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Preface

When you can measure what you are speaking about,
and express it in numbers, you know something about it.

—Lord Kelvin, May 3, 1883

This book is about the theory and practice of spectrum and network measurements in elec-
tronic systems. It is intended for readers who have a background in electrical engineering
and use spectrum analyzers and network analyzers to characterize electronic signals or
systems.

This is the book that I wish someone had handed me when I started my career as an
electrical engineer. This work was formed from thousands of interactions with my fellow
engineers at HP, Agilent Technologies, and now Keysight Technologies about this or that
measurement challenge. My target reader is the recent electrical engineering graduate or an
engineer recently tossed into the challenge of performing spectrum or network measure-
ments. For inspiration, I often think about the electrical engineering students I have taught
and then write with the goal of helping them apply that big pile of electrical theory in their
heads.

Since the first edition was written, the body of knowledge in this area has grown dra-
matically. Rather than triple the size of the book, I chose to keep it focused on the core
measurement principles and list key references for further study. This second edition does
reflect the dramatic impact of digital technology, driving significant change in the systems
being measured, and the technology used inside the measuring instruments. Every chapter of
the book has been impacted by this important shift.

The concept of wireless communication has been around for decades, evolving from
spark gap transmitters to handheld digital mobile phones. Spark gap transmissions relied on
Morse code (the original digital format), occupied wide spectrum bandwidth, and were
relatively inefficient. Over time, communication systems adopted AM and FM analog
modulation techniques to implement amplitude modulation and frequency modulation
broadcast radio, two-way radio, and early cellular telephones. More recently, digital formats
have emerged as the most efficient and versatile modulation schemes. It has been fascinating
to witness the explosion in wireless communications devices, and it is not over yet.

A merging of wireless and digital technology is producing an unprecedented level of
electronic connectivity in our society. The increasing usage of wireless devices has caused a

xvii



corresponding high demand for engineers and technicians who understand radio frequency
and microwave circuits and systems. Despite these recent changes in technology, the
fundamentals of signals propagating through circuits and through the air have not changed.
The basic theory of signals and systems and the measurements that accompany it still apply.
Concepts such as Fourier analysis, transmission lines, intermodulation distortion, signal-
to-noise ratio, and scattering parameters (S-parameters) represent a critical foundation for
this new era of wireless development. The purpose of this book is to enable the reader to
understand that basic theory, to relate it to measured results, and to apply it in creating new
RF and microwave designs.

Although some of the internal functions of spectrum analyzers and network analyzers
are discussed, the real emphasis of the book is on the theory and practice of frequency
domain measurements. Enough theory is provided so that the reader can understand how a
particular measurement is made, what the possible sources of error are, and the significance
of the results. Many numerical examples are given to aid the reader in understanding the
material and to help relate theory and practice.

The book can certainly be read cover to cover, but it is also organized into independent
chapters and subchapters. This allows the reader to read selectively and enhances the use-
fulness of the book as a reference.

Chapter 1 is an introduction to spectrum and network measurements. Decibels are an
often used and misused concept, so Chapter 2 is devoted to that topic. Fourier theory, the
theoretical basis for spectrum analysis, is summarized in Chapter 3. The two main types of
spectrum analyzers (fast Fourier transform analyzers and swept analyzers) are discussed in
Chapters 4 and 5. Chapters 6 through 9 cover several important measurement applications:
modulated signals, signal distortion, noise, and pulsed waveforms. Averaging and filtering
are covered together in Chapter 10.

Chapters 11 and 12 cover transmission lines and measurement connection techniques.
Chapter 13 introduces two-port network theory, which is the basis for network analysis.
Chapters 14 and 15 cover network analyzers, focusing on using vector network analyzers for
transmission and reflection measurements. Electromagnetic compatibility (EMC) measure-
ments are covered in Chapter 16, which is new to this edition. Chapter 17 ends the book with
a discussion of instrument performance and specifications.

Additional support material for this book is available online at http://www.electronic-
measurement.com.

Acknowledgments

Many people contribute to the undertaking of writing a book such as this one, either directly
or indirectly. My appreciation goes to my friend and colleague Ken Wyatt for helping me
with this book, especially the chapter on EMC measurements (Chapter 16). Ken is a world-
class expert on EMC, so check out his work at http://www.emc-seminars.com. My gratitude
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application notes from Agilent Technologies. (Note that the electronic measurement

xviii Preface



business of Agilent has been launched as a new company, Keysight Technologies). These
app notes were of tremendous value to me, and I have referenced many of them at the end of
each chapter. Most of the authors are unnamed, but I am grateful for their contributions.

My appreciation goes to the companies that have supplied photographs and other gra-
phics for this book: Keysight Technologies, ETS-Lindgren and Beehive Electronics.

Portions of Chapter 4 (Sections 4.21 through 4.32) were contributed by the R&D
department of the Lake Stevens Instrument Division of Hewlett-Packard (now Keysight
Technologies).

Thank you to Dudley Kay and the entire crew at SciTech Publishing for producing the
second edition and hanging in there with me to get it done.

My thanks to Gary Breed, Dennis Ford, and Martina Voigt of Noble Publishing for
bringing the first edition of this book back into print and giving it a second life. These
colleagues helped me in a variety of ways to complete the first edition: Jerry Daniels, Glenn
Engel, Bryan Hoog, Roy Mason, Harry Plate, Bill Spaulding, Joe Tarantino, and Ken Wyatt.

Bob Witte
bob.witte@electronic-measurements.com

Preface xix





Abbreviations

AC – alternating current

ACPR – adjacent channel power ratio

ACLR – adjacent channel leakage ratio

AM – amplitude modulation

BPSK – binary phase-shift keying

BNC – Bayonet Neill Concelman (connector)

CE – conducted emissions

CISPR – International Special Committee on Radio Interference

CW – continuous wave

DANL – displayed average noise level

dBm – decibels relative to one milliwatt

dBV – decibels relative to one volt

DC – direct current (or 0 Hz)

DSB – double sideband

DUT – device under test

EDF – forward directivity error

ESF – forward source match error

ERF – forward reflection tracking error

ELF – forward load match error

ETF – forward transmission tracking error

EXF – forward crosstalk error

EDR – reverse directivity error

ESR – reverse source match error

ERR – reverse reflection tracking error

ELR – reverse load match error

ETR – reverse transmission tracking error

xxi



EXR – reverse crosstalk error

EVM – error vector magnitude

EM – electromagnetic

EMC – electromagnetic compatibility

EMI – electromagnetic interference

EVM – error vector magnitude

FCC – Federal Communications Commission

FDM – frequency division multiplexing

FFT – fast Fourier transform

FM – frequency modulation

FMT – frequency mask trigger

FPGA – field programmable gate array

IEC – International Electrotechnical Commission

IF – intermediate frequency

IFFT – inverse fast Fourier transform

IBW – effective impulse bandwidth

IMD – intermodulation distortion

LISN – line impedance stabilization network

LO – local oscillator

LSB – lower sideband

LTI – linear time invariant (system)

MER – modulation error ratio

NBW – equivalent noise bandwidth

OBW – occupied bandwidth

PDF – probability density function

PM – phase modulation

POI – probability of intercept

PRN – pseudo-random noise

PRF – pulse repetition frequency

PSD – power spectral density

QAM – quadrature amplitude modulation

16QAM – 16-state quadrature amplitude modulation

QPSK – quadrature phase-shift keying

RBW – resolution bandwidth

RCE – relative constellation error

RE – radiated emissions

xxii Abbreviations



RF – radio frequency

RL – return loss

RTBW – real-time bandwidth

RTSA – real-time spectrum analyzer

RMS – root mean square

SSB – single sideband

SNA – scalar network analyzer

SNA – spectrum/network analyzer

SHI – second harmonic intercept

SOI – second-order intercept

SOLT – short-open-load-through (calibration)

SWR – standing wave ratio

TDR – time domain reflectometry

THD – total harmonic distortion

TOI – third-order intercept

TRL – through-reflect-line (calibration)

USB – upper sideband

VBW – video bandwidth

VCO – voltage-controlled oscillator

VNA – vector network analyzer

VR – variance ratio

VSWR – voltage standing wave ratio

Abbreviations xxiii





CHAPTER 1

Introduction to Spectrum and
Network Measurements

In this chapter we’ll review some of the basic system concepts that relate to spectrum and
network measurements. The basic function of a spectrum analyzer and network analyzer will
be introduced, along with a few example measurements.

1.1 Signals and Systems

An electrical system normally has one or more input ports and one or more output ports.
Electrical devices such as filters, attenuators, and amplifiers fall into this category. Figure 1-1
shows a system with a single input, x(t), and a single output, y(t).

A more complex system, a phase lock loop, is shown in Figure 1-2. Although there is still
only one input and one output, there are several blocks or subsections of the system, each
having its own input and output. Each block of the system may be considered as another
system. When designing or testing such a system, an engineer thinks in terms of the indi-
vidual blocks and the signals flowing between the blocks. Measurement instrumentation is
used in the design phase when the engineer verifies the performance of the individual blocks
and signals. Later, the signals and system blocks may be measured during manufacturing to
verify functionality and performance. Also, the system may be measured as part of main-
taining it in the field.

Network measurements characterize the circuit blocks of the system, whereas spectrum
measurements characterize the signals present. For example, in Figure 1-2, the frequency
content of the output, y(t), might be a critical parameter in the performance of the system and
could be measured using a spectrum analyzer. Similarly, the transfer characteristics of the
low-pass (loop) filter might be of interest, which could be measured with a network analyzer.

x(t)

system

y(t)

Figure 1-1 A simple system having one input, x(t), and one output, y(t).
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1.2 Time Domain and Frequency Domain Relationships

A common way to describe an electrical signal is its time domain representation, the voltage or
current as a function of time, as shown in Figure 1-3a. The blocks in a system can be
characterized in the time domain by measuring the step response, pulse response, or the
response at the output due to some other input signal. An oscilloscope displays the time domain
representation of a signal.

Another way to describe a signal is using its frequency domain representation, the
amplitude of the signal as a function of frequency, as shown in Figure 1-3b. The frequency
domain representation must include both magnitude and phase information to fully represent
a signal. Fourier theory relates the time domain and frequency domain representations.

Appropriate use of the Fourier series, Fourier transform, and the discrete Fourier trans-
form (DFT) allow the transformation of a time domain function, x(t), into a frequency
domain function, X( f ). Figure 1-4 shows a commonly used method of relating the time and
frequency domains in one three-dimensional plot.

t

X(f)

x(t)(a)

(b)

f

Figure 1-3 (a) A signal shown as a function of time. (b) A signal shown as a function of
frequency.

VCO

z(t)
N

e(t)x(t) y(t)

Figure 1-2 A phase lock loop is a complex system with multiple blocks and multiple signals.
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The spectrum analyzer is a common electronic instrument for measuring the frequency
content of a signal and displaying it in the frequency domain. Thus, the spectrum analyzer is
to the frequency domain as the oscilloscope is to the time domain.

Network measurements also make use of a frequency domain representation to char-
acterize a system. However, network measurements are performed by applying a stimulus at
the input to the system and measuring the resulting output signal. This stimulus must cover a
wide range of frequencies for the output signal to adequately represent the frequency domain
performance of the system. Most often, the stimulus is a sine wave source swept through the
frequency range of interest, but other signals can be used, such as a broadband noise source.

1.3 System Transfer Function

The stimulus signal, X( f ), is applied to the input of a system, and the output, Y( f ), is
measured (Figure 1-5). The transfer function is the ratio of the output over the input, both as
a function of frequency.

transfer function: Hð f Þ ¼ Yð f Þ
Xð f Þ

This implies a simple model of the system. That is, the input signal and the transfer
function completely determine the output signal, with no loading effects present. Two-port
parameters (discussed in Chapter 13) provide for a more complete model of a system.

Frequency

Frequency

Time

Time

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

Figure 1-4 A three-dimensional approach that shows the relationship between the time domain
and frequency domain.
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Often a system is assumed to be linear time invariant (LTI). For a system to be linear, it
must allow two input signals to be summed to create the corresponding summed output
signal.

That is, if

input x1ðtÞ produces output y1ðtÞ

and

input x2ðtÞ produces output y2ðtÞ

then the scaled and summed input

a1x1ðtÞ þ a2x2ðtÞ produces output a1y1ðtÞ þ a2y2ðtÞ

where a1 and a2 are real scalar values.
For a system to be time invariant, the output that is produced in response to an input does

not change with time. That is, if the input x(t) produces the output y(t), then a time-delayed
version of x(t), which is x(t – t0), will produce the delayed output y(t – t0).

If a system is both linear and time invariant, it meets the criteria of LTI. Of course, many
systems do not strictly meet this criteria. For example, practical electronic circuits often
introduce distortion products due to the nonlinear behavior of the circuit. It is often these
imperfections in circuit performance that limit the overall system performance, which means
they are an important parameter to understand and measure.

1.4 Advantages of using Frequency Domain Measurements

Why use frequency domain measurement techniques? The answer varies with the applica-
tion, but frequency domain measurements have several distinct advantages.

Narrowband frequency domain measurements provide greater sensitivity than time
domain measurements. Since the measurement bandwidth can be narrowed almost arbi-
trarily, frequency domain analyzers can greatly reduce the amount of noise present in the
measurement. Similarly, narrowband measurements can remove large interfering signals at
undesired frequencies. Consider the measurement of harmonic distortion of a near-perfect
sine wave. A spectrum analyzer can ignore the large fundamental frequency when measuring
the harmonic level. A time domain measurement with an oscilloscope must simultaneously
measure the fundamental and the much smaller harmonics in the signal. Harmonic distortion

H(f )
Y(f )X(f )

Figure 1-5 The transfer function of a system describes its behavior in the frequency domain.
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measurements with an oscilloscope are limited to a few percent, while spectrum analyzers
routinely allow 0.01% distortion measurements.

Some systems are inherently frequency domain oriented. For instance, the frequency
division multiplexing (FDM) systems used in telecommunications systems operate by
sandwiching together multiple signals in the frequency domain. Cellular telephones and
other wireless mobile devices operate within a given frequency band, with the radio spec-
trum divided up for use by the various cell sites. Frequency domain measurements are a
natural way to characterize these signals and systems.

Even systems that are not usually thought of as being inherently frequency domain in
nature may still require frequency domain measurements. For instance, stray capacitance and
resistive losses in a high-speed digital circuit may limit the bandwidth of the circuit and the
speed of a digital pulse. A network analyzer can determine the bandwidth of the circuit by
measuring its transfer function in the frequency domain.

Multiple signals are usually easier to separate in the frequency domain than in the time
domain. For instance, suppose the output of a switching power supply contains significant
levels of the 60 Hz line frequency (and its harmonics) and the switching frequency of the
power supply. Whichever of these is the largest will be discernible by a time domain mea-
surement. Usually, if there are multiple frequencies present, it will be difficult to view them
with an oscilloscope. A spectrum analyzer, on the other hand, can separate these frequency
components and measure them accurately.

1.5 Spectrum Measurements

A signal is characterized using a spectrum analyzer, as shown in Figure 1-6. The measure-
ment is usually as simple as connecting the analyzer to the source of the signal. However,
loading effects and other sources of measurement error may need to be considered. The
frequency spectrum of the signal will appear on the analyzer’s display. An example is shown
in Figure 1-7.

Receiver

Signal

Spectrum
Analyzer

Figure 1-6 A spectrum measurement is performed by applying the signal to be analyzed to the
input of a spectrum analyzer.
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The complexity of the measurement varies according to the application. In a simple case,
the spectrum analyzer may be used to measure the amplitude and frequency of a signal
spectral line. More often, the spectral content of the signal includes multiple responses such
as harmonics, modulation sidebands, and spurious responses. Noise levels can also be
measured (if the measured noise is greater than the analyzer’s noise), and the noise level can
be displayed as a function of frequency.

The standard vertical scale on a spectrum analyzer is logarithmic and marked in decibels.
This allows a large dynamic range to be displayed on a reasonable-sized screen. Many
analyzers also provide a linear vertical scale for users that prefer to work in terms of volts.
The horizontal scale is, of course, frequency. It is most often a linear frequency scale, but a
logarithmic frequency scale is used in some applications.

Spectrum analyzers are available in a wide range of configurations with a corresponding
wide range of performance. Frequency range is the most fundamental parameter to use to
categorize spectrum analyzers. Different measurement technologies are most effective in
different frequency bands. Fast Fourier transform (FFT) spectrum analyzers are primarily
intended for audio and mechanical measurements, using analog-to-digital conversion and the
FFT to cover from near 0 Hz to a few hundred kHz. Swept spectrum analyzers use traditional
radio frequency receiver circuits to sweep the frequency range of interest. These analyzers
are typically offered in frequency ranges that start at a few Hz on the low end and extend to
50 GHz or higher. Figure 1-8 shows a high-performance 26.5 GHz spectrum analyzer that
combines the FFT measurement technique with the traditional swept approach. Besides
frequency range, other factors such as cost, dynamic range, sensitivity, accuracy, and feature
set vary from analyzer to analyzer.

START 0 Hz

hp
10 dB/

REF 5.0 dBm ATTEN 20 dB

RES BW 10 KHz VBW 1 KHz SWP 20 sec
STOP 100.0 MHz

Figure 1-7 A typical spectrum analyzer measurement showing the harmonic content of a signal
generator output.
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1.6 Network Measurements

A network is characterized in the frequency domain by connecting the source of a network
analyzer to the input of the network and the analyzer’s receiver to the output of the network
(Figure 1-9). Thus, the network analyzer provides its own stimulus for the device under test
(DUT).

The transfer function is the most common network measurement (Figure 1-10). The gain
or loss of an attenuator, a filter, an amplifier, or other circuit as a function of frequency is an
important design parameter. The transfer function is normally displayed with a logarithmic
vertical scale (in decibels). The horizontal axis is frequency and may be logarithmic
(resulting in a Bode plot) or linear. Other functions such as the phase, group delay, real part,
or imaginary part of the transfer function may also be displayed.

Reflection measurements characterize the input or output behavior of DUT. This includes
such parameters as return loss, reflection coefficient, impedance, and standing wave ratio, all
as a function of frequency. Reflection measurements usually require the use of specialized
accessories such as a directional bridge, directional coupler, or S-parameter test set.

Figure 1-8 A mid-performance spectrum analyzer with a frequency range of 20 Hz to 26.5 GHz.
(� Keysight Technologies, Inc. Reproduced with Permission, Courtesy of Keysight
Technologies, Inc.)

Source Receiver

DUT

Network
Analyzer

Figure 1-9 A network analyzer provides a signal source to the device under test (DUT) and
measures the response at the device’s output.
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Network analyzers are available in two main varieties: scalar and vector. Scalar network
analyzers (SNAs) provide only magnitude information (no phase information) and have
tended to be less expensive to implement. As vector network analyzers (VNAs) have
decreased in cost, the VNA has largely displaced the SNA in the marketplace. A typical
VNA is shown in Figure 1-11.

100 K

5.000 dB 10.000 dB MAG (UDF) –2.604 dB
REF LEVEL /DIV MARKER 50 141 314.200 Hz

START 100 000.000 Hz STOP 200 000 000.000 Hz
1 M 10 M 100 M

Figure 1-10 A typical network measurement showing the transmission characteristics of a
low-pass filter.

Figure 1-11 A 2-port network analyzer with a frequency range of 100 kHz to 3 GHz.
(� Keysight Technologies, Inc. Reproduced with Permission, Courtesy of
Keysight Technologies, Inc.)
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1.7 Combined Spectrum/Network Analyzers

Some instruments combine the spectrum analyzer and network analyzer in one instrument
(Figure 1-12). This hybrid approach is a natural one, since the same instrument user often
needs to perform both spectrum and network measurements. Furthermore, the block dia-
grams and technologies used in the two types of instruments are similar enough that com-
bining the two instruments can be done at a reasonable cost.

The instrument shown in Figure 1-12 has a compact, handheld form factor, which is
especially useful for field service applications.

Why doesn’t a network analyzer inherently have the ability to also make spectrum
measurements? Usually, a network analyzer design will take advantage of the fact that the
frequency of the stimulus signal is known since it is supplied by the network analyzer. This
allows the use of a simpler receiver block diagram rather than one that must reject images
and other off-carrier frequency components. This is unlike the spectrum case, where a signal
is often unknown and complex with multiple frequencies present. Thus, a network analyzer
can have a simpler and less expensive block diagram.

Figure 1-12 This RF analyzer offers both spectrum and network measurements in one compact
instrument. (� Keysight Technologies, Inc. Reproduced with Permission,
Courtesy of Keysight Technologies, Inc.)
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1.8 Modular Instruments

Spectrum analyzers and network analyzers are available in modular form factors, with the
PXI standard being the most common (Figure 1-13). Industry standard modular systems have
several advantages over traditional bench instruments: flexible configuration (especially
number of channels), smaller physical size, measurement speed, and tighter integration
between instruments. The main disadvantage is that they are much less of a turnkey system,
requiring the end user to configure and optimize the test system. Modular instruments often
have less measurement precision compared to bench instruments, due to the smaller physical
size.
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Figure 1-13 This PXI frame is shown with an embedded controller and set of modules that
implement a flexible vector signal analyzer. (� Keysight Technologies, Inc.
Reproduced with Permission, Courtesy of Keysight Technologies, Inc.)
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CHAPTER 2

Decibels

Decibels are used to specify ratios of powers and voltages in a logarithmic fashion. Absolute
levels can also be specified by supplying suitable reference values. Decibels are commonly
used for gain and loss calculations in electronic systems.

Generally, spectrum and network analyzers display measurement results with their
displays calibrated in decibels. The popularity of the decibel in such applications is due to
its ability to compress logarithmically widely varying signal levels. For example, a 1 V
signal and a 0.1 mV signal can both be represented on a display with 100 dB of range. To
show these two signals simultaneously with reasonable clarity on a linear scale is
impractical.

Decibels also are useful for gain and loss calculations, where multiplication operations
are transformed into (easier) additions.

2.1 Definition of the Decibel

The fundamental definition of the decibel (dB) is in terms of a power ratio. Two powers, P1

and P2, can be related in dB by

A dBð Þ ¼ 10 logðP2=P1Þ ð2-1Þ
where log indicates the base 10 logarithm.

The subscript (dB) is used to indicate that the numerical result is in decibels. As shown,
P2 is expressed relative to P1. Reversing P1 and P2 changes the sign of the result in decibels.

If the powers P1 and P2 resulted from a pair of voltages across a pair of resistors, then

AðdBÞ ¼ 10 log
V 2

2 =R2

� �

V 2
1 =R1

� � ð2-2Þ

AðdBÞ ¼ 10 logðV2=V1Þ2 þ 10 logðR1=R2Þ ð2-3Þ

AðdBÞ ¼ 20 logðV2=V1Þ þ 10 logðR1=R2Þ ð2-4Þ
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The first term is the voltage form of the decibel equation, and the second term accounts
for differences in the two resistances. If the two resistances are equal, this equation can be
further simplified.

A dBð Þ ¼ 20 logðV2=V1Þ ð2-5Þ
The last equation has taken on a life of its own and is often used as the defining equation

for the decibel. Strictly speaking, the decibel is defined in terms of power only. If the
resistances associated with each of the powers (voltages) are equal, then the power equation
and the voltage equation are consistent. If the voltage equation is used when the resistances
are not equal, incorrect results will occur.

Despite this potential problem, the voltage equation is widely used in situations where
the two resistances are not equal. For instance, the voltage equation is often used to
specify the voltage gain of operational amplifier circuits. In these circuits, the input
impedance is usually very high and the output impedance is usually low. The voltage form
of the decibel equation can be used successfully in such a case as long as power gain is not
inferred from it.

Example 2.1

Calculate the ratio of P2 and P1 and express in decibels. P1 ¼ 2 W, P2 ¼ 12 W: Exchange P1

and P2 and recalculate.

The linear ratio is A ¼ P2=P1 ¼ 12=2 ¼ 6: Expressed in decibels

A dBð Þ ¼ 10 logðP2=P1Þ ¼ 10 logð12=2Þ ¼ 7:78 dB

With P1 and P2 reversed,

A dBð Þ ¼ 10 logðP1=P2Þ ¼ 10 logð2=12Þ ¼ �7:78 dB

Solving the decibel equations for the power or voltage ratio results in

A ¼ P2

P1
¼ 10ðA dBð ÞÞ=10 ð2-6Þ

A ¼ V2

V1
¼ 10ðA dBð ÞÞ=20 ð2-7Þ

Example 2.2

The voltage gain of a circuit (the ratio of the output voltage to the input voltage) is 25 dB.
If the output voltage is 5 V, what is the input voltage?

V2=V1 ¼ 10ð25=20Þ ¼ 17:78

V1 ¼ V2=17:78 ¼ 5=17:78 ¼ 0:281 V
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2.2 Cardinal Values

It is worth summarizing some of the common cardinal values for decibels (Table 2-1).
Although precise calculations would be best accomplished using a computer, these ratios can
provide a more intuitive, working knowledge of decibels.

Some mathematical identities can be used to develop some rules of thumb for working
with decibels.

Rule 1. Changing the sign of the decibel value corresponds to taking the reciprocal of the
linear ratio.

If

A dBð Þ ¼ 10 logðAÞ

then

�AðdBÞ ¼ 10 logð1=AÞ

Rule 2. Adding two decibel values is equivalent to multiplying their corresponding linear
ratios.

10 logðA1Þ þ 10 logðA2Þ ¼ 10 logðA1 � A2Þ

Example 2.3

Use Table 2-1 and the foregoing rules to express the following linear ratios in terms of
decibels: ðaÞ V2=V1 ¼ 20; ðbÞ P2=P1 ¼ 0:5; ðcÞ V2=V1 ¼ 40:

(a) V2=V1 ¼ 10 � 2: From Table 2-1, the ratios of 10 and 2 can be converted to decibel
values of 20 dB and 6 dB. Using rule 2, A dBð Þ ¼ 20 dB þ 6 dB ¼ 26 dB:

(b) The reciprocal of P2/P1 is 2, which in decibels is 3 dB. Thus, by rule 1, the decibel
value is –3 dB.

(c) V2=V1 ¼ 10 � 2 � 2: From Table 2-1, these can be converted to decibel values of
20 dB, 6 dB, and 6 dB. Summing these provides the complete result, A(dB) ¼ 32 dB.

Table 2-1 Common Cardinal Values for Decibels

Voltage Ratio Power Ratio Decibels

1 1 0 dB
1.414 2 3 dB
2 4 6 dB
3.16 10 10 dB
10 100 20 dB
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2.3 Absolute Decibel Values

The original definition of the decibel allows only for representing ratios of two values in
decibel form. By providing a reference value (either a voltage or a power), decibels can be
used to refer to absolute voltage or power values.

PðdBÞ ¼ 10 logðP=PREFÞ ð2-8Þ
VðdBÞ ¼ 20 logðV=VREFÞ ð2-9Þ

dBm

The most common power reference for spectrum and network measurements is 1 mW,
resulting in dBm.

PðdBmÞ ¼ 10 logðP=0:001Þ ð2-10Þ
Note that this definition does not depend on the impedance that dissipates the power.
It is convenient to develop the voltage form of the equation, since many power mea-

surements are actually calibrated voltage measurements. To do so, the impedance level must
be specified since it relates the voltage and power levels. It follows that these equations are
valid only for the specified impedances.

The voltage reference produces 1 mW of power in a resistor of the appropriate impe-
dance. For R ¼ 50 W

VREF ¼
ffiffiffiffiffiffi
PR

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:001 � 50

p
¼ 0:2236 V ð2-11Þ

PðdBmÞ ¼ 20 logðVRMS=0:2236Þ for 50 W ð2-12Þ

For R ¼ 75 W,

PðdBmÞ ¼ 20 logðVRMS=0:2739Þ for 75 W ð2-13Þ
Note that the reference voltage and the voltage to be converted to dBm are both in root

mean square (RMS) volts. The symbol P(dBm) was used even though the decibel equation
uses voltage to emphasize that dBm is defined in terms of power. The voltage form of the
equation is valid only for one particular impedance, whereas the power form of the equation
is independent of impedance. A particular dBm value will always indicate the same power
level but will correspond to different voltages for different impedances.

Example 2.4

Express the following voltages and powers in terms of dBm: (a) P ¼ 25 mW; (b) VRMS ¼ 1 V,
50 W impedance; (c) VRMS ¼ 1 V; 75 W impedance.

(a) PðdBmÞ ¼ 101ogð25 � 10�6=0:001Þ ¼ �16:0 dBm
(b) PðdBmÞ ¼ 20 logð1=0:2236Þ ¼ 13:0 dBm
(c) PðdBmÞ ¼ 20 logð1=0:2739Þ ¼ 11:24 dBm
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dBW

For higher power applications, a power reference of 1 W may be used, resulting in dBW.

PðdBWÞ ¼ 10 logðP=1:0Þ ¼ 10 logðPÞ ð2-14Þ

dBV

The most common voltage reference is 1 V (RMS), resulting in dBV.

VðdBVÞ ¼ 20 logðVRMS=1Þ ¼ 20 logðVRMSÞ ð2-15Þ

Measurements in dBV are based on voltage only. A particular dBV value will always
have a corresponding voltage value, independent of the impedance present. This means that a
constant dBV value will supply differing amounts of power to different impedances. This
runs counter to the previous assertion that the decibel is strictly defined in terms of power.

dBmV

Another voltage reference used for decibel measurements is 1 mV RMS, resulting in dBmV.

VðdBmVÞ ¼ 20 logðVRMS=0:001Þ ð2-16Þ

dBmV

Another voltage reference used for decibel measurements is 1 mV RMS, resulting in dBmV.

VðdBmVÞ ¼ 20 logðVRMS=0:000001Þ ð2-17Þ

dBm/dBV Conversions

To convert between dBm and dBV, the impedance must be specified. Both dBm and dBV
can be computed using the voltage form of the decibel equation but with different voltage
references. Due to the logarithmic nature of decibels, for any particular impedance dBm and
dBV differ by a constant.

PðdBmÞ ¼ VðdBVÞ þ 10 log l=ð0:001 � RÞ½ � ð2-18Þ

For R ¼ 50 W and 75 W

P dBmð Þ ¼ VðdBVÞ þ 13:01 for 50 W ð2-19Þ
P dBmð Þ ¼ VðdBVÞ þ 11:25 for 75 W ð2-20Þ

The equations showing a power on the left side and a voltage on the right side may seem
inconsistent at first. However, they are the logarithmic equivalent of P ¼ V2/R and serve to
emphasize the differing nature of dBm (which is based on power) and dBV (which is based
on voltage).
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Figure 2-1 allows convenient conversion from volts to dBV and dBm.

Example 2.5

Convert the following measured values to dBV and dBm, as possible, within the limitations
of the information provided: (a) 0.1 V RMS across 50 W; (b) 0.5 V RMS, unknown impe-
dance; (c) 5 mW into 75 W; (d) 30 mW, unknown impedance.

(a) V dBVð Þ ¼ 20 log 0:1ð Þ ¼ �20dBV; PðdBmÞ ¼ 20 log 0:1=0:2236ð Þ ¼ �6:99 dBm:
(b) V(dBV) ¼ 20 log(0.5) ¼ –6.02 dBV; dBm cannot be determined without knowing

either the power or the impedance.
(c) P dBmð Þ ¼ 10 log 0:005=0:001ð Þ ¼ 6:99 dBm; VðdBVÞ ¼ PðdBmÞ �11:25 ¼ �4:26 dBV:

(d) P(dBm) ¼ 10 log(30 � 10–6/0.001) ¼ –15.23 dBm; dBV cannot be determined without
knowing either the voltage or the impedance.

High-Impedance Measurements

Although dBm and dBV are relatively straightforward concepts, confusion can occur in
high-impedance measurements. For example, many spectrum analyzers compute and display
the dBm value corresponding to the measured voltage assuming a 50 W (or other) impe-
dance, even though the high-impedance input is being used. The measurement is misleading
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Figure 2-1 Plot of dBm and dBV versus RMS voltage.
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since the voltage form of the dBm equation is used even though the impedance is not 50 W.
This is done as an aid to the instrument user, assuming either that an appropriate termination
(load) has been installed at the input to the analyzer or that the user knows how to interpret
the potentially confusing data. When the answer is displayed as dBm, the user should
make sure that something in the measurement system or device under test provides the
appropriate load impedance. Some analyzers with high-impedance inputs allow the user to
specify the impedance to be used in computing dBm.

2.4 Gain and Loss Calculations

The power gain of a system is the ratio of the output power to the input power.1

GP ¼ P2=P1 ð2-21Þ
where

P2 ¼ output power
P1 ¼ input power

Power gain is often specified in terms of decibels.

GP dBð Þ ¼ 10 log P2=P1ð Þ ð2-22Þ
If P2 is greater than P1, the system exhibits actual power gain. The ratio P2/P1 is greater

than unity and is positive when expressed in decibel form. If P2 is less than P1, the system
has a power gain of less than unity and actually exhibits a loss. When expressed in decibels,
the gain is negative. If P1 and P2 are equal, the gain is 1, or in dB, 0 dB.

In ratio form, the power loss is

LP ¼ P1=P2 ¼ 1=GP ð2-23Þ
Using decibels,

LPðdBÞ ¼ 10 log P1=P2ð Þ ¼ 10 log l=GPð Þ ð2-24Þ
A loss is the negative of the corresponding gain, when both are expressed in decibels. For

example, a loss of 10 dB is the same as a gain of –10 dB.

Voltage Gain

Gain can also be expressed using voltage, resulting in voltage gain. Again, the warnings
apply about using voltage ratios expressed in decibels when the two impedances involved are
not equal.

GV ¼ V2=V1 ð2-25Þ

1 The definition of power gain is sometimes further refined into several different definitions: operating power gain,
transducer power gain, available power gain, and insertion power gain, see Carson (1975).
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where

V2 ¼ output voltage
V1 ¼ input voltage

In decibels, the voltage gain is

GV dBð Þ ¼ 20 log V2=V1ð Þ ð2-26Þ

Example 2.6

Compute the gain and loss (both ratio and dB) for a circuit having an input power of
0.40 mW and an output power of 0.25 mW.

The power gain

GP ¼ 0:25=0:40 ¼ 0:625

The power loss

LP ¼ 1=GP ¼ 1:6

In decibels

GP dBð Þ ¼ 10 log 0:625ð Þ ¼ �2:04 dB

LP dBð Þ ¼ 2:04 dB

Multiple Blocks

When multiple circuits are cascaded together, decibels are often used to simplify the gain
calculations. The electronic system shown in Figure 2-2 has three individual blocks, each
with its own gain. The total gain of this system can be computed using

GT ¼ POUT=PIN ¼ GP1 � GP2 � GP3 ð2-27Þ
In terms of decibels,

GT dBð Þ ¼ 10 log GP1 � GP2 � GP3ð Þ ð2-28Þ

GT dBð Þ ¼ 10 log GP1ð Þ þ 10 log GP2ð Þ þ 10 log GP3ð Þ ð2-29Þ

GT dBð Þ ¼ G1ðdBÞ þ G2ðdBÞ þ G3ðdBÞ ð2-30Þ

GP1 GP2 GP3 POUTPIN

Figure 2-2 Decibels can be used to simplify gain calculations of multiple blocks.
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Thus, when decibels are used for gain calculations, multiplication operations are trans-
formed into additions. The output power may be expressed in absolute decibels (such as dBm).

GT ¼ POUT=PIN ð2-31Þ
GT dBð Þ ¼ POUTðdBÞ � PINðdBÞ ð2-32Þ
POUT dBð Þ ¼ GTðdBÞ þ PINðdBÞ ð2-33Þ

Expanding the total gain into its individual components,

POUT dBð Þ ¼ G1ðdBÞ þ G2ðdBÞ þ G3ðdBÞ þ PINðdBÞ ð2-34Þ

Example 2.7

Compute the total system gain in dB for the system shown in Figure 2-3. If the input power
is 150 mW, what is the output power in dBm?

The total system gain in dB is G(dB) ¼ –3 dB þ 20 dB þ 5 dB ¼ 22 dB. The input power is
150 mW, which is

10 log 150 � 10�6=0:001
� � ¼ �8:24 dBm

POUT dBð Þ ¼ �8:24 dBm þ 22 dB ¼ 13:76 dBm

2.5 Decibels and Percent

Often, decibels are used to compare the relative sizes of two signals on a spectrum analyzer.
The smaller of the two signals can be described as being a certain number of dB down from
the larger signal, which acts as a reference. Modulation measurements and harmonic dis-
tortion measurements are often stated this way.

It may also be desirable to express the size of the smaller signal as a percent of the larger
one. Since

A dBð Þ ¼ 10 log P2=P1ð Þ ð2-35Þ
P2

P1
¼ 10ðAðdBÞ=10Þ ð2-36Þ

(P2/P1) is just the ratio of the two signal powers but is not expressed in percent. It is
understood that the ratio must be multiplied by 100 to get percent.

Attenuator Amplifier Amplifier

–3 dB

PIN POUT

+20 dB +5 dB

Figure 2-3 A simple system with gain and loss (see Example 2.7).
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Similarly, for voltage

V2

V1
¼ 10ðAðdBÞ=20Þ ð2-37Þ

Example 2.8

A signal is 42 dB smaller than another signal. What percent of the second signal is the first
signal (in terms of voltage)?

A dBð Þ ¼ �42dB;V2=V1 ¼ 10ð�42=20Þ ¼ 0:00794;which is 0:794%:

2.6 Error Expressed in Decibels

The smaller of the two signals may actually be a source of error in a measurement. For
example, the smaller signal may be a spurious response occurring at the same frequency as
the (desired) larger signal. Depending on how the two signals add together, an error is
produced in the measurement. In most analyzer measurements, the smaller signal may
add constructively or destructively (or somewhere in between), depending on the relative
phases of the signals. Adding the signals together gives a maximum bound on the error and
subtracting them gives a minimum bound.

The error of the combination of the two signals relative to the desired signal is

V1 � V2

V1
¼ 1 � V2

V1
ð2-38Þ

In decibel form,

errorðdBÞ ¼ 20 log 1 � V2=V1ð Þ ð2-39Þ
This is the error induced in V1 (expressed in dB), due to the presence of V2. If V2 is zero,

then error(dB) is 0 dB, indicating that the decibel value of V1 has no error in it.

Example 2.9

If the smaller signal in Example 2.8 introduces an error into the large signal, express this
error in dB. If the large signal is –20 dBV, what is the measured signal (including the error)?

errorðdBÞ ¼ 20 log l � 0:00794ð Þ ¼ �0:069 dB

If the error is positive,

V dBVð Þ ¼ �20 dBV þ 0:069 dB ¼ �19:931 dBV

If the error is negative,

V dBVð Þ ¼ �20 dBV � 0:069 dB ¼ �20:069 dBV
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Table 2-2 is a list of useful decibel relationships. The first column lists the difference
between two signal levels, expressed in decibels. The corresponding percent (either power or
voltage) is shown in the next two columns, and the worst case errors introduced into the larger
signal by the smaller signal (according to equation (2-39)) are listed in the last two columns.

Example 2.10

Using Table 2-2, predict the error introduced into a –10 dBm signal by an interfering signal
that is 20 dB lower in power level.

The interfering signal is –20 dB relative to the desired signal. From Table 2-2, an error
of þ0.8279 dB or –0.9151 dB will be introduced depending on the phase of the interfering
signal. So the measured signal level is within the range of –9.1721 dBm to –10.9151 dBm.
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Table 2-2 Error Due to Interfering Signal

Interfering
Signal Level

Relative to
Desired Signal

Error Introduced Into
Desired Signal

db Power % Voltage % Error(dB) þ Error(db) �
0 100.00% 100.00% 6.0206 �?
�1 79.43% 89.13% 5.5350 �19.2715
�2 63.10% 79.43% 5.0780 �13.7365
�3 50.12% 70.79% 4.6495 �10.6907
�4 39.81% 63.10% 4.2489 �8.6585
�5 31.62% 56.23% 3.8755 �7.1773
�6 25.12% 50.12% 3.5287 �6.0412
�7 19.95% 44.67% 3.2075 �5.1405
�8 15.85% 39.81% 2.9108 �4.4096
�9 12.59% 35.48% 2.6376 �3.8063
�10 10.00% 31.62% 2.3866 �3.3018
�20 1.00% 10.00% 0.8279 �0.9151
�30 0.10% 3.16% 0.2704 �0.2791
�40 0.010% 1.00% 0.0864 �0.0873
�50 0.0010% 0.32% 0.0274 �0.0275
�60 0.00010% 0.10% 0.0087 �0.0087
�70 0.000010% 0.032% 0.0027 �0.0027
�80 0.0000010% 0.010% 0.0009 �0.0009
�90 0.00000010% 0.0032% 0.0003 �0.0003
�100 0.000000010% 0.0010% 0.0001 �0.0001
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CHAPTER 3

Fourier Theory

The most common way of representing signals is in the time domain. Another representation of
a signal is via the frequency domain, which is inherent in spectrum measurements. In the
frequency domain, the signal is described in terms of its frequency content, plotting the amount
of power present at each frequency. A complete frequency domain representation includes both
the magnitude and phase of the signal. The frequency domain is related to the time domain by a
body of knowledge generally known as Fourier theory, named for Jean Baptiste Joseph Fourier
(1768–1830). This includes the series representation known as the Fourier series and the
transform techniques known as the Fourier transform. Discrete (digitized) signals can be
transformed into the frequency domain using the discrete Fourier transform (DFT).

3.1 Periodicity

A signal or function is periodic if it meets the following criterion:

xðtÞ ¼ xðt þ TÞ for all t ð3-1Þ
where

T ¼ period of the function

In other words, a periodic function can be shifted in time by exactly one period and the
resulting new function will look the same as the original one. A periodic function of time
repeats itself every T seconds (Figure 3-1).

x(t)
T

t

Figure 3-1 A periodic signal repeats every T seconds.
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3.2 Fourier Series

Most periodic signals can be represented by a series expansion of sines and cosines. There
are some mathematical limitations on the represented signal, but physically realizable signals
meet these constraints.1

The Fourier series representation of a periodic function has the form2

xðtÞ ¼ a0

2
þ
X1

n¼1

ðan cos 2pnf0t þ bn sin 2pnf0tÞ ð3-2Þ

where

an ¼ 2
T

ðT=2

�T=2

xðtÞ cos 2pnf0t dt ð3-3Þ

bn ¼ 2
T

ðT=2

�T=2

xðtÞ sin 2pnf0t dt ð3-4Þ

where

f0 ¼ fundamental frequency in hertz
T ¼ period of the signal

T and f0 are related by

f0 ¼ 1
T

ð3-5Þ

The frequency in rad/sec (w0) is

w0 ¼ 2pf0 ð3-6Þ
Using the Fourier series, a periodic signal can be expanded into a summation of sines and

cosines. The weighting of these sines and cosines are given by the an and bn coefficients.
These coefficients are found by integrating (over one period) the function multiplied by the
sine or cosine associated with that coefficient. The sine and cosine terms are all harmonically
related to the fundamental frequency, w0. The a0/2 term is simply the average (DC) value of
the waveform and can often be found by inspection.

It may be inconvenient to work with separate sine and cosine terms, so the two terms can
be combined into one sinusoid with an appropriate magnitude and phase angle.

xðtÞ ¼ a0

2
þ
X1

n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

n þ b2
n

q
cosð2pnf0t þ qnÞ ð3-7Þ

1 We will take a less than rigorous mathematical approach.
2 The reader should be aware that there are several different ways of defining the Fourier series, with subtle dif-
ferences in formulation.
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where

qn ¼ tan�1ð�bn=anÞ
Alternatively, an and bn can be combined into a complex coefficient that gives the complex

form of the Fourier series. Instead of sines and cosines, a complex exponential is used:

xðtÞ ¼
X1

n¼�1
cne j2pnf0t ð3-8Þ

where

cn ¼ 1
T

ðT=2

�T=2

xðtÞ e�j2pnf0t dt ð3-9Þ

The two Fourier series representations are related by

cn ¼ ðan � jbnÞ=2 ð3-10Þ
The complex coefficient can also be expressed in magnitude/phase format:

cn ¼ cnj jffqn ð3-11Þ
Note that the complex form of the Fourier series is usually shown with n ranging from

negative infinity to positive infinity whereas the original form restricts n to positive values.
The complex form is chosen in anticipation of the Fourier transform, which includes nega-
tive frequencies. The factor of 2 that appears in equation (3-10) accounts for the presence of
twice as many terms (both positive and negative) in the complex form. Frequency domain
representations that include only positive frequencies are called single sided; those that
include both positive and negative frequencies are called double sided.

3.3 Fourier Series of a Square Wave

As an example of the significance and utility of the Fourier series, the coefficients of a
square wave will be determined. In addition, the square wave is a common signal in elec-
trical systems (Figure 3-2a).

an ¼ 2
T

ðT=2

�T=2

xðtÞ cosð2pnf0tÞ dt

¼ 2
T

ð0

�T=2

ð�1Þ cosð2pnf0tÞ dt þ 2
T

ðT=2

0

ð1Þ cosð2pnf0tÞ dt

¼ 2
T

� 1
2pnf0

sinð2pnf0tÞ
����

0

�T=2

þ 1
2pnf0

sinð2pnf0tÞ
����

T=2

0

" #

¼ 0
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bn ¼ 2
T

ðT=2

�T=2

xðtÞ sinð2pnf0tÞ dt

¼ 2
T

ð0

�T=2

ð�1Þ sinð2pnf0tÞ dt þ 2
T

ðT=2

0

ð1Þ sinð2pnf0tÞ dt

¼ 2
T

1
2pnf0

cosð2pnf0tÞ
����

0

�T=2

� 1
2pnf0

cosð2pnf0tÞ
����

T=2

0

" #

¼ 1
np

ð2 � 2 cos npÞ

¼ 4
np

for n odd

¼ 0 for n even

The Fourier series for the square wave is

xðtÞ ¼ 4
p

sinð2pf0tÞ þ 4
3p

sinð6pf0tÞ þ 4
5p

sinð10pf0tÞ þ � � � ð3-12Þ

Therefore, the ideal square wave has only odd harmonics. With the particular phase chosen
for the square wave, the an (cosine) terms are all zero, while the odd bn (sine) terms remain
nonzero. If the phase of the square wave were changed relative to t ¼ 0, an could be nonzero
but only for the odd harmonics. Similarly, at just the right phase bn could become zero.

The square wave and its harmonics can be examined graphically, which helps show their
relationship. Figure 3-2b shows the first three harmonics of the square wave. Figures 3-2c–f
show a square wave constructed from a finite number of its harmonics. Note how the har-
monics tend to fill in the square wave as each additional harmonic is added to the plot.
It takes an infinite number of harmonics to produce a perfect square wave, but in practice the

t

T

Figure 3-2a The square wave.
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t

Figure 3-2d The square wave with up to the fifth harmonic included.

t

Figure 3-2b The fundamental, third harmonic, and fifth harmonic of the square wave.

t

Figure 3-2c The square wave with only the fundamental and third harmonic included.
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higher harmonics are often ignored since their amplitudes are small compared with the
fundamental.

Note how the harmonics (which are sine terms in this case) are just the right phase to fill
in the square wave. Had the square wave been shifted to the left by 90º, the sine terms would
have been useless in filling in the square wave shape and cosine terms would have been
prescribed by the previous mathematics. If the complex form of the Fourier series was used,
the magnitude of cn would remain the same with changes in the waveform’s phase but the
phase of cn would change.

Although the Fourier series is a mathematical technique, an intuitive feel can be acquired
by looking at the waveform graphically.

t

Figure 3-2e The square wave with up to the seventh harmonic included.

t

Figure 3-2f The square wave with up to the ninth harmonic included.
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Another way to show the square wave in the frequency domain is to plot the amplitude of
each harmonic as voltage versus frequency (Figure 3-3). Since each harmonic appears as a
single vertical line, they are called spectral lines and such a frequency domain plot is called a
line spectra. The Fourier series will always result in a frequency domain representation with
only line spectra, since the series form includes only the fundamental and harmonic fre-
quencies. This contrasts with frequency domain spectrums, which are continuous and will be
encountered later.

Practical Considerations

The amplitude of each odd harmonic of the square wave is 1/n times the fundamental, where
n is the harmonic number. When examined on a spectrum analyzer, we can expect to see
each harmonic reduced by this factor. The amplitude of the harmonic corresponds to its
voltage, so using decibels, the n-th harmonic will be 20 log(l/n) decibels relative to the
fundamental.

Ideally, the even harmonics are nonexistent. This is true if the square wave being mea-
sured is perfect. If the waveform is not perfectly symmetrical or has other forms of distor-
tion, the even harmonics will be nonzero, which is true of most practical measurements.
A spectrum analyzer can easily detect such imperfections in a square wave even though the
square wave may look undistorted when measured with an oscilloscope.

By the nature of the mathematical formula used, an and bn in the Fourier series represent
the zero-to-peak value of the particular harmonic. Spectrum analyzers, however, are nor-
mally calibrated to measure the root mean square (RMS) value of a spectral line, usually
expressed in dBm or RMS volts. Thus, to correlate the Fourier series representation and the
typical measured result, it is necessary to multiply the Fourier series coefficient by 1=

ffiffiffi
2

p
and, if desired, convert to dBm.

1

X(f) 1.273

.424

fo 3fo 5fo f

.255

Figure 3-3 The frequency domain representation of a square wave showing the fundamental,
third harmonic, and fifth harmonic.
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3.4 Fourier Series of Other Waveforms

The Fourier series representation of other periodic waveforms can be determined using the
techniques given. For convenience, the Fourier series representations of some common
waveforms are tabulated in Table 3-1.

Table 3-1 Fourier Series of Waveforms

1

T

Square Wave (Odd)

t

4
p

X1

n¼1
odd

1
n

sin
2pnt

T

� �

T
Square Wave (Even)

t

1
4
p

X1

n¼1
odd

ð�1Þðn�1Þ=2

n
cos

2pnt

T

� �

t

T

Pulse Train

t

1 t
T
þ 2t

T

X1

n¼1

sin pnt
T

� �

pnt
T

cos
2pnt

T

� �

1

T

Triangle Wave

t

8
p2

X1

n¼1
odd

1
n2

cos
2pnt

T

� �

T

1

Sawtooth Wave

t

2
p

X1

n¼1
odd

ð�1Þnþ1

n
sin

2pnt

T

� �

1

T
Half-Wave Cosine

t

1
p
þ 1

2
cos

2pt

T

� �
� 2
p

X1

n¼2
odd

ð�1Þn=2

n2 � 1
cos

2pnt

T

� �
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Example 3.1

Determine the amplitude and frequency of the fundamental of the waveform shown in
Figure 3-4. If the signal is a voltage present across 50 W, what is the power level in dBm of
the fundamental? Determine the amplitude of the second harmonic and express it in decibels
relative to the fundamental.

From Table 3-1, the first few terms of the Fourier series of the half cosine wave are

xðtÞ ¼ 1
p
þ 1

2
cosð2pt=TÞ þ 2

3p
cosð4pt=TÞ

The waveform shown in Figure 3-4 has a peak voltage of 0.2 V, so the Fourier series is
multiplied by 0.2.

xðtÞ ¼ 0:2
1
p
þ 1

2
cosð2pt=TÞ þ 2

3p
cosð4pt=TÞ

� 	

The frequency of the fundamental is 1/T ¼ 1/(0.1 msec) ¼ 10 kHz.
The amplitude of the fundamental is 0.2(1/2) ¼ 0.1 V zero-to-peak. Converting this

value to RMS gives 0.707 � 0.1 ¼ 0.0707 V. Using equation (2-12), the amplitude in dBm
(50 W) is 20 log(0.0707/0.223) ¼ –9.98 dBm.

The amplitude of the second harmonic is 0.2(2/3p) ¼ 0.0424 V zero-to-peak, or
0.030 V RMS. Expressed as decibels relative to the fundamental, the second harmonic is
20 log(0.030/0.0707) ¼ –7.45 dB.

3.5 Fourier Transform

Although the Fourier series representation of a signal is very powerful, it is limited to per-
iodic signals. Signals that are not periodic may be represented in the frequency domain by
the Fourier transform. The Fourier transform of a time domain signal x(t) is

Xð f Þ ¼
ð1

�1
xðtÞ e�j2pftdt ð3-13Þ

0.05

0.2

0.1 t
msec

Figure 3-4 The half-wave rectified sine wave is a periodic signal.
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where

X( f ) ¼ frequency domain representation of the signal
x(t) ¼ time domain representation of the signal

f ¼ frequency

The Fourier transform transforms a time domain signal into a continuous frequency domain
representation. Recall that the Fourier series representation, by definition, contains only the
fundamental frequency and its harmonics. Not only are these discrete frequencies, but they
are also harmonically related. The Fourier transform can represent discrete frequencies but is
more often used to represent continuous functions in the frequency domain. Thus, a one-time
event (e.g., a pulse) in the time domain can also be represented in the frequency domain.

Mathematically, the frequency domain representation is a complex function, containing
both magnitude and phase information. Although many spectrum measurements are per-
formed just using the magnitude of the signal, phase is required for a full representation of
the signal.

3.6 Fourier Transform of a Pulse

As an example and because it is a common electrical signal, we will determine the Fourier
transform of a single pulse (Figure 3-5a).

Xð f Þ ¼
ð1

�1
xðtÞ e�j2pft dt

¼
ðT=2

�T=2

e�j2pftdt ¼ e�j2pft

�j2pf

����

T=2

�T=2

¼ ejpfT � e�jpfT

j2pf
¼ T

sinðpTf Þ
pTf

ð3-14Þ

The frequency domain representation for a pulse is of the form (sin x)/x (Figure 3-5b).
Notice that the function is continuous and extends over the entire frequency axis, both
positive and negative. Thus, a perfect pulse occupies an infinite bandwidth. However, the
amplitude of the frequency content tends to decrease with increasing frequency, and, in
practice, a finite bandwidth can be assumed.

–T/2 T/2 t

1

Figure 3-5a A single time domain pulse.
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The zero crossings of X( f) are often used as a means of estimating the bandwidth of the
pulse. Most of the pulse’s energy is in the main lobe, which exists at frequencies below
f ¼ 1/T. As the width of the time domain pulse is decreased, T becomes smaller. In the
frequency domain, as T becomes smaller, the first zero crossing moves out to a higher
frequency. Therefore, the narrower the pulse, the wider the bandwidth in the frequency
domain. This should make sense intuitively, since a narrower pulse requires higher fre-
quency content to recreate the waveform in the time domain. This is true of signals in
general—the faster the voltage changes in the time domain, the wider the bandwidth in the
frequency domain.

3.7 Inverse Fourier Transform

The inverse Fourier transform converts the frequency domain representation (obtained by
the Fourier transform) back into the time domain representation. The inverse transform is
given by

xðtÞ ¼
ð1

�1
Xðf Þ e2pftdf ð3-15Þ

Thus, Fourier theory provides a means of transforming a time domain signal into the
frequency and (just as important) provides a means of getting the frequency domain repre-
sentation back into the time domain.

The time domain and frequency domain representations of a signal are known as trans-
form pairs. They are unique in that each time domain representation has only one frequency
domain representation and vice versa. A table of common Fourier transform pairs is given in
Table 3-2.

3.8 Fourier Transform Relationships

Many mathematical operations in the time domain have a corresponding operation in the
frequency domain. These relationships are often used to reduce the difficulty of finding a
transform of a particular function. These relationships also lend insight into how the time and
frequency domain relate. Table 3-3 is a compilation of commonly used Fourier transform
relationships.

–3/T –2/T –1/T 1/T

X(f)

2/T 3/T f

Figure 3-5b The spectrum of a single pulse.
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3.9 Discrete Fourier Transform

The Fourier transform is mostly an analysis tool, a powerful means of understanding how
signals behave in a system. It is not directly used in a measurement system to produce the
frequency domain representation of a signal. The DFT is a discrete version of the Fourier
transform. It allows a sampled time domain signal to be transformed into a sampled fre-
quency domain form. Digitizing a real-world signal in the time domain and performing a
DFT produces the frequency domain representation of the signal. Thus, the DFT goes
beyond being just an analysis tool to being a way to implement the measurement.

We had previously introduced the complex form of the Fourier series. It is rewritten here
with a slight change of variable (the period T has become tp and harmonic number n is
replaced by k).

ck ¼ 1
tp

ðtp=2

�tp=2

xðtÞe�j2pkf0tdt ð3-16Þ

Consider the periodic waveform shown in Figure 3-6a. Suppose that a sampled version of
one period of this waveform is available (Figure 3-6b). The Fourier series can be applied
to this sampled waveform, with the minor change that the time domain waveform is not
continuous. This means that x(t) will be replaced by x(nT), where T is the time between

Table 3-3 Properties of the Fourier Transform

x(t) X(f )

Magnitude scaling Ax(t) AX( f )

Time scaling x(at) 1
aj j X

f
a

� �

Linearity x1(t) þ x2(t) X1( f ) þX2( f )

Time delay x(t – t0) e–j2pft0X( f )

Time derivative dn

dtn xðtÞ ( j2pf )n X( f )

Modulation x(t) cos(2pf0t) 1
2 Xð f � f0Þ þ Xð f þ f0Þ½ �

Complex modulation ej2pf0t x(t) X( f – f0)

Multiplication x1(t) x2(t)
Ð1

�1
X1ðlÞ X2ð f � lÞ dl

Convolution
Ð1

�1
x1ðlÞx2ðt � lÞ dl X1( f ) X2( f )

Symmetry X(t) x(–f )

36 CHAPTER 3 ● Fourier Theory



samples. Also, instead of an integration, a discrete summation of the sampled waveform will
be performed with the result multiplied by the time between samples, T.

ck ¼ T

tp

XN�1

n¼0

xðnTÞe�j2pkf0nT ð3-17Þ

Note that the range of n was chosen to be from 0 to N – 1, producing N samples. This
particular range is not mandatory but is customary for defining the DFT. The fundamental
frequency, f0, is also the spacing between the discrete frequency points. We will rename f0 as
F and attempt to provide consistent notation. Finally, the DFT is usually defined to be N
times the complex Fourier series coefficient.3

XðkFÞ ¼ Nck ð3-18Þ

XðkFÞ ¼ NT

tp

XN�1

n¼0

xðnTÞe�j2pkFnT ð3-19Þ

3 This is only a scale factor and does not affect the frequency content of the DFT. In instrumentation use, the DFT
must have appropriate scale factors added to properly calibrate the instrument.

t

Figure 3-6a A periodic signal to be sampled.

t

Figure 3-6b The sampled version of one period of the signal.
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Since the number of samples, N, times the sample time, T, equals the period, tp, the
equation simplifies to give the common form of the DFT.

XðkFÞ ¼
XN�1

n¼0

xðnTÞe�j2pkFnT ð3-20Þ

where

N ¼ number of samples
F ¼ spacing of the frequency domain samples
T ¼ sample period in the time domain

In instrumentation use, the input to the DFT is a record of time domain data obtained by
sampling the signal being analyzed. The sample rate, fs, is equal to 1/T. After N time domain
samples are collected, the DFT algorithm uses the time domain samples to produce N fre-
quency domain samples, spaced F Hz apart. These N frequency domain samples are not
totally independent. The set of samples numbered less than N/2 are redundant with the
samples numbered above N/2. For an N point DFT, only the samples up to and including N/2
frequency domain points are normally retained. In general, these points are complex num-
bers, providing vector information.

Remember that we started the derivation with the Fourier series and not the Fourier trans-
form. As the number of time domain samples, N, increases (and therefore the number of fre-
quency domain samples increases), we can stop considering the DFT as a small set of spectral
lines and start thinking of it as a good approximation to the continuous Fourier transform.

The inverse of the DFT, the inverse discrete Fourier transform (IDFT), is given by

xðnTÞ ¼ 1
N

XN�1

k¼0

XðkFÞ e j2pFTkn ð3-21Þ

The IDFT provides a means for converting the discrete frequency domain information
back into a discrete time domain waveform. As one might imagine, the DFT and IDFT have
properties that are very similar to their continuous counterparts.

3.10 Limitations of the DFT

The DFT is only an approximation to the Fourier transform. It differs from the continuous
Fourier transform in several important ways.

Obviously, due to the quantized nature of the DFT, it is valid at only certain frequencies.
The frequency resolution of the DFT can be increased by using a larger number of samples.

The theory behind the DFT implicitly assumes that the waveform was periodic. Whether
this is the case or not, the mathematics of the DFT will treat the sampled waveform as if it
repeats. This causes a phenomenon known as leakage, which is an important limitation of the
DFT, but one that can be minimized by proper use of time domain windowing. Leakage is
discussed further in Chapter 4.

Since the DFT is performed with digital arithmetic, it is subject to the limitations
imposed by the particular algorithm chosen. In particular, finite arithmetic effects due to the
number of bits used can limit the dynamic range and noise performance of the DFT.
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3.11 Fast Fourier Transform

The fast Fourier transform (FFT) is a very quick and efficient algorithm for implementing a
DFT. The original basis for the FFT was developed by J. W. Cooley and J. W. Tukey in
1965. Although it is often implied that there is just one FFT, in reality an entire class of
algorithms are commonly referred to as the FFT. An FFT algorithm gains a significant speed
advantage over the DFT by carefully selecting and organizing intermediate results. Ignoring
finite arithmetic effects, the results are the same whether an FFT or a DFT is used.

The number of computations required for a DFT is on the order of N2, where N is the
number of samples, or record length. The FFT, on the other hand, requires N log2 N com-
putations (log2 indicates the base 2 logarithm). The most common FFT algorithms require N
to be a power of 2. A typical record length in a spectrum analyzer might be 210, or 1024. This
means a DFT would require over 1 million computations, whereas an FFT would require
only 10,240 computations. Assuming all computations take the same amount of time, the
FFT could be computed in less than 1% of the DFT computation time. Clearly, this is a
substantial time savings and explains why the FFT dominates in instrumentation use.

