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Chapter 2. Analysis of Archimedean Spiral Antenna 

 The Archimedean spiral antenna is a popular of frequency independent antenna.  

Previous wideband array designs with variable element sizes (WAVES) have used the 

Archimedean spiral antenna as the radiating element.  The Archimedean spiral is 

typically backed by a lossy cavity to achieve frequency bandwidths of 9:1 or greater.  In 

this chapter the Numerical Electromagnetics Code (NEC) was used to simulate the 

Archimedean spiral.  Also, several Archimedean spirals were built and tested to validate 

the results of the NEC simulations.  Since the behavior of an Archimedean spiral antenna 

is well known, the simulation and measurement results presented in this chapter serve to 

validate the results found for the star spiral in Chapter 4 and the array simulations in 

Chapters 5 and 6.   

 

2.1 Theory 

 A self-complementary Archimedean spiral antenna is shown in Fig. 2.1.  A spiral 

antenna is self-complementary if the metal and air regions of the antenna are equal.  The 

input impedance of a self-complementary antenna can be found using Babinet’s principle, 

giving 

  
4

2η=airmetal ZZ  (2.1) 

where η  is the characteristic impedance of the medium surrounding the antenna.  For a 

self-complementary Archimedean spiral antenna in free space the input impedance 

should be 

  Ω== 5.188
2
o

inZ η
 (2.2) 

 

 Each arm of an Archimedean spiral is linearly proportional to the angle, φ , and is 

described by the following relationships 

  1rrr o += φ  and ( ) 1rrr o +−= πφ  (2.3) 
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where 1r  is the inner radius of the spiral.  The proportionality constant is determined from 

the width of each arm, w , and the spacing between each turn, s , which for a self-

complementary spiral is given by 

  
ππ
wwsro

2=+=  (2.4) 
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Figure 2.1 Geometry of Archimedean spiral antenna. 

 

The strip width of each arm can be found from the following equation 

  ww
N

rrs =−−=
2

12  (2.5) 

assuming a self-complementary structure.  Thus the spacing or width may be written as 

  
N

rrws
4

12 −==  (2.6) 

where 2r  is the outer radius of the spiral and N  is the number of turns.  The above 

equations apply to a two-arm Archimedean spiral, but in some cases four-arm spirals may 

be desired.  In this case the arm width becomes 

  
N

rrw arm 8
12

4
−=−  (2.7) 

and the proportionality constant is 
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π
wr armo

4
4, =−  (2.8) 

 The Archimedean spiral antenna radiates from a region where the circumference 

of the spiral equals one wavelength.  This is called the active region of the spiral.  Each 

arm of the spiral is fed °180  out of phase, so when the circumference of the spiral is one 

wavelength the currents at complementary or opposite points on each arm of the spiral 

add in phase in the far field.  The low frequency operating point of the spiral is 

determined theoretically by the outer radius and is given by 

  
22 r

cflow π
=  (2.9) 

where c  is the speed of light.  Similarly the high frequency operating point is based on 

the inner radius giving 

  
12 r

cfhigh π
=  (2.10) 

In practice the low frequency point will be greater than predicted by (2.9) due to 

reflections from the end of the spiral.  The reflections can be minimized by using resistive 

loading at the end of each arm or by adding conductivity loss to some part of the outer 

turn of each arm.  Also, the high frequency limit may be less than found from (2.10) due 

to feed region effects. 

 

2.2 Simulation 

 The Numerical Electromagnetics Code 4 (NEC4) was used as the primary 

simulation tool in this dissertation (Burke, 1992).  IE3D and measurements were used in 

some cases to validate the results found with NEC4.  However, due to problem size and 

computer run-time constraints, NEC4 is a more practical code for this application.  There 

are two main areas of concern with modeling an Archimedean spiral in NEC4.  The first 

concern is the appropriate model for the feed region and the second is the relationship 

between wire diameter and strip width to be used in the model.  Another potential 

problem area is modeling a lossy cavity.  This can be done by using a lossy ground plane 

in NEC4, but most simulations will be done in free space to avoid this problem since it is 

not significant to the work presented in this dissertation. 
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 For the Archimedean spiral in free space a single feed wire connects each arm to a 

single voltage source at the center of the feed wire.  Typically a wire radius of one quarter 

the desired strip width is used in simulations as an appropriate transformation from strip 

width to wire diameter.  That is  

  
4
wa =  (2.11) 

where a  is the wire radius and w  is the width of each spiral arm.  So, a single feed wire 

and the relationship of (2.11) will be used as starting points in the simulations.  Another 

important parameter in setting up the NEC4 simulation is the value of the inner radius, 1r .  

