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Preface 

Synchronization is a critical function in digital communications; its failures 
may have catastrophic effects on the transmission system performance. 
Furthermore, synchronization circuits comprehend such a large part of the 
receiver hardware that their implementation has a substantial impact on the 
overall costs. For these reasons design engineers are particularly concerned 
with the development of new and more efficient synchronization structures. 
Unfortunately, the advent of digital VLSI technology has radically affected 
modem design rules, to a point that most analog techniques employed so far 
have become totally obsolete. 

Although digital synchronization methods are well established by now in 
the literature, they only appear in the form of technical papers, often 
concentrating on specific performance or implementation issues. As a 
consequence they are hardly useful to give a unified view of an otherwise 
seemingly heterogeneous field. It is widely recognized that a fundamental 
understanding of digital synchronization can only be reached by providing the 
designer with a solid theoretical framework, or else he will not know where to 
adjust his methods when he attempts to apply them to new situations. The task 
of the present book is just to develop such a framework. 

This is achieved by considering synchronization as a parameter estimation 
problem and approaching it with the techniques of estimation theory. In doing 
so two main goals are attained. One is to offer a coherent and systematic 
methodology to follow when looking for new synchronization structures. The 
other is to provide the designer with precise indications on the inherent 
performance limits of these structures. 

Synchronization circuits are occasionally devised on an ad hoc basis and 
proven eventually by demonstration in hardware or computer simulation. Ad 
hoc synchronization procedures are welcome and fully acknowledged in this 
book. They result from application of physical insight and may lead to valuable 
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vi Preface 

solutions. When facing more complex problems, however, like those 
encountered with continuous-phase modulations, they seem of lesser efficacy 
and a theoretical oriented approach is indispensable. 

Exercises have been inserted throughout the text as a convenient means 
for providing examples of application of the proposed techniques. They are not 
merely routine manipulations of equations. Their purpose is rather to 
supplement the text in various ways: (i) to gain familiarity with important 
concepts; (ii) to apply these concepts to practical situations; (iii) to fill in miss­
ing details. 

The book is intended for three categories of readers. Primarily, it should 
be a valuable tool for design engineers in telecommunications industry. 
Second, it might be used as supplementary material in digital transmission 
courses or as a separate course in synchronization or digital modem design. As 
a text for a graduate-level course the book can be covered in one semester. 
Finally, it should be useful to researchers. On several occasions in the book we 
have pointed out open problems of considerable technical relevance. 

The book is self-contained and any significant results are derived either in 
the text or in the appendices. The underlying assumptions and methods 
employed in the derivations are accurately outlined and the final outcomes are 
discussed and compared with other situations, in order to stress the physical 
significance. Nevertheless, as many aspects of synchronization can only be 
expressed in mathematical terms, the reader must have some mathematical 
background. In particular, a working knowledge of linear system theory, 
Fourier transforms, and stochastic processes is needed. 

This leaves only the pleasant task of acknowledging the contribution of 
several people to the creation of this book. Many thanks go to our good friends 
and colleagues Floyd Gardner, Des Taylor, and Ruggero Reggiannini, who 
suggested valuable improvements and reviewed several portions of the 
manuscript. We would also like to express gratitude to our co-workers and 
students Antonio D'Amico, Alberto Ginesi, Michele Morelli, and Giorgio 
Vitetta, who performed many simulations, reviewed the manuscript in detail, 
and offered corrections and changes. There are no words to describe adequately 
our indebtedness to all of them. 
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1 

Introduction 

1.1. What Synchronization Is About 

In synchronous digital transmissions the information is conveyed by 
uniformly spaced pulses and the received signal is completely known except 
for the data symbols and a group of variables referred to as reference parame­
ters. Although the ultimate task of the receiver is to produce an accurate replica 
of the symbol sequence with no regard to reference parameters, it is only by 
exploiting knowledge of the latter that the detection process can properly be 
performed. A few examples are sufficient to illustrate this point. 

In a baseband pulse amplitude modulation (PAM) system the received 
waveform is first passed through a matched filter and then is sampled at the 
symbol rate. The optimum sampling times correspond to the maximum eye 
opening and are located (approximately) at the "peaks" of the signal pulses. 
Clearly, the locations of the pulse peaks must be accurately determined for reli­
able detection. A circuit that is able to predict such locations is called a timing 
(or clock) synchronizer and is a vital part of any synchronous receiver. 

Coherent demodulation is used with passband digital communications 
when optimum error performance is of paramount importance. This means that 
the baseband data signal is derived making use of a local reference with the 
same frequency and phase as the incoming carrier. This requires accurate fre­
quency and phase measurements insofar as phase errors introduce crosstalk 
between the in-phase and quadrature channels of the receiver and degrade the 
detection process. Circuits performing such measurements are referred to as 
carrier synchronizers. 

Carrier phase information is not always needed. In applications where 
simplicity and robustness of implementation are more important than achieving 
optimum performance, differentially coherent and noncoherent demodulation 
are attractive alternatives to coherent detection. For example, differential de­
modulation of phase shift keying (PSK) signals is accomplished by computing 
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2 Chapter 1 

the difference between the signal phases at two consecutive sampling times and 
making a decision on this difference. As the decision statistic is independent of 
the actual carrier phase, phase recovery is not performed. Only carrier fre­
quency and symbol timing information is necessary. 

In addition to phase, frequency, and timing, other reference parameters 
may be involved in the detection process. For example, this occurs with coded 
modulations or when the communication channel is time shared by several 
users on a regular basis, as happens with time division multiple access 
(TDMA) systems. With block coding the decoder has to know where the 
boundaries between codewords are. This operation is performed by word syn­
chronizers. Similarly, the encoded sequence from a convolutional encoder is 
composed of symbol segments of fixed length and the start of each segment 
must be located for proper metric computation. This task is accomplished by 
node synchronizers. Finally, frame synchronizers are indispensable with time­
shared channels to identify the boundaries between channel users and establish 
where the information is coming from and to where it must be routed. 

All of the above examples are concerned with measuring reference param­
eters at the receiver, with no regard to what happens at the opposite side of the 
link. There are instances, however, when the transmitter assumes a positive role 
and, in fact, it varies the timing and frequency of its transmissions so as to meet 
the expectations of the receiver. This usually implies a two-way communica­
tion system, or a network, and the alignment operations are called network syn­
chronization. A typical example takes place with pulse code modulation (PCM) 
networks where multiplexing and switching operations are performed at spa­
tially separate nodes. Bits arriving at a given multiplexer must be available at 
the right time so that the assigned time slots are correctly filled and no bits are 
lost. Clearly, as the bits come from different nodes, it is necessary that the 
clocks located at those nodes, as well the local clock, all be time aligned. 
Another example occurs with satellite communications where many terrestrial 
terminals transmit signal bursts to a single satellite, trying to keep their bursts 
aligned in the receiver data frame. In most cases the transmitter exploits a re­
turn path from the receiver to determine the accuracy of the alignment. 

From the foregoing discussion it is clear that measuring reference parame­
ters is a vital function in data communication systems. This function is called 
synchronization and is the subject of the present book. To better define a frame­
work for our study we think it useful to point out some limitations to the scope of 
our treatment and indicate distinguishing features that make the following ma­
terial of particular interest for those involved in the design of modem receivers. 

One basic limitation is that we shall be concerned only with timing, phase 
and frequency parameters. There are two basic motivations for this choice. One 
is the limited authors' experience with frame and network synchronization. The 
other is that, to a great extent, frame and network synchronization are subjects 
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with rather specific characteristics. For example, the marker concept plays a 
fundamental role in traditional frame synchronization. A marker is a single bit 
or a short pattern of bits that the transmitter injects periodically into the data 
stream to help the receiver identify the starts of the frames. Now, the idea of 
using ad hoc means to achieve synchronization is at odds with the approach 
normally followed with timing and carrier recovery where it is regarded as de­
sirable not to waste channel capacity with special signals multiplexed onto the 
data stream. In general, timing, phase and frequency must be directly derived 
from the modulated signal. 

The synchronization literature is so vast as to comprise over 1000 techni­
cal papers with applications in diverse areas such as communications, teleme­
try, time and frequency control, and instrumentation systems. This enormous 
accumulation of knowledge has been incorporated and elaborated in excellent 
books like those by Viterbi [1], Stiffler [2], Lindsey [3], Lindsey and Simon 
[4], Gardner [5], Meyr and Ascheid [6], and in the ESA technical report by 
Gardner [7]. The present book takes advantage of all this material and develops 
synchronization methods for digital communications with certain features that 
are now indicated. 

The first feature is that we focus on digital synchronization methods, which 
means that we want to recover timing, phase and carrier frequency by operating 
only on signal samples taken at a suitable rate. This is in contrast with the 
familiar analog methods which work on continuous-time waveforms. Although 
digital methods are well established in the synchronization literature by now, 
they are mostly in the form of technical papers, with the exceptions of report 
[7] and the forthcoming book by Meyr, Fechtel and Moeneclaey [8]. 

Digital circuits have an enormous appeal in communication technology 
and influence the design of all modem receivers. This is so because they do not 
need alignment operations, have less stringent tolerances than their analog 
counterparts, have low power consumption and can be integrated into small 
size and low cost components. Clearly, all of the above features tend to en­
hance performance since more complex circuitry may be used to get better 
functional characteristics. Also, there are some specific traits of digital circuits 
that directly affect the feasibility of certain synchronization algorithms. Digital 
memory is an important example, for it makes practicable some operations that 
would be complicated or even impossible in analog form. 

A second feature of this study is concerned with the range of application 
of our results. In most synchronization books, baseband and passband PAM 
transmission are the dominant signaling schemes; very little space is devoted to 
continuous phase modulation (CPM). Of course, this lack of balance has histor­
ical and practical reasons. On the one hand, CPM techniques have become an 
intensive research area in the eighties, approximately with the publication of 
the book by Anderson, Aulin and Sundberg [8]. On the other hand, their practi-
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cal application has been slowed down by implementation complexity and syn­
chronization difficulties. Luckily, methods to reduce receiver complexity sub­
stantially and solve several synchronization problems have been proposed in 
the last few years. Thus, the time seems ripe for a more effective exploitation 
of CPM in satellite communications, digital mobile radio and low-capacity 
digital microwave radio systems. In this book we develop synchronization 
methods for both PAM and CPM. 

A third feature has to do with the conceptual tools to approach synchro­
nization problems. One possible route is to resort to heuristic reasoning. This is 
good as long as it works but, unfortunately, it is of limited assistance in tack­
ling new situations such as those arising with advanced modulation schemes. 
On the other hand, it is widely recognized that maximum likelihood (ML) es­
timation techniques offer a systematic and conceptually simple guide to the 
solution of synchronization problems. Actually, ML methods offer two major 
advantages: they easily lead to appropriate circuit configurations and, under 
certain circumstances, provide optimum or nearly optimum performance. In 
this book we adopt the ML approach as our primary investigation method. 

A final feature is concerned with performance evaluation. As timing, 
phase and frequency are continuous-valued parameters, it is natural to express 
synchronization accuracy in terms of bias and estimation variance. Ideally, we 
want zero bias and small variance, but what does "small" mean? Can other 
synchronizers have smaller variance? A rational answer is found in the Cramer­
Rao bound (CRB), which establishes a fundamental lower limit to the variance 
of any unbiased estimator. As no estimator can provide lower variance, this 
bound can serve as a benchmark for performance evaluation purposes. 
Unfortunately, the CRB cannot be easily computed in many practical situations 
and the need arises for a more manageable performance limit. One such limit is 
the modified CRB (MCRB). In this book we consistently use the MCRB as a 
reference when speaking of synchronization accuracy. 

Finally, a few words on prerequisites in the reader's background are use­
ful. People involved in the design of synchronization systems need good foun­
dations in communication theory and the underlying mathematics. Also indis­
pensable is an adequate knowledge of digital transmission systems and modu­
lation techniques. Textbooks like those by Benedetto, Biglieri and Castellani 
[to] or Proakis [11] provide excellent background material. 

1.2. Outline of the Book 

The remaining chapters are organized as follows. 
Chapter 2 lays the groundwork for further developments and is divided 

into three parts. The first is concerned with the effects of synchronization errors 
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on detection performance. Various receiver configurations and modulation 
formats are considered and, in each case, theoretical or simulation results are 
illustrated. The purpose is to establish ball-park limits on allowable synchro­
nization errors. The second part concentrates on estimation criteria and gives a 
self-contained account of ML estimation methods. In particular, likelihood 
functions for continuous-time and discrete-time observations are derived for the 
additive white Gaussian noise (A WGN) channel and the concept of wanted and 
unwanted parameters is discussed. These parameters playa fundamental role in 
the computation of the MCRB. The third part gives closed-form expressions of 
the MCRBs for timing, phase and frequency under various modulation condi­
tions. 

Chapter 3 investigates carrier frequency estimation with passband PAM 
modulation. A distinction is made between two rather different situations, de­
pending on whether the carrier frequency offset is expected to be small or com­
parable with the symbol rate. Different estimation methods apply in the two 
cases. In particular, data-aided or decision-directed schemes can be used with 
small offsets whereas non-data-aided schemes are inevitable otherwise. As is 
intuitively clear, data-aided and decision-directed methods are much more ac­
curate than non-data-aided ones. In fact, circuits in the first category perform 
close to the MCRB while the others are far from it. 

Chapter 4 concentrates on frequency estimation with CPM modulation. 
The same distinction between "small" and "large" frequency offsets is made as 
in Chapter 3. As opposed to PAM modulation, however, few methods are 
available for small frequency offsets and, what is worse, they are limited to bi­
nary symbols and a modulation index equal to 112. On the contrary, a variety of 
estimation schemes can be used with large frequency offsets. Their perfor­
mance is far from the MCRB, however, especially with long frequency pulses. 
In consequence, narrow-band tracking loops are needed to achieve small esti­
mation variances. Of course, this translates into rather long acquisition times. 

Chapter 5 is the longest and is concerned with phase estimation in PAM 
modulations. Its first part focuses on phase recovery for transmissions over 
A WGN channels. Costas loops are popular synchronization schemes for con­
tinuous transmissions over these channels. They are easily designed to com­
pensate for (small) frequency offsets and have excellent tracking performance 
in the absence of phase noise. In any practical situation, however, some degree 
of phase noise is inevitable due to oscillator imperfections. The resulting track­
ing degradations can be limited by proper loop design. This subject is ade­
quately addressed and criteria are provided to minimize the phase errors. The 
central part of the chapter considers frequency-flat fading channels. Here, the 
signal is affected by a multiplicative distortion (MD) which is modeled as a 
slowly varying Gaussian random process. As samples of the MD (taken at the 
symbol rate) are needed for coherent detection, the problem arises of estimating 
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the MD random sequence from the received waveform. This is a generalization 
of the carrier phase recovery problem on A WGN channels where the parameter 
under estimation is a constant (the channel phase shift). MD estimation can be 
accomplished in various ways. One is to exploit known symbols multiplexed 
onto the data sequence. This leads to the so-called pilot symbol assisted 
schemes, which work well for fading rates up to about 1 % of the symbol rate. 
Another solution is to perform ML joint channel and sequence estimation. This 
approach is effective with Doppler rates up to about 5% of the symbol rate. The 
last part of the chapter returns to the A WGN channel and explores open-loop 
phase estimation methods for applications in packet transmissions. 

Chapter 6 investigates phase recovery with CPM modulation. To some 
degree it has the same structure as the previous one. Its size is reduced, how­
ever, as many ideas developed earlier also apply to CPM formats. Decision-di­
rected tracking loops are the most popular synchronization schemes for contin­
uous transmission over the A WGN channel and are explored in the first part of 
the chapter. Their performance is quite close to the MCRB at signal-to-noise 
ratios of practical interest. With frequency-flat fading channels several approx­
imate ML decoding schemes are available, with very good performance for 
fading rates up to 5% of the symbol rate. The last part of the chapter focuses on 
open-loop estimation methods for applications in packet transmissions. 

Chapter 7 deals with clock synchronization in baseband transmissions. 
The structure of the chapter reflects the fact that timing recovery consists of 
two basic operations: (i) estimation of the positions of the signal pulses relative 
to a local time reference; (ii) application of this information to the computation 
of symbol-spaced signal samples (strobes) for use in the detection process. The 
former is called timing measurement, the latter timing adjustment. Two ap­
proaches to timing adjustment are investigated. In one case the strobes are ob­
tained by sampling the received signal with a clock locked to the incoming data 
stream (synchronous sampling). In the other, the sampling times are dictated by 
a free-running oscillator and the strobes are computed by interpolating between 
samples (non-synchronous sampling). Timing measurements are discussed in 
the second part of the chapter. They can be performed by either open-loop or 
closed-loop circuits. The former provide a direct estimate of the pulse positions 
relative to a local time reference. The latter compute an error signal which is 
proportional to the difference between the actual pulse positions and their esti­
mates. The error signal is then exploited to update the estimates. 

Chapter 8 investigates timing recovery with passband PAM modulation. 
The chapter structure reflects the fact that carrier phase plays an important role 
in timing estimation and, in consequence, it is useful to distinguish between 
two scenarios. In the first one, carrier phase is estimated in conjunction with 
timing. This leads to joint phase and timing synchronization schemes. In the 
second scenario, the phase estimation problem is either postponed until after 
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timing recovery or is not approached at all, as occurs with differential detection 
receivers where no phase information is needed. In these circumstances it is 
desirable to have timing circuits that are insensitive to phase variations. 
Methods to achieve this goal are analyzed. Finally, the problem of timing re­
covery with flat-fading is discussed. Here, the received signal is not only ro­
tated (as happens with the A WGN channel) but is also attenuated. Thus, timing 
recovery is a more complex function with fading channels. Two solutions are 
proposed and compared. One is to use the same methods suitable for A WGN 
channels. The other is to employ new schemes that take the fading channel fea­
tures into account. 

The last topic is timing recovery with CPM signals and is covered in 
Chapter 9. The chapter is organized as the previous one except that only 
A WGN channels are considered. This is so because timing recovery with fad­
ing channels has not received much attention in the literature so far. Decision­
directed feedback synchronizers for joint phase and timing estimation are in­
vestigated in the first part of the chapter. They have excellent tracking perfor­
mance but may exhibit spurious locks, depending on the alphabet size and the 
frequency response of the modulator. Methods to detect and correct spurious 
locks are proposed. Phase information is not needed with differential detection 
and the problem arises of estimating timing in a phase-independent fashion. 
Timing algorithms that operate in this manner are investigated. They have good 
performance with full response systems but fail with long frequency pulses. 
The chapter concludes with two open-loop timing circuits for minimum shift 
keying (MSK) and Gaussian minimum shift keying (GMSK). 
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Principles, Methods and 
Performance Limits 

2.1. Introduction 

2 

This chapter lays the groundwork for the material in the book and 
addresses three major themes. Section 2.2 describes synchronization functions 
in a digital receiver and indicates methods to pinpoint design limits on the 
synchronization errors. Section 2.3 is an overview of maximum likelihood 
parameter estimation theory, with emphasis on synchronization applications. A 
distinction is made between wanted and unwanted parameters, the former being 
those of interest in a given situation and with respect to which the maximum of 
a likelihood function is to be sought. The computation of likelihood functions 
for wanted parameters is investigated. Section 2.4 establishes limits to the 
performance of practical synchronizers. The most popular limit is the Cramer­
Rao bound to the variance of unbiased estimators. It is argued that this limit is 
difficult to compute in most practical cases. A simpler limit is the modified 
Cramer-Rao bound, which is used as a benchmark in performance evaluations 
throughout the book. 

2.2. Synchronization Functions 

In surveying the synchronization functions we consider three signaling 
formats: baseband pulse amplitude modulation (PAM), passband PAM 
modulation (or linear PAM modulation) and continuous phase modulation 
(CPM). The discussion is kept at a conceptual level so as to highlight the 
synchronization aspects. The reader is assumed to be familiar with digital 
transmission methods at a level comparable with that of the textbooks by 

9 
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Wozencraft and Jacobs [1], Benedetto and Big1ieri [2] and Proakis [3]. 

2.2.1. Timing Recovery with Baseband Systems 

Baseband PAM transmission is used in many commercial applications, for 
example in T1 carrier systems, in subscriber circuits for the integrated services 
digital n6twork and in coaxial cable or fiber local area networks. In a PAM 
system the data stream is encoded into the amplitude values of a sequence of 
uniformly spaced pulses. Figure 2.1 illustrates the block diagram of a baseband 
PAM receiver. The incoming waveform is composed of signal plus noise: 

r(t) = s(t) + w(t) (2.2.1) 

The noise is a white Gaussian process with (two-sided) spectral density No/2 
while the signal is constructed from time translates of a pulse g(t): 

s(t) = Lcjg(t - iT --r) (2.2.2) 

In this equation {cj } are data symbols belonging to some M -ary alphabet 
{±1,±3, ... ,±(M-l)}, g(t) is the channel response, T is the signaling interval, and 
-r represents the channel delay. 

The received waveform is first filtered to remove the out-of-band noise 
and then is sampled at T-spaced instants, say t=kT+f, (k=O,1,2, ... ). The 
samples are fed to the detector to generate estimates {(\} of the transmitted 
data. In most practical cases the receiver filter is matched to g(t), which means 
that its impulse response has the form 

(2.2.3) 

where to is a delay that makes g( -t+to) a causal function (no tails on the 
negative time axis). As is done in many theoretical investigations, in the sequel 
we set to to zero, for this affects the filter output only by an immaterial delay. In 

r(1) 

~ P t DETECTO~ 

I 
I Sample at 
: kT+i ___ J 

Figure 2.1. Block diagram of a baseband receiver. 



Principles, Methods and Performance Limits 11 

other words, we write (2.2.3) as 

gR(t) = g( -t) (2.2.4) 

Another circumstance which is often met in practice is that the 
convolution h(t)~ g(t) ® gR(t) satisfies the first Nyquist criterion 

{
I for k = 0 

h(kT) = o for k:¢:. 0 

In the frequency domain, the relationship h(t)~ g(t) ® gR(t) becomes 

and equation (2.2.4) reads 

(2.2.5) 

(2.2.6) 

(2.2.7) 

where the superscript "star" means complex conjugate. From (2.2.6)-(2.2.7) it 
follows that Gif) and GRif) have the same amplitude characteristic: 

(2.2.8) 

One class of Nyquist functions which is extensively used is the raised­
cosine-rolloff characteristic 

T If I::; I-a 
2T 

H(f)= TCOS2[:a (l2jTl-1 + a)] I-a ::;Ifl::; I+a 
2T 2T 

(2.2.9) 

0 otherwise 

where the parameter a is restricted to the interval 0 < a ::; I and is called the 
rolloff or excess-bandwidth factor. The inverse Fourier transform of Hlf) is 
found to be 

h(t) = sin(m/T) cos(am/T) 
m/T I-4a2t2/T2 

(2.2.10) 

For further reference we note that the integral of Hif) on the frequency axis 
equals h(O). Thus, for a Nyquist function we have 
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Figure 2.2. Maximum eye opening. 

~ 

J H(f)df = 1 

t 
(modT) 

Optimum 
sampling 

phase 

Chapter 2 

(2.2.11) 

Substituting (2.2.9) into (2.2.8) gives a root-raised-cosine-rolloJffunction 

-fi 

G(f) = -fi cos[ :a (12 fTl- 1 + a)] 
o 

If I::; I-a 
2T 

I-a ::;Ifl::; l+a 
2T 2T 

(2.2.12) 

otherwise 

Returning to the baseband receiver, the purpose of the timing recovery 
circuit (TRC) is to provide sampling instants t = kT +f that minimize the 
detector error probability. Roughly speaking, this amounts to sampling the 
filter output at the maximum eye opening (see Figure 2.2). Timing errors are 
unavoidable, however, and tend to degrade the detector performance, as is now 
illustrated. 

2.2.2. Degradations Due to Timing Errors 

Call P(elf) the detector error probability conditioned on a fixed sampling 
epoch f. Physical reasons indicate that this is a concave-up function of f, with 
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Figure 2.3. Illustrating the shape of P(elr) and p(r). 

a minimum at some abscissa f = 'X'o as shown in Figure 2.3. Thus, an ideal 
TRC should issue sampling pulses at t=kT+'fo. Notice that 'fo need not coincide 
with the channel delay 'X'in (2.2.2). For example, if the filter impulse response 
satisfies (2.2.3) and (2.2.12), then the optimum sampling epoch turns out to be 
'fo='f+to. From Figure 2.1 it is clear that the sampling phase can be changed, if 
needed, by delaying the TRC pulses. 

The fundamental feature of a practical TRC is that the separation between 
adjacent pulses is not exactly constant but varies slowly in a random manner. 
The variations are referred to as timing jitter and are a consequence of the ran­
dom nature of the waveform at the TRC input. Timing jitter may be incor­
porated into the TRC model by describing f as a random variable with some 
probability density function p(f). 

For simplicity assume that f has a mean value 'X'o: 

= 

'X'o= Jfp(f)df (2.2.13) 

Note that this is not a restriction insofar as it can be satisfied by suitably 
delaying the TRC pulses. Then, averaging P(elf) over f gives the average 
error probability: 

~ 

P(e) = J P(elf)p(f) df (2.2.14) 

Unfortunately this equation is not very useful as P(elf) is only known for 
uncoded transmissions [4]-[5]. Nevertheless, as is now indicated, the very form 
of (2.2.14) leads to an interesting expression of P(e) involving the timing jitter 
variance. A more quantitative analysis is provided by Bucket and Moeneclaey 
in [6]. 
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Write P(elf) as a truncated Taylor series in that neighborhood of 't'o where 
p( f) assumes significant values (see Figure 2.3): 

(2.2.15) 

Here, p(2)(el't'o) is the second derivative of P(elf) at f = 't'o. Note that the term 
containing (f - 't'o) is missing since, by assumption, P(elf) has a minimum at 
f = 't'o. Then, substituting into (2.2.14) yields the desired relation between P(e) 
and the timing jitter variance a; ~ E{ ( f - 't' 0)2 } : 

(2.2.16) 

This relation indicates that P(e) is degraded in proportion to a;. The 
coefficient p(2)(el't'o) represents the jitter sensitivity of the detector. It turns out 
that p(2)(el't'o) increases with the size of the symbol alphabet and decreases 
with the signal bandwidth. This is illustrated in the simulations in Figures 2.4-

PAM 

M=2. cr,=O.05 T 

o a=O.2 

o a=O.5 

o 2 4 5 6 8 9 10 

Figure 2.4. SEP degradation due to timing jitter for binary PAM modulation. 
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PAM 

M=4. ",=0.05 T 

a=O.5 

2 

10" '--'-...J......J.--'-J......J.......J......J.--'-L-J.....J......J.....J...J.J---'-.l......L.--'-'--'-.L...J.....J 

o 2 4 6 8 10 12 14 16 18 20 22 24 

EtfNo. dB 

Figure 2.5. SEP degradation due to timing jitter for quaternary PAM modulation. 

2.5 which show the symbol error probability (SEP) versus EiN 0 for binary 
(M=2) and quaternary (M=4) baseband transmission. Note that Eb is the 
transmitted energy per bit of information and Gif) and Gij) are root-raised­
cosine-rolloff functions. The parameter f is modeled as a zero-mean Gaussian 
random variable with a standard deviation of 0'?,O.05T. The lowest curve 
indicates the SEP with perfect symbol timing. 

An interesting feature of the upper curves in Figure 2.5 is that they exhibit 
an irreducible error floor as EiNo increases. The explanation is that timing 
errors generate intersymbol interference (lSI) which, in turn, produces decision 
errors even in the absence of noise. It should be noted that this problem is not 
specific to the PAM system in Figure 2.5. In fact, an error floor would 
eventually show up even with the case in Figure 2.4 if the signal-to-noise ratio 
were adequately increased. 

2.2.3. Passband PAM Systems 

Passband PAM signals are generated by linearly modulating baseband 
PAM sequences onto a sinusoidal carrier. Passband PAM signals are efficient 
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in power and bandwidth [2]-[3] and are well suited for applications in high­
speed voiceband transmission, digital microwave radio and mobile radio 
communications. Phase shift keying (PSK) and quadrature amplitude 
modulation (QAM) are two prominent members in this class. Another member 
of practical interest is offset quadriphase modulation (OQPSK), which is 
similar to conventional quadriphase PSK, except that the bit transitions on the 
sine and. cosine carrier components are offset in time by the inverse of the bit 
rate. The time offset serves to limit the signal envelope variations and thereby 
control adjacent channel interferences in microwave radio systems employing 
power-efficient amplifiers [7, Ch. 4]. 

The mathematical model for a modulated PAM signal is 

(2.2.17) 

where fc represents the carrier frequency and sCE(t) is the signal complex 
envelope relative to fc. The expression for sCE(t) varies according to whether 
we consider non-offset (PSK or QAM) or offset modulation. With the former 
we have 

(2.2.18) 

where get) is the signaling pulse and {cd are information symbols. In 
particular, with QAM modulation cj has the form 

(2.2.19) 

with a j and hj belonging to {±I,±3, ... ,±(M-l)}. Vice versa, with PSK we have 

(2.2.20) 

with a j E {0,2rr/M, ... ,2rr(M -1)/M}. Finally, with OQPSK modulation the 
signal complex envelope is 

(2.2.21) 

and a j and h j take values ±l. 
When the signal is transmitted over a channel with a delay 'r, the received 

waveform becomes 

(2.2.22) 

where w/F(t) is the channel noise. To retrieve the transmitted information it is 
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common practice to translate r/F(t) in frequency down to baseband 
(demodulation) and then operate on the resulting low-frequency waveform. It 
can be shown that this procedure, in addition to being convenient from an 
engineering point of view, does not degrade the achievable error performance 
of the receiver [1, Ch. 7]. 

As indicated in Figure 2.6, the demodulation is accomplished by 
multiplying r/F(t) by two local references 2cos(21ifcLt+¢L) and 
-2 sin(21ifcLt + ¢L) and then feeding the products to low-pass filters to 
eliminate the frequency terms around fc + fcL' In general, the local frequency 
feL is not exactly equal to fc and the difference v£ fe - feL is referred to as 
carrier frequency offset. Assuming that the filters have a unity frequency 
response for the low-pass signal components and performing standard 
calculations [2]-[3] it can be shown that the filter outputs rR(t) and rl(t) may 
be represented by a single complex-valued waveform r(t)£rR(t) + h(t) given 
by 

r(t) = set) + w(t) (2.2.23) 

with 

(2.2.24) 

In these equations () is a phase shift equal to -(21ifc'r + ¢L) and 
wet) = wR(t) + jWI(t) is low-pass noise. Also, set) is given by 

(2.2.25) 

with non-offset modulation and 

Figure 2.6. Demodulation operation. 
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PSD of .1(1) 

-8 o 8 f 

Figure 2.7. Signal and noise spectral densities. 

with offset modulation. 
As for w(t), the following remarks are useful. Suppose that the channel 

noise has a constant (two-sided) power spectral density (PSD) No 12 over the 
RF signal bandwidth. Then it can be shown that the noise components wR(t) 
and w/(t) are independent Gaussian processes with the same PSD Sw(f) = No 
over the signal bandwidth ±B (see Figure 2.7). The shape of Sw(f) beyond 
±B is irrelevant to the detection process because further processing of r(t) 
always involves some filtering that tends to cut off the out-of-band noise. 
Accordingly, in the sequel we take Sw(f) = No over the entire frequency axis, 
which amounts to saying that we model wR(t) and w/(t) as white Gaussian 
processes. A more profound justification to this approach relies on the 
application of the reversibility theorem and can be found in the book by 
Wozencraft and Jacobs [1]. 

2.2.4. Synchronization in PAM Coherent Receivers 

It is clear from (2.2.25)-(2.2.26) that the baseband signal contains 
unknown parameters (v,e, r) in addition to the data symbols. As is now 
illustrated, knowledge of these parameters is vital for reliable data detection. 
Let us put aside timing as the subject has already been discussed in Section 
2.2.2. The problem with v and e arises from the presence of the multiplicative 
distorsion e j (21M+8). To give an example, consider non-offset modulation and 
imagine what would happen if the baseband waveform r(t) were matched 
filtered and then passed to the detector without any distortion compensation. 
For simplicity assume that the convolution h(t)g,g(t) ® g(-t) is Nyquist and 
the frequency offset v is very small compared with the signal bandwidth so 
that the matched-filter output can be approximated as 
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x(t) = e j (2TrVf+O) L cjh(t - iT - -r) + net) (2.2.27) 

where net) is the noise component. Then, sampling x(t) at kT + -r would yield 
the following detector input: 

x(k) = Ckej[21rV(kTH)+O] + n(k) (2.2.28) 

where notations ofthe type x(k)~x(kT + -r) have been used. Clearly, the signal 
components would be rotated away from their correct positions with disabling 
effects on the detection process. 

The above discussion points out the necessity of compensating for the 
distortion e j (2TrVf+O) and estimating the timing epoch -r. A possible method is 
illustrated in the block diagram of Figure 2.8. Here, the blocks indicated as 
frequency-, phase- and timing-recovery provide estimates V, {} and f of the 
synchronization parameters. It should be stressed that this receiver 
configuration has only illustration purposes. For example, timing can be 
derived from ret) (prior to frequency correction) or from the matched-filter 
output (after phase correction). Similarly, phase correction can be performed 
after matched filtering. Finally, each synchronization block may contain some 
kind of prefilter to hold the noise level within bounds. 

The compensation for the distortion ej (2TrVf+O) is performed in two steps. 
First, the received waveform is multiplied by e- j2/rVt, which amounts to a 
counter-rotation ~t an angular speed V. Next, the product r(t)e- j2 /rVt is 
multiplied by e- jO. Bearing in mind equation (2.2.24), it is clear that perfect 
distortion suppression would require V = v and e = (). In practice, V does not 
exactly coincide with v and the task of eliminating the residual distortion 
e j [2/r(v-v)t+O] is entrusted to the phase recovery circuit (PRC). This is feasible if 
the frequency error v - V is sufficiently small so that the angle 27l'(v - V)t + () 

Figure 2.8. Block diagram of a coherent receiver. 
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is approximately constant over the measuring time 10 of the PRC. In such 
conditions, in fact, the PRC makes periodic measurements of 2n(v - v)t + () 
(with period To) and compensates for them by counter-rotating r(t)e- j21CVt • 

2.2.5. Degradations Due to Phase Errors 

Assuming for simplicity that perfect frequency and timing estimation has 
been achieved, one important question is to establish the degradations in error 
probability resulting from inexact phase estimates. With uncoded modulation 
the following analytical approach may be pursued. 

The first step is to model the phase error cP ~ () - 0 as a random variable 
with some probability density function p(cp). A Gaussian shape for p(cp) is 
reasonable in most cases if the phase errors are not too large (as happens in a 
well designed system). So, letting CPm and cr~ be the mean value and the 
variance of cP, we have 

(2.2.29) 

Note that CPm and cr~ depend on the operating conditions of the synchronizer 
and can be derived by either analytical or experimental methods. 

The second step is to compute P(elcp), the symbol error probability 
conditioned on a fixed value of cp. This is often the most demanding task and is 
illustrated in Exercise 2.2.1 for quadriphase PSK (QPSK). Finally, the average 
error probaQility is evaluated by numerical integration as 

= 

P(e) = f P(elcp)p(cp)dcp (2.2.30) 

Figure 2.9 illustrates P(e) as a function of the ratio E) No (energy-per-bit 
to noise-spectral-density) for QPSK and some values of cr~. It is assumed that 
CPm = 0 and we have a Nyquist channel. With larger values of cr~ we see that 
the curves exhibit a floor as Es / No increases. This is so because occasional 
large phase errors take the samples x(k) away from the correct decision zone 
even in the absence of noise. 

Exercise 2.2.1. Compute P(elcp) for uncoded QPSK making the following 
assumptions: (i) transmit and receive filters are root-raised-cosine-rolloff 
functions; (ii) frequency and timing references are ideal (v = v and f = r). 

Solution. Bearing in mind that v = v, from (2.2.23) and (2.2.25) we derive 
the following expression for the input to the matched filter (see Figure 2.8): 
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Figure 2_9_ SEP degradations due to phase errors with QPSK modulation_ 

(2.2.31) 

with t/J~(} - fJ and 

w'(t) = w(t)e- j (21rVt+lh (2.2.32) 

The filter output is the convolution of r'(t) with g(-t). Hence 

x(t) = ej1fLc;h(t - iT - r) + n(t) (2.2.33) 

with h(t)£g(t)®g(-t) and 

n(t)£ w'(t) ® g( -t) (2.2.34) 

The sampling times are t=kT+1:. Thus, as h(t) is Nyquist, from (2.2.33) we 
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have 

(2.2.35) 

As expected, there is no intersymbol interference and the signal component is 
rotated by t/J. The QPSK symbol alphabet is {e i m'4, ei3m'4, ei5m'4, ei7m'4}, as is 
illustrated in Figure 2.10 where circles represent alphabet elements while dots 
are their rotated versions. The four quadrants are the detector decision regions. 
In particular, the receiver declares that ei m'4 has been transmitted when x(k) 
belongs to the first quadrant. 

To get P(elt/J) we first compute the probability of correct detection, P(clt/J), 
and then derive P(elt/J) as 

P(e!t/J) = 1- P(c!t/J) (2.2.36) 

In doing so we may assume that the symbol eim'4 has been transmitted since, 
for symmetry, the probability of correct detection is the same with any symbol. 
Letting n(k) = nR(k) + jn[(k) , from (2.2.35) we have 

x(k) = cos(t/J + 7r / 4) + nR(k) + j[sin(t/J + 7r / 4) + n[(k)] (2.2.37) 

and the probability that x(k) belongs to the first quadrant is given by 

P(c!t/J) = Pr{cos(t/J + 7r / 4) + nR(k) ~ 0; sin(t/J + 7r / 4) + n[(k) ~ o} (2.2.38) 

To proceed further we need the statistics of nik) and nik). To this end we 

x(k) 
x 

Figure 2.10. QPSK constellation. 
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consider the complex-valued random process w'(t) in (2.2.32). It is easily seen 
that, since wet) is white, so is w'(t), with the same PSD. It follows that nR(k) and 
nl(k) are independent and zero-mean Gaussian random variables with variance 

00 

<i~ = No f H(fX1! (2.2.39) 

where Hif) is the Fourier transform of h(t). As Hif) is Nyquist, the integral in 
(2.2.39) is unity (see (2.2.11)) and (2.2.39) reduces to 

2 - N. <in - 0 (2.2.40) 

It is desirable to express <i~ as a function of the signal-to-noise ratio 
Es/No. Under the previous assumptions the signal energy is Es=1I2 (see 
Appendix 2.A.2) and from (2.2.40) we get 

(2.2.41) 

Hence 

(2.2.42) 

At this stage the probability in (2.2.38) can be written as 

P( cicp) = [1 - Q( cos( q> ~ 7r / 4) ) I 1 - Q( sine q> :n 7r / 4) ) 1 (2.2.43) 

with 

(2.2.44) 

Finally, substituting (2.2.42)-(2.2.43) into (2.2.36) yields 

P(~) = ~ ~~ cos(~ +If / + ~ ~~ sin( ~ +If / 4)) 

-~ ~~coS(q>+7r/4))Q( {~Sin(q>+7r/4)) (2.2.45) 
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For example, with Es/No=lO dB and ¢=5°, it is found P(ei¢=5°)= 
2.3 x 10-3• With a zero phase error this same probability would be achieved 
with Esl No =9.68 dB. Thus, a phase error of ¢ = 5° entails a 0.3 dB loss in 
EsiNo' -

For ¢=O equation (2.2.45) reduces to the well-known formula for the 
symbol error probability with a perfect phase reference [2]-[3]: 

(2.2.46) 

Exercise 2.2.2. Let ¢ be a random variable with zero mean and variance a;. Assume a; «1 and Esl No large enough so that the last term in (2.2.45) 
may be neglected (as its factors are much less than unity). Accordingly, P(el¢) 
becomes 

P(ei¢) ~ Q( ~~ cOS(¢+1r/4))+Q( ~~sin(¢+1r/4)) (2.2.47) 

Compute the average symbol error probability P(e). 
Solution. Expanding (2.2.47) into a power series about ¢=O and keeping 

only the terms up to the second power yields 

(2.2.48) 

where Q(l)(x) is the derivative of Q(x) 

(2.2.49) 

Averaging P(el¢) with respect to ¢ gives the result sought: 

(2.2.50) 

We see that the increase in error probability due to phase errors is proportional 
to a;. The reader should be careful when using (2.2.50) as it has been derived 
assuming very small phase errors. In fact, the equation gives accurate results 
only for a~ on the order of a few degrees. 
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Exercise 2.2.3. Consider again the QPSK communication system 
described in the previous exercise but assume that an ideal phase reference is 
now available for demodulation. Under these conditions a given error 
probability can be achieved at a reduced signal energy. The saving in energy 
represents the degradation in signal-to-noise ratio due to phase errors. Compute 
such a degradation as a function of a;. 

Solution. Call E; the signal energy that is needed to achieve P(e) in the 
absence of phase errors (0';=0). From (2.2.50) we have 

P(e) = 2Q( %oJ (2.2.51) 

Expanding the right-hand side into a Taylor series yields 

(2.2.52) 

and comparing with (2.2.50) results in the following relation between E; and 
Es: 

(2.2.53) 

The signal-to-noise degradation is defined as 

D~-10 .IOgJO( ~:) dB (2.2.54) 

Thus, making the approximation 10gJO(1- e) "" -O.43e and collecting (2.2.53)­
(2.2.54) produces the desired result 

(2.2.55) 

For example, with O'~=5° and Es/ No =10 dB, we have DzO.36 dB. 

2.2.6. Synchronization in PAM Differential Receivers 

Differential detection is used in applications where simplicity and 
robustness of implementation are more important than achieving the optimum 
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performance of coherent receivers. Differential detection has mostly been 
applied to PSK modulation but its extension to QAM formats is possible and 
has been discussed in [8]-[9]. 

In an M-ary PSK differential detection system the information is 
represented by a sequence {Ok} whose elements take values from the set 
{0,2n- / M, ... ,2n-(M -1)/ M}. The sequence is first differentially encoded as 

(2.2.56) 

and then is mapped into channel symbols ck = ejak which satisfy the recursion 

(2.2.57) 

At the receiver side the data {od are retrieved without any carrier phase 
knowledge, as indicated in Figure 2.11. Let us concentrate on the samples from 
matched filter. Paralleling the arguments leading to (2.2.28) it is found that 

x(k) = ckej [2m1V(kTH)+9] + n(k) (2.2.58) 

where ~v£v-v is the residual frequency error. Thus, the detector input 
z(k)£x(k)x· (k -1) results in 

(2.2.59) 

where N(k) is a noise term. Alternately, bearing in mind (2.2.57) we have 

(2.2.60) 

Figure 2.11. Block diagram of a differential receiver. 
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which has the same form as the detector input in a coherent receiver (see 
(2.2.35» 

(2.2.61) 

except that N(k) has a larger variance than n(k) (see [2]-[3]) and the rotation 
21C1lvT replaces the phase error cp. No trace of the carrier phase is present in 
(2.2.60), which means that the detector performance is phase insensitive. In fact 
it is only influenced by the frequency-induced rotation 27rl1vT. 

Figure 2.12 illustrates the degradations in symbol error probability due to 
imperfect frequency recovery. Timing is assumed ideal and the overall channel 
response is Nyquist. Also, the frequency error 11 v is constant and equal to a 
fraction of the symbol rate. The lower curve in the figure represents the 
performance of a coherent receiver with ideal carrier recovery. It is worth 
noting that the horizontal distance between the coherent curve and the lowest 
differential curve is about 2.3 dB. This is the minimum loss incurred by using 
differential rather than coherent detection. Additional losses are due to 
imperfect frequency compensation. 

o 10 15 20 25 

Figure 2.12. SEP degradations due to uncompensated frequency offsets. 
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2.2.7. Synchronization in CPM Systems 

Continuous phase modulations (CPMs) are used in satellite 
communications, digital mobile radio and low-capacity digital microwave radio 
systems. One remarkable feature of CPM signals is that they have a constant 
envelope and, therefore, can be amplified without distortion by low-cost 
nonlinear devices operating near the saturation point. No expensive com­
pensation for the nonlinearity is needed and no extra DC power is wasted to 
support a less efficient linear amplifier. 

The complex envelope of a CPM signal is given by [10] 

SCE(t) = ~2:s eN(t,a) (2.2.62) 

where Es is the signal energy per symbol, T is the symbol period, a~{a;} are 
data symbols from the alphabet {±1,±3, .. ,±(M-l)} and I{I(t,a) is the 
information-bearing phase 

(2.2.63) 

The parameter h is the modulation index and is the ratio of two relatively prime 
integers 

h=K 
P 

(2.2.64) 

Also, q( t) is the phase response of the modulator and is normalized in such a 
way that 

t::; 0 

t? LT 
(2.2.65) 

Its derivative dq(t)/ dt~g(t) is the frequency response of the modulator. It is 
clear from (2.2.65) that the frequency response is limited to the interval 
tE (O,LT), where L is an integer called the correlation length. Modulation 
formats with L=l are said to be ofJull-response type whereas those with L>1 
are of partial-response type. 

By choosing different frequency responses and varying the parameters h 
and M, a great variety of CPM schemes may be formed. For example, 
minimum shift keying (MSK) corresponds to h=1I2, M=2 and a rectangular 
frequency response 
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g(t) = {1/(~T) t<o, t> T 

O~t~T 
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(2.2.66) 

Alternately, Gaussian MSK (GMSK) is obtained by letting h=1I2, M=2 and 
taking g(t) as the convolution of (2.2.66) with a Gaussian shaped pulse. 

As is now explained, a CPM modulator may be viewed as a trellis 
encoder. For this purpose let us rearrange (2.2.63) as follows: 

(2.2.67) 

with 

k 

1J(t,Ck ,ak )£27rh Z.aiq(t-iT) (2.2.68) 
i=k-L+I 

(2.2.69) 

k-L 

<I> k £ trh ZPi mod 27r (2.2.70) 
i=O 

In these equations the quantities Ck and <l>k are called the correlative state and 
the phase state of the CPM signal at the k-th step. From (2.2.67) it appears that 
1I'(t,a) is uniquely defined by the present symbol a k , the correlative state, and 
the phase state. Assuming independent symbols, from (2.2.69) it is clear that 
there are ML-I correlative states. Also, it can be shown [11] that <l>k takes P 
distinct values. It follows that 1I'(t,a) has a total of P ML- I states, say 
Sk £( Ck , <I> k)' and the CPM modulator may be viewed as the cascade of a trellis 
encoder with states {Sk} and a mapper generating the phase elements (2.2.67). 

A maximum likelihood (ML) receiver takes the form of a Viterbi 
algorithm which searches for the most likely path in the modulator trellis. The 
input to the baseband receiver has the form 

r(t) = s(t) + w(t) (2.2.71) 

with 

(2.2.72) 

Figure 2.13 illustrates the receiver block diagram [10]. After frequency 
compensation, the received waveform is fed to a bank of ML filters with 
impulse responses 
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{Zk} BRANCH 
FILTER I-I""""t~ METRIC 

BANK COMPUT. 

Figure 2.13. Block diagram of the ML receiver. 

O~t~T 

elsewhere 

VITERBI 

ALGOR. 

Chapter 2 

(2.2.73) 

. h (1-1 2 ,ML) H (C(I) (I») - ( (I) (/) (I»)' h . Wit -, ,... . ere, 0 ,ao - a_L+1, • •• ,a_1 ,ao IS t e genenc 
realization of (a_L+l, ... ,a_l,aO) and TJICt,C61),a~») is expressed as 

o 
TJ1Ct,Ca/) ,a~») = 2nh La~/)qCt - iT) (2.2.74) 

i=-L+l 

The filter outputs are sampled at (k + 1)T + f and are used to produce the 
statistics 

i+(k+I)T 
Zk(Ck,ak, f)£ f r(t)e-j2nVte-jT/(t--r,CbUk)dt (2.2.75) 

f+kT 

for the branch metric computation. 
The Viterbi algorithm operates on the modulator trellis as follows. There 

are M branches stemming from a given node Sk = (Ck,<I>k)' one for each 
possible transmitted symbol ak • The metric 

(2.2.76) 

is assigned to the branch associated with at and the algorithm searches for the 
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Figure 2.14. Effect of timing errors with MSK modulation 
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best path in the trellis. Decisions ak - DD are delivered with a delay DD relative 
to the current time k. 

Error probability degradations due to synchronization imperfections are 
difficult to assess analytically and, in fact, computer simulations are the only 
viable route. As an example, Figure 2.14 shows the sensitivity of the error 
probability to a constant timing offset ~'t"£'t" -f. Carrier recovery is assumed 
ideal (V = v and {) = 0) and the modulation is MSK. As is seen, MSK is quite 
tolerant of timing errors. For example, a ~'t" as large as 20% of the symbol 
period produces a signal energy loss of only 0.5 dB. 

2.2.8. Synchronization in Simplified CPM Receivers 

The foregoing discussion indicates two possible obstacles to the imple­
mentation of an ML receiver. On the one hand, the modulator trellis may have 
a very large number of states (P ML- 1), which implies an intensive com­
putational load for the Viterbi algorithm. On the other hand, the number of 
filters in the filter bank (ML) may be enormous, especially with partial response 
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and/or multilevel schemes. 
Although several methods have been discovered to alleviate these 

difficulties (see [10], Ch. 8), most current commercial systems use suboptimum 
receivers. The simplest receiver employs a limiter-discriminator [12]-[14], as 
indicated in Figure 2.15. The input is 

(2.2.77) 

where WIF(t) is thermal noise (restricted in frequency to the signal bandwidth) 
and sCE(t) is the signal complex envelope: 

(2.2.78) 

As the signal component from the discriminator is the derivative of the phase 
'I'(t - 'r, a), i.e., 

d'l'(t - 'r,a) 2-"I ( 'T ) --'-....:.....--~ = /WI a· g t -I - 'r 
dt . I 

I 

(2.2.79) 

it is clear that the output from the low-pass filter is a PAM signal embedded in 
noise: 

x(t) = 'Lajh(t - iT - 'r) + n(t) (2.2.80) 

In this equation h(t) is the filter response to g(t) and n(t) is a noise term. Thus, 
data detection can be performed by sampling x(t) at the symbol rate and 
making decisions in a threshold detector. The samples must be taken at the 
maximum eye opening which occurs at some instants kT + 'r + to, with to 
depending on the actual shape of h(t). 

Other forms of suboptimum receivers are based on differential methods or 
symbol-by-symbol coherent detection (as opposed to ML coherent detection 
considered in the previous section). For simplicity we shall concentrate on 

Figure 2.15. Block diagram of the limiter-discriminator receiver. 
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binary modulation with index h=1I2, which is referred to as MSK-type modu­
lation. One feature of this format is that the exponential eN(t,a) in (2.2.62) can 
be approximated as a baseband PAM waveform [15] of the type 

(2.2.80) 

where the parameters ao,; are called pseudo-symbols and are related to the data 
{ao,a"oo.,a;l by the relation 

(2.2.81) 

Also, the pulse ho(t) depends on the phase response q(t). In particular, equation 
(2.2.80) holds exactly for MSK signaling, in which case ho(t) is given by 

{. (7rt) sm -
ho(t) = 0 2T 

05: t 5: 2T 
(2.2.82) 

elsewhere 

Using the above notations it is readily shown that the demodulated 
waveform at the receiver input takes the form 

r(t) = s(t) + w(t) (2.2.83) 

where 

(2.2.84) 

and we have dropped the coefficient ~2Es!T in the right-hand side of (2.2.84) 
for the sake of simplicity. 

The strong similarity between (2.2.84) and the corresponding expression 
for linear modulations can be exploited when looking for detection algorithms. 
One option is to adopt a differential scheme like that in Figure 2.11. The first 
part of this diagram is redrawn in Figure 2.16 with two important changes. 
First, the low-pass filter (LPF) is no longer matched to ho(t), as one might 
expect. Choosing a matched filter, in fact, would result in a badly shaped pulse 
h(t) at the LPF output and a high level of intersymbol interference. This 
problem has been discussed by Kawas Kaleh [16], who has provided design 
criteria for the LPF. The second change is in the time shift to of the sampling 
times. Minimum intersymbol interference is achieved by suitably selecting to 
as a function of the shape of h(t). 



34 

To diff. 
detector 

Figure 2.16. Block diagram of the differential receiver. 
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The differential detector operates on the samples x(k) according to 

(2.2.85) 

where sgn[z] equals ±1 according to whether z is positive or negative. To see 
how this rule works, assume ideal frequency and timing recovery and neglect 
intersymbol interference and noise. Under these conditions x(k) takes the form 

Hence 

'8 
x(k) = h(O)e' aO.k 

x(k)x· (k -1) = h2 (O)ejll'Uk 12 

from which (2.2.85) is readily understood. 

(2.2.86) 

(2.2.87) 

Symbol-by-symbol coherent detection may be used as an alternative to 
differential methods to improve error performance [17]-[19]. Clearly, the price 
to pay lies in building the phase recovery system, as indicated in Figure 2.17. 
In general, the LPF is not matched to ho(t) (for the same reasons given 
previously). One important exception occurs with MSK signaling, in which 
case optimum performance is achieved with an LPF impulse response that is 
exactly a half-sinusoidal pulse of duration 2T (see (2.2.82)). Design criteria for 
the LPF are discussed in [10], [17] . 

The detection process relies on the fact that the information symbols 
11; = ±1 are differentially encoded into modulation symbols a; = ±1 as follows: 

(2.2.88) 
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y(k) 

To 

Figure 2.17. Block diagram of the coherent receiver. 

Decisions are derived from the derotated samples y(k) = x(k)e-ii . Actually, the 
detector computes the real-valued statistic 

a{sgn{Re[Y(k)]} k = odd 
z(k)= sgn{Im[Y(k)]} k = even 

and makes decisions according to (see Exercise 2.2.4) 

~k = -z(k)z(k - 2) 

(2.2.89) 

(2.2.90) 

Figure 2.18 shows error probability degradations due to phase errors in an 
MSK system. Frequency and timing recovery are ideal and the LPF is a half­
sinusoidal pulse of duration 2T. Phase errors are modeled as outcomes of a 
Gaussian random variable with zero mean and standard deviation C1¢. We see 
that the error curves exhibit a floor as C1 ¢ grows large. Comparing it with 
Figure 2.9 we see that MSK is less sensitive to phase errors than QPSK. 

Exercise 2.2.4. Explain the decision rule (2.2.90) making the following 
assumptions: (i) synchronization is ideal; (ii) noise and intersymbol in­
terference are negligible; (iii) pulse h(t) is positive at the origin. 

Solution. Under the assumed conditions the derotated samples y(k) have 
the form 

y(k) = h(O)aO.k (2.2.91) 

Thus, using (2.2.81) and keeping in mind that h(O»O it is readily found that 
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Figure 2_18_ SEP degradations due to phase errors_ 

sgn{Re[Y(k)]} = cos(n- fal) 
2 1=0 

sgn{Im[Y(k)]} = sin[!:. fal) 
2 1=0 

On the other hand 

and, similarly, 

k=odd 

k=even 

Chapter 2 

(2.2.92) 

(2.2.93) 

(2.2.94) 
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( TC k) (TC TC k-J ) 
sin - La[ =sin -ak +-La[ 

2 [=0 2 2 [=0 

Putting these facts together and bearing in mind (2.2.89) yields 

{ 
z(k)z(k -1) 

a k = -z(k)z(k -1) 

from which it follows that 

k=even 

k=odd 
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(2.2.95) 

(2.2.96) 

(2.2.97) 

for any integer k (either even or odd). On the other hand, equation (2.2.88) may 
be rewritten as 

(2.2.98) 

Comparing it with (2.2.97) we conclude that (2.2.90) provides correct decisions 
when synchronization is ideal and both noise and intersymbol interference are 
negligible. 

2.3. Maximum Likelihood Estimation 

The preceding section has illustrated the synchronization functions. No 
details have been given on particular circuits as they will be thoroughly 
discussed in later chapters. For now we are only concerned with general 
principles and, in this context, one important question that comes to mind is 
whether there are general methods to derive synchronization schemes. Recent 
literature [20]-[22] indicates that most of the existing synchronization algo­
rithms have been discovered through heuristic arguments or by application of 
ML estimation methods. As the former approach can hardly be expounded in a 
structured manner, in the following we concentrate on the latter and provide a 
short review of ML methods. Our treatment is particularly focused on the 
estimation of synchronization parameters. The reader interested in more 
general applications is referred to the textbooks by Van Trees [23] and Kay 
[24]. 

ML parameter estimation requires different mathematical tools, depending 
on whether the observation is a continuous-time waveform or a sample se-
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quence. At first glance the first case looks more natural, as physical signals 
have a continuous-time support. On the other hand the second case is 
particularly tailored for digital receiver operations. In the sequel we first 
illustrate the continuous-time approach and then we extend the results to 
sample sequences. 

2.3.1. ML Estimation from Continuous-Time Waveforms 

For the time being we concentrate on passband signals but the discussion 
will later be adapted to baseband transmission. From the previous section it 
appears that the signal component set) is a completely known function of time, 
except for a set of parameters r. This set may include v, e, 'r and the data 
symbols, but not necessarily all these things at once. For example, if a training 
sequence is transmitted, the symbols are known and do not appear in r. Also, 
r does not contain 'r if clock information is provided to the receiver through a 
separate channel. Whatever the case, to stress the signal dependence on 
unknown parameters we temporarily adopt the notation set, r) in place of set) 
and rewrite the baseband waveform as 

r(t) = s(t,y) + wet) (2.3.1) 

Now, suppose we are allowed to observe r(t) on a given interval 0 S; t S; To 
and are requested to provide an estimate of r based on this obsevation. What 
can we do? The most popular approach to this problem [23]-[24] is based on 
the ML principle which, in rather intuitive terms, may be expressed as follows. 
Call r a hypothetical (trial) value of r and consider the process 

I&(t)g,s(t, r) + w(t) (2.3.2) 

Notice that r(t) is a realization of I&(t) when r = r. In general, the realizations 
of !t(t) resemble ret) to various degrees, depending on how close s(t, r) is to 
set, r) and, ultimately, on the "distance" of r to r. The ML principle suggests 
computing the estimate of r as that r that maximizes the "resemblance" of r(t) 
to the realizations of I&(t). 

A more precise formulation of the ML principle is now given in geometric 
terms. Denote by " and r the vector representations of !t(t) and r(t) on a 
complete orthonormal basis {if>i(t)} and call p("ir) the pdf of" for a given r. 
Figure 2.19 shows two functions p("ir) corresponding to r= 1't and r= r2. 
We see that 

(2.3.3) 
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Figure 2.19. Illustrating the ML principle. 

What is the physical meaning of this inequality? An answer is found bearing in 
mind that, when s(t, j) is transmitted, the probability that lJ lies in a volume 
dlJ around r equals p( lJ = rlndlJ. Thus, if many observations of It(t) are made 
with either r= 1'J and r= r2' the event {lJ is close to r} will tum up more fre­
quently with r= r2 than with r= jJ. Accordingly, we say that r2 is more like­
ly than 1'J (when r is observed). 

Extending this idea to the case where r takes multiple values, it is readily 
concluded that the most likely value of y is that r where p(lJ = rlr) achieves a 
maximum. The location of the maximum is referred to as the ML estimate of y 
and is customarily indicated as 

(2.3.4) 

where the shorthand notation p(rlr)£ p( lJ = rlr) has been adopted. 
In many synchronization problems the ML principle is formulated in a 

slightly different manner to reflect the fact that we are interested only in some 
components of y, say .t. As mentioned earlier, in general y contains both syn­
chronization parameters and information symbols. Now, suppose we are only 
interested in some synchronization parameters .t (perhaps just one) while we do 
not care about the remaining (unwanted) components of y, say u. Then, what 
is the ML estimate of .t ? 

Let .i and u be trial values of .t and u and assume that u can be modeled 
as a random vector with a pdf p(u) independent of .t. Then, application of the 
total probability theorem yields 

00 

p(rli) = f p(rlr)p(u)du (2.3.5) 
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Hence, with the same arguments used above we conclude that the ML estimate 
of A is that A that maximizes p(rIA): 

(2.3.6) 

Some remarks about this procedure are of interest. In the following 
chapters we shall normally be concerned with the case in which A is a scalar, 
A, which means that we shall consider the independent estimation of each 
synchronization parameter individually, rather than the joint estimation of all 
parameters simultaneously. Independent estimation is much easier to visualize 
and generally leads to more robust estimation schemes. Then, a problem of 
logical consistency arises insofar as the method leading to (2.3.6) requires that 
A be a fixed quantity of unknown value whereas the other parameters (in 
particular, the synchronization ones) be random. How can we get around this 
contradiction? There are two options: (i) assume that v, e and l' are all 
nonrandom and consider the averaging operation (2.3.5) as an ad hoc approach; 
(ii) turn a blind eye to the above contradiction and take (2.3.5) as an application 
of the total probability theorem. To keep the flavor of ML methods in the 
following we adopt the latter approach. 

Two drawbacks arise in the application of (2.3.5). One is that the vector 
representation of rCt) has infinite dimensions (see Van Trees [23], Ch. 5) and, 
in consequence, the functions p(rln and p(rll) are not well defined. Luckily, 
this obstacle can be overcome by introducing the concept of likelihood 
function, as is now explained. The other difficulty is concerned with the 
averaging operation in (2.3.5). In most practical cases, in fact, the integration 
cannot be performed analytically and one must resort to approximations which, 
inevitably, lead away from the true ML estimates. Here we illustrate the notion 
of likelihood function, while we defer approximation issues to later chapters. 

Let r, ", s( r) and w be vector representations of rCt), ~(t), set, r) and wet) 
over a complete orthonormal basis {(/J;(t)} and denote by a prime their 
truncated versions (to N components): 

(2.3.7) 

(2.3.8) 

(2.3.9) 

(2.3.10) 
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In particular, the k-th component of r' is given by [23] 

TO 

rk ! f r(t)cf>k(t)dt 
o 

41 

(2.3.11) 

The probability density p(.'lr) is computed as follows. From (2.3.2) we get 

.'= s'(r) +w' 

Next, separating wet) into real and imaginary parts 

and using (2.3.11) produces 

with 

To 

WRk = f WR (t)cf>k (t)dt 
o 

To 

Wlk = f WI (t)cf>k (t)dt 
o 

(2.3.12) 

(2.3.13) 

(2.3.14) 

(2.3.15) 

(2.3.16) 

Also, since WR(t) and wAt) are independent Gaussian random processes with 
spectral density No, with the arguments of Appendix 2.B it is found that 

k=n 
otherwise 

(2.3.17) 

(2.3.18) 

Putting all these facts together and recognizing the Gaussian nature of the 
variables {w Rk} and {w Ik} leads to the desired result 

(2.3.19) 
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with 

(2.3.20) 

To compute the ML estimate iML(r) we would be tempted to proceed as 
follows: (i) make N tend to infinity in (2.3.19) so as to get p(clr);Jii) set c = r 
in the limit; (iii) substitute the result into (2.3.5) to produce p(rIA); (iv) solve 
equation (2.3.6). Unfortunately, convergence problems prevent a direct 
application of this method since the sum in the second line of (2.3.19) diverges 
as N increases (~ee Exercise 2.3.1). To sidestep the obstacle we shall exploit the 
fact that, if t(A) is an arbitrary function and we look for the location of its 
maximum, then we can divide t(i) by any positive quantity independent of .i 
without affecting the result. 

To proceed, let p(r'li)~ p( c' = r'li) and keep in mind that 

00 

p(r'li) = f p(r'lr)p(ii)dii (2.3.21) 

Based on the previous observation, the maximum of p(r'li) can be sought by 
replacing p(r'lr) by 

A(r'll')~.!.. p(r'll') 
B 

(2.3.22) 

where B is any positive constant independent of l'. In other words, maximizing 
(2.3.21) is equivalent to maximizing 

00 

A(r'li)~ f A(r'lr)p(ii)dii (2.3.23) 

In particular, if we choose 

(2.3.24) 

and note that 

(2.3.25) 

then equation (2.3.22) becomes 
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(2.3.26) 

One important feature of this formula is that the argument of the exponential 
converges as N tends to infinity [23] (as opposed to the argument in (2.3.19) 
which diverges). 

Now, consider the location of the maximum of A(r'ii) 

(2.3.27) 

Clearly, i(r') is only an approximation to iML(r) since the function A(r'ii) 
does not incorporate all the information contained in r(t). Th~ approximation 
improves, however, when N increases and in fact the limit of l(r') as N tends 
to infinity provides the exact value of iML(r). On the other hand, we have [23] 

(2.3.28) 

(2.3.29) 

so that the limit of A(r'ir) takes the form 

A(rir) = exp _1 fRe{r(t)s*(t, r)}dt--1- fls(t, r)12 dt {
TO TO} 

No 0 2No 0 

(2.3.30) 

The corresponding limit of A(r'ii) is obtained by averaging A(rir) over u 
(see (2.3.23)), i.e., 

00 

A(rli)g, f A(rlr)p(u)du (2.3.31) 

and -lL (r) is computed as 

(2.3.32) 

Functions A(rir) and A(rii) are referred to as likelihood functions. 
Comparing (2.3.31)-(2.3.32) with (2.3.5)-(2.3.6) we see that, as the dimen-
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sionality of r goes to infinity, the ML estimation rules still hold provided that 
probability densities are replaced by likelihood functions. 

2.3.2. Baseband Signaling 

The arguments leading to (2.3.30) are easily adapted to baseband signals. 
To do so it is sufficient to bear in mind that: (i) the waveforms are now real­
valued; (il) the spectral density of the noise equals Nr/2 (while, earlier, real and 
imaginary components of wet) had spectral density No). Skipping the details, it 
is found 

{
2TO ITO} 

A(rlr) = exp - J r(t)s(t, r)dt - - J i(t, r)dt 
No 0 No 0 

(2.3.33) 

whereas (2.3.31)-(2.3.32) remain unchanged. 

Exercise 2.3.1. In the discussion leading to (2.3.30) it has been claimed 
that sums of the type 

(2.3.34) 

diverge as N tends to infinity. Consider the simple case in which the signal 
component is zero and show that the expectation of SeN) grows unboundedly as 
N increases. 

Solution. By assumption, rk=wk and from (2.3.34) we obtain 

N 

E{S(N)} = LE{lwkn 
k=l 

(2.3.35) 

On the other hand, application of (2.3 .14) yields 

(2.3.36) 

so that, bearing in mind (2.3.18), we conclude that 

(2.3.37) 

Substituting into (2.3.35) produces 
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E{S(N)} = 2NNo (2.3.38) 

which indicates that E{ S( N)} diverges as N tends to infinity. 

Exercise 2.3.2. Estimate the phase of a sinusoid Acos(27ifot+0) embedded 
in white Gaussian noise, assuming that A andfo are known. 

Solution. Two alternative routes may be followed, depending on whether 
we view Acos(27ifot+0) as a baseband or a modulated signal. As both views are 
legitimate, we arbitrarily choose the latter. 

The baseband equivalent of Acos(27ifot+0) is 

s(t,O) = Aejii (2.3.39) 

and the ML estimate of 0 is obtained by maximizing the likelihood function 
A(rIO). From (2.3.30) we get 

- { A [ ,_To 1 A2T,} A(rIO)=exp -Re e-Jii jr(t)dt ___ 0 
No 0 2No 

(2.3.40) 

Clearly, maximizing A(rIO) is equivalent to maximizing the function 

(2.3.41) 

or 

F(O) = 11 r(t)dt I cOS(lfI- 0) (2.3.42) 

where lfI is the argument of the integral in (2.3.41). On the other hand F(O) 
achieves a maximum for 0 = lfI. Hence, the ML estimator of 0 is 

(2.3.43) 

Figure 2.20 illustrates a block diagram for the estimator. The left-hand 
side of the scheme, up to the low-pass filters, provides real and imaginary 
components of r(t), say rit) and rit). The filters have unity gain and serve to 
eliminate double-frequency terms. From a functional point of view they are not 
necessary as their low-pass action is performed by the integrator. 
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j 

Figure 2.20. ML-estimation of the phase of a sinusoid. 

Exercise 2.3.3. In the previous exercise the ML estimator has been 
computed in closed form. This is a rather exceptional case as, in general, only 
implicit solutions are arrived at. To give an example, consider the transmission 
of a real-valued pulse get) through a channel with an unknown delay 't' (see 
Figure 2.21). We want to estimate 't under the following circumstances: 

(0 the noise has spectral density Ncl2; 

(ii) the signal component of ret) is 

s(t) = cog(t - 't') (2.3.44) 

where Co is a random variable taking values +1 or -1 with the same 
probability; 

(iii) the delayed pulse g(t-'t') falls entirely within the observation interval 
o ~ t ~ 10, so that the following integral is independent of 't': 

To 

f i (t - 't')dt = Eg (2.3.45) 
o 

Solution. The delay is the only parameter of interest to us, while Co is 
unwanted. With the notations of Section 2.3.1 we have A='t' and u=co and the 
likelihood function (2.3.33) becomes 

w(t) 

~ .... _DE_~_Y-,W 
Figure 2.21. Channel with a delay 'f. 
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A(rlf,co) = cexp{2Co J r(t)g(t - f)dt} 
No 0 

47 

(2.3.46) 

where C is a positive constant, independent of f and co. Next, we average 
A(rlf,co) over co' As a consequence of assumption (ii), the pdf of Co may be 
written as 

(2.3.47) 

where O(x) is the delta function. Thus, application of (2.3.31) yields 

A(rlf) = C cosh - f r(t)g(t - f)dt { 
2 To } 

No 0 

(2.3.48) 

and the ML estimate is obtained looking for the maximum of this function. 
Note that, as f varies, the hyperbolic cosine achieves a maximum at the 

same abscissa as the absolute value of the integral (2.3.48). Hence 

(2.3.49) 

Unfortunately, no explicit solution is available for (2.3.49). Approximate 
estimates of 'l'may be obtained in two ways. One is to record ret), compute the 
integral in (2.3.49) for different values of f and look for the largest result. 
Alternatively, the parallel processing method indicated in Figure 2.22 may be 
adopted, where 'l'\,'l'2, ... ,'l'M are trial values of 'l'. 

2.3.3. ML Estimation from Sample Sequences 

At this point we tum our attention to ML estimation when the observation 
consists of a sample sequence. As in Section 2.3.1, we first consider passband 
signaling and then we extend the results to baseband transmission. We assume 
that the (baseband) received waveform is first filtered in a low-pass filter H(j) 
and then is sampled at some rate lITs' as indicated in Figure 2.23. Also, we 
make three major hypotheses: 

(i) The filter has an ideal rectangular characteristic 

HU) = {~ If I::; BLPF 

elsewhere 
(2.3.50) 
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Figure 2.22. Block diagram of the delay estimator. 

(ii) Its bandwidth is sufficiently large as to pass the signal components 
undistorted. 

(iii) The sampling rate lITs is twice the filter bandwidth 

1 
-=2BLPF 
~ 

(2.3.51) 

Although mathematically convenient, the choice of a rectangular char­
acteristic may be objectionable on practical grounds as the jumps at the band 
edges are physically unrealizable. One answer to this problem is that, in effect, 
a rectangular form is not necessary and can be readily replaced by a more 
realistic one with no consequences. For example, a root-raised-cosine-rolloff 
function (see Figure 2.24) 

~(t) L-__ --I~x(t) x(kT.) H(j) <to 0 .. 

I 
I 

Sample at kT. 

Figure 2.23. Observation in sampled form. 
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Signal 
spectrum 

B l~ 1 J.±.a. f xr: 27; 2T, 

Figure 2.24. Rectangular and root-raised-cosine-rolloff characteristics. 

1 III::; I-a 
2~ 

I-a ::;1/1::; l+a 
2~ 2~ 

o otherwise 

satisfies the assumption (ii) if the signal bandwidth B is limited to 

I-a 
B<--

2~ 
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(2.3.52) 

(2.3.53) 

Furthermore, it can be shown that the samples from this filter are statistically 
equivalent to those from the rectangular filter if (2.3.51) holds true. In fact, they 
represent sufficient statistics for the estimation of the synchronization 
parameters [25]. For these reasons in the sequel we adopt the simple 
rectangular characteristic (2.3.50). 

Returning to Figure 2.23, the following remarks can be made about the 
filter output. First, x(t) has the form 

x(t) = s(t, r) + n(t) (2.3.54) 

where n(t) is complex-valued Gaussian noise with power spectral density 

III::; BLPF 

elsewhere 
(2.3.55) 
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Second, the transformation r(t)~x(t) is reversible. In fact, we can go back 
from x(t) to r(t) by adding Gaussian noise to x(t), say w'(t), so as to make 
n(t)+w'(t) a white process. This is achieved taking w'(t) independent of n(t) and 
with power spectral density 

Ifl>BLPF 
elsewhere 

(2.3.56) 

Third, from sampling theory it follows that x(t) can be reconstructed from 
its samples x £{ x(k-z:.)}. In other words, the transformation x(t)~x is 
reversible. 

