 junction circulator with element values of
r ¼ 1.15 and 2d0 ¼ 0.50. (Reproduced with permission from J. Helszajn, Frequency response
of quarter-wave coupled reciprocal stripline junctions, IEEE Trans. Microwave Theory Tech.,
Vol. MTT-21, pp. 533–537, Aug. 1973.)
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FIGURE 23.12 Frequency response for degree-3 junction circulator with element values of
r ¼ 1.15 and 2d0 ¼ 0.65. (Reproduced with permission from J. Helszajn, Frequency response
of quarter-wave coupled reciprocal stripline junctions, IEEE Trans. Microwave Theory Tech.,
Vol. MTT-21, pp. 533–537, Aug. 1973.)

FIGURE 23.13 Experimental frequency response of demagnetized and magnetized degree-1
and degree-2 stripline circuits. (Reproduced with permission from J. Helszajn, Frequency
response of quarter-wave coupled reciprocal stripline junctions, IEEE Trans. Microwave
Theory Tech., Vol. MTT-21, pp. 533–537, Aug. 1973.)
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Its demagnetized and magnetized frequency responses are superimposed in
Fig. 23.13. The susceptance slope parameters of the degree-1 networks are given
by b01 ¼ 4.65 and 5.7, respectively. The frequency responses of the degree-2 networks
are also shown in this illustration. The dielectric constant 1r of the quarter-wave
impedance transformer used in this arrangement is 1r ¼ 3.2. This value corresponds
to yt ¼ 1.79. Such a degree-2 arrangement coincides with a circulator characteristic
with r ¼ 1.25 and 2d0 ¼ 0.40. The bandwidth of the experimental magnetized junc-
tion is 2d0 ¼ 43% at the same voltage standing wave ratio. The bandwidth between
the minimum VSWR points of the magnetized junction is approximately 0.707 that
of the full bandwidth in keeping with theory. It is of note that the frequency responses
of reciprocal and nonreciprocal solutions in Fig. 23.13 are of the same order. The
frequency behavior of the reciprocal degree-2 network is slightly asymmetrical due
to the onset of low-field loss.
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CHAPTER TWENTY-FOUR

Scattering Matrices of Junction
Circulators with Chebyshev
Characteristics

24.1 INTRODUCTION

The reflection coefficient at port 1 of a junction circulator with a degree-2 Chebyshev
characteristic is often established in terms of its one-port complex gyrator circuit.
However, it may also be obtained in terms of its eigenvalues and this is the approach
employed in this chapter. It provides not only the reflection coefficient at a typical
input port but also the transmission coefficients between the other ports. The
method introduced here is quite general and applies to the m-port junction also. It
starts by representing the matching network at each port by its ABCD matrix. The
overall reflection eigenvalues at the input terminals of the junction are then obtained
one at a time in terms of the ABCD parameters and the eigenvalues at the junction
terminals as a preamble to constructing the scattering parameters of the junction.
This chapter deals both with the case where the frequency variation of the in-
phase eigen-network at the gyrator terminals is neglected compared with those of
the counterrotating ones, and with that where it is included. The former approach
is in excellent agreement with that obtained by assuming a one-port model for the
circulator. The influence of the in-phase eigen-network on the overall frequency
response is studied separately in the case of the stripline circulator.
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24.2 EIGENVALUES OF THE SCATTERING MATRIX

The three-port junction under consideration is depicted in Fig. 24.1, in terms of ideal
two-port gyrators of characteristic admittance Y0. The relationships between its
scattering parameters and its eigenvalues are constructed in the usual way:

S11 ¼
s0 þ sþ þ s�

3
(24:1a)

S21 ¼
s0 þ asþ þ a2s�

3
(24:1b)

S31 ¼
s0 þ a2sþ þ as�

3
(24:1c)

where a ¼ exp( j2p/3).
The eigenvalues of the scattering matrix are the reflection coefficients associated

with each possible way of exciting the junction. These eigenvalues have unit
amplitude and only differ from each other by the nature of reflection angles f0,
f+. The nature of these quantities is specified in Chapter 4 and will not be repeated
here. The admittance eigenvalues, in the reflection plane, are defined in terms of

FIGURE 24.1 Schematic of ideal three-port junction circulator in terms of two-port gyrators.
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reflection angles by

Y0 ¼ jY0 tan(f0) (24:2a)

Yþ ¼ jY0 tan(f0 þ fþ þ p=2) (24:2b)

Y� ¼ jY0 tan(f0 þ f� þ p=2) (24:2c)

It is also helpful, in what follows, to recall the relationships between the 1-port immit-
tances of the 1-port eigen-networks in terms of the electrical lengths u and admittances
Y 0 instead of the reflection ones. This gives

Y0 ¼ jY 0
0 tan(u0) (24:3a)

Yþ ¼ �jY 0
þ cot(u1 þ uþ) (24:3b)

Y� ¼ jY 0
� cot(u1 þ u�) (24:3c)

The eigen-networks associated with the admittance eigenvalues Yþ and Y2 are short-
circuited transmission lines of electrical length u1 þ u+. These are shown in
Fig. 24.2. For a three-port circulator for which S21 ¼ 21, the equivalent circuit for
the admittance eigenvalue Y0 is a quarter-wave long open-circuited transmission line
of length u0.

The required relationships between the reflection and transmission angles fi and
ui are given without ado by introducing the following equalites:

Y0 tan(f0) ¼ Y 0
0 tan(u0) (24:4a)

Y0 tan(f1 þ fþ þ p=2) ¼ �Y 0
þ cot(u1 þ uþ) (24:4b)

Y0 tan(f1 þ f� þ p=2) ¼ �Y 0
� cot(u1 þ u�) (24:4c)

A one-to-one correspondence between the admittance eigenvalues in the u-plane
defined here and those met in the Bosma description of a junction employing the
classic disk resonator is obtained by approximating the circuit ones by

y0 ¼ jy0 tan(u0) (24:5a)

yþ � �jy1 cot(u1)þ jyþ tan(uþ) (24:5b)

y� � �jy1 cot(u1)þ jy� tan(u�) � �jy1 cot(u1)� jyþ tan(uþ) (24:5c)
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The equivalent circuit for the admittance yþ is a transmission line of admittance yþ
and electrical length uþ in shunt with a short-circuited transmission line of admit-
tance y1 of electrical length u1. A similar statement applies to the admittance y2.

The in-phase eigen-network is unperturbed by the gyrotropy. The approximate
eigen-network obtained in this way is shown in Fig. 24.2.

24.3 EIGENVALUES OF AUGMENTED SCATTERING MATRIX

The equivalent circuit of the junction under consideration with matching networks at
each port is illustrated in Fig. 24.3. Its eigen-networks are shown in Fig. 24.4. The
entries of the scattering matrix at the new terminals are now given by

G11 ¼
g0 þ gþ þ g�

3
(24:6a)

G21 ¼
g0 þ agþ þ a2g�

3
(24:6b)

G31 ¼
g0 þ a2gþ þ ag�

3
(24:6c)

FIGURE 24.2 Eigen-networks of three-port junction circulator.
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The reflection eigenvalues at the input terminals of the ABCD networks are given by
straightforward calculation:

g0 ¼ exp(�j2c0) (24:7a)

gþ ¼ exp[�j2(cþ þ p=2)] (24:7b)

g� ¼ exp[�j2(c� þ p=2)] (24:7c)

where

j tan(c0) ¼
jC þ Dy0
Aþ jBy0

(24:8a)

j tan(cþ þ p=2) ¼ jC þ Dyþ
Aþ jByþ

(24:8b)

j tan(c� þ p=2) ¼ jC þ Dy�
Aþ jBy�

(24:8c)

FIGURE 24.3 Schematic of three-port junction circulator with matching networks.
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It is separately observed that each reflection eigenvalue satisfies gg� ¼ 1. This means
that the new eigenvalues reside on the unit circle also.

The ABCD parameters, for a single quarter-wave transformer, are

A ¼ cos u (24:9a)

B ¼ (sin u)=yt (24:9b)

C ¼ yt sin u (24:9c)

D ¼ cos u (24:9d)

The frequency variable u is defined by

u ¼ (p=2)(1þ d) (24:10)

FIGURE 24.4 Eigen-networks of three-port circulator with matching networks.
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where

d ¼ (v� v0)=v0 (24:11)

At the bandedges the frequency variable becomes

d0 ¼ (v1 � v0)=v0 (24:12)

The Chebyshev polynomial for n ¼ 2 passes through zero when

ffiffiffi
2

p
cos u ¼ cos u0 (24:13)

The frequency response for a degree-2 circuit is defined separately in Chapter 25.

24.4 CIRCULATION ADJUSTMENT

The adjustment under consideration proceeds by having the frequency at which the
reflection coefficient passes through its zeros and maxima coincide with those of a
Chebyshev polynomial.

When the reflection coefficient passes through zero, the eigenvalues lie equally
spaced on the unit circle.

cþ þ p=2 ¼ c0 þ p=3 (24:14a)

c� þ p=2 ¼ c0 � p=3 (24:14b)

Substituting these two conditions into Eq. (24.8) gives

j tan(c0) ¼ �j
D

B
(24:15a)

j tan(c0 þ p=3) ¼ jC þ Dyþ
Aþ jByþ

(24:15b)

j tan(c0 � p=3) ¼ jC þ Dy�
Aþ jBy�

(24:15c)

The simplified form for the admittance eigenvalue, y0, comes about because y0 ¼ 1

for a circulator for which s0 ¼21.
The derivation of the required result continues by writing t ¼ tan(c0) and putting

y+ ¼ j(l+ m) (24:16)
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This gives

t ¼ �D=B (24:17)

t �
ffiffiffi
3

p

1þ t
ffiffiffi
3

p ¼ C � lD� mD

Aþ lBþ mB
¼ t � (C � Dl)=mB

1þ t(Aþ lB)=mD
(24:18a)

and

t þ
ffiffiffi
3

p

1� t
ffiffiffi
3

p ¼ C � lD� mD

Aþ lBþ mB
¼ t þ (C � Dl)=mB

1� t(Aþ lB)=mD
(24:18b)

These equations are consistent provided

y1 cot(u) ¼
CD� AB

B2 þ D2
(24:19a)

and

ffiffiffi
3

p
yþ tan(uþ) ¼

1
B2 þ D2

(24:19b)

which must be evaluated at
ffiffiffi
2

p
cos u ¼ cos u0 in keeping with Eq. (24.13).

To obtain the transformer admittance yt it is necessary to directly evaluate G11 at
the center frequency in terms of the original variables. For g , yt

2 the result is

ffiffiffi
3

p
yþ tan(uþ) ¼ y2t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2� r)=r

p
(24:20)

Writing the preceding equation in terms of the original variables gives

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=(2� r)

p
� sin2 (u0)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r=(2� r)
p

cos2 (u0)
(24:21)

y1 ¼ g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2� r)=r

p� �1=2
g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=(2� r)

p
� 1

� �
sin2 (u0) (24:22)

y2t ¼ g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=(2� r)

p
(24:23)
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The present results are identical with those based on the one-port gyrator circuit
model provided

r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=(2� r)

p
(24:24)

This condition is readily satisfied for the sort of values of r usually encountered in
circulator design.

24.5 QUARTER-WAVE COUPLED-BELOW-RESONANCE
STRIPLINE CIRCULATOR

The theory developed so far will now be combined with the electromagnetic problem
in the case of the stripline circulator. The admittance eigenvalues of this problem
region are

yþ ¼ �jpzeYr
3Y0 sin(c)

J 01(kR)
J1(kR)

� km

kR

� �
(24:25a)

y� ¼ �jpzeYr
3Y0 sin(c)

J 01(kR)
J1(kR)

þ k=m

kR

� �
(24:25b)

y0 ¼
jpzeYr
3Y0c

J 00(kR)
J0(kR)

� �
(24:25c)

Figure 24.5 depicts the frequency behavior of the preceding eigenadmittances as a
function of kR for a circulator which when magnetized gives r ¼ 1.07. The reflection
eigenvalues of the corresponding phase angles are indicated in Fig. 24.6. These
results show that the equivalent circuits for yþ1 and y21 are short-circuited radial
transmission lines, while that of the eigen-network y0 is an open-circuited
transmission line as asserted. A one-to-one correspondence between the electromag-
netic and network problems may be undertaken provided the frequency variation of
the in-phase eigen-network may be neglected compared with that of the split counter-
rotating ones. This gives

g ¼
ffiffiffi
3

p
yþ tan(uþ) ¼

pzeYrffiffiffi
3

p
Y0 sin (c)kR

k

m

� �
(24:26a)

b0 ¼ py1
4

¼ pzeYr
3Y0 sin(c)

(kR)2 � 1
2kR

� �
(24:26b)
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In obtaining this result it has been assumed that the susceptance slope parameters
of the two equivalent reciprocal circuits are the same. Here g is the normalized gyrator
conductance of the junction, and b0 is the normalized susceptance slope parameter of
the reciprocal counterrotating eigen-networks. The electromagnetic problem that

FIGURE 24.5 Eigenadmittances of stripline circulator with r ¼ 1.07 and 2d0 ¼ 20%.

FIGURE 24.6 Electrical lengths of eigen-networks for stripline circulator with r ¼ 1.07 and
2d0 ¼ 20%.
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must be satisfied when the frequency variation of the s0 eigenvalue is neglected com-
pared to that of s+ is therefore, in the case of a quarter-wave coupled circulator,

pzeYr
3Y0 sin(c)

(kR)2 � 1
2kR

� �
¼ p

4
r � sin2(u0)
r2 cos2(u0)

� �
(r � 1) tan2(u0) (24:27a)

pzeYrffiffiffi
3

p
Y0 sin(c)kR

k

m

� �
¼ r � sin2(u0)

r cos2(u0)
(24:27b)

The first equation determines the coupling angle and the second the gyrotropy. The
wave admittance in the preceding equations is defined by

6e ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1r=me

p
(24:28)

and

Yr ¼
ffiffiffiffiffi
1d

p
Y0 (24:29)

where

Y0 ¼ 30p ln
W þ 2H þ t

W þ t

� �

and

sin(c) ¼ W=2R

W is the width of the stripline, H is half the ground-plane spacing, t is the thickness of
the center conductor, and the other quantities have the usual meanings.

24.6 FREQUENCY VARIATION OF QUARTER-WAVE
COUPLED CIRCULATOR

The assumption used throughout this development is that the frequency variation of
the in-phase eigenvalue may be omitted compared to that of the counterrotating
eigenvalues. This assumption will now be tested in the case of stripline circulators
with 2d ¼ 20% and r ¼ 1.10 and 1.22. The physical variables sin(c) and k/m in
Eqs. (24.27a) and (24.27b) are given once the bandwidth and VSWR are specified.

Figures 24.7 and 24.8 indicate the frequency behavior of the overall quarter-wave
coupled circulator for the ideal and actual cases. These results have been obtained by
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assuming that the center frequency lies midway between the two split frequencies
rather than at kR ¼ 1.84.

The above results suggest that although the frequency variation of the in-phase
reflection coefficient is small compared to that of the counterrotating ones, it
cannot be ignored for devices with relatively wide bands and low VSWRs.

FIGURE 24.7 Frequency response of quarter-wave coupled circulator with and without
third eigen-network for r ¼ 1.07 and 2d0 ¼ 20%. [Reproduced with permission from
J. Helszajn, The synthesis of quarter-wave coupled circulators with Chebyshev characteristics,
IEEE Trans. Microwave Theory Tech. (Short Papers), Vol. MTT-20, pp. 764–769, Nov. 1972.]

FIGURE 24.8 Frequency response of quarter-wave coupled circulator with and without
third eigen-network for r ¼ 1.22 and 2d0 ¼ 20%. [Reproduced with permission from
J. Helszajn, The synthesis of quarter-wave coupled circulators with Chebyshev characteristics,
IEEE Trans. Microwave Theory Tech. (Short Papers), Vol. MTT-20, pp. 764–769, Nov. 1972.]
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24.7 FREQUENCY RESPONSE OF QUARTER-WAVE COUPLED
CIRCULATOR WITH CAPACITIVE TUNING

One way in which the theoretical results can be obtained in practice is to introduce a
triplet of circumferential magnetic walls or a thin metal post in the center of the
junction. Equivalently, thin metal posts may be introduced at the input terminals of
the transformer, which is the normal approach in stripline devices. This last statement
comes about because the in-phase eigen-network is an open-circuited half-wave
resonator, which can be tuned at either input or output terminals.

The ABCD matrix for a single shunt capacitor is

A ¼ 1 (24:30a)

B ¼ 0 (24:30b)

C ¼ vC=Y0 (24:30c)

D ¼ 1 (24:30d)

Cascading this ABCD network with that for the single quarter-wave transformer gives
the following ABCD parameters for the overall matching network:

A ¼ cos(u) (24:31a)

B ¼ sin(u)
yt

(24:31b)

C ¼ yt sin(u)þ
vC

Y0

� �
sin(u)
yt

(24:31c)

D ¼ cos(u)� vC

Y0

� �
sin(u)
yt

(24:31d)

The arrangement in question is shown in Fig. 24.9.
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FIGURE 24.10 Frequency response of quarter-wave coupled circulator with capacitive
tuning for r ¼ 1.1 and 2d0 ¼ 20%. [Reproduced with permission from J. Helszajn, The syn-
thesis of quarter-wave coupled circulators with Chebyshev characteristics, IEEE Trans.
Microwave Theory Tech. (Short Papers), Vol. MTT-20, pp. 764–769, Nov. 1972.]

FIGURE 24.9 Eigen-networks of three-port circulator with capacitive tuning. [Reproduced
with permission from J. Helszajn, The synthesis of quarter-wave coupled circulators with
Chebyshev characteristics, IEEE Trans. Microwave Theory Tech. (Short Papers), Vol. MTT-
20, pp. 764–769, Nov. 1972.]
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Figures 24.10 and 24.11 indicate the influence of the capacitor C on the overall
frequency response of the device for r ¼ 1.10 and 1.22, and 2d ¼ 20%. These
suggest that such a capacitor can indeed be used to improve the correlation
between the two and three eigen-network models of the stripline circulator.

FIGURE 24.11 Frequency response of quarter-wave coupled circulator with capacitive
tuning for r ¼ 1.22 and 2d0 ¼ 20%. [Reproduced with permission from J. Helszajn, The syn-
thesis of quarter-wave coupled circulators with Chebyshev characteristics, IEEE Trans.
Microwave Theory Tech. (Short Papers), Vol. MTT-20, pp. 764–769, Nov. 1972.]
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CHAPTER TWENTY-FIVE

Synthesis of Stepped
Impedance Transducers

25.1 INTRODUCTION

A property of any three-port junction circulator is that the isolation between one input
port and one output port is infinite and the insertion loss between the same input port
and the other output port is zero when the return loss at each port is infinite. The
classic equivalent circuit of this type of junction is a complex shunt STUB-G load
consisting of a short-circuited quarter-wave long UE in shunt with a real conductance.
One possible solution met in connection with this topology is the quarter-wave impe-
dance transformer. A second solution based on short-line transformers is obtained by
replacing the 908 stub by short, typically 308, open- and short-circuited ones. One
property of either network is that its gain-bandwidth product is uniquely fixed by
the quality factor of the load circuit. The purpose of this chapter is to develop the
exact t-plane synthesis of each topology for a degree-2 circuit. This is done both in
closed and in tabular forms. The classic solution to any of these types of problems,
as in the related filter ones, is based on an insertion loss specification in the u-plane,
the use of the unitary condition to deduce a squared amplitude reflection coefficient
from a knowledge of that of the transmission one, the mapping of the u-plane into the
t-plane, the construction of a bounded real reflection coefficient, the use of the
bilinear transformation between immittance and reflection coefficient, and the syn-
thesis of a one-port immittance function in terms of UEs and t-plane inductors and
capacitors that have the topology of the required two-port network.