Examining the details of how and why an FFT is implemented is beyond the scope of this
book. For our purposes, we will consider the FFT to be simply an efficient implementation of
a DFT. For more information, see Oppenheim and Schafer (1975).

3.12 Relating Theory to Measurements

When the instrument user attempts to relate Fourier theory to an actual measurement, some
notable differences will appear. The major differences are summarized here:

1. The spectrum analyzer normally shows a one-sided spectrum, whereas the Fourier
transform and perhaps the Fourier series (depending on which form is used) show a two-
sided spectrum.

2. The frequency resolution (resolution bandwidth) of the spectrum analyzer determines the
width and shape of discrete spectral lines. Ideally, the lines are infinitely thin, but they
appear with a finite width due to the resolution bandwidth of the analyzer.

3. Other distortion and noise effects generated internal to the spectrum analyzer will affect
the measurement. For example, the noise floor of the analyzer may obscure low-level
frequency components or distortion products may appear as additional spectral lines.

In particular, it can be a problem relating the amplitude predicted by Fourier theory to the
measured amplitude. In an attempt to reconcile theory and measurement, let us consider a
simple, but instructive case: the cosine. We apply both the Fourier series and the Fourier
transform to this signal and then compare the results with a practical spectrum measurement.

Consider the time domain waveform

v tð Þ ¼ V0 cos 2pf0t ð3-22Þ
The RMS value, as measured by an RMS-reading voltmeter, would be 0.707 times the

zero-to-peak value. This value should agree with the spectrum analyzer measurement:

VRMS ¼ 0:707 V0 ð3-23Þ
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The Fourier series for this voltage waveform can easily be found by inspection.

vðtÞ ¼ a1 cos 2pf0t ð3-24Þ
where

a1 ¼ V0

This implies a single spectral line at f0, with a zero-to-peak amplitude of V0.
From Table 3-2, the Fourier transform of the waveform is

Vð f Þ ¼ V0

2
d f � f0ð Þ þ d f þ f0ð Þ½ � ð3-25Þ

Since the Fourier transform is a two-sided representation, with both positive and negative
frequencies, the frequency domain representation indicates two impulse functions: one at
þf0 and the other at –f0. The amplitudes of each of these impulse functions is V0/2. This
amplitude is doubled to convert the double-sided amplitude to the equivalent single-sided
amplitude. Thus, the zero-to-peak amplitude equal to V0 agrees with the Fourier series
analysis and, if multiplied by 0.707 to obtain the RMS value, agrees with the voltmeter
reading and a spectrum analyzer reading.

3.13 Finite Measurement Time

The discussion of the Fourier series and the Fourier transform both involved integrals that
cover all time, that is, from –? to þ?. Therefore, to ascertain correctly the frequency
domain representation of a signal, the time domain function must be known for all time. For
theoretical analysis, this does not present a problem, but real-world measurements occur in a
finite time. Normally, the spectrum analyzer user simply performs the measurement over
some convenient time interval and assumes that the time interval chosen adequately repre-
sents the signal. Mathematically speaking, the signal is assumed to be stationary.4

The characteristics of many signals are constant over time in which case such an
assumption is justified. By definition, a periodic signal repeats over and over again for all
time, producing a constant spectrum. Some other signals change quite rapidly and should not
be assumed to have constant spectrums. As an example consider a radio transmitter. If the
modulating signal is a person’s voice, the spectrum of the signal will change quickly and
unpredictably as the radio operator speaks different words. A measurement taken at any
particular time will not represent the signal over all time. However, if a constant audio tone
modulates the radio signal, the spectrum is constant.

When measuring a signal’s spectrum, we should consider the possibility that the signal’s
spectral content may be varying. If this variation is slow compared with the duration of the
measurement, it is not of concern. However, if the signal varies fast enough, the spectrum
analyzer may not produce the desired result. In particular, traditional swept spectrum

4 A signal is stationary if its statistical nature does not change with time, which implies that its spectrum is constant.
For a more rigorous discussion, see Oppenheim and Willsky (1996).
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analyzers can have very slow sweep rates, depending on the measurement setup. These
analyzers may not be suitable for measuring fast changing signals. FFT-based analyzers
and real-time spectrum analyzers acquire the measured signal much faster and are much
more effective in capturing changes in spectral content. This will be explored further in
Chapters 4 and 5.
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CHAPTER 4

Fast Fourier Transform Analyzers

The fast Fourier transform (FFT) can be used to implement a spectrum analyzer by digi-
tizing the input waveform and performing an FFT on the time domain signal to obtain the
frequency domain representation. What seems to be a simple measurement technique often
turns out to be much more complicated in practice. Given reasonable computational power,
usually in the form of a digital signal processor (DSP), field programmable gate array
(FPGA) or custom integrated circuit, the FFT analyzer can provide significant speed
improvement over the more traditional swept analyzer. The classic FFT analyzer (also called
a dynamic signal analyzer) covers the frequency range from DC up to a few hundred kilo-
hertz. These analyzers are typically applied to audio and mechanical measurements.1

4.1 The Bank-of-Filters Analyzer

The bank-of-filters technique is not common in general electronic instrumentation but has
been used in some applications such as low-frequency audio meters (1/3-octave spectrum
analyzers). This technique is included here to provide a theoretical base for discussing more
practical spectrum analyzer block diagrams.

One simple approach to implementing a spectrum analyzer is to connect a bank of
electronic filters together, each with its own output device (Figure 4-1). For a small number
of filters, this technique has the advantage of simplicity. Also, this measurement technique is
quite fast and can result in a real-time measurement system.

Each of the electronic filters is a band-pass filter tuned to a different center frequency.
The bandwidths and center frequencies of the filters are aligned as shown in Figure 4-2 to
provide complete coverage of the frequency range of interest with minimal overlap of filter
shapes. Ideally, infinitely steep ‘‘brick wall’’ filters would be used to provide zero overlap
between filter passbands. The outputs of the filters are connected to detectors that convert the
AC (sine wave) signal into a DC level, which is displayed by a meter. Alternatively, the
detector outputs could be multiplexed together and plotted on a graphical display.

1 Mechanical measurements, including vibration and structural analysis, represent an important use of FFT-based
spectrum analyzers and are covered in more depth by Agilent Technologies (1997, 2000).
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4.2 Frequency Resolution

Each filter is designed to pass only one small range of frequencies onto the detector. Thus,
each filter/detector/meter combination displays the energy present over that particular range
of frequencies. If two frequencies are present within the same filter, both of them will affect
the meter reading. (The exact meter reading will depend on the type of detector used.) The
analyzer cannot resolve two signals in the same filter. Thus, the resolution bandwidth (RBW)
determines the frequency resolution of the analyzer.

For example, consider Figure 4-3. Frequency components f1 and f2 appear in the passband
of the same filter. Therefore, they cannot be resolved in frequency. Frequency components f3
and f4, on the other hand, do not appear within the same filter, and each will be measured
individually. The frequency of f3 and f4 are known to the extent that they are within the
passband of their respective filters. Thus, their frequencies are known to within the RBW.
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DET Filter 5

Filter 4

Filter 3INPUT

Filter 2
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Figure 4-1 The bank-of-filters spectrum analyzer uses a set of filters to determine the frequency
content of a signal.
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Figure 4-2 The filters are adjacent in the frequency domain, aligned for minimum overlap.
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Assuming extremely sharp brickwall filters precisely positioned such that the edges of
their passbands just touch, the resolution bandwidth of a bank-of-filters analyzer is given by

RBW ¼ fmax=m ð4-1Þ
where

fmax ¼ maximum frequency of the analyzer
m ¼ number of filters

This equation can be used to explain the major limitation of the bank-of-filters analyzer.
Suppose that a spectrum analyzer with a frequency resolution (resolution bandwidth) of
100 Hz must cover the 0 to 100 kHz frequency range. The number of filters required is

m ¼ fmax=Bres ¼ 100 kHz=100 ¼ 1000 ð4-2Þ
Not only would this be a large number of filters to implement, but also building a steep-

walled 100 Hz wide filter with a center frequency near 100 kHz would be very difficult. For
this reason, the bank-of-filters analyzer is used mainly where a much wider resolution
bandwidth is acceptable.

4.3 The FFT Analyzer

As mentioned previously, the fast Fourier transform can be used to determine the frequency
domain representation of a time domain signal. The signal must be digitized in the time
domain; then the FFT algorithm is executed to find the spectrum. Figure 4-4 shows a sim-
plified block diagram of an FFT analyzer. The input signal is first passed through a variable
attenuator to provide various measurement ranges. Then the signal is low-pass filtered to
remove undesirable high-frequency content that is beyond the frequency range of the
instrument. The waveform is sampled and converted to digital form by the combination of
the sampler circuit and the analog-to-digital converter (ADC). The microprocessor (or other
digital circuitry) receives the sampled waveform, computes the spectrum of the waveform
using the FFT, and writes the results on the display.

f1 f2 f3 f4 f

Filter
Response

Figure 4-3 The bank-of-filters analyzer response shown with some representative
spectral lines.
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The FFT analyzer accomplishes the same thing that the bank-of-filters analyzer does, but
without the need for many band-pass filters. Instead, the FFT analyzer uses digital signal
processing to implement the equivalent of many individual filters. When considering the
operation of the FFT analyzer, it is appropriate to think in terms of a bank of parallel filters,
each filtering a portion of the frequency spectrum. A typical FFT spectrum analyzer is shown
in Figure 4-5.

Conceptually, the FFT approach is simple and straightforward: digitize the signal and
compute the spectrum. In practice, some effects must be accounted for to make the mea-
surement meaningful.

4.4 Sampled Waveform

In a sampled system, the time domain waveform (Figure 4-6a) is effectively multiplied
by the sample function (Figure 4-6b) to produce the sampled waveform (Figure 4-6c).

Low Pass
Filter

Micro-
processorAtten Sampler Display

Input ADC FFT

fs

Figure 4-4 The simplified block diagram of the fast Fourier transform spectrum analyzer.

Figure 4-5 A typical four-channel FFT-based spectrum analyzer. (� Keysight Technologies,
Inc. Reproduced with Permission, Courtesy of Keysight Technologies, Inc.)
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The sampling function is shown as a series of impulse functions, spaced at T ¼ l/fs, where fs
is the sample rate of the system.

sðtÞ ¼
X1

n¼�1
dðt � nTÞ ð4-3Þ

When these impulse functions are multiplied with the original waveform, they produce a
new series of impulse functions with each one weighted according to the original waveform.

xðnTÞ ¼
X1

n¼�1
xðtÞ dðt � nTÞ ð4-4Þ

The sampled analog waveform is converted into a sequence of digital numbers using an
ADC. The output of the ADC is an array or record of numbers representing the sampled
waveform. The sampled and digitized version of the waveform still retains the shape and
information content of the unsampled waveform, if the sample rate is sufficiently high.

4.5 Sampling Theorem

The waveform must be sampled often enough to produce a digitized time record that faith-
fully represents the original waveform. The sampling theorem states that a baseband signal
must be sampled at a rate greater than twice the highest frequency present in the signal. The
minimum acceptable sample rate is called the Nyquist rate. Thus,

fs > 2fmax ð4-5Þ

t t

x(t)

(a) (b)

s(t)
T=1/fs

t

x(nT)

(c)

Figure 4-6 (a) A time domain waveform. (b) The sampling function. (c) The sampled waveform.
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where

fs ¼ sample rate
fmax ¼ highest frequency of interest

Figure 4-7a shows the frequency spectrum, X( f ), of a signal, x(t), with a maximum fre-
quency of fmax. The frequency spectrum of the sampling function, as given by Table 3-1, is an
infinite number of impulse functions spaced every fs in frequency (Figure 4-7b). The spectrum
of the sampled waveform can be derived by convolving2 X( f ) with S( f ), which results in the
original spectrum X( f ) appearing centered around each impulse function of S( f ) (Figure 4-7c).

This type of spectrum is always found in sampled systems—the baseband signal is
repeated at integer multiples of the sample frequency. Notice that the spectrum between 0
and fs is symmetrical about fs/2, which is also called the folding frequency, ff. The original
signal can be recovered by applying a low-pass filter with a cutoff frequency of ff, as long as
the frequency content centered around fs does not encroach on the baseband signal. Stated
mathematically, the following condition must be met:

fs � fmax > ff ð4-6Þ

2 For a discussion of the fine points of convolution, see McGillem and Cooper (1974).
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f

Figure 4-7 (a) The spectrum of the unsampled waveform. (b) The spectrum of the sampling
function. (c) The spectrum of the sampled waveform.
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which is just a restatement of the sampling theorem since

fs � fmax > fs=2 ð4-7Þ
fs=2 > fmax ð4-8Þ
fs > 2 fmax ð4-9Þ

Figure 4-8 shows the spectra of two sampled signals: one where the sampling theorem is
met and another that violates the sampling theorem. Notice that when the sampling theorem
is violated unwanted frequency components show up below ff. This phenomenon is known as
aliasing, since these undesirable frequency components appear under the alias of another
(baseband) frequency.

To prevent aliasing in an FFT analyzer, two conditions must be met:

1. The input signal must be band limited. In other words, there must exist an fmax above
which no frequency components are present.3 This is usually accomplished by inserting a
low pass filter, commonly known as an anti-alias filter, in the signal path. (This is the
low-pass filter shown in Figure 4-4.)

2. The input signal must be sampled at a rate that satisfies the sampling theorem.

The sampling frequency required by the sampling theorem is the minimum theoretical
value that can reconstruct the signal properly. In practice, it is necessary to use a sampling
frequency somewhat higher than this value. Figure 4-9 shows the frequency response of a

ff

X(f)

X(f)

No Aliasing

Aliasing

fs

ff fs f

f

Figure 4-8 Aliasing occurs when the sample rate is not high enough.

3 In practice, frequency components above fmax are allowed to exist but must be sufficiently attenuated so that they
do not affect the measurement.
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practical low-pass filter. The filter will have a finite slope above its cutoff frequency, fmax.
The mirrored response of the filter above the folding frequency is also shown. The overlap
between the filter response and its mirrored response represent the region where aliasing can
occur. The system is designed so that the folding frequency (and the sampling frequency) are
large enough that the anti-alias response has room to roll off. Thus, fmax, the highest fre-
quency that the analyzer will measure, must be significantly less than ff. For practical filter
implementations, fs is typically 2.5 times fmax.

As shown, aliasing can be explained in the frequency domain, but it is also helpful to
consider it briefly in the time domain. Figure 4-10 shows a set of sample points that fit two
different waveforms. One of the waveforms has a frequency that violates the sampling the-
orem; the other does not. (The higher-frequency waveform violates the sampling theorem, of
course.) Unless an anti-alias filter removes the unwanted alias frequency, the two sampled
sine waves will be indistinguishable when processed digitally.

fmax ff fs f

Figure 4-9 The response of the anti-alias filter requires that the sample rate be somewhat higher
than the sampling theorem states.

t

Figure 4-10 Aliasing in the time domain.
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4.6 FFT Properties

The FFT is a record-oriented algorithm. A time record, N samples long, is the input, and the
frequency spectrum, N samples long, is the output. Recall from Chapter 3 that N is often
restricted to being a power of 2 to simplify the FFT computation. A typical record length for
an FFT analyzer is 1024 sample points. The frequency spectrum produced by the FFT is
symmetrical about the folding frequency. Thus, the first half of the output record is redun-
dant with the second half, and the sample points numbered 0 to N/2 are retained. This implies
that the effective length of the output record is (N/2) þ 1. These are complex points (real þ
j imaginary) containing both magnitude and phase information.

Practically speaking, the output of the FFT is (N/2) þ 1 points, extending from 0 Hz to ff.
Not all of these points are usually displayed though since the anti-alias filter begins to roll off
before ff. A common configuration is 1024 samples in the time record, producing 513 unique
complex frequency domain points, with 401 of these actually displayed.

The N/2 (or so) frequency domain points are often referred to as bins and are usually
numbered from 0 to N/2 (e.g., 0 to 512 for N ¼ 1024). These bins are equivalent to the
individual filter/detector outputs in the bank-of-filters analyzer. Bin 0 contains the DC level
present in the input signal and is also known as the DC bin. The bins are spaced equally in
frequency, with the frequency step, fstep being the reciprocal of the time record length.4

fstep ¼ 1=length of time record ð4-10Þ
The length of the time record can be determined from the sample rate and the number of

sample points in the time record.

fstep ¼ fs=N ð4-11Þ
The frequency associated with each bin is given by

fn ¼ nfs=N ð4-12Þ
where

n ¼ the bin number

The frequency of the last bin, containing the maximum frequency out of the FFT, is fs/2.
Therefore, the frequency range of an FFT is 0 Hz to fs/2. (Note that this frequency is
intentionally not called fmax, which is reserved for the upper-frequency limit of the instru-
ment and which may not be the same as the last FFT bin.)

Suppose one cycle of a sine wave fits exactly into one time record, as shown in Figure 4-11.
This sine wave will show up in bin 1 of the FFT output. If the frequency of the sine wave is
doubled, then two sine waves will fit into one time record and their energy will appear in bin 2.
Tripling the original sine wave frequency will cause a frequency domain response in bin 3, and
so forth.

4 The term frequency step does not mean that some frequencies will be missed by the FFT. The output of the FFT is
equivalent to the bank-of-filters analyzer, with contiguous band-pass filters centered at each bin.
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4.7 Controlling the Frequency Span

The FFT is inherently a baseband transform. In other words, the frequency range of the FFT
always starts at 0 Hz and extends to some maximum frequency, fs/2. This can be a significant
limitation in measurement situations where a small frequency band, not starting at DC, needs
to be analyzed.

For example, suppose an FFT analyzer has a sample rate, fs ¼ 256 kHz. The frequency
range of the FFT would be 0 Hz to 128 kHz ( fs/2). If N ¼ 1024, the frequency resolution
would be fs/N ¼ 250 Hz. Spectral lines closer than 250 Hz could not be resolved.5

One way to increase the frequency resolution is to increase N, the number of samples in
the time record, which also increases the number of bins in the FFT output. Unfortunately,
this increases the size of the arrays that the FFT has to deal with and the computation time
increases accordingly. The computation time of the FFT algorithm often limits the perfor-
mance of the instrument (in the form of update rate to the display), so increasing the size of
the FFT is often undesirable.

5 This is an approximation since the frequency resolution will also depend on the window function, discussed in
Section 4.9.

Time Record

t

fBin 1

(b)

(a)

Figure 4-11 (a) A sine wave that exactly fills one time record. (b) The spectral line shows up in
bin 1 of the FFT output.
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Reducing fs will also improve the frequency resolution but at the expense of reducing the
upper-frequency limit of the FFT and ultimately the instrument bandwidth. This is a worth-
while trade-off that gives the user control over the frequency resolution and frequency range of
the instrument. As the sample rate is lowered, the cutoff frequency of the anti-alias filter must
also be lowered; otherwise, aliasing will occur. Selectable analog anti-alias filters could be
provided, but it is more economical to implement the additional filters digitally. A decimating
digital filter simultaneously decreases the bandwidth of the signal and decreases the sample
rate (Figure 4-12). The sample rate into the digital filter is fs. The sample rate out of the filter is
fs/n, where n is the decimation factor, which is an integer number. Similarly, the bandwidth at
the input is BW, and the bandwidth at the output of the filter is BW/n.

The digital filter provides alias protection while reducing the sample rate so that the FFT
frequency resolution is increased. The analog anti-alias filter is still required, since the
digital filter is itself a sampled system that must be protected from aliasing. The analog filter
protects the instrument at its widest frequency span, with operation at fs. The digital filters
fall in behind the protection of the analog filter and are used when narrower spans are
selected by the user.

4.8 Band Selectable Analysis

By varying the sample rate, the frequency span of the analyzer can be controlled, but the start
frequency of the span is always at DC. The frequency resolution of the measurement can be
improved arbitrarily but at the expense of a lower maximum frequency. Band selectable
analysis (also known as zoom operation) allows the user to reduce the frequency span while
maintaining a constant center frequency. In other words, the displayed frequency range is not
limited to starting at DC. This is useful because very narrow spans away from DC can be
analyzed.

Band selectable analysis is accomplished by a change in the instrument block diagram
(Figure 4-13). The output of the ADC is multiplied by a digital sinusoid, which mixes it
down in frequency.6 Many readers will recognize this as just a digital version of the

ADC
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Filter Sampler

Digital
Filter

Micro-
processor

Sample rate = fs/n

Sample rate = fs

fs

FFT

Figure 4-12 Decimating digital filters are often used to reduce the sample rate into the FFT.

6 Normally, a pair of digital mixers and a pair of digital filters are used due to the complex sinusoid and a complex
FFT is required, but the operations are shown simplified here.
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superheterodyne technique used in radio receivers and swept spectrum analyzers. The
frequency span of interest (Figure 4-14) is mixed with a complex sinusoid at the center
frequency, which causes that frequency span to be mixed down to baseband. The digital filter
is configured for the proper span by using the appropriate decimation factor. The FFT is used
to obtain the frequency spectrum from the output of the digital filter. The bandwidth of the
digital filter can be narrowed significantly, producing frequency spans as narrow as 1 Hz.
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Figure 4-13 A digital mixer provides band selectable analysis in an FFT analyzer.

(a)

(b)

(c)

f

f

f

fstart

fstart fstop

Figure 4-14 (a) The spectrum of the signal to be measured. (b) The spectrum of the digital
oscillator. (c) The frequency translated version of the original spectrum.
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4.9 Leakage

The FFT operates on a finite length time record in an attempt to approximate the Fourier trans-
form, which integrates over all time. The mathematics of the FFT operate on the finite length time
record but have the effect of replicating the finite length time record over all time (Figure 4-15).7

With the waveform shown in Figure 4-15b, the finite length time record represents the actual
waveform quite well, so the FFT result will approximate the Fourier integral very well.

However, the shape and phase of a waveform may be such that a transient is introduced
when the waveform is replicated for all time, as shown in Figure 4-16. In this case, the FFT
spectrum is not a good approximation for the integral form of the Fourier transform. Since
the instrument user often does not have control over how the waveform fits into the time
record, in general, it must be assumed that a discontinuity may exist. This effect, known as
leakage, is very apparent in the frequency domain. Instead of the spectral line appearing thin
and slender, it spreads out over a wide frequency range (Figure 4-17).

The usual solution to the problem of leakage is to force the waveform to zero at the ends
of the time record; then they will always be the same, and no transient will exist when the
time record is replicated. This is accomplished by multiplying the time record by a window
function. Of course, the shape of the window is important because it will affect the data; it
also must not introduce a transient of its own. Many different window functions have been
developed for particular digital signal processing applications. The ones common to spec-
trum analyzers will be examined here.

4.10 Hanning Window

Also known as the Hann window, the Hanning window is one of the most common windows
in digital signal processing. The time record samples are weighted by

wn ¼ 1
2

1 � cos 2pn=ðN � 1Þ½ �f g ð4-13Þ

7 The FFT has the effect of replicating the time record. This is a consequence of the mathematics, and there is no
need for the algorithm to actually produce the replicated time record.

Time RecordTime Record

tt

(a) (b)

Figure 4-15 (a) A waveform that exactly fits one time record. (b) When replicated, no transients
are introduced.
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where

n ¼ bin number
N ¼ number of bins

The Hanning window provides a smooth transition to zero as either end of the time record
is approached (Figure 4-18). Therefore, the windowed time record will not produce a tran-
sient when replicated by the FFT algorithm. Clearly, the original time record has been
modified and the effect in the frequency domain must be considered. The shape of the
Hanning window in the frequency domain is the Fourier transform of the window function.

The frequency domain response of the window function determines the passband shape
of the individual filters that the FFT produces mathematically. Figure 4-19a shows the
overlapped response of several frequency bins using a Hanning window. The filter shape is
rounded off, and the net response of the analyzer drops off somewhat between bins. There-
fore, a spectral line falling where the two filters meet will be measured with an error

Time Record

(a)

(b)

Time Record

t

t

Figure 4-16 (a) A waveform that does not exactly fit into one time record. (b) When replicated,
severe transients are introduced, causing leakage in the frequency domain.
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determined by the shape of the filter. The Hanning window introduces a maximum amplitude
error of 1.5 dB (16%), which may be a significant error in some applications. The shape of a
window is always a compromise between amplitude accuracy (which depends on the flatness
of the filter passband) and frequency resolution (which depends on the width of the filter). The
Hanning window, compared with other common windows, provides good frequency resolution
at the expense of somewhat less amplitude accuracy. Figure 4-20a shows the spectrum of a
sine wave measured using the Hanning window.

A

A

0
dBVrms

(a)

(b)

LogMag
10
dB

/div

–80

0
dBVrms

LogMag
10
dB

/div

–80

Start:0 Hz
Spectrum Chan 1

Stop: 800 Hz

Start:0 Hz
Spectrum Chan 1

Stop: 800 Hz

Figure 4-17 (a) Measurement of a spectral line with no leakage. (b) Measurement of a spectral
line with leakage.
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4.11 Flattop Window

A window that has a flat passband reduces the size of the amplitude dips between bins and
minimizes the amplitude error. A spectral line that falls halfway between the centers of two
bins will be attenuated by a much smaller amount. The flattop window has such a char-
acteristic and is shown in Figure 4-19b. Since the response of each bin overlaps considerably
more than with the Hanning window, the disadvantage of the flattop window is reduced
frequency resolution due to its wider profile. The spectral line will appear wider on the
spectrum analyzer display, limiting the ability to resolve two closely spaced spectral lines.

(a)

(b)

(c)

t

t

t

Figure 4-18 (a) The original time record. (b) The Hanning window. (c) The windowed time
record.
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The flattop window is considered a high-amplitude accuracy window, having a maximum
amplitude error of 0.1 dB or less, depending on the implementation. Figure 4-20b shows the
spectrum of a sine wave as measured using the flattop window.

4.12 Uniform Window

The uniform window is really no window at all; all the samples are left unchanged. Although
the uniform window has the potential for severe leakage problems, in some cases the
waveform in the time record has the same value at both ends of the record, thereby elim-
inating the transient introduced by the FFT. Such waveforms are called self-windowing.
Waveforms such as pseudorandom noise (PRN),8 sine bursts, impulses, and decaying sinu-
soids can all be self-windowing.

The uniform window is appropriate for making network measurements when the internal
noise source of the analyzer is used. The noise source is usually a PRN generator that
produces a noise waveform that is periodic within the time record of the instrument. Since
the noise source and the time record are synchronized, no transients occur at the ends of the
time record and leakage in the frequency domain is avoided.

8 PRN is not truly random noise but instead repeats at some interval.
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Figure 4-19 (a) The Hanning window introduces a maximum amplitude error of 1.5 dB. (b) The
flattop window introduces a maximum amplitude error of up to 0.1 dB.
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4.13 Exponential Window

One of the advantages of an FFT analyzer is that it can be used to measure the frequency
content of a fast transient. (This is not usually possible in the more conventional swept
analyzer since it may miss some of the transient as it is sweeping through its frequency span.)
Such a transient might be the step or impulse response of an electrical network or mechanical
system.

A typical transient response is shown in Figure 4-21a. As shown, the waveform is self-
windowing because it dies out within the length of the time record, reducing the leakage. If
the waveform does not dissipate within the time record (as shown in Figure 4-21b), then a
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Figure 4-20 (a) Sine wave spectrum using the Hanning window. (b) Sine wave spectrum using
the flattop window.
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Figure 4-21 (a) A transient response that is self-windowing. (b) A transient response that requires
windowing. (c) The exponential window. (d) The windowed transient response.
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window function should be applied. If a window such as the Hanning window were applied
to the waveform, the beginning portion of the time record would be forced to zero. This is
precisely where most of the transient’s energy is, so such a window would be inappropriate.

A much better choice is a window that has a decaying exponential response. The
beginning portion of the waveform is not disturbed, but the end of the time record is forced
to zero. There still may be a transient at the beginning of the time record, but this transient is
not introduced by the FFT, it is, in fact, the transient being measured. Figure 4-21c shows the
exponential window, and Figure 4-21d shows the resulting time domain function when the
exponential window is applied to Figure 4-21b.

The exponential window function is given by

wn ¼ e�n=ððN�1ÞkÞ ð4-14Þ
where

n ¼ bin number
N ¼ number of bins
k ¼ exponential time constant

The time constant, k, is selected by the user to provide the appropriate amount of expo-
nential decay to prevent leakage. The exponential window is inappropriate for measuring
anything but transient waveforms.

4.14 Selecting a Window Function

Selecting the appropriate window function may seem cumbersome for users familiar with
swept spectrum analyzers. Most measurements will require the use of a window such as the
Hanning or flattop windows. These are the appropriate windows for typical spectrum ana-
lysis measurements. Choosing between these two windows, then, involves a trade-off
between frequency resolution and amplitude accuracy. Again, the Hanning window provides
better frequency resolution while the flattop window has better amplitude accuracy. Having
used the time domain to explain why leakage occurs, here the user should switch into fre-
quency domain thinking. The narrower the passband of the window’s frequency domain
filter, the better the analyzer can discern between two closely spaced spectral lines. At the
same time, the amplitude of the spectral line will be less certain. Conversely, the wider and
flatter the window’s frequency domain filter is, the more accurate the amplitude measure-
ment will be and, of course, the frequency resolution will be reduced. Choosing between two
such window functions is really just choosing the filter shape in the frequency domain.

The uniform and exponential windows should be considered windows for special situa-
tions. The uniform window is used where it can be guaranteed that there will be no leakage
effects, such as when making network measurements using the analyzer’s internal PRN
source. The exponential window is for use when the input signal is a transient.

4.15 Oscillator Characterization

FFT spectrum analyzers can be used to characterize oscillators. One important specification
of an oscillator is its harmonic distortion. Figure 4-22 shows the fundamental through the
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sixth harmonic of a 1 kHz oscillator. Because the fundamental frequency may not exactly fit
the time record of the analyzer, windowing should be used to reduce the leakage. The flattop
window should be used to provide the most accurate amplitude measurements.

Notice that the input sensitivity of the analyzer is selected so that the fundamental is near
the top of the display. In general, set the input sensitivity to the most sensitive range that does
not overload the analyzer. Severe distortion of the input signal occurs if its peak voltage
exceeds the range of the analog-to-digital converter. Therefore, FFT spectrum analyzers
warn the user of this condition by some kind of overload indicator.

It is also important to make sure the analyzer is not underloaded. If the signal going into
the analog-to-digital converter is too small, much of the useful information of the spectrum
may be below the noise level of the analyzer. Therefore, setting the input sensitivity to
the most sensitive range that does not cause an overload gives the best possible results.

Figure 4-22a is a display of the spectrum amplitude in logarithmic form to ensure that
distortion products far below the fundamental can be seen. All signal amplitudes on
this display are in dBV (decibels below 1 V RMS). However, since most FFT analyzers
have very versatile display capabilities, this spectrum could also be displayed linearly as in
Figure 4-22b. Here the units of amplitude are volts.

Another important measure of an oscillator’s performance is the level of its power-line
sidebands. In Figure 4-23, band selectable analysis is used to ‘‘zoom in’’ on the signal so that
it is easy to resolve and measure sidebands that are only 60 Hz away from our 1 kHz signal.
With some analyzers, it is possible to measure signals as close as 1 mHz away from the
fundamental.

4.16 Spectral Maps

One feature that has been unique to the FFT analyzer but is finding its way into other ana-
lyzers is the spectral map (also known as a waterfall display). This feature displays multiple
spectrums as a function of time, giving an almost three-dimensional display (Figure 4-24).
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Figure 4-22 Harmonic distortion of an audio oscillator. (a) Logarithmic amplitude scale.
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For a transient event, this frequency spectrum versus time display characterizes the signal as a
function of time. This feature is particularly appropriate for an FFT analyzer since it has the
ability to produce successive spectra without missing any data. Traditional swept analyzers
may miss portions of the waveform while sweeping.
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Figure 4-23 Powerline sidebands of an audio oscillator.
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Figure 4-24 A spectral map of a swept sine wave oscillator. The largest responses are caused by
the fundamental frequency of the oscillator moving up and down in frequency. The
other responses are caused by harmonic distortion and other imperfections in the
oscillator.
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Spectral maps are often used to monitor vibrations in the structure of a rotating machine
as its speed is steadily increased over time (called run up) or steadily decreased over time
(called run down).

4.17 Time Domain Display

Many FFT analyzers provide a display of the time domain data. Although the time domain
display is similar to an oscilloscope display, there are some significant differences.

First, the sample rate of the FFT analyzer has been chosen to optimize for FFT analysis
results. Specifically, the sample rate must be high enough to satisfy the sampling theorem
with some margin to account for the shape of the anti-alias filter. Typically, the sample rate
will be 2.5 times the highest frequency. So at the highest frequency there will be between
two and three samples per period of the waveform. Simply displaying so few samples per
period will not produce a waveform onscreen that looks anything like an oscilloscope dis-
play. (Digital oscilloscopes normally use more samples per period and may provide addi-
tional digital signal processing to reconstruct the waveform.)

The anti-alias filter is a steep high-order filter designed to approximate an ideal low-pass
filter. It abruptly limits the frequency response of the analyzer and may introduce ringing in
the time domain.

In band selectable analysis, the time waveform may be displayed after it has been mixed
with the complex sinusoid. The resulting waveform is complex (has a real and an imaginary
part) and is often difficult to interpret.

Despite these shortcomings, the time domain display is useful for many applications. The
user can monitor the input waveform that is associated with the frequency spectrum. Also,
the analyzer can be used as a waveform recorder within the time domain capability of the
instrument. Some analyzers provide long time buffers for capturing large amounts of time
domain data. After capture, portions of the time record can be analyzed for frequency
content.

4.18 Network Measurements

Traditionally, network measurements are made by supplying a sinusoid to the device under
test (DUT) and measuring its output, repeating this at each frequency of interest. The internal
source of an FFT analyzer is usually quite flexible and can output a variety of waveforms for
use in network analysis. The source is connected to the input of the DUT, and the output of
the DUT is connected to the input of the analyzer (Figure 4-25).

Recall that the FFT analyzer behaves the same as a bank-of-filters analyzer. To make a
network measurement using a sinusoid, we would iteratively set the sinusoid’s frequency to
be in the center of each of the filters, recording the readings as we went. This requires as
many measurements as there are bins. On the other hand, a broadband signal can be used to
simultaneously produce energy in each of the FFT bins, which can be captured in one FFT
measurement. Chirp sine and random noise meet such a requirement.

The chirp sine signal is a swept sine burst designed to fill the time record of the FFT
analyzer. This provides energy across the frequency band of interest. The chief advantage of
the chirp sine is its relatively high average power—much more than random noise (for the
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same peak voltage). This produces a better signal-to-noise ratio in the measurement when
compared with random noise.

Broadband random noise has equal energy in all of the FFT bins and provides a stimulus
to the DUT such that the output frequency response will be the frequency response of
the network. A PRN signal is often used because it is periodic within the time record of the
analyzer so that it does not produce leakage. Thus, the uniform window is used when making
network measurements with a PRN source.

A truly random (not pseudorandom) noise source is useful with nonlinear networks.
Nonlinear networks produce considerable distortion, which corrupts the results of a network
measurement. With a random noise source, these distortion effects can be averaged out since
they are different for each measurement (see Chapter 10). With PRN, the noise waveform
and the distortion products are the same for every measurement, and averaging will have no
effect.

This points out a fundamental problem with measuring nonlinear networks: the frequency
response is not a property of the network alone—it also depends on the stimulus. Each
stimulus (i.e., swept sine, PRN, and random noise) will, in general, give a different result.
Also, if the amplitude of the stimulus is changed, you will get a different result. To minimize
this problem, consider using a test signal that closely approximates the kind of signals
normally used to drive the network’s inputs.

4.19 Phase

So far, we have discussed measuring only the amplitude of signals in the frequency domain.
However, true network analysis requires that both magnitude and phase be measured. Earlier
in the chapter, we mentioned that the output of the FFT was an array of complex points

DUT

Freq Response
f

Noise
f

Source

FFT Spectrum Analyzer

Input 1 Input 2

Figure 4-25 An FFT analyzer can perform a network measurement using a noise source.
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containing both magnitude and phase information, which allows the analyzer to perform
complex network measurements.

In a network measurement, phase information is the phase response of the DUT. More
precisely, it is the phase difference (as a function of frequency) between the input stimulus
and the measured response. Many FFT analyzers have two input channels that can be used to
simultaneously measure both the input and the output of the DUT. In this case, the phase
response of the DUT is the phase difference between the two channels.

In a spectrum measurement, the usefulness of the phase information is less obvious.
Since phase is a relative concept, one is tempted to ask, ‘‘Phase with respect to what?’’ Phase
displayed on an FFT analyzer depends on the relative position of the waveform in the time
record. For a single sinusoid, shifting the waveform 90º in the time record causes the phase
response to change by 90º. Many analyzers provide oscilloscope-like triggering capability to
allow some control over the start of the time record. If this feature is used, then the phase of a
particular signal can be stabilized. For example, this allows the phase of harmonics to be
compared with the fundamental. If no triggering is used, the analyzer will acquire a time
record when ready, which will be uncorrelated to the input signal. In this case, the phase of
the signal will vary randomly from measurement to measurement. The relative phases of
signals present in a single time record may be useful.

4.20 Electronic Filter Characterization

Another typical application of an FFT analyzer is to characterize a low-frequency electronic
filter. One possible test setup appears in Figure 4-26. Because the filter is linear, it is possible
to use pseudorandom noise as the stimulus and get very fast measurement times. The
uniform window is used because the pseudorandom noise is periodic in the time record.

Input

Input 1Source

FFT Spectrum Analyzer

Input 2

Electronic
Filter Output

Figure 4-26 Test setup to measure frequency response of filter.
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No averaging is needed since the signal is periodic and reasonably large. As in the single-
channel case, it’s important to set the input sensitivity for both channels to the most sensitive
position that does not overload the analog-to-digital converters.

With these considerations in mind, the frequency response, including both magnitude and
phase, is shown in Figure 4-27. The primary advantage of this measurement over traditional
swept analysis techniques is speed. This measurement can be made in 1/8 second with an
FFT analyzer but may take over 30 seconds with a swept network analyzer. This speed
improvement is particularly important when the filter is being adjusted or when large
volumes are tested on a production line.

4.21 Cross-Power Spectrum

The cross-power spectrum is not often used as a separate measurement but is used internally
by FFT analyzers to compute transfer functions and coherence. The cross-power spectrum,
Gxy, is defined as taking the FFT of two signals separately and multiplying the result
together:

Gxyð f Þ ¼ Sxð f ÞS★

y ð f Þ ð4-15Þ
where

★ ¼ the complex conjugate of the function
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Figure 4-27 Frequency response of electronic filter using PRN and uniform window.
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With this function, we can define the transfer function, H( f ), using the cross-power
spectrum and the spectrum of the input channel

Hð f Þ ¼ Gxyð f Þ
Gxxð f Þ ð4-16Þ

where the overbar denotes the average of the function in the frequency domain.
At first glance it may seem more appropriate to compute the transfer function

using

Hð f Þj j2 ¼ Gyy

Gxx
ð4-17Þ

This is the ratio of two single-channel, averaged measurements. Not only does this
measurement fail to give any phase information, but it also will be in error when there is
noise in the measurement. For example, let us solve the equations for the special case where
noise is injected into the output as in Figure 4-28. The output is

Sy fð Þ ¼ Sx fð ÞH fð Þ þ Sn fð Þ ð4-18Þ
So

Gyy ¼ Sy S★

y ¼ GxxjH j2 þ SxHSn þ S★

x H★Sn þ jSnj2 ð4-19Þ

Using the RMS average of this result to try to eliminate the noise shows the SxSn terms
approaching zero because Sx and Sn are uncorrelated. That is, the expected value of SxSn ¼ 0.
However, the |Sn|2 term remains as an error, giving

Gyy

Gxx
¼ jH j2 þ jSn j2

Gxx
ð4-20Þ

Therefore, measuring |H |2 by this single-channel technique gives a value that will be in
error (too large) by the value of the noise-to-signal ratio. Averaging the cross-power spec-
trum eliminates this noise error. Using the example in Figure 4-28,

Gyx ¼ SyS★
x ¼ ðSxH þ SnÞS★

x ¼ GxxH þ SnS★
x ð4-21Þ

H(f)Sx

Sn

∑ Sy

Figure 4-28 Transfer function measurements with noise present.
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so

Gyx

Gxx
¼ Hð f Þ þ SnS★

x ð4-22Þ

Because Sn and Sx are uncorrelated, the second term will average to zero, making this
function a much better estimate of the transfer function.

4.22 Coherence

FFT analyzers often include the ability to make coherence measurements, which measures
the power in the response channel that is caused by power in the reference channel.
Coherence is a unitless parameter that indicates how much of the output power is coherent
with the input power. A coherence value of 1 implies that all the power in the output is
caused by the input. A coherence value of 0 means that none of the power in the output is
coherent with the input. (Care must be exercised when interpreting the coherence measure-
ment. It does not always imply a causal relationship. For example, if two signals are caused
by a third signal, they will be coherent with each other even though one is not caused by the
other.)

The coherence function is often used alongside a transfer function measurement as an
indicator of measurement quality. This is especially important for situations when the
components to be tested cannot be isolated from outside disturbances. One example is the
measurement of a switching power supply’s frequency response that contains a high con-
centration of power at the switching frequency. Another example is measuring the frequency
response of a mechanical part on one machine in the presence of strong vibration from
another nearby machine.

Figure 4-29 shows one way to simulate this type of situation by adding noise and a 2 kHz
signal to the output of an electronic filter. The measured frequency response is shown in the
upper trace in Figure 4-30. RMS averaging has reduced the noise contribution but has not
completely eliminated the 2 kHz interference. Further averaging would reduce this inter-
ference. If we did not already know the source of this interference, we would think that the
filter has an additional resonance at 2 kHz. By using a coherence measurement we can
eliminate the unrelated 2 kHz component.

The lower trace in Figure 4-30 shows the coherence. The coherence goes from 1 (all the
output power at that frequency is caused by the input) to 0 (none of the output power at that
frequency is caused by the input). The coherence function shows that the response at 2 kHz is
not coherent with the input and therefore is not likely to be caused by the input but by
interference. However, the filter’s response near 1 kHz has excellent coherence, so the
measurement here is valid.

The coherence function, g2( f ), is derived from the cross-power spectrum by

g2ð f Þ ¼ Gyxð f Þ G★
xyð f Þ

Gxxð f Þ Gyyð f Þ ð4-23Þ
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Figure 4-29 Adding noise and a 2 kHz signal to the output of a filter.
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Figure 4-30 Frequency response and coherence with added noise and 2 kHz signal.
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To explore the mathematics of the coherence function, we will use the example in
Figure 4-28. As has been shown before,

Gyy ¼ Gxx jH j2 þ SxHS★
n þ S★

x H★Sn þ jSnj2 ð4-24Þ

Gyx ¼ GxxH þ SnS★
x ð4-25Þ

As the measurement is averaged, the cross-terms SnSx approach zero, assuming that the
signal and the noise are not related. So the coherence becomes

g2 ¼ ðHGxxÞ2

Gxx jH j2 Gxx þ jSn j2
� � ð4-26Þ

g2 ¼ jH j2Gxx

jH j2 Gxx þ Sn
2 ð4-27Þ

This shows that if there is no noise, the coherence function is unity. If there is noise, the
coherence will be reduced. Note also that coherence is a function of frequency. Coherence can be
unity at frequencies where there is no interference and low at frequencies where the noise is high.

4.23 Correlation

Correlation is a measure of the similarity between two functions, normally computed at a
specified time offset. To understand the correlation between two waveforms, we start by
multiplying the waveforms together at each instant in time and adding up all the products.
If, as in Figure 4-31a, the waveforms are identical, every product is positive and the resulting
sum is large. If however, as in Figure 4-31b, the two records are dissimilar, then some of the
products would be positive and some would be negative. There would be a tendency for the
products to cancel, so the final sum would be smaller.

(a) (b)

Figure 4-31 (a) Correlation of two identical signals. (b) Correlation of two different signals.

72 CHAPTER 4 ● Fast Fourier Transform Analyzers



Now consider the upper waveform in Figure 4-32, and the same waveform shifted in time
shown below it. If the time shift were zero, then conditions would be the same as before; that
is, the waveforms would be in phase and the final sum of the products would be large. As the
time shift between the two waveforms is increased, the waveforms become increasingly
dissimilar and the final sum is reduced.

4.24 Autocorrelation

Going one step further, we can find the average product for each time shift by dividing each
final sum by the number of products contributing to it. By plotting the average product as a
function of time shift, the resulting curve is shown to be largest when the time shift is zero
and diminishes to zero as the time shift increases. This curve is called the autocorrelation
function of the waveform. It is a graph of the similarity (or correlation) between a waveform
and itself, as a function of the time shift.

The autocorrelation function, Rxx(t), is a special time average defined by

RxxðtÞ ¼ lim
T!1

1
T

ð

T

xðtÞxðt þ tÞ dt ð4-28Þ

That is, the autocorrelation function is found by taking a signal, multiplying it by the
same signal displaced t units in time, and averaging the product over all time.

For the sake of simplicity and speed, most FFT analyzers perform the correlation
operation by taking advantage of its duality with the power spectrum. It can be shown that

RxxðtÞ ¼ F�1
�
Sxðf ÞS★

x ðf Þ� ð4-29Þ
where

F–1 ¼ the inverse Fourier transform
Sx ¼ the Fourier transform of x(t)

Time Shift

Figure 4-32 Correlation of time displaced signals.
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The autocorrelation function always has a maximum at t ¼ 0 equal to the mean square
value of x(t). If the signal x(t) is periodic, the correlation function is also periodic with the
same period. Random noise, on the other hand, correlates only at t ¼ 0.

The autocorrelation function can be used to improve the signal-to-noise ratio of periodic
signals. The random noise component concentrates near t ¼ 0, while the periodic compo-
nent repeats itself with the same periodicity as the signal. Another thing to remember is that
impulsive noises such as pulse trains, bearing ping, or gear chatter show up more distinctly in
correlation or time record averaging than in a frequency domain analysis.

The autocorrelation function is more easily understood by looking at a few examples.
The random noise shown in Figure 4-33 is not similar to itself with any amount of time shift
(since it is random), so its autocorrelation has only a single spike at the point of zero time
shift.

Figure 4-34 shows the autocorrelation of a sine wave and a square wave. These are both
special cases of a more general statement; the autocorrelation of any periodic waveform is
periodic and has the same period as the waveform itself.

This can be useful when trying to extract a signal hidden by noise. Figure 4-35a shows
what looks like random noise, but there is actually a low-level sine wave buried in it. We can
see this in Figure 4-35b where we have taken 100 averages of the autocorrelation of this
signal. The noise has become the spike around a time shift of zero, whereas the auto-
correlation of the sine wave is clearly visible, repeating itself with the period of the sine wave.
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Figure 4-33 Autocorrelation of random noise.

74 CHAPTER 4 ● Fast Fourier Transform Analyzers



If a trigger signal is available that is synchronous with the sine wave, it is possible to
extract the signal from the noise by linear averaging as in the last example. But the important
point about the autocorrelation function is that no synchronizing trigger is needed. In signal
identification problems like radio astronomy and passive sonar, a synchronizing signal is not
available, so autocorrelation is an important tool. The disadvantage of autocorrelation is that
the input waveform is not preserved as it is in linear averaging.

Since any time domain waveform can be transformed into the frequency domain, the
reader may wonder what is the frequency transform of the autocorrelation function. It is
the magnitude of the input spectrum squared. Thus, there is really no new information in the
autocorrelation function; the same information existed in the spectrum of the signal. But, as
always, a change in perspective between these two domains often clarifies problems. In
general, impulsive-type signals like pulse trains, bearing ping, or gear chatter show up better
in correlation measurements. Signals containing several sine waves of different frequencies,
like structural vibrations and rotating machinery, are clearer in the frequency domain.

4.25 Cross-Correlation

Cross-correlation is a measure of the similarity between two signals as a function of the time
shift between them. If the same signal is present in both waveforms, it is reinforced in the
cross-correlation function whereas any uncorrelated noise is reduced. In many network
analysis problems, the stimulus can be cross-correlated with the response to reduce the
effects of noise.

Cross-correlation is defined as

RxyðtÞ ¼ lim
T!1

1
T

ð

T

xðtÞyðt þ tÞ dt ð4-30Þ

As with autocorrelation, an FFT analyzer computes this quantity indirectly. In this case it
is computed from the cross-power spectrum.

RxyðtÞ ¼ F�1 Gxy

� � ð4-31Þ
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Figure 4-34 Autocorrelation of periodic waveforms.
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One application for cross-correlation is the determination of time delays between signals.
These signals can be impulsive (e.g., radar or sonar application) or broadband random noise
such as those encountered in system stimulus response measurements (transmission path
delays, room acoustics, airborne noise analysis, and noise source identification).

4.26 Histogram

A histogram (Figure 4-36) shows how a signal’s amplitude is distributed between its mini-
mum and maximum values. A histogram displays number of samples versus amplitude. This
measurement is useful for determining the statistical properties of noise and monitoring the
performance of electromechanical positioning systems. Other measurement data derived from
a histogram measurement are probability density function and cumulative density function.

The probability density function (PDF) (Figure 4-37) is the histogram data normalized to
unit area. It is a statistical measurement of the probability that a specific level occurred. The
probability of an input signal falling between two points is equal to the integral of the curve
between those points. For more information see Chapter 8, section 8.1.

The cumulative density function (CDF) (Figure 4-38) is a measure of the probability that a
level equal to (or less than) a specific level occurred. It is calculated by integrating the PDF.
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Figure 4-35 Autocorrelation of a sine wave buried by noise.
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Figure 4-36 Histogram of random noise.
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4.27 Real-Time Bandwidth

Until now we have ignored the fact that it takes a finite time to compute the FFT of a time
record. In fact, if the transform could be computed in less time than our sampling period, it
could be ignored. Figure 4-39 shows that under this condition a new frequency spectrum
could be obtained with every sample. As we saw from our discussion of aliasing, this could
result in far more spectra every second than could be used. Because of the complexity of the
FFT algorithm, it would take fast computational hardware to generate spectra this rapidly.
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Figure 4-39 A new transform every sample.
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A reasonable alternative is to add a time-record buffer (Figure 4-40) before the FFT.
Figure 4-41 shows how this arrangement allows the analyzer to compute the frequency
spectrum of the previous time record while gathering the current time record. If the trans-
form can be computed before the time-record buffer fills, then the analyzer is said to be
operating in real time.

To see what this means, consider the case where the FFT computation takes longer than
the time required to fill the time record. This is shown in Figure 4-42. Although the buffer is
full, the last transform has not been completed, so data collection must stop. When the
transform is finished, the time record can be transferred to the FFT and collection of another
time record begun. Because some input data were missed, the analyzer is said to be no longer
operating in real time.

Keep in mind that the time record can vary depending on the frequency span of the
analyzer. For wide frequency spans, the time record is shorter, allowing less time for the FFT
computation to complete. The frequency span or bandwidth setting where the FFT compu-
tation time and the time record are equal is called the real-time bandwidth (RTBW). For
frequency spans at or below the RTBW, the analyzer does not miss any data.

4.28 Real-Time Bandwidth and RMS Averaging

There are situations when a measurement requires RMS averaging. It is important to know how
the real-time specifications of the FFT analyzer affect the measurement. We might be inter-
ested in the spectral distribution of noise, or in reducing the variation of a signal contaminated
by noise. There is no requirement in averaging that records must be consecutive with no gaps.9

In these situations, a small real-time bandwidth does not affect the accuracy of the results.
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Figure 4-40 Time buffer added to block diagram.
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Figure 4-41 Real-time operation.
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Figure 4-42 Non–real-time operation.

9 This is because averaging is useful only if the signal is periodic and the noise stationary.
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However, the real-time bandwidth does affect the speed with which an RMS-averaged
measurement can be made. Figure 4-43 shows that for frequency spans above the real-time
bandwidth, the time to complete the average of N records is dependent only on the time to
compute the N transforms. Rather than continually reducing the time to compute the RMS
average as we increase our span, we reach a fixed time to compute N averages.

Therefore, a small real-time bandwidth is a problem only when RMS averaging large
spans using a large number of averages. Under these conditions it takes longer to get the
answer. Since wider real-time bandwidths require faster computations and therefore a more
expensive processor, there is a straightforward trade-off of time versus money. In the case of
RMS averaging, higher real-time bandwidth gives somewhat faster measurements but at
increased analyzer cost.

4.29 Real-Time Bandwidth and Transients

Real-time bandwidth is an important consideration when analyzing transient events. If the
entire transient fits within the time record (Figure 4-44), the FFT computation time is of little
interest. The analyzer can trigger on the transient and store the event in the time-record
buffer. The time to compute its spectrum is not important.

However, if a transient event contains high-frequency energy and lasts longer than the
time record necessary to measure the high-frequency energy, the processing speed of
the analyzer is critical. As shown in Figure 4-45, not all of the transient will be analyzed if
the computation time exceeds the time-record length.

Time
Record 1

Time
Record 2

FFT 1 FFT 2 FFT 3

Time
Record 3

Time
Record 4

Time
Record N

FFT N

Time = N X FFT Computation Time

Figure 4-43 RMS averaging time.

Time Record

FFT

Figure 4-44 Transient fits in time record.
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When the transient is longer than the time record, it is imperative that there be some way
to rapidly record the spectrum. Otherwise, the information is lost as the analyzer updates the
display with the spectrum of the latest time record. A special display that can show more
than one spectrum (‘‘waterfall’’ display), large storage device or a high-speed link to a
computer is needed. The output device must be able to record a spectrum for every time
record or information will be lost.

4.30 Overlap Processing

Previously we considered the case where computing the FFT took longer than collecting the
time record. In this section we will look at a technique called overlap processing. This can be
used when the FFT computation takes less time than gathering the time record.

To understand overlap processing, look at Figure 4-46. This is the diagram for a situation
where the time record is much longer than the FFT computation time (e.g., low-frequency
analysis). Without overlap capability the FFT processor is sitting idle much of the time. If we
take a snapshot of the time data each time the FFT process completes and then starts the next
FFT, it is possible to do consecutive FFTs with little idle time, as shown in Figure 4-47. The
data used by the current FFT process will not all be new. The snapshot of the time data will
contain some of the data used in the previous FFT plus whatever new data were collected
during the time required to compute the previous FFT. To understand the benefits of overlap
processing, let us look at the same cases used in the last section.

Earlier we concluded that to adjust a test device effectively a new spectrum is needed
every few tenths of a second. Without overlap processing, this limits our resolution to a few
hertz. With overlap processing, our resolution is unlimited.

Time
Record 1

Time
Record 2

Time
Record 3

Time
Record 4

Time
Record 5

FFT 4FFT 3FFT 2FFT 1

Figure 4-45 Transient longer than one time record.
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But overlap processing does not give us something for nothing. Since the overlapped time
record contains old data from before the device was adjusted, it is not completely correct. It
does indicate the direction and the amount of change, but we must wait one full time record
after the change for the new spectrum to be accurately displayed. Nonetheless, by indicating
the direction and magnitude of the changes every few tenths of a second, overlap processing
greatly increases the responsiveness of the measurement.

Overlap processing can dramatically reduce the time needed to compute RMS averages
with a given variance. Recall that window functions reduce the effects of leakage by
weighting the ends of the time record to zero. Overlapping eliminates most (if not all) of the
time that would be wasted taking these data. Since some overlapped data are used twice,
more averages must be taken to get a variance that is comparable to the nonoverlapped case.
Figure 4-48 shows the improvements that can be expected by overlapping.

For transients shorter than the time record, overlap processing is useless. For transients
longer than the time record, the real-time bandwidth of the analyzer and spectrum recorder is

Time

Time Data Data Gathering

FFT 3
Record 3

Time

FFT 2
Record 2

Time

FFT 1
Record 1

Time

Figure 4-47 Overlapped processing is performed on data that combine old and new. The time
between FFTs represents display processing.

Time

Time Data Data Gathering

FFT 3
Record 3

Time

FFT 2
Record 2

Time

FFT 1
Record 1

Time

Figure 4-46 Nonoverlapped processing is performed only on completely new data (time
records).
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usually a limitation. If it is not, overlap processing allows more spectra to be generated from
the transient. Usually this improves the resolution of resulting plots.

4.31 Swept Sine

Some FFT analyzers also make swept sine measurements. Swept sine analysis is a very
traditional measurement technique, but its implementation in an FFT analyzer is somewhat
different than in a swept analyzer. FFT analyzers with swept sine capability use a swept sine
wave source and a time domain integration process to emulate a tracking band-pass filter.
The sine source sweeps across a user-selected frequency band, exciting the DUT. At each
discrete frequency point during the sweep, the analyzer measures and displays the relative
magnitudes and phases of the DUT’s sinusoidal response.

Swept sine measurements provide a very good signal-to-noise ratio and can characterize
nonlinear systems. At each point in the sweep, the DUT exhibits a transient response and a
steady-state response. The analyzer waits for the transient response to settle out and then
measures the steady-state response. The swept sine measurement allows the analyzer to
characterize nonlinearities and better excite the DUT because the energy is concentrated in a
narrow frequency band. To reduce the effect of noise, the analyzer integrates the input signal
over several cycles.

Most FFT analyzers that provide swept sine measurements include some automatic
adjustments to optimize the results. These include automatic source level adjust, automatic
input range adjust, and automatic resolution adjust.

For nonlinear devices, the transfer function varies depending on the input level. With
autoleveling, the analyzer adjusts the signal source level to keep the DUT output level within
a specified range.

With autoranging, the analyzer adjusts the input range up or down when the DUT output
level goes above or below the optimum for the current range. This can greatly increase the
dynamic range.

With autoresolution, the analyzer adjusts the spacing between adjacent measurement
points, taking finer or coarser steps where necessary. Coarser steps minimize measurement
time, but autoresolution can narrow the steps where there are rapid changes in the response.
This minimizes the sweep time while still catching fast changes in amplitude or phase.

Flat-top Window
90% Overlop

non-overlappedoverlap

Data
Gathering

Time

T

Relative Error

T
4

Figure 4-48 RMS averaging is faster with overlap processing.
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4.32 Octave Measurements

Some FFT analyzers also make octave measurements, which are commonly used for per-
forming acoustic measurements. An octave measurement computes power in bands using
banks of filters covering several octaves. Each higher filter has a wider bandwidth than the
previous filter, with the filter spacing being logarithmic rather than linear. The most common
spacing is 1/3 octave, but some analyzers also provide full octave and 1/12 octave spacing.

Octave measurements are displayed on a logarithmic x-axis, so each band appears to be
the same width. In Figure 4-49, the top trace shows a third octave with a log x-axis. The
bottom trace shows the same data on a linear x-axis. Notice that the higher frequency bands
are much wider than the lower frequency bands.

FFT analyzers that make octave measurements usually include an A-weight filter to
simulate the frequency response of the human ear. Third-octave measurements represent
how the human ear perceives the frequency content of a signal, but the frequency resolution
does not reveal the exact spectral component of the signal. To diagnose the specific cause of
a noise problem, the analyzer’s FFT measurement is more useful.
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Figure 4-49 Third octave measurement results displayed on a logarithmic x-axis and a linear
x-axis.
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CHAPTER 5

Swept Spectrum Analyzers

The traditional method for implementing a spectrum analyzer is the swept heterodyne block
diagram. Similar to a radio receiver, the spectrum analyzer is automatically tuned (swept)
over the band of interest. This type of analyzer has been gradually replaced by the fast
Fourier transform (FFT) analyzer at low frequencies, but the swept analyzer remains the
dominant technology in the radio frequency range and above. In recent years, the swept
analyzer has been combined with the FFT analyzer to provide the advantages of both
techniques.

5.1 The Wave Analyzer

The bank-of-filters analyzer, which was examined in the previous chapter, uses a large
number of fixed filters to implement a spectrum analyzer. Another approach is to use one
filter, but to make it tunable over the frequency range of interest (Figure 5-1). Since this
technique allows only one frequency to be measured at a time, it is not a true spectrum
analyzer but is called a wave analyzer or wave meter.

The user tunes the wave analyzer to the frequency of interest and reads the signal level
present at that frequency. The bandwidth of the tunable filter determines the resolution
bandwidth, RBW, of the wave analyzer. It is desirable for the filter to be as flattop as
possible, with steep skirts so that equal amplitude signals within the passband of the filter
produce the same meter reading.

This type of instrument has been used extensively for making simple ‘‘tuned voltmeter’’
measurements and still exists today in the form of a selective level meter. Selective level
meters have very flattop passbands, resulting in excellent amplitude accuracy.

INPUT

Tunable
Filter Detector

DET

Meter

Figure 5-1 A conceptual block diagram of the wave analyzer.
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5.2 Heterodyne Block Diagram

Practical tunable band-pass filters have severe restrictions on the tuning range of the filter’s
center frequency. Thus, the wave analyzer is rarely implemented using an actual tunable
filter. Instead of moving the filter in frequency, the input signal is translated in frequency and
the filter’s frequency remains fixed. The band-pass filter’s center frequency is called the
intermediate frequency (IF) and the filter is called the IF filter.

The simplified block diagram of a practical wave analyzer is shown in Figure 5-2. The
key component of this block diagram is the mixer. The mixer is a three-port device that is
driven by the input signal of the analyzer (usually called the RF signal) and the local
oscillator (LO) signal. The output of the mixer is at the IF.

Ideally, the mixer functions as a multiplier. Suppose the input is a cosine:

vRFðtÞ ¼ A cosð2pfRFtÞ ð5-1Þ
and

vLOðtÞ ¼ cosð2pfLOtÞ ð5-2Þ
The output of the mixer is

vIFðtÞ ¼ A cos 2pfRFtð Þcosð2pfLOtÞ ð5-3Þ

vIFðtÞ ¼ A

2
cos 2pfLOt þ 2pfRFtð Þ þ cosð2pfLOt � 2pfRFtÞ½ � ð5-4Þ

Therefore, the mixer’s output is the sum and difference frequencies of the LO and RF
signals.1

This characteristic is used to implement the superheterodyne block diagram. The IF
filter always remains tuned to the same center frequency, and the mixer is used to shift the
input signal in frequency so that it falls on the center of the IF filter. This makes the IF
filter easier to build since it does not require a tunable center frequency. Of course, the LO

Input

Attenuator

Amplifier

Local
Oscillator

Low-pass
Filter Mixer Detector Meter

DET

LO

IF
Filter

Figure 5-2 A more practical block diagram of the wave analyzer.