Through trial and error it was found that frequency independent behavior was achieved 

only when the inner radius was equal to the strip width or spacing between turns, 

swr ==1 .  Solving (2.6) for the inner radius equal to the width gives 

  
14

2
1 +

=
N
rr  (2.12) 

 To demonstrate the effect of the inner radius on the problem, consider an 

Archimedean spiral antenna with an outer radius of mr 1.02 =  and 8 turns.  The inner 

radius will be varied from half the radius found using (2.12) to three times the radius 

found using (2.12).  The spiral is positioned in free space and a single feed wire and 

source are used as previously described.  The spiral parameters are summarized in Table 

2.1, and Fig. 2.1 shows a picture of the corresponding spirals with different inner radii.  

The effect of changing the inner radius is to increase or decrease the size of the hole in 

the center of the spiral and the size of the feed wire.  Fig 2.3 shows the input impedance 

of the spirals as the inner radius is varied.  When the inner radius is less than the arm 

width the real part of the input impedance is less than the desired 188 ohms, and when the 

inner radius is greater than the arm width the real part of the input impedance is greater 

than expected.  Also, when the inner radius is not equal to the arm width, both the real 

and imaginary parts of the input impedance vary greatly with frequency.  For a 

frequency-independent, self-complementary spiral the input impedance should be 188 

ohms and flat over a wide frequency range.  This behavior is best achieved in NEC4 

when the inner radius is equal to the arm width, wr =1 . 
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Figure 2.2 Geometry of Archimedean spirals with various values of the inner radius. 
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Table 2.1 Parameters for Archimedean spiral with various inner radii.  For all cases      
there are 16 segments per turn and 5 segments on the feed wire. 

 
Parameter wr =1  wr 5.01 =  wr 75.01 = wr 5.11 =  wr 21 =  wr 31 =  

2r , [cm] 10 10 10 10 10 10 

N  8 8 8 8 8 8 

1r , [cm] 0.3 0.15 0.23 0.45 0.61 0.91 

w , [cm] 0.3 0.31 0.31 0.3 0.29 0.28 

a , [cm] 0.0757 0.0769 0.0763 0.0746 0.0734 0.071 
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Figure 2.3 Simulated input impedance versus frequency for various values of the inner  
                     radius.  The solid lines represent the real part of the input impedance and the    

 dashed lines represent the imaginary part of the input impedance. 
 
 

 It is also necessary to validate the relationship between wire radius and wire width 

given in (2.11).  Consider the same spiral from the example above: cmr 3.01 = , 

cmr 102 = , 8 turns, and the radius found using (2.11) is cmao 0757.0= .  The effect of 

varying the wire radius is shown in Fig. 2.4.  When the radius is smaller than oa  the real 
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part of the input impedance is significantly higher than expected but the imaginary part of 

the input impedance is improved.  For a larger radius, the real part of the input impedance 

is smaller than 188 ohms and less flat with frequency.  The imaginary part of the input 

impedance is also worse.  Fig 2.4 shows that the typical relationship between wire radius 

and wire width, 4/wa = , is a good approximation for simulating a spiral antenna in 

NEC4. 
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Figure 2.4 Simulated input impedance versus frequency for various values of wire     
                        radius.  The solid lines represent the real part of the input impedance and   

                 the dashed lines represent the imaginary part of the input impedance. 
 