A semitutorial approach to the actual t-plane synthesis problem has been adopted
in this chapter to familiarize the nonspecialist reader with this type of method.

The Stripline Circulator: Theory and Practice. By J. Helszajn
Copyright # 2008 John Wiley & Sons, Inc.
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25.2 u-PLANE INSERTION LOSS FUNCTION FOR QUARTER-WAVE
LONG STEPPED IMPEDANCE TRANSDUCERS

The most important circuit topology met in the design of commercial junction circu-
lators is that consisting of one or more transformers (UEs) and a complex G-STUB
load in terms of a microwave specification. Since the solution of this problem is
crucial in the design of practical circulators, it will be developed from first principles
in closed form.

The first step in the synthesis of any commensurate line network is to establish an
appropriate insertion loss specification. One topology that displays a suitable equi-
ripple bandpass response centered about 908, which is applicable to a complex
G-STUB load and n UEs, is indicated in Fig. 25.1. The required amplitude
squared frequency response is illustrated in Fig. 25.2. It is defined by

L(u) ¼ 1þ K2

þ 12
(1þ sin uc)Tnþ1( cos u= cos uc)� (1� sin uc)Tn�1( cos u= cos uc)

2 sin u

� �2

(25:1)

K and 1 are related by the minimum and maximum values of the voltage standing
wave ratio within the passband

S(max) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2 þ 12

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2

p� �2
(25:2)

S(min) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2

p
þ K

� �2
(25:3)

FIGURE 25.1 Schematic diagram of n UEs terminated in G-STUB load.
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or

K ¼ S(min)� 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
S(min)

p (25:4)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ 12

p
¼ S(max)� 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S(max)

p (25:5)

u and uc are the usual radian frequency and the lower bandedge one:

u ¼ (p=2)(v=v0) (25:6)

uc ¼ (p=2)(vc=v0) (25:7)

respectively. u is also sometimes written in terms of a normalized bandwidth
parameter as

u ¼ p=2(1þ d) (25:8)

where

d ¼ v� v0

v0
(25:9)

v0 is the center frequency of the transformer, and v is the normal frequency variable.
uc is related to the normalized bandwidth W by

W ¼ 2� 4uc=p (25:10)

Tn(x) is the Chebyshev polynomial of order n and argument x.

FIGURE 25.2 Frequency response of n UEs loaded by shunt G-STUB load.
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The amplitude square of the reflection coefficient is related to the insertion loss
function by the unitary condition in the usual way:

G(u)j j2 ¼ L(u)� 1
L(u)

(25:11)

Once the reflection coefficient at either the input or output port in the t-plane is speci-
fied, Z(t) at the corresponding port is obtained by making use of the classic bilinear
transformation between the two.

Y(u)
G

¼ 1� G(u)
1þ G(u)

(25:12)

For a degree-2 network the insertion loss function becomes

L(u) ¼ 1þ K2 þ 12
(1þ sin uc)[T2(cos u=cos uc)� (1� sin uc)]

2 sin u

� �2

(25:13)

The frequency response of this insertion loss function is indicated in Fig. 25.3.

25.3 t-PLANE SYNTHESIS OF QUARTER-WAVE LONG STEPPED
IMPEDANCE TRANSDUCERS

The derivation of a realizable immittance proceeds by forming the amplitude
square of the reflection coefficient in the t-plane by introducing the t-plane variable
throughout:

t ¼ j tan u (25:14)

FIGURE 25.3 Frequency response of degree-2 network terminated in G-STUB load.
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If the network is synthesized from the load terminals, as is done here, then it is
necessary to construct S22(t)S22(2t) instead of S11(t)S11(2t). It continues by
forming S22(t) from a knowledge of S22(t)S22(2t). The numerator polynomial of
S22(t) need not be Hurwitz, which means that its zeros may be selected from either
its left or right half-plane roots. The denominator polynomial is Hurwitz so that its
poles are restricted to its L.H.P. ones. The normalized admittance at the output term-
inals is then given from a knowledge of S22(t). The result in terms of the original vari-
ables is

Y(t)
G

¼ d2t2 þ dt þ d0
n2t2 þ n1t

(25:15)

The coefficients in the numerator and denominator polynomials are given by

n2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
aþ 1

p
�

ffiffiffi
a

p
(25:16a)

d2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
a� 1

p
þ

ffiffiffi
a

p
(25:16b)

n1 ¼ [2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a� 1)

p
c� bþ 1]1=2 � (2

ffiffiffiffiffi
ac

p
� b)1=2 (25:16c)

d1 ¼ [2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a� 1)

p
c� bþ 1]1=2 þ (2

ffiffiffiffiffi
ac

p
� b)1=2 (25:16d)

n0 ¼ 0 (25:16e)

d0 ¼ 2
ffiffiffi
c

p
(25:16f)

where

a ¼ K2 þ 12 (25:17a)

b ¼ 2b12 � K2 (25:17b)

c ¼ b212 (25:17c)

and

b ¼ tan2uc þ (tan uc)=(cos uc) (25:18)

Making use of the relationships between the numerator and denominator coeffi-
cients n1,2 and d0,1,2 also indicates that

d1n1 � d0n2 ¼ 1 (25:19a)

n2d2 ¼ 1 (25:19b)
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The synthesis of this immittance commences by extracting a shunt t-plane inductor
in a second Cauer form. This step produces a t-plane inductor,

L ¼ Gd0=n1

and a remainder admittance,

Y 0(t) ¼ G
n1d2t þ n1d1 � n2d0

n1(n2t þ n1)

The synthesis of the required circuit continues by extracting a UE by replacing t by
unity in Y0(t). The result is

Y 0(1) ¼ G
n1d2 þ n1d1 � n2d0

n1(n2t þ n1)

Making use of the relationships between the various coefficients indicates that Y0(1)
may also be written as

Y 0(1) ¼ G=n1n2

The remainder admittance Y00(t) is then given by Richards Theorem by

Y 00(t) ¼ Y 0(1)
Y 0(t)� tY 0(1)
Y 0(1)� tY 0(t)

The remainder admittance after canceling a common term (t2 2 1) is

Y 00(t) ¼ G=n21

This admittance fixes the load at the generator terminals without ado:

G

n21
¼ 1

The t-plane inductor, the UE, and the load conductance are now specified in terms
of the original variables for the purpose of calculations by

G ¼ n21 (25:20)

Y 0
1 ¼ n1=n2 (25:21)

L ¼ n1d0 (25:22)
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The topology produced by this procedure is now established by realizing the
t-plane inductor by a short-circuited transmission line with a characteristic impedance
equal to that of the t-plane inductor in shunt with the load conductanceG, by realizing
the UE by a series transmission line with a characteristic admittance equal to that
of the UE, and by fixing the G by the condition at the generator terminals. The
required topology is depicted in Fig. 25.4.

25.4 NETWORK PARAMETERS OF QUARTER-WAVE LONG
IMPEDANCE TRANSDUCERS

It is usual, in tabulating solutions to this type of problem, to replace the stub admit-
tance L by its equivalent susceptance slope parameter B0:

B0 ¼ pL=4 (25:23)

This notation has the merit that it permits the Q-factor of the load to also be defined
without difficulty:

QL ¼ B0=G (25:24)

A typical family of solutions for this sort of degree-2 network is tabulated in
Table 25.1. One feature of these tables is that the quality factor is uniquely fixed
once the bandwidth and the maximum value of the VSWR in the passband are speci-
fied. Another important aspect of this solution is that the immittance level of the
complex gyrator circuit can be adjusted by varying the minimum value of the
VSWR in the passband. Since the latter parameter is of little interest in the design
of any circulator, it may be used to absorb any uncertainty in the absolute immittance
level of the gyrator circuit.

The synthesis of a degree-3 topology proceeds in a like manner. Table 25.2
summarizes some results.

FIGURE 25.4 Topology of degree-2 G-STUB network
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TABLE 25.2 Degree-3 Network Variables of 9088888 UE

Degree N ¼ 3 S(max) ¼ 1.15 S(min) ¼ 1

W G B0 G Y1 Y2

0.200 969.349 3486.515 3.597 4.732 147.312
0.250 399.553 1138.049 2.843 3.818 76.309
0.300 194.299 455.324 2.343 3.214 44.805
0.350 106.011 209.635 1.977 2.789 28.712
0.400 62.989 106.970 1.698 2.474 19.635
0.450 39.988 59.049 1.477 2.233 14.123
0.500 26.777 34.687 1.295 2.044 10.579
0.550 18.741 21.430 1.143 1.893 8.196
0.600 13.620 13.805 1.014 1.770 6.533
0.667 9.356 8.106 0.866 1.639 5.013
0.700 7.902 6.336 0.802 1.584 4.454
0.750 6.265 4.472 0.714 1.514 3.789
0.800 5.083 3.229 0.635 1.454 3.277
0.850 4.211 2.378 0.565 1.403 2.878
0.900 3.555 1.782 0.501 1.359 2.562
0.950 3.054 1.356 0.444 1.321 2.309
1.000 2.665 1.045 0.392 1.289 2.104

Degree N ¼ 3 S(max) ¼ 1.15 S(min) ¼ 1.02

0.200 893.332 3313.304 3.709 4.559 137.630
0.250 368.379 1081.745 2.936 3.681 71.355
0.300 179.240 432.918 2.415 3.102 41.940
0.350 97.862 199.388 2.037 2.693 26.909
0.400 58.196 101.785 1.749 2.392 18.428
0.450 36.983 56.215 1.520 2.161 13.275
0.500 24.794 33.042 1.333 1.981 9.961
0.550 17.378 20.428 1.176 1.836 7.731
0.600 12.649 13.170 1.041 1.719 6.175
0.667 8.709 7.742 0.889 1.594 4.752
0.700 7.366 6.055 0.822 1.542 4.228
0.750 5.852 4.279 0.731 1.475 3.604
0.800 4.758 3.093 0.650 1.418 3.125
0.850 3.951 2.280 0.577 1.370 2.751
0.900 3.344 1.711 0.512 1.329 2.455
0.950 2.880 1.303 0.453 1.294 2.217
1.000 2.520 1.006 0.399 1.263 2.025

Degree N ¼ 3 S(max) ¼ 1.15 S(min) ¼ 1.04

0.200 801.796 3043.685 3.796 4.363 125.987
0.250 330.850 994.045 3.005 3.525 65.394
0.300 161.116 397.989 2.470 2.974 38.491
0.350 88.060 183.398 2.083 2.585 24.738
0.400 52.436 93.683 1.787 2.298 16.973

(Continued )
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TABLE 25.2 Continued

Degree N ¼ 3 S(max) ¼ 1.15 S(min) ¼ 1.04

W G B0 G Y1 Y2

0.450 33.374 51.781 1.552 2.080 12.253
0.500 22.416 30.463 1.359 1.909 9.216
0.550 15.744 18.854 1.198 1.772 7.171
0.600 11.488 12.170 1.059 1.662 5.743
0.667 7.939 7.168 0.903 1.544 4.437
0.700 6.728 5.612 0.834 1.495 3.956
0.750 5.362 3.972 0.741 1.432 3.383
0.800 4.375 2.876 0.657 1.379 2.942
0.850 3.646 2.124 0.583 1.334 2.598
0.900 3.098 1.597 0.515 1.296 2.326
0.950 2.678 1.219 0.455 1.263 2.108
1.000 2.353 0.943 0.401 1.235 1.932

Degree N ¼ 3 S(max) ¼ 1.15 S(min) ¼ 1.06

0.200 697.205 2688.010 3.855 4.139 112.522
0.250 287.967 878.302 3.050 3.348 58.498
0.300 140.406 351.866 2.506 2.828 34.498
0.350 76.861 162.270 2.111 2.462 22.222
0.400 45.854 82.970 1.809 2.193 15.286
0.450 29.252 45.912 1.570 1.988 11.067
0.500 19.700 27.047 1.373 1.827 8.351
0.550 13.880 16.766 1.208 1.700 6.521
0.600 10.163 10.841 1.067 1.597 5.242
0.667 7.062 6.402 0.907 1.488 4.071
0.700 6.002 5.020 0.836 1.443 3.640
0.750 4.806 3.561 0.741 1.385 3.126
0.800 3.941 2.585 0.656 1.336 2.731
0.850 3.302 1.914 0.580 1.295 2.423
0.900 2.820 1.443 0.512 1.260 2.178
0.950 2.451 1.104 0.450 1.230 1.983
1.000 2.165 0.856 0.396 1.205 1.825

Degree N ¼ 3 S(max) ¼ 1.15 S(min) ¼ 1.08

0.200 580.786 2253.269 3.880 3.881 97.189
0.250 240.220 736.770 3.067 3.144 50.639
0.300 117.341 295.436 2.518 2.660 29.945
0.350 64.382 136.404 2.119 2.321 19.351
0.400 38.519 69.843 1.813 2.071 13.360
0.450 24.657 38.714 1.570 1.882 9.713
0.500 16.672 22.852 1.371 1.735 7.362
0.550 11.801 14.198 1.203 1.618 5.777
0.600 8.687 9.205 1.060 1.524 4.668
0.667 6.083 5.458 0.897 1.425 3.653
0.700 5.193 4.288 0.826 1.384 3.279
0.750 4.187 3.052 0.729 1.332 2.832

(Continued )
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TABLE 25.2 Continued

Degree N ¼ 3 S(max) ¼ 1.15 S(min) ¼ 1.08

W G B0 G Y1 Y2

0.800 3.458 2.224 0.643 1.288 2.489
0.850 2.918 1.653 0.566 1.251 2.222
0.900 2.511 1.250 0.498 1.220 2.010
0.950 2.200 0.961 0.437 1.194 1.840
1.000 1.957 0.748 0.382 1.171 1.703

Degree N ¼ 3 S(max) ¼ 1.15 S(min) ¼ 1.1

0.200 452.332 1742.610 3.853 3.572 79.668
0.250 187.508 570.432 3.042 2.900 41.652
0.300 91.859 229.069 2.494 2.460 24.733
0.350 50.587 105.957 2.095 2.153 16.060
0.400 30.402 54.376 1.789 1.928 11.150
0.450 19.567 30.223 1.545 1.758 8.157
0.500 13.315 17.897 1.344 1.627 6.225
0.550 9.494 11.160 1.175 1.523 4.4921
0.600 7.047 7.266 1.031 1.440 4.008
0.667 4.996 4.334 0.868 1.353 3.171
0.700 4.293 3.417 0.796 1.317 2.862
0.750 3.497 2.445 0.699 1.272 2.494
0.800 2.920 1.791 0.613 1.234 2.212
0.850 2.492 1.338 0.537 1.203 1.991
0.900 2.168 1.018 0.470 1.176 1.816
0.950 1.920 0.787 0.410 1.154 1.677
1.000 1.727 0.616 0.356 1.135 1.564

Degree N ¼ 3 S(max) ¼ 1.15 S(min) ¼ 1.12

0.200 309.011 1152.644 3.730 3.173 59.027
0.250 128.630 378.096 2.939 2.587 31.049
0.300 63.360 152.247 2.403 2.205 18.573
0.350 35.134 70.666 2.011 1.939 12.165
0.400 21.296 36.419 1.710 1.746 8.529
0.450 13.846 20.345 1.469 1.602 6.308
0.500 9.535 12.120 1.271 1.491 4.872
0.550 6.391 7.609 1.104 1.404 3.901
0.600 5.192 4.991 0.961 1.335 3.220
0.667 3.763 3.010 0.800 1.264 2.596
0.700 3.272 2.387 0.730 1.236 2.366
0.750 2.714 1.724 0.635 1.199 2.091
0.800 2.308 1.274 0.552 1.170 1.881
0.850 2.006 0.961 0.479 1.145 1.717
0.900 1.778 0.738 0.415 1.125 1.587
0.950 1.602 0.575 0.359 1.108 1.484
1.000 1.466 0.454 0.310 1.093 1.401

(Continued )
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25.5 t-PLANE SYNTHESIS OF SHORT-LINE MATCHING NETWORK

It is also possible to employ short-line impedance transformers to match a complex
load such as met in connection with the complex gyrator circuit of a typical junction
circulator. In order to ensure, for the purpose of synthesis, that all line lengths are
commensurate, it is necessary to replace the quarter-wave long stub in the gyrator
circuit by two stubs in parallel—one short-circuited and the other open-circuited.
The equivalent circuit obtained in this way is indicated in Fig. 25.5. The admittance
of the load is then described by

Yin ¼ Gþ j(YC tan u� YL= tan u) (25:25)

YC and YL are the characteristic admittance of its open- and short-circuited stubs,
respectively, and ut is the commensurate electrical length

ut ¼ tan�1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
YL=YC

p
(25:26)

It is observed that the commensurate length at resonance is now an arbitrary para-
meter, not limited to 908, and this is the key to a precise synthesis technique.

TABLE 25.2 Continued

Degree N ¼ 3 S(max) ¼ 1.15 S(min) ¼ 1.14

W G B0 G Y1 Y2

0.200 138.408 458.742 3.314 2.528 31.758
0.250 58.354 151.441 2.595 2.084 16.998
0.300 29.231 61.496 2.104 1.799 10.384
0.350 16.559 28.850 1.742 1.604 6.968
0.400 10.302 15.064 1.462 1.465 5.020
0.450 6.908 8.546 1.237 1.363 3.825
0.500 4.928 5.182 1.051 1.287 3.050
0.550 3.704 3.317 0.896 1.229 2.525
0.600 2.911 2.222 0.763 1.184 2.157
0.667 2.238 1.381 0.617 1.139 1.820
0.700 2.005 1.111 0.554 1.122 1.696
0.750 1.739 0.820 0.472 1.100 1.549
0.800 1.545 0.620 0.401 1.083 1.437
0.850 1.400 0.477 0.341 1.069 1.351
0.900 1.290 0.374 0.290 1.058 1.283
0.950 1.523 0.410 0.270 1.084 1.428
1.000 1.738 0.446 0.257 1.105 1.556

Source: R. Levy and J. Helszajn, Specific equations for one and two section quarter-wave matching
networks for stub-resistor loads, IEEE Trans. Microwave Theory Tech., Vol. MTT-30, pp. 55–62, Jan.
1982. Reproduced with permission.
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An equivalence between this load network and the usual single-stub representation
is obtained by equating the susceptance slope parameters of the two arrangements. One
definition of the susceptance slope parameter of a load in terms of its susceptance is

B0 ¼ v t

2
dB

dv

����
u¼u t

(25:27)

Evaluating the preceding equation in terms of the original variables gives

B0 ¼ v t

2
(YC sec

2 uþ YLcosec
2u)

du

dv

����
u¼u t

(25:28)

or

B0 ¼ (YC þ YL) tan
�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
YL=YC

p
(25:29)

Expressions for YC and YL in terms of ut and B0 may be obtained but are of no
value here.

Figure 25.6 indicates the network circuit of such an (n2 2) matching technology.
The alternative representation of the load network shown by the equivalence of

Fig. 25.7 is also instructive. The admittance values of the compound short-circuited
stub are

Y 0
1 ¼ YC þ YL (25:30)

Y 0
2 ¼ (YC þ YL)YL=YC (25:31)

FIGURE 25.5 Equivalence between degree-1 and degree-2 complex loads.
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and the resonant length is the same as given in Eq. (25.26). When ut ¼ 458 then YC ¼

YL, and the compound stub degenerates to a 908 stub of uniform admittance 2YL,
as expected.