1 Practical mixers will usually have other higher-order products that are ignored here.
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must be made tunable, but this is usually an easier task than building a filter that tunes over
a wide range.

The mixer produces both the sum and difference frequencies of the input and LO. Only
the sum or the difference frequency is used since, by design, it will fall directly on the IF.
The other frequency will be rejected by the IF filter. This requires some careful choices in
defining the LO and IF frequencies.

A numerical example should help explain the operation of the superheterodyne block
diagram. Suppose a wave analyzer is required to measure signals from 0 to 10 MHz. The
chosen IF is 20 MHz, and the LO operates between 20 MHz and 30 MHz. Now, suppose that
the input frequency happens to be 5 MHz. To measure this frequency, the LO is tuned to
25 MHz, producing the sum and difference frequencies of 20 MHz and 30 MHz. The 20 MHz
signal is exactly the IF (by design) and is passed through the IF filter and detected and dis-
played on the meter. The 30 MHz signal falls outside of the IF filter and is rejected.

If the input frequency were changed to 1 MHz, the LO would have to be tuned to
21 MHz, producing sum and difference frequencies of 20 MHz and 22 MHz. Again, the
20 MHz signal is the IF and is measured while the 22 MHz signal falls outside the IF filter
and is ignored.

The low-pass filter at the input of the block diagram is known as the image filter. If this
filter were not included, undesirable frequencies could enter the mixer and be translated
down to the IF, corrupting the measurement. Suppose the wave analyzer is still tuned to
5 MHz. If a 45 MHz signal made its way into the mixer, it would mix with the LO frequency
(25 MHz) and would produce sum and difference frequencies of 20 MHz and 70 MHz. The
70 MHz signal would be ignored, but the 20 MHz signal would fall directly on the IF filter
and would be included in the measurement. Without an image filter the wave analyzer could
not distinguish between the desired 5 MHz signal and the 45 MHz image frequency.

The image frequency (for this block diagram) causes the difference frequency (when
mixed with the LO) to fall on the IF.

fIF ¼ fIMAGE � fLO ð5-5Þ
fIMAGE ¼ fIF þ fLO ð5-6Þ

The LO frequency is the input frequency plus the IF or

fLO ¼ fRF þ fIF ð5-7Þ
Thus,

fIMAGE ¼ fRF þ 2fIF ð5-8Þ
The image frequency is twice the IF away from the desired input frequency. This holds

for the case shown where the IF is higher than the input frequency.

5.3 The Swept Spectrum Analyzer

The wave analyzer can measure only one frequency at a time. An obvious enhancement is to
have the analyzer automatically sweep through the frequency range of interest. In a spectrum
analyzer this is accomplished by sweeping the LO. Figure 5-3 shows how the wave analyzer
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block diagram could be converted into a spectrum analyzer by using a voltage-controlled
oscillator (VCO) as the LO. A ramp generator is used to produce a linearly increasing
voltage, which drives the tuning port of the VCO. The same ramp voltage is applied to the
horizontal (x) axis of the display, while the detector output is low-pass filtered and connected
to the vertical (y) axis. As the LO is swept in frequency, the spectrum of the input signal is
automatically plotted on the display. The low-pass filter at the output of the detector is called
the video filter and is a postdetection filter (as discussed in Chapter 10), which serves to
smooth out the response as the analyzer sweeps.

As shown, the block diagram is implemented in a totally analog fashion. Although this is
a practical technique, the advent of the microprocessor and the digital display has caused the
block diagram to take on a digital flavor (Figure 5-4). For example, the LO is often imple-
mented using digital synthesis techniques that lend themselves to microprocessor control.
(The LO may be stepped or swept in frequency under microprocessor control.) The output of
the IF filter (or the detector) may be sampled and converted to digits by an analog-to-digital
converter (ADC), which is read by the microprocessor. The display in a modern spectrum
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Figure 5-3 A simplified block diagram of a swept spectrum analyzer.
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Figure 5-4 A simplified block diagram of a spectrum analyzer using microprocessor control.
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analyzer is always a digital graphics display. That is, the display graphics information is
written to a designated area of memory and the display is refreshed from this memory. This
eliminates any problems with display refresh rate being too slow due to a slow sweep rate
since the display can be refreshed much faster than the sweep rate.

Although the analog block diagram of Figure 5-3 has been largely replaced by the digital
equivalent, it still represents a good conceptual basis for understanding the operation of the
spectrum analyzer.

5.4 Practical Considerations

The block diagram previously discussed uses a single mixer/IF stage and is therefore called a
single conversion receiver. This simple block diagram can be used to implement a spectrum
analyzer, but its performance is limited. Modern analyzers use much more complicated block
diagrams to achieve state-of-the-art performance.

Some factors in the block diagram design call for a high IF, whereas others require a low
IF. A high IF makes the rejection of image frequencies easier, but narrow IF filters and
detectors are more difficult to implement at high frequencies. Conversely, narrow filters and
detectors are easier to build at low frequencies, but the image rejection problem is made
more difficult. A compromise of sorts is often used with multiple conversion stages
cascaded. Each conversion section contains a mixer, an LO, and an IF filter. (The LOs may
all be derived from the same master oscillator.) Multiple conversion stages are the rule rather
than the exception in spectrum analyzers.

Many of the circuit blocks in the spectrum analyzer block diagram are complex systems
within themselves. For example, an LO can be made up of several oscillators or frequency
synthesis loops. Each frequency synthesis loop may contain one or more mixers, a low-pass
filter, and oscillator. These blocks may be configured such that the block diagram of the
analyzer changes significantly depending on the frequency range that is being measured.

Regardless of the complexity of the actual spectrum analyzer block diagram, con-
ceptually it simply implements a sweeping tuned filter.

5.5 Input Section

The input to the spectrum analyzer block diagram has a variable attenuator, often followed
by an amplifier. The purpose of this input section is to control the signal level applied to the
rest of the instrument. If the signal level is too large, the analyzer circuits will distort the
signal, causing distortion products to appear along with the desired signal. If the signal level
is too small, the signal may be masked by noise present in the analyzer. Either problem tends
to reduce the dynamic range of the measurement.

Some instruments provide an autorange feature that automatically selects an appropriate
input attenuation. Other instruments require the user to select the appropriate input
attenuation. The input circuitry of a typical analyzer is sensitive and will not withstand much
abuse. Careful attention should be paid to the allowable signal level at the input, particularly
for microwave analyzers. Some instruments tolerate DC voltages at their inputs, but others
require that little or no DC be applied.
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5.6 Resolution Bandwidth

The bandwidth of the last IF filter usually determines the resolution bandwidth (RBW), of
the instrument. If multiple IF filters are used, the composite response of the IF chain deter-
mines the resolution bandwidth. Usually, one of the IF filters will be significantly narrower
than the others and alone will determine the resolution bandwidth.

Multiple resolution bandwidths are supplied by simply switching in different filters.
Wider bandwidth filters settle faster, providing faster measurements. Narrow bandwidth
filters take longer to settle but produce better frequency resolution and better signal-to-noise
ratio (see Chapter 10).

5.7 Sweep Limitations

The swept spectrum analyzer generally provides a significant increase in measurement speed
over the wave analyzer since the entire frequency range of interest can be displayed at once.
This is not meant to imply that the spectrum analyzer can be swept arbitrarily fast. The IF
filter (resolution bandwidth filter) must have time to respond to the changing signal level that
it experiences at its input.

Consider the case where the spectrum analyzer sweeps past a sinusoidal signal (Figure 5-5).
In this case, we will analyze the situation by considering the IF filter to be fixed and the signal
to be moving. The signal starts well outside of the passband of the filter (Figure 5-5a). Then,
the signal starts up the skirt of the filter with the filter’s output level increasing accordingly
(Figure 5-5b). Finally, the signal enters the passband of the filter and starts down the other side
(Figure 5-5c).

If the signal is swept slowly enough, the shape of the IF filter is traced out on the
spectrum analyzer display. (Normally, the IF filter bandwidth is small compared with
the frequency span being swept, so the IF filter shape will appear as a spectral line on the
display.) If the signal is swept too fast, the filter does not have time to respond and two
types of display errors occur (Figure 5-6). The amplitude of the spectral line is smaller than
the slowly swept case, and the spectral line will shift to the right slightly, causing a fre-
quency error. Additionally, there may be filter ‘‘ringing’’ down the back edge of the filter
shape.

How fast is too fast of a sweep rate? Ideally, the filter should be swept infinitely slow
since the filter response time will always degrade the measurement. In practice, the filter can
be swept at some finite rate as long as some small error can be tolerated. If this error is small
compared with other errors in the analyzer, then there is no penalty for sweeping. A typical
error limit due to sweep induced errors is 0.1 dB. The maximum sweep rate (with such an
error limit) is proportional to the square of the resolution bandwidth.

sweep rate maxð Þ ¼ RBW2=k ð5-9Þ
where

k ¼ a factor depending on the resolution bandwidth filter characteristics

A typical value for k is 2 (for Gaussian filters), and the sweep rate has units of Hz/sec.
If a steep-walled filter is used, the response time of the filter increases, causing k to be
larger.
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In a wave analyzer, the shape of the IF filter is usually designed to be steep walled and as
flattop as possible. However, this is inappropriate for an analyzer intended to sweep due to
the increased sweep time required. In swept analyzers a more rounded filter such as a
Gaussian filter is used to minimize the sweep time (Figure 5-7).

The minimum sweep time for a particular frequency span is given by

Ts ¼ fspank=RBW2 ð5-10Þ
Other sweep limitations such as the maximum local oscillator sweep rate may be present

in the instrument.

f

(a)

(b)

(c)

f

f

Figure 5-5 A sine wave passes through the IF filter of a spectrum analyzer.
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Ref 5.0 dBm

Center 9.970 MHz Span 1.000 MHz
Res BW 3 KHz VBW 3 KHz SWP 20 msec

hp
10 dB/

Atten 20 dB

Meas uncal

Figure 5-6 These two measurements show the effects of sweeping too fast. The leftmost
spectral line was swept correctly. Sweeping too fast causes the spectral line to be
smaller in amplitude and shifted to the right.

Wave analyzer

Swept analyzer

f

Figure 5-7 The IF (resolution bandwidth) response of a spectrum analyzer is more rounded and
less selective than a wave analyzer.
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Although it is important for the spectrum analyzer user to understand the sweep rate
limitations to optimize the measurement, modern spectrum analyzers provide automatic
selection of the sweep time. The user is protected from making an erroneous measurement as
long as the autoselection feature is not overridden.

5.8 Specialized Sweep Modes

Many spectrum analyzers include a special sweep mode called manual sweep. This feature
causes the analyzer to operate like a wavemeter, measuring the spectrum at only one frequency.
The user can adjust the frequency as desired and can manually sweep the entire frequency span,
if desired. In some measurement situations, the amplitude at one particular frequency is
important. Manual sweep is especially useful if the required resolution bandwidth is very
narrow. The user can avoid having to wait for a long sweep to occur by forcing the analyzer to
measure only at the frequency of interest.

Another specialized sweep mode is zero span operation, which causes the analyzer to
sweep while maintaining a constant measurement frequency. This mode allows amplitude
variations to be displayed, as discussed in Chapter 6.

Some spectrum analyzers provide another sweep mode called discrete sweep, program
sweep, or list sweep that lets the user specify a list of frequencies to test. The analyzer
automatically hops from frequency to frequency, measuring the spectral content at each one.
For measurement applications such as production test, where measurements at a small
number of frequencies can adequately verify correct operation of the device under test, the
total measurement time can be reduced.

5.9 Local Oscillator Feedthrough

One particularly noticeable imperfection in the mixer of a spectrum analyzer is the phe-
nomenon known as LO feedthrough. The ideal mixer produces only the sum and difference
frequencies at the IF port. In a real mixer, the LO and RF signals (at reduced amplitude) also
appear at this port. In most cases, the LO frequency is far enough away from the center of the
IF that the LO feedthrough does not appear in the measurement. However, when the LO
frequency is the same as (or very near) the IF, the LO signal is passed through the IF filter
and appears in the measurement. This LO frequency corresponds to an input frequency of
0 Hz (DC).

LO feedthrough is also known as the DC response since that is where it appears on the
spectrum analyzer display. In nonsynthesized spectrum analyzers (with limited frequency
accuracy in the LO), this is used as a method of locating 0 Hz on the display.

If the IF filter were infinitely narrow, the LO feedthrough would appear only at exactly
0 Hz. With a finite-width IF filter, the LO feedthrough extends from 0 Hz to approximately
RBW/2, following the shape of the IF filter (Figure 5-8). It may be necessary to reduce
the resolution bandwidth to prevent the LO feedthrough from interfering with the
measurement.
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5.10 Digital IF Section

When implemented using analog circuitry, the output of the IF filter drives a log amp, which
drives the detector circuit. The log amp compresses the signal level according to a loga-
rithmic function. (For an input voltage amplitude, v, the output voltage amplitude is log(v).)
This greatly reduces variation in signal level seen by the detector and simultaneously pro-
vides the user with a logarithmic vertical scale, which is calibrated to read in decibels. The
logarithmic scale is desirable in a spectrum analyzer due to the large variation in signal
levels. The detector produces a DC level proportional to the AC level of the signal in the IF
section. When the output of the detector is sampled and converted to digital form, it is
important that the output be sampled often enough so that spectral components are not
missed.

In modern instruments, the resolution bandwidth filters and the detector have been
implemented using digital signal processing (Figure 5-9). The signal is digitized while it is
still at the last IF. A digital filter algorithm is then used to provide the resolution bandwidth
function, and the filtered signal is detected digitally. This digital implementation provides a
high degree of flexibility such that a variety of detector algorithms, logarithmic amplifica-
tion, video filters, and averaging techniques can be employed. A digital IF section provides
very stable narrow resolution bandwidths (1 Hz or even narrower), since digital filters do not

Narrow RBW

Wide RBW

f

Figure 5-8 Local oscillator feedthrough appears as a response at DC whose width depends on
the resolution bandwidth.

IF Filter Analog-to-digital
Converter

ADC DET

Digital RBW
Filter

Digital
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Digital Video
Filter

Figure 5-9 The IF detector section of a swept spectrum analyzer can be implemented using
digital signal processing techniques.
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exhibit any drift. Errors associated with the log amp and detector are essentially eliminated
since both of these functions are performed digitally.

The use of digital RBW filters has enabled improved sweep rate and better frequency
resolution in swept analyzers. The response of the digital filter can be tightly controlled and
optimized for the best spectrum analyzer performance compared with their analog equiva-
lents. A digital IF section requires an ADC with high dynamic range so that closely spaced
signals can be captured accurately. That is, multiple signals may be present in the IF section
such that the ADC must have enough resolution to simultaneously digitize both large and
small signals.

5.11 Types of Detectors

Since the detector is implemented digitally, a variety of detector algorithms can be included,
optimized for different signal types. A key point is that the number of samples coming out of
the IF filter is often much larger than can be included on the display. In particular, when
the sweep speed is slow there may be thousands of samples available for each displayed
spectrum point.

Some common detector types are as follows:

● Normal: Also referred to as the Rosenfell detector,2 this determines the peak of sinusoidal
signals and yields alternating maximums and minimums of noise-like signals. This is the
most versatile detector for general use.

● Average: The detector determines the average of the signal within the sweep points.
Often, multiple types of averaging are available: log power (also called video), power
(also called RMS), and voltage envelope.

● Peak: The detector determines the maximum of the signal within the sweep points. Peak
detection is good for analyzing sinusoids but tends to overrespond to noise when sinu-
soids are not present.

● Sample: The detector indicates the instantaneous level of the signal at the center of the
sweep points represented by each display point. Sample detection is good for displaying
noise or noise-like signals.

● Negative peak: The detector determines the minimum of the signal within the sweep
points. This mode is useful for distinguishing between random and impulse noise.
Negative peak detection does not give the analyzer better sensitivity, although the noise
floor may appear to drop.

● Quasi-peak: This is a fast-rise, slow-fall detector used in making electromagnetic inter-
ference (EMI) measurements, compliant with the International Special Committee on
Radio Interference (CISPR) Publication 16-1-1. Quasi-peak detection displays a weighted,
sample-detected amplitude using specific, charge, discharge, and meter time constants
derived from the legacy behaviors of analog detectors and meters. See Chapter 16 for more
information on electromagnetic compatibility (EMC) measurements.

2 Rosenfell is not a person’s name but rather a description of the algorithm that checks if the signal ‘‘rose and fell’’
within the frequency range represented by a given data point.
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5.12 The Tracking Generator

A tracking generator is a very useful addition to the basic spectrum analyzer block diagram.
A tracking generator, as the name implies, provides a sinusoidal output whose frequency is
the same as the analyzer’s input frequency. A tracking generator allows a spectrum analyzer
to perform basic network measurements. The output of the tracking generator is connected to
the input of the device under test and the response is measured with the analyzer’s receiver.
As the analyzer sweeps, the tracking generator is always operating at the receiver’s
frequency, and the transfer characteristics of the device can be measured.

While the classic tracking generator is frequency locked to the spectrum analyzer
measurement frequency, some instruments support a more flexible source (which may require
an external signal generator). Power sweep is the capability for the source to change its output
power as the spectrum analyzer sweeps. This allows the analyzer to measure a device’s
behavior as the signal level is varied, typically used while measuring one fixed frequency.

Another powerful feature allows the source to sweep a frequency range that is different
from the measurement frequency but is still synchronized with the spectrum analyzer. For
example, if the source frequency is one-half of the measurement frequency, the analyzer can
make a swept measurement at the second harmonic of the source frequency. The frequency
of the source can be programmed to be a function of the analyzer frequency using

fs ¼ kfa þ foffset

where
fs ¼ the source frequency
k ¼ a multiplier factor, usually limited to a ratio of integers

foffset ¼ a fixed frequency offset

5.13 FFT versus Swept Measurements

Besides the inherently simpler block diagram in the FFT approach, the FFT analyzer pro-
vides a speed improvement over the swept analyzer. As previously discussed, the swept
analyzer measurement speed is limited by its resolution bandwidth, with the measurement
time being inversely proportional to RBW2. At low frequencies, very narrow resolution
bandwidths are required to separate closely spaced spectral lines. Narrow resolution band-
widths require a longer sweep time so the total measurement time can get unacceptably long.
On the other hand, the FFT analyzer’s speed is limited by the time it takes to acquire the data
and the time it takes to compute the FFT. For equivalent-frequency resolution, the FFT
analyzer is much faster than the swept analyzer.

The FFT analyzer is limited in frequency range due to the need for a high-resolution
ADC to sample somewhat above the Nyquist rate. As ADC technology has improved, the
frequency range of FFT analyzers has increased.3 However, for high dynamic range

3 Another option for high-frequency spectrum measurements is a wide bandwidth digital oscilloscope with an FFT
analysis function.
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measurements at microwave frequencies and higher, the swept analyzer is still the dominant
type of instrument.

As mentioned in Chapter 3, any practical measurement is limited to a finite time. For a
signal that is changing, it may be desirable to measure the spectrum instantaneously so that
its frequency content at an instant in time can be determined. Unfortunately, this is often not
possible. Swept analyzers, in particular, may take several seconds or even minutes to per-
form one swept measurement. During this time, the signal may change and the swept ana-
lyzer may miss portions of the signal.

An FFT analyzer acquires a time record that contains the entire spectral content of a
signal for that particular slice of time. The FFT computation transforms this time domain
data into its spectrum. As long as the FFT is performed at least as fast as new time domain
data are acquired, the analyzer can continue to capture and display the spectral content of the
signal without ever missing any portion of the signal. Thus, an FFT analyzer is more
effective at measuring dynamic signals.

5.14 Modern Spectrum Analyzer Block Diagrams

Most modern spectrum analyzers have combined the block diagrams and the benefits of the
swept analyzer and the FFT analyzer. It is a natural evolution of the digital IF shown in
Figure 5-9 to add the capability to compute an FFT of the IF signal. Figure 5-10 shows the
combined block diagram in a simplified fashion. The front end of the spectrum analyzer
employs the super heterodyne receiver of the swept analyzer shown in Figure 5-4. The later
stages of the signal path uses a digital IF structure similar to what is shown in Figure 5-9.

A quadrature detector, followed by digital low-pass filters, is shown after the ADC
(Figure 5-11). This quadrature detection is done digitally, transforming the IF signal into an
in-phase (I) component and a quadrature (Q) component. The in-phase component is just the
IF signal mixed with the digital LO, while the quadrature component uses an LO signal that
is shifted by 90º. The output of these digital mixers is followed by decimating low-pass
filters, which can be used to further reduce the bandwidth of resulting quadrature signal.

Input

Attenuator

Amplifier

LO

ADC

Mixer

Low-pass
Filter IF Filter

Quadrature
Detector and

Filter Detector

FFT

Trigger

Digital signal
Processing

Section
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Display

Analog-to-
Digital

Converter

Figure 5-10 The conceptual block diagram of a spectrum analyzer that combines the swept and
FFT approaches.
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There are actually three signal detection devices shown in the block diagram: the swept
detector, the FFT, and the I/Q demodulator. The swept detector is the same digital detector
associated with the swept analyzer block diagram and includes the actual detector itself
and the video filter, if required. The FFT block includes any window function required and
computes the spectrum of the signal present in the IF. The I/Q demodulator extracts and
analyzes the modulation from the I/Q data and is used for measuring analog and digital
modulated signals.

The block diagram is drawn to cover the most general case. Specific spectrum analyzer
implementations may implement all or part of this block diagram, depending on the intended
application and available technology. Although the terminology used may imply a hardware
implementation, the portions of the block diagram to the right of the ADC can be imple-
mented using hardware or software.

● Swept analysis: When operating in the classic swept analyzer mode, the swept detector
analyzes the IF signal while the LO is swept to cover the frequency range of interest.
Generally, the swept mode maintains a high dynamic range measurement while covering
a wide frequency range.

● FFT analysis: The FFT mode is normally used to capture a specific frequency span
within the frequency range of the spectrum analyzer. This span is limited to the widest
IF bandwidth available in the instrument. The LO is tuned to a fixed frequency such that
the IF is centered on the frequency span of interest and the FFT calculates the spectrum of
the signal present in the IF. The decimating low-pass filters associated with the quad-
rature detector are used to narrow the frequency span. The advantage of the FFT mode is
measurement speed and the ability to measure very narrow frequency spans. This mode is
very useful for measuring close-in sidebands and phase noise on modulated carriers.
Some analyzers use FFT analysis to cover the entire frequency span of the instrument
(not just a single IF measurement). A broader frequency span can be measured by col-
lecting multiple FFT snapshots as the LO is stepped through the frequency range of
interest. This technique uses multiple stepped FFT measurements instead of a continuous
frequency sweep.

Analog-to-Digital
Converter

Quadrature
Detector and Filter

Q - Quadrature

Digital
LOADC

I - In-Phase

90 deg
shift

Figure 5-11 The quadrature detector splits the incoming IF signal into in-phase (I) and
quadrature (Q) components.
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● Modulation analysis: The digital IF approach lends itself to analyzing digital and analog
modulation of communications signals. The I/Q demodulator operates similar to the FFT
analysis mode in that the LO is fixed tuned to capture the communications signal in the IF
and the I/Q demodulator extracts the modulation from the signal present. This mode is
covered in more detail in Chapter 6.

5.15 Real-Time Spectrum Analyzer

The concept of real-time spectrum analysis (RTSA) first appeared in FFT spectrum analy-
zers, as discussed in Chapter 4. The basic idea is that the analyzer captures and processes the
spectrum of a signal so fast that nothing is missed. As the FFT found its way into the modern
swept spectrum analyzer, the benefits of real time followed along.4

The overall gap-free speed of an RTSA is often described in terms of real-time bandwidth
(RTBW), which is the signal bandwidth that can be captured and processed without losing any
sample points. In general, higher bandwidth requires a higher sample rate and more processing
power to keep up. Alternatively, the RTSA capture ability may be specified in terms of
probability of intercept (POI). Normally, we are interested in 100% POI. That is, we want to be
sure that intermittent signals will be captured. An RTSA datasheet may specify the minimum
signal duration with 100% probability of intercept (typical specification is ~10 ms).

The RTSA captures gapless, sequential frequency spectra at a high processing rate. This
measurement capability adds in the third dimension of time: a frequency domain plot
(amplitude vs. frequency) captured as a function of time. This also produces a large amount
of frequency domain information that needs to be stored and displayed. The RTSA includes
advanced display techniques to allow the user to make use of this information.

One display technique is to plot the density of the frequency spectrum using color-graded
persistence. Frequent spectral content shows up in one color, and less frequent events are
given other colors based on how often they occur. Figure 5-12a shows a swept spectrum
analyzer measurement of a signal with complex time-varying spectral content. This mea-
surement provides some idea of the spectral content but without much detail. Figure 5-12b
shows a density plot of the same signal, revealing much more detail of the spectrum.
The actual instrument display shows this detail in color, whereas this book is limited to a
grayscale representation. (The use of color greatly enhances the displayed spectrum.)

Another common way to display the RTSA frequency content versus time is via a
spectrogram. Figure 5-13 shows a typical spectrogram display with the conventional spec-
trum plot in the upper half of the display. The lower half of the display has time as the
vertical axis and frequency on the horizontal axis. The amplitude of the spectrum is shown
via color intensity. (Again, the figure in the book is grayscale so it does not show the
spectrogram in color.)

RTSAs generally include frequency mask triggers (FMT), which provide the ability to trigger
on the spectrum of a signal. This is implemented in the trigger block shown in Figure 5-10, which

4 The benefits of real time (not missing any part of the signal) are so compelling that it is amazing that the
electronics industry has lived with non–real-time analyzers for decades.
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Figure 5-12b A complex, time-varying spectrum is measured using a real-time spectrum
analyzer. Shown in grayscale here, spectrum analyzers use color grading to
enhance the displayed spectrum. (� Keysight Technologies, Inc. Reproduced
with Permission, Courtesy of Keysight Technologies, Inc.)

Figure 5-12a A complex, time-varying spectrum is measured using a conventional swept
analyzer. (� Keysight Technologies, Inc. Reproduced with Permission, Courtesy
of Keysight Technologies, Inc.)
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is after the FFT processing so that the spectrum information is available. Figure 5-14 shows a
typical measurement using FMT. The trigger condition is specified as a limit line that the
measured spectrum is compared with. Typically, the FMT feature will have a number of
options on when the measurement is triggered. The trigger may be set for when the signal is
inside the mask, outside the mask, enters the mask or exits the mask, depending on the type
of event the user is trying to capture.

5.16 Types of Spectrum Analyzers

Spectrum analyzer block diagrams continue to evolve, with variations on the block diagram
shown in Figure 5-10. Spectrum analyzer remains the most common name for an instrument
that measures the frequency spectrum of a signal. As new measurement techniques have
emerged, other names have been used to identify important attributes associated with certain
categories of instruments.

● Spectrum analyzer: This is the most common name for an instrument that measures a
signal in the frequency domain, displaying the spectral content of signals present over the
frequency range of the instrument.

● FFT spectrum analyzer: Also called a dynamic signal analyzer, this type of instrument
samples the input signal above the Nyquist rate and uses digital signal processing to
determine the spectrum of the signal (see Chapter 4).

Figure 5-13 A spectrogram display (lower half of figure) shows the spectrum as a function of
time using color to encode the amplitude of the signal. (� Keysight Technologies,
Inc. Reproduced with Permission, Courtesy of Keysight Technologies, Inc.)

5.16 ● Types of Spectrum Analyzers 103



● Vector signal analyzer (VSA): This measures the magnitude and phase of a signal at a
particular frequency, capturing the signal without any loss of information, which is
important for many measurement applications including modulation analysis.

● Signal analyzer: Normally this refers to an instrument that combines the functions of
a spectrum analyzer and a vector signal analyzer. That is, the instrument has general
purpose spectral measurement capability plus complex modulation analysis

● Real-time spectrum analyzer (RTSA): Its primary attribute is gap-free analysis so that all
parts of a time-varying signal are not missed. RTSAs also usually include frequency
mask trigger and advanced signal displays.

● EMI receiver: This spectrum analyzer includes specific features for measuring EMI
(see Chapter 16).
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CHAPTER 6

Modulation Measurements

Ever since the early days of radio, modulation techniques have played an important part in
electronic communications. Typically, a low-frequency voice or data signal is used to
modulate some characteristic of a carrier signal—usually the amplitude, phase, or frequency.
Over time, the digital forms of modulation have become dominant. Digital modulation often
is implemented using vector modulation of the carrier signal, having an in-phase (I) and a
quadrature (Q) modulation component.

Communication systems represent an intentional use of modulation, but there are also
incidents of unintentional modulation, such as power line sidebands on an oscillator output
or residual frequency modulation on an amplitude-modulated signal. Whether the modula-
tion is intentional or not, a spectrum analyzer can be used to characterize and measure it.

6.1 The Carrier

Analog modulation techniques start with a carrier that is a pure sinusoid.

vðtÞ ¼ A cosð2pfct þ qÞ ð6-1Þ
where

A ¼ carrier amplitude (zero-to-peak)
fc ¼ carrier frequency (hertz)
q ¼ the carrier phase

The carrier may be modulated in a variety of ways, but the various techniques fall into
two main categories: amplitude modulation (AM) and angle modulation. Amplitude mod-
ulation implies that the amplitude is no longer simply a constant but is a function of time.
Similarly, angle modulation occurs when the angle of the cosine term is varied. Angle
modulation may take the form of frequency modulation or phase modulation depending on
the particular modulation technique.

All the modulation techniques result in increasing the occupied bandwidth of the carrier
by spreading out sidebands in the frequency domain. Originally, the carrier is presumed to be
a single spectral line, infinitely thin, occupying only one exact frequency. When modulated,
the signal bandwidth increases depending on the type of modulation and the modulating
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signal. Sidebands appear beside the carrier, either in the form of discrete frequencies or, for
nonperiodic modulation such as voice or music, more complex spectral shapes.

6.2 Amplitude Modulation

AM is generally considered the simplest modulation system. Although usually lumped under
the general label of AM, there are several distinct variations.

An AM signal with carrier1 is represented by

vðtÞ ¼ Ac 1 þ amðtÞ½ �cosð2pfctÞ ð6-2Þ
where

Ac ¼ the constant that determines the overall signal amplitude
a ¼ the modulation index (0 � a � 1)

m(t) ¼ the normalized modulating signal
fc ¼ carrier frequency (Hz)

Note that the modulating signal is normalized, meaning that it is always within the range
of –1 to þ1. Ac[1 þ am(t)] defines the amplitude of the carrier envelope. With the stated
restrictions on a and m(t), the zero-to-peak amplitude of the carrier is always in the range
of 0 to 2 Ac, inclusive. Thus, the amplitude of the carrier can be driven to zero, but it cannot
go negative and change the sign of the envelope.2 Figure 6-1 shows a modulating signal and
the resulting modulated carrier.

Rearranging the equation for v(t) allows it to be divided into the carrier portion and the
modulation sidebands portion.

vðtÞ ¼ Ac cosð2pfctÞ
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

carrier

þ Ac amðtÞ cosð2pfctÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

sidebands

ð6-3Þ

vðtÞ ¼ vcðtÞ þ vsðtÞ ð6-4Þ
where

vcðtÞ ¼ Ac cosð2pfctÞ
vsðtÞ ¼ Ac amðtÞ cosð2pfctÞ

Transforming the time domain expressions into the frequency domain,

Vð f Þ ¼ Vcð f Þ þ Vsð f Þ ð6-5Þ
The Fourier transform of vc(t) is a pair of delta functions at � fc.

Vcð f Þ ¼ Ac p dð f � fcÞ þ dð f þ fcÞ½ � ð6-6Þ

1 This is the most common type of AM as it is used for standard AM radio broadcasting and in other AM voice
communications systems.
2 In most communication systems, if this happens the signal is overmodulated and will not be recovered properly at
the receiver.
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The Fourier transform of vs(t) is most easily derived by using the modulation property
from Table 3-3.

F xðtÞ cosð2pf0tÞ½ � ¼ 1
2

X f � f0ð Þ þ X f þ f0ð Þ½ � ð6-7Þ

Applying this property to vs(t)

Vsð f Þ ¼ Aca

2
2 M f � fcð Þ þ M f þ fcð Þ½ � ð6-8Þ

That is, the sideband term in the frequency domain is the spectrum of the original
modulating signal, M( f), centered on �fc (Figure 6-2b). Adding Vc( f ) and Vs( f ) gives V( f ),
which is shown in Figure 6-2c.

Vð f Þ ¼ Acp d f � fcð Þ þ d f þ fcð Þ½ � þ Aca

2
M f � fcð Þ þ M f þ fcð Þ½ � ð6-9Þ

(a)

(b)

t

t

Figure 6-1 Amplitude modulation causes the amplitude of the carrier to be determined by
the modulating signal. (a) The modulating signal. (b) The amplitude-modulated
carrier.
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Consider the positive frequency portion of Figure 6-2c. We can see that the bandwidth
occupied by the modulated signal is twice that of the modulating signal. This gives a simple
mathematical relationship for the bandwidth of an AM signal.

BW ¼ 2fmax

where

fmax ¼ the maximum frequency in the modulating signal

Sinusoidal Modulation

The case where the modulating signal is a sinusoid is an important and common
occurrence in electronic systems. This case can be analyzed using Fourier transforms, but it
can also be easily explained using trigonometry. Since the trig approach is instructive and
gives a result that is inherently one-sided in the frequency domain, we will use it here.

mðtÞ ¼ cosð2pfmtÞ ð6-10Þ
Recall that

vðtÞ ¼ Ac cosð2pfctÞ þ Ac am tð Þ cosð2pfctÞ ð6-11Þ
vðtÞ ¼ Ac cosð2pfctÞ þ Aca cosð2pfmtÞ cosð2pfctÞ ð6-12Þ

(a)

fmax

fc

fc

–fc

–fc

f

f

f

(b)

BW(c)

Figure 6-2 (a) The spectrum of the modulating signal. (b) The spectrum of the modulating
signal centered on fc. (c) The spectrum of the AM signal with carrier.
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Using the trig identity,

cos A cos B ¼ 1=2 cosðA þ BÞ þ cosðA � BÞ½ � ð6-13Þ

vðtÞ ¼ Ac cosð2pfctÞ þ aAc

2
cos 2p fm þ fcð Þt þ cos 2p fm � fcð Þt½ � ð6-14Þ

Since cosðA � BÞ ¼ cosðB � AÞ;

vðtÞ ¼ Ac cosð2pfctÞ þ aAc

2
cos 2p fc þ fmð Þt þ cos 2p fc � fmð Þt½ � ð6-15Þ

Thus, v(t) consists of the carrier frequency with amplitude Ac and two sidebands, one at
fc þ fm and one at fc – fm, both with amplitude aAc/2 (Figure 6-3).

The modulation index, a, may vary from 0 to 100%. When a is 100%, each sideband
amplitude is Ac/2, which is half of the carrier amplitude. Note that the carrier amplitude does
not depend on the level of modulation. Table 6-1 tabulates the sideband amplitude relative to
the carrier amplitude for a variety of modulation index values.

Time Domain

In the time domain, a carrier with sinusoidal amplitude modulation will appear as shown in
Figure 6-4. The minimum and maximum values of the envelope of the waveform are called
Vmin and Vmax. The modulation index can be computed from these two parameters.

The maximum envelope voltage occurs when the modulating sinusoid is at its most
positive value, which is þ1.

Vmax ¼ 1 þ a ð6-16Þ
The minimum envelope voltage occurs when the modulating sinusoid reaches its most

negative value, which is –1.

Vmin ¼ l � a ð6-17Þ
Solving for a,

a ¼ Vmax � Vmin

Vmax þ Vmin
ð6-18Þ

fc – fm fc + fmfc
f

Figure 6-3 The spectrum of an AM signal with sinusoidal modulation.
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Table 6-1 Modulation Index and Relative Sideband Amplitude

Modulation Index (%) Sideband Amplitude Relative to Carrier

(%) dB

100 50.0 –6.02
95 47.5 –6.47
90 45.0 –6.94
85 42.5 –7.43
80 40.0 –7.96
75 37.5 –8.52
70 35.0 –9.12
65 32.5 –9.76
60 30.0 –10.46
55 27.5 –11.21
50 25.0 –12.04
45 22.5 –12.96
40 20.0 –13.98
35 17.5 –15.14
30 15.0 –16.48
25 12.5 –18.06
20 10.0 –20.00
15 7.5 –22.50
10 5.0 –26.02
9 4.5 –26.94
8 4.0 –27.96
7 3.5 –29.12
6 3.0 –30.46
5 2.5 –32.04
4 2.0 –33.98
3 1.5 –36.48
2 1.0 –40.00
1 0.5 –46.02

– Vmax

– Vmin

t

Figure 6-4 The envelope of an AM signal in the time domain can be used to determine the
modulation index.
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6.3 AM Measurements

The spectrum analyzer can be used to characterize an amplitude-modulated signal in the
frequency domain. The parameters that can be measured are the carrier amplitude and
frequency, the modulating frequency, and the modulation index.

The carrier amplitude and frequency are measured just like any other spectral component,
either by reading the values using the graticule or with the help of a marker or cursor readout.
The modulating frequency is the difference between the carrier frequency and one of the
sidebands. (The sidebands are symmetrical around the carrier.) Measuring the difference
between the carrier and the sideband is made easier by the use of a marker that has delta
(offset) capability. The modulation index is determined by measuring the sideband amplitude
relative to the carrier amplitude. Usually this is expressed in dB. Table 6-1 or the following
equation allows the user to convert relative sideband amplitude back to modulation index.

a ¼ 2 � 10ðAdB=20Þ ð6-19Þ
where

AdB ¼ the sideband amplitude relative to the carrier (dB)

Example 6.1

A spectrum analyzer measurement of an amplitude-modulated signal is shown in Figure 6-5.
Determine the modulating frequency and modulation index of the signal.

Atten 20 dB
MKR ∆ 990 Hz

–39.60 dBRef 5.0 dBm

Marker ∆
990 Hz
–39.60 dB

Center 10.000000 MHz Span 5.000 kHz
Res BW 30 Hz VBW 30 Hz SWP 15 sec

hp
10 dB/

Figure 6-5 A spectrum analyzer measurement of an amplitude-modulated signal.
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The delta marker feature is used to measure the amplitude and frequency differences
between the carrier and the sidebands in Figure 6-5. The sidebands are –39.6 dB relative to
the carrier and are offset by 990 Hz. Therefore, the modulating frequency is 990 Hz. The
modulation index can be found by

a¼ 2 � 10ðAdB=20Þ ¼ 2 � 10ð�39:6=20Þ ¼ 2:1%

6.4 Zero-Span Operation

Most swept spectrum analyzers provide a simple yet powerful feature for observing slow
amplitude variations in signals. The spectrum analyzer is set for a frequency span of zero with
some nonzero sweep time. This is commonly referred to as zero-span or sometimes synchro-
tune operation. The center frequency is set to the carrier frequency, and the resolution band-
width must be set large enough to allow the sidebands to be included in the measurement. The
analyzer will plot the amplitude of the signal versus time, within the limitations of its detector
and video and resolution bandwidths. Since the minimum sweep time is about 25 msec on the
fastest analyzers and may be as slow as 300 msec, this feature cannot be used for quickly
varying signals. The highest modulating frequency that can be observed is roughly 1/(sweep
time), which will put only one cycle of the modulation on screen.

A spectrum analyzer measurement using zero span is shown in Figure 6-6. One can
see the variation due to amplitude modulation on the signal as it is plotted across the display.

REF 30.0 dBm

Center 100.000 MHz Span 0 Hz
Res BW 100 KHz VBW 30 KHz SWP 20 msec

hp
10 dB/

Atten 40 dB

Figure 6-6 The zero-span mode of a spectrum analyzer is used here to view the amplitude
variation in an AM signal.
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The sweep time is 20 msec, so the horizontal axis is 2 msec/div. One cycle of the modulating
signal occurs in 2.5 msec, indicating a modulating frequency of 400 Hz.

Zero-span operation is not limited to modulation measurements. It can be used to char-
acterize any signal that is slowly varying in amplitude.

6.5 Other Forms of Amplitude Modulation

We will briefly mention some of the other varieties of amplitude-modulated signals. Note
that ‘‘standard’’ AM includes a carrier and two sidebands that are symmetrical about the
carrier. A significant amount of power is used to generate the carrier, which contains no
information content since it does not vary with the modulating signal. All the information is
in the sidebands. Sometimes the carrier is removed from the modulating signal, which pro-
duces double-sideband (DSB) modulation (also called AM suppressed carrier or double-
sideband suppressed carrier modulation).

Since the modulation sidebands contain redundant information, one of them may be
removed, resulting in single-sideband (SSB) modulation. Normally, SSB modulation also
has the carrier removed (or greatly attenuated), but in some cases the carrier may be retained.
If the lower sideband remains, it is called lower-sideband (LSB) modulation while retaining
the upper sideband produces upper-sideband (USB) modulation. Compared with the other
forms of AM, SSB modulation produces the narrowest occupied bandwidth, requiring half
the bandwidth of standard AM and DSB modulation.

6.6 Angle Modulation

While AM modulates the amplitude of the carrier, another option is to modulate the angle or
phase of the carrier. Depending on the particular implementation, this type of modulation is
called frequency modulation (FM) or phase modulation (PM). The difference between FM
and PM is sometimes quite subtle since either form of modulation can be derived from the
other by shaping the frequency response of the modulating signal.

The equation for the carrier is modified to allow for a time-varying phase term:

vðtÞ ¼ Ac cosð2pfct þ qðtÞÞ ð6-20Þ

where q(t) is the time-varying phase containing the modulation information.
For phase modulation, the phase term is directly proportional to the modulating signal:

qðtÞ ¼ kpmðtÞ ð6-21Þ
where

kp ¼ deviation constant
m(t) ¼ modulating signal

The phase-modulated carrier is

vðtÞ ¼ Ac cosð2pfct þ kpmðtÞÞ ð6-22Þ
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For frequency modulation, the frequency must be proportional to the modulating signal.
Since the frequency is the time derivative of phase,

dq
dt

¼ kf mðtÞ ð6-23Þ

Solving for phase,

qðtÞ ¼ kf

ðt

t0

mðxÞ dx þ q0 ð6-24Þ

where

kf ¼ frequency deviation constant
q0 ¼ initial phase at t ¼ 0

Setting the initial phase to zero, the frequency-modulated carrier is

vðtÞ ¼ Ac cos 2pfct þ kf

ðt

mðxÞ dx

0

@

1

A ð6-25Þ

Figure 6-7 shows a modulating signal, the resulting phase-modulated carrier, and the
resulting frequency-modulated carrier. Notice the difference between changing the carrier
phase and changing the carrier frequency.

The previous mathematical discussion centered on converting the modulating signal into
a phase term to produce a frequency-modulated carrier. Thus, integrating the modulating
signal in a phase-modulated system is equivalent to frequency modulating the carrier. This
technique may be used in actual circuit implementations. The converse is also true. If a
frequency modulator circuit was available, it could be used to produce a phase-modulated
signal by taking the derivative of the modulating signal before applying it to the modulator.
Since the integrator and differentiator operations can be approximated with high-pass and
low-pass filters, respectively, the difference between FM and PM is often just the frequency
shaping of the modulator circuits.

Sinusoidal Modulation

Consider the important case where the modulating signal is a sinusoid in an FM system:

mðtÞ ¼ Am cosð2pfmtÞ ð6-26Þ

The frequency-modulated carrier is

vðtÞ ¼ Ac cos 2pfct þ kf

ðt

Am

ðt

cos 2pfmx dx

0

@

1

A ð6-27Þ
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(a)

t

t

t

(b)

(c)

Figure 6-7 The difference between FM and PM is easily shown by considering the case where
the modulating signal is a step. (a) The modulating signal. (b) The phase-modulated
carrier stays at the same frequency but changes phase with the modulating signal.
(c) The frequency-modulated carrier changes frequency when the step in the
modulation occurs.
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Taking the integral of the modulating signal,3

vðtÞ ¼ Ac cos 2pfct þ kf Am

2pfm
sin 2pfmt

� �
ð6-28Þ

Introducing the modulation index, b ¼ kf Am=ð2pfmÞ
vðtÞ ¼ Ac cosð2pfct þ b sin 2pfmtÞ ð6-29Þ

The modulation index is defined as

b ¼ Df

fm
ð6-30Þ

where

Df ¼ the frequency deviation (Hz)

The frequency deviation can also be expressed as

Df ¼ kf Am=2p ð6-31Þ

6.7 Narrowband Angle Modulation

Angle modulation is normally divided into two cases: narrowband (small modulation index)
and wideband (large modulation index). First, consider the case where b is small (i.e., less
than 0.2 radians).

vðtÞ ¼ Ac cosð2pfct þ b sin 2pfmtÞ ð6-32Þ
Using the identity cos(A þ B) ¼ cos A cos B – sin A sin B,

vðtÞ ¼ Ac cosð2pfctÞ cosðb sin 2pfmtÞ � sinð2pfctÞ sinðb sin 2pfmtÞ½ � ð6-33Þ
For small b, cos(b sin 2pfmt) equals approximately 1 and sin(b sin 2pfmt) equals

approximately b sin 2pfmt:

vðtÞ ¼ Ac cosð2pfctÞ � b sinð2pfctÞ sinð2pfmtÞ½ � ð6-34Þ
This can be broken down further into its spectral components using sin A sin B ¼ 1/2

[cos(A – B) – cos(A þ B)]:

vðtÞ ¼ Ac cosð2pfctÞ � b
2

cos 2p fc � fmð Þt � cos 2p fm þ fcð Þt½ �
� �

ð6-35Þ

vðtÞ ¼ Ac cosð2pfctÞ þ Acb
2

cos 2p fc þ fmð Þt � cos 2p fc � fmð Þt½ � ð6-36Þ

3 Note that this same modulated signal would result in a phase-modulated system with mðtÞ ¼ Am
2pfm

sin 2pfmt.
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This result should be reminiscent of the AM formula. Just like the AM case, the nar-
rowband FM signal has frequency components at the carrier and at �fm away from the
carrier. The subtle difference between AM and narrowband FM is that the phase of the lower
sideband ( fc – fm) is changed by 180� as indicated by the minus sign in front of the term
(Figure 6-8). If no phase information is available (as with most spectrum analyzers), the two
types of signals are indistinguishable in the frequency domain.

6.8 Wideband Angle Modulation

For the case where the modulation index is large, wideband angle modulation will result. As
the name implies, in the frequency domain the signal will occupy a much larger bandwidth
than the narrowband case.

fc – fm

fc – fm

fc + fm

fc + fm

fc

fc

f

f

(a)

(b)

Figure 6-8 Narrowband FM is very similar to AM, except that one sideband is out of phase.
(a) Spectrum of an AM signal. (b) Spectrum of a narrowband FM signal.
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As previously noted, an angle modulated carrier with sinusoidal modulation is

vðtÞ ¼ Ac cos 2pfct þ b sinð2pfmtÞ½ � ð6-37Þ

The mathematics to expand this equation into individual frequency components is tedious
and cannot be solved in closed form. However, it can be expanded into a series of sinusoids
with Bessel functions (of the first kind) as coefficients.

vðtÞ ¼ J0ðbÞ cos 2pfct � J1ðbÞ cos 2pðfc � fmÞt � cos 2pðfc þ fmÞt½ �
þ J2ðbÞ cos 2pðfc � 2fmÞt þ cos 2pðfc þ 2fmÞt½ �
� J3ðbÞ cos 2pðfc � 3fmÞt � cos 2pðfc þ 3fmÞt½ � þ � � �

ð6-38Þ

where

Jn(b) ¼ Bessel function of order n, evaluated at b

Although the Bessel functions cannot be solved in closed form, they have been tabu-
lated, and a small set of them is listed in Table 6-2. Examining the previous equation, note
that the spectral components fall at the original carrier frequency and multiples of the
modulating frequency away from the carrier. One is tempted to think of an FM signal as a
carrier moving back and forth across some frequency range according to the modulating
signal. But the actual effect (for sinusoidal modulation) is to set up discrete sidebands
spaced every fm. Ideally, the number of sidebands extends out infinitely, but in practice
they will gradually decrease in amplitude with distance from the carrier and at some point

Table 6-2 Bessel Functions of the First Kind Jn(b)

b

n 0.1 0.2 0.5 1 2 5 10

0 0.997 0.990 0.938 0.765 0.224 –0.178 –0.246
1 0.050 0.100 0.242 0.440 0.577 –0.328 0.043
2 0.001 0.005 0.031 0.115 0.353 0.047 0.255
3 0.000 0.000 0.003 0.020 0.129 0.365 0.058
4 0.000 0.000 0.000 0.002 0.034 0.391 –0.220
5 0.000 0.000 0.000 0.000 0.007 0.261 –0.234
6 0.000 0.000 0.000 0.000 0.001 0.131 –0.014
7 0.000 0.000 0.000 0.000 0.000 0.053 0.217
8 0.000 0.000 0.000 0.000 0.000 0.018 0.318
9 0.000 0.000 0.000 0.000 0.000 0.006 0.292
10 0.000 0.000 0.000 0.000 0.000 0.001 0.207
11 0.000 0.000 0.000 0.000 0.000 0.000 0.123
12 0.000 0.000 0.000 0.000 0.000 0.000 0.063
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will be small enough to be ignored. The spectrum of a typical wideband FM signal is
shown in Figure 6-9.

Carson’s Rule

With a single modulating frequency, the table of Bessel functions can be used to obtain the
exact spectrum of the modulated signal. The signal bandwidth can then be inferred from the
spectrum. With multiple modulating frequencies (e.g., voice modulation), the analysis
quickly gets unmanageable. However, Carson’s rule can be used to estimate the bandwidth
of a frequency-modulated signal.

BW ¼ 2ðDf þ fmÞ ð6-39Þ

Recall that Df is the peak frequency deviation, and fm is the modulating frequency. For
the single tone case, fm retains this definition, but for multitone modulation the highest
modulating frequency is substituted for fm.

hp
10 dB/

Ref  –10.0 dBm

Center 100.00000 MHz Span 20.00 kHz
Res BW 100 Hz VBW 100 Hz SWP 5.0 sec

Atten 10 dB

Figure 6-9 A spectrum measurement of a sine wave modulated wideband FM signal, with
numerous sidebands spaced at multiples of the modulating frequency.
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Example 6.2

Determine the spectrum of a 10 MHz carrier frequency modulated by a 5 kHz signal with a
frequency deviation of 10 kHz.

The modulation index is given by b ¼ Df/fm ¼ 10 kHz/5 kHz ¼ 2. Since the modulating
signal has a frequency of 5 kHz, the sidebands will be spaced at multiples of 5 kHz relative
to the carrier frequency. Table 6-2 shows the following coefficients for the sidebands
(modulation index ¼ 2):

n Table Coefficient Frequencies (MHz) Amplitude Relative to
Unmodulated Carrier

0 0.224 10.000 –13.0 dB
1 0.577 9.995, 10.005 –4.78 dB
2 0.353 9.990, 10.010 –9.04 dB
3 0.129 9.985, 10.015 –17.8 dB
4 0.034 9.980, 10.020 –29.4 dB
5 0.007 9.975, 10.025 –43.1 dB
6 0.001 9.970, 10.030 –60.0 dB

6.9 FM Measurements

The individual spectral components of an FM signal can be measured directly using a
spectrum analyzer. Both the frequency and amplitude of the spectral lines can be determined,
either absolutely or relative to the carrier. Determining the frequency deviation directly from
the frequency spectrum is a more difficult task.

Carrier Null Method

For certain values of b, the carrier frequency of an FM signal (with sinusoidal modulation)
will disappear. These carrier null points are listed in Table 6-3.

A radio transmitter or signal generator’s frequency deviation can be set by using the
carrier null method. A modulating frequency is chosen such that the desired deviation

Table 6-3 FM Carrier Nulls

Null Modulation index

First 2.405
Second 5.520
Third 8.654
Fourth 11.792
Fifth 14.931
Sixth 18.071
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level causes a null on the carrier frequency. The output is monitored with a spectrum
analyzer or other instrument to detect the null. Since carrier nulls occur at many different
values of modulation index, it is important to use the correct carrier null. Normally, the
deviation level is set to zero and is then gradually increased while the carrier nulls are
noted.

Example 6.3

A signal generator is to be adjusted such that its FM deviation is 5 kHz. What frequency
should the modulating signal be to cause the first carrier null to occur at this frequency
deviation?

The first carrier null occurs at b ¼ 2:405: b ¼ Df =fm ¼ Df =b ¼ 5000=2:405 ¼ 2079 Hz:

6.10 Combined AM and FM

In many high-frequency circuits, signals may be inadvertently amplitude modulated and
frequency (or phase) modulated. When the modulation is purely amplitude or purely angle
modulation, the previous sections of this chapter can be used to measure and understand it.
However, when different forms of modulation appear simultaneously, the measurements
may be very confusing.

Recall that the AM signal and the narrowband angle-modulated signal are identical
except for the phase of the lower sideband. A carrier with simultaneous AM and narrowband
FM can be described by combining the AM and narrowband FM equations (6-15) and (6-36).
(We will assume that these two signals combine with negligible interaction that would
produce new frequency components.)

vðtÞ ¼ Ac cosð2pfctÞ þ aAc

2
cos 2pðfc þ fmÞt þ cos 2p fc � fmð Þt½ �

þAcb
2

cos 2pðfc þ fmÞt � cos 2p fc � fmð Þt½ �
ð6-40Þ

vðtÞ ¼ Ac cosð2pfctÞ þ Acða þ bÞ
2

cos 2p fc þ fmð Þt½ �

þAc a � bð Þ
2

cos 2p fc � fmð Þt½ �
ð6-41Þ

If a ¼ b, then cancellation of the lower sideband may occur:

vðtÞ ¼ Ac cosð2pfctÞ þ Acða þ bÞ
2

cos 2p fc þ fmð Þt ð6-42Þ

Several assumptions were made in this analysis. The modulation sources were assumed
to be the same, and there was no phase shift between the two modulation mechanisms. The
two modulation indexes must also match exactly. In practice, these conditions will not
usually be met, and cancellation will not be complete. However, it is common to find some
partial cancellation (Figure 6-10), causing modulation sidebands that are not symmetrical.
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(b)

(c)

(d)

Figure 6-10 Simultaneous AM and FM can produce modulated signals that are asymmetrical in
the frequency domain. (a) The spectrum of an AM signal. (b) The spectrum of a
narrowband FM signal. (c) Perfect cancellation of the lower sideband due to
simultaneous AM and FM. (d) Partial cancellation of the lower sideband.
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The individual amounts of AM and FM can be estimated by assuming that the larger
sideband is due to the AM and FM sidebands adding and that the smaller sideband is due to
the subtraction of the AM and FM sidebands.

Devices that limit the amplitude of a signal (e.g., mixers and overdriven amplifiers) are
notorious for converting amplitude modulation to phase modulation. Often only a portion of
the AM is converted to PM, causing a combined AM/PM signal at the device’s output. In the
frequency domain, this may cause a single sideband spectrum or, more likely, a spectrum
with asymmetrical sidebands.

Example 6.4

The carrier level of a signal with both AM and FM is 0.1 V. The upper sideband amplitude is
0.05 V, and the lower sideband amplitude is 0.02 V. Estimate the AM and FM modulation
indexes.

The upper sideband is larger so it represents the addition of the AM and FM sidebands.

Acða þ bÞ ¼ 0:05; a þ b ¼ 0:05=0:1 ¼ 0:5

The lower sideband is smaller and represents the subtraction of the AM and FM
sidebands.

Acða � bÞ ¼ 0:02; a � b ¼ 0:02=0:1 ¼ 0:2

Solving simultaneously, this implies that a ¼ 0.35 and b ¼ 0.15.

Modern spectrum analyzers that have an I/Q demodulator (Section 5.14) can extract and
display the modulation present on a signal. Normally, this demodulation feature is quite
flexible and is able to independently extract amplitude, phase, and frequency modulation.
The modulation index and frequency deviation of the signal can be measured, and the fre-
quency spectrum of the modulating signal can be displayed.

6.11 Digital Modulation

The widespread adoption of digital technology has resulted in the need for digital modulation
techniques. Instead of an analog signal modulating the carrier frequency, the modulating
signal is a stream of digital bits. These digital bits may, in fact, represent an analog signal, or
they may have originated from a digital data source. Either way, the communications system
must be designed to transfer logical 1’s and 0’s from transmitter to receiver.

The top row of Figure 6-11 shows the digital data to be transmitted, which are converted
into the digital waveform labeled modulation. This digital signal is used to modulate the
frequency, amplitude, or phase of the carrier frequency. More advanced modulation tech-
niques use more than one of these attributes of the carrier simultaneously. For example, the
bottom waveform of Figure 6-11 shows both the amplitude and phase of the carrier being
modulated.
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6.12 Quadrature Modulation

Most digital modulation schemes are defined and generated in terms of quadrature mod-
ulation. Starting with the generalized case with both amplitude and phase modulation:

vðtÞ ¼ AcðtÞcosð2pfct þ q tð ÞÞ ð6-43Þ
Using cos(x þ y) ¼ cos x cos y – sin x sin y

vðtÞ ¼ AcðtÞ cosðqðtÞ½ Þ cosð2pfctÞ � sinðqðtÞÞ sinð2pfctÞ� ð6-44Þ
vðtÞ ¼ AcðtÞ cosðq tð ÞÞ cosð2pfctÞ � AcðtÞ sinðqðtÞÞ sinð2pfctÞ ð6-45Þ

This produces two components to the modulated waveform: one multiplies the cos(2pfct)
carrier frequency; the other multiplies the sin(2pfct) term, which is 90� out of phase with the
main carrier.

Defining the two modulation terms as

In-phase modulation : viðtÞ ¼ AcðtÞ cosðqðtÞÞ
Quadrature modulation : vqðtÞ ¼ �AcðtÞ sinðqðtÞÞ

vðtÞ ¼ viðtÞ cosð2pfctÞ þ vqðtÞ sinð2pfctÞ ð6-46Þ

Digital Data

Modulation

Frequency
Shift

Amplitude
Shift

Phase
Shift

Amplitude
and Phase
Shift

0 0 01 1

Figure 6-11 Digital modulation techniques use the digital signal to control the amplitude,
frequency, or phase of the carrier.
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Figure 6-12 shows a block diagram for a quadrature modulator. The in-phase component
and the quadrature component are multiplied by the carrier frequency (with a 90� phase shift
for the quadrature component) and summed to obtain the desired modulation vector.

A common tool used for vector modulation is to plot the in-phase and quadrature compo-
nents as a vector (Figure 6-13a). The magnitude of the vector corresponds to the amplitude of
the signal, and the phase of the vector is the angle, q, shown in the diagram. In many mea-
surement applications, only the point of the vector is drawn (Figure 6-13b). There are a number
of terms used to describe this vector representation: vector, phasor, and quadrature modulation.

6.13 Common Digital Modulation Formats

Binary phase-shift keying (BPSK) is one of the simplest forms of digital modulation. BPSK
shifts the phase of the carrier between 0� and 180� based on the digital modulation signal.
The constellation diagram for BPSK has two dots, as shown in Figure 6-14. You can imagine
a vector that points to the right-hand dot when the digital modulation is a 0, flopping over to
the left-hand dot when the digital value changes to a 1.

Quadrature phase-shift keying (QPSK) uses four equally spaced phases to represent four
distinct states of the vector modulation. While the amplitude remains constant for all states,
the phase angle of the vector takes on the values of 45�, 135�, –135�, and –45�. As shown in
Figure 6-15, each of the four states represents two bits of information. To describe this, we
introduce the concept of a symbol, which is defined as a unique state of the modulated
waveform that persists for a fixed period of time. In the case of QPSK, a symbol represents
2 bits, so the number of bits transmitted per second (bit rate) is twice the number of symbols
per second (symbol rate). Compare this with BPSK, which has one bit per symbol, resulting
in the bit rate being the same as the symbol rate.

Bit rate ¼ symbol rate � number of bits=symbol ð6-47Þ
In general, as the number of bits per symbol is increased, the error rate at the receiver

increases since it has to distinguish the different symbols from each other, which may be
difficult and cause bit errors.

Quadrature amplitude modulation (QAM) uses both amplitude and phase change to
represent the digital signal. One version of QAM is 16QAM, which has 16 logical states

I – In-Phase
vi(t)

Modulated
Output

Quadrature
Modulator

Osc Carrier
Frequency

sin(2pfct)

cos(2pfct)

Q – Quadrature
vq(t)

90 deg
shift

Figure 6-12 A quadrature modulator is capable of generating digital modulation using in-phase
and quadrature components of the signal.
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represented by the vector modulation. Figure 6-16 shows how these 16 states are plotted
in the vector space. Each of the states represents four bits of information, so the bit rate is
4 times the symbol rate.

Figure 6-17 shows a practical measurement of a 16QAM signal. The plot on the left
shows the transitions of the vector modulation as it changes between the various states,
resulting in a busy plot. The plot on the right shows the vector modulation only at the
appropriate sample times, emulating how a receiver will evaluate the modulated signal.

Quadrature(a)

(b)
Quadrature

I

Q

In-Phase

In-Phase

θ phasemagnitude

Figure 6-13 (a) Digital modulation is often expressed in terms of a vector diagram, with
in-phase and quadrature components. (b) For constellation diagrams, only the end
of the vector is shown as a point.
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The vector modulation states are represented by the 16 dots in a constellation diagram. The
circles around the dots represent a nominal deviation from the center of the ideal vector
position. The signal shown has very little noise in it, so the constellation diagram shows
small dots with small statistical variation.