 

 Now that the appropriate NEC model for the Archimedean spiral has been 

determined, the antenna performance can be evaluated.  The voltage standing wave ratio 

(VSWR) is typically used to measure antenna bandwidth.  The VSWR for the spiral 

modeled above, cmr 3.01 = , cmr 102 = , 8 turns, cma 0757.0= , 16 segments per turn, 

and 5 segments on the feed wire, is shown in Fig. 2.5.  The VSWR referenced to 188Ω is 

less than 2:1 for frequencies greater than 530 MHz.   The input impedance and VSWR 

are more sensitive to the small changes in geometry discussed above compared to the 

radiation patterns and axial ratio.  However, the radiation patterns and axial ratio must 
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also be verified in NEC4 since they will be important later in the array analysis.  Fig. 2.6 

shows the total far-field patterns for the same spiral modeled above: cmr 3.01 = , 

cmr 102 = , 8 turns, cma 0757.0= , 16 segments per turn, and 5 segments on the feed 

wire.  The maximum gain at each frequency point, assuming no impedance mismatch, is 

plotted in Fig. 2.7.  The general trend is for the gain to increase with frequency as 

expected. 
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Figure 2.5 Simulated VSWR versus frequency. 
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Figure 2.6 Simulated radiation pattern plots versus theta for °= 0φ . 
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Figure 2.7 Simulated maximum gain versus frequency for °= 0φ . 
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 The axial ratio is also a very important parameter for spiral antennas.  It is desired 

that the Archimedean spiral have circular polarization broadside to the antenna.  The 

simulated boresight ( °= 0θ ) axial ratio versus frequency is shown in Fig. 2.8.  Perfect 

circular polarization is equal to an axial ratio of 0 dB, but an axial ratio less than 3 dB is 

often considered acceptable.  The axial ratio is less than 3 dB for frequencies of 

approximately 700 MHz and higher compared to a VSWR less than 2:1 for frequencies of 

about 530 MHz and greater.  The difference in these two performance criteria can be 

attributed to reflections from the end of each arm.  The reflected wave has opposite sense 

polarization compared to the outward traveling wave and has significant impact on the 

axial ratio at the lower frequencies.  Both the low frequency axial ratio and VSWR can be 

improved by resistive loading at the end of each arm of the spiral.  The axial ratio versus 

theta is also of interest.  Fig. 2.9 shows the axial ratio of the example spiral versus theta 

for various frequencies.  It is desirable for the axial ratio to be less than 3dB over the 

broadest range of theta angles possible.  The spiral has a 3dB or less axial ratio for 

°<<°− 6060 θ  and frequencies above 1000 MHz.  Also, as seen in Fig. 2.8, the spiral 

has very poor axial ratio performance at 500 MHz.   
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Figure 2.8 Simulated boresight axial ratio versus frequency for °= 0φ . 
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Figure 2.9 Simulated axial ratio versus theta for various frequencies, °= 0φ . 

 
 

 The convergence criteria and limitations of NEC4 must also be investigated.  In 

the previous examples 16 segments per turn and 5 segments on the feed wire were used.  

Fig. 2.10 shows the VSWR of the example spiral used above for different combinations 

of number of segments per turn and segments on the feed wire.  The VSWR is referenced 

to 188 ohms.  Fig. 2.10 is not intended to demonstrate a rigorous convergence test.  As in 

the earlier study of inner radius dimension and the strip width to wire diameter ratio, the 

objective here is to find the combination of segments per turn and feed segments that 

yield the best results compared to the 188Ω input impedance predicted by theory.  The 

figure clearly shows that both the number of segments per turn and the number of 

segments on the feed wire affect the results.  The best results are found with 10 segments 

per turn and 3 segments on the feed wire and the second best convergence is found with 

16 segments per turn and 5 segments on the feed wire.  As frequency is increased there is 

a general trend for the cases with more segments to degrade faster.  This is probably due 

to the breakdown in the thin wire approximation used by NEC4.  For most cases in this 

dissertation 16 segments per turn and 5 segments on the feed wire will be used for 
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consistency since simulations of the star spiral require 16 segments per turn to generate 

the correct geometry.  From Fig 2.10 it can be seen that for 16 segments per turn and 5 

segments on the feed the VSWR is less than 2:1 for frequencies less than about 11 GHz, 

which is much higher than necessary for the array simulations found in later chapters of 

this thesis.   
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Figure 2.10 Performance test for Archimedean spiral with various numbers of 
segments per turn and segments on the feed wire. 