25.6 NETWORK PARAMETERS OF SHORT-LINE
IMPEDANCE TRANSDUCERS

Sample results for these short-line matching networks of order n ¼ 4 (two unit
elements matching) are presented in Tables 25.3–25.5. These are given to illustrate
the general features of this type of network. There are even more possibilities than
the quarter-wave network presented previously because the electrical length of the
unit elements ut represents yet another variable in addition to S(min) (for given band-
width and S(max)). Both ut and S(min) may be varied to control the load admittance

FIGURE 25.6 Topology of (n 2 2) UEs in cascade with degree-2 complex load.

FIGURE 25.7 Equivalence between degree-2 complex loads.
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TABLE 25.3 Short-line Matching Transformers where Theta (Midband) u2 5 2788888

Smax ¼ 1.1
Smin ¼ 1

W Y1 Y2 G YC YL B0 Q-factor ut

0.150 6.427 1.746 10.331 51.850 12.810 29.827 2.887 26.43
0.200 4.878 1.368 6.200 23.319 5.558 13.114 2.115 26.02
0.250 3.960 1.155 4.290 12.891 2.942 7.056 1.645 25.53
0.300 3.357 1.023 3.254 8.132 1.767 4.317 1.327 24.99
0.350 2.93 0.937 2.630 5.620 1.157 2.887 1.098 24.41
0.400 2.621 0.879 2.227 4.150 0.807 2.059 0.925 23.80
0.450 2.383 0.840 1.951 3.218 0.590 1.541 0.790 23.19
0.500 2.196 0.813 1.755 2.592 0.448 1.198 0.683 25.57
0.550 2.046 0.796 1.610 2.149 0.350 0.958 0.595 21.97
0.600 1.924 0.785 1.501 1.823 0.279 0.784 0.523 21.37
0.667 1.793 0.778 1.392 1.506 0.213 0.618 0.444 20.60
0.700 1.737 0.776 1.350 1.381 0.188 0.554 0.410 20.23

Smax ¼ 1.1
Smin ¼ 1.04
0.150 5.755 1.575 8.368 42.848 10.508 24.534 2.932 26.35
0.200 4.375 1.243 5.073 19.464 4.582 10.862 2.141 25.88
0.250 3.558 1.057 3.550 10.881 2.439 5.890 1.659 25.33
0.300 3.023 0.943 2.725 6.946 1.474 3.634 1.334 24.73
0.350 2.648 0.871 2.229 4.856 0.971 2.450 1.099 24.09
0.400 2.373 0.824 1.909 3.626 0.681 1.762 0.923 23.44
0.450 2.163 0.793 1.691 2.841 0.501 1.329 0.786 22.78
0.500 1.999 0.773 1.537 2.309 0.382 1.040 0.677 22.13
0.550 1.868 0.762 1.423 1.931 0.300 0.837 0.588 21.50
0.600 1.761 0.756 1.338 1.650 0.240 0.689 0.515 20.89
0.667 1.647 0.754 1.254 1.374 0.184 0.547 0.436 20.10
0.700 1.599 0.755 1.221 1.265 0.163 0.491 0.403 19.72

Smax ¼ 1.1
Smin ¼ 1.08
0.150 4.339 1.227 4.969 22.087 5.242 12.389 2.493 25.97
0.200 3.325 0.996 3.141 10.468 2.334 5.646 1.797 25.29
0.250 2.730 0.873 2.300 6.110 1.271 3.158 1.373 24.52
0.300 2.343 0.804 1.846 4.072 0.785 2.010 1.089 23.71
0.350 2.075 0.765 1.575 2.963 0.528 1.395 0.886 22.89
0.400 1.880 0.743 1.402 2.292 0.378 1.030 0.735 22.10
0.450 1.733 0.734 1.286 1.852 0.283 0.795 0.619 21.34
0.500 1.619 0.731 1.204 1.545 0.219 0.635 0.527 20.63
0.550 1.529 0.734 1.145 1.319 0.174 0.520 0.454 19.96
0.600 1.456 0.740 1.101 1.147 0.141 0.434 0.395 19.33
0.667 1.380 0.751 1.058 0.972 0.109 0.350 0.331 18.55
0.700 1.348 0.757 1.042 0.901 0.097 0.317 0.304 18.19
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TABLE 25.4 Short-line Matching Transformers where Theta (Midband) u2 5 3688888

Smax ¼ 1.1
Smin ¼ 1

W Y1 Y2 G YC YL B0 Q-factor ut

0.150 4.856 2.642 11.718 35.925 18.342 33.668 2.873 35.55
0.200 3.706 2.060 6.992 15.917 7.934 14.663 2.097 35.22
0.250 3.028 1.727 4.805 8.640 4.185 7.798 1.623 34.84
0.300 2.587 1.518 3.618 5.338 2.504 4.710 1.302 34.41
0.350 2.280 1.378 2.903 3.605 1.634 3.105 1.069 33.95
0.400 2.055 1.281 2.439 2.597 1.136 2.181 0.894 33.48
0.450 1.886 1.212 2.122 1.963 0.828 1.607 0.757 33.00
0.500 1.755 1.161 1.895 1.539 0.625 1.228 0.648 32.52
0.550 1.651 1.124 1.728 1.241 0.487 0.967 0.560 32.05
0.600 1.567 1.096 1.600 1.024 0.387 0.773 0.486 31.59
0.667 1.478 1.070 1.474 0.815 0.294 0.600 0.407 30.99
0.700 1.442 1.060 1.424 0.734 0.259 0.532 0.374 30.70
Smax¼ 1.1
Smin¼ 1.04
0.150 4.355 2.381 9.479 29.597 15.036 27.639 2.916 35.48
0.200 3.332 1.868 5.709 13.217 6.535 12.105 2.120 35.11
0.250 2.732 1.577 3.966 7.238 3.466 6.479 1.634 34.68
0.300 2.342 1.395 3.020 4.513 2.085 3.939 1.304 34.21
0.350 2.072 1.276 2.451 3.076 1.369 2.614 1.067 33.71
0.400 1.876 1.194 2.082 2.234 0.956 1.849 0.888 33.20
0.450 1.729 1.137 1.830 1.702 0.701 1.370 0.749 32.69
0.500 1.615 1.097 1.651 1.343 0.532 1.054 0.638 32.19
0.550 1.625 1.067 1.519 1.090 0.416 0.833 0.549 31.70
0.600 1.453 1.046 1.419 0.905 0.332 0.674 0.475 31.23
0.667 1.378 1.026 1.320 0.724 0.254 0.522 0.396 30.62
0.700 1.346 1.029 1.281 0.654 0.254 0.464 0.362 30.33

Smax¼ 1.1
Smin¼ 1.08
0.150 3.305 1.847 5.599 15.048 7.481 13.835 2.471 35.19
0.200 2.560 1.486 3.506 6.943 3.315 6.203 1.769 34.65
0.250 2.128 1.288 2.541 3.935 1.796 3.405 1.340 34.04
0.300 1.853 1.172 2.019 2.536 1.104 2.123 1.051 33.41
0.350 1.664 1.099 1.706 1.781 0.739 1.442 0.845 32.79
0.400 1.530 1.053 1.505 1.329 0.526 1.042 0.692 32.19
0.450 1.431 1.023 1.369 1.035 0.392 0.787 0.575 31.62
0.500 1.356 1.003 1.273 0.832 0.302 0.616 0.484 31.08
0.550 1.297 0.991 1.202 0.686 0.240 0.494 0.411 30.58
0.600 1.251 0.983 1.150 0.575 0.194 0.404 0.352 30.12
0.667 1.204 0.978 1.098 0.466 0.150 0.318 0.289 29.56
0.700 1.184 0.976 1.078 0.423 0.133 0.284 0.263 29.28
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TABLE 25.5 Short-line Matching Transformers where Theta (Midband) u25 4588888

Smax¼ 1.1
Smin¼ 1.08

W Y1 Y2 G YC YL B0 Q-factor ut

0.150 3.928 3.928 14.024 25.578 25.578 40.178 2.865 45.00
0.200 3.020 3.020 8.293 11.014 11.014 17.300 2.086 45.00
0.250 2.491 2.491 5.640 5.779 5.779 9.078 1.609 45.00
0.300 2.149 2.149 4.199 3.438 3.438 5.400 1.286 45.00
0.350 1.914 1.914 3.330 2.230 2.230 3.503 1.052 45.00
0.400 1.744 1.744 2.767 1.541 1.541 2.420 0.875 45.00
0.450 1.618 1.618 2.380 1.116 1.116 1.754 0.737 45.00
0.500 1.521 1.521 2.103 0.839 0.839 1.318 0.627 45.00
0.550 1.445 1.445 1.899 0.649 0.649 1.020 0.537 45.00
0.600 1.385 1.385 1.743 0.515 0.515 0.808 0.464 45.00
0.667 1.322 1.322 1.588 0.388 0.388 0.610 0.384 45.00
0.700 1.296 1.296 1.526 0.341 0.341 0.535 0.351 45.00

Smax¼ 1.1
Smin¼ 1.04
0.150 3.529 3.529 11.323 20.948 20.948 32.905 2.906 45.00
0.200 2.725 2.725 6.750 9.057 9.057 14.226 2.108 45.00
0.250 2.258 2.258 4.634 4.775 4.775 7.500 1.618 45.00
0.300 1.958 1.958 3.486 2.855 2.855 4.485 1.287 45.00
0.350 1.753 1.753 2.793 1.862 1.862 2.924 1.047 45.00
0.400 1.606 1.606 2.345 1.293 1.293 2.031 0.866 45.00
0.450 1.497 1.497 2.037 0.941 0.941 1.479 0.726 45.00
0.500 1.414 1.414 1.818 0.711 0.711 1.117 0.614 45.00
0.550 1.350 1.350 1.656 0.553 0.553 0.868 0.524 45.00
0.600 1.299 1.299 1.533 0.440 0.440 0.691 0.451 45.00
0.667 1.246 1.246 1.411 0.334 0.334 0.524 0.371 45.00
0.700 1.224 1.224 1.363 0.293 0.293 0.461 0.338 45.00

Smax¼ 1.1
Smin¼ 1.08
0.150 2.701 2.701 6.631 10.378 10.378 16.301 2.458 45.00
0.200 2.122 2.122 4.092 4.565 4.565 7.170 1.752 45.00
0.250 1.792 1.792 2.918 2.453 2.453 3.853 1.320 45.00
0.300 1.584 1.584 2.282 1.495 1.495 2.349 1.029 45.00
0.350 1.446 1.446 1.900 0.994 0.994 1.561 0.822 45.00
0.400 1.349 1.349 1.654 0.703 0.703 1.104 0.668 45.00
0.450 1.278 1.278 1.486 0.520 0.520 0.817 0.550 45.00
0.500 1.226 1.226 1.366 0.399 0.399 0.627 0.459 45.00
0.550 1.186 1.186 1.279 0.315 0.315 0.494 0.386 45.00
0.600 1.155 1.155 1.213 0.253 0.253 0.398 0.328 45.00
0.667 1.124 1.124 1.148 0.195 0.195 0.306 0.267 45.00
0.700 1.111 1.111 1.123 0.172 0.172 0.271 0.241 45.00
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level G and susceptance slope parameter B0 while leaving the Q-factor essentially
unchanged. Actually, as ut is reduced, the bandwidth increases somewhat, but a dis-
advantage of carrying this too far is that the admittance levels may become
impractical.

The cases where Y2 ¼ 1 allow the characteristics of loads obtained using measured
results in 50 V lines to be retained. The matching networks may commence at the
load itself, and it is not necessary to use reference planes some distance away from
the load to avoid perturbing the junction.

It is interesting to observe that Y1 ¼ Y2, when ut ¼ 458, and the double unit
element degenerates to the classic single quarter-wave transformer. We observe
also that here YL ¼ YC, and the susceptance slope parameter (Eq. (25.29)) degenerates
to give

B0 ¼ pYL=2

This is related to the susceptance slope parameter of the single-stub-resistor load
network by a factor of 2, which is due to the fact that the stubs in our present case
are of half the electrical length and hence have twice the effective bandwidth.
Incidentally, these identities for the degenerate cases represent a good test of the
validity of the synthesis developed in this chapter.
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CHAPTER TWENTY-SIX

Fabrication of UHF Circulators
Using Irregular Hexagonal
Gyromagnetic Resonators

26.1 INTRODUCTION

Gyromagnetic materials for use in the design of ferrite phase shifters and junction
circulators may be biased below the main Kittel resonance or above it. In the
former case the origin of the direct magnetic field intensity coincides with that at
which it is zero, whereas in the latter case it corresponds with that at which it is infi-
nite. UHF devices are normally biased above the main resonance. An important
classic difference between the two situations is that the normalized magnetization
and effective permeability are both less than unity below the main resonance but
are both usually larger than unity above it. Another distinguishing feature between
the two is that the frequency behavior and magnitudes of the elements of the per-
meability tensor are different. A further important difference between the two
regimes is that while the effective permeability varies very little with the direct mag-
netic field below the Kittel resonance, it varies rapidly above it. The main emphasis of
this chapter is the study of an irregular gyromagnetic resonator biased above the Kittel
line as a preamble to the design of one commercial circulator. The exact connections
between the effective permeability and gyrotropy and the direct magnetic parameters
of the magnetic insulator introduced in Chapter 2 are often approximated in the
description of above-resonance devices and this is the approach adopted here.
Ideally, the frequency interval defined by the split frequencies of the resonator
must separately exclude the possibility of the split higher order modes intruding
into the passband defined by the dominant split +1 modes, or by the specification,
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and must also avoid the intrusion of the main resonance skirt in the passband. The
possible onset of low-field loss must also be respected. One difficulty with assem-
bling experimental data with this sort of arrangement at a single frequency is that
the midband frequency varies with the direct magnetic field. One way to deal with
this problem is to reset the size of the resonator at each and every field setting.
Another way is to introduce suitably located magnetic walls. An important phenom-
enon, not dealt with specifically in this text, is that of third order intermodulation dis-
tortion (IMD) in magnetic insulators. Some results on this feature are included in this
chapter for completion sake.

26.2 WAVE IMPEDANCE AND WAVENUMBER IN UHF
GYROMAGNETIC CIRCUITS

A distinguishing difference between the constitutive effective permeabilities above
and below the Kittel line is that it is larger than unity above it, whereas it is approxi-
mately unity below it. These features have some importance in the design of practical
ferrite devices. The constitutive parameters in a ferrite substrate magnetized above the
uniform mode resonance and perpendicular to its plane are typically described by

1f ¼ 15:0

and

meff ¼ 3:5

so that

meff1 f ¼ 52:5

1f=meff ¼ 4:29

The value of the equivalent dielectric constant perpendicular to the plane of the
substrate is therefore quite different from that in the plane. The situation below the
Kittel line is quite different. In this instance,

meff � 1

so that

1fmeff ¼ 1f
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and

1f=meff � 1f

The material, in this case, displays the same effective constitutive parameters in
both the direction of propagation and perpendicular to it. Both the electrical length
of any transformer region and the size of any resonator are therefore less above the
Kittel line than below it. Another consequence of this result is that whereas the
wave admittance of the transformer circuit in the design of the matching network
has a similar value to that met in below-resonance devices with dielectric materials,
that of the resonator is quite different. The latter property is the explanation for the
need of thin assemblies in the design of UHF devices.

26.3 GYROMAGNETIC SPACE OF ABOVE-RESONANCE CIRCULATORS

The magnetic circuit of the magnetic insulator is determined by both the gyrotropy
and the effective permeability. The gyrotropy is set by the weakly magnetized
theory of the circulator. The upper bound of this quantity is approximately restricted
at the upper frequency of the specification to

k=m ¼ 0:35 (26:1)

This value of gyrotropy actually ensures that the intersection between the upper
branch of the dominant splitting mode and the lower branch of the first higher
order one is always outside the upper bandedge of the specification. The situation
may be understood by recognizing that the gyrotropy, unlike the case with below-
resonance devices, increases rather than decreases with frequency. One consequence
of this feature is that the frequency variation of the gyrator conductance is different
below and above the Kittel line.

The upper bound on the gyrotropy places a lower bound on the loaded Q-factor of
the junction or gyrator circuit, which is approximately given by

QL � 2:5

The effective permeability, however, is set by one of three possible considerations.
One possible design procedure in the case of a side-coupled triangular resonator (say)
is to fix the effective permeability (meff) in terms of the normalized gyrator conduc-
tance (g). A second is to fix it in terms of the cutoff number of the resonator. The third
possibility is to set it in terms of the susceptance slope parameter of the junction.
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The three relationships are

meff ¼ 1f=rg (26:2)

k0
ffiffiffiffiffiffiffiffiffiffiffiffi
1fmeff

p
A ¼ 4p=3 (26:3)

b0 ¼ B0=Y0 ¼
0:855(kA)2

Y0(k0H)meff

ffiffiffiffiffiffi
10

m0

r
(26:4)

r is the midband VSWR of the device, A is the side dimension of the resonator, and
H is the half-space thickness of the device.

The purpose of this chapter is to outline the design of a degree-2 circulator by
fixing the direct magnetic parameters of the device in the manner indicated here.

26.4 APPROXIMATE RELATIONSHIPS OF PERMEABILITY TENSOR

The exact descriptions of the gyrotropy (k/m) and the effective permeability (meff)
entering into the description of gyromagnetic resonators are tabulated in Chapter 2
in terms of the parameters of a magnetized magnetic insulator. Some useful approxi-
mations that are applicable above the uniform line resonance are summarized here.

k

m
� 1

s

p=s

1þ p=s

� �
(26:5)

or

s � �pþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 4m=k

p
2

(26:6)

and

meff � 1þ p=s (26:7)

or

s � p=(meff � 1) (26:8)

provided s(p þ s) ..1.
The ties between the two variables and the two direct magnetic field quantities

may again be connected in one of six ways. Table 26.1 summarizes the different
approximate relationships under consideration.
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The normalized magnetization ( p) and the normalized internal magnetic field
intensity (s) have the meaning introduced in Chapter 2:

p ¼ gM0=v

s ¼ g H0 � N(r)M0ð Þ=v

Nz(r) is the shape demagnetizing factor along the axis of the magnetic insulator.
In a nonellipsoidal body, such as a disk, this quantity is in principle dependent
on the radial coordinate of the geometry, as discussed in Chapter 3. One con-
sequence of this feature is that the magnetic field intensity inside a disk is
nonuniform even in the presence of a uniform direct magnetic field. This effect,
however, is usually disregarded in everyday engineering. Strictly speaking the
value of H0 entering in the calculation of the internal field is that in the absence of
the resonator.

TABLE 26.1 Approximate Equations (Above Kittel Line)

p, s k

m
� 1

s

� �
p=s

(1þ p=s)

meff � 1þ p=s

p, k=m s � �pþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 4 1þ p m=kð Þ½ �

p
2

meff � 1þ p=s

p, meff
s � p

meff � 1

k

m
� meff � 1ð Þ2

pmeff

s, k=m p � s k=mð Þ
k=m� 1=s

meff �
�m=k

s� m=kð Þ

s, meff
p � s meff � 1ð Þ

k

m
¼ 1

s

meff � 1ð Þ
meff

k=m, meff
p � m

k

� � meff � 1ð Þ2

meff

s � m

k

� �meff � 1
meff
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The condition s( p þ s) . 1 introduced in connection with the approximate
magnetic variables reduces to

s ( pþ s) . p2
H0

M0

� �
H0

M0
� 1

� �
(26:9)

The interval over which this approximation holds is bracketed by

5:1 � p � 2:2 (26:10)

provided

1:3 � H0=M0 � 2

Approximate relationships between m, k, p, and s may also be constructed by
taking linear combinations of meff and k/m. Table 26.2 gives the results obtained
in this way.