The fourth and final point is that, as the transformations r(t)~x(t) and 
x(t)~x are reversible, the overall transformation r(t)~x is also reversible and 
anything that can be accomplished with ret) can also be accomplished with x 
(and vice versa) without loss in performance [1]. 

At first glance this conclusion sounds like an invitation to put aside 
discrete-time methods and stick to the continuous-time estimation techniques 
developed earlier. Indeed, if anything that can be done with x can also be done 
with ret) and we already know how to manage with the latter, why should we 
bother further? One possible answer is that this book deals with digital 
algorithms which, by definition, operate on sampled waveforms. Thus, 
discrete-time methods are the natural route to take here. 

Discrete-time estimation methods may be developed by paralleling the 
treatment in Section 2.3.1. The major points may be summarized as follows. 
Call 

x(k-z:.) = s(kT., r) + n(k-z:.) (2.3.57) 

the available samples (k = 0,1, ... ,4> -1) and let r be a trial value of r. 
Consider the sample sequence 

(2.3.58) 

In particular, letting s£{~(k-z:.)}, we look for the pdf p(slr). To this end we 
write n(kTs) in the form 

(2.3.59) 

From (2.3.51) and (2.3.55) it can be checked that both {nR(k-z:.)} and {n/(k-z:.)} 
are white sequences satisfying the relationships 

'V k,m (2.3.60) 



Principles, Methods and Performance Limits 51 

k=m 
(2.3.61) 

otherwise 

Then, denoting p(xlr>~ p(s = xli), we have 

( I¥\ £orr-l 1 { Ix(k~)-s(k~, i)12} 
p x 11= exp 

k=O 21CNo/~ 2No/~ 

= Cexp __ s L Ix(k~)-s(k~,i)12 { T £0-1 } 

2No k=O 
(2.3.62) 

where 

(2.3.63) 

The pdf of x subject to a generic i, p(xli), is obtained by averaging out 
the unwanted parameters from p(xlr> , i.e., 

.. 
p(xli) = f p(xPY)p(u)dU (2.3.64) 

Then, the ML estimate of A. is found as that i that maximizes p(xli): 

(2.3.65) 

Note that, in contrast with the discussion in Section 2.3.1, no convergence 
problems arise in computing p(xlr> since the summation in (2.3.62) involves 
only a finite number of terms. Nevertheless, scaling p(xln is still useful to 
ease comparisons with estimators operating on continuous-time waveforms. 
Let us choose the scaling factor 

B = Cexp __ s L Ix(k~)12 { 
T £0-1 } 

2No k=O 
(2.3.66) 

and, in analogy with (2.3.22), define the likelihood function as 
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(2.3.67) 

Then, combining (2.3.62) and (2.3.66)-(2.3.67) yields 

A(xlr)=exp _s LRe[x(k~)s·(k~,n]--s L Is(k~,r)12 { 
T 1.0-1 T 1.0-1 } 

No k=O 2No k=O 
(2.3.68) 

which is perfectly similar to (2.3.30). Finally, letting A(xli)£p(xli)/ B, from 
(2.3.64)-(2.3.65) we get the ML estimation equations 

00 

A(xli)£ f A(xlnp(u)du (2.3.69) 

(2.3.70) 

2.3.4. Baseband Signaling 

The likelihood function A(xlf) for baseband transmission is easily 
derived by paralleling the foregoing developments. In doing so it is sufficient 
to keep in mind that the waveforms are now real-valued and the noise spectral 
density equals NoI2. Skipping the details, it is found that 

(2.3.71) 

Equations (2.3.69)-(2.3.70) remain unchanged. 

Exercise 2.3.4. A sinusoidal signal embedded in white Gaussian noise is 
passed through a rectangular filter with a transfer function as indicated in 
(2.3.50). Letting B LPF be the filter bandwidth and Aej6 the baseband signal 
component, estimate the parameter e from the samples of the filter output taken 
at the rate 11 ~ = 2BLPF ' Assume that the signal amplitude is known. 

Solution. The signal component at the filter output is 

s(t,e) = Aej6 (2.3.72) 

and the likelihood function for e is obtained from (2.3.68) in the form 
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A(xIO)=exp _s L Re x(kT.)e-J() ___ s - {AT £0-1 { .-} A2 LoT} 
No k=O 2ND 

(2.3.73) 

The maximum of A(xle) is attained for that e that maximizes the function 

(2.3.74) 

The location of the maximum is given by 

(2.3.75) 

This result is perfectly similar to that expressed in (2.3.43) for the continuous­
time approach. 

2.4. Performance Limits in Synchronization 

In the previous section we have described ML methods for estimating 
synchronization parameters. At this point the question arises of assessing the 
ultimate accuracy that can be achieved in synchronization. Establishing bounds 
to this accuracy is an important goal as it provides benchmarks against which 
to compare the performance of actual synchronizers. Tools to approach this 
problem are available from parameter estimation theory in the form of Cramer­
Rao bounds (CRBs) [23][24]. Other bounds are described in [26]-[29]. In the 
following we present a brief overview of CRBs and point out some difficulties 
that are encountered in their application to synchronization problems [30]-[33]. 
We also introduce a variant to the CRB, called the modified Cramer-Rao bound 
(MCRB), which does not exhibit such difficulties (but has some other 
drawbacks that will be pointed out in due time). Finally, we compute the 
MCRBs for various synchronization parameters and modulation formats. 

2.4.1. True and Modified Cramer-Rao Bounds 

To simplify the discussion we concentrate on the estimation of a single 
element of { 0,1', v}. Such an element is denoted A and is viewed as a constant 
(not a random variable). Accordingly, the vector U of unwanted parameters will 
contain data symbols plus two elements from {O, 1', v}. In the case of baseband 
transmission there is only one synchronization parameter, 1', and the only 
possible components of u are data symbols. 
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A Consider a generic estimation procedure for A. (not necessarily ML) and let 
A.(r) be the corresponding estimate. We arbitrarily assume a continuous-time 
signal description bl!.t everything we shall say is also valid in a discrete-time 
context. Note that A.(r) depends on the observation r and, in cons~quence, 
different observations lead to different estimates. In other words, A.(r) is a 
random variable. Its expectation may, or may not, coincide with the true value 
of A.. If it does (for any allowed value of A) then we say that the estimate is 
unbiased. Being unbiased is clearly a favorable feature as, on average, the 
estimator will yield the true value of the unknown parameteI. Even an unbiased 
estimator, however, may be unsatisfactory if the errors A.(r) - A. are widely 
scattered around zero. Thus, one wonders what is the minimum error dispersion 
that can be achieved. 

An answer is given by the Cramer-Rao bound, which is a lower limit to 
the variance of any unbiased estimator. This bound is expressed as 

var{i(r) - A.};:: CRB(A.) (2.4.1) 

where 

(2.4.2) 

In this equation the following notation has been used: 

dlnA(rlA.) A[dlnA~rli)l 
dA. dA. . 

. k1. 

(2.4.3) 

and E,{·} is the expectation of the enclosed quantity with respect to r. No 
unbiased estimator can provide smaller errors than those indicated by (2.4.2)­
(2.4.3). 

Unfortunately, application of this bound to practical synchronization prob­
lems is difficult due to the necessity of computing A(rli). In fact, thi§ function 
is to be derived by averaging out the unwanted parameters from A(rlA.,u) 

00 

A(rli) = f A(rli,u)p(u)du (2.4.4) 
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and this is seldom feasible, either because the integration (2.4.4) cannot be 
performed analytically or because the expectation in (2.4.2) poses insuperable 
obstacles. 

As indicated in [34], a route to overcome this drawback is to resort to the 
modified Cramer-Rao bound (MCRB), which still applies to any unbiased 
estimator but has the following form: 

(2.4.5) 

with 

(2.4.6) 

in the case of passband signals and 

(2.4.7) 

with baseband signals. In (2.4.6)-(2.4.7) the notation S(t,A,U) is used in place of 
s(t, r) and the expectation Eu { . } is over the unwanted parameters u. 

Two remarks about the MCRB(}.,) are useful. The first is about its 
calculation. This issue is addressed later but we anticipate that the MCRB(A) is 
easy to derive provided that certain assumptions on U are met. The 
assumptions reflect our basic ignorance of the unwanted parameters and are 
formally expressed as follows. Denote U as uV' ue or u'P according to whether 
A.=V, A.=e or It=r. For example, when dealing with the bound for v, the vector 
U v consists of e, r and (possibly) the data symbols. We assume that: (i) the 
timing parameter r in U v and ue is uniformly distributed over the symbol 
interval (0,1); (ii) the probability density functions of e in Uv and u'/:' and of v 
in ue and u'/:' are assigned (but need not be specified for they do not affect the 
final results); (iii) the data symbols {ci} are zero-mean independent random 
variables with 

for i = k 

otherwise 

In the sequel these assumptions are referred to as standard. 

(2.4.8) 
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The second remark is about the relationship between CRB(}.,) and 
MCRB(}.,). This issue is addressed in [34], where it is shown that the former is 
greater than or equal to the latter, i.e., 

CRB(}.,) ~ MCRB(}.,) (2.4.9) 

The equality holds only in two special cases: when u is perfectly known or it is 
empty (there are no unwanted parameters). 

Equation (2.4.9) indicates that MCRB(}.,) might be loose, i.e., too low even 
compared to the error varillnces of good estimators. This point is illustrated in 
Figure 2.25, where Var{}.,(r) -}.,}, CRB(}.,) and MCRB(}.,) are qualitatively 
drawn as a function of the signal-to-noise ratio E./ No. Clearly, an estimator 
corresponding to the top line is good as its error variance is close to CRB(}.,). 
On the other hand, its performance looks bad as compared to MCRB(}.,). Thus, 
taking MCRBeA) as a reference may be pessimistic. 

Further discussions in [34] point out that, if MCRB(}.,) is computed under 
the above standard assumptions while CRB(}.,) is computed taking u as a known 
vector, then the two bounds coincide when the observation interval is much 
larger than the symbol interval. In particular, CRB(}.,) and MCRB(}.,) coincide in 
the following cases: 

(i) estimation of e when v, 'C, and data are known; 

(ii) estimation of 'Cwhen v, e, and data are known; 

E.INo 

Figure 2.25. Error variance, CRB(A) and MCRB(A). 
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(iii) estimation of v with M-PSK modulation, when r and differential data are 
available but 0 is unknown. 

These results suggest that MCRE(}.,) represents a good performance 
reference under rather favorable operating conditions. In fact, many practical 
synchronizers exist that attain the bound in the circumstances (i)-(iii) above. 
Vice versa, MCRE(}.,) may not be a useful reference when little information is 
available about the unwanted parameters. For example, in the next chapter we 
shall see that practical frequency estimators fall short of the bound unless data 
symbols and a good timing reference are provided. 

2.4.2. An Alternative Approach to the Bounds 

An alternative route to establish bounds is now illustrated which provides 
further insight into the notion of MCRB. In the foregoing discussion the 
estimation of the vector {O, r, v} has been broken into three separate operations, 
each concentrating on one component at a time. There is no logical necessity to 
proceed in this way, however. Two or even three synchronization parameters 
may be jointly estimated, in principle [21]. Then, one wonders whether the 
bounding problem becomes easier when synchronization is viewed as a single 
operation. 

Cramer-Rao bounds in multiple parameter estimation can be derived as 
extensions of the corresponding scalar problem [23]-[24]. A summary of the 
major results is as follows. Denote ~ ~ v, A.z ~ 0, ~ ~ r and A~( ~,A.z, ~). Also, 
suppose that A is deterministic (not random). Then, if A is an unbiased 
estimator of ;t, a bound on the variance of its i-th component is computed as 
the (i,i) element of the inverse of the Fisher information matrix I(A) , which is 
defined as 

(2.4.10) 

Formally 

(2.4.11) 

Clearly, equations (2.4.10)-(2.4.11) are a generalization of the scalar CRB 
(2.4.2). 

Let us concentrate on the computation of these bounds. A little thought 
reveals that we still have a problem insofar as A(rli) is not readily available. 
In fact, as the data symbols c are generally unknown, we should first compute 
A(r/i.e) and then pass to A(r/i) through the integral 
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00 

A(rli) = f A(rlic)p(c)dC (2.4.12) 

As we mentioned earlier, however, this route presents unsurpassable obstacles 
in general. 

The obstacles could be overcome by assuming a known symbol sequence. 
Under these conditions, in fact, p(c) would become a delta function and the 
right-hand side of (2.4.12) would reduce to A(rlic). How can we justify our 
knowing c other than for reasons of mathematical convenience? An intuitive 
answer is that data knowledge is expected to improve estimation accuracy. 
Hence, taking c as a known sequence should still lead to lower bounds to 
estimation errors. 

One drawback with this approach is that the results depend on the 
assumed c. To give an example, consider a rectangular pulse sequence. 
Intuitively, the achievable accuracy in timing estimation depends on the 
number of transitions in the sequence. In particular we expect that an alternate 
pattern ( ... ,+1,-1,+1, ... ) is very suitable for clock recovery whereas an all-one 
pattern ( ... ,+1,+1,+1, ... ) is not, as it does not bear any timing information. In 
general, "good" sequences will provide low bounds and, vice versa, "bad" 
sequences will produce high bounds. 

This problem can be sidestepped by considering long sequences. In fact, if 
the symbol process {c;} is "regular," bad and good sequences will tend to 
become less and less probable as the length of the sequence grows large. 
Asymptotically, as the length tends to infinity, the bounds should converge 
toward limits that depend only on the average statistics of { ci }. 

Performing long calculations it turns out that, as the observation interval 
grows large, these limits essentially coincide with the MCRBs discussed in the 
previous section. This is an interesting result as it shows that logically different 
routes lead to the same conclusion. It also confirms the idea that the MCRBs 
coincide with the true CRBs as computed assuming known data and long 
observation intervals. 

2.4.3. MCRB(v) with PAM Modulation 

We limit ourselves to non-offset PAM modulation, as offset modulation 
can be treated in the same manner and produces the same result. The starting 
point is equation (2.4.6) with A=V. Taking s(t, v,u) from (2.2.25), with simple 
manipulations it is found that 

(2.4.13) 
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with 

mCt)~ LcjgCt- iT - 1') (2.4.14) 

The vector u is fonned by 1',0 and the data symbols C~{Ci}. However, as 
m(t) is independent of 0, the expectation in (2.4.13) may be limited to C and 1'. 

Also, as c and l' are independent, we may first compute the average over c and 
then over 1'. Recalling (2.4.8) and (2.4.14) we get 

(2.4.15) 

Next, application of the Poisson fonnula yields 

L i Ct - iT - 1') = ! L G2 (!!:..)ej27rn<t-Tl/T 
j TnT 

(2.4.16) 

where Gil> is the Fourier transfonn of g\t). Substituting into (2.4.15) and 
taking l' uniformly distributed over (O,T) results in 

Eu{lmCt)12} = C2;(0) 

= i jIG(f)12 df (2.4.17) 
-00 

In Appendix 2.A it is shown that the average signal energy per symbol is given 
by 

Es = ~2 j IG(f)12 df (2.4.18) 
-00 

Thus, collecting (2.4.13) and (2.4.17)-(2.4.18), and assuming that the length of 
the observation interval is a multiple of T, say To=LoT, gives 

Finally, inserting into (2.4.6) produces the desired result: 

3 1 
T2 X MCRB(v) = -2 -3 --

87r LQ Es/No 

(2.4.19) 

(2.4.20) 
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As is seen, MCRB(v) is inversely proportional to the signal-to-noise ratio and 
the third power of the observation length. 

In the foregoing discussion we have tacitly taken the time origin as the 
beginning of the observation interval. One wonders how (2.4.20) is affected 
choosing the interval (to :s; t:S; to + To) instead. The answer is found by turning 
(2.4.6) into 

(2.4.21) 

and computing the expectation in the denominator. With the same arguments 
used above it is found that 

(2.4.22) 

which indicates that MCRB(v) does depend on to. The dependence on the 
beginning of the observation interval is inherent in many discussions (see [23] 
and [26] for example) but is generally not mentioned. Simple algebra shows 
that M CRB( v) is maximum for to = - To /2 and this maximum reads 

2 31 T x MCRB(v) = -2-3 --
21r 4J Es/No 

(2.4.23) 

In the sequel we take (2.4.23) as the modified CRB for frequency estimation. 

2.4.4. MCRB(v) with CPM Modulation 

The modified CRB with CPM modulation is computed with the same 
methods of the previous section. Taking s(t, v,u) as the product of ej (2TrV1+8) by 
the signal complex envelope in (2.2.62) and choosing the observation interval 
±1Q 12 yields 

(2.4.24) 

The right -hand side is independent of u and, therefore, it coincides with its own 
expectation with respect to u. Thus, substituting into (2.4.6) gives 
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2 31 
T x MCRB(v) =-2-3 --

21r LU Es/NO 

(2.4.25) 

which coincides with (2.4.23). 
This result may be surprising, considering the differences between PAM 

and CPM modulation. To push the point further, one wonders what happens 
with an unmodulated carrier Acos[21r(fo + v)t + e]. The signal complex 
envelope is 

sU, v,e) = Ae j (21f11t+8) (2.4.26) 

Hence 

f :yet, V,e) dt = 1r A 10 TO/2
1

a. 12 2 2 3 

-To/2 dV 3 
(2.4.27) 

or, alternatively, bearing in mind that To=LoT, 

J dsU, v, e) dt = 21r Es (4JT)3 TO/21 12 2 
-To/2 dV 3T 

(2.4.28) 

where Es=A2T/2 is the carrier energy in T seconds. Substituting into (2.4.6) 
produces the same bound as with PAM and CPM. 

Again, this is puzzling as, intuitively, frequency measurements with 
unmodulated carriers should be easier than with modulated signals. The only 
possible explanation is that the bounds (2.4.23) and (2.4.25) are loose. This 
conclusion is confirmed by the observation that many practical frequency 
estimators are far from MCRB(v). An exception occurs when both timing and 
data are known so that the modulation can be wiped out. Under these 
conditions, simple algorithms are available [35]-[37] that achieve the bound. 

2.4.5. MCRB(8) with PAM and CPM Modulations 

We limit ourselves to non-offset PAM signaling since offset PAM and 
CPM modulations lead to the same result. Also, we consider the observation 
interval (0,10) since it turns out that the bound is independent of where the 
observation begins. Taking s(t,e,u) from (2.2.25) produces 

(2.4.29) 
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where met) is still as in (2.4.14). Here, u is formed by c, v and 'f. However, as 
met) depends only on c and 1', the expectation Eu{lm(t)12} is the same as that 
computed in Section 2.4.2. Inserting into (2.4.29) yields 

(2.4.30) 

and substituting into (2.4.6) gives the result sought: 

1 1 
MCRB(O) = ---

2Lo Es/No 
(2.4.31) 

As with frequency estimation, the modified bound is inversely 
proportional to the signal-to-noise ratio. However, the parameter Lo in the 
denominator is now raised to the first power, not the third, which says that 
phase errors are less sensitive to the observation length than frequency errors. 

Exercise 2.4.1. Compute MCRB(O) for an unmodulated carrier 
Acos(27ifof+()) embedded in white Gaussian noise. Assume that the amplitude 
and carrier frequency are known. 

Solution. The complex envelope of the carrier is s( t, 0) = AejO • Hence 

ds(t, 0) 'A jO 
--=Jrte dO (2.4.32) 

and 

IdS~~O)1 = A (2.4.33) 

Thus, calling 

E ~A2T 
s 2 (2.4.34) 

the carrier energy in T seconds and substituting into (2.4.6) yields 

1 I 
MCRB(O) = ---

2Lo Es/No 
(2.4.35) 

which coincides with (2.4.31). 
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Exercise 2.4.2. Compute CRB(O) for an unmodulated carrier 
Acos(27ifot+O) embedded in white Gaussian noise. Assume again that A andfo 
are known. 

Solution. The likelihood function A(rle) is given in (2.3.40). Thus, paral­
leling the arguments in Exercise 2.3.2, it is found that 

A(rle) = C exp{ A~~e) } 

where C is independent of e and F(e) is given by 

To To 

F(e) = cose f rR(t)dt + sine f rI(t)dt 
o 0 

Hence 

dlnA(rlO) _ AcosO T.fO ()d AsinO T.fO ()d 
""l - -- rI t t - -- rR t t 
00 No· 0 No 0 

On the other hand, bearing in mind that 

equation (2.4.38) becomes 

rR(t) = AcosO + wR(t) 

rI(t) = AsinO + WI(t) 

dlnA(rIO) _ AcosO T.fo ()d AsinO T.fO ()d 
--:--'-'--"---- WI t t--- WR t t 

dO No 0 No 0 

(2.4.36) 

(2.4.37) 

(2.4.38) 

(2.4.39) 

(2.4.40) 

(2.4.41) 

Next, observe that wit) and wR(t) are independent processes with spectral 
density No. Then the two integrals in (2.4.41) are independent random variables 
with a common variance given by (see Appendix 2.B) 

(2.4.42) 

Putting these facts together, the mean square value of (2.4.41) is found to be 

(2.4.43) 
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so that, substituting into (2.4.2) and defining Es as in (2.4.34) yields 

1 1 
CRB(e) = ---

24.J Es/No 
(2.4.44) 

which coincides with MCRB(e) in (2.4.35). This result should be expected as 
there are no unwanted parameters in Acos(27ifot+(J) and, in consequence, CRB 
and MCRB coincide [34]. 

2.4.6. MCRB( T) with PAM Modulation 

As we did earlier, we limit ourselves to non-offset passband modulation 
since offset passband and baseband PAM may be approached in the same 
manner and have the same bound. Taking set, T,U) from (2.2.25) yields 

(2.4.45) 

with 

(2.4.46) 

and p(t)~dg(t)/dt.1t is easily checked that the Fourier transform of pet) is 

P(!) = j27ifG(f) (2.4.47) 

As m'(t) is independent of v and e, the expectation on the right of (2.4.45) 
may be limited to the data symbols. With the same arguments leading to 
(2.4.15)-(2.4.16) it is found that 

Eu{lm'(tt} = i LPz(; )e j 21rn(H)/T 

n 

(2.4.48) 

where C2 ~Ec {Icl} and P if) is the Fourier transform of let). This is related to 
P(j) by 

00 

Pz(f) = f P(v)P(f - v)dv (2.4.49) 

In particular, using (2.4.47) gives 
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00 

Pz(O) = f[dg(t)/dtfdt 

(2.4.50) 
00 

= 41r2 f f2IG(f)12 df 

Next, assuming 10 = LoT, it can be shown that 

To 

fEu{lm'Ctt}dt = C2LoP2(0) (2.4.51) 
o 

Hence, from (2.4.45) and (2.4.18) we obtain 

(2.4.52) 

where; is an adimensional parameter: 

00 

f f2IG(f)12 df 
; ~ T2 -.:-00=--00---- (2.4.53) 

fIG(f)12df 

Finally, substituting (2.4.52) into (2.4.6) produces the desired result 

(2.4.54) 

As with phase estimation, the modified bound is inversely proportional to 
the signal-to-noise ratio and the observation length. Also, it is inversely 
proportional to ; which may be viewed as the normalized mean square 
bandwidth of G(j). This suggests that timing estimation should be easier with 
wideband signals. Physically, wideband pulses have comparatively short 
duration and, therefore, are better "seen" in the presence of noise. 

Exercise 2.4.3. Compute the parameter; assuming G(j) as a root-raised­
cosine function as given in (2.2.12). 

Solution. Inserting (2.2.12) into (2.4.53) and performing straightforward 
manipulations, it is found that 
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(2.4.55) 

As is physically intuitive, ~ is an increasing function of the rolloff factor a. 

Exercise 2.4.4. The real-valued waveform r(t)=g(t--r)+w(t) is observed 
over the infinite interval -00 < t < 00. The pulse get) has finite energy and, in 
particular, it satisfies the condition 

lim g(t) = ° 
1-4±oo 

(2.4.56) 

The noise wet) is white, with a spectral density No/2. Compute CRB(-r) and 
compare the result with MCRB( -r). 

Solution. The likelihood function A(rli) is obtained from (2.3.33) letting 
s(t, r) = g(t - i) and changing the integration interval from (O,To) to (-00,00). 
This results in 

A(rli) = exp{~ j r(t)g(t - i)dt _ Es } 
No--<>o No 

(2.4.57) 

where Es is the energy of g(t). Taking the logarithm yields 

In A(rli) = ~ j r(t)g(t - i)dt _ Es 
No--<>o No 

(2.4.58) 

To compute CRB(-r) we need the derivative dlnA(rli)jai for i = -r (see 
(2.4.2)-(2.4.3)). From (2.4.58) we have 

dlnA(rl-r) = _~ j ret) dg(t - -r) dt 
d-r No --<>0 dt 

=-~ j [g(t_-r)+w(t)]dg(t--r) dt 
No--<>o dt 

_ 2 feo ()dg(t--r)d --- w t t 
No--<>o dt 

(2.4.59) 

where the relationship (2.4.56) has been exploited. 
The mean square value of (2.4.59) is now computed making use of the 

results in Appendix 2.B: 
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Alternatively, because of (2.4.50), we may write 

Finally, substituting into (2.4.2) and rearranging yields 

111 
-2 x CRB(r) = ----z:e-­
T 8Jr ':> Es/No 

where ~ is still as defined in (2.4.53). 
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(2.4.60) 

(2.4.61) 

(2.4.62) 

Comparing with (2.4.54) we see that CRB(r) is Lo times larger. It should 
be noted however that, in deriving (2.4.62), we have assumed a single pulse 
whereas, in (2.4.54), we considered Lo adjacent pulses. Solving the present 
problem with a sequence of Lo non-overlapped pulses leads to a result which is 
Lo times smaller, i.e., just to (2.4.54). 

2.4.7. MCRB(-r) with CPM Modulation 

Taking s(t, r,u) as the product of ej (21M+() by the signal complex envelope 
in (2.2.62) yields 

(2.4.63) 

where 

(2.4.64) 

and g(t) is the frequency response of the modulator. 
Paralleling the argument used with (2.4.15)-(2.4.17) gives 

(2.4.65) 

where C2 = E{ c;} and Gij) is the Fourier transform of l(t). Note that 



68 Chapter 2 

00 

G2(0) = f i(t)dt (2.4.66) 

Next, substituting (2.4.65) into (2.4.63) and assuming 10 = LoT produces 

(2.4.67) 

where 

00 

~g,C2h2T f i(t)dt (2.4.68) 

is an adimensional parameter analogous to gin (2.4.53). 
Finally, substituting into (2.4.6) yields the desired result 

(2.4.69) 

The similarity with (2.4.54) is striking. The two formulas differ only in the 
parameters ~ and S. To make a compar~son let us consider the following modu­
lations: 

(i) QPSK with a rolloff factor a=0.5; 

(ii) CPM with quaternary symbols, h=O.3, and a frequency response 

1 [ 2m] g(t)=- l-cos-
6T 3T 

for OStS3T (2.4.70) 

This choice is motivated by the fact that power and spectral efficiencies are 
almost the same in the two cases. Calculations yield g:0.095 and ~=0.0375, 
which indicates that timing estimation with CPM might be more difficult than 
with PAM. 

Exercise 2.4.5. Spectral and power efficiencies of CPM modulations are 
very sensitive to the frequency response g(t). In many theoretical studies two 
forms of g(t) are adopted: rectangular (REC) and raised-cosine (RC). Thus, 
denoting by L the duration of g(t) in symbol intervals, we have either LREC or 
LRC pulses. Formally 
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LREC : get) ~ { 2~T o $, t $, LT 
(2.4.71) 

elsewhere 

LRC: {
I [ 2m] -- l-cos-

g(t) = 2~T LT (2.4.72) 

elsewhere 

Compute the MCRB(r) with LREC and LRC pulses. 
Solution. As a first step let us compute the energy of g(t). Straightforward 

algebra yields 

LT 1 f i(t)dt = -, with LREC 
o 4LT 

LT 3 
f i(t)dt = 8LT' with LRC 
o 

Hence, substituting into (2.4.68) and then into (2.4.69) produces 

1 L 
- x MCRB(r) = with LREC 
T2 2rr2C2h2Lo Es/No' 

_1_ x MCRB(r) = L 1 with LRC 
T2 3rr2C2h2 Lo Es/No' 

(2.4.73) 

(2.4.74) 

(2.4.75) 

(2.4.76) 

It is seen that MCRB( r) increases in proportion to the length of g(t), 
meaning that long pulses are more difficult to synchronize than short ones. 
Practical evidence confirms this conclusion. 

2.5. Key Points of the Chapter 

• Synchronization consists of the recovery of some reference parameters from 
the received signal and their application to data detection. In this book we 
consider three basic parameters: carrier frequency, carrier phase and timing 
epoch. Timing epoch is the only synchronization parameter in baseband 
transmission. 

• Most synchronization algorithms have been discovered using either 
heuristic arguments or by application of maximum likelihood methods. The 
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latter involve maximizing certain functions, referred to as likelihood 
functions, which depend on the observed waveform and on trial values of 
the synchronization parameters. 

• The observation may be either a continuous-time waveform or a sample 
sequence. If sampling rate is properly chosen, no loss of information is 
incurred with sampling and the resulting ML estimates are as good as those 
derivable from the original continuous-time waveform. The choice between 
continuous-time and discrete-time methods is a question of mathematical 
convenience. 

• Establishing bounds to parameter estimation accuracy is an important goal 
as it provides benchmarks for evaluating the performance of real world 
synchronizers. Cramer-Rao bounds indicate lower limits to estimation error 
variances. Unfortunately, their application to synchronization problems 
leads to serious mathematical difficulties. Modified Cramer-Rao bounds are 
much easier to employ, but are looser than true Cramer-Rao bounds. 

• Modified and true Cramer-Rao bounds coincide when the data are known. 

Appendix 2.A 

In this Appendix we provide a brief overview of the calculation of the 
power spectral density for PAM signals. The reader interested in more details is 
referred to the textbooks [2] and [3]. 

2.A.l. Baseband Transmission 

The mathematical model for a baseband PAM signal is 

(2.A.I) 

where {c;} are real-valued symbols belonging to the M -ary alphabet 
{±1,±3, ... ,±(M-l)}. For the time being they are assumed to be equiprobable and 
independent so that 

E{cJ=O 

E{ cj+mcj } = { ~2 m=O 

m*O 

(2.A.2) 

(2.A.3) 
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with 

(2.A.4) 

Under conditions (2.A.2)-(2.A.4) the power spectral density (PSD) of set) is 
found to be 

where G(j) is the Fourier transfonn of get). 
Integrating S(j) yields the signal power 

1', = i jlG(ft df 
-00 

The signal energy per symbol equals PsT and has the expression 

= 

Es = C2 flG(ft df 

In many practical cases G(j) is a square-root Nyquist function 

with 

When this happens, (2.A.7) reduces to Es=C2• 

2.A.2. Passband Transmission 

k=O 

k::;:.O 

The mathematical model for a modulated signal is 

(2.A.5) 

(2.A.6) 

(2.A.7) 

(2.A.8) 

(2.A.9) 

(2.A.10) 

where sCE(t) represents the complex envelope of s/F(t) with respect to the 
nominal carrier frequency fo. The fonn of SCE(t) depends on whether modula­
tion is non-offset or offset. 
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Non-Offset Modulation 

In this case we have 

SCE(t) = L cj g(t - iT) 

Chapter 2 

(2.A.ll) 

where c j are complex-valued symbols. For example, the. symbol alphabet is 
{a+jb; a,b=±I,±3, ... ,±(M-I)} with MxM-QAM and tela; a = 0, 2;rIM, ... , 
2K(M-I)IM} with M-PSK. Again, we assume equiprobable and independent 
data symbols so that 

E{c;} = 0 

E{ cj+mc;} = { ~2 m=O 
m~O 

where the constant C2 depends on the signal constellation. In particular 

Offset Modulation 

The signal complex envelope reads 

for MxM-QAM 

for M-PSK 

(2.A.12) 

(2.A.13) 

(2.A.I4) 

(2.A.15) 

where a j and b j are real valued. The most common instance of offset 
modulation is OQPSK, where a j and bj take values ±I independently and with 
the same probability. Accordingly, one has 

m=O 
m~O 

(2.A.16) 

Returning to (2.A.1O), denote by S/F(f) and SCE(f) the power spectral 
densities of s/F(t) and sce<t). It can be shown that the following relation holds 
(for either offset or non-offset modulations): 

(2.A.I7) 
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The computation of SCEC!) is perfonned with the methods used with baseband 
signals and reads 

(2.A.18) 

where C2 depends on the modulation fonnat (non-offset versus offset) and the 
signal constellation. C2 is given by (2.A.14) with non-offset modulation while 
it equals 2 with OQPSK. 

The average power of sIlAt) is obtained by integrating SIF(j) over the 
frequency axis. Bearing in mind (2.A. 17)-(2.A. 18), this results in 

(2.A.19) 

which differs from (2.A.6) by a factor 112. The average energy per symbol is 
Es=PsT and is expressed by 

Es = ~21IGc!)12 df (2.A.20) 

-
When G(j) is a square-root Nyquist function, the signal power becomes 
Ps=Czl2T and the signal energy Es=Czl2. 

2.A.3. Extension to Trellis-Coded Modulations 

The above results hold true only with zero-mean and uncorrelated 
symbols. In particular, conditions (2.A. 12)-(2.A. 13) must be satisfied with non­
offset PAM signaling. It turns out, however, that these conditions are satisfied 
not only with uncoded modulations but also with most good trellis codes [39]­
[40]. Thus, the previous spectral density fonnulas are generally applicable even 
with trellis code modulations. 

Appendix 2.B 

In this Appendix we compute the mean square value of an integral of the 
type 

= 

X = J w(t)h(t)dt (2.B.1) 
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where w(t) is a zero-mean noise process with power spectral density Sw(f) and 
h(t) is a (generally complex-valued) function with Fourier transform H(j) and 
energy 

(2.B.2) 

To begin, we write the squared amplitude of X as 

(2.B.3) 

Taking the statistical expectation yields 

(2.B.4) 

where R.v(r) is the autocorrelation function of w(t) and is related to Sw(f) by 

00 

Sw(J) = f R.v('r)e- j2trfT dr (2.B.5) 

Next, letting r = t\ - t2 into (2.B.4) and rearranging produces 

(2.B.6) 

The internal integral in this equation can be expressed as a function of Sw(f) 
and H(j) by means of Parse val theorem: 

00 00 

J R.v( r)h(r + t2 )dr = J Sw(f)H(f)e j21ift2 df (2.B.7) 

Then, substituting into (2.B.6) produces the desired result 

00 

E{lxn = J Sw(f)IH(f)12 df (2.B.8) 

The following special cases are of interest. 
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Case (i): Sw(f) and H(j) have disjoint supports. 

Suppose that Sw(f) is zero where H(f) takes significant values, i.e., 

(2.B.9) 

Then, (2.B.S) says that E{IXI2} = O. In conclusion, the random variable X has 
zero mean and zero variance and, in consequence, is zero with probability one. 

Case (ii): Sw(f) is a constant. 

Suppose that wet) is a white process, i.e., 

Then, (2.B.S) yields 

Case (iii): Sw(f) = No/2 and h(t) is a rectangular pulse. 

Suppose 

h(t) = {~ for It I ~ To /2 
elsewhere 

Then the energy of h(t) is just 1'0 and (2.B.ll) becomes 
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Carrier Frequency Recovery 
with Linear Modulations 

3.1. Introduction 

3 

A frequency recovery system accomplishes two basic functions: (i) it 
derives an estimate V of the carrier frequency offset; (ii) it compensates for this 
offset by counter-rotating the received waveform ret) at an angular speed 27rV. 
In the ensuing discussion we distinguish between two major cases [1]: 

(i) the offset is much smaller than liT, 

(ii) the offset is on the order of the symbol rate liT. 

Case (i) occurs when a receiver is operating in steady-state conditions. In 
these circumstances, timing information can be recovered first, even in the 
presence of moderate frequency offsets, and then exploited for estimating v. 
Data symbols mayor may not be available. For example, known 
synchronization preambles make possible data-aided operation in time­
division-multiple-access (TDMA) systems. Alternately, decision-directed 
operation may be employed with PSK differential demodulation. 

Case (ii) corresponds to initial frequency acquisitions in low-capacity 
digital radios and satellite communication systems. In these applications we 
can reasonably assume that data symbols, carrier phase and, perhaps, timing are 
all unknown. Reduction of the frequency error to a small percentage of the 
symbol rate is necessary before other synchronization functions can 
successfully begin. 

This chapter is organized as follows. Frequency estimation under 
condition (i) is discussed in Sections 3.2 to 3.4. In particular, Section 3.2 deals 
with data-aided recovery and Section 3.3 with decision-directed recovery with 
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differential PSK. In Section 3.4, data symbols are unknown and frequency 
estimation is addressed using either open-loop or closed-loop methods. 
Frequency recovery under condition (ii) is studied in Sections 3.5 and 3.6. 
Here, neither data nor clock information is available. 

3.2. Data-Aided Frequency Estimation 

3.2.1. Maximum Likelihood Estimation 

In addressing maximum likelihood frequency estimation we assume that: 
(i) data symbols are known; (ii) timing is ideal; (iii) the frequency offset is a 
small fraction of the symbol rate. A few remarks on these restrictions are 
useful. In TDMA systems condition (i) is ensured by appending a preamble 
with a known pattern to the beginning of each burst. Carrier frequency offset 
may be reestimated on each individual burst or, alternatively, by processing 
several stored preambles at a time. The second procedure takes advantage of 
the fact that frequency varies slowly and remains constant over many bursts. 

Condition (ii) implies that accurate timing information can be gathered 
even in the presence of moderate frequency errors. Actually, good clock 
recovery is possible even with frequency errors as large as 20% of the symbol 
rate. 

Finally, frequency offsets in this section are in the range of a few percents 
of the symbol rate liT, say less than 10%. For example, in a point-to-point 
microwave radio at 30 GHz, with typical oscillator instabilities of 5 parts per 
million, the combined transmit/receive oscillator instability can be as large as 
300 kHz, which is less than 10% of liT only if the latter exceeds 3 
Msymbols/s. Otherwise, frequency offset must be measured in two steps. A 
first coarse measurement (performed with the methods of Sections 3.5 and 3.6) 
allows one to locate the offset within a range narrower than ±O.lIT. Then, this 
estimate is subtracted from the carrier frequency and the residual offset is 
measured with the methods discussed here. 

In this subsection we approach frequency estimation via ML methods. As 
we shall see, while the problem can be put into a simple mathematical 
framework, its practical solution requires some approximations. 

To begin we observe that, if timing and data are known, the signal has 
only two unknown parameters: frequency offset and carrier phase. Based on the 
results of Chapter 2, the likelihood function for these parameters has the form 

A(rlv,O) = exp _1 jRe{r(t)s*(t)}dt-_l- jls(ttdt {
TO TO} 

No 0 2No 0 
(3.2.1) 
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where 

(3.2.2) 

and e and v are trial values of () and v. In the following e is modeled as a ran­
dom variable uniformly distributed on [O,2n) while v is a fixed albeit unknown 
quantity. 

It is easily checked that the second integral in (3.2.1) is independent of v 
and e and, therefore, can be dropped (remember that dividing a likelihood 
function by anything that does not depend on the trial parameters still yields a 
likelihood function). Thus, maximizing A(riV,e) is equivalent to maximizing 

A(rlv, e) = exp{_l J Re{r(t)s· (t) }dt} 
No 0 

(3.2.3) 

~t-iT-<J 
'-./1 • 

0 10 t 

(i) 

1 
g(t-iT-<Jf\ 

I~V • 
0 To t 

(ii) 

L g(HT-<J 

A • 
0 10 t 

(iii) 

Figure 3.1. Illustrating the location of get - iT - -r) over the observation interval. 
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To proceed, let us concentrate on the integral in (3.2.3). Using (3.2.2) 
yields 

To To 

f r(t)s'(t)dt = e-iJLc; f r(t)e- j2tM g(t - iT - r)dt (3.2.4) 
o i 0 

Now, bear in mind that g(t) has a limited duration (say, a few symbol intervals 
about the origin). Thus, when computing the integrals in the right-hand side of 
(3.2.4), three distinct cases may occur (see Figure 3.1): (i) g(t - iT - r) is to­
tally inside the observation interval (O,To); (ii) it is totally outside this interval; 
(iii) it lies across one of the extremes. In the first instance the integration can be 
extended to the infinite line. In the second, the integral is zero. The third situa­
tion cannot be further simplified. Nevertheless, assuming To much greater than 
the duration of g(t), it is realized that type-(iii) cases are comparatively few. 
Putting these facts together leads to the approximation 

To _ 1.0-1 f r(t)s'(t)dt:::: e-j8 Lc;x(k) (3.2.5) 
o k=O 

where Lo £l'o/T is the length of the observation interval in symbol periods (we 
assume To a multiple of T) and x(k) is the sample at kT+roftne waveform 

00 

x(t)£ f r(;)e-j2m;~g(;-t)d; (3.2.6) 

As is shown in Figure 3.2, x(t) represents the response of the matched filter to 
the voltage r'(t)£r(t)e-j2tM . 

Returning to (3.2.5), let us write 

_ 1.0 -I _ 

e-j8 LcZx(k) =IXle j(V'-8) (3.2.7) 
k=O 

with 

~,--g_(-t_)---,~ 
e-j2trV1 

Figure 3.2. Physical interpretation of x(t). 
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Lo-l 
IXleN ~ Lc;x(k) 

k=O 

Then, substituting into (3.2.3) yields 

83 

(3.2.8) 

(3.2.9) 

Elimination of () from A(rlV,(}) is accomplished by averaging over 
[O,2n,). This produces 

(3.2.10) 

where Io( a) is the modified Bessel function of zero order 

(3.2.11) 

As Io(a) is an even function of a with an upward concavity and the argument 
of Io(a) in (3.2.10) is positive, it is seen that A(rlv) achieves a maximum at the 
same location as IXI. From (3.2.8) we conclude that the ML estimate is ob­
tained by maximizing 

(3.2.12) 

Figure 3.3 illustrates the computation of r(v). 
One difficulty with maximizing r(v) is apparent from the simulation 

results shown in Figure 3.4, where r(v) is drawn versus V for QPSK mod­
ulation and root-raised-cosine-roIloff pulses with roIloff a=O.S. Here, the true 
frequency offset v equals zero, the ratio Es! No equals 30 dB and the 

Figure 3.3. Illustrating the computation of r(v). 
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Figure 3.4. Typical shape of the r(v) function. 
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1.50 

observation length is 30 symbols. Clearly, as there are many local maxima, the 
location of the global maximum must be preliminarily found. 

In principle this can be done by breaking the estimation algorithm into a 
two-step search. The first part (coarse search) calculates r(v) for a set of v 
values covering the uncertainty range of v and determines that v which 
maximizes r(v) over this set. The second part (fine search) makes an 
interpolation between the samples of r(v) and computes the local maximum 
nearest to the v that has been picked up in the first part. Note that, 
occasionally, r(v) will be so distorted by noise that its highest peak will occur 
at a distance from v. When this happens the ML algorithm makes large errors 
(outliers) [2]. In a practical situation outliers have disabling effects on the 
receiver performance as they result in bursts of errors. Also, outliers become 
more and more likely as the Es / No decreases. Indeed, estimation accuracy 
exhibits a threshold which is clearly visible from a graph of error variance 
versus EsiNo' At large Es/No the variance increases at a fixed rate as Es/No 
decreases. However, as Es / No approaches some critical value, the curve rises 
rapidly due to the insurgence of outliers. 

3.2.2. Practical Frequency Estimators 

The above discussion shows that ML estimation is a burdensome process 
and indicates that simpler methods are desirable. Here we discuss four such 
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methods, all based on the following signal model. 
Suppose that 

(i) the convolution g(t) ® g( -t) is Nyquist, i.e., 

= {1 
19(t)g(t - kT)dt = ° k=O 

otherwise 
(3.2.13) 

(ii) data symbols belong to a PSK constellation 

{Ck = ejak : ak = O,2n/M, ... ,2n(M -1)/M} (3.2.14) 

(iii) the uncertainty range of V is small compared with the symbol rate. 

Feeding 

(3.2.15) 

into the matched filter g( -t) produces a waveform y(t) whose samples 
y(k)~ y(kT + r) have the form 

= 

y(k) = f r(t)g(t - kT - r)dt (3.2.16) 

Then, substituting (3.2.15) into (3.2.16) yields 

= 

y(k) = ej°L,c; f ej2TrV1 g(t - iT - r)g(t - kT - r)dt + n(k) (3.2.17) 

where the last term (the noise contribution) is given by 

= 

n(k) = f w(t)g(t - kT - r)dt (3.2.18) 

As w(t) is Gaussian and has independent components with PSD No. it can be 
shown that n(k) may be written as 

(3.2.19) 

where nR(k) and n[(k) are independent zero-mean Gaussian random variables 
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with the same variance No . 
Let us concentrate on the factor ej21fVt g(t - iT - -r) in (3.2.17). Since 

g(t - iT - -r) takes significant values only over an interval T; of a few symbols 
around t=iT+-r and we have assumed Ivl« 1fT, the exponential ej21fVt may be 
approximated with a constant ej2TrV(iT+1:) for tE T; and, in consequence, we have 

ej21fVt g(t - iT - -r) :::: ej2rrV(iT +1:) g(t - iT - -r) (3.2.20) 

Substituting into (3.2.17) and bearing in mind (3.2.13) yields 

y(k) = ckej [2TrV(kT+1:)+8] + n(k) (3.2.21) 

As is seen, the signal component in (3.2.21) depends on vas well as on -r, 
(J and the modulation ck' Modulation is easily removed, however, taking 
advantage of the PSK property CkC; = 1. In fact, multiplying y(k) by c; and 
letting z(k)~ y(k)c; gives 

z(k) = ej [2TrV(kT+1:)+8] + n'(k) (3.2.22) 

where n'(k)~n(k)c; has the same statistics as n(k). Figure 3.5 shows the com­
putation of z(k). Equation (3.2.22) is the basis for the estimation methods dis­
cussed in the sequel. They all operate on the data set {z(k), k = 0,1, ... ,1.0 -t}. 

3.2.3. First Method (Kay [3]) 

Rearrange (3.2.22) as follows: 

z(k) = p(k)e j [2TrV(kT+1:)+8+I/l(k)] 

where p(k) and cfJ(k) are implicitly defined as 

p(k)ejl/l(k) ~1 + n'(k)e-j [2TrV(kT+1:)+8] 

Figure 3.5. Illustrating the computation of z(k). 

(3.2.23) 

(3.2.24) 
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As Es / No grows large it can be shown that the random variables {l/>(k)} are 
approximately independent, zero-mean and Gaussian [3]. 

Next consider the argument of the product z(k)z*(k -1). Using (3.2.23) it 
is found that 

arg{z(k)z*(k -I)} = 2mII' + l/>(k) -l/>(k -1) (3.2.25) 

Clearly, the quantity arg{z(k)z*(k -I)} may be viewed as a noisy measurement 
of 21rvT. Note that up to Lo-l such measurements are available from the data 
set {z(k)} and the question arises as to how they can be exploited to estimate v. 
The following procedure has been proposed by Kay [3]. 

Denote a(k)£arg{z(k)z* (k -I)} and let a£{a(1),a(2), ... ,a(4) -I)} be 
the available measurements. Also, call a that a corresponding to the trial 
frequency offset V. Its components have the form 

a(k)£27rVT + l/>(k) -l/>(k -1), k = 1,2, ... ,4>-1 (3.2.26) 

As we mentioned earlier, the phases {l/>(k)} are independent and approximately 
Gaussian at high Es / No. Thus, a is approximately Gaussian and its 
probability density function p(alv) can be written in closed form. Then, 
maximizing p( a = alv) as a function of v yields the ML estimate of v based 
on the observation of arg {z(k)z* (k -I)}, k = 1,2, ... ,4> -1. It is worth stressing 
that this is not the same as maximizing the function f(v) in (3.2.12). Indeed, 
the estimator maximizing (3.2.12) observes the set {x(k)} whereas Kay's 
estimator observes the sequence arg {z(k)z* (k -I)}. 

Analysis in [3] shows that the maximum of p(a = alv) is reached for 

1 1.0-1 

V = - Ly(k)arg{z(k)z*(k-l)} 
21ff k=1 

where {y(k)} is a smoothing function given by 

y(k) = ~-24> [1- (2k - 4> )2], k = 1,2, ... , T. -1 
2LO-l 4> '-1) 

(3.2.27) 

(3.2.28) 

It is also indicated in [3] that the estimator (3.2.27) is unbiased and reaches the 
modified Cramer-Rao bound 

3 1 
T2 x MCRB(v) = -2-3 --

21r LQ Es/No 
(3.2.29) 

at high Es! No values. 
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3.2.4. Second Method (Fitz [4]) 

Fitz has proposed two frequency estimators [4]-[5]. As they have 
comparable performance, in the sequel we report only on that described in [4]. 
Call R(m) the autocorrelations of z(k) as obtained from the data {z(k)}, i.e., 

1 Lo-l 
R(m)~-- LZ(k)z*(k-m), l~m~1.o-l 

1.0 -m k=m 
(3.2.30) 

Substituting (3.2.22) into this equation yields 

R(m) = ej2n:mlff + n"(m), 1 ~ m ~ 1.0-1 (3.2.31) 

where n"(m) is a zero-mean noise term. 
Next, assume that In"(m)1 is small compared with unity (which is true at 

high Es/No values). At first sight one might think that the argument of R(m) 
equals approximately 2mnvT. This is not necessarily true, however, because 
the difference 

e(m)~arg{R(m)}- 2mnvT (3.2.32) 

is occasionally large. To see why, bear in mind that the argument in (3.2.32) is 
taken modulo 2n, which means that its values are restricted to the interval [-n, 
n). Figure 3.6 illustrates equation (3.2.32) in two different situations. In Figure 
3.6(a), 2nvmT is far from either -n or n and it is clear that arg{R(m)} "" 
21rVfnT. In Figure 3.6(b), instead, 2mnvT is close to nand e(m) may be about 
-2n even with a small n"(m) (an analogous situation takes place when 2nmvT 
is close to -n). 

From the foregoing discussion it appears that the errors e(m) are generally 
small (at high Es/ No) provided that m is restricted to 1 ~ m ~ N and N is upper 
bounded by 

(3.2.33) 

where ±vrnax denotes the uncertainty range of v. Then, summing (3.2.32) for 
1 ~ m ~ N and dividing by N yields 

1 N 1 N 
- Le(m)=- Larg{R(m)}-n(N+l)vT 
N m=l N m=l 

(3.2.34) 

The left-hand side is now small as its terms tend to compensate each other. 
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arg{R(m)} 

(a) 

21CmvT 

n"(m) r---~::-I--~--~ 

R(m) arg{R(m)} 

(b) 

Figure 3.6. Illustrating equation (3.2.32). 

Thus, setting to zero the righthand side and solving for v produces the Fitz 
estimation formula 

A 1 N 

V = 1CN(N + l}T ~arg{R(m)} (3.2.35) 

The Fitz estimator is found to be unbiased in the range Ivl:5 1/(2NT) and 
achieves the MCRB(v) provided that N equals LrJ2. Its estimation accuracy de­
grades as N decreases but, at the same time, the computational load gets lighter 
and the estimation range wider, as is seen from (3.2.33). Thus, there is a trade­
off between estimation range, on the one hand, and accuracy and computational 
simplicity on the other. 

3.2.5. Third Method (Luise and Reggiannini [6]) 

The approach adopted by Luise and Reggiannini (L&R) in [6] starts again 
from (3.2.31) but follows a different route. As a first step, the index m is 
restricted to ISm:5 N, where N is a design parameter less than La-I. Thus, 
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R(m) = ej2trmVT + n"(m), lSmSN (3.2.36) 

Next, the average of (3.2.36) is computed so as to smooth out the noise. This 
yields 

1 N 1 N 1 N 
- LR(m)=- Lej2trmVT +- Ln"(m) 
N m=! N m=! N m=! 

(3.2.37) 

which reduces to 

N N 
Lej2trmVr "" LR(m) (3.2.38) 
m=! m=! 

presuming that the last term in (3.2.37) is negligible. 
Equation (3.2.38) is now solved for v. To this end consider the identity 

'i>j2trmVT = sin1ClVvT ejtr(N+!)VT 
m=! sinmtT 

and observe that the ratio sin(1CNvT)/sin(mtT) is positive for 

1 Ivl=:;­
NT 

Thus, taking the argument of both sides of (3.2.39) gives 

v = 1 arg{fej21rmvr} 
lr(N + l)T m=! 

and using (3.2.38) leads to the L&R formula 

v = 1 arg{fR(m)} 
lr(N + I)T m=! 

(3.2.39) 

(3.2.40) 

(3.2.41) 

(3.2.42) 

Figure 3.7 illustrates a block diagram for the L&R estimator. A look-up 
table is employed to compute the argument of the sum. 

Analysis and computer simulations reported in [6] indicate that the L&R 
estimator is unbiased in the range (3.2.40). It is also shown that it achieves the 
MCRB(v) at Es! No values as low as 0 dB for N""LoI2. As happens with the Fitz 
estimator, the accuracy degrades rather slowly as N decreases while the 
estimation range gets wider (see (3.2.40». 
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Figure 3.7. Block diagram of the L&R frequency estimator. 

3.2.6. Fourth Method (Approximate ML Estimation) 
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The last method relies on an approximation to the function r(v) in 
(3.2.12), which is valid when v is confined in a small interval around the 
origin. To see how this comes about let us compute x(k)~x(kT + 'f) from 
(3.2.6): 

00 

x(k) = f r(t)e- j2nVt get - kT - r)dt (3.2.43) 

Then, assuming v sufficiently small and reasoning as with (3.2.20) yields 

ej21rvt g(t - iT - r) ::::: ej21W(iTH)g(t - iT - r) (3.2.44) 

from which we get 

00 

x(k) ::::: e-j2trV(kT+1:) f r(t)g(t - kT - r)dt 

= y(k)e-j2trV(kTH) (3.2.45) 

where y(k) is the matched-filter output at kT+r (see Figure 3.7). Substituting 
this equation into (3.2.12) and letting z(k)~ y(k)c; produces the desired 
approximation 

La 
r(v)::::: Lz(k)e-j2JriikT (3.2.46) 

k=1 

At first sight it seems we are still bogged down by the same difficulties 
encountered with (3.2.12). It should be noted, however, that the variable v in 
(3.2.12) is hidden in the samples x(k) whereas it appears explicitly in (3.2.46). 
This means that while the samples {x(k)} must be recomputed for every v, the 
{z(k)} need only be computed once. In addition, the coarse search for the 
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maximum of (3.2.46) can be made rapid by means of fast Fourier transform 
(FFf) techniques [2]. 

It is interesting to compare the complexity of this (approximate) ML 
estimator with that of the Fitz or L&R methods (which are approximately 
equivalent for a given N). Consider (3.2.42), for example. Here, the bulk of the 
operations goes into computing the correlations {R (m) }. Actually, from 
(3.2.30) and (3.2.42) we see that a total of N(2Lo-N-l)l2 complex 
multiplications is required. As for the ML estimator, most of the computational 
effort goes into computing r(v) with a sufficiently high resolution. It would 
seem sufficient to take r(v) at the points v=n/Lo, n=O,I, ... , Lo-I. It turns 
out, however, that to achieve the MCRB even at low Es/No the number of 
points must be increased by a factor M (the so-called zero-stuffing factor) equal 
to 2 or 4, depending on La (see [2]). In general, M=4 is needed when Lo is small 
(say, less than 64) while M=2 is sufficient with a larger Lo. Using an FFf of 
size M La results in a complexity on the order of (1I2)MLo x logz (MLo) 
multiplications. 

As we mentioned earlier, the L&R algorithm achieves the MCRB for 
N=LrJ2. For Lo=128, this amounts to 6112 multiplications. With the ML algo­
rithm, instead, we have 1024 multiplications. Thus, the latter is simpler. Now, 
suppose we decrease N from 64 to 8. The complexity of the L&R algorithm re­
duces to 988, less than with the ML algorithm. At the same time performance 
deteriorates, however. Simulations run with QPSK and 50% rolloff show a 
degradation of about 6 dB in terms of Es/No. Thus, the L&R algorithm (as 
well as Fitz's) provides a trade-off between accuracy and implementation 
complexity. 

3.2.7. Performance Comparisons 

Comparisons between the above estimators are not straightforward as their 
performance depends on several parameters such as: (i) signal-to-noise ratio 
E) No; (ii) observation length Lo; (iii) parameter N (in Fitz and L&R 
estimators). In the following we report on simulation results obtained with 
Lo=32 and N=16. As mentioned earlier, this choice of N provides the minimum 
error variance with the Fitz and L&R estimators. Also, the zero-stuffing factor 
M in the ML estimator is set to 4. A QPSK scheme is assumed, with an overall 
raised-cosine-rolloff response and a rolloff factor a=0.5. 

Figure 3.8 illustrates the (normalized) average estimates, E{ VT}, versus 
vT at E) No =2 dB for all the above algorithms, except the ML (which is found 
to be unbiased over the full range ±15% ofthe symbol rate). From the figure it 
appears that the Kay algorithm has a (very small) bias only toward the 
extremes of the interval 1vI1 ~ 0.15. The L&R and Fitz algorithms have a much 
narrower operating range. 



Carrier Frequency Recovery with Linear Modulations 93 

0.15 

QPSK, a=O.5 

0.10 EjNo=2 dB 

~ 
c;' 

0.05 iii 

* e 0.00 ';:l 
<I> 

" " & -0.05 " > « 

-0.10 

'" Kay 

-0.15 
-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 

Normalized frequency, vT 

Figure 3.8. Expected value of vT versus vT for QPSK at Es / No =2 dB. 
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Figure 3.9 shows estimation variance versus Es/ No. It appears that the 
Kay method departs from the MCRB(v) at moderate E./No values, say below 
8.5 dB, whereas the other three stay close to MCRB(v) up to 0 dB. 

Exercise 3.2.1. The simulation results in Figure 3.9 indicate that the Kay 
algorithm has a much worse threshold than the other methods. Provide an 
intuitive interpretation for this fact. 

Solution. In writing (3.2.25) we have overlooked the fact that the arg­
function takes values in the interval [-n, n) whereas the right-hand side may be 
greater than 7r in absolute value. A modulo 2n operation is needed, which 
amounts to changing (3.2.25) into 

arg{z(k)z*(k -I)} = 27rVT + l/J(k) -l/J(k -1) - 2nm(k) (3.2.47) 

where m(k) is an integer. Note that m(k) is normally zero at high signal-to­
noise ratio (SNR) since the noise-induced phase errors l/J(k) are small and we 
have assumed 27rVT« 1. As the SNR decreases, however, the chances 
that m(k) be nonzero increase. Clearly, an event m(k) * 0 makes 
arg{z(k)z*(k-l)} a bad estimate of 27rVT. Accordingly, the Kay method is 
bound to fail as SNR decreases. 

It might be argued that this same drawback is also inherent in the Fitz and 
L&R algorithms although it does not produce visible degradations. The answer 
is that Kay operates on z(k)z* (k -1) by fi r s t applying the hard arctan 
nonlinearity and then smoothing the results (see (3.2.27» whereas Fitz and 
L&R apply smoothing before the nonlinearity (see (3.2.34) and (3.2.37». 

Exercise 3.2.2. In a TDMA transmission system each burst consists of a 
preamble of 20 known symbols plus a segment of M=400 data symbols. The 
modulation is uncoded QPSK and the signal-to-noise ratio is Es/No=10 dB. 
Timing recovery is ideal. The carrier phase measurements (independently 
derived from each preamble) are so accurate that negligible phase errors can be 
assumed at the start of each data segment. Due to uncompensated frequency 
errors, however, the carrier phase changes across a data segment and achieves 
the value 

f).l/J = 27rM(v - v)T (3.2.48) 

at the end of the segment. Clearly, a non-negligible f).{jJ degrades the symbol 
error rate (SER). Indicate the maximum error Iv - vi that corresponds to a SER 
degradation of about 0.3 dB at the end of the data segment. Also, suppose that 
frequency estimates are derived with the methods described in the previous 
sections. Each estimate is based on an observation of Lo symbols and is 



Carrier Frequency Recovery with Linear Modulations 95 

possibly longer than a single preamble (this is made possible by putting 
together several consecutive preambles). Compute the total observation length 
Lo that is needed to achieve a frequency estimation accuracy consistent with an 
SER degradation of 0.3 dB. How many preambles should be collected to 
achieve this accuracy? 

Solution. In Exercise 2.2.3 of Chapter 2 it has been found that an SER 
degradation of 0.36 dB corresponds to phase errors of about 5° at Es! No =10 
dB. Substituting this result into (3.2.48) yields 

I 
AI 3.5 .10-5 

v-v::::---
T 

(3.2.49) 

All of the frequency estimation methods discussed earlier achieve the 
MCRB at Es/No=10 dB. The value of the bound is 

0.3 
MCRB(v) = 2 3 2 

21C VuT 
(3.2.50) 

The standard deviation of the estimates is the square root of (3.2.50). Equating 
this quantity to the error in (3.2.49) and solving for Lo results in 

Lo :::: 230 symbols (3.2.51) 

As each preamble has a length of 20 symbols, about 12 preambles are needed 
to produce a frequency estimate. 

Exercise 3.2.3. For N= 1 the L&R estimator takes the form 

1 {Lo-l } V = -arg LZ(k)z*(k -1) 
21ff k=l 

(3.2.52) 

Compute its variance as Es/No grows large. 
Solution. Start from equation (3.2.22) written in the form 

z(k) = ej [21rV(kTH)+O][1 + V(k)] (3.2.53) 

with 

V(k )£n'(k)e - j[21rV(kT H)+O] (3.2.54) 

Recalling that {n '(k)} are independent and Gaussian random variables, it is 
easily seen that the sequence {V(k)} is statistically equivalent to {n '(k) }. In 
particular, real and imaginary components of V(k) have the same variance No. 
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Next, using (3.2.53) we get 

z(k)z*(k -1) = ej2nvT [ 1 + V(k) + V*(k -1) + V(k)V*(k -1)] (3.2.55) 

When Esl No is large, V(k) and V· (k -1) have small amplitudes relative to 
unity and the product V(k)V*(k -1) can be neglected in (3.2.55). Also, only the 
imaginary part of V(k) + V* (k -1) may be kept as the real part is small in 
comparison with unity. Thus, letting 

we obtain 

z(k)z*(k-l) "" ej2nvT [1+ j~(k)- j~(k-l)] 

Hence 

Lz(k)z* (k -1) "" (£0 _1)e j2nvT 1 + j ~(£o -1) - ~(O) 4~ [ ] 
k=l £0-1 

from which, taking the argument and inserting into (3.2.52) produces 

v "" v + _V::....;/ ('--.1-0,,---,1 )_-_v: ...... I -'-( 0--,-) 
21ff(£o -1) 

(3.2.56) 

(3.2.57) 

(3.2.58) 

(3.2.59) 

The variance of v equals the mean square value of the last term in 
(3.2.59). Formally 

(3.2.60) 

To express this result in terms of Es / No we note that the signal energy equals 
112. This is easily checked from the results of Appendix 2.A.2 of Chapter 2, 
bearing in mind that the channel is Nyquist and the signal constellation is 
circular with a unity radius. In summary 

(3.2.61) 

and (3.2.60) becomes 

(3.2.62) 
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Comparing with MCRB(v) in (3.2.29) it is seen that the variance (3.2.62) is 
inversely proportional to ~ while the MCRB(v) is inversely proportional to 
~. 

3.3. Decision-Directed Recovery with DPSK 

3.3.1. Decision-Directed Algorithms with Differential PSK 

In the foregoing discussion the data have been taken from a preamble. 
Alternatively, they can be derived from the detector (assuming that decisions 
are sufficiently accurate). In the latter case we speak of decision-directed (DD) 
methods rather than data-aided (DA) methods. One obvious question is 
whether reliable decisions can be obtained even in the presence of a carrier 
frequency offset. In coherent detection systems this is not the case since 
frequency recovery is a prerequisite to phase recovery and, ultimately, to 
correct decisions. For PSK with differential detection, vice versa, reliable 
differential decisions are possible even in the presence of (moderate) frequency 
offsets. This suggests that DD frequency estimation might be feasible. 

To investigate this point consider again the samples y(k) from the matched 
filter output and let D (k) be the detector decision corresponding to 
y(k)y* (k -1) (see Figure 3.1 0). Also, assume reliable decisions so that 

For m=l, equation (3.2.30) reads 

1 Lo-I 
R(1) = -- LZ(k)z*(k -1) 

Lo -1 k=1 

Figure 3.10. Differential detection with PSK modulati·on. 

(3.3.1) 

(3.3.2) 
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where z(k)~ y(k)c;. On the other hand, we have 

Hence 

z(k)z* (k -1) = y(k)/ (k -l)(ckcZ_I )* 

:::: y(k)y*(k-1)D*(k) 

1 Lo-I 
R(1) = - Ly(k)/(k -l)D*(k) 

1.0 -1 k=1 

Chapter 3 

(3.3.3) 

(3.3.4) 

Substituting this result into either Fitz formula (3.2.35) or L&R formula 
(3.2.42) with N=l yields the following DD frequency estimator: 

{
Lo-I } 

A 1 *. v = -arg Ly(k)y (k -l)D (k) 
21ff k=1 

(3.3.5) 

This algorithm is reminiscent of the rotational frequency detector described in 
[7] and is similar (but not identical) to the method proposed in [8]. 

Figure 3.11 shows simulation results for the variance of the normalized 
estimates VI as obtained from (3.3.5) with QPSK modulation. The overall 
channel response g(t) ® g( -t) is Nyquist with a 50% rolloff factor and the 
observation interval is of 100 symbols. The true offset value is either zero or 
5% of the symbol rate. We see that in both cases the threshold is rather high, on 
the order of 15-20 dB. 

Exercise 3.3.1. The assumption made earlier about reliable differential 
decisions is valid only with a limited frequency offset. Provide a ball-park 
value for the maximum v that is consistent with the hypothesis of correct 
decisions. Assume QPSK modulation. 

Solution. Using (3.2.21), the input to the differential detector may be writ­
ten as 

(3.3.6) 

where n '(k) is a noise term contributed by SignalxNoise and NoisexNoise 
interactions in the product y(k)/(k-1). Denoting ck =e jak as the generic 
QPSK symbol, the information is transmitted through the differences aCak_l. 

The detector tries to establish the value of ak-ak_1 in the set {mtrl2, m=0,1,2,3} 
or, which is the same, the value of the integer m corresponding to aCak_l. To 
achieve this goal it chooses that m which minimizes the distance of mn/2 to 
4>(k)~arg{y(k)y* (k -I)}, i.e., 
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30 

(3.3.7) 

For the sake of argument, suppose ak-ak_1=0. Then, in the absence of 
noise and with \1=0, from (3.3.6) it is seen that t/>(k) = o. Correspondingly, 
(3.3.7) yields in = 0, which is correct. Suppose instead WoO (but still a 
negligible noise level). Then, t/>(k)=27rVT and the detector decision depends on 
v. Inspection of (3.3.7) reveals that correct decisions still occur provided that 
2Tn'T is less than 7r/4 in absolute value. 

In the presence of noise the situation is more complex as decision errors 
may occur anyway (with certain probabilities). From the foregoing discussion, 
however, it is clear that the error probability increases as v departs from zero 
and the increase may be significant unless 127rVT1 is a small fraction of 7r/4, say 
10-20%. Taking this as a reasonable figure, it is concluded that reliable 
differential decisions require V values limited to a few percents of the symbol 
rate. 
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3.4. Non-Data-Aided but Clock-Aided Recovery 

3.4.1. Closed-Loop Algorithm 

In this section we concentrate on frequency estimation for PAM signaling 
with coherent detection. In doing so we still assume that timing is ideal and the 
Nyquist condition is satisfied. However, since some (moderate) frequency 
errors are involved, we do not expect that symbol decisions are correct. A 
closed-loop estimation scheme is described first, while open-loop methods are 
treated in Section 3.4.2. 

For simplicity we start with QPSK. Extensions to general PSK and QAM 
constellations are discussed later. Our aim is to illustrate a frequency recovery 
scheme proposed in [9] and represented in the block diagram of Figure 3.12. 
Here, samples from the matched filter are multiplied by c;, the complex­
conjugate decisions from the detector, and are fed to an error generator. The 
purpose of the generator is to give an indication of the difference between v 
and its current estimate v(t) provided by the voltage controlled oscillator 
(VeO). The error signal is filtered (to smooth out the noise) and used to steer 
the veo frequency toward v. Note that the veo in the figure is the baseband 
equivalent for the real yeo. In particular, the oscillating frequency v(t) in the 
former equals the difference between oscillating frequency and free running 
frequency in the latter. The offset V is tracked under the action of the signal 
u(k) provided by the loop filter. As we shall see, when v(t) is less than v, u(k) 
has a positive De component and the veo is forced to speed up. Similarly, 
when v(t) is greater than v, the veo is forced to slow down. 

The heart of the scheme is the error generator whose operation is now 
described. Noise is neglected for simplicity and the Nyquist condition is 
assumed. Accordingly, the received signal is modeled as 

(3.4.1) 

Figure 3.12. Generation of the frequency error. 
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In all practical cases the VCO frequency varies slowly and may be considered a 
constant over several symbol periods. Thus, for several transmission intervals 
around the generic sampling time kT+r the VCO output is well approximated 
by an exponential e-j2trVt (v=constant) and the matched-filter input becomes 

(3.4.2) 

with fd~V-V. Then, with the reasoning leading to (3.2.21) it is easily 
concluded that the k-th sample from the matched filter has the form 

(3.4.3) 

with 

(3.4.4) 

Alternately, as ck has unit amplitUde, we may write 

y(k) = ej'l'(k) (3.4.5) 

with 

(3.4.6) 

Next, we turn our attention to the decision rule. The detector makes the 
decision Ck = e j ';ttr/2, where m is that integer that minimizes the difference 
between lfI{k) and m7rl2 in absolute value: 

(3.4.7) 

This decision rule is illustrated in Figure 3.13, where circles represent QPSK 
constellation points. Calling z(k) = y(k)c; the input to the error generator, from 
this figure it is seen that the argument of z(k) is always in the range ±7rl4. 
Formally 

(3.4.8) 

where [xelp means "x reduced to the interval [-cp,cp)." Thus, substituting 
(3.4.4)-(3.4.6) into (3.4.8) and bearing in mind that both arg{ck } and mn/2 are 
multiples of n/2, it is concluded that 
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(3.4.9) 

Figure 3.14(a) and (b) illustrate arg{z(k)} versus time for fd >0 and fd <0 
respectively. We see that arg{z(k)} varies in a saw-tooth fashion, with 
increasing or decreasing ramps depending on the sign of fd' As is explained 
soon, this is a crucial point to understand the operation of the error generator. 

The purpose of the error generator is to provide a signal that, on average, 
has the same sign as fd' The method proposed in [9] is to relate the error signal 
e(k) to the argument of z(k) as follows: 

e(k)g,{arg{Z(k)} 
e(k -1) 

if larg{z(k)}1 < a 
otherwise 

(3.4.10) 

where a is a positive parameter less than Trl4. The rationale behind this rule is 
apparent from inspection of Figure 3.15(a)-(b) which illustrates e(k) versus 
time for the same arg{z(k)} values indicated in Figure 3.14. These figures show 
that the average of e(k), SUd)' is positive for fd > 0 and negative in the 
opposite case. 

The exact dependence of SUd) on the frequency error fd is difficult to 
establish analytically. Figure 3.16 illustrates the shape of SUd) as obtained by 
simulation for two values of the signal-to-noise ratio. The overall channel 
response g(t) ® g( -t) is Nyquist with a 35% rolloff factor. The parameter a 
in (3.4.10) is chosen equal to 1f / 8. As is seen, the range where SUd) takes 
significant values is on the order of ± 10% of the symbol rate and represents the 
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Figure 3.15. Explaining the operation of the error generator. 
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0.12 

acquisition range of the loop. The name comes from the fact that an error 
signal with a nonzero DC component is needed to move the VCO frequency. 
which can happen only if SUd) -:F- o. Further discussion on this concept is 
deferred to Section 3.5.4. 

3.4.2. Extension to M-ary PSK and QAM 

The above ideas are easily extended to M-ary PSK. In this case equation 
(3.4.9) becomes 

(3.4.11) 

Correspondingly. the error signal is still as indicated in (3.4.10) except that a is 
less than 1ft M. 

The case of QAM modulation is trickier as a consequence of the more 
complex signal constellation. A possible solution for 16-QAM is as follows. 
From Figure 3.17 we see that a 16-QAM constellation is formed by two QPSK 
sub-constellations with a total of 8 points. The remaining points lie in an 
annular region between the indicated circles. The idea is to distinguish between 
points from the sub-constellations and those from the annular region. When the 
former are transmitted the signal error is computed as indicated for QPSK; 
otherwise it is left unchanged. This is done by turning (3.4.10) into 
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e(k)£{arg{ z(k)} 
e(k -1) 

if larg{z(k)}1 < a and z(k) ~ C 

otherwise 

where C is the annular region, i.e., 

105 

(3.4.12) 

(3.4.13) 

Curves of Sifd) versus fd are provided in [9] for 16-QAM modulation. 
They take significant values in a range of about ±3% of the symbol rate. 
Frequency detectors of this type are currently incorporated in many modems 
for digital microwave radios. 