Quadrature

0

In-Phase

1

Figure 6-14 The constellation diagram of a BPSK signal shows a dot at 0� and a dot at 180�,
corresponding to the two states of the vector modulation.

Quadrature

00

10

In-Phase

01

11

Figure 6-15 The QPSK constellation diagram shows four equally spaced constant amplitude
states, with a phase angle of 45�, 135�, –135�, and –45�. Each position of the
vector represents two bits of information.
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Figure 6-17 A practical measurement of a 16QAM signal using vector signal analysis software.
The display on the left shows all of the transitions of the signal, while the display
on the right displays only the recovered I/Q symbols.

Quadrature

In-Phase

Figure 6-16 The 16QAM constellation diagram shows 16 states, with produced by varying the
amplitude and the phase of the vector modulation. Each position of the vector
represents four bits of information.
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6.14 Error Vector Magnitude

The move to digital modulation in vector form created the need for a standard method to
describe the error in the modulation vector. Error vector magnitude (EVM), also referred to
as relative constellation error (RCE), is a quantitative measure of the quality of a vector-
modulated signal. As shown in Figure 6-18, the error vector represents the vector difference
between the ideal signal and the actual measured signal. EVM is the root mean square (RMS)
value of the error vector over some time interval (evaluated at the valid symbol times).

EVM may be reported as a percentage or in decibels, referenced to the square root of the
mean power of the ideal signal, the square root of the average symbol power, or the peak
signal level.

Modulation error ratio (MER) is another way to represent the quality of a vector signal,
often expressed in dB.

MERðdBÞ ¼ 10 log
Psignal

Perror

� �
ð6-48Þ

where

Psignal ¼ the average power of the signal
Perror ¼ the average power of the error vector

A practical digital modulation measurement is shown in Figure 6-19. QPSK is used in
this measurement example for simplicity and enables understanding of the various mea-
surements. Four different views of the signal provide a comprehensive look at this vector
modulated signal. The state diagram in the upper left of the figure shows the four QPSK
states along with the transitions made by the vector signal. The lower left chart is just the
frequency spectrum of the baseband signal, with the vertical axis in dBm and the horizontal
axis in frequency. The upper right view is the time domain signal, which shows a relatively
constant amplitude with phase shift keying. The lower right chart is a tabular view of the
measurement parameters and a list of the decoded QPSK symbols.

Quadrature

In-Phase

Error Vector

Verr

φerr

Mea
su

red
 si

gn
al

Ideal si
gnal

Figure 6-18 Error vector magnitude (EVM) is the magnitude of the error vector, drawn from
the ideal signal to the measured signal.
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6.15 Channel Measurements

Many communication systems are based on channels that divide up the available frequency
spectrum such that each signal is assigned a particular channel. It is important to understand
and measure the bandwidth that a particular signal is occupying and whether it is spilling
over into adjacent channels. Digital modulation produces signals that spread out in fre-
quency, causing signal and channel measurements to be more complex.

The occupied bandwidth (OBW) of a signal is a measure of how wide a signal is in
frequency, usually defined as the bandwidth that contains 99% of the signal’s power. This can
be a tedious measurement to do manually but spectrum analyzers often perform this mea-
surement automatically (Figure 6-20). The analyzer integrates the power from all frequencies
in the signal and determines the bandwidth that corresponds to 99% of the signal’s power.

Another important measurement is channel power, which measures the total power in the
specified channel. Again, modern spectrum analyzers provide an automated measurement
that integrates the total power in the channel, based on the center frequency and bandwidth
provided by the user.

It is important that a signal in a channel not interfere with adjacent channels by spewing
energy into those channels. Thus, an important measurement is adjacent channel power
(ACP). As shown in Figure 6-21, a spectrum analyzer can automatically measure the power
in the desired channel along with any power that is present in the adjacent channels.

Figure 6-20 An automated measurement of occupied bandwidth also shows the total power in
the signal. (� Keysight Technologies, Inc. Reproduced with Permission, Courtesy
of Keysight Technologies, Inc.)
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The adjacent channel power ratio (ACPR) expresses the ACP relative to the power in the
main channel:

ACPR ¼ Padj

Pmain
ð6-49Þ

where

Padj ¼ power in the adjacent channel
Pmain ¼ power in the main channel

ACPR is often expressed in dB. Some wireless communication standards use the term
adjacent channel leakage ratio (ACLR), which is the same concept as ACPR. Some specific
ACPR measurement techniques may be required by a wireless communications standard.

Poor ACPR can be caused by improper filtering in the transmitter (too wide of a passband
or poor stop-band rejection). More commonly, ACPR problems are caused by inter-
modulation distortion, which causes energy to spill over into adjacent communication
channels.

Figure 6-21 Adjacent channel power measures the impact of a signal on channels that are
adjacent to it. (� Keysight Technologies, Inc. Reproduced with Permission,
Courtesy of Keysight Technologies, Inc.)
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CHAPTER 7

Distortion Measurements

Many electronic circuits and systems are considered to be linear time invariant (LTI), as
introduced in Chapter 1. For a sinusoidal input the output of an LTI system is also sinusoidal
with perhaps a different amplitude and phase. In the time domain, the output waveform is a
sinuosoid, the exact same shape as the input waveform. In the frequency domain, we expect
to see at the output the same frequency that was at the input (and only that frequency). Any
other frequencies that are generated due to the input signal are considered to be distortion.1

7.1 The Distortion Model

It is difficult to create systems that are purely linear since some distortion of the signal is
normally present. Many of the distortion mechanisms measured with spectrum analyzers are
low level. That is, the devices producing the distortion are mostly linear and have only a
slight nonlinear behavior. Such a weakly nonlinear system can be modeled with a power
series.

Vout ¼ k0 þ k1Vin þ k2V 2
in þ k3V 3

in þ k4V 4
in þ � � � ð7-1Þ

The first coefficient, k0, represents the DC offset in the system. The second coefficient,
k1, is the gain of the circuit associated with linear circuit theory. The remaining coefficients,
k2 and above, represent the nonlinear behavior of the circuit. If the circuit were completely
linear, all of the coefficients except k1 would be zero.

The model can be simplified by ignoring the terms that come after the k3 term. For
gradual nonlinearities, the size of kn decreases rapidly as n gets larger. For many applications
the reduced model is sufficient, since the second-order and third-order effects dominate.
(Expansion of the model to higher order is discussed later.)

Vout ¼ k0 þ k1Vin þ k2V 2
in þ k3V 3

in ð7-2Þ

1 This does not include frequency components that are generated in the circuit independent of the input signal, such
as spurious responses.
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7.2 Single-Tone Input

The simplest distortion test of a system is to input a pure sinusoid and measure the frequency
content of the output signal:

Vin ¼ A cos wt ð7-3Þ
The angular frequency, w ¼ 2pf
where

f ¼ frequency (Hz)

Inserting this into the distortion model gives

Vout ¼ k0 þ k1A cos wt þ k2A2 cos2 wt þ k3A3 cos3 wt ð7-4Þ
Vout ¼ k0 þ k1A cos wt þ ðk2A2=2Þð1 þ cos 2wtÞ

þ k3A3 3=4 cos wt þ 1=4 cos 3wtð Þ ð7-5Þ

Collecting terms,

Vout ¼ k0 þ k2A2=2 þ ðk1A þ 3k3A3=4Þ cos wt

þ k2A2=2ð Þ cos 2wt þ k3A3=4ð Þ cos 3wt
ð7-6Þ

This leaves us with an output voltage containing a DC component, the original (funda-
mental) frequency, and its second and third harmonics. These distortion products are called
harmonic distortion since they occur at multiples of the original frequency. Had we used a
higher-order model, the analysis would have shown even higher-order harmonics present at
the output. Note that the fundamental amplitude is affected by the nonlinear third-order
coefficient of the model, k3. Similarly, the DC component of the equation is affected by the
second-order coefficient. The fundamental is mostly proportional to A, the second harmonic
is proportional to A2, and the third harmonic is proportional to A3.

The model is somewhat limited since we do not usually know the values of k0, k1, k2, and
k3 for a particular device. However, we can infer some useful information from the model
anyway. Consider what happens when the signal level, A, is reduced. The fundamental will
be reduced almost in direct proportion to the signal amplitude. We might say that the fun-
damental is reduced 1 dB per dB of change in the signal level. The second harmonic will go
down as the square of A, or converting to dB

20 log ðA2Þ ¼ 2ð20 log AÞ ¼ 2 AdB ð7-7Þ
This means that the second harmonic will be changed 2 dB per dB of signal level change.

Similarly, the third harmonic term amplitude is proportional to A3. Converting to dB,

20 log ðA3Þ ¼ 3ð20 log AÞ ¼ 3 AdB ð7-8Þ
which means that the third harmonic will be reduced by 3 dB per dB of signal level reduction.

Figure 7-1 shows the spectrum of a typical signal having harmonic distortion. (Ideally, a
pure sine wave would have no harmonics.) Note that the odd harmonics, particularly the
third harmonic, is larger than the even harmonics. Distortion that maintains the 50% duty
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cycle of the ideal waveform will create only odd harmonics. (Recall the case of the square
wave from Chapter 3.) Distortion mechanisms that upset the symmetry of the signal produce
even harmonics.

When making this kind of measurement, one must get accustomed to the fact that there
are very few pure sine waves. For example, a good signal or function generator may have a
third harmonic that is 30 or 40 dB lower than the fundamental. When viewed on an oscil-
loscope, this signal will appear to be a pure sine wave since the distortion is not discernable.
When measured with even a moderate performance spectrum analyzer, the harmonics will
be easily visible. This illustrates one advantage of a narrowband receiver (the spectrum
analyzer) versus a wideband receiver (the oscilloscope).

7.3 Two-Tone Input

Another input signal commonly used for distortion tests is the two-tone signal.

Vin ¼ A1 cos w1t þ A2 cos w2t ð7-9Þ

SPECTRUM
A: REF B: REF

0.000 0.000

DIV
10.00

DIV
10.00

START
STOP 140 000 000.000 Hz

0.001 Hz

RANGE: R = 0, T = 0dBm

[dBm]                    [      ]

RBW: 3 KHz ST: 2.02 min

Figure 7-1 Measurement of harmonic distortion in a signal.

7.3 ● Two-Tone Input 139



Using our distortion model,

Vout ¼ k0 þ k1Vin þ k2V 2
in þ k3V 3

in ð7-10Þ
The result is in the form

Vout ¼ c0 þ c1 cos w1t þ c2 cos w2t þ c3 cos 2w1t

þ c4 cos 2w2t þ c5 cos 3w1t þ c6 cos 3w2t

þ c7 cos w1t þ w2tð Þ þ c8 cos w1t � w2tð Þ
þ c9 cos 2w1t þ w2tð Þ þ c10 cos 2w1t � w2tð Þ
þ c11 cos 2w2t þ w1tð Þ þ c12 cos 2w2t � w1tð Þ

ð7-11Þ

where
c0, . . , c12 ¼ coefficients determined by k0, . . . , k3, A1, and A2.

Besides the harmonics of the two tones (as in the single-tone case), there are also sum and
difference frequencies. These new frequency components are called intermodulation dis-
tortion (IMD) because they result from the two tones modulating together. The frequencies
present in the output satisfy the following criterion:

wnm ¼ nw1 � mw2j j ð7-12Þ
where

n and m ¼ positive integers such that n þ m � 3

With the frequency expressed in Hz,

fnm ¼ nf1 � mf2j j ð7-13Þ
If the distortion model is expanded from the third-order model to a higher-order model,

the limit on the sum of n þ m is raised accordingly.
The order of a particular frequency component is the sum of the n and m values used to

obtain that frequency (e.g., f12 and f21 are third-order terms, and f20 and f11 are second-order
terms). As in the single-tone case, second-order terms will be reduced 2 dB in amplitude
when the input tones are reduced by 1 dB. Equivalently, second-order terms are reduced
2 dB/dB of input signal reduction. Third-order terms are reduced 3 dB/dB of signal reduction
and so on for higher-order terms, if present.

Example 7.1

Assuming a third-order distortion model, what frequencies will be present at the output with
a two-tone input signal with frequencies of 10.7 MHz and 10.8 MHz?

The output frequencies are given by f ¼ |n f1 � m f2|. For n ¼ 1 and m ¼ 0,

f10 ¼ 10:7 MHz � 0j j ¼ 10:7 MHz

For n ¼ 2 and m ¼ 0,

f20 ¼ 2 10:7 MHzð Þ � 0j j ¼ 21:4 MHz
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For n ¼ 3 and m ¼ 0,

f30 ¼ 3 10:7 MHzð Þ � 0j j ¼ 32:1 MHz

For n ¼ 0 and m ¼ 1,

f01 ¼ 0 � 10:8 MHzj j ¼ 10:8 MHz

For n ¼ 0 and m ¼ 2,

f02 ¼ 0 � 2 10:8 MHzð Þj j ¼ 21:6 MHz

For n ¼ 0 and m ¼ 3,

f03 ¼ 0 � 3 10:8 MHzð Þj j ¼ 32:4 MHz

So far, these frequencies are simply the first three harmonics of the two input tones. Now
the sum and difference frequencies will be calculated.

For n ¼ 1 and m ¼ 1,

f11 ¼ 10:7 MHz � 10:8 MHzj j ¼ 0:1 MHz; 21:5 MHz

For n ¼ 2 and m ¼ 1,

f21 ¼ 2 10:7 MHzð Þ � 10:8 MHzj j ¼ 10:6 MHz; 32:2 MHz

For n ¼ 1 and m ¼ 2,

f12 ¼ 10:7 MHz � 2 10:8 MHzð Þj j ¼ 10:9 MHz; 32:5 MHz

The spectrum of the output signal is shown in Figure 7-2. The amplitudes of the frequency
components will depend on the levels of the input tones and the coefficients of the distortion
model. However, the amplitudes that are shown in the figure are typical of a distorted signal.

0.1
10.6

10.7 10.8

10.9 21.4

21.5

21.6
32.1

32.2 32.4

32.5

f

Figure 7-2 The spectrum of a two-tone signal with third-order intermodulation distortion products.
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A few comments are in order now that a numerical example has been given. The two
input tones were chosen to be close to each other in frequency, as is usually the case for
two-tone testing. An examination of Figure 7-2 will reveal that the spectral lines tend to
fall in four groupings. The f1 – f2 frequency (0.1 MHz) will fall down near DC. The other
frequencies fall in groups near the fundamentals (near 10.7 MHz), the second harmonics
(near 21.5 MHz), and the third harmonics (near 32.4 MHz) of the original two tones.
Depending on the system involved, some of these distortion components can be neglected
since they will be filtered out at some point. For instance, an intermediate frequency (IF)
amplifier stage will usually be narrowband, centered on the two input tones. Spectral
components out at the second and third harmonics can be easily filtered out. The distortion
components close to the original tones ( f21 and f12) will be more troublesome since they
fall near the desired frequencies. In many cases, odd-order intermodulation products are of
particular concern to radio frequency (RF) designers since the distortion products fall in
band.

7.4 Higher-Order Models

We have chosen to limit the number of terms in the distortion model to produce a third-order
behavior. Even with such a simple model, the derivation of the output signal frequency
components is lengthy and expanding the model to a higher order makes the situation only
worse. Fortunately, for many situations a third-order model is sufficient.

But what if the third-order model is insufficient? For instance, it is common to have
significant energy in the fifth, sixth, or seventh harmonic of a single tone, yet the third-order
model does not show this effect. The analytical approach used previously can simply be
expanded to include the higher-order terms, with the penalty of the mathematics getting
more difficult. Another approach is to simply expand on the concepts demonstrated by the
third-order model, even though they have not been proven rigorously. As stated previously,
the frequencies generated by the distortion model obey the n f1 � m f2 rule, where the
maximum value of m þ n is the order of the model. So it is possible to predict the frequency
components of higher-order systems without extensive mathematics.

The example shown in Figure 7-2 is for the simple case of two tones. As shown in
Chapter 6, modern digital modulation techniques use signals that have complex spectrums.
When these signals are subject to intermodulation distortion, the frequency content spreads
out, causing interference to nearby communication channels (Figure 7-3).

7.5 The Intercept Concept

Increasing the signal level at the input to a weakly nonlinear device will cause the distortion
products to increase at the output. The distortion products increase in amplitude and they do
so faster than the input signal increases. Figure 7-4 shows a plot of the output power versus
the input power for the fundamental, second-order frequency components, and third-order
frequency components. For increasing fundamental input power, the fundamental output
power increases in a linear manner, consistent with the gain or loss of the device. At some
point, gain compression may occur, and the fundamental output power no longer increases
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Figure 7-3 A digitally modulated signal with wide spectral content spills over into adjacent
channels when subject to intermodulation distortion.
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with input power. The output power of the second-order distortion products also increases
with fundamental input power, but at a faster rate. Recall that the distortion model shows
that second-order terms change 2 dB per 1 dB of change in the fundamental. Thus, on a
decibel plot the line representing the second-order output power has twice the slope of the
fundamental line. Similarly, the third-order distortion products change 3 dB per 1 dB of
change in the fundamental so that line has a slope that is three times the slope of the
fundamental line.

If there is no gain compression, the fundamental input power could be increased until the
second-order distortion products would eventually catch up with it and the two output power
levels would be equal. This point is referred to as the second-order intercept point. The third-
order distortion products also increase faster than the fundamental, and those two lines will
intersect at the third-order intercept point. Rarely can either of these two points be measured
directly due to the gain compression of the fundamental. Instead, the intercept points are
extrapolated from measurements of the fundamental and distortion products at power levels
below where gain compression occurs. The intercept points are usually specified in dBm and
may refer either to the output or the input. (It is important to always specify whether the
intercept point refers to the output power or the input power. The two points will differ by
the gain of the device.)

The utility of the intercept concept is in specifying and predicting the distortion level in a
system. One might be tempted to specify the distortion of a circuit or system directly by stating
the level of the distortion products in decibels relative to the signal level. This can be done
but is not very meaningful unless the signal level is also specified. One circuit’s distortion
might be –80 dB relative to the signal while another circuit might achieve only –40 dB.
However, these two values are not a fair comparison unless the same signal level is used. The
second- and third-order intercept points are figures of merit that are independent of signal
level. Therefore, the distortion performance of two different circuits can be compared quite
easily if their intercept points are known.

Most often, an engineer is interested in the level of the distortion products relative to the
signal level. The intercept points do not indicate this directly and may seem cumbersome to
use, but a few observations will show how the relative distortion level can be easily deter-
mined from the intercept point. The difference between the level of the second-order dis-
tortion products and the fundamental signal level is the same as the difference between the
fundamental signal level and the intercept point. Suppose the second-order intercept point is
þ15 dBm and the fundamental signal level is –10 dBm (both referred to the output of the
device). The difference between these two values is 25 dB. Therefore, the second-order
distortion products will be 25 dB below the fundamental, or –35 dBm. So the intercept point
allows easy conversion between fundamental signal level and distortion level. Often the
distortion level is specified relative to the fundamental power level, and the conversion to
absolute power (dBm) is not necessary.

The difference between the level of the third-order distortion products and the funda-
mental signal level is twice the difference between the fundamental signal level and the
third-order intercept point. (Note that the second-order intercept point is not the same as
the third-order intercept point.) Suppose that the third-order intercept point is þ5 dBm
and the fundamental signal level is –25 dBm, both referred to the output of the device. The
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difference between the intercept and the fundamental is 30 dB, so the third-order distortion
products will be two times 30 dB down from the fundamental. The relative distortion level is
–60 dB and the absolute power level of the distortion products is –85 dBm.

Example 7.2

What is the maximum allowable power level of the input signal if the third-order distortion
products are to be less than –70 dB relative to the fundamental? The third-order intercept
point is þ10 dBm, referred to the input.

The third-order distortion products are to be 70 dB below the fundamental, so the funda-
mental must be 70/2 dB or 35 dB below the intercept point. The intercept point is þ10 dBm,
so the signal level should be –25 dBm at the input.

7.6 Harmonic Distortion Measurements

Harmonic distortion measurements can easily be made with a spectrally pure signal source
and a spectrum analyzer. The quality of the measurement is limited by the harmonic dis-
tortion of both the signal source and spectrum analyzer. The signal source is most often
the limiting factor, with harmonic distortion performance often not much better than 40 dB
below the fundamental.

The source provides a signal to the device under test and the spectrum analyzer is used
to monitor the output. Figure 7-5 shows a typical harmonic distortion measurement, with the
distortion level specified using the largest harmonic level expressed in dB relative to the
fundamental.

f

Largest
harmonic

dB

Fundamental

Relative harmonic distortion

Figure 7-5 The harmonic distortion of a signal is often specified by stating the amplitude of the
largest harmonic in dB relative to the fundamental.
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Alternatively, the distortion may be specified as total harmonic distortion (THD), usually
as a percent of the fundamental. THD takes into account the power in all the harmonics:

THD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2

2 þ V 2
3 þ � � �

q
=V1 ð7-14Þ

where V1 is the RMS voltage of the fundamental and V2, V3, . . . are the RMS voltages of the
harmonics.

All harmonics of the fundamental are summed in a RMS manner and are divided by the
fundamental RMS voltage. Since an infinite number of harmonics cannot be measured, a
finite number will have to suffice. Fortunately, the harmonic amplitudes tend to decrease
with higher harmonic numbers. The calculation is somewhat tedious for a large number of
harmonics, but some spectrum analyzers include an automatic THD function. If not, the user
must determine each harmonic amplitude and compute the THD.

Example 7.3

Determine the total harmonic distortion of a signal with the following spectral components:
1 MHz, 3.5 V RMS; 2 MHz, 0.1 V RMS; 3 MHz, 0.2 V RMS; 4 MHz, 0.05 V RMS. Express
the largest harmonic in decibels relative to the fundamental.

The fundamental frequency is 1 MHz.

THD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:1Þ2 þ ð0:2Þ2 þ ð0:05Þ2

q
=3:5 ¼ 0:229=3:5

¼ 0:065 or 6:5%

The largest harmonic is the third harmonic (3 MHz). In decibels, this harmonic is 20 log
(0.2/3.5) ¼ –24.9 dB relative to the fundamental.

7.7 Use of Low-Pass Filter on Source

The signal source is often the limiting factor in a harmonic distortion measurement due to
its own harmonic distortion. A typical signal generator may have harmonic distortion around
–40 dB relative to the fundamental,2 whereas a typical spectrum analyzer may have a
dynamic range of over 80 dB.

A low-pass filter can be used to improve the source’s effective harmonic distortion, as
shown in Figure 7-6. The cutoff frequency of the low-pass filter is chosen such that the fun-
damental frequency is passed largely intact, while the harmonics are attenuated significantly.
The performance of the source/filter combination can be verified directly by the spectrum
analyzer. The passband attenuation of the filter should be kept to a minimum, but the exact
value is not critical. If the loss through the filter at the fundamental frequency is significant, it
should be accounted for when setting the source output level. The spectrum analyzer can be
used to check directly the amplitude of the fundamental at the output of the filter.

2 Sources that are designed with distortion measurements in mind may have considerably better harmonic distortion,
but are usually restricted to frequencies below 10 MHz with best distortion performance in the audio range.
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7.8 Intermodulation Distortion Measurements

To test for intermodulation distortion, two stimulus sine waves are required. The test setup
shown in Figure 7-7 has two independent signal sources connected with a power splitter
(used as a combiner) to drive the device under test. The sources are set at the same output
level, but at different frequencies. The 6 dB loss of the combiner should be accounted for
when setting the output amplitudes of the sources. A typical spectrum analyzer display of the
two-tone distortion test is shown in Figure 7-8. As shown, the third-order products ( f21 and
f12) that fall close to the original two tones are being measured. This is a common mea-
surement since the two distortion products fall close to the original two tones and are diffi-
cult to remove by filtering.

In some cases, the two sources may interact and produce intermodulation distortion. This
problem can be detected with the spectrum analyzer and can be cured by inserting fixed
attenuators at the outputs of the sources. These attenuators increase the isolation between
the sources and prevent internally generated intermodulation distortion. The output levels of
the sources should be increased to compensate for the signal loss in the attenuators. The
automatic leveling circuits in the sources can also be a source of intermodulation as each

Spectrum
Analyzer

Device
Under
Test

Low-pass
Filter

DUTSource

Figure 7-6 The harmonic distortion of a signal source can be improved by installing a low-pass
filter at the source’s output.

Source Combiner
Spectrum
Analyzer

Source

DUT

Figure 7-7 The outputs of two signal sources can be combined to a two-tone signal for
intermodulation distortion tests.
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source attempts to compensate for the other sources signal. Disabling automatic leveling can
correct this problem.

It should be kept in mind that the two sine waves will combine to create a signal 6 dB
larger than the individual tones (after accounting for the combiner loss). The device under
test is often sensitive to the peak instantaneous voltage applied to it, and the user may
inadvertently supply twice the desired peak input voltage.

7.9 Distortion Internal to the Analyzer

The preceding discussion was oriented toward understanding and measuring distortion in the
device under test. However, the internal circuits of the analyzer are imperfect and will also
produce distortion products. The distortion performance of the analyzer is specified by the
manufacturer, either specified by a third-order intercept or lumped into a dynamic range
specification. The instrument user can stretch the performance of the analyzer by under-
standing the nature of these distortion products.

As shown in this chapter, distortion products can be reduced in amplitude by reducing the
signal level. Not only do the absolute levels of the distortion products decrease, they also
decrease more than the decrease in signal level. So as the signal level decreases, the relative

Center: 10 000 000 Hz
–110

10 dB
/ div

–10
dBm

10 010 500 Hz –15.97 dBm
VBW: off Swp Time: 1. 23 Sec

Range: –10 dBm
Res BW: 290 Hz
A: Swept Spectrum                    Mkr

Logmag

Span: 200 000 Hz

Figure 7-8 A typical two-tone intermodulation distortion measurement that measures the
third-order products close to the original two tones.
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distortion level also decreases, depending on the order of the distortion product. Higher-
order distortion products decrease the fastest. This implies that the distortion products
internal to the analyzer can be reduced by reducing the signal level into the analyzer.3 The
internal input attenuators of the analyzer may be used or an external attenuator may be
attached, improving the distortion measurement range of the analyzer. The most obvious
disadvantage of reduced signal level is reduced signal-to-noise ratio. The user may find that
the low-level distortion products are buried in the noise. Reducing the resolution bandwidth
of the analyzer will reduce the measured noise, but at the expense of a slower sweep rate.
See Section 17.3 for information on optimizing the dynamic range of a spectrum analyzer.

In some measurement situations, the amount of distortion is not of concern, and the signal
level at the input of the analyzer can be increased to provide a better signal-to-noise ratio.
For many measurements, the distortion products are known to occur at frequencies that are
not of interest. For example, a narrowband measurement around the fundamental frequency
of a sine wave will not be degraded by the presence of harmonic distortion since the har-
monics will fall far away from the frequency range of interest. The instrument user must
always be careful not to apply too large a signal to the input of an analyzer so that the
damage level is not exceeded.
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CHAPTER 8

Noise and Noise Measurements

In frequency domain measurements, electronic noise shows up in two distinctly different
ways. The first case is when the measurement is affected by the presence of unwanted noise,
with noise being a nuisance. For example, we could be measuring the distortion of an
amplifier with the amplifier’s noise degrading the measurement. The second case occurs
when the noise present in the system is the parameter to be measured. In that same amplifier,
we may want to measure the noise at the output. Many of the same principles apply to both
cases, but it is important to know whether the noise is the measurement or whether it
degrades the measurement.

The electronic noise present in our measurements may come from the device under test
(DUT) that is being measured or may be generated internally by the analyzer. In the general
case, the analyzer internal noise must be significantly lower than the noise of the DUT.
However, techniques that compensate for the noise in the analyzer can lower the measure-
ment floor of the analyzer.

8.1 Statistical Nature of Random Noise

Many waveforms that we measure can be reliably characterized in the time domain. For
instance, a sine wave can be completely described by its amplitude, frequency, and phase.
Once we know these values, the instantaneous voltage of the waveform can be predicted for
any arbitrary instant in time. Such a waveform is said to be deterministic. Noise, on the
other hand, is often random in nature such that the instantaneous voltage cannot be predicted
for arbitrary points in time.1 Thus, random noise is nondeterministic.

Noise cannot be characterized in the time domain by simple parameters such as ampli-
tude and phase since the voltage at any point in time is a random function. However, we can
describe noise with a statistical approach by tabulating how often a certain voltage appears.
In a continuous form, this results in the probability density function (PDF) of a random
waveform. Figure 8-1 shows the probability density function of a particular waveform. The
PDF shown happens to have a Gaussian shape, which is very common, but other PDF shapes

1 The definition of noise is restricted in this chapter to include only truly random noise. Other noise processes exist
which are not completely random.
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are possible. The PDF does not define the shape of the time domain waveform, but tells us
the probability of a certain voltage occurring.

8.2 Mean, Variance, and Standard Deviation

The statistical characteristics of a random waveform can be described by a few simple
parameters. First, the waveform will have an average or mean value given by

x ¼ E xð Þ ¼
ð1

�1
xpðxÞ dx ð8-1Þ

where

E(x) ¼ expected value of x
p(x) ¼ probability density function of x(t)

Of course, the mean value has a less mathematical and more intuitive definition of being
the average value of the waveform.

With the mean value of the waveform defined, a measure of how much the voltage of the
waveform varies is in order. The variance of a waveform is given by

s2 ¼ E ðx � xÞ2
h i

¼ x2 � ðxÞ2 ð8-2Þ

The variance is a measure of how far the instantaneous value of x strays from the mean
value of x. If the variance is zero, the waveform is a DC level that never changes from its
mean value. Closely related to the variance is the standard deviation, s. Because the square
of the standard deviation is equal to the variance, the two quantities are redundant. The
variance is proportional to the power in the random waveform, while the standard deviation
is proportional to the voltage.

Voltage

PDF

Figure 8-1 The probability density function shows the probability of a particular voltage
occurring in a waveform.
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8.3 Power Spectral Density

A random waveform can also be characterized in the frequency domain. One is tempted to
simply compute the Fourier transform of the waveform, but this is not possible since the
waveform is random and is not easily defined in terms of a time domain function. This
problem is sidestepped mathematically by using the expected value of the Fourier transform
of the random waveform.2 A slightly modified form of frequency domain representation is
produced, namely, the power spectral density (PSD). The PSD of a random signal is given by

Sxð f Þ ¼ lim
T!1

E XT ð f Þj j2
h i

2T
ð8-3Þ

where

E(x) ¼ expected value of x
XT( f ) ¼ Fourier transform of the random waveform, x(t), evaluated over the time

interval, –T < t < T

A less rigorous but more useful definition is that the PSD gives the density of power in a
signal as a function of frequency. The power over a particular frequency range is given by

P12 ¼
ðf2

f1

Sxð f Þ df ð8-4Þ

The total power in the signal is found by integrating over all frequencies:

PT ¼
ð1

�1
Sxð f Þ df ¼ x2ðtÞ ð8-5Þ

The power spectral density is a two-sided function, having values for both positive and
negative frequencies. The PSD gives the power in the signal referenced to 1 W. That is, since
no resistance is specified, x(t) is interpreted as a voltage (or current) across (through) a 1 W
resistor, with the power in the resistor equal to x2(t). Figure 8-2 shows the power spectral
density of a particular random signal.

The spectrum or frequency domain representation of a signal has been discussed pre-
viously in this book. Here, the emphasis should be placed on the word density that appears in
power spectral density. The frequency domain representation of noise does not have discrete
spectral lines but instead is a continuous function of frequency that represents the density per
unit frequency. The basic units of PSD are V2/Hz, so to determine the voltage or power of a
noise waveform the measurement bandwidth must be specified.

8.4 Frequency Distribution of Noise

In general, noise may have any arbitrary frequency content, resulting in a variety of possible
PSD shapes. Noise that has equal power density at all frequencies is called white noise

2 This concept is described in more detail in Chapter 6 of McGillem and Cooper (1974).
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(Figure 8-3). A strict definition of white noise requires that the flat power density char-
acteristic extend out for an infinite bandwidth. A more practical definition requires the noise
to have a flat PSD over some frequency range.

Another common type of noise spectrum is 1/f noise (also called flicker noise), as shown
in Figure 8-4. This type of noise spectrum is found in many physical systems, including
electronic circuits. The contribution of 1/f noise is usually significant only at low frequency
and becomes less important at higher frequencies. As the name implies, the amplitude of this
type of noise is inversely proportional to frequency.3

Other PSD shapes are possible, since they may result from a combination of electronic
noise sources. In addition, the noise PSD will be affected by the frequency response of the
system. In many cases, we can consider the noise power density to be constant over a small
frequency range, which simplifies the mathematical complexity involved.

PSD
V2/Hz

f

Figure 8-3 White noise has a power spectral density which is constant with frequency.

3 This model has the annoying property that the noise density approaches infinity near 0 Hz.

PSD
V2/Hz

f

Figure 8-2 The power spectral density function shows the power density of a signal as a
function of frequency.
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8.5 Equivalent Noise Bandwidth

One problem that presents itself in designing and understanding spectrum analyzers is how a
filter with some arbitrary shape will respond to noise. More specifically, how much noise
will be present at the output of a filter with a known power density of noise at its input?
Consider the filter shape shown in Figure 8-5. The filter is a band-pass filter with a nominal
gain of G0 at its center frequency, f0. If the input noise is constant across the filter shape, the
output noise power can be determined by integrating the gain of the filter:

PN ¼ N0

ðx

0

Gðf Þ df ð8-6Þ

where

N0 ¼ power density of the input noise (V2/Hz)
G( f ) ¼ power gain of the filter

G0

ff0

NBW

Filter shape
Equivalent
Rectangular Filter

Figure 8-5 The equivalent noise bandwidth of a filter is defined by a rectangular filter that
passes the same amount of white noise as the original filter.

PSD
V2/Hz

f

Figure 8-4 Another common type of noise is 1/f noise.
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Now suppose that an ideal rectangular filter with gain G0 is used instead. What band-
width will this filter need to be to produce the same noise power at the output? The output
power with such a filter is given by

PN ¼ N0G0NBW ð8-7Þ
where

NBW ¼ bandwidth of the ideal rectangular filter

Therefore,

NBW ¼ 1
G0

ð1

0

Gð f Þ df ð8-8Þ

The rectangular filter bandwidth is called the equivalent noise bandwidth (NBW) of the
filter (also called the noise equivalent bandwidth). If the equivalent noise bandwidth of a
filter is known, the exact filter shape is not needed to perform noise calculations as long as
the input noise is constant over the bandwidth of the filter. Note that this definition of
bandwidth is not the same as some of the other classical definitions such as the 3 dB and
6 dB bandwidth.

Example 8.1

What is the equivalent noise bandwidth of a single-pole low-pass filter? The filter is shown
in Figure 8-6 with cutoff frequency, fc.

A single-pole low-pass filter has the voltage transfer function

Hð f Þ ¼ fc

fc þ j f

Taking the magnitude of H( f) and squaring to get the power gain gives

Gð f Þ ¼ Hð f Þj j2 ¼ f 2
c

f 2
c þ f 2

0 dB
–3 dB

ffc

Figure 8-6 The transfer function of a single-pole low-pass filter.
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The nominal gain G0 ¼ 1, and the equivalent noise bandwidth is

NBW ¼
ð1

0

f 2
c

f 2
c þ f 2

df ¼ p
2

fc ¼ 1:57 fc

Therefore, the noise equivalent bandwidth is 1.57 times the 3-dB bandwidth. This rela-
tionship is valid only for a single-pole filter.

8.6 Noise Units and Decibel Relationships

As previously stated, the power spectral density of noise has the units of V2/Hz. The V2

implies that this is a measure of power. The PSD can be expressed as a voltage by taking the
square root, with the units of V=

ffiffiffiffiffiffi
Hz

p
. Spectrum analyzers may display the measured results

this way, which is convenient when the user is working in terms of voltage.
Alternatively, it is often convenient to refer to the noise level as normalized to 1 Hz and

expressed in decibel form. At this point, we will introduce the possibility of a resistance
other than 1 W.

Noise dBm; 1 Hzð Þ ¼ 10 log N0= Z0 � 1 mWð Þ½ � ð8-9Þ
where

N0 ¼ power spectral density (in V2/Hz)
Z0 ¼ impedance of the system

The 1 Hz noise level can be converted to other equivalent noise bandwidths, assuming
that the noise density remains constant across all bandwidths of interest, using

Noise ðdBmÞ ¼ 10 log NBW N0=ðZ0 � 0:001Þ½ � ð8-10Þ
¼ 10 logðNBWÞ þ 10 log N0=ðZ0 � 0:001Þ½ � ð8-11Þ

The dBm (1 Hz) value is increased by 10 log(NBW) to obtain the new noise power
adjusted to the new bandwidth. To go from one bandwidth directly to another, a correction
factor can be computed:

KdB ¼ 10 log BW2=BWlð Þ ð8-12Þ
To convert from BW1 to BW2, add KdB to the noise value associated with BW1. Note that

the bandwidth is treated with a factor of 10 in decibel form similar to power (and not
voltage). This is because noise power is proportional to bandwidth, given the foregoing
assumptions. The reader is urged to be careful in applying these equations, making sure that
the assumption of constant noise power density across the bandwidths of interest is true.

Example 8.2

Given a noise power density of 2 � 10–12 V2/Hz and a resistance of 50 W, what is the noise
power present in a noise equivalent bandwidth of 1 kHz? What is the noise voltage (in the
same bandwidth)? Express the noise level in dBm (1 Hz). Convert the dBm (1 Hz) value to a
1 kHz bandwidth.
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The noise power in 1000 Hz is

PN ð1 kHzÞ ¼ ð1000 HzÞ ð2 � 10�12V2=HzÞ=ð50 WÞ
¼ 40 pW

In terms of voltage,

VN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 10�12V2=Hz � 1000 Hz

p

¼ 44:7 mV

PN ð1HzÞ ¼ 10 logð2 � 10�12V2=Hz=ð50 W � 0:001 mWÞÞ
¼�104 dBm ð1 HzÞ

To convert to a 1 kHz bandwidth, add 10 log (1000/1) ¼ 30 dB:

PN 1 kHzð Þ ¼ �104 dBm 1 Hzð Þ þ 30 dB ¼ �74 dBm

8.7 Noise Measurement

Since the level of noise at the analyzer detector is affected by the resolution bandwidth
(RBW), the noise level on the analyzer display depends on the RBW setting. Narrowing the
RBW reduces the displayed noise level, and widening the bandwidth increases the noise
level. In general, such a measurement may be uncalibrated due to the unknown noise
equivalent bandwidth of the RBW filter and the unknown characteristics of the detector.
Because spectrum analyzer RBW filters are designed to be swept quickly, the filter shape is
not very steep. The noise equivalent bandwidth of an ideal Gaussian filter is 6.4% wider than
the half-power bandwidth; modern spectrum analyzer filters are very close to Gaussian with
a 5.5% wider behavior. Some older spectrum analyzers with analog filters have an NBW that
is 11–12% wider than the half-power bandwidth.

The classic analog spectrum analyzer block diagram uses an amplifier with logarithmic
gain followed by a detector to determine the measured value. These instruments are cali-
brated to detect sinusoids accurately and exhibit a significant error when measuring random
noise. The log amplifier introduces error by compressing the noise peaks and expanding the
smaller noise values downward. For a particular detector–amplifier combination, correction
factors to account for the error in random noise measurements are known. For a spectrum
analyzer with an envelope detector and a logarithmic amplifier before the detector, the error
correction factor is 2.5 dB. That is, the spectrum analyzer trace will show noise as 2.5 dB
lower than the actual value. The correctly calibrated noise reading is given by

Noise dBm; 1 Hzð Þ ¼ spectrum analyzer reading dBmð Þ þ Kdet � 10 log NBWð Þ ð8-13Þ
where

Kdet ¼ error correction factor for the detector and log amp

Because the measurement is inherently noisy, it is often desirable to use video filtering or
averaging to smooth out the noise reading.

If relative (not absolute) noise measurements are required, the correction factor can be
eliminated. Also, except for the widest ones, the ratio of the noise equivalent bandwidth to
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the 3 dB bandwidth of the RBW filter is generally constant. Thus, a factor of two change in
RBW implies the NBW also changes by a factor of two.

8.8 Automatic Noise Level Measurement

The level of random noise can be measured with most any spectrum analyzer, but the cal-
culations required to produce a calibrated measurement may be difficult. The noise
equivalent bandwidth of the analyzer RBW filter and the characteristics of the detector must
be known, and the measured result must be adjusted accordingly. Modern spectrum analy-
zers provide an automatic and calibrated means of measuring the spectral density of random
noise, often implemented as a special trace marker feature called noise marker. When this
feature is invoked, the analyzer combines many neighboring trace elements and averages
them together to reduce the variation in the noise measurement. The result is automatically
corrected for the noise equivalent bandwidth of the RBW filter, the logarithmic intermediate
frequency (IF) gain, and the characteristics of the detector. Finally, the measurement is
normalized to a 1 Hz bandwidth. Modern spectrum analyzers with digital IFs can be
configured to average signal envelopes on a power scale even while displaying them on a log
(decibel) scale and thus avoid the need for the 2.5 dB correction factor.4

The noise measurement can be performed using any RBW, and the analyzer will still
normalize the result to a 1 Hz bandwidth. The user must be careful not to pick too wide a
bandwidth since the noise is assumed to be white over the RBW. The analyzer cannot discern
a noise spectral density shape that varies over its RBW. Also, any discrete spectral lines
that fall inside the RBW will be lumped into the measurement and treated as noise in the
calculations, introducing an error into the noise measurement.

8.9 Noise Floor

To the user of an analyzer, the noise present in a measurement (either from the circuit or
signal under test or the internal noise of the analyzer) shows up as a noise trace on the
analyzer display. The noise is usually relatively constant with frequency but may be worse at
certain frequencies (particularly low frequencies due to 1/f noise). Although the use of a
narrower RBW forces the measured noise power to be lower, the spectral density of the noise
remains unchanged.

When measuring spectral lines, the instrument user may narrow the RBW as needed to
lower the noise level. Thus, small signals can still be measured in the presence of noise. The
situation is different when measuring random noise—the internal noise of the analyzer must
be lower than the noise being measured. Reducing the RBW does not help since it will
reduce the noise being measured along with the internal noise of the analyzer. Again, in
terms of spectral density, the analyzer noise must be less than the noise being measured.

Obviously, reducing the bandwidth of the RBW filter reduces the amount of noise power
in the measurement system. A narrow RBW filter will remove as much of the noise as

4 For a more detailed look at these issues, see Agilent Technologies (2012).
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possible from the measurement. However, narrow RBW filters slow down the measurement,
so the trade-off is increased measurement time.

8.10 Correction for Noise Floor

If the measured noise is much larger than the internal noise of the analyzer, no significant
error will be introduced. However, as the external noise level approaches the internal noise
level, the measurement will be in error. Table 8-1 summarizes this effect. The left column
corresponds to the noise level as measured by the analyzer, whereas the right column indi-
cates the amount of error in that measurement due to the analyzer internal noise. The error is
always positive (i.e., the measured value is larger than the actual noise). To obtain the actual
noise level, the error (in dB) should be subtracted from the measured value. Note that even
with measured noise levels as large as 10 dB above the analyzer noise floor, an error of
0.46 dB is introduced. When the actual noise equals the analyzer noise, the measurement will
appear to be 3 dB above the noise floor (with an error of 3 dB).

Example 8.3

A spectrum analyzer with a noise floor of �140 dBm (1 Hz) shows a measured value
of �135 dBm (1 Hz). What is the actual noise level being measured?

The measured value is 5 dB above the internal noise floor. From Table 8-1, this produces an
error of 1.65 dB. The actual noise level being measured is

�135 dBm � 1:65 dB ¼ �136:65 dBm 1 Hzð Þ

Some modern spectrum analyzers include a special function called noise floor extension, which
automatically performs a calculation to remove the analyzer noise from the measurement.

Table 8-1 Error Due to Analyzer Internal Noise

Measured Noise Level in dB
Relative to Internal Noise

Error in Measured Noise, dB

20 0.04
15 0.14
10 0.46
9 0.58
8 0.75
7 0.97
6 1.26
5 1.65
4 2.20
3 3.02
2 4.33
1 6.87
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Correcting for the noise floor can be a complex algorithm to achieve maximum improvement.5

The actual noise improvement depends on the specific measurement setup but may result in up
to 12 dB of noise reduction.

8.11 Phase Noise

Phase noise is an important measure of the spectral purity of a sine wave, often associated
with synthesized (phase-locked) oscillators. In the time domain, phase noise is exhibited as a
jitter in the zero crossings of the waveform (Figure 8-7). For a high-quality oscillator design,
the phase noise will usually not be discernible in the time domain. In the frequency domain,
the phase noise shows up as noise sidebands on the carrier (Figure 8-8).

A pure sine wave can be represented by

v tð Þ ¼ V0 sin 2pf0t ð8-14Þ
where

V0 ¼ zero-to-peak amplitude
f0 ¼ carrier frequency

5 See Agilent Technologies (2010) for a detailed explanation of how noise floor extension is implemented in a high-
performance spectrum analyzer.

v(t)

t

Phase noise

Figure 8-7 In the time domain, phase noise causes a jitter in the zero crossings of a waveform.

V(f )

f

Carrier

Phase noise
sidebands

Figure 8-8 In the frequency domain, phase noise appears as noise sidebands on both sides of the
carrier.
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A sine wave that exhibits both amplitude and frequency fluctuations is given by

v tð Þ ¼ V0 þ a tð Þ½ � sin 2pf0t þ f tð Þ½ � ð8-15Þ
where

a(t) ¼ amplitude noise
f(t) ¼ phase noise

Notice that this noise process resembles the amplitude and angle modulation processes,
but with the modulation ‘‘source’’ being random noise mechanisms in the system. The
amplitude noise may be significant, even in a high-quality oscillator design. However, in
many systems, the amplitude noise may be removed when the signal passes through an
amplitude limiting device such as a mixer.

Phase noise in the frequency domain can be expressed as

Lð f Þ ¼ VN ð1 Hz BWÞ
Vc

ð8-16Þ

where

VN ð1 Hz BWÞ ¼ RMS noise level in a 1 Hz bandwidth at a frequency f Hz
away from the carrier

Vc ¼ RMS voltage of the carrier

L( f ) is often expressed in terms of decibels,

L fð ÞdBc ¼ 20 log L fð Þ½ � ð8-17Þ
The resulting plot of L( f ) shows the phase noise level relative to the carrier as a function

of frequency away from the carrier (Figure 8-9). If the phase noise sidebands are within the
measurement range of the spectrum analyzer, L( f ) can be measured directly. On most
analyzers, a marker function can be used to read the noise level at an offset, often expressed
relative to the carrier amplitude.

The phase term, f(t), could include both long-term and short-term phase or frequency
fluctuations. Long-term effects are usually specified in terms of frequency drift while the
short-term effects are characterized as phase noise. As the frequency offset, f, approaches

L  (f )

fFrequency offset from Carrier

Figure 8-9 Phase noise is usually plotted as a function of frequency away from the carrier.
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zero the period of the frequency offset gets arbitrarily large. For example, a frequency offset
of 0.001 Hz corresponds to a period of 17 min, which is usually categorized as frequency
drift. Our ability to measure the noise at such a small frequency offset becomes increasingly
difficult. The resolving power of the analyzer must be fine enough to reject the large carrier
power while still measuring the phase noise.

For the spectrum analyzer to measure the phase noise of a sine wave directly, a few
conditions must be met. The noise floor of the spectrum analyzer must be significantly lower
than the measured phase noise. A more subtle phenomenon occurs due to the spectrum ana-
lyzer local oscillator purity. Recall from Chapter 5 that the analyzer local oscillator mixes with
the input signal to produce a new signal at the analyzer IF. We usually think of this process as
mixing the input signal down to the IF. Certainly, the phase noise of the input signal will also
be mixed down, but any phase noise present on the local oscillator will also appear at the IF.
This means that a close-in measurement of phase noise on an input signal is actually a mea-
surement of the combined phase noise of the input signal and the local oscillator. If the input
signal were completely free of phase noise, it could be used to measure the internal phase
noise of the spectrum analyzer. To obtain a precise measurement of an input signal phase
noise, the analyzer local oscillator must have lower phase noise than the signal being mea-
sured. Figure 8-10 shows the phase noise of an oscillator as directly measured by a spectrum
analyzer.

Res BW: 73 Hz VBW: 21 Hz
Mkr

Swp Time: 52:84 Sec
10 187 500 Hz –23.11 dBmA: SWEPT SPECTRUM

–20
dBm

LogMag

10 dB
/div

–120
Center: 10 187 500 Hz Span: 40 000 Hz

Figure 8-10 A spectrum analyzer measurement showing the close-in phase noise of an
oscillator that appears as a noise pedestal.
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The most common way to display the phase noise of a signal is to show only one side
of the spectrum plotted versus frequency offset from the carrier. Figure 8-11 shows a spec-
trum analyzer measurement using a software application specifically designed for phase
noise measurements. The frequency offset is shown using a log frequency plot so that a
wide range of offsets can be shown on one chart while still showing the close-in phase noise
performance.

Using a spectrum analyzer to measure phase noise is referred to as the direct spectrum
technique. While we have just shown that the phase noise of an oscillator can sometimes be
measured directly with a spectrum analyzer, in many cases the internal phase noise and

Figure 8-11 A spectrum analyzer measurement showing the single-sideband phase noise
characteristics of a signal. (� Keysight Technologies, Inc. Reproduced with
Permission, Courtesy of Keysight Technologies, Inc.)
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broadband noise floor of the spectrum analyzer is not good enough to perform the mea-
surement accurately. More advanced methods for phase noise measurement include multiple
phase detector techniques and the two-channel cross-correlation technique.6
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CHAPTER 9

Pulse Measurements

Pulsed waveforms are an important class of signals in systems such as radar and digital radio.
Pulsed signals can present a more difficult measurement problem than continuous wave-
forms. The resolution bandwidth used in a measurement can affect the displayed spectrum.
With a small-resolution bandwidth, the displayed spectrum has discrete spectral lines, but
with wider wide-resolution bandwidths these line spectra are smeared together and the
spectrum appears to be continuous.

The principles associated with the pulsed waveform are also applicable to pulsed radio
frequency signals. The envelope of the spectrum is the same and depends on the pulse width,
but the spectrum is centered on the radio carrier frequency.

9.1 Spectrum of a Pulsed Waveform

As shown in Chapter 3, the Fourier transform of a single pulse has a (sin x)/x shape (Figure 9-1):

Vð f Þ ¼ t
sin 2pf ðt=2Þ½ �

2pf ðt=2Þ ð9-1Þ

The nulls of the spectrum occur at multiples of 1/t. The amplitude of the spectrum is
proportional to the pulse width—the wider the pulse, the more energy present in the signal.

The classic swept spectrum analyzer is not capable of measuring a transient event such as
a single pulse. However, a fast Fourier transform (FFT) spectrum analyzer can produce the
spectrum of such a signal as long as it is within the bandwidth of the analyzer.

A pulse train is produced by repeating the pulse periodically (Figure 9-2a). Since the
waveform is periodic, it can be expanded into a Fourier series to determine the harmonic
content of the waveform. As listed in Table 3-1, the Fourier series for this waveform is

xðtÞ ¼ t
T
þ 2t

T

X1
n¼1

sinðpnt=TÞ
ðpnt=TÞ cosð2pnt=TÞ ð9-2Þ

The waveform has a DC component of t/T, which is just the average value of the
waveform. The harmonics of the signal will fall at multiples of the waveform frequency,
which is 1/T (Figure 9-2b). The period of the waveform is also known as the pulse repetition
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frequency (PRF). The overall shape or envelope of the harmonics takes on the (sin x)/x
characteristic, which is the same shape as the Fourier transform of the single pulse. As shown
in Figure 9-2b, the envelope of the spectrum has nulls at integer multiples of 1/t.

The amplitude of the spectrum of the pulse train is proportional to the duty cycle of the
waveform, which is the ratio of the pulse width to the waveform period. The greater amount
of time that the pulse is at its high voltage, the greater the power in the waveform.

duty cycle ¼ t
T

ð9-3Þ

The overall shape of the spectrum is determined by the width of the pulse, while the
PRF determines the spacing of the spectral lines. Figure 9-3 illustrates the phenomenon. In
Figure 9-3a, with t/T ¼ 1/4, the spectral lines are widely spaced. If the PRF is decreased
with r remaining constant (Figure 9-3b), the spectral lines move closer together while the
shape of the spectrum remains the same. Note that the amplitude of the spectrum decreases,
consistent with the decrease in duty cycle of the waveform. (A factor of 2 decrease in duty
cycle corresponds to a factor of 2 decrease in the amplitude of the spectrum.)

If the PRF is made very small, the spectral lines get very close together and begin to
approximate a continuous spectrum (Figure 9-3c). In reality, the spectral lines are always
distinct for repetitive waveforms, but as the spacing between the harmonics gets smaller than
the resolution bandwidth of the spectrum analyzer the spectrum will appear to be continuous.
The amplitude of the spectrum continues to be proportional to the duty cycle of the wave-
form. Note that as the PRF approaches zero, corresponding to the waveform period

t –2/t 2/t f–1/t 1/t

V(t)(a) (b)
V(f )

t

Figure 9-1 (a) A pulse in the time domain. (b) The corresponding spectrum in the frequency
domain.

T

tt 1/t 2/t

1/T

V(f )(b)(a)

f

Figure 9-2 (a) A repetitive pulse train in the time domain. (b) The pulse train in the frequency
domain.
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approaching infinity, the time domain and frequency domain representations of the signal
revert back to being those of a single pulse.

9.2 Effective Pulse Width

Many pulsed waveforms are not exactly the ideal shape as shown in Figure 9-2a. An example
of such a waveform is pictured in Figure 9-4. For this type of waveform we define an
effective pulse width to be used in the calculations relating to frequency spectrum.

teff ¼ 1
Vmax

ðT=2

�T=2

vðtÞ dt ð9-4Þ

1
V(f )

(a)

f

0.5
V(f )

(b)

f

V(f )
(c)

f

Figure 9-3 The PRF determines the spacing of the spectral lines within the (sin x)/x envelope.
(a) Widely spaced spectral lines (high PRF). (b) Closely spaced spectral lines
(moderate PRF). (c) Continuous spectrum (low PRF).
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The effective pulse width is the width of an ideal rectangular pulse, which would have the
same maximum voltage and energy as the original pulse.

9.3 Line Spectrum

When the resolution bandwidth of the spectrum analyzer is narrow enough, each of the
spectral lines will be shown distinctly on the display. Although not a hard limit, the general
requirement for a line spectrum display of a pulsed waveform is

RBW < 0:3 PRF ð9-5Þ

With the resolution bandwidth narrow enough to resolve the individual spectral lines, the
spectrum measurement is fairly conventional, with the display being a close representation
of the signal’s spectrum. (Compare this with the pulse spectrum case discussed later.)
Changing the measurement span widens or narrows the displayed spectrum as appropriate
and changing the sweep time does not affect the shape of the spectrum.1

Example 9.1

A pulse waveform has a period of 10 msec and a duty cycle of 10%. What is the maximum
resolution bandwidth that will cause a line spectrum to be displayed?

The waveform has a period of 10 msec, so

PRF ¼ 1=T ¼ 1=10 msec ¼ 100 kHz

The maximum resolution bandwidth is determined by

RBW < 0:3PRF ¼ 0:3ð Þ 100 kHzð Þ ¼ 30 kHz

A typical spectrum analyzer measurement resulting in a line spectrum is shown in
Figure 9-5.

teff

T

V(t)

t

Figure 9-4 An effective pulse width can be determined for nonideal pulse shapes.

1 As long as the sweep limitations of the resolution bandwidth are not violated.
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Example 9.2

Estimate the pulse repetition frequency and the effective pulse width of the signal shown in
Figure 9-5.

The spectral lines are spaced approximately every 3 MHz, so PRF ¼ 3 MHz. The first null
of the spectrum envelope occurs on the sixth spectral line from the left, which is approxi-
mately 18 MHz.

t ¼ 1=18 MHz ¼ 56 nsec

9.4 Pulse Spectrum

It may seem desirable to always measure a pulsed waveform using spectrum analyzer settings
that cause a line spectrum to be displayed. However, such a display may not always be pos-
sible or desirable. When the PRF is very small, the spacing of the spectral lines is also small,
and a suitably small resolution bandwidth may not be available. Even if such a bandwidth
setting is available, the required sweep time may result in an unacceptably slow measurement.

Supposing that the required bandwidth is available and the sweep time is not prohibitive,
the user may still not want to view the individual spectral lines of the pulsed spectrum. Often
the user is interested in the spectrum associated with the pulse and not the PRF. In such a

START 0 Hz

10 dB/

REF .0 dBm ATTEN 10 dBhp

RES BW 3 kHz VBW 3 kHz
STOP 99.00 MHz

SWP 20 sec

Figure 9-5 A line spectrum measurement of a pulsed waveform.
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case, viewing the individual spectral lines is an unnecessary inconvenience. By using a wide
resolution bandwidth, the envelope of the pulsed waveform’s spectrum can be shown without
revealing the details of the individual spectral lines. This type of spectrum display is called a
pulse spectrum. The requirement for a pulse spectrum type of display is RBW > 1.7PRF.
(Again, this is not a hard limit but a rule of thumb.) With a bandwidth significantly wider than
the PRF, more than one spectral line will be inside the measurement bandwidth at one time. The
wider the bandwidth, the more spectral lines are included in the measurement and the measured
amplitude of the pulse spectrum is larger. Increasing the bandwidth by a factor of 2 roughly
doubles the number of spectral lines included in the measurement, causing a 6 dB increase in
displayed amplitude. Thus, the measured amplitude depends on the resolution bandwidth.

The previous statement should cause some concern on the part of the reader! Having the
measured amplitude be a strong function of the resolution bandwidth is not a desirable
feature.2 One might expect this type of behavior with random noise, but not when the signal
has discrete spectral lines. On closer examination, we see that the case is similar to random
noise when the spectral lines are very closely spaced. The wider the bandwidth, the more
‘‘noise’’ (spectral lines) is let in. This type of signal is sometimes categorized as ‘‘impulse
noise,’’ which implies a large number of closely spaced spectral lines.

The resolution bandwidth must not be too large; otherwise, the envelope of the pulsed
spectrum may become washed out. The resolution bandwidth must remain small compared with
1/t, which defines the spacing of the nulls in the spectrum envelope. To summarize both con-
straints, the resolution bandwidth must be larger than the PRF but significantly smaller than 1/t.

1:7PRF < RBW < 0:1=t ð9-6Þ
With a swept spectrum analyzer, the sweep time can interact with the PRF to produce

discrete spectral lines. If the sweep time is set much greater than the period of the pulse train,
the pulse spectrum is continuous. With faster sweep times, the on/off rate of the pulse train can
show up as spectral lines. For example, if the sweep time is 100 msec and the pulse waveform
repeats every 5 msec, spectral lines will occur at every 5 msec during the sweep, which
corresponds to every 1/20 of the frequency span. If the frequency span is 200 MHz wide, these
spectral lines would appear every 10 MHz. Changing the sweep time to 50 msec will cause the
responses to appear at every 1/10 of the frequency span, which would appear to be spaced
every 20 MHz. Clearly, both cases are misleading as to the actual spectral content of the signal.
When individual spectral lines are visible on the display, they no longer represent the actual
spacing of the harmonics in frequency but instead occur every 1/PRF seconds during the
analyzer’s sweep. Increasing the sweep time to much greater than 1/PRF will eliminate this
effect and cause the spectrum to appear as a continuous (sin x)/x function. A useful guideline is

sweep time � 100
PRF

ð9-7Þ

which will produce at least 100 spectral lines in the spectrum.

2 Unless the user likes the freedom of adjusting the measuring instrument until the desired result appears.
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Example 9.3

A pulse waveform has a period of 1 msec and a pulse width of 500 nsec. Determine the
limitations on sweep time and resolution bandwidth for a pulse spectrum measurement.

PRF ¼ 1= 1 msecð Þ ¼ 1 kHz; t ¼ 500 nsec

1:7PRF < RBW < 0:1=t

1:7 1 kHzð Þ < RBW < 0:1=ð500 nsecÞ

1:7 kHz < RBW < 200 kHz

sweep time � 100
PRF

¼ 100=1 kHz ¼ 100 msec

Figure 9-6 shows a typical measurement of a pulsed waveform resulting in a pulse
spectrum.

START 0 Hz

10 dB/

REF –10.0 dBm ATTEN 10 dBhp

RES BW 30 kHz VBW 30 kHz
STOP 50.00 MHz

SWP 2.0 sec

Figure 9-6 A pulse spectrum measurement of a pulsed waveform.
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Example 9.4

Determine the effective pulse width of the signal shown in Figure 9-6.

The first null of the pulse spectrum occurs at approximately 10 MHz, so the effective pulse
width is t ¼ 1/10 MHz ¼ 100 nsec.

9.5 Pulsed RF

Another signal that is closely related to the pulse train is the pulsed sinusoid or pulsed RF
(Figure 9-7a). This type of signal can be derived by pulse modulating a radio frequency
carrier (i.e., using the pulse train to turn the carrier on and off.) Radar signals are one
common example of pulsed RF. The modulation property from Table 3-3 can be used to
derive the pulsed RF spectrum from our previous results. The modulation property is
described by the following transform pair:

x tð Þ cos 2pf0tð Þ $ 1=2 X f � f0ð Þ þ X f þ f0ð Þ½ � ð9-8Þ
X( f ), the spectrum of the modulating signal x(t), appears centered on the carrier frequency,

f0. Since the two-sided transform is used, the modulating spectrum occurs at �f0. In the case of
pulsed RF, the modulating signal is the pulse train, so the (sin x)/x shaped spectrum is no
longer centered on the origin but is centered on the carrier frequency (Figure 9-7b).