A feature of devices biased above the Kittel line, unlike the situation that prevails
below it, is that the normalized magnetization ( p) is not restricted to unity by the

TABLE 26.2 Approximate Equations (Above
Kittel Line)

p, s m ¼ 1þ p=s

k ¼ p=s2

k, m p ¼ m� 1ð Þ2=k
s ¼ m� 1ð Þ=k

p, k m ¼ 1þ ffiffiffiffiffiffi
pk

p

s ¼
ffiffiffiffiffiffiffiffiffi
p=k

p

p, m s ¼ p=(m� 1)

k ¼ m� 1ð Þ2=p

s, k p ¼ ks 2

m ¼ 1þ ks

s, m p ¼ s m� 1ð Þ
k ¼ (m� 1)=s
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onset of low-field loss. The relaxation in this requirement comes about because the
direct field necessary to bias the material there is in most circumstances sufficient
to saturate most materials.

A scrutiny of the relationship for meff suggests that its value is preserved between
any two frequencies provided p/s is kept constant. This condition is satisfied pro-
vided B0/m0M0 is preserved. This last remark may readily be understood by
writing p/s in terms of the original variables:

p

s
¼ M0=H0ð Þ

1� N(r) M0=H0ð Þ (26:11)

The absolute values of B0 and m0M0 are fixed by the required gyrotropy. One
design procedure is therefore to fix the ratio of B0/m0M0 or p/s from a statement of
meff, and then to obtain s in terms of the gyrotropy (k/m). p or m0M0 is thereafter cal-
culated from p/s or B0/m0M0. If p or m0M0 obtained in this way is realistic, then the
design may proceed. Recall that while the magnetic field intensifies inside and outside
a magnetic insulator are different, the magnetic flux density is the same in each region.

26.5 H0/M0 SPACE

The direct magnetic field entering into the description of the effective permeability
and gyrotropy may be defined in a number of different ways. The purpose of this
section is to do so in terms of H0/M0 in the case for which Nz ¼ 1. Adopting the
approximate form for meff by way of example gives

meff � 1þ 1
H0=M0 � 1ð Þ (26:12)

Figure 26.1 indicates the connection between meff and H0/M0. It suggests that meff is
solely fixed by the ratio H0/M0.

Similarly,

k

m

� �
� 1

p

1
H0=M0ð Þ � 1

� �
M0

H0

� �
(26:13)

Figure 26.2 gives the normalized magnetization versus the direct magnetic field for
parametric values of gyrotropy. It suggests that there is more than one combination
of p and H0/M0 for a given value of gyrotropy.

The normalized magnetization versus the direct magnetic field for parametric
values of gyrotropy is shown in Fig. 26.3.
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26.6 THE KITTEL LINE

In practice the insertion loss of any gyromagnetic device is largely determined by the
proximity of the Kittel line. This quantity fixes the magnetic field intensity of the
magnetic insulator. In the frequency domain, the line is fixed by the radian frequen-
cies of the specification v0 and the Kittel line (vr) by the bandwidth of the circuit
(Dv) and the uniform or effective linewidth (DHeff).

The required condition is obtained by recognizing that, in an above-resonance
device, the lower skirt of the Kittel line coincides with the upper bandedge frequency
of the microwave specification.

vr � ngDHeff=2ð Þ ¼ v0 þ Dv0=2ð Þ (26:14)

FIGURE 26.1 Effective permeability above the Kittel line versus direct magnetic field for
parametric values of normalized magnetization.
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n is the number of half-linewidths at the skirt of the Kittel line and is the unknown of
the problem. Rearranging the preceding condition gives

vr

v0
¼ 1þ Dv0

2v0

� �
þ ngDHeff

2vr

� �
vr

v0

� �
(26:15)

A second relationship for vr/v0 is obtained by having recourse to the Kittel
frequency in Chapter 2:

vr

v0
¼ gM0

v0

� �
H0

M0
� 1

� �
(26:16)

with Nz ¼ 1 and Nt ¼ 0.

FIGURE 26.2 Gyrotropy above the Kittel line versus direct magnetic field for parametric
values of normalized magnetization.
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The required result is now established by combining the previous two conditions

gM0

v0

� �
H0

M0
� 1

� �
� 1þ Dv0

2v0

� �
þ ngDHeff

2vr

� �
(26:17)

A more accurate condition is obtained by using the exact definition for vr in
Chapter 2 given by

vr ¼ gM0[H0=M0 þ (Nt � Nz)] (26:18)

Also recall that the demagnetizing factors for a disk satisfy

Nz þ 2Nt ¼ 1 (26:19)

FIGURE 26.3 Normalized magnetization above the Kittel line versus direct magnetic field
for parametric values of gyrotropy.
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The condition in Eq. (26.18) indicates that the minimum value of H0/M0, other things
being equal, is fixed by the product n DHeff/2. Of course, the exact value is deter-
mined by both the insertion loss and bandwidth of the specification. One difficulty
with the description of the linewidth, however, is that the lineshape is not usually
symmetric about the main Kittel line. One way of dealing with this difficulty is to
measure the split unloaded quality factors of the resonator as a preamble to design
in the manner indicated in Chapter 11. A trial value of H0/M0 between 1.20 and
1.30 has been found satisfactroy in many instances. The exact condition is
experimental.

In order to avoid so-called low-field loss, it is also necessary to ensure that the
material is saturated. This requirement is satisfied provided the internal direct mag-
netic field required to establish the Kittel line is zero

Hi ¼ 0 (26:20)

or

1=p � Nt (26:21)

This condition dictates the maximum magnetization that may be utilized in any
design. The nature of this type of loss is pictorially illustrated in Chapter 1.

26.7 TEMPERATURE STABILITY OF KITTEL LINE

An important aspect entering into the description of the permeability tensor
is the dependence of its entries on temperature. This is attributed primarily to
the variation of the saturation magnetization of the material with temperature.
While some materials may be temperature compensated by doping, this is not
always the case. The situation in the case of a pure YIG material is depicted in
Chapter 28.

The temperature at which the magnetization vanishes is known as the Curie
temperature. The change in magnetization with temperature is specified in ferrite
brochures by

DM0

M0 DT
(26:22)

The value in the case of a YIG material is

DM0

M0 DT
¼ 1:8� 10�3(8C)�1 (26:23)
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The frequency shift of the Kittel line for an infinite sheet is given without ado by

vr � Dvr

g

� �
¼ H0 � DH0ð Þ � M0 � DM0ð Þ (26:24)

Dvr ¼ 0 provided

DH0 ¼ DM0 (26:25)

Similar relationships are readily deduced for m, kmeff, and k/m. Those are left as
an exercise for the reader.

26.8 MODE CHARTS OF UHF GYROMAGNETIC IRREGULAR
HEXAGONAL PLANAR RESONATOR

The resonator shape under consideration in this chapter is an irregular hexagonal
geometry. Its details are specified in Chapter 16 by one radius and one

FIGURE 26.4 Mode chart of irregular hexagonal resonator (m0M0 ¼ 0.1100 T).
(Reproduced with permission from J. Helszajn, C. S. Cheng, and D. D’Orazio, UHF irregular
hexagonal gyromagnetic resonators symmetrically Loaded with magnetic walls, IEE Proc.
Microwave Antennas Propag., Vol. 146, No. 6, Dec. 1999.)
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internal angle. The side dimensions are related to the circumscribed radius and shape
angle by

A ¼ 2r sin f=2ð Þ (26:26a)

B ¼ 2r sin 608� f=2ð Þ (26:26b)

Some experimental results on a three-port junction obtained using a side-coupled
irregular gyromagnetic resonator with ports 2 and 3 terminated in matched loads for
three different values of magnetization are illustrated in Figs. 26.4–26.6. One feature
of these charts is that the midband frequency varies significantly with the direct
magnetic field intensity. Another is that the splitting between the dominant pair of
degenerate modes increases rapidly as the magnetic field approaches the main reson-
ance line.

The lower bound on the direct magnetic field is fixed by the Kittel line in practice.
This relationship is superimposed separately on the data in Figs. 26.4–26.6. It is fixed

FIGURE 26.5 Mode chart of irregular hexagonal resonator (m0M0 ¼ 0.1600 T).
(Reproduced with permission from J. Helszajn, C. S. Cheng, and D. D’Orazio, UHF irregular
hexagonal gyromagnetic resonators symmetrically Loaded with magnetic walls, IEE Proc.
Microwave Antennas Propag., Vol. 146, No. 6, Dec. 1999.)
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in Eq. (26.12). The value employed for Nz is 0.768. It is empirically defined here by
replacing the irregular hexagonal plate by an equivalent circular geometry. B0 is
obtained here by measuring the magnetic flux density between the ferrites. In
doing so, the small difference between the thicknesses of the center conductor and
the probe is disregarded. Some measurements elsewhere suggest this assumption is
permissible for engineering purposes provided the reluctance of the overall magnetic
circuit is large. The definition employed here, however, is compatible with engineer-
ing practice.

A finite element plot of the magnetic flux density of a typical magnet arrangement
is available in Chapter 3.

A scrutiny of the magnetized mode charts of the three materials employed in this
work in Figs. 26.4–26.6 indicates that the ratios of B0/m0 M0 at, say, 1 GHz are iden-
tical. The value obtained at 1 GHz in the case of the resonator geometry utilized here
is about 1.37. The corresponding effective permeability in this instance is equal to
3.18. The spacing between the upper face of a typical ferrite and a typical pole
piece is 1.62 mm; the thickness of the center conductor is 0.15 mm and that of a
typical ferrite is 1.62 mm.

FIGURE 26.6 Mode chart of irregular hexagonal resonator (m0M0 ¼ 0.1850 T).
(Reproduced with permission from J. Helszajn, C. S. Cheng, and D. D’Orazio, UHF irregular
hexagonal gyromagnetic resonators symmetrically Loaded with magnetic walls, IEE Proc.
Microwave Antennas Propag., Vol. 146, No. 6, Dec. 1999.)
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One polynomial approximation for the split frequencies of the dominant counter-
rotating modes of this sort of weakly magnetized resonator based on a finite element
solution of six different shape angles (f) is given in Chapter 16. A polynomial
approximation for the circumscribed radius r is also given in the same chapter.
The resonator shape adopted in that work is defined by its shape angle (f) and
circumscribed radii (r) by

f ¼ 21:798

r ¼ 10:07mm

The values of the polynomials obtained under these conditions are 0.84 and 2.10,
respectively. The values of the magnetization of the ferrite substrates employed
here are m0M0 ¼ 0.1000 T, 0.1600 T, and 0.1850 T, respectively.

FIGURE 26.7 Schematic diagram of irregular hexagonal planar resonator loaded by radial
magnetic walls.
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26.9 RADIAL MAGNETIC WALLS

A classic means of tuning a gyromagnetic resonator is to symmetrically load it
with magnetic walls in the manner described in Chapter 10. The schematic diagram
of this arrangement is illustrated in Fig. 26.7. This section summarizes two typical
mode charts for this type of resonator for a substrate with m0M0 ¼ 0.1600 T.
Figure 26.8 indicates one mode chart for an irregular hexagonal resonator using this
material. It suggests, in keeping with some prior art, that the resonant frequency of
such resonators can be varied by such means. Figure 26.9 depicts a similar result for
another geometry. Changes in the radial wavenumber due to changes inmeff with mag-
netization can be separated from that due to the introduction of the magnetic slots by
constructing constant B0/m0M0 lines. This feature is clearly shown in Fig. 26.10.
Polynomial approximations applicable to the resonator shape investigated here are

k0r ¼ �23:698
s1
s2

� �3
þ 11:11

s1
s2

� �2
� 1:3926

s1
s2

� �
þ 28:2,

B0

m0M0
¼ 2:1

(26:27a)

FIGURE 26.8 Mode chart of n ¼+1 modes in irregular hexagonal resonator loaded with
radial magnetic walls (m0M0¼ 0.1600 T, s1/s2 ¼ 0.50). (Reproduced with permission from
J. Helszajn, C. S. Cheng, and D. D’Orazio, UHF irregular hexagonal gyromagnetic resonators
symmetrically with magnetic walls, IEE Proc. Microwave Antennas Propag., Vol. 146, No. 6,
Dec. 1999.)
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k0r ¼ �17:319
s1
s2

� �3
þ5:0866

s1
s2

� �2
� 0:4752

s1
s2

� �
þ 26:3,

B0

m0M0
¼ 1:8

(26:27b)

k0r ¼ �14:892
s1
s2

� �3
þ 4:4964

s1
s2

� �2
� 0:0133

s1
s2

� �
þ 22:8,

B0

m0M0
¼ 1:5

(26:27c)

k0r ¼ �9:0065
s1
s2

� �3
þ 0:5805

s1
s2

� �2
þ 0:1452

s1
s2

� �
þ 20:0,

B0

m0M0
¼ 1:3

(26:27d)

with f ¼ 21.798.

FIGURE 26.9 Mode chart of n ¼+1 modes in irregular hexagonal resonator loaded with
radial magnetic walls (m0M0¼ 0.1600 T, s1/s2 ¼ 0.70). (Reproduced with permission from
J. Helszajn, C. S. Cheng, and D. D’Orazio, UHF irregular hexagonal gyromagnetic resonators
symmetrically with magnetic walls, IEE Proc. Microwave Antennas Propag., Vol. 146, No. 6,
Dec. 1999.)
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The overlap of the different magnetization curves in the k0r/(s1/s2) space may be
taken as one indication of the quality of the magnetic flux density calibration.

26.10 MAGNETIC VARIABLES OF GYROMAGNETIC RESONATORS

The diagonal and off-diagonal elements of the gyromagnetic substrate may be veri-
fied by taking linear combinations of meff and k/m. Figures 26.11 and 26.12 summa-
rize relationships between the normalized internal direct magnetic field and the
effective permeability and gyrotropy, respectively.

The relationship between s and meff in Fig. 26.11 is established by experimentally
determining the radial wavenumber at the midband frequency and solving it for meff

FIGURE 26.10 Relationship between k0r and s1/s2 for parametric values of B0/m0M0 and
m0M0. (Reproduced with permission from J. Helszajn, C. S. Cheng, and D. D’Orazio, UHF
irregular hexagonal gyromagnetic resonators symmetrically with magnetic walls, IEE Proc.
Microwave Antennas Propag., Vol. 146, No. 6, Dec. 1999.)
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as a preamble of making use of that between p, s, and meff:

k0
ffiffiffiffiffiffiffiffiffiffiffiffi
meff1f

p ¼ 2:10=r (26:28)

The relationship between s and k/m shown in Fig. 26.12 is deduced separately by
writing k/m in terms of s and meff:

k

m
� meff � 1ð Þ

smeff

(26:29)

The only meaningful solutions in the present effort are those that correspond to
1GHz. This gives p ¼ 3.08, s ¼ 11; p ¼ 4.48, s ¼ 11; p ¼ 5.18, s ¼ 11.

A scrutiny of Fig. 26.12 suggests that there is more than one combination of p and
s for a given gyrotropy. One way to move s or the direct magnetic field intensity
away from the Kittel line is to use a large value of p or magnetization.

FIGURE 26.11 Relationship between normalized internal direct magnetic field intensity and
effective permeability.
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26.11 COMPLEX GYRATOR CIRCUIT OF UHF CIRCULATORS

The quantities entering into the description of the one-port complex STUB-G gyrator
circuit of a UHF junction using a weakly magnetized irregular hexagonal resonator
are its quality factor (QL), its susceptance slope parameter (b0), and its gyrator con-
ductance (g). The experimental evaluation of these quantities has been dealt with
elsewhere in the text and is reproduced here for completeness only.

1
QL

¼
ffiffiffi
3

p vþ � v�
v0

� �
(26:30)

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(VSWR)� 1

p
, g � 1 (26:31)

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(VSWR)� 1

(VSWR)

r
, g � 1 (26:32)

FIGURE 26.12 Relationship between normalized internal direct magnetic field intensity and
gyrotropy.
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and

b0 ¼ gQL (26:33)

The above relationships are also related by

g ¼
ffiffiffi
3

p
b0

vþ� v�
v0

� �
(26:34)

QL is obtained by measuring v0, vþ, and v2 versus direct field intensity; g is
obtained by measuring the return loss or VSWR of the junction at one port at the
midband frequency with the other two ports terminated in 50 V loads.

FIGURE 26.13 Frequency of UHF circulator using irregular gyromagnetic resonator for
parametric values of magnetisation. (Reproduced with permission from J. Helszajn, Apollo
Microwave Ltd. Montreal.)
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The data obtained in this way are summarized in Figs. 26.13–26.16. This has
been done for three different garnet materials. The quality factor is experimentally
deduced by measuring the split frequencies of the junction and the gyrator
conductance by measuring its VSWR at the midband frequency. The susceptance
slope parameter is then calculated in terms of the quality factor and the gyrator
conductance.

26.12 REAL PART CONDITION

An important distinction between a stripline circulator using a gyromagnetic resona-
tor biased above and below the Kittel line is the nature of the real part of the
complex gyrator circuit. While it is essentially flat with frequency below the Kittel

FIGURE 26.14 Quality factor of UHF circulator using irregular gyromagnetic resonator for
parametric values of magnetisation. (Reproduced with permission from J. Helszajn, Apollo
Microwave Ltd. Montreal.)
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line, it is not above it. One means of tackling this problem is to introduce a short UE
between the terminals of the resonator and the external network, in order to wrap the
real part about a constant conductance circle. In practice, the center conductor of the
UE is often the same as that of the coupling angle so that experimentally it has no
identity. The net effect, however, is to lower the midband frequency of the circulator.

In practice the ensuing shift in frequency is somewhat experimentally masked by
resetting the direct magnetic field on the junction. It does produce a discrepancy,
however, between the calculated and experimental field settings.

26.13 QUALITY FACTOR OF UHF CIRCULATORS

The quality factor of a junction circulator, as is now understood, may be calculated by
measuring the split frequencies of the junction. It may also be estimated, however, by

FIGURE 26.15 Gyrator conductance of UHF circulator using irregular gyromagnetic reso-
nator for parametric values of magnetisation. (Reproduced with permission from J. Helszajn,
Apollo Microwave Ltd. Montreal.)
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analyzing the frequency response of the circulator by having recourse to the gain-
bandwidth of a degree-2 arrangement. Figure 26.17 indicates one typical UHF
response. A value of 2.30 is compatible with this data. In keeping with practice,
this work suggests, that such values are realizable with the materials employed
here without encroaching on the Kittel resonance line. The overall insertion loss of
the circulator is 0.20 dB maximum. The size of the resonator employed in obtaining
this result is somewhat smaller than that utilized in obtaining the raw mode charts.
The ratio B0/m0M0 ¼ 1.24.

Some estimate of the effective unloaded quality factor may also be deduced by
having recourse to the insertion loss function between any two typical ports in
Chapter 11.

L(dB) ¼ 20 log10 1þ QL=Qeffð Þ (26:35)

FIGURE 26.16 Susceptance slope parameter of UHF circulator using irregular gyromag-
netic resonator for parametric values of magnetisation. (Reproduced with permission from
J. Helszajn, Apollo Microwave Ltd. Montreal.)
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where

1
Qeff

¼ 1
Qþ

þ 1
Q�

(26:36)

Q+ are the unloaded quality factors of the split eigen-networks of the problem region.
Taking QL as 2.5 (say) and the insertion loss as 0.10 dB, and dividing the overall

loss equally between the impedance transformers in a typical transmission path and
the resonator, gives Qeff as 250.