3.4.3. Open-Loop Algorithms 

The frequency recovery methods illustrated above have a closed-loop 
structure and are suitable for continuous mode transmission. Open-loop 
schemes are more appealing for burst mode applications because of their 
shorter estimation times. Here we describe one such scheme, which has been 
proposed in [10] for QPSK modulation but can be extended to M-ary PSK. 

As in Section 3.2, we assume that v is a small fraction of the symbol rate. 
Accordingly, the matched-filter output is approximately 

(3.4.14) 
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Let us first concentrate on a QPSK constellation {e jmn/2, m = 0,1,2,3}. It is 
easily checked that ct = 1. Thus, raising y(k) to the fourth power yields 

(3.4.15) 

where n'(k) is a noise term resulting from SignalxNoise and NoisexNoise 
interactions. We see that the modulation has been removed from y\k). Next, 
multiplying y\k) by [y*(k -l)t yields 

[Y(k)y* (k -1) r = ej81rVT + n"(k) (3.4.16) 

where, again, n"(k) comes from SignalxNoise and NoisexNoise products. 
Equation (3.4.16) indicates that [y(k)y· (k _1)]4 is an estimate of ej81rVT • The 
estimation accuracy can be improved by smoothing out the noise as follows: 

Lo-l Lo-l 
_1_ L [y(k)y*(k-l)r =ej81rVT +_1_ Ln"(k) 
4 - 1 k=l 4 - 1 k=l 

(3.4.17) 

Finally, presuming that the last term in (3.4.17) is small in amplitude as 
compared with unity and taking the argument of both sides yields 

v=-arg L [y(k)y*(k-l)t 1 {Lo-l } 
8f([' k=l 

(3.4.18) 

Figure 3.18 illustrates a block diagram for the algorithm (3.4.18). It should 
be noted that, as arg { .} takes values in the range ±n, the estimates vary 
between ±1I(81). This is in keeping with the simulation results of Figure 3.19 
wherein the average of v (normalized to the symbol rate) is drawn versus the 
true frequency offset for two values of the signal-to-noise ratio. The channel 
response is Nyquist with a 50% rolloff factor. As is seen, E{VT} is proportional 
to vT in the range IvTl < 1/8. Figure 3.20 shows the estimation variance as a 

Figure 3.18. Block diagram of the open-loop estimator. 



Carrier Frequency Recovery with Linear Modulations 

0.20 

~ 0.10 
c;> 

~ 

~ 
.~ 

f 
0.00 

« -0.10 

-0.20 
-0.20 

QPSK, a=O.S 

1.0=100 

-0.10 0.00 

Nonnalized frequency, vT 

0.10 

Figure 3.19. Nonnalized average estimate versus vT. 

10·' 

10.3 

10" ., 
<J 

'" ~ ·C 
~ 10·' > 
;>, 
U 

'" ., 
::s 

10--[ .... 
al 
.!::l 

10.' .. 
E 
0 
Z 

10-8 

10.9 

10.10 

10 15 20 25 30 

0.20 

Figure 3.20. Nonnalized frequency variance as a function of E, / No . 

107 



108 Chapter 3 

function of Es / No when the true offset is either zero or 10% of the symbol 
rate. The MCRB is also indicated as a reference. Comparing with Figure 3.11 
we see that the degradations as vT departs from zero are now quite limited. 

The above concepts can be extended to M-ary PSK modulation in a 
straightforward manner. In particular, modulation removal requires raising y(k) 
to the M-th power. This produces 

yM (k) = ej [2M1rV(kT+r)+M8] + n'(k) (3.4.19) 

Then, reasoning as before yields 

1 {Lo-l M} v=--arg L [y(k)/(k-l)] 
2M1ff k=l 

(3.4.20) 

Note that the estimation range is now reduced to (approximately) ±1/(2MT). 

3.5. Closed-Loop Recovery with No Timing Information 

3.5.1. Likelihood Function 

So far a very small frequency offset has been assumed. Henceforth we 
take the opposite viewpoint and allow v to achieve values on the order of the 
symbol rate. A first consequence of this change in perspective is that previous 
assumptions of an ideal clock and, even more, of known data symbols are no 
longer tenable. With a large frequency offset, in fact, data symbols are not 
available and timing information is totally lacking, meaning that our best guess 
of the timing phase is anything in the interval (O,T). Thus, significant changes 
must be made on the signal model, as is now indicated. 

Let us start from the complex envelope of the incoming waveform 

r(t) = s(t) + w(t) (3.5.1) 

The signal has two different expressions, according to whether non-offset or 
offset modulation is considered. For now we concentrate on the former but the 
results are subsequently extended to the latter. For non-offset modulation we 
have 

(3.5.2) 
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The parameters involved in (3.5.2) are modeled as follows: 

• V is an unknown constant, in the range ±lIT; 

• () is a random variable uniformly distributed over [0, 21r); 

• 'l" is a random variable uniformly distributed over [0, 1); 

• {c i } are zero-mean independent random variables with the following 
second-order moments: 

for i = k 

elsewhere 

• e, 'l", and {ci } are independent of each other. 

Consider the likelihood function 

A(rlv, 0, i,e) = exp _1 fRe[r(t)s*(t)]dt--1- fls(t)12 dt {
To TO} 

No 0 2No 0 

where set) is the trial signal 

(3.5.3) 

(3.5.4) 

(3.5.5) 

To compute the marginal likelihood function A(riV) we must average 
A(rl\i,8, i,e) with respectto 8, i and e. Unfortunately, this operation is diffi­
cult and we are compelled to make approximations. We assume a low SNR, 
such that the expansion of the exponential in (3.5.4) into a power series can be 
truncated to the quadratic term. Letting 

To 
Xrs £ f Re[r(t)s* (t) ]dt (3.5.6) 

o 

To 
Xss £ fls(t)12 dt (3.5.7) 

o 

this amounts to writing (3.5.4) as 

(3.5.8) 
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It is worth noting that this assumption is not valid in many practical cases and, 
in fact, its true raison d'etre is that it leads to a mathematically convenient 
formula involving only quadratic nonlinearities. As we shall see repeatedly in 
this book, mathematics with quadratic nonlinearities can often be carried 
through to closed-form solutions with reasonable efforts. Higher nonlinearities 
would generally prevent any useful conclusion. 

The right-hand side of (3.5.8) contains several terms that must be 
averaged with respect to the unwanted parameters u~{e, i,c}. This operation is 
straightforward but tedious and is skipped. Nevertheless, it turns out that Xss' 
Xrs' X;s and the product Xs~rs all have expectations independent of v. Thus, 
they can be ignored as they do not affect the maximization. In conclusion, 
letting A(rlv) be the expectation of A(rjV,e, i,c) with respect to ii, we have 

(3.5.9) 

where Al and A2 are constants independent of v (in particular, Al is positive). 
Furthermore, as we are not interested in the actual value of the maximum of 
A(rlv) but in its location, the values of Al and A2 are immaterial and we may 
concentrate on maximizing 

A' (rlv) ~Ejj { X; } (3.5.10) 

As a first step in this direction consider the integral in (3.5.6). Using 
(3.5.5) and the same arguments leading to (3.2.5) it is found that 

To _ Lo-I 
f r(t)s'(t)dt "" e-j8 LA' x(iT+i) (3.5.11) 
o i=O 

where Lo ~ TofT is the length of the observation interval in symbol periods and 
x(iT + i) is the sample of 

00 

x(t)~ f r(~)e-j21rii~g(~-t)d~ (3.5.12) 

at t = iT + i . As illustrated in Figure 3.21, x(t) is the response of the matched 
filter to r'(t)~r(t)e-j21riit. 

Next, collecting (3.5.6)-(3.5.11) produces 

_Lo-I _Lo-I 
X _1 -j8~-' ('T -) 1 j8~- '('T -) rs - -e ~Ci x l +'Z' + -e ~CiX l +'Z' 

2 i=O 2 i=O 

(3.5.13) 
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Figure 3.21. Physical interpretation of x(t). 

from which we get 

1 Lu-lLu-l 
X~ =- L Lcti\x(iT+i)x*(kT+i) 

2 ;=0 k=O 
1 _Lu-lLu-l 

+_e- j29 L Lctc;x(iT+i)x(kT+i) 
4 ;=0 k=O 
1 _Lu-lLu-l 

+_e j29 L Lc;ckx*(iT+i)x*(kT+i) 
4 ;=0 k=O 

(3.5.14) 

We now perform the expectation of X; indicated in (3.5.10). Clearly, the 
last two terms in (3.5.14) give a zero contribution as the exponential e±j20 

has zero mean with respect to O. Thus, bearing in mind (3.5.3) we obtain 

C Lo-l 
Eo.c{X;} = ~ L Ix{iT+ it 

2 ;=0 
(3.5.15) 

Also, averaging with respect to i' (which is uniformly distributed over [0,1)) 
yields 

Lu-l T 

A'(rlv) = C2 L jlx(iT + i)12 di 
2T ;=0 0 

(3.5.16) 

As a final step we observe that the sum in (3.5.16) equals the integral of 
Ix(t)12 over the observation interval. Thus, discarding the immaterial factor 
Czl2T, we are led to maximizing 

To 

A"(rlv)~ flx(t)12 dt (3.5.17) 
o 

The integral in (3.5.17) represents the energy of the matched-filter output. In 
the following some methods to find where the maximum energy occurs are 
considered. Before proceeding, however, we offer a physical interpretation of 
(3.5.17). 
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The ratio of the integral (3.5.17) to To gives the average power of x(t). 
When T r/T grows large, such a power tends to the statistical power of x(t). This 
is the sum of two terms, P sand P N' associated with signal and noise 
respectively. The noise power P N is contributed by the voltage W'(t)! 
w(t)exp{- j2niit} at the matched-filter input (see Figure 3.21). As wet) is white, 
so is w'(t), which implies that P N is independent of if. Thus, maximizing P s+P N 

amounts to maximizing P s' 
The quantity P s can be computed from the power spectral density of the 

signal component in r(t), which reads (see Appendix 2.A.2 to Chapter 2) 

(3.5.18) 

with L1vg,v - if. Hence (see Figure 3.22) 

~ 

~ = f SCf)IGCf)12 df 

= i jIGCf-L1v)12IGCftdf (3.5.19) 

-
Application of the Schwartz inequality [11, p. 395] to (3.5.19) indicates that Ps 
reaches a maximum for L1 v=0. It is concluded that the integral in (3.5.17) has a 
maximum for if = v. 

The above argument suggests a potential drawback when operating with 
frequency selective channels. In fact, a condition for the maximum of (3.5.17) 
to occur at if = v is that the channel has a flat frequency response. To see why, 
assume that the channel transfer function is OJ). Then the spectrum of the 
signal component at the matched filter input becomes 

(3.5.20) 

Figure 3.22. Functions IG(f)12 and IG(f - t1 v)12 • 
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and the signal power at the filter output results in 

~ = i j IG(f - ~ V)12Ic(f + v)12IG(f)12 df (3.5.21) 
--<x> 

From this equation it is seen that P s need not be maximum at ~ \1=0 and, in 
consequence, maximizing P s may result in an estimation error. How large this 
error is depends both on the channel transfer function and the shape of the 
signal spectrum. In general, small errors are incurred with limited excess 
bandwidth factors. In fact, Exercise 3.5.1 shows that there would be no errors 
with an ideal rectangular spectrum. 

So far we have considered non-offset PAM modulation. The case of offset 
modulation may be treated in a similar manner and leads again to formula 
(3.5.17). Thus, even with offset modulation, an approximate ML estimate is 
obtained by feeding the matched filter with r(t)exp{-j2niit} and adjusting the 
demodulating frequency V so as to maximize the output power. 

Exercise 3.5.1. Assuming a G(j) with a rectangular shape 

G(f)={~ for If I:::; 2~ 
elsewhere 

show that the maximum of (3.5.21) occurs for V = V for any OJ). 

(3.5.22) 

Solution. For simplicity we solve the problem letting v=o but the dis­
cussion is readily extended to non-zero offsets. For v=O equation (3.5.21) 
becomes 

(3.5.23) 

or, making the change of variable f,. = f + v, 

(3.5.24) 

Since G(j) is rectangular in the range ±1I(21), the product G(f,.)G(f,. - v) is 
zero if Ivl exceeds liT. Hence, the right hand side of (3.5.24) is zero for 
Ivl> 1fT. Vice versa, if V is confined in the interval ±lIT, from (3.5.24) we 
obtain (see Figure 3.23) 
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1/(2T) 

~ = C2T JIC(fit dfi for 0< v< 1fT 
-1f(2T)+v 

1/(2T)+v 

~ = C2 T f lC(ft )12 dft for -1fT < v < 0 
-1f(2T) 

1/(2T) 

~ = C2T flC(ft)12 dft for if = 0 
-1/(2T) 

Chapter 3 

(3.5.25) 

(3.5.26) 

(3.5.27) 

To see where Ps achieves its maximum, we compute the derivative of Ps 
with respect to if. With simple manipulations it is found that 

1 _ 
for --<v<O 

T 

(3.5.28) 

(3.5.29) 

which indicate that d~ / dif is positive for if < 0 and negative for if > O. This 
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means that P s decreases anyway as v departs from zero and achieves its 
maximum just at V = 0. No estimation error is incurred, whatever the shape of 
the channel transfer function. 

3.5.2. Open-Loop Search 

Returning to equation (3.5.17), a first method to maximize the integral is 
to divide the range of v into small intervals with midpoints v k = Vo + kil v, 
k=O, 1, 2, ... ,N-l, and proceed as follows: 

(i) take a record of r(t) over (O,To); 

(ii) for each v k compute r(t)e-j21CVkt and the energy Ek of x(t), as indicated in 
Figure 3.24; 

(iil) take the greatest energy, E(max) , and approximate v with the corre-
sponding vk • 

The unavoidable quantization error involved in this procedure can be reduced 
by interpolating between the Ek values closest to E(max) and looking for the 
location where the interpolating curve is maximum. Clearly, the method is 
computationally simple but time consuming. 

An alternative approach is to use a parallel structure, as indicated in 
Figure 3.25. Here, the estimation time is just To, which entails a reduction by a 
factor N with respect to the serial processing. The system complexity is N times 
larger, however. 

3.5.3. Closed-Loop Estimator 

A third approach described in [12]-[14] is to employ a closed loop 
structure wherein an error signal is generated (at multiples of the symbol 
period) which is proportional to the difference between v and its current 
estimate V. This signal is then used to improve the estimate in a recursive 
fashion. Again, the algorithm applies to both non-offset and offset PAM 
modulation. 

~,---g_(--t_) ..... HL._,·_,2----1H JOdt ~ 

Figure 3.24. Arrangement to measure Ek• 
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" 
e -j2n:lbt • 

r(t) 

e -j2n:v,.t 

Figure 3.25. Parallel processing for r(t). 

To explain the procedure we start with the derivative of (3.5.17) with 
respect to V, say dA"(r!v)/dv. Clearly, maximizing A"(r!v) amounts to 
solving the equation dA"(r!v)/dv=O. As we shall see, this can be done in a 
manner that is suitable for digital implementation. From (3.5.17) we have 

dA"~IV) = 2T.fO Re{X(t) ax·~t)}dt 
dv 0 av 

(3.5.30) 

Also, from (3.5.12) we obtain after some manipulations 

a;g) = jy(t) - j2mx(t) (3.5.31) 

where y(t) is defined as 

00 

y(t)£ J r(~)e-j21rY~21r(t-~)g(~-t)d~ (3.5.32) 

Substituting into (3.5.30) results in 

dA"( n To 
_.:.....!~-'-v = 2 Jlm{x(t)y*(t)}dt 

dv 0 
(3.5.33) 

where Im{z} means "imaginary part of z." 
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A physical interpretation of y(t) is illustrated in Figure 3.26. It is seen that 
y(t) is the response of the filter h(t)~2mg(-t) to r(t)e- j2iM • Denoting by G(j) 
the Fourier transform of g(t), it is easily shown that the Fourier transform of 
h(t) is proportional to the conjugate derivative of G(j): 

(3.5.34) 

For this reason 2mg(-t) is often referred to as the derivative matched filter. 
Next we turn our attention to (3.5.33). Voltages x(t) and y(t) are outputs 

from low-pass filters (matched filter and derivative matched filter). As they 
have no components beyond If I > 1fT (we assume G(j) to be bandlimited to 
±1IT), the integrand Im{x(t)y*(t)} is bandlimited to Ifl~2/T and the integral 
in (3.5.33) can be computed through the samples of the integrand taken at twice 
the symbol rate. Formally, 

dA"~lii) "" 2~ 2I~m{x(k~)Y*(k~)} 
dv k=O 

(3.5.35) 

where Lo = TOfT is the observation length in symbol periods and ~~T/2. 
To solve the equation 

dA"(rJii) ---'-"'--'- = 0 
dii 

(3.5.36) 

we resort to a recursive procedure in which the parameter V is replaced by a 
time-varying function v(k~) and the summation (3.5.35) is used as an error 
signal to steer v(k~) toward v. In practice the idea is implemented as follows. 

Assume that a mechanism to produce v(k~) has already been devised and 
take 

k 

u(k~) = ~)m{x(i~)y*(i~)} (3.5.37) 
i=k-N+l 

Figure 3.26. Physical interpretation for yet). 
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as an error signal, where N is some integer parameter. In this equation x(iTs) 
and y(iTs) are computed letting v = v(i'fs) in (3.5.12) and (3.5.32). The problem 
is to choose the sequence v(i'fs) , i=l, 2, ... , so as to force u(k'fs) to zero. 
Intuitively, u(k'fs) will tend to vanish when v(k'fs) (and its N prior values) 
approaches v. Vice versa, a non-zero u(k'fs) will indicate that v(k'fs) is still far 
from the desired value and a better estimate must be sought. In this case a 
reasonable move is to change v(k'fs) in proportion to u(k'fs) , i.e., 

v[(k + 1)'fs] = v(k'fs) + ru(k'fs) (3.5.38) 

where r is a suitable constant (step-size). 
It should be noted that (3.5.38) represents a digital integrator and, as such, 

has a low-pass action on u(k'fs). On the other hand, u(k'fs) is a smoothed 
version of Im{x(k'fs)y*(k'fs)}. Thus, there are two low-pass transformations in 
cascade, Im{x(k'fs}y*(kT.)}::::} u(kT.) and u(k'fs}::::} v(k'fs}, and the former can 
be suppressed for the sake of simplicity. This is accomplished by replacing 
u(kT.) by Im{x(kT.)Y* (kT.}} in (3.5.38), which results in 

v[(k + 1)'fs] = v(k'fs) + rIm{ x(k'fs}/ (k'fs}} (3.5.39) 

Frequency estimates in (3.5.39) are updated at twice the symbol rate 
(l/Ts=2/1). A symbol-rate updating is preferable, however, to ease the 
computing load. To do so we replace Im{x(k'fs}y*(k'fs)} by its average over 
one symbol interval. In other words, defining 

e(kT)~~ Im{ x(2k'fs}/(2k'fs)} + ~ Im{ x[(2k + 1)'fs ]y*[(2k + 1)T.]} (3.5.40) 

we update v(kT) according to 

v[(k + I)T] = v(kT) + re(kT) (3.5.41) 

Figure 3.27 illustrates the block diagram of a frequency recovery circuit 
based on equations (3.5.40)-(3.5.41). Here, the blocks MF and DMF represent 
the matched filter and the derivative matched filter. The digital integration 
(3.5.41) is performed by the loop filter whereas the veo generates an 
exponential e -mt), with l/J( t) given by 

dl/J(t) = 27W(kT) 
dt 

for kT~t«k+l)T (3.5.42) 

The above equations establish an algorithm for solving (3.5.36). Other 
methods exist that achieve similar results. An interesting option is to keep only 
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Figure 3.27. Block diagram for the frequency estimator. 

one term in the right-hand side of (3.5.40). This turns out to be useful for 
further savings in computing load. The interested reader is referred to [13]-[14] 
for an in-depth discussion on the pros and cons of such an approximation. 

So far phase rotations and filtering have been described as continuous­
time (analog) operations. In a practical implementation r(t) is first sampled and 
all further processing is done digitally. If the sampling rate is sufficiently high, 
analog and digital models are equivalent. 

The digital counterpart of the scheme in Figure 3.27 is illustrated in Figure 
3.28. The received waveform is first fed to an anti-aliasing filter (not shown in 
the figure) and then is sampled at some rate IjTN ~ N jT. The filter bandwidth B 
must be large enough to pass the signal components undistorted and the 
oversampling factor N must be greater than 2BT to avoid aliasing. In these 
conditions no loss of information is incurred with sampling. The samples 
r(nTN) are counter-rotated by ifJ(nTN) (as is done with ret) on a continuous­
time basis) and are fed to the MF and DMF. Filter outputs are decimated to lITs 
before entering the error generator. 

Figure 3.28. Digital implementation of the algorithm. 



120 Chapter 3 

kT (k+l)T 
I I I. 

Figure 3.29. Partition of the k-tb symbol interval. 

The sequence ¢(nTN ) is derived as follows. Dividing the interval 
kTS;t«k+l)Tinto N sub-intervals of length TlFTIN (see Figure 3.29) and 
integrating (3.5.42) over the generic sub-interval, say nTNS;t«n+l)TN, yields 

¢[(n + l)TN ] = ¢(nTN ) + 2rcv(kT)T/N (3.5.43) 

This equation involves two indexes: a sample index n and a symbol index k. 
From Figure 3.29, it appears they are related by 

(3.5.44) 

where int(z) means "the largest integer not exceeding z." In practice, 
computing ¢(nTN ) through (3.5.43) may not be easy as the phase may grow 
large, causing overflows in the computing unit. Overflows are avoided by 
taking ¢ modulo 21r, i.e., 

mod 2rc (3.5.45) 

The performance of the above algorithms is qualitatively discussed in the 
next subsection. No quantitative details are provided as they involve lengthy 
calculations. The interested reader is referred to [1] and [12] for an in-depth 
discussion on their acquisition characteristics and to [13]-[14] for performance 
assessments. Some simulation results are shown later. 

3.5.4. Frequency Acquisition 

To understand the operation of the loop in Figure 3.27 it is expedient to 
disconnect the veo from the mixer and drive the latter at a fixed frequency v. 
Unjer these conditions the resulting error signal has an average E{e(kT)iV} that 
depends on the frequency difference f.t! v - v, i.e., 

(3.5.46) 

In practice, function S(fd) looks like an "s" (rotated by 90°) and is usually 
dubbed the "S-curve." Figure 3.30 shows S(fd) for QPSK modulation, as 
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Figure 3.30. S-curve for QPSK modulation. 

obtained taking a root-raised-cosine-rolloff channel with a=O.5 and random 
data (significant deviations from the "regular" shape illustrated in the figure are 
possible for particular data patterns [1], [12]). It appears that SUd) is zero at 
the origin and extends over the range id = ±l.5/T. As is now explained, the 
loop will eventually lock on the incoming carrier frequency provided thatfd is 
within this range. 

To see how this comes about let us return to Figure 3.27. The VCO 
instantaneous frequency equals v(kT) and the DC component in the signal 
error is S[v - v(kT)]. Thus, e(kT) is the sum of S[v - V(kT)] plus some zero­
mean disturbance n(kT), which accounts for the thermal noise and data pattern 

e(kT) = S[v - v(kT)] + n(kT) (3.5.47) 

Collecting (3.5.41) and (3.5.47) yields 

v[(k + l)T] = v(kT) + r S[v - v(kT)] + rn(kT) (3.5.48) 

which suggests the loop-equivalent model in Figure 3.31. 
A quantitative analysis of this circuit is difficult since n(kT) depends in a 

complex way on the data and thermal noise. Some insight into the loop 
behavior may be gathered by ignoring n(kT). Under these conditions, (3.5.48) 
becomes an autonomous equation and its solution is found with methods that 



122 Chapter 3 

n(kT) 

e(kT) 

v(kT) 

Figure 3.31. Equivalent circuit for the frequency loop. 

are now summarized (see [15] for further details). 
Briefly, let fikT)~v - v(kT) be the frequency error at the k-th step and 

rewrite (3.5.48) in the form 

(3.5.49) 

Figure 3.32(a) illustrates the shape of S(fd)' Next, draw the curves YI(fd)~ fd 
and Y2 (fd) ~ fd - r S(fd) on the same reference system as indicated in Figure 
3.32(b). Start from Po and move vertically to meet Y2(fd ) at Pl' It is clear from 
(3.5.49) that the ordinate of PI is fd(O)-rs[fd(O)] = fiT). Next, move hor­
izontally to meet the line Ylifd)' As Ylifd) is the bisector of the coordinate axes, 
the abscissa of P2 equals the ordinate of PI' fd(T). At this stage we look for 
fJ2T). To this end, move vertically from P2 to meet Y2ifd) at P3• From (3.5.49) it 
is seen that the ordinate of P3 isfJ2T). Next, move horizontally up to P4 on the 
straight line Ylifd) ... and so on. 

lt is clear from the figure that the trajectory Po, PI' P2 ••• , etc. converges to 
the origin provided that the initial frequency error fJO) is within the range 
where Sifd) is nonzero. This range is referred to as the loop acquisition range. 
In [12] it is found that this range equals ±2Bs (Bs is the signal bandwidth) and 
is independent of the modulation format (either offset or non-offset). 

Examination of Figure 3.32(b) reveals that the number of iterations 
required to achieve the origin depends on the vertical distance between Ylifd) 
and Y2lfd)' The larger the distance, the quicker the convergence. As the 
difference YIlfd)-y2ifd) equals rSifd) , it follows that the acquisition process 
grows faster as rincreases. As we shall see, however, increasing rdeteriorates 
the loop tracking performance. Thus, acquisition rapidity and tracking accuracy 
are contrasting goals and some trade-off is needed to meet a satisfactory 
balance between them. We shall return to this subject later, after discussing 
loop tracking performance. 
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-2B 

(a) 

(b) 

Figure 3.32. Graphical solution for (3.5.49). 

Exercise 3.5.2. Solve (3.5.49) under the assumption that frequency errors 
are so small that Slfd) can be approximated by Aid. where A is the slope of the 
S-curve at the origin. 

Solution. From (3.5.49) we get in succession 

fd(T) = fd(O)(l- yA) 

fd(2T) = fiT)(l- yA) = fd(O)(l- yA)2 

f d(3T) = fi2T)(I- yA) = fd(O)(I- yA)3 

which is the solution sought. 
Letting 

(3.5.50) 
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~!ln(_1 ) 
1-rA 

(3.5.51) 

equation (3.5.50) may also be written as 

(3.5.52) 

3.5.5. Frequency Tracking 

The tracking performance of the loop in Figure 3.27 is now assessed with 
the methods indicated in [13]. The major steps in the analysis may be 
summarized as follows. In the steady state the errors fd(kT) = v - v(kT) are so 
small that the approximation SUd) "" Afd can be made. In consequence 
(3.5.48) reduces to 

fd[(k + 1)T] = (1- r A)fikT) - rn(kT) (3.5.53) 

Note that, as n(kT) is zero mean, so isftkT). Also, application of Z-transform 
methods shows thatftkT) may be viewed as the response to n(kT) of a digital 
filter with transfer function 

J{(z)=- y 
z- (1- r A) 

or, which is the same, with impulse response 

h(kT) = { -y(1 ~ Y A)k-l 

Accordingly, (3.5.53) becomes 

k~1 

k<1 

fd(kT) = Ln(iT)h[(k - i)T] 

(3.5.54) 

(3.5.55) 

(3.5.56) 

From this equation the frequency error variance offtkT) is computed as 

(3.5.57) 
m=~ 

where R,,(m)!E{n[(k+m)T]n(kT)} is the noise autocorrelation function and 
1](mT) is the convolution of h(k) with h(-k) 
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00 

lJ(mT) = Lh(iT)h[U - m)T] (3.5.58) 
;=-00 

On the other hand, collecting (3.5.55) and (3.5.58), after some manipulations it 
is found that 

lJ(mT) = r (l-rAr 
A(2-rA) 

Hence, substituting into (3.5.57) yields 

a 2 = r iR,,(m)(I-rA)lml 
A(2-rA)m=_ 

In particular, with uncorrelated noise, (3.5.60) reduces to 

a 2 - r YeO) 
A(2 -rA) Un 

(3.5.59) 

(3.5.60) 

(3.5.61) 

An alternative method to compute d involves spectral analysis techiques. 
Let Sn (1) be the power spectral density of n(kT) 

00 

Sn(f) = T LR,,(m)e-j2 /rmfT 

m=-oo 

and denote by H(j) the right-hand side of (3.5.54) for z = e j2trjT , i.e., 

H(f)~- ej2TrjT -"(1- rA) 

Then, the error variance d is given by [11, p. 332] 

lj(2T) 

a 2 = f Sn(f)iH(f)i2 df 
-If(2T) 

(3.5.62) 

(3.5.63) 

(3.5.64) 

In some practical cases Sn (f) is nearly flat over the interval ±B L around the 
origin, where H(j)takes significant values and (3.5.64) becomes 

lj(2T) 

a 2 = Sn(O) fiH(f)i2 df (3.5.65) 
-1/(2T) 
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The parameter B L is referred to as the noise equivalent bandwidth of the 
loop and is defined as 

1 l/(2T) 

BL li 21H(O)12 flH(ft df 
-l/(2T) 

(3.5.66) 

Using (3.5.63) it is found that 

B T= yA 
L 2(2-yA) 

yA 
::::-

4 
(3.5.67) 

since y A is usually much less than unity. 
In conclusion, collecting (3.5.65)-(3.5.67) yields 

2 _ Sn(O)2B 
(J'- 2 L 

A 
(3.5.68) 

which establishes a proportionality between error variance and loop bandwidth. 
This equation indicates that d can be made as small as desired by reducing BL 
or, which is the same, the step size y. As we have pointed out earlier, however, 
decreasing B L may result in acquisitions that are too long. Thus, a trade-off is 
needed between acquisition length and tracking performance. 

An interesting question is whether a relation can be established between 
acquisition time Tacq and loop bandwidth B L' The answer is not simple because 
Tacq is not a fixed quantity that can be computed as a function of the loop 
parameters (as happens with BL). Indeed, examination of the loop equivalent 
model in Figure 3.31 indicates that Tacq is a random variable whose outcomes 
depend on the noise level and the initial error f 1..0). 

An approximate relationship between Tacq and B L could be obtained if 
fiO) were sufficiently small to allow a linear analysis and noise were 
negligible. For example, in Exercise 3.5.3 it is shown that the time needed for 
the frequency error to pass from O.lIT to 0.00 liT (the latter value being in the 
range of practical values when the loop is in steady-state conditions) is 
approximately 

(3.5.69) 

Unfortunately, the assumption of linear operations is normally not valid as 
initial frequency errors may be large. When this happens, the acquisition is 
longer than predicted by the linear analysis. This may be visualized by ignoring 
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Figure 3.33. Actual versus fictitious acquisitio~. 

noise and drawing trajectories like those in Figure 3.32(b) for two different S­
curves: the actual Sifd) and a fictitious curve, Sjicifd), which is just a straight line 
with the same slope as Sifd) at the origin, i.e., 

(3.5.70) 

Intuitively, Sjicifd) tells us how things would go under linear operations. From 
Figure 3.33 it appears that real acquisitions may be much longer than fictitious 
ones and, accordingly, Tacq may be quite longer than (3.5.69). Considering 
these facts, the following rule-of-thumb formula is sometimes adopted as a 
rough estimation of Tacq: 

(3.5.71) 

with 1] varying from 1.5 to 2.5. 

Exercise 3.5.3. With reference to the equivalent model in Figure 3.31 
assume Sifd):o;Afd and neglect n(kT). Compute the time needed to pass from an 
initial errorfiO) to a fraction of this error, say fiO)/N. 

Solution. Denote by kT the time wherein Uk]) attains the value fiO)/N. 
Application of (3.5.52) yields 

(3.5.72) 

where; is given in (3.5.51). For yA«1, equation(3.5.51) gives ;:o;yA or, 
taking (3.5.67) into account, 

(3.5.73) 
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Substituting into (3.5.72) yields the "acquisition time" 

1 I'acq "" --In N 
4BL 

Chapter 3 

(3.5.74) 

Exercise 3.5.4. Assume that a linear amplifier with gain K> 1 is put in 
front of the frequency loop in Figure 3.27. How does this affect the frequency 
error variance? 

Solution. Looking at Figure 3.27 it is clear that x and y are both multiplied 
by K and, in consequence, e(kT) is multiplied by K2. It follows that: 

(i) the slope of the S-curve increases by a factor K2 

(ii) the loop bandwidth increases by a factor [(1 (see (3.5.67» 

(iii) the noise n(kT) increases by a factor K2 

(iv) the power spectral density of n(kT) increases by a factor K!. 

Putting all these facts together it is seen from (3.5.68) that the error variance 
becomes K2 times larger. This emphasizes the need to keep the amplifier gain 
constant (by means of an automatic gain control) to prevent changes in the loop 
operating conditions. 

3.5.6. Comparison with MCRB 

The modified Cramer-Rao bound for carrier frequency estimation is given 
by 

2 31 
T x MCRB(v) =-2-3 --

2n ~ Es/No 
(3.5.75) 

In comparing this bound with (3.5.68) a difficulty arises in that MCRB(v) has 
been derived for estimators operating over finite-length observations whereas 
the scheme in Figure 3.27 observes all the past up to the current time, as is 
readily recognized from the presence of an integrator in the loop. Even if the 
past is not uniformly weighted (its recent part counts more), it is not obvious 
how an infinitely long "weighted" observation compares with a time-limited 
"uniformly weighted" observation. 

To address this problem we transform the original scheme (OS) in Figure 
3.27 into an equivalent scheme (ES) with the same estimation errors (in mean 
square sense) but with a finite observation length. This length will be taken as 
the equivalent observation length for the OS. 
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Figure 3.34. Block diagram for the equivalent estimator. 
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A block diagram for the ES is shown in Figure 3.34. Here, an oscillator 
operating at a fixed frequency v is used in place of the VCO. The oscillator 
output is given by e -j~(t), where 

dcf>(t) = 21ri1 for 0::; t::; LoT 
dt 

and an estimate of v is provided according to the rule 

A_I ~ 
v = v +-LJe(kT) 

ALo k=l 

(3.5.76) 

(3.5.77) 

where e(kT) is the error generator output and A is the slope of the S-curve at the 
origin. As indicated in (3.5.47), e(kT) is the sum of a DC component, S(v - v), 
plus some zero-mean noise n(kT): 

e(kT) = S(v - v) + n(kT) 

To understand the ES operation, assume that v is close to V so that 

S(v- v) "" A(v- v) 

Then, substituting (3.5.78)-(3.5.79) into (3.5.77) results in 

1 Lo 
v=v+-Ln(kT) 

ALo k=1 

which says that, on average, the estimator gives the correct v. 

(3.5.78) 

(3.5.79) 

(3.5.80) 
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The variance of the estimation error fd ~ V - v is computed assuming the 
noise samples to be uncorrelated, i.e., 

{
Sn(O)/T 

E{ n[ (k + m )T]n(kT)} = 0 
for m=O 

elsewhere 

Under these conditions from (3.5.80) it is easily found that 

(3.5.81) 

(3.5.82) 

Comparing (3.5.82) with (3.5.68) it is concluded that OS and ES have the same 
tracking errors provided that Lo is related to the OS noise equivalent bandwidth 
by 

1 
Lo = 2B T 

L 
(3.5.83) 

Having established an equivalent length for the OS observations, it is 
interesting to compare the OS tracking performance with MCRB(v). Figure 
3.35 shows the simulated error variance for the ML-based tracking loop 
discussed in Section 3.5.3 (see Figure 3.28). The modulation format is QPSK 
and the overall channel response is Nyquist with an excess bandwidth factor 
a = 0.5. Also, the anti-aliasing filter is an 8-th order Butterworth type with a 
-3 dB bandwidth of liT and the oversampling factor is N = 2. A loop band­
width of BLT=5.1Q-3 is used, which corresponds to an observation of Lo=IOO 
symbols. We see that the estimator variance falls short of the MCRB by orders 
of magnitude and exhibits a floor as the SNR increases. This is a manifestation 
of the so-called self noise, which means that the signal error has a considerable 
thermal-noise-independent component contributed by Signal X Signal 
interactions. 

3.5.7. Other Frequency Error Detectors 

Error generators of the type in (3.5.40) are referred to as frequency error 
detectors (PEDs) as they measure frequency offsets from a locally generated 
reference. In Section 3.5.3 an FED has been derived from maximum likelihood 
methods. Other types proposed in the literature have been discovered by ad hoc 
reasoning. Interestingly enough, they are close or equivalent to the ML-based 
FED. In the following we briefly report on two such FEDs: the 
quadricorrelator [1], [16]-[20] and the dual filter detector [1], [21]. 
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Figure 3.35. Nonnalized error variance for the ML-based estimator. 
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Figure 3.36 illustrates the block diagram of a quadricorrelator. The error 
signal e(t) has the form 

e(t) = Im{ x(t)y* (t)} (3.5.84) 

where x(t) and yet) are obtained by low-pass filtering r'(t) in hl(t) and hit). In 
particular, taking hl(t)=g(-t) and h2(t)=2mg(-t) makes (3.5.84) the continuous­
time version of the FED in (3.5.39). 

Figure 3.36. Block diagram of a quadricorrelator. 
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An interesting question is how hl(t) and h2(t) should be chosen for 
optimum performance and how such a performance compares with that of an 
ML-based FED. Notice that the ML-based FED is not necessarily optimum 
since a number of approximations have been made in its derivation. The first 
issue is addressed in [19]-[20], where it is shown that self noise can be entirely 
eliminated by suitably designing hl(t) and hit). Without entering into details, 
Figure 3.37 shows simulations for the estimation error variance with an 
optimized quadricorrelator. The operating conditions are the same as in Figure 
3.35 and the filters hl(t) and h2(t) are designed according to [20]. We see that 
the quadricorrelator error variance has no floor, which means that self noise has 
been deleted. The quadricorrelator performance is much better than the ML­
based detector's, even though its distance from the MCRB is still huge. The 
explanation is that it uses very limited information about the signal. This is in 
contrast with the algorithms in Section 3.2, which are data-aided and clock 
aided and, in fact, come close to or even attain the MCRB. 

The block diagram of a dual filter detector (DFD) is depicted in Figure 
3.38. It is formed by two parallel branches, each comprising a band-pass filter 
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Figure 3.37. Normalized error variance for the optimized quadricorrelator. 
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Figure 3.38. Block diagram of a dual filter detector. 

in cascade with a square-law nonlinearity. Filters are centered at ±1I(21). The 
DFD operation is easily understood from Figure 3.39, which shows the 
spectrum of r'(t), S(j), along with the frequency responses of the filters. The DC 
components in xJt) and xL(t) represent the signal powers from the upper and 
lower filter, respectively. When the difference fd g,v - v is zero, S(j) is 
centered about the origin and the above powers are equal. Thus, the output e(t) 
has no DC component. On the contrary, if fd is nonzero, a power unbalance 
arises that contributes to the DC part of e(t) in proportion to fd' 

At first glance there seems to be no connection between DFDs and 
quadricorrelators. It can be shown, vice versa, that they can be designed so as 
to be equivalent [19]. This means that choosing between DFDs and 
quadricorrelators is only a question of practical implementation. 

3.6. Open-Loop Recovery with No Timing Information 

3.6.1. Delay-aDd-Multiply Method 

The acquisition time of closed-loop schemes depends on the loop band­
width in a way that is roughly expressed in (3.5.71). Bearing in mind (3.5.83), 

S(f) 

f 

Figure 3.39. Explaining the DFD operation. 
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it follows that the acquisition time may be related to the "equivalent" 
observation length of the loop by 

I'acq "" 21]LoT (3.6.1) 

As 1] is in the range from 1.5 to 2.5, equation (3.6.1) says that a closed-loop 
estimator needs from three to five "equivalent" observation intervals to release 
its estimate. On the contrary, an open-loop estimator does it in just LoT 
seconds. In the following we discuss an open-loop estimator having an 
acquisition range of about ±lIT and mean square errors comparable with those 
of the closed-loop methods. Because of its shorter acquisition time this new 
scheme is more suited for burst-mode transmission. 

The proposed method is based on the delay-and-multiply arrangement 
depicted in Figure 3.40. For simplicity we assume that the low-pass filter (LPF) 
has a rectangular characteristic. Also, its bandwidth B LPF is sufficiently large to 
pass the signal components undistorted. Although a rectangular characteristic is 
not physically realizable, the ensuing discussion can be readily adapted to 
practical situations. As is now explained, the estimation scheme is based on the 
statistics of the voltage 

z(t) = x(t)x*(t - !:J.T) (3.6.2) 

where the value of delay tl.T is a design parameter. 
Suppose the modulation is non-offset and write the incoming signal as 

s(t) = ej (2TrV1+9) L cj g( t - iT - r) (3.6.3) 

Since the LPF does not distort s(t), its output may be expressed as 

x(t) = ej (21rvt+9) L cj g(t - iT - r) + n(t) (3.6.4) 

where the noise n(t) has the same power spectral density as w(t) for If I $ BLPF 

and is zero elsewhere. Then, inserting into (3.6.2) results in 

Figure 3.40. Delay-and-multiply scheme. 
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z(t) = ei21rvt.TLLCjC;g(t - iT - -r)g(t - kT - -r - I:lT) 
j k 

+s(t)n* (t - I:lT) + n(t)s' (t - I:lT) + n(t)n* (t - I:lT) 
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(3.6.5) 

With zero-mean uncorrelated symbols, the expected value of z(t) over data and 
thermal noise is found to be 

E{ z(t)} = C2ei21rvt.T A(t - -r) + ~ (I:lT) 

where C2 ~E{ICj 12}, the function A(t) is defined as 

A(t)~ Lg(t - iT)g(t - iT - I:lT) 

and Rn(;> is the autocorrelation of net): 

(3.6.6) 

(3.6.7) 

(3.6.8) 

Clearly, A(t) is a periodic function of period T. Thus the voltage z(t) may 
be seen as the sum of a periodic component, E{ z(t)}, plus a zero-mean random 
process N(t): 

z(t) ~ E{ z(t)} + N(t) 

Integrating (3.6.9) and bearing in mind (3.6.6) yields 

To 

~ f z(t)dt = C2Aoei21rvt.T + ~(I:lT) + X 
10 0 

where Ao is the DC component of A(t) and X is the time average of N(t): 

1 To 
X~- f N(t)dt 

To 0 

(3.6.9) 

(3.6.10) 

(3.6.11) 

At this point we note that: (i) Ao is positive for moderate values of I:lT (see 
Exercise 3.6.1); (ii) X is a zero-mean random variable; (iii) Rn(l:l1) vanishes for 

k 
I:lT=--, k=I,2, ... 

2BLPF 
(3.6.12) 

Thus, assuming that I:lT satisfies (3.6.12), equation (3.6.10) reduces to 
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(3.6.13) 

so that, taking the arguments of both sides under the presumption of a small X 
yields the frequency offset estimator 

1 {TO } V = -- arg jz(t)dt 
27r!:J.T 0 

(3.6.14) 

The performance analysis of this algorithm involves lengthy calculations 
and is not addressed here. The interested reader is referred to [22] for an in­
depth discussion. The estimation range, instead, can be computed as follows. 

Rewrite (3.6.13) in the form 

(3.6.15) 

with 

(3.6.16) 

and note that, as X is zero mean, so are XI and XQ. Also, if XI and XQ are small 
compared with unity (as happens in all practical cases) and Ao is positive, then 
substituting (3.6.15) into (3.6.14) yields 

v'" 2~T arg{(1 + jXQ )ej21rVt.T} (3.6.17) 

It is easily seen that arg{ (1 + jXQ)e j21rVt.T} is approximately equal to 
27rV!:J.T + XQ, provided that 27rV!:J.T is not close to the extremes of the interval 
±7r. Hence 

(3.6.18) 

which indicates that v is unbiased since XQ has zero mean. 
It should be noted that this conclusion is no longer true if 21n1!:J.T is close 

to either 7r or -7r. To see this point, suppose that 21n1!:J.T is slightly less than 7r or 
(which is the same) v is slightly less than 1I(2!:J.1). Then, as illustrated in Figure 
3.41, even a small XQ can make arg{ (1 + jXQ)ej21CVAT} overcome 7r and reach -7r. 
When this happens, (3.6.14) gives an estimate which is near-1I(2!:J.1) rather 
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Figure 3.41. Detennining the estimation range of the algorithm. 

than 1I(211T). A similar shortcoming occurs when v is near -1I(2I1T) (with the 
estimator saying v"" 1/(2I1T) instead of v"" -1I(2I1T». In summary, con­
sistent frequency estimates are obtained only if v is well within ±1I(211T). 

Exercise 3.6.1. Compute the parameter Ao in (3.6.10) as a function of the 
delay I1T and G(f), the Fourier transform of g(t). Specify the result when G(f) is 
a root-raised-cosine-rolloff function with rolloff a. 

Solution. As A(t) is periodic of period T, its time average reads 

1 T 
Ao = - f A(t)dt 

To 
(3.6.19) 

or, using (3.6.7), 

T 

Ao = .!.. L J g(t - iT)g(t - iT -I1T)dt 
T i 0 

(3.6.20) 

Making the change of variable tJ=t-iTyields 

(3.6.21) 

or 

1 ~ 
Ao = T ig(t)g(t -I1T)dt (3.6.22) 

since the sum of the integrals may be written as a single integral on the entire 
line. Finally, application of the Parseval formula produces the desired result 
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Ao = ~ j IG(f)12 ej21Cft.T df (3.6.23) 

-
which shows that Ao is the inverse Fourier transform of IG(f)12 IT as computed 
at t = IlT. 

If G(f) is a root-raised-cosine-rolloff function, IG(f)12 is Nyquist and its 
inverse Fourier transform is expressed by 

(t) = sin(m/T) cos(am/T) 
g miT 1-4a2t/T2 

Then, from (3.6.23) we get 

Ao = 1 sin(nIlTIT) cos(a7rll.TIT) 
T 7rIl.T IT 1- 4a2 (IlT I T)2 

(3.6.24) 

(3.6.25) 

It should be noted that Ao vanishes when IlT is a multiple of the symbol 
period. Thus, IlT values close to multiples of T should be avoided since the 
estimation accuracy deteriorates as Ao becomes small. 

Exercise 3.6.2. In Section 3.6.1 a non-offset PAM modulation has been 
assumed. Show that the estimator (3.6.14) can also be used with OQPSK 
signaling. 

Solution. The OQPSK signal model is 

where ai and bi take independently the values ±1 with the same probability. 
Paralleling the passages leading to (3.6.5) yields 

z(t) = ej21rVt.TLLaiakg(t - iT - -c)g(t - kT -IlT --c) 
i k 

+ej21rVt.TI, I,bhg(t - iT - T/2 - -c)g(t - kT - T/2 -IlT --c) 
i k 

- jej21rVt.TLLaibkg(t - iT - -c)g(t- kT - Tj2-IlT --c) 
i k 

+ jej21rVt.TLLbiakg(t - iT - T/2 - -c)g(t - kT -IlT --c) 
i k 

+s(t)n· (t -IlT) + n(t)s" (t -IlT) + n(t)n· (t -IlT) (3.6.27) 
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Let us compute the expectation of z(t). By assumption 

E{a;ak} = E{bA} = {~ 

E{a;bk}=O '<ii,k 

for i = k 

otherwise 

Hence, from (3.6.27) it is found that 

E{z(t)} = ej21rV.1T A(t - 1') + ~(dT) 

with 

A(t)g, L[g(t - iT)g(t - iT - dT) 
; 

+g(t - iT - T/2)g(t - iT - T/2 - dT)] 
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(3.6.28) 

(3.6.29) 

(3.6.30) 

(3.6.31) 

Clearly, the function A(t) has the same features as in (3.6.7) (it is periodic 
of period T and has nonzero DC). Then, following the lines of Section 3.6.1, it 
is concluded that the estimator (3.6.14) applies also to OQPSK signaling. 

3.6.2. Digital Implementation 

The digital implementation of the delay-and-multiply scheme in Figure 
3.40 proceeds as follows. Start with the LPF bandwidth and observe that: (i) 
B LPF must be large enough to pass s(t) undistorted even when the frequency 
offset is at its maximum, say ±vrnax ; (ii) the signal bandwidth equals (1+a)/2T, 
where a is the rolloff factor. Thus, for Vrnax on the order of liT and a about 0.5, 
one needs an LPF bandwidth of approximately 21T. In the sequel we take 
BLPr2IT. 

Next, let us concentrate on the integral in (3.6.14). As x(t) is bandlimited 
within ±2IT, it follows that z(t) = x(t)x * (t - dT) is bandlimited within ±4IT. 
Then, if To is much larger than T, it can be shown (see Appendix 3.A) that the 
integral can be computed from the samples of z(t) taken at a rate R=4IT. 
Formally 

To T4Lo-1 J z(t)dt "" - Lx{kT/4 + to)x*{kT/4 + to - dT) 
o 4 k=O 

(3.6.32) 

where Lo=T ofT and to is an arbitrary sampling phase. Actually, R need not be 
exactly 41T. Small deviations from this value are equivalent to periodically 
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~~X_(~k) ____________ ~~ 

t k= kT/4 

Figure 3.42. Block diagram for the digital estimator. 

sweeping to between 0 and T14. If the sweeping process is so slow that to keeps 
approximately constant over To seconds, then (3.6.32) remains valid. 

Setting to=O for simplicity and substituting (3.6.32) into (3.6.14) yields the 
desired estimation algorithm 

I {4~~ } V = --arg Lx(kT/4)x*(kT/4- IJ.T) 
2;rIJ.T k=O 

(3.6.33) 

In general, the summation in (3.6.33) involves 8Lo samples of x(t). This number 
may be halved, however, if IJ.T equals a multiple of TI4 (note that this choice is 
consistent with condition (3.6.12) because BLPp=21T). In particular, choosing 
IJ.T=TI4 results in 

V = -arg Lx(kT/4)x*[(k -1)T/4] 2 {4~-1 } 
7rT k=O 

(3.6.34) 

Figure 3.42 shows a block diagram for the algorithm (3.6.34). Here, x(k) 
stands for x(kTI4) and z -I represents a TI4 delay. As mentioned earlier, 
performance analysis of this estimator is complex and is pursued in [22]. 
Figure 3.43 illustrates simulation results for the estimation variance with QPSK 
signaling. The pulse get) corresponds to a root-raised-cosine-rolloff filter with 
50% of excess bandwidth. The curve has been drawn for V = 0 but the same 
results are obtained for any v in the range ±lIT. Comparing with Figure 3.35 
it is seen that the accuracy of the two estimators is virtually identical. 

3.6.3. Effects of Adjacent Channel Interference 

A weakness of the delay-and-multiply estimator (and of all the non-data­
aided (NDA) frequency estimators, in general) is the sensitivity to adjacent 
channel interference. To illustrate this point let us return to the analog model in 
Figure 3.40 and suppose that the received waveform is the sum of the desired 
signal at carrier frequency 10 plus an interfering PAM signal at frequency 10+F. 
As we did earlier, we assume that the desired signal is passed through the LPF 
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undistorted. The interfering signal, instead, is distorted but not totally elim­
inated. Under these conditions the LPF output reads 

xCt) = ej(21rVt+O)~:Cj get - iT --r) 
j 

+e j [21r(v+F)f+O'lI< g'Ct - iT - -r') + nCt) 
j 

(3.6.35) 

where {C;} and {cj} are independent data sequences with the same statistics and 
g'(t) is some complex-valued function, whose energy depends on the overlap of 
the interfering signal spectrum and the LPF response. 

With the arguments of Section 3.6.1 it is seen that the expected value of 
the multiplier output is now 

E{ z(t)} = C2e j21rVI!.T A(t - -r) + C2e j21r(V+F)I!.T A'(t - -r') + R.z(LlT) (3.6.36) 

with 
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A'(t)g, Lg'(t - iT)g'*(t - iT - /IT) (3.6.37) 

Correspondingly, the time average of z(t) over the observation interval be­
comes 

(3.6.38) 

where ~ represents the DC component of A'(t) and X' is a zero-mean random 
variable. Note that Ao + A1>e j2trF6.T is a complex number, in general. 

From this equation the effect of adjacent channel interference is apparent. 
Even ignoring X' and assuming Rn</lT)=O, the argument of the right-hand side 
is no longer proportional to V, as happens with (3.6.13), and the estimates 
(3.6.14) are biased. 

An obvious question is whether a similar problem arises with the closed­
loop scheme in Figure 3.27. Clearly, when the VCO frequency is near v, the 
low-pass action of the MF and DMF filters will tend to attenuate the interfering 
signal components and, in consequence, their effects on the loop operation. A 
total elimination is not possible, however, unless the interfering signal has no 
spectral overlap into the above filters. 

Exercise 3.6.3. Suppose that the LPF in Figure 3.40 has a rectangular 
transfer function. Assuming that the desired and interfering signals are un­
modulated carriers, s(t) = XMej2trVt and s'(t) = pXMe j2tr(V+F)t with 0 =:;; P < 1, 
compute the estimation errors of (3.6.14) in the absence ofthermal noise. 

Solution. Suppose that the interfering signal passes through the LPF 
(otherwise there would be no interference). Then, the LPF output reads 

(3.6.39) 

and the voltage z(t) g, x(t)x * (t - /IT) is easily found to be 

Substituting into (3.6.14) yields (with an observation time much longer than 
1IF) 

V"" 2~T arg{e j2trV&T(1 + p2ej2trF&T)} (3.6.41) 

For p2«1 and v not too close to ±1I(2/lT), from this equation it is found that 
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~ 2 sin(2nF ~r) 
V "" V + p --'-2ml-r--'-

As expected, the estimation error decreases with p. 

3.7. Key Points of the Chapter 
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(3.6.42) 

• Data-aided ML frequency estimation is time-consuming and involves a two­
step search routine. The first step requires calculating the maximum of r(v) 
over a set of V values covering the range of interest. The second part locates 
the maximum of f(v) nearest to the point picked up in the first step. 

• Because of its implementation complexity, true data-aided ML frequency 
estimation is not used, in general, and simpler methods are resorted to. In 
this context the algorithms by Kay [3], Fitz [4]-[5], Luise and Reggiannini 
(L&R) [6] and the approximate ML estimator in Section 3.2.6 are 
remarkable. The Kay algorithm has a rather high threshold, however, and is 
unsuitable with many coded modulations. The Fitz and L&R methods have 
comparable complexity and achieve the Cramer-Rao bound up to about zero 
dB. Their computational load may be reduced at the expense of some 
performance degradation. The approximate ML estimator is as efficient as 
the Fitz and L&R methods or better and, depending on the operating 
conditions, may be easier to implement. 

• Decision-directed frequency estimation is simple to implement with differ­
ential PSK, as is illustrated in Section 3. The basic idea is that modulation 
can be removed from signal samples making use of differential decisions. 
Once this is done, frequency offset can be estimated by measuring phase 
rotations between consecutive samples. 

• Modulation removal with M-ary PSK can also be obtained by raising the 
signal samples to the M-th power. 

• This trick does not work with QAM modulation. More complex algorithms 
are needed to cope with constellations that do not exhibit the PSK rotational 
symmetry. One possibility is indicated in Section 3.4. 

• Estimation of large frequency offsets can be accomplished with either 
closed-loop or open-loop (feedforward) schemes. A variety of frequency 
difference detectors exist for use in frequency loops. Delay-and-multiply 
methods appear simpler to implement and achieve comparable performance. 
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Appendix 3.A 

Let x(t) be a realization of a random process with a power spectral density 
S(j) restricted to If I < B, Le., 

S(f) = 0 for If I ~ B (3.A.l) 

In this Appendix we argue that the integral of x(t) over an interval much longer 
than liB can be expressed as a function of the samples of x(t) taken at a 
sampling rate 

Formally, we maintain that 

1 
-=B 
7; 

To Lo 

f x(t)dt "'" 7;Lx(k7; +to) 
o k=! 

(3.A.2) 

(3.A.3) 

where Lo £ To/7; and the sampling phase to is arbitrarily chosen within 
O::;to ::;7;· 

The proof may be broken into three steps. First, define 

8 {x(t) 
xTo (t)= 0 

O::;t::;To 
elsewhere 

(3.A.4) 

and call XTo (f) the Fourier transform of XTo (t). As the integral of x(t) over 
(O,To) equals the integral of XTo (t) over the entire line, and as the latter equals 
XTo (0), we have 

To 
f x(t)dt = XTo (0) 
o 

Second, define the periodogram of x(t) over 0::; t ::; To as 

(3.A.5) 

(3.A.6) 

It can be shown [11, Ch. 13] that, when To is large compared with liB, the 
expectation of Sif,To) tends to the power spectral density of x(t): 
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(3.A.7) 

Thus, recalling (3.A.1)-(3.A.2), from (3.A.6)-(3.A.7) it is recognized that 

for If I ;::: 1fT. (3.A.8) 

provided that To is sufficiently large. 
Third, application of the Poisson sum formula [11, p. 395] yields 

00 00 

T '" x (kT + t ) = '" X (kiT )ej211kto/T, s ~ To s 0 ~ To s (3.A.9) 
k=-oo k=-oo 

from which, bearing in mind (3.A.8), we obtain 

00 

T. LXTo (kT. + to) = XTo (0) (3.A.1O) 
k=-oo 

At this point (3.A.3) follows easily by combining (3.A.5) and (3.A.I0) and 
taking the definition of XTo (t) into account. 
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Carrier Frequency Recovery 
with CPM Modulations 

4.1. Introduction 

4 

Continuous phase modulation (CPM) encompasses a class of signaling 
schemes that conserve and reduce signal energy and bandwidth at the same 
time. Furthermore, the signals in this class have a constant envelope and 
therefore are very attractive in radio channels employing low-cost non-linear 
power amplifiers. Notwithstanding these favorable features, current CPM 
applications are still limited to a few simple modulation schemes (basically, 
MSK and its generalizations) because of implementation complexity and 
synchronization problems [1]. Research efforts are under way and advances in 
these areas are expected in the near future. 

We have seen in Chapter 3 that a number of algorithms are available to 
accomplish carrier frequency recovery with PAM modulation under diverse 
operating conditions. Unfortunately, the state of the art with CPM is less devel­
oped. Studies in this area are quite recent and results are still limited. Most of 
the material in this chapter is concerned with the estimation of "large" fre­
quency offsets, on the order of the symbol rate. As pointed out in Chapter 3, 
this generally implies that frequency recovery must be performed without ex­
ploiting data and timing information. There are two exceptions, however, 
which are of interest in burst transmission applications. The first one is dis­
cussed in Section 4.3, where we address data-aided and clock-aided frequency 
recovery for MSK. This is an interesting issue not only because MSK is so 
popular but also in view of possible extensions of the same ideas to MSK-type 
modulation. The other is considered in Section 4.6 in the context of clock-aided 
(but non-data-aided) frequency estimation. The motivation for discussing 
clock-aided methods is that, in the presence of moderate frequency offsets, tim-

147 
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ing information can be gathered first (in a non-data-aided fashion) and then 
exploited for frequency recovery. 

The chapter is organized as follows. The next section summarizes basic 
notations for MSK-type signals and gives an overview of the so-called Laurent 
expansion. As we shall see, this is a useful mathematical tool that provides 
good insight into the notion of MSK-type modulation and forms the basis for 
later discussions. Section 4.3 deals with data-aided and clock-aided frequency 
recovery with MSK-type signals. Non-data-aided and non-clock-aided methods 
are investigated in Section 4.4. The same approach, but with general multilevel 
CPM, is discussed in Section 4.5. Clock-aided (but not data-aided) recovery is 
treated in Section 4.6. 

4.2. Laurent Expansion 

In this section we concentrate on a subset of CPM formats denoted MSK­
type modulations. Here, the information symbols are binary, the modulation 
index is h = 112, and the signal complex envelope has the form [1 ]-[2] 

(4.2.1) 

with 

(4.2.2) 

In these equations, Es represents the energy per symbol, T is the signaling 
interval, a~{a;} are independent data symbols taking values ±1 with same 
probability, and q(t) is the phase response of the modulator, which is related to 
the frequency response, get), by the relationship 

t 

q(t) = J g(r)dr (4.2.3) 

The frequency response is time-limited to the interval (O,LT) and satisfies the 
following conditions: 

LT 1 J g(t)dt =­
o 2 

g(t) = g(LT - t) 

(4.2.4) 

(4.2.5) 
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Condition (4.2.4) implies a scaling on get) whereas (4.2.5) means that g(t) is 
symmetric around the instant t=LTI2. 

In many theoretical studies g(t) is given one of the following shapes: 
rectangular (REC) , raised-cosine (RC) and Gaussian-MSK (GMSK). A 
rectangular frequency pulse of length L is denoted (LREC). For example, 
lREC pulses are used with MSK. Similarly, (LRC) means RC of length L. 
Formally, 

LREC , get) = { 2~T o ~t~ LT 
(4.2.6) 

elsewhere 

LRC: {
I [ 2m] -- l-cos-

get) = 2~T LT 
O~t~LT 

(4.2.7) 

elsewhere 

GMSK: get) =_1 {nf ~(t- (L+l)T)] 
2T ~L .lIn 2 2 

- Q[ Jl: (t- (L~ I)T)]} (4.2.8) 

with 

(4.2.9) 

The parameter B in (4.2.8) represents the -3 dB bandwidth of the Gaussian 
pulse-shaping filter prior to the modulator and get) is the response (delayed by 
(L + I)T 12 seconds) of this filter to a lREC pulse. In particular, the pan­
European digital cellular mobile radio system adopts a bandwidth BT = 0.3. 
The parameter L in (4.2.8) must be chosen sufficiently large so that g(t) is 
approximately limited to the interval (O,LT). For example, L=4 is adequate with 
BT=O.3. 

From (4.2.1)-(4.2.2) it appears that the signal depends in a nonlinear 
manner on the data {ad. In many theoretical investigations this is a drawback 
as it considerably complicates the analysis. It has been shown by P.A. Laurent 
[3] however that a binary CPM signal with an arbitrary modulation index may 
be written as a superposition of a few time functions that look like linearly 
modulated PAM waveforms. This is the so-called Laurent expansion which is 
now overviewed for a modulation index of 112 (MSK-type signaling). 

As indicated in [3], the exponential function in (4.2.1) may be expressed 
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as the superposition of M = 2L- 1 PAM waveforms 

where hm(t) is given by 

M-I 
ejyl(t,a) = ~ ~ a .h (t - iT) 

~kJ m,l m 
m=O j 

L-I 

hm{t) = c{t- LT) n c(t- LT+IT+Ym,ILT) 
1=1 

In this equation the pulse c{t) is defined as 

{
COS[7rq{t)] 0 ~ t:S; LT 

c{t)£ c(-t) -LT:S;t<O 

o elsewhere 

Chapter 4 

(4.2.10) 

(4.2.11) 

(4.2.12) 

and the coefficient Y m,1 is the l-th digit (O or 1) in the binary representation of 
the integer m, i.e., 

L-I 

m= ~Y 2/-1 k.i m,1 
1=1 

(4.2.13) 

The coefficients am,j look like data symbols and will referred to as pseudo­
symbols in the sequel. It turns out that they are related to the information 
symbols aj by the relationship 

am,j =exp }-aj exp}- LYm,/aj-1 exp}- La/ ( . n ) ( .n L-I _ ) ( .n j-L ) 

2 2 1=1 2 1=-00 
(4.2.14) 

. h - Al 
Wit Y m,1 = - Y m,I' 

The following remarks are of interest: 

(i) The right-hand side in (4.2.10) is an exact representation of the 
exponential. It may be intriguing that a limited number of PAM 
waveforms add up to a unity amplitude time function but this is precisely 
the meaning of Laurent expansion, The interested reader may want to 
look at Figures 5-7 in Laurent's paper [3] for a pictorial explanation of 
(4.2.10). 

(ii) Withfull response systems (L=I), the integer M is unity and the Laurent 
expansion has a single PAM component. With partial response schemes 
(L>I), vice versa, M may be large and, in consequence, (4.2.10) may be 
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awkward to handle. Fortunately, in most cases of practical interest the 
signal power is mostly concentrated in the first component, i.e., the one 
corresponding to the zero-order pulse 

L 

Ito(t) = IT c(t -IT) 
1=1 

When this happens, the Laurent expansion reduces to 

ejyf(t,a) == L aO.i Ito (t - iT) 

(4.2.15) 

(4.2.16) 

(iii) Moments of the pseudo-symbols am•i are needed in later developments. It 
can been shown that the first-order moments are zero and the second­
order ones are given by 

m=n and i=k 

otherwise 

Exercise 4.2.1. Apply Laurent expansion to MSK signaling. 

(4.2.17) 

Solution. With MSK modulation the parameter L is unity and the Laurent 
expansion has just one component (recall that M = 2 L-1). Hence, 

(4.2.18) 

This means that an MSK signal can be exactly represented as a PAM wave­
form. Indeed it can be viewed as an OQPSK signal with half-cycle sine-shaped 
pulses. 

To see how this comes about, bear in mind that MSK uses lREC fre­
quency pulses. Accordingly, the phase response q(t) has the form 

rZT1 

05:t5:T 

q(t) = 0 t<O 

1/2 t> T 

(4.2.19) 

and (4.2.12) yields 

{ (m) It I 5: T cos -
c(t) = ~T 

elsewhere 

(4.2.20) 
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Correspondingly (4.2.15) becomes 

{. (nt) SIO-

ho(t) = 02T 
O~ t~2T 

(4.2.21) 

elsewhere 

which is a half-cycle sine function of length 2T. 
Next, let us concentrate on the pseudo-symbols ao,;' They are derived from 

(4.2.14) letting £=1 and m=O. Assuming i>O, we have 

= eJtPexp j-LPI . (;r; ) 
2 1=1 

(4.2.22) 

with 

(4.2.23) 

It is easily seen that ¢ takes the values {O,;r/2,;r,3;r/2}, depending on the 
data pattern. 

The summation in the second line of (4.2.22) is either even or odd, de­
pending on the index i. As a consequence we have 

i = even 

(4.2.24) 

i=odd 

Thus, letting 

(4.2.25) 

(4.2.26) 
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and substituting into (4.2.18) results in 

which is the traditional OQPSK representation for MSK signals. 

Exercise 4.2.2. Compute ho(t) for 2REC pulses. 
Solution. With 2REC pulses the phase response q(t) has the form 

{
tl (4T) 

q(t)= 0 

1/2 

Substituting into (4.2.12) yields 

{ ( 7rt) cos -
c(t) = ;T 

05:t5:2T 

t<O 

t>2T 

It I 5: 2T 

elsewhere 

Finally, using (4.2.15) after some further manipulations produces 

{_1 {I + .J2 Sin[~(t -!...)]} 
"o(t) = 2..fi 2T 2 

o 

0:5: t:5: 3T 

elsewhere 
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(4.2.28) 

(4.2.29) 

(4.2.30) 

Exercise 4.2.3. Show that MSK-type signals can be expressed in an 
approximate manner as OQPSK waveforms. 

Solution. As mentioned earlier, in many practical cases the PAM wave­
form with index m=O in (4.2.10) contains most of the signal power. Thus, 
keeping only' this waveform in the Laurent expansion yields (4.2.16). This 
equation is formally identical to (4.2.18) except that the pulse ho(t) in the latter 
is a half-cycle sine function whereas, in (4.2.16), it has a more general form 
that can be computed from (4.2.15). As for the pseudo-symbols aO•i' it is recog­
nized from (4.2.14) that they are the same as with MSK (since Yo,/ =0) and, 
therefore, an MSK-type signal has (approximately) the OQPSK structure indi­
cated in (4.2.27). 
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4.3. Data-Aided Frequency Estimation 

4.3.1. Frequency Estimation with MSK 

In this section we investigate data-aided and clock-aided carrier frequency 
estimation with MSK signaling. The problem is similar to that discussed in 
Chapter 3 with PSK modulation and, in fact, we shall adopt the same approach 
here. 

As a start, collecting (4.2.1) and (4.2.18) yields 

(4.3.1) 

The pulse ho(t) is a half-cycle sinusoid, as indicated in (4.2.21), and the pseudo­
symbols ao,; are given in (4.2.22). It is worth stressing that they must be thought 
of as known quantities since so are the data { a; }. 

The signal component in the demodulated waveform is obtained from 
(4.3.1) by introducing an exponential factor ej (21M+9) (to account for 
phase/frequency errors in the demodulation process) and delaying the pulses by 
'r. This leads to the following expression for the received waveform: 

ret) = s(t) + w(t), (4.3.2) 

where w(t) is white Gaussian noise and s(t) has the form 

(4.3.3) 

Our task is to derive an estimate of v from the observation of r(t). In doing 
so the parameters {aO,i} and 'r are viewed as known quantities while (J is 
unknown and can be anywhere in the interval [O,27r). The operations to 
perform on r(t) are illustrated in Figure 4.1. The block LPF is a low-pass filter 
with a bandwidth sufficiently large to pass the signal components undistorted. 

~L.._L_PF_....IKo X(k;~ '~) 
t=kT+ '1" • 

aO,k_} 

Figure 4.1. Received waveform processing. 
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Thus, the filter output x(t) is formed by (4.3.3) plus some low-pass noise n(t). 
Samples of x(t) are taken at t=kT+'r and are denoted x(k). Formally, 

x(k) = ~2:s ej[21rV(kT+r)+81~>o.jho[(k - i)T] + n(k) 
I 

(4.3.4) 

This formula can be simplified bearing in mind the form of ho(t) in 
(4.2.21). In fact, since 

ho(kT) = {~ 

equation (4.3.4) becomes 

for k = 1 

otherwise 

x(k) = ~2Es ej [21rV(kT+r)+8]a + n(k) T O.k-l 

(4.3.5) 

(4.3.6) 

Clearly, x(k) depends on the modulation format through the pseudo-symbols. 
On the other hand, from (4.2.22) it is seen that laO•k_112 = 1. Hence, the mod­
ulation can be wiped out by multiplying x(k) by a~.k-l and this produces 

z(k) = ~2:s ej [21rV(kT+r)+8] + n'(k) (4.3.7) 

where n'(k)~n(k)a~.k_l is a noise term. Note that n'(k) has the same variance 
as n(k). 

The right-hand side of (4.3.7) represents a discrete-time sinusoid 
embedded in noise and our aim is to estimate the sinusoid's frequency. As this 
problem has already been discussed in Chapter 3 in connection with PSK 
modulation, the same solutions (for example, either the Fitz or Luise and 
Reggiannini algorithms) can be adopted. 

An interesting question arises about the accuracy of these algorithms in 
the present circumstances. In particular, recalling that they achieve the 
modified Cramer-Rao bound with PSK, we wonder whether this same 
performance is obtained with MSK. Intuitively, it should not be so since no 
matched filtering is used here. In fact, matching the LPF response to ho(t) 
would result in a significant amount of intersymbol interference and, 
eventually, in large performance losses. A more quantitative answer is now 
given under some restrictive conditions. 

Assume an ideal LPF with a rectangular characteristic over If I ~ liT. 
With most MSK-type modulations this LPF passes the signal components with 
only minor distortions. In addition, it has the nice property that the noise 
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samples at its output are independent (recall that sampling is performed at the 
symbol rate). The sample noise variance is readily found to be 
E{ln(k)j21 = 4No/T. Then, dividing both sides of (4.3.7) by ~2Es/T and 
letting z'(k)~z(k)1 ~2Es/T produces 

z'(k) = e j [21rV(kTH)+6j + n"(k) (4.3.8) 

where n"(k) are independent and Gaussian random variables with variance 
2No/ Es' This equation is formally identical to (3.2.22) in Chapter 3, except 
that the variance of the noise term is doubled. Thus, the estimation accuracy is 
degraded by 3 dB with respect to PSK. 

4.3.2. Extension to MSK· Type Modulation 

In many practical cases the signal power of an MSK-type signal is 
concentrated in the first Laurent component. When this happens the 
representation (4.3.1) is still approximately valid, although the shape of ho(t) is 
no longer a half-cycle sinusoid as with MSK. Nevertheless, ho(t) may be 
transformed into a Nyquist pulse by proper equalization. Now, suppose that the 
equalized pulse i1o(t) satisfies the condition (see Figure 4.2) 

for k =K 
elsewhere 

(4.3.9) 

for some value of to' Then, absorbing the equalization operations into the LPF 
in Figure 4.1, the signal component at the filter output is still as indicated in 
(4.3.3) (perhaps, with a different initial phase) 

set) "" ~2:s ej(21M+eT~>O,iho(t - iT - 1') 
I 

(4.3.10) 

ho(t) 

+-T-+-T-+-T-+- T-+ 

Figure 4.2. Equalized pulse ho{t). 
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and the same procedure described for MSK can be adopted to estimate v. In 
fact, sampling the LPF output at t=kT+toHyields 

x(k) = ~2Es ej [21rV(kT+to+r)+II'j a + n(k) T O.k-K (4.3.11) 

which has the same form as (4.3.6). Modulation is eliminated from x(k) by 
multiplying by a~.k-K and this produces a result essentially identical to (4.3.7). 
All further steps remain the same. A frequency estimation method based on 
these ideas has been proposed in [4]-[5]. 