 
 

 The performance test presented in Fig. 2.10 shows that satisfactory results are 

found using 16 segments per turn, but a more rigorous convergence test is needed to 

validate the results.  A standard convergence test is shown in Fig. 2.11.  The figure shows 

the real part of the input impedance of the spiral versus number of segments per turn for a 

few different frequencies.  Five segments are used on the feed wire for all cases.  Fig. 

2.11 shows that 16 segments per turn is adequate for numerical convergence since the 

input resistance is fairly flat above 16 segments per turn.  The breakdown of the thin wire 

approximation used in NEC4 is also clearly shown in Fig. 2.10.  For frequencies above 

8000 MHz the input impedance begins to deviate from the expected value of 188Ω as the 
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segment length becomes too large compared to the wavelength.  For example, for 16 

segments per turn, the longest segment is approximately 1.5 times the wavelength at 

12000 MHz.  At 16000 MHz the theoretical high frequency cutoff for the spiral is just 

exceeded which further explains poor results. 
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Figure 2.11 Convergence plot of input resistance versus number of segments per turn. 

 
2.3 Addition of Loss and Resistive Loading 
 
 The addition of conductivity loss or resistive loading to the end of each spiral arm 

can be used to reduce reflections from the end of each arm.  The question is how much 

loss or resistance should be added and what best represents a practical antenna.  In NEC4, 

a resistive load can be added to any segment or conductivity can be assigned to any 

segment.  Both techniques reduce reflections from the end of the arm and improve the 

low frequency VSWR and axial ratio. 

 Consider the example Archimedean spiral simulated in the previous section: 

cmr 3.01 = , cmr 102 = , 8 turns, cma 0757.0= , 16 segments per turn, and 5 segments on 

the feed wire.  A resistive load of 188 ohms has been added to the last segment, last 2 

segments, and last 3 segments of each arm.  The 188 ohms was chosen to match the 

desired input impedance of a self-complementary Archimedean spiral.  A comparison of 
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the VSWR for the spiral with and without resistive loading is shown in Fig. 2.12.  The 

theoretical low frequency cutoff with this spiral is 477 MHz, which corresponds to the 

red curve with 2 loads per arm.  It is not practical to add excessive loss so that the 

antenna operates below its theoretical limit.  The addition of resistive loss improves the 

impedance bandwidth of the spiral at the expense of the antenna gain.  Fig. 2.13 shows a 

plot of the maximum gain versus frequency for a number of load cases.  At 500 MHz 

there is about a 2 dB loss in gain when 2 loads per arm are used.  Another important 

parameter affected by the addition of loss is the axial ratio plotted in Fig. 2.14.  This plot 

shows a continuous improvement in the low frequency axial ratio as the number of loads 

is increased.  The plots show that the addition of loss to the end of each arm only effects 

the low frequency performance of the antenna, but the amount of loss must be determined 

by the tradeoffs between improved VSWR, axial ratio, and reduced gain. 
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Figure 2.12 VSWR versus frequency for different number of loads.  The loads are 
added to the outer segments of each arm of the spiral.  Each load is 188 ohms. 
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Figure 2.13 Maximum gain versus frequency for different number of loads.  The loads  
are added to the outer segments of each arm of the spiral.  Each load is  
188 ohms. 
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Figure 2.14 Axial ratio versus frequency for different number of loads.  The loads are  
added to the outer segments of each arm of the spiral.  Each load is 188  
ohms. 
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 Loss may also be added by introducing a finite conductivity to a segment.  