FIGURE 26.17 Frequency response of degree-2 junction circulator. (Reproduced with
permission from J. Helszajn, C. S. Cheng, and W. D’Orazio, UHF irregular hexagonal gyro-
magnetic resonators symmetrically with magnetic walls, IEE Proc. Microwave Antennas
Propag, Vol. 146, No. 6, Dec. 1999.)
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CHAPTER TWENTY-SEVEN

Fabrication of Very Weakly
and Weakly Magnetized
Microstrip Circulators

27.1 INTRODUCTION

One difficulty with the design of a microstrip circulator is that the substrate thickness
is often specified by equipment requirements rather than by the circulator design. One
family of solutions that is fairly attractive for use in the construction of such devices is
based on a weakly magnetized resonator in which the resonator shape is used in the
synthesis problem. Some possible resonator shapes in the design of three-port circu-
lators are indicated in Fig. 27.1. The realization of this class of circulator offers some
useful insights into trade-offs between the resonator geometry, the substrate thick-
ness, the maximum and minimum ripple levels of the network problem, and the gyro-
tropy of this circulator. The use of the alternate line transformer deserves a special
mention in its design. The family of solutions outlined here is the only one possible
at frequencies above about 50 GHz. One resonator for which a very weakly
magnetized solution is available in closed form is the classic disk resonator. In this
arrangement the susceptance slope parameter of the gyrator circuit is dependent on
the substrate thickness, the quality factor, or gain bandwidth on the gyrotropy. In
this sort of problem the gyrator conductance is the dependent quantity and is met
once the other two parameters are specified. Another is the triangular geometry
coupled at each of its symmetrical triplets of ports. While the quality factor of
each resonator is of the same order, each has a quite different value of susceptance
slope parameter. Specifically, the susceptance slope parameter of the side-coupled
triangular resonator is three times that of a simple disk resonator, whereas that of

The Stripline Circulator: Theory and Practice. By J. Helszajn
Copyright # 2008 John Wiley & Sons, Inc.

511



the apex fed one is one-third that of the disk geometry. Each circuit is therefore
associated with a quite different microwave solution. A complete description of a cir-
culator using a very weakly magnetized regular hexagonal resonator also exists.
Suffice it to note that its gyrator circuit is not very different from that of a simple
disk resonator. The sort of specifications that can be realized with this class of circu-
lation solutions depends, of course, on what is meant by a very weakly magnetized
resonator. A resonator is either very weakly magnetized, weakly magnetized, moder-
ately magnetized, or strongly magnetized. The meanings of these regimes have been
dealt with in Chapters 13 and 28. While the gain-bandwidth product of the class of
solutions dealt with in this chapter is restricted by the gyrotropy of the problem
region, it still provides practical commercial solutions. Of course, different conclusions
are possible if a moderately or a strongly magnetized resonator is utilized.

27.2 PARALLEL PLATE WAVEGUIDE MODEL OF
MICROSTRIP CIRCULATORS

The usual approach to the design of microstrip passive circuits and circulators using
weakly magnetized resonators is to replace the problem region with imperfect

FIGURE 27.1 Schematic diagram of planar resonators for use in planar junction circulators.
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magnetic side walls by an equivalent waveguide model, and this is the method
adopted here. Figure 27.2 indicates possible equivalences in the cases of microstrip
circulators using circular and triangular planar resonators. Once any design is com-
plete, in terms of the equivalent parallel plate waveguide approximation, it is necess-
ary to invoke the relationship between the actual and effective parameters of the
problem region.

The effective quantities entering into the description of a planar triangular resona-
tor with open walls are defined in terms of an effective inscribed radius (r). No
justification is sought for this approach other than that it permits some initial
engineering parts to be laid out on the basis of an equivalent waveguide model.

A separate matter of concern in the design of such circuits is that if the fring-
ing fields on a typical resonator contour are excessive, then it becomes difficult to
preserve the definitions of its coupling angle and its shape. The effect on the
resonator shape is particularly worrying in that it may no longer have any resem-
blance to the actual assumed one. This situation may be understood by recogniz-
ing that the effective side walls of a high impedance strip are displaced further

FIGURE 27.2 Equivalence between microstrip resonators and parallel waveguide circuits.

27.2 PARALLEL PLATE WAVEGUIDE MODEL OF MICROSTRIP CIRCULATORS 513



out from the physical ones than is the case with those of a low impedance strip.
This sort of effect would readily distort the equilateral resonator in Fig. 27.1a
(say) into something more like the irregular hexagonal resonator with concave
side walls. It is also necessary to ensure that fringing effects do not corrupt
the complex gyrator description of the circuit. One way to partially avoid both
difficulties is to impose a lower bound on the aspect ratio (r/H ) of the resonator.
The influence of the aspect ratio of the resonator region upon the uniformity of
the gyrotropy has also been mentioned in connection with this sort of device.
One arbitrary bound on this quantity is

r=H � 5 (27:1)

r either represents the inscribed radius defined by the triangular resonator,

r ¼ A=2
ffiffiffi
3

p
(27:2a)

or the actual radius of the disk,

r ¼ R (27:2b)

The effective quantities entering into the descriptions of disk and triangular
arrangements are

1eff ¼ 1þ qe(1f � 1)

1=meff ¼ 1 þ qm(1=me � 1)

Aeff ¼ Aþ (H ln 2)=p

Reff ¼ Rþ (H ln 2)=p

One possible definition of the filling factors (qe, qm) entering into the descriptions of
the effective quantities is

qe � qm � 1
2 [1þ (1þ 5H=r)�0:55] (27:3)

qe or qm is the filling factor of a strip of thickness H whose width (W ) equals the
diameter of a segmented resonator 2r.

Strictly speaking, it is also necessary to introduce the notion of an effective gyro-
tropy in the description of the quality factor of the resonator. One semiempirical
formulation is

(k=m)eff � qm(k=m) (27:4)
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The effective permeability meff is given separately:

meff ¼
m2 � (qmk)2

m
(27:5)

where qm is the filling factor introduced in Eq. (27.3). It is assumed here that meff ¼ m

and keff ¼ qmk.

27.3 VERY WEAKLY MAGNETIZED PROBLEM REGION

A unique feature of a junction circulator using a very weakly or weakly magnetized
resonator (on which the design procedure of this chapter rests) is that its complex
gyrator circuit is essentially independent of the coupling angle at its ports. This
means that the design of the transformer circuit does not perturb the junction in
any way and that its adjustment may be dealt with by the appropriate parallel plate
model of a microstrip line on a demagnetized ferrite substrate.

The design of a very weakly magnetized microstrip circulator using a disk or a tri-
angular resonator proceeds with the aid of its equivalent waveguide model and a
knowledge of the corresponding design procedure for stripline circulators. If the
in-phase eigen-network of the device may be idealized by a frequency independent
short-circuit boundary condition at its terminals, then its complex gyrator circuit
may be realized in the form indicated in Fig. 27.3. In this circuit, G is the absolute
conductance at the terminals of the junction and also at the output microstrip line,
B0 is the absolute susceptance slope parameter, and QL is the loaded Q-factor.
Tables 27.1–27.3 summarize some classic design equations for the realization of
microstrip circulators using weakly magnetized disk and triangular resonators.

The first column in these tables gives the susceptance slope parameter, gyrator
conductance, and loaded Q-factor at the terminals of the device. The second
column defines the ratio of the entries of the permeability tensor k/m of the magne-
tized resonator in terms of the loaded Q-factor (or in terms of the gyrator conduc-
tance) and susceptance slope parameter of the device.

FIGURE 27.3 1-port complex gyrator circuit of 3-port junction circulator.
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Once the magnetic variables of the resonator are fixed, its linear dimensions may
be calculated using the entries in the third column in Tables 27.1–27.3. The radius of
the circular disk resonator or the side dimension of the triangular one is obtained from
the respective cutoff numbers. The substrate thickness H is then obtained from the
specification of the susceptance slope parameter. The calculation of Weff ( f ) com-
pletes the design and ensures that the network, magnetic, and physical variables in
Tables 27.1–27.3 are compatible. If the specifications of the device are incompatible
with the substrate thickness H, or the width Weff( f ) of the connecting lines is incom-
patible with the resonator area, the design must be repeated with a less severe
specification.

The last column in these tables gives the description of the gyrator conductance
and loaded Q-factor in terms of the split frequencies of the two counterrotating

TABLE 27.1 Design Data for Very Weakly Magnetized Disk Resonator
(keff ( f )Reff ( f )= 1:84)

Network
Variables Magnetic Variables Physical Variables Frequency Variables

B0 – 0:740z0(keff ( f )Reff ( f ))2

me,eff ( f )k0H
–

G 2
ffiffiffi
3

p
B0

(keff ( f )Reff ( f ))2 � 1

� �
k

m

� �

eff

zeff z0
Weff ( f )

H

ffiffiffi
3

p
B0 vþ � v�

v0

� �

QL(eff) (keff ( f )Reff ( f ))2 � 1

2
ffiffiffi
3

p m

k

� �
eff

0:740z0(keff ( feff ( f ))
2

Gme,eff ( f )k0H

ffiffiffi
3

p vþ � v�
v0

� �� ��1

TABLE 27.2 Design Data for Very Weakly Magnetized Triangular Resonator
Coupled at Corners (keff ( f )Aeff ( f )= 4p=3)

Network Variables
Magnetic
Variables Physical Variables Frequency Variables

B0 – 0:0475z0(keff ( f )Aeff ( f ))2

me,eff ( f )k0H
–

G 3B0

p

� �
k

m

� �

eff

zeff z0
Weff ( f )

H

ffiffiffi
3

p
B0 vþ � v�

v 0

� �

QL(eff)
p

3
m

k

� �
eff

0:0475z0(keff ( f )Aeff ( f ))2

Gme,eff ( f )k0H

ffiffiffi
3

p
(
vþ � v�

v0
)

� ��1
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modes of the magnetized resonator. The quantities in Tables 27.1–27.3 are related
through the following relationship that has already appeared in a number of places
in this text:

G ¼
ffiffiffi
3

p
B0 vþ � v�

v 0

� �
(27:6)

This equation indicates that G is proportional to the product of the difference between
the two split frequencies of the counterrotating modes of the magnetized junction and
the susceptance slope parameter of the junction. This is a general result for any very
weakly magnetized junction circulator.

In order to have a trustworthy synthesis procedure for the design of these devices,
it is necessary to place an upper bound on the gyrotropy (splitting) over which the
entries in Tables 27.1–27.3 may be used with confidence. A very weakly magnetized
junction is defined for the purpose of this chapter as one for which the split counter-
rotating eigen-networks or eigenvalues may be described by single split poles and
for which the in-phase eigenvalue may be represented by a frequency independent
electric wall at the terminals of the resonator. One definition of a weakly magnetized
junction is therefore the verification of this condition. Another measure that is in
keeping with its very weakly magnetized model is to ensure that its quality factor
is independent of the coupling angle at the resonator terminals. Still another
measure is to ensure that the susceptance slope parameter is independent of both
its gyrotropy and its coupling angle. The very weakly magnetized model in the
case of a disk resonator already displays significant deterioration in the closed
form description of its complex gyrator circuit when the value of its gyrotropy (k)
is as little as 0.25. The gyrotropy in the case of a junction using a side-coupled tri-
angle is likewise restricted to about 0.25. While such values of gyrotropy place
some restriction on the gain-bandwidth product of this sort of solution, it is neverthe-
less adequate in the design of practical specifications. The moderately magnetized

TABLE 27.3 Design Data for Very Weakly Magnetized Triangular Resonator
Coupled Midway Along Side Dimensions (keff ( f )Aeff ( f ) = 4p=3)

Network Variables
Magnetic
Variables Physical Variables Frequency Variables

B0 – 0:4275z0(keff ( f )Aeff ( f ))2

meff ( f )k0H
–

G 3B0

p

� �
k

m

� �

eff

zeff z0
Weff ( f )

H

ffiffiffi
3

p
B0 vþ � v�

v0

� �

QL(eff)
p

3
m

k

� �
eff

0:4275z0(keff ( f )Aeff ( f ))2

Gmeff ( f )k0H

ffiffiffi
3

p vþ � v�
v0

� �� ��1
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region actually produces a more attractive gain-bandwidth product but at the cost of a
more difficult adjustment procedure.

27.4 WEAKLY MAGNETIZED PROBLEM REGION

One approach that may be used to extend the description of the very weakly magne-
tized description of a junction circulator using a disk resonator has been to introduce
suitable correction terms based on some exact calculations. A scrutiny of this solution
indicates that its quality factory and susceptance slope parameter deteriorate more
rapidly than its gyrator conductance. This feature has been observed elsewhere.
One means of dealing with this problem is to write the actual absolute susceptance
slope parameter B0(k/m) in terms of a modified quality factor QL(k/m) and the
weakly magnetized description of the gyrator conductance G as

B0(k=m) ¼ QL(k=m)G, 0 � k � 0:35 (27:7)

or

B0 k=mð Þ ¼ QL(k=m)
B0(0)
QL

� �
, 0 � k � 0:35 (27:8)

G is the absolute value of the gyrator conductance in Tables 27.1–27.3 and QL is
reproduced from Chapter 28:

QL � 0:689
m

k

� �
þ 0:046� 2:632

k

m

� �
þ 3:551

k

m

� �2
" #

0 � k=m � 0:30, 0:10 � c � 0:50 (27:9)

One suitable polynomial expansion for the quality factor QL(eff) of a weakly mag-
netized microstrip circulator using a disk resonator is obtained by introducing the
filling factor qm in the stripline relationship:

QL(eff ) � 0:689
1
qm

� �
m

k

� �
þ 0:046� 2:632 qm

k

m

� �
þ 3:551q2m

k

m

� �2
" #

0 � qm(k=m) � 0:30, 0:10 � c � 0:50 (27:10)

The description of the quality factor of a junction using a weakly magnetized
triangular resonator based on some calculations on a side-coupled triangular
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resonator based on the contour integral method is

QL(eff ) ¼
p

3
1
qm

� �
m

k

� �
þ 1:486� 12:71 qm

k

m

� �
þ 19:74 q2m

k

m

� �2
" #

0 � (k=m) � 0:35, 0:52 � c � 1:20 (27:11)

where

sinc ¼ W=2R (27:12)

and

sinc ¼ W=2r (27:13)

respectively.
The values of the quality factors bracketed by the above two relationships are valid

for both the very weakly and weakly magnetized resonators adopted here. Since it is
usually desirable, in any design, to maximize the gain-bandwidth product of the load,
the only values of gyrotropy that are of any interest are those associated with the
upper bounds defined by these intervals. The corresponding lower bounds on
the quality factors of the two arrangements are 1.86 and 2.42, respectively. These
results suggest, other factors being equal, that the gain-bandwidth product of a junc-
tion circulator employing a circular disk resonator is more attractive for the design of
commercial devices than one using a triangular one. One feature of either solution is
that the quality factor is independent of the coupling angle.

A separate scrutiny of the first circulation condition suggests that it also needs
some modification. One possible explanation of this sort of discrepancy is that,
strictly speaking, the resonant frequency displayed by a junction circulator coincides
with that at which the reflection eigenvalues of the in-phase and degenerate
counterrotating eigen-networks are out of phase rather than with that of the counter-
rotating ones.

This means that the actual boundary condition that needs to be satisfied is

Xin ¼ 0 (27:14)

instead of

X1 ¼ 0 (27:15)

Xin represents the imaginary part of the impedance of the complex gyrator circuit for
the case for which the reactance of the in-phase eigen-network is different from zero;
X1 represents the same quantity when it is equal to zero.

The second circulation condition is met by satisfying the appropriate entries
specified by Eqs. (27.7) and (27.8).
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27.5 EXPERIMENTAL EVALUATION OF COMPLEX
GYRATOR CIRCUITS

The split frequencies of one microstrip junction using a side coupled triangular reso-
nator is indicated in Fig. 27.4 for a number of different values of magnetization. The
quality factor for two of the materials is indicated in Fig. 27.5. The relationship
between the quality factor of this sort of circuit and the gyrotropy of the resonator
is self-evident. Figure 27.6 shows some results for a disk resonator for three different
materials, which may be used to verify the relationships between the magnetic and
frequency variables tabulated in columns 2 and 4 in Tables 27.1–27.3. Figure 27.7
indicates that, for a given gyrotropy, the quality factor of a disk resonator is lower
than that of the corresponding triangular geometry, in keeping with theory.

In order to cater for saturation effects in a magnetized substrate, an initial value of
loaded Q-factor is also sometimes defined. This quantity is constructed by extending

FIGURE 27.4 Split frequencies versus applied direct magnetic field for loosely coupled
side-coupled triangular resonator on garnet substrate (m0M0 ¼ 0.0290T, 0.0550T and
0.1200T). (Reproduced with permission from J. Helszajn, Fabrication of very weakly and
weakly magnetised microstrip circulators, IEEE Trans. on Microwave Theory Tech., MTT-
46, pp. 439–449, May 1998.)
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the angle suspended by the split frequencies at the origin to the value of applied direct
magnetic field at saturation. This field coincides with that for which the internal direct
magnetic field (Hi) is equal to zero:

Hi ¼ 0 (27:16)

where

Hi ¼ H0 � NzM0 (27:17)

M0 is the saturation magnetization (A/m), Nz is the demagnetizing factor along the
axis of the resonator, and H0 is the direct magnetic field intensity (A/m).

If the material is not saturated, then it is necessary to replace qm in the description
of QL(eff) by qm(M/M0), where M is the actual magnetization.

The relationship between the gyrotropy and effective quality factor QL(eff)
of a microstrip resonator using a triangular resonator is illustrated in Fig. 27.8 for

FIGURE 27.5 Quality factor versus applied direct magnetic field for loosely coupled
triangular resonator on different garnet substrates (p ¼ 0.190 and 0.533). (Reproduced with
permission from J. Helszajn, Fabrication of very weakly and weakly magnetised microstrip
circulators, IEEE Trans. on Microwave Theory Tech., MTT-46, pp. 439–449, May 1998.)
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qm ¼ 0.80 and 1.0. Some experimental results that rely on a definition of QL
i (eff) are

superimposed separately on this illustration. While these quality factor curves appear
at first sight well behaved, this is not in itself sufficient since it is also necessary to
ensure that the susceptance slope parameter is independent of the gyrotropy over
the same interval.

Figure 27.9 depicts some experimental data at about 9 GHz on the gyrator
conductance of junction circulators using disk, side, and apex coupled triangular
resonators printed on a 0.635 mm substrate with a saturation magnetization
(m0M0) equal to 0.1200 T. This sort of data is obtained by making use of the
relationship between the midband return loss of a magnetized junction and
its gyrator conductance with the two output ports terminated by 50V loads. It
is evident from this result that the gyrator conductance of the three arrangements
under consideration are not in the ratio 1:3:9 of the respective values of the sus-
ceptance slope parameters in Tables 27.1–27.3. One obvious reason for these
discrepancies is that the values of the quality factor of disk and triangular reso-
nators are slightly different. Another is that the values of the aspect ratios of the

FIGURE 27.6 Quality factor versus applied direct magnetic field for loosely coupled
disk resonator on different garnet substrates (p ¼ 0.090, 0.174 and 0.388). (Reproduced
with permission from J. Helszajn, Fabrication of very weakly and weakly
magnetised microstrip circulators, IEEE Trans. on Microwave Theory Tech., MTT-46,
pp. 439–449, May 1998.)
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resonators employed to obtain this data (r/H � 2.73) are somewhat lower than
that stipulated earlier in order to adequately reproduce the resonator shape of
the problem region.

A scrutiny of the network problem readily indicates that none of the complex
gyrator circuits displayed by these geometries are (at first sight) appropriate at
9 GHz for the design of quarter-wave coupled devices on a 0.635 mm substrate.
Some experimental hardware is illustrated in Fig. 27.10.