4.4. ML-Based NDA Frequency Estimation 

4.4.1. MSK-Type Modulation 

Symbols and timing information have been exploited for frequency 
estimation in the previous discussion. The underlying idea is that symbols can 
be taken from a known preamble, while timing can be established prior to 
frequency offset compensation. Henceforth we concentrate on frequency 
estimation methods that dispense with data symbols and, in general, with 
timing information as well. In particular, in this section we report on algorithms 
based on ML methods whereas, in Section 4.5, we describe ad hoc techniques. 
As we have seen in Chapter 2, ML methods can be applied either to 
continuous-time waveforms or sampled versions thereof. The continuous-time 
approach is now adopted with MSK-type modulations. The sample-based 
method will be used in Section 4.4.2 for general multilevel CPM signaling. 

Non-data-aided and non-dock-aided frequency estimation with MSK-type 
signaling can be formulated within the same framework described in Section 
3.5.1 of Chapter 3 in connection with PAM modulation. Therefore, we do not 
need to reiterate previous developments and may limit ourselves to drawing 
conclusions directly from that chapter. To see how this comes about, let us 
compare MSK-type and QPSK complex envelopes: 

MSK-type: SCE(t):::: ~2:s ~ao.jho(t - iT) 
I 

(4.4.1) 

(4.4.2) 

Note that the Laurent expansion has been limited to the first term in (4.4.1). We 
see that, apart from an immaterial factor ~2Es IT and the substitution 
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ho(t) -+ g(t), the differences in the envelopes are limited to the symbol 
statistics. Although ao,; and c; belong to the same alphabet {e j1f1ll/2 , m=O,1,2,3}, 
the former are intrinsically coded (as is clear from (4.2.14» whereas the c; are 
independent (assuming uncoded QPSK). The crucial point is to see whether 
this has any bearing on the derivation of ML-based estimators. 

To address this issue recall from Section 3.5 of Chapter 3 that (assuming 
low signal-to-noise ratios and random data) the ML estimate VML is that if that 
maximizes the energy of the matched-filter output x(t) when the input is fed by 
r(t)e- j21M • Actually, the energy of x(t) depends on the data symbols only 
through the symbol correlations. Higher-order moments do not matter. On the 
other hand, as the c; are uncorrelated, so are the ao,; (see (4.2.17», and this 
implies that the difference in symbol statistics with QPSK and MSK-type is 
immaterial as far as the energy of x(t) is concerned. We conclude that the 
methods discussed in Section 3.5 are still valid in the present context. 

In particular the closed-loop scheme discussed in Section 3.5 can be 
employed. Figure 4.3 illustrates such a scheme. Here, MF is matched to hoCt) 
while DMF is matched to -2mho(t). Sampling is performed at twice the 
symbol rate and the error signal e(kT) is computed according to the formula 

e(kT) = ~Im{x(kT)Y*(kT)} +~Im{x(kT + T/2)y*(kT + T/2)} (4.4.3) 

Finally, the current offset estimate v(kT) is updated at symbol rate as follows: 

v[(k + l)T] = v(kT) + re(kT), (4.4.4) 

where r is the step size. 
Figures 4.4-4.5 show S-curves for the frequency error detector (4.4.3) as 

obtained with LREC and GMSK pulses (see [6] for detailed calculations). 

Figure 4.3. Block diagram of the closed-loop frequency estimator. 
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Here, Jd is the difference v - v and, in consequence, the variable JdT represents 
the frequency error normalized to the symbol rate. From the width of the curves 
we see that the loop has an acquisition range of about 50-70% of liT. 

Digital implementation, acquisition and tracking performance of the above 
scheme can be addressed with the methods of Section 3.5 and are reported in 
[6]. Figure 4.6 shows the simulated error variance of the synchronizer with 
GMSK modulation (BT=0.3) and a loop bandwidth BLT=5.IQ-3. We see that 
the curve is approximately horizontal, which means an overwhelming pre­
dominance of self noise. It is interesting to notice that the same performance is 
obtained with a similar loop operating with OQPSK signals [7]. Of course, this 
is not surprising as GMSK is an approximate form of linear offset modulation. 

An important question is whether it is possible to reduce self noise by 
exploiting the methods proposed by Alberty and Hespelt [8] and D' Andrea and 
Mengali [9] in the context of linear modulations. Considering the similarity 
between MSK-type and OQPSK modulations it is tempting to think that this is 
the case. Unfortunately, things might not be so simple. In fact the procedure 
discussed in [9] can be easily adapted to eliminate the self noise contribution 
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from the first (most important) Laurent component. It is not clear, however, to 
what extent the interference from other components would add to the overall 
noise. This subject deserves in-depth examination and is left as an item for 
further research. 

4.4.2. General CPM Modulation 

In the preceding subsection the Laurent expansion has been exploited to 
transform MSK-type signals into sums of linearly modulated waveforms. In 
this way the ML estimation problem has been approached with the same 
methods previously developed for PAM modulation. In dealing with multilevel 
CPM we follow a different route based on discrete-time methods. To this end 
the received waveform r(t) is passed through a rectangular anti-aliasing filter 
(AAF) and then is sampled at a rate lITs' as indicated in Figure 4.7. The filter 
bandwidth B LPF is assumed large enough not to distort the signal components 
and the sampling rate equals 2BLPF' 

The samples from the filter have the form 

x(kT.) = s(kT.) + n(kT.) (4.4.5) 

where n(kTs) represents noise and s(kT.) is a sample of 

(4.4.6) 

with 

(4.4.7) 

The filter output is observed over the interval (O,To) and we assume that 
the ratio TofT is an integer, Lo. Also, we take Ts a sub-multiple N of the symbol 
period, i.e., we set Ts=TIN. Then, denoting by 

-4 AAF ~~ 
I 

lIT; 

Figure 4.7. Filtering and sampling operations. 
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x = {x(0),x(~),x(2~), ... ,x[(NLo -1)~]} (4.4.8) 

the samples of x(t), the likelihood function A(xill. v,O, i) may be written as 

A(xlll.v,O,i)=exp _$ Re Lx(k~)s·(k~) __ $ L Is(k~)12 _ { r {NLo-l } r NLo-l } 

No k=O 2No k=O 
(4.4.9) 

with 

(4.4.10) 

As s(t) has a constant envelope, the second summation in (4.4.9) is 
independent of the unknown signal parameters and can be dropped for 
simplicity. Accordingly, we have 

A(xlll.v,O,i) = exp{~Re{Nf~(k~)S·(k~)}} 
No k=O 

(4.4.11) 

and eventually, using (4.4.10), 

(4.4.12) 

with 

(4.4.13) 

The derivation of the frequency estimator may be divided into two steps: 
first we compute the average of A(xill. v,O, i) with respect to (ll.O, i) so as to 
obtain A(xlv), the marginal likelihood function. Then, we propose an 
algorithm to locate the maximum of A(xlv). In doing so, the parameters 0 and 
f are taken uniformly distributed over [0,27r) and [0,1), respectively, and the 
symbols ai are modelled as independent and equally likely random variables 
belonging to the alphabet {±1,±3, ... ,±(M-1)}. 

To begin, let us define 

NLo-l 
X ~ Lx(k~)e-j21riikT, e-i'I'(kT,-i.a) (4.4.14) 

k=O 
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and put X = IXle jqlx • Also, observe that X is a function of fl., v and f but not of 
0. Then, inserting (4.4.14) into (4.4.12) produces 

A(xla. v,B, i) = exp{ qXlcos(t/>x - B)} (4.4.15) 

Also, averaging with respect to 0 yields 

(4.4.16) 

where 

(4.4.17) 

is the zero-order modified Bessel function. 
Next, we perform the expectation of A(xla. ii, i) over fI. and f. In doing 

so we assume that the signal-to-noise ratio is sufficiently low so that the power 
series expansion of Io( qXI) can be truncated to the quadratic term, i.e., 

(4.4.18) 

Averaging (4.4.18) yields 

(4.4.19) 

Clearly, maximizing A(xlv) amounts to maximizing 

(4.4.20) 

In Appendix 4.A it is shown that rev) may be written as 

NLo-l NLo-l 

rev) = L Lx(kl~)X'(k2~)e-j21r(kl-k2)VTs H[("z - kl)~] (4.4.21) 
kl =0 k2 =0 

where H(k~) is a real-valued function defined as 

t; 1 JT nco { 1 sin[21rhMP(t-iT'k~)]} 
H(k~)=- dt 

T Oi=- M sin[21rhp(t-iT,kT.)] 
(4.4.22) 
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In this equation M is the size of the symbol alphabet and p(t,kTs) is related to 
the phase response of the modulator by 

p(t,k~)£.q(t) - q(t - k~) (4.4.23) 

Useful remarks for the numerical calculation of the integrand in (4.4.22) are 
given in Appendix 4.C. 

Next, we look for the value of v that maximizes r(v) or, equivalently, 
that makes the derivative dr(v)/dv vanish. The expression of dr(v)/dv is 
readily derived from (4.4.21) and reads 

dr(v) . NLo-1 NLo-1 • 

-_- = J2~ L Ly(kl~)Y (k2~)h[(k2 -kl)~] 
dv k}=O k2 =O 

(4.4.24) 

where y(kTs) is a rotated version of x(kT) 

y( k~) £. x( k~)e - j2trkiiT, (4.4.25) 

and h(kTs) is related to H(kTs) by 

(4.4.26) 

Figures 4.8-4.9 show h(kTs) for lREe frequency pulses and a sampling 
interval Ts=TI4. In particular, a binary alphabet and a modulation index of 0.5 
is considered in Figure 4.8, whereas Figure 4.9 corresponds to an octal alphabet 
and a modulation index of 0.125. It appears that h(kTs) takes significant values 
only for Ik~1 S; 2T in both cases. 

Equation (4.4.24) is now put in a form that leads to a practical solution for 
the equation dr(v)/dv = O. As a first step note that, since r(v) is real-valued 
(see (4.4.20)), so is dr(v)/dv and, in consequence, the double summation in 
(4.4.24) is a purely imaginary quantity. Hence 

(4.4.27) 

Second, assume an observation interval much longer than the duration of 
h(kTs). Then the summation with respect to kl in (4.4.27) can be extended from 
-00 to 00, i.e., 

NLo-1 00 

Ly(kl~)h[(~ - kl)~] "". Ly(kl~)h[(~ - kl)~] (4.4.28) 
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so that, denoting 

00 

z(k1'.) £ 1'. ~>(kl1'.)h[ (k - k1)1'.] (4.4.29) 
kl =--00 

and substituting into (4.4.27), after some algebra we obtain 

(4.4.30) 

Third, the quantity z(kTs) may be viewed as the output of a filter h(kTs) driven 
by y(kTs)' The filter is non-causal but can be made causal by suitably delaying 
h(kTs) by some sampling intervals, say D. For example, D=2N is an adequate 
delay in the cases indicated in Figures 4.8-4.9. The output of the causal filter is 
then w(kT.) = y(kT.)® h[(k- D)T.] and (4.4.30) may be rewritten in terms of 
w(kTs) and y(kTs) as 

dr( -) NLo+D-l 

~ >= 211: ~)m{y[(k- D)~]w·(k~)} 
dv k=D 

(4.4.31) 

An algorithm to solve the equation dr(v)jdv = 0 is now within reach. 
The basic idea is to exploit the sum of some consecutive terms in (4.4.31) as an 
error signal to drive dr(v)/dv toward zero. The application of this idea is 
discussed in Appendix 3C and leads to the loop indicated in Figure 4.10. In this 
diagram two time indexes are used, the symbol index n and the sample index k. 
They are related by 

n=in{~ ) (4.4.32) 

x(kT.) 

e - j¢(kT,) 

y[(k- D)I;l 

Figure 4.10. Block diagram of the frequency loop. 
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where int(z) means "the largest integer not exceeding z." In essence, n tells us 
the symbol interval corresponding to the k-th sample. 

The filter generating w(kTs) has impulse response h[(k - D)~] and the 
error signal is given by 

(n+l)N-J 

e(nT) = ~)m{y[(k - D)~]w·(k~)} (4.4.33) 
k=nN 

Also, the frequency estimates are updated (at symbol rate) according to the 
formula 

v[ (n + I)T] = v(nT) + r e(nT) (4.4.34) 

where r is a step-size parameter. Finally, the VCO computes the phases 

1/>[ (k + 1)~] = I/>(k~) + 21ff. v(nT) mod 27r (4.4.35) 

and produces the mapping I/>(k~) ~ e-j¢(kT,). 

4.4.3. Loop Performance 

The performance of the frequency loop in Figure 4.10 can be assessed 
with the methods indicated in Section 3.5 of Chapter 3. As the calculations are 
exceedingly long, in the sequel we limit ourselves to some comments on 
numerical results drawn from [10]. 

Acquisition capability is established by the S-curve of the error generator, 
which is the expectation of the error signal for a fixed frequency estimate 
v(nT) = v. This expectation turns out to depend on the difference fd ~ v - v 
between the true frequency offset and its estimate v and is denoted Slfd)' As 
discussed in Chapter 3, the width of Slfd) establishes the acquisition range of 
the loop. 

S-curves with LREC pulses, binary symbols and a modulation index of 
0.5 have been computed with an oversampling factor N=4 and a loop delay 
D=8 (corresponding to two symbol intervals). They are virtually identical to 
those for the frequency loop in Section 4.4.1 (see Figure 4.4). This is not 
surprising as the approach followed there exploits the same quadratic 
approximation to the likelihood function. The novelty is that the present results 
apply to any modulation index (not just 0.5, as in Section 4.4.1) and to general 
M-ary alphabets. For example, Figure 4.11 illustrates the S-curve for lREC, 
quaternary modulation and modulation index h=0.25 (again, an oversampling 
factor N=4 and a loop delay D=8 have been used). We see that the curve is 
rather wide, which means that the loop has large acquisition ranges (on the 
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Figure 4.13. Tracking error variance with lREC pulses and quaternary/octal modulation. 

order of the signal bandwidth). 
Numerical calculations reported in [10] indicate that, with a binary 

alphabet and a modulation index of 0.5, the loop tracking accuracy is 
essentially the same as that with the scheme in Figure 4.3. Again, this is 
intuitively clear in view of the equivalence between the discrete-time approach 
adopted here and the treatment in Section 4.1 based on the Laurent expansion. 
Figure 4.12 shows the tracking error variance (normalized to the squared 
symbol rate) with LREC pulses, binary alphabet and h=0.5. The loop noise 
bandwidth is BLT=5.10-3. 

Figure 4.13 provides analogous results for multilevel modulation. Here, 
the horizontal axis represents the ratio of the energy per bit Eb to the noise 
spectral density (Eb is related to the energy per symbol by Eb=E/log2M). As in 
Figure 4.12, self noise appears as the prevailing disturbance. 

4.5. Delay-and-Multiply Schemes 

4.5.1. Open-Loop Scheme 

The frequency loops in the previous sections have been derived with ML 
arguments. In the following we address the same problem with ad hoc 
methods. In particular, we discuss delay-and-multiply schemes, wherein the 
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frequency offset is estimated from products of signal samples. These schemes 
operate in a non-data-aided and non-clock-aided fashion and have either an 
open-loop or a closed-loop topology. 

Let us start with the open-loop scheme indicated in Figure 4.14. The 
sample sequence {x(kTs)} is obtained from the received waveform through 
filtering and sampling operations as shown in Figure 4.7. The same 
assumptions as in Section 4.4.2 are made here and, in particular, a rectangular 
filter with a bandwidth of twice the sampling rate is used. In these conditions 
the noise samples are uncorrelated. No restrictions are imposed on the mod­
ulation format and, in particular, the modulation index is arbitrary. 

Carrier frequency offset is estimated through the formula 

1 {NLo-l } 
V = --arg LZ(k~) 

21rD~ k=O 
(4.5.1) 

where Lo is the observation length and z(kTs) is given by 

z(k~) = x(k~)x'[(k- D)~] (4.5.2) 

Equation (4.5.1) has the following interpretation. Let us split x(kTs) into signal 
and noise 

x(k~) = s(k~) + n(k~) (4.5.3) 

with 

s(k~) = e j (2trvkT,+IJ) ~2:s ejl{l(kT,-T:.a) (4.5.4) 

Now, substituting into (4.5.2) yields 

(4.5.5) 

x(kT.) 

x*[(k -D)T.l 

Figure 4.14. Open-loop delay-and-multiply frequency estimator. 
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where N(k~) is a zero-mean noise term. Finally, averaging produces 

E{z(k~)} = 2:s A(k~ _r)ej2n:VDT, (4.5.6) 

where A(t) is defined as 

(4.5.7) 

Lengthy calculations in Appendix 4.B show thatA(t) may be expressed as 

rr~ { 1 sin[21fhMP(t-iT'D~)]} 
A(t) = . . 

i=-c<> M sm[ 27rhp(t -IT,D~)] 
(4.5.8) 

with p(t, D~)~q(t) - q(t - D~). Clearly, A(t) is a real-valued function. It is 
also periodic of period T, as is seen from the fact that (4.5.8) does not change if 
t is replaced by t+ T. Figure 4.15 illustrates the shape of A(t) for MSK 
modulation. 
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Returning to (4.5.6) and summing over 0 ~ k ~ N4J -1 yields 

E Lz(k~) == 2Es N4JAej2trVDT, {NLo-l } 
k=O T 

(4.5.9) 

where A is the sample average of A(t) 

1 N-l 
A ~- LA(k~ - 1') 

N k=O 

(4.5.10) 

At this point the following interpretation of (4.5.1) can be given. In all practical 
cases A is positive. Then, taking the arguments of the two sides of (4.5.9) and 
solving for v results in 

1 {{NLo-l }} V == --arg E LZ(k~) 
21rD~ k=O 

(4.5.11) 

This equation says that v could be computed exactly if the expectation of the 
sum were available. As this is not the case, we replace the expectation by the 
sum itself and this results in equation (4.5.1). 

It is worth noting that, as the arg-function takes values in the range ±1r, 
the estimates (4.5.1) vary between ±lj(2DT,). For example, with DT, == Tj2 
the estimation range equals ±lfT. In practice, useful operation is limited to a 
narrower range, as indicated in Figure 4.16 which shows simulation results for 
E{ vr} versus vT with lREC pulses, M==4 and a modulation index of 0.5. 
Here, the delay DTs equals T13, the anti-alias filter bandwidth equals 31T, and 
the oversampling factor is set to 6. As is seen, as V approaches ± l.5jT, the 
average E{ vr} deviates from the true value and approaches zero. 

The estimation accuracy of (4.5.1) is investigated in [12] where formulas 
are given for the error variance as a function of the modulation parameters and 
the signal-to-noise ratio. It turns out that the results are insensitive to the 
sampling phase when the oversampling factor is sufficiently large (say 4 or 6, 
depending on the signal bandwidth). Comparisons with the ML-based schemes 
in Section 4.4 give mixed results, depending on the signal alphabet and the 
modulation index. In any case the error variance curves exhibit a high level of 
self noise. An example is given in Figure 4.17 in the case of MSK signaling. 
The oversampling factor is N=4 and two values ofthe delay D~ are used. We 
see that self noise is overwhelming. 
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4.5.2. Closed-Loop Scheme 

The delay-and-multiply method can also be employed in a closed-loop 
configuration. To see how this comes about consider Figure 4.18. Denoting 

x' (kT.r ) ~ x( kT.r )e - j2nVkT, (4.5.12) 

and 

z'(kT.r)~x'(kT.r)x'·[ (k - D)T.r] (4.5.13) 

let us concentrate on the quantity 

Q(n)~--arg LZ'(kT.r) 
I {<n+l)N-l } 

21CDT.r k=nN 

(4.5.14) 

From (4.5.3)-(4.5.4) and (4.5.12) it is seen that x'(kT.r) and x(kTs) have the 
same signal component, except that the frequency offset is now V - v, not v. 
Then, Q(n) may be viewed as an estimate of V - V and can be used as an error 
signal to steer V toward v. This operation is performed as indicated in Figure 
4.19. Here, n represents the symbol index and is related to the sample index k 
by k = int(nl N). The error generator produces 

e(nT)~--arg LZ'(kT.r) 
1 {<n+l)N-l } 

21CDT.r k=nN 

which serves to update the veo frequency 

v[(n + 1)T] = v(nT) + ye(nT) 

z'(kT,) 
J----t----------+I X 1---. 

DELAY 
D1; 

Figure 4.18. Explaining the delay-and-multiply concept for closed loops. 

(4.5.15) 

(4.5.16) 



Carrier Frequency Recovery with CPM Modulations 

x(kT.) x'(kT. ) 
X~~----------------~ 

e -j~(kTs) 

z'(kT.) 

Figure 4.19. Frequency estimation loop. 

Finally, the phase ¢(k~) is updated according to 

¢[(k + 1)~] = ¢(k~) + 2~v(nT) mod 27r 
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(4.5.17) 

Interestingly enough, a simpler error signal can be adopted in place of 
(4.5.15). In fact the arg-function takes very small values when venT) is close 
to v (as happens in the tracking mode) and the following approximation can be 
made: 

ar {I:}::; Im{I:} 
g Re{I:} 

(4.5.18) 

Hence, replacing Re{1:} with its average value and substituting into (4.5.15) 
yields the simpler error signal 

(n+l)N-l 

e(nT) = ~)m{z'(kT.)} (4.5.19) 
k=nN 

where an immaterial factor has been dropped, for it can be absorbed into the 
step-size parameter. 

There is some degree of resemblance between (4.5.19) and the error signal 
(4.4.33) in Section 4.4.2. In fact it can be checked that the frequency loop in 
Figure 4.10 is transformed into that in Figure 4.19 (with the error generator 
(4.5.19» by setting D = 0 and replacing the filter by a delay D~. 

Exercise 4.5.1. Compute the S-curve of the frequency error detector 
(4.5.19). 

Solution. Let us open the loop in Figure 4.19 and drive the leftmost mul­
tiplier by the exponential e- j[ 2m?kJ:, +ql(O»). In these conditions the voltage x' (k~) 
becomes 
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x'(kT.) = x(kT.)e -j[2iM:7:,+q'l(O)] (4.5.20) 

Since 

x(kT.) = s(kT.) + n(kT.) (4.5.21) 

we have 

x'(kT.) = s(kT.)e -j[2m1k7:,+q'l(O)] + n'(kT.) (4.5.22) 

where n'(kT.) is a noise term equivalent to n(kTs)' 
Next, compare (4.5.22) with the expression of x(kTs) resulting from 

(4.5.3)-(4.5.4). It can be checked that there are only two differences: the signal 
component in (4.5.22) has a frequency offset equal to V - V instead of v and an 
initial phase equal to () - q,(0) instead of (). It follows that the expectation 

{
(n+I)N-I } 

E Lz'(kT.) 
k=nN 

(4.5.23) 

can be computed by paralleling the arguments leading to (4.5.9). As a result we 
get 

{
(n+I)N-I } 2E 

E LZ'(kT.) = _s NAe j2tc(V-v)DT, 

k=nN T 
(4.5.24) 

Hence, taking the expectation of (4.5.19) and using (4.5.24) yields the result 
sought 

2E -
SUd) = _s NAsin(27ifd DT.) 

T 
(4.5.25) 

with fd g, v - V. As is seen, the S-curve has a sinusoidal shape of period 
1/(DT.). 

The definition of if in (4.5.10) might suggest that the amplitude of the S­
curve depends on the sampling phase. Computer simulations indicate however 
that this is not the case as long as the oversampling factor is sufficiently large. 

4.6. Clock-Aided Recovery 

4.6.1. Delay-and-Multiply Method 

In discussing the estimation schemes in Sections 4.4 and 4.5 we have 
assumed that no timing information is available. Actually, the performance of 
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the resulting schemes is largely insensitive to the sampling phase (but it is 
plagued by a great deal of self noise). Of course, the insensitivity to timing is 
an appealing feature as clock information is generally unavailable in the 
presence of large frequency offsets. With small frequency errors, however, 
timing information can be derived first and then exploited for frequency 
estimation. In these conditions the question arises as to whether delay-and­
multiply methods can be rearranged so as to exploit timing information, 
perhaps to alleviate the self noise problem. This subject is now addressed 
concentrating first on MSK modulation. 

Return to the scheme in Figure 4.14 and assume that: (i) sampling is 
performed at the instants kT + r; (ii) the delay Dr. in the lower branch equals 
T; (iii) the anti-aliasing filter (not visible in the figure) introduces negligible 
signal distortions. In summary, let us model the samples from the filter as 

x(kT + r) = s(kT + r) + n(kT + r) (4.6.1) 

where 

s(kT + r) = e j [2nv(kTH)+9) ~2:_ eN(kT,a) (4.6.2) 

In these conditions the following frequency estip .ttur • .tS been proposed for 
MSKin [13]: 

1 {Lo-I } v=--arg Lz(kT+r) 
41ff k=O 

(4.6.3) 

with 

(4.6.4) 

An interesting feature of this estimator is that it has no self noise, which 
amounts to saying that the estimates tend to the true parameter value as the 
SNR grows large. To prove this claim let n(kT + r) = 0 in (4.6.1). Then, (4.6.4) 
becomes 

z(kT + r) = (2:_ r e j4JrVT e j2['I'(kT,a)-'I'(kT -T,a») (4.6.5) 

On the other hand, with MSK modulation it is readily shown that 

2[ ljf(t,a) -ljf(t - T,a)] = 27r Ia;p(t - iT, T) (4.6.6) 

with 
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Hence 

{ 
t/(2T) 

p(t,T)~ I-t~(2T) 

O~t~T 

T<t~2T 

elsewhere 

2[ 'I'(kT,a) - 'I'(kT - T,a)] = ±1r 

Chapter 4 

(4.6.7) 

(4.6.8) 

and the last exponential in (4.6.5) equals -1. Then, substituting into (4.6.3) 
gives V = v, which proves the claim. 

Figure 4.20 illustrates the estimation error variance as obtained by 
simulation with MSK and GMSK formats. The AAF filter is an 8th-order 
Butterworth type of bandwidth liT. Comparing with Figure 4.17 it is seen that 
self noise is practically eliminated with MSK. The residual floor in the variance 
curve is caused by signal distortions in the AAF (whose bandwidth liT is not 
sufficiently large to pass the MSK signal). Self noise with GMSK is still high, 
however. Actually, it turns out that with GMSK the present clock-aided method 
is not much better than the non-clock-aided scheme [13]. 

10"2 
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Figure 4.20. Error variance with MSK and GMSK. 
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4.6.2. 2P·Power Method with Full Response Formats 

Another way to exploit timing information is to remove the modulation 
from the signal samples. Return to the mathematical expression for the signal 

set) = ej (27rVf+8) ~2:s eNU -1:,a) (4.6.9) 

with 

(4.6.10) 

and consider full response formats. This means that q(t)=O for t<O and q(t)=112 
for t> T. Assuming that transmission starts at t=O (so that aj=O for i<0) from 
(4.6.10) we get 

k-\ 

ljf(kT,a) = 1Ch Laj 

;=0 

In all practical cases the modulation index is a rational number, say 

h=K 
P 

(4.6.11) 

(4.6.12) 

where K and P are integers with no factors in common. For example, K is unity 
and P=2 with MSK signaling. Thus, equation (4.6.11) takes the form 

(4.6.13) 

from which it is easily realized that 

(4.6.14) 

This equation says that 2Pljf(kT,a) is a multiple of 21C and, in con­
sequence, ej2Pyt(kT,a) is unity. Thus, sampling set) at t = kT + 'r and raising to 
the 2P-th power yields 

iP(kT+'r) = (2:s rej(4nfcPVT+t/» (4.6.15) 

with tP~41CPV'r + 2PO. As is seen, iP(kT + 'r) is a discrete-time sinew ave at 
frequency 2Pv. 
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In practice set) is embedded in thermal noise and only the sum 
ret) = set) + wet) is available. As an approximation, however, ret) can be 
filtered (to eliminate as much noise as possible) and used in place of set). 
Denoting by x(t) the filtered version of ret) (see Figure 4.21), and net) the 
residual noise, we have 

x(kT + -r) = s(kT + -r) + n(kT +-r) 

from which, letting z(k)£x2P (kT + -r), it is easily found that 

z(k) = (2:s r ej (4TrkPvT+tPl + N(kT +-r) 

(4.6.16) 

(4.6.17) 

where N(kT + -r) results from the products SignalxNoise and NoisexNoise in 
the binomial expansion of (s + n fP . 

The sequence {z(k)} represents measurements of a sinewave embedded in 
noise, and our task is to estimate the sinewave's frequency. This problem has 
already been discussed in Chapter 3 in connection with PSK modulation and 
can be solved with the same methods proposed there. For example, either the 
Fitz or Luise and Reggiannini algorithms can be employed. 

Figures 4.22-4.23 yield simulation results corresponding to MSK and an 
observation interval of Lo=100 symbols. Timing is assumed ideal and the low­
pass filter prior to the 2P-th power nonlinearity has a rectangular transfer 
function of bandwidth BLPFT=1.2IT. Also, the samples {z(k)} are fed to a Luise 
and Reggiannini frequency estimator that computes 

with 

A 1 { N } 
V = 2lrP(N + l)T arg ~R(m) 

1 1-0-1 

R(m)£-- Iz(k)z*(k-m) 
Lo -m k=m 

~ LPF ~ 
~----' I 

t=kT+r 

Figure 4.21. Block diagram of the 2P-power frequency estimator. 

(4.6.18) 

(4.6.19) 
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The parameter N in (4.6.18) equals 10. Figure 4.22 shows the expected value of 
the estimate (normalized to the symbol rate) versus the true frequency offset. It 
appears that the estimates are practically unbiased for frequency offsets within 
±1 % of the symbol rate. In Figure 4.23 the variance of the estimates 
(normalized to the symbol rate) is shown. We see that at low SNR the slope of 
the curve is steeper than for MCRB. Clearly this is a consequence of the noise 
enhancement due to the 4-power nonlinearity. A negligible self noise level is 
observed at high SNR. Comparing with Figure 4.20 it appears that the 2P­
power is superior though it is more complex to implement. 

4.7. Key Points of the Chapter 

• Data-aided and clock-aided frequency estimation with MSK-type formats 
can be approached with the same methods adopted with linear modulations. 
This is so because MSK-type signals can be approximated as OQPSK 
waveforms (Laurent expansion). Estimation accuracy is about 3 dB from the 
modified Cramer-Rao bound with true MSK. With general MSK-type 
modulations, instead, performance is worse, due to approximations in 
truncating the Laurent expansion. 

• A variety of algorithms are available to estimate large carrier frequency 
offsets. They are non-data-aided and, in general, non-clock-aided. Some of 
them are derived from maximum likelihood methods and have a closed-loop 
configuration. Their acquisition range is on the order of the signal 
bandwidth. Accuracy is far from the modified Cramer-Rao bound, however. 
With binary modulations, in particular, it is comparable with that of 
analogous estimation algorithms for OQPSK. 

• Alternatively, ad hoc estimation schemes can be used. They are of the 
delay-and-multiply type and are simple to implement. Their topology may 
be either open- or closed-loop. Their estimation range is as large as with the 
ML-based schemes. Accuracy may be either better or worse than with ML­
based methods, depending on the specific modulation format. 

• Clock information can be exploited to improve frequency estimation 
accuracy. This subject has not received much attention in the literature but a 
few results concerning MSK clearly indicate that the idea is promising and 
can provide significant improvements. 
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Appendix 4.A 

In this appendix we compute the following expectation: 

(4.A.l) 

where X is defined as 

NLo-1 
X = Lx(kT.)e-j21rVk1:,e-jljl(kT,-f,ci) (4.A.2) 

k=O 

As a first step let us rewrite (4.A.l) in the form 

(4.A.3) 

meaning that IXI2 is first averaged over the symbols and then over the timing 
epoch. Noting that 

NLo-INLo-1 
IXI2 = L L x(kl T.) x * (lcz T.)e - j21rV(k,-k2 )T, ej('l'(k21:, -f,ci)-ljI(k, T, -f,ci)] (4.AA) 

k, =0 k2 =0 

we have 

NLo-INLo-I 

Ea{lxn = L L x{klT.)x*{lczT.)e-j21rV(k,-k2)T, 
k, =0 k2=0 

X E a {eA ljI(k2T, -f,ci)-ljI(k,T, -f.ci)]} (4.A.5) 

The expectation Ea{e j [ljI(k2T,-f.ci)-ljI(V,-f,ci)]} is computed in Appendix 
4.B and reads 

(4.A.6) 

where pet, tlT) is related to the phase response q(t) of the modulator by 
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p(t,tlT)g,q(t) - q(t - tlT) 

and the generic factor 

1 sin{21rhMp[kzT. -i-iT,(k2 -k1)T.]} 

M sin{21rhp[kzT. -i-iT,(kz -k1)T.]} 

Chapter 4 

(4.A.7) 

(4.A.8) 

is replaced by unity when p[kzT. - i - iT,(kz - k1)T.] = 0 (this is because 
(4.A.8) tends to unity as p[kzT. - i - iT,(kz - k1)T.] goes to zero). 

Next, we note that the right-hand side in (4.A.6) is a periodic function of 
f with period T (in fact, the right-hand side does not change if i is changed to 
i + T). Also, averaging Ea {IXJZ} with respect to f yields nv), as indicated in 
(4.A.3). Thus, bearing in mind that f is uniformly distributed between 0 and 
T, from (4.A.5)-(4.A.6) we get 

NLo-INLo-l 

nv)= L L X(klT.)x*(kzT.)e-j2nV(kl-k2)T'H[(kz-kl)T.] (4.A.9) 
kl=O k2 =0 

with 

(4.A.1O) 

The second line follows from the periodicity of the integrand with respect to f. 
Assuming that the symmetry condition 

1 q(t) =--q(LT-t) 
2 

(4.A.1l) 

is satisfied, it can be shown that H(kTs) is an even function. In fact, substituting 
(4.A.ll) into (4.A. 7) yields 

p(t,-tlT) = -p(LT - t,tlT) (4.A.12) 

and inserting this result into (4.A.1O) produces 
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H(-kT) =.!. r fir 1 sin{21rhMp(t- iT'-k~)}ldt 
s T 0 i=-.:!i M sin{ 21rhp(t - iT, -k~)} 

=.!. r fir 1 sin{21rhMp(LT - t+ iT'k~)}ldt 
T 0 i=-.:!i M sin{21rhp(LT-t+iT,k~)} 

=H(k~) 

which proves the claim. 

Appendix 4.B 
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(4.A.13) 

In this appendix we compute the expectation Ea{e j [ljI(t2. iil-ljI(tt.iil]}, where 

00 

If/(t,a.) = 21rh }:/xiq(t - iT) (4.B.l) 
i=-oo 

Using the definition (4.A.7) we have 

E. {ell"', ."-"' •.• 'l} = E. { exp[j2,",,~ a,pC', - iT", - '\)]} 

= Ea{f!exp[j2WlIX;P(t2 -iT,t2 -t1)]} (4.B.2) 

As the symbols are independent, each factor in the second line can be 
averaged separately. Hence, 

Ea {e j [ljI(t2. iil-ljI(tt.il l]} = fIEa; {ej2nha;P(t2-iT.t2-ttl} 

;=-00 
(4.B.3) 

On the other hand, as a i E {±1,±3, .. ± (M -I)}, the factors on the right-hand 
side in (4.B.3) take the form 

1 M-l 
Eli; {ej2nha;P(t2-iT.t2-ttl} = M Lej2nhmp(t2-iT,t2-ttl 

m=I.3 •... 

1 M-l +_ Le-j2nhmp(t2-iT.t2-ttl 

M m=I.3 .... 

(4.B.4) 
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Also, it is easily proved that 

M-I M/2-1 L ej27dunp(12 -iT.12 -II) = L ej21rh(2n+l)p(12 -iT.12 -II) 

m=I.3.... n=O 

Hence 

= sin[ nhMp( t2 - iT, t2 - tl )] ej1rhMp(12 -iT.12 -II) 

sin[2nhp(t2 -iT,t2 -tl )] 

and inserting this into (4.B.3) yields the final result 
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(4.B.5) 

(4.B.6) 

In deriving (4.B.6) it has been implicitly assumed that p(t2-iT,t2-tl) is 
nonzero. When p(t2-iT,t2-tl ) equals zero the exponential ej21rhaiP(t2-iT.lrll) 

equals one and we have 

(4.B.8) 

This equation is consistent with (4.B.6) provided that the right-hand side of 
(4.B.6) is computed as the limit for p ~ O. It is concluded that equation 
(4.B.7) is valid in general provided that the factors with p(t2-iT,t2-tl) = 0 are 
set to unity. 

When computing the right-hand side of (4.B.7) the question arises of 
recognizing the non-unity factors. In other words, we want to establish the set 
.J such that p(t2-iT,t2-tl) *0 for iE.J. From (4.B.2) it is clear that 
P(t2 - iT,O) is zero anyway, which means that .J is empty for t l=t2. The case 
t l*t2 can be handled bearing in mind (4.B.2) and the very form of the phase 
response q(t): 

In this way it is readily concluded that 

t$;O 

t~LT 
(4.B.9) 

(4.B.I0) 
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Appendix 4.C 
In this appendix we illustrate the steps leading to the block diagram in 

Figure 4.10. In doing so we set D=O throughout in the formulas in Section 
3.4.2, for this greatly simplifies the discussion without affecting the conclu­
sions. The starting point is the derivative of [(v) (see equation (4.4.31) in the 
text) 

(4.C.l) 

where 

y( k~) £ x( k~)e - j 2trkVTs (4.C.2) 

Also, x(k~) is the output from the anti-aliasing filter and w(k~) is the 
response to y(k~) of the filter h(k~): 

w(k~) = y(k~) ® h(k~) (4.C.3) 

Our task is to compute that v where df(v)/ dv vanishes. The basic idea is to 
exploit the sum of some consecutive terms in (4.C.l) as an error signal to drive 
df(v)/ dv toward zero. 

For convenience we take N terms (as many as the samples in a symbol pe­
riod) and introduce a symbol index n, which is related to the sample index k by 

n=in{~) (4.C.4) 

where int(z) means "the largest integer not exceeding z." In essence, n gives 
the symbol interval corresponding to the k-th sample. Then, the frequency 
estimates are updated according to 

O[ (n + I)T] = O(nT) + r e(nT) (4.C.5) 

where r is a step-size parameter and e(nT) is the error signal: 

(n+l)N-l 

e(nT) = ~)m{y(k~)w'(k~)} (4.C.6) 
k;nN 

Let us concentrate on the computation of the samples y(kTs) appearing in 
(4.C.6) (once the y(kTs) are known, the corresponding w(kTs) are derived from 
(4.C.3)). To this end consider the piecewise varying function ¢J(t) such that 

d¢J(t) = 27rO(nT) for nT S; t < (n + I)T 
dt 

(4.C.7) 
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Bearing in mind (4.C.2), it is recognized that the following approximation 
holds true: 

(4.C.8) 

Thus, to compute y(k~) we need l/J(kTs) which, in turn, can be derived by 
integrating (4.C.7) over k~ :s; t:S; (k + 1)~: 

l/J[(k + 1)~] = l/J(k~)+ 2~v(nT) mod 21C (4.C.9) 

To summarize, suppose that v(nT) is known. Then, equation (4.C.9) gives 
{l/J(k~)} and (4.C.8) gives {y(k~)}. Next, equation (4.C.3) yields {w(k~)} and 
substituting into (4.C.6) produces e(nD. Finally, the new estimate v[(n + l)T] 
is derived from (4.C.S). These steps are illustrated in the block diagram in 
Figure 4.10. 
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Carrier Phase Recovery 
with Linear Modulations 

5.1. Introduction 

5 

In this chapter we investigate algorithms for carrier phase estimation with 
linear modulations. As with frequency recovery, ML estimation methods will 
playa central role in our study. We shall see that various approximations to the 
ML formulation are possible, leading to different estimation methods. Thus, a 
rather disparate set of synchronization schemes is anticipated. This is also a 
consequence of the many scenarios that can be thought of, depending on the 
specific modulation format and the availability of data/clock information. In 
this regard the following categories may be envisaged: 

(i) Modulation/annat: 

• Modulation may be either offset or non-offset. 

(ii) Additional knowledge: 

• Clock information may be available or not. 

• Information symbols may be known or not. When they are, they may 
come either from a known preamble (data-aided schemes) or from the 
detector output (decision-directed schemes) 

(iii) Estimator topology: 

• Estimators may be either open loop or closed loop. 

Another distinction arises from the presence of carrier frequency offsets. 
For the sake of simplicity phase estimation is usually approached assuming that 
frequency recovery has already been accomplished. This is in keeping with the 
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fact that most phase estimators can cope with moderate residual frequency 
errors. Frequency errors are not always that moderate, however. When this 
happens, it is necessary to endow the phase synchronizer with extra frequency 
acquisition capabilities. 

The chapter is organized as follows. In the next few sections we address 
data-aided and clock-aided phase estimation. Next, we gradually loosen these 
assumptions and eventually discuss phase recovery with no data and no clock 
information. 

5.2. Clock-Aided and Data-Aided Phase Recovery 

5.2.1. ML Estimation with Non-Offset Formats 

Start with the complex envelope of the received waveform 

r(t) = set) + wet) (5.2.1) 

where 

(5.2.2) 

and wet) is thermal noise. Its real and imaginary components are independent 
and each have a power spectral density No. The parameter v represents the 
frequency offset, () is the carrier phase we want to estimate, 't' is the timing 
phase, {c j } are information symbols, T is the symbol period and get) is the 
signaling pulse shape. 

The phase () is an unknown constant, taking values in the range ±7r. All 
the other parameters, v, 't' and {cd, are assumed to be perfectly known to the 
receiver. As mentioned earlier, knowledge of the data symbols may come from 
a known preamble. Carrier frequency and symbol epoch may either be esti­
mated in advance and independently of the carrier phase or, as happens in some 
burst mode transmissions, can be accurately tracked between bursts. 

To estimate () with ML methods we need the likelihood function A(rle). 
This has been derived in Chapter 2 and is expressed by 

A(rle) = exp _1 fRe{r(t)s*(t)}dt- _1_ fls(t)12 dt {
TO TO} 

No 0 2No 0 
(5.2.3) 

where 0 S t S 10 is the observation interval and set) is the trial signal 
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(5.2.4) 

Note that e is the only parameter bearing a "tilde". This reflects the fact that 
the other par!lmeters are all known. It is also worth observing that Is(t)1 is inde­
pendent of (J. Hence, taking the logarithm of (5.2.3) yields (within some con­
stants) 

In A(rIO) ~ Ren r(t),' (t) dt} (5.2.5) 

Using (5.2.4) we get 

To To f r(t)s· (t)dt = e-jBLc~ f[r(t)e- j21M ]g(t - iT - r)dt (5.2.6) 
o i 0 

Hence, reasoning as in Section 3.2.1, it is easily found that the integral in 
(5.2.5) may be expressed as 

To _ La-I 
f r(t)s·(t)dt "" e-jIJ Lc;x(k) (5.2.7) 
o k=O 

where 1.0 ~ 1'0 IT is the length of the observation interval in symbol periods and 
x(k) represents the sample at t = kT + 'f of the convolution 

(5.2.8) 

In summary, collecting (5.2.5) and (5.2.7) yields 

{ 
_1.0-1 } 

InA(rIO) = Re e-jIJ ~c;X(k) (5.2.9) 

and the maximum of A(rIO) is achieved for 

{
Lo-I } {) = arg Lc;x(k) 
k=O 

(5.2.10) 

The block diagram of the ML phase estimator is illustrated in Figure 5.1. 
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Figure 5.1. Block diagram of the ML phase estimator. 

5.2.2. Performance with Non-Offset Formats 

We maintain that algorithm (5.2.10) achieves the Cramer-Rao bound 
CRB(O) when the ratio Es/ No is sufficiently large and the convolution 
g(t) ® g( -t)~h(t) is Nyquist, i.e., 

h(kT) ={~ k=O 

k"#O 
(5.2.11) 

To prove our claim recall from Chapter 2 that, if there are no unwanted 
parameters (as happens in the present case), the CRB(O) coincides with the 
modified bound MCRB(O). So, we only need to show that the error variance of 
the estimator (5.2.10) equals the modified bound 

MCRB(O) = _1 ___ 1 _ 
24J EsiNo 

(5.2.12) 

To proceed, consider the matched-filter output 

(5.2.13) 

with 

(5.2.14) 

It is easily checked that n(t) has independent real and imaginary components, 
each with variance No. Also, the signal energy Es equals C2 /2, where C2 is the 
expectation of Icj l2 (see Appendix 2.A). Thus, we have 

(5.2.15) 

Now observe that the samples of x(t) at kT+r are given by 
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(5.2.16) 

from which, multiplying both sides by c; yields 

c;x(k) = ej9[lci + c;n'(k)] (5.2.17) 

with n'(k)£n(k)e-j9 . Note that n'(k) has the same statistics as n(k) and, in par­
ticular, its real and imaginary components are zero mean and independent ran­
dom variables of variance No. Substituting into (5.2.10) and rearranging yields 

(5.2.18) 

with 

(5.2.19) 

From this equation it is easily seen that N Rand N[ both have zero mean. 
Thus, assuming that they are small compared with unity, (5.2.18) reduces to 

(5.2.20) 

which says that the estimate of () is unbiased and the estimation variance is 
given by 

(5.2.21) 

Next, write 

(5.2.22) 

meaning that we first take the expectation with respect to noise (while keeping 
c£(co,c1, ... ,CLo _1) fixed) and then we average the result over the symbols. 
Solving (5.2.19) for N[ and substituting into (5.2.22) it is found, after some 
algebra, that 

(5.2.23) 



194 ChapterS 

where C2 is the expectation of Icl and C; is the aritmetic mean 

(5.2.24) 

Bearing in mind (5.2.15), equation (5.2.23) may be put in the alternative 
form 

(5.2.25) 

Now, as Lo increases, the mean C2 approaches C2 and (5.2.25) becomes 

{A} 1 1 Var 8-8 =---
241 Es/No 

(5.2.26) 

which shows that the Cramer-Rao bound is achieved. For example, an error 
standard deviation of 4.80 is obtained with only Es / No =6 dB and Lo= 18. 

5.2.3. ML Estimation with Offset Formats 

We now address ML phase estimation with offset signals. The signal 
model is 

where a j and h j are real-valued information symbols. In particular, with 
OQPSK modulation they take the values ±l. As the derivation of the ML 
estimator follows the same lines described earlier, we limit ourselves to 
highlighting the major steps. 

Paralleling the passages from (5.2.3) to (5.2.9) produces 

(5.2.28) 

where x(t) is the matched-filter output and x(k) and x(k+1I2) are its samples 
taken at t=kT+1: and t=kT+T/2+1:, respectively. Maximizing (5.2.28) as a 
function of 0 gives the desired estimate 
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t 
I 

Figure 5.2. Block diagram of the ML estimator. 
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(5.2.29) 

Figure 5.2 illustrates the block diagram of the estimator. As is seen, the 
samples from the matched filter are now taken at the rate 2fT and a serial-to­
parallel converter (SIP) separates the sequences {x(k)} and {x(k + 1/2)}. 

5.2.4. Performance with Offset Formats 

The performance of estimator (5.2.29) is now assessed with the same 
methods adopted earlier. In doing so we still assume that the Nyquist condition 
holds and the modulation is uncoded. 

The matched-filter output has the form 

Again, real and imaginary components of the noise have zero mean and 
variance 0'; = No. Thus, as the signal energy is unity (see Appendix 2.A), we 
have 

(5.2.31) 

and, correspondingly, 
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(5.2.32) 

Sampling x(t) at kT+! and kT+TI2+! and bearing in mind that h(t) is Nyquist 
yields 

x(k + 1/2) = ej8 [jbk + ~ aj h(k - i + 1/2) 1 + n(k + 1/2) 

Then, substituting into (5.2.29) and rearranging produces 

with 

to-I 
NR + jN[~_I_ IJn'(k) + n"(k + 1/2)] 

2Lo k=O 

(5.2.33) 

(5.2.34) 

(5.2.35) 

(5.2.36) 

(5.2.37) 

(5.2.38) 

(5.2.39) 

It may be checked that NR and N[ have zero mean and the same variance 

(5.2.40) 

Also, straightforward manipulations show that the random variable S in 
(5.2.36) has zero mean and variance 

with 

2 C 
Gs=-

24> 
(5.2.41) 
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Next, assume that Es / No and Lo are sufficiently large so that S, NR and N[ 
are all small compared to unity. Then, (5.2.35) reduces to 

(5.2.43) 

from which the variance of the estimation errors is seen to be (J'~ + (J'~I ' i.e., 

{
A } 1 1 C Var 0-0 =---+-

2~ Es/No 2~ 
(5.2.44) 

This equation indicates that the estimator (5.2.29) does not achieve the Cramer­
Rao bound. Note that the second term C /(2~) in (5.2.44) is independent of the 
thermal noise level and, in fact, it is contributed by interactions between signal 
components (self noise). Figure 5.3 compares qualitatively (5.2.44) with the 
Cramer-Rao bound. 

In practice (5.2.44) may be quite close to the bound. For example, assume 
Lo=18 and suppose that the Fourier transform of h(t) has a raised-cosine-rolloff 
shape with 0.=0.5. From (5.2.42) it is found that C=0.0225. Thus, for Es/No= 
6 dB equation (5.2.44) yields a phase error standard deviation of about 50 
(instead of 4.80 , which corresponds to the bound). 

1 1 ---
2Lo E.I No 

Figure 5.3. Comparison with CRB. 
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5.2.5. Degradations Due to Frequency Errors 

To assess the effects of frequency errors on phase recovery it is useful to 
bear in mind that: (i) (J represents the phase of the demodulated carrier 
e j (21rvt+fJ) at the time origin; (ii) in the previous discussion the time origin has 
been chosen as the beginning of the observation interval. To investigate phase 
estimation in more general terms it is expedient to shift the time origin to a 
point internal to the observation interval. In particular we choose the center of 
the observation interval at a generic time t=mT, as indicated in Figure 5.4. This 
will allow us to assess the dependence of the phase estimates on the parameter 
mT. 

For the sake of simplicity let us take an observation interval with an odd 
number of symbol intervals. Then, proceeding as in Section 5.2.1, the ML 
estimate of (J with non-offset modulation is found to be 

O=arg - Lc;x(k) {
I m+(Lo-I)/2 } 

Lo k=m-(Lo-I)/2 

(5.2.45) 

where x(t) is still as defined in (5.2.8). Note that an immaterial factor 11 Lo has 
been inserted in (5.2.45) for convenience. Our aim is to assess the performance 
of this estimator in the presence of a frequency error and, in particular, to 
compute the first- and second-order moments of O. In doing so we make the 
following simplifying assumptions: 

(i) the modulation is PSK; 

(ii) the difference id between v and its estimate is much less than liT; 

(iii) the Nyquist condition is satisfied. 

To account for frequency errors, we suppose that the demodulation 
operation indicated in Figure 5.1 is performed with a reference frequency V 
other than v. Then the filter output x(t) becomes 

r(t) 

mT 

Figure 5.4. Observation interval centered around t=mT. 
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x(t) = [r(t)e- j2nVt ]® g(-t) (5.2.46) 

Substituting r(t)=s(t)+w(t) into (5.2.46) and using (5.2.2) yields (instead of 
(5.2.13)) 

x(t) = ejO L ci [ ej21rfdt g(t - iT - r)] ® g( -t) + n(t) 
i 

(5.2.47) 

As g(t-iT-r) takes significant values only over a few symbol periods 
ar~>und iT+r and Ifdl1 is much less than unity. (by assumption), the exponential 
eJ21rfdt in (5.2.47) can be approximated as eJ2TriJdT. Thus, bearing in mind the 
relation g(t) ® g( -t) = h(t), we have 

Sampling at kT +r produces 

x(k) = ckejO ej2trkfdT + n(k) 

from which we get (recall that Icl = 1) 

c;x(k) = ejO[ej2trkfdT +n'(k)] 

with n'(k)g,n(k)c;e-jo . Finally, substituting into (5.2.45) yields 

A {. [1 m+(Lo -1)/2 ]} () = arg eJo - L eJ2trkfdT + N R + jN[ 
4.J k=m-(Lo-I)/2 

where the complex number NR+jN[ is defined as 

1 m+(Lo -1)/2 

NR + jN[g,- Ln'(k) 
4.J k=m-(Lo-1)/2 

(5.2.48) 

(5.2.49) 

(5.2.50) 

(5.2.51) 

(5.2.52) 

Simple manipulations show that the summation in (5.2.51) may be put in 
the form 

(5.2.53) 

with 
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(5.2.54) 

Note that p(O)=l. Furthermore, in a small interval around the origin, PifdT) 
decreases as JdT departs from zero. 

Collecting (5.2.51) and (5.2.53) and rearranging yields 

(5.2.55) 

where VR and VI are related to NR and NI by 

-j2trmfdT 
V; !! N . _e __ _ 
R- R P(fdT) 

t.. e - j2trmfdT 

~=NI' P(fdT) 

(5.2.56) 

It is easily checked that VR and VI have zero mean and variance 

(5.2.57) 

The performance of the estimator is readily assessed at high signal-to­
noise ratio. In these conditions in fact VR and VI are small compared with unity, 
and (5.2.55) reduces to 

(5.2.58) 

from which it is clear that the average estimate is 0 + 2mnJdT and coincides 
with the phase of e j (2trfdt+8) at the center of the observation interval. Thus, if 
this same estimate is used for demodulation over the entire interval, a position­
dependent bias is incurred. The estimation variance is given by 

(5.2.59) 

and is larger than the CRB(O) for J,p:O (since pifdT)<1). 
As an example consider again the case discussed in Section 5.2.2, i.e., 

non-offset modulation with Es/No=6 dB and Lo=18. We have seen that, for 
zero frequency error, the estimates have a mean 0 and a standard deviation of 
4.80. With fd=O.001ff, the mean increases by 3.20 while the standard de­
viation remains essentially the same. 
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5.3. Decision-Directed Phase Recovery with Non-Offset 
Modulation 

5.3.1. Feedback Structures 

201 

From the preceding discussion it appears that ML data-aided phase 
estimation methods lead to open-loop (feedforward) schemes. As is now ex­
plained, closed-loop (feedback) structures are unavoidable when detector de­
cisions are exploited in place of true data. 

Assume that carrier frequency and timing are ideal. To get an estimate of 
(J it would seem sufficient to replace the known symbols by their estimates ck 
in (5.2.10). This produces 

{
Lo-l } e = arg ~c;x(k) (5.3.1) 

Unfortunately a closer look at the problem reveals that estimator (5.3.1) does 
not work. In fact, as indicated in (5.2.16), the signal constellation at the 
detector input is rotated by an angle (J from its correct position (see Figure 5.5) 
and, in consequence, the quality of the detector decisions strongly depends on 
the amount of rotation. As an example consider QPSK modulation and (J=7d4. 

Also, assume Nyquist pulses so that 

(5.3.2) 

In these conditions 50% of the decisions are wrong on average. In fact, as 
ckejtr/4 lies on the borderline between the decision zones for c k and c ke jtr12 , the 
decision ck will be either c k or ckejtr/2 with the same probability. Formally, ck 

~'------" T ~t) DETECTOR P 
e-J'brvr 

Figure 5.5. Phase rotation of the signal constellation. 
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may be modelled as 

(5.3.3) 

where u(k) is a random variable taking values 1 or 0 with probability 112. 
Substituting into the sum in (5.3.1) yields (recall that hl2 = 1) 

Lo-I Lo-I Lo-I 
L,c;x(k) = ej1r/4 L,u(k) + e-j1r/4 L,[I- u(k)] (5.3.4) 
k=O k=O k=O 

where the noise term n(k) in (5.3.2) has been neglected for simplicity. As the 
expected value of (5.3.4) equals Lo(e j1r14 /2 + e-j1r14/2) = Lo/.fi, the mean 
value of the argument of (5.3.4) is zero and not 7rl4, as should be. 

Clearly, the stumbling block is the uncompensated phase rotation at the 
detector input and the only way to sidestep the obstacle is to compensate for the 
rotation before entering the detector. In the sequel we investigate two ap­
proaches to this problem. 

5.3.2. First Approach 

The first approach is based on a proper adjustment of (5.3.1). At any time 
kT+r a phase estimate 8(k) is computed on the basis of the last Lo symbols as 
follows: 

{ 
k-I } 

O(k)=arg L,c;x(l) 
I=k-Lo 

(5.3.5) 

Next, x(k) is counter-rotated by O(k) and fed to the detector, as indicated in 
Figure 5.6. In this manner the residual rotation at the detector input is reduced 
to ~ - 8(k), which is hopefully less than e. Note that, as Ck depends on 
e - e(k), the estimator (5.3.5) has been turned into a feedback scheme. It is the 
feedback mechanism that will eventually drive the system toward a steady-state 
regime, as is now intuitively explained. 

Suppose that initially O(k) and e are far from each other. Then, most 
detector decisions will be incorrect !lnd 8(k) will fluctuate in a random manner. 
Note that, with large values of Lo, e(k) is slowly varying in time and, in fact, it 
will be al!ll0st constant over several signaling intervals. Sooner or later, 
however, O(k) will approach 0 and the detector decisions will improve. Then, 
better phase estimates will be produced and this will further enhance the 
decision quality. Eventually, a steady-state regime will be reached wherein 
8(k) will steadily fluctuate around e. 
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Unfortunately, such a regime is not unique and, in fact, 8(k) may settle 
around 6 plus multiples of n, the symmetry angle of the signal constellation. In 
particular, a equals 27r 1 M with M-ary PSK and 7rl2 with QAM modulation. 
This estimation ambiguity occurs with any NDA or DD estimation algorithm 
and is a consequence of the rotational symmetry of the signaling scheme. A 
possible explanation is as follows. 

Return to (5.2.16) and assume for simplicity that the noise is negligible 
and the modulation is QPSK. Then, the matched-filter output becomes 

(5.3.6) 

'Yhere ck belongs to the alphabet {1,e jn/2 ,ejn ,ej3n/2}. We maintain that 
6(k) = 6 + m7r 12 (m = 0,1,2,3) are all equilibrium points for the loop in Figure 
5.6. To prove our claim let us temporarily disconnect the phase estimat~r from 
the multiplier and drive the latter with some external voltage e-jO , with 
e = 6 + m7r 12 (m = 0,1,2,3). As we shall see, in these conditions the estimate 
(5.3.5) equals e. Therefore, the loop operation will not be affected by re­
establishing the connection between the phase estimator and the multiplier and, 
in consequence, 8(k) will keep its previous value (admittedly, the argument is 
incomplete as it does not prove that 8(k) = 6 + m7r 1 2 is a stable point. Indeed, 
stability must be assessed through other reasoning which is developed later). 

To proceed, consider the input to the decision device. Since e = 6 + m7r 1 2, 
we have 

(5.3.7) 

or, as a consequence of (5.3.6), 

(5.3.8) 

Correspondingly, the detector produces the decisions 

(5.3.9) 

~
t) LJ x(k) 

. g(-t) I' to--......... ---l~ 
'-----' I 

t=kT+r e -j21rvt 

Figure 5.6. Phase recovery scheme. 
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so that 

k-J 
zA* x(l) = 4ej(m1r/2+8) (5.3.10) 

l=k-Lo 

which proves that the right-hand side of (5.3.5) equals 0 + mn /2. 
Another way to look at the ambiguity problem is to recognize that the 

final task of the receiver is to estimate the data sequence {cd. The difficulty in 
doing so is that there are several combinations of 0 values and symbol 
sequences that correspond to the same observation {x(k)}. This is easily seen 
by rewriting (5.3.6) as 

x(k) = c~ej8' (5.3.11) 

with 

O/~O+mn/2 (5.3.12) 

c~ ~cke-jm1r/2 (5.3.13) 

As c~ is an element of the symbol alphabet, any {C~} is a legitimate sequence 
and there is no way to distinguish among different sequences unless additional 
information is provided within the message (for example, by inserting a unique 
word). 

It should be pointed out that the preceding discussion does not apply to 
coded modulations. In the presence of coding, in fact, a rotated sequence may 
not be a legitimate sequence and the above argument fails. This indicates that 
phase ambiguities with coded systems are fewer than with uncoded systems. 

An important issue is how to cope with phase ambiguities in the detection 
process. A common method with uncoded modulation (especially with contin­
uous transmissions) is to resort to differential encoding at the transmitter and dif­
ferentially coherent decoding at the receiver. Consider QPSK signaling, for sim­
plicity, and let {11d be the information sequence, with 11k E {O,n/2,n,3n/2}. 
Mapping {11d into channel symbols {e j 7)k} and demodulating the received 
sequence with an ambiguous phase reference would result in decisions of the 
type ck = ej (7)k- m1r/2) from which the recovery of {11d would be impossible. 
Suppose instead that {11k} is first differentially encoded into a new sequence 
{od according to the rule 

(5.3.14) 

or, equivalently, 
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(5.3.15) 

Next, the phases {Ok} are mapped into channel symbols ck = ejOk • In these 
conditions the detector decisions are ck = ej (Ot-mnj2). Hence, computing the ar­
guments arg{ckc;_tl yields 

arg{ CkC;_I} = (Ok - m1r/2) - (Ok-l - m1r/2) mod 21r 

= Ok - 0k-l mod 21r 

=rh (5.3.16) 

which says that the information can be recovered in spite of phase ambiguities. 
With coded modulations the problem is often solved by resorting to 

rotationally invariant codes. With such codes phase rotations by multiples of 
the constellation's symmetry angle do not affect the detection process as they 
still produce legitimate sequences with the same information. In some 
applications the coding scheme is not rotationally invariant, however, and the 
ambiguity problem is approached by means of special algorithms [1]-[4] that 
can tell whether the input sequence is correctly rotated. 

The phase recovery system in Figure 5.6 has been discussed in [5]-[9]. 
Analysis and computer simulations reported in [8]-[9] indicate that, with QPSK 
and negligible carrier frequency offsets, its tracking performance is close to the 
modified Cramer-Rao bound at SNR values of practical interest. Unfortunately, 
significant degradations take place in the presence of frequency errors and there 
seems to be no way to adjust the scheme so as to sidestep this drawback. By 
contrast, the problem can be easily solved with the second approach we discuss 
next. 

5.3.3. Second Approach 

The basic idea is a recursive method to compute the zero of the derivative 
of the log-likelihood function (5.2.9). Taking the derivative of (5.2.9) with 
respect to e and rearranging yields 

(5.3.17) 

A procedure to make the sum vanish is as follows. First, ck is replaced with the 
decision ck from the detector. Second, the generic term in the sum is computed 
setting e equal to the current estimate O(k). Third, the result is used as an error 
signal to improve the phase estimate. Formally, the following recursion is 
generated: 
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where 

gH) k 
I 

t=kT+'Z' 

Figure 5.7. Costas phase recovery loop. 

8(k + 1) = 8(k) + ye(k) 

e(k)~Im{ c;x(k)e-j8(k)} 

and yis a step-size parameter. 

Chapter 5 

(5.3.18) 

(5.3.19) 

Figure 5.7 illustrates a block diagram for this algorithm. The error 
generator computes e(k) and the loop filt~r operate~ according to (5.3.18). 
Finally, a look-up table produces the map ()(k) ~ e-jlJ(k). This scheme is very 
popular for continuous-transmission applications and may be viewed as a 
generalization of the well-known Costas detector [10]-[11]. In the sequel it is 
referred to as a Costas loop. Its characteristics have been analyzed in many 
papers in the past several years (see [12]-[22] and references therein). Its 
acquisition capabilities and tracking features are discussed in the next section. 

5.3.4. Acquisition and Tracking Characteristics 

A key tool to investigate phase acquisition is the S-curve of the phase 
error generator. This is the expectation of the error signal e(k), conditioned on 
a fixed value of the difference cp~() - 8, i.e., 

(5.3.20) 

Experimentally S(cp) is obtained by opening the loop and measuring the time 
average of the error signal as indicated in Figure 5.8. 

A mathematical model for the Costas loop is found by paralleling the 
arguments used in Chapter 3 in connection with carrier frequency recovery. 
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t=kT+'Z' 

Figure 5.8. Measuring the S-curve of the detector. 
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Bearing in mind that the output of the look-up table in Figure 5.7 is e-jli(k) and 
that O(k) varies slowly in time, the error signal may be viewed as the sum of a 
"local" average, S[6 - O(k)]' plus a noise term N(k) such that 

e(k) = S[6 - O(k)] + N(k) (5.3.21) 

Thus, substituting into (5.3.18) yields 

O(k + 1) = O(k) + yS[6 - O(k)] + y N(k) (5.3.22) 

as illustrated in Figure 5.9. Here the digital integrator (5.3.18) is drawn in a 
dashed rectangle. 

The tracking behavior of the loop is investigated by first looking for the 
equilibrium points of the autonomous equation 

N(k) 

, ----------------1 
I I 
I I 
I 
I 
I 
I I L..-_____ ---' 

~-----------------~ 

FILTER 

e(k) 

Figure 5.9. Equivalent model for the tracking loop. 
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O(k + 1) = O(k) + r S[O - O(k)] (5.3.23) 

and then computing the noise-induced fluctuations around the operating point. 
A necessary condition for equilibrium (Le., O(k) = Oeq = constant) is a null in 
the S-curve 

(5.3.24) 

It is easily realized from (5.3.23), h~wever, that Oeq is a stable solution only if 
S(l{J) has a positive slope at l{J = 0 - Oeq. Negative slopes correspond to unstable 
solutions, as is pictorially indicated in Figure 5.10. 

Intuitively we expect that O(k) = (J is a stable solution. As is now 
explained it is not unique, however. For the sake of argument consider uncoded 
QPSK and assume that the Nyquist condition is satisfied. Then, the matched­
filter output becomes 

(5.3.25) 

and the detector input in Figure 5.7 is found to be 

y(k) = ckeN + n'(k) (5.3.26) 

with n'(k)~n(k)e-j9. At high SNR the detector decisions are 

(5.3.27) 

where m(l{J) is that integer such that 

(5.3.28) 

S{Ip) 

Figure 5.10. Stable and unstable equilibrium points. 
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Figure 5.11. lllustrating equation (5.3.28). 

For example, for f/J E (-Tr/4,Tr/4) (see Figure 5.11) equation (5.3.28) yields 
m(f/J) = 0 and (5.3.27) says that the decisions are correct. Vice versa, for 
f/J E (Tr/4,3Tr/4) we have m(f/J) = 1 and (5.3.27) gives the incorrect results 
ck = ckejrr/2 • 

With these results at hand the S-curve can be easily computed. In fact, 
substituting (5.3.25) and (5.3.27) into the error signal (5.3.19) and bearing in 
mind that Ickl2 = 1 yields after some manipulations 

(5.3.29) 

The second term has zero mean while the first is a constant (for a fixed f/J). 
Hence. taking the expectation we get the S-curve 

S(f/J) "" sin[f/J - m(f/J) Tr/2] (5.3.30) 

which is represented in the solid line in Figure 5.12(a). 
Thermal noise plays an important role in the decision process, especially 

when y(k) is close to the decision boundaries, i.e., when f/J is about a multiple 
of Tr/4 (see Figure 5.11). In practice, the thermal noise rounds off the 
discontinuities at these multiples and the actual S-curve takes the form 
indicated in Figure 5.12(b). 

The following remarks are of interest. 

• Figure 5.12 indicates that f/J = 0 (i.e., eeq = lJ) is a stable point but it is not 
unique. There are three more points in the range (0, 2Tr], at a distance of 
Tr/2 from each other. This corresponds to the same four-fold ambiguity we 
have observed in connection with the recovery scheme in Figure 5.6. 

• A problem that may limit the application of Costas loops is the so-called 
hangup phenomenon, which occasionally occurs during phase acquisitions. 
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S(4J) ~__ . / sin4J 
/ ..... ", 

/ " 

" / ..... / 

--~ (a) 

Figure 5.12. S-curves for uncoded QPSK: (a) infinite SNR; (b) finite SNR. 

Assume that the initial value of e(k) is close to a reverse-slope null. The 
system will tend to move to a stable point but, in doing so, its evolution will 
be governed by noise since the steering force S[O - e(k)] is small. As a 
result, e(k) may dwell about its initial position for a while, thus making the 
acquisition long. Long acquisitions are hardly allowed in certain 
applications as, for example, in burst transmission. In-depth investigations 
on hangup phenomena in phase-lock loops are reported in [23]-[25]. 

• Another drawback is the cycle slipping, a phenomenon that manifests itself 
in any tracking scheme (be it closed loop or open loop) in the form of short 
synchronization failures. Briefly, assume that the loop is in the tracking 
mode and e(k) is fluctuating around the true carrier phase O. Fluctuations 
are usually small. Occasionally, however, thermal noise and self noise con­
cur to produce a large phase deviation so that e(k) will be attracted toward 
some nearby eqUilibrium point. When this h~pens we say that a phase slip 
has occurred. A slip implies a net change of O(k) by multiples of tr/2 in the 
case of Figure 5.12 and, in consequence, a burst of errors in the data detec­
tion process. Cycle slips must be rare events in a well-designed loop. 

• Many efforts have been invested in theoretical and experimental studies on 
cycle slipping. References [26]-[28] provide formulas for the mean-time 
between slips, T., in continuous-time loops. A link between continuous- and 
discrete-time loops is established in [29]. The following approximate ex-
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pression for Ts is given in [29] for small Es / No values: 

K (p2) 2BL~ "" -exp --2-2 
2 2K (J 

(5.3.31) 

whereB L is the loop noise bandwidth and (J2 the phase error variance in the 
steady state (see next section). Also, p is the period of the S-curve (Le., 
S(tfJ+ p) = S(tfJ». For example, for QPSK we have p = K/2, as indicated in 
Figure 5.12. 

5.3.5. S-Curves for General Modulation Formats 

S-curves with modulation formats other than QPSK are difficult to 
compute. Interesting results are reported in [29] for quadrature shift keying 
(QSK) and general M-ary PSK signal constellations. As is intuitively clear, M­
ary PSK gives rise to S-curves with a 2K/M periodicity, whereas rectangular 
or "cross" shaped constellations produce a K/2 periodicity. Whatever the case, 
S-curves with complex signal constellations may exhibit spurious locks that 
cannot be resolved by differential encoding (see Figure 5.13). Changes in the 
error signal form (5.3.19) are needed to prevent such spurious points [21]-[22]. 

So far only uncoded systems have been considered. With trellis-coded 
(TC) modulations, S-curves are usually derived by simulation since analytical 
methods are too complex. Figure 5.14 provides a qualitative idea of S-curves 
for three TC-PSK systems. In particular, Figure 5.14(a) and 5.14(b) corre­
sponds to an eight-state and a four-state Ungerboeck TC-8PSK code [30], re­
spectively; while Figure 5.14(c) corresponds to an eight-state TC-16PSK pro­
posed by Pietrobon etal. [31]. 

As is seen, S(tfJ) extends over a range of ±K/4 around the origin in Figure 
S.14(a). In Figure 5.14(b) it has a similar shape around the origin but there is a 
replica around ±K. This corresponds to a two-fold phase ambiguity which, 
however, has no consequences since the code is invariant to phase shifts of K. 

Finally, in Figure 5. 14(c), S(tfJ) is periodic with period K/8. Again, this am­
biguity is immaterial as the code is invariant to rotations by multiples of re/8. 

S(t/J) 

Figure 5.13. S-curve with spurious stable points. 
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-n 

S(iP) 

••• ••• 
-n 

-n/8 7rl8 
(c) 

Figure 5.14. S-curves for a few TC-PSK systems. 

S-curves of the type in Figure 5.14 are very bad for they have extensive 
dead zones and spurious equilibria. If the initial phase error </J lies in a dead 
zone there will be no steering force to lead the loop toward a nearby lock 
condition and the system will perform a long random walk before locking. 

Exercise 5.3.1. Compute the S-curve for the phase detector of a Costas 
loop assuming that: (i) the modulation is binary PSK (BPSK) or, equiva­
lently, the symbols are ck = ±1; (ii) the Nyquist condition is satisfied; (iii) 

EslNo» 1. 
Solution. Paralleling the arguments leading to (5.3.29) it is easily seen that 

the error signal becomes 

e(k) "" sin[</J - m(</J)tr] + Im{ cZn(k)e-j [e+m(4»1rI} (5.3.32) 

where m(</J) takes the values ±1 so as to make I</J - m(</J)trlless than tr 12. 
Thus, taking the expectation of (5.3.32) and letting C2 ~E{lckI2} yields the 
desired result 
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S(¢) "'" sin[¢ - m(¢)n] (5.3.33) 

Exercise 5.3.2. Solve the problem in Exercise 5.3.1 for an M-ary PSK 
constellation Ck =ejak , a k e{0,2n/M, ... ,2n(M-l)/M}. 