Figures 2.15, 2.16, and 2.17 show the VSWR, maximum gain, and axial ratio for the 

example spiral when finite conductivity is used.  The conductivity is added to the last half 

turn of each arm of the spiral.  The results for using resistive loads versus finite 

conductivity are very similar, but the conductivity method allows for slightly better 

control.  Since both methods correspond to practical techniques for adding loss to a 

spiral, the best method may depend on the particular application. 
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Figure 2.15 VSWR versus frequency for different conductivities.  The conductivity is  
added to the last half turn of each arm of the spiral. 
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Figure 2.16 Maximum gain versus frequency for different conductivities.  The  
conductivity is added to the last half turn of each arm of the spiral. 
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Figure 2.17 Axial ratio versus frequency for different conductivities.  The conductivity  
is added to the last half turn of each arm of the spiral. 
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2.4 Ground Plane Effects 
 
 Spiral antennas are typically backed by a lossy cavity, which restricts the 

radiation to one hemisphere and improves impedance bandwidth at the expense of a 2-3 

dB gain reduction due to the decrease in antenna efficiency.  Recently the use of spiral 

antennas with conducting ground planes has become more popular.  These types of 

spirals have more gain but the axial ratio and pattern bandwidths are drastically reduced 

compared to spirals backed by lossy cavities.  Most of the spiral element and array 

simulations in this thesis will be simulated in free space, but for some cases it may be 

desirable to use a ground plane.   

 There are two approaches that can be used to add a ground plane and still obtain 

three or more octaves of bandwidth.  The first is to use a lossy ground plane.  This option 

allows the specification of a relative permitivity and conductivity of the ground plane to 

be used in a reflection coefficient approximation or a Sommerfeld/Norton approximation 

to the ground plane.  The other possibility is to construct a conical shaped ground plane 

that maintains quarter wavelength spacing between the spiral and the ground plane in the 

vicinity of the active region of the spiral (Drewniak, et al., 1986). 

 The spiral that has been used throughout this chapter has cmr 3.01 = , cmr 102 = , 

8 turns, cma 0757.0= , 16 segments per turn, and 5 segments on the feed wire.  For this 

spiral, Fig. 2.18 shows the effect on the VSWR of a ground plane using the reflection 

coefficient approximation with various levels of loss.  The spiral is spaced a quarter 

wavelength, md 0375.0= , above the ground plane for a center frequency of 2000 MHz.  

The VSWR is greatly affected by the ground plane below 2000 MHz.  However, even for 

the perfect electric conductor (pec) ground case, the VSWR is essentially unaffected 

above 2000 MHz.  A lossy ground plane with a relative permeability of 1=rµ  and a 

conductivity of 005.0=σ  yields results equivalent to those found in free space.  The 

axial ratio shows very similar trends to the VSWR as seen in Fig. 2.19.  The radiation 

pattern bandwidth is also very important.  For a pec ground, a null is expected at 4000 

MHz for the spacing, md 0375.0= , used in this example, which corresponds to 2/λ  

spacing above g round.  The radiation patterns versus theta plots are shown in Fig. 2.20 at 
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a frequency of 4000 MHz.  Once again the results show that values of 13=rµ  and 

7=rµ  give satisfactory results, but a 1=rµ  agrees best with the free space results. 
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Figure 2.18 VSWR versus frequency for different levels of ground plane loss. 
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Figure 2.19 Axial Ratio versus frequency for different levels of ground plane loss. 
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Figure 2.20 Radiation pattern plots versus theta for different levels of ground plane  
loss. °= 0φ , 4000=f MHz. 
 

 The use of a conical ground plane is a technique for achieving wideband behavior 

without adding loss (Drewniak, et al., 1986).  For instance, the example spiral has a outer 

radius of cmr 102 =  corresponding to an approximate low frequency cutoff of 500 MHz 

and the inner radius of cmr 3.01 =  corresponds to an approximate high frequency cutoff 

of 15 GHz.  These two frequencies along with the outer radius of the spiral are used to 

determine the dimensions of the conical ground plane, as shown in Fig. 2.21.  The conical 

ground plane was simulated using a wire grid model with 13 radials and 11 rings, placed 

on a planar, perfectly pec ground plane.  The spiral is placed at a height of md 095.0=  

above the ground plane, which corresponds to quarter wavelength spacing at a frequency 

of 789 MHz.  The tip of the conical ground plane is 0.005m below the center of the 

spiral, which corresponds to quarter wavelength spacing at a frequency of 15 GHz. 
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Figure 2.21 Geometry of spiral antenna with conical ground plane. 