A feature of the general network problem is that while its maximum ripple level in
the passband and its bandwidth specification are essentially fixed by the quality factor
of the load, the value of its minimum ripple level may be used to control the level of

FIGURE 27.7 Comparison between quality factors of disk and triangular resonators.
(Reproduced with permission from J. Helszajn, Fabrication of very weakly and weakly
magnetised microstrip circulators, IEEE Trans. on Microwave Theory Tech., MTT-46,
pp. 439–449, May 1998.)
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its susceptance slope parameter. The equipment maker is seldom interested in this
latter quantity so that it may in practice be used to absorb any uncertainty in the
precise characterization of the absolute value of the susceptance slope parameter of
the gyrator network.

Another feature that explains the sometimes unexpected success of commercial
workers in this area is that while the frequency response of this class of circuit is
akin to that of a degree-2 filter circuit, no precise lower bound in this instance is
usually imposed on its quality factor. An assurance that its upper bound is not vio-
lated is therefore sufficient for design.

If a normalized value of 8 is taken for the susceptance slope parameter by way of
example and if the substrate thickness is taken as 0.635 mm, then an end fed triangu-
lar resonator is best at about 1.5 GHz, a disk one at 4.5 GHz, and a side-coupled
triangular resonator at 13.5 GHz.

FIGURE 27.8 Comparisons between quality factors based on closed form, numerical
method and experimental values of a triangular resonator versus gyrotropy (r/H ¼ 2.73).
(Reproduced with permission from J. Helszajn, Fabrication of very weakly and weakly
magnetised microstrip circulators, IEEE Trans. on Microwave Theory Tech., MTT-46,
pp. 439–449, May 1998.)
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FIGURE 27.9 Gyrator conductance versus applied direct magnetic field for disk, apex and
side-wall coupled triangular resonators on garnet substrate (p ¼ 0.388). (Reproduced with
permission from J. Helszajn, Fabrication of very weakly and weakly magnetised microstrip
circulators, IEEE Trans. Microwave Theory Tech., 01. MTT-46, pp. 439–449, May1998.)

FIGURE 27.10 Photograph of microstrip circuits.
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27.6 SYNTHESIS PROCEDURE

If the substrate thickness forms part of the specification then the design procedure
starts by evaluating the susceptance slope parameter of disk and triangular resonators
based on the modified weakly magnetized model from a statement of the frequency
and substrate thickness and its dielectric constant. In the example studied here,

f0 ¼ 3950MHz

H ¼ 0:635mm

Both the susceptance slope parameter and the quality factor of the complex gyrator
circuit are in the modified weakly magnetized model of the junction dependent on
the effective gyrotropy. The latter quantity must therefore be fixed before proceeding
with design. As the gain-bandwidth product of the specification is the paramount
quantity, it determines the gyrotropy in practice. The value for the triangular geome-
try is adopted here:

keff ¼ 0:35

Recall that the gyrotropy necessary to establish a given gain-bandwidth product is
somewhat lower in the case of a junction using a disk geometry than in that employ-
ing a triangular one.

The frequency dependent effective permeabilities associated with the effective
gyrotropy of the circuit are

me( f ) ¼ 0:88

me,eff ( f ) ¼ 0:90

The effective constitutive parameters cannot be calculated until r/H or R/H is available.
A trial calculation based on the ideal magnetic wall model of the problem region must
therefore be employed, in the first instance, to obtain this quantity.

qm ¼ 0:87

In order to be able to compare the values of the normalized susceptance slope
parameter of the three weakly magnetized resonator shapes under consideration, it
is assumed in the first place that all three designs are based on the same gyrotropy.
The required values are then obtained by scaling the susceptance slope parameters
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obtained in Tables 27.1–27.3 by having recourse to Eqs. (27.7) and (27.8):

me,eff ( f )b
0 ¼ 1:90, apex-coupled triangular resonator

me,eff ( f )b
0 ¼ 5:71, disk resonator

me,eff ( f )b
0 ¼ 17:11, side-coupled triangular resonator

A realizable specification that coincides with each resonator shape may now be
obtained once the quality factor of each junction is evaluated in terms of its gyrotropy.
The effective calculated value for the triangular resonator is

QL(eff ) ¼ 2:42

The network problem now indicates that the side-coupled triangular resonator is
perhaps the most practical solution at this frequency. One possibility that is compa-
tible with the calculated value of b0 is

S(min) ¼ 1:075

S(max) ¼ 1:15

2d0 ¼ 0:22

The equivalent gyrator circuit for this specification is defined by

b0 ¼ 17:22

g ¼ 7:12

yt ¼ 2:86

If there is no restriction on the thickness of the substrate, then the design can
proceed on the basis of a specification. This may be done as long as the gain-
bandwidth product can be realized by the gyrator model under consideration. One
possible specification (say) is given by

S(min) ¼ 1:05

S(max) ¼ 1:15

2d0 ¼ 0:26
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The equivalent gyrator circuit is described by

b0 ¼ 12:0

g ¼ 6:0

QL(eff ) ¼ 2:0

yt ¼ 2:63

This specification can be realized by a disk resonator on a substrate with a thickness of
0.345 mm. The required effective gyrotropy is

keff ¼ 0:28

This calculation as well as that of the previous example also suggests that small
variations in the quality factor of the specifications can produce large variations in
the overall frequency response and in the details of the complex gyrator circuit.

27.7 COMMERCIAL PRACTICE

The purpose of this section is to summarize the design and performance of one com-
mercial design using a triangular resonator at 5 GHz and two designs in the open lit-
erature using disk ones at 4 GHz and 9 GHz, respectively. While the details of each
adjustment (in the absence of a Smith chart display) are not sufficiently robust to
draw firm conclusions about any agreement between design and practice, it does
draw attention to the wide disparities met in the choices of the design parameters
of practical circulators.

The frequency response of one commercial 5 GHz quarter-wave coupled device
using a side-coupled triangle on a 1.90 mm substrate is indicated in Fig. 27.11. Its
performance is specified by

S(max) � 1:16

S(min) � 1:04

2d0 � 0:21

If an idealized template is superimposed on this data, then its gyrator circuit is
defined by

b0 ¼ 23:98

g ¼ 9:137

QL ¼ 2:625
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Its design is essentially specified by

k ¼ 0:56

qm ¼ 0:73

H0=M0 � 1:20

r=H ¼ 1:44

A quarter-wave coupled 4 GHz circulator using a disk gyromagnetic resonator on a
0.625 mm substrate has also been described. Its performance is defined by

S(max) � 1:20

S(min) � 1:15

2d0 � 0:29

If an idealized template is superimposed on this data, then its complex gyrator circuit
may be described by

b0 ¼ 5:97

g ¼ 3:39

QL ¼ 1:76

FIGURE 27.11 Frequency response of quarter-wave coupled junction circulator using side-
coupled triangular resonator (r/H ¼ 1.44 mm). (Courtesy of W. T. Nisbet, MESL-RACAL).
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Its design parameters are defined by

k ¼ 0:53

qm ¼ 0:75

H0=M0 � 1:0

R=H ¼ 6:0

Still another quarter-wave device using a disk resonator printed on a 0.635 mm
substrate has been described in the open literature at 9 GHz. Its frequency response
is defined by

S(max) � 1:15

S(min) � 1:10

2d0 � 0:26

If an idealized template is also superimposed on this data, then

b0 ¼ 7:80

g ¼ 4:24

QL ¼ 1:84

In this instance the design details are described by

k ¼ 0:54

qm ¼ 0:811

H0=M0 � 1:43

R=H ¼ 3:0

The various microstrip circulators discussed here suggest that some trade-off exists
between the network specification of the device, the shape of the resonator, the sub-
strate thickness, and indeed the gyrotropy. This observation is of significant value in
the synthesis problem and goes a long way to explain the often surprising success of
the development engineer. When all is said and done, an irregular hexagonal resona-
tor is perhaps the ideal shape for the design of a 4 GHz device on a 0.635 mm
thick substrate.
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CHAPTER TWENTY-EIGHT

The Stripline Circulator:
Theory and Practice

The principles and difficulties entering into the design of the stripline circulator are
outlined in this chapter. The circulator has its origin in the unitary condition.
It states that matching any symmetrical nonreciprocal three-port junction is both
necessary and sufficient for the realization of an ideal circulator. The origin of the
nonreciprocity has its root in the different interactions between an electron spin in
a magnetized magnetic insulator and radiofrequency counterrotating magnetic
fields. A typical structure is the irregular hexagonal gyromagnetic resonator
coupled by one of two possible triplet of ports treated in Chapter 16. The Green’s
procedure, the finite element method, and the contour integral one are three numerical
procedures that will always succeed in describing any junction with threefold sym-
metry. A surprising result is that its so-called complex gyrator circuit at any port
is, under simplifying conditions, a one-port degree-1 G-STUB load with entries
that are simple linear combinations of its counterrotating eigen-networks. Such a
circuit is completely characterized by its gyrator conductance, susceptance slope par-
ameter, and quality factor. In practice the gain bandwidth of the device is restricted by
the quality factor of the complex gyrator circuit. The frequency response of this
degree-1 network may be extended to a degree-n arrangement by having recourse
to classic filter theory. An important and attractive feature of the network problem
is that the absolute values of the elements of the complex gyrator circuit, for a
given gain bandwidth, are controlled by the minimum ripple level of the passband
response. More generally, the complex gyrator circuit consists of a series element
that is equal to the reactance of the in-phase eigen-network within a factor of 4/3
in cascade with the G-STUB load. The dissipation between any two ports is described
separately by the unloaded quality factors of its eigen-networks and by the loaded
quality factor of the one-port gyrator circuit in a simple way. A difficulty entering
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into the design of this class of device is the need to cater for the effects of the open
walls on the character of the complex gyrator circuit. This effect is particularly serious
in resonators with small ferrite aspect ratios. The meaning of very weakly, weakly,
moderately, and strongly magnetized gyromagnetic resonators is given special atten-
tion. Another concern is the effect of small air gaps in the assembly of commercial
products. Nonlinear loss or spinwave instability at large signal level and third
order intermodulation products are other matters of concern. Edge mode effects
and the radial variation of the shape demagnetizing factor perpendicular to a ferrite
disk are two other features that can cause discrepancies between theory and practice.

28.1 COMPLEX GYRATOR CIRCUIT OF WEAKLY MAGNETIZED
JUNCTION CIRCULATOR

A description of the complex gyrator circuit of any junction circulator is mandatory
for its design. It consists of a one-port STUB-R load provided the frequency variation
of its in-phase eigen-network may be neglected compared to those of its split counter-
rotating ones and provided that its resonator is weakly magnetized. The elements of
the STUB-R load obtained under these assumptions are then described in terms of the
sum and differences of the counterrotating admittance eigenvalues of the junction.
The gyrator circuit under consideration is reproduced in Fig. 28.1.

Yin ¼ Gin þ jBin (28:1)

where

Gin ¼
ffiffiffi
3

p
B0 vþ � v�

v0

� �
(28:2)

Bin ¼ �(4=p)B0 cot u (28:3)

and

u ¼ (p=2)(v=v0) (28:4)

FIGURE 28.1 Degree-1 complex gyrator circuit of junction circulator.
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At v ¼ v0

u ¼ u0 ¼ p=2 (28:5)

The susceptance slope parameter (B0) is defined as the slope of the imaginary part of
the complex gyrator circuit in the vicinity of the circulator midband frequency in the
usual way by

B
0 ¼ u0

2
@Bin

@u

����
u0¼p

2

(28:6)

Figure 28.2 depicts the ideal situation. The real part condition is also often written

1
QL

¼
ffiffiffi
3

p vþ � v�
v0

� �
(28:7)

QL defines the gain-bandwidth product of the network problem.

FIGURE 28.2 Ideal frequency response of complex gyrator circuit.
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In this sort of problem, the absolute value of the susceptance slope parameter (B0)
and the difference between the split frequencies of the gyromagnetic resonator (vþ 2

v2)/v0 are the independent variables and the absolute gyrator conductance (Gin) is
the dependent one. If any two of the three quantities entering into the description of
the gyrator circuit are known, then the third one may readily be evaluated from the
relationship between the three. Various means of experimentally evaluating these
quantities are available throughout the text.

28.2 VERY WEAKLY MAGNETIZED GYROMAGNETIC RESONATOR

The validity of the closed form description of a junction circulator employing a very
weakly magnetized disk resonator is the topic of this section. Its formulation may be
verified by comparing it with some numerical calculations using the first seven poles
of the problem region. Table 28.1 summarizes some data on the quality factor of the
junction with the gyrotropy of the junction bracketed between 0 and 0.40 for
parametric values of the coupling angle of the strips at the ports of the resonator.
It indicates that the quality factor is independent of the coupling angle as long as
the gyrotropy is bracketed between 0 and 0.25. It also suggests that the closed
form description shows significant deterioration when the gyrotropy equals 0.35.
The quality factor displayed by such a junction with a gyrotropy equal to 0.25 is
about 2.30. This value is compatible with the synthesis of quarter-wave coupled
junction circulators with 20 dB ripple levels over some 25% or with 26 dB ripple
levels over 18%. Figure 28.3 illustrates the frequency response of one typical
gyrator circuit.

28.3 WEAKLY MAGNETIZED GYROMAGNETIC RESONATOR

Table 28.1 indicates that, for k/m between 0 and 0.30, QL is nearly independent of c.
In this interval it may be described by a polynomial approximation in terms of the
gyrotropy.

TABLE 28.1 Quality Factor QL of Weakly Magnetized Circulator

k/m 0.05 0.10 0.20 0.25 0.30 0.35 0.40

c

0.1 13.72 6.728 3.139 2.444 2.150 2.538 4.494
0.2 13.72 6.721 3.107 2.372 1.969 2.085 3.551
0.3 13.71 6.714 3.077 2.302 1.788 1.548 2.155
0.4 13.55 6.713 3.066 2.273 1.708 1.277 0.9912
0.5 13.71 6.689 3.077 2.291 1.733 1.305 0.9539
0.6 13.72 6.723 3.100 2.330 1.796 1.403 1.106
0.7 13.72 6.728 3.118 2.360 1.843 1.472 1.197
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� 0:30 (28:8)

This polynomial is obtained by adding a correction polynomial of second order to the
classic approximation for QL. It is derived by the method of least squares for the
average value of QL over the variable c for the interval 0.10–0.70. The error in
the classic term is about 2% at k/m ¼ 0.1, increasing to 10%, 16%, and 23% at

FIGURE 28.3 Frequency response of complex gyrator circuit (c ¼ 0.20, k/m ¼ 0.25).
(Reproduced with permission from J. Helszajn. Quarter-wave coupled junction circulators
using weakly magnetised disk resonators, IEEE Trans. Microwave Theory Tech., Vol.
MTT-30, pp. 800–806, May 1982.)
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k/m ¼ 0.20, 0.25, and 0.30. The correction factor is derived for k/m between 0.05
and 0.30 using five points.

In addition to the description of the loaded Q-factor, it is also necessary to have
descriptions of the gyrator conductance and susceptance slope parameter of the junc-
tion. In the approximation outlined here, it is found that the gyrator conductance is
sufficiently well described by its closed form approximation. One suitable approxi-
mation for B0 is therefore obtained by combining QL with G:

B0 � pzeYrffiffiffi
3

p
(kR) sinc

� kRð Þ2� 1

2
ffiffiffi
3

p þ 0:0463
k

m

� �
� 2:6318

k

m

� �2

þ 3:5513
k

m

� �3
" #

(28:9)

It is also necessary to ensure that the equivalent circuit of the junction is well
behaved over the frequency interval of the specification. Although this condition is
not generally met, it is in fact satisfied in the design of junction circulators
bounded by the values of loaded Q-factor in Table 28.1 for k/m bracketed
between 0 and 0.30.

28.4 MODERATELY MAGNETIZED GYROMAGNETIC RESONATOR

A property of a very weakly or weakly magnetized junction using a gyromagnetic
disk resonator is that its quality factor is independent of the coupling angle. This,
however, is not the case in general. The gyrotropy of the former regime is bracketed
between 0 � k/m � 0.25 and the latter by 0.25 � k/m � 0.30. The gyrotropy of the
strongly magnetized or tracking solution dealt with in Chapter 17 resides between
0.50 and 1.0. It is associated with a unique coupling angle. The purpose of this
section is to deal with the so-called moderately magnetized interval defined by
0.30 � k/m � 0.50.

A scrutiny of the entries in Table 28.1 suggests that the quality factor of the sol-
ution under consideration passes through a minimum at a unique coupling angle.
Furthermore, its complex gyrator circuit is particularly attractive for the design of
quarter-wave coupled devices. A detailed scrutiny of this solution indicates that it
coincides with the condition for which the in-phase eigen-network has an electric
wall at its terminals and the magnetized counterrotating ones display complex conju-
gate immittances at the same terminals. This condition is satisfied, in terms of the
impedance eigenvalues of the junction, provided

Z0 � 0 (28:10a)

Zþ þ Z� ¼ 0 (28:10b)
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The gyrator conductance is then given in terms of the corresponding admittance
eigenvalues by

G� j
ffiffiffi
3

p Yþ � Y�

2

� �
(28:11)

The impedance eigenvalues are separately expanded in terms of the impedance poles
of the problem region as

Z0 � Z0 þ Z3 (28:12a)

Zþ � Zþ1 þ Z�2 (12:12b)

Z� � Z�1 þ Zþ2 (28:12c)

and

Yþ ¼ 1=Zþ (28:13a)

Y� ¼ 1=Z� (28:13b)

Table 11.2 in Chapter 11 gives the sizes of the poles and eigenvalues entering into
this solution.

28.5 THE DEGREE-2 CIRCULATOR

A degree-2 circulator may be realized by having recourse to either an alternate-line or
quarter-wave long transformer. The synthesis of these types of networks is the topic
of Chapter 25. The topology under consideration is reproduced from the same chapter
in Fig. 28.4. Figure 28.5 illustrates some practical geometries met in practice. Other
configurations readily come to mind. A detailed scrutiny of the gain-bandwidth
product of each topology suggests that there is not much to choose between the
two types of transformer. One benefit of the alternate-line transformer, other than
its compactness, is of course the fact that the impedance adjacent to the terminal
of the junction is usually not very different from that of the termination. The impe-
dance of the 908 UE is approximately equal to the square root of the gyrator conduc-
tance. The adjustment of a weakly or very weakly magnetized circulator differs,
however, from that of a moderately or strongly magnetized one in that the former
adjustment is independent of the coupling angle. This means that either the strip-
width or the relative dielectric constant of the transformer region may, in this instance,
be taken as the independent variable. In the latter case the dielectric constant is
uniquely specified by the specification. The actual resonator shape in any design is
usually fixed by the ground plane spacing of the microstrip or stripline at the ports
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of the device. The sort of circulator specifications that can be realized with either a
quarter-wave or alternate-line transformer is essentially fixed by the quality factor
of the complex gyrator circuit. Standard tables for the design of either type of
circuit are given in Chapter 25 in the case where S(min) is different from unity.
Once the loaded Q-factor of the specification is specified, its value is used to
check whether it is compatible with the very weakly or weakly magnetized models
employed in this work. If it is, the gyrator conductance and susceptance slope par-
ameter may be evaluated. The design procedure then continues by selecting the

FIGURE 28.4 Topology of UE coupled complex gyrator circuit.