Solution. With the same arguments used in the previous exercise it is 
found that 

S(¢) "'" sin[¢ - m(¢)2n/ M] (5.3.34) 

where m( ¢) is that integer satisfying the inequality 

(5.3.35) 

From (5.3.34)-(5.3.35) it is recognized that the detector exhibits an M-fold 
ambiguity. 

5.3.6. Tracking Performance 

The tracking performance of the loop in Figure 5.9 can be investigated 
with the methods of Chapter 3, which are now summarized for completeness. 
Further details may be found in [20] and [21]. To p'roceed, assume that steady­
state conditions have already been achieved and O(k) fluctuates around O. In 
all practical cases the fluctuations are so small that the following approx­
imation holds true: 

S[o - O(k)] "'" A[O - O(k)] (5.3.36) 

where A is the slope of the S-curve at the origin. Denoting ¢(k)~O - O(k) the 
phase error and inserting into (5.3.22) yields 

¢(k+ 1) = (l-yA)¢(k)-y N(k) (5.3.37) 

In this equation ¢(k) may be viewed as the response to N(k) of a filter with 
transfer function 

:HN(Z)=- y 
z-(l-yA) 

(5.3.38) 

The phase error variance a 2 is now expressed either as a function of the 
autocorrelation 
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RN(m) = E{N(k + m)N(k)} (5.3.39) 

or in terms of the power spectral density 

00 

SN(f) = T LRN(m)e-j21C171fT (5.3.40) 
m=--oo 

The former procedure results in 

(J2 = Y IR (m)(1-yA)lml 
A(2 - yA) m=- N 

(5.3.41) 

while the latter yields 

1/2T 

(J2 = J SN (f)iHN (f)i2 df (5.3.42) 
-1/2T 

where HN(f) is the right-hand side of (5.3.38) for z = ej21CjT , i.e., 

(5.3.43) 

In some practical cases the noise spectral density SN(f) is nearly flat over 
the frequency range where HN(f) takes significant values and (5.3.42) reduces 
to 

(5.3.44) 

where B L represents the noise equivalent bandwidth of the loop 

B T= yA 
L 2(2-yA) 

(5.3.45) 

This formula can be further approximated as 

(5.3.46) 

since yA is usually small as compared with unity. 

Exercise 5.3.3. Compute the phase error variance of a Costas loop with 
QPSK signaling assuming that: (i) the Nyquist condition is satisfied; (ii) the 
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signal shaping is evenly apportioned between transmit and receive filters (i.e., 
the receive filter is matched to the transmitted pulse); (iii) the ratio Es/No is 
large. Compare the result with the Cramer-Rao bound 

CRB(O) = _1 ___ 1 _ 
24J Es/No 

(5.3.47) 

Solution. Looking at Figure 5.9 it is apparent that for e(k) "" 0 (as happens 
in steady-state conditions) the noise term N(k) is approximately equal to e(k). 
Thus, setting ck "" ck and e(k) "" 0 into (5.3.19) yields 

(5.3.48) 

or, making use of (5.3.25), 

(5.3.49) 

On the other hand, as IcZe-j/i1 = 1 and {n(k)} is a white Gaussian sequence, it fol­
lows that {cZn(k)e-j/l} is equivalent to {nCk)}, which implies that {N(k)} are 
independent random variables with zero mean and variance No. Thus, the 
power spectral density of {N(k)} is constant: 

(5.3.50) 

This result may be put in a more convenient form bearing in mind that, because 
of the assumptions (i)-(ii), the signal energy equals 112 (see Appendix 2.A). 
Hence 

(5.3.51) 

from which we have No = 1/(2Es/No). Thus, (5.3.50) becomes 

(5.3.52) 

Next, we concentrate on the expression of the phase error variance in 
(5.3.44). From (5.3.30) it is seen that the slope of the S-curve at the origin is 
unity. Hence, taking (5.3.52) into account gives the desired result 

(5.3.53) 
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In comparing (5.3.53) with the Cramer-Rao bound we face the same 
conceptual difficulty that has been encountered in Chapter 3 when dealing with 
closed-loop frequency estimators. Costas estimators make observations over 
the infinite past with a weighting procedure that tends to emphasize recent data 
against old ones. By contrast, the Cramer-Rao bound is a lower limit to the 
variance of estimators which make observations of finite length. A solution to 
this difficulty is found with the same methods adopted in Chapter 3. In essence, 
the closed-loop scheme is transformed into an equivalent open-loop scheme 
with the same estimation errors and the observation length of the latter is taken 
as the equivalent observation length for the former. This length turns out to be 
(in symbol interval) 

L =_1_ 
eq 2B T 

L 

Thus, substituting into (5.3.53) and setting Leq=Lo yields 

10'2 

QPSK 

BLT=2'IO" 

... 
~ 10'3 

oS u 
§ 
'5 
> 
6 
t:: ., ., 
'" .. 
s: 10-4 

5 10 15 20 25 30 

Figure 5,15. Tracking error variance of a Costas loop with QPSK. 

(5.3.54) 
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2 1 1 
(J' =---

2Lo Es/No 
(5.3.55) 

which coincides with the CRB(O). 
It is worth noting that this coincidence holds only asymptotically, as 

EsiNo tends to infinity. In fact (5.3.53) is not correct at moderate Es/No 
values as a consequence of decision errors and/or loop nonlinearities. Figure 
5.15 shows simulation results for the tracking variance of a Costas loop with 
QPSK modulation. The loop bandwidth is 2% of the symbol rate and the 
channel response is Nyquist with a 50% rolloff. We see that the variance stays 
close to the MCRB for Es/No ~ 10 dB. 

5.3.7. Effect of Frequency Errors 

In this section we investigate the effects of frequency errors on the 
tracking performance of Costas loops. To simplify the analysis we assume that 
frequency errors are small compared with the symbol rate. 

The block diagram of the loop is shown in Figure 5.16. It coincides with 
the scheme in Figure 5.7, except that the leftmost mixer is driven at a reference 
frequency V which is generally different from v. Denoting by fd ~v - V the 
error and assuming ifdTi« 1, it can be shown that the samples from the 
matched filter are now expressed as 

with h(t)~ g(t) ® g( -t) and 

g(-t) k 
e- j2tclt 

I 

t=kT+r 

Figure 5.16. Block diagram of a Costas tracking system. 

(5.3.56) 

(5.3.57) 
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The error signal is still as in (5.3.19) and is repeated here for convenience: 

(5.3.58) 

Our task is to derive the equivalent model for the loop. To this end we first 
concentrate on the S-curve, which is the expectation of e(k) conditioned on a 
constant phase error lfJ(k) = O(k) - O(k), i.e., 

S(IfJ) = E{e(k)llfJ(k) = 1fJ} (5.3.59) 

An important question is how this curve is affected by frequency errors. We 
maintain that the dependence is negligible as a consequence of the assumption 
IfdTI «}. To prove our claim it is sufficient to show that the quantity 
x(k)e- j8(k) is independent offd. Indeed, ifthis is true, the detector decisions are 
also independent of fd (see Figure 5.16) and, in consequence, e(k) is not af­
fected by the frequency error. 

To proceed, from (5.3.56) we get 

(5.3.60) 

where n'(k) is a noise term statistically equivalent to n(k). Also, from (5.3.57) 
it is readily shown that 

O(i) = O(k) + 2n(i - k)fdT (5.3.61) 

Next, bearing in mind that O(k) - O(k) = 1fJ, equation (5.3.60) becomes 

(5.3.62) 

Now, as h[ (k - i)T] takes significant values only for Ik - il on the order of a 
few units, the exponenti,al in (5.3.62) is approximately unity (since IfdTI« 1) 
and this renders x(k)e- j8(k) independent offd, as anticipated. 

At this stage the derivation of the loop equivalent model is 
straightforward. Denoting by 

N(k)~e(k) - S[ O(k) - O(k)] (5.3.63) 

the equivalent noise and bearing in mind that the loop filter is still governed by 
(5.3.18) we have 
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8(k + 1) = 8(k) + rS[ (J(k) - 8(k)] + r N(k) (5.3.64) 

which corresponds to the block diagram in Figure 5.9 where (J is no longer a 
constant but varies in time according to (5.3.57). 

Equation (5.3.64) can be expressed in terms of the phase error l/J(k) as 
follows. By definition 

8(k) = (J(k) -l/J(k) (5.3.65) 

hence, taking (5.3.57) into account, yields 

8(k + 1) = (J(k + 1) -l/J(k + 1) 

= (J(k) + 27r/dT -l/J(k + 1) (5.3.66) 

and collecting (5.3.64)-(5.3.66) produces the desired result 

l/J(k + 1) = l/J(k) + 27r/dT - rS[l/J(k)] - r N(k) (5.3.67) 

In the steady state l/J(k) oscillates around some average value l/Jss which is 
a stable solution of the autonomous system 

l/J(k + 1) = l/J(k) + 27r/dT - rS[l/J(k)] (5.3.68) 

From this equation it appears that l/Jss must be a root of the equation (see also 
Figure 5.17) 

S(l/J ) = 27r/dT 
ss r (5.3.69) 

The slope of S(l/J) must be positive at l/J = l/Jss in order that this root be stable. In 
particular, if l/Jss is small so that S(l/Jss) '" Al/Jss' then from (5.3.69) we get 

(5.3.70) 

or, introducing the loop bandwidth BLT", rAI 4, 

(5.3.71) 

In conclusion, frequency errors cause static phase shifts. These may be 
sufficiently large as to degrade the error probability. For example, with a loop 
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S(I/!) 

Figure 5.17. Illustrating the stable solutions. 

bandwidth BL=10-3IT, even a frequency error as small as 10-4ITcauses a static 
error of 9° which may be disabling in many applications. Remedies to this 
drawback are discussed in the next section. 

Before doing so let us return to Figure 5.17. Clearly, there is a maximum 
value of lid I beyond which equation (5.3.69) has no solutions, which means 
that the loop cannot achieve a steady-state condition. This critical value is 
readily found to be 

jJmax) = 2BL . Smax 
7r A 

(5.3.72) 

where Smax is the maximum amplitude of the S-curve. The interval ±Irax) 

within which a locking condition is eventually found is called the locking 
range. The locking range is of the order of the loop bandwidth. 

5.3.8. Second-Order Tracking Loops 

The standard method to cope with frequency errors is to tum the original 
first-order loop filter into a second-order filter containing a further integrator. A 
widely used scheme is indicated in Figure 5.18. By inspection it is seen that the 
governing equations are 

O(k + 1) = O(k) + ~(k) 

~(k) = ~(k -1) + y(1 + p)e(k) - ~(k -1) 

(5.3.73) 

(5.3.74) 

where p is a positive constant. Clearly, the filter becomes first-order for p=O. 
The influence of the second integrator on the static phase error may be 

assessed as follows. First, rewrite (5.3.73) in terms of tP(k). Using (5.3.65)­
(5.3.66), this results in 
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Figure 5.18. Second-order loop filter. 
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(5.3.75) 

Next, assuming that a steady-state condition has been achieved, say lfr(k) = lfrss' 
from (5.3.75) it follows that g(k) must be constant: 

Then, from (5.3.74) it is seen that 

1 
e(k) = -e(k -1) 

l+p 

(5.3.76) 

(5.3.77) 

whose steady-state solution is zero (for p>O). Thus, letting N(k)=O in (5.3.63) 
yields 

(5.3.78) 

and comparing with (5.3.69) it is concluded that static phase errors have been 
eliminated. 

From the above discussion it appears that a second-order loop will 
eventually lock on the incoming carrier with no static error, whatever the value 
of p. In practice this is only true with very small values of id (on the order of 
the loop noise bandwidth). Furthermore, even in these conditions, the system 
response does depend on p and, therefore, it is of interest to look for p values 
that correspond to relatively short settling times. This problem is approached 
here under the assumption that the loop noise bandwidth is small compared 
with the symbol rate. Under these circumstances the variables lfr(k), g(k) and 
e(k) are slowly varying in time and the digital loop can be approximated by an 
analog system for which a well-established theory is available. 

The analog system is arrived at postulating that its state variables lfr(t), 
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;(t) and e(t) are related to ip(k), ;(k) and e(k) by relations ofthe type 

ip(t) "'" ip(k) 

dip(t) ip(k + 1) - ip(k) __ "'" -,-,-_-,--....:......:..--c. 

dt T 

ChapterS 

(5.3.79) 

(5.3.80) 

for kT + "C ~ t ~ (k + I)T + "C. Making these approximations in (5.3.74)-(5.3.75) 
and letting 

e(k) "'" Aip(k) 

after some manipulations it is found that 

d;(t) = r de(t) + yP e(t + T) 
dt dt T 

"'" r(1 + p) de(t) + yP e(t) 
dt T 

dip(t) = 27ifd - ~;(t) 
dt T 

e(t) = Aip(t) 

(5.3.81) 

(5.3.82) 

(5.3.83) 

(5.3.84) 

A solution for ip(t) is now derived by Laplace transform methods, setting 
to zero the initial conditions. This yields the Laplace transform for ip(t) 

where the parameters q and con are defined as 

Ll (1+ p)fYA 
q= 2.JP 

co ~ ~rAp 
n T 

(5.3.85) 

(5.3.86) 

(5.3.87) 

In the parlance of servomechanism theory, q is the damping factor and con the 
natural frequency of the loop. Next, the inverse Laplace transform of (5.3.85) 
is obtained from transform pairs as available in many textbooks. Figure 5.19 
illustrates the effect of the damping factor on the response to a step in the 
frequency error. It is apparent that, as time increases, ip(t) tends to zero anyway. 
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!/J(t) ~=O.3 

Figure 5.19. Transient phase error due to a frequency error step. 

Short transients are observed with damping factors in the range 0.6::; ~ ::; 1.0. 
These are the ~ values that are commonly adopted in practice. 

Returning to the loop filter, one wonders how to choose p so as to prop­
erly control the integrator's action. This problem can be addressed considering 
the loop tracking performance. Briefly, let us start with the loop model as 
summarized by the equations 

t/J(k + 1) = t/J(k) - ;(k) 

;(k) = ;(k -1) + y(1 + p)e(k) - }t!(k -1) 

e(k) = At/J(k) + N(k) 

(5.3.88) 

(5.3.89) 

(5.3.90) 

In writing (5.3.88) we have droppedJd since frequency errors are compensated 
in the steady-state. From these equations t/J(k) is found as the response to N(k) 
of 

H(z) = _ y[<1 + p)z -1] 
(z _1)2 + yA[(1 + p)z -1] 

(5.3.91) 

The noise bandwidth of this filter is found with the methods in [32] and is 
given by 

B T= 2p+yA(2+p) 
L 2[4 - yA(2 + p)] 

(5.3.92) 



224 Chapter 5 

Hence, the loop phase error variance is given by 

2 _ SN(0)2B 
(J - 2 L 

A 
(5.3.93) 

where the spectral density in the origin, SN(O), is computed as indicated in 
Section 5.3.6. Once SN(O) and A are given, the choice of p proceeds by first 
choosing the loop bandwidth value so as to guarantee small phase errors (in 
general, computer simulations are needed to establish how small they must be 
to keep bit error rate degradations within reasonable limits). Then, equations 
(5.3.86) and (5.3.92) are solved for p, taking ~ in the range 0.6 $ ~ $1.0. 

5.3.9. Phase Noise 

So far a constant carrier frequency has been assumed. In practice the car­
rier frequency undergoes slow fluctuations due to imperfections in the transmit­
ter and receiver oscillators. Correspondingly the demodulated carrier becomes 
a phase modulated sinewave of the type e j [21rVt+9(t») wherein the modulation 
O(t) is referred to as phase noise. In this section we characterize the statistics 
of phase noise and establish its effects on the tracking performance of a Costas 
loop. 

As a first step in this direction we concentrate on the loop equivalent 
model. With the same arguments used in Section 5.3.4 it can be shown that the 
scheme in Figure 5.9 is still valid, except that the constant input 0 must be 
replaced by the samples O(k) of the phase noise process. In particular, 
assuming that the phase errors tP(k)~e(k) - e(k) are sufficiently small to allow 
the approximation S[ tP(k)] '" AtP(k) leads to the block diagram depicted in 
Figure 5.20 wherein, for greater generality, we have adopted a generic loop 
filter .1"(z) instead of a first-order one. In particular, .1"(z) has the form 

for a first-order and 

for a second-order loop. 

1 
.1"(z)=­

z-1 

.1"(z) = z(1 + p) -1 
(z _1)2 

(5.3.94) 

(5.3.95) 

As is seen, there are two inputs to the scheme in Figure 5.20, N(k) and 
O(k). The former accounts for thermal noise and, possibly, intersymbol 
interference; the latter for phase noise. Accordingly, tP(k) can be thought of as 
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Figure 5.20. Loop equivalent model in the presence of phase noise. 

the sum of two uncorrelated terms, if>N(k) and if>e(k), corresponding to N(k) and 
8(k), respectively. By inspection it is easily seen that C/JN(k) is the response to 
N(k) of the filter 

:J{ (z) = _ r:F(z) 
N l+rA:F(z) 

(5.3.96) 

Similarly, C/Je(k) may be viewed as the response to 8(k) of the filter 

:J{ (z) ___ 1 __ 
e - 1 + rA:F(z) 

(5.3.97) 

The phase error variance is given by the sum of the separate variances of 
if>N(k) and if>e(k), which are expressed by 

1/2T 

O'~ = f SN (f)IHN (f)12 df (5.3.98) 
-1/2T 

1/2T 

O'~ = f S~d)(f)IHe(f)12 df (5.3.99) 
-1/2T 

where HN(f) and He(f) denote the right-hand sides of (5.3.96)-(5.3.97) for 
z = e j2TCjT and S~d)(f) represents the power spectral density of fJ(k). Another 
way of expressing O'~ is by means of the loop bandwidth 

(5.3.100) 
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In fact, assuming that SN(f) is flat over the range where IHN(f)1 takes 
significant values, equation (5.3.98) becomes 

(5.3.101) 

Now we tum our attention to the phase noise spectral density S~d)(f) 
involved in (5.3.99). It should be stressed that S~d)(f) corresponds to the time 
discrete process O(k) whereas many references (see [28], [33]-[34], for 
example) provide experimental data for the spectral density S~C) (f) of the 
continuous-time process O(t). Let us postpone for a moment the question of the 
relation between the two and concentrate on the characterization of S~C)(f). 

One popular representation of this spectral density consists of dividing the 
frequency axis into separate segments and expressing S~C) (f) as a function of 
the type Ifl-(2+8) on each segment. In particular, 8 = 0 corresponds to Wiener 
phase noise, whereas 8 = 1 and 8 = 2 are related to flicker noise and random 
frequency walk, respectively. In many practical cases flicker noise is the domi­
nant disturbance. 

The following alternative representation of S~C) (f) has been accepted as a 
reference in the European digital terrestrial television broadcasting (dTTb) 
project [34]: 

S.(C)(f) -1O-c + {1O-a 

(J - 1O-a .1O-b(lfl-fI)/<h-ft) 
If I ~.t; 
If I > .t; 

(5.3.102) 

In this equation the PSD is expressed in seconds and the parameters a, b, c, .t; 
and f2 are related to the quality of the transmit and receive oscillators. Typical 
values are a = 6.5, b = 4, c = 10.5, .t; = 1 kHz and f2 = 10 kHz. A plot of 
S~C)(f) with these parameter values is shown in Figure 5.21. Note that S~C)(f) 
must be set to zero for sufficiently high frequencies to account for the ban­
dlimiting effects of the intermediate-frequency (IF) filter in the receiver. 

The relation between S~d)(f) and S~C)(f) is established as follows. By 
definition we have 

00 

S~d)(f) = T LRe(mT)e-j2TCm[f (5.3.103) 
m=-oo 

where Re('t')~E{O(t + 't')O(t)} is the inverse Fourier transform of S~C)(f). On 
the other hand, application of the Poisson sum formula [37, p. 395] yields 

00 00 

T LRe(mT)e-j2TCm[f = LS~C)(f - miT) (5.3.104) 
m=-oo m=-oo 
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Figure 5.21. Phase noise PSD. 

Hence, comparing with (5.3.103) produces the result sought 

~ 

S~d)(f) = }:S~C)(f - miT) (5.3.105) 
m=-oo 

Figure 5.22 illustrates the total error variance (j2 = (j~ + (j~ as a function 
of the loop bandwidth for a second-order loop with a damping factor of 
~ = 0.7. The phase noise PSD has the shape indicated in Figure 5.21, with 
parameter a = 6.5, b = 4, c = 10.5, fi = 1 kHz and fi = 10 kHz. The modu­
lation pulses are root-raised-cosine-rolloff with a 50% rolloff. As BL decreases 
we see that (j2 tends to a value independent of the SNR. This is expected 
because the thermal noise contribution becomes negligible with a small BL • 

When BL increases, the loop tracking capability improves and the phase noise 
contribution decreases. At the same time, however, the thermal noise con­
tribution increases. For high SNR values an optimum loop bandwidth exists 
that minimizes the error variance. 
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Figure 5.22. Total phase error variance as a function of the noise bandwidth. 

5.4. Decision-Directed Phase Recovery with Offset Modulation 

5.4.1. Phase Estimation Loop 

Phase recovery with offset formats can be addressed with the same 
methods adopted in the previous section. In view of this similarity, the ensuing 
treatment is considerably abbreviated. As happens with non-offset signaling, 
two approaches may be followed, one based on the estimation equation 
(5.2.29), the other on the maximization of the log-likelihood function (5.2.28). 
The former leads to a structure similar to that shown in Figure 5.6, the latter 
produces a Costas loop. For the sake of brevity we concentrate on the latter. 

We begin with the derivative of the log-likelihood. From (5.2.28) we have 

(5.4.1) 
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where the functions J and Q are defined as 

(5.4.2) 

J(k + 1/2,fJ) + jQ(k + 1/2,fJ)~x(k + 1/2)e-iJ (5.4.3) 

Next, the true data in (5.4.1) are replaced by their estimates taken from the 
detector. Finally, the generic term in the sum is computed setting e equal to the 
current phase estimate O(k) and the result is used as an error signal to update 
this estimate. Formally we have 

O(k + 1) = O(k) + ye(k) (5.4.4) 

with 

(5.4.5) 

Figure 5.23 illustrates a block diagram for this algorithm. As is seen, the 
output x(t) from the matched filter is sampled at twice the symbol rate to pro­
duce x(k)~x(kT + -r) and x(k + V2)~x(kT + T 12 + -r). ~ series-to-parallel 
converter (SIP) separates (x(k)e- j9(k)} from {x(k + 1/2)e-j9(k)}. The block la­
belled I1Q computes the in-yhase and quadrature components of x(k) and 
x(k+1I2) with respect to ej9(k) which are denoted J(k), Q(k), J(k+1I2) and 
Q(k+1I2). 

With un coded OQPSK modulation the detector makes the following 
decisions: 

ak =sgn[J(k)] (5.4.6) 

bk = sgn[Q(k + 1/2)] (5.4.7) 

where sgn[z] equals ±1, depending on the sign of z. 
S-curves for the phase detector (5.4.5) are difficult to derive analytically. 

The following qualitative arguments provide some insight into the form of 
these curves for uncoded OQPSK and an overall channel response h(t) 
satisfying the first Nyquist criterion. To proceed, we open the feedback loop in 
Figure 5.23 and rotate the samples x(k) and x(k+ 112) by a fixed angle (J. This 
produces 

(5.4.8) 
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Figure 5.23. Block diagram for the phase tracking loop. 

J(k + 1/2) + jQ(k + 1/2) = eN[jbk + ~aih(k - i + 1/2) 1 + n"(k + 1/2) (5.4.9) 

where l/J£() - e and n'Ck) and n"(k + 1/2) are phase rotated versions of n(k) 
and n(k+1I2) respectively. From (5.4.6)-(5.4.7) it follows that 

ilk = sgn[ ak cosl/J - sinl/J ~bih(k - i + 1/2) + nOise] 

bk = sgn[bk cosl/J + sinl/J ~aih(k - i + 1/2) + noise 1 

(5.4.10) 

(5.4.11) 

In general, the values of ilk and bk are difficult to predict from (5.4.10)­
(5.4.11). Nevertheless, for l/J close to either 0, or ±n or ±7rI2, a few simple 
conclusions can be drawn. For example, consider the terms in square brackets 
in (5.4.10). The first is the useful signal component, the second accounts for 
intersymbol interference from the quadrature channel and the last is contributed 
by thermal noise. For l/J close to zero we have cosl/J "" 1, sinl/J "" 0 and (5.4.10) 
yields (at high SNR) 

(5.4.12) 

Similarly, for l/J close to ± n, it is found that 

(5.4.13) 

Finally, for l/J close to ±nI2, the signal component in (5.4.10) is negligible 
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and Elk becomes a random variable (independent of ak) taking values ±1 with 
the same probability 

(5.4.14) 

With similar arguments it is concluded that 

(5.4.15) 

bk ::; -bk , ¢::; ±K (5.4.16) 

bk ::; ±1, ¢::; ±K12 (5.4.17) 

With these results at hand it is a simple matter to get the S-curve for ¢ 
about 0, ±n and ±n 12. In fact, substituting e(k) = e into (5.4.5) and letting 
C,k ::; ak and bk ::; bk (which correspond to ¢::; 0) yields 

e(k) ~ Im{ej '[1 + ja,~b,h(k -i -1/2)]+ nOise} 

-Re{ e"[j + b,~a,h(k - i + lj2)] + nOise} (5.4.18) 

Thus, bearing in mind that {ak } and {b k} are zero mean and uncorrelated 
sequences, the expectation of (5.4.18) results in 

S(¢) = 2 sin ¢, ¢::; 0 

Similarly, for ¢ about ±K, it is found that 

S(¢) = -2sin¢, ¢::; ±K 

Finally, for ¢::; K12, equation (5.4.5) becomes 

e(k) - Im{e j.[ a,a, + jii,~b,h(k -i -112)]+ nOise} 

- Re{ ej'[jb,b, + b, ~a,h(k - i + 112)] + nOise} 

(5.4.19) 

(5.4.20) 

(5.4.21) 

Taking the expectation and bearing in mind that Elk is independent of ak and bk 

is independent of bk , it is concluded that S(KI2)=0. With the same arguments it 
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Figure 5.24. S-curve for OQPSK. 

is shown that the S-curve vanishes at c/J = -nI2. 
The above results are qualitatively summarized in Figure 5.24. Comparing 

with the S-curve in Figure 5.12(b) (which corresponds to QPSK) it is seen that 
there are now only two stable points in a period (c/J = 0 and c/J = n). Symbol 
decisions have the wrong sign for c/J = n. This drawback may be overcome by 
differential encoding/decoding. 

5.4.2. Tracking Performance with Offset Formats 

For the sake of simplicity we consider only uncoded OQPSK modulation. 
Also, we assume that the channel response h(t) is Nyquist and the filtering is 
equally split between transmitter and receiver. In these conditions it is easily 
checked that: 

(i) The signal energy is unity (see also Appendix 2.A) and, accordingly, the 
noise power spectral density may be written as 

(5.4.22) 

(ii) The samples x(k) and x(k+ 112) from the matched filter have the form 

x(k) = ejlJ [ ak + j~bjh(k - i -1/2)]+ n(k) (5.4.23) 

x(k + 1/2) = ejlJ[jbk + ~ ajh(k - i + 1/2)] + n(k + 1/2) (5.4.24) 

Here, n(k) and n(k+1I2) are zero-mean complex-valued random variables with 
the same variance 2No. Also, the real component of n(k) is independent of the 
imaginary component of n(k+1I2) and, similarly, the imaginary component of 
n(k) is independent of the real component of n(k+ 112). 



Carrier Phase Recovery with Linear Modulations 233 

To proceed, let us first concentrate on the error signal in (5.4.5). In the 
steady state the phase errors are small so that ejlp(k) "" 1. Furthermore, most 
decisions are correct and we have 

(5.4.25) 

Thus, substituting (5.4.23)-(5.4.25) into (5.4.5) and rearranging yields 

e(k) = 2sintfJ(k) + NSN(k) + NTN(k) (5.4.26) 

where Ns~k) is a self-noise term 

(5.4.27) 

while NT~k) is contributed by thermal noise 

(5.4.28) 

with 

(5.4.29) 

(5.4.30) 

Next we compute the correlation of the overall noise in (5.4.26). Taking the 
expectation of (5.4.26) yields the S-curve for tfJ about the origin: 

S(tfJ) = 2sintfJ (5.4.31) 

Note that the slope of the S-curve at the origin is A=2. 
From (5.4.27) it appears that Ns~k) has zero mean. Also, bearing in mind 

that ak and bk take the values ±l independently, the autocorrelation of Ns~k) is 
found to be 

{
2 l:h2(k-1/2)-2h2(1I2) 

RSN(m) = k=-oo 

-h2(m + 1/2) - h2(m -1/2) 

As for NT~k), it can be shown that 

m=O 
(5.4.32) 

m~O 
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R",(m) = { E'~NO m=O 
(5.4.33) 

Finally, since NSN(k) and NT~k) are uncorrelated, the autocorrelation of the 
overall noise process N(k)~NsN(k) + NTN(k) in (5.4.26) is given by 

(5.4.34) 

With these results at hand the error variance is computed with the methods 
illustrated in Section 5.3.6. In particular, equation (5.3.41) is still valid and 
reads (recall that A=2) 

(5.4.35) 

where the step size r is related to the loop noise bandwidth by (see (5.3.46)) 

(5.4.36) 

Exercise 5.4.1. Compute the phase error variance of a Costas loop when 
h(t) is a raised cosine Nyquist pulse with rolloff factor a=l. 

Solution. For a = 1 the samples of h{t) at t = kT - T 12 are given by 

h(k -1/2) = r~2 

Substituting into (5.4.32) yields 

rs RSN(m) = ~.25 

and from (5.4.33)-(5.4.34) we obtain 

k=O,l 

elsewhere 

m=O 

m=±l 

elsewhere 

2 
0.5+-- m=O 

Es/No 
RN(m) = -0.25 m=±l 

0 elsewhere 

(5.4.37) 

(5.4.38) 

(5.4.39) 
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Finally, collecting (5.4.35)-(5.4.36) and assuming r« 1 gives the desired 
result 

(5.4.40) 

Figure 5.25 illustrates simulation results corresponding to BLT=5.10-3• The 
modified Cramer-Rao bound is also shown for comparison. This bound has 
been computed letting 

1 
Lo = 2B T 

L 
(5.4.41) 

As is seen, the simulations are quite close to the bound at signal-to-noise ratios 
about 10 dB. It is also apparent that, as Es/ No increases, the error variance has 
a floor corresponding to the self-noise term BiT2 in (5.4.40). 

10-2 

OQPSK 

u=1 

BLT=5-IO-3 

N 

10-3 ~ 
oS 
OJ 
§ 
-~ 
> ... g 
<U 
<U 
~ 
if 10-4 

5 10 15 20 25 30 

Figure 5_25_ Estimation variance with Nyquist pulses with ~L 
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5.4.3. Effects of Phase Noise and Frequency Errors 

The effects of phase noise and frequency errors can be investigated with 
the same methods used with non-offset formats and essentially the same 
conclusions are arrived at. In particular, in the presence of a constant error f d, 

the loop equivalent model in Figure 5.20 is still valid provided that we set 

(5.4.42) 

5.5. Multiple Phase-Recovery with Trellis-Coded Modulations 

5.5.1. Tentative Decisions 

In discussing the tracking performance of Costas loops we did not 
distinguish between coded and uncoded modulations. We only assumed that 
the detector decisions are (almost always) correct in either case. With trellis­
coded modulation, however, a question arises insofar as the detector reliability 
depends on the decision delay and it is not clear where the break-even point is 
between having good decisions or short delays. As we shall see, this issue will 
prompt some important qualifications on the results of the previous sections 
and, ultimately, will open the way to improvements on the decision-directed 
algorithms discussed earlier. 

Let us start with some definitions. Denote by { ... ,ck-3'Ck- 2 ,Ck-.l the 
transmitted sequence up to time kT, and let Sk E {0,1, .. . ,Q -I} be the generic 
node in the encoder trellis at that time. Also, call { ... ,ct~§,ct~Lct~n the 
sequence associated with the survivor path entering the m-th node (see Figure 
5.26) andA(m,ck ) the metric for the branch stemming from Sk=m and bearing 
the symbol label Ck+1• If the Nyquist condition is satisfied, the samples at the 
matched-filter output are expressed by 

x(k) = ckejl} + n(k) 

and the metric A(m, ck ) takes the form [30] 

(5.5.1) 

(5.5.2) A(m'Ck) = Ix(k) - ckej9(k)r 

whereO(k) is the carrier phase estimate at kT. 
According to the formulation in the previous section the sequence {O(k)} 

is computed from equations (5.3.18)-(5.3.19) which are repeated here for con-
venience 
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Figure 5.26. Encoder trellis for a fOUf-state code. 

O(k + 1) = O(k) + reek) (5.5.3) 

e(k) = Im{c;x(k)e- j8(k)} (5.5.4) 

Looking at (5.5.4), however, a first problem arises with c; insofar as the 
Viterbi detector makes final decisions with some delay ~ and, in consequence, 
only the estimates { .. . ,ck-6-3,ck-6-2,Ck-6-d are available at time kT. A 
possible solution is to replace e(k) in (5.5.3) by its delayed version 

(5.5.5) 

In this way a delay is introduced in the tracking loop, however. As ~ may be of 
the order of 15-20 symbol intervals or greater, this would degrade the tracking 
performance and could even make the loop unstable, depending on the noise 
bandwidth. 

As a compromise, a smaller delay D may be employed, which means 
updating O(k) according to 

O(k + 1) = O(k) + reek - D) (5.5.6) 

(5.5.7) 

Naturally, the problem arises as to where C;_D is to be taken from and which is 
the best value for D. A reasonable answer to the first question comes from 
presuming that the sequence { .. . ,Ck _3,Ck_2,ck_d associated with the best 
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survivor at t=kT is sufficiently reliable for synchronization purposes. In other 
words, anyone of its elements can be used to compute (5.5.7). In the parlance 
of Viterbi decoding, decisions Ck-D with a small D are referred to as tentative 
decisions. They should be distinguished from the final decisions which are 
delivered with a larger delay and are taken from the subpath in common with 
all the survivors (see Figure 5.27). 

The second question is concerned with the optimum D. Intuitively, a large 
D corresponds to more reliable decisions but, as we shall see shortly, it 
produces larger tracking errors. This may be seen by deriving the loop 
equivalent model for the new equations (5.5.6)-(5.5.7) and computing the 
variance of the phase errors as a function of D. The first step is accomplished 
with the methods of Section 5.3.6 and leads to the block diagram in Figure 
5.28. Comparing it with Figure 5.9, it is seen that the only change is in the loop 
delay; all the other parameters are the same. Also, assuming negligible phase 
noise, the phase error variance is given by 

(5.5.8) 

As is now explained, the dependence of d on the parameter D is hidden in 
the expression of the loop equivalent bandwidth. In fact, the loop transfer 
function is readily derived from Figure 5.28 and reads 

o 

H(z) = r 
ZD+l_ZD +rA 

o o 
" " 

0----0----0 

" ~J ,---0, 0 0 ,0 

" " ',', , 
common ',',,' 
subpath 0 0 0 0 0----0 " ',,' 

" X 
" " " o 0----0 o o o 

I ~ 

k-4 k-3 k-2 k-l k k+l 

Figure 5.27. Survivors merge in a common path. 

(5.5.9) 
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e(k) 

FILTER 

Figure 5.28. Mathematical model with delayed decisions. 

Then, with the methods indicated in [32] the loop bandwidth is found to be 

K 
2(2-K) 

K(l+K) 
2(1- K)(2 + K) 

BLT= K(1+K-K2) 

2(2- 3K - K2 + K3) 

for D= 0 

for D= 1 

for D= 2 

K(1+2K - K2 _K3) 
for D= 3 

2(2-3K -4K2 +K3 +K4 ) 

with Kg,yA. For example, for K=0.04 we have 

1.00.10-2 for D=O 

1.06.10-2 for D = 1 
BLT= 

1.11.10-2 for D=2 

1.15.10-2 for D= 3 

(5.5.10) 

(5.5.11) 

These results show that increasing D makes the loop bandwidth grow larger 
and the tracking performance deteriorates (since the error variance is 
proportional to B L)' For instance, in passing from D=O to D=3 the error 
variance increases by 0.6 dB. 

Strictly speaking the foregoing argument might be flawed as, in deriving 
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(5.5.8), the symbol decisions have been assumed correct while they need not be 
so. In other words, one might argue that increasing D would improve the 
decision reliability and, correspondingly, the tracking performance. 
Simulations show that this is not the case, however. Rather, they indicate that 
equation (5.5.8) is accurate at reasonably high SNR values, which implies that 
the optimum decision delay is D=O. It should be pointed out, however, that this 
conclusion is only true with negligible phase noise. In the presence of phase 
noise the optimum delay may not be zero. 

5.5.2. Multiple Synchronizers 
Returning to the notion of tentative decisions, we have seen that a reason­

able approach is to take them from the best survivor. An intuitive motivation 
for this is that the best survivor provides the most reliable decisions at the cur­
rent time. On occasions, however, the accumulated metric of the best survivor 
may be only slightly different from the others, as happens when the Viterbi al­
gorithm is operating in "difficult" conditions (for example, when trying to re­
cover from a loss-of-Iock). Under these circumstances the motivation in favor 
of any specific survivor is weak and one wonders whether more clever strate­
gies can be found. The answer is difficult as long as we think of a single phase 
estimator. But what if several estimators are allowed? A possible answer is as 
follows. 

Suppose we have as many estimators as the number of survivors. The 
generic survivor, say the one arriving at the m-th node at time kT, generates a 
phase estimate based on its own tentative decisions. This is performed by 
updating the previous estimate according to (see also (5.5.3)-(5.5.4)) 

{}(m>Ck + 1) = {}(m)(k) + ye(m)(k) 

e(m)(k) = Im{clm)\(k)e-i8(m)(k)} 

(5.5.12) 

(5.5.13) 

h { A(m) A(m) A(m)}. h . d . h h . Th were . .. ,Ck- 3,Ck- 2 ,ck-l IS t e sequence associate WIt t at survIvor. en, 
the metrics 

(5.5.14) 

are employed for the branches stemming from the m-th node in the detection 
algorithm. 

Clearly, the above scheme implies an array of synchronizers. This concept 
has been proposed in [36]-[38] and may be viewed as an application of a 
general principle dubbed per-survivor-processing (PSP) [39]. The PSP concept 
aims at reducing the complexity of a Viterbi detector whenever the received 
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signal has unknown parameters. The crucial idea is that these parameters (the 
carrier phase, in our case) must be estimated on the basis of the data sequence 
associated with each survivor and the estimates must be incorporated into the 
Viterbi algorithm. 

A natural question arises as to the pros and cons of multiple tracking. One 
obvious drawback is that multiple tracking needs extra processing. The bright 
side is that there are significant advantages when operating under "difficult" 
conditions, such as those occurring in the presence of phase noise or during re­
acquisitions. Marginal gains are expected, instead, during "normal" tracking 
operations. 

Simulations shown below illustrate this superior performance of multiple 
phase trackers; further confirmations may be found in [37]. The comparisons to 
follow focus on three performance indicators: (i) bit error rate (BER) versus 
Es! No; (il) mean time to slip; (iii) acquisition time. 8PSK trellis-coded mod­
ulation is considered, with four- or eight-state coding schemes described in 
Ungerboeck's paper [30] and indicated as UNG-4 and UNG-8 respectively. An 
equivalent noise bandwidth of BLT=1O-2 is assumed and the tentative decision 
delay D is set to zero, both with single and multiple tracking. Finally, the phase 
noise is modeled as a Wiener process 

8(k + 1) = 8(k) + t1(k) (5.5.15) 

where the t1(k) are independent and zero-mean Gaussian random variables 
with the same standard deviation 0"". 

Figure 5.29 illustrates BER versus Es/ No in the absence of phase noise. 
The solid curve corresponds to feeding the Viterbi detector with an ideal phase 
reference. It appears that single tracking (ST) and multiple tracking (MT) have 
approximately the same performance, with differences of only 0.1 dB in terms 
of Es / No. By contrast, Figure 5.30 indicates that multiple tracking allows 
power savings of 2-3 dB in the presence of phase noise with 0",,=1.3°. 

Cycle slipping has been mentioned in Section 5.3.4 in the context of 
synchronization failures of Costas loops and is resumed here to outline the 
differences between single and multiple tracking. The detector fails when the 
phase errors deviate enough from a stable point in the S-curve. This degrades 
the estimation process and may induce even larger phase errors, to the point 
that the detector decisions becomes totally random. Under such circumstances 
the estimation mechanism stops working properly and we say that a loss-of­
lock has occurred. 

Out-of-lock operation of a Costas loop may be described as a random 
walk. Recovery from a loss-of-lock takes place when, by chance, the current 
phase estimate comes close to some stable point. At that stage the detector deci­
sions improve and the phase estimate is steered toward a steady-state condition. 
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Figure 5.29. Single tracking versus multiple tracking in the absence of phase noise. 
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Figure 5.30. Single tracking versus multiple tracking in the presence of phase noise. 
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Figure 5.31. Mean time to slip with UNG-4 coding. 

to' 

to' 

] 
e 
~ to' 
.e. 
en 
.9 
~ 
~ to' 

fi 
::E 

to' 

to' 
to 

BINo> dB 

Figure 5.32. Mean time to slip with UNG-8 coding. 
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Now, let us see what happens with a multiple synchronizer. Several phase 
estimators are operating simultaneously and a cycle slip takes place when all 
the estimators fail at the same time. Conversely, the cycle slip finishes when 
one of the estimators, whichever it is, approaches a stable operating point. 

Differences between multiple and single tracking should be clear at this 
stage: (i) the chances of losing lock seem slimmer when several trackers are 
pursuing the carrier phase; (U) assuming that a loss-of-Iock has occurred, the 
chances of approaching a stable point seem better when several trackers are 
searching around. Based on these intuitive considerations we expect that multi­
ple tracking may be useful to reduce slip rates (or, equivalently, to increase the 
time separation between slips) and to shorten reacquisitions. These conclusions 
are confirmed by the computer simulations in Figures 5.31-5.32. 

They show the mean time to slip (MTS) versus Es / No. To give an 
example, consider phase recovery for the single-channel-per-carrier 
INTELSAT system, wherein slip rates less than one per minute are required at 
Es/No=10 dB. With a symbol rate of 64 kb/s, this means an MTS of 2.106 

symbols or greater. From Figures 5.31-5.32 we see that a multiple tracker gains 
about 0.7 dB at MTS=2·106. 

Figures 5.33-5.34 illustrate acquisition times with single and multiple 
trackers. Acquisition time (AT) is defined as follows. Suppose that the 
(single/multiple) phase recovery algorithm is running in its tracking mode. At 
time zero a constant offset Ill/> is applied to the carrier phase and the resulting 
system evolution is monitored until the best phase estimate enters a strip of 
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Figure 5.33. Acquisition time with UNG-4. 
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Figure 5.34. Acquisition time with UNO-8. 
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±100 around a stable point in the S-curve. The number of symbol periods 
elapsed from the start is taken as AT_ Since AT is a random variable, its aver­
age over 100 acquisitions has been computed to draw each point. Especially 
with UNG-4 it appears that multiple tracking allows significant acquisition 
time reductions. 

5.6. Phase Tracking with Frequency-Flat Fading 

5.6.1. Channel Estimation Problem 

So far only additive white Gaussian noise (A WGN) channels have been 
considered. In this section we investigate phase recovery for transmission over 
flat-fading channels [40]-[42]_ An overview of such channels is first provided 
for completeness. 

We assume that the transmission medium has multiple propagation paths, 
with associated delays located in a small range compared with the inverse of 
the signal bandwidth_ In these conditions the channel transfer function is 
constant over the signal bandwidth and the channel is said to be frequency-flat 
for it affects the signal only through a (complex) multiplying factor. However, 
as the structure of the medium is time-varying, the factor varies in time and 
(assuming many propagation paths) becomes a complex-valued Gaussian 
random process 
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aCt) = p(t)ej()(t) (5.6.1) 

When the paths are only due to reflections from randomly moving scatter­
ers, the process has zero mean and, at any given time, its envelope has a 
Rayleigh probability density function 

2 
pep) = 2pe-P p~O (5.6.2) 

where, without loss of generality, it has been assumed that E{p2}=1. Under 
these circumstances we speak of a frequency-flat Rayleigh channel. In the 
presence of fixed scatterers, vice versa, the process has a non-zero mean, its 
envelope is Rice distributed, and the channel is said to be Ricean. The 
probability density function of pet) takes the form (assuming again E{p2}=I) 

pep) = 2p(K + 1)e-(K+l)P2 -K 10 (2P.JK(K + 1)), P ~ 0 (5.6.3) 

In this equation Io(x) is the zero-order modified Bessel function of the first kind 
and K is the ratio ofthe power from the fixed scatterers to the (average) power 
from the moving scatterers. Equation (5.6.3) reduces to a Rayleigh distribution 
for K=O, whereas it tends to a delta function c5(p-l) as K tends to infinity. This 
is intuitively clear since K=oo means that there are no moving scatterers and the 
channel is just A WON. 

The fading autocorrelation function 

R(r) = E{a(t+r)a*(t)} (5.6.4) 

gives a measure of the rapidity of the channel variations. For example, when 
the channel varies slowly, R(r) is spread over a rather long interval. Vice versa, 
when it varies quickly, R( r) fades away very soon. The duration of R( r), as 
indicated in Figure 5.35, is referred to as the coherence time of the channel. 

S(j) 

o f 

Figure 5.35. R( 1') and S(j) are Fourier transform pairs. 
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Another way to express the rapidity of the channel variations is by means 
of the Fourier transform of R( r), S(j), which is referred to as the Doppler 
spectrum. The bandwidthfD of this spectrum is the Doppler bandwidth. This is 
approximately the inverse of the coherence time Ar. 

Simple Doppler spectra are adopted in theoretical studies. With satellite 
mobile channels and/or HF channels a useful spectrum shape is obtained by 
passing white noise through either Butterworth or Gaussian shaping filters. 
This results in either 

(n denotes the number of filter poles) or 

S(J) = S(O) exp{- f22} 
2fD 

(5.6.5) 

(5.6.6) 

With land cellular mobile communications it has been found [43] that the 
Doppler spectrum is well approximated by 

(5.6.7) 

In the above equationsfD is given by 

(5.6.8) 

wherev is the mobile vehicle speed and A the transmission wavelength. 
When a PAM signal is transmitted over a frequency-flat channel, the 

received waveform has the form 

r(t) = s(t) + w(t) (5.6.9) 

with 

N-\ 

s(t) = a(t)ej21M L cjg(t - iT - r) (5.6.10) 
j=O 

Note that the carrier phase does not appear in (5.6.10) as it has been 
incorporated into the complex fading process. 

In many practical cases the symbol rate is large enough (compared with the 
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Figure 5.36. Receiver block diagram. 

Doppler bandwidth) that a(t) is nearly constant over the duration of the generic 
pulse g(t-iT-7:). In these conditions (slow fading) the following approximation 
can be made: 

a(t)g(t - iT - 7:) "" a(i)g(t - iT - 7:) (5.6.11) 

where a(i) is short for a(iTH). Then, equation (5.6.10) becomes 

N-J 

s(t) = ej21rVt L a(i)c;g(t - iT - r) (5.6.12) 
;=0 

Assuming that both frequency offset and timing epoch are known and the 
convolution g(t) ® g( -t) satisfies the Nyquist condition, the received wave­
form may be processed as indicated in Figure 5.36 to obtain 

x(k) = a(k)ck + n(k) (5.6.13) 

If the channel gains (a(k)} were known, the data sequence could be optimally 
detected in one of the following manners [44]. 

5.6.1.1. Uncoded modulations 

The detector makes symbol-by-symbol decisions according to the rule 

(5.6.14) 

wh!re ck is the generic symbol from the signal alphabet. 

5.6.1.2. Coded modulations 

The optimum receiver is a maximum likelihood (ML) sequence detector. 
Denoting c£{cO'c1"",CN_1} the generic coded sequence, its task is to look for 
that sequence that minimizes the Euclidean distance of {a(k)cd to {x(k)}: 
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(5.6.15) 

5.6.1.3. Coded modulations with interleaving 

Interleaving/de-interleaving techniques are often used with coded 
modulation to scramble the symbols and protect the decoding process against 
deep fades. With interleaving, the received samples x(k) are first descrambled 
and then are fed to a maximum likelihood detector. Calling {x(k)} the 
descrambled sequence and {a(k)} the corresponding descrambled channel 
gains, the detector looks for that sequence c~{CO,Cl, ... ,CN_d that minimizes 
the Euclidean distance of {a(k)cd to {x(k)} 

(5.6.16) 

From the above discussion it is seen that channel gains are needed for 
optimum detection in any case. As they are unknown, however, they must be 
estimated in some manner. Clearly, channel gain estimation is a generalization 
of the phase recovery problem encountered with A WGN channels where the 
channel phase shift is the only parameter of interest (attenuation is 
compensated for by some automatic gain control circuit). 

Interestingly enough, channel amplitude is not always necessary with 
fading channels. For example, consider uncoded M-ary PSK symbols, i.e., 

(5.6.17) 

and call i\ = ejiik a trial value of ck. Then, letting a(k) = p(k)ejlJ(k) and bear­
ing in mind that 

equation (5.6.14) becomes 

(5.6.19) 

which does not involve p(k). Thus, only channel phase information is needed 
with uncoded PSK. 
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Unfortunately, the disappearance of p(k) from the detection rule does not 
necessarily imply that carrier phase can be derived with the same methods dis­
cussed in the context of AWGN channels. Actually, phase fluctuations have 
rather different dynamics in the presence of fading. To explain this point, con­
sider the occurrence of a deep fade. Figure 5.37(a) depicts a possible trajectory 
of a(t) during a fade, whereas Figure 5.37(b) shows the corresponding varia­
tions of p(t) and (J(t). It is seen that, as p(t) approaches a minimum, (J(t) varies 
quite rapidly and, in fact, it undergoes a jump of about 1800 in a short time. 
Unfortunately, such a jump may be difficult to track with a Costas loop since 
the loop bandwidth must be kept small to limit tracking errors under unfaded 
conditions. A deep fade will likely make the Costas loop lose lock. 

Intuitively, the occurrence of deep fades depends on the Rice parameter K. 
With K values on the order of 20 dB or so, deep fades are so rare that the 
behavior of a Costas loop is much the same as with no fading. In many mobile 
radio applications, however, K may be far smaller. For example, most channels 
in urban areas are Rayleigh and even some satellite links operating over rural 
areas have K values as small as 5-8 dB, as a consequence of shadowing effects 
due to foliage. In these circumstances the performance of Costas loops is poor 
and the bit-error-rate curve exhibits a high floor due to synchronization losses 
[45]. 

In conclusion, standard phase recovery schemes are not useful with most 
fading channels. An overview of alternative methods is provided in the 
following. They are pilot-tone assisted and pilot-symbol assisted schemes 
which, in some way, provide an embedded reference for the receiver. More 
recently, improved methods have been proposed where channel gain is 
estimated through per-survivor-processing techniques. 

Im{a( t)} 

a(t) 

Re{a(t) } 

(a) (b) 

Figure 5.37. Deep fade phenomenology. 
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5.6.2. Pilot-Tone Assisted Modulation 

We limit ourselves to the most successful of the pilot-tone assisted 
methods, the so-called transparent tone-in-band (TTIB) method [46]. In 
essence the TTIB notion is to split the original signal spectrum into two sub­
bands so as to create a gap for transmitting a pilot tone (PT). Figure 5.38 
illustrates the band splitting, as obtained by suitable filtering and frequency 
translation of the signal components. 

The tone location at the center of the spectrum intends to make the PT un­
dergo the same distortions as the signal components. Assuming that this goal is 
achieved and normalizing the tone level to unity produces the received wave­
form 

r(t) = a(t)[ s(t) + 1] + w(t) (5.6.20) 

which indicates that the complex envelope of the received PT is just a(t). Thus, 
separating a(t) from the data subbands (by low-pass filtering) and computing 
the ratio r(t)/a(t) yields the sum of the undistorted signal plus noise 

r(t) = s(t) + w(t) 
a(t) a(t) 

(5.6.21) 

One important issue about TTIB is the width of the gap between 
subbands. This must be sufficiently large to accomodate the PT Doppler 
spreading and satisfy some practical requirements imposed by the subband 
recombination mechanism [46]. Figure 5.39 illustrates the separation of the PT 
from the signal components and the compensation for the channel fading. It 
also indicates that subband recombination is needed prior to detection. It turns 

Figure 5.38. Transmitter block diagram. 
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r(t) 

a(t) 

Figure 5.39. Sub-band recombination at the receiver. 

out that TTffi needs a bandwidth increase of twice the Doppler bandwidth for 
the tone, plus something of comparable size for proper recombination. For 
example, with a Doppler bandwidth equal to 5% of the symbol rate, TTIB 
needs a fractional increase of about 20% in signal bandwidth. 

Another issue about TTffi is the peak to average power ratio (PI A) in the 
transmitted waveform. The peak power cannot exceed the saturation power of 
the RF amplifier. On the other hand, it is the signal average power that estab­
lishes the receiver performance against thermal noise. So, a high PIA translates 
into a penalty in terms of SNR. It turns out that the PI A is 3-4 dB larger than in 
conventional systems as a consequence of the band splitting and the pilot-tone 
addition. For this and other reasons it has been concluded that TTIB is not a 
good solution in most applications [47]. 

5.6.3. Pilot-Symbol Assisted Modulation 

Pilot symbol assisted modulation (PSAM) has been discussed in [48]-[51] 
as an alternative to TTffi. PSAM systems can be described as indicated in the 
block diagram of Figure 5.40. At the transmitter, known symbols are 
multiplexed with the data sequence in a ratio of 1 to ~ 1 data. This results in a 
framed structure, each frame formed by L symbols. The sequence is filtered 
and transmitted over the channel. For simplicity we consider Rayleigh fading 
and, for the time being, uncoded PSK. Extensions to Rice fading and other 
uncoded modulation schemes are straightforward. Coded schemes are 
addressed afterwards. 

At the receiver the incoming waveform is filtered and sampled at the 
symbol rate. Assuming perfect timing information and an overall Nyquist pulse 
shaping, the samples from the matched filter have the form indicated in 
(5.6.13). They are split into two streams: a data stream (upper branch) and a 
reference stream (lower branch). The latter is decimated and only the samples 
corresponding to known data are kept. The useful samples are denoted 
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Figure 5.40. Block diagram of a PSAM system. 

x(iL) = a(iL)ciL + n(iL), i = 0,1,2, ... (5.6.22) 

Next, modulation is removed from these samples by performing the 
products x(iL)c~ ~z(iL) (recall that CiL<L = 1). This results in 

z(iL) = a(iL) + n'(iL) (5.6.23) 

where n'(iL)~n(iL)c;L is white Gaussian noise equivalent to neiL). Equation 
(5.6.23) indicates that z(iL) are noisy measurements of a(iL), one measurement 
every L symbols. They are fed to an interpolator which provides fading esti­
mates at symbol rate. 

Calling D the delay inherent in the estimation process, the estimates 
a(k - D) are fed to the detector. Decisions are made according to the rule 

Ck-D = arg{!llin{lx(k - D) - a(k - D)Ck_i}} 
Ck-D 

(5.6.24) 

Extension to trellis-coded modulation is straightforward. When no 
interleaving is used, the communication scheme is still as in Figure 5.40, but 
the detector consists of a Viterbi decoder operating according to (5.6.15) 
wherein the true channel gains are replaced by their estimates. With interleaved 
systems, the encoded data are interleaved prior to multiplexing. Also, two 
separate de-interleavers are used at the receiver as indicated in Figure 5.41. 
Calling {x(k)} the de-interleaved sequence and {a(k)} the de-interleaved 
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Figure 5.41. Block diagram of a PSAM receiver with de-interleaving. 
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channel estimates, the detector operates according to (5.6.16) where, again, 
estimated gains are used in place of the true gains. 

There are two major issues with PSAM. One is the delay involved in the 
interpolation process. Since several channel measurements are needed to get 
good estimates, the receiver must wait and buffer them for several frames. 
Whether this is a serious drawback or not depends on the application. For 
speech transmission purposes, for example, the modem delay should be limited 
to 50 ms. The other problem is the interpolation technique and its imple­
mentation complexity. These two issues are now overviewed. 

Before proceeding, however, we concentrate on the frame length L. An 
obvious question is about the L values that allow satisfactory channel estimates. 
Clearly, decreasing L tends to shorten the estimation delay but wastes energy in 
unnecessary pilot symbols. Sampling theory says that aCt) can be recovered 
from the samples {a(iL)} provided that l/(LT) exceeds twice the Doppler 
bandwidth, i.e., 

L~_l_ 
2fDT 

(5.6.25) 

For example, with a symbol rate of 2400 symbols/s and fD=0.05IT, the 
frame length must not exceed 10. Choosing L=1O results in a fractional 
increase of signal bandwidth of 10% of the symbol rate. As noted earlier, the 
increase would be about twice as large with TTffi. 

Several schemes have been proposed for interpolating noisy channel 
measurements. In [49] a low-pass filter is first used to smooth out the noise. 
Then, adjacent filtered samples are linearly interpolated. The filter is fixed and 
is designed for the worst fading conditions (the largest predictable Doppler 
bandwidth). The interpolation delay is not mentioned in [49] but it is expected 
to be a few frames. 

A more powerful method is proposed in [50]. The sequence z(iL) is fed to 
a Kalman smoother (KS) and a linear filter is used to interpolate between 
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smoothed samples. If the fading model were perfectly known, the KS would 
provide optimum channel estimation (in the minimum mean-square-error 
sense). In practice, fading is time varying and the scheme becomes 
suboptimum since the KS structure is fixed. An adaptive (extended) Kalman 
smoother could be designed but the resulting complexity would be quite 
considerable. More realistically, the KS may be optimized for one operating 
point (perhaps, the most demanding one) and then used anyway, even if 
conditions change. 

A third method makes use of a bank of Wiener filters [51]. Assume that 
the gains a(iL+l), 1 = 0,1, ... ,L-1, must be estimated on the basis of 2M+1 
fading measurements z[(i+m)L], m = 0,±1, .. . ,±M, as indicated in Figure 5.42. 
To this end a linear combination of the measurements is formed 

M 

a(iL+l) = Lr(m,l)z[(i + m)L] (5.6.26) 
m=-M 

and the coefficients 'i<m,/) are chosen so as to minimize the mean square error 

(5.6.27) 

Application of the orthogonality principle yields the optimum coefficients as 
the solution to the set of equations [41] 

E{[ a(iL + I) - m~:(m'/)Z[(i + m)L]}*[(i + P)L]} = 0, p = O,±l, .. . ,±M 

(5.6.28) 

for 1 = 0,1, ... ,L-1. 
They may be put in a more suitable form by introducing the 

autocorrelation of z(iL), Rzz(pL)~E{z[(i+ p)L]z*(iL)}. and the cross­
correlation of a(iL) and z(iL), Raz(pL)~E{a[(i + p)L]z*(iL)}. Then, (5.6.28) 
becomes 

M 

L r(m,/)Rzz(mL - pL) = Raz(/- pL), p = 0,±1, . .. ,±M (5.6.29) 
m=-M 

On the other hand, letting Raa(pL)~E{a[(i+ p)L]a*(iL)}, it is seen from 
(5.6.23) that 

Rzz(pL) = Raa(pL) + 2Noo(p) 

Raz(pL) = Raa(pL) 

(5.6.30) 

(5.6.31) 
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Figure 5.42. Estimation of a(iL+I) based on 2M+ 1 fading measurements. 

where ((P) is the Kronecker delta function 

8(p) = {~ (5.6.32) 

Then, substituting into (5.6.29) yields 

M 2N L y(m,/)Paa(mL- pL)+-O-y(p,/) = Paa(i- pL), P = O,±l, ... ,±M 
m=-M Raa(O) 

(5.6.33) 

where Paa(pL)~Raa(pL)/Raa(O) is the fading autocorrelation coefficient. 
Solving (5.6.33) for 1 = 0,1, ... ,L-1 gives the taps of the Wiener filters. 
Equation (5.6.33) indicates that the taps depend on Paa(pL) (a function of the 
fading rate) and the ratio Raa(O)/ No which is proportional to SNR. As fading 
rate and SNR are time varying, Cavers [51] suggests computing the taps for the 
worst-case operating conditions. 

The number of taps in each filter is an important issue as it affects the 
computing load, the channel estimation delay and the estimation performance. 
From Figure 5.42 it is seen that the estimation delay equals approximately the 
product ML. Accordingly, one would be tempted to keep this number as small 
as possible. On the other hand, a too small value would degrade performance as 
few channel measurements would be available for channel estimation. Thus, a 
trade-off is needed. Looking for the break-even point, observe that increasing 
ML beyond a certain limit is useless as channel measurements far from the 
current estimation time iL+I are uncorrelated with a(iL+l) and therefore do not 
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provide useful information. As the decorrelation distance is approximately 
1/ fDT, we expect that M L values beyond this figure are unnecessary. This 
suggests the limitation 

1 ML<-
fDT 

(5.6.34) 

Simulation results indicate that (5.6.34) is a reasonable rule-of-thumb formula. 
For example, with a Doppler bandwidth of 5·lO-2IT the estimation delay is 
about 20 symbol intervals. 

Returning to general PSAM schemes, one wonders how they perform in 
terms of BER. For simpl~city we concentrate on uncoded PSK but the same 
conclusions are valid with trellis-coded modulation. To put the problem into 
perspective bear in mind that differential PSK (DPSK) is an obvious alternative 
to PSAM as it does not need channel information and is simpler to implement. 
In other words, DPSK is a natural reference in PSAM performance 
assessments. Thus, a few words about DPSK performance are in order. 

With DPSK the information data {1Jd are differentially encoded into PSK 
symbols as follows 

C - c ejl1k 
k - k-l 

and the matched-filter output x(k) is used to compute the statistics 

z(k) = x(k)x*(k -1) 

(5.6.35) 

(5.6.36) 

These are fed to the detector which makes decisions according to the rule 

(5.6.37) 

One drawback with DPSK is that, unless the Doppler bandwidth is very 
small compared with symbol rate, BER curves exhibit a floor which may be too 
high even for digital voice services [52]-[53]. The reason for this is readily seen 
from the decision statistic z(k). In fact, collecting (5.6.l3) and (5.6.35)-(5.6.36) 
yields 

z(k) = a(k)a*(k -l)ejl1k + N(k) (5.6.38) 

where N(k) is a noise term. This equation says that the signal component is 
rotated by an angle If/(k)=arg{a(k)a*(k-l)} with respect to its ideal value 
ell1k • With slow fading lfI{k) is small (as a(k) "" a(k -1» and the detector 
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performance is dominated by thermal noise. Correspondingly, the BER curve 
decreases as Es/ No increases. With fast fading, vice versa, If/(k) may be large 
and decision errors may occur even in the absence of noise. In these conditions 
BER curves exhibit a floor. 

A comparison between PSAM and DPSK is illustrated in Figure 5.43 
where simulation results are shown for QPSK with Rayleigh fading. The lower 
curve corresponds to an ideal coherent detector operating with perfect channel 
state information (CSI). The PSAM system employs 9 tap Wiener filters. 
Known symbols are multiplexed in the ratio 1110. The fading process is 
generated by filtering two independent white Gaussian noise (WGN) sequences 
with two identical fourth-order Butterworth filters, as indicated in Figure 5.44. 
The 6-dB bandwidth of the filters is used as a measure of the fading bandwidth 
fD' For convenience the expectation of a(t) is chosen equal to unity so that the 
average received signal power coincides with the transmitted power. It appears 
that PSAM performs better at moderate values of the Doppler bandwidth (no 
floor is still visible atfDT=1O-2). With fast fading PSAM and DPSK have the 
same floor, however. 

5 10 

A IDEALCSI 
o PSAM 
o DPSK 

blO 

15 20 25 30 35 40 

Figure 5.43. Comparison between PSAM and DPSK. 
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Figure 5.44. Generation of the fading process. 

5.6.4. Per-Survivor Channel Estimation 

Per-survivor processing (PSP) has been applied to maximum likelihood 
joint fading estimation and data detection [54]-[55]. Here we illustrate these 
techniques following the heuristic approach adopted in reference [54]. 

As an introduction to more efficient solutions, consider the following 
conceptually simple method. Modulation is PSK and the matched-filter output 
reads 

x(k)=a(k)ck+n(k), k=0,1,2, ... (5.6.39) 

with 

(5.6.40) 

Suppose that the sequence {. ",Ck-3,Ck- 2 ,ck-d is available at time k-l and we 
want to make a decision on the next symbol Ck' To this end we need an estimate 
fi(k) of the channel gain for use in the decision rule 

(5.6.41) 

A possible procedure is as follows. First, past samples are multiplied by 
the corresponding conjugate decisions to form the products x(k - i)C;_i' 
i = 1,2, .... Assuming that the detector decisions are correct so that Ck-iC;-i = 1, 
this yields a sequence of channel gain estimates 

x(k - i)C;_i = a(k - i) + n'(k - i), i = 1,2, ... (5.6.42) 

where n'(k - i) is white Gaussian noise. These estimates are fed to a one-step 
Wiener predictor which provides the desired gain estimate 
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N 

a(k) = L rCi)x(k - i)c;_; (5.6.43) 
;=1 

Optimum predictor coefficients are found by minimizing the mean square error 
between the true gain and its estimate. Paralleling the arguments in the 
foregoing section it is found that they satisfy the equations 

1~I~N (5.6.44) 

Unfortunately, the above method has two drawbacks. One is that the 
estimates a(k) have a phase ambiguity by multiples of tlqJ = 27r/ M. This is 
recognized by observing that, if {ck } is a solution to (5.6.41) and (5.6.43), then 
{cke jtna'} is also a solution, for any integer m. In other words, sequences of the 
type {cke jtna'} are all legitimate solutions to (5.6.41) and (5.6.43) and the 
receiver cannot distinguish one from the other. This problem could be solved 
either by differential encoding/decoding or by multiplexing known symbols 
with the data (as is done with PSAM systems). 

The second problem is more serious and is concerned with the algorithm 
stability. Computer simulations indicate that, even starting with correct de­
cisions, sooner or later the detector makes errors. This deteriorates the channel 
predictions and, in consequence, induces further errors which, in their tum, 
worsen the predictions even further ... and so on until a breakdown in the 
algorithm takes place. These phenomena are referred to as "run-aways." They 
can be counteracted by multiplexing known symbols with the data so as to get 
"clean" channel measurements. Indeed, simulations indicate that high per­
centages of known symbols do mitigate the run-away problem but the overall 
detection process remains far poorer than with simple DPSK. 

Things may be improved with multiple predictors, however, just as we 
have seen with multiple phase trackers in Section 5.5. To describe how this 
comes about consider M predictors, as many as the points of the PSK 
constellation and concentrate on Figure 5.45 where a PSK constellation is 
repeated at multiples of the symbol period. Suppose that M candidate 
sequences { ... ,ct~Lct~Lct~l}, m = 1,2, ... ,M, are already available at time k-l. 
They represent our best guess on the transmitted sequence { .. . ,Ck_3,Ck_2 ,ck_d. 
Note that each sequence corresponds to a path in the trellis-like diagram in the 
figure and each path (survivor) terminates in a constellation point. For each 
path an estimate of the fading gain may be computed with a one-step predictor 

N 

a(m)(k) = L r(i)x(k - i)ct~r. m = 1,2, ... ,M (5.6.45) 
;=1 
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time 

Figure 5.45. Survivor sequences at time k-l. 

Also, the cumulative metric 

k-I 2 

A~mll = LIX(i) - a(m)(i) ci(m)*1 
1=1 

(5.6.46) 

may be assigned to the m-th survivor to measure its agreement with the sample 
sequence { .. . ,x(k - 3),x(k - 2),x(k -I)} . 

Assume that pilot symbols are multiplexed with the data in the ratio 1IL. 
We want to extend the survivors one step further. To this end we distinguish 
according to whether the k-th symbol is a data or a pilot symbol. In the former 
case, the extension is made so as to minimize the accumulated metrics of the 
extended paths. For example (see Figure 5.46), the path arriving at the 
constellation point e j2tr(i-I)/M, i = 1,2, ... ,M, is selected as the extension of that 
survivor, say the I-th, such that 

I = argL~$nJA~~\ +Ix(k) - a(m)(k)ej2tr(i-I)/Mn} (5.6.47) 

time 

m-th survivor 

Figure 5.46. Extension rule when the k-th symbol is unknown. 
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time 

Figure 5.47. Extending the only survivor. 

Vice versa, if ck is a pilot symbol, we know that the true path will pass 
through node ck at time k and, accordingly, we take the path arriving at ck with 
the minimum accumulated metric as the only survivor at time k. This is the 
extension of the I-th survivor, where I is derived from 

(5.6.48) 

Note that there will again be M survivors at k+ 1 (see Figure 5.47); they extend 
the only survivor at time k to each point of the constellation at time k+ 1. 

In summary, at each step either one or M survivors are retained, depending 
on whether a pilot symbol or a data symbol is transmitted. From Figure 5.47 it 
is apparent that final decisions can be released every L steps. This is so because 
one survivor only is selected every L steps and the associated symbol sequence 
can be put out as a firm decision. 

An obvious question arises about the value of L. At first sight a trade-off 
seems to be needed between the following contrasting requirements: 

(i) high transmission efficiency (L large); 

(ii) run-away suppression (L small); 

(iii) short decision delays (L small). 

Actually, point (iii) is not a crucial issue as a reasonably short decision 
delay can be attained anyway by truncating the survivors to some reasonable 
length (as is done with traditional Viterbi detectors). Thus, the true obstacle to 
increasing L (and achieving high transmission efficiency) is the risk of run­
aways. As we shall see later, run-away suppression requires that L be decreased 
as the Doppler bandwidth increases. 

Next, we consider trellis coded PSK. As we mentioned earlier, inter­
leaving/de-interleaving (lID) is often adopted to make the decoding process 
more robust against deep fades. In the ensuing discussion we assume lID but we 
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x(k) 

Figure 5.48. Block diagram of the receiver. 

point out that PSP techniques may also be employed without lID. It has been 
found, however, that lID provides better performance in terms of power 
efficiency at the cost of some extra channel delay [55]. 

The block diagram of the receiver is shown in Figure 5.48. Here x(k) rep­
resents the matched-filter output. Note that, as far as channel estimation is con­
cerned, the received symbols may be viewed as independent, due to the 
scrambling action of the interleaver. Thus, PSP channel estimation may be per­
formed as with uncoded modulation and this yields preliminary symbol deci­
sions, say {cd. Such decisions are coarse as no use is made of the encoding 
rule in their derivation. Their only purpose is to provide channel estimates for 
the Viterbi decoder. These estimates are obtained through a (2N+l)-tap interpo­
lating filter, i.e., 

N 

a(k) = L y(i)x(k - i)C;_i (5.6.49) 
i=-N 

where the coefficients {I<i)} are computed from the equations 

f y(i)Paa(l- i) + 2No y(l) = Paa(l), - N ~ I ~ N 
i=-N Raa(O) 

(5.6.50) 

Finally, channel estimates a(k - D) and samples x(k-D) are de­
interleaved and fed to the Viterbi decoder. Note that a time alignment is needed 
to compensate for the overall channel estimation delay D. This is the sum of 
two terms, D=L+N, where L accounts for the coarse decision computation and 
N for the interpolating filter. 

One important issue about the application of PSP methods (with or 
without coding) is the adaptivity of the Wiener filters to time-varying fading 
conditions. In the foregoing discussion we have assumed that filter taps can be 
computed solving either (5.6.44) (with uncoded modulation) or (5.6.50) (with 
trellis coding). It is clear from these equations, however, that tap values depend 
on the noise level (actually, the SNR) and the fading correlation coefficient 
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Paa(l). Thus, both noise level and correlation coefficient must be estimated as 
a function of time in a non-stationary environment. Assuming that this can be 
done in some way, adaptivity is accomplished, for example, by pre-computing 
various coefficient sets for the channel of interest and choosing the most 
suitable one according to the current estimates of SNR and Paa (1). 

Alternative solutions have been indicated in [54]-[55]. Here, initial 
estimates of SNR and Paa(l) are derived from a known preamble at the 
transmission start-up. Then, their changes are tracked with suitable algorithms. 

Simulation results are now shown to illustrate the performance of PSP 
methods. In these simulations a Rayleigh fading is generated by filtering two 
independent Gaussian random sequences in fourth-order Butterworth filters, as 
indicated in Figure 5.44. The 6-dB filter bandwidth is taken as the Doppler 
bandwidth. Eight-tap predictors are adopted with uncoded modulation while a 
seven-tap interpolator is used with coded modulation. Tap values are computed 
assuming perfect knowledge of SNR and Paa(l). Performance is rather tolerant 
of differences between assumed and actual values of these parameters, 
however. For example, computing {Xi)} for a Doppler bandwidthfDT=5·10-2, 
while the actual bandwidth is either 4.10-2 or 6.10-2, entails only penalties of a 
fraction of dB in the BER curves. 