 A comparison of the performance of the conical ground plane versus other types 

of ground planes is shown in the Figs. 2.22-2.26.  Fig. 2.22 shows the VSWR for the 

various types of ground simulations and for free space.  For a 2:1 VSWR, the conical 

ground performs equally as well as free space or the lossy ground and out performs the 

perfect ground by about 1000 MHz at the low frequency.  The broadside gain of the 

spiral antenna using different types of ground planes is presented in Fig. 2.23.  The gain 

of the spiral using a perfect ground plane shows the formation of a null around 4000 MHz 

as expected from the pattern plots of Fig. 2.20.  The gain using a conical ground 

fluctuates from 2.5 dB to 12 dB, but the points of low gain do not indicate null formation.  

Figure 2.24 shows the patterns for a frequency range covering three octaves.  The 

patterns are all well formed with a small amount of ripple seen at certain frequencies.  

Patterns for the points of minimum gain are shown in Fig. 2.25.  Once again the patterns 

show some ripple and they are not as uniform as in free space but they do not have nulls.  

The final parameter of interest is axial ratio, shown in Fig. 2.26.  The conical ground 

plane slightly out performs the perfect ground plane in terms of maximum axial ratio in 

the frequency band of interest, but for an axial ratio less than 3 dB they perform about the 

same. 
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Figure 2.22 Comparison of VSWR versus frequency for different types of ground  
planes. 
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Figure 2.23 Comparison of gain versus frequency for different types of ground  
planes. 
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Figure 2.24 Radiation pattern plots versus theta for various frequencies covering three  
octaves of frequency bandwidth.  °= 0φ  
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Figure 2.25 Radiation pattern plots versus theta for frequencies at the minimum gain  
points.  °= 0φ  
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Figure 2.26 Comparison of axial ratio versus frequency for different types of ground  
planes. 
 

 The results for the conical ground plane presented above could be extended, 

however, some general trends have been observed.  First, placing the spiral closer (than 

used in this example) to a perfect electrically conducting ground beneath the conical 

structure can reduce the ripple observed in the radiation patterns at the expense of a 

greater VSWR at the low end of the frequency range.  An optimum spacing should exist 

to maximum the both parameters.  Secondly, the points of minimum gain seen in Fig. 

2.20 vary as the structure of the conical ground plane is changed.  It may be possible to 

shift the minimum gain points out of the frequency bands of interest by appropriately 

picking the number of radials and rings used to model the conical ground plane.  Also, 

the use of a solid conical ground plane may eliminate this problem entirely. 

 

2.5 Measurements 
 A number of circular spirals were built and measured to validate the theoretical 

and simulated results.  The spirals were printed on Rogers RT/duroid 5880, which has a 

dielectric constant of 2.2.  The pattern measurements were performed in the Virginia 

Tech anechoic chamber using a near-field scanner, and a HP 8753 vector network 
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analyzer was used to measure input impedance.  The input impedance of the spirals was 

measured using a 2-port measurement technique developed by Davis (1995).  The input 

impedance is found from the 2-port s-parameters using the following equation 

  
1211

1211

1
1

2
ss
ssZZ oin +−

−+
=  (2.13) 

where Ω= 50oZ . 

 For ease of comparison to the star spiral in Chapter 4, each circular spiral that was 

built and tested had an outer radius of mr 0507.02 =  and 16=N  turns.  Fig. 2.27 shows 

the measured input impedance for three circular spirals with different strip widths 

compared to a simulated spiral.  The simulated result and spiral #1 have the standard 

width of owaw == 4 , which gives the best results for a complementary spiral as detailed 

in Section 2.2.  Spiral #2 has a strip width based on the average of the free space and 

dielectric relative permittivities, ( ) oo www 81.02.21/2 =+= .  Lastly, spiral #3 has a 

strip width based on an earlier attempt to match the simulated results to the measured 

results.  The resulting strip width is oo www 59.02.215.1/ == .  The three spirals are 

shown in Fig. 2.28.  The strip width increases from left to right. 