Since the pulsed RF case can be directly related to the baseband pulse train, the principles
derived relative to the pulse train are also valid for pulsed RF. For example, when measuring
a pulsed RF signal with a spectrum analyzer, the display may show discrete spectral lines or
may show a continuous pulse spectrum, depending on the pulse repetition frequency.

T

t

X(t)

X(f )

–f0 f0 f

t

(a)

(b)

Figure 9-7 (a) A pulsed RF signal in the time domain. (b) The frequency spectrum of a pulsed
RF signal.

174 CHAPTER 9 ● Pulse Measurements



9.6 Pulse Desensitization

The root mean square (RMS) value of a pulsed RF signal is proportional to the duty cycle of
the waveform. The extreme cases are when the RF carrier is left on all of the time and when
the RF carrier is always off. In between, the RMS value depends on the duty cycle of the
waveform, t/T. The RMS value of the pulsed RF waveform is given by

VRMS ¼ VC t=T ¼ VC t PRF ð9-9Þ
where

VC ¼ RMS voltage of a constant carrier

Equation (9-9) can be expressed in decibel form as

VRMS dBð Þ ¼ VCðdBÞ þ 20 log t PRFð Þ ð9-10Þ
It is customary to define the pulse desensitization factor

aL ¼ 20 log t PRFð Þ ð9-11Þ
which represents the difference in amplitude between the continuous carrier and the pulsed
RF signal (in decibels). This equation is valid only for a line spectrum—the pulse spectrum
case will be discussed shortly. The term desensitization may be a poor choice since it may
imply a loss of sensitivity in the measuring instrument. The instrument is not really any less
sensitive—the average power in the waveform decreases, which should be reflected in a
measurement of it. The range (or attenuator setting) of the spectrum analyzer should be set
according to the power level of the continuous carrier. Otherwise, the peak power in the
signal may overload the input circuitry of the analyzer. For small duty cycle signals, the
measured amplitude will be much smaller than the peak signal power, forcing the measured
response to be considerably lower than the full-scale analyzer response. This effect cuts into
the dynamic range of the analyzer that is available for making the measurement—hence the
term pulse desensitization.

Example 9.5

A pulsed RF signal has a peak power of –10 dBm, a PRF of 1 kHz, and pulse width of
10 msec. What is the amplitude of the main lobe of the spectrum? If the spectrum is to be
measured with 40 dB of dynamic range, what is the required dynamic range of the spectrum
analyzer (assuming that full scale on the spectrum analyzer corresponds to –10 dBm)?

The power of a continuous carrier is –10 dBm.

VRMSðdBÞ ¼ VCðdBÞ þ 20 logðt PRFÞ
¼ �10 dBm þ 20 logð10 msec 1 kHzÞ
¼ �10 dBm � 40 dB ¼ �50 dBm

The amplitude of the main lobe is –50 dBm.
Another 40 dB below the main lobe is –90 dBm. Therefore, the spectrum analyzer must

measure –90 dBm with full scale equal to –10 dBm, which requires 80 dB of dynamic range.
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In the case of the pulse spectrum, the situation is different. In addition to the pulse width,
the measured amplitude also depends on the resolution bandwidth of the spectrum analyzer.
The pulse desensitization factor for the pulse spectrum case is defined as

ap ¼ 20 log t IBWð Þ ð9-12Þ
The resolution bandwidth of a spectrum analyzer is normally specified in terms of a 3 dB

bandwidth, which is useful in most cases but is not appropriate when analyzing pulsed
signals. Instead, we introduce a new concept of bandwidth called the effective impulse
bandwidth (IBW). This bandwidth is the bandwidth of an ideal rectangular filter that has a
pulse response equivalent to the actual resolution bandwidth filter. Alternatively, we can say
that the typical RBW filter behaves like it is wider than the normal 3 dB bandwidth when the
input signal is a pulse. Mathematically, we can state

IBW ¼ k � RBW ð9-13Þ
where

k ¼ factor relating the resolution bandwidth and the impulse bandwidth; typical value is
~1.5, assuming a typical synchronously tuned RBW filter

The pulse desensitization factor can also be expressed as

ap ¼ 20 log tk RBWð Þ ð9-14Þ
For a pulse spectrum, reduced t or IBW decreases the amplitude of the measured

response. Reduced t causes the average power in the signal to decrease, while reduced IBW
leaves the average power in the signal unchanged but reduces the amount of energy present
in the analyzer’s RBW. Either way, the measurement is desensitized in that the measured
reading will be lower.

For more information on pulsed RF measurements, see Agilent Technologies (2012).

Bibliography

Adam, Stephen F. Microwave Theory and Applications. Englewood Cliffs, NJ: Prentice Hall, Inc.,
1969.

Agilent Technologies. ‘‘Spectrum and Signal Analysis . . . Pulsed RF,’’ Application Note 150-2,
Publication Number 5952-1039, July 2012.

Engelson, Morris. Modern Spectrum Analyzer Theory and Applications. Dedham, MA: Artech House,
1984.

176 CHAPTER 9 ● Pulse Measurements



CHAPTER 10

Averaging and Filtering

Many analyzer measurements have considerable amounts of noise present in them. The noise
is often undesirable but may actually be a desired component of the measurement. Two basic
techniques are used to reduce the noise: filtering and averaging. Filtering usually takes the
form of an analog filter. However, it can also be implemented in digital form, whereas
averaging is always done digitally. The two concepts are closely related and are treated here
in a unified manner. Both filtering and averaging can be classified as either predetection
(before the detector) or postdetection (after the detector). Predetection averaging/filtering
reduces the noise present in a measurement, while postdetection averaging/filtering reduces
the amount of fluctuation in the noise.

10.1 Predetection Filtering

In the spectrum or network analyzer block diagram, filtering can be broken down into two
types—predetection and postdetection—depending on whether the filter resides before or
after the detector, as shown in Figure 10-1. In the classic swept analyzer, the detector is
implemented as a distinct circuit block, but modern implementations use digital signal
processing to implement it. There is no detector circuit in a fast Fourier transform (FFT)
analyzer; instead, the magnitude detection is done by computing the magnitude of the
complex frequency domain data provided by the FFT algorithm. Whether there is or is not an
actual detector circuit, the concept remains the same.

Noise

There is always some noise present in the front end and intermediate frequency (IF) sections of
an analyzer. This noise may come from the signal or network being measured or may be
generated internal to the analyzer. Noise present at the input of the detector degrades the
measurement depending on the relative amplitudes of the signal and noise. As shown in Fig-
ure 10-2, the wider the predetection bandwidth, the more noise that gets included in the mea-
surement at the detector. Because the resolution bandwidth of the analyzer is relatively narrow,
the noise can often be considered constant or white across its passband. The noise power is

PN ¼ N0 NBW ð10-1Þ
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where

N0 ¼ noise spectral density (watts/Hz)
NBW ¼ the noise equivalent bandwidth of the predetection filter (Hz)

The noise power may be expressed in dBm (dB relative to 1 mW).

PN dBmð Þ ¼ 10 log PN=0:001ð Þ ¼ 10 log N0 NBW=0:001ð Þ ð10-2Þ
Note that a factor of 2 change in bandwidth results in a 3 dB change in noise level,

assuming the spectral density of the noise is constant across the bandwidth.

DPNðdBÞ ¼ 10 logðkBÞ ð10-3Þ
where

DPN ¼ change in noise power
kB ¼ ratio of the two noise equivalent bandwidths

The following table shows the change in noise power (dB) corresponding to cardinal
values of kB.

kB DPN

2 3.01 dB
5 6.99 dB
10 10.00 dB

Predetection
Filter

Postdetection
Filter

DET

Figure 10-1 Predetection filtering takes place in front of the detector, while postdetection
filtering is performed behind the detector.

Wide Predetection BW

Narrow Predetection BW

White Noise

f

Figure 10-2 A wide predetection filter lets more noise into the measurement than does a narrow
predetection filter.
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Figure 10-3 shows the effect on the analyzer display due to changing the resolution
bandwidth. With a wider bandwidth, the noise on the display is higher while a narrower
bandwidth reduces the noise.

Example 10.1

A spectrum analyzer measures the noise at a particular frequency to be –70 dBm using a
resolution bandwidth of 1 kHz. What will the noise reading be using a resolution bandwidth
of 300 Hz? Assume that the noise is white noise and that the bandwidths given are noise
equivalent bandwidths.

The noise will be reduced by the ratio of the bandwidths, expressed in dB.

PN dBmð Þ ¼ �70 dBm þ 10 log 300=1000ð Þ ¼ �75:2 dBm

10.2 Predetection Filters

Predetection filters are easily identified in the block diagrams of traditional swept analyzers.
The narrowest filter in the signal path before the detector is effectively the predetection filter.
This filter’s bandwidth is usually selectable and is indicated on the front panel as resolution

REF –35.0 dBm ATTEN 10 dB

10 dB/
SAMPLE

CENTER 100.00 MHz
RES BW 3 kHz VBW 3 kHz SWP 10 sec

SPAN 50.00 MHz

hp

Figure 10-3 The upper trace was measured with a 300 kHz resolution bandwidth, and the lower
trace was measured with a 3 kHz resolution bandwidth. The displayed noise level
is 20 dB lower with the narrower bandwidth.
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bandwidth or IF bandwidth. Modern analyzers use a digital IF to implement these filters,
providing much more control of the filter shape and bandwidth.

In the case of the FFT analyzer, the predetection bandwidth is not a distinct filter in the
block diagram. Instead, it is the effective bandwidth resulting from the use of the FFT. To a
rough approximation, the predetection bandwidth will be the frequency span divided by the
number of displayed points. To be more exact, this number must be adjusted depending on
the time window function, with the actual bandwidth usually being somewhat larger. For a
given number of displayed points, the selected frequency span will determine the predetec-
tion bandwidth. Most FFT analyzers will provide the effective predetection bandwidth for a
given measurement setting, either via the operator’s manual or via the display. For noise
measurements it is important to always use the noise equivalent bandwidth, which is not
necessarily the same as the 3-dB bandwidth (see Chapter 8).

10.3 Postdetection Filtering

Filters that reside after the detector in the signal processing chain are called postdetection
filters. On swept analyzers, postdetection filters are usually called video filters. Postdetection
filtering is not capable of reducing the noise level since the noise has already been detected.
However, it can reduce the variation in the noise, exposing previously obscured signals that
are near the noise floor. Also, if noise is being measured, postdetection filtering helps sta-
bilize the measurement. Notice that in Figure 10-3 there is considerable variation in the
amplitude of the noise, independent of which resolution bandwidth is used.

The output of the detector (over a short period of time) can be thought of as being a
constant DC value with some noise superimposed on it (Figure 10-4a). The DC level
represents the amount of energy present within the predetection bandwidth in front of the
detector. This energy could be made up of discrete spectral lines or noise or both. The noise
on the DC level is the statistical variation in the predetection energy, which is caused by
the noise in the measurement. A low-pass filter applied to the detector output can reduce the
variation in the detector output (Figure 10-4b), giving a more stable, noise-free output. This
does not, however, reduce the DC level. Thus, postdetection filtering can reduce the varia-
tion in the detector’s output but does not affect the average output level.

It is important to distinguish between predetection and postdetection noise. Predetection
noise can be reduced by narrower predetection filtering, thereby reducing the output of the
detector. The predetection noise will be detected and will contribute to the absolute level
at the output of the detector. Postdetection noise is the variation in the predetection noise.
This variation can be reduced by appropriate filtering, but the DC level that represents
predetection noise cannot be reduced by postdetection filtering.

To understand the effect of postdetection filtering on a typical measurement, consider the
analyzer display shown in Figure 10-5a and Figure 10-5b. With a wide postdetection filter,
the variance in the noise is quite large. With a narrower postdetection filter, the variance is
reduced considerably. Note that the average value of the measured noise remains the same,
and only the variation in the noise is different. While postdetection filtering does not lower
the average noise level, the reduction in the variance does reduce the peak noise level and
may expose low-level signals that cannot be observed with a wider postdetection bandwidth.
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Noise in a measurement is not always undesirable. The signal being measured may
consist only of noise or some combination of noise and spectral lines. In such a case, the
noise is intended to be part of the measurement. With no postdetection filtering, the mea-
surement will tend to vary due to the effect of the noise. Postdetection filtering can be used to
smooth out these variations and cause the measurement to converge on a single smooth trace.

10.4 Postdetection Filters

In a classic swept analyzer, the postdetection filter is implemented using a low-pass analog
filter following the detector. This filter is usually a single-pole filter, often a simple resistor-
capacitor (RC) network. The filter can also be implemented by digital techniques provided
that the signal has been digitized at some point in the block diagram. Since the video filter
slows down the response of the analyzer’s receiver, the sweep rate must be increased for
smaller video bandwidths, and most analyzers have mechanisms for automatically selecting
a suitable sweep speed.

In an FFT analyzer, there is no exact equivalent to the postdetection filter, but post-
detection averaging can produce a similar effect.

This discussion of predetection and postdetection filters may leave the user wondering
how to choose the appropriate bandwidths. Fortunately, most modern spectrum analyzers

Noise

(a)

(b)

DC

t

t

DC

Figure 10-4 (a) The output of the detector consists of a constant DC level plus some noise.
(b) Low-pass filtering the detector output removes the noise without altering the
DC level.
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VIDEO BW
100 kHz

REF –10.0 dBm

10 dB/

hp(a)

CENTER 100.00 MHz
RES BW 300 kHz VBW 100 kHz SWP 20 msec

SPAN 50.00 MHz

ATTEN 10 dB

REF –10.0 dBm

10 dB/

hp(b)

CENTER 100.00 MHz
RES BW 300 kHz VBW 1 kHz SWP 300 msec

SPAN 50.00 MHz

ATTEN 10 dB

VIDEO BW
1 kHz

Figure 10-5 (a) The noise variance is relatively high with a wide video bandwidth. (b) A narrow
video bandwidth causes the noise variance to be significantly reduced.
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have built-in algorithms for choosing the two bandwidths automatically. In more critical
applications, these choices can be overridden to optimize the measurement.

10.5 Averaging

Averaging was originally used in FFT analyzers to provide a method of reducing the noise.
With the increased use of digital IFs techniques in swept analyzers, averaging has found its
way into those instruments. Averaging techniques can be divided into predetection and
postdetection types, similar to predetection and postdetection filtering. Again, filtering
and averaging are very similar operations, so predetection filtering and predetection aver-
aging have similar effects. The same can be said for postdetection filtering and averaging.

First, the process of averaging will be discussed in a general way, without reference
to analyzer applications. Many electrical parameters can be thought of as being made up of
two parts:

x tð Þ ¼ s tð Þ þ n tð Þ ð10-4Þ
where

x(t) ¼ the measured value
s(t) ¼ the desired signal to be measured
n(t) ¼ the noise present in the measured value

Noise and signals contaminated by noise must be treated on a statistical basis. The var-
iance, s2, is defined as

s2 ¼ E x2
� �� E2 x½ � ð10-5Þ

where

E[x] ¼ expected value of x

The variance is the square of the standard deviation, s. As the name implies, the variance
is a measure of how much a noisy parameter varies away from its average value. If the noise
has zero mean, then the average value of x(t) equals s(t), the desired signal.

Usually when a measured parameter is averaged, the signal portion of x(t) will be
retained while the noise portion, n(t), will be decreased. This assumes that the signal portion
is consistent, producing the same value on each sample. Similarly, the noise is assumed to be
uncorrelated to the sample rate and will vary in value with each sample. Any portion of x(t)
that is correlated to the sample rate will tend to be retained after averaging. Any portion that
is uncorrelated will tend to be averaged out.

10.6 Variance Ratio

Averaging can be considered as a process with an input, x(t), and an output, y(t), as shown in
Figure 10-6. Both the input and the output have corresponding variances, s2

x and s2
y . By

averaging, the variance of the measured signal is reduced and y(t) is a better approximation
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to the desired signal, s(t). The variance ratio (VR) is used as a figure of merit for the
averaging process.

VR ¼ s2
y

s2
x

ð10-6Þ

where

s2
x ¼ variance of the unaveraged signal

s2
y ¼ variance of the averaged signal

The variance of a signal is associated with its noise power (not its voltage). The standard
deviation, which is the square root of the variance, should be used to analyze noise in terms
of voltage. Since the VR is power related, it can be converted to decibel form by

VRðdBÞ ¼ 10 log VRð Þ ð10-7Þ

Example 10.2

For a given averaging process, the variance of the averaged output is 0.2 times the variance
of the input. If the noise power at the input is –45 dBm, what is the noise power at the output
of the averaging process?

s2
y ¼ 0:2s2

x

VR ¼ 0:2

VRðdBÞ ¼ 10 logð0:2Þ ¼ �6:99 dB

PN dBmð Þ ¼ �45 dBm � 6:99 dB ¼ �51:99 dBm

10.7 General Averaging

In general, averaging is accomplished by weighting a set of data samples according to some
algorithm and summing them together. Mathematically, this can be expressed as

yN ¼ w1x1 þ w2x2 þ w3x3 þ � � � þ wN xN ð10-8Þ
where

w1;w2;w3; . . . ;wN ¼ weighting factors
x1; x2; x3; . . . ; xN ¼ last N samples of x tð Þ
yN ¼ current averaged output

y(t)x(t)
Averaging
Process

Figure 10-6 Averaging produces an output signal, y(t), which has a lower variance than the
input signal, x(t).
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The VR for the averaging process can be shown to be just the sum of the squares of the
weighting factors.

VR ¼
XN

n¼1

w2
n ð10-9Þ

Such a general approach to averaging requires that N samples of x(t) be always stored
with the averaged output, and yN computed by summing the weighted xn values. As a new xn

sample is acquired, the oldest xn is discarded and the new sample saved. (This requires some
type of memory buffer to store the sample points.)

10.8 Linear Weighting

The most obvious way to weight the data is to weight them all equally. After all, what makes
one sample point any more valid than any other point? This type of averaging is probably
what most engineers think of when the term averaging is used.

The VR for linear averaging is

VR ¼ 1
N

ð10-10Þ

where

N ¼ number of samples averaged

Thus, for N measurements averaged together (N averages), the noise power is reduced by
a factor N, and the noise voltage is reduced by a factor of the square root of N.

When linear weighting is used in instrumentation averaging, the final averaged result
(with all N measurements averaged together) cannot be displayed until all N measurements
have been acquired. Many instruments will display the intermediate results of the averaging
process so the user has some measurement information without having to wait for all
N acquisitions.

For a given number of samples, linear weighting provides the best possible VR. The more
samples that are averaged together, the better the noise reduction at the expense of longer
measurement time.

10.9 Exponential Weighting

The weighting function may be an exponential function with the most recent sample weighted
the highest and previous samples weighted exponentially less. Although an exponential
weighting function would seem to be computationally complex, it can be implemented with a
simple algorithm. The averaged output is computed by summing the input sample multiplied
by a factor of 1/k and the previous result multiplied by 1 – (1/k). A single accumulation register
(memory location) is used to hold the yn–1 (previous) value. In a typical analyzer application,
an accumulation register is required for each displayed frequency point.

yn ¼ l=kð Þxn þ 1 � l=kð Þð Þyn�1 ð10-11Þ
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Exponential averaging does not have a fixed number of samples, and the averaging algo-
rithm can continue to run indefinitely. A newly acquired sample is initially weighted heavily,
and then the weighting factor for that sample gradually decreases as additional samples are
taken. This type of algorithm has the ability to track changes in the measured value.

The VR, assuming that the averaging process has been running for a very long time
(much more than k samples), is

VR ¼ 1
2k � 1

ð10-12Þ

The exponential weighting function produces a step response very similar to a single-pole
low-pass filter (Figure 10-7). If the input of the averaging process starts at zero and abruptly
changes to a constant value, the output of the process rises exponentially and asymptotically
approaches the final value of the input. For k’s of interest, the time constant of this system, T is
given by

T ¼ k þ ½ ð10-13Þ
Thus, the time constant of the system is approximately k. After k samples the step

response will reach 63% of the final value, just as one would expect in a single-pole analog
system. In a purely exponential average, the user should keep this behavior in mind and wait
several time constants for the measurement to settle out. Selecting a large value for k will
provide the maximum amount of noise reduction, but at the expense of increased measure-
ment time and slower response to changes.

The exponential average has an initialization problem, in that if the yn–1 accumulation
register starts out set to zero it will take k samples to get 63% of the way to the final value.
It will take even longer before the averaging process produces an output close to the true
answer. One solution is to load the first sample into the yn–1 register and then let the aver-
aging algorithm run. This immediately gets the averaged output close to the correct answer
(depending on how ‘‘good’’ the first sample is). Unfortunately, this also causes the first
sample to be weighted much heavier than the others, which is most noticeable with large k’s
since the subsequent samples are weighted very lightly.

Figure 10-7 The step response of an averaging process with exponential weighting is an
exponential function.
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A better solution to the initialization problem is to start the averaging algorithm with k
small and load the first sample into the yn–1 register. As the averaging algorithm progresses, the
k value is automatically increased, eventually stopping at the value selected by the user. This
technique has the effect of producing a linear or near-linear weighting on the early samples.
Later, when the k value reaches the maximum imposed by the user, the averaging algorithm
reverts to a pure exponential. This type of weighting combines the advantages of linear
weighting and exponential weighting. It provides the good variance improvement of a linear
average in the early samples but with the exponential average advantage of tracking changes.

10.10 Averaging in Spectrum and Network Analyzers

The previous discussion has centered on the general principles of averaging along with the
common weighting functions. Now we will focus on how these weighting functions are
applied to the measured data in a spectrum or network analyzer.

First, it must be made clear in what dimension the averaging is taking place. Trace-to-
trace averaging is accomplished by taking a sample at one particular frequency or bin and
averaging it with samples at the same frequency from other traces or sweeps. This represents
most of the averaging algorithms found in spectrum and network analyzers. Adjacent-point
averaging is accomplished by averaging several data points together from the same sweep.
For example, the n-th bin might be computed by the linear average of the n-th – 1, n-th, and
n-th þ 1 bins. This type of averaging is used to implement smoothing functions.

For the classic swept spectrum analyzer with an analog detector, there is only one type of
data to be averaged: scalar magnitude data produced by sampling the output of the detector.
Since these data exist after the detector, only postdetection averaging is possible. However,
modern spectrum and network analyzers have digital IFs that provide access to the vector
data samples before the detector. Vector data are represented by complex numbers that
contain the magnitude and phase information necessary for vector signal analysis or vector
network measurements. During detection, the vector data may be converted into scalar
magnitude information.

Log Detector Problem

As mentioned in Chapter 8, the combination of an envelope detector and log amp can
understate the noise level in a measurement by 2.5 dB. This is because the statistical
variation in noise (or a noise-like signal) is distorted by the log amp: positive noise excur-
sions are reduced in relative amplitude while negative noise blips end up passing through
with relatively larger amplitude.

For many measurements, it is very useful to have a logarithmic scale (in dB) for the
vertical axis, so we don’t want to give that up. The problem occurs when we apply
the averaging algorithm after the log amp. The average of the log output is not the same as
the log of the average.1 Fortunately, modern analyzers can use the digital IF to advantage
here by averaging the IF signal before the log function is applied. The power average (also

1 See Agilent Technologies (2011) for a detailed analysis of the effects of averaging and detection on noise.
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called root mean square (RMS) average) feature captures the voltage of the IF signal,
squares it to get the signal power, and performs the trace-to-trace averaging to produce the
measured result. This averaging approach does not affect continuous wave signals but pro-
vides a much more accurate measurement of noise and complex signals.

10.11 RMS Average

RMS averaging is a scalar trace-to-trace average commonly used in FFT analyzers and is
now also applied to swept analyzers. Several V2 of each bin from several traces are averaged
together, and then the square root of the averaged data is displayed. Since the square of the
voltage corresponds to the power in a signal, this averaging technique is also known as a
power average.

yn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

n1 þ x2
n2 þ x2

n3 þ � � � þ x2
nN

� �
=N

q
ð10-14Þ

where

xn1; xn2; . . . ; xnN ¼ unaveraged data
yn ¼ RMS averaged output
N ¼ number of averages

Linear weighting of the RMS data is assumed here, but exponential weighting can also be
used. RMS averaging is a postdetection process and therefore reduces the variance of the
noise, but not the absolute noise level (Figure 10-8).

10.12 Vector Averaging

Many types of spectrum and network analyzers capture the magnitude and phase of the
signal being measured. A vector representing a complex signal can be plotted on the com-
plex plane (Figure 10-9a). The vector has a real part and an imaginary part, which can be
converted into magnitude and phase form, if necessary.

Noise present in the measurement will add vectorally to the signal vector (Figure 10-9b),
producing a single-plus-noise vector that varies in amplitude and phase (Figure 10-9c).
Applying an averaging algorithm independently to the real part and to the imaginary part of
the noisy vector tends to average out the noise portion while retaining the signal. (This
assumes that the noise vector is not correlated to the signal vector.) With sufficient aver-
aging, the noise portion will approach zero, leaving only the signal. Thus, vector averaging
removes the uncorrelated noise and leaves the mean of the desired signal. This type of
averaging lowers the noise floor of the measurement, similar to a reduction in resolution
bandwidth.

Vector averaging is predetection averaging, since it operates on the complex data before
the detector and reduces the amount of noise seen by the detector. For vector averaging to be
effective, the phase of the signal must be consistent from trace to trace; otherwise, the signal
will tend to be averaged away.
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In the case of an FFT analyzer, the measured data are captured in the time domain. If the
sampled waveform in the time record is repeatable from record to record, the frequency
domain data will have a repeatable phase from trace to trace and vector averaging can be
used. A triggering circuit, similar to the triggering circuit found in an oscilloscope, is often
employed to start the collection of the time domain data. Assuming that the trigger always
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Figure 10-8 (a) FFT spectrum measurement with no averaging. (b) The same measurement
with RMS averaging.
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occurs at the same point on the waveform, the phase of the waveform will be the same for
each time record acquired. Actually, the averaging can be performed in the time domain to
produce the same effect as vector averaging in the frequency domain. (Sometimes vector
averaging is called time average in FFT analyzers.) Signals that are repeatable in the time
domain will remain in the final measurement while noise tends to be averaged out.

real

imag(a)

real

imag(b)

real

imag(c)

Figure 10-9 (a) The vector representation of a complex signal. (b) Random noise adds
vectorally with the signal. (c) The original signal is varied in both magnitude and
phase.
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10.13 Smoothing

Smoothing functions use adjacent-point averaging to reduce the amount of fluctuation in the
measured trace due to noise. This is different from other averaging techniques that combine
data points from different measurements to produce the final result. N points of the trace are
averaged together to produce one smoothed point. (N is odd.) The (N – l)/2 previous points,
the (N – l)/2 subsequent points, and the current point are summed together with appropriate
weighting. The general formula for smoothing is

yn ¼ w�ðN�1Þ=2xn�ðN�1Þ=2 þ � � � þ w�1xn�1 þ w0xn þ w1xnþ1 þ � � � þ wðN�1Þ=2xnþðN�1Þ=2

ð10-15Þ

where

yn ¼ smoothed output data for bin n
xk ¼ unsmoothed input data for bin k
w� N�1ð Þ=2 through w N�1ð Þ=2 ¼ the weighting coefficients
N ¼ the number of points used in the smoothing algorithm N is oddð Þ
The data points are all taken from the same trace of data.
A simple implementation of a smoothing algorithm is to use just three points (N ¼ 3) in

the smoothing of the data.

yn ¼ 0:25xn�1 þ 0:5xn þ 0:25xnþ1 ð10-16Þ

Since the user has control over the amount of smoothing applied to a displayed trace,
good judgment must be applied. It is possible to smooth a trace to the point where it provides
little or no useful information. The user is generally required to select the amount of
smoothing that reduces the noise without significantly changing the shape of the trace.2

Figure 10-10 shows the transfer function of a network with varying amounts of smoothing.
Since the smoothing algorithm operates on the data after the detector, it is a type of

postdetection averaging. Its effect is similar to video filtering except for two things. First, it
uses the data from bins on both sides of the bin of interest, while video filtering averages
only frequency bins that it has swept through (usually to the left of the bin of interest).
Second, it does not impact the allowable sweep rate in a swept analyzer, although excessive
smoothing can distort the trace similar to sweeping too fast for a video filter.

10.14 Averaging versus Filtering

One important difference between averaging and filtering in analyzers is the dimension in
which the averaging/filtering takes place. Since filtering occurs in the IF section, the ana-
lyzer is filtering as it sweeps. Thus, filtering is done across the frequency axis of the display

2 In other words, select the amount of smoothing that makes the trace look good.
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(similar to adjacent-point averaging). For the filtering to not distort the measurement by
smearing the trace, the sweep rate must not be too fast. The narrower the resolution band-
width or video filter the slower the sweep must be.

Trace-to-trace averaging, on the other hand, averages data from different sweeps toge-
ther. This does not cause smearing in the direction of the frequency axis and does not affect
the required sweep rate. Of course, multiple sweeps must be acquired that slow down the rate
at which an averaged measurement can be completed.
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Figure 10-10 (a) A network measurement with no smoothing. (b) The same measurement with
some smoothing. (c) The same measurement with excessive smoothing.
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CHAPTER 11

Transmission Lines

Transmission lines are commonly used to connect test and measurement instruments to the
device under test. Transmission lines are used to control the effects of inductance and
capacitance, which are unavoidable in high-frequency systems. Coaxial cables are the most
common transmission lines, providing shielding of the signals being measured.

Measurement error can be introduced due to impedance mismatch at either end of a
transmission line. These errors must be understood and minimized to ensure an accurate
measurement.

11.1 The Need for Transmission Lines

When connecting DC circuits, the major issue is the resistance of the wires. According to Ohm’s
law, a drop in voltage will occur when a current flows through a wire with nonzero resistance.
Inductance and capacitance are not usually a big concern for DC voltages and currents.

For circuits with AC voltages and currents, the inductance and capacitance of wires come
into play. A typical wire exhibits self-inductance and has some capacitance to other nearby
conductors. The higher the frequency, the more significant the effect of this inductive and
capacitive reactance. Uncontrolled, these reactive effects can distort signals by loading the
driving circuit and causing reflections on the wire. Transmission lines avoid these problems
by controlling the inevitable inductance and capacitance of the cable and the electromagnetic
fields associated with them.

Signals do not travel down a wire infinitely fast but require a finite amount of time to
propagate from one place to another. For circuits and systems that have short connections
(relative to the wavelength of the signal), these effects are usually ignored. As the frequency
of the signal or the length of the wire is increased, the delays along the wire become sig-
nificant. As the signal propagates down the wire, it may encounter variations in the impe-
dance that it sees. The signal will be fully or partially reflected at each of these impedance
discontinuities.

Reflections on a wire can cause the impedance looking into the wire to be uncontrolled,
which can present an unknown or undesirable impedance to the driving circuit. When ter-
minated properly, transmission lines provide a controlled impedance at each end of the line.
This allows the system to be designed for maximum power transfer, with the signal source
loaded by an impedance equal to its output impedance.

195



11.2 Distributed Model

The inductance and capacitance associated with lengthy wires are used to advantage in a trans-
mission line. The reactances are controlled such that a signal traveling down the line sees a
constant impedance. A circuit model for an arbitrarily small section of transmission line is
shown in Figure 11-1a. The transmission line contains some series inductance, L, and some
capacitance, C, between the two conductors. Also included in the circuit model is a series
resistance, R, and a shunt conductance, G, associated with losses incurred in the transmission line.

The circuit model represents an extremely small section of transmission line. A finite-
length line is modeled as a large number of these sections cascaded end to end (Figure 11-lb).
If the line is assumed to be lossless (R ¼ G ¼ 0), the resistive components are removed from
the model (Figure 11-1c).1

The capacitance per unit length and the inductance per unit length depend on the physical
construction of the transmission line. The dielectric constant of the material between the
conductors and the physical geometry of the transmission line both affect the electrical
properties of the line.

11.3 Characteristic Impedance

The impedance looking into the end of an infinitely long lossless transmission line is called
the characteristic impedance, Z0. (The transmission line is specified here as infinitely long to
avoid any impedance changes due to reflections from the other end of the line.)

Z0 ¼
ffiffiffiffiffiffiffiffiffi
L=C

p
ðlossless lineÞ ð11-1Þ

R(a)

(b)

(c)

L

LRL

L L
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G

G

C

C

C C

G C

Figure 11-1 (a) The circuit model for a small section of transmission line. (b) The circuit model
for a transmission line. (c) The circuit model for a lossless transmission line.

1 Transmission line losses will be ignored in this chapter unless otherwise specified.
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11.4 Propagation Velocity

Electromagnetic waves in free space propagate at the speed of light. Inside a transmission
line there is usually a dielectric material that lowers the propagation velocity. Thus, the
propagation velocity of a transmission line is given by

vp ¼ kvc ð11-2Þ
where

kv ¼ velocity factor
c ¼ velocity of light in free space (approximately 3 � 108 m/sec)

The velocity factor simply expresses the propagation factor as a percent of free space
light velocity. The velocity factor has a value between 0 and 1 depending on the dielectric
material in the transmission line and is specified by the cable manufacturer. Typically, kv

ranges from 60% to 90%.

11.5 Generator, Line, and Load

First, consider the generator and load shown in Figure 11-2. The generator produces a 1 V step
and has an output impedance equal to Z0. The generator is connected to the Z0 load by very
short wires, and therefore there are no transmission line effects. At the same instant the gen-
erator voltage changes from 0 V to 1 V, the voltage across the load resistor changes from 0 V
to 0.5 V. Note that the load voltage is one-half of the generator voltage due to the voltage
divider effect.

Z0 Load

If a transmission line is inserted between the generator and the load, the situation changes
(Figure 11-3a). When the generator voltage changes from 0 V to 1 V, a forward-going
(incident) voltage is created at the generator end of the transmission line. Since the generator
sees the Z0 impedance of the line, this incident voltage is equal to one-half of the generator
voltage. This voltage moves down the transmission line at the propagation velocity until it
meets the load. Since the load impedance is equal to the characteristic impedance of the line,
no reflections occur. The incident voltage is ‘‘absorbed’’ by the load.

+–

Generator

1V

0

Load

Z0

Z0

Figure 11-2 A Z0 generator drives a Z0 load.
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There is a time delay in the system as the voltage wave travels down the transmission line
(Figure 11-3b). This is unlike the previous example, where the wires are so short that
the load voltage instantaneously follows the generator voltage. Notice that the final value of
the load voltage is the same in both cases. After the transmission line effects settle out, the
DC voltages will be the same.

The system shown in Figure 11-3 has the transmission line matched at both ends. That is,
the impedances that the transmission line sees at the generator end and the load end are both
Z0. This eliminates any possible reflections and is usually the desirable case in instru-
mentation use. However, the generator and the load impedances may not be Z0, so other
cases must be considered.

Non–Z0 Load

Suppose the Z0 load is replaced by a load that is some other value (Figure 11-4a). As in the Z0

load case, the incident voltage of 0.5 V initially appears at the generator end of the trans-
mission line. The incident voltage is not affected by the change in load impedance since the
generator initially sees only the Z0 impedance of the line. The 0.5 V step propagates down
the line and eventually reaches the load. The load is not matched to the Z0 line, so some of the
forward-going voltage is reflected back toward the generator. The reflected voltage is given by

VR ¼ GVI ð11-3Þ
where

VR ¼ reflected voltage
VI ¼ incident voltage
G ¼ reflection coefficient

+
+
v1

v1(t)

v2(t)

t

t

Z0

Z0(a)

(b)

1V

Generator Load

0
Z0 v2

+

–
– –

Figure 11-3 (a) A Z0 generator drives a Z0 load using a transmission line. (b) It takes a finite
amount of time for the voltage to travel down the transmission line.
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The absolute value of G cannot exceed 1 since the reflected voltage cannot be larger than
the incident voltage. The value of G can vary between –1 and þ1, inclusive.2

For the case shown, G can be computed by

G ¼ ZL � Z0

ZL þ Z0
ð11-4Þ

Also,

ZL ¼ Z0
1 þ G
1 � G

ð11-5Þ
The reflected voltage, VR, propagates back down the line toward the generator. The

voltage at any point on the line is the sum of the incident and reflected voltages, taking into
account how far the two waves have traveled. The line is initially at 0 V (because the
generator has presumably been at 0 V for some time). As the incident wave travels down
the line, the line becomes charged to VI. Then the reflected wave starts back down the line
moving from the load toward the generator. As the wave passes any given point, the voltage
on the line at that point goes from VI to VI þ VR. When the reflected wave reaches
the generator, it sees a Z0 impedance (of the generator) and no additional reflections occur.
Had the generator impedance been other than Z0, additional reflections would occur.

2 The reflection coefficient is introduced here as a scalar quantity, but the definition will be expanded to include
complex values.
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Figure 11-4 (a) A Z0 generator driving a non–Z0 load. (b) The incident wave appears immediately
at v1 and travels down the line to v2, and a portion is reflected back toward the source.
After the reflected wave travels back to the source, it appears at v1.
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Example 11.1

Determine the incident and reflected voltages for the case shown in Figure 11-5. What is the
final value of the load voltage?

The incident wave VI ¼ 4(50)/(50 þ 50) ¼ 2 V, the reflected wave VR ¼ GVI, and
G ¼ [(30 – 50)/(30 þ 50)] ¼ –0.25. So VR ¼ (–0.25)(2) ¼ –0.5 V.

The final value of the load voltage is

VL ¼ VI þ VR ¼ 1:5 V

Note that this answer agrees with a simple DC analysis, ignoring the transmission line:

VL ¼ 4ð Þ 30= 50 þ 30ð Þ½ � ¼ 1:5 V

Let’s describe what happens. The line is initially at 0 V. When the voltage source steps to
4 V, a 2 V incident wave propagates down the line. When the incident voltage reaches the
load, a –0.5 V reflected wave starts its way back. As the reflected wave propagates back, the
transmission line voltage becomes 1.5 V. Finally, the reflected wave is absorbed when it
reaches the source, since the source is matched to Z0.

Open Load

A special case of load impedance is when there is no load at all (i.e., an infinite impedance)
as shown in Figure 11-6a. The reflection coefficient can be calculated for this case:

G ¼ ZL � Z0

ZL þ Z0

����
ZL¼1

¼ 1 ð11-6Þ

Thus, all of the incident voltage is reflected back toward the generator. The incident
voltage is once again 0.5 V, which propagates down the line until it encounters the load.

VR ¼ GVI ¼ 1ð Þ 0:5ð Þ ¼ 0:5 V ð11-7Þ

So 0.5 V is reflected back down the line toward the generator. After the reflected voltage
propagates down the line, the voltage on the transmission line is VI þ VR ¼ 1 V. This value
agrees with a simple DC analysis.

+ Z0 = 50

50

4V

0
30–

Figure 11-5 A 50 W source drives a 30 W load via a 50 W line.
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Short Load

Another special case is when the load impedance is a short circuit (ZL ¼ 0) as shown in
Figure 11-6b. For this case,

G ¼ ZL � Z0

ZL þ Z0

����
ZL¼0

¼ �1 ð11-8Þ

The incident voltage is again 0.5 V. The reflected voltage is

VR ¼ GVI ¼ �1ð Þ 0:5ð Þ ¼ �0:5 V

The incident voltage of 0.5 V propagates down the line to the load where the negative of
it is reflected back toward the generator. Since VI þ VR ¼ 0, the net result is that the voltage
returns to zero since the incident and reflected voltages cancel. This is required for the result
to make any sense: the final DC voltage across a short circuit must be zero.

11.6 Impedance Changes

So far, we have given examples where a generator drives a line that is connected to a load
impedance. Now we will expand the concept of reflection coefficient to include the case
where a voltage is incident at the junction of two different impedances. When the incident
voltage encounters an impedance change, part of the incident voltage is reflected back and
part of it travels on through (Figure 11-7), analogous to a lightwave encountering a partially
reflective lens.

The two impedances involved, Z1 and Z2, might be two transmission lines with differing
characteristic impedance or perhaps a slight impedance mismatch due to connector imper-
fections. Whatever the cause of the impedance change, it will result in a reflected wave.

Rewriting the expression for the reflection coefficient

G ¼ Z2 � Z1

Z2 þ Z1
ð11-9Þ
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ZL = 0

–

+1V

0
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–

Figure 11-6 (a) When the line is terminated in an open circuit, the reflection coefficient is 1.
(b) When the line is terminated in a short circuit, the reflection coefficient is –1.
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the portion of the voltage wave that is reflected is

VR ¼ GVI ð11-10Þ
A portion of the incident voltage may be transmitted through the impedance mismatch

but is modified by the amount reflected. The transmitted coefficient, T, is defined by

T ¼ VT

VI
¼ 1 þ G ¼ 2 Z2

Z1 þ Z2
ð11-11Þ

11.7 Sinusoidal Voltages

The sinusoid is a common electrical signal, so we will expand our discussion of transmission
lines to include this type of waveform.

Wavelength

The wavelength of a sinusoidal electromagnetic wave in free space is given by

l ¼ c=f ð11-12Þ
where

c ¼ velocity of light in free space
f ¼ frequency of the sinusoid

However, in a transmission line the velocity of propagation must be taken into account.
Thus, the wavelength of a sinusoidal voltage propagating down a transmission line is

l ¼ vp=f ¼ kv c=f ð11-13Þ
where

vp ¼ propagation velocity
f ¼ frequency of the sinusoid

kv ¼ velocity factor
c ¼ velocity of light in free space

The slower the propagation velocity, the shorter the wavelength.

Incident VI

Reflected VR

Transmitted VT

Lightwave Analogy

Figure 11-7 When a traveling wave, VI, encounters an impedance change, a portion of it is
reflected, VR, while a portion of it is transmitted through the mismatch, VT.
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Example 11.2

What is the wavelength of a sine wave that has a frequency of 146.52 MHz in a transmission
line with a 66% velocity factor?

l ¼ kv c=f ¼ 0:66 3 � 108
� �

= 146:52 � 106
� �

¼ 1:35 m

11.8 Complex Reflection Coefficient

Sine waves are normally characterized by their magnitude and phase. To accommodate this
representation, the concept of reflection coefficient is expanded to allow for the reflection
coefficient as a complex number. The reflection coefficient is often shown as a magnitude
and a phase angle.

G ¼ rffq ð11-14Þ
Both r and G are referred to as the reflection coefficient. However, r is a scalar quantity,

whereas G is a complex number.
The previously introduced definition of the reflection coefficient (reflected voltage over

the incident voltage) is modified to allow complex (vector) voltages.

G ¼ VRj jffqR

VIj jffqI
¼ VRj j

VIj j ffðqR � qIÞ ð11-15Þ

G ¼ rffðqR � qI Þ ð11-16Þ
The magnitudes of the incident and reflected voltages do not change with position on the

transmission line, and therefore r does not change with position. The phase of the complex
reflection coefficient does change as the position changes.

The complex reflection coefficient due to an impedance mismatch (as shown in
Figure 11-7) is computed using the values of the complex impedances.

G ¼ Z2 � Z1

Z2 þ Z1
ð11-17Þ

11.9 Return Loss

Another commonly measured quantity in radio frequency systems is return loss. The return
loss of a particular system is the scalar reflection coefficient expressed in decibels.

RL dBð Þ ¼ �20 logðrÞ ð11-18Þ

The minus sign in the equation causes the decibel form to indicate the amount of loss
from the incident wave to the reflected wave—hence the name return loss. It is a measure of
how large the reflected wave is relative to the incident wave. For example, if the return loss
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is 30 dB, then a 0 dBm incident wave causes a –30 dBm reflected wave. The return loss of a
system can range from 0 to ? dB, with 0 dB being the case where the entire incident wave is
reflected and ? occurring when none of the incident wave is reflected.

It is common to see return loss expressed with the sign reversed. That is, measured data
of return loss may be shown as negative (e.g., –30 dB). This is technically incorrect but
naturally follows from how the measurement is usually made. As long as the user remembers
that return loss is defined as a positive number, confusion is avoided.3

Example 11.3

A sine wave generator with an output impedance of 50 W drives a load impedance of
30 þ j20 W through a 50 W transmission line. What is the value of the reflection coefficient
and return loss at the load?

G ¼ ZL � Z0

ZL þ Z0
¼ ð30 þ j20Þ � 50

ð30 þ j20Þ þ 50
¼ 28:28 ff135�

82:46 ff14:0�

G ¼ 0:342 ff121� or � 0:176 þ j0:293

r ¼ Gj j ¼ 0:342

RLðdBÞ ¼ �20 logðrÞ ¼ 9:32 dB

11.10 Standing Waves

When a sinusoidal signal first propagates down a transmission line, the sinusoidal voltage
moves toward the load similar to how the step waveform moves down the line. When the
incident voltage encounters the load, a portion of the incident wave is reflected, according to
the complex reflection coefficient (Figure 11-8). This reflected wave travels back toward the
generator and may also be reflected again when the generator is reached, depending on the
generator’s impedance. All of this is very similar to the behavior of the step waveform.

Something different happens with a sinusoidal signal. The incident voltage and the
reflected voltage are both sine waves. When they intersect, going up and down the trans-
mission line, an interference pattern is set up. The envelope of the sinusoidal voltage will
remain in a constant shape called a standing wave, as shown in the Figure 11-9. The
envelope (or magnitude) of the voltage varies with distance down the line but the voltage at
each point on the line varies sinusoidally.

The voltage standing wave ratio (VSWR) or simply the standing wave ratio (SWR) is the
ratio of the maximum and minimum of the envelope.

SWR ¼ Vmax=Vmin ð11-19Þ
The SWR is always greater than or equal to one, with 1.0 being the case where no

mismatch occurs. In this case, Vmax is equal to Vmin since no reflections occur. A properly
loaded transmission line is often called a ‘‘flat’’ line, referring to the lack of standing waves.

3 See Bird (2009) for more information.
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The maximum of the envelope occurs when the incident and reflected voltages add
constructively. Similarly, the minimum of the envelope occurs where the incident and
reflected voltages add destructively.

Vmax ¼ VIj j þ VRj j ð11-20Þ
and

Vmin ¼ VIj j � VRj j ð11-21Þ
Thus, the SWR can be determined from the incident and reflected voltages as well as the

scalar reflection coefficient.

SWR ¼ VIj j þ VRj j
VIj j � VRj j ð11-22Þ

SWR ¼ 1 þ r
1 � r

ð11-23Þ

Also,

r ¼ SWR � 1
SWR þ 1

ð11-24Þ

+– Z0

Z0 incident

reflected

ZL

Figure 11-8 Sinusoidal signals also experience reflections on a transmission line.

± Z0

Z0

ZL

Vmax Vmin

Figure 11-9 The envelope of the voltage on a transmission line will form standing waves.
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Example 11.4

A 50 W sine wave generator drives a 100 W load through a 50 W transmission line. What are
the values of the reflection coefficient and standing wave ratio? If the incident wave has a peak
voltage of 4 V, determine the minimum and maximum envelope voltages occurring on the line.

G ¼ ZL � Z0

ZL þ Z0
¼ 100 � 50

100 þ 50
¼ 0:33

r ¼ Gj j ¼ 0:33

SWR ¼ 1 þ r
1 � r

¼ 2

¼ VIj j þ VRj j
VIj j � VRj j

so

VRj j ¼ VIj jðSWR þ 1Þ
ðSWR þ 1Þ ¼ 4ð2 � 1Þ

ð2 þ 1Þ ¼ 1:33 V

The maximum and minimum envelope voltages are

Vmax ¼ VIj j þ VRj j ¼ 4 þ 1:33 ¼ 5:33 V

Vmin ¼ VIj j � VRj j ¼ 4 � 1:33 ¼ 2:67 V

Example 11.5

What are the values of reflection coefficient, return loss, and SWR for the special cases of a
shorted load and an open load?

Shorted Load:

G ¼ ZL � Z0

ZL þ Z0
¼ 0 � Z0

0 þ Z0
¼ �1

r ¼ 1, RL ¼ �20 logð1Þ ¼ 0 dB

SWR ¼ 1 þ r
1 � r

¼ 1

Open Load:

G ¼ ZL � Z0

ZL þ Z0
¼ 1� Z0

1þ Z0
¼ 1

r ¼ 1, RL ¼ �20 logð1Þ ¼ 0 dB

SWR ¼ 1 þ r
1 � r

¼ 1

Note that both load conditions result in an infinite SWR and 0 dB return loss, although the
sign of the complex reflection coefficient is different.
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Table 11-1 gives values for reflection coefficients, return losses, and standing wave
ratios.

For the special case where both Z0 and ZL are real, we can calculate SWR easily by taking
the ratio of the two impedances. If ZL > Z0, then

r ¼ Gj j ¼ ZL � Z0

ZL þ Z0

����

���� ¼
ZL � Z0

ZL þ Z0

����

���� ð11-25Þ

SWR ¼ 1 þ r
1 � r

¼ ZL

Z0
for ZL > Z0; both real ð11-26Þ

Also

SWR ¼ Z0

ZL
for ZL < Z0; both real ð11-27Þ

11.11 Input Impedance of a Transmission Line

When an incident wave first encounters a transmission line, it sees an impedance of Z0. As it
propagates down the line, a portion of the incident wave may be reflected back toward the
generator end of the line. When this wave encounters the generator end, it will affect the
voltage at that end of the line. This also means that the impedance seen looking into the end

Table 11-1 Reflection Coefficient, Return Loss, and Standing Wave Ratio

Reflection Coefficient Return Loss Standing Wave Ratio

1.00 0.00 ?
0.90 0.92 19.00
0.80 1.94 9.00
0.70 3.10 5.67
0.60 4.44 4.00
0.50 6.02 3.00
0.40 7.96 2.33
0.30 10.46 1.86
0.20 13.98 1.50
0.10 20.00 1.22
0.09 20.92 1.20
0.08 21.94 1.17
0.07 23.10 1.15
0.06 24.44 1.13
0.05 26.02 1.11
0.04 27.96 1.08
0.03 30.46 1.06
0.02 33.98 1.04
0.01 40.00 1.02
0.00 ? 1.00
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of the line will depend on the magnitude and phase of the reflections, and it will no longer
be simply Z0. For the situation shown in Figure 11-10, the input impedance looking into the
line is4

ZIN ¼ Z0
ZL þ j Z0 tan qL

Z0 þ j ZL tan qL
ð11-28Þ

where

qL ¼ distance from the load, expressed as an angle (degrees or radians)

The angle representing the distance from the load may be found from the physical distance.

qL ¼ 360 d

l
ð11-29Þ

where

d ¼ distance from the load
l ¼ wavelength
qL ¼ in units of degrees

The velocity factor must be accounted for when computing the wavelength.

Matched System

For the special case of a perfectly matched system, ZL ¼ Z0, the ZIN equation reduces to

ZIN ¼ Z0
ZL þ j Z0 tan qL

Z0 þ j ZLtan qL

����
ZL¼Z0

¼ Z0 ð11-30Þ

Since there are no reflections in a perfectly matched system, the impedance looking into
the end of the line just equals Z0.

Z0 ZLZIN

qL

⇒

Figure 11-10 ZIN is the impedance looking into the end of a transmission line with a load ZL at
the end of it.

4 This equation is adapted from Hayt (1974).
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Example 11.6

For f ¼ 50 MHz, what is the impedance looking into the end of a 1 m length of 50 W
transmission line with a 70% velocity factor, terminated in 25 W?

l ¼ kv c=f ¼ 0:70 3 � 108
� �

= 50 � 106
� � ¼ 4:2 m

qL ¼ 360 d=l ¼ 360ð1Þ=4:2 ¼ 85:7�

ZIN ¼ Z0
ZL þ j Z0 tan qL

Z0 þ j ZL tan qL

¼ 50
25 þ j 50 tan 85:7�ð Þ
50 þ j 25 tan 85:7�ð Þ

¼ 98:9 W ff6:4� or 98:3 þ j 11:0 W

Not only is the input impedance larger than either Z0 or ZL, the impedance has an
imaginary component while Z0 and ZL are both real. (This illustrates the transformer action
possible with a transmission line, as the 25 W load impedance is transformed up to
approximately 100 W.)

11.12 Measurement Error Due to Impedance Mismatch

In a measurement situation, the generator or source may be an instrument (such as a signal
generator) or the device under test. The load is the input impedance of a measuring instru-
ment such as a power meter, spectrum analyzer, or network analyzer. Often the output
impedance of the source, transmission line, and analyzer are all nominally Z0 (Figure 11-11).
However, the exact value of each of these impedances may vary somewhat, causing slight
mismatches in the system and errors in the measurement.

CASE 1. PERFECT SOURCE, IMPERFECT LOAD

As shown in previous examples, the incident voltage from the source will propagate to the
load and a portion of it will be reflected back. The reflected voltage will travel back to
the source and will be absorbed there if the source is perfectly matched. The major portion of
the incident wave is transmitted into the load, which is to say it is measured by the instrument.

This mismatch effect will be examined from a power transfer point of view. The incident
wave traveling toward the load has a power associated with it.

PI ¼ V 2
I =Z0 ð11-31Þ

Z0
Source Load

ρS ρL

Figure 11-11 Measurement diagram for discussing mismatch loss and mismatch uncertainty.
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The power reflected back from the load is

PR ¼ V 2
R=Z0 ¼ ðrLVI Þ2=Z0 ð11-32Þ

The power delivered to the load must be the difference between these two powers.

PL ¼ PI � PR ¼ V 2
I

Z0
ð1 � r2

LÞ ¼ PIð1 � r2
LÞ ð11-33Þ

Ideally, all the incident power would be delivered to the load, but the mismatch causes
some amount of power loss. The mismatch loss5 is the power transfer to the load, relative to
the incident power, expressed in dB.

mismatch loss ¼ �10 logðPL=PI Þ ¼ �10 logð1 � r2
LÞ ð11-34Þ

Example 11.7

A power meter with an SWR of 1.2 is used to measure the power at the end of a transmission
line. How much error will be introduced in the measurement due to the mismatch at the
power meter?

First, we need to compute the reflection coefficient from the SWR.

r ¼ SWR � 1
SWR þ 1

¼ 1:2 � 1
1:2 þ 1

¼ 0:091

The mismatch loss is given by

mismatch loss ¼ �10 logð1 � r2
LÞ

¼ �10 logð1 � 0:0912Þ ¼ 0:036 dB

The power meter will read too low by 0.036 dB.

The mismatch loss has been derived in terms of a perfect source driving an imperfect
load. The same effect exists for the case where the load impedance is exactly Z0 and the
source has a non-Z0 impedance. The mismatch loss is computed the same way but using the
source’s reflection coefficient (not the load’s).

CASE 2. IMPERFECT SOURCE, IMPERFECT LOAD

Now consider the case where the source also has an output impedance that is not exactly Z0.
In addition to the error described in Case 1, an additional error will be introduced due to
source mismatch. The mismatch loss at the source is described mathematically as ð1 � r2

SÞ,

5 Beatty (1964) further refines this definition, calling it Z0 mismatch loss to differentiate it from other possible
definitions.
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where rS is the source reflection coefficient. Note the similarity of this term to the load
mismatch equation of Case 1.

There is another source of error when both the load and source are not perfectly matched.
When the reflection from the load travels back to the source, instead of being absorbed at the
source it is reflected back again to the load. It adds constructively or destructively at the load,
depending on the phase of the signal. This double reflection adds another term to the
equation, which will be derived shortly. Additional reflections also occur, with each
reflected wave being smaller than the previous one. For source and load impedances rea-
sonably close to Z0, the additional reflections are much smaller than the first load/source
round-trip reflection. Since the traveling waves in the system may add vectorally, they will
be analyzed as voltage waveforms and then converted to power.

The incident wave, VS, leaves the source and travels to the load. At the load end, an
incident voltage, VI, gets reflected back to the source, which reflects it again to the load,
which produces a second incident wave, rSrLVI. There are really two waves incident at the
load: the first direct wave from the source and the doubly reflected wave. Mathematically,
we can express this as

VI ¼ VS � rSrLVI ð11-35Þ

Solving for VI/VS,

VI

VS
¼ 1

1 � rSrL
ð11-36Þ

The scalar reflection coefficient is used here since we usually don’t know the phase of the
reflection and after the signal travels an unknown length of cable the phase relationship is
lost anyway. The uncertainty in the sign of the reflected term indicates that we don’t know
whether the reflected wave will add constructively or destructively.

Taking the square of equation (11-33) and combining it with the mismatch losses at the
source and load gives the complete power transfer function.

PL

PS
¼ ð1 � r2

SÞð1 � r2
LÞ

ð1 � rSrLÞ2 ð11-37Þ

The numerator of the equation indicates the effect of the mismatch loss. These two terms
are deterministic in the sense that a given reflection coefficient will cause a corresponding
loss in power to the load. On the other hand, the denominator represents a mismatch
uncertainty, with the uncertainty in the power transfer bounded by taking the þ or – sign in
the denominator. The actual power transfer can fall anywhere in between these two
extremes. From a measurement point of view, we concentrate on the maximum and mini-
mum power transfer, which represents the maximum and minimum error that can be incurred
due to impedance matching problems.

Taking the decibel form of the equation allows it to be easily broken up into the indivi-
dual error mechanisms.

10 log
PL

PS

� �
¼ 10 logð1 � r2

SÞ þ 10 logð1 � r2
LÞ þ 20 logð1 � rSrLÞ ð11-38Þ
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Example 11.8

Determine the worst-case error, expressed in decibels, due to mismatches when a source with
a 10 dB return loss drives a lossless transmission line connected to a power meter having a
return loss of 20 dB.

rS ¼ 10ðRL=�20Þ ¼ 10ð10=�20Þ ¼ 0:32

rL ¼ 10ðRL=�20Þ ¼ 10ð20=�20Þ ¼ 0:1

The mismatch loss due to the source is

10 logð1 � r2
SÞ ¼ 10 logð1 � 0:322Þ ¼ �0:469 dB

The mismatch loss due to the load is

10 logð1 � r2
LÞ ¼ 10 logð1 � 0:12Þ ¼ �0:0436 dB

The mismatch uncertainty due to the double reflection is

20 logð1 � rSrLÞ ¼ 20 log 1 � ð0:32Þð0:1Þ½ � ¼ �0:282 dB; þ 0:274 dB

The total error is bounded by

�0:469 � 0:0436 þ 0:274 ¼ �0:239 dB

�0:469 � 0:0436 � 0:282 ¼ �0:795 dB

11.13 Insertion Gain and Loss

Measurement of insertion gain or loss is shown in Figure 11-12. The output level of a signal
generator is measured by a power meter. The device under test (DUT) is then inserted
between the generator and the power meter. The gain or loss of the device is determined by
taking the ratio of the output power to the generator power or, in decibels, the input power is
subtracted from the output power.

insertion loss ðdBÞ ¼ 10 logðPREF=PMEASÞ ð11-39Þ

ρS ρL

ρS ρLρ2ρ1

Signal
Generator

Signal
Generator

Power
Meter

Power
MeterDUT

Reference
Measurement

Insertion Loss
Measurement

Figure 11-12 Measurement of insertion gain (or loss) can be accomplished with a signal
generator and a power meter.
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where

PREF ¼ reference power

PMEAS ¼ power measured at the DUT output

The insertion loss equation can be inverted to produce insertion gain:

insertion gain dBð Þ ¼ 10 log PMEAS=PREFð Þ ð11-40Þ
The reference power is determined by

PREF ¼ KM PS ð11-41Þ
where

KM ¼ constant corresponding to the mismatch error in the power meter
PS ¼ power out of the source

PMEAS ¼ KM PSKDUT ð11-42Þ
where

KDUT ¼ power transfer through the DUT

The insertion gain can be expressed in terms of these two equations:

insertion gain ðdBÞ ¼ 10 logðKM PSKDUT=KM PSÞ
¼ 10 logðKDUTÞ

ð11-43Þ

The result is that the insertion gain measurement depends only on the DUT’s transfer
characteristics and not on the mismatch error at the meter or the source’s power level. This is
an idealized view of the insertion gain/loss measurement, appropriate when there is a good
Z0 match at both ports of the DUT.

Example 11.9

Determine the insertion loss and insertion gain in decibels for the following measurement.
The reference power was measured at 120 mW, and the DUT power was measured as
20 mW.

insertion loss ðdBÞ ¼ 10 logðPREF=PMEASÞ
¼ 10 logð0:120=0:020Þ
¼ 7:78 dB

The insertion gain is just the negative of the insertion loss, or –7.78 dB.

Errors Due to Impedance Mismatch

Mismatch errors will contribute to the error in insertion gain measurements. First, consider
the reference measurement. A mismatch loss occurs at the output of the signal generator and
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the input to the power meter, both due to their imperfect Z0 impedances. The mismatch loss
at the signal generator is consistent between the reference and insertion loss measurement
and is considered to be included in PS, which has been shown to be removed from the
insertion loss calculation. Similarly, the mismatch loss at the power meter is included in KM

and has already been shown to be removed from the insertion loss calculation.
Another mismatch error occurs, namely, the mismatch uncertainty due to the reflection

off the power meter being reflected again at the signal generator. The doubly reflected wave
ends up again at the power meter and introduces an error into the reference measurement.
Since this same error mechanism does not occur during the insertion gain measurement, it
will introduce an error into the insertion gain calculation. Including this error in the reference
measurement gives a more accurate equation for PREF. (Note that the mismatch uncertainty
has the same form as equation (11-36) except that it is squared to be consistent with the use
of power instead of voltage.)