As mentioned earlier, the choice of the multiplexing ratio is an important 
issue. As the fading rate increases, run-aways take place unless L is decreased 
adequately. For example, with fDT=10-2, run-aways are eliminated taking 
L~lO. 

In principle, either block or convolutional interleavers may be used. 
Simulations presented here are performed with convolutional interleavers. As is 
discussed in [56], they introduce a channel delay of A(A-l) symbols, where A is 
the interleaver depth. Modulation is either uncoded 4-PSK or eight-state trellis­
coded 8-PSK [30]. A decoding delay of 15 symbols is adopted. 

Figure 5.49 shows BER curves for uncoded 4-PSK. The lowest curve 
indicates performance with perfect channel state information (CSI). The second 
lowest curve illustrates PSP operation with a multiplexing parameter L= 1 0 and 
Doppler bandwidth of either 10-2 or 5.10-2 (experimental points are over­
lapped). As is seen, PSP loses only 2 dB with respect to an ideal detector. 
Finally, the remainder two curves represent differential detection. They exhibit 
a BER floor which increases with the Doppler bandwidth. 

Results for coded-modulation are illustrated in Figure 5.50. Again, the 
lowest curve represents ideal detection, while the second and third lowest 
curves correspond to PSP operation with different Doppler bandwidths and 
multiplexing ratios. Finally, the two upper curves indicate trellis-coded 8-
DPSK [52]. A significant influence of the fading rate is now observed even 
with PSP. A high rate of pilot symbols (20%) is employed withfDT=5·1O-2 to 
avoid run-aways. 
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Figure 5.49. Perfonnance of PSP algorithm with uncoded modulation. 
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Figure 5.50. Perfonnance of PSP algorithm with coded modulation. 
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Figure 5.51. Comparison between PSP and PSAM. 

Comparisons between PSP and PSAM (implemented with Wiener interpo­
lators) is shown in Figure 5.51 with uncoded 4-PSK. Nine-tap interpolators are 
used for PSAM. The multiplexing parameter is L=1O, both with PSP and 
PSAM. At the highest Doppler rate lfDT=5.1Q-2) PSAM exhibits a floor, while 
PSP is still very close to ideal performance. The difference between PSP and 
PSAM is significant also in terms of channel delay which is D=40 with PSAM 
and D=1O with PSP. 

5.7. Clock-Aided but Non-Data-Aided Phase Recovery with 
Non-Offset Formats 

5.7.1. Likelihood Function 

Now we return to A WGN channels and investigate carrier phase recovery 
under the assumption that timing and frequency have already been accurately 
acquired. Data symbols are not available for phase synchronization, however, 
and this makes the difference with respect to the treatment in Sections 5.2-5.4 
where timing was ideal and symbols were known or taken from the detector. 
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One obvious question is why, in the absence of known symbols, one 
should obviate data decisions. Indeed, decision-directed (DD) methods seem 
intuitively superior to non-data-aided (NDA) schemes at low error rates. One 
answer is that DD methods involve feedback loops which may exhibit too long 
acquisitions when information is transmitted in short bursts or in applications 
where fast re-acquisitions from deep fades are required. NDA open-loop 
(feedforward) algorithms are better suited in these circumstances. 

The ensuing discussion has the following outline. We start with the 
computation of the likelihood function A(rle) and then we concentrate on its 
maximization at high and low SNR. Suitable asymptotic analysis and judicious 
interpretations will allow us to arrive at physically implementable phase 
estimators. Other estimation schemes, based on heuristic reasoning, will be 
introduced when the opportunity presents itself. The treatment up to Section 
5.7.4 focuses on feedback methods. Feedforward schemes are considered later. 

Let us begin with the baseband signal component 

(5.7.1) 

where 8 and {cd are unknown. For the time being we take the frequency offset 
v as a known quantity but we shall return to this assumption later to see how 
frequency errors affect phase recovery. The joint likelihood function for 8 and 
{c;} is obtained with the methods of Chapter 2 and reads 

A(rle,c) = exp _1 fRe{r(t)s*(t)}dt--1- fls(tt dt {
To TO} 

No 0 2No 0 
(5.7.2) 

(5.7.3) 

Paralleling the arguments of Section 3.2.1 and performing ordinary manipula­
tions it is easily found that 

To 4-14-1 
fls(t)12dt"" L LCkc:h[(k-m)T] (5.7.4) 
o k=O m=O 

To 4-1 _ 
f Re{r(t)s*(t)}dt "" L Re{x(k)c;e-j9 } 

o k=O 

(5.7.5) 

where, as usual, Lo = TofT denotes the length of the observation interval in 
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symbol periods, h(t) is the convolution g(t) ® g( -t) and x(k) is the sample at 
t=kT+'r ofthe matched-filter output, i.e., 

(5.7.6) 

So as to make the problem analytically manageable, we choose not to deal with 
intersymbol interference and, in fact, we take 

h(kT) = {~ 
Then, (5.7.4) reduces to 

k=O 

k:;:.O 

Hence, substituting (5.7.8) and (5.7.5) into (5.7.2) produces 

(5.7.7) 

(5.7.8) 

(5.7.9) 

This result may be put in a more convenient form as follows. First, we 
note that the right-hand side can be multiplied by any positive constant C, 
independent of 8 and c £{ c;}, without consequences for our purposes. In 
particular, taking 

C£exp -- Llx(kt {
I 1.0-1 } 

2No k=O 

and rearranging yields 

_ {I 1.0-1 ,- 2} 
A(rle,c) = exp --L Ix(k)e-J9 - ckl 

2No k=O 

(5.7.10) 

(5.7.11) 

Second, assuming independent and equiprobable symbols, it can be shown (see 
Appendix 2.A) that the signal energy equals C2/2, where C2 £E{lc;l2} is the 
mean-square value of the data symbols. Correspondingly, the ratio Es / No 
equals C2/(2No)' which means that 

(5.7.12) 
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and (5.7.11) becomes 

(5.7.13) 

or, equivalently 

(5.7.14) 

At this point we average the likelihood function with respect to the data. 
In doing so we denote {Pm' m = O,I, ... ,M -I} the constellation points. As the 
symbols are assumed independent, the expectation of (5.7.14) can be 
performed on a factor-by-factor basis and results in 

_ Lo-I{ 1 M-I {E ,- 2}} 
A(rIO) = IT - Lexp --S-IX(k)e-JIl - Pml 

k=O M m=O C2NO 

(5.7.15) 

The ML estimate is that 0 that maximizes A(rIO). Unfortunately there is 
no apparent way to maximize this likelihood function. Only approximate meth­
ods have been found that assume either high or low SNR. In the following we 
concentrate on these methods as they lead to readily implementable schemes. 

5.7.2 High SNR 

At high SNR the sum iQ. (5.7.15) is dominated by that term corresponding to 
the minimum of Ix( k )e - jll - Pm 12. Thus, letting 

mk g,arg{ min {Ix(k)e- jjj - PmI2}} 
O!>m!>M-1 

(5.7.16) 

and 

(5.7.17) 

equation (5.7.15) becomes 

_ (I)Lo { E Lo-II ,- 12} A(rIO) "" - exp __ s_ L x(k)e-JII - ck 
M C2NO k=O 

(5.7.18) 
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and our problem reduces to minimizing the sum 

Lo -\ _ 2 

L Ix(k)e- j8 - (\1 
k=O 

(5.7.19) 

or, equivalently, to maximizing the function 

(5.7.20) 

To this end the following remarks are useful. First, from (5.7.16)-(5.7.18) 
it is realized that ck represents the detector decision corresponding to the input 
x(k)e- j9 (see Figure 5.52). In particular, if e is close to the true carrier phase, 
then {ck } coincides with the transmitted symbol sequence (apart from noise 
induced errors). More generally, with a signal constellation having a 2lf/ N 
rotation symmetry, if e is close to e + 2lf n/ N, 0 $. n $. N -1, then {cd equals 
the rotated sequence {Cke-j2/rn/N}. Second, it is physically clear that (5.7.19) 
has N minima around the points () + 2lf n/ N, 0 $. n $. N - 1. Third, in the 
vicinity of these minima the second sum in (5.7.20) reads 

(5.7.21) 

and, therefore, it is independent of e. Fourth, the derivative of (5.7.20) around 
e + 2lf n/ N, 0 $. n $. N - 1, is given by 

d_ F(O) = ~\m{C;X(k)e-j9} 
de k=O 

(5.7.22) 

Putting all these facts together it is concluded that the maxima of F(e) 
may be computed looking for the nulls of (5.7.22). This is recognized as the 
problem addressed in Section 5.3.3 and can be approached with the same 
methods proposed there. In particular the generic term in the summation 
(5.7.22) can be turned into a signal error 

Figure 5.52. Interpretation of ck • 
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e(k) = Im{c;x(k)e- j6(k)} (5.7.23) 

and exploited to update the current phase estimate 8(k). Interestingly enough, 
we have started this section assuming totally unknown symbols and, for high 
SNR, we have arrived at a Costas loop, the same loop we found in Section 
5.3.3 when reliable detector decisions were available. Further discussions on 
these topics and performance evaluations of Costas loops are available in 
several papers and books [10-11]. 

5.7.3. Low SNR 

For simplicity we concentrate on PSK modulation but, as is shown in 
Exercise 5.7.3, the resulting algorithms can be applied to more general 
signaling formats. Denoting {e j2 /rm/M}, m = O,I, ... ,M -1, the PSK constel­
lation points and performing normal manipulations on (5.7.15) yields 

A(rI8) = CIT - Lexp _s Re{x(k)e-JgeJ2n:m/M} 
- 1.0-\[ 1 M-\ {2E ,- , }] 

k=O M m=O No 
(5.7.24) 

where C is a positive constant independent of O. Instead of A(rIO) we choose 
to maximize its logarithm 

- 1.0-\ [1 M-\ {2E ,-, }}] InA(rI8) = Lin - Lexp _s Re{x(k)e-JgeJ2 n:m/M 
k=O M m=O No 

(5.7.25) 

where the additive term InC has been dropped for simplicity. 
In computing the internal sum in (5.7.25) it is expedient to assume an even 

M and take the terms in pairs, associating the index m to m+M12. Bearing in 
mind that 

ej2/r(m+M/2)/M = _e j2n:m/M (5.7.26) 

this results in 

exp{ ~ Re{x(k)e-jii ej2n:m/M n + exp{ ~ Re{ x(k)e-jii ej2/r(m+M/2)/M n 
= 2COSh{ ~ Re{x(k)e-jii ej2n:m/M}} 

(5.7.27) 
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and, in consequence, (5.7.25) becomes 

~ 1.0-1 [2 M/2-1 {2E ,- , }] lnA(rIO)= LIn - L cosh _s Re{x(k)e-J8eJ2nm/M} 
k=O M m=O No 

(5.7.28) 

A necessary condition for a local maximum of lnA(rIO) is that its 
derivative be zero. This derivative is found to be 

with 

(5.7.30) 

It is worth noting that (5.7.29) is a general result and, in particular, it is not 
subject to restrictions on the size of the signal constellation and the SNR. 
Henceforth, however, we find it useful to distinguish between binary 
modulation (BPSK) and polyphase modulation (M>2). 

5.7.3.1. BPSK 

Assume that Es/ No is sufficiently small so that sinh(x) and cosh(x) in 
(5.7.29) can be approximated as 

sinh(x) "" x 

cosh(x) "" 1 

Accordingly, (5.7.29) becomes (neglecting an immaterial factor) 

d 1.0-1 
-:lnA(rIO) = LI(k,O)Q(k,O) 
dO k=O 

(5.7.31) 

(5.7.32) 

(5.7.33) 

where l(k,O) and Q(k,O) areJhe so-called in-phase and quadrature compo­
nents of x(k) with respect to e j8 , i.e., 

(5.7.34) 
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Figure 5.53. Costas loop for BPSK. 

The null of d[ In A(rle)]/ de can be iteratively computed by turning the 
generic term in the sum (5.7.33) into an error signal 

(5.7.35) 

and updating the current phase estimate O(k) according to 

e(k + 1) = e(k) + ~(k) (5.7.36) 

Feedback will drive the average of e(k) toward zero. The resulting scheme is a 
Costas loop as illustrated in Figure 5.53. Its performance has been thoroughly 
investigated by Lindsey and Simon [11]. 

5.7.3.2. Polyphase PSK 

Assume again a low Esl No but, in computing sinh(x) and cosh(x) in 
(5.7.29), write 

x3 
sinh(x) "" x --

3 

cosh(x) "" 1 

(5.7.37) 

(5.7.38) 

The reason for approximating sinh(x) as in (5.7.37) as_ oppo..sed to (5.7.31) is 
that, as is now shown, (5.7.31) would make d[lnA(rI9)]/d9 identically zero 
and, therefore, of no use for our purposes. Inserting (5.7.37)-(5.7.38) into 
(5.7.29) yields the rather cumbersome formula 
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(5.7.39) 

We maintain, however, that the first term in the right is zero. This is easily 
checked by writing 

Re{ Xm(k,O)} = ±x(k)e-j8 ej2mnjM + ±x*(k)ej8 e-j2mnjM (5.7.40) 

Im{Xm(k,O)} = 21j x(k)e- j8 ej2mnjM - ;j x*(k)ej8 e-j2mnjM (5.7.41) 

and noting that, for M even and greater than 2, the following formula applies: 

Mj2-1 
Lej4mn/M =0 
m=O 

(5.7.42) 

Thus, stripping off an immaterial factor from the remaining term in (5.7.39) 
yields 

d Lo-IMj2-1 3 

~lnA(rIO)=- L L [Re{Xm(k,O)}] Im{Xm(k,O)} 
dO k=O m=O 

(5.7.43) 

At this stage the zero of d[ In A(rjO)]/ dO is obtained in an iterative fashion 
taking the error signal 

(5.7.44) 

and updating 8(k) according to 

8(k + 1) = 8(k) + }t?(k) (5.7.45) 

This leads to the Costas loop illustrated in Figure 5.54. Again, in depth analysis 
of this loop has been carried out by Lindsey and Simon [11]. 

Exercise 5.7.1. Express the error signal (5.7.44) as ~ function of the in­
phase and quadrature components of x(k) with respect to ej8(k). 

Solution. Collecting (5.7.30) and (5.7.34) yields 
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Figure 5.54. Costas loop for polyphase PSK. 

Re{ Xm[k,O(k)]} = Icosa - Qsina 

Im{Xm[k,O(k)]} = Isina + Qcosa 

where the following shorthand notations have been used: 

e(k) 
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(5.7.46) 

(5.7.47) 

(5.7.48) 

Next, substituting into (5.7.44) and performing standard (but lengthy) ma­
nipulations gives the desired result 

(5.7.49) 

Exercise 5.7.2. Compute the S-curve for the phase detector (5.7.35) 
assuming BPSK modulation and Nyquist pulses. 

Solution. From (5.7.6) it is easily seen that the samples x(k) from the 
matched filter are 

(5.7.50) 

with ck = ±1. The S-curve is computed taking the expectation of the error sig-
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nal for 8(k) = 8=constant, i.e., 

(5.7.51) 

To go further we need the expressions of I(k,8) and Q(k,8). Collecting 
(5.7.34) and (5.7.50) yields 

(5.7.52) 

where n'Ck) is a noise term statistically equivalent to n(k). In particular, its real 
and imaginary components n~(k) and n;(k) are zero-mean and independent 
Gaussian random variables. It follows from (5.7.52) that 

I(k,8) = ck cos(O - 8) + n~(k) 

Q(k,8) = ck sin(O - 8) + n;(k) 

and substituting into (5.7.51) produces the desired result 

S(¢) = .!.sin2¢ 
2 

(5.7.53) 

(5.7.54) 

(5.7.55) 

with ¢~(J-6. Note that S(¢) has nulls with positive slope at ¢=O and ¢=1r, 
which implies that the phase detector has a 1800 ambiguity. 

Exercise 5.7.3. Compute the S-curve for the phase detector (5.7.44) 
assuming QPSK modulation and Nyquist pulses. 

Solution. Collecting (5.7.46)-(5.7.48) yields 

Re{Xm(k,O)} = I(k,O)cos(2mn/M)- Q(k,O)sin(2mn/M) (5.7.56) 

Im{Xm(k,O)} = I(k,O)sin(2mn/M) + Q(k,O)cos(2mn/M) (5.7.57) 

Substituting into (5.7.44) produces 

(5.7.58) 

from which the S-curve is derived taking the expectation 

(5.7.59) 
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11 A 

with t/J=(J-(J. 
Next we observe that (5.7.52) is still valid except that the symbols have 

the form ci = ejaj , with ai uniformly spaced over (-n,n). Choosing ai E 

{±n/4,±37r/4} yields 

I(k, 0) = cos(ai +t/J)+n~(k) 

Q(k,O) = sin(ai + t/J) + n;(k) 

and inserting into (5.7.59), after long manipulations leads to 

S( t/J) = .!.sin( 4t/J) 
4 

(5.7.60) 

(5.7.61) 

(5.7.62) 

The S-curve is independent of the noise level and has a 90° phase ambiguity. 

Exercise 5.7.4. Compute the S-curve for the phase detector (5.7.58) 
assuming QAM modulation and Nyquist pulses. 

Solution. Equations (5.7.52) and (5.7.59) are still valid except that, in the 
former, the symbols take the form Ci=tli+jbi, where ai and b i are zero-mean and 
independent random variables with second- and fourth-order moments 
E{a~} = E{b?}£C2 and E{ai4 } = E{bi4 }£C4 • Then, I(k,O) and Q(k,O) take the 
form 

I(k,O) = ai cost/J - bi sint/J + n~(k) (5.7.63) 

Q(k,O) = ai sint/> + bi cost/> + niCk) (5.7.64) 

and substituting into (5.7.59) gives 

(5.7.65) 

It can be checked that (5.7.65) reduces to (5.7.62) if QPSK is seen as a 
particular form of QAM with ai = ±1/-fi and bi = ±1/-fi. In general, (5.7.65) 
is a well-shaped S-curve for arbitrary QAM formats, which means that phase 
detector (5.7.58) may be used even with such modulations. This idea has been 
pointed out by Foschini [57] following a different reasoning. 

5.7.4. Feedforward Estimation with PSK 

Feedforward schemes are preferable over feedback ones when short ac­
quisition times are required. In the following we derive a few feedforward 
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schemes for PSK modulation. 
Start with the log-likelihood function (5.7.25), which is rewritten as 

with 

Observing that 

Lo-J 
InA(riO) = ~)nT(k,O) 

k=O 

T(k,O)!- Lexp _s Re x(k)e-J8eJ2trm/M _ 1 M-J {2E { ,-, }} 
M m=O No 

and expanding the exponential in (5.7.67) into a power series yields 

exp{ ~ Re{X(k)e-j8ej2trm/Ml} 

(5.7.66) 

(5.7.67) 

(5.7.68) 

(5.7.69) 

= f ~(Es )P t(: )xq(k)[X*(k)r-q ej (p-2q)8 e-j2trm(p-2q)/M (5.7.70) 
p=oP· No q=O 

Finally, substituting into (5.7.67) produces 

where the following definition has been made: 

1 M-J 
A(p - 2q)!- Le-j2trm(p-2q)/M 

M m=O 
(5.7.72) 
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It should be noted that AU is zero, unless p-2q is a multiple of M, i.e., 

p-2q=iM i=0,±I,±2, ... (5.7.73) 

Also, p and q are both non-negative and q is less than or equal to p. In 
conclusion, the pairs (q, p) corresponding to non-zero terms in the right -hand 
side of (5.7.72) are limited. For example, for 1=0 we have the only pair (0,0) 
whereas, for 1= 1 we have 

(O,M), (I,M + 2), (2,M + 4), ... (5.7.74) 

and for 1=-1 

(M,M), (M+l,M+2), (M+2,M+4), ... (5.7.75) 

To go further we assume that Es I No is sufficiently small so that powers 
of Esl No greater than M can be neglected. Then, equation (5.7.71) reduces to 

T(k,O)=d+ ~!(!JM Re{xM(k)e- jM8 } 

Inserting (5.7.76) into (5.7.66) and approximating In(1 + s) "" s gives 

(5.7.76) 

(5.7.77) 

where a positive factor independent of {j has been dropped for simplicity. 
In summary, within the above approximations, the ML carrier phase 

estimate is that () that maximizes (5.7.77). This estimate is expressed by 

(5.7.78) 

This is the familiar M-power synchronizer and its block diagram is illustrated in 
Figure 5.55. Note that (5.7.78) is well suited for digital implementation. As the 
arg-function takes values in the range ±1r, the estimate is restricted within 
±7rlM. This corresponds to an M-fold ambiguity in the phase estimates which 
can be dealt with by resorting to differential encoding/decoding. 

For later reference the following interpretation of the M-power synchro­
nizer is of interest. Computing ~(k) from (5.7.50) and recognizing that cJ: = 1 
for any PSK yields 

xM (k) = ejM(} + N(k) (5.7.79) 
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Figure 5.55. M-power phase recovery scheme. 
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where N(k) is a zero-mean noise term resulting fn?m the products 
SignalxNoise and NoisexNoise. As is seen, the modulation has been removed 
from x"f(k) and, therefore, taking the average of x"f(k) over the observation in­
terval amounts to smoothing out N(k) and producing a vector which, hopefully, 
deviates little from the direction of ejM(). Hence, the argument of such a vector 
(scaled by a factor M) can be taken as an estimate of the carrier phase. 

Figure 5.56 shows simulation results for the variance of the M-power with 
QPSK. Because of the Nyquist assumption these results are independent of the 
rolloff factor. As is seen, the modified Cramer-Rao bound is attained at high 
SNR. 

An interesting question about the M-power estimator is its performance at 
intermediatellow SNR values and whether better methods can be found when 
operating in these conditions (which are typical with coded modulations). This 
issue has been addressed by A.J.Viterbi and A.M.Viterbi [58] who have 
investigated a variant to the M-power synchronizer. Their estimation scheme, 
henceforth denoted by V &V algorithm, is a generalization of (5.7.78) and may 
be described by writing x(k) in the form x(k) = p(k)eN(k) and replacing x"f(k) 
in (5.7.78) by 

y(k) = F[p(k) ]e jM<1>(k) (5.7.80) 

where F[p(k)] is an appropriately chosen function of P(k). This produces 

e = -arg L/,[p(k)]ejM<1>(k) 
1 {Lo-I } 

M k=O 
(5.7.81) 

Clearly, taking F[p(k)]=~(k) leads back to the M-power algorithm. It 
turns out, however, that better performance is obtained raising p(k) to a smaller 
power, say F[P(k)]=p2(k) or F[p(k)]=l, depending on the SNR and the number 
of constellation points. For example, with QPSK and Est No =6 dB, the loss 
with respect to the MCRB is about 4 dB with F[pCk)]=p4(k), 3 dB with 
F[P(k)]=l and 2.6 dB with F[P(k)]=~(k). 

In the foregoing discussion a perfect frequency reference has been 
assumed and, therefore, one wonders how the result changes in the presence of 
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Figure 5.56. Perfonnance of the M-power phase estimator with QPSK. 

a carrier frequency error fd' The sensitivity of the V & V algorithm to frequency 
errors is assessed in [58] and the results are similar to those established in 
Section 5.2.5 when dealing with data-aided phase recovery. In essence, degra­
dations take place in two forms: (i) estimation error variance increases with 
Ifdl, much more so than with the data-aided schemes; (ii) estimates are biased 
for symbols away from the center of the observation interval. In particular, the 
bias equals 2mnMfdT, where m is the distance in symbol intervals from the cen­
ter. It is worth recalling that the bias is M times smaller with data-aided phase 
estimation. This is due to the fact that the modulation removal in the V & V 
scheme is accomplished by raising the signal samples to the M-power, which 
amplifies phase errors by a factor M. 

5.7.5. Feedforward Estimation with QAM 

In pursuing feedforward phase estimation with QAM signals we adopt a 
heuristic approach. Return to (5.7.50) which gives the samples x(k) from the 
matched filter. With QAM the symbols have the form ck=ak+jbk, where ak and 
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bk are zero-mean and independent random variables with second- and fourth­
order moments E{a;} = E{bj

2 }£C2 and E{a:} = E{bj
4 }£C4 • The expectation of 

x4(k) is easily found to be 

(5.7.82) 

As C4 - 3ci turns out to be positive, it follows from (5.7.82) that E{i(k)} 
provides information on the carrier phase. In fact one has 

(5.7.83) 

In practice, the expectation operation can be approximated by the sample 
average of x4(k) and (5.7.83) is transformed into the estimator 

0= -arg ~>4(k) 1 {Lo-l } 
4 k=O 

(5.7.84) 

This algorithm coincides with (5.7.78) for QPSK and its performance 
achieves the MCRB at high SNR. With general QAM modulation, instead, its 
estimation accuracy falls further and further from the bound as the number of 
constellation points increases [60]. Sensitivity to carrier frequency errors has 
not been explored in the literature but, by analogy with the V & V algorithm, it 
is expected that phase estimates will be biased by the quantity 8n-mJdT for 
symbols at a distance m from the center of the observation interval. 

5.7.6. Ambiguity Resolution 

As we mentioned earlier, phase estimation schemes give phase estimates 
with a 21f1M ambiguity, M being the symmetry angle of the signal constellation. 
One way of coping with this problem is to resort to differential 
encoding/decoding. Alternately, a unique word (UW) appended to the data can 
be exploited by an ambiguity resolution (AR) circuit, as is now explained. 

For simplicity let us assume: (i) PSK signaling; (if) perfect frequency 
recovery; (iii) a UW consisting of the first Luw symbols {cd, 0 ~ k ~ Luw -1, 
in the transmitted sequence. Also, suppose that the phase estimation algorithm 
operates over the whole data sequence {x(k)}, 0 ~ k ~ Lo - 1, yielding 

(5.7.85) 

where ll¢ accounts for (hopefully small) estimation errors and 2mniM rep­
resents the phase ambiguity. The task of the AR circuit is to employ the sam-
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pIes {x(k)} and the UW symbols {cd, 0 ~ k ~ Luw -1, to establish the value of 
the integer m, 0 ~ m ~ M - 1. 

As is now shown, this can be accomplished using the statistics 

(5.7.86) 

which can be computed from {) and the UW. To this end, combining (5.7.50) 
and (5.7.85)-(5.7.86) under the assumption hl2 = 1 yields 

(5.7.87) 

where {n'(k)} are independent complex-valued Gaussian random variables 
with real and imaginary parts of variance No. If the phase error fl.l/J is small, we 
have approximately e-jf1~ "" 1 and the first term in the right-hand side may be 
viewed as a complex symbol from an M-ary PSK constellation. Then, ambigu­
ity resolution reduces to a detection problem in which Luw independent mea­
surements of the sum symbol+noise are given. As is known, the optimum de­
tection strategy [41] is to take the sample average of y(k), say 

1 Luw-1 

Y~- ~>(k) 
Luw k=O 

(5.7.88) 

and choose m as that integer m which maximizes the real part of Ye j2rr:m/M: 

(5.7.89) 

The probability of false ambiguity resolution, PFAR , equals the error prob­
ability in the above detection problem and is computed as follows. Collecting 
(5.7.87)-(5.7.89) and neglecting fl.l/J yields 

Luw-1 
Y = e-j2rrm/M + _1_ Ln'(k) 

Luw k=O 

(5.7.90) 

On the other hand, it is easily checked that real and imaginary parts of the noise 
term in (5.7.90) have the same variance 

(5.7.91) 

Hence, using a well-known formula [44, p. 265] for the symbol error prob­
ability with M-ary PSK (~4) gives 
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(5.7.92) 

For M=2. instead. we have 

(5.7.93) 

One important problem in designing the AR circuit is the choice of Luw' 
Let PlD be the symbol error probability that is achieved with ideal phase recov­
ery and perfect ambiguity resolution. In the presence of AR failures. the aver­
age error probability is shown to be ~D(l- PFAR ) + PFAR :::: ~D + PFAR (assum­
ing pessimistically that all the decisions are incorrect when a failure occurs). 
Thus. PFAR • should be negligible as compared with PlD' 

For example. with uncoded QPSK and Es/No=10 dB. the error probabil­
ity ~D equals 1.6.10-3 • Suppose we want PFAR=1O-5• two orders of magnitude 
less than ~D' Then. from (5.7.92) we obtain Luw=2. 

5.7.7. The Unwrapping Problem 

A single estimate per data block is sufficient in burst transmissions with 
relatively short blocks. With longer blocks or continuous data transmission, 
vice versa. multiple estimates are needed because carrier phase does not remain 
constant (due to oscillator instabilities and/or imperfect frequency offset 
compensation). With multiple estimates. however. the problem arises as to how 
resolve phase ambiguity making use of a single UW. In fact. while the UW is 
useful to resolve ambiguity in the first estimate. it is not clear how to manage 
with the subsequent estimates. 

The question may be viewed as indicated in Figure 5.57 where. to ease the 
reading. the estimates e(t) are represented on a continuous-time scale (in 
reality they are issued at intervals of LoT seconds from each other). As a 
consequence of the modulo 2n1M operation in the estimator. e(t) exhibits a 
jump every time the true carrier phase (J(t) crosses an odd multiple of nlM. 
Thus. the problem is to: (i) resolve the ambiguity in the first phase estimate; (ii) 
stitch together the various segments of e(t). 

This is the so-called unwrapping problem [61]-[63] which may be ap­
proached as indicated by Oerder and Meyr in [61]. Let {e(k)}. k=I.2 ..... be the 
(still wrapped) estimates and 2mn/ M the ambiguity phase. as derived from the 
observation of the first data sub-block;. Also. ~enote by {Of(k)}. k=I.2 ..... the 
final unwrapped phase trajestory and ()/k)~()f(k) - 2mn/M a provisional tra­
jectory. which differs from ()f(k) by a constant angle 2mn/M. Provisional and 
final trajectories are recursively computed as 
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Figure 5.57. Explaining the unwrapping problem. 

Op(k) = Op(k -1) + aSAW[O(k) - Op(k -1)] 

Of(k) = Op(k) + 27r1it/M 
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(5.7.94) 

(5.7.95) 

where SAW[CP]~[CP]~~~~ is a sawtooth nonlinearity that reduces cP to~the interval 
[-7rIM,7rlM) and a is a parameter in the ra~ge 0<0.:;:;1. Intuitively, ()p(k) serves 
to stitch together the various segments of ()(k) (see Figure 5.57) so as to form a 
continuous curve extending beyond the interval ±7rIM. Once this is done, the 
phase ambiguity that still affects Op(k) is canceled by adding 27r1it/M. Clearly, 
no phase ambiguity compensation is needed when differential encoding/de­
coding is used. 

Figure 5.58 illustrates equations (5.7.94)-(5.7.95). The performance of this 
unwrapping scheme is significantly affected by the parameter a. In the steady 
state a small a provides good final estimat~s 0f(k). On the other~hand, a small 
a may result in a too slow updating of ()p(k), meaning that ()f(k) may be 
unable to adequately track the carrier phase dynamics. 

Another problem associated with the unwrapping method in Figure 5.58 is 

a 2nmi M 

Figure 5.58. Unwrapping algorithm. 



286 Chapter 5 

the insurgence of cycle slips. During normal operation ef(k) undergoes small 
fluctuations around the true phase (). Due to the feedback mechanism, 
however, noise disturbances can make ef(k) slip away from this operating 
condition and move toward another stable point 9±2TriM. Clearly, the detri­
mental effect of a cycle slip on the symbol error probability is limited to the 
slip duration when differential encoding/decoding is adopted. With coherent 
detection, on the contrary, it lasts until the arrival of a new UW. Intuitively, the 
slip rate increases with the parameter a. De Jonghe and Moeneclaey [63] have 
worked out approximate formulas expressing this rate as a function of a and 
other system parameters. 

s.s. Clock-Aided but Non-Data-Aided Phase Recovery with 
OQPSK 

5.8.1. Likelihood Function 

In this section we address non-data aided phase recovery with OQPSK 
under the assumption of ideal timing and a Nyquist channel response. 
Paralleling the treatment in Section 5.7, we first investigate algorithms based 
on ML estimation methods and, subsequently, we discuss ad hoc schemes. 

Start with the mathematical model for OQPSK 

Here, v and r are known parameters whereas ai and bi are unknown (and 
independent) data symbols taking values ±1 with the same probability. Letting 
-II. - - II. -a={ad, b={bi } and 

s(t)£e j (21M+ii)[ ~Ag(t-iT-r)+ j~big(t-iT-T/2-r)l (5.8.2) 

the joint likelihood function for phase and the data reads 

A(rIO,Q,b) = exp _1 f Re{r(t)s·(t)}dt- _1_ fls(t)12 dt [
TO To 1 

No 0 2No 0 
(5.8.3) 

Performing the usual manipulations it is found that 
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To 4-14-1 4-14-1 
Jls(t)12 dt:=:: L Lakamh[(k - m)T]+ L Lbkbmh[(k - m)T] (5.8.4) 
o k=O m=O k=O m=O 

To 4-1 _ 4-1 _ 
fRe{r(t)s*(t)}dt:=:: L akRe{x(k)e-j9 }+ L bkIm{x(k + 1/2)e-j9 } (5.8.5) 
o k=O k=O 

where £0 = TofT, h(t)£ get) ® g( -t) is the overall system response and x(k) 
and x(k+ 112) are samples from the matched-filter output at t=kT+'r and 
t=kT+ T/2+'r, respectively. 

Assume that h(t) satisfies the Nyquist criterion 

{
I k=O 

h(kT) = o k::;:.O 
(5.8.6) 

Then, substituting into (5.8.4) and bearing in mind that lai l2 = IbJ = 1 yields 

To 

Jls(tt dt = 2£0 (5.8.7) 
o 

Inserting (5.8.5) and (5.8.7) into (5.8.3) and dropping a factor independent of 
O,a,b results in 

A(rle,a.b) = IIexp _l-akRe{X(k)e- j O} . IIexp _1-bkIm{X(k+lf2)e- j o} 1.0-1 [ ] 1.0-1 [ ] 

k=O No k=O No 
(5.8.8) 

It is useful to let the ratio EJNo appear explicitly in (5.8.8). This is 
accomplished bearing in mind that, under the present assumptions, the signal 
energy per symbol is unity (see Appendix 2.A) and therefore 1/ No equals 
EJNo. Hence 

Next, the marginal likelihood function A(rIO) is obtained by averaging 
(5.8.9) over the data. As the symbols are independent and equiprobable, the 
expectation is performed on each factor separately and produces 
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from which the following expression of the log-likelihood function is obtained: 

(5.8.11) 

The ML estimate is that e that maximizes (5.8.11). As happens with non­
offset modulation there is no way to arrive at an explicit solution unless either 
high or low SNR is assumed. Paralleling the arguments in Section 7.2 it can be 
shown that, in the first instance, maximization of (5.8.11) is approximately 
performed by means of a Costas loop. As this result is intuitively clear, it is not 
further discussed in the sequel. Instead, assuming a low SNR, we first consider 
a feedback estimation loop and, later, some feedforward schemes. 

5.8.2. Feedback Estimation Method 

As the derivation is similar to that performed in Section 5.7.3 with non­
offset formats, we only highlight the major steps. The starting point is the 
derivative of the log-likelihood function, which is found to be 

~lnA(rllh=-s L Q(k,O)tanh _s I(k,o) d E Lo-I [E] 
de No k=O No 

- Es L I(k+1/2,0)tanh Es Q(k+1/2,0) Lo-I [ 1 
No k=O No 

(5.8.12) 

where the following notations have been used: 

x(k)e-/} £I(k,O) + jQ(k,O) (5.8.13) 

x(k + 1/2)e-jO £I(k + 1/2,0) + jQ(k + 1/2,0) (5.8.14) 

Next, we make the approximation tanh(x) "" x which is valid for 
Es/No« 1. As a result (5.8.12) becomes 
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d_ InA(rI8) "" (Es )2 ~I {J(k,8)Q(k, 8) _ J(k + 1/2,8)Q(k + 1/2,8)} (5.8.15) 
dO No k=O 

Finally, the generic term in the sum (5.8.15) is exploited as an error signal to 
update the current phase estimate e(k). This produces 

e(k + 1) = e(k) + re(k) (5.8.16) 

with 

(5.8.17) 

Figure 5.59 illustrates a block diagram for this estimation loop where 
abbreviations of the type J(k) in place of J[k,e(k)] have been made. Comparing 
it with the decision-directed scheme in Figure 5.23, it is recognized that the 
only difference is that J[k,e(k)] and Q[k + 1/2,e(k)] are used in place of the 
hard decisions sgn{I[k,e(k)]} and sgn{Q[k + 1/2,e(k)]} in computing the error 
signal. 

The S-curve for (5.8.17) is derived as follows. The right-hand sides of 
(5.8.13)-(5.8.14) are found to be 

J(k,e) + jQ(k,e) = ej¢[ ak + j~bih(k-i -1/2)]+n l (k) (5.8.18) 

J(k + 1/2JJ) + jQ(k + 1/2,0) = ej¢[jbk + ~aih(k - i + 1/2)] + n"(k + 1/2) 

(5.8.19) 

~ • I 
I 

21T 

Q(k) 

e(k) 

Figure 5.59. Non-data-aided phase recovery loop. 
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where ep£.(J - 0 and n'(k) and n"(k + 1/2) are phase rotated versions of n{k) 
and n{k+1/2) Hence, letting n'(k)£.n~(k)+ jn;(k) and n"(k)£.n~(k)+ jn7(k), 
it follows that 

I(k,O) = ak cosep - sinep 'LAh(k - i -1/2) + n~(k) (5.8.20) 

Q(k,O) = ak sinep + cosep'LAh(k - i -1/2) + n;(k) (5.8.21) 

I(k + 1/2,0) = -bk sinep + cosep Lajh(k - i + 1/2) + n~(k + 1/2) (5.8.22) 

Q(k + 1/2,0) = bk cosep+ sinep Lajh(k - i + 1/2) + n7(k + 1/2) (5.8.23) 

Finally, substituting into (5.8.17) with O(k) = 0 and taking the expectation with 
respect to data and noise produces the desired result 

(5.8.24) 

As is seen, the S-curve is proportional to sin 2ep, which means that the phase 
detector has a 1800 ambiguity. 

It is worth noting that the amplitude of Seep) depends on the signal 
bandwidth. To illustrate this point we assume that the Fourier transform of h(t) 
is a raised-cosine roll off function with rolloff a and show that the amplitude of 
the S-curve is proportional to the rolloff. To proceed, let us write the sum in 
(5.8.24) in the form (Poisson sum formula) 

(5.8.25) 

where Hi.f), the Fourier transform of h2 (t), is related to the Fourier transform 
of h(t) by 

00 

H2 (f) = f H(v)H(f - v)dv (5.8.26) 

As H(f) is bandlimited to ±(1+a)/(21), Hi/) is confined within ±(1+a)/T and 
the only nonzero terms in (5.8.25) are those with m=O and m=±l. Carrying out 
the calculations it is found that 

(5.8.27) 
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Figure 5.60. Phase error variance with rolloff a as a parameter. 

Thus, substituting into (5.8.24) yields the result sought 

S(ifJ) = a sin2ifJ 
2 
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(5.8.28) 

The tracking performance of the phase recovery loop in Figure 5.59 can be 
analytically assessed by paralleling the arguments in Section 5.4.2. This subject 
is not pursued here, however, as the calculations are too lengthy. Figure 5.60 
illustrates simulation results for a loop bandwidth BLT=S·1O-3• The modified 
Cramer-Rao bound is also shown as a baseline. As is seen, performance 
degrades as a decreases. All the curves exhibit a floor as the SNR increases. Of 
course this is a manifestation of the self noise originated in the phase detector. 

5.8.3. ML-Oriented Feedforward Method 

In this section we derive a feedforward estimation scheme based on ML 
methods. Later, in Section 5.8.4, a variant to this algorithm is proposed which 
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arises from analogy with the Viterbi&Viterbi method in Section 5.7.4. To 
begin, assume Es/No« 1 and approximate In[cosh(x)] with the first term of 
its power series 

x2 
In[cosh(x)] "'-

2 

Substituting into (5.8.12) yields (within an immaterial factor) 

Next, write 

Re{ x(k)e- jii } = ±[X(k)e- jii + x*(k)e jii ] 

Im{x(k + lj2)e- jii } = 21)X(k + lj2)e- jii - x*(k + lj2)e jii ] 

(5.8.29) 

(5.8.31) 

(5.8.32) 

and insert these expressions into (5.8.30). Ignoring constants independent of ii, 
it turns out that maximizing (5.8.30) is equivalent to maximizing 

(5.8.33) 

The maximum is clearly achieved setting 2ii equal to the argument of the sum 
in (5.8.33) and this leads to the estimation rule 

(5.8.34) 

Note that, as the arg-function takes values in the interval ±1r, the estimate is 
restricted within ±1r/2. This generates a phase ambiguity of 1800 which can be 
resolved either with differential encoding/decoding or the methods indicated in 
Section 5.7.6. 

The following interpretation of (5.8.34) is of interest. As the channel 
response is Nyquist, the samples x(k) and x(k+1I2) from the matched filter are 
given by 

(5.8.35) 
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x(k + 1/2) = ej8 { ~ ajh(k - i + 1/2) + jbk } + n(k + 1/2) (5.8.36) 

Squaring, taking the average with respect to symbols and noise and using 
(5.8.27) yields 

E{ xZ(k + 1/2)} = - ~ ejZ8 

Thus, i(k) and i(k+ 112) may be written in the form 

(5.8.37) 

(5.8.38) 

(5.8.39) 

(5.8.40) 

where N1(k) and Nz(k+1I2) are zero-mean random variables. It follows that, on 
average, the difference xZ(k)-xz(k+1I2) is a complex number parallel to the 
phasor ~Z8 and, therefore, the sample average of i(k)-x\k+ 112) has an 
argument close to 28. This justifies the estimation procedure indicated in 
(5.8.34). 

Performance analysis of the above estimator may be pursued with a 
method proposed by Meyrs and Franks [15]. Their key idea is to take a Taylor 
series expansion of F( ii) around e = 8 

F( 0) = F( 8) + pI) (8)( 0 - 8) + 1. F(Z) (8)( 0 - 8)z 
2 

(5.8.41) 

where pi)«(J) and pZ)«(J) denote first and second derivatives. It can be checked 
that this approximation is valid at high SNR and with long observation 
intervals. Then, the maximum of F(O) occurs for 

(5.8.42) 

Next, the quantity PZ)(8) in the denominator is replaced by its statistical 
expectation over symbols and noise. Again, this is a valid approximation for 
Lo»I, in which case the variance of F(Z)(8) turns out to be much smaller than 
the squared expected value [E{F(Z)(8)} f. As a result we get 
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(5.8.43) 

At this point the expected value and the variance of the estimator are 
easily computed. In fact, taking the derivative pi)(O) from (5.8.33) and making 
use of (5.8.39)-(5.8.40) gives 

(5.8.44) 

In view of (5.8.43), this means that the estimator is unbiased, i.e., E{O} = 8. It 
follows from (5.8.43) that 

(5.8.45) 

Performing the expectations in (5.8.45) is a lengthy process which leads to 
rather awkward formulas. Figure 5.61 illustrates simulation results for the 

10 15 20 

EfNo' dB 

OQPSK 

La=IOO 

25 30 

Figure 5.61. Phase error variance versus Est No with roll off a as a parameter. 
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estimation variance versus Es / No, taking Lo= 1 00 and the rolloff a as a 
parameter. We see that performance degrades as the rolloff decreases due to 
self noise. This same situation is observed with NDA closed-loop estimation 
(see Figure 5.60). 

Exercise 5.8.1. Derive a feedback algorithm to maximize F(8) in (5.8.33) 
and show that it coincides with the estimation loop in Figure 5.59. 

Solution. The derivative of F(8) is given by 

(5.8.46) 

The desired algorithm is obtained taking the generic term in the summation as 
an error signal to update the current phase estimate 

O(k + 1) = O(k) + reek) (5.8.47) 

with 

(5.8.48) 

Inserting (5.8.39)-(5.8.40) into (5.8.48) and performing the expectation 
operation yields the S-curve of the phase detector 

S(l/J) = asin2l/J (5.8.49) 

Next we show that (5.8.48) coincides with (5.8.17) within an immaterial 
factor. This follows from the fact that, as a consequence of (5.8.13)-(5.8.14), 
the quantities I and Q in (5.8.17) may be written in the form 

(5.8.50) 

(5.8.51) 

Hence, substituting into (5.8.17) makes the right-hand side equal to (5.8.48), 
within a factor 112. 

5.8.4. Viterbi-Like Method 

A variant to the estimator (5.8.34) has been proposed by Moeneclaey and 
Ascheid [64] from analogy with the V&V method described in Section 5.7.4. It 
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consists of expressing x(k) and x(k+1I2) in the form x£pejq, and making the 
following replacements in (5.8.34): 

x2(k) ~ F(p(k)]ej2q,(k) (5.8.52) 

x2 (k + 1/2) ~ F(p(k + 1/2) ]e j2q,(k+I/2) (5.8.53) 

where F(p) is some suitable function of p. This produces 

{} = .!..arg L {F(p(k) ]e j2q,(k) - F[p(k + 1/2) ]e j2q,(k+I/2)} {
Lo-I } 

2 k=O 
(5.8.54) 

Clearly, for F(p)=l the estimator (5.8.54) reduces to (5.8.34). 
The performance of (5.8.54) is difficult to assess analytically and sim­

ulations seem the only viable route. This has been done in [64] where the cases 
F(P)=l, F(P)=p and F(p)=p2 are compared. It turns out that, with rolloff factors 
greater than 0.5, the effect of the nonlinearity F(p) is limited. For smaller 

OQPSK 

F(P)=1 

10 15 20 25 30 

BlNo. dB 

Figure 5.62. Phase error variance with F(P)=l. 
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rolloffs, vice versa, it is quite significant and, in fact, F(P)=1 and F(p)=p are 
better than F(p)=p2. This may be seen comparing the results with F(P)=1 given 
in Figure 5.62 with those with F(p)=p2 in Figure 5.61. 

5.9. Clockless Phase Recovery with PSK 

5.9.1 ML-Based Feedforward Estimation 

Carrier phase recovery has been investigated in Section 5.7 under the 
assumption of prior establishment of symbol timing. To speed up the overall 
synchronization process it is natural to wonder whether carrier phase can be 
estimated independently of timing, perhaps in parallel with it. This problem is 
investigated in this section in the case of PSK signaling. In doing so we assume 
unknown data symbols, perfect carrier frequency recovery, and a Nyquist 
channel response. 

Our analysis draws heavily from the discussion in Section 5.7.4 wherein 
timing phase 'l'is perfectly known. In the present situation, on the contrary, 'l'is 
unknown and is modelled as a random variable uniformly distributed on the 
interval ±T/2. Then, paralleling the arguments leading to (5.7.66) it is found 
that 

1.0-1 

A(rIO, i) = II T(k, 0, i) (5.9.1) 
k=O 

where 

_ 1 M-I {2E { '-'}} T(k,(},i)!- Lexp _s Re x(kT+f)e-J8eJ2trm/M 
M m=O No 

(5.9.2) 

and x(t) is the matched-filter output. 
Next, suppose Es! No « 1 and expand the right-hand side of (5.9.2) into a 

power series. Again, following the arguments leading to (5.7.76), it turns out 
that the following approximation holds: 

(5.9.3) 

Substituting into (5.9.1) and keeping only terms containing powers of Es/No 
up to M yields 
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A(rIO,f) "'" 1+~( Es)M Re{e-jM9~IXM(kT+f)} 
M. No k=O 

(5.9.4) 

At this point the marginal likelihood A(rIO) is computed taking the 
expectation of (5.9.4) with respect to f = r, which entails computing a time 
average over - T 12 ~ f ~ T 12. Ignoring immaterial constants independent of (j 
it is found that 

(5.9.5) 

which indicates that the maximum of A(rIO) is achieved for (j equal to 

(5.9.6) 

There is a clear similarity between (5.9.6) and the corresponding estimator 
(5.7.78) for clock-aided phase recovery. In both cases a phase estimate is 
obtained by averaging the M-th power of the matched-filter output. The 
purpose of raising x(t) to the M-th power is to cancel the modulation. However, 
this goal can only be achieved from the samples xM(kT+r), which implies 
perfect knowledge of the symbol timing. With clockless phase recovery, on the 
contrary, intersymbol interference is inevitable and, in consequence, the 
estimation errors are expected to be larger. 

In a digital implementation of (5.9.6) the integral is computed by 
accumulating the samples of x(t) taken at some rate NIT. Correspondingly 
(5.9.6) becomes 

O=-arg "ixM(kT/N) 1 {NLo-l } 
M k=O 

(5.9.7) 

The choice of the oversampling factor N is related to the size of the signal 
constellation, M, and the rolloff factor cx. As indicated in Appendix 2.A, the 
sampling rate must exceed M(1 +a)/(2n, the bandwidth of xM (t). Hence 

N2: M(1+a) 
2 

(5.9.8) 
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Figure 5.63. Phase error variance for QPSK with oversampling factor N=4. 

For example, an oversampling N"?3 is needed with QPSK signals and a rolloff 
of 0.5. 

Figure 5.63 illustrates the performance of estimator (5.9.7) as obtained by 
simulation with QPSK modulation and an oversampling factor N=4. Com­
paring it with Figure 5.56, which corresponds to perfect timing knowledge, it 
appears that (5.9.7) is slightly inferior. This is an expected result as the samples 
xM(kTIN) are affected by intersymbol interference. 

5.10. Clockless Phase Recovery with OQPSK 

5.10.1. Ad Hoc Method 

The motivation to pursue clockless phase recovery with QPSK is to 
shorten the overall acquisition time. While this same motivation holds with 
OQPSK as well, there is one further reason here because clock recovery is 
difficult to obtain in the absence of carrier phase knowledge. In the following 
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we provide a clockless phase estimation scheme for OQPSK based on heuristic 
reasonings. 

The starting point is the integral 

LoT 
.J~ J x\t)dt (5.10.1) 

o 

where x(t) is the matched-filter output 

With long manipulations it can be shown that the expected value of .J (over 
data and noise) has the form 

E{.J} = _Ke j46 (5.10.3) 
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Figure 5_64_ Perfonnance of cIockless phase recovery for OQPSK. 
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where K is a positive constant independent of 8. Equation (5.10.3) says that, on 
average, the argument of:J equals 48-1r and this suggests using the estimation 
formula 

(5.10.4) 

In a digital implementation the integral can be computed through the 
samples of x 4(t) taken at some rate NIT. As x(t) is bandlimited within 
±(l + a) 1(2T) and x \t) is confined within ±2(1 + a) IT, an oversampling 
factor N ~ 2(1 + a) is sufficient. Correspondingly (5.10.4) becomes 

e = 1r +-arg Lx\kT/N) 
1 {4NLo-I } 

4 4 k=O 
(5.10.5) 

Figure 5.64 shows simulation results for the variance of this estimator. 
Comparing it with Figure 5.62, it is clear that (5.10.5) is slightly superior to the 
V&V estimator (5.8.54) for any rolloff. 

5.11. Key Points of the Chapter 

• Optimum clock-aided and data-aided carrier phase estimators are obtained 
by straightforward application of ML methods. They employ the samples 
from the matched filter taken either at symbol rate or at twice that rate, 
depending on the modulation format (non-offset or offset). 

• In the absence of frequency errors their performance achieves the Cramer­
Rao bound. 

• Frequency errors produce degradations. In particular, the estimates are 
biased whenever the center of the observation interval does not coincide 
with the phase estimation time. 

• Decision-directed phase recovery is best implemented by means of Costas 
loops. The heart of a Costas loop is the phase detector which generates an 
error signal making use of signal samples and symbol decisions from the 
detector. 

• The error signal provides a measure of the difference between the carrier 
phase and its current estimate. The error signal serves to steer the loop and 
keep that difference as small as possible. 

• The average of the error signal, conditioned on a fixed phase error, is 
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referred to as the S-curve and provides information about the loop 
acquisition capability. In particular, its nulls with positive slope represent 
stable equilibrium points while those with negative slope are unstable 
points. 

• S-curves may have several stable equilibrium points, separated by some 
fixed quantity from each other. Thus, the loop may settle on phase estimates 
that differ from the carrier phase by multiples of that quantity. 

• Phase ambiguity affects Costas loops as well as other non-data-aided phase 
estimators. A common method to cope with phase ambiguity is to employ 
coherent differential detection. 

• Tracking performance of a Costas loop is close to MCRB with PSK and 
sufficiently high SNR. With OQPSK the bound is nearly achieved at 
intermediate SNR. At higher values, instead, the estimation variance 
exhibits a floor. 

• Phase noise involves some trade-off in the design of the Costas loop 
bandwidth. Phase noise cannot be tracked adequately if the bandwidth is too 
small. On the other hand, a large bandwidth makes too much noise enter the 
loop with degrading effects on the tracking accuracy. 

• In the presence of uncompensated carrier frequency offsets a first-order 
Costas loop exhibits steady-state phase errors which degrade the BER 
performance. The drawback is avoided with a second-order loop. 

• Multiple tracking comes about as an application of per-survivor-processing 
methods and consists of endowing each survivor in the decoder with a 
separate Costas loop. Multiple tracking is useful to reduce slip rates and 
acquisition times and is quite effective against phase noise. 

• In general, Costas loops are inadequate to track the fast phase variations 
encountered on fading channels. In these circumstances differential 
detection is attractive due to its implementation simplicity. With fast fading, 
however, BER curves exhibit a floor which may be too high even for digital 
voice applications. 

• As an alternative, pilot-symbol assisted modulation (PSAM) may be 
adopted. In PSAM systems known symbols are multiplexed with the data to 
allow periodic measurements of the channel gain. Interpolation of these 
measurements yields channel estimates at the symbol rate. PSAM methods 
are superior to differential detection for Doppler bandwidths up to about 1 % 
of the symbol rate. With faster fading, however, BER curves show a floor 
even with PSAM. 

• Per-survivor methods are effective with Doppler bandwidths ranging from 
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1 % to 5% of the symbol rate. The fundamental idea with these methods is 
that the channel gain must be estimated on a per-survivor basis and the 
estimates must be incorporated into the detection algorithm. 

• Clock-aided but non-data-aided (NDA) phase estimation for A WGN 
channels leads to feedforward structures that are interesting in burst mode 
transmissions. A variety of such structures is available for either non-offset 
or offset formats. Their performance is largely dependent on the modulation 
format and the rolloff factor (the latter only for offset modulations). 

• NDA phase recovery may be pursued even without symbol timing. 
Feedforward schemes are useful whenever a short estimation time is needed. 
Performance with OQPSK is even better than with clock-aided methods. 
The price to pay is a higher sampling rate, however. 
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Carrier Phase Recovery 
with CPM Modulations 

6.1. Introduction 

6 

In this chapter we consider carrier phase recovery for CPM signaling. By 
and large the presentation follows the same route taken with linear 
modulations. In particular, data-aided (OA) estimation is considered first, then 
we concentrate on decision-directed (00) methods and, finally, on non-data­
aided (NDA) techniques (either clock-aided or non-clock-aided). 

As we pointed out in Chapter 2, CPM formats with good bandwidth and 
energy efficiencies often require an ML sequence detector implemented by 
means of a Viterbi algorithm. As the complexity of this algorithm may be con­
siderable, simplified detection schemes are of practical interest. One popular 
arrangement is the so-called MSK-type receiver [1]-[2] which requires only 
two real filters and a limited amount of processing. 

In the next section we provide an overview of MSK-type receivers and 
discuss related OA phase estimation methods. OA phase recovery with general 
CPM modulation (multilevel signaling and arbitrary modulation index) seems 
unlikely to be of practical interest in the near future and therefore will not be 
addressed in this book. In Section 6.3 we concentrate on 00 phase recovery for 
MSK-type modulation and, in Section 6.4, we extend the discussion to general 
CPM formats. Section 6.5 deals with joint detection and channel estimation for 
CPM signaling over flat-fading channels. In Section 6.6 we return to A WGN 
channels and discuss NOA but clock-aided phase estimation. Finally, in 
Section 6.7, we address non-clock-aided phase recovery. 
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6.2. Data-Aided Phase Estimation with MSK-Type Modulation 

6.2.1. MSK· Type Receivers 

We first overview optimum ML sequence detection for MSK and then we 
concentrate on general binary modulations (with arbitrary phase responses) 
with modulation index 112 (MSK-type signaling). In either case the signal 
model is 

with 

N-I 

1fI(t,a)~lr Laiq(t - iT) 
i=O 

(6.2.1) 

(6.2.2) 

The starting point is the representation of an MSK signal as an OQPSK 
waveform. This subject has been discussed in Exercise 4.2.1, where an 
expression of the following type has been derived for s(t): 

with 

{
1ft 

cos-
hQ(t)~ 0 2T 

-T<5:t<5:T 
(6.2.4) 

elsewhere 

For convenience we have chosen a pulse hQ(t) centered around the origin. This 
has been obtained by shifting the pulse ho(t) in Chapter 4 by T seconds 
rightward. All other notation has been left unchanged. In particular, the 
parameter ¢ takes values {O,lr/2,lr,3lr/2}, depending on the data pattern prior 
to the time origin, and the pseudo-symbols {ai } are related to the modulation 
symbols { ai } by the relations 

(6.2.5) 

a2i+1 ~sin - Lal (
lr 2i+l ) 

2 1=1 

(6.2.6) 
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It is worth noting that the pseudo-symbols and the modulation symbols all 
belong to the same alphabet {-I, 1 } . 

Next we concentrate on the received waveform 

r(t) = _s ej (2trvt+9) L~ihQ(t - 2iT --r) ~E [00 
T i=l 

+ j~~i+lhQ[t -(2i + I)T - -r]] + w(t) (6.2.7) 

where, for simplicity, the phase f/J appearing in (6.2.3) has been absorbed into 
O. If the synchronization parameters (v,O,-r) were known, ML sequence 
detection would be performed by maximizing the likelihood function A(rla) 
over the allowed sequences a g,{a1, ~ , ... , aN}' as is now explained. 

Start from the likelihood function which is given by 

{ I "E [N12 . N12-1 . ]} 
A(rja) = exp - __ s L~k Re{ x(2k)e-J9 } + L~k+l Im{ x(2k + l)e-J9 } 

No T k=l k=O 

(6.2.8) 

where the shorthand notation x(k)g,x(kT + -r) has been used and x(t) represents 
the response to r(t)e-j2trvt of the matched filter ~(-t), i.e., 

x(t) = [r(t)e- j2trvt ] ® "fJ( -t) (6.2.9) 

Clearly, maximizing (6.2.8) amounts to maximizing the quantity 

NI2 N12-1 
La2k Re{x(2k)e-j9 } + L~k+llm{ x(2k + l)e-j9 } (6.2.10) 
k=l k=O 

This task can be pursued through a symbol-by-symbol decision procedure 
wherein ~k is set equal to ±1, according to the sign of Re{x(2k)e-j9 } and, 
similarly, ~k+l is chosen according to the sign of Im{x(2k + l)e-j9 }. In other 
words, letting 

x(k)e-j9 g,I(k) + jQ(k) (6.2.11) 

and denoting by {ak } the detected sequence, the decision rule takes the form 

~k = sgn[I(2k)] (6.2.12) 
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Figure 6.1. MSK-type receiver. 

tl2k+! = sgn[Q(2k + 1)] (6.2.13) 

Figure 6.1 illustrates the block diagram of the receiver. The impulse 
response of the filter is ~(-t). As expected from the signal representation 
(6.2.3), the receiver structure coincides with that of a conventional OQPSK 
system. In the latter, however, optimum detection requires that pulses at the 
filter output be Nyquist. This is no longer true with MSK, however, as may be 
checked by computing ~(t) ® ~(-t) from (6.2.4). 

One question about this scheme is concerned with the computation of the 
information symbols from the pseudo-symbols released by the detector. This 
problem is usually approached by differential encoding/decoding as follows. 
Call {1Jd the information symbols (taking values ±l) and suppose they are 
differentially encoded into modulation symbols as follows: 

(6.2.14) 

The problem is to derive {1Jd from the detected sequence {ak}' Simple 
manipulations on (6.2.5)-(6.2.6) show that 

or, in compact form, 

Then, writing (6.2.14) as 

and making use of (6.2.17) yields 

(6.2.15) 

(6.2.16) 

(6.2.17) 

(6.2.18) 

(6.2.19) 
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which suggests computing the estimate of 11k as irk = -ClkClk_2' 
Next we turn our attention to MSK-type signals. As we pointed out in 

Chapter 4, they can be approximated as indicated in (6.2.3), with the qual­
ification that hQ(t) is no longer an arc of a sinusoid. It follows that a sub­
optimum receiver may be derived making use of ML-oriented arguments of the 
type adopted earlier. Clearly, this leads again to the structure indicated in 
Figure 6.1, wherein the filter must be properly chosen on the basis of the actual 
phase response of the modulator. In summary, the block diagram in Figure 6.1 
is an optimum receiver for MSK while it is suboptimum for MSK-type modu­
lation. 

An interesting issue is whether the filter in Figure 6.1 should be really 
matched to hQ(t). One argument against this choice is that the matching 
condition arises from taking (6.2.3) as the true signal model. Since (6.2.3) is 
only an approximation, however, it is quite possible that better results might be 
obtained with other filters. This problem has been addressed in the literature 
and references [3]-[5] provide a good sample of the proposed solutions. In 
particular, EI-Tanany and Mahmoud [5] try to minimize the mean-square 
intersymbol interference at the filter output while Galko and Pasupathy [3] and 
Svensson and Sundberg [4] look for the minimum receiver error probability. 
More practical design criteria are discussed in [6]-[7]. 

6.2.2. Data-Aided Phase Estimation with MSK-Type Modulation 

We first concentrate on true MSK because, in this case, ML data-aided 
estimation can be solved in a straightforward manner. Assume that the signal 
parameters in (6.2.7) are all known, with the exception of the carrier phase e. 
Then, ML phase estimation is performed by maximizing the likelihood 
function 

with 

- {I f2E. { '9} A(rie) = exp No ~-:t Re Xe-J 

To [ 00 

X£ [r(t)e- j2JrVt ~~ihQ(t-2iT-f) 

- j~a2i+lhQ[t- (2i + I)T - f1}t 

As we now explain, X can be approximated as 

1-0/2 1-0/2- 1 
X"" Lx(2k)a2k - j Lx(2k + 1)a2k+l 

k=1 k=O 

(6.2.20) 

(6.2.21) 

(6.2.22) 
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Figure 6.2. Block diagram for ML data-aided phase estimation. 

where Lo £To/T, and x(k) are the samples from the matched filter. Clearly, 
equation (6.2.22) would hold exactly if the pulses {hO(t - iT - -r), 1 ~ i ~ Lo} 
were all confined within the observation interval O~~T while the other 
pulses were zero on that interval. Unfortunately, this is only approximately 
true. For example, hO(t - LoT - -r) extends beyond t=LoT. It is easily realized, 
however, that these edge effects become negligible as Lo increases. Thus, 
assuming Lo sufficiently large, it follows that A(rle) achieves a maximum 
when 6 equals the argument of X and the ML estimator becomes 

{
Lo/2 Lo/2-1 } 

{) = arg ~ x(2k)a2k - j ~X(2k + l)~k+1 (6.2.23) 

Figure 6.2 illustrates a block diagram for this estimator. The block SIP 
represents a serial-to-parallel converter. As expected, the estimator structure is 
the same as for OQPSK. 

Extension to MSK-type modulation is pursued by approximating the 
signal as in (6.2.3) and reasoning as with MSK. This leads again to the 
estimator (6.2.23) where the x(k) are samples taken from some shaping filter. 
As before, the question arises as to whether this filter should be really hOC -t). 
This is left as an open question, even though it would seem sensible to employ 
the same filter for both phase recovery and data detection [3]-[7]. 

6.2.3. Estimator Performance with MSK 

The performance of estimator (6.2.23) can be assessed as follows. Taking 
ret) from (6.2.7) and letting 
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~ ~ 

m(t)! L~;~(t - 2iT - 1") + jL~i+1~[t - (2i + I)T - 1"] (6.2.24) 
;=1 ;=0 

from (6.2.21) we have 

(6.2.25) 

On the other hand, from (6.2.1) and (6.2.3) it is recognized that Im(t)1 = 1. 
Hence 

(6.2.26) 

where NR and N[ are random variables defined as 

(6.2.27) 

Putting these facts together and recalling that f) = arg {X} yields 

(6.2.28) 

The estimator performance is now computed from the statistics of NR and 
N[. Straightforward arguments indicate that NR and N[ have zero mean and the 
same variance 

(6.2.29) 

Also, assuming Lo»1 so that NR and N[ are statistically much smaller than 
unity, equation (6.2.28) reduces to 

(6.2.30) 

from which it is concluded that the estimator is unbiased and has variance 

All 
Var{f)} = ---

21-0 Es/No 
(6.2.31) 

This coincides with the MCRB and the true CRB. Indeed, the two bounds 
coincide as there are no unknown parameters involved in the present estimation 
problem. 
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Figure 6.3. Estimation variance versus Es / No. 

Figure 6.3 illustrates simulation results for the estimator variance with two 
values of Lo. The corresponding CRBs are also shown for comparison. The 
simulations depart from the bounds as the signal-to-noise ratio increases. 
Intuitively this is due to edge effects (self noise) in the approximation (6.2.22). 
As expected, self noise becomes less important as Lo increases. 

6.3. Decision-Directed Estimation with MSK-Type Modulation 

6.3.1. Decision-Directed Estimation with MSK 

We shall limit our discussion to decision-directed phase estimation with 
MSK but, as mentioned earlier, the same methods may be utilized with MSK­
type signaling. In particular, they involve approximating the signal model as in 
(6.2.3), with a proper choice of hQ(t). The question of the optimum hQ(t) is not 
addressed in this book but it is believed that most of the solutions indicated in 
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[3]-[7] should be adequate. 
Collecting (6.2.20)-(6.2.22) and rearranging yields 

- { I fFE [Lo/2 { .-} A(rIO) = exp - _s ~>2k Re x(2k)e-J(} 

No T k=1 

(6.3.1) 

The decision-directed approach assumes that the symbols {a i } are replaced by 
decisions {o'i} taken from the detector. Thus, maximizing A(rIO) amounts to 
maximizing 

Lo/2 _ Lo/2-1 _ 
F(O)~ L0'2kRe{x(2k)e-j(}}+ L ~k+llm{x(2k+l)e-j(}} (6.3.2) 

k=1 k=O 

which can be done by looking for the zeroes of the derivative 

Toward this end we adopt the usual recursive method which consists of 
computing the k-th terms in (6.3.3) for 0 equal to the current phase estimate 
and using their sum as an error signal to update the estimate. Formally, we 
adopt the following error signal: 

where 

(6.3.5) 

is a normalizing factor. It should be noted that the phase estimates are 
computed at intervals of 2T according to 

O(2k + 2) = O(2k) + ~(2k) (6.3.6) 

Introducing the shorthand notations 

/(2k) + jQ(2k)~x(2k)e-/J(2k) (6.3.7) 
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Figure 6.4. Block diagram for the DD estimation algorithm. 

/(2k + 1) + jQ(2k + 1)~x(2k + 1)e- jO(2k) 

equation (~.3.4) becomes 

e(2k) = ~[a2kQ(2k) - a2k+/(2k + 1)] 
K 

llzk+ I 

(6.3.8) 

(6.3.9) 

and the estimation algorithm takes the form illustrated in Figure 6.4. This 
scheme is identical to the decision-directed phase recovery loop we brought out 
in Chapter 5 for OQPSK. 

Analysis of this loop may be carried out by paralleling the arguments used 
with OQPSK and the results are qualitatively the same. In particular the S­
curve has stable points at t/J = 0 and t/J = ±n, which implies a 1800 phase ambi­
guity. Such an ambiguity has no consequences for data detection, however, 
since a phase error of 1800 affects only the sign of the individual decisions 

ak but not the products -akak-2 from which the information data are re­
trieved (see (6.2.19)). 

Exercise 6.3.1. Compute the S-curve of detector (6.3.9) over a small 
interval around the origin. 

Solution. Substituting (6.2.7) into (6.2.9) and performing straightforward 
manipulations yields 

{FE .[00 
x(t)= _seJe Lllz/~(t-2iT-r) 

T i=l 

+j~a2i+l~[t- (2i + l)T - r]] + n(t) (6.3.10) 
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where 

(6.3.11) 

and net) is a thermal noise component 

(6.3.12) 

Next, x(t) is sampled at 2kT+'r and (2k+I)T+'r to produce x(2k) and 
x(2k+1). Inserting the results into (6.3.7)-(6.3.8) gives the outputs from the I1Q 
block in Figure 6.4. For e(k) = e it is found that 

K[ 00 I(2k)=T cos<jJ~a2i~[2(k-i)] 

-sin<jJ ~a2i+l~[2(k - i) -1]] + n[(2k) (6.3.13) 

Q(2k) = ~[sin<jJ~~i~[2(k-i)] 

+cos<jJ ~~i+l~[2(k - i) -1]] + nQ(2k) (6.3.14) 

K[ 00 I(2k + 1) = T cosl{J ~a2ihOO[2(k - i) + 1] 

-sin<jJ ~a2i+l~[2(k - i)]] + n[(2k + 1) (6.3.15) 

Q(2k + 1) = ~ [sin<jJ ~a2i~o[2(k - i) + 1] 

+cos<jJ ~a2i+l~[2(k - i)]] + nQ(2k + 1) (6.3.16) 

In these equations <jJg,e - e is the phase error, n [ and nQ are I1Q noise 
components and ~(k) is short for ~(kT). From (6.2.4) and (6.3.11) it can be 
seen that 
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k=O 

k=±1 
elsewhere 

Then, for Esl No » 1 and ifJ "'" 0 we have 

~k ~sgn[I(2k)] "'" ~k 

~k+1 ~sgn[Q(2k + 1)] "'" ~k+1 

Chapter 6 

(6.3.17) 

(6.3.18) 

(6.3.19) 

meaning that the detector decisions are (almost always) correct. Thus, sub­
stituting into (6.3.9) produces 

e(2k) "'" 2sinifJ + NSN (2k) + NTN (2k) (6.3.20) 

where NsJ2k) is a self-noise term 

(6.3.21) 

while NT/1.2k) is thennal noise 

(6.3.22) 

Finally, taking the expectation of (6.3.20) for a fixed ifJ yields the S-curve 
around the origin 

(6.3.23) 

Exercise 6.3.2. Compute the error variance (12 ~E{[e - O(2k)]2} as a 
function of the ratio Es / No and the loop noise bandwidth. 

Solution. Bearing in mind that the slope of the S-curve at the origin equals 
2 (see (6.3.23) and the phase estimates are updated at multiples of 2T (instead 
of T), we get (assuming yA« 1) 

(6.3.24) 

Similarly, the phase error variance is computed from (3.5.60) of Chapter 3 as 
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(6.3.25) 

where R,/...2m) represents the autocorrelation of the total noise Ns,/...2k)+NT,/...2k) 
in (6.3.20). As Ns,/...2k) and NT,/...2k) are uncorrelated, R,/...2m) is the sum of the 
separate autocorrelations of Ns,/...2k) and NT,/...2k), i.e., 

Performing further calculations it is found that 

Rm(2ml -{E+ 

m=O 

m=±l 

m*O 

m=O 

Hence, substituting into (6.3.24)-(6.3.25) yields the desired result 

(6.3.26) 

(6.3.27) 

(6.3.28) 

(6.3.29) 

The first term in (6.3.29) is recognized as the MCRB( 0) while the second 
represents self noise. 

6.4. Decision-Directed Estimation with General CPM 

6.4.1. ML Receivers for CPM 

Before addressing decision-directed phase estimation it is useful to 
overview ML sequence detection with general CPM modulation. To this end 
we start from the signal written in the form 

(6.4.1) 

with 



320 Chapter 6 

N-l 

1fI( t, a) = 27rh L a;q(t - iT) (6.4.2) 
;=0 

and assume that the data symbols are M-ary, equally likely and independent. 
Also, we take a rational modulation index h=K!P, with P and K relatively 
prime integers. Finally, we normalize the phase response of the modulator so 
that 

t::; 0 

t'?LT 
(6.4.3) 

where L represents the correlation length. Letting llt~{aO,al, ... ,ak}' it is 
easily seen that (6.4.2) may be written in the form 

with 

k 

1J(t,Ck,ak)~27rh L a;q(t - iT) 
;=k-L+l 

k-L 
<l>k ~7rh La; mod2n 

;=0 

(6.4.4) 

(6.4.5) 

(6.4.6) 

(6.4.7) 

Here, Ck and <l>k are referred to as the correlative state and the phase state of 
the modulator. It can be shown that <l>k takes P values. 

From (6.4.4)-(6.4.7) it appears that 1fI(t, a) is uniquely defined by Ck, <l>k 
and the current symbol a k • As there are ML- 1 correlative states and P phase 
states, lfI(t,a) has a total of PML- 1 states which correspond to the L-tuples 
Sk~(ak-L+1' ... ,ak-2,ak-l;<I>k)' Therefore, the CPM modulator may be viewed 
as the cascade of an encoder (with states SJ and a mapper which transforms the 
encoder output into an exponential waveform with argument (6.4.4). 