 The curves of Fig. 2.27 show the same trends as seen in Fig. 2.4, where the effect 

of different wire radii was investigated.  Spiral #2, oww 81.0= , is closest to a 

complementary spiral and compares best to the simulated spiral, particularly at lower 

frequencies.  Spiral #1, oww = , has a strip width greater than that of a complementary 

spiral due to the effect of the dielectric, and as expected from Fig. 2.4 the input resistance 

is less than 188 ohms.  Spiral #3 has a strip width thinner than that of a complementary 

spiral which results in an input resistance greater than 188 ohms.  All of the measured 

results show a fair amount of noise and the input resistance tends towards 100 ohms with 

increasing frequency.  The noise can be reduced by performing the measurements in an 

anechoic chamber, as was done here, but not completely eliminated. 
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Figure 2.27 Comparison of measured input impedance versus frequency to simulated 
results for three different strip widths. 

 

 

Figure 2.28 Measured spirals with different strip widths of Fig. 2.27. 

 

 The VSWR plot of Fig. 2.29 also shows the effect of the different strip widths.  

The simulated spiral is matched to 188 ohms and measured spirals are matched to 150 

ohms, 165 ohms, and 185 ohms as strip width is reduced.  The effect of adding loss to the 

Spiral #3 Spiral #2 Spiral #1 
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spiral is also demonstrated in Fig. 2.29.  Using an ohmmeter, a loss of approximately 5 

ohms/meter was measured along the length of each arm of the spiral.  This effect is seen 

in the low frequency cutoff points for the spirals.  All three of the measured spirals have a 

VSWR less than 2:1 at about 950 MHz while the simulated, lossless, spiral has a cutoff of 

about 1025 MHz.  The theoretical low frequency cutoff of the spirals from (2.9) is 942 

MHz, which is very close to the measured results.  All of the spirals were measured using 

a 12 inch long feed made from 0.085 inch coax with k-connectors. 
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Figure 2.29 Comparison of measured VSWR versus frequency to simulated results for 
three different strip widths. 

 

 The patterns were measured using a wideband 180° hybrid and a feed made of 

0.118” coax.  The measurements were done at frequencies spanning from 900 MHz to 

8000 MHz, which gives more than a 3-octave frequency sweep.  A picture of the circular 

spiral that was used for pattern, gain, and axial ratio measurements is shown in Fig. 2.30.   

The hybrid insertion loss and impedance mismatch are plotted in Fig. 2.31.  The 

impedance mismatch is referenced to 50 ohms since the standard gain horn used for gain 

measurements was matched to 50 ohms.  The measured and simulated boresight gain of 

the circular spiral is shown in Fig. 2.32.  Measured gain is shown with and without 

compensating for hybrid insertion loss and impedance mismatch loss.  The measured gain 
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matches very well with the simulated gain for frequencies greater than 2000 MHz.  

Below 2000 MHz, the simulated gain is higher than the measured gain, but the trend of 

high, simulated gain at lower frequencies is common in the NEC4 results.  The same 

effect was also seen in Figures 2.7 and 2.23.  The measured boresight axial ratio is 

compared to simulated results in Fig. 2.33.  The measured boresight axial ratio matches 

very well with the simulated results over the entire frequency range of interest.  The 

radiation patterns and axial ratio patterns versus theta for the circular spiral are shown in 

Fig. 2.34 and Fig. 2.35, respectively.  In general, the measured patterns match well with 

simulated results.  Both the radiation patterns and axial ratio patterns become noisier with 

increasing frequency, which is due to current limitations of the measurement facility. 