PREF ¼ KM PS

ð1 � rSrLÞ2 ð11-44Þ

The insertion gain measurement has a different set of reflections due to the imperfect Z0

impedances. There are double reflections between the signal generator and the DUT (rS, r1)
and between the DUT and the power meter (r2, rL). These two sets of reflections introduce
two more sources of measurement uncertainty, and the resulting measured power is

PMEAS ¼ KM PSKDUT

ð1 � rSr1Þ2ð1 � r2rLÞ2 ð11-45Þ

There is one more source of mismatch uncertainty. The reflected wave from the power
meter can pass through the DUT and be reflected back from the signal generator. This
reflection passes through the DUT again and is finally incident on the power meter, intro-
ducing a mismatch uncertainty. This mechanism will be ignored here—if the round-trip loss
through the DUT is greater than 10 dB, its effect is negligible.6

Now that the mismatch uncertainties have been included in the power measurements,
consider again the insertion gain measurement.

insertion gain ðdBÞ ¼ 10 logðPMEAS=PREFÞ

¼ 10 log
KM PSKDUTð1 � rSrLÞ2

KM PSð1 � rSrLÞ2ð1 � r2rLÞ2

" #
ð11-46Þ

¼ 10 logðKDUTÞ þ 20 logð1 � rSrLÞ
� 20 logð1 � rSrLÞ � 20 logð1 � rSrLÞ

ð11-47Þ

The first term of the equation is the ideal result for insertion gain, and the remaining
terms represent the mismatch uncertainty in the measurement.

mismatch uncertainty ¼ 20 logð1 � rSrLÞ � 20 logð1 � rSrLÞ � 20 logð1 � r2rLÞ ð11-48Þ

6 See Adam (1969) and Hewlett-Packard (1978) for a discussion of this effect.
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Example 11.10

The insertion loss of an attenuator is measured using a signal generator and power meter.
Determine the mismatch uncertainty in measuring the 10 dB attenuator with an SWR at each
port of 1.5. The signal generator and power meter have return losses of 20 dB and 30 dB,
respectively.

First, compute the reflection coefficient of each device.

r ¼ SWR � 1
SWR þ 1

r1 ¼ r2 ¼ 1:5 � 1
1:5 þ 1

¼ 0:20

rS10ð�RL=20Þ ¼ 10ð�20=20Þ ¼ 0:10

rL ¼ 10ð�RL=20Þ ¼ 10ð�30=20Þ ¼ 0:0316

Now compute the mismatch uncertainty.

mismatch uncertainty ¼ 20 logð1 � rSrLÞ � 20 logð1 � rSr1Þ
� 20 logð1 � rSrLÞ

¼ 20 log 1 � ð0:1Þð0:0316Þ½ � � 20 log 1 � ð0:10Þð0:20Þ½ �
� 20 log 1 � ð0:20Þð0:0316Þ½ �

¼ ðþ0:0274;�0:0275Þ þ ðþ0:175;�0:172Þ
þ ðþ0:0551;�0:0547Þ

mismatch uncertainty ¼ þ0:258 dB;�0:254 dB

Therefore, the errors due to mismatch uncertainty are bounded by þ0.258 dB and
–0.254 dB, for a total uncertainty of 0.512 dB. Note that the mismatch uncertainty is not the
same in both directions, but with small mismatch uncertainty the two limits have approxi-
mately the same magnitude.

Now consider the errors internal to the power meter (instrument accuracy). The absolute
accuracy of the power meter is not important as long as the relative accuracy of the meter is
good. In other words, the meter does not need to be able to determine whether the signal power
is exactly a certain power level, but it does need to measure accurately changes in power level.
In the insertion gain measurement, the change in power level that must be measured is the
change caused by the insertion of the device under test into the measurement system. The
measurement is accurate to the extent that the meter correctly measures this change.

The signal generator may introduce an error due to instrument drift. If the signal gen-
erator is slightly off in signal level, it will not affect the measurement accuracy since the
power meter measures the signal level anyway. However, the signal generator’s output
power must be stable so that it does not change between the time the reference measurement
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and the insertion loss measurement takes place. Such a change in output power would
introduce an error classified as instrument drift.

11.14 Line Losses

Lossless transmission lines have been assumed thus far, which is a good approximation for
many situations. If high-quality cables are used, frequencies are low and cable length is
short, other error mechanisms in the measurement system will dominate. The longer the
cable becomes and the higher the frequency, the more attention needs to be paid to the cable
loss. At microwave frequencies, the loss of even high quality cables can be significant.

Manufacturers normally specify the loss in their cables in dB, often in dB per hundred
feet.

11.15 Coaxial Lines

Transmission lines are available in a variety of physical configurations, but coaxial trans-
mission lines are most commonly used in measurement applications (Figure 11-13). The
center conductor is surrounded by a dielectric material, which is surrounded by the outer
conductor shield. The characteristic impedance is given by

Z0 ¼ 138
ffiffiffi
e

p logðD=dÞ ð11-49Þ

where

D ¼ inner diameter of the shield
d ¼ outer diameter of the center conductor
e ¼ dielectric constant of the dielectric material

For air, the dielectric constant is equal to 1.
The coaxial structure inherently provides shielding from external electromagnetic fields

and can result in transmission lines that can be moved and flexed somewhat without causing
the characteristic impedance to change. Not all coaxial lines are flexible since some of the

Dielectric

Conductor

Shield

Figure 11-13 The coaxial transmission line is commonly used in measurement applications.
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highest-quality lines, often with air dielectric, are fabricated with rigid or semirigid outer
conductors.

The most common impedances in high-frequency measurement applications are 50 and
75 W. The 50 W impedance is most common due to its good compromise between power
handling capability and loss. The 75 W impedance is found more in telecommunications
applications where its low-loss characteristics are important.

Bibliography

Adam, Stephen F. Microwave Theory and Applications. Englewood Cliffs, NJ: Prentice Hall, Inc.,
1969.

Beatty, Robert W. ‘‘Insertion Loss Concepts,’’ Proceedings of the IEEE, June 1964.

Bird, Trevor S. ‘‘Definition and Misuse of Return Loss,’’ IEEE Antennas and Propagation Magazine,
Vol. 51, No. 2, April 2009.

Hayt, William H., Jr. Engineering Electromagnetics, 3rd ed. New York: McGraw-Hill Book Company,
1974.

Hayward, W. H. Introduction to Radio Frequency Design. Englewood Cliffs, NJ: Prentice Hall, Inc.,
1982.

Hewlett-Packard Company. ‘‘High Frequency Swept Measurements,’’ Application Note 183, December
1978.

Laverghetta, Thomas S. Practical Microwaves. Indianapolis, IN: Howard W. Sams & Co., Inc., 1984.

Van Valkenburg, M., and W. Middleton (ed.), Reference Data for Radio Engineers, 9th ed. Woburn,
MA: Butterworth-Heinemann, 2002.

Bibliography 217





CHAPTER 12

Measurement Connections

Connecting an instrument to a device under test (DUT) invariably involves disturbing that
device. When making precision measurements, it is desirable to minimize loading and other
effects so that the measurement is not corrupted by the measuring instrument. Probes,
attenuators, impedance matching devices, and filters are used to couple the signal of interest
into the instrument in the most efficient and accurate manner.

12.1 The Loading Effect

Any attempt to measure a voltage in a circuit will change that voltage. Consider the circuit
shown in Figure 12-1. The circuit under test is modeled as a voltage source with some
internal impedance, ZS. The open circuit voltage of the circuit is VS since no current can flow
through ZS under open circuit conditions. When load impedance, ZL, is connected to the
circuit, the situation changes. By the voltage divider relationship

VL ¼ VSZL

ðZS þ ZLÞ ð12-1Þ

Unless ZS is equal to zero or ZL is equal to infinity, VL will always be less than VS.

ZS

ZL VL
VS

Source Load

−

+

±

Figure 12-1 A finite impedance voltage source is attached to a resistive load.
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12.2 Maximum Voltage and Power Transfer

Some electronic systems are designed to maximize the voltage transfer in the system. To
maximize the voltage transfer, ZL should be much larger than ZS. If ZL is infinite, the desired
result of VL ¼ VS occurs.

Other electronic systems are designed to maximize the power transfer in the system. The
power dissipated in the load impedance of Figure 12-1 is given by

PL ¼ V 2
S ZL

ðZS þ ZLÞ2 ð12-2Þ

It can be shown that the power in the load is maximized when1

ZL ¼ Z★

S ð12-3Þ

(★ indicates complex conjugate)

If the impedances are real, then the complex conjugate designation can be dropped and
power is maximized when both of the impedances (resistances) are the same.

As discussed in Chapter 11, transmission lines are often used to transfer the measured
signals, especially at high frequencies. By keeping all input and output impedances the same
value as the characteristic impedance of the transmission line, we can avoid reflections and
deliver maximum power transfer.

12.3 High-Impedance Inputs

If our measuring instrument has a high impedance relative to the DUT, we can measure a
given voltage with minimal loading. In most measurement situations, ZS is predetermined
since it is a function of the circuit being measured and ZL must be much larger than ZS.

Spectrum and network analyzers that cover frequencies below 10 MHz sometimes pro-
vide high-impedance inputs. Typically, these inputs can be modeled by a 1 MW resistor in
parallel with a small capacitor (typically 30 pF). This type of input is very similar to the
high-Z inputs of the conventional oscilloscope. At low frequencies, the input impedance is
1 MW, which is sufficiently large for most applications. As the frequency increases, the
parallel capacitance becomes dominant and reduces the equivalent input impedance of the
instrument. The instrument user must be careful to not assume that a ‘‘high-impedance’’
input is high impedance for all frequencies. For example, at 10 MHz, the impedance of a
30 pF capacitor is only 530 W. Besides causing a reduction in amplitude, the high-impedance
input can introduce a phase shift due to the parallel capacitance.

High-Impedance Probes

Standard oscilloscope probes can be used with high-impedance analyzer inputs to provide
convenient probing of circuit nodes (Figure 12-2). A 1X or 1:1 probe has no attenuation and

1 This assumes that ZS is nonzero and ZL is to be chosen. Otherwise ZS ¼ 0 would be a good choice.
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is roughly equivalent to connecting the instrument input to the circuit under test with a
shielded cable. The circuit model is shown in Figure 12-3.

The measured voltage is

VIN ¼ VS
RIN

RIN þ RS

1
1 þ j2pf CINðRIN k RSÞ ð12-4Þ

The input capacitance, CIN creates a pole in the transfer function, causing VIN to
decrease at high frequencies. The magnitude of the transfer function is reduced by 3 dB at
f ¼ 1/[2p(RINkRS)CIN]. Note that this frequency (essentially the bandwidth of the system)
depends on RIN, CIN, and RS. Normally, RIN is much larger than RS, so RS dominates.

Figure 12-2 A typical 10:1 high-impedance oscilloscope probe. (� Keysight Technologies, Inc.
Reproduced with Permission, Courtesy of Keysight Technologies, Inc.)

Circuit Under Test

RS
RIN CINVS VIN

Instrument Input

+

±
−

Figure 12-3 The circuit under test and a high-impedance instrument input produce a single-pole
low-pass transfer function.
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While CIN is part of the measuring instrument, RS is the equivalent output impedance of the
circuit under test. Thus, the impedance of the node being measured will influence the
bandwidth of the measurement.

Attenuating Probes

The bandwidth-limiting effect of the analyzer’s input capacitance can be compensated
for at the price of some attenuation of the input signal. An attenuating probe includes a
resistor and capacitor in the signal path (Figure 12-4).2 The voltage delivered to the ana-
lyzer input is

VIN ¼ VS
RINðj2p f RPCP þ 1Þ

RINðj2p f RPCP þ 1Þ þ RPðj2p f RINCIN þ 1Þ ð12-5Þ

If RPCP ¼ RINCIN then the equation reduces to

VIN ¼ VS
RIN

RIN þ RP
ð12-6Þ

Under this condition, the effect of the input capacitance is canceled and other parameters
such as cable capacitance will limit the probe bandwidth. The loading on the device under test
is decreased, since the DUT sees a higher probe impedance and smaller loading capacitance.
For a 10X or 10:1 probe, RP is chosen to be 9 times RIN; VIN is one-tenth of VS. Any particular
model of probe is designed for a certain range of input capacitance and since input capacitance
will vary with the design of the instrument, the probe must be selected to match the input.

CP is made variable to allow the user to match precisely the probe to the input. When
used with an oscilloscope, the probe is compensated (tweaked) by optimizing the pulse
response of the system. In spectrum and network analyzer applications, a probe can be

2 This is a simplified probe circuit. Practical probe circuits may be arranged differently and may have additional
circuit components.

RP
RIN CIN

Instrument Input

Attenuating Probe

VIN

+

−

VS

+

−

CP

Figure 12-4 An attenuating probe will cancel out the effect of the instrument’s input
capacitance, producing a higher measurement bandwidth.
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compensated by adjusting it for the flattest possible frequency response, using a tracking
generator or signal generator with flat frequency response.

The 10:1 probe is the most common attenuating probe, supplying 20 dB of attenuation.
Other attenuation factors are possible, with each trading off increased signal attenuation for
increased system bandwidth.

12.4 Active High-Impedance Probes

Most attenuating oscilloscope probes have a bandwidth of less than 1 GHz. To probe signals
with higher frequency content, an active probe can be used. An active probe is designed to
drive the Z0 input of the instrument. It uses an amplifier with low input capacitance and wide
bandwidth to sense wideband signals with minimal loading. For example, the probe shown in
Figure 12-5 has a bandwidth of 12 GHz and an input impedance of 0.35 pF in parallel with
25 KW. Active probes may be single ended (one probe connection goes to ground) or dif-
ferential (both probe connections can measure away from ground). A differential active
probe allows measurement of a differential signal, although the analyzer has a single
grounded input.

12.5 Z0 Impedance Inputs

At higher frequencies (above ~10 MHz), stray capacitance and other effects seriously
degrade the performance of high-impedance inputs. Although high-impedance inputs may be
present on high-frequency analyzers, for quality measurements a Z0 input impedance is used.

Figure 12-5 An active probe is designed with an amplifier having very low input capacitance so
that wide bandwidth signals can be probed with minimal loading. (� Keysight
Technologies, Inc. Reproduced with Permission, Courtesy of Keysight
Technologies, Inc.)
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The purpose of these Z0 inputs is not so much to provide maximum power to the analyzer,
but to provide a Z0 match for systems that need to be matched during the measurement.
Many circuits such as filters, amplifiers, attenuators, and oscillators need to see a Z0 load to
function properly. The analyzer is usually connected to the device under test via a Z0

impedance transmission line, so a Z0 input properly terminates the line.
Although the analyzer may function as a Z0 load, it usually is not capable of handling

large power levels. The input voltage or power to the analyzer must not exceed its recom-
mended rating. A power attenuator or attenuating coupler is designed to handle large signal
levels and may be used to reduce the power present at the analyzer’s input.

12.6 Input Connectors

A variety of connector types are found on network and spectrum analyzer inputs, depending
on the accuracy and frequency range of the instrument. A connector must introduce very
little impedance mismatch to enable an accurate measurement. A connector’s impedance
varies depending on the frequency of operation. Connectors that are perfectly acceptable at
low frequencies may perform miserably at 1 GHz. Connector repeatability is also important
since it will limit the repeatability of the measurement. This also has implications about the
quality of the instrument calibration since connector repeatability errors will occur during
the calibration procedure.

For analyzers with upper frequency limits less than 40 MHz, the bayonet Neill Concel-
man (BNC)3 connector is often used (Figure 12-6). The bayonet-style locking mechanism
provides a quick and convenient means of attaching and removing the connectors. The BNC

3 The BNC connector is named for its inventors, Paul Neill and Carl Concelman.

Figure 12-6 The two most common connectors used on spectrum and network analyzers are the
Type N (left) and BNC (right). (� Keysight Technologies, Inc. Reproduced with
Permission, Courtesy of Keysight Technologies, Inc.)
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connector’s return loss degrades at higher frequencies, but the BNC fills the role of general-
purpose connector for noncritical inputs and outputs. The BNC is considered usable to
11 GHz and is available in both 50 and 75 W versions.

For precision radio frequency measurements, the type N (Neill) connector is widely used.
Found in both 50 and 75 W versions, this connector is much larger than the BNC and works
well beyond 10 GHz. The threaded coupling mechanism provides good repeatability and is
often used below microwave frequencies for this reason. The 50 and 75 W versions are not
the same, and accidentally mixing them can cause damage to the connectors.

At microwave frequencies, the choice of connector is even more important. Examples of
connectors used in this frequency range are the APC-7 (7 mm), the APC-3.5, the SMA, and
the SMB.

12.7 Z0 Terminations

In many measurement situations, it is important that all ports of the DUT are properly
terminated. This means that the device must see the correct (usually Z0) impedance at the
port. A Z0 termination is basically just a high-quality resistor conveniently packaged with the
appropriate connector. A feedthrough termination is one that has a connector at both ends.
Such a connector may be used to connect a high-impedance input to a DUT (Figure 12-7).
The instrument input impedance is presumably much higher than Z0, and the device under
test sees roughly a Z0 impedance.

12.8 Power Dividers and Splitters

Power dividers are used to provide a common signal to multiple ports, such as multiple
DUTs or instrument inputs. Most power dividers are two-way dividers (providing two out-
puts), but dividers with additional outputs are also available.

Three-resistor power dividers can be configured in one of two ways (Figure 12-8). These
two circuits are totally equivalent from an external point of view. If each port is loaded by a
Z0 resistor to ground, then the impedance looking into each port of the power splitter is also
Z0. (This is a simple example of a circuit that must be properly terminated at each port.)

This power divider is a symmetrical design, so any port can be consider an input or
output. In addition, the divider can also be used to combine two signal sources into one
output (may be referred to as power combiner). This power divider introduces a nominal loss
of 6 dB between any two ports.

Z0
High Z
Input

Device
Under Test

Figure 12-7 A feedthrough termination can be used to connect a Z0 device with a high-
impedance input.
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Power Splitters

The two-resistor power divider, also called a power splitter, is shown in Figure 12-9.4 This
power splitter has only two resistors and is not symmetrical, so the input and two outputs are
labeled in the circuit diagram. This type of splitter should be used in leveling and ratio
applications. The nominal loss through the splitter is 6 dB.

Figure 12-10 shows the two-resistor splitter driven by a voltage source with Z0 impe-
dance, with a Z0 load on each output. The impedance looking into the input of the splitter is
Z0 in this configuration. However, the impedance looking back into the output ports of the
splitter is 1.67 Z0, not a perfect Z0 match. However, the splitter circuit has a desirable
characteristic that enables more accurate ratio measurements. The voltage labeled Vx is
connected to both output ports via a Z0 resistor. While Vx may vary with changing load
impedances on either output, this divider always maintains a common voltage fed to both
outputs through a Z0 resistor.5 Ratio measurements are discussed further in Chapter 14.

Figure 12-11 shows examples of a power splitter and a power divider.

Z0

Z0

Z0

Z0/3

Z0/3

Z0/3

Figure 12-8 Circuit diagrams for the two types of three-resistor power dividers.

4 The terms power divider and power splitter are easily confused—hence the reference to the number of resistors in
the circuit to keep it straight.
5 See Johnson (1975) for a more detailed analysis of this effect.

Z0

Z0

Input

Output

Output

Figure 12-9 The circuit diagram for the two-resistor power splitter.
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Z0

Output

Output

Input

±
Z0

Z0

Z0

Z0

Vx

Vs

Figure 12-10 The two-resistor splitter drives the two output ports with the common voltage, Vx,
via two Z0 resistors. This provides a more consistent output voltage level for ratio
measurements.

Figure 12-11 Examples of a power splitter and power divider. (� Keysight Technologies, Inc.
Reproduced with Permission, Courtesy of Keysight Technologies, Inc.)
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12.9 Attenuators

Attenuators (sometimes called pads) are used to reduce the signal level in a measurement sys-
tem. This may be required to bring a large signal within the measuring range of an instrument or
to control distortion by reducing the signal level. Also, improvement in the impedance match
(return loss) may be achieved by using attenuators. Fixed attenuators provide only one, fixed
amount of attenuation, while variable attenuators can be adjusted (often in discrete steps). High-
quality attenuators are commercially available, or they can be constructed by the instrument user.

High-Impedance Attenuators

If an instrument with a high input impedance is used and the device driving the attenuator
has a low impedance, a simple voltage divider can be used as an attenuator (Figure 12-12a).
The high-impedance input of the instrument ensures that little or no loading will occur on the
output of the divider. However, the effect of the input capacitance should be considered as
the frequency increases. A compensated high-impedance attenuator can compensate for any
stray capacitance across R2 or instrument input capacitance by placing a capacitor in parallel
with R1 (Figure 12-12b). This is the same technique used in an attenuating probe, described
earlier in the chapter. The capacitor value must satisfy the equation.

R1C1 ¼ CINðR2kRINÞ

The lack of a Z0 or other reference impedance and the usage of the common voltage
divider suggest that the attenuator be specified in terms of voltage gain or loss. The voltage
gain6 of the circuit is given by

GV ¼ VOUT=VIN ¼ R2= R1 þ R2ð Þ ð12-7Þ

R1

R2VIN

+

−

+

−

VOUT

+

−

VOUT

(b)

(a)

+

−

VIN RINCIN

C1

R2

R1

Figure 12-12 (a) A voltage divider circuit can be used as an attenuator for high-impedance
systems. (b) A capacitor can be used to compensate the attenuator, improving the
frequency response.

6 Of course, the attenuator will always be lossy (VOUT < VIN), and the gain will be less than unity.
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The sum of R1 and R2 should be chosen so that it is much larger than the output impe-
dance of the device driving the voltage divider. Then, R1 and R2 can be computed.

R2 ¼ GV R1 þ R2ð Þ ð12-8Þ
R1 ¼ 1 � GVð Þ R1 þ R2ð Þ ð12-9Þ

Example 12.1

Design a high-impedance attenuator to produce a 1 V root mean square (RMS) signal at the
output when the input signal is 5 V RMS. The loading on the driving circuitry must be at
least 1 kW.

The load on the driving circuitry is R1 þ R2, so choose R1 þ R2 equal to 1 kW. The voltage
gain of the attenuator is GV ¼ VOUT/VIN ¼ 1/5 ¼ 0.2.

R2 ¼ GVðR1 þ R2Þ ¼ 0:2ð1000Þ ¼ 200 W

R1 ¼ 1 � GVð Þ R1 þ R2ð Þ ¼ 1 � 0:2ð Þ 1000ð Þ ¼ 800 W

Z0 Attenuators

Devices that have input and output impedances of Z0 require attenuators designed to match
the Z0 impedance. In such systems it is customary to specify the loss of the attenuator as a
power ratio, usually expressed in decibels.

K ¼ PIN=POUT ð12-10Þ
KdB ¼ 10 logðPIN=POUTÞ ð12-11Þ

The T attenuator circuit is shown in Figure 12-13. The resistor values can be determined
from

R1 ¼ Z0ð
ffiffiffiffi
K

p � 1Þ
ffiffiffiffi
K

p þ 1
ð12-12Þ

R2 ¼ 2Z0

ffiffiffiffi
K

p

K � 1
ð12-13Þ

Another Z0 attenuator configuration, the p attenuator, is shown in Figure 12-14.

R2

R1 R1

Figure 12-13 The T attenuator circuit.
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The resistor values are determined from

R1 ¼ Z0

ffiffiffiffi
K

p þ 1
ffiffiffiffi
K

p � 1
ð12-14Þ

R2 ¼ Z0
K � 1

2
ffiffiffiffi
K

p ð12-15Þ

The two attenuator configurations shown are equivalent, but for a particular application,
one configuration may result in more reasonable component values. Note that both Z0

attenuator configurations are symmetrical from one port to another. Therefore, they provide
the same attenuation in both directions.

Example 12.2

In a particular 50 W system, a –10 dBm signal must be attenuated to –30 dBm. Design an
attenuator to accomplish this.

First compute the loss required. In dB,

KdB ¼�10 dBm � ð�30 dBmÞ ¼ 20 dB

In power ratio form,

K ¼ 10ðKdB=10Þ ¼ 100

Using the T attenuator configuration,

R1 ¼ Z0ð
ffiffiffiffi
K

p � 1Þ
ffiffiffiffi
K

p þ 1
¼ 50ð ffiffiffiffiffiffiffiffi

100
p � 1Þ
ffiffiffiffiffiffiffiffi
100

p þ 1
¼ 40:9 W

R2 ¼ 2Z0

ffiffiffiffi
K

p

K � 1
¼ 2ð50Þ ffiffiffiffiffiffiffiffi

100
p

100 � 1
¼ 10:1 W

12.10 Return Loss Improvement

Attenuators can be used to improve the return loss of a device, at the expense of reduced
signal level. Consider the situation shown in Figure 12-15. An attenuator with power loss, K,
is connected to a load having a reflection coefficient of rL. The attenuator input and output

R1R1

R2

Figure 12-14 The p attenuator circuit.
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impedances are not perfect, so they each have a reflection coefficient associated with
them, r1 and r2.

Without the attenuator in the system, an incident voltage, VI, produces a reflected voltage,

VR ¼ rLVI ð12-16Þ
With the attenuator connected, VI is attenuated by

ffiffiffiffi
K

p
; the loss in the attenuator. (Since K

is the ratio of input and output power, the voltage is reduced by
ffiffiffiffi
K

p
:) This makes the voltage

incident on the device equal to VI=
ffiffiffiffi
K

p
: A reflected voltage equal to rL VI=

ffiffiffiffi
K

p
is produced.

Assuming a symmetrical attenuator, the reflected voltage is attenuated by
ffiffiffiffi
K

p
on its way

back. The reflected voltage seen at the attenuator port is

VR ¼ rLVI

K
ð12-17Þ

The attenuator input and output impedances also cause another set of reflections. A
reflected voltage is caused by r1 as VI is incident on the attenuator input. Also, when the
incident voltage makes its way to the load and a reflected voltage is produced due to rL, that
reflected voltage may be reflected again by r2. This reflection will be ignored in the analysis,
since with a good-quality attenuator r2 will be small and any subsequent reflection from the
load will be even smaller. Also, its effect will be reduced by

ffiffiffiffi
K

p
as it passes back through

the attenuator. So combining the main reflection from the load and the attenuator input
reflection,

VR ¼ VI rI þ
rL

K

� �
ð12-18Þ

Since we don’t know whether the reflections will add in phase or out of phase, we simply
added them together to produce a worst-case reflection.

The reflection coefficient looking into the input of the attenuator is

ra ¼ VR

VI
¼ rI þ

rL

K
ð12-19Þ

Thus, the reflection coefficient equals the reflection coefficient of the attenuator plus the
load reflection coefficient reduced by the power loss factor, K. With a perfect attenuator, r1

is zero, and the equation reduces to

ra ¼ rL

K
ð12-20Þ

This is a good approximation for estimating the improvement in return loss achievable
with an attenuator. For a high-quality attenuator and a load with a poor reflection coefficient,

Atten
K

VR

VI
ρ1 ρ2 ρL

Load

Figure 12-15 The return loss of a device can be improved by adding an attenuator.
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this is a reasonable approximation. The r1 term in equation (12-19) serves to remind us that
the improved return loss will never be better than the inherent return loss of the attenuator.

By expressing the reflection coefficient in decibel form, the return loss can be determined.

RLa ¼�20 logðraÞ ¼ �20 logðrL=KÞ
¼�20 logðraÞ þ 20 logðKÞ ð12-21Þ

Since K is a power ratio, we will rewrite the equation as

RLa ¼ �20 logðrLÞ þ 2 10 logðKÞ½ �
RLa ¼ RLL þ 2KdB

ð12-22Þ

Thus, the return loss is improved by twice the attenuation (expressed in dB). The penalty
for such an improvement is that the signal level to the load is reduced.

Although the previous analysis used an attenuator connected to a load, the same principles
apply for improving the return loss of a source. The source’s return loss will be improved by
twice the loss of the attenuator, except where limited by the attenuator match. Again, the dis-
advantage of such an improvement is the reduced signal level available at the attenuator output.

Example 12.3

What are the return loss, RL, and the reflection coefficient, r, at the output of a perfect 10 dB
attenuator connected to signal generator having a return loss of 8 dB? Does the answer
change if the attenuator has a return loss of 20 dB?

Perfect Attenuator:

RL ¼ 8 þ 2 10ð Þ ¼ 28 dB

The reflection coefficient is r ¼ 10(–RL/20) ¼ 0.040.

Attenuator with 20 dB return loss:

Since the return loss predicted by the ideal analysis is 28 dB, the attenuator’s 20 dB return
will clearly limit the overall return loss. Adding the reflection coefficient of the attenuator to
the reflection coefficient of the ideal case will produce the overall reflection coefficient.

The reflection coefficient of the attenuator is r1 ¼ 10(–20/20) ¼ 0.1. Since

ra ¼ r1 þ ra IDEALð Þ ¼ 0:1 þ 0:04 ¼ 0:14

then

RLa ¼ �20 logð0:14Þ ¼ 17 dB

Note that the overall return loss is somewhat worse than the attenuator return loss.

12.11 The Classical Attenuator Problem

When a device under test is placed between a single-ended source and a single-ended
detector such as a spectrum or network analyzer, a significant error can be introduced. This
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effect is due to nonzero cable shield impedance and occurs only at low frequency (less than
100 kHz). As the frequency increases, the cable acts more like a transmission line, and the
shield impedance is less critical.

Consider the circuit model shown in Figure 12-16. A signal source is connected to an
attenuator via a coaxial cable. The output of the attenuator is connected to the input of an
analyzer with another cable. RC1 and RC2 represent the cable ground impedances. The input
of the analyzer is initially assumed floating, with impedance RG between its input ground
and chassis ground. To illustrate the problem, the attenuation of the attenuator is infinite and
no signal should be present at the input to the analyzer.

A voltage is generated across the shield impedance of the first cable. Assuming RIN is
large compared with RC2

VA ¼ VS RC1 k RC2 þ RGð Þ½ �
RS þ RA1 þ RC1 k RC2 þ RGð Þ½ � ð12-23Þ

This voltage is in turn transferred onto RC2 and the instrument input. Again, if RIN is
much larger than RC2

VIN ¼ VARC2

RC2 þ RG
ð12-24Þ

With infinite attenuation, VIN should be zero. But as shown, a small voltage is present at
the instrument input. To drive VIN to zero and reduce this error, without corrupting the
measurement, RG can be made large.

To put the situation in perspective, a plot of the measured loss in an attenuator in a typical
measurement setting is shown in Figure 12-17. With RG ¼ 0 (the input is grounded), the
attenuator loss is measured as low as 90 dB. With RG large (the input is isolated or floating),
the attenuator loss is measured correctly as 120 dB.

The classical attenuator problem applies to any low-frequency situation where a large
amount of attenuation is encountered, including measurements of devices such as filters. Ana-
lyzers that measure in this frequency range often supply two forms of defense against the
problem. One is to isolate or float the input relative to chassis ground at all frequencies. In this
case, a switch is often supplied to allow the user to conveniently select a grounded or floated
input. The other technique is to isolate the input from the chassis, but only at low frequencies.
For high frequencies, where the classical attenuator problem doesn’t exist, the input is grounded.

VS

RS

Source Cable Attenuator Cable Instrument

RC1

RA1 RA2 RIN VIN
RC2

RG

+

−

VA

+

±

−

Figure 12-16 Circuit model for demonstrating the classical attenuator problem.
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12.12 Impedance Matching Devices

Spectrum and network analyzers are normally offered with standard input impedances,
typically 50 or 75 W. Sometimes the analyzer does not have the same impedance as
the device under test, and the user may need a matching network to eliminate mismatch
problems.

Minimum Loss Pads

An attenuator can be used to provide an impedance change, at the expense of some signal
loss. Such an attenuator is called an impedance matching attenuator or impedance matching
pad. A class of impedance matching pads called minimum loss pads incurs the theoretical
minimum amount of loss.

The circuit for a minimum loss pad that matches impedances Z1 and Z2 is shown in
Figure 12-18. Z1 must be greater than Z2. The resistor values can be computed from

R1 ¼ Z1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ðZ2=Z1Þ

p
ð12-25Þ

R2 ¼ Z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ðZ2=Z1Þ

p ð12-26Þ
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RG = large
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Figure 12-17 The measured attenuation of a 120 dB attenuator with (RG ¼ 0) and without
(RG ¼ large) the classical attenuator problem.

Z2Z1 R2

R1

Figure 12-18 A minimum loss pad is used to match unequal impedances. Z1 must be greater
than Z2.
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The loss (power ratio) is given by

K ¼ 2Z1

Z2
� 1 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZ1=Z2ÞðZ1=Z2 � 1Þ

p
ð12-27Þ

This is an example of a system with different input and output impedances, which means
that care should be taken when computing gain or loss in dB. The loss factor, K, is a power
ratio so to find K in dB use

KdB ¼ 10 log Kð Þ ð12-28Þ
Problems often occur when KdB is used to determine the voltage gain or loss of the minimum

loss pad. Unless the unequal impedances are explicitly accounted for, the results will be in error.

Example 12.4

Compute the values for a minimum loss pad that will convert 50 W to 75 W. What is the
(power) loss of the pad? What is the ratio of the input and output voltage when the pad is
correctly terminated?

Z1 ¼ 7 and Z2 ¼ 50

R1 ¼ Z1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ðZ2=Z1Þ

p ¼ 75
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ð50=75Þp ¼ 43:3 W

R2 ¼ Z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ðZ2=Z1Þ

p ¼ 50
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ð50=75Þp ¼ 86:6 W

The loss is

K ¼ 2ð75Þ
50

� 1 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð75=50Þð75=50 � 1Þ

p

¼ 3:73

KdB ¼ 10 logð3:73Þ ¼ 5:7 dB

K ¼ P1=P2 ¼ ðV 2
1 =Z1Þ=ðV 2

2 =Z2Þ
V1=V2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z1K=Z2

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
75ð3:73Þ=50

p ¼ 2:37

Transformers

Transformers can be used to match impedances for measurement purposes. A transformer
consists of two separate coils that share the same core. The coupling of the magnetic fields of
the coils causes a voltage on one coil to induce a voltage on another coil. Since the coupling
mechanism depends on a changing magnetic field, a transformer works only for AC signals
and not DC.

The ideal transformer is a two-port device with the following voltage and current rela-
tionships (Figure 12-19a).

V2 ¼ nV1 ð12-29Þ
I2 ¼ I1=n ð12-30Þ

where n is the turns ratio of the transformer.
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The voltage is changed according to the turns ratio, while the current is transformed
inversely proportional to the turns ratio. If an impedance, Z1, is connected to the V1, I1

port of the transformer, the impedance looking into the V2, I2 port will be given by
(Figure 12-19b)

Z2 ¼ V2

�I2
¼ nV1

�I1=n
¼ n2ð�V1=I1Þ ¼ n2Z1 ð12-31Þ

So the impedance is transformed by the square of the turns ratio.
A transformer is usually optimized for some particular frequency range, and the user

should consider this when selecting one for measurement use.
Ideally, the transformer is lossless—the power in will equal the power out. But in reality

there will be some loss in the transformer. Such a loss can be characterized and normalized
out of the measurement.

Another use of transformers in electronic measurements is to provide DC isolation
between the device under test and the measuring instrument. Since there is no direct con-
nection between the two ports of the transformer, transformers are isolated for DC. In other
words, a transformer can be used to convert a grounded input instrument into one with
floating inputs.

12.13 Measurement Filters

It is sometimes desirable to condition a signal’s frequency content before it enters the
instrument input. For example, an undesirable out-of-band signal might be large enough to
cause distortion in the analyzer. Often, a simple filter can remove the offending signal or
signals. High-quality filters are commercially available for many different applications, but
they can also be built by the instrument user. Electronic filter design has consumed the
pages of many other books, and only a few low-pass and high-pass topologies will be
discussed here.

High-Impedance Filters

Two filters suitable for use in situations with high-impedance instrument inputs are shown in
Figure 12-20. Both of these are single-pole filters: one low-pass and one high-pass.

I1

V1

(a) (b)

V2 Z1 V1 V2 Z2

I2
I1 I2

n
n

+

−

+

−

+

−

+

−

Figure 12-19 (a) The ideal transformer. (b) A transformer can be used to produce an impedance
change.
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The low-pass transfer function is

VOUT=V IN ¼ 1
1 þ jð f =f3dBÞ ð12-32Þ

and the high-pass transfer function is

VOUT=VIN ¼ jð f =f3dBÞ
1 þ jð f =f3dBÞ ð12-33Þ

where

f3dB ¼ frequency at which the response is reduced by 3 dB

For both filters

f3dB ¼ 1
2pRC

ð12-34Þ
Being a single-pole filter, the transfer function rolls off at the rate of 20 dB per

decade above or below the 3 dB frequency (depending on whether it’s a high-pass or a low-
pass design).

Z0 Filters

If the previous filters are used in a Z0 system, the loading of the Z0 impedance on the filter
output would likely distort the response of the filter. A different approach is needed, one
which takes into account the Z0 loading of such a system. In fact, these filters are required to
be loaded in Z0 to obtain the desired response.

Two filter networks, a high-pass and a low-pass, are shown in Figure 12-21. The values
for the low-pass version are computed from7

L ¼
ffiffiffi
2

p
Z0

2pf3dB
C ¼

ffiffiffi
2

p

2pf3dB Z0
ð12-35Þ

For the high-pass filter, the equations are

L ¼ Z0ffiffiffi
2

p ð2pf3dBÞ
C ¼ 1

ffiffiffi
2

p ð2pf3dBÞ Z0

ð12-36Þ

R

RCVIN

C

+

−

VIN

+

−

VOUT

+

−

VOUT

+

−

Figure 12-20 (a) A low-pass filter for high-impedance inputs. (b) A high-pass filter for
high-impedance inputs.

7 The Z0 filters discussed here are second-order Butterworth filters.
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The low-pass transfer function is

Hð f Þ ¼ f 2
3dB

f 2
3dB � f 2 þ j

ffiffiffi
2

p
f f3dB

ð12-37Þ

and the high-pass transfer function is

Hð f Þ ¼ f 2

f 2
3dB � f 2 þ j

ffiffiffi
2

p
f f3dB

ð12-38Þ

The filter response is 3 dB down at f3dB. After that, it rolls off at 40 dB per decade
because it has two poles. If the filter characteristics must be sharper, the reader is encouraged
to consult one of the many books devoted to filter design.

Example 12.5

Determine the component values for a low-pass 50 W filter with a 3 dB frequency equal to
10 MHz. What is the approximate filter attenuation at 100 MHz?

f3dB ¼10 MHz

L ¼
ffiffiffi
2

p
Z0

2pf3dB
¼

ffiffiffi
2

p
50

2pð10 � 106Þ
¼ 1:125 mH

C ¼
ffiffiffi
2

p

2pf3dB Z0
¼

ffiffiffi
2

p

2pð10 � 106Þ 50

¼ 450 pF

At 100 MHz, which is one decade above the 3 dB frequency, the response will be atte-
nuated by 40 dB. (The filter response rolls off at 40 dB/decade.)
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CHAPTER 13

Two-Port Networks

Two-port network theory provides the theoretical basis for network measurements. Two-port
network theory can be expanded to N-port theory for networks having more than two ports,
while one-port measurements are a subset of two-port measurements. The simplest of two-port
measurements is the gain or transfer function of the device. This assumes a fairly simple model
of the device under test (DUT). More complete two-port models such as impedance parameters
provide a more complete view of device behavior, while scattering parameters present a two-
port model that is consistent with transmission line theory and measurements.

13.1 Sinusoidal Signals

The standard forcing function for network analysis is the sinusoid, either the sine or cosine
function. This stimulus is especially appropriate if we can make the assumption that the
network being measured is a linear, time-invariant (LTI) system. Applying a sinusoid to the
network’s input and measuring the amplitude and phase of the network’s output (both as a
function of frequency) adequately characterizes the network. Selecting the cosine repre-
sentation, the input forcing function (or stimulus) is

v tð Þ ¼ VM cosð2pft þ qÞ ð13-1Þ
which is equal to the real part of an exponential function

vðtÞ ¼ Re½VM ejð2pftþqÞ� ð13-2Þ
This can be verified easily using Euler’s identity

e jx ¼ cosðxÞ þ j sinðxÞ ð13-3Þ
Splitting the exponential gives

vðtÞ ¼ Re VM e j2pfte jq� � ð13-4Þ
In a linear system, the output signal will always be the same frequency as the input signal

(with no other frequencies present). The Re[ ] and the e j2pft term are dropped to produce the
vector or phasor form of equation (13-4)

V ¼ VM ejq ð13-5Þ
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This is the polar form of the vector. Expanding the exponential using Euler’s identity
gives the rectangular form

V ¼ VM cos qþ j sin q½ �
¼ VM cos qþ j VM sin q

ð13-6Þ

VRE ¼ Re V
� � ¼ VM cos q ð13-7Þ

VIM ¼ Im V
� � ¼ VM sin q ð13-8Þ

Other useful conversion formulas are

q ¼ tan�1ðVIM=VREÞ for VRE � 0 ð13-9Þ
q ¼ tan�1ðVIM=VREÞ þ 180 for VRE < 0; VIM > 0 ð13-10Þ

q ¼ tan�1ðVIM=VREÞ þ 180 for VRE < 0; VIM < 0 ð13-11Þ

VM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2

RE þ V 2
IM

q
ð13-12Þ

A further change in notation produces a yet more concise vector form:

V ¼ VM ffq ð13-13Þ
To summarize, the following three expressions all represent the same signal:

vðtÞ ¼ VM cosð2pft þ qÞ ð13-14Þ
V ¼ VM e jq ð13-15Þ

V ¼ VM ffq ð13-16Þ

The vector form is a first step toward a true frequency domain representation of the signal.
Note that the vector forms do not explicitly state the frequency of the input and output signals.
So far, we have considered the vector form to be valid only at one specific frequency. Later we
will expand on this concept and consider vectors that are a function of frequency.

Example 13.1

Express the following signal in polar and rectangular vector forms: v(t) ¼ 5 cos(20t þ 30�).

The amplitude of the waveform is 5, and the phase is 30º. Therefore, the polar vector form is
5ej(30�) or 5p30�.

The rectangular form is found by

VR ¼ 5 cosð30�Þ ¼ 4:33

VI ¼ 5 sinð30�Þ ¼ 2:5

V ¼ 4:33 þ j2:5
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Example 13.2

Express the following 20 MHz vector signal as a time domain function:

V ¼ 8 þ j4

First, convert to polar form.

VM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
82 þ 42

p
¼ 8:94

q ¼ tan�1ð8=4Þ ¼ 63:43�

V ¼ 8:94 ff63:43�

vðtÞ ¼ 8:94 cos 2pð20 � 106Þt þ 63:43�� �

13.2 The Transfer Function

Engineering circuit theory textbooks introduce the concept of the transfer function (or system
function), which is the output voltage of a network divided by its input voltage, both in
vector form and both a function of frequency (Figure 13-1).

Hðf Þ ¼ V2ðf Þ
V1ðf Þ ð13-17Þ

The transfer function may be shown as a function of scalar frequency, w or f, or complex
frequency, s, where s ¼ s þ jw. The former is compatible with Fourier theory, and the latter
is oriented toward Laplace transforms. The complex frequency approach supports transient
analysis, which is not used for classic network measurements. Thus, the transfer function is
shown here as a function of f (Hz).

In some cases, the transfer function is simplified by ignoring the phase information
contained in H( f ). Taking the magnitude of the voltages results in voltage gain as a function
of frequency.

GVð f Þ ¼ Hðf Þj j ¼ V2ðf Þj j
V1ðf Þj j ð13-18Þ

As shown in Chapter 2, the voltage gain can be expressed in decibel form as

GVðdBÞð f Þ ¼ 20 log½GV ðf Þ� ð13-19Þ

H(f )V1(f )

−

+

V2(f )

−

+

Figure 13-1 The transfer function of a network, H( f), relates the input voltage to the output
voltage.
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A circuit model for the transfer function is shown in Figure 13-2. Since V1, V2, and H are
all functions of frequency, we will drop the explicit designation at this point. This simple
model ignores any loading considerations and is an appropriate model for studying network
theory but needs to be improved on for practical use.

13.3 Improved Two-Port Model

The previous circuit model implies that the impedance looking into the input terminals is infi-
nite and the impedance looking into the output terminals is zero. This model is inaccurate for
circuits having finite input and output impedances. An improved model is shown in Figure 13-3.
The circuit providing the input voltage to the two-port network is loaded by the input impedance
of the network. Similarly, the output of the network is loaded by the impedance connected
across its output (Figure 13-4). The voltage source driving the network is shown as having finite
output impedance, ZS. The relationship of the source and output voltages is now

V2

VS
¼ ZIN ZL H

ðZS þ ZINÞ ðZL þ ZOUTÞ ð13-20Þ

V1 H V1

+

−

V2

+

±

−

Figure 13-2 This circuit models the behavior of a network, ignoring loading conditions.

+

±V1 ZIN

ZOUT

H V1

−

+

V2

−

Figure 13-3 This improved circuit model shows the input and output impedances of the
network.

ZOUT

Zs

V2ZIN H V1V1Vs

−

+

−

+

± ± ZL

Figure 13-4 When driven by a nonzero source impedance or loaded with a finite load
impedance, loading effects will occur.

244 CHAPTER 13 ● Two-Port Networks



The ratio of the output voltage to source voltage is clearly affected by the source impe-
dance and load impedance. If the source impedance is low relative to the network input
impedance, the effect may be negligible. Similarly, if the load impedance is large relative to
the output impedance of the network, that effect may be ignored. In many practical mea-
surement situations, the source impedance and load impedance are specified. That is, the
measurement procedure calls for a source with a particular output impedance and for a
particular load impedance to be installed at the output. If only the forward transfer char-
acteristics, V2/VS, of the network are required, specifying the terminating impedances may be
sufficient to ensure an accurate characterization of the network.

13.4 Impedance Parameters

So far in this chapter, we have discussed two-port network models that are incomplete in that
they do not provide for both forward and reverse transfer characteristics. What is needed is a
model which takes into account the influence of the output port on the input port. There is an
entire class of linear two-port models that completely characterizes a two-port network. The
first of these we will discuss is the use of impedance parameters.

The impedance parameter model is shown in Figure 13-5. Note that in the circuit are two
impedances and two dependent voltage sources. Alternatively, the model can be expressed as
two linear equations:

V1 ¼ Z11I1 þ Z12I2 ð13-21Þ
V2 ¼ Z21I1 þ Z22I2 ð13-22Þ

The input and output voltages are expressed as linear functions of the input and output
currents. Since the coefficients in the equations are the ratio of a voltage and a current, and
have the units of ohms, they are called impedance (or Z) parameters. The first subscript of
the particular Z parameter indicates the port at which the effect occurs, while the second
subscript indicates the source of the effect. For example, Z21 represents the effect on the
voltage at port 2 due to the current at port 1. In general, Z parameters are complex numbers
that vary as a function of frequency.

To solve for the particular impedance parameter, the currents I1 and I2 are selectively set
to zero. In an actual measurement situation this means that the appropriate port is left open.

Z11 ¼ V1

I1

����
I2¼0

ð13-23Þ

I1 I2

V1 Z12 I2 Z21 I1

Z22
Z11

±

+

−

V2

+

−

±

Figure 13-5 The circuit model associated with two-port impedance parameters.
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So Z11 is the input impedance of the network, with the stipulation that the output is left
open. Therefore, Z11 is called the open-circuit input impedance. The other parameters can be
determined in a similar manner and have similar names.

Z12 ¼ V1

I2

����
I1¼0

open-circuit reverse transfer impedence ð13-24Þ

Z21 ¼ V2

I1

����
I2¼0

open-circuit forward transfer impedence ð13-25Þ

Z22 ¼ V2

I2

����
I1¼0

open-circuit output impedence ð13-26Þ

13.5 Admittance Parameters

Another set of two-port parameters is the admittance parameters. The linear equations that
relate the admittance parameters to the terminal voltages and currents are

I1 ¼ Y11V1 þ Y12V2 ð13-27Þ
I1 ¼ Y21V1 þ Y22V2 ð13-28Þ

The admittance coefficients can be solved for by setting one of the port voltages to zero.
This corresponds to placing a short on the appropriate port.

Y11 ¼ I1

V1

����
V2¼0

short-circuit input admittance ð13-29Þ

Y12 ¼ I1

V2

����
V1¼0

short-circuit reverse transfer admittance ð13-30Þ

Y21 ¼ I2

V1

����
V2¼0

short-circuit forward transfer admittance ð13-31Þ

Y22 ¼ I2

V2

����
V1¼0

short-circuit output admittance ð13-32Þ

13.6 Hybrid Parameters

The hybrid parameters (or h parameters) are often used to describe transistor characteristics.
The coefficients of the linear equations are not consistently impedances or admittances—
hence the name hybrid parameters.

The parameters are defined by

V1 ¼ h11I1 þ h12V2 ð13-33Þ
I2 ¼ h21I1 þ h22V2 ð13-34Þ
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Solving for the h parameters

h11 ¼ V1

I1

����
V2¼0

short-circuit input impedence ð13-35Þ

h12 ¼ V1

V2

����
I1¼0

open-circuit reverse voltage gain ð13-36Þ

h21 ¼ I2

I1

����
V2¼0

short-circuit forward current gain ð13-37Þ

h22 ¼ I2

V2

����
I1¼0

open-circuit output admittance ð13-38Þ

13.7 Transmission Parameters

Yet another variation on the basic concept of two-port parameters is the transmission
parameter (also called ABCD parameter). These parameters are defined by

V1 ¼ AV2 � BI2 ð13-39Þ
I1 ¼ CV2 � DI2 ð13-40Þ

The parameters are given by

A ¼ V1

V2

����
I2¼0

open-circuit voltage ratio ð13-41Þ

B ¼ V1

�I2

����
V2¼0

negative short-circuit transfer impedence ð13-42Þ

C ¼ I1

V2

����
I2¼0

open-circuit transfer admittance ð13-43Þ

D ¼ I1

�I2

����
V2¼0

negative short-circuit current ratio ð13-44Þ

13.8 Scattering Parameters

Scattering parameters (or S-parameters) are most commonly used at high frequencies and
are the most important set of two-port parameters relating to network measurements. Unlike
the previous sets of two-port parameters, S-parameters use a traveling wave approach to
describe the activity at each port.

A lightwave analogy is often used to describe this behavior, and the term scattering
parameter originates from the optical world. When a lightwave encounters a clear lens, part
of the incident wave is reflected back while the majority of the wave travels through the lens
is transmitted out the other side (Figure 13-6). Alternatively, if the lens is highly reflective, a
large portion of the incident wave is reflected and only a small portion is transmitted through
the lens.
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This lightwave analogy can be applied to a two-port electrical network. A traveling wave
is incident on the port: a portion of it is reflected, and the remainder is transmitted to the
network (Figure 13-7). A signal source, incident wave and reflected wave are shown for both
ports of the network.

S-parameter measurements are referenced to a characteristic impedance (Z0), which is
usually the nominal input and output impedance of the network. The approach is consistent
with transmission line theory; hence, its common usage in high-frequency measurements.

The defining equations for S-parameters are

VR1 ¼ S11VI 1 þ S12VI 2 ð13-45Þ
VR2 ¼ S21VI 1 þ S22VI 2 ð13-46Þ

Notice that the equations are made up only of incident and reflected voltages (and not
currents). Again, we will solve for the individual coefficients, the S-parameters.

To solve for S11 it is necessary to set VI2 to zero. One might be tempted to attach mentally
a short circuit to port 2 to accomplish this. But remembering that the S-parameter model of
the network deals with incident and reflected voltages, we will attach a Z0 load to port 2
(Figure 13-8). This sets VI2 to zero while maintaining a nonreflecting load at port 2.

S11 ¼ VRI

VI1

����
Z0 load on port 2

ð13-47Þ

So S11 is the same as the reflection coefficient at port 1 when port 2 is terminated with a
Z0 load. S11 is called the input reflection coefficient. This is the same concept as the complex
reflection coefficient (G) discussed in Section 11.8.

Two-port
Network

VI1V1

Z0

VR1

VI2 V2

Z0

VR2
± ±

Figure 13-7 A two-port network can be characterized using S-parameters, which describe the
behavior of the incident and reflected voltages at each port.

Reflected

Incident Transmitted

Lightwave Analogy

Figure 13-6 Using a lightwave analogy, when a lightwave encounters a lens part of the incident
wave is reflected while the rest of it is transmitted through the lens.

248 CHAPTER 13 ● Two-Port Networks



Solving for S21 with a Z0 load still connected to port 2:

S21 ¼ VR2

VI1

����
Z0 load on port 2

ð13-48Þ

S21 is called the forward transmission coefficient, which loosely corresponds to the
transfer function of the device.1

Continuing on

S22 ¼ VR2

VI2

����
Z0 load on port 1

ð13-49Þ

So S22 is the reflection coefficient at port 2 (with port 1 terminated in Z0) and is called the
output reflection coefficient. This also corresponds to the complex reflection coefficient
shown in Section 11.8, but now at the output port.

S12 ¼ VR1

VI2

����
Z0 load on port 1

ð13-50Þ

S12 is called the reverse transmission coefficient, which represents the effect on the input
port due to the incident voltage on the output port.

The S-parameter equations are often shown with the incident and reflected voltages
normalized by the square root of Z0. The defining equations are then

b1 ¼ S11a1 þ S12a2 ð13-51Þ
b2 ¼ S21a1 þ S22a2 ð13-52Þ

where

a1 ¼ VI1ffiffiffiffiffi
Z0

p ; a2 ¼ VI2ffiffiffiffiffi
Z0

p ; b1 ¼ VR1ffiffiffiffiffi
Z0

p ; b2 ¼ VR2ffiffiffiffiffi
Z0

p

This notation is introduced to provide continuity with other literature that the reader may
encounter. This notation is summarized and shown graphically in Figure 13-9.

It is worth mentioning again that, in general, S-parameters are a function of frequency.
We could emphasize this point by always writing the S-parameters in the form S11( f ),
S21( f ), and so on. This is not done in practice, but instead it is understood that the parameters
vary with frequency.

VI1

Z0

Z0
Two-port
Network

V1
VR1

±

Figure 13-8 S11 is found by determining the amount of reflection at the input port while
applying a Z0 load to the output port.

1 We will examine this statement more closely later on in the chapter.

13.8 ● Scattering Parameters 249



13.9 Transfer Function and S21
As previously stated, S21, the forward transmission coefficient, is similar to the conventional
notion of transfer function, but there are some differences. Normally, the concept of a V2/V1

type of transfer function means that the voltages at the input and output ports of the network
are measured directly, perhaps with some specified source and load impedances. Given that
the source and load impedance constraints are observed, the transfer function measurement
degenerates to a vector voltage measurement (preserving the phase information). This
transfer function model inherently assumes that the voltage at the output port depends only
on the voltage at the input port (Figure 13-2).

Now consider S21, which is equal to the reflected voltage at the output port, VR2, divided
by the incident voltage at the input port, VI1 (with a Z0 load on the output port). The reflected
voltage at the output port is somewhat of a misnomer, since it is really a traveling wave
leaving the output port, due to activity on the input port. Since there is no incident wave on
the output port and since VR2 will be totally absorbed by the Z0 load, VR2 is the same as the
VOUT of the transfer function measurement.

Things are not quite the same on the input side. The incident wave, VI1 is the voltage that
would be delivered by the Z0 voltage source to a Z0 load. If the input to the network is a
perfect Z0, then none of the incident voltage will be reflected from the input port. In that
case, VI1 is the same as V1 of the transfer function measurement. However, if the input
impedance of the network is not Z0, some of the incident voltage will be reflected, making V1

different from VI1. Another way of saying this is that S21 expresses the output voltage relative
to the voltage available from the source when it is driving Z0. For devices that have input
impedances near Z0, S21 is basically the same as the notion of a transfer function. When the
input impedance is not close to Z0, the two measurements will be different.

13.10 Why S-Parameters?

So why use S-parameters at all? The answer is multifaceted. The main reason for using
S-parameters is that voltages and currents are difficult to measure directly at high fre-
quencies. However, measurement techniques have been developed to measure the traveling
voltage waves required by S-parameters. In fact, S-parameters are closely related to and are
an extension of transmission line theory, in that the input and output voltages are treated as

Transmitted

Incident Transmitted

b1 = S11 a1 + S12 a2
b2 = S21 a1 + S22 a2

S12

Port 1 Port 2

S11
Reflected

S22
Reflected

S21

Incident
a2

b2
a1

b1

DUT

Figure 13-9 Summary of S-parameter notation for two-port networks.

250 CHAPTER 13 ● Two-Port Networks



incident and reflected traveling waves. For low-frequency design and measurement, this may
not be a factor, but at higher frequencies transmission line concepts are unavoidable due to
the shorter wavelengths.

S-parameters are measured with the network ports terminated in Z0 impedances. Other
two-port parameters require open or short circuits to be connected at the input and output
ports. At higher frequencies, open and short circuits can be difficult to implement. Stray
capacitance and inductance as well as transmission line effects get in the way. More
importantly, many circuits will not behave well when presented with an open or short
termination—distortion or oscillations may occur.

Directional devices (discussed in Chapter 15) provide a means of separating incident and
reflected waves while maintaining a Z0 match in the system. Thus, the individual traveling
waves can be measured without significantly disturbing the device under test.

A wide body of design methodology has been developed that relates directly to and relies
on S-parameters. Reflection coefficients, S11 and S22, are often plotted on the Smith chart to
design impedance matching and other networks. Flow graphs can be used to analyze systems
that are characterized by S-parameters. Entire textbooks have been written on these design
techniques and are beyond the scope of this book.
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CHAPTER 14

Network Analyzers

Network measurements can be divided into two types: transmission through the network and
reflection at the network’s input or output port. Full two-port network analysis normally
requires the use of a multichannel network analyzer and a scattering parameter (S-parameter)
test set. Simpler measurements, such as transmission-only measurements, can be performed
with less sophisticated equipment.

14.1 Basic Network Measurements

The transmission through a two-port network is measured by applying a signal to one port and
measure the response at the other port (Figure 14-1). The forward transmission characteristics
of a network are measured by connecting the signal source to the input port and measuring the
response at the output port. The reverse transmission characteristics of the network can be
measured by driving the network at the output port and measuring the response at the input.

The reflection at the input port of a network is measured by applying a signal to the port
and measuring the traveling wave reflected by the input. The reflection at the output port can
be measured in a similar manner while driving the output port.

14.2 Oscilloscope and Sweep Generator

An oscilloscope and a sweep generator can be used to implement a simple scalar network
analyzer (Figure 14-2). This measurement setup is useful for making transmission measure-
ments when only the magnitude (and not the phase) of the transfer function is required. The
oscilloscope is operated in X-Y (channel versus channel) mode: the X (horizontal) input is the
sweep voltage from the generator, and the Y (vertical) input is the output of the device under
test. The sweep voltage of the generator is proportional to the generator frequency. As the
generator sweeps, the output of the device under test is plotted across the oscilloscope display.

Marker outputs from the sweep generator may be used to identify accurately frequencies
on the oscilloscope display. These marker outputs are used to drive the intensity (Z-axis)
input of the oscilloscope. When the marker frequency is swept through, the intensity on the
scope changes. Some sweep generators can increase the output level slightly as the generator
passes through the marker frequency, causing a blip on the oscilloscope display.
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This method relies upon the sweep generator output to be constant with changes in
frequency. Any imperfection in the flatness of the sweep generator will show up as an error
in the measurement. Another major disadvantage of this network measurement technique is
that the oscilloscope display is linear and has a limited dynamic range.

14.3 Network Measurements Using a Spectrum Analyzer

A spectrum analyzer can also be used to make basic network measurements. Figure 14-3
shows a sweep generator being used with a spectrum analyzer to perform scalar network
measurements. Most spectrum analyzers provide a ‘‘max hold’’ feature, which causes the

Reflection

Transmission

Device Under Test

Z0VS

Z0

±

Figure 14-1 Transmission and reflection in a two-port network.

Sweep
Gen

Output

DUT

Sweep Voltage

Marker

Scope

X
Z

Y

Figure 14-2 A sweep generator and an oscilloscope can be configured to perform basic
transmission measurements.
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Figure 14-3 A sweep generator and spectrum analyzer can be used to make transmission
measurements.
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display to retain the largest measured value at each frequency. Both the sweep generator and
spectrum analyzer are set to sweep the frequency range of interest, with the spectrum ana-
lyzer set to max hold. As the sweep generator excites the device under test, the spectrum
analyzer measures the device’s output. Gradually, the spectrum analyzer accumulates the
entire response of the device.

The sweep times of the generator and analyzer may interact, slowing down the mea-
surement. The worst case is when the analyzer and generator are sweeping at approximately
the same speed, but offset in frequency so that they tend not to be at the same frequency
simultaneously. To alleviate this problem, one of the instruments is set to sweep very fast
(usually the analyzer) while the other is set to sweep slowly. In this case, just a few sweeps of
the slower instrument is required to produce a useful plot on the analyzer display.

The accuracy of this technique is limited by the amplitude flatness of the generator.
However, the flatness can be measured and calibrated out of the measurement if the spec-
trum analyzer has storage and subtraction capability. First, the device under test (DUT) is
removed and the generator is connected directly to the analyzer so that the generator’s
amplitude response is measured and stored. The DUT is reinstalled and the spectrum ana-
lyzer is set to subtract the generator response from the measured DUT response.1

If the sweep generator and spectrum analyzer sweeps are synchronized, the measurement
can be completed in one sweep and max hold is unnecessary. The spectrum analyzer may
have an external trigger that can be driven by a trigger signal from the generator. Or perhaps
both instruments can be triggered simultaneously by an external signal. Synchronizing the
two instruments is usually more difficult than it first appears due to latency between the
trigger signal and the start of sweep and the difference in sweep rates between the two
instruments.

Tracking Generator

The problem of synchronizing the generator and analyzer sweeps can be circumvented by
having the generator integrated into the spectrum analyzer. Since the generator tracks the
analyzer’s receiver frequency, it is called a tracking generator. (See Chapter 5 for more
information on tracking generators.) This combination is essentially a simple network ana-
lyzer, capable of making basic transmission measurements (Figure 14-4).

The flatness of the generator is still a source of error in the measurement, but again it can
be calibrated out by measuring it and subtracting it from the DUT response.