Assuming that the synchronization parameters {v,e, -r} are all known, ML 
sequence detection is performed by maximizing the likelihood function A(rla) 
with respect to the trial sequence a~{aO,al, ... ,aN_d. With the usual methods 
the likelihood function is found to be 

(6.4.8) 



Carrier Phase Recovery with CPM Modulations 321 

with 

r+(k+I)T 
Zk(Ck,{Xk)~ f r(t)e-j2TrVte-jT/(t-T.Cdiddt (6.4.9) 

r+kT 

(6.4.10) 

k-L 
- A ~-4>k =rch £...a; mod2rc (6.4.11) 

;=0 

As explained in [1]-[2], there are ML different values of Zk(Ck,{Xk) which can 
be computed by feeding r(t)e- j2TrVt into a bank of filters and sampling the filter 
outputs at (k+ l)T +'l'. The filters' impulse responses are given by 

05:t5:T 

elsewhere 
(6.4.12) 

. h (/ 1 2 ,ML) I h' . (C(l) (I») ( (I) (I) (I»). . Wit =, '00. . ntis equatIOn 0 ,ao = a_L+l,oo.,a_l,aO IS a genenc 
al · . f ( ) d (C(l) (I»). . b re lZatIOn 0 a_L+1,.oo,a_l,aO an 1lL t, 0 ,ao IS given y 

o 
1]/t,C6i) ,a~») = 2rch La~i)q(t - iT) (6.4.13) 

;=-L+I 

Returning to (6.4.8), it is clear that ML sequence detection amounts to 
locating the maximum of 

(6.4.14) 

which can be efficiently performed by means of the Viterbi algorithm as 
follows. Let ak- 1 ~(lXo,lXl,.oo,lXk_l) be the survivor path in the encoder trellis 
terminating in the node Sk = (lXk_L+l,oo.,lXk_2,ak_l;<I>k)' Then, the metrics 

ak E {±I,±3,oo .,±(M -I)} (6.4.15) 

are assigned to the branches stemming from Sk and the Viterbi algorithm looks 
for the path with the maximum accumulated metric. Figure 6.5 illustrates a 
block diagram for the ML detector. Note that the final decisions are delivered 
with some delay DD with respect to the current processing time. 
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Figure 6.5. Block diagram of the ML receiver. 

6.4.2. Decision-Directed Phase Estimation 

Chapter 6 

At this stage we are ready to address decision-directed phase estimation. 
Initially we assume that the symbols are known, with the understanding that 
they will later be replaced by the decisions taken from the Viterbi decoder. The 
likelihood function for the unknown phase is given by 

(6.4.16) 

Hence, the ML estimate of () is sought by setting to zero the derivative of the 
sum in (6.4.16) with respect to e: 

(6.4.17) 

To solve (6.4.17) we resort to the usual argument in which the k-th term in 
the sum is computed for e equal to the current phase estimate e(k) and then is 
used as an error signal to update this estimate. One question here is how to 
choose the sequence ~~( ... ,ak-2,ak-l,ak) involved in the computation of 
Zk(Ck,ak) and <I>k' A reasonable answer is to take the best survivor sequence 
~ at time kT. As is explained soon, an even better solution is to keep only 
that portion of ~ up to time (k-D)T (which means discarding the symbols 
from ak- D+! to ak). Denoting by Ck-D and <I>k-D the corresponding values of 
Ck- D and <I>k-D' this amount to updating the phase estimates as follows: 
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O(k + 1) = O(k) + ~(k) (6.4.18) 

with 

e(k)~Im{z (C ii )e-j [8(k-D)+ij)k-D]} k-D k-D' k-D (6.4.19) 

An intuitive reason for choosing D>O is that more reliable decisions are 
expected to be found going backward along the best survivor. In doing so, 
however, a delay is introduced in the loop which tends to degrade the response 
to rapid carrier phase changes. This issue has been investigated in [8] where it 
has been concluded that D= 1 is the best choice in the presence of phase noise 
while D=O is preferable with negligible noise. 

The feedback algorithm (6.4.18)-(6.4.19) represents the conventional 
approach to decision-directed phase recovery for CPM [9]. At any given time a 
single phase estimate is employed to compute the branch metrics in the Viterbi 
algorithm. An alternative method is to resort to multiple phase tracking, as we 
did in Section 4.5 of Chapter 4. The idea is to associate a phase estimator with 
each survivor in the decoder [8], [10]. For each estimator the error signal has 
the form (6.4.19) and is computed using the decisions taken from its own 
survivor. Clearly, there are as many phase estimates as the number of 
survivors. This implies an increased computational load which is justified only 
in particular cases. One such case occurs when dealing with phase-noise 
channels, as is now illustrated. 

From the discussion in [8] it appears that multiple trackers achieve 
optimum performance when the delay D equals zero, independently of the 
phase noise intensity. Accordingly, in the simulations shown in Figures 6.6-6.8 
the delay D has been set to zero with multiple tracking (MT) while it has been 
chosen as either D=O or D=1 with single tracking (ST), depending on whether 
phase noise is present or not. Phase noise is modeled as a Wiener process 

(J(k + 1) = (J(k) + .1(k) (6.4.20) 

where the .1(k) are independent zero-mean Gaussian random variables of 
• 2 

vanance a~. 
Figure 6.6 compares symbol error rate (SER) as obtained with MT and ST 

in the absence of phase noise. Binary modulation is assumed with h= 112 and 
3RC frequency pulses. The lower curve, denoted coherent, corresponds to ideal 
phase recovery, i.e., O(k) = O. It appears that single and multiple trackers have 
the same performance and, therefore, the latter are not justified in view of their 
greater complexity. Figures 6.7 and 6.8 show, vice versa, that multiple trackers 
are superior in the presence of significant phase noise. Again, the lower curve 
is obtained providing the branch metric computation unit with an ideal phase 
reference, O(k) = O(k). 
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Figure 6.6. Comparison between ST and MT in the absence of phase noise. 
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Figure 6.7. Comparison between ST and MT in the presence of phase noise. 
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Figure 6.8. Comparison between ST and MT in the presence of phase noise. 
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Exercise 6.4.1. Compute the variance of the phase estimates as obtained 
with the error signal (6.4.19) under the following conditions: (i) carrier phase is 
constant (no phase noise or frequency errors); (ii) phase errors are small; (iii) 
decisions from the best survivor are correct. 

Solution. If the decisions from the best survivor are correct, we have from 
(6.4.9)-(6.4.11) 

(6.4.21) 

where n(k)~nR(k) + jn[(k) is zero-mean Gaussian noise with independent 
components, each with variance NoT. Substituting into (6.4.19) and assuming 
that the phase errors ¢(k - D)~8 - 8(k - D) are sufficiently small yields 

e(k) = ~2EsTI/J(k - D) + n;(k) (6.4.22) 

where n;(k) is the imaginary part of n'(k)~n(k)e-j¢(k-D). Then, inserting into 
(6.4.18) produces 
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¢(k+ 1) = ¢(k)- r~2EsT¢(k - D) - rn;(k) (6.4.23) 

from which the variance of the phase errors can be computed as follows. 
The phase error ¢(k) is viewed as the response to n;(k) of a filter with 

transfer function 

;J{(z) = r 
z+r~2EsTz-D -1 

(6.4.24) 

Next, calling H(j) the right-hand side of (6.4.24) for z = ej2TCjT , i.e., 

(6.4.25) 

and bearing in mind that the spectral density of n;(k) is constant, i.e., 

(6.4.26) 

it is concluded that the phase error variance is given by 

(6.4.27) 

where B L' the filter noise bandwidth, is defined as 

(6.4.28) 

Note that (6.4.27) coincides with the MCRB. 
Clearly, B L depends on the delay parameter D. In particular, letting 

K ~ r ~2EJ and performing the integral in (6.4.28) it is found that 

K 
for D=O 

2(2-K) 

BLT= 
K(l+K) 

for D= 1 (6.4.29) 
2(1- K)(2 + K) 

K(l+ K _K2) 
for D= 2 

2(2-3K-K2+K3) 
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6.5. CPM Signaling Over Frequency-Flat Fading Channels 

6.5.1. ML Receiver 

In this section we investigate optimum and suboptimum receivers for 
CPM transmissions over frequency-flat fading channels. The approach closely 
parallels the discussion in Section 6 of Chapter 5 with PAM modulations. Here, 
we are concerned with general CPM signals of the type 

(6.5.1) 

with 

N-l 

lI'(t,a) = 27rh La;q(t - iT) (6.5.2) 
;=0 

It should be noted that (6.5.1) differs from (6.4.1) in two respects: (i) the 
presence of the multiplicative distortion a(t); (iz) the absence of the carrier 
phase 8, which has been absorbed into a(t). The multiplicative distortion is 
modeled as a complex-valued Gaussian random process with some power 
spectral density in the range ±ID' The parameter ID is the Doppler bandwidth. 
Without loss of generality the expectation of ia(tt is set to unity so that Es 
may be viewed either as the transmitted energy or the average received energy 
per symbol. 

As a first step in our discussion we wonder what the optimum receiver 
would be like if the distortion a(t) were known. As we shall see, the answer 
opens the way to a simple sub-optimal structure wherein a(t) is estimated in a 
decision-directed manner and the estimates are exploited for data detection. 
Assuming that the parameters {v, 't"} and the actual realization of a(t) are 
known, optimum detection is performed looking for the maximum of the 
likelihood function A(rla) with respect to the trial sequence 
a£{tXo,tX1, ... ,tXN_d. With normal manipulations this function is found to be 

(6.5.3) 

where 

r+(k+l)T 

Z;(Ck,tXk)£ f a*(t)r(t)e-j21Me-jT/(t-T,CkJxk)dt (6.5.4) 
r+kT 
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and Ck , $k are still as in (6.4.10)-(6.4.11). Comparing with (6.4.8)-(6.4.9), it 
is concluded that the optimum receiver has basically the same structure as with 
the A WGN channel. In fact it can be implemented by means of the Viterbi 
algorithm wherein the metrics 

(6.5.5) 

are associated with the branches stemming from the generic node 
Sk = (Ck,<I>k)' Clearly, if a(t) equals dO, we are back to the optimum receiver 
for A WGN channels. 

6.5.2. Approximate ML Receiver Based on Per-Survivor-Processing 
Methods 

In many practical cases the fading bandwidth is sufficiently small 
(compared with the symbol rate) that a(t) is approximately constant over one 
symbol interval. Then, letting 

a(k)£a(kT + TI2 + r) (6.5.6) 

equation (6.5.4) reduces to 

(6.5.7) 

with 

H(k+l)T 

Zk(Ck,{Xk )£ f r(t)e-j2TrVte-jT/(I--r,Ck,Cxk)dt (6.5.8) 
HkT 

Correspondingly, the branch metrics become 

(6.5.9) 

As is seen, they differ from those for the Gaussian channel in that the phasor 
e-jO is replaced by the channel gain a*(k). 

From (6.5.9) it is clear that the search for the most likely path in the trellis 
requires knowledge of the channel gains {a(k)}. A method to estimate these 
gains in a decision-directed manner is now described. We initially assume that 
the true path { .. . ,ak-3,ak-2,ak-d is known up to epoch k. Letting {C;, i ~ k} 
and {<I>;, i ~ k} be the sequences of correlative states and phase states 
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associated with { ... ,ak-3,ak-2,ak-l} and Sk the final node of the path, consider 
the statistics 

(6.5.10) 

Recalling that 

(6.5.11) 

for iT + 'r ~ t < (i + I)T + 'r, it is easily checked that 

Z(i,Sk) = a(i) + n(i) (6.5.12) 

where {n(i)} is zero-mean white Gaussian noise. Equation (6.5.12) indicates 
that Z(i,Sk) may be viewed as a noisy measurement of a(i) and, in 
consequence, can be employed to predict future channel gains. This can be 
done by means of a Wiener predictor 

Lp 

a(k) = L r(i)z(k - i,Sk) (6.5.13) 
i=l 

whose coefficients minimize the mean square error between a(k) and its 
estimate. Performing standard calculations it can be shown that the predictor 
coefficients satisfy the equations 

I r(i)Raa (/- i) + Ji!L = Raa(/), 1 ~ I ~ Lp 
i=l Es/No 

(6.5.14) 

where Raa(l)!E{a(i + l)a* (i)} represents the fading autocorrelation. 
Equation (6.5.14) says that the parameters {r(i)} depend on the ratio 

Es / No and the fading autocorrelation. Clearly, in a practical non-stationary 
environment they must be tracked in some way. Assuming that this is properly 
done, receiver adaptivity may be accomplished by pre-computing various 
coefficient sets for the channel of interest and applying the most suitable one at 
a given time. 

Equation (6.5.13) indicates how to estimate a(k) if the data 
{ ... ,ak-3,ak-2,ak-d were known. In practice they are not known, however, 
and must be approximated in some manner. One possibility is to resort to 
per-survivor-processing (PSP) estimation [11] methods. In their simplest form 
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Figure 6.9. Explaining PSP estimation. A binary alphabet is assumed (ak = ±1). 

these methods operate directly on the encoder trellis as follows. Call 
{ .. . ,CXk-3,CXk-2,cxk-tl the generic survivor at epoch k and let Sk be its terminal 
node (see Figure 6.9). A prediction of a(k) is associated with this survivor 
through the formula 

Lp 

a(k) = L r(i)z(k - i,Sk) (6.5.15) 
i=\ 

and the branch metrics are computed as 

(6.5.16) 

for ak E {±I,±3, ... ,±(M -I)}. 
Better results are obtained by operating on a super-trellis, whose states 

sisuP) are collections of Q+ 1 successive decoder states. Formally a superstate is 
defined as 

S(SUp) A(S S S ) 
k - k-Q, k-Q+i'"'' k (6.5.17) 

with the understanding that the transitions {Sk-i => Sk-i+\' IS; i S; Q} are all 
permissible. Bearing in mind that Sk represents the L-tuple 
(ak-L+i, ... ,ak-2,ak-i;<I>k)' it is realized that a super-state may also be viewed 
as a (Q+L)-tuple 

(6.5.18) 

An intuitive motivation for using a super-trellis instead of the encoder 
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trellis is as follows. If the channel gains {a(k)} were known, the best trellis 
would be the encoder trellis and, at each time and at each state, the Viterbi 
algorithm would retain just one path for extension. The other paths would be 
deleted. When the channel is unknown, however, no path may be dropped in 
favor of another. Then, it makes sense to retain a fixed number of paths for 
each state. For example, retaining M paths (recall that M is the alphabet size) 
amounts to letting SkSUP ) = (Sk_I,Sk)' More generally, keeping Mfl paths 
corresponds to choosing the super-states (6.5.17). This concept has been 
proposed by Seshadri [12] in the more general context of approximate ML 
decoding with frequency selective fading channels. 

Returning to (6.5.18), it is seen that there are PML+Q-I distinct super-states, 
i.e., Mfl times as many as the decoder states. This implies an increase in 
decoding computational load which, of course, is only justified by a cor­
responding improvement in detection performance. Simulations indicate that 
most of the potential benefits offered by a super-trellis are attained with Q=I; 
marginal extra gains are achieved with a larger Q. Whatever the case, for a 
given super-trellis the branch metrics stemming from S?UP) are computed as 

10.2 
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~ 
III 
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Figure 6.10. BER perfonnance with no super-trellis. 
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indicated in (6.5.16), wherein Sk represents the rightmost component of ~SUP) 
and the channel prediction is computed along the survivor terminating in Sk sup). 

Figure 6.10 illustrates BER curves with MSK and Q=O. In this case the 
trellis has four states. Simulations have been run under the following 
conditions: (i) 5-tap predictors (Lp=5); (ii) Es/No and fading autocorrelation 
are known so that the predictor coefficients can be computed exactly; (iii) the 
Doppler spectrum is shaped by a fourth-order Butterworth filter with a -3 dB 
bandwidth equal to Iv; (iv) the Viterbi algorithm has a decision delay of 10 
symbols. Curves labelled "ideal CSI" (CSI stands for channel state in­
formation) are also shown for comparison. They correspond to optimum ML 
performance and are obtained by inserting true channel gains in (6.5.16) 
(instead of their estimates). As is seen, the BER curves develop a floor which 
rises with the fading rate. 

BER curves with an 8-state super-trellis (Q=I) are shown in Figure 6.11. 
We see that the improvement with respect to Figure 6.10 is dramatic for 
fvT=O.01. The loss from ideal is now reduced to 2-3 dB and no floor is visible. 
Improvement is significant also with IDT=O.05, even though a floor is now 
apparent. 
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Figure 6.11. BER perfonnance with super-trellis and Q=l. 
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6.5.3. Improved Methods for Fast-Fading Channels 

We have seen that the BER curves exhibit a floor for fading rates 
exceeding about 1 % of the symbol rate. In many practical cases fD is much 
smaller than 1 % of liT. For example, with a carrier frequency of 1 GHz and a 
vehicle speed of 100 kmIh, the Doppler shift is about 100 Hz and fD is less than 
1 % of liT for symbol rates greater than 10 kHz. In some applications involving 
digital voice and data communications [13] however the aim is to operate at bit 
rates as low as 4800 b/s. This means that fDT is about 2% with a binary 
alphabet and twice as large with a quaternary alphabet. Thus, methods to cope 
with fading rates higher than 1 % of liT are of practical interest. 

To see how these situations can be tackled it is useful to concentrate on 
the floor-generating mechanism. As fading gets faster, the approximation 
(6.5.7) fails because aCt) no longer remains constant over one symbol interval. 
In consequence, predictions become less and less accurate and the detector 
makes errors even though the signal-to-noise ratio is large. There seem to be 
two ways to get around this obstacle: either making closer predictions or taking 
the non-constant nature of aCt) into account. The former route has been pursued 
by Lodge and Moher [14] and is discussed here; the latter is deferred to the 
next section. 

Our description of the Lodge and Moher (L&M) approach is slightly dif­
ferent from the original treatment. As indicated in Figure 6.12, the received 
waveform is fed to an anti-alias filter (AAF) and sampled at t=mTs+'r. As usual, 
lITs is large enough to satisfy the sampling theorem and the filter transfer 
function is rectangular and sufficiently large so as to pass the signal compo­
nents undistorted. For convenience, the sampling period is taken to be a sub­
multiple of T, say Ts=TIN. In these conditions (and assuming that possible fre­
quency offsets have been perfectly compensated) the moth sample takes the 
form 

(6.5.19) 

where a(m) is short for a(mTs+'r), n(m) is white Gaussian noise and k is the 

4 AAF k= 
I 

t= m1's+r 

Figure 6.12. Anti-alias filtering and sampling. 
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symbol index, which is related to the sample index m by 

(6.5.20) 

If the channel were known, an ML detector would maximize the log­
likelihood function 

NLo-\ __ 

InA(xia) = L Re{x(m)a*(m)e-j1)(mT"Ck,iik)e-j<!lk} 
m=O 

(6.5.21) 

where Lo is the number of symbols in the sequence. This could be performed 
by means of a Viterbi detector with the following branch metrics 

(k+\)N-\ __ 

Ak(Sk,ak)~ L Re{x(m)a*(m)e-j1)(mT"Ck,iik)e-j<!lk} 
m=kN 

(6.5.22) 

The channel gains are not known, however, and must be estimated. To see 
how this can be accomplished, we transform the encoder trellis into a super­
trellis with nodes {S1suP )}. Next, we assume that the true path 
{ ... ,ak-3,ak-2,ak-tl is known and we call {Sj(SUP), i ~ k} its nodes. Also we de­
fine 

z(i S(sup»~ 1 x(i)e -j1)(iT"Cinl(ilNj,ainl(ilNj)e -j<!linl(ilNj i ~(k+ I)N -1 (6.5.23) 
, k -J2Es IT ' 

Combining (6.5.19) and (6.5.23) results in 

z(i,s1SUP» = a(i) + n'(i), i ~ (k + I)N-l (6.5.24) 

where n'(i) is white Gaussian noise. Equation (6.5.24) indicates that z(i,S1SUP» 

represents a noisy measurement of the channel gain and, as such, can be used in 
a Wiener predictor to estimate future gains: 

Lp 

a(m) = L r(i)z(m - i,SkSUP» (6.5.25) 
i=\ 

Putting the above remarks together leads us to the following PSP-based 
estimation method. Denote by { .. . ,lXk-3,lXk-2,lXk-tl the generic survivor 
arriving at node S?UP) and let {c" i ~ k} and {<I>i' i ~ k} be the associated 
correlative states and phase states. Also, define 
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(6.5.26) 

Then, the channel predictions are computed as 

Lp 

a(m) = L y(i)z(m - i,S?UP» (6.5.27) 
;=1 

and are used in the branch metric as 

(k+I)N-1 __ 

)..k(SiSUP),ak)~ L Re{x(m)a*(m)e-j1j(mr"Ck.lik)e-j<ilk} (6.5.28) 
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Figure 6.13. BER performance ofL&M algorithm with MSK. 
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with ale E {±1,±3, . .. ,±(M -I)}. It should be stressed that the prediction 
interval in (6.5.27) is Ts seconds whereas it is N times longer in (6.5.15). Thus, 
prediction accuracy in the former case should be superior when the fading 
becomes fast. 

Figure 6.13 illustrates BER curves for the L&M detector under the 
following conditions. Modulation is MSK and the Doppler spectrum is shaped 
as in the simulations in Figures 6.10 and 6.11. Predictors with five taps are 
employed and the decision delay is still 10 symbols. Sampling is performed at 
twice the symbol rate and the AAF filter is implemented as a fourth-order 
Butterworth FIR structure of bandwidth 1.25/T. We see that for fDT=O.OI the 
curve is almost the same as in Figure 6.11. A floor shows up, however, when 
the fading rate grows to fDT=0.05. 

6.5.4. Linearly Time-Selective Channels 

An alternative approach to data detection with fast fading channels is now 
described [15]. We start from equation (6.5.4), which is rewritten here for 
convenience: 

H(k+l)T 

Z~(Ck,ak)~ f a*(t)r(t)e-j21Me-j1J(t-T,CkJik)dt (6.5.29) 
HkT 

In Section 6.5.2 the channel distortion has been modeled as a constant over the 
integration interval. We now improve this approximation by taking a(t) as a 
linear function of time around kT + TI2+'r. 

a(t) "" a(kT + T/2 + 'l') + (t - kT - T/2 _ 'l')[da(t)] 
dt t=kT+T/2+-r 

Then, letting 

a(O)(k)~a(kT + T/2 + 'l') 

a(l)(k)~T[da(t)] 
dt t=kT+T/2+-r 

H(k+l)T 

ZkO)(Ck,ak)~ f r(t)e-j21Me-j1J(t-T,CtJxk)dt 

HkT 

_ 1 H(k+l)T .. -_ 

Zkl)(Ck,ak)~ T f (t - kT - T/2 - 'l')r(t)e-J21Me-J1J(t-T,Ck,ak)dt 
HkT 

(6.5.30) 

(6.5.31) 

(6.5.32) 

(6.5.33) 

(6.5.34) 
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and inserting into (6.5.29) yields 

(6.5.35) 

Next, reasoning as in Section 6.5.2 it is realized that, if the sequences 
(a(O)(k)} and (a(l)(k)} were known, optimum ML detection could be imple­
mented by means of a Viterbi algorithm employing the metrics 

Ak(Sk,ak)~Re{ ala). (k)ZkO)(Ck,ak )e-j4lk } 

+ Re{a(I)·(k)Zkl\Ck,ak)e-j4lk } 

The following comments can be made on this method: 

(6.5.36) 

(i) The linearly time-selective channel described in (6.5.30) has been 
proposed by P.A. Bello in [16]. 

(ii) The sequences (a(O)(k)} and (a(l)(k)} are Gaussian and their correlations 
depend on the fading spectrum SD(j). In particular it can be shown that 

(6.5.37) 

(6.5.38) 

(iii) The quantities ZkO)(Ck,ak) coincide with the Zk(Ck,ak) defined in 
Section 6.5.2. They can be computed in the usual bank of filters with 
which any ML detector is endowed. 

(iv) On the contrary, the computation of Zkl)(Ck,ak) requires extra circuitry. 

Returning to the branch metrics (6.5.36), we now apply PSP methods to 
estimate a(O)(k) and a(l)(k). To this end we choose a super-trellis with nodes 
SkSUP) ~(Sk_Q,Sk_Q+I,,,,,Sk)' Next, supposing that the true path leading to SksuP) 
is known, call lei' i ~ k} and {cl>i' i ~ k} the associated correlative states and 
phase states and concentrate on the statistics 

z(O)(i S(suP))~_1_Z(o)(C. a.)e-j4lj 
, k ~2EsT 1 I' 1 , 

i~k-1 (6.5.39) 

z(l)(i S(suP))~_1_2_Z~I)(c. a.)e-j4lj 
, k ~2EsT 1 I' 1 ' 

i~k-1 (6.5.40) 
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where ZJO)(C;,a;) and Z?)(C;,a;) are defined as in (6.5.33)-(6.5.34). As the 
received waveform is given by 

() ~2Es j<fJ.[ (0)(.) (l)(.)(t-iT-TI2-'f)] r t "" -e I a I +a I 
T T 

iT + 'f::; t::; (i + I)T + 'f (6.5.41) 

it is easily checked that 

(6.5.42) 

(6.5.43) 

where n(O)(i) and n(l)(i) are thermal noise contributions. 
Equations (6.5.42)-(6.5.43) indicate that Z<°)(i,SkSUP») and z(1)(i,SkSUP») 

represent noisy measurements of the channel gain and its time derivative. Also, 
since a(O)(i) and a(l)(i) are correlated, it follows that both z(O)(i,SiSUP») and 
z(l)(i,SkSUP») give information on the channel gain and its derivative. This sug­
gests estimating future values of a(O)(k) and a(l)(k) through Wiener predictors 
of the type 

L~) L~l) 

a(O)(k) = L y(OO)(i)z(O)(k - i,siSUP») + L y(Ol)(i)z(l)(k - i,siSUP») (6.5.44) 
;=1 ;=1 

L~O) L~l) 

a(l)(k) = L y(IO)(i)z(O)(k - i,SksUP») + L y(lI) (i)z(1) (k - i,SksuP») (6.5.45) 
;=1 ;=1 

At this point the structure of the PSP-based detector should be clear. It 
consists of a Viterbi algorithm wherein the branches stemming from S?UP) are 
given the metrics 

Ak(siSUP) ,tXk)!Re{ a(O)* (k)ZkO)(Ck,tXk)e-jiiik } 

+ Re{ a(1» (k)Zil) (Ck ,tXk)e-jiiik } 

and the channel estimates a(O)(k) and a(l)(k) are computed as 

L~OO) L~l) 

(6.5.46) 

a(O)(k) = L y(OO)(i)z(O)(k - i,S?uP») + L y(Ol) (i)z(1) (k - i,S?uP») (6.5.47) 
;=1 ;=1 
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Figure 6.14. BER perfonnance with MSK. 

L~O) L~l) 

a(l)(k) = L y(IO)(i)z(O)(k - i,S?UP») + L y(ll)(i)ll)(k - i,S?uP») (6.5.48) 
;=1 ;=1 

Note that the statistics z(O)(k - i,S?UP») and z(l)(k - i,sisuP») are derived from 
the survivor path terminating at S?UP) • 

Figure 6.14 illustrates BER curves for MSK and the same channel model 
as in Sections 6.2 and 6.3. The super-trellis has 8 states (Q=1) and the predictor 
lengths are L~OO) = 4, L~I) = 2 and L~O) = L~I) = 3. Comparing with Figure 
6.13 it is seen that performance is slightly better than with the L&M receiver. 

6.6. Clock-Aided but Non-Data-Aided Phase Estimation 

6.6.1. 2P-Power Method for Full-Response Systems 

Now we return to A WGN channels and concentrate on non-data-aided 
phase estimators. Under the assumption of ideal timing and carrier frequency 
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recovery, we investigate two methods. The first (discussed here) is suitable for 
full response formats while the other (deferred to the next sub-section) applies 
to MSK-type signaling. 

We begin with the signal model 

where 

Withfull response modulation the phase response satisfies the relations 

q(t) = {~2 t S; 0 

t~T 

(6.6.1) 

(6.6.2) 

(6.6.3) 

Thus, taking t=-ioT as the starting time and letting h=KIP, from (6.6.2) we get 

k-\ 

2PIfI(kT) = 27rK Iai (6.6.4) 
;=-;0 

which indicates that 2P lfI{kT) is a multiple of 27r. Hence, sampling s(t) at 
t=kT+-r and raising to the 2P-th power yields 

( 2E )P 
s2P (kT + -r) = -y:- ej2P9 (6.6.5) 

Clearly, the sequence {S2P (kT + -r)} contains information on the carrier 
phase. Unfortunately we have no direct access to s(t) but only to the received 
waveform r(t). Nevertheless, the latter can be filtered (to limit excess noise) 
and used in flace of s(t). Denoting x(t)=s(t)+n(t) the filtered version of r(t) and 
letting x(k)=x(kT + -r) produces 

(6.6.6) 

where N(k) is a zero-mean random term resulting from the products 
SignalxNoise and NoisexNoise in the binomial expansion of (s + n )2P • 

At this point a phase estimation algorithm is easily conceived. In fact, the 
average of x2P (k) over a window of Lo samples is given by 
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Figure 6.15. Block diagram of the 2P-power phase estimator. 

(6.6.7) 

If the last term were negligible, the argument of the left-hand side would equal 
2PO. This suggests the estimator 

e = -arg ~>2P(k) 1 {Lo-l ) 
2P k=O 

(6.6.8) 

whose block diagram is indisated in Figure 6.15. Note that the estimates have a 
2P-fold phase ambiguity as 0 takes values iIi the range ±n- /(2P). 

N~ 

oj 
U 
C 

'" .~ 

> 
g 
<> 

~ 
..c 
p.. 

10,3 

10-4 

10 15 20 

~ 
~ 

25 

Figure 6.16. Phase error variance with MSK. 

30 



342 Chapter 6 

Figure 6.16 illustrates simulation results for the estimation error variance 
with MSK modulation (P=2). The low-pass filter (LPF) is implemented as a 
fourth-order Butterworth FIR with a bandwidth of l.2fT and the observation 
length is of Lo=l00 symbol intervals. As is seen, there is a loss of about 4.5 dB 
from the modified Cramer-Rao bound (MCRB) at high SNR. 

6.6.2. ML·Oriented Phase Estimation 

In deriving the 2P-power estimator we have used heuristic arguments. In 
the following we adopt ML-based methods but, for simplicity, we restrict 
ourselves to MSK-type signaling. Again, we assume that timing is ideal and the 
frequency offset has been estimated and compensated for. In these conditions 
the received signal may be written as 

s(t) = ~2:s ejl{f(t-r,a) (6.6.9) 

with 
~ 

If/(t,a)=n Lajq(t-iT) (6.6.10) 
;=-;0 

and a~{a;l. Note that 'r is a known parameter and the index -io indicates the 
first symbol in the sequence. Without loss of generality we take iij>L+ 1 so that 
the system encoder is in a steady-state condition as soon as t~O. 

Our estimation problem is best formulated in the discrete-time domain. 
Accordingly, the incoming waveform r(t) is first fed to some anti-alias filter 
(AAF) and then sampled at the instants t=kTs+'r. The filter transfer function is 
such as to pass the signal undistorted and make the noise samples independent. 
For convenience, Ts is chosen a sub-multiple of the symbol period, say Ts=TfN. 
The actual value of N is discussed later. 

Letting x(t) be the AAF output and x(k)~x(k~ + 'r) its samples, the 
likelihood function for the unknown parameters has the form 

where Lo is the observation length in symbol intervals and 20'~ is the variance 
of the noise samples. As we look for a non-data-aided estimation method, we 
must eliminate the symbols a from A(rIO,a). Unfortunately this turns out to 
be an insurmountable obstacle and, therefore, we resort to the usuallow-SNR 
approximation which consists of expanding the exponential (6.6.11) into a 
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power series and retaining only the leading terms. This produces 

(6.6.l2) 

The averaging operation is lengthy and tedious and is not reported here. In 
[17] it is shown that the final result may be written as 

with 

NLo-I NLo-I 

X+I ~ L Lx(k,)x(kz)h(k, - k2 )ejn:kdN 
k, =0 k2=0 

NLo-INLo-I 

X_I ~ L Lx(k,)x(kz)h*(k, - kz)e-jn:kdN 
k, =0 k2 =0 

In these equations h(k) is the sample of 

1 T . 
h(flt)g,-J H(t,flt)e-JlCt/ T dt 

To 

at flt = k~ and we have adopted the notations 

L+I 

H(t,flt)g, II cos[np(t-iT,flt)] 
;=-2L-I 

p(t,flt)~q(t) + q(t - flt) 

(6.6.13) 

(6.6.14) 

(6.6.15) 

(6.6.16) 

(6.6.17) 

(6.6.18) 

To give an example, consider lREe pulses (MSK modulation). In this 
case L=1 and 

q(t) = {~(2T) 
1/2 

t<O 

O~t~T 

t> T 

(6.6.19) 
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Figure 6.17. Function p(t,l1t) with 1REC pulses. 

Thus, p(t,f)"t) takes the fonn indicated in Figure 6.17 (for 0::; M ::; T). 
Correspondingly, cos[1l]J(t,f)"t)] is unity for t::; 0, it equals -1 for t ~ f)"t + T, 
and takes intennediate values in between. Computing H(t,f)"t) from (6.6.17) and 
substituting into (6.6.16) yields h(f)"t) whose shape is shown in Figure 6.18. As 
is seen, h(M) has a duration of about 4 symbol intervals. 

Returning to (6.6.13), it is clear that the maximum of A(rIO) is achieved 
for 

(6.6.20) 
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Figure 6.18. Function h(tlt) with 1REC pulses. 
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which gives the desired phase estimation formula. In practice the computation 
of the quantities X+I and X_I can be simplified as follows. Consider X+I' for 
example, and rewrite (6.6.14) as 

NLo-I 

X+I = I [x(k)ejllt{N]y(k) (6.6.21) 
k=O 

with 
NLo-I 

y(k)£ Ix(k2 )h(k - k2 ) (6.6.22) 
k2=0 

As we mentioned earlier, heM) has a duration of a few symbol intervals. Since 
Lo is normally much longer, we expect that the right-hand side in (6.6.22) will 
be marginally affected if the summation is extended to +00. In these conditions 
the signal y(k) can be computed by feeding x(k) into a filter with impulse 
response h(k). Although h(k) is noncausal, it can be made causal by an 
appropriate time shift, say of ND steps rightward. The value D=2 is sufficient 
in most cases. On the other hand, this shift transforms the filter output into 
y(k - ND). Thus, to get things straight in (6.6.21), the signal x(k) must also be 
delayed by ND and, in conclusion, X+I must be rearranged as follows 

N(Lo+D)-1 

X+I = I[ x(k - ND)e j1r(k-ND){N]y(k - ND) 
k=ND 

Figure 6.19. Block diagram of the phase estimator. 

(6.6.23) 
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Figure 6.20. Phase error variance for MSK and OMSK with a sampling rate 21T. 

Expressing X_I in analogous form leads us to the estimation scheme indicated 
in Figure 6.19. 

Computer simulations for MSK and GMSK modulation are now shown. A 
premodulation Gaussian filter of bandwidth 0.31T is used with GMSK. The 
anti-aliasing filter consists of a fourth-order FIR structure of bandwidth 
BAAF=1.2IT and the parameter Lo is set at 100. Two oversampling factors N=2 
and N=4 have been tried without significant differences in estimation 
performance. In both cases the estimates are virtually unbiased and the 
estimation errors are close to the MCRB. This is apparent from Figure 6.20 
which illustrates the case with N=2. For MSK, in particular, it is seen that the 
distance from the MCRB is a fraction of a dB. 

6.7. Clockless Phase Estimation 

We close this chapter with non-clock-aided phase estimation for MSK­
type modulation. The treatment could be extended to more general formats but, 
for simplicity, we stick to binary signaling with a modulation index of 112. As 
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in the previous section we assume that carrier frequency offset has been 
perfectly compensated so that the parameter V can be set to zero. 

To begin, we temporarily concentrate on the signal in isolation 

(6.7.1) 

where 

= 

ljf(t,a) =;r La;q(t - iT) (6.7.2) 
;=-;0 

and -io correponds to the initial symbol in the data sequence. With no loss of 
generality in the sequel we assume that io is greater than the correlation length 
L, so that ljf(t,a) has already achieved steady-state conditions at t=0. Squaring 
and rearranging (6.7.1) yields 

S2 (t) = ej2() 2Es IT exp{j2;ra;q(t - iT - r)} 
T ;=-;0 

Next, averaging with respect to the symbols produces [18] 

In Exercise 6.7.1 it is shown that the function 

00 

F(t) ~ II cos[ 27rq(t - iT)] 
;=-;0 

is alternating, i.e., it satisfies the property 

F(t - T) = -F(t) 

(6.7.3) 

(6.7.4) 

(6.7.5) 

(6.7.6) 

This means that F(t) is periodic of period 2T and, as such, can be expanded into 
a Fourier series of the type 

F(t) = LFkejrrkt/T 

k 

(6.7.7) 
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wherein the coefficients satisfy the relations 

Po =0 

Thus, inserting (6.7.7) into (6.7.4) yields 

E{i(t)} = 'LCkejllt(H)IT 
k 

with 

C fA. 2Es F. j21J 
k- ke 

T 

Alternatively, Ck can be expressed as a function of E{S2(t)} in the form 

T 

Ck ~ 2~ f E{ i (t)}e - jllttlT dt 
-T 
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(6.7.8) 

(6.7.9) 

(6.7.10) 

(6.7.11) 

(6.7.12) 

From (6.7.9) and (6.7.11) it appears that, if a pair of coefficients (Ck,Ck) 
were given, the carrier phase could be computed through the formula 

(6.7.13) 

It is clear from (6.7.12) that the computation of (C-k'Ck) requires knowledge of 
set). However, what is available is r(t), not set). Thus, an approximation to Ck is 
obtained by replacing set) with some filtered version of ret), say x(t). In practice 
this can be done as follows. 

Let us concentrate on C l' for example. As a first step we transform 
(6.7.12) into 

(6.7.14) 

where Lo is an even integer, much greater than unity. Clearly, the expectation 
operation has been replaced by a time average over (O,LoT). The second step is 
called for by digital implementation considerations. In fact we want to express 
the integral in (6.7.14) in terms of samples of x(t) taken at some rate lITs' 
Choosing lITs=NIT produces 
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1 LoN-J 

CJ :::: -- Lx2(k)e- jnfc/ N 

loN k=O 
(6.7.15) 

where x(k)£.x(k~). As shown in Appendix 2.C, the condition for (6.7.15) to 
hold is that lITs exceedfmax, the highest frequency component in x 2 (t)e- jm/T • 

Since x(t) has a bandwidth of about liT, it is recognized thatfmax is close to 
2.5fT and a suitable oversampling factor is either 3 or 4. In the simulations 
discussed below we have taken N=4. 

Reasoning in a similar manner with C J yields 

(6.7.16) 

Hence, inserting into (6.7.13) yields the phase estimator 

(6.7.17) 

whose block diagram is depicted in Figure 6.2l. 
Figure 6.22 shows simulation curves for the estimation error variance with 

MSK and GMSK modulation. The low-pass filter yielding x(t) has been 
implemented as a fourth-order Butterworth having a bandwidth of 1.2fT. Also, 
an observation length of 100 symbols has been chosen. Comparing with the 
results in Figure 6.20 it appears that the lack of timing information produces 
some loss in performance (in addition to requiring a higher sampling rate). For 
example, with MSK the distance from the MCRB is now about 3 dB, as 
opposed to less than 1 dB in Figure 6.20. 

Figure 6.2 I. Block diagram of the phase estimator. 
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Figure 60220 Phase error variance for MSK and GMSK with a sampling rate 4fTo 

Exercise 6.7.1. Letting io be some positive integer greater than the 
correlation length L, show that 

00 

F(t)£ II cos[21fq(t - iT)] (6.7.18) 
;=-;0 

has an alternating pattern on the positive axis, i.e., 

F(t-T)=-F(t), t~O (6.7.19) 

Solution. From (6.7.18) we have in succession 
00 

F(t - T) = II cos[21fq(t - (i + I)T)] 
;=-io 

00 

= IIcos[21fq(t-i'T)] 
;'=-;0+1 

1 00 

= II cos[21fq(t - i'T] 
cos[ 2n:q(t + ioT)] ;'=-;0 

= _:--F...:..( t..:-) _--=-
cos[ 2n:q(t + ioT)] 

(6.7.20) 
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Bearing in mind that io > Land q(t)=112 for t~LT, it follows that the cosine in 
the last line equals -1 for t~O and this proves (6.7.19). 

6.S. Key Points of the Chapter 

• Data-aided phase estimation with MSK-type modulation is accomplished by 
means of feedforward schemes. Their performance with MSK modulation is 
close to the CRB at low/intermediate SNR. As SNR increases, however, 
some pattern noise shows up. The critical point at which this happens 
depends on the observation length. The longer the observation, the higher 
the SNR at which departure from the CRB begins. 

• Decision-directed phase-lock loops are often employed with MSK-type 
modulations. At high/intermediate SNR their performance is close to the 
MCRB. Phase tracking loops fit well into simplified MSK-type receiver 
structures. 

• Decision-directed phase recovery with general CPM modulations is 
accomplished by exploiting the decisions taken from the best survivor in the 
Viterbi detector. In the presence of phase noise, however, a better strategy is 
to resort to multiple phase tracking. This means associating a decision­
directed phase estimator with each survivor in the trellis. 

• With frequency-flat fading channels several approximate ML decoding 
schemes are available. They are based on per-survivor-processing methods 
by which channel distortion and data sequence are jointly estimated. The 
most efficient schemes need knowledge of the channel statistics, the SNR 
and the fading autocorrelation function. Extra receiver complexity is 
required to estimate these parameters, however. 

• Two feedforward schemes are available for clock-aided (but non-data-aided) 
phase recovery with A WGN channels. The 2P-power scheme is ad hoc and 
is suited for full response formats. The other scheme is based on ML 
arguments and applies to MSK-like modulations. Its performance is ex­
cellent. In particular, with MSK it is a fraction of a dB short of the MCRB. 

• Non-clock-aided phase recovery is also possible. A feedforward structure 
has been indicated for MSK-type formats. Its performance is good, only a 
bit worse than that of the previous clock-aided and ML-oriented scheme. 
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7 

Timing Recovery 
in Baseband Transmission 

7.1. Introduction 

In this chapter we investigate timing recovery in PAM baseband 
transmission. Additional features that arise with modulated signals will be 
explored in Chapters 8 and 9 for PAM and CPM modulations, respectively. 
The reason for first concentrating on baseband signals is motivated by the need 
of avoiding any distractions caused by modulation matters. As we shall see in 
the later chapters, such matters are easily taken into account when the basic 
concepts relevant to baseband systems are understood. 

The organization of the present chapter reflects the fact that timing 
recovery consists of two distinct operations: (i) estimation of the timing phase 
r; (ii) application of the estimate to the sampling process. The former is re­
ferred to as timing measurement, the latter as timing correction (or adjustment). 
Timing correction serves to provide the decision device with signal samples 
(strobes) with minimum intersymbol interference. In the sequel we first 
concentrate on timing correction and then move to timing measurement. 

A second issue which influences the chapter profile is the distinction be­
tween feedback and feedforward schemes. Figures 7.1 and 7.2 illustrate the 
salient features of the two topologies in the case of a fully digital implementa­
tion. In both cases an anti-alias filter (AAF) limits the bandwidth of the re­
ceived waveform. Sampling is controlled by a fixed clock whose ticks are not 
locked to the incoming data. In practice the click rate will be close but not 
equal to some rational multiple of the symbol rate. 

The bulk of the pulse shaping is performed in the matched filter (MF) 
whose location is not necessarily that shown in the figures. For example, the 
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Figure 7.1. Feedback configuration. 
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MF may be moved inside the loop in Figure 7.1 or it may be shifted so as to 
have a common input with the timing estimator in Figure 7.2. Timing 
correction is akin to the operation of a voltage-controllable delay line and 
produces synchronized samples to be used for decision and synchronization 
purposes. In the feedback configuration of Figure 7.1, in particular, the timing 
corrector feeds a timing error detector (TED) whose purpose is to generate an 
error signal e(k) proportional to the difference between r and its current 
estimate. The error signal is then exploited to recursively update the timing 
estimates. 

A third prominent issue we address in this chapter is the distinction be­
tween synchronized and non-synchronized sampling. In a fully digital imple­
mentation, sampling is not locked to the incoming pulses. This is referred to as 
non-synchronous sampling. On the other hand, sampling can be made syn­
chronous by exploiting some error signal to adjust the timing phase of a num­
ber controlled oscillator (NCO), as is shown in Figure 7.3. Here the sampler is 
commanded by the NCO pulses at times {tn} (typically one or two pulses per 
symbol interval). Note that the analog MF in the figure may be replaced by a 
digital MF inside the loop. 

The chapter is organized as follows. In the first part we discuss timing 
correction. In particular, synchronous sampling is investigated in Section 7.2 
and non-synchronous sampling in Section 7.3. Next, in Section 7.4, we 
concentrate on decision-directed feedback timing recovery. Essentially, this 
involves looking for TED algorithms with good characteristics (low noise and 

~ x(mT.) 

i liT, L...-__ -' 

FixedG 
clock 

Figure 7.2. Feedforward configuration. 

To data 
detector 
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Figure 7.3. Synchronous sampling. 

To data 
detector 
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simple implementation). As we shall see, a number of such schemes can be 
derived either from application of ML criteria or from heuristic arguments. 
Section 7.5 is still concerned with feedback schemes but the TED algorithms 
are non-data-aided. Finally, in Section 7.6, a few feedforward timing estimation 
methods are discussed and compared. 

7.2. Synchronous Sampling 

In addressing synchronous sampling we assume that some TED circuit is 
available with an error signal e(k) providing information on the difference 
between the timing parameter r and its estimate i k at time kT. More 
specifically, we suppose that the average of e(k) for a fixed value of i k , say i, 
is a regular function S( r - i) passing through the origin with a positive slope. 
Accordingly, e(k) may be written in the form 

e(k) = S(r - i k ) + N(k) (7.2.1) 

where {N(k)} is some zero-mean noise process resulting from interactions 
between signal and thermal noise inside the TED. In the sequel we first give an 
overview of the operation of a hybrid NCO and then we indicate how an NCO 
can be used for timing adjustment in a feedback timing loop. 

7.2.1. Hybrid NCO 

The block diagram of a hybrid NCO is depicted in Figure 7.4. It consists 
of two parts: a digital loop comprising a delay and a mod 1 adder (the so-called 
digital NCO), plus a look-up table and a digital-to-analog converter (DAC) 
that, together, transform the NCO output into a continuous-time waveform. To 
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Figure 7.4. Block diagram of a hybrid NCO. 
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explain the operation of the overall circuit we first concentrate on the digital 
NCO. Let wen) be its input and pen) its output. In the sequel wen) and pen) are 
viewed as numbers between 0 and 1. At each tick of a clock (not shown in the 
figure) wen) is added to pen). This results in the following difference equation: 

pen + 1) = pen) + wen) mod 1 (7.2.2) 

As indicated in the figure, w(n) is the sum of some constant w 0 plus a 
zero-mean signal e(n). The constant establishes the "free running" period of the 
NCO whereas e(n) allows us to change this period. To see how this comes 
about suppose first that e(n)=O. In these conditions the NCO output will recycle 
every l/wo ticks. Thus, calling Tc the clock period, the free running period will 
be T/wo (in reality the NCO recycling time is not quite constant [1] but 
undergoes fluctuations around T/wo which fade away for Wo sufficiently 
small). If e(n) is different from zero (but is slowly varying in time), then the 
recycling period will be 

T 
T(n) = c 

S Wo+e(n) 

z 1;; [1- e(n)] 
Wo Wo 

(7.2.3) 

assuming le(n)I« woo 
Returning to the scheme in Figure 7.4, a look-up table maps pen) into 

some function f[p(n)] which, in turn, is transformed into a continuous-time 
function by the action of the DAC and some analog low-pass filter (not shown 
in the figure). Functions JTp(n)] of different types are encountered in existing 
hardware. A sine table is often used, which means 

f[p(n)] = sin[2np(n)] (7.2.4) 

In this case the hybrid NCO will generate a phase modulated sinewave. 
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7.2.2. Timing Adjustment for Synchronous Sampling 

The question of timing correction for synchronous sampling is now 
addressed. To be specific we choose a hybrid NCO with a sine-table ROM and 
we use the up-crossings of the sinewave (zero crossings with positive slope) to 
generate command pulses for the sampler in Figure 7.3. Ideally, we would like 
the pulses be issued at the instants 

t(id) = n ~ + ". n - ° 1 2 n N·' -" , ... (7.2.5) 

where N is an integer (oversampling factor) and 'r is the timing phase (which is 
assumed to He in the interval 0::; 'r < T). The oversampling factor is typically 1 
or 2 when the matched filter is external to the loop, as happens in Figure 7.3, 
while it ranges from 2 to 4 when the matched filter is internal. The goal is to 
steer the NCO so that its actual up-crossings occur at the times indicated in 
(7.2.5). 

To address this problem we return to equation (7.2.1), whose right-hand 
side contains a deterministic component depending on 'r - f k' It is this com­
ponent that will be exploited to drive the NCO. To see how, recollect that e(k) 
is computed at symbol rate. Actually, e(k) is recomputed at any N-th sinewave 
up-crossing. In other words, the time index k for e(k) (henceforth denoted 
symbol index) is related to the sampling index n by 

k=in{~) (7.2.6) 

where int(x) means "the largest integer not exceeding x." 
To proceed further we now introduce an auxiliary signal e'en) which is 

derived by upsampling e(k) from 1 to N (see Figure 7.5). Formally 

e'en )£e(k )Ik=int<n/N) (7.2.7) 

Next, e'en) is reversed in sign, is scaled by some factor K and is fed to the 
NCO. With the notations in Figure 7.4 we have 

E(n)£- Ke'(n) (7.2.8) 

We maintain that (under certain conditions to be presently established) the 
NCO up-crossing times 

n = 0,1,2, ... (7.2.9) 
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{e(k)} 

I I 
I 

I 
k 

{e'ln)}II!!lll] I I I 
I I I I ~ 

Figure 7.5. Relation between e(k) and e'en) for N=4. 

are close to the desired sampling instants {t~jd)} in (7.2.5) or, which is the same, 
the timing phases {f~} are approximately equal to 1", Le., 

f~ "" 1", n = 0,1,2, ... (7.2.10) 

To achieve this goal we set the free running period of the NCO equal to 
TIN, which amounts to choosing Wo in Figure 7.4 such that 

Also, we define Y£KTjwo. Then, inserting into (7.2.3) yields 

1 
T.(n) "" -[T + ye'(n)] 

N 

(7.2.11) 

(7.2.12) 

from which the following relation between adjacent up-crossings is obtained: 

T y'() tn+! = tn +-+-e n N N 
(7.2.13) 

If Y is sufficiently small it is easily seen from (7.2.9) and (7.2.13) that the 
sequence {f~} varies slowly in time. Thus, we can limit ourselves to proving 
(7.2.10) for n=Nk. In other words, letting 

(7.2.14) 

we want to show that 
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i k "" 'C, k = 0,1,2, ... (7.2.15) 

The proof proceeds as follows. Consider the up-crossing times t Nk and 
tN(k+l)' From (7.2.9) and (7.2.14) we have 

On the other hand 
N(k+l)-l 

tN(k+l) - tNk = L(tn+l - tn) 
n=Nk 

(7.2.16) 

(7.2.17) 

Thus, combining (7.2.16)-(7.2.17) and taking tn+l - tn from (7.2.13) produces 

(7.2.18) 

As a consequence of (7.2.7), the e'(n) appearing in (7.2.18) are all equal to 
e(k). Hence 

(7.2.19) 

Finally, taking e(k) from (7.2.1) produces 

i k+1 = i k +rS('C-ik)+rN(k) (7.2.20) 

which is fonnally identical to the equation encountered in Section 3 of Chapter 
5 when dealing with phase recovery loops. Based on the results in that section 
we conclude that i k will fluctuate around 'C, in agreement with our previous 
claim. 

To summarize, synchronous sampling can be implemented with the simple 
arrangement indicated in Figure 7.3. Because of the presence of the hybrid 
NCO, the overall circuit cannot be implemented in fully digital form. Whether 
this is a drawback depends on the circumstances. Current trends in modem 
design tend to prefer fully digital implementations. 

7.3. Non-Synchronous Sampling 

7.3.1. Feedback Recovery Scheme 

As indicated in Figures 7.1-7.2, non-synchronous sampling can be used 
both with feedback and feedforward schemes. Here we concentrate on the 
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former application; extensions to the latter are explored later. The major issue 
we shall be concerned with is the implementation of the timing correction 
block in Figure 7.1. This subject is first addressed in rather conceptual terms. 

The starting point is the requirement that the samples {x(m~)} contain the 
same information as the continuous-time waveform x(t) from the anti-alias 
filter. For this to be true the sampling rate must satisfy the relation 

(7.3.1) 

where Bx is the bandwidth of the waveform from the anti-alias filter. In these 
conditions the sequence {y(m~)} from the matched filter is sufficient to re­
construct the underlying continuous-time waveform yet) through the interpola­
tion formula 

'" 
y(t)= LhI(t-m~)y(m~) (7.3.2) 

m=~ 

where 

h (t)g, sin(m/~) 
I m/~ 

(7.3.3) 

It is worth noticing that yet) is the same waveform indicated in Figure 7.3 
(provided that the analog MF is equivalent to the digital MF in Figure 7.1). It 
follows that the clock recovery schemes in Figures 7.1 and 7.3 would be 
equivalent if the former were endowed with the ideal interpolator (7.3.2). In 
these conditions timing correction with non-synchronous sampling could be 
implemented using the circuit in Figure 7.1. 

Unfortunately, this approach is difficult to follow because equation (7.3.2) 
involves an infinite summation whereas only a limited number of terms can be 
handled in practice. Truncating the sum in (7.3.2) will inevitably cause a cer­
tain amount of signal distortion. In the next section we investigate how to re­
place (7.3.3) by other interpolating functions so as to limit the sum (7.3.2) to a 
few terms. 

Exercise 7.3.1. Consider the block diagram in Figure 7.6 (a) in which the 
input x(t) from the anti-alias filter is fed to a filter h(t) and then is sampled at 
some rate 11 Ii. The sampling times {tn } are established by some controller not 
shown in the figure. Discuss the computation of {y(tn)} from the samples of 
x(t) taken at some rate 11 ~. Assume that an ideal interpolator is available. 

Solution. Figure 7 .6(b )-( c) indicates two alternative solutions. In the for­
mer the filter precedes the interpolator; the reverse is true in the latter. In both 
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~ h(t) h~ 
'------' I lIT[ 

(a) 
{tn} 

Figure 7.6. Different digital implementations of the same analog scheme. 

cases the filter impulse response is derived by sampling h(t) at proper rates 
(either 1I~ or 1I1j). The question arises of the constraints to impose on 1I~ 
and 1I1j to guarantee that {y(tn)} not be distorted. 

Start from the scheme in Figure 7.6(b) and denote X(f) and H(f) the 
Fourier transforms of x(t) and h(t). Also, call BH the bandwidth of the latter (see 
Figure 7.7(a». Sampling theory says that the spectrum of {x(m~)} has 
periodic images spaced at a frequency interval 1 / ~, as shown in Figure 7.7 
(b). Image tails lying on the interval ±B H will cause random interference on the 
filter output and, in consequence, on the interpolator's. To avoid interference, 
the left edge of X (f - 1 / ~) must be to the right of J=B H' Hence 

(7.3.4) 

A similar argument applies to the scheme in Figure 7.6(c). Here, the 
spectrum of the sequence of interpolants {x(tn)} has images spaced at a 
frequency 1/1j, as indicated in Figure 7.7(c) and the condition to avoid 
distortion is 

(7.3.5) 
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f 

Figure 7.7. Signal spectra. 

7.3.2. Piecewise Polynomial Interpolators 

Now we turn our attention to the interpolator implementation and, to be 
specific, we concentrate on the clock recovery scheme in Figure 7.8. As in 
previous figures, {x(m~)} are samples from the anti-alias filter. The interval Ts 
is on the order of one-half to one-fourth of the symbol period T but it is 
incommensurate with T. This is so because the sampling clock is derived from 
a local source that is independent of the transmitter's timing source. The 
controller's task is to tell the interpolator the desired interpolation times {tn}. 

The interpol ants are denoted y/(tn)' With an ideal interpolator y/(tn) would 
coincide with y(tn)' the sample of the waveform that underlies {y(m~)}. Note 
that the intervals between adjacent tn are not rigorously constant. They exhibit 
small fluctuations around some average value TI , the interpolation interval. 
This is a submultiple of the symbol interval, say T FTIN, where N is typically 1 
or 2. Also notice that only one interpolant per symbol is needed for data 
detection whereas either one or two interpol ants per symbol are required for 
synchronization purposes. 
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x(mT.) 
To data 
detector 

Figure 7.8. Block diagram of a non-synchronous clock recovery loop. 
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The error signal e(k) provides information on the difference between the 
timing parameter r and its current estimate i k at time kT. Actually, e(k) has the 
form 

(7.3.6) 

where SO is the detector S-curve and {N(k)} is some zero-mean noise 
process. The different role of the time indexes m, nand k should be stressed. 
The first index counts the signal samples from the anti-alias filter, the second 
counts the interpolants, the third counts the incoming data symbols. Since TITs 
is an irrational number, there is no simple relation between m and n. Vice 
versa, nand k are simply related by k=int(nlN). 

At this stage the following question arises: how can a simple interpolator 
be implemented without running into severe signal distortions? This question is 
extensively covered in the digital signal processing literature [2]-[3]. The 
specific role of interpolation in timing adjustment is addressed in [4]-[7]. In 
this section we report on interpolation methods investigated in [6]-[7]. The 
interested reader is referred to these papers for further details and discussions. 

One main conclusion achieved in [6]-[7] is that excellent interpolators can 
be implemented by replacing h/(t) in (7.3.3) by some piecewise polynomial 
functions of short duration (say, either two or four sampling intervals). These 
functions may be viewed as impulse responses of polynomial-based filters. 
Formulas for the most appealing impulse responses are provided soon. 

As a preparation, let us return to (7.3.2) and suppose that h/t) is some 
impulse response to be specified. Our task is to compute yet) at time tn' For this 
purpose we first look for that sampling instant, say InTs, occurring immediately 
before tn' Its index In is clearly given by 

(7.3.7) 
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I I I )0 

Ur. -1)T. InTs tn (~ + 1)T. t 
~ 

11nT. 

Figure 7.9. Definition of In and I1n. 

and is referred to as the basepoint index. It follows that tn may be written as the 
sum of InTs plus a positive fractional part 

(7.3.8) 

with 0 ~ Iln < 1. The parameter Iln is called the fractional interval and is 
expressed by 

Iln = frc(;') (7.3.9) 

with frc(x)~x - int(x). Figure 7.9 illustrates the meaning of InTs and f1nTs. 
Substituting (7.3.8) into (7.3.2) yields 

In +/1 

y(tn) = Lhl[(ln - m)T, + IlnT,]y(mT,) (7.3.10) 
m=ln -/2 

In writing this equation we have assumed that hf...t) takes significant values on 
the interval -/)T,::;; t::;; (/2 + 1)T, and, in consequence, the only samples 
{y(mT,)} contributing to the sum are those with index from In-/2 to In+/). A 
more useful formula is obtained by changing the summation index into i=ln -m. 
This leads to 

12 

y(tn) = L,hl(iT, + IlnT,)Y[<zn - i)T,] (7.3.11) 
i=-/1 

or, more compactly, 

12 

y(tn) = Lci(.Un)y[(ln - i)T,] (7.3.12) 
i=-/1 

with 

(7.3.13) 
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Equation (7.3.12) is the fundamental fonnula of the interpolator. It shows 
that two ingredients come into play when computing interpolants: the basepoint 
set {y(m~)} (In - 12 ~ m ~ In + II) and the coefficients {cj(,un)} (-II ~ i ~ 12), 
The basepoints are located around InTs' The coefficients {cj(,un)} are just 
samples of the impulse response h/(t). Given hit), they are a function of the 
fractional index J1n in (7.3.9). 

Three sets of coefficients {cj(,un)} are investigated in [7] and are reported 
here. They are characterized by: (z) the order of the polynomial in the piecewise 
representation of h/J); (ii) the number of basepoints 1£/1 +12 +1 in the 
interpolation formula. Two basepoints are sufficient with a piecewise linear 
interpolator while four basepoints are used with parabolic and cubic 
interpolators. The coefficients for a linear interpolator are 

CI(,u) =,u 

co(,u) = 1- ,u 

Those for a parabolic interpolator are 

C-2(,u) = a,u2 - a,u 

c_I (,u) = -a,u2 + (1 + a),u 

co(,u) = -a,u2 - (1- a),u + 1 

(7.3.14) 

(7.3.15) 

(7.3.16) 

(7.3.17) 

(7.3.18) 

(7.3.19) 

where a is a design parameter that can be exploited to improve the 
interpolation accuracy. An a close to 0.5 seems nearly optimum [7]-[8]. It is 
worth noting that a parabolic interpolator reduces to a linear interpolator for 
a=O. Finally, the coefficients for a cubic interpolator are 

C-2(,u) = ,u3/6 - ,u16 

c_I(,u) = -,u3 /2 + ,u2/2+,u 

co(,u) = ,u3/2 _,u2 - ,u12 + 1 

cl(,u) = -,u3/6 + ,u2/2 - ,u13 

(7.3.20) 

(7.3.21) 

(7.3.22) 

(7.3.23) 

The computational load involved with the above interpolators depends on 
the order of the polynomial; it is minimal with a linear polynomial and 
maximum with a cubic polynomial. From extensive simulations discussed in 
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[7] it appears that linear interpolators provide adequate performance in many 
situations. For more critical applications, parabolic interpolation with a=0.5 
provides excellent performance with only a moderate complexity increase. 

7.3.3. Timing Adjustment with Non·Synchronous Sampling 

We now discuss interpolator control. Our aim is to keep the actual 
interpolation times {tn} as close as possible to the ideal times 

(7.3.24) 

where 1[ = TIN. As a first step in this direction we introduce an auxiliary 
error signal e'en), which is derived by reiterating (N times) each sample e(k) 
from the TED, i.e., 

e' (n ) £ e( k)1 k=int(n/ N) (7.3.25) 

The auxiliary signal serves to update the current interpolation time tn according 
to 

(7.3.26) 

where r is a step-size parameter. Writing the interpolation times in the form 

(7.3.27) 

we maintain that timing phases {i~} will fluctuate around 't", i.e, 

i~ "" 't", n = 0,1,2, ... (7.3.28) 

To prove our claim we assume that r is sufficiently small so that the 
differences tn+l - tn are close to Tj (see (7.3.26» or, which is the same, i~ 
varies very slowly in time. Then, as we did in Section 7.2.2, we may limit 
ourselves to proving that (7.3.28) is true for n=Nk. In other words, letting 

(7.3.29) 

we want to show that 

i k "" 't", k = 0,1,2, ... (7.3.30) 
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To this end consider the times tN(k+l) and tNk' From (7.3.27) and (7.3.29) we 
have 

(7.3.31) 

Also, recognizing that tN(k+l) - tNk equals the sum of the N consecutive 
differences tn+1-tn, Nk ~ n ~ N(k+ 1)-1, from (7.3.26) we get 

r N(k+l)-! 

tN(k+l) - tNk = N1j + - Ie (n) 
N n=Nk 

(7.3.32) 

On the other hand from (7.3.25) it follows that e'en) equals e(k) in the above 
sum. Hence, collecting (7.3.31)-(7.3.32) yields 

(7.3.33) 

Finally, taking e(k) from (7.3.6) produces 

(7.3.34) 

which is formally identical to equation (7.2.20) for synchronous sampling. This 
means that i k will fluctuate around the stable point i k = 'l' and, in 
consequence, the interpolation times will keep close to the ideal times {t~jd)}. 

Having established a convenient mechanism to adjust interpolation times, 
we wonder whether it can be directly applied to interpolation control. To see 
where the problem is, consider equation (7.3.26) from which the sequence {tn } 

is to be recursively computed. Even though the correction term re'(n)/N takes 
values on the order of a fraction of the symbol interval, the interpolation time 
tn grows unboundedly as n increases. Thus, computation accuracy will soon 
deteriorate and the interpolation control will fail. This indicates that some 
equivalent but more suitable computational method is needed. Reference [6] 
proposes two alternatives. Here we report on the simplest one, but we point out 
that the other has certain hardware advantages that might be pre-eminent in 
some applications. 

Take heed that two timing parameters are involved in the fundamental 
formula (7.3.12): the basepoint index In and the fractional interval /In' What we 
look for are equations to compute such parameters. A route toward this goal is 
now indicated. Substituting (7.3.8) into (7.3.26) and rearranging yields 

(7.3.35) 

where we have set 
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e(n)~ e'(n) 
N~ 

Taking the integer parts of both sides in (7.3.35) produces 

whereas, taking the fractional parts results in 

Chapter 7 

(7.3.36) 

(7.3.37) 

(7.3.38) 

(7.3.39) 

These are the desired equations. They derive the next interpolator control 
parameters from the current parameters and the error signal. In particular, 
writing (7.3.38) in the form 

(7.3.40) 

we may regard the right-hand side as the number of input samples to be shifted 
into the interpolator until the next interpolant is computed. 

7.3.4. Timing Adjustment with Feedforward Schemes 

The last topic is the interpolator control in feedforward schemes. To be 
specific, we assume continuous data transmission and denote by r~T/~ the 
ratio of symbol period to sampling period. Samples {y(m~)} from the matched 
filter (see Figure 7.2) are grouped in blocks. The timing estimator produces 
estimates {io,i1;f2, ••• }, one per block. For convenience we assume that these 
estimates are limited within the interval ±T/2. Note that there is no 
contradiction with the limitation to (0,1) in the past sections as we can pass 
from one hypothesis to the other by adding or subtracting TI2 to in. 

The estimate in is used to compute the strobes in the n-th block, say those 
with indexes Kn ~ k ~ Kn+l -1. Bearing in mind that strobes are separated by 
one symbol interval we write the desired interpolation times for the n-th block 
in the form 

(7.3.41) 

For each tk the interpolator computes the corresponding basepoint index Ik 

and fractional interval Ilk as follows. Writing tk = (lk + Ilk)~' comparing with 
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(7.3.41) and rearranging yields 

I k r in 
k + J1k = r+-+-

2 1's 

Also, substituting k ~ k + I gives 

Ik+1 +J1k+l =(k+l)r+~+ fn 
2 1's 

Then subtracting (7.3.42) from (7.3.43) results in 

from which, taking fractional and integer parts produces 

J1k+l = frc(J1k + r) 

and 
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(7.3.42) 

(7.3.43) 

(7.3.44) 

(7.3.45) 

(7.3.46) 

In the foregoing discussion the timing phase has been taken as a constant. 
In practice this is not true as, in reality, 't'varies in time due to the clock source 
instability at the transmitter. In consequence, as fn is restricted to ±T 12, it 
will occasionally exhibit jumps of T seconds in passing from one block to the 
other. If the phenomenon is not properly recognized, some strobes will be 
missed or duplicated. To cope with this problem, the estimates {in} must be 
unwrapped. Following Oerder and Meyr [9], the unwrapped estimates {i~U)} 
are derived from {fn } through the following non-linear equation (see Figure 
7.10): 

flU) = flu) + a SA W(f - flu) ) n n-l n n-l (7.3.47) 

Here, a is a design parameter and SAW(x) is a sawtooth function that reduces 
x to the interval ±T 12. Formally 

SAW(x)~(x + Tl2)modT - TI2 (7.3.48) 

Once the unwrapped estimates are available, timing control is performed 
as follows. Make the substitution fn ~ i~U) in (7.3.42) 

r flu) 
Ik + J1k = kr+-+-n-

2 1's 
(7.3.49) 
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ex 

Figure 7.10. Block diagram of the unwrapping algorithm. 

From the arguments leading to (7.3.45)-(7.3.46) it is clear that the computation 
of Ik and 11k over a given block proceeds as indicated earlier. On the contrary, 
when passing from one block to the next a readjustment is needed. In fact, 
letting k = Kn+1 -1 be the index for the last strobe in the n-th block and 
k = Kn+1 the index for the first strobe in the (n+l)-th block, we have 

r flu) 
IK -1+I1K _1=(Kn+l -l)r+-+-n-

n+l n+l 2 ~ 

r flu) 
I + /I = K r+-+...!!±.L 
Kn+l r-Kn+1 n+1 2 T 

s 

Thus, subtracting (7.3.50) from (7.3.51) yields 

flU) _ flu) 
I + /I = I + /I + r + n+1 n 
Kn+l r-Kn+1 Kn+1-1 r-Kn+l-I T 

s 

(7.3.50) 

(7.3.51) 

(7.3.52) 

Finally, taking fractional and integer parts of both sides results in the desired 
continuity equations 

( 
flu) _ f(U») 

/I = frc /I + r + n+1 n 
r-Kn+l r-Kn+1-1 T 

s 
(7.3.53) 

I I . ( f~~, - f~U) ) K = K -I + mt 11K -I + r + -'!:!:..!......---!.!.-
n+l n+l n+l I; 

(7.3.54) 

Exercise 7.3.2. The timing source at the transmitter has a frequency offset 
!::J.f = 10-5 IT from its nominal value. In other words, the timing parameter 'r 

varies by 1O-5T seconds at each symbol interval. Suppose that: (i) the signal 
samples are grouped into blocks of Lo symbols; (ii) the timing estimate in a 
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block is about the arithmetic mean of l' at the extremes of the block; (iii) the 
timing error cannot exceed 5% of T for proper detection operation. What is the 
maximum allowed value of the block length? 

Solution. It is easily seen that the timing errors at the extremes of a block 
are ±5· 1O--{j T4J. As they cannot exceed 5· 10-2 T, the block length must be 
less than 104 symbols. 

7.4. Decision-Directed Timing Error Detectors 

7.4.1. ML-Based Detectors 

The foregoing discussion has concentrated on timing adjustment in clock 
recovery. As we have seen, either synchronous or non-synchronous sampling is 
possible with feedback schemes, on condition that some suitable timing error 
detector (TED) is available. The problem that comes next is to find appropriate 
TED algorithms. In this sub-section we address this question using ML estima­
tion methods. Other approaches based on ad hoc reasoning are discussed later. 

The conceptual path we choose may be summarized as follows. We 
assume that reliable data decisions are available. Correspondingly, we write the 
log-likelihood function L(rlf) for the timing parameter and look for its 
maximum as a function of f. A necessary condition for a maximum to occur is 
the vanishing of the derivative of L(rlf) with respect to f. It turns out that this 
derivative, L'(rlf), is given by the sum of several terms contributed by various 
segments of the observed waveform, say 

L'(rlf) = Ll;(rlf) (7.4.1) 
k 

Then, a recursive solution to the ML estimation problem can be attempted by 
exploiting the generic term in the summation (7.4.1) to update the current 
timing estimate f k' Formally 

(7.4.2) 

where r is a design parameter. But this equation is identical to (7.2.19) and 
(7.3.33) which govern the operation of feedback recovery systems, except that 
the notation e(k) is used in those equations in place of l;(rlfk ). We conclude 
that the error signal we are looking for is just I; (rlf k)' 

To derive the specific form of e(k) let us start from the signal model 

s(t)= Lcig(t-iT-1') (7.4.3) 
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Here, the symbols belong to the alphabet {±l,±3, ... ,±(M -I)}, g(t) is a real­
valued pulse, and 'r is the channel delay in the range - T 12 :s; 'r < T 12. Noise is 
white and Gaussian, with two-sided spectral density No 12. Letting {ci } be the 
detector decisions and O:s; t :s; 10 the observation interval, the log-likelihood 
function turns out to be 

To I To 

L(rlf) = J r(t)s(t)dt - - J s2(t)dt 
o 20 

(7.4.4) 

where s(t) is the trial signal: 

s(t)~ LAg(t-iT-f) (7.4.5) 

Substituting (7.4.5) into (7.4.4) yields 

To 

L(rlf) = LA J r(t)g(t - iT - f)dt 
i 0 

To 

-.!. L ~::CiCm J g(t - iT - f)g(t - mT - f)dt 
2 i m 0 

(7.4.6) 

and taking the derivative with respect to f results in 

To 

L'(rlf) = - LCi J r(t)g'(t - iT - f)dt 
i 0 

To 

+ LLcicmJ g'(t-iT-f)g(t-mT-f)dt (7.4.7) 
i m 0 

where g'(t) is the derivative of g(t). Next, we make an approximation which is 
valid when the observation interval is much longer than the duration of g(t). It 
consists of expanding the limits of the integrals in (7.4.7) to ±oo while 
restricting the summations over i from 0 to Lo - I, where Lo is the observation 
length in symbols. Note that the limits on the summation over m remain 
infinite. With simple manipulations we obtain 

~-l [ 00 ] 

L'(rlf) = ~ ci y'(iT + f) - m~~mh'[(i - m)T] (7.4.8) 

where y'(t) is the response to r(t) of the derivative matched filter 
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dg( -t)/dt = -g'( -t), i.e., 

00 

y'(t)£- f r(;)g'(; - t)d; (7.4.9) 

and h'(t) is the response of this filter to g(t): 

h'(t)£ g(t) ® [-g'( -t)] (7.4.10) 

The following remarks are useful: 

(i) It is readily checked that h'(t) equals the derivative of h(t)£ g(t) ® g( -t). 
As the latter is even and has a maximum at the origin, we have 

h'(O) =0 

h'(t) = -h'(-t) 

(7.4.11) 

(7.4.12) 

(ii) y'(t) may also be seen as the derivative of the matched-filter output 

00 

y(t)£ fr(;)g(;-t)d; (7.4.13) 

Returning to (7.4.8) it appears that the derivative of the log-likelihood 
function is the sum of several terms. In light of the previous remarks, the error 
signal e(k) is derived by computing the k-th term for i = f k' i.e., 

(7.4.14) 

Unfortunately this formula has some drawbacks. First, it requires an 
infinite sum, which is clearly impossible to realize. Luckily, the sum can be 
truncated since the coefficients h'[(k - m)T] tend to fade out as the difference 
Ik - ml increases. This suggests the approximation 

(7.4.15) 

A second problem is that, even in this form, e(k) involves decisions 
{ck+I,Ck+2, ... Ck+D} which extend into the future. A simple remedy is to delay 
the right-hand side of (7.4.15) by D steps. The adverse effects of delays on the 
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Figure 7.11. Timing recovery scheme with synchronous sampling. 

loop performance are negligible if D is limited to a small fraction of lI(BL1) 
(BL is the loop bandwidth). In practice, D values of a few units will not have 
significant consequences since lI(BLT) is on the order of 100 or larger. 