 

 

Figure 2.30 Circular spiral measured for pattern, gain, and axial ratio validation. 
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Figure 2.31 Measured hybrid insertion loss and impedance mismatch. 
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Figure 2.32 Measured hybrid insertion loss and impedance mismatch. 
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Figure 2.33 Comparison of measured and simulated axial ratio of circular spiral. 
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Figure 2.34 Measured radiation patterns of spiral in Fig 2.30.  Theta cuts.  Black line is 
simulated result.
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Figure 2.34 (cont) Measured radiation patterns of spiral in Fig 2.30.  Theta cuts.  

Black line is simulated result.
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Figure 2.34 (cont) Measured radiation patterns of spiral in Fig 2.30.  Theta cuts.  

Black line is simulated result.
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Figure 2.34 (cont) Measured radiation patterns of spiral in Fig 2.30.  Theta cuts.  
Black line is simulated result.
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Figure 2.34 (cont) Measured radiation patterns of spiral in Fig 2.30.  Theta cuts.  
Black line is simulated result.
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Figure 2.34 (cont) Measured radiation patterns of spiral in Fig 2.30.  Theta cuts.  
Black line is simulated result. 
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Figure 2.34 (cont) Measured radiation patterns of spiral in Fig 2.30.  Theta cuts.  
Black line is simulated result.
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Figure 2.34 (cont) Measured radiation patterns of spiral in Fig 2.30.  Theta cuts.  
Black line is simulated result.
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Figure 2.34 (cont) Measured radiation patterns of spiral in Fig 2.30.  Theta cuts.  
Black line is simulated result. 
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Figure 2.34 (cont) Measured radiation patterns of spiral in Fig 2.30.  Theta cuts.  
Black line is simulated result. 
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Figure 2.35 Measured axial ratio of spiral in Fig 2.30.  Theta cuts.  Black line is 

simulated result. 
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Figure 2.35 (cont) Measured axial ratio of spiral in Fig 2.30.  Theta cuts.  Black line 

is simulated result. 
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Figure 2.35 (cont) Measured axial ratio of spiral in Fig 2.30.  Theta cuts.  Black line 

is simulated result. 
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Figure 2.35 (cont) Measured axial ratio of spiral in Fig 2.30.  Theta cuts.  Black line 

is simulated result. 
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Figure 2.35 (cont) Measured axial ratio of spiral in Fig 2.30.  Theta cuts.  Black line 

is simulated result. 
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Figure 2.35 (cont) Measured axial ratio of spiral in Fig 2.30.  Theta cuts.  Black line 

is simulated result. 
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Figure 2.35 (cont) Measured axial ratio of spiral in Fig 2.30.  Theta cuts.  Black line 

is simulated result. 
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Figure 2.35 (cont) Measured axial ratio of spiral in Fig 2.30.  Theta cuts.  Black line 

is simulated result. 
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Figure 2.35 (cont) Measured axial ratio of spiral in Fig 2.30.  Theta cuts.  Black line 

is simulated result. 
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Figure 2.35 (cont) Measured axial ratio of spiral in Fig 2.30.  Theta cuts.  Black line 

is simulated result. 
 
 

2.6 Summary 
 
 The basic theory and the necessary information to correctly simulate an 

Archimedean spiral antenna in NEC4 have been presented in this chapter.  The 

Archimedean spiral is a complementary antenna structure having a theoretical input 

impedance of 188 ohms.  For satisfactory simulation results in NEC4, the inner radius of 

the spiral should equal the width of each arm and a wire with a radius of one quarter the 

wire width should be used to model each arm.  It was also found that using 16 segments 

per turn and 5 segments on the feed wire yielded adequate simulation results.  Spiral 

performance can be improved by adding conductivity loss or resistive loading to the end 

of each arm to reduce reflections from the end of the spiral and improve low frequency 

impedance performance.  Also, the spiral can be used over a ground plane for a wide 

frequency range by using a lossy ground plane or by using a conical ground plane to 

prevent pattern nulls.  Input impedance, pattern, and axial ratio of a circular spiral printed 

on RT/Duroid 5880 were measured.  The measurements matched very well with 
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simulated results and help to validate the NEC4 simulations used throughout this 

dissertation. 