14.4 Vector Network Analyzer

A vector network analyzer (VNA) has a built-in source and multiple receiver channels that
are closely matched in amplitude and phase accuracy. The term vector means that the ana-
lyzer’s receivers can measure both amplitude and phase. The VNA has largely displaced the
scalar network analyzer, which can perform only amplitude measurements.

1 The desired mathematical operation is actually division, not subtraction, but the spectrum analyzer normally
displays the response in logarithmic (decibel) form. Since the subtraction is done after the log, it is equivalent to
division before the log function: log(a/b) ¼ log a – log b.
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Figure 14-5a shows how ratio techniques are used to measure the transmission character-
istics of a DUT. The VNA source drives a two-way power splitter, with one splitter output
going to the DUT and the other output connected directly to the reference (R) channel of the
analyzer. The output of the DUT is connected to the analyzer (A) channel. The network
analyzer uses the split-off source signal to correct for frequency response imperfections in the
source. The network analyzer is configured to display the DUT response at channel A divided
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Figure 14-5 A multichannel network analyzer and a power splitter allow a ratio measurement to
be performed.
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Figure 14-4 Spectrum analyzers that include a tracking generator are capable of making basic
transmission measurements.
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by the signal present at the reference channel (resulting in an A/R measurement). To the extent
that the two channels are matched, the source flatness is removed from the measurement.

When making ratio measurements, the power splitter should always be a two-resistor
type splitter. (See Chapter 12 for a discussion of other types of power splitters and dividers.)
Figure 14-5b shows a Z0 source connected to a two-resistor power splitter. VREF is con-
sidered a virtual voltage source, with both port A and port B seeing VREF through a Z0

impedance. This implies that both ports always receive the same incident voltage. VREF and
the incident voltage may change with frequency, but this effect will be removed by mea-
suring the ratio of the two channels.

14.5 Directional Bridges and Couplers

A directional bridge or directional coupler has the ability to sense the energy traveling in
one direction along a transmission line. It is used to separate the incident voltage from the
reflected voltage on the line when performing network measurements.

As configured in Figure 14-6, the directional coupler senses the incident wave at the
input port of the device under test by diverting a small amount of the incident power to
the auxiliary port. The diverted incident wave is connected to the reference channel of the
network analyzer and is used to obtain a ratio measurement. Reversing the directional cou-
pler allows the reflected wave at the DUT input port to be measured. Figure 14-7 shows
the use of a directional coupler, along with a power splitter, to produce a reflection mea-
surement. The power splitter is used to produce the reference channel signal, while the
directional coupler measures the reflected wave from the DUT. Here the DUT is shown as a
one-port device since this is a one-port measurement.

Directional bridges and couplers are discussed further in Chapter 15.

14.6 S-Parameter Test Set

A power splitter and one or more directional couplers may be combined to create a test set
for a specific set of network measurements. Figure 14-8 shows a transmission/reflection test
set for measuring the transmission through the DUT and the reflection at the input. The
transmission through the device, S21, and input match, S11, can be displayed simultaneously
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Figure 14-6 A directional coupler can also be used to produce a ratio measurement.
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using a three-channel network analyzer. Both measurements are ratio measurements using
the R channel as the reference. The transmission measurement uses the (B) channel divided
by the (R) channel, producing B/R, while the reflection measurement is A/R.

For complete characterization of a linear two-port network, all four of the two-port para-
meters must be measured. The required directional couplers and power splitter are assembled
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Figure 14-8 A transmission/reflection test set enables the measurement of transmission
characteristics through the DUT and reflection measurements at one port.
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Figure 14-7 A directional coupler and a power splitter are shown here configured to measure
the reflection from the device under test.

258 CHAPTER 14 ● Network Analyzers



into one device called an S-parameter test set. A test set is commonly configured with a power
splitter, two directional devices, and switching relays as shown in Figure 14-9. This config-
uration allows a three-channel network analyzer to measure either S11 and S21 or S12 and S22,
depending on the position of the relay. Thus, the transmission through the device and the
reflection at the driven port can be displayed simultaneously. All four S-parameters can be
measured without reconnecting the device under test (although the relay must change position).

The reader may encounter older network analyzers with separate test sets configured as
shown in Figures 14-8 and 14-9. As network analyzers have evolved, the test set hardware has
been integrated into the analyzer, allowing for a more compact system and improved usability.

14.7 Modern Vector Network Analyzer Configurations

The VNA configuration shown in Figure 14-9 is a classic configuration that provides for
basic two-port S-parameter measurements. VNA block diagrams have continued to evolve
and incorporate more measurement ports and more types of measurements. The modern
VNA is really a measurement system in a box, able to completely characterize the critical
parameters of the DUT (Figure 14-10). Rather than cover a wide range of configurations, we
will look at the key features that are commonly provided:

● Additional ports: Some VNAs provide additional measurement ports for handling more
complex DUTs. The basic concepts of two-port measurements are extended to cover
more ports.

● Multiple sources: Additional signal sources (usually with a combiner) enable test
flexibility including two-tone intermodulation measurements.

Network Analyzer

RS A B

DUT

Test Set

Figure 14-9 An S-parameter test set allows all four S-parameters to be measured without
reconnecting the device under test.
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● Bias tee: Allows a DC bias to be inserted into the measurement port to test devices that
require or need to be characterized based on DC voltages.

● Switches: With the increased complexity of the VNA, internal switches are provided to
change the configuration programmatically.

● Front/rear panel access loops: These jumpers allow access to the internal points of the
VNA, providing more measurement flexibility.

● Low-noise amplifier: Allows noise figure measurements to be made on the DUT.

Signal sources for network analyzers used to be separate, stand-alone sources that were
synchronized with the network analyzer receiver. Modern network analyzers have one or
more sources integrated into the analyzer, consistent with the overall trend toward a highly
integrated measurement system.

14.8 Sweep Limitations

A network analyzer has sweep rate (Hz/sec) limitations just as the spectrum analyzer does.
Neither analyzer can be swept arbitrarily fast. The sweep rate limitation of a spectrum analyzer
is proportional to the square of the resolution bandwidth, as discussed in Chapter 5. The sweep

Figure 14-10 The modern VNA is able to completely characterize the critical parameters of the
DUT. (� Keysight Technologies, Inc. Reproduced with Permission, Courtesy of
Keysight Technologies, Inc.)
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rate limitation in a network measurement is less obvious since it depends on both the inter-
mediate frequency (IF) bandwidth of the analyzer and the response of the device under test.

Since the source and receiver of a network analyzer are usually tuned to the same fre-
quency, the signal out of the source lands in the center of the receiver passband.2 Compare
this with the spectrum analyzer case, where the signal is generated external to the analyzer,
usually at some fixed frequency. The analyzer’s receiver is swept past the stationary signal
such that the signal is seen passing across the passband of the receiver. In the spectrum
analyzer case, the signal is assumed to be a pure spectral line and the characteristics of the
resolution bandwidth filter determines the maximum sweep rate.

In the network analyzer case, the signal is not sweeping past the receiver since the source
and receiver are moving together. However, the signal amplitude at the output of the DUT
will change as the sweep progresses. Consider a device under test that has the filter shape
shown in Figure 14-11. As the sweep starts, the receiver will see a small signal due to the
finite stop band of the filter. For the first part of the sweep, the signal amplitude will change
slowly. When the sweep progresses to the filter skirt, the signal amplitude will begin to
increase. The rate of amplitude increase will depend on the sweep rate and also the steepness
of the filter response. The steeper the filter, the faster the amplitude will change. During this
time, the receiver must respond quickly enough to track the increasing signal amplitude;
otherwise, the measured response will be smeared as the receiver is unable to keep up. The
wider the receiver bandwidth, the quicker it will respond.

To provide a little more perspective, consider a device that has a very flat amplitude
response—a cable. If the cable were perfectly flat, the analyzer could sweep extremely fast
because there are no amplitude variations for the analyzer to track.

Fast Change

f

No Change

Slow
Change

Figure 14-11 The rate of amplitude change seen by the network analyzer depends on the shape
of the DUT’s transfer function and the sweep speed of the analyzer.

2 One exception is when the device under test has a large amount of delay relative to the sweep rate such that the
receiver moves in frequency by a significant amount before the source’s signal propagates through the device. When
this happens, the sweep rate must be decreased to minimize the effect.
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Because sweep rate is essentially determined by the device under test, network analyzers
usually place the entire burden for determining the sweep rate on the user. The sweep rate is
rarely automatically chosen (as in the case of a spectrum analyzer).

So how does one determine the optimum (fastest) sweep rate? Unfortunately, the most
common way of setting the sweep rate is by trial and error. First, a starting sweep rate is
chosen (probably by past experience). The frequency response of the device is noted, and the
sweep rate is decreased. If the response does not change, the device is not being swept too
fast. If the response does change, the device is being swept too fast and the sweep rate must
be decreased. This process is repeated until the response is stabilized, implying that the
sweep rate is adequate.

14.9 Power Sweep

Some network analyzers can automatically vary the amplitude of their source, producing a
power sweep or amplitude sweep. This produces a measurement with the source power on
the x-axis and some other parameter on the y-axis. For instance, the gain of an amplifier
might be measured as a function of its input power to determine the gain compression point
(Figure 14-12).

Unlike most other network measurements, power sweep measurements imply that the
network is nonlinear. Normal S-parameter measurements assume that the network is either
linear or nearly linear. The purpose of an amplitude sweep is to uncover and measure network
parameters that change with varying amplitude, and such changes are inherently nonlinear.

14.10 Flexible Source Frequency

Most network measurements are made with the analyzer source and receiver set to the same
frequency. However, many network analyzers now allow the source and receiver to be offset
in frequency, enabling some additional measurements.
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Figure 14-12 The linearity and compression characteristics of an amplifier can be measured
using power sweep.
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Mixers and other frequency converters translate the input frequency to a different output
frequency. To make network measurements on such a device, we’ll need to sweep the source
frequency over a frequency range that is different from the receiver frequency. The test con-
figuration shown in Figure 14-13 is used to characterize the conversion loss of a mixer. The
network analyzer source provides a swept signal to the RF port of the mixer, while a signal
generator provides the local oscillator (LO) signal. The IF signal out of the mixer is measured
by the network analyzer receiver. The network analyzer sweeps its source and receiver offset
in frequency by the LO frequency, producing a swept response of the mixer’s conversion loss.
As shown, the measurement instruments are connected to the mixer ports with attenuators to
minimize errors due to impedance mismatch at the mixer ports. Also, a low-pass filter is
included at the mixer output to remove the unwanted mixer products.

Swept harmonic measurements characterize the harmonic distortion performance of a
device over a range of frequencies. For swept harmonic measurements, the source is set to
the fundamental frequency, f, and the receiver is tuned to nf, where n is the number of the
harmonic to be measured. As the network analyzer sweeps in frequency, the receiver auto-
matically tracks and measures the chosen harmonic. Since the entire frequency range can be
measured in one sweep, it represents a large measurement speed improvement over other
methods where the user must individually measure the harmonic level at each fundamental
frequency with a spectrum analyzer.

Similarly, some network analyzers can perform a swept intermodulation distortion (IMD)
measurement. The network analyzer must have two sources with their outputs combined to
produce the two-tone stimulus required for an IMD measurement.

In Figure 14-14, the VNA is configured to measure simultaneously a robust set of DUT
characteristics: S-parameters, intermodulation distortion, and gain compression.
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Figure 14-13 A network analyzer with frequency offset capability can be configured to
characterize the conversion loss of a mixer.
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14.11 VNA Time Domain Measurements

The inverse fast Fourier transform (IFFT) can be used to change a vector frequency domain
network measurement into the time domain response of the network. This time domain
response is usually displayed as either the impulse response or the step response of the
network. This feature can be of great use if the time domain characteristics of the network
are of interest. This measurement is roughly equivalent to time domain reflectometry (TDR)
measurement, which is done using pulsed waveforms in the time domain.

Even if the time domain characteristics of the network are not desired, the time domain
response can be used to remove certain imperfections in the measurement. For example, the
reflections due to a poor connector may not be easily visible in the frequency domain, but
when transformed to the time domain the connector’s reflection will be apparent. This
reflection can be removed by use of a gating function in the time domain. Then the gated
time domain response can be transformed back into the frequency domain using a fast
Fourier transform (FFT). The result is a frequency domain measurement that no longer
contains the errors due to the reflections of an imperfect connector.

Figure 14-14 This VNA display is showing four different measurements simultaneously.
(upper left) S-parameters. (lower left) Intermodulation distortion versus
frequency. (upper right) Gain compression versus frequency. (lower right)
Intermodulation versus power. (� Keysight Technologies, Inc. Reproduced with
Permission, Courtesy of Keysight Technologies, Inc.)
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14.12 Nonlinear VNA Measurements

Classic network measurements are based on linear network and system theory, using sinu-
soidal stimulus and response. S-parameters are based on linear network analysis. Measure-
ments using power sweep are not strictly linear measurements since the transfer function of
the DUT changes depending on signal amplitude. Similarly, measurements of harmonic and
intermodulation distortion are not strictly linear measurements. These nonlinear measure-
ments are often made by stretching the measurement capability of a VNA.

To provide a more comprehensive approach to nonlinear measurements, Agilent Tech-
nologies developed the nonlinear vector network analyzer (NVNA) and an extension to
S-parameters called X-parameters.3 X-parameters provide a more robust network model that
accurately represents the nonlinear behavior of electronic circuits. For more information on
NVNA measurements, see Agilent Technologies (2011) and Root et al. (2013).
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CHAPTER 15

Vector Network Measurements

Network measurements characterize the transmission through the device under test (DUT)
and the reflections at each port. The device under test can have any number of input and
output ports, but we’ll focus on classic two-port measurements. For distortionless trans-
mission through a device, the output signal must be identical to the input signal, perhaps
delayed in time and scaled in amplitude. This implies the device that must have a flat
amplitude response and a linear phase response. Group delay is the derivative of phase,
which provides a useful way to view time delay through a device.

The use of scalar network measurements has decreased over time, and most measure-
ments are now vector, including magnitude and phase. Vector error correction is a powerful
technique for reducing measurement error, especially at high frequencies.

15.1 Distortionless Transmission

A system or network is called distortionless if its output is an exact replica of its input,
except for amplitude scaling and time delay. Put mathematically,

y tð Þ ¼ kxðt � t0Þ ð15-1Þ
where

yðtÞ ¼ output signal

xðtÞ ¼ input signal

k ¼ amplitude scale factor

t0 ¼ time delay in the system

Note that k and t0 are constants and are not allowed to be a function of frequency. Figure 15-1
shows an example of input and output signals of a linear system. The input pulse has an
amplitude of 1 and a pulse width of T. The output is the same shape as the input but is delayed
by t0, and the amplitude of the output has been changed by the amplitude scale factor, k.

Now let us see how the criterion of distortionless transmission relates to a frequency
domain measurement. Traditional network measurements are performed by exciting the
network with a known sinusoid and measuring the amplitude and phase of the output relative
to the input.
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Let

xðtÞ ¼ A cos wt ð15-2Þ
For distortionless transmission,

yðtÞ ¼ kA cos wðt � t0Þ½ � ð15-3Þ
yðtÞ ¼ kA cos wt � wt0½ � ð15-4Þ
yðtÞ ¼ kA cos wt � qðwÞ½ � ð15-5Þ

where

q(w) ¼ phase response of the system

qðwÞ ¼ wt0 ¼ 2pf t0

Thus, for distortionless transmission, the amplitude response of the system is a constant
(flat with frequency) and the phase response is a linear function of frequency (Figure 15-2).
Phase measurements are usually limited to �180º, and the phase plot in Figure 15-2 is shown
wrapping around to stay within this range.1 Note that the output sinusoid has the same
frequency as the input sinusoid and that no other frequencies are present.

Having introduced a strict definition of distortionless transmission, we will note that only
devices with infinite bandwidth, a completely flat magnitude response, and a linear phase
response will meet this definition of distortionless. Often, this definition is too strict and can
be relaxed based on knowledge of the intended application of a device. That is, a device may
be considered distortionless over a particular range of frequencies or amplitudes.

1 It certainly can be argued that the phase response continues on in a straight line, but the usual measurement
techniques limit it to a principal angle covering one 360º range.
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Figure 15-1 For distortionless transmission, the output of a system, y(t), must be the same as the
input, x(t), except for time delay and amplitude scaling.
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15.2 Nonlinearity

Many practical networks have nonlinearities that produce distortion in signals. Mathemati-
cally, these nonlinearities can be modeled using

yðtÞ ¼ k0 þ k1xðtÞ þ k2x2ðtÞ þ k3x3ðtÞ þ k4x4ðtÞ þ � � � ð15-6Þ
As shown in Chapter 7, a sinusoidal input into this type of network produces output

frequencies at the harmonics of the input. This violates the distortionless transmission cri-
terion since the output does not have the same shape as the input.

Many networks that are considered linear will exhibit this type of response under some
operating conditions. For instance, a typical ‘‘linear’’ amplifier will have some finite level of
harmonics at its output due to distortion introduced in the amplifier. As long as these
harmonics are small enough (as determined by the system requirements), we may choose to
ignore them and consider the amplifier to be linear. However, if the amplifier is overdriven,
the harmonic distortion may become severe, in which case we may need to treat it as a
nonlinear system.

Nonlinearities are not limited to solid-state circuits or active circuits since passive cir-
cuits can exhibit nonlinear behavior. For instance, many iron core inductors will saturate at
high current levels. This causes a nonlinear inductance in the circuit, which can cause the
usual distortion products. Again, we may choose to consider such a network as distortionless
as long as the distortion products remain below a certain level.

15.3 Linear Distortion

Many networks that do not produce frequencies other than the input frequency still do not
meet the strict definition of distortionless transmission. They distort the signal by introducing
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Figure 15-2 In the frequency domain, distortionless transmission implies a constant amplitude
response and a linear phase response.
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amplitude characteristics that are not flat or phase characteristics that are not a linear function
of frequency. These networks are sometimes said to have linear distortion.

One simple example of linear distortion occurs with a single-pole low-pass filter
(Figure 15-3). At low frequencies, both the amplitude and the phase are constant and introduce
no distortion. As the frequency increases, the amplitude rolls off and the phase changes. The
amplitude rolling off is a clear violation of distortionless transmission. The phase is allowed to
change, but it must change in a linear manner over the entire frequency range. In a single-pole
filter, this is not the case, so the phase characteristic also introduces distortion.

But now consider the purpose of such a network: to remove undesirable high frequencies
while retaining the low frequencies. At low frequencies, little or no amplitude or phase
distortion is introduced, so the frequencies that appear at the output are not distorted. At
higher frequencies, distortion is introduced, but these frequencies tend to be removed from
the system anyway. So for frequencies of interest, we may choose to think of this as a
distortionless network even though it does not meet the rigorous definition.

Many other examples exist. Band-pass networks are common in radio frequency (RF)
receivers, and their amplitude response may be flat over some limited frequency range but
not over all frequencies. Still, we may choose to consider them distortionless over that range.
Even broadband amplifiers, which are usually considered flat in amplitude response, intro-
duce linear distortion because they do not have infinite bandwidth. Amplifiers that are AC
coupled do not pass arbitrarily low frequencies (and certainly not DC), and the amplifier’s
response rolls off on the high-frequency side. Over its frequency range, we may wish to
consider an amplifier as linear.

In summary, linearity and distortionless transmission are assumed with many networks
that do not meet the strict definition. In practice, this is not a problem as long as it is
understood what is meant by distortionless for a particular application.

15.4 Importance of Linear Phase

Distortion is often discussed in terms of amplitude distortion of the waveform, particularly in
the form of harmonics. But a device could have a perfectly flat amplitude response and still
severely distort the waveform if the device’s phase is not linear with frequency.
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Figure 15-3 The amplitude and phase response of a single-pole low-pass filter.
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Consider the square wave as an example. Figure 15-4a shows the square waveform that
results from including only the fundamental and third harmonic of a square wave. Recall that
it would take an infinite number of harmonics to recreate the square wave exactly. However,
the two sine waves combine to produce a waveform that is recognizable as a square wave.
Notice how the fundamental is lined up in phase with the square wave and that the third
harmonic adds to the fundamental in just the right places to make the combined waveform
more square.

Suppose this signal is passed through a device that alters the phase relationship between
the two sine waves (Figure 15-4b). Now the two sine waves add together in such a way that
produces a new waveform—one that does not approximate the ideal square wave nearly as
well. The amplitudes of the sine waves are still the same, but the phase relationship has been
altered.

If both sine waves are delayed by an equal amount of time, the waveform appears at the
output undistorted but delayed. A constant delay implies linear phase since a degree of phase
at a low frequency is a much longer time than a degree of phase at high frequency. Thus, for
the delay to be constant, the amount of phase shift required will increase with frequency.

t

t

(a)

(b)

Figure 15-4 (a) The waveform that results from the first fundamental and third harmonic of a
square wave. (b) The same waveform after passing through a system with
nonlinear phase.
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Figure 15-5 (a) A typical measurement of a high-order filter with a large amount of delay in the
passband. (b) The same measurement after a large amount of linear phase is
removed.
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Linear phase response has become much more critical in electronic systems with the
increased use of digital data and pulsed signals. If a single sine wave is passed through a
system, it may not be important that the phase response is well controlled. However, when a
pulsed or digital signal is transmitted, the phase response of the system must be linear so that
the fidelity of the pulse is maintained.

Many devices such as high-order narrowband filters have a large amount of phase change
over a small frequency range. It is difficult to determine how linear the phase response of a
device is from a plot as shown in Figure 15-5a. Most network analyzers provide a feature to
introduce or remove a user selectable amount of linear phase. The user can adjust the amount
of linear phase introduced to flatten the measured phase response of the device under test.
After the phase is made as flat as possible, the deviation from linear phase can be measured
(Figure 15-5b).

Phase Error

So far the error analysis has concentrated on the magnitude error introduced by various
mechanisms. Phase error is also important and can be derived from the magnitude error.
Consider the vector diagram shown in Figure 15-6. In general, a magnitude error, DV, may
have an arbitrary phase relationship with the signal, V, and introduces some corresponding
phase error, Dq. The worst case for the phase error is when the new vector is perpendicular to
the error vector. Under such conditions the phase error can be determined from

sinðDqÞ ¼ DV=V ð15-7Þ
Dq ¼ sin�1ðDV=V Þ ð15-8Þ

Example 15.1

A particular measurement has a worst-case magnitude error of �1.0 dB. What is the corre-
sponding phase error?

A magnitude error of �1.0 dB implies that

1dB ¼ 20 logð1 þ DV=V Þ
DV=V ¼ 10ð1=20Þ � 1 ¼ 0:122

The worst-case phase error is

Dq ¼ sin�1ðDV=VÞ
¼ sin�1ð0:122Þ ¼ �7:01�

15.5 Group Delay

The group delay through a device is defined as the negative of the derivative of its phase
response.

tg ¼ � df
dw

ð15-9Þ
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where

f ¼ phase response in radians
w ¼ frequency in radians/sec

If degrees and hertz are used,

tg ¼ � 1
360

df
df

ð15-10Þ

Because of the differentiation, a linear phase response produces a constant group delay.
Deviations from linear phase show up as changes in the group delay as a function of fre-
quency. Therefore, group delay flatness is used to specify and measure phase-related dis-
tortion. For instance, the group delay of a filter may be specified to be flat within some
tolerance over its passband.

Delay Aperture

In modern network analyzers, group delay is usually derived from the phase response by
calculating an approximation to the derivative.2 The derivative of the phase is approximated
by taking a small Df in frequency and determining the corresponding phase change, Df, as
shown in Figure 15-7. The group delay is computed as

tg ¼ � Df
360Df

ð15-11Þ

The term Df is called the delay aperture, since it is the frequency aperture over which the
delay measurement is computed. The delay aperture is usually selectable by the instrument
user to optimize the measured results. Ignoring noise considerations, a small delay aperture
seems appropriate since it more closely approximates the true derivative operation.
However, the derivative operation tends to exaggerate any noise that happens to be present
in the measurement. Since Df appears in the denominator of the group delay calculation,

2 In some network analyzers, group delay is measured using a modulated source. However, the concept of delay
aperture is still valid.

V

Real

Imag ΔV

Δq

Figure 15-6 Phase error or uncertainty can be related to magnitude error using this vector diagram.
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making Df smaller makes the noise in the group delay larger. Making the group delay larger
tends to minimize the noise effects, but at the expense of frequency resolution (Figures 15-8a
and 15-8b). Phase perturbations that are narrower in frequency than the delay aperture tend
to be smeared over and will not be measurable. For fine frequency resolution or rapidly
changing phase response, a narrow aperture is needed.

Delay aperture is often set on the network analyzer as a percent of the frequency span.
For example, a 10 MHz span and a delay aperture set to 1% of the span produces a 100 kHz
delay aperture.

15.6 Normalization

Normalization is a basic first-order error correction method that removes the frequency
response of a test setup. Figure 15-9 shows a network analyzer with test set used to measure
the transmission characteristics of a device. First, a through connection is used to connect the
two ports of the network analyzer system. The response of the network analyzer, test set, and
cabling is measured and stored in digital memory inside the network analyzer. Figure 15-10
shows the typical amplitude response of the measurement system. Besides the amplitude
unflatness there is often significant linear phase response due to delays in the system. After
the test system responses are stored, the measurement is made relative to them.3 After nor-
malization is performed but with the through still connected, the analyzer display will show a
flat 0 dB magnitude response and a flat 0º phase response. Next, the device under test is
inserted into the measurement path and its characteristics are measured. The normalization
data may be valid only with the particular analyzer setting, so if the analyzer setup is
changed the test system may need to be renormalized.

Normalization is a simple but effective technique for removing error from the measure-
ment. It requires that the network analyzer be stable with time, so if the analyzer response
drifts significantly it will need to be normalized often. Assuming that the network analyzer is
stable from one measurement to another, any absolute measurement errors are removed by
the normalization.

Δf

Δf

f(f)

f

Figure 15-7 Group delay can be calculated by approximating the slope of the phase response.

3 The measurement system response is usually stored in digital memory as an array of complex (vector) numbers.
The normalized measurement is computed by dividing the device response by the system response.
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REF LEVEL
0.0SEC

(a)

(b)

CENTER 10 187 500.000Hz
AMPTD –20.0 dBm

SPAN 30 000.000 Hz
DELAY APER 150.0 Hz

CENTER 10 187 500.000 Hz
AMPTD –20.0 dBm

SPAN 30 000.000 Hz
DELAY APER 1.200 Hz

/DIV
15.000 μSEC

187 500.000 Hz
64.608 μSEC

MARKER 10
DELAY (UDF)

REF LEVEL
0.0SEC

/DIV
15.000 μSEC

187 500.000 Hz
64.109 μSEC

MARKER 10
DELAY (UDF)

Figure 15-8 (a) A group delay measurement of a crystal filter using a narrow delay aperture.
(b) The same group delay measurement with a wider delay aperture.
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Take the example of a perfect 0 dB insertion loss device. During normalization, the
output power of the source is measured by the receiver. This measurement may have some
absolute error in it, but when the perfect 0 dB device is inserted the network analyzer will
read the exact same value. At 0 dB, which is where the normalization occurred, we can

Reference
Measurement

Through
Connection

Normalized
Measurement

DUT

Figure 15-9 During normalization, a through connection is substituted for the device under test
and the system response is measured and stored. Then the device under test is
reinserted and the measurement is made relative to the stored normalization data.

REF LEVEL
10.000 dB

/DIV
0.500 dB

MARKER 100
MAG (B/R)

000 000.000 Hz
6.748 dB

START  0.000 Hz
AMPTD 0.0 dBm

STOP 200 000 000.000 Hz

Figure 15-10 A typical system response measured during normalization. After normalization,
the measured response will be perfectly flat.
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achieve extremely good accuracy. Now suppose that we insert a 10 dB attenuator as the
DUT. The power level at the network analyzer’s receiver drops by 10 dB. It is not critical
that the analyzer can measure the exact power level at the DUT output, but we do need the
analyzer to measure accurately the power output relative to the power level during
normalization. The network analyzer absolute accuracy is not important, but its relative
accuracy is critical. In this example, we are interested in how accurately the analyzer can
measure this 10 dB change, which is normally specified as dynamic accuracy.

Example 15.2

A network analyzer is used to make a normalized measurement of the insertion loss through a
filter with a nominal loss of 3 dB. The network analyzer specifications include the following:

Source level accuracy: �1 dB
Source flatness: 1.5 dB peak to peak over the frequency range of the analyzer
Receiver absolute accuracy: � 0.15 dB
Receiver dynamic accuracy: � 0.02 dB
How much error may be introduced into the measurement due to these instrument errors?

Since normalization is used in this measurement, most of these instrument errors are
removed. The effects of source level accuracy, source flatness, and receiver absolute accu-
racy are all removed during normalization. This leaves only the receiver dynamic accuracy
contributing to error in the measurement. The total error introduced by these effects is
�0.02 dB. Note that this is much better than the other specifications would imply.

15.7 Measurement Plane

The transmission line that connects the network analyzer to the device under test will
introduce a delay in the signal. At low frequencies and with short cables, this delay may be
negligible. As the frequency increases, the phase angle corresponding to a fixed amount of
delay also increases. For example, suppose that a transmission line is 1 m long with a
velocity factor, kv, of 1. A 1 MHz sinusoid will have a wavelength of 300 m, so the 1 m cable
represents (1/300) � 360 ¼ 1.2�. At 100 MHz, the wavelength changes to 3 m, and the
cable causes 120º of phase shift. The effect of the cable will obviously be noticed at
100 MHz when measuring a device connected to it.

With even a reasonably short length of transmission line changing the phase response that
is measured by the network analyzer, it is necessary to define exactly where the measure-
ment is taking place. This point is called the measurement plane.

One way to remove the effects of the transmission line delay is to use normalization. The
through connection is placed at the ends of the measurement cables while any adapters and
test fixturing should be left connected to the cable to remove their effect. In other words, the
measurement connections should be the same as when the actual measurement is performed,
except that the device under test is removed. This cannot be achieved exactly since a through
connection must be inserted, which may introduce a small delay. The system response,
including cable delay, is stored in the analyzer and the measurement is made relative to the
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system response. Using this method the measurement plane exists at the ends of the trans-
mission line.

Electrical Delay

Another method of removing transmission delay from the measurement is the use of elec-
trical delay math function. Electrical delay (also called line stretch or electrical length
compensation) is a network analyzer feature that adds or subtracts the effect of an ideal
transmission line. This compensation is done mathematically by adding linear phase into the
measured response, with the user specifying the physical length of the line or the amount of
delay in seconds. The network analyzer will normally allow the user to enter the propagation
velocity of the transmission line. The user may choose to enter a specific line length or delay
or may simply adjust the amount of line strength until the phase response flattens.

15.8 Reflection Measurements

Reflection measurements characterize the impedance match of a two-terminal port of a device,
which may have one or more ports. The fundamental reflection measurement is the complex
reflection coefficient, which is the ratio of the reflected voltage to the incident voltage.
(The reflection coefficient is based on transmission line theory introduced in Chapter 11.)

G ¼ VR=VI ð15-12Þ
The magnitude of the reflection coefficient may be displayed on a linear scale but is more

commonly shown in decibel form as return loss.

RL ¼ �20 logðjGjÞ ¼ �20 logðrÞ ð15-13Þ
The return loss calculation includes a minus sign that causes the return loss values to be

positive. When measured on a network analyzer, the minus sign is often omitted, producing
measured values that are negative. For example, a network analyzer may read –40 dB,
corresponding to a return loss of 40 dB. Figure 15-11 shows a typical return loss measure-
ment of a band-pass filter.

SWR and Impedance

Other parameters can be derived from the complex reflection coefficient and displayed on a
rectangular graticule. Equations for standing wave ratio (SWR) and complex impedance
were covered in Chapter 11. An example of an SWR plot is shown in Figure 15-12.

Polar Display Formats

The reflection coefficient is a complex number and is often displayed in polar format, on a
complex plane with a horizontal real axis and a vertical imaginary axis (Figure 15-13). In a
polar display, the frequency axis is lost, but the network analyzer marker or cursor will
provide the user with the frequency of any particular data point. Any particular frequency
point is plotted according to the magnitude, r, and phase, q, of the reflection coefficient.

15.8 ● Reflection Measurements 279



REF LEVEL
0.0 dB

/DIV
5.000 dB

MARKER 10
MAG (UDF)

187 500.000 Hz
–12.164 dB

CENTER  10 187 500.000 Hz
AMPTD 0.0dBm

SPAN 30 000.000 Hz

Figure 15-11 A return loss measurement of the input port of a band-pass filter. The return loss
exceeds 10 dB in the center of the passband (the lower the trace, the better the
match.)

REF LEVEL
0.0

/DIV
1.0000

MARKER 10
SWR (UDF)

187 500.000Hz
1.6542

CENTER  10 187 500.000 Hz
AMPTD 0.0 dBm

SPAN 30 000.000 Hz

Figure 15-12 An SWR measurement of the same band-pass filter measured in Figure 15-11.
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The point is plotted at the end of a vector that starts from the center of the polar plot and
extends outward a distance equal to r and at an angle of q. The angle is determined relative
to the right hand real axis, which is defined as 0º.

If a perfect Z0 load is connected to the test port, there will be no reflection and the
reflection coefficient will be 0ff0�, or 0 þ j0, which is the center of the polar plot. An open
circuit produces complete reflection of the incident wave with a reflection coefficient of
1ff0�, which is plotted on the right-hand side of the polar display. A short on the test port
causes complete reflection of the incident wave and the reflection coefficient is –1 or in polar
format, 1ff180�. This point is plotted on the left-hand side of the polar plot. All three of these
points are shown plotted on the complex plane in Figure 15-13.

The Smith Chart

A variation on the polar plot of the complex reflection coefficient is the Smith chart. The
reflection coefficient is still plotted in polar form, but with a different graticule called the
Smith chart (Figure 15-14). The Smith chart is a familiar tool to radio frequency engineers
and is used extensively in design work. As a network analyzer graticule, the Smith chart
converts the complex reflection coefficient to normalized impedance. (Many other conver-
sions are possible with the Smith chart.)

The normalized impedance, z, is given by

z ¼ Z=Z0 ð15-14Þ
where

Z ¼ unnormalized impedance

Z0 ¼ characteristic impedance of the system

The normalized and unnormalized impedances can also be expressed in terms of their
resistive and reactive components.

Z ¼ R þ jX ð15-15Þ
z ¼ r þ jx ð15-16Þ

Z0

Open

Real

Imag

Short q

r

Figure 15-13 The complex reflection coefficient is often plotted in polar format.
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and

r ¼ R=Z0 ð15-17Þ
x ¼ X=Z0 ð15-18Þ

Example 15.3

In a 50 W system, a particular value of complex reflection coefficient is plotted on the Smith
chart and the normalized impedance is 0.3 – j2. What is the impedance (unnormalized) for
this value of reflection coefficient?

z ¼ 0:3 � j2

z ¼ Z=Z0

Z ¼ Z0z ¼ 50ð0:3 � j2Þ ¼ 15 � j100 W

Evaluating the complex reflection coefficient and plotting the locus of points that have the
same normalized resistance produces circles of constant resistance as shown in Figure 15-15a.
Similarly, the locus of points having the same reactance can be plotted on the complex
reflection coefficient plane, producing arcs of constant normalized reactance shown in
Figure 15-15b. Note that the normalized reactance can be either positive or negative, cor-
responding to inductive and capacitive impedances, respectively. Combining these two loci
of points produces the complete Smith chart.

x = 1x = 0.5

x = 0.2

x = 0

x = –0.2

x =
 –0

.5

x 
= 

–1

r =
 0

r =
 0

.2

r =
 0

.5

r =
 1

r =
 2

Figure 15-14 The Smith chart is a graphical mapping of the complex reflection coefficient into
normalized complex impedance.
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Figure 15-16 shows the reflection measurement from Figure 15-11 in polar form with a
Smith chart graticule.

The Smith chart’s circles of constant resistance and lines of constant reactance provide a
graphical conversion from reflection coefficient to normalized impedance.4 But the Smith
chart is much more than just a graphical conversion technique. A wide variety of analysis

r = 0 r = 0.2 r = 0.5 r = 1 r = 2 r = 5

x = 1
x = 0.5

x = 0.2

x = 0

x = –0.2

x = –0.5

x = –1

x = –2

x = –5

x = 5

x = 2

Figure 15-15 (a) Circles of constant resistance on the Smith chart. (b) Lines of constant
reactance on the Smith chart.

4 See Hayt (2000) for a more complete derivation of the Smith chart.
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and design methods, using the Smith chart, have been developed, making it a standard design
tool for engineers working in the radio frequency and microwave areas. Entire textbooks
have been written on these design techniques, which is beyond the scope of this book.5

15.9 Directional Bridges and Couplers

A directional bridge or a directional coupler can be used to extract the incident or reflected
voltage along a transmission line or at a port of a device under test. Ideally, the bridge or
coupler measures only the wave traveling in the desired direction and ignores any traveling
waves going the other way. However, bridges and couplers have practical limitations that
will be discussed later in the chapter.

The directional bridge and directional coupler perform the same basic function, but with
different techniques. First, let’s examine the operation of the directional bridge. A simplified
circuit diagram of a directional bridge is shown in Figure 15-17. When the test port is
terminated in a perfect Z0, the bridge is balanced and the detector will measure 0 V, indi-
cating that no reflected wave is present. Now suppose the test port is left open. The detector
port would receive half of the source voltage, indicating a large reflection. On the other hand,
if the test port were shorted the detector port would again receive half of the source voltage,
but with opposite polarity. Thus, this directional bridge produces a detector voltage that is

FULL SCALE 1.0000
PHASE REF 0.0 deg
REF POSN 0.0 deg

MARKER 10
Z MAG (UDF)
Z PHS (UDF)

187 500.000 Hz
1.3190
–23.163 deg

CENTER 10 187 500.000 Hz
AMPTD 0.0 dBm

SPAN 30 000.000 Hz

1
.5

.2

.2

.5
1

2

5

5

21.5.20

Figure 15-16 Polar plot of input reflection of band-pass filter from Figure 15-11, with Smith
chart graticule.

5 See Gonzalez (1996) for more information on design techniques using the Smith chart.

284 CHAPTER 15 ● Vector Network Measurements



proportional to the amount of reflection. Just as important, the detector voltage phase or
polarity indicates the phase of the reflection.

Notice that the detector port has a voltage on it that is a replica of the source voltage.
More specifically, this means that the detector port signal is at the source frequency and
must be detected. When used with a network analyzer, the analyzer receiver will perform
the detection and measurement of the detector signal. A directional bridge is also used in
meters designed to display SWR, called a reflectometer or simply SWR meter. In that case, a
diode detector circuit converts the detector voltage to a DC level, which drives a conven-
tional voltage meter.

One practical issue that must be handled is that the detector port is balanced precariously
on the directional bridge and is not referenced to ground. Network analyzers usually have
one side of their receiver inputs connected to ground. The network analyzer’s source is also
usually grounded, so driving such a network analyzer directly with the bridge circuit shown
in Figure 15-17 would cause the bridge circuit to be unbalanced. To sidestep this problem,
the ground connection to the source or detector port must be broken. Directional bridges
usually have a transformer (or balun) that either creates a balanced source (floating with
respect to ground) or converts the balanced detector output to a single-ended output with one
side connected to ground. While this transformer solves the problem, it does not operate at or
near DC so the frequency response of the bridge is forced to roll off at some low frequency,
typically 10 kHz to 100 kHz.6

At microwave frequencies, a directional coupler is most often used to separate traveling
waves. A directional coupler provides the same basic function as the directional bridge, but
using waveguide techniques to separate the traveling waves. For our purposes, directional
bridges and directional couplers perform the same basic function. Therefore, the term
directional device will be used to loosely refer to both bridges and couplers.7

Detector
Source

+

Test Port

Z0Z0

Z0

−

Figure 15-17 A simplified circuit of a directional bridge.

6 For a more detailed discussion of a practical directional bridge, see Spaulding (1984).
7 See Dunsmore (2012), Laverghetta (1984), and Adam (1969) for more information on directional couplers.
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Insertion Loss

Figure 15-18 shows a representation of a directional device, with the three ports labeled.
(Sometimes a fourth port is shown, but since it is almost always terminated with a 50 W load
it is not shown here.) The signal applied to the input will appear at the output with some
amount of loss. The insertion loss of a directional device is the ratio of the input power to the
output power, expressed in decibels, typically in the range of 0.5 to 3 dB. For a given source
power level, large insertion loss means less power delivered to the test port.

Coupling Factor

The coupling factor of a directional device is a measure of how much signal appears at the
auxiliary port for a given signal level at the input port (Figure 15-18). The coupling factor is
defined as the ratio of the input power to the auxiliary port power, expressed in decibels.

A typical coupling factor is in the range of �10 to �20 dB. Note that the coupling factor
is shown as a negative number in decibels, indicating that the signal at the auxiliary port is
smaller than the input signal. However, similar to other parameters expressed in decibels,
it is common to refer to the coupling factor as a positive number (e.g., 20 dB instead of
�20 dB).

The power present at the auxiliary port of a directional device is proportional to the
directional traveling wave that is being measured. The terminology used here and shown
in Figure 15-18 assumes that the forward traveling wave is being measured (i.e., a wave
traveling from left to right in the figure).

Directivity

The most important figure of merit for a directional device is directivity, which indicates
how well a directional device can separate opposite traveling waves. Ideally, the directional
device can completely separate the forward and reverse waves, but some of the forward wave
is present in a measurement of the reverse wave (and vice versa). Directivity is defined as the
ratio of the power present at the auxiliary port when the signal is traveling in the forward
direction to the power present at the auxiliary port when the same signal is traveling in the
reverse direction. This ratio is expressed in decibel form, is ideally infinite but typically is

Auxiliary Port

Insertion Loss

Out putInput

Coupling Facto
r

Figure 15-18 The representation of a three-port directional device.
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30 to 40 dB. Finite directivity can be thought of as being a leakage path that lets the unde-
sired traveling wave couple into the auxiliary port.

Directivity is important because it limits the maximum return loss that can be measured
using a particular directional device.

Example 15.4

A directional bridge has an insertion loss of 6 dB, a coupling factor of 6 dB and a directivity of
40 dB. Configured as shown in Figure 15-16 and with a source power of 0 dBm, determine the
power levels at the auxiliary port and the output port with the output terminated in Z0.

The insertion loss of the bridge is 6 dB; therefore, the output level is 0 dBm –6 dB ¼
–6 dBm. The coupling factor is also 6 dB, so the power at the auxiliary port is 0 dBm
–6 dB ¼ –6 dBm. Since there is no reflected signal from the output port (due to the Z0

termination), the directivity does not affect the signal level at the auxiliary port. Had there
been a reflection, a portion of that signal would have also appeared at the auxiliary port.

15.10 Reflection Configuration

Now let’s reverse the orientation of the directional device and rename the ports to be more
appropriate for a reflection measurement (Figure 15-19). A signal will be applied to the input
port (formerly the output port) that will excite the DUT at the test port. If the DUT is a perfect
Z0 match, no reflection will occur and no signal will be present at the auxiliary port. (In fact,
the auxiliary port will have a small signal present due to the finite directivity of the directional
device.) If the test port has a non-Z0 load connected to it, a reflection will occur and the signal
level at the auxiliary port will be proportional to the size of the reflected wave. A directional
bridge or coupler is used in this manner to perform a reflection measurement.

Example 15.5

The bridge described in Example 15.3 is configured for a reflection measurement as shown
in Figure 15-19. The input signal level is 0 dBm. Determine the signal level at the auxiliary
port for the following loads at the test port: (a) short and (b) Z0 load.

Auxiliary Port
(Reflected wave)

Input Test Port

Figure 15-19 The representation of a directional device labeled with reflection measurement
terminology.
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(a) Load ¼ short. The wave incident on the test port is 0 dBm –6 dB (insertion loss) ¼
–6 dBm. Since the load is a short circuit, all the incident wave is reflected and appears
at the auxiliary port, but reduced by the coupling factor. Thus, the power at the aux-
iliary port is –6 dBm – 6 dB ¼ –12 dBm. The directivity of the device will also
contribute to the power at the auxiliary port. The auxiliary port signal due to the
directivity is the input signal level reduced by the insertion loss, the coupling factor,
and the directivity. This signal level is 0 dBm –6 dB – 6 dB – 40 dB ¼ –52 dBm. This
signal will introduce an error at the auxiliary port, but since –52 dBm is much smaller
than –12 dBm, its effect will be slight.

(b) Load ¼ Z0. The incident wave (which is fully absorbed at the test port) is still –6 dBm.
Since none of the wave is reflected, the auxiliary port would have (ideally) no signal.
However, the finite directivity of the device will cause a signal to be present. As
previously calculated the power in this signal will be –52 dBm. Therefore, even
with a perfect Z0 load this bridge will indicate a reflected power of –52 dBm
þ 6 dB ¼ –46 dBm, referred to the test port. Since –6 dB was incident on the test port,
the reflected power of –46 dBm corresponds to a device with a return loss of 40 dB.
Therefore, a directional device cannot directly measure a return loss value greater than
the device’s directivity.

15.11 Reflection Normalization

Normalization of transmission measurements was discussed earlier in the chapter. This same
concept can be applied to reflection measurements.

The coupling factor of the directional coupler is a nuisance when determining the return
loss measured with a directional device. Since return loss is defined to be the ratio (in dB) of
the reflected power to the incident power, the coupling factor and the insertion loss of the
directional device must be accounted for. Also, the coupling factor and insertion loss will not
be constant with frequency and will introduce a frequency response error. Both of these
problems can be eliminated by the use of normalization.

During normalization of a reflection measurement, a short or open is placed on the test
port, causing the whole incident wave to be reflected. This will cause a signal to appear at the
auxiliary arm that is equal to the input signal reduced by the insertion loss and coupling
factor of the directional device. Since this signal represents complete reflection at the test
port, it corresponds to 0 dB return loss. More significantly, when swept over the frequency
range of interest this signal will exhibit the frequency response of the directional coupler.
Saving such a frequency sweep in the analyzer’s memory and measuring relative to it results
in a reflection measurement with the frequency response error removed.

We briefly mentioned that a short or open can be used to provide a totally reflected
signal. At frequencies below a few hundred megahertz, either one will suffice so the choice
is not critical. At higher frequencies, the short circuit is often preferred since it provides a
more reliable and repeatable termination than the open circuit, which suffers from stray
capacitance effects. The short circuit, having a reflection coefficient of –1, introduces a 180º
phase change at the test port. (The magnitude will be unaffected.) Some network analyzers
provide a special normalization feature that removes the effect of this phase change. If not,
the user must remember to invert the phase of the measured data.
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15.12 Error in Reflection Measurements

The standard error model for a directional device is described by8

GM ¼ D þ ð1 þ TRÞ
ð1 � MSGAÞGA ð15-19Þ

where

GA ¼ actual reflection coefficient

GM ¼ measured reflection coefficient

D ¼ directivity error

TR ¼ frequency response error

MS ¼ source match error

(All these variables are complex and are a function of frequency.)
Notice that the directivity error term appears as a constant in the equation. This implies

that the absolute error introduced by the finite directivity is independent of the load. (Recall
that directivity can be thought of as a leakage from the input port to the auxiliary port.) The
(1 þ TR) term in the equation represents the frequency response of the system. Any source,
receiver, or directional device unflatness will be accounted for here.

The last term in the equation is 1/(1 – MSTA), which itself depends on the reflection
coefficient. This term accounts for source match errors, that is, error introduced due to the
lack of a perfect Z0 impedance looking back into the directional device. This type of mis-
match will rereflect a portion of the signal that is reflected from the test port. The double
reflection will show up at the test port and introduce an error.

The uncertainty in the reflection coefficient measurement is defined by

DG ¼ GM � GA ð15-20Þ

DG ¼ D þ ð1 þ TRÞ
ð1 � MSGAÞGA � GA ð15-21Þ

DG ¼ D þ TRGA þ MSG2
A

ð1 � MSGAÞ ð15-22Þ

For most measurement situations, the product of the source match coefficient, MS , and the
actual reflection coefficient, GA, is much smaller than 1. The equation can be simplified to

DG ¼ D þ TRGA þ MSG2
A ð15-23Þ

which is the classical result for predicting errors in reflection measurements. Since the phase
of the complex reflection coefficient is not usually known, G is replaced by r as we consider
the worst case.

Dr ¼ D þ TRrA þ MSr2
A ð15-24Þ

8 This error model was originally described in Ely (1967).
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Example 15.6

Determine the measurement uncertainty in the following reflection measurement. The actual
return loss is 10 dB, the directivity of the directional bridge is 40 dB, the effective source
match is 20 dB, and the frequency response error is �1 dB.

First, convert each of the measurement parameters from decibels into linear values.

rA ¼ 10�ð20=20Þ ¼ 0:316

D ¼ 10�ð40=20Þ ¼ 0:01

MS ¼ 10�ð20=20Þ ¼ 0:1

freq: response ðdbÞ ¼ 20 logð1 þ TRÞ
TR ¼ 10ð1=20Þ � 1 ¼ 0:122

Dr ¼ D þ TRrA þ Msr2
A

¼ 0:01 þ ð0:122Þð0:316Þ þ 0:1ð0:316Þ2

Dr ¼ �0:585

r could actually be anywhere between 0.316 þ 0.0585 ¼ 0.375 and 0.316 – 0.0585 ¼
0.258 or, expressed as return loss, 8.52 to 11.77 dB.

15.13 Vector Error Correction

The three main error mechanisms just discussed can be characterized and eliminated from the
measurement through vector error correction, also known as accuracy enhancement. It has
already been mentioned that normalization provides a means of removing frequency response
errors from a reflection measurement, but it does not improve the directivity of the directional
device. Recall that finite directivity means that the traveling wave going in the opposite
(undesired) direction will contribute to the measured level of the desired traveling wave. These
two signals will add vectorally and may add constructively, destructively, or anywhere in
between, showing up as a ripple in the response of the reflection measurement. When the two
signals add destructively (totally canceling), the error approaches infinity. When the two sig-
nals add together in phase, the measured value may be off by as much as a factor of 2 (or 6 dB).

Error correction involves the measurement of the characteristics of the directional device
over the frequency range of interest, storing them in digital form and correcting the measured
values to produce a more accurate measurement. In the past, the complexity of the error
correction computation and the amount of digital storage needed required the use of an
external computer. With large memories and powerful microprocessors, the error correction
calculations can be performed internal to the instrument. Typically, the user is prompted to
attach the appropriate terminations (Z0, open and short) during error correction calibration,
and the instrument does the rest. In some cases, the error correction may be good only for
the selected frequency range and changing the frequency range may require a new error
correction procedure to be initiated by the user.9

9 This calibration procedure should not be confused with the internal calibration of the instrument, periodically done
by a metrology lab.
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15.14 Normalization Revisited

Let us reexamine the concept of normalization, given our error model for directional devices.
Normalization of a reflection measurement required the placement of an open or short at the
test port of the directional device. This causes the entire signal to be reflected back to
the auxiliary port. For a device with good directivity (30 or 40 dB), this reflected signal will
be much larger than the error signal caused by finite directivity. Also, for a directional device
and a source producing a good Z0 impedance, the source match error can be ignored. Thus,
reflection normalization measures the frequency response error term of the error model (also
called the reflection tracking error) while setting D ¼ 0 and MS ¼ 0.

GM ¼ 1 þ TRð ÞGA ð15-25Þ
The error correction or normalization term, EN, is

EN ¼ 1 þ TR ð15-26Þ

which is a complex function of frequency stored away in digital memory. To produce the
corrected measurement, the error model equation is reversed.

GA¼ GM=EN ð15-27Þ

15.15 Two-Term Error Correction

A two-term error correction can be performed by ignoring the source match error and cor-
recting the directivity and frequency response errors. The advantage of this technique is
shorter calibration time (compared with three-term error correction, which will be described
shortly), since only two terminations (open and Z0 load) must be measured. Ignoring the
source match error is not too much of a compromise in many cases, particularly if
the impedance looking back into the directional device is very close to Z0 or the input of the
device under test is close to Z0. The equation for the two-term error model is

GM ¼ D þ ð1 þ TRÞGA ð15-28Þ

Two calibration measurements are required, the first one with a Z0 load. This sets the
reflection coefficient equal to zero so that the directivity term can be measured. On the
second calibration measurement, an open (or sometimes a short) is placed on the test port,
causing the reflection coefficient to be equal to one. Thus, the frequency response term can
be measured. The directivity term is still present in the second measurement but may be
subtracted off by the analyzer error correction algorithm.

15.16 Three-Term Error Correction

Using the full three-term error correction model necessitates the use of three calibration
measurements and three unique terminations: a Z0 load, an open, and a short. With the
Z0 load attached, the reflection coefficient is zero and only the directivity appears in the
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measurement. When a short is attached, the reflection coefficient is –1, and the error model
reduces to

GM ¼ D þ ð�1Þð1 þ TRÞ
ð1 þ MSÞ ð15-29Þ

Then an open circuit is attached, making the reflection coefficient equal to one. This gives

GM ¼ D þ ð1 þ TRÞ
ð1 � MSÞ ð15-30Þ

With two equations and two unknowns, TR and MS, the two unknowns can be calculated,
resulting in a complete three-term error correction. Again, the correction factors are stored in
memory and the error model is used to enhance the accuracy of the measurement.

Figure 15-20 shows the return loss measurement of a Z0 load, with and without three-
term error correction. The difference between the two traces represents the improvement in
directivity that the error correction provides. The directivity errors have been removed
from the corrected measurement, effectively leaving no detected auxiliary port voltage.
Thus, the analyzer measures its own input noise, and the measurement appears noisier than
the uncorrected trace. Even though the trace is noisier with a Z0 load connected, the sub-
stantial directivity improvement provides a much more accurate measurement.

REF LEVEL
0.000dB

/DIV
10.000dB

MARKER 100
MAG (S11)

050 000.000 Hz
–43.686 dB

START  100 000.000 Hz
AMPTD 15.0 dBm

STOP 200 000 000.000 Hz

Figure 15-20 A return loss measurement of a Z0 load without error correction (upper trace) and
with three-term error correction (lower trace). The directivity is improved from
approximately 43 dB to over 80 dB.
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15.17 Two-Port Error Correction

Error correction is not limited to reflection measurements with a single directional device. The
same concepts can be expanded to apply to a two-port measurement using a scattering para-
meter (S-parameter) test set. In addition to the directivity, source match, and reflection fre-
quency response errors, two-port measurements incur errors due to load match, transmission
frequency response, and crosstalk. Therefore, correction for these errors requires a more
complex model, with more correction terms and more calibration measurements, resulting in a
more accurate measurement. The error correction procedure for an S-parameter test set is more
involved since both ports must be calibrated for reflection measurements as well as trans-
mission measurements. In addition to the short-, open-, and load-type calibration discussed
under one-port error correction, a through connection between the two ports is measured.

Figure 15-21 shows the forward error model for the two-port error correction. For sim-
plicity, only half of the error terms for the two-port model are shown: the ones relevant to
forward measurements. The model shown is sufficient for error-corrected S11 and S21 mea-
surements. There is a corresponding error model for the reverse measurements, S22 and S12.

The forward error model includes six error terms, listed in the left column of Table 15-1.
The forward directivity error (EDF) is caused by the imperfect directivity of the directional
device in Figure 15-21. Similarly, error terms for the forward source match (ESF), forward
reflection tracking (ERF), forward load match (ELF), forward transmission tracking (ETF),
and forward crosstalk (EXF) are associated with the imperfections of the test setup in Fig-
ure 15-21. Again, these are only the error terms for the forward measurement case (as shown
in Figure 15-21.) There is a complementary set of error mechanisms working in the reverse
direction captured in the right column of Table 15-1.

This book covers the basic concepts associated with vector error correction. Appendix A
shows more detail concerning the mathematical model for the two-port case. The nomen-
clature for the two-port error terms is consistent with Dunsmore (2012), which is an excellent
reference book for diving deeper into error correction.

Forward Reflection
Tracking (A/R)

Forward Error Model

Forward Transmission
Tracking (B/R)

R A B

VS

Forward
Directivity

Forward
Crosstalk

Forward
Source
Match

Forward
Load
Match

DUT

Figure 15-21 The forward error model is used to show the error terms for a two-port
S-parameter measurement.
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Opens, Shorts, and Z0 Loads

Vector error correction depends on the use of high-quality terminations, most commonly
open circuits, short circuits, and Z0 loads. A calibrated measurement uses terminations as a
reference standard, which means that the quality of the measurement is ultimately limited by
these terminations.

First, consider a short circuit. Ideally, a short circuit has Z ¼ 0 W and Г ¼ –1 for all
frequencies of interest. At low frequencies, a good-quality short circuit can be obtained. This
might be as simple as a BNC connector with a wire shorted across it. However, as the
frequency increases the inductance of the short will become significant, so a higher-quality
connector with a low-inductance short is required. At microwave frequencies, some finite
inductance is unavoidable. Therefore, the impedance of the short is characterized and con-
trolled so that it can be included in the vector error correction calculations.

A common model for the inductance of a short circuit standard is

Lðf Þ ¼ L0 þ L1ðf Þ þ L2ðf 2Þ þ L3ðf 3Þ ð15-31Þ
Note that the inductance is modeled as a polynomial function of frequency.
An ideal open circuit has Z ¼ ? and Г ¼ 1 for all frequencies of interest. Below a few

hundred megahertz, we can just leave the test connector open to create a useful open circuit
for error correction purposes. At microwave frequencies, an open connector has significant
stray capacitance, so we must use a special termination specifically designed to be an open.10

This termination is designed to control the stray capacitance between the inner conductor and
the outer shield, such that the error correction algorithm can account for it.

A common model for the capacitance of an open circuit standard is

Cðf Þ ¼ C0 þ C1ðf Þ þ C2ðf 2Þ þ C3ðf 3Þ ð15-32Þ
An ideal Z0 load has an impedance of Z0 and Г ¼ 0 for all frequencies of interest. A good

quality termination may have a return loss of 30–50 dB, depending on frequency range.
Since this is the reference load for the measurement, the corrected measurement cannot
reliably exceed this return loss. The device under test is simply being compared with the

10 This only seems like a contradiction in terms.

Table 15-1 Error Mechanisms Associated with Two-Port Vector Network Analysisa

Forward Error Terms Reverse Error Terms

EDF Forward Directivity EDR Reverse Directivity
ESF Forward Source Match ESR Reverse Source Match
ERF Forward Reflection Tracking ERR Reverse Reflection Tracking
ELF Forward Load Match ELR Reverse Load Match
ETF Forward Transmission Tracking ETR Reverse Transmission Tracking
EXF Forward Crosstalk EXR Reverse Crosstalk

aThe nomenclature is consistent with Dunsmore (2012).
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reference load used during the error correction calibration. So an alternative view is that a
corrected measurement indicating that the device under test is a perfect Z0 load really means
that the device under test has the same impedance as the reference load.

SOLT Calibration

The most common calibration technique is known as short-open-load-through (SOLT) cali-
bration. This calibration procedure requires the vector network analyzer (VNA) user to
measure the error mechanisms of the VNA system by installing short, open, load, and through
reference standards. In modern VNAs, this is done by invoking a calibration procedure in the
instrument that instructs the user to install the proper standard while automatically accumu-
lating the required measurements. This makes the calibration procedure easy to do, but it does
take some time to change the standards and perform the measurements.

TRL Calibration

Another common calibration method is the through-reflect-line (TRL) method. This method
is often used in systems where standard connectors are not suitable for making the mea-
surement connections. For example, on-wafer probing of integrated circuits and some prin-
ted circuit board applications may not allow for conventional Z0 connectors.

The through connection is achieved by making the shortest possible connection between
the two ports of the DUT. The reflect standard needs to provide a significant reflection but
does not need to be well characterized. It does need to provide the same reflection to both
test ports. The line standard is a transmission line that is significantly longer in electrical
length than the through connection. On-wafer calibration standards often consist of precision
thin-film resistors, short-circuit connections, and Z0 transmission lines fabricated on the
DUT wafer or a separate calibration substrate.

Electronic Calibration Standards

To improve the consistency, convenience, and speed of performing a VNA calibration, the
instrument manufacturers have created electronic standards that can be switched by the
network analyzer. The user just has to connect the standard to the VNA and initiate the cal—
the instrument will take care of switching in different terminations. These calibration stan-
dards are automatically switched using solid state devices, resulting in an easy, fast, accurate
calibration.

These electronic calibration standards do not have shorts, opens, and Z0 loads inside but
use a different set of well-characterized impedances. The characteristics of these standards
are measured at the factory and stored in nonvolatile memory in the standard.
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CHAPTER 16

EMC Measurements

In most countries, electronic products are required to meet established standards for elec-
tromagnetic compatibility (EMC). These regulations attempt to allow the wide array of
electronic devices to live together in electromagnetic peace and harmony. In this chapter,
we’ll take a look at using spectrum analyzers to measure two important aspects of EMC:
radiated emissions (signals radiated from the device under test [DUT]) and conducted
emissions (signals conducted via the power cable from the device under test).

16.1 Electromagnetic Compatibility

EMC is the ability of an electronic device or system to function properly in the presence of
an electromagnetic environment while not polluting the electromagnetic environment.
Electromagnetic interference (EMI) refers to the situation when interference does occur
between electronic systems. In an ideal world, electronic devices would be immune to all
ambient electromagnetic (EM) fields and would not create any harmful EM emissions. In
reality, electronic devices are sensitive to external fields and do emit electronic noise.

There are two main categories of interference: (1) radiated, which occurs via electro-
magnetic radiation between devices; and (2) conducted, which is transmitted via the power
line from one device to another.