FIGURE 28.5 Schematic diagrams of degree-2 junction circulators.
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resonator shape and evaluating the substrate thickness and the width of the connect-
ing lines. In this design problem the quality factor and the susceptance slope par-
ameter are the independent variables and the gyrator conductance is the dependent
one. The quality factor is fixed by the gyrotropy of the gyromagnetic resonator.
The susceptance slope parameter is determined separately by the resonator shape
and substrate thickness and to some extent the gyrotropy. A feature of this sort of
problem is that varying the value of the minimum ripple level or VSWR in the pass-
band leaves the maximum ripple level or VSWR and the passband specification
unchanged but produces relative large variations in the absolute value of the suscep-
tance slope parameter of the load. Figure 28.6 shows a typical situation. A detailed
scrutiny of the network problem indicates that a wide family of practical specifica-
tions may in fact be realized by staying within these arbitrary bounds. One
engineering decision is to suppose that

VSWR(min) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VSWR(max)

p
(28:14)

The exact values of the elements entering into the description of the complex gyrator
circuit, in any particular situation, must be determined by the actual gain-bandwidth
specification.

FIGURE 28.6 Connection between VSWR(min) and magnetized susceptance slope para-
meter (b0).
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It is assumed separately that the network variables apply provided

(vþ � v�)=v0 � (v2 � v1)=v0 (28:15)

v1,2 and v0 specify the bandedges and center frequencies.
One possible adjustment technique for the 908 UE arrangement may be obtained

by recognizing that the gyrator conductance at the midband frequency in a quarter-
wave coupled device can be written

y2t
S(max)

¼
ffiffiffi
3

p
b0

vþ � v�
v0

� �
(28:16)

Figure 28.7 illustrates the frequency response of one degree-2 solution. It corresponds
to the complex gyrator circuit specified in Fig. 28.4.

FIGURE 28.7 Frequency response of degree-2 circulator (c ¼ 0.20 k/m ¼ 0.25).
(Reproduced with permission from J. Helszajn, Quarter-wave coupled junction circulators
using weakly magnetised disk resonators, IEEE Trans. Microwave Theory Tech., Vol.
MTT-30, pp. 800–806, May 1982.)
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Scrutiny of this relationship suggests that in order to establish the required
gyrotropy of the problem region care must be taken to accurately realize both the
admittance ( yt) of the transformer and the susceptance slope parameter (b0) of the
complex gyrator circuit.

28.6 GAP EFFECTS IN CIRCULATOR ASSEMBLIES

One practical problem encountered in the assembly of a circulator is the difficulty of
avoiding small gaps between the inner and outer conductors of the stripline and the
ferrite surfaces. Figure 28.8 depicts the geometry under consideration. Such gaps
always alter the center frequency of the device and quite often produce spurious
modes in the frequency response. The origin of this difficulty may be appreciated
by forming the effective dielectric constant of a partially dielectric-filled circular
capacitor. It may also be calculated by constructing a transverse resonance condition
along the axis of the geometry. The required result, using either approach, is given in
terms of a filling factor q by

1
1eff

¼ (1 � q)
1d

þ q

1f
(28:17)

where

q ¼ L=H (2:18)

The above relationship satisfies the conservation of capacitance in the assembly

H

101effA
¼ L

101f A
þ (H � L)

101dA
(28:19)

FIGURE 28.8 Ferrite resonator with gap.
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Figure 28.9 depicts the connection between the effective dielectric constant of
the arrangement and the filling factor q. This illustration indicates, quite clearly,
the effect of a small gap on the effective relative dielectric constant of the
arrangement.

The effect of a very small gap on the effective dielectric constant is readily under-
stood by way of an example. Taking q as 0.99, 1f, as 15.0, and 1d as 1.0 gives 1eff
as 13.15. The effect of a gap on the permeability of a magnetic insulator is also
described in terms of an effective quantity

m0
eff ¼ (1� q) þ qmeff (28:20)

The connection between m0
eff and meff is described in Fig. 28.10.

FIGURE 28.9 Effective dielectric constant of ferrite resonator with gap. High-power sus-
pended resonator stripline circulator. (Reproduced with permission from J. Helszajn,
Frequency and bandwidth of H plane TEM junction circulator, Proc. IEE, Vol. 117,
pp. 1235–1238, July 1970.)
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28.7 SUSPENDED PLANAR RESONATOR

One way to increase the power rating of a stripline circulator is to introduce a free
space or dielectric gap at the symmetry plane of each ferrite disk. Figure 28.11 illus-
trates one geometry employing four ferrite disks. Figure 28.12 indicates the geometry
in more detail. The quasi-suspended planar resonator obtained in this way is particu-
larly attractive in the design of high mean power devices. This comes about in that its
surface area is in this instance larger than is otherwise the case and that the tempera-
ture drop across its thickness is reduced. It also has the merit that its insertion loss is
reduced in comparison with that of a conventional arrangement. The operating
frequency and gyrotropy of this sort of resonator have been formulated in terms of
the filling factor (q) met in connection with a gap in a conventional resonator. This
is done in terms of effective constitutive parameters. The descriptions of the effective
diagonal and off-diagonal elements of the tensor permeability are given by

meff ¼ (1� q)þ qm (28:21)

keff ¼ qk (28:22)

FIGURE 28.10 Effective permeability of ferrite resonator with gap (effective dielectric con-
stant of ferrite resonator with gap). High-power suspended resonator stripline circulator
(Reproduced with permission from J. Helszajn, Frequency and bandwidth of H plane TEM
junction circulator, Proc. IEE, Vol. 117, pp. 1235–1238, July 1970.)
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FIGURE 28.12 Resonator using four ferrite or garnet disks.

FIGURE 28.11 Stripline junction using four ferrite or garnet disks.
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These two relationships are readily deduced by taking linear combinations of the
scalar counterrotating circular constitutive parameters:

(meff þ keff ) ¼ 1þ q(mþ k� 1) (28:23a)

(meff � keff ) ¼ 1þ q(m� k� 1) (28:23b)

The natures of the effective dielectric and permeability constants are those introduced
in connection with the gap effect of the geometry.

Figure 28.13 depicts one 1.3 GHz commercial device. The matching network con-
sists of two quarter-wave long shunt UEs spaced by a quarter-wave UE. The mean
power rating of the device is 2.5 kW and the peak power rating is 150 kW. Its band-
width is 7.5%.

28.8 PASSBAND FREQUENCIES OF A THREE-PORT
JUNCTION IN IMMITTANCE PLANE

The frequencies of the passbands of any three-port junction circulator may be calcu-
lated by having recourse to a full wave analysis, to a finite element solver, or to
measurements. While it is sometimes tempting to associate the center frequency of
any circulator with that of the degenerate frequencies of the counterrotating eigen-
networks, it is in general incorrect to do so. This situation only holds when the in-
phase eigen-network, displays an electric wall at a pair of terminals at the frequency
at which the counterrotating ones exhibit a magnetic wall at the same plane. The
actual passband frequency of a reciprocal three-port junction is either smaller or

FIGURE 28.13 Commercial stripline circulator. (Reproduced with permission from
J. Helszajn, An H-plane high power TEM ferrite circulator, Radio Electron. Engr., Vol. 33,
pp. 257–262, 1967.)
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larger than that of the degenerate counterrotating eigen-networks according
to whether the in-phase eigen-network is smaller or larger than 908. The center
frequency of any circulator is an eigenvalue problem. Figure 28.14 illustrates the
three possibilities. It is preferable, however, for the purpose of calculation to
replace the condition in the reflection plane by one in the immittance one. The
required statement may be understood by recalling that the condition for which
two unit reflection vectors are out of phase on the classic Smith chart corresponds
to that for which the corresponding normalized impedances are the reciprocal of
each other.

Z0 � 1=Z+ ¼ 0 (28:24)

FIGURE 28.14 Passband conditions in symmetrical reciprocal junction.
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The impedance eigenvalues in the preceding equation are related to the reflection
ones by the standard bilinear transformation between the two

Z0 ¼ 1� s0
1þ s0

(28:25a)

and

Z+ ¼ 1� s+
1þ s+

(28:25b)

A scrutiny of the characteriztic equation indicates that it is in keeping with the ideal
solution for which the reflection angles are commensurate:

Z0 ¼ 0 (28:26a)

Z+ ¼ 1 (28:26b)

In this sort of problem, the in-phase impedance eigenvalue may be expanded in terms
of the impedance poles of the geometry in question:

Z0 ¼ Z0 þ Z3 þ � � � (28:27)

The degenerate counterrotating impedance eigenvalues are likewise expanded in
terms of the corresponding impedance poles:

Zþ ¼ Zþ1 þ Z�2 þ � � � (28:28a)

Z� ¼ Z�1 þ Zþ2 þ � � � (28:28b)

In a reciprocal junction

Zþ ¼ Z� (28:29)

The relationship introduced here is exact so that it is likely to have wide applicability
in the design of this sort of problem.

The failure to establish dual walls at the terminals of the junction for the in-phase
and counterrotating eigen-networks is to reveal the in-phase eigen-network explicitly
in its complex gyrator circuit. Its topology, based on a Cauer form procedure, is repro-
duced in Fig. 28.15. It consists of a series reactance with a value 4Z0/3 in cascade
with the classic shunt UE in parallel with the gyrator conductance. In practice, the
series element is absorbed in the matching network.
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28.9 OPEN WALLS

The classic boundary conditions of a junction circulator assume that the magnetic
field is a constant over the strips and zero elsewhere. In practice, however, the
walls between the strips are open rather than closed. One obvious consequence of
this discrepancy is that the operating frequency of the junction is perturbed. A
more serious problem is that calculations on the complex gyrator circuit do not
always agree with measurements. These discrepancies are particularly severe when-
ever the dielectric constant of the region outside the resonator is comparable with
that of the ferrite material and whenever the aspect ratio (R/H ) of the resonator is
excessively small.

The effect of an open wall on the frequency of the circulator may be represented
either in terms of effective constitutive parameters and dimensions or by a lumped
element susceptance. The latter representation, however, is preferable in connection
with the description of the susceptance slope parameter of the junction.

One means of representing the effect of the open wall on the frequency is to intro-
duce a correction term an in the description of a typical pole.

� jpzeYr
3c

nc

sin nc

� �2 J
0

n(kR)
Jn(kR)

� �
þ an(kR) ¼ 0 (28:30)

Strictly speaking, the effects of open walls are determined, in a gyromagnetic circuit,
by the wave impedances in the regions rather than by the dielectric constants. This
means that the effects will be quite different above and below the Kittel line.

FIGURE 28.15 Degree-2 complex gyrator circuit of junction circulator.
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Figure 28.16 depicts the effect of an open wall on the cutoff space of a typical
circular dielectric resonator in a dielectric medium. The frequency shift in this sort
of arrangement is clearly dependent on the aspect ratio of the resonator and the
ratio of the dielectric constants of the two regions. One consequence of the shifts
in the degenerate cutoff numbers of the isotropic disk resonator is that the intersec-
tions between the various split branches of the gyromagnetic space are perturbed.
Figure 28.17 illustrates a qualitative picture of this situation. A scrutiny of this modi-
fied mode chart suggests that the various definitions met in connection with the very
weakly, weakly, moderately, and strongly magnetized circulation solutions have to be
revisited. One particular solution encountered with an open instead of a closed wall
between the ports of the circulator is the semitracking one with a narrow instead of
wide coupling angle at the ports.

Figure 28.18 illustrates the relationships between the frequency of a triangular
resonator on a dielectric substrate and its side dimension for three different substrate
thicknesses. It also indicates some measurements on the magnetic wall solution.

FIGURE 28.16 Relationship between dielectric constant and radial wavenumber in disk
dielectric resonator.
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The calculations in this illustration are obtained by segmenting the geometry into
strips and replacing each strip by a parallel waveguide model as a preamble to
employing a transverse resonance procedure.

28.10 SPINWAVE INSTABILITY IN MAGNETIC INSULATORS

A feature of some importance in the design of high-power devices is the appearance
of a subsidiary resonance at large signal levels at a direct magnetic field below the
main Kittel resonance. The subsidiary resonance is a power sensitive phenomenon
that manifests itself as a nonlinear insertion loss that limits the peak power rating
of ferrite devices. This feature is well understood and is related to the transfer of
power from the microwave magnetic field to spinwaves at half the frequency of the
microwave signal. One standard way of avoiding this instability relies on material
technology to widen the spinwave linewidth at the expense of the overall small-
signal insertion loss. A second way to suppress this difficulty is to bias the material
below the peak of the subsidiary resonance. Still a third solution is to ensure that the

FIGURE 28.17 Cutoff space of gyromagnetic resonator with open walls.
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frequency relation between the microwave signal and the spinwaves at half its fre-
quency cannot be satisfied. The region in question is defined in Fig. 28.19.

One additional way to suppress spinwave instability is to bias the ferrite material
between the subsidiary and main resonances. Its width may be established without
difficulty but is outside the scope of this work. This may be done by forming the
difference between the two fields defined by the spinwave dispersion relation and
the main resonance. The essential considerations entering into its definition are the
direct magnetic field, the separation between the skirts of the subsidiary and main res-
onances, the bandwidth of this region, and the relation between magnetization and
linewidth. It is also necessary to ensure that the effective or scalar permeabilities
do not take on negative values over the operating band of the device.

One important advantage of biasing the ferrite material between the subsidiary and
main resonances is that the overall magnetic loss is less under this condition than it is
below the subsidiary resonance. This is due to the fact that the small signal interaction
between the microwave signal and the spinwave manifold is also not permissible in
this region. Since spinwave instability at half the pump frequency is completely sup-
pressed in this situation, the uniform mode linewidth may be selected without regard
to that of the spinwave one. Therefore, in this sort of design, the value of the spinwave
linewidth has no bearing on the overall insertion loss of the device.

FIGURE 28.18 Relationship between side dimension of triangular planar resonator and
frequency.
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28.11 FREQUENCY DOUBLING IN FERRITES

A property of a magnetic insulator, at large signal level, is the generation of a
harmonic component mz at twice the frequency of the fundamental alternating
magnetic field. This feature may readily be demonstrated by retaining the products
mxhy and myhx in the governing equation of motion of the electron spin. A simple
physical interpretation of frequency doubling, however, is sufficient by way of intro-
duction. It is obtained by making use of the conservation of magnetization in a mag-
netic insulator

M2
0 ¼ m2

x þ m2
y þ m2

z (28:31)

A scrutiny of this relationship indicates that if the RF magnetization in the transverse
plane is circularly polarized, the magnetization vector along the z-coordinate is a con-
stant and therefore mz is a constant also. This means that there is no second harmonic
component in the absence of shape and anisotropy demagnetizing factors. However,
if the transverse magnetization is elliptically polarized, the magnetization vector

FIGURE 28.19 Subsidiary resonance at high signal level in magnetic insulator.
(Reproduced with permission from R. W. Damon, Relaxation effects in ferromagnetic reson-
ance, Rev. Mod. Phys., Vol. 25, pp. 239–245, 1953.)
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along the z-coordinate is not a constant. Indeed, since mz reaches its maximum value,
when mx

2 þ my
2 is a minimum, twice as the tip ofM traverses once around its elliptical

orbit, its frequency is twice that of the applied RF field. The construction of this sol-
ution is illustrated in Fig. 28.20. This simple picture indicates that the second harmo-
nic component is dependent on the ellipticity of the transverse magnetization. The
most favorable geometry is a thin disk magnetized in the plane.

In the circulator arrangement the counterrotating magnetic fields are circularly
polarized on the axis of the resonator and elliptically polarized elsewhere. This
means that frequency doubling in this sort of geometry does not take place on the
axis of the junction.

28.12 SECOND-ORDER INTERMODULATION IN
MAGNETIC INSULATORS

An important intermodulation product that enters into the specification of the junction
circulator in the presence of adjacent carriers is a third-order product. An exact

FIGURE 28.20 Magnetization vector in x-z plane for (a) mx = my, (b) mx ¼ my.
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solution of this phenomenon is outside the scope of this work. The development
of second-order intermodulation, however, is not too difficult provided the two
tones are circularly polarized. Such pumps at v1 and v2 in the transverse plane
produce sum and difference sidebands along the z-coordinate. The governing differ-
ential equations are

@2 mx

@t2
þ v2

0 mx ¼ v0vmhx þ vm
@hy
@t

� �
(28:32a)

@2 my

@t2
þ v2

0 my ¼ v0vmhy � vm
@hx
@t

� �
(28:32b)

@mz

@t
¼ g (mxhy � myhx) (28:32c)

The alternating magnetic field intensity for a two-tone arrangement in general is
specified by

hx ¼ hx1 cosv1t þ hx2 cos (v2t þ f) (28:33a)

hy ¼ hy1 cos(v1t � a)þ hy2 cos(v2t þ f� d) (28:33b)

The nature of the polarization of the two tones is fixed by a and d, and the relative
phase angle between the two tones byf. One possible arrangement consists of
two in-phase RHPW tones, another of two similar LHPW tones, and still another
of counterrotating circularly polarized tones.

hx ¼ h1 cosv1t þ h2 cosv2t (28:34a)

hy ¼ +h1 sinv1t + h2 sinv2t (28:34b)

The existence of second-order products in the arrangement considered here neglects
any nonlinearity in the transverse plane. This means that the total magnetization due
to the two tones may be established by having recourse to superposition. Taking two
RHPW tones by way of an example gives, in the case of mx1,2,

mx1 ¼ xþ1 h1 cosv1t (28:35a)

mx2 ¼ xþ2 h2 cosv2t (2:35b)

x1,2
þ are the RHPW scalar susceptibilities at v1,2:

xþ1,2 ¼
vm

�v1,2 þ v0
(28:36)
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The total magnetization along the x-coordinate is then given by

mtx ¼ xþ1 h1 cosv1t þ xþ2 h2 cosv2t (28:37)

Likewise

mty ¼ xþ1 h1 sinv1t þ xþ2 h2 sinv2t (2:38)

It may sometimes be useful to write the total magnetization in the transverse plane in
terms of circular variables. The result is

mt ¼ (mtx þ jmty) ¼ xþ1 h1 exp jv1t þ xþ2 h2 exp jv2t (28:39)

The required intermodulation product along the z-coordinate is now established by
evaluating the magnetization there in terms of the transverse variables. The result is

@mz

@t
¼ 2g h1h2 xþ1 � xþ2

� �
sin(v2 � v1)t (28:40)

This arrangement therefore produces a sideband at the difference between the
frequencies of the two tones.

The corresponding result for two LHPW tones is obtained by replacing the RHPW
tones by the former ones in the previous development and replacing x1,2

þ by x1,2
2 .

x�1,2 ¼
vm

v1,2 þ v0
(28:41)

This solution also reveals a sideband at the difference frequency of the two tones.
The possibility of having the two tones rotating in opposite directions is also

understood. It produces a single sideband at a frequency equal to the sum of those
tones. The absence of second-harmonic terms in the three different solutions devel-
oped here is compatible with the fact that there is no such contribution unless one or
the other of the tones is linearly or elliptically polarized.

28.13 TEMPERATURE STABILITY OF MAGNETIC
INSULATORS BELOW THE KITTEL LINE

The temperature stability of the Kittel line in a magnetic insulator has been dealt with
in Chapter 26. The temperature stability of the magnetization is dealt with here. While
the saturation magnetization of some ferrite and garnet materials may be stabilized by
suitable doping, this solution may not always be possible. Another possibility, as
described later, is to employ series or shunt compensation of the direct magnetic
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circuit. Still another one is to enforce the condition between the direct magnetic field
and the direct magnetization of the material at which the magnetization curves at
different temperatures intersect. This approach may be understood by noting that a
typical hysteresis loop of a magnetic material at room temperature both shrinks
and collapses as the temperature approaches its Curie value. The required condition
may readily be expressed in terms of the ratio of the applied magnetic field and the
saturation magnetization by starting with the definition of internal field intensity (Hin)
in a magnetic insulator:

Hin ¼ H0 � NzM (28:42)

where Nz is the direct demagnetizing factor along the axis of the resonator and M is
the actual direct magnetization.