EMC should be an integral part of the design process from the very start. The designer of
an electronic system should consider likely emitters and take steps to control their behavior.
In particular, high-speed digital signals with fast rise times deserve careful attention. As with
most design issues, it is more effective and less expensive to detect EMC issues early in the
process and not wait until the final product units are available for testing. Consistent with
this, some early EMC measurements should be made to verify the level of emissions from
the product. Full compliance measurements usually require the use of a certified test lab.
While some organizations have fully equipped EMC test labs, most companies must have
their products tested in a third-party test lab. However, early in the design cycle it may be
more effective to use less rigorous bench testing known as precompliance testing, which can
be performed on the test bench using a spectrum analyzer and some specialized accessories.
For radiated measurements, the use of a shielded anechoic chamber or screen room mini-
mizes the effects of ambient electromagnetic signals. A comparison of EMC measurement
techniques for precompliance and full compliance testing is shown in Table 16-1.
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Precompliance testing is also very useful for troubleshooting EMC problems found
during full compliance testing. Attempting to resolve a problem at a certified test site is both
expensive and inconvenient. Often, the preferred strategy is to identify which frequencies
exceed the emission standards at the certified site and take the device under test back to the
lab for experimentation. There will be more on this later.

Radiated and conducted emission limits and measurement techniques are defined by
standards bodies. For commercial products, CISPR 11 and CISPR 22 are the most common
international standards for emission limits while CISPR 16 defines the required test methods
and apparatus. CISPR is the abbreviation for the International Special Committee on Radio
Interference, under the International Electrotechnical Commission (IEC). In the United
States, the Federal Communications Commission (FCC) sets the regulatory limits in Part 15
of its regulations. For U.S. military applications, MIL-STD-461F is the most common
standard.

16.2 Radiated Emissions

Radiated emissions are specified in terms of field strength, with units of dBmV/m. Both
CISPR and FCC emission limits recognize two classes of equipment. Class A limits apply
to equipment intended for commercial or industrial use. The lower Class B limits apply to
equipment used in domestic surroundings (i.e., homes).

As shown in Figure 16-1, the frequency range for the FCC and CISPR measurements are
from 30 MHz to 1 GHz. The FCC requirements also include measuring up to the fifth
harmonic of the highest frequency oscillator in the system (but no higher than 6 GHz).

Figure 16-2 shows the typical test configuration for radiated emission measurements. The
equipment being tested is placed on a nonconductive table. The radiated emissions are
picked up by a calibrated EMC antenna located a prescribed distance away (usually 3 m or
10 m). An EMI receiver, often a spectrum analyzer, measures the amplitude of all emissions
across the frequency range of interest. Since this is a book about spectrum and network
measurements, we’ll use the term EMI receiver to refer to a spectrum analyzer that meets the
special requirements of EMC testing (see Section 16.5).

An example radiated emissions measurement using an EMI receiver is shown in
Figure 16-3. This radiated emissions test is shown failing due to a number of spectral lines
exceeding the defined limits. Note that the vertical scale is electric field strength, in units
of dBmV/m.

Table 16-1 Comparison of EMC Measurement Techniques

Test Type Purpose Equipment

Precompliance
Testing

Early testing of critical
frequencies

Troubleshooting known
EMC issues

Spectrum analyzer, test antennas, magnetic and
electric near-field probes.

Limited conformity to EMC regulations

Full-Compliance
Testing

Final certification to EMC
regulatory requirements

Certified or approved in-house test site with full
conformity to EMC regulations
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Figure 16-1 The field strength limits for radiated emissions at a distance of 10 m, as defined by
the FCC and CISPR.
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Figure 16-2 The test setup for measuring radiated emissions uses a calibrated antenna
connected to a spectrum analyzer or EMI receiver. (� Keysight Technologies, Inc.
Reproduced with Permission, Courtesy of Keysight Technologies, Inc.)
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16.3 Antennas

To measure radiated emissions, an antenna is used to capture the electromagnetic field and feed
it to the input of the spectrum analyzer. A wide variety of EMC antennas are available with
various trade-offs made between size, gain, and frequency coverage. Since EMC is inherently a
broadband spectral measurement, having an antenna that covers the entire frequency of interest
is desirable. One popular antenna design uses a hybrid approach that combines a biconical
antenna with a log-periodic antenna to cover a wide range of frequencies (Figure 16-4).

The antenna is a transducer that converts the electric field strength to a known voltage at
the antenna terminals. The conversion factor is known as antenna factor and is given by

AF ¼ E

VL
ð16-1Þ

where

AF ¼ antenna factor; m�1

E ¼ electric field;V=m

VL ¼ voltage at the antenna terminals

Figure 16-3 This radiated emissions measurement includes specific EMC features, such as
frequency list and limit lines for relevant standards. (� Keysight Technologies, Inc.
Reproduced with Permission, Courtesy of Keysight Technologies, Inc.)
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Most EMC antennas will have a nominal impedance of 50 W, and the antenna factor
is specified assuming the antenna is connected to a 50 W load (normally, the input of the
EMI receiver). Antenna factor has the units of 1/m, often shown as m�1. When expressed in
decibels, the AF has the units of dBm�1 or dB/m not to be confused with dBm. The electric
field strength is usually shown in units of dBmV/m.

Modern spectrum analyzers can automatically apply the antenna factor correction and
show the resulting measurement in terms of electric field strength.

E ¼ AF � VL ð16-2Þ
Antenna factor is often expressed in decibel form, and the electric field strength is usually

shown in units of dBmV/m. Other devices may be inserted in line that should be included in
the measurement. If a preamp is used to boost the signal, the gain of the preamp should
be included in the measured result. Sometimes a small attenuator is inserted to improve the
50 W match of the antenna. Finally, the cable loss may be significant.

The E-field measurement, in dB, is given by

EðdBmV=mÞ ¼ VSAðdBmVÞ � GpaðdBÞ þ LcðdBÞ þ LaðdBÞ þ AFðdB=mÞ ð16-3Þ
where

VSAðdBmVÞ ¼ the spectrum analyzer reading in dBmV

GpaðdBÞ ¼ the gain of the preamp in dB

LcðdBÞ ¼ the cable loss in dB

LaðdBÞ ¼ the attenuator loss in dB

AFðdB=mÞ ¼ the antenna factor in dB

ETS-Lindgren’s Model 3143B BiConiLog Antenna

Figure 16-4 The BiConiLog is a hybrid antenna that combines a log periodic antenna and a
biconical antenna to cover 30 MHz to 1 GHz. (Courtesy of ETS-Lindgren.)
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Example 16.1

An EMC antenna with antenna factor shown in Figure 16-5 is used to measure an E field
at a frequency of 500 MHz. A 20 dB preamplifier is inserted inline and the cable loss at
this frequency is 3 dB. If the spectrum analyzer reading is 47 dBmV, what is the field
strength?

EðdBmV=mÞ ¼ VSAðdBmVÞ � GpaðdBÞ þ LcðdBÞ þ LaðdBÞ þ AFðdB=mÞ

From the figure, the antenna factor (AF) at 500 MHz is 19 dB/m

EðdBmV=mÞ ¼ 47 � 20 þ 3 þ 0 þ 19 ¼ 49 dBmV=m
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Figure 16-5 For EMC measurements, the AF is supplied by the manufacturer. (Courtesy of
ETS-Lindgren.)
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16.4 Near Field and Far Field

As the name implies, electromagnetic fields are a combination of an electric field (E) and a
magnetic field (H). When a device produces an EM field that propagates some distance
through free space, the wave is considered to be in the far field. In the far field, EM waves
are relatively well behaved and propagate according to classic radio theory.

The impedance of free space is given by the ratio of the E field and the H field

Z0 ¼ E

H
¼ m0c � 377 W ð16-4Þ

where

m0 ¼ the magnetic constantð4p � 10�7V � s= A � mð Þ
c ¼ the speed of light in free space 3 � 108m=s

� �

When the EM field is close to the radiating source, it is said to be in the near field. In this
region, the relative strengths of the E and H fields depend heavily on the nature of the
radiating source and its immediate surroundings. If the source has high current and low
voltage (E/H < 377 W), the field is predominately magnetic. If the source has high voltage
and low current (E/H > 377 W), the field is predominately electric.

The free-space wavelength is determined by

l ¼ c

f
ð16-5Þ

where

f ¼ the frequency of the waveform

The dividing line between near and far field is somewhat arbitrary, with a transition
region. A common rule of thumb is to define the far field as starting at a distance of l/2p
from the radiation source. Radiated emission measurements are done in the far field, with the
antenna some distance away from the DUT. Typically, the lowest frequency of interest is
30 MHz, which has a wavelength of 10 m. Thus, the far field starts at 10/2p, or 1.6 m, away
from the source.

Example 16.2

For a frequency of 250 MHz, calculate the distance from a radiation source where the far
field begins.

The wavelength is

l ¼ c

f
¼ ð3 � 108Þ= 250 � 106

� � ¼ 1:2 m

The far field starts at this distance from the radiating source

l=2p ¼ 1:2=2p ¼ 0:19 m or 19 cm
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16.5 EMI Receiver Requirements

The classic definition of an EMI receiver is a fixed-tuned receiver with specific filters and
detectors for EMI measurements. These receivers are designed with a robust front end that
is highly immune to overload from strong out-of-band signals. A spectrum analyzer is a
useful tool for measuring radio frequency (RF) signals, so it follows that it can be applied
to EMC measurements. However, a spectrum analyzer may not have the required filters
and detectors for EMI measurements and typically has a broadband front end that is more
susceptible to overload. Some spectrum analyzers have been optimized for EMC use and
meet the CISPR 16-1-1 requirements that are considered the standard definition for a true
EMI receiver. (Even if a spectrum analyzer does not meet the EMI receiver requirements,
it can still be a useful tool for identifying and correcting unwanted emissions.) As the
product categories have matured, the distinction between EMI receivers and spectrum
analyzers have blurred with each type of instrument adopting the others attributes. In this
chapter, we’ll use the term EMI receiver to mean spectrum analyzers that meet the CISPR
requirements.

The CISPR requirements for an EMI receiver include the following:

● Specific resolution bandwidth filters
● Four types of detectors: peak, quasi-peak, EMI average, and root mean square (RMS)

average
● Amplitude accuracy of �2 dB (9 kHz to 1 GHz) and �2.5 dB (1–18 GHz)
● Ability to pass radiated immunity in a 3 V/m field
● Ability to pass the CISPR pulse test (implies having a preselector below 1 GHz)

A few additional features tailor the instrument for EMC measurements: predefined fre-
quency ranges, EMC limit lines, signal lists, and antenna factor correction.

Resolution Bandwidth

As discussed in Chapter 4, the resolution bandwidth (RBW) of a spectrum analyzer
determines how finely the individual spectral components can be resolved in frequency.
A narrower RBW allows the analyzer to measure each spectral component separately, while
a wider RBW may allow multiple spectral lines to be measured by the detector. Clearly, the
choice of RBW can change the measured amplitude for dense spectral lines. For EMC
measurements, the CISPR 16 standard removes this variable by specifying the required RBW
(see Table 16-2).

Table 16-2 Resolution bandwidths for EMI measurements specified by CISPR 16-1-1

Frequency Range CISPR Band Resolution Bandwidth (6 dB)

9–150 kHz A 200 Hz
150 kHz to 30 MHz B 9 kHz
30 MHz to 1 GHz C/D 120 kHz
>1 GHz E 1 MHz
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Detectors

The CISPR specification also includes specific requirements for the characteristics of
the receiver’s detector. For continuous wave (CW) signals, the detector does not make
a difference since the signal is not time varying. Often, EMI emissions are modulated,
pulsed, intermittent, or otherwise time varying, so the detector characteristics come into
play.

Consider the case of a pulsed RF signal as discussed in Chapter 9. For RF pulses with low
repetition rates, the energy in the signal is relatively low. As the repetition rate is increased,
the energy in the signal increases, eventually approaching the CW case. From an EMI per-
spective a low repetition rate signal produces much less interference than a high rep rate
signal. The quasi-peak detector was defined to provide a consistent way of measuring pulsed
signals.1

16.6 Peak, Quasi-Peak, and Average Detectors

Spectrum analyzers intended to be used for EMC measurements will have several different
detectors available:

Peak detector: Responds to the peak level of the signal present in at the detector for a
given frequency bin.

Quasi-peak detector: Responds to the peak level and repetition rate of the signal present
at the detector

EMI average detector: Responds to the average level of the signal present at the detector.
RMS average detector: Responds to the average of the RMS level of the signal present at

the detector.

The peak detector is mostly useful for EMC troubleshooting since it quickly acquires
signals (but may overstate their amplitude from an EMC point of view). The quasi-peak
detector is designed specifically for EMC measurements. It responds to the peak level of the
signal but then decays away with a prescribed time constant. Signals with a low repetition
rate will have a lower reading, whereas high repetition rate signals will produce a larger
measured response. This mimics the impact of the signal in an EMC environment. The quasi-
peak detector slows down the measurement significantly, so a common approach is to scan
with the peak detector until a more precise measurement needs to be made. The peak
detector will always read greater than or equal to the quasi-peak measurement, so it is a
conservative way to measure. Figure 16-6 shows how the peak, quasi-peak and average
detectors respond to emissions with high and low repetition rates.

The quasi-peak, EMI average, and RMS average detectors have precise and somewhat
complicated definitions in the CISPR standard. The RMS average detector was developed to
respond to interference in a manner consistent with modern digital radio formats and was
added to the standard in 2007. The RMS average detector is implemented as an RMS
detector followed by a linear average detector and a peak reading meter algorithm.

1 Sometimes the quasi-peak detector is said to detect the annoyance factor of an EM emission.
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In general, each type of detector may produce a different measurement reading than the
other detectors. However, there is a consistent ordering to the amplitude of their readings.
The peak detector always reads greater than or equal to the quasi-peak detector, which reads
greater than or equal to the RMS average detector, which reads greater than or equal to the
EMI average detector.

16.7 Conducted Emissions

Conducted emission regulations limit the spectral content that is coupled through the AC
power cord of the DUT. For both CISPR and FCC regulations, the frequency range of
interest is 150 kHz to 30 MHz as shown in Figure 16-7.

16.8 Line Impedance Stabilization Network

The typical test configuration for measuring conducted emissions uses a line impedance
stabilization network (LISN) as shown in Figure 16-8. The AC power passes through the
LISN to the DUT while also providing a match between the line impedance and the 50 W
input of the EMI receiver. Often, a limiter is inserted in the measurement line to protect the
receiver from large transients that can occur during power on. Keep in mind that the
incoming AC power is delivering 100 to 240 V RMS, depending on the type of line voltage
being tested, while the EMI receiver is set to measure microvolt levels.

Peak Detection
Low repetition rate

High repetition rate

V

V

Peak, Quasi-peak and Average Detection

Quasi-Peak Detection

Average Detection

t

t

Quasi-Peak Detection

Peak Detection

Average Detection

Figure 16-6 A comparison of detector behavior for high repetition rate and low repetition rate
waveforms. (� Keysight Technologies, Inc. Reproduced with Permission,
Courtesy of Keysight Technologies, Inc.)
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A typical LISN is shown in Figure 16-9. The LISN provides an AC power outlet for the
DUT to plug into along with a BNC output port that is connected to the EMI receiver. The
schematic diagram in Figure 16-10 shows how the AC power is supplied to the DUT while
providing an output port to measure the conducted emissions. The spectrum analyzer display
of a conducted emissions measurement is shown in Figure 16-11. The emissions from the
LISN are plotted as dBmV and compared to the regulatory test limits.

AC
Power

LISN

DUT

Limiter

EMI Receiver

Figure 16-8 A typical test configuration for conducted emissions using an LISN, limiter, and
EMI receiver.
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Figure 16-7 The CSPR and FCC test limits for conducted emissions.
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Figure 16-9 Photograph of a typical line impedance stabilization network (LISN). (Courtesy of
ETS-Lindgren.)
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Figure 16-10 The circuit of typical LISN shows the AC power passing through left to right
while also providing the measurement connection for the EMI receiver.
(Courtesy of ETS-Lindgren.)
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16.9 EMC Troubleshooting

While the final compliance tests for both radiated and conducted emissions must be done on
a certified test range, it is also important to be able to do less formal testing on the bench.
This may be precompliance testing, to improve the odds of passing the full compliance test,
or it may be for troubleshooting a particular test failure.2

Noncompliance measurements of radiated emissions can be done in a normal lab envir-
onment. A common configuration is to set the DUT on a table or workbench with a small
antenna positioned about 1 m away. We are trying to emulate the far-field measurement at
the official test. It is best to find a location that is electrically quiet, with very few ambient
RF signals present. A basement location may offer some advantages in terms of avoiding
radiation from broadcast stations and wireless base stations.

A calibrated EMC antenna can be used for troubleshooting, although it will generally
be difficult to maintain highly accurate measurements on the bench. A lower cost and sim-
pler antenna such as a basic TV antenna may be sufficient for troubleshooting purposes
(Figure 16-12 and 16-13). A good strategy is to carefully measure the radiated emissions,

2 For a more detailed discussion of EMC troubleshooting, see André and Wyatt (2014).

Figure 16-11 This conducted emissions measurement includes specific EMC features, such as
frequency list and limit lines for relevant standards. (� Keysight Technologies,
Inc. Reproduced with Permission, Courtesy of Keysight Technologies, Inc.)
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focusing on the specific frequencies that are failing or are likely to fail. Then you can make
design changes (e.g., installing filters, shielding) and measure the relative improvement in
radiated emissions. Of course, for repeatability your measurement setup must be the same
every time.

16.10 Near-Field Probes

To investigate the source of the emissions, whether radiated or conducted, we are going to
have to poke around inside the DUT. Two types of near-field probes can be used: magnetic
field and electric field. Recall that EM fields in the near field tend to be dominated by either
the electric field or magnetic field, depending on the source.

A magnetic probe has a loop on the end of the probe for efficient coupling of magnetic
fields. The larger the loop, the better the sensitivity. Smaller loops are better at locating the
EMC hotspots since their spatial resolution is better. An electric field probe has a very small
dipole at the tip of the probe, which is effective at picking up electric fields. Some typical
magnetic and electric field probes are shown in Figure 16-14.

Figure 16-15 shows a magnetic-field probe being passed over a suspected circuit while
monitoring its output on a spectrum analyzer. This is a powerful troubleshooting tool for
finding the hot spots in a circuit assembly that are producing the harmonic currents at the
particular frequencies that are failing the compliance test.

Figure 16-12 Simple television antennas can be used for troubleshooting radiated emissions.
(Courtesy Kenneth Wyatt.)
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Figure 16-13 This 400–1000 MHz log periodic antenna is usable for troubleshooting purposes
down to 100 MHz. The antenna is fashioned from PC board material (available from
http://wa5vjb.com) and mounted on a simple tripod. (Courtesy Kenneth Wyatt.)

Figure 16-14 Three magnetic-field probes (with loops) and one electric-field probe (bottom).
(Courtesy Beehive Electronics.)
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The E-field and H-field probes are used for identifying sources of emissions, but it is
important to use an antenna in the far field to see if it’s really radiating. Not all hot spots are
efficient radiating structures, so even though the near-field probes pick up some strong fields
they may not be causing the radiated emissions.

16.11 Current Probe

A common source of EMI problems is related to currents flowing along unshielded cables or
on the outside of shielded cables in a system. It is sometimes difficult to tell which cable is
radiating and at what frequencies. The use of current probes can give us insight into the
frequency content running through the cables. Figure 16-16 shows several current probes
that clamp into a cable and connect to a spectrum analyzer.

This type of current probe is also called a current transformer, because that is the
coupling mechanism used. This means the probe will pass only AC signals and the response
will roll off as the frequency approaches DC.

The scale factor associated with the current probe is its transfer impedance.

ZT ¼ VL

IP
ð16-6Þ

Figure 16-15 A magnetic probe is passed over a suspect circuit board, looking for evidence of
radiated emissions. (Courtesy Kenneth Wyatt.)

312 CHAPTER 16 ● EMC Measurements



where

ZT ¼ the transfer impedance Wð Þ
VL ¼ the voltage produced by the probe Vð Þ
IP ¼ the current flowing through the probe

The probes are configured with a suitable RF connector such as a BNC connector and are
meant to drive a 50 W load.

16.12 Preamplifiers

Signals associated with EMC work are often very weak and may be near the noise floor
of the EMI receiver. This is especially true in situations where the antenna factor or probe
transfer impedance is low, further attenuating the signal. A low-noise preamplifier can
be used to boost the signal ahead of the receiver input. Sometimes EMC antennas have a
low-noise preamp installed at the factory.

Figure 16-16 Examples of current probes that can be used to measure the frequencies flowing
along unshielded cables or on the outside of a shielded cable. (Courtesy Kenneth
Wyatt.)
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A key point is that the preamp must have very low noise to improve overall measurement
sensitivity. Commercially available preamps produce gains in the range of 20 to 40 dB with
frequencies starting as low as 100 Hz and extending to tens of GHz. With this additional gain
in the system, it is important not to overload the amplifier with large signals, producing
distortion products.
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CHAPTER 17

Analyzer Performance and
Specifications

Spectrum and network analyzer specifications are the instrument manufacturer’s way of
communicating to the user the level of performance that should be expected from a particular
instrument. Understanding and interpreting instrument specifications enable the instrument
user to predict how the instrument will perform in a specific measurement situation,
including the accuracy of the measurement.

The form and style of the specifications are usually related somewhat to the block dia-
gram and measurement techniques internal to the instrument. These specifications may
appear to be more complex than necessary. However, oversimplifying an instrument data
sheet can force the manufacturer to understate the performance level of an instrument to
cover all possible cases in a single specification. In general, the details present in analyzer
data sheets provide a better understanding of instrument performance, so that the user can
obtain the best measurement possible.

17.1 Source Specifications

Normal operation of a network analyzer signal source (or spectrum analyzer tracking gen-
erator) is to create a pure sine wave with the desired amplitude and frequency. There will
always be some error in amplitude and frequency, which are described in the data sheet.
Amplitude errors can be described as level accuracy across some frequency range or as
absolute accuracy at one frequency combined with a flatness specification. Most modern
analyzers use synthesized frequency references derived from a precision reference oscillator,
so the frequency accuracy is normally very good.

Ideally, the source output produces only one frequency—the desired, fundamental
frequency. In practice, other frequencies will be present, both harmonic and nonharmonic
frequencies. A typical specification for a network analyzer source harmonic content might be
–25 or –30 dBc, which may seem like rather poor distortion performance. However, if the
source and receiver are tracking in frequency and the device under test is reasonably linear,
the harmonic content will simply fall outside the passband of the receiver and not affect the
measurement. Nonharmonic spurious signals are not necessarily so well behaved and may
show up at what appears to be arbitrary frequencies. The analyzer manufacturer must make
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sure that the level of these spurious signals does not introduce significant error in the mea-
surement. If the spurious signals stay out of the receiver passband, they will not effect the
network measurement.

● Frequency resolution: The frequency resolution specification indicates the smallest
change possible when setting the source frequency. For example, a source with a 0.1 Hz
frequency resolution may be set to 1000.1 Hz, 1000.2 Hz, and 1000.3 Hz but not 1000.05 Hz.
This specification does not define how accurate the source frequency is, but only how finely
it may be set.

● Frequency stability: A source’s frequency varies over time due to thermal, aging, and
other effects. The frequency stability specification describes this long-term frequency
drift, usually in terms of parts per million per day, often with a temperature range spe-
cified. (Very short-term frequency fluctuation is specified in terms of phase noise.)
A typical frequency stability specification might be �5 � 10–8/day. With this spec, a
100 MHz source frequency could vary as much as �(5 � 10–8) (100 MHz) ¼ �5 Hz per day.

● Level accuracy: This specification indicates how much error there can be in the output or
power level of the source. This may be specified at only one frequency and power level,
with a linearity specification to describe the accuracy at other output levels and a flatness
specification to describe how the level varies with frequency. A typical specification is
�0.5 dB at 50 MHz and 0 dBm output power.

● Level linearity: Level linearity describes how the level accuracy changes with changing
output level. It is often specified in table form with an accuracy specified for a particular
range of output power. For example,

ERROR OUTPUT LEVEL

�0:2 dB �5 dBm to þ15 dBm

�0:5 dB þ15 dBm to þ20 dBm

● Flatness: The flatness specification represents the frequency response of the source
power level. The flatness spec alone does not indicate anything about the absolute
accuracy of the source power but instead indicates how much it varies over frequency.
For example, a flatness specification of �1 dB means that for a given amplitude setting,
the actual source power level may vary over a 2 dB range when swept in frequency,
usually measured relative to a low-frequency amplitude value.

● Impedance: The nominal output impedance of the source is important in that a Z0 system
should be driven by a source having an output impedance of Z0. The quality of this Z0

source impedance will usually be specified in terms of return loss or standing wave ratio
(SWR). This is important in predicting measurement error due to imperfect source match.
Typical specification: >20 dB return loss.

● Phase noise: Very-short-term variations in frequency are specified in terms of phase
noise. The phase noise is specified in dBc (dB relative to the carrier or source frequency)
at some frequency offset away from the source frequency and normalized to a 1 Hz
bandwidth. A typical specification is stated as <–90 dBc (1 Hz BW) at a 10 kHz offset.

● Harmonics: The harmonic content present in the output signal is specified in terms of
dBc (decibels relative to the carrier, in this case the fundamental frequency). Typical
specification: <–30 dBc.
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● Nonharmonic spurious signals: The source may produce other spurious signals that are
not harmonically related to the source frequency. These spurious signals are also usually
specified in terms of dBc. Typical specification: <–50 dBc.

17.2 Receiver Characteristics

The receiver characteristics indicate how accurately signals can be measured. Ideally, the
receiver only responds to the intended signal present at the input but noise, distortion and
other signals may be included in the measurement.

● Input impedance: Important if the input is required to properly terminate a port of the device
under test. A Z0 (50 W) input will usually have a return loss or SWR specification associated
with it so that mismatch errors can be estimated. Typical specification: >25 dB return loss.
Analyzers operating below 50 MHz may also supply a high impedance input, whose
nominal resistive and capacitive components are specified (e.g., 1 MW and 30 pF).

● Displayed average noise level (DANL): Describes the basic sensitivity and noise per-
formance of the analyzer, usually measured in a 1 Hz resolution bandwidth (RBW). This
specification represents the reading of the analyzer due to noise with no signal present.
Signals obscured by this noise level cannot be detected, while signals right at this level
will be measurable but with some error (see Chapter 8). Typical specification: –140 dBm
(1 Hz BW).

● Second harmonic distortion: Can be specified as second harmonic intercept (SHI) or
second order intercept (SOI) using the distortion model described in Chapter 7. Alter-
natively, the harmonic level may be specified in dBc at some specific input level. Typical
specification: SHI ¼ þ45 dBm.

● Third-order intercept (TOI): Describes the distortion performance of the receiver using
the distortion model described in Chapter 7. Typical specification: þ15 dBm.

● Spurious responses: Erroneous signals that appear on the analyzer display that are not
harmonically related to the input signal. Typical specification: >100 dB below maximum
input level.

● Residual responses: One type of spurious response—signals that appear on the analyzer
display due to imperfections internal to the analyzer with no input signal connected.

● Input-related spurious responses: Input-related spurious responses are signals that appear
on the analyzer display due to imperfections internal to the analyzer when an input signal
is connected. When the input is disconnected, these responses disappear. These responses
are artifacts of the analyzer’s internal block diagram, and they differ from distortion
products in that they occur at frequencies not directly related to the input frequency.

● DC response/LO feedthrough: Most analyzers that operate near 0 Hz generate a response at
DC. In a swept analyzer, this is due mainly to the local oscillator feedthrough. In a fast
Fourier transform (FFT) analyzer, this response is due to DC offsets in the signal path. The
level of this response at 0 Hz is usually specified in decibels relative to a full-scale response.
This specification may be omitted on analyzers whose low-frequency limit is significantly
above 0 Hz (e.g., 100 kHz). Typical specification: >33 dB below full-scale input level.

Multichannel network analyzer amplitude characteristics are usually specified for the
single-channel case as well as the dual-channel (or ratio) case. The accuracy of the ratio
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case is usually better since the channels are designed and built to be matched in magni-
tude and phase characteristics. Normal network analyzer measurements use the ratio of
two channels, taking advantage of the matching between channels.

● Amplitude absolute accuracy: Usually specified for a full-scale signal and may be restricted
to center of screen. A dynamic accuracy specification is added to the absolute accuracy
spec to determine the accuracy at lower amplitudes. Alternatively, amplitude accuracy may
be composed of several different specifications such as intermediate frequency (IF) gain
uncertainty, radio frequency (RF) gain uncertainty, and amplitude temperature drift.

● Amplitude dynamic accuracy: Also known as incremental accuracy or log scale fidelity,
this specification describes how accurate the analyzer is in a relative sense. That is, if a
signal changes by 1 dB at the input, what change is shown on the analyzer display?
A typical spec is stated as �0.05 dB/dB, meaning that for a 1 dB change in signal level an
error of �0.05 dB may be introduced. Alternatively, it may be specified in table form,
with an error limit for each measurement range. This specification is important because
it represents the main error remaining after a normalization is performed.

● Amplitude resolution: The smallest change in amplitude that can be detected by the
analyzer, often related to the marker or cursor readout. The resolution should be
significantly smaller than the typical amplitude accuracy, so that the resolution does not
limit accuracy.

● Amplitude frequency response or flatness: This specification describes the variation in
amplitude response due to changing frequency. In cases where the absolute accuracy of
the receiver is specified at only one point, the amplitude flatness must be added in to
determine the error at other frequencies. The amplitude flatness is also important in cases
where a network measurement is performed without the use of normalization. Phase
specifications usually only apply when two receiver channels are used together in a
relative or ratio phase measurement.

● Phase accuracy: The absolute phase accuracy of the receiver is usually specified for a full-
scale signal and may be restricted to center of screen. A dynamic accuracy specification is
added to the absolute accuracy spec to determine the phase accuracy at lower amplitudes.

● Phase dynamic accuracy: This specification describes how accurate the phase response
of the analyzer is with changes in signal amplitude. It is important because it represents
the main error remaining after a normalization is performed.

● Phase resolution: The smallest change in phase that can be detected by the analyzer,
often related to the marker or cursor. The resolution should be significantly smaller than
the typical phase accuracy, so that the resolution does not limit accuracy.

● Phase frequency response: This specification describes the variation in phase response
due to changing frequency. In cases where the absolute phase accuracy of the receiver is
specified at only one point, the phase frequency response must be added in to determine
the error at other frequencies. The phase frequency response is also important in cases
where a network measurement is performed without the use of normalization.

● Delay specifications: Since most analyzers calculate the delay measurement from the
phase measurement, delay specifications are obtained by translating the phase specs into
delay specs. For example, delay accuracy might be given as

delay accuracy ¼ phase accuracyð Þ= 360 � delay apertureð Þ
with phase accuracy in degrees and delay aperture Hzð Þ
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17.3 Spectrum Analyzer Dynamic Range

Spectrum analyzer dynamic range is an important receiver specification, or set of receiver
specifications, that deserves to be treated separately. Dynamic range describes the range of
signal levels that can be reliably measured simultaneously. In particular, it describes the
analyzer’s ability to measure small signals in the presence of large signals. This ability is
critical to the function of an analyzer since its main function is to measure the individual
frequency components of a signal or the frequency response of a network.

Dynamic range is defined as the maximum ratio of two signal levels simultaneously
present at the input that can be measured to a specified accuracy (IEEE, 1979). We can
imagine connecting two signals to the analyzer input: one that is the maximum allowable
level for the analyzer’s input range, and the other much smaller one (Figure 17-1). The
smaller one is reduced in amplitude until it is no longer detectable by the analyzer. When
the smaller signal is just measurable, the ratio of the two signal levels (in dB) defines the
dynamic range of the analyzer.

What effects might make it undetectable? Such things as residual responses of the ana-
lyzer, harmonic distortion of the large signal (due to analyzer imperfections), and the internal
noise of the analyzer could all be large enough to cover up the smaller signal as we decrease
its amplitude. The smaller signal might not appear at the same frequency as a spurious
response or the harmonic of the larger signal, but when considering the general case we must
assume that it could. Another way to say this is we cannot tell the difference between the
smaller signal and an imperfection of the analyzer such as a distortion product or residual
response. Thus, the dynamic range of the instrument determines the amplitude range over
which we can reliably make measurements.

Figure 17-2 shows the error mechanisms that limit the dynamic range of the analyzer.
A single frequency is at the input of the analyzer along with its harmonics generated internal
to the analyzer. For simplicity, we have shown only one input frequency. Had there been
more than one frequency, we would also have intermodulation distortion products (in addi-
tion to the harmonic distortion products). Other sources of error shown are the residual and
input-related spurious responses in the analyzer. The third factor in dynamic range limitations
is the internal noise of the analyzer, which produces a noise floor below which a signal cannot
be measured. The measured level of this noise depends on the resolution bandwidth used.

Dynamic
Range

f

Figure 17-1 The dynamic range of a spectrum analyzer is the ratio (expressed in dB) of the
largest and smallest signals that can be reliably measured at the same time.
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A narrower bandwidth will allow less noise into the measurement, thereby reducing the
measured level of the noise. Any of these three mechanisms (distortion, residual/spurious
responses, and noise) can limit the dynamic range of the instrument.

The instrument user can take some steps to optimize the dynamic range for the user’s
particular measurement application. If noise is limiting the dynamic range, reducing the
predetection bandwidth (by averaging or filtering) will reduce the noise level measured by
the analyzer without affecting the measured signal level. If the distortion products are the
limiting factor, they can be reduced by reducing the signal level. As discussed in Chapter 7,
the distortion products will drop in amplitude by a larger amount than the signal level,
causing an increase in dynamic range. An external attenuator supplied by the user or the
analyzer’s internal attenuator can reduce the signal level. Of course, as the signal level is
reduced, the dynamic range may be limited by the noise floor.

The effect of distortion and noise on dynamic range is sometimes shown on an instrument
data sheet using a figure similar to Figure 17-3. The horizontal axis is the level of the signal
at the input mixer. We can just think of this as corresponding to the input signal level, plus or
minus any amplification or attenuation in the analyzer front end.

Looking at the plot of DANL, we see that at a mixer level of –25 dBm the DANL is
130 dB below the mixer level. In this case, the DANL would limit the dynamic range to
130 dB. (This implies that the DANL is –25 dBm – 130 dB ¼ –155 dBm.) As the mixer
level is decreased (moving to the left on the plot), the relative DANL level increases until it
is –75 dB when the mixer input is –80 dBm. In other words, having a lower signal level at the
mixer causes DANL to limit the dynamic range of the measurement.

Now consider the plot of second-harmonic distortion, which has the opposite slope. At a
mixer level of –25 dBm, the second harmonic distortion is 75 dB below the mixer level. As
the mixer level is decreased, the relative level of the second harmonic distortion drops until it
is –130 dB when the mixer level is –80 dBm. Thus, having a high signal level at the mixer
causes the second harmonic distortion to limit the dynamic range but at lower signal levels
the harmonic performance improves dramatically. The third-order intermodulation distortion

Signal

Spurious
Response

Residual Response

Harmonics

Noise Floor

f

Dynamic
Range

Figure 17-2 Dynamic range is limited by the analyzer’s harmonic distortion, internal noise,
residual responses, and input-related spurious responses.
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plot behaves in a similar manner but has a larger slope, meaning that the third-order products
drop more quickly as the signal level is decreased. This is consistent with the distortion
model described in Chapter 7.

Figure 17-3 provides a quantitative way to assess spectrum analyzer dynamic range and
set up the instrument for the best measurement. Keep in mind that the DANL specification is
relative to a 1 Hz bandwidth, which may require the use of a narrow resolution bandwidth
that may slow down the measurement. Using a wider RBW can speed up the measurement
but with a higher noise level.

17.4 Network Analyzer Specifications

As a product category, network analyzers have evolved from having separate sources,
receivers, and test sets into well-integrated measuring instruments. The modern network
analyzer is a complete system in a box, able to accurately test high frequency components.
Accordingly, the specifications have evolved to reflect the entire system performance.
Ultimate network analyzer performance depends on the vector error correction as discussed
in Chapter 15. Most of the analyzer specifications apply only with a measurement calibration
and error correction applied.

Dynamic Range

Network analyzers have a different set of factors that affect the dynamic range. The perfor-
mance of both the source and receiver must be considered, since either can limit the dynamic
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Figure 17-3 Dynamic range for a spectrum analyzer may be described using a plot of DANL,
second harmonic, and third-order intermodulation performance. (� Keysight
Technologies, Inc. Reproduced with Permission, Courtesy of Keysight
Technologies, Inc.)
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range. With the general case of a spectrum measurement, we have to assume the signal is
largely unknown. In the case of a classic network measurement, the source and receiver are
both tuned to the same frequency. Therefore, harmonic distortion (in either the source or
receiver) is not usually a problem since the harmonics fall outside the receiver passband.
Intermodulation distortion is usually negligible since classic network measurements are per-
formed with only one frequency stimulating the device under test (DUT).

Source spurious responses can potentially cause measurement error but do not usually
limit dynamic range. Since the source is always at the measurement frequency, its amplitude
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Figure 17-4 A typical example of a network analyzer specification of transmission coefficient
uncertainty (magnitude and phase). (� Keysight Technologies, Inc. Reproduced
with Permission, Courtesy of Keysight Technologies, Inc.)
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tends to dominate over small spurious frequencies. The device under test attenuates these
spurious responses along with the desired source frequency.

The remaining analyzer imperfections that normally limit the dynamic range of a net-
work measurement are receiver residual responses and the receiver noise floor. As in the
spectrum analyzer case, the noise floor can be reduced by narrowing the predetection
bandwidth, perhaps at the expense of increased measurement time.

Network analyzer dynamic range is usually specified in dB, for a particular frequency
range or other configuration.
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Figure 17-5 A typical example of a network analyzer specification of reflection coefficient
uncertainty (magnitude and phase). (� Keysight Technologies, Inc. Reproduced
with Permission, Courtesy of Keysight Technologies, Inc.)
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Transmission and Reflection Measurements

The most common network analyzer measurement is the classic two-port measurement of
S11, S12, S21, and S22. The measurement uncertainty for the transmission measurements, S12

and S21, and the reflection measurements, S11 and S22, is specified in terms of magnitude and
phase (Figures 17-4 and 17-5). These uncertainty specifications are for the corrected system
performance, after vector error correction has been applied, using the specified procedure
and calibration kit.
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Appendix A

Two-Port Vector Error Correction

For the most accurate network measurements, vector error correction is employed, as dis-
cussed in Chapter 15. In this Appendix, we will examine the two-port model in more detail.

Figure A-1 shows the forward error model for the two-port error correction. For simpli-
city, only half of the error terms for the two-port model are shown: the ones relevant to
forward measurements. The model shown is sufficient for error-corrected S11 and S21 mea-
surements. There is a corresponding error model for the reverse measurements, S22 and S12.

S11M is the measured version of S11A, which is the actual S11 value for the device under
test (DUT). The error terms included in the equation are all from the left column of
Table A-1, which means the forward error model is sufficient to describe the measured result
for S11. Note that S11M depends on all four actual S parameters: S11A, S21A, S22A, and S12A.

S11M ¼ EDF þ
ERF S11A þ S21A�ELF�S12A

1�S22A�ELFð Þ
� �

1 � ESF � S11A þ S21A �ELF�S12A
1�S22A�ELFð Þ

� �h i

Forward Error Model

Forward Reflection
Tracking (ERF)

Forward Transmission
Tracking (ETF)

Forward
Directivity
(EDF)

Forward
Crosstalk

(EXF)

Forward
Load
Match
(ELF)

Forward
Source
Match
(ESF)

R

Vs

A B

DUT

Figure A-1 The forward error model is used to show the error terms for a two-port S-parameter
measurement. (Adapted from Joel P. Dunsmore, Handbook of Microwave
Component Measurements, Wiley, 2012, Chapter 3.)
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Similarly, S21M is the measured version of S21A, which is the actual S21 value for the
DUT. The error terms included in the equation are all from the left column of Table A-1,
which means the forward error model is sufficient to describe the measured result for S21.
Note that S21M depends on all four actual S parameters: S11A, S21A, S22A, and S12A.

S21M ¼ S21A � ETF

1 � S11A � ESFð Þ 1 � S22A � ELFð Þ � ESF � S21A � S12A � ELFð Þ þ EXF

Not surprisingly, the reverse error model is roughly the mirror image of the forward model
(Figure A-2).

The equations for S12M and S21A use the reverse error model, and the equations are the
mirror image of the forward case. In this case, the error terms are all from the right column of
Table A-1. Note that S22M and S12M both depend on all four actual S parameters: S11A, S21A,
S22A, and S12A.

S12M ¼ S12A � ETR

1 � S22A � ESRð Þ 1 � S11A � ELRð Þ � ESF � S12A � S21A � ELRð Þ þ EXR

S22M ¼ EDR þ
ERR S22A þ S12A�ELR�S21A

1�S11A�ELRð Þ
� �

1 � ESR � S22A þ S12A�ELR�S21A
1�S11A�ELRð Þ

� �h i

Table A-1 Error Mechanisms Associated with Two-Port Vector Network Analysis

Forward Error Terms Reverse Error Terms

EDF Forward Directivity EDR Reverse Directivity
ESF Forward Source Match ESR Reverse Source Match
ERF Forward Reflection Tracking ERR Reverse Reflection Tracking
ELF Forward Load Match ELR Reverse Load Match
ETF Forward Transmission Tracking ETR Reverse Transmission Tracking
EXF Forward Crosstalk EXR Reverse Crosstalk

Reverse Transmission
Tracking (ETR)

B

DUT

A R

Reverse Reflection
Tracking (ERR)

Reverse Error Model

Reverse
Directivity

(EDR)
Reverse
Crosstalk

(EXR)

Reverse
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(ELR)

Reverse
Source
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(ESR)

Vs

Figure A-2 The reverse error model is used to show the reverse error terms for a two-port
S-parameter measurement.
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One-Port Case

This degenerates into the one-port case by setting S21A ¼ 0:

S11M ¼ EDF þ ERF S11A þ 0ð Þ
1 � ESF � S11A þ 0ð Þ½ �

S11M ¼ EDF þ ERF � S11A

1 � ESF � S11Að Þ
Chapter 15 uses the error model described by Paul Ely (1967) to explain vector error

correction:

GM ¼ D þ ð1 þ TRÞ
ð1 � MSGAÞGA

where

GA ¼ actual reflection coefficient
GM ¼ measured reflection coefficient

D ¼ directivity error
TR ¼ frequency response error
MS ¼ source match error

We can equate this to the nomenclature used in the two-port model by setting

GM ¼ S11M

GA ¼ S11A

For these two equations to be equal, the following equations must be valid:

EDF ¼ D

ERF ¼ 1 þ TR

ESF ¼ MS
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Index

1/f noise 154, 155

ABCD parameters 247
absolute decibel values 14–17
accuracy enhancement 290
adjacent channel power (ACP) 133, 134
adjacent channel power ratio (ACPR) 134
adjacent-point averaging 187, 191
admittance parameters 246
aliasing 49, 50
amplitude absolute accuracy 318
amplitude dynamic accuracy 318
amplitude errors 315
amplitude frequency response/flatness 318
amplitude modulation (AM) 107, 108–11

measurement 112–14
sinusoidal modulation 110–11, 112
time domain 111

amplitude resolution 318
amplitude sweep 262
analyzer performance and specifications 315

network analyzer specifications 321
dynamic range 321–3
transmission and reflection measurements 324

receiver characteristics 317–18
source specifications 315–17
spectrum analyzer dynamic range 319–21

angle modulation 107
antennas, EMC 300–2
anti-alias filter 49, 50, 53, 65
attenuating coupler 224
attenuating probes 222–3
attenuators

classical attenuator problem 232–4
high-impedance 228–9
Z0 attenuators 229–30

audio oscillator, harmonic distortion of 63
autocorrelation function 73–5
automatic noise level measurement 159
averaging 177, 183

exponential weighting 185–7
versus filtering 191–2
general averaging 184–5
linear weighting 185
root mean square (RMS) average 188
smoothing 191
in spectrum and network analyzers 187

log detector problem 187–8
variance ratio 183–4
vector averaging 188–90

band-pass networks 270
band selectable analysis 53–4
bank-of-filters analyzer 43–4, 87
bayonet Neill Concelman (BNC) connector

224–5, 294
BiConiLog 301
binary phase-shift keying (BPSK) 127, 129
bins, defined 51
bit rate 127

cardinal values, for decibels 13
carrier amplitude, measuring 112
carrier null method 122–3
Carson’s rule 121
channel power 133
characteristic impedance 196, 216, 248
coaxial cables 195
coaxial lines 216–17
coherence measurements 70–2
combined spectrum/network analyzers 9
complex reflection coefficient 203, 281, 282
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conducted emissions 297, 298, 306
correlation 72–3
cross-correlation 75–6
cross-power spectrum 68–70
cumulative density function (CDF) 76
current probe 312–13
current transformer 312

DC bin 51
DC response/LO feedthrough 317
decibels (dB) 11

cardinal values 13
definition of 11–12
error expressed in 20–1
gain and loss calculations 17

multiple blocks 18–19
voltage gain 17–18

and percent 19–20
values 14

dBmV 15
dBm 14
dBm/dBV conversions 15–16
dBmV 15
dBV 15
dBW 15
high-impedance measurements 16–17

decimating low-pass filters 99, 100
delay aperture 274–5
delay specifications 318
desensitization 175
device under test (DUT) 7, 65, 151, 212–13, 255,

267
digital modulation 125–6, 131, 133

formats 127–30
directional bridges 257, 284–7
directional coupler 257, 258, 284, 285, 288
directional devices 251, 285, 287, 291, 293

coupling factor of 286
insertion loss of 286
standard error model for 289
three-port 286

directivity 286–7, 291, 292
direct spectrum technique 164
discrete Fourier transform (DFT) 23, 36–8

inverse DFT (IDFT) 38
limitations of 38

displayed average noise level (DANL) 317,
320

distortionless system/network 267

distortion measurements 137
distortion internal to the analyzer 148–9
distortion model 137
harmonic distortion measurements 145–6
higher-order models 142
intercept concept 142–5
intermodulation distortion measurements

147–8
single-tone input 138–9
two-tone input 139–42
use of low-pass filter on source 146–7

double-sideband (DSB) modulation 115
double-sided frequency domain representations

25
duty cycle 168, 175
dynamic range

network analyzer 321–3
spectrum analyzer 319–21

dynamic signal analyzer: see fast Fourier
transform (FFT) analyzer

EDR Reverse Directivity Error 294
ESR Reverse Source Match Error 294
ERR Reverse Reflection Tracking Error 294
ELR Reverse Load Match Error 294
ETR Reverse Transmission Tracking Error 294
EXR Reverse Crosstalk Error 294
effective impulse bandwidth (IBW) 176
effective pulse width 169–70
E-field measurement, in dB 301
electrical delay 279
electrical length compensation: see electrical

delay
electric field probe 310, 311, 312
electromagnetic compatibility (EMC)

measurements 97, 297–8
antennas 300–2
conducted emissions 306
current probe 312–13
full-compliance testing 297, 298
line impedance stabilization network (LISN)

306–9
near field and far field 303
near-field probes 310–12
peak, quasi-peak, and average detectors 305–6
preamplifiers 313–14
precompliance testing 297–8
radiated emissions 298–300
troubleshooting 309–10
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electromagnetic interference (EMI) 297
average detector 305
receiver requirements 304

detectors 305
resolution bandwidth 304

electronic calibration standards 295
electronic filter characterization 67–8
equivalent noise bandwidth (NBW) 155–7
error correction, vector 290

three-term 291–2
two-port 293–5
two-term 291

error expressed in decibels 20–1
error vector magnitude (EVM) 131–2
exponential weighting 185–7
exponential window 60–2

far field 303
fast Fourier transform (FFT) analyzer 6, 39, 43,

45–6, 103, 167, 177, 180, 181
autocorrelation 73–5
averaging in 183
band selectable analysis 53–4
bank-of-filters technique 43–4
coherence 70–2
controlling the frequency span 52–3
correlation 72–3
cross-correlation 75–6
cross-power spectrum 68–70
electronic filter characterization 67–8
exponential window 60–2
flattop window 58–9
frequency resolution 44–5
Hanning window 55–8
histogram 76–8
leakage 55
network measurements 65–6
octave measurements 84
oscillator characterization 62–3
overlap processing 81–3
phase 66–7
properties 51–2
real-time bandwidth 78–9

and RMS averaging 79–80
and transients 80–1

sampled waveform 46–7
sampling theorem 47–50
spectral maps 63–5
swept sine 83

versus swept spectrum analyzers 98–9
time average in 190
time domain display 65
time domain waveform 46–7
uniform window 59–60
window function, selecting 62

feedthrough termination 225
filtering 177

averaging versus 191–2
postdetection filtering 180–1, 182
postdetection filters 181, 183
predetection filtering 177–9
predetection filters 179–80

finite measurement time 40–1
flat line 204
flatness specification 316
flattop window 58–9, 62, 63
flicker noise 154
folding frequency 48, 50
forward crosstalk (EXF) error 293
forward directivity error (EDF) error 293
forward load match (ELF) error 293
forward reflection tracking (ERF) error 293
forward source match (ESF) error 293
forward transmission coefficient 249, 253
forward transmission tracking (ETF) error 293
Fourier theory 2, 23

discrete Fourier transform (DFT) 36–8
limitations of 38

fast Fourier transform (FFT) 39
finite measurement time 40–1
Fourier series 23, 24–5

of a square wave 25–9
of other waveforms 30–1
periodic function, representation of 24

Fourier transform 31–2
properties of 36
of a pulse 32–3
relationships 33

inverse Fourier transform 33, 34–5
periodicity 23
relating theory to measurements 39–40

Fourier transform 23, 31–2, 153
properties of 36
of a pulse 32–3
relationships 33

free-space wavelength 303
frequency division multiplexing (FDM)

systems 5
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frequency domain 23
measurements, advantages of 4–5
representation 2, 23, 32

double-sided 25
single-sided 25
of square wave 29

frequency mask triggers 101, 103, 104
frequency-modulated carrier 116
frequency modulation (FM) 107, 115, 116

combined AM and FM 123–5
measurements 122–3

carrier null method 122–3
frequency resolution specification 316
full-compliance measurements, EMC 297, 298

group delay 267, 273–5

Hanning window 55–8
harmonic distortion 62–3, 138

measurement of 4–5, 145–6
harmonics 316
high-impedance attenuators 228–9
high-impedance filters 236–7
histogram 76–8
hybrid parameters 246–7

image filter 89
impedance matching attenuator 234
impedance matching pad 234
impedance parameters 245
incremental accuracy: see amplitude dynamic

accuracy
in-phase modulation 126
input impedance 317

open-circuit 246
of transmission line 207–9

input reflection coefficient 248
input-related spurious responses 317
insertion gain/loss 212–16
intermediate frequency (IF) 88

amplifier stage 142
filter 88, 92

intermodulation distortion (IMD) 140
intermodulation distortion measurements 147–8
inverse discrete Fourier transform (IDFT) 38
inverse fast Fourier transform (IFFT) 264

leakage 38, 55
level accuracy 315, 316

level linearity 316
lightwave analogy 202, 248
linear distortion 269–70
linear phase, importance of 270–3
linear time invariant (LTI) system 4, 137, 241
linear weighting 185
line impedance stabilization network (LISN)

306–9
line losses 216
line spectra 29, 170–1
line stretch: see electrical delay
local oscillator (LO)

frequency 89
signal 88

log scale fidelity: see amplitude dynamic
accuracy

lower-sideband (LSB) modulation 115
low-pass filter 146–7

transmission characteristics of 8

magnetic-field probe 310, 311
manual sweep 95
maximum voltage and power transfer 220
mean value 152
measurement connections 219

active high-impedance probes 223–4
attenuators 228–30
classical attenuator problem 232–4
high-impedance inputs 220

attenuating probes 222–3
high-impedance probes 220–2

impedance matching devices 234
minimum loss pads 234–5
transformers 235–6

input connectors 224–5
loading effect 219
maximum voltage and power transfer 220
measurement filters 236

high-impedance filters 236–7
Z0 filters 237–8

power dividers and splitters 225–7
return loss improvement 230–2
Z0 terminations 225

measurement filters 236
high-impedance filters 236–7
Z0 filters 237–8

measurement instrumentation 1
measurement plane 278–9
minimum loss pads 234–5
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mismatch errors 213–14
mismatch loss 210
mismatch uncertainty 211, 214
modular instruments 10
modulating frequency, measuring 112
modulation error ratio (MER) 131
modulation index, measuring 112–13
modulation measurements 107

amplitude modulation (AM) 108–11
measurement 112–14
sinusoidal modulation 110–11, 112
time domain 111

angle modulation 115–18
carrier 107–8
channel measurements 133–4
combined AM and FM 123–5
common digital modulation formats

127–30
digital modulation 125–6
error vector magnitude 131–2
frequency modulation (FM) measurements

122–3
narrowband angle modulation 118–19
quadrature modulation 126–7
varieties of 115
wideband angle modulation 119–22
zero-span operation 114–15

multichannel network analyzer amplitude
characteristics 317

multiple phase detector techniques 165

narrowband angle modulation 118–19
narrowband frequency domain measurements 4
near-field probes 310–12
network analyzer 7, 253, 285

basic network measurements 253
directional bridges and couplers 257
flexible source frequency 262–4
network measurements using spectrum

analyzer 254–5
oscilloscope and sweep generator 253–4
power sweep 262
S-parameter test set 257–9
specifications 321

dynamic range 321–3
transmission and reflection measurements

324
sweep limitations 260–2
vector network analyzer (VNA) 255–7

configurations 259–60
nonlinear VNA measurements 265
time domain measurements 264

network measurements 3, 7–8, 253
FFT analyzer 65–6
using spectrum analyzer 254–5
see also vector network measurements

noise and noise measurements 151, 158–9,
177–9

automatic noise level measurement 159
equivalent noise bandwidth 155–7
frequency distribution 153–5
mean, variance, and standard deviation 152
noise floor 159–60

correction for 160–1
noise units and decibel relationships 157–8
phase noise 161–5
power spectral density (PSD) 153
random noise, statistical nature of 151–2

noise equivalent bandwidth: see equivalent noise
bandwidth (NBW)

noise floor extension 160
noise marker 159
nondeterministic noise 151
nonharmonic spurious signals 317
nonlinearities 269
nonlinear vector network analyzer (NVNA)

measurements 265
normalization 275–8, 291

of reflection measurement 288
Nyquist rate 47

occupied bandwidth (OBW) of signal 133
octave measurements 84
open-circuit input impedance 246
open circuits 294
oscilloscope 253–4

probes 220, 221
output reflection coefficient 249
overlap processing 81–3

pads: see attenuators
peak detector 305
periodic function, Fourier series representation

of 24
periodic signal 23, 24, 31, 40
periodic waveforms, autocorrelation of 75
phase accuracy 318
phase dynamic accuracy 318
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phase error 273, 274
phase frequency response 318
phase lock loop 2
phase-modulated carrier 116
phase modulation (PM) 107, 115
phase noise 161–5, 316
phase resolution 318
polar display formats 279
postdetection filtering 180–1, 182
postdetection filters 181, 183
power attenuator 224
power average 187–8
power combiner 225
power dividers 225–7
power gain 17
power loss 17
power spectral density (PSD) 153, 157
power splitters 225–7
power sweep 262
preamplifiers 313–14
precompliance testing 297–8, 309
predetection filtering 177–9

noise 177–9
predetection filters 179–80
probability density function (PDF) 76, 151–2
probability of intercept (POI) 101
propagation velocity 197
pseudorandom noise (PRN) 59
pulse measurements 167

effective pulse width 169–70
line spectrum 170–1
pulse desensitization 175–6
pulsed RF 174
pulse spectrum 171–4
spectrum of pulsed waveform 167–9
sweep time 172

pulse repetition frequency (PRF) 167–9

quadrature amplitude modulation (QAM)
127–8, 130

quadrature modulation 126–7
quadrature phase-shift keying (QPSK) 127, 129,

131, 132
quasi-peak detector 97, 305

radiated emissions measurement 297, 298–300
random noise, statistical nature of 151–2
real-time bandwidth (RTBW) 78–9, 101

and RMS averaging 79–80
and transients 80–1

real-time spectrum analyzer (RTSA) 101–3,
104

receiver characteristics 317–18
reflection coefficient 203
reflection configuration 287
reflection measurements 7, 279–84
reflection measurements, error in 289–90
reflection normalization 288
reflection tracking error 291
reflectometer 285
relative constellation error (RCE): see error

vector magnitude (EVM)
residual responses 317
resolution bandwidth (RBW) 44, 92, 158,

159–60
of EMI receiver 304

return loss 203–4, 288
improvement 230–2

reverse error model 326
reverse transmission coefficient 249
RF analyzer 9
RF signal 88, 175
RMS average detector 305
root mean square (RMS) average 188
root mean square (RMS) value

of a pulsed RF signal 175
Rosenfell detector 97

sampling theorem 47–50
scalar network analyzer (SNA) 8
scalar reflection coefficient 203, 211
scattering parameters 247–50, 325–6

test set 257–9
two-port networks 250–1

second harmonic intercept (SHI) 317
second-order intercept point 144
selective level meter 87
self-windowing 59, 61
short circuits 288, 294
short-open-load-through (SOLT) calibration

295
signal analyzer 104
signals and systems 1–2
single-conversion receiver 91
single pulse, spectrum of 33
single-sideband (SSB) modulation 115
single-sided frequencies 25
single-tone input 138–9
sinusoidal modulation 110–11, 112, 116–17
sinusoidal signals 241–3
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sinusoidal voltages 202–3
Smith chart 281, 282, 283
smoothing 191
source specifications 315–17
S-parameters: see scattering parameters
specifications 315

delay 318
network analyzer 321

dynamic range 321–3
transmission and reflection measurements

324
receiver characteristics 317–18
source 315–17

spectral lines, defined 29
spectral maps 63–5
spectrum analyzer 3, 5, 7, 112

dynamic range 148–9, 319–21
fast Fourier transform (FFT): see fast Fourier

transform (FFT) analyzer
frequency resolution of 39
types 103–4
zero-span mode of 114

spectrum measurements 5–6
spurious responses 317
square wave

Fourier series of 25–9
frequency domain representation of 29

standard deviation 152, 183, 184
standing wave 204–7
standing wave ratio (SWR) 204–7, 279

SWR meter 285
stationary signal 40
sweep generator 253–4, 255
swept-sine analysis 83
swept spectrum analyzers 6, 87, 89–91

detectors, types of 97
digital IF section 96–7
discrete sweep 95
FFT versus 98–9
heterodyne block diagram 88–9
IF detector section of 96
IF response of 94
input section 91
local oscillator (LO) feedthrough 95
manual sweep 95
modern spectrum analyzer block diagrams

99–101
power sweep 98
practical considerations 91
program sweep/list sweep 95

quadrature detector 100
real-time spectrum analyzer (RTSA)

101–3
resolution bandwidth 92
specialized sweep modes 95
sweep limitations 92–5
tracking generator 98
types of 103–4
wave analyzer 87
zero-span operation 95

synchrotune operation: see zero-span operation
system function: see transfer function
system transfer function 3–4, 7

third-order intercept (TOI) 317
third-order intercept point 144
three-term error correction model 291–2
through-reflect-line (TRL) method 295
time average in FFT analyzers 190
time domain 23

and frequency domain relationships 2–3
time domain display 65
time domain pulse 32
time domain reflectometry (TDR) 264
total harmonic distortion (THD) 146
trace-to-trace averaging 187, 192
tracking generator 98, 255
transfer function 243–4

and forward transmission coefficient 250
of a system 3–4, 7

transformers 235–6
transform pairs, defined 33
transient events, real-time bandwidth and

80–1
transmission and reflection measurements

324
transmission lines 195

characteristic impedance 196
coaxial lines 216–17
complex reflection coefficient 203
distributed model 195–6
generator, line, and load 197

non-Z0 load 198–200
open load 200
short load 201
Z0 load 197–8

impedance changes 201–2
input impedance of 207–9
insertion gain and loss 212–16
line losses 216
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measurement error due to impedance
mismatch 209

imperfect source, imperfect load (case)
210–12

perfect source, imperfect load (case)
209–10

need for 195
propagation velocity 197
return loss 203–4
sinusoidal voltages 202–3
standing waves 204–7

transmission parameters 247
transmission/reflection test set 257
two-channel cross-correlation technique 165
two-port error correction model 293–5
two-port networks 241

admittance parameters 246
hybrid parameters 246–7
impedance parameters 245–6
improved two-port model 244–5
scattering parameters 247–50
sinusoidal signals 241–3
S-parameters 250–1
transfer function 243–4

and forward transmission coefficient 250
two-port vector error correction 325–7
two-term error correction model 291
two-tone signal 139–42

uniform window 59–60
upper-sideband (USB) modulation 115

variance 183
of waveform 152

variance ratio (VR) 183–4
for linear averaging 185

vector averaging 188–90
vector error correction 267, 290

two-port 325–7
vector network analyzer (VNA) 8, 255–7, 295

configurations 259–60
nonlinear VNA (NVNA) measurements 265
time domain measurements 264

vector network measurements 267
directional bridges and couplers 284–7
distortionless transmission 267–9
group delay 273–5
linear distortion 269–70
linear phase, importance of 270–3
measurement plane 278–9
nonlinearity 269
normalization 275–8, 291
reflection configuration 287
reflection measurements 279–84

error in 289–90
reflection normalization 288
three-term error correction model 291–2
two-port error correction model 293–5
two-term error correction model 291
vector error correction 290

vector signal analyzer (VSA) 104
video filter 90, 180

see also postdetection filters
voltage-controlled oscillator (VCO) 90
voltage divider relationship 219
voltage gain 17–18
voltage standing wave ratio (VSWR):

see standing wave ratio (SWR)

waterfall display: see spectral maps
wave analyzer 87, 89
wave meter: see wave analyzer
weighting

exponential 185–7
linear 185

white noise 153–4
wideband angle modulation 119–22

Carson’s Rule 121

X-parameters 265

Z0 attenuators 229–30
Z0 filters 237–8
Z0 loads 294–5
zero-span operation 114–15
zoom operation: see band selectable analysis
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