If the internal direct magnetic field is small compared to the other quantities, then
the preceding relationship may be written

H0

M0
� Nz

M

M0

� �
(28:43)

Some experimental work on a number of different ferrite materials suggests that the
magnetization curves at different temperatures approximately intersect at the direct
magnetic field for which

M

M0

� �
� 0:70 (28:44)

A temperature-stable condition for the purpose of design is therefore given by

H0

M0

� �
� 0:70 (28:45)

Another quantity that enters into the description of a ferrite or garnet material is the
squareness of its hysteresis loop. A typical squareness is given by

Mr

M0

� �
¼ 0:62 (28:46)

Writing M0 in terms of Mr suggests that an equally good or possibly better criterion
for the temperature stability of a junction circulator is, in this instance, given by

H0 � NzMr (28:47)
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28.13.1 Series and Shunt Temperature Compensation

Not only is the magnetization of microwave magnetic insulators temperature depen-
dent but so is the magnetic field intensity of magnets. While the variation of the mag-
netic field intensity of magnets may sometimes be used to track the magnetization of
magnetic insulators, this is not always possible. One means of dealing with this
problem is to introduce some form of temperature compensation in the magnetic
circuit. This takes the form of special steels for which the Curie temperature is
approximately 70 8C. The Curie temperature of microwave magnetic insulators is
typically 180 8C and that of magnets 350 8C. Figure 28.21 indicates the relationship
between magnetization and temperature for a pure YIG material. Typical series and
shunt compensation arrangements are illustrated in Fig. 28.22. The shunt geometry
is often used in the design of circulators biased below the Kittel line and the series
geometry is used in devices biased above it.

28.13.2 Nonuniform Magnetic Field

The shape demagnetizing factor perpendicular to a flat disk is often assumed to be
independent of the radial coordinate of the geometry. This assumption is only
correct in a ellipsoidal body. One consequence of this feature is that the magnetic
field intensity inside a disk is nonuniform even in the presence of a uniform direct
magnetic field. The exact internal field is

Hin(r) ¼ H0 � Nz(r)M0

The nature of Hin(r) is fully discussed in Chapter 3.

FIGURE 28.21 Magnetization versus temperature for pure YIG.

28.13 TEMPERATURE STABILITY OF MAGNETIC INSULATORS 557



28.13.3 Edge Mode Effect

One of the more interesting features of a suitably magnetized planar gyromagnetic
circuit is a nonreciprocal edge mode or edge displacement effect in a ferrite-loaded
parallel plate waveguide first explained by Hines. This feature may be demonstrated
without difficulty by assuming a quasi-TE solution in the magnetized ferrite region.

Ex = 0, Ey = 0, Ez = 0 (28:48a)

Ex ¼ Ey ¼ Ez ¼ 0 (28:48b)

It is also assumed that the spatial variations of the field patterns are described by

@

@x
¼ �ax (28:49a)

@

@y
¼ 0 (28:49b)

@

@z
¼ �jbz (28:49c)

FIGURE 28.22 (a) Series temperature compensation of a gyromagnetic resonator. (b) Shunt
temperature compensation of a gyromagnetic resonator.
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The tensor permeability with the direct magnetic field intensity perpendicular to the
direction of propagation is described in Chapter 2 by

[m] ¼
m 0 �jk
0 1 0
jk 0 m

0
@

1
A (28:50)

Introducing these conditions into Maxwell’s first curl equation then gives

Hx ¼
Ey

vm0meff

�bz þ ax
k

m

� �
(28:51)

Hz ¼
jEy

vm0meff

bz
k

m
� ax

� �
(28:52)

The relationship between the separation constants is given with the aid of the wave
equation by

a2
x � b2

z þ v2m010meff1f ¼ 0 (28:53)

The required result may now be established by placing a magnetic wall boundary con-
dition at the plane x ¼ 0 and assuming a unidirectional wave confined to this edge:

Ey ¼ A exp(�axx) � exp(�jbzz) (28:54)

Hz ¼ 0 at x ¼ 0 (28:55)

Introducing the latter boundary condition in Eq. (28.52) indicates that

ax ¼
k

m
bz (28:56)

The wave equation is satisfied with meff either positive or negative provided

bz ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0101fm

p
(28:57)

ax ¼ v
k

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0101fm

p
(28:58)

The field components in the transverse plane therefore decay exponentially with an
attenuation coefficient ax, which is proportional to the gyrotropy k/m and Hz is
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zero everywhere.

Ey ¼ A exp(�axx) � exp(�jbzz) (28:59)

Hx ¼ hEy (28:60)

Hz ¼ 0 (28:61)

and h is the wave impedance

h ¼
ffiffiffiffiffiffiffiffiffi
m0m

101f

r
(28:62)

This type of line therefore supports a TEM solution and displays no low frequency
cutoff number. Furthermore, since meff does not enter directly into its description,
it may smoothly straddle the two regions where meff is either positive or negative.

If the material is just saturated then

k ¼ vm

v
(28:63)

m ¼ 1 (28:64)

and bz and ax, in Eqs. (28.57) and (28.58) may also be written

bz ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0101f

p
(28:65)

ax ¼ vm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0101f

p
(28:66)

This result indicates that the edge mode effect is frequency independent and that the
decoupling between the two edges is solely dependent on the relationship between
vm and the width (l ) of the ferrite section; the only frequency limitation in this
class of device is thus the onset of higher-order modes. Figure 28.23 indicates the
field pattern and transmitted power in the forward and backward directions of propa-
gation for one solution in this sort of transmission line.

One application of the edge mode effect is in the fabrication of a nonreciprocal
phase shifter; another is in the construction of a ferrite isolator. The former is obtained
by lining one of the edges by a suitable dielectric slab; the latter device is realized by
loading one of the edges by some resistive material.
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28.14 THIRD-ORDER INTERMODULATION PRODUCTS
IN NONLINEAR DEVICES

In a linear device the output signal is strictly proportional to the input one. This,
however, is not the case in a nonlinear situation. In the latter instance, new frequen-
cies are produced by the nonlinearity. The nonlinearity has its origin in either electric
effects in semiconductors or magnetic effects in magnetic insulators. The principal
area of interest in this work is that of third-order intermodulation products (IMPs)
in a magnetic insulator in the presence of two circularly polarized tones. This
nonlinearity or IMD (intermodulation distortion) is of particular concern in the
design of many UHF circulators.

The cubed term has six third-order intermodulation products: 3v1, 3v2, 2v1 þ v2,
2v2 þ v1, 2v1 2 v2, and 2v2 2 v1. The first four of these are located far from v1

and v2 and will typically be outside the passband of interest. The two difference

FIGURE 28.23 Edge mode effect in forward and backward directions of propagation of
parallel plate gyromagnetic waveguide. (Reproduced with permission from J. Helszajn and
H. Downs, Field displacement, circular polarisation, scalar permeabilities and differential phase
shift in edge mode ferrite devices, Microwellen Mag., Vol. 14, No. 3, pp. 269–278, April 1987.)
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terms produce products located near the original input signals at v1 and v2 and so
cannot be easily filtered from the passband. Figure 28.24 shows a typical spectrum
of second-order and third-order two-tone intermodulation products.

A typical term is

mv1 þ nv2

with m, n ¼ 0,+1,+2,+3, . . . . The various combinations of the two input frequen-
cies are called intermodulation products, and the order of a given product is defined
as jmj þ jnj.

A property of the third-order intermodulation product is that if the amplitude of
each carrier is increased by 1 dB, then the third-order intermodulation products
increase by 3 dB. If the amplitude of the lower frequency line is increased by
1 dB, the lower-order intermodulation product increases by 2 dB whereas the upper
one increases by only 1 dB. The dual situation is true for the upper frequency carrier.

The third-order IMP power is given by

IM3(dBm) ¼ 10 log10 (P(2v1 � v2)) dBm

FIGURE 28.24 Two tone intermodulation spectrum.
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Some equipment manufacturers prefer to specify the IMD specification in dBc
(decibels below the carrier power) instead of pure dBm results and this is the conven-
tion adopted here.

IM3(dBc) ¼ 10 log10 (P(2v1 � v2))� 10 log10 (P(v1)) dBc

The third-order IMP of a circulator may be measured in one of two ways depending
on the system layout. In one arrangement the two tones, typically of equal magnitude,
are applied at the input port of the device. This simulates a multicarrier environment
where the IMP may reside in the receive band of the equipment. The other situation
involves injecting one tone at port 1 and a second tone at port 2. It corresponds to a
reverse signal incident on the system caused by breakthrough from a colocated
antenna. The tone applied at port 2 in this instance is generally at a lower power
level than that at port 1. Figures 28.25 and 28.26 show the two test sets.

FIGURE 28.25 Block diagram of IMP test set with tones at same ports.

FIGURE 28.26 Block diagram of IMP test set with tones at different ports.
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Figure 28.27 compares the third-order intermodulation tone products of two
1800 MHz junction circulators biased above and below the Kittel line. The frequen-
cies of the two input tones are in each case 1805 and 1880 MHz, producing a third-
order harmonic at 1730 MHz. The material employed in the construction of the
device operating below the Kittel line has a magnetization m0M0 of 0.0400 T and
the normalized direct magnetic field intensity of H0/M0 ¼ 1.1. The material
employed in the device biased above the Kittel line has a magnetization m0M0 of
0.1100 T and its direct magnetic field intensity is typically 1.30. The two geometries
also differed in that the gyromagnetic resonator of the former geometry uses a circular
plate while the latter relied on an irregular hexagonal configuration for its operation.
The IMP tone can be reduced, in the above Kittel devices, by moving the bias field
intensity away from the line. This solution, however, is at the expense of both the size
of the circulator and its gain-bandwidth product.

FIGURE 28.27 IMP below and above Kittel line.
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Complex gyrator circuit(s) (Continued )
gyromagnetic planar disk resonator,
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nondegenerate resonator modes

circulation solution using, 344–346
standing wave solution using, 346
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wideband planar circulator
synthesis using narrow coupling
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symmetrical m-port gyromagnetic
resonator, eigenvalues of,
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of three-port circulator (using
gyromagnetic resonators with
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three-port circulator with threefold
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of, 380–382

tracking and semitracking
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tracking solution, 387
UHF circulator fabrication,
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junction, impedance poles
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weakly magnetized junction circulator,
stripline circulator, 532–534

Complex gyrator immittance. See also
Impedance matrix

resonant in-phase eigen-network,
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of three-port circulator, impedance
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Composite resonators. See also specific
composite resonators

gyromagnetic, complex gyrator
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stripline circulator, 13–15
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junction having two degrees of
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Contour integral method, finite element
formulation, 277–283

Coupled circulator, quarter-wave, stripline
circulator, 16–17
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demagnetizing factors, 56–59

Cutoff space
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(See also Cloverleaf resonators)
isotropic

with fourfold symmetry, 151–153
with threefold symmetry,

149–151
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of wye gyromagnetic planar
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gyromagnetic cutoff space, 177–179

Cyclic substitutions, circulator definition
by, scattering matrix of m-port
junction, 71–72

Damping, tensor permeability, 27–30
Degenerate counterrotating eigen-network,

impedance matrix, 122–125
Degenerate counterrotating eigenvalue

evaluation, eigenvalue adjustment,
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Degree-1 three-port junction circulator,
quarter-wave coupled reciprocal
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442–444

Degree-2 circulator
quarter-wave coupled reciprocal stripline

junctions, 444–447
stripline circulator, 537–541

Degree-2 lumped element circulator,
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Degree-3 circulator, synthesis of,
tracking and semitracking
circulators, 332–335

Degree-3 lumped element circulator,
234–235

Degree-n network, frequency response of,
quarter-wave coupled reciprocal
stripline junctions, 439–440

Demagnetizing factors. See Spatial shape
demagnetizing factors

Diagonalization, eigenvalue adjustment,
97–98

Disk insulator
coupled, spatial shape demagnetizing

factors, 56–59
flat, spatial shape demagnetizing factors,

50–56
Disk resonator, susceptance slope

parameters, 310–312
Dissipation eigenvalues, eigenvalue

adjustment, 98–99
Dissipation matrix, scattering matrix of

m-port junction, 76–77
Distributed/lumped element resonators,

quarter-wave coupled circulators,
wideband planar circulator synthesis
using narrow coupling angles,
369–371

Distributed radial/lumped element
resonators, mixed, wideband planar
circulator synthesis using narrow
coupling angles, 372–373

Dominant mode charts, triplet radial and
circumferential magnetic walls,
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Drop-in techniques, packaging techniques
and, 12

Duplexing, junction circulators using,
stripline circulator, 21–22

Edge mode circulator, stripline circulator,
18–20

Effective permeability, gyrotropy and,
tensor permeability, 32–34

Eigen-networks
four-port single junction stripline

circulator, 414–416
quarter-wave coupled reciprocal

stripline junctions, 434–436

Eigenfunctions
equilateral triangle, triangular planar

resonator, 286–291
normalized, finite element formulation,

271–272
Eigenvalue(s)
augmented, complex gyrator circuit

of three-port circulator (using
gyromagnetic resonators with
sixfold symmetry), 384–387

augmented scattering matrix, scattering
matrix of junction circulators
with Chebyshev characteristics,
452–455

complex gyrator immittance, resonant
in-phase eigen-network, 116–118

four-port single junction stripline
circulator, 414–416

of immittance matrices, impedance
matrix, 111–113

input impedance, one-port topology,
133–135

of m-port symmetric planar junction
circulator, complex gyrator circuit
of three-port circulator (using
gyromagnetic resonators with
sixfold symmetry), 378–380

scattering matrix, scattering matrix
of junction circulators with
Chebyshev characteristics,
450–452

of symmetrical m-port gyromagnetic
resonator, complex gyrator circuit
of three-port circulator (using
gyromagnetic resonators with
sixfold symmetry), 382–384

tracking and semitracking circulators,
316–319

Eigenvalue adjustment, 85–108
degenerate counterrotating eigenvalue

evaluation, 100–102
diagonalization, 97–98
dissipation eigenvalues, 98–99
eigenvectors, 90–95
four-port single junction stripline

circulator, 412–414
gyromagnetic resonators, split

frequencies of, 104–105
importance of, 86–87
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Eigenvalue adjustment (Continued )
in-phase eigenvalue evaluation, 102–103

phase angle of, 105–106
overview, 85
scattering matrix of m-port

junction, 95–97
three-port circulator, 87–90
triple pole circulator, 107–108

Eigenvalue diagrams, of semi-ideal
circulation, unloaded quality
factors, 203–205

Eigenvalue evaluation, lumped element
circulator, 222–224

Eigenvalue solution, gyromagnetic planar
disk resonator, 247–249

Eigenvectors
eigenvalue adjustment, 90–95
four-port single junction stripline

circulator, 414–416
of m-port symmetric planar junction

circulator, complex gyrator circuit
of three-port circulator (using
gyromagnetic resonators with
sixfold symmetry), 378–380

Electric field patterns, triangular planar
resonator, 294–298

Equilateral triangle, eigenfunctions of,
triangular planar resonator, 286–291

Equivalent circuit
of three-port circulator, impedance

matrix, 118–121
of three-port junction, quarter-wave

coupled reciprocal stripline
junctions, 432–434

Experimental evaluation, complex gyrator
circuits, weakly magnetized
circulators fabrication, 520–525

Experimental mode charts, triplet radial
and circumferential magnetic
walls, 200

External Q-factors, unloaded quality
factors, 207–208

Fay and Comstock solution, triplet radial
and circumferential magnetic walls,
193–195

Ferrites
frequency doubling in, stripline

circulator, 552–553

magnetization values of, tensor
permeability, 41–42

Field patterns, cloverleaf resonators,
153–161

Finite element formulation, 267–283
complex gyrator circuit, 274–277
contour integral method, 277–283
Green’s function analysis using,

268–271
normalized eigenfunction, 271–272
overview, 267–268
procedure, 272–274

Finite element method (FEM)
cloverleaf resonators, 147–148
transverse demagnetizing factor, 63

Flat disk insulator, spatial shape
demagnetizing factors, 50–56

Flux density, magnetic field intensity
and, spatial shape demagnetizing
factors, 49–50

Four-port single junction stripline
circulator, 17–18, 407–429

eigenvalue adjustment, 412–414
eigenvectors, eigenvalues, and

eigen-networks, 414–416
overview, 407–408
phenomenological adjustment, 416–417
similarity transformation, 409–412
standing wave solutions, of planar

X resonators, 417–426
symmetry properties, 408–409
TM-field mode patterns, 417–424
UE loaded disk magnetized resonators,

frequencies of, 426–429
Fourfold symmetry
cutoff space of isotropic cloverleaf

resonators with, 151–153
field patterns in cloverleaf resonators

with, 158–161
Frequency doubling, ferrites, stripline

circulator, 552–553
Frequency response. See also Quarter-wave

coupled reciprocal stripline junctions
with capacitive turning, quarter-wave

coupled circulator, 461–463
complex gyrator circuit, 351–353
quarter-wave coupled circulators,

tracking and semitracking
circulators, 335–337
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quarter-wave coupled reciprocal stripline
junctions, 431–447

UE loaded disk magnetized resonators,
four-port single junction stripline
circulator, 426–429

very weakly magnetized circulator,
gyromagnetic planar disk
resonator, 256

weakly magnetized circulator,
gyromagnetic planar disk
resonator, 254–256

Frequency variation
eigenvalue adjustment, gyromagnetic

resonators, 104–105
quarter-wave coupled circulator,

scattering matrix of junction
circulators with Chebyshev
characteristics, 459–460

Gain-bandwidth product, lumped element
circulator, 226–228

Gap effects, stripline circulator, 541–543
Green’s function, 257–265
finite element formulation, 268–271
matrix, 257–261
overview, 257
wave impedance matrix, 262–265

Gyrator circuit
complex, finite element formulation,

274–277
one-port topology, 135–136

Gyrator conductance
impedance matrix, 127–129
triangular planar resonator, 308–310

Gyrator network, impedance
matrix, 129–130

Gyromagnetic cloverleaf
resonators, 162

split cutoff space of, with threefold
symmetry, 162–164

Gyromagnetic cutoff space, wye
gyromagnetic planar resonator,
177–179

Gyromagnetic planar disk resonator,
239–256

complex gyrator circuit, 250–252
eigenvalue solution, 247–249
mode chart, 240–244
overview, 239–240

single pole circulation solution,
252–254

three-port junction circulator, impedance
matrix of, 245–247

very weakly magnetized
circulator, frequency response
of, 256

weakly magnetized circulator, frequency
response of, 254–256

Gyromagnetic resonator. See also
Complex gyrator circuit(s); UHF
circulator fabrication; Wye
gyromagnetic planar resonator

complex gyrator circuit of three-port
circulator using, with sixfold
symmetry, 377–389

composite, complex gyrator
circuit, 357–361

negative permeability, complex gyrator
circuit, 340–343

power ratings of, stripline
circulator, 15

split frequencies of, eigenvalue
adjustment, 104–105

UHF circulator fabrication,
485–509

Wye gyromagnetic planar resonator,
165–182

Gyromagnetic space, of above-resonance
circulators, UHF circulator
fabrication, 487–488

Gyrotropy
effective permeability and, tensor

permeability, 32–34
magnetic insulators, stripline

circulator, 7–8

Hexagonal insulator, irregular, 60–61.
See also Irregular hexagonal
insulator

Higher order mode charts, triplet radial and
circumferential magnetic walls,
190–193

Immittance matrices, eigenvalues of,
impedance matrix, 111–113

Immittance plane, three-port junction in,
passband frequencies, stripline
circulator, 545–548
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Impedance matrix, 109–130. See also
Complex gyrator immittance; Junction
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