The error signal (7.4.15) has been brought out by Gardner in [10] and 
Bergmans and Wong-Lam in [11] and will be referred to as the true ML error 
detector. This will serve to distinguish it from the popular TED (see [10], [12]­
[13]) which results from dropping the sum in (7.4.15), i.e., 

(7.4.16) 

Figure 7.12. Timing recovery scheme with non-synchronous sampling. 
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Bearing in mind that h'{O) = 0, this detector may be seen as a particular case of 
(7 .4.15) for D=O. The reason for setting D=O is that the sum in (7.4.15) accounts 
for the second integral in (7.4.4). If this integral were independent of i, its 
derivative would vanish and so would the sum. Actually the integral does de­
pend on i but some people argue that the dependence is weak and can be ig­
nored. The consequences of setting D=O in (7.4.15) will be explored later. For 
now we simply observe that, whichever the value of D, the synchronizer takes 
the form indicated in Figure 7.11 for synchronous sampling, and in Figure 7.12 
for non-synchronous sampling. The two schemes are equivalent when good 
interpolators are used. 

7.4.2. S-Curve 

In the next two sections we analyze the performance of timing recovery 
schemes endowed with the ML-based TED in (7.4.15). For simplicity we con­
centrate on the scheme in Figure 7.11, which corresponds to synchronous sam­
pling. The discussion with non-synchronous sampling is more complex and 
will not be addressed in this book. The interested reader is referred to Bucket 
and Moeneclaey [14] for a full account of the subject. In that paper it is shown 
that degradations due to interpolation imperfections are negligible even with 
very simple interpolators, provided that the sampling rate is not close to multi­
ples of the symbol rate. 

As a first step in our analysis we concentrate on the S-curve. Recall that 
this is the expectation of e{k) for i k = i = constant. Calculations are performed 
assuming ck = ck , which implies that i is close to 'l" (otherwise intersymbol 
interference would cause decision errors). 

Keeping in mind that 

r(t) = LC; get - iT - 1') + w(t) (7.4.17) 

from (7.4.9) we obtain 

y'{t) = Lc;h'{t - iT - 1') + n'(t) (7.4.18) 

where 

n'(t)~w(t) ® [-g'( -t)] (7.4.19) 

is the response of the derivative matched filter to wet). Hence, substituting into 
(7.4.15) for i k = i and ck = ck and rearranging yields 
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e(k) = LCkCjh'[(k - i)T + f --r] 
i 

k+D 

- Lckcmh'[(k-m)T]+ckn'(kT+f)· (7.4.20) 
m=k-D 

To proceed further, assume zero-mean and independent symbols so that 

m=O 

m;tO 
(7.4.21) 

Then, taking the expectation of (7.4.20) and bearing in mind (7.4.11)-(7.4.12) 
produces the S-curve 

(7.4.22) 

where 0 £-r - f. As h(t) has a maximum at the origin, it follows that -h'(o) 
has a null with positive slope at 0 = o. Thus, 0 = 0 is a stable operating point. 

Timing errors are small in the steady state and the approximation 
h'(o) "" h"(O)O holds true. Correspondingly, (7.4.22) becomes 

S(o) ""Ao 

with 

For example, in some applications h(t) is Nyquist and has the form 

h(t) = sin(mIT) cos(amIT) 
miT 1- (2a tlTi 

where a is the rolloff factor. Correspondingly, it is found that 

(7.4.23) 

(7.4.24) 

(7.4.25) 

(7.4.26) 

Figure 7.13 shows S-curves obtained by simulation. The alphabet is binary 
and h(t) is Nyquist with 50% rolloff. The solid line labelled "theory" cor­
responds to equation (7.4.22). It appears that simulations agree well with theory 
for small timing errors. As the latter increase, however, the assumption that 
ck = ck is no longer valid and the theory fails. 
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Figure 7.13. S-curves for the ML-based TED. 

Exercise 7.4.1. In the foregoing discussion h(t) has been assumed as the 
convolution g(t) ® g( -t), which implies h(t)=h( -t). Correspondingly, it has 
been shown that the S-curve has a null at the origin. Because of channel 
distortions, however, the pulses from the matched filter may not be even. How 
does this affect the S-curve? 

Solution_ Following the arguments leading to (7.4.22) we get 

S(O) = C2 [h'(-0) - h'(O)] (7.4.27) 

from which it is seen that the null in the S-curve still occurs at the origin, 
despite the pulse distortion. 

7.4.3. Tracking Performance 

The tracking performance of feedback synchronizers can be assessed with 
the methods of Section 3.5.5. The major results from that section are now 
summarized and are applied to the case at hand. Start with the loop equation 

(7.4.28) 

where 
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e(k) = A(1" - i k ) + N(k) (7.4.29) 

In writing (7.4.29) we have assumed that i k <= 1" so that the approximation 
(7.4.23) holds true. The variance of the errors 1" - i k can be expressed either in 
terms of the autocorrelation RN(m) = E{N(k + m)N(k)} or as a function of the 
power spectral density of N(k) 

00 

SN(f) = T LRN(m)e-j2nmfT (7.4.30) 
m=~ 

Denoting by (j2 the variance of the normalized errors (1" - i k) / T, the former 
procedure leads to 

(7.4.31) 

while the latter produces 

1/2T 

(j2 = ~ f SN(f)IH(f)12 df 
T -1/2T 

(7.4.32) 

where B L is the noise equivalent bandwidth of the loop 

B T= yA 
L 2(2-yA) 

(7.4.33) 

and H(j) is the loop transfer function 

(7.4.34) 

In some cases the spectral density S~ is flat over the frequency interval where 
H(j) takes significant values and (7.4.32) reduces to 

(7.4.35) 

The above results are now applied to synchronizers endowed with the 
error detector (7.4.15). For this purpose we observe that N(k) in (7.4.29) 
coincides with e(k) for i k = 1". Thus, setting i = 1" in (7.4.20) and rearranging 
yields 

(7.4.36) 
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with 

and 

NSN(k)£ LCkCk+ih'(iT) 
lil~D+I 

379 

(7.4.37) 

(7.4.38) 

The physical interpretation of these equations is clear: NSN(k) represents self 
noise while NTN(k) is contributed by thermal noise. Since the coefficient 
h'[(k - m)T] decreases as Ik - ml increases, self noise becomes negligible when 
D grows large. As the decrease of h'[(k - m )T] is fast with a relatively large 
signal bandwidth, even a small D is sufficient to make self noise negligible 
when a is close to unity. 

The computation of the error variance (12 in (7.4.31) requires knowledge 
of the autocorrelation R~m) which may be computed as follows. Since NSN(k) 
and NTN(k) are uncorrelated, we have 

(7.4.39) 

Let us first concentrate on RTN(m). From (7.4.38) we get (recall that the 
symbols are independent) 

m=O 

m*O 
(7.4.40) 

To evaluate E{n,2(t)} we need the Fourier transform of g'(-t). This is found to 
be - j27rjG* (f), where G(j) is the Fourier transform of g(t). Then, the variance 
of n'(t) is given by [15, Ch. 10] 

E{n,2(t)} = ~o ·47r2 ff21GUt df (7.4.41) 
-<>0 

Next we turn our attention to RSN(m). After some manipulations from 
(7.4.37) we get 

RSN(m) = L LE{coCI/mCm+l)h'(IIT)h'(~T) (7.4.42) 
1111~D+I 1121~D+l 

For 1111 ~ D + 1 and I~I ~ D + 1 it can be shown that E{cOCI/mcm+12} is zero 
except in the following cases where it equals ci: 



380 

m=O and I, =~ 

Iml ~ D + 1 and I, = -~ = m 

Thus, equation (7.4.42) becomes 

{
Ci }),2(IT) 

RSN(m) = 111~D+' 

-Cih,2(mT) 

m=O 

Iml~D+l 

Chapter 7 

(7.4.43) 

(7.4.44) 

(7.4.45) 

At this point, collecting (7.4.39)-(7.4.40) and (7.4.45) yields the 
autocorrelation RN(m) and inserting the result into (7.4.31) produces the error 
variance. Exercise 7.4.3 shows that the synchronizer performance achieves the 
modified Cramer-Rao bound when D is sufficiently large to make the self noise 
negligible. 

Figures 7.14-7.15 illustrate simulation results obtained with a binary 
alphabet (ci = ±1) and a loop noise bandwidth of 5.10-3 / T. In both figures D 

Figure 7.14. Nonnalized timing error variance with binary signaling. 
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Figure 7.15. Nonnalized timing error variance with binary signaling. 

is taken as a parameter and the bottom curve represents the MCRB. The floor 
in the curves is a manifestation of self noise; it says that the synchronizer per­
formance cannot be further improved by increasing Es / No. As is seen, the 
floor level diminishes as D increases. The MCRB is practically attained for 
D=5 in Figure 7.14 and for D=2 in Figure 7.15. The larger D which is needed 
in Figure 7.14 is due to the smaller rolloff being used. In fact a small a pro­
duces a longer channel response and, correspondingly, a relatively higher self 
noise level for a given D (see (7.4.45». Both figures point out that degradations 
incurred with D=O are limited for Es! No less than 10 dB. 

Exercise 7.4.2. In the previous section we have assumed that the S-curve 
has a null at the origin. How should the discussion be rearranged when the null 
is shifted from the origin? 

Solution. Suppose that the null is shifted to the right by Ll'f so that the 
timing estimates fluctuate around 'fo £'f - Ll'f. Then, equation (7.4.29) must 
replaced by 

(7.4.46) 
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where A is the slope of the S-curve at the null (not at the origin). It follows 
from (7.4.46) that N(k) coincides with e(k) for i k = 'ro. Hence, setting i = 'ro in 
(7.4.20) and rearranging yields 

(7.4.47) 

with 

k+D 

NSN(k)~ LCkCih'[(k- i)T + 'ro - 'r]- ~>kcmh'[(k- m)T] (7.4.48) 
m=k-D 

and 

(7.4.49) 

The remainder of the discussion remains unchanged. The autocorrelations 
RSN(m) and RTN(m) have to be computed and their sum has to be inserted into 
(7.4.31). 

Exercise 7.4.3. The MCRB for the timing error variance is given by 

1 1 1 
-2 x MCRB('r) = 2;:, -­
T 8n~~/No 

(7.4.50) 

where Lo is the observation interval in symbol periods, ~ is a parameter 
defined by 

~ 

ff 2
1G(ft df 

~~T2 .::::-oo:::....~ ___ _ (7.4.51) 

JIG(ftdf 

and G(f) is the Fourier transform of g(t). Show that an ML-based synchronizer 
attains this bound when h(t) = g(t) ® g( -t) and the parameter D is sufficiently 
large to make self noise negligible. 

Solution. When self noise is negligible, the autocorrelation RN(m) coin­
cides with RTN(m) in (7.4.40). Then, substituting into (7.4.31) and using 
(7.4.24), (7.4.40)-(7.4.41) yields 

(7.4.52) 
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Now, bearing in mind that h(t) = g(t) ® g( -t), it is easily seen that h"(t) has 
Fourier transform -47r2 f2IG(f)12 and, in consequence, h"(O) may be written 
as 

00 

h"(O) = -47r2 f f2lG(ft df (7.4.53) 

Also, in Appendix 2.A it is shown that the signal energy is expressed by 

00 

Es = C2 f IG(f)12 df (7.4.54) 

Then, substituting into (7.4.52) produces 

(7.4.55) 

This coincides with the MCRB, as is recognized using the relation 

(7.4.56) 

between loop bandwidth and equivalent observation length. 

7.4.4. Approximate-Derivative Method 

The synchronizer in Figure 7.11 is rather complex to implement because 
of the presence of the derivative matched filter -g'(-t) whose computational 
load is comparable with that of the matched filter g( -t). While the latter cannot 
be avoided as it is indispensable for detection, we wonder whether the 
derivative matched filter can be obviated at the cost, perhaps, of some 
performance loss. This problem is discussed in [10] where some alternative 
solutions are offered. The simplest one consists of approximating the derivative 
of y(t) in (7.4.l6) with a finite difference as follows 

, A 1 [ "A " A ] Y (kT + 'rk ) "" T y(kT + T,2 + 'rk+1/2 ) - y(kT - T,2 + 'rk- I/2 ) (7.4.57) 

where fk±1/2 are the timing estimates at kT± Ti2. In practice, equation (7.4.57) 
must be retouched since the timing estimates are updated at multiples of T and 
the only available quantities are {fd. In consequence, f k+1I2 is replaced by i k 
(the latest estimate), i k- 1I2 by i k_ l , and equation (7.4.16) becomes 
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Figure 7.16. Block diagram of the early-late synchronizer. 
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(7.4.58) 

where the factor liT has been dropped for simplicity as it can be absorbed into 
the step size. Algorithm (7.4.58) is reminiscent of that employed in the early­
late gate synchronizer discussed by Lindsey and Simon in [16, Ch. 9] and will 
be called early-late detector (ELD) in the sequel. 

The block diagram of a synchronizer endowed with an ELD is illustrated 
in Figure 7.16. The splitter divides the sequence from the matched filter into 
two streams {y(tk )} and {y(tk+IIZ )}' corresponding to the sampling times 
tk+l/z£kT+T/2+ik and tk~kT+ik' The tracking performance of this 
synchronizer is discussed later. 

Exercise 7.4.4. Compute the S-curve for the ELD. 
Solution. The matched-filter output is 

yet) = L cih(t - iT - r) + n(t) (7.4.59) 

where n(t)£w(t)®g(-t). The S-curve is the expectation of (7.4.58) for 
i k = fk_1 = f. Substituting (7.4.59) into (7.4.58) and performing straightfor­
ward calculations (with the approximation ck "" ck ) yields the desired result 

S(o) = Cz[h(T/2 - 0)- h(-T/2- 0)] (7.4.60) 

with o£r-f. If h(t) is an even function, it is seen from (7.4.60) that S(O) 
crosses the horizontal axis at the origin with a positive slope (provided that 
h'(T /2) < 0). In these conditions 0 = 0 is a stable tracking point. 
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7.4.5. Other Timing Error Detectors 

Other simple timing detectors are available in the literature. Here we re­
port on two algorithms that have been brought out with ad hoc reasoning. The 
first is the zero-crossing detector (ZCD) proposed by Gardner in [10, Ch. 10] 

(7.4.61) 

The other is due to Mueller and Mueller [17] and is expressed by 

e(k) = ck-ly(kT + it) - ctY[(k -l)T + it-I] (7.4.62) 

Note that the Mueller and Mueller detector (MMD) operates on T-spaced 
samples, as opposed to ZCD which needs TI2 spacing. 

ZCD and MMD have interesting features that are now discussed. Consider 
first the MMD and assume: (i) small tracking errors (it"" it-I"" 1"); (it) correct 
decisions (ct "" ct ); (iii) negligible thermal noise. Then, substituting the signal 
component of (7.4.59) into (7.4.62) yields the detector's self noise 

(7.4.63) 

We wonder whether eSN(k) can be made zero by a proper choice of h(t). By 
inspection it is seen that esJk) vanishes when h(t) is Nyquist, i.e., h(O)=l and 
h(k1)=O for k¢:O. Thus, MMD has no self noise with Nyquist pulses. Of course, 
this does not necessarily mean that the detector has particularly good tracking 
performance. Thermal noise might be large. As we shall see, this is the case 
with large rolloff factors. 

Next, consider ZCD. With the same arguments it is found that self noise is 
expressed by 

(7.4.64) 

Assume again that h(t) is Nyquist and, in particular, it has rolloff equal to unity. 
From (7.4.25) we have 

h(kTI2)=h2 
Substituting into (7.4.64) yields 

k=O 

k=±l 

elsewhere 

(7.4.65) 

(7.4.66) 
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which says that estlk) is identically zero with a binary alphabet (ck=±l). In 
summary, ZeD has no self noise with binary symbols and Nyquist pulses with 
100% rolloff. 

S-curves obtained by simulation are shown in Figures 7.17-7.18 for ZeD 
and MMD. The channel is Nyquist with 50% rolloff and the symbols belong to 
the M-ary alphabet {±I,±3, ... ,±(M -I)}. The S-curve for the MMD with M=4 
is of some concern as it exhibits a null for timing errors of about ±TI3. This null 
may cause hangup effects if the system starts with errors on that order of 
magnitude. The situation may be even worse at higher SNR as is illustrated in 
Figure 7.19. For EsINo=23 dB (which is realistic on coaxial cables) it is seen 
the S-curve with M=4 exhibits spurious lock points at about ±O.37T. A false 
lock with such large timing errors would have disabling effects on perfor­
mance. 

Tracking performance comparisons between ELD, ZeD and MMD are 
made in Figures 7.20-7.21 for Nyquist pulses and rolloff values of 0.75 and 
0.25. It is seen that, as the signal bandwidth decreases, the performance of ELD 
and ZeD worsens while that of MMD improves. In particular it is confirmed 
that MMD has no self noise (there is no floor in the variance curve as Esl No 
increases) and ZeD has little self noise for a close to unity. Finally, comparing 
Figures 7.14 and 7.21 it appears that the approximate ML-detector with D=O 
has almost the same performance as the ELD, which means that the approxi­
mation (7.4.57) to the derivative matched-filter output is effective. 
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Figure 7.17. S-curves for ZeD. 
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Figure 7.18. S-curves for MMD and SNR=18 dB. 
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Figure 7.19. S-curves for MMD and SNR=23 dB. 
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Exercise 7.4.5. Show that ZCD and ELD have the same S-curve about the 
origin. 

Solution. From (7.4.59) we have 

y(kT - T /2 + i) = Lcjh[(k - i)T - T /2+ i - 'l')] + n(kT - T /2+ i) (7.4.67) 

Substituting into (7.4.61), letting i k_1 =i,ck =ck' ck_1 =Ck_1 and taking the 
expectation yields (7.4.60), which proves the statement. 

Exercise 7.4.6. Compute the S-curve for MMD. 
Solution. Letting i k = i k _1 = i, ck = ck , Ck_1 = Ck_1 in (7.4.62) and taking 

the expectation produces 

S(8) = C2 [h(T - 8)- h(-T - 8)] (7.4.68) 

with 8 ~ 'l' - i. As h(t) = g(t) ® g( -t) is an even function, it is recognized that 
the S-curve vanishes for 8 = O. Also, it can be shown that S(8) has a positive 
slope at the origin when h(t) is Nyquist. In these conditions 8 = 0 is a stable 
tracking point. 

Exercise 7.4.7. In deriving (7.4.68) we have assumed that the received 
waveform r(t) is filtered into a matched filter g(-l). Suppose instead that r(t) is 
passed through some generic filter gR(t). How does this affect the S-curve of 
theMMD? 

Solution. Filtering r(t) into git) produces 

(7.4.69) 

with hR(t)~ g(t) ® gR(t) and nR(t)~w(t) ® gR(t). Next, following the argu­
ments leading to (7.4.68) yields 

(7.4.70) 

which is formally identical to (7.4.68), except that h(t) is replaced by hit). As 
the latter need not be an even function, the S-curve need not vanish at the 
origin. This means that the timing estimates may be biased. The same 
conclusion holds true with the other error detectors, ELD and ZCD. 

Exercise 7.4.8. Compute the timing error variance for a synchronizer 
endowed with an MMD, assuming h(t) pulses with a raised-cosine-roUoff 
Fourier transform H(j). 

Solution. Since h(t) is Nyquist. the detector has no self noise. The thermal 
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noise component is derived from (7.4.62) by replacing yet) with n(t). Thus, 
letting i k =ik-1 =r, Ck =ck' Ck-1 =ck_l (which is a valid assumption in the 
steady state) we have 

(7.4.71) 

Next, bearing in mind that H(f) = IG(f)12 , it is readily shown that 
{n(kT + r)} is a white sequence with 

It follows from (7.4.71) that the spectral density of eTN(k) is given by 

STN(f) = TC2No 

Correspondingly, from (7.4.35) we obtain 

2 -2B C2No 
(j - L A2T 

(7.4.72) 

(7.4.73) 

(7.4.74) 

Let us compute the parameters C2 and A. As IG(f)12 = H(f), from 
(7.4.54) we get C2=Es' The slope of the S-curve at the origin is derived from 
(7.4.68). Bearing in mind the expression of h(t) in (7.4.25) we get 

A = 2C2 cos(a7r) 
T 1-4a2 

Substituting into (7.4.74) and rearranging yields the result sought 

with 

2 BLT 1 
(j =-----

47r21] Es/No 

~ 1 [cos(a7r)]2 
1]- 27r2 1- 4a2 

(7.4.75) 

(7.4.76) 

(7.4.77) 

Expression (7.4.76) has the same form as the MCRB in (7.4.55) except 
that the parameter; in the bound is replaced by 1]. Through lengthy calcula­
tions it can be shown that 

J! 1[1 2 8 ] ., =- -+a (1--) 
4 3 7r2 

(7.4.78) 

It is interesting to compare (j2 with the MCRB. For a zero rolloff it is found 
that 1] = 1/(27r2 ) and ~1I12. This corresponds to a loss from the bound of only 
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2.1 dB. For a=l we get 11 = 1/(181r2), !;=1I3-2/rr and the loss grows to 13.6 
dB. This confinns that MMD is better suited for small rolloff factors. 

7.5. Non-Data-Aided Detectors 

7.5.1. ML-Based Detector 

In the previous section several timing detectors have been illustrated 
whose operation requires reliable symbol decisions. In this section we 
investigate non-data-aided detectors which, in principle, should do better when 
decisions are not available or not reliable. We first concentrate on an ML-based 
algorithm and then discuss an ad hoc approach. 

Start with the likelihood function 

{
2TO ITO} 

A(rli,c) = exp - J r(t)s(t)dt - - J s2(t)dt 
No 0 No 0 

(7.5.1) 

where c~{CO,Cl,C2""} represents the generic data sequence and set) is the trial 
signal 

(7.5.2) 

Our goal is to estimate the timing epoch without bothering about data. To this 
purpose we should first average A(rli,c) with respect to c and then look for 
the maximum of the marginal likelihood function A(rli). Unfortunately, as we 
have seen other times in this book, this route leads to insunnountable 
difficulties. Thus, instead of pursuing a fruitless path we resort to the following 
approximations. 

First, we drop the second integral in (7.5.1). From the discussion in the 
previous section we expect that this will make the self noise level grow but we 
have no choice. We shall see later how to fight self noise with other methods. 
Second, we assume the SNR sufficiently low so that the Taylor series expan­
sion of the exponential in (7.5.1) can be truncated at the quadratic term, i.e., 

2To 2 [TO ]2 
A(rli, c) "" 1 + - J r(t)s(t)dt + -2 J r(t)s(t)dt 

No 0 No 0 
(7.5.3) 

Third, making use of the definition (7.5.2) we write 

To To 

f r(t)s(t)dt = L cj f r(t)g(t - iT - i)dt (7.5.4) 
o 0 
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Then we expand the limits of the integrals in (7.5.4) to ±oo and restrict the 
summation over i from 0 to Lo - 1, with Lo ~ To IT. In other words we set 

To 1.0-1 f r(t)s(t)dt "" L c;y(iT + i) (7.5.5) 
o ;=0 

where 
~ 

y(t)~ f r(~)g(~-t)d; (7.5.6) 

is the response of the matched filter to r(t). Fourth, we substitute (7.5.5) into 
(7.5.3) and perform the expectation with respect to the symbols. Dropping 
some irrelevant terms we obtain [10], [13] 

1.0-1 

A(rli) "" L lUT + i) (7.5.7) 
;=0 

This is the desired approximation to the marginal likelihood function 
A(rli). It is a quadratic expression involving the samples from the matched 
filter. This formula says that the optimum timing estimate corresponds to the 
sampling epoch i that maximizes the energy of the sequence {y(iT + i)}. One 
way to pursue energy maximization is to employ a search algorithm, as 
indicated in Section 3.5.2. Alternately, the zero of the derivative of the 
likelihood function can be looked for. From (7.5.7) we see that the derivative 
has the form 

1.0-1 
A'(rlf) "" 2 LY(iT + f)y'(iT + f) (7.5.8) 

;=0 

Thus, the generic term in the sum may be computed for f = f k and used as an 
error signal to update the timing estimate. This leads to 

(7.5.9) 

with 

(7.5.10) 

Comparing (7.5.10) with the decision-directed algorithm (7.4.16) it is seen 
that the k-th decision Ck has been replaced by the corresponding matched filter 
sample y(kT+fk ). The complexity of the two detectors is about the same, 
however. In particular they need two separate filters, the matched filter and the 
derivative matched filter. As in Section 7.4.4, a possible simplification is to 
approximate the derivative sample y'(kT + f k) by a finite difference. Following 
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that route the detector becomes 

Note that two samples per symbol are needed in this detector. The similarity of 
(7.5.11) with the early-late detector (7.4.58) is apparent. The former is just the 
non-data-aided version of the latter and, accordingly, will be denoted as NDA­
ELD. 

7.5.2. The Gardner Detector 

An alternative to the NDA-ELD has been devised by Gardner [18] 
following a heuristic reasoning. Although the arguments adopted in [18] are 
tailored for modulated carriers, they can be adapted to baseband transmission. 
Essentially, the Gardner detector (GAD) is obtained from the data-aided zeD 
in (7.4.61) by replacing the decisions Ck_1 and Ck by the corresponding samples 
of y(t), i.e., 

Despite the strong similarity with (7.5.11), the reader is cautioned against 
concluding that the Gardner detector and NDA-ELD are equivalent. As a 
matter of fact they have the same S-curve but the former has a lower self noise 
level. In the remainder of this section we compute the S-curve for (7.5.12). The 
proof that this curve coincides with the S-curve for NDA-ELD is left as an 
exercise for the reader. Performance issues are discussed later. 

Letting fk = f k_1 = fin (7.5.12) and performing simple calculations yields 

S(8) = C2Lh(iT - TI2 - 8)h(iT - T - 8) 
i 

-C2 Lh(iT - 8)h(iT - TI2 - 8) (7.5.13) 

Next, recall the following relation (Poisson sum formula [15]) 

L w(iT) =.!. L W(m) 
i Tm T 

(7.5.14) 

which applies to any finite-energy signal w(t) with Fourier transform W(f). 
Identifying w(t) with h(t - 8)h(t - T 12 - 8) and bearing in mind that the 
Fourier transform of h(t)h(t - T 12) is (Parseval theorem) 

= 

H2(f)g, f H(v)H(f - v)e- jrrVT dv (7.5.15) 
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we get 

})(iT - 8)h(iT - T 12 - 8) =.!. LH2(m}-j2trm8IT 
i T m T 

(7.5.16) 

Now, assuming a signal bandwidth less than liT (so that HU) = 0 for 
If I ~ 11 T), it is recognized that H2 (ml T) is zero except for m=O and m = ±l. 
Hence, (7.5.16) reduces to 

An analogous expression is found for the first summation in (7.5.13). 
Skipping the details, we have 

~h(iT-T/2-8)h(iT-T-8)= ~H2(0)-~Re[ H2(~ }-j2lr8IT] (7.5.18) 

Finally, substituting into (7.5.13) yields 

S(8) = - 4~2 Re[ H2(~ }-j2m5IT] (7.5.19) 

When h(t) is an even function, H(f) is real-valued and, as is now demon­
strated, H2(lIT) is an imaginary number. In fact from (7.5.15) it can be shown 
that 

(7.5.20) 

with 

~ 1 1 
K£ f H(-+ f)H(-- f)cos(TifT)df 

-<>0 2T 2T 
(7.5.21) 

Then, inserting into (7.5.19) yields 

S(8) = 4;K sine;8) (7.5.22) 

In particular, with a raised-cosine-rolloff function with rolloff a the constant K 
is given by 

K 1 . (rra) = sm-
4rr(1- a2 14) 2 

(7.5.23) 

Equation (7.5.22) indicates that the S-curve is sinusoidal of period T and 
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passes through the origin at 8 = O. Its amplitude is proportional to K, which 
depends on the rolloff factor. As a decreases, K gets smaller and smaller and 
the amplitude of the S-curve becomes inadequate for the tracking operation. 
Thus, the Gardner detector is ill-suited for narrow-band signaling. 

7.5.3. Tracking Performance 

The tracking performance of synchronizers endowed with GAD and 
NDA-ELD can be analytically assessed following [19]-[20] or the methods in 
Section 7.4.3. Unfortunately the passages are lengthy and the final results look 
messy. For this reason only simulation results are reported. In particular, 
Figures 7.22-7.23 illustrate the variance of the normalized error ('r - f k) I T as 
a function of Es I No for h(t) satisfying the Nyquist criterion. As is seen, GAD 
is superior to NDA-ELD in that it has less self noise. As anticipated, the 
performance is strongly affected by the roll off factor and degrades significantly 
as a decreases. This is in contrast with the behavior of decision-directed 
detectors which are much less sensitive to rolloff (see Figures 7.20-7.21). It is 
concluded that GAD and NDA-ELD are not useful with narrow-band signaling. 

o NDA·ELD 

o GAD 

o 10 15 20 25 30 35 40 

Figure 7.22. Tracking performance of synchronizers endowed with NDA-ELD and GAD. 
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Figure 7.23. Tracking performance of synchronizers endowed with NDA-ELD and GAD. 

7.5.4. Self Noise Elimination with the Gardner Detector 

We have seen that the Gardner detector has significant self noise with 
strongly bandlirnited signals. Thus, it would be useful to reduce this noise with 
simple methods. This problem has been addressed by D' Andrea and Luise in 
[19]. Their basic idea is borrowed from pre filtering techniques employed to 
minimize timing jitter in analog synchronizers [21]-[24]. Essentially, they 
adopt an error signal e(k) that has still the form indicated in (7.5.12), except 
that the samples from the matched filter are first passed through an FIR pre­
filter. The synchronizer has the configuration indicated in Figure 7.24. As is 
intuitively clear, the tracking error variance (J2 in the steady state depends on 
the prefilter taps and the question arises of looking for the tap values that 
minimize (J2. The solution to this problem indicates that substantial improve­
ments in tracking performance can be achieved even with very short prefilters 
(3-5 taps). 

For example, Figure 7.25 compares the tracking performance of two 
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~~_g_(-_t_)~~~~~ ____ ~ 
21T i 

Figure 7.24. Block diagram of a synchronizer with prefilter. 

synchronizers, one using a plain GAD and the other a GAD with a 5-tap 
prefilter. The alphabet is quaternary, the roHoff is 25% and the loop bandwidth 
equals 10-3 / T. As is seen, prefiltering almost eliminates self noise. Indeed, the 
floor in the variance curve shows up at Es / No values greater than 40 dB. 

QUATERNARY ALPHABET 

Q) 
u 
§ 
.~ 

104 > 
bI) 
c:: 

:~ 
"'" Q) 
N 

~ 10.5 

E ... 
0 
Z 

10" 
o GAD 

o PRE-FILTER 

o 10 15 20 25 30 35 40 

Figure 7.25. Performance comparisons between synchronizers with and without prefilter. 
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7.6. Feedforward Estimation Schemes 

7.6.1. Non-Data-Aided ML-Based Algorithm 

So far we have concentrated on timing detectors for use in feedback syn­
chronizers. We have seen that several options are available, depending on the 
specific operating conditions. For example, decision-directed schemes have 
better tracking performance than quadratic methods when strongly bandlimited 
signals are used. It should be stressed, however, that tracking accuracy is not 
the only useful criterion. Implementation complexity is another important is­
sue. A third one is acquisition time, especially in burst transmission systems 
where a fast timing recovery is needed. Unfortunately, feedback schemes are 
prone to hangup phenomena and, in consequence, may exhibit prolonged ac­
quisitions. Thus, in certain applications feedforward recovery schemes are 
more appealing than feedback schemes. 

In this section we investigate non-data-aided feedforward timing estima­
tion using ML-oriented arguments. In doing so we adopt a discrete-time ap­
proach. Accordingly, the received waveform is first fed to an anti-alias filter 
(AAF) and then is sampled at some rate lITs' a multiple N of the nominal sym­
bol rate. Although a factor N=2 is sufficient in practice, in the sequel we keep 
N generic. The following simplifying assumptions are made: (i) the AAF has a 
brick-waH-shaped transfer function of bandwidth BAAF; (ii) this bandwidth is 
sufficiently large so as not to distort the signal components; (iii) the sampling 
rate equals 2B AAF" Also, we call La the length of the observation interval in 
symbol periods and x~{x(k~)} the sample sequence from the AAF. Note that 
x has NLo components. Then, the likelihood function A(xli,c) for the unknown 
signal parameters takes the form 

A(xli,c) = exp _s L x(kT,)s(kT,) - _s Ls2(kT,) {
2T N4J-i T NLo-i } 

No k=O No k=O 
(7.6.1) 

where s(kT,) are samples of the trial signal 

(7.6.2) 

Equation (7.6.1) is similar to the likelihood function (7.5.1) we have 
derived following a continuous-time approach. This means that the difficulties 
encountered earlier are still in our way. The only manner in which to get 
around them is to adopt the same approximations as in Section 7.5.1. This 
involves dropping the second sum in (7.6.1) and assuming a low Es/No. 
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Skipping the details we obtain 

NLo-INLo-l 

A(rii) "" L LX(kl~)x(k2~)F(kl,~,i) (7.6.3) 
kJ =0 k2 =0 

where some immaterial constants have been suppressed and we have defined 

(7.6.4) 

Next we note that F(kl,~,i) is a periodic function of i of period T. In 
fact 

F(kl,~,i - T) = Lg[kl~ - (i -l)T - i]g[~~ - (i -l)T - i] 
i 

Hence, F( kl ,k2 , i) can be expanded into a Fourier series 

m 

with coefficients Fm(kl'~) given by 

T 

Fm(kl'~) = ~f F(kl,~,i)e-j21UT1r/T di 
o 

which satisfy the relation 

(7.6.5) 

(7.6.6) 

(7.6.7) 

(7.6.8) 

Returning to (7.6.3), we look for the location of the maximum of A(rii). 
This will provide us with an (approximate) ML estimate of 'L A simple 
method to attain this goal relies on the fact that, if the signal is bandlimited to 
±lIT, then the coefficients Fm(kl'~) are all zero except those with index 
m=O, ±l (see Appendix 7.A): 

(7.6.9) 

In consequence, equation (7.6.6) becomes 

(7.6.10) 
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Then, substituting into (7.6.3) and dropping again immaterial constants yields 

(7.6.11) 

from which the desired estimator is derived noting that the right-hand side has 
a maximum at 

(7.6.12) 

A more suitable form for (7.6.12) is obtained through the following steps. 
First, we exploit the fact that F1(k1,'-2) is given by (see Appendix 7.A) 

(7.6.13) 

where q(t) has the Fourier transform 

(7.6.14) 

Inserting (7.6.13) into (7.6.12) and rearranging yields 

f::; --arg Ly(kT.)z(kT.) T {NLo-l } 

27r k=O 
(7.6.15) 

with 

(7.6.16) 

NLo-l 

z(kT.)~ LY('-2T.)q[(k - '-2)T.l (7.6.17) 
k2 =O 

Second, from (7.6.14) it is seen that Q(j) takes values within ±a/(2T), 
where a is the roll off factor associated with G(j). Then, if a is not too small, 
q(t) has a duration of a few symbol intervals, as is shown in Figure 7.26. On the 
other hand, since the estimation interval is usually much longer than T (which 
means Lo»I), we expect that (7.6.17) is only marginally affected if the sum­
mation is extended from -00 to +00. In doing so the right-hand side becomes 
the output of a (non-causal) filter q(kTs) driven by y(kTs)' 
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Figure 7.26. Function q(t) for root-raised cosine pulses. 

Third, the filter is made causal by shifting its impulse response rightward 
by ND steps. This corresponds to delaying q(t) by DT seconds. For example, a 
ST delay is adequate for a=O.S (see Figure 7.26). As the shift produces a delay 
in the filter output we have 

z[(k - ND)~] = y(k~) ® q[(k - ND)~] (7.6.18) 

Fourth, z[(k-ND)Tsl and y[(k-ND)Tsl are eventually inserted in (7.6.1S) to 
produce the desired estimator 

f = --arg Ly[(k - ND)~l z[(k - ND)~l 
T {N(Lo+D)-1 } 

21r k=ND 
(7.6.19) 

Figure 7.27 gives a pictorial representation of the estimator. We see that 
the samples from the anti-alias filter are multiplied by e- jd/N and fed to two 
parallel branches. The upper branch is made of the filter q[(k - ND)~] while 
the lower branch is made of a simple delay. The branch outputs are multiplied 
together and the products are accumulated. The argument of the accumulator 
output gives the timing estimate within a factor -T/(21r). 

Performance analysis of this estimator may be carried out with the 
methods indicated in [9] and [2S]. Unfortunately, passages and final formulas 
are very involved and are not reported here. Only simulations are shown in the 
next section. 
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Figure 7.27. Block diagram of the ML-based estimator. 

Exercise 7.6.1. Compute the inverse Fourier transform of Q(j) when G(j) 
has a root-raised-cosine rolloff. 

Solution. Function G(j) has the form 

-ff Ifl~ I-a 
2T 

G(f) = -ff cos[ 4: (I2jTl-l + a)] 
o 

I-a ~Ifl~ l+a (7.6.20) 
2T 2T 

otherwise 

Inserting into (7.6.14) and taking the inverse Fourier transform yields, after 
some manipulations, 

(t) = a cos(na tiT) 
q n 1- (2a t1T)2 

(7.6.21) 

7.6.2. Oerder and Meyr Algorithm 

An alternative feedforward method has been proposed by Oerder and 
Meyr (O&M) in [9] based on heuristic arguments. The block diagram of the 
O&M estimator is depicted in Figure 7.28. The samples x(kTs) are taken from 
some low-pass filter (LPF) which, in particular, may be matched to the 
received pulses. As with the ML-based estimator, the sampling rate is a 
multiple N of liT. However, N=4 is needed in O&M, as opposed to N=2 in the 
ML-based estimator. The input x(kTs) is first squared, then is multiplied by 
e-j21rk/ N and finally is integrated in an accumulator. The argument of the 
accumulator output gives the timing estimate within a factor -T/(2n). Formally 

(7.6.22) 
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Figure 7.28. Block diagram of the O&M estimator. 

where Lo is the integration window in symbol intervals. 
Comparing O&M with the ML-based estimator it appears that the former 

is a little simpler to implement as it does not need any filtering of x(kTs)' On the 
other hand, it requires a sampling rate which is twice as large. Analysis indi­
cates that both schemes are unbiased, which means that the average of f coin­
cides with r. Their estimation accuracy depends on several system parameters 
such as the observation interval Lo' the signal-to-noise ratio Es / No and the 
rolloff factor a. With both estimators the variance of the normalized errors 
(r - f)/T can be put in the form [9], [25] 

(7.6.23) 

where the coefficients Kss' KsNand KNN depend, in particular, on the symbol 
alphabet and the rolloff factor. Note that Ks!Lo represents the self noise term, 
as is seen from (7.6.23) letting No decrease to zero. 

Figures 7.29-7.31 show simulation results comparing the accuracy of the 
two methods. The following assumptions are made with the ML-based 
algorithm: 

(i) the anti-alias filter is an eight-pole Butterworth with a -3 dB bandwidth of 
liT; 

(ii) the oversampling factor is N=2; 

(iii) the pulse get) corresponds to a root-raised-cosine-rolloff function; 

(iv) the impulse response q[(k-ND)Tsl is derived by truncating q(t) to ±5T; 

(v) the delay ND is set equal to 10; 

(vi) the observation length is Lo=100 symbols. 

With the O&M algorithm it is assumed that: 

(i) the low-pass filter is matched to get) and is still of root-raised-cosine­
roHoff type; 
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(ii) the oversampling factor is N=4; 

(iii) the observation length is Lo=100. 

Chapter 7 

Figures 7.29-7.30 show the tracking performance with a binary alphabet 
and two different rolloff factors. For a=0.75 it is seen that the algorithms are 
essentially equivalent and their accuracy is close to the MCRB. For a=0.25, 
however, the O&M algorithm is slightly inferior due to a larger self noise. The 
differences tend to increase with the alphabet sizes, as is shown in Figure 7.31 
which illustrates the case with M=8. 

A comparison between feedforward and NDA feedback algorithms is 
interesting. Indications in this regard may be gathered contrasting Figures 7.29-
7.30 with Figures 7.22-7.23. Keeping in mind the relation 

(7.6.24) 

it is recognized that the comparison is fair since Lo=100 in Figures 7.29-7.30 
corresponds to BLT=5 .10-3 in Figures 7.22-7.23. With large rolloff values it is 
seen that a feedback loop with Gardner detector has the same accuracy as the 
feedforward algorithms. As a decreases, however, feedforward schemes are 
definitely superior. 

BINARY ALPHABET 

a=O.75. L,,=I00 

o ML·based 

o O&M 

EjNo• dB 

Figure 7.29. Performance comparisons with binary alphabet and a=O.7S. 
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Figure 7.30. Perfonnance comparisons with binary alphabet and a=0.2S. 
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Figure 7.31. Perfonnance comparisons with octal alphabet and a=O.2S. 
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7.7. Key Points of the Chapter 

• Sampling is a crucial operation in digital modems as all the receiver 
processing is performed on samples. In some cases sampling is 
synchronized to the symbol rate, in others it is not. 

• Synchronous sampling is adjusted by exploiting the information from the 
timing error detector (TED). The synchronizer necessarily has a feedback 
configuration insofar as the information from the TED must be fed back to 
correct the sampling phase. 

• A hybrid NCO is needed to control synchronous sampling. As the NCO has 
analog components, the synchronizer cannot be implemented in fully digital 
form. 

• Timing correction with non-synchronous sampling is performed by interpo­
lators. They operate on non-synchronized samples to produce synchronized 
interpolants for use in the decision device and TED. 

• Simple polynomial-based interpolators are available with good characteris­
tics. A two-point linear interpolation is sufficient in many applications. In 
more critical cases, parabolic interpolating filters provide excellent results. 

• The configuration of timing recovery schemes with non-synchronous sam­
pling may be either feedback or feedforward. In the former case, the error 
signal is fed back to adjust the interpolation phase. In the latter, the timing 
parameter is estimated in some nonlinear device and is used to interpolate 
the strobes at the correct times. 

• A great profusion of timing error detectors exists, either decision-directed 
(DD) or non-data-aided (NDA). A synchronizer endowed with a DD ML­
based timing detector practically achieves the MCRB. Unfortunately an 
ML-based detector is complex to implement as it requires a derivative 
matched filter in addition to the matched filter. Thus, simpler solutions are 
of interest. The most interesting ones seem to be the zero-crossing detector 
and the Mueller&Mueller detector. The latter is especially recommended 
with small excess bandwidth factors. 

• NDA timing detectors may be as good as DD detectors, provided that the 
excess bandwidth factor is not too small. The Gardner detector is a 
prominent case. 

• NDA feedforward timing estimators are an alternative to feedback schemes, 
either DD or NDA. They have good performance with intermediate or large 
rolloff factors and are appealing in applications where fast acquisitions are 
needed. 
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Appendix 7.A 

In this Appendix we compute the coefficients 

T 

Fm(k1,"'-) = ~ f F(k1,"'-, i)e-j21Cmf/T di 
o 

where F(k1,k2,i) is defined as 
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(7.A.l) 

(7.A.2) 

To begin, we substitute (7.A.2) into (7.A.l) and make the change of variable 
t = kl ~ - iT - i. As a result we get 

klT.-iT 
Fm(k1 ,k2) = ~ e-j21CmkdNI f g(t)g[t - (k1 - ",-)T, ]ej21Cmt/T dt 

I k1T,-(i+l)T 

= ~ e-j21CmkdN j g(t) g[t - (k1 - ",-)T, ]ej21Cmt/T dt (7.A.3) 
-00 

where we have used the definition N!T/~. 
Next we observe that the integral in (7.A.3) may be viewed as the Fourier 

transform of g(t)g[t-(k\-",-)Ts] atf=-m/T. As this transform is given by 

~ f G(v)G(f - v)e-j21f(kl-k2)(f-V)T'dv (7.A.4) 

it follows from (7.A.3) that 

-Fm(k1 ,"'-) = ~ e-j21Cmk2/N l G(v)G* (v + m/T)ej21f(kl-k2)VT, dv (7.A.5) 

Inspection of (7.A.5) reveals that, if G(j) is bandlimited to ±lIT, the 
integral is zero except for m=O,±l. In particular, for m=l we have 

-Fj (k\ ,"'-) = ~ e-j21fk2/N l G(v) G* (v + l/T)ej21f(kl-k2)vT, dv (7.A.6) 

or, making the change of variable v=/-1I(21), 
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Alternatively, letting 

Q(f)~G[f -l/(2T)]G*[f + l/(2T)] (7.A.8) 

and denoting by q(t) the inverse Fourier transfonn of Q(j), F1(k1,k2) we obtain 

(7.A.9) 
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8 

Timing Recovery 
with Linear Modulations 

8.1. Introduction 

In this chapter we address timing recovery with modulated PAM signals. 
For reasons that will soon be explained, the discussion is divided into several 
parts, depending on the specific modulation format and the operating condi­
tions. For example, a distinction between non-offset and offset modulations is 
useful as different signal representations call for separate analyses and lead to 
different solutions. In the sequel we first discuss non-offset modulations and 
then consider offset QPSK modulation (OQPSK). 

Other categories arise from the fact that the carrier phase plays a crucial 
role with modulated signals. Assuming that possible carrier frequency offsets 
have been compensated, the following scenarios may be envisaged: 

(i) The carrier phase is known (as it has been preliminary recovered in a 
clockless manner). 

(ii) The carrier phase is not known and is jointly recovered with timing in a 
decision-directed (DD) fashion. 

(iiO The carrier phase is not known but is recovered later, in a clock-aided 
manner. 

In Chapter 5 it has been shown that clockless phase recovery is a concrete 
possibility for PSK and OQPSK. Thus, the notion of phase-aided timing recov­
ery, as implied in (0, deserves consideration. Its application consists of derotat­
ing the signal samples by the estimated phase and splitting the result into real 
and imaginary components. This produces two baseband sample sequences 
from which clock information can be derived with the methods indicated in the 
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preceding chapter. As the technique is straightforward, it will not be further 
discussed in the sequel. 

Case (ii) requires that timing be estimated along with phase. To do so 
some feedback schemes with excellent tracking performance are available. 
Their limitations are spurious locks and prolonged acquisitions caused by 
complex interactions between phase and timing correction algorithms. Luckily, 
spurious locks occur only with multi-amplitude and phase modulations and 
high SNRs. A prudent designer should make sure (typically, by extensive simu­
lations) that the synchronizer under examination has no spurious locks under 
the expected operating conditions. 

As an alternative, feedforward joint phase and timing estimation methods 
may be pursued. Feedforward schemes have no spurious locks (there is nothing 
to lock on) and have comparatively shorter acquisition times. So, they are 
particularly attractive for burst data transmissions. 

Another way of avoiding interaction between phase and timing algorithms 
is to recover timing independently of the carrier phase, and then exploit this 
knowledge for carrier estimation. This corresponds to the third scenario indi­
cated above. 

The chapter is organized as follows. In the next section we discuss DD 
joint phase and timing recovery for non-offset formats. The synchronization 
schemes in this section all have a feedback structure and, in general, good 
tracking performance. This is also true for the algorithms in Section 8.3 which, 
however, are of NDA type. Taken together, the detectors in Sections 8.2 and 
8.3 offer adequate synchronization methods for continuous transmissions. 
When it comes to burst transmissions, however, feedforward schemes are 
preferable. This subject is discussed in Section 8.4 for non-offset modulations. 
Section 8.5 addresses timing estimation for transmissions over frequency-flat 
channels. The last two sections of the chapter deal with OQPSK modulation for 
the A WGN channel. In particular, Section 8.6 discusses DD joint phase and 
timing recovery while Section 8.7 investigates feedforward methods. 

8.2. Decision-Directed Joint Phase and Timing Recovery with 
Non-Offset Formats 

Our task here is to jointly estimate carrier phase and timing from the 
incoming waveform. This approach is very popular and has been extensively 
explored in [1]-[3]. As we shall see, it leads to an overall synchronizer in which 
two interacting parts can be identified, a phase-recovery loop and a timing­
recovery loop. The phase detector in the former is the same as that proposed for 
Costas loops in Chapter 5. In the following we first address joint phase and 
timing estimation with ML methods. An ad hoc algorithm is discussed later. 
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8.2.1. ML-Based Joint Phase and Timing Estimation 

Suppose that possible carrier frequency offsets have been compensated 
and reliable decisions are available from the decision device. Then, the log­
likelihood function takes on the form 

{
'To } 

L(rIO,f) = ~Re c;e-/J [r(t)g(t-iT-f)dt 

(8.2.1) 

We want to compute the location of the maximum of L(rIO, f). This requires 
setting the following partial derivatives to zero: 

dL(rIO, f) _ ~I {A* -/J T.fo ( ) ( 'T -)d} -~_ '--'- - ~ m Cj e r t g t - I - r t ae i 0 

(8.2.2) 

dL(rIO, f) ~R {A* -//fo ()'{ 'T -)d} -:"'df!""-'--'-=-~ e cie r t g t-l -r t 
I 0 

+ ~LRe{c;cm f g'(t - iT - f)g(t- mT - f)dt} 
I m 0 

(8.2.3) 

where g'{t) is the derivative of g(t). 
These equations can be written in a more suitable form by expanding the 

limits of the integrals to ±oo while restricting the summations over index i from 
o to Lo - 1 with Lo ~ To IT. Skipping the details this leads to 

aL{rIO,f) _ ~II {A* ('T -) -je} 
-~_'--'-- ~ m cjY I +r e 

de j=O 

dL(rl~, f) = II Re{c;[Y'(iT + f)e- je - ~Cmh'[(i - m)T]]} 
dr j=O m=i-D 

(8.2.4) 

(8.2.5) 

where y(t) is the matched-filter output, y'(t) is its derivative, h'(t) is the 
derivative of h(t)~ g(t) ® g( -t) and D is an integer indicating the semi-duration 
of h'(t) in symbol intervals. In other words, h'(t) is vanishingly small for 
I t I ~ DT. Note that y'(t) may also be viewed as the response of the derivative 
matched-filter -g'(-t) to r(t). 
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The simultaneous null of the derivatives is sought with the usual recursive 
method. In essence, the k-th terms in the sums in (8.2.4)-(8.2.5) are computed 
for e and i equal to the current phase and timing estimates and are then used 
as signal errors to update these estimates. This results in the following error 
signals [1]-[3] 

and the corresponding updating equations 

where r p and rT are step-size parameters. 

(8.2.6) 

(8.2.7) 

(8.2.8) 

(8.2.9) 

Equations (8.2.8)-(8.2.9) describe the operation of two loops, a carrier­
phase synchronizer and a timing synchronizer. The loops interact with each 
other, as is clear from the fact that ep(k) depends on fk and, reciprocally, 

r{t) 

Figure 8.1. Block diagram of the synchronizer. 
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eT(k) is a function of Ok' We shall see later that these interactions may lead to 
synchronization failures. 

A block diagram for the synchronizer is shown in Figure 8.1. The 
incoming waveform is fed to the matched filter g( -t) and the derivative 
matched filter -g'( -t) to produce yet) and y'(t), respectively. Samples of yet) 
and y'(t) are first derotated by Ok and then passed to the PED (phase error 
detector) and TED (timing error detector) to generate the error signals (8.2.6)­
(8.2.7). Current phase and timing estimates are updated (in the loop filters) 
according to (8.2.8)-(8.2.9) and are fed back to the look-up table and the NCO. 

8.2.2. Remark 

At first sight the relation between (8.2.7) and the corresponding baseband 
algorithm derived in Section 7.4.1 may not be obvious. To reveal this relation 
let us rewrite here the expression of the baseband TED 

(8.2.10) 

Now, recall that the quantities involved in (8.2.10) are all real-valued whereas 
those in (8.2.7) are generally complex. In particular so are the symbols and the 
derotated samples from the derivative matched filter. Then, expressing the 
complex variables in (8.2.7) in terms of their real and imaginary components 
yields 

(8.2.11) 

which appears as the sum of two baseband detectors of the type (8.2.10). In 
particular, for D=O the sums in (8.2.11) vanish (since h(t) is even and, 
therefore, h'(O) = 0) and the passband TED reduces to 

eT(k) = Re{c\}[ Re{y'(kT + f k )e-i9k }] 

+Im{c\}[Im{y'(kT+fk )e-i9k }] (8.2.12) 

The foregoing discussion may be summarized by saying that the passband 
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timing algorithm can be derived from the corresponding baseband algorithm 
through three simple steps: 

1. The output of the derivative matched filter is derotated by the carrier phase 
estimate Ok' 

2. Real and imaginary components of y'(kT + i k )e-i8k are separately used to 
form two timing errors, as would be done in a baseband transmission. 

3. The baseband timing errors are added together to form the passband 
detector. 

Exercise 8.2.1. Compute the S-curve for detector (8.2.7) assuming that: (i) 
phase estimates are ideal (Ok = 8); (ii) timing errors are small; (iii) data 
decisions are reliable (ck "" ck ); (iv) symbols are uncorrelated. 

Solution. The procedure strictly parallels the discussion in Sections 7.4.2 
for baseband transmission. In particular, the waveform from the derivative 
matched filter is found to be 

y'(t) = ei9'Lcjh'(t - iT - r) + n'(t) 

with 

n'(t)£w(t) ® [-g'( -t)] 

Substituting into (8.2.7) for Ok = 8, ik = i and ck = ck yields 

As the symbols are assumed uncorrelated, we have 

m=O 

m:;t:O 

(8.2.13) 

(8.2.14) 

(8.2.15) 

(8.2.16) 

Hence, recalling that h'(t) is an odd function and taking the expectation of 
(8.2.15) over data and noise gives the desired result 

(8.2.17) 
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Comparing with the S-curve for the ML baseband algorithm, it appears 
that the two formulas coincide. It should be pointed out, however, that the con­
stant C2 is different in the two cases. For example, with I6-QAM modulation, 
the symbols are ck=ak+jbk with ak,bk E {±I,±3} and C2 is 10. With quaternary 
baseband transmission, vice versa, we have ck E {±I,±3} and C2 is 5. Thus, the 
S-curve with I6-QAM is twice as large as with quaternary baseband transmis­
sion. This is intuitively clear in view of (8.2.11) which shows the timing error 
for pass-band transmission as the sum of two equivalent baseband timing er­
rors. 

Exercise 8.2.2. Compute the S-curve about the origin for the detector 
(8.2.7) assuming QAM modulation and phase errors ¢Jk £() - Ok close to mlr/2, 
with m=O,I,2,3. 

Solution. With high SNR and ¢Jk Z 0 the decisions coincide (almost al­
ways) with the transmitted symbols and the S-curve is as indicated in (8.2.17). 
More generally, for ¢J z mlr/2, the decisions are given by 

(8.2.18) 

and reasoning as in Exercise 8.2.1 it is found that 

(8.2.19) 

Thus, the S-curve for the timing detector is insensitive to phase shifts by mul­
tiples of lr/2. 

8.2.3. Ad Hoc Timing Detectors 

In the preceding chapter we have seen that other decision-directed TEDs 
(in addition to the ML-based detector) can be used for timing recovery in base­
band transmission. In particular, the following detectors appear of prominent 
interest: 

• the early-late detector (ELD) [4]: 

(8.2.20) 

• the zero-crossing detector (ZCD) [1]: 

(8.2.21) 
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• the Mueller and Mueller detector (MMD) [5] 

e(k) = Ck_1y(kT + f k) - <\Y[ (k -l)T + fk-d (8.2.22) 

Paralleling the rules summarized at the end of Section 8.2.2, we may 
extend the above baseband algorithms to modulated carriers. For example, the 
ELD takes the form 

eT(k) = Re{Ck} Re{[Y(kT + TI2 + f k) - y(kT - TI2 + f k- 1) ]e- jOk } 

+ Im{ck} Im{[Y(kT + TI2 + f k) - y(kT - T /2 + fk_1)]e-jOk } 

= Re{c;e-jOk [y(kT + TI2 + f k) - y(kT - TI2 + f k- 1) l} 
Similarly, the ZCD becomes 

and theMMD 

8.2.4. Equivalent Model of the Synchronizer 

(8.2.23) 

(8.2.24) 

Several issues regarding the behavior of the scheme in Figure 8.1 are con­
veniently addressed by introducing an equivalent model for the synchronizer. 
In this section we derive this model taking detectors (8.2.6)-(8.2.7) as a refer­
ence but everything we shall say is equally valid for other phase/timing algo­
rithms. In particular, this is true if the ML-based TED is replaced by either an 
ELD, or a ZCD or an MMD. 

To begin, denote phase and timing errors with ¢>k £() - Ok and Dk £-r - fk 
and decompose both ep(k) and eT(k) into a deterministic part plus a zero-mean 
random component. For example, the deterministic part of the phase error is the 
expectation of ep(k) for fixed values of ¢>k and Dk 

(8.2.26) 

Similarly, the deterministic part of eT(k) is defined as 
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(8.2.27) 

These quantities may be viewed as two-dimensional S-curves and, accordingly, 
are referred to as S-surfaces. In particular, Sp(l/J,Oeq) represents the S-curve of 
the phase detector when the timing error has the fixed value Oeq and, similarly, 
ST(l/Jeq,O) is the S-curve of the timing detector when the phase error equals l/Jeq. 

The random components of ep(k) and eT(k) are expressed as 

(8.2.28) 

(8.2.29) 

Substituting into (8.2.8)-(8.2.9) produces the desired equivalent model [2], [6] 

Ok+l = Ok + r pSp(l/Jk,Ok) + rpnp(k) 

i k+l = i k + rTST(l/Jk,Ok) + YrnT(k) 

whose block diagram is illustrated in Figure 8.2. 

(8.2.30) 

(8.2.31) 

One important issue about the synchronizer is concerned with its acqui­
sition. In particular, one wonders whether the final equilibrium point will be 
(8, r) (or something close to it). The answer requires knowledge of the S­
surfaces Sp(l/J,O) and ST(l/J,O) which can only be computed via intensive 

Figure 8.2. Equivalent model of the synchronizer. 
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simulations. The following remarks may be useful to carefully organize the 
simulations and save computer time. 

For simplicity suppose that the disturbances np(k) and nr(k) in (8.2.30)­
(8.2.31) are negligible so that the equivalent model reduces to an autonomous 
system 

(8.2.32) 

(8.2.33) 

Clearly, a necessary condition for an equilibrium point (8eq ,ieq ) is that the S­
surfaces vanish at that point, i.e., 

Sp(ifJeq,Oeq) = 0 

Sr(ifJeq,Oeq) = 0 

(8.2.34) 

(8.2.35) 

Several interesting observations can be made about (8.2.34)-(8.2.35): 

(i) The solutions to (8.2.34)-(8.2.35) are not necessarily all stable. 

(ii) As the S-surfaces depend on the signal constellation, the signal-to-noise 
ratio and the pulse shape, so do the equilibrium points. In particular, 
number and location of these points may vary with SNR. 

(iii) The ideal tracking point ifJeq = Oeq = 0 need not be a solution to (8.2.34)­
(8.2.35). With good channels, however, a stable point close to 
ifJeq = Oeq = 0 is usually found. 

(iv) As happens with any decision-directed algorithm, carrier phase is 
estimated within multiples of some angle a, the symmetry angle of the 
signal constellation. In other words, if (ifJeqooeq) is a stable point, so is 
(ifJeq + ma,Oeq)' for any integer m. This phase ambiguity must be resolved 
by differential encoding/decoding or other methods. 

(v) In addition to ambiguous points, spurious points are sometimes observed 
[7]-[8], especially at high SNR. Unfortunately they cannot be resolved by 
encoding/decoding. As the synchronizer will settle on that point (either 
spurious or ambiguous) which is closest to the initial conditions, the 
existence of spurious points is a serious hazard for correct synchronizer 
operation. 

Returning to the solutions to (8.2.34)-(8.2.35), the question arises of 
identifying the stable points. A method to do so is now illustrated. Call 
(ifJeq,Oeq) the generic solution. Linearizing the S-surfaces about (ifJeq,Oeq) and 
denoting 
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yields 

with 

Sp(cfJk,Ok) "" Appdp(k) + APTdT(k) 

ST(cfJk,Ok) "" ArrdT(k) + ATpdp(k) 
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(8.2.36) 

(8.2.37) 

(8.2.38) 

(8.2.39) 

(8.2.40) 

(8.2.41) 

(8.2.42) 

The parameters App, ATT , APT and ATP have a simple interpretation. App 
represents the slope of the phase detector's S-curve at the equilibrium point. 
Similarly, ATT is the slope of the timing detector's S-curve, ST(cfJeq,O). As for 
ApT' it may be viewed as the sensitivity of Sp(cfJ,Oeq) to changes in Oeq. An 
analogous interpretation applies to ATP . 

Substituting (8.2.37)-(8.2.38) into (8.2.32)-(8.2.33) and rearranging 
produces 

dp(k + 1) = (1- ypApp)dp(k) - Y pAPTdT(k) 

dT(k + 1) = (1- YTArr )dT(k) - rrATpdp(k) 

(8.2.43) 

(8.2.44) 

The stability of a given solution (cfJeq,Oeq) can now be assessed by standard 
techniques. In particular, (cfJeq,Oeq) will be stable if the poles of the system 
(8.2.43)-(8.2.44) are all inside the unit circle. Assuming 

(8.2.45) 
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(8.2.46) 

and working out the calculations, it turns out that this happens if and only if 

App > 0, Arr > 0 (8.2.47) 

and 

(8.2.48) 

In conclusion, while in mono-dimensional synchronizers stability is only 
guaranteed by the positive slope of the S-curves at the equilibrium point, in 
two-dimensional synchronizers the additional inequality (8.2.48) must be 
satisfied. 

Figure 8.3 illustrates S-curves Sp(</J,O) for phase detector (8.2.6), as 
obtained by simulation with 64-QAM modulation and a Nyquist channel with 
50% roIloff. Algorithm (8.2.25) has been chosen as the timing detector. Two 
potential spurious points at </Jeq = ±15° are pointed out. Further calculations 
(not included here) indicate that conditions (8.2.47)-(8.2.48) are satisfied at 
Es! No = 23 dB, which means that these points are stable and correspond to 
false locks. Simulations in Figure 8.4 indicate that timing errors will eventually 
settle to zero independently of the SNR. Vice versa, Figure 8.5 shows that 
phase errors may get stuck at about 15° when the SNR is sufficiently high. In 
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Figure 8.3. S-curves for the phase detector. 
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running these simulations the step sizes r p and rT have been computed by 
neglecting parameters APT and ATP in (8.2.43)-(8.2.44). This turns the joint 
synchronizer into two separate tracking loops with bandwidths 

BpT "" r pApp (8.2.49) 
4 

(8.2.50) 

The common value 10-3 has been assigned to these bandwidths. 

Exercise 8.2.3. Consider a joint phase/timing synchronizer with the 
following detectors: 

ep(k) = Im{c;Y(kT + f k)e-jl1k } (8.2.51) 

eT(k) = Re{(C;_1 - c;)y(kT - TI2 + fk_l)e-j8k } (8.2.52) 

Show that: (i) a stable equilibrium point is located in the vicinity of the origin 
of the (ep,o) plane for a reasonable channel response; (ii) the parameters APT 
and ATP vanish at that point. 

Solution. To compute the S-surfaces about the origin we let Ok = 0, 
fk =fk-1 =f, l/J~()-fJ, o~'r-f in (8.2.51)-(8.2.52). Then, performing 
straightforward calculations (under the assumption Ck "" ck ) leads to 

Sp(l/J,O) = C2h(-o)sinl/J 

ST(l/J,O) = C2[h(TI2 - 0) - h(- TI2 - 0)] cos l/J 

(8.2.53) 

(8.2.54) 

where C2 is the expectation of IcJ. Setting Sp(ep,o) and ST(ep,O) to zero yields 
l/Jeq = 0 and Oeq such that 

h(T12 - Oeq) = h( - TI2 - Oeq) (8.2.55) 

Note that Oeq is zero when h(t) is even. 
Finally, application of (8.2.39)-(8.2.42) results in 

App = C2h(-oeq) 

Arr = C2 [h'( -T12 - Oeq) - h'(TI2 - Oeq)] 

with h'(t)~dh(t)/ dt. 

(8.2.56) 

(8.2.57) 

(8.2.58) 
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8.2.5. Tracking Performance 

Tracking performance of the synchronizer is assessed by linearizing 
equations (8.2.30)-(8.2.31) about the operating point (cfJeq,Oeq)' The procedure 
for doing so is based on approximations (8.2.37)-(8.2.38) and leads to 

dp(k + 1) = (1- rpApp)dp(k) - r pAPTdT(k) - rpnp(k) 

dT(k + 1) = (1- rTArr )dT(k) - rTATpdp(k) - rTnT(k) 

(8.2.59) 

(8.2.60) 

where dp(k) and dT(k) are still as defined in (8.2.36). A block diagram 
illustrating the generation of dp(k) and dT(k) is displayed in Figure 8.6. As is 
seen, phase and timing loops are generally coupled. Coupling disappears only 
for APT = ATP = 0, in which case each loop can be analyzed with the methods 
of Section 3.5.5 of Chapter 3. This is a crucial point as the coupling 
coefficients are zero for PSKlQAM modulations (see Exercise 8.2.3). It should 
be stressed that decoupling is a feature pertaining to steady-state operation 
conditions, not acquisition. Indeed, loop interactions take place during 
acquisition that may result in prolonged transients. 

Figure 8.6. Linearized equivalent model of the synchronizer. 
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Figures 8.7-8.8 illustrate phase and timing error variances for a synchro­
nizer employing detectors (8.2.51)-(8.2.52). Modulation is 64-QAM and the 
channel is Nyquist with rolloff a = 0.5. The loop bandwidths are both equal to 
10-3 / T . At SNR values of practical interest it is seen that the phase error vari­
ance achieves the MCRB and the timing errors (normalized to T) are within 1-
2 dB ofthe MCRB. 

Comparisons between timing detectors are shown in Figures 8.9-8.10. 
Modulation is 16-QAM and the channel is Nyquist with rolloff 0.75 or 0.25. 
Phase detector (8.2.51) has been used throughout. It is worth noting that, al­
though the MMD has no self noise, its performance may be worse than that of 
other TEDs, especially with large rolloffs. 

8.3. Non-Data-Aided Feedback Timing Recovery with Non­
Offset Formats 

So far timing has been recovered by exploiting carrier phase information. 
In fact, the preceding algorithms may be viewed as the combination of two 
baseband timing detectors operating on the in-phase and quadrature compo­
nents of the demodulated signal. As long as the phase estimate is accurate, the I 
and Q signal components each provide some timing information that is even­
tually incorporated into a passband timing error. 

Our next goal is to recover timing when no phase information is available. 
An obvious feature of this approach is that NDA methods are called for since 
data decisions cannot be relied upon unless the carrier phase is known. Two 
categories of NDA estimates may be envisaged, either feedback or feedfor­
ward. In this section we concentrate on feedback algorithms, starting with an 
ML-oriented approach. 

8.3.1. ML-Oriented NDA Feedback Timing Recovery 

Assume that any possible carrier frequency offset has been compensated 
so that v can be set to zero in the signal model. In these circumstances the 
likelihood function takes the form 

A(rIO, i,e) = exp{_l Re{f r(t)s*(t)dt}- -1-fls(t)12 dt} 
No 0 2No 0 

(8.3.1) 

where s(t) is the trial signal 

s(t)~eje"fAg(t - iT - i) (8.3.2) 
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Our aim is the location of the maximum of A(rlf), which is the average of 
A(rle,f,e) with respect to e and e. As usual, the problem proves to be in­
tractable and we must resort to approximations. In this vein we drop the last 
integral in (8.3.1) and expand the exponential into a Taylor series. Keeping in 
mind that 

To _1.0-1 f r(t)s*(t)dt "" e-j6 Lc;"y(iT + f) (8.3.3) 
o ;=0 

and performing the expectation of A(rle, f,e) with e uniformly distributed 
over [O,21t') produces (within immaterial constants) 

1.0-1 
A(rlf) "" L iY(iT + f)i2 (8.3.4) 

;=0 

Finally, the derivative of the k-th term in the right-hand side is computed for 
f = i k and is used as an error signal to drive the function A(rlf) toward zero. 
This produces the timing error detector 

(8.3.5) 

The calculation of e(k) requires two separate filters to generate y(t) and 
y'(t) , the matched filter and the derivative matched filter. As this complexity is 
often objectionable, it is of interest to dispense with the derivative matched 
filter by approximating the derivative y'(t) with a finite difference 

(8.3.6) 

Note that this simplification does not come for free as it implies sampling y(t) 
at twice the symbol rate. Anyway, substituting into (8.3.5) and dropping the 
factor liT yields 

(8.3.7) 

which looks like the ELD in (8.2.23), except that the rotated symbol ckei)k is 
now replaced by the sample y(kT + i k)' For obvious reasons this detector will 
be referred to as NDA-ELD in the sequel. 

Exercise 8.3.1. Compute the S-curve for the NDA-ELD. 
Solution. Letting i k = i k_ 1 = i in (8.3.7) and bearing in mind that 
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y(t) = ejIJLc;h(t - iT - 1') + n(t) (8.3.8) 

yields after some algebra 

S(o) = C2Lh(iT - o)h(iT + TI2 - 0) - C2Lh(iT - o)h(iT - TI2 - 0) (8.3.9) 

As is apparent, the S-curve is independent of (), which means that the acquisi­
tion characteristics of the loop are not affected by the carrier phase. 

A more succinct form for S(o) is found by recalling the Poisson sum for­
mula [9, p. 395] 

L w(iT) =1.. L w(m) 
; T m T 

(8.3.10) 

which applies to any finite-energy signal w(t) with Fourier transform W(f). 
Identifying w(t) with h(t - o)h(t + TI2 - 0) and observing that the Fourier 
transform of ~(t)g,h(t)h(t + T12) is given by 

~ 

H2(f)g, f H(v)H(f - v)ej1rVT dv (8.3.11) 

produces 

(8.3.12) 

Also, assuming a signal bandwidth less than liT (so that H(/)=O for 
If I 2:: 11 T), it is recognized that H2 (m / T) is zero except for the indexes m=O 
and m = ±l. Hence, (8.3.12) reduces to 

~ h(iT - o)h(iT + TI2 - 0) = -} H2 (0) + ~ Re[ H2 (~ } - j2trS/T ] (8.3.13) 

A similar expression can be given to the second summation in (8.3.9): 

~h(iT - o)h(iT - TI2 - 0) = ~H2(0) - ~Re[ H2(-} }-j2trS/T] (8.3.14) 

Then, substituting into (8.3.9) yields 

S(o) = 4~2 Re[ H2(-} }-j2trS/T] (8.3.15) 
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which says that S( 0) is sinusoidal of period T. 
Note that if h(t) is an even function (as happens when the receive filter is 

matched to g(t)), then H(j) is real-valued and H2 (1/ T) is an imaginary number. 
In fact, from (8.3.11) it can be shown that 

Thus, inserting into (8.3.15) produces 

with 

S(o) = 4C2K sin(2no/T) 
T 

(8.3.16) 

(8.3.17) 

(8.3.18) 

It is readily apparent from (8.3.18) that K decreases with the bandwidth of 
H(j) and, in particular, it vanishes as the bandwidth tends to 1I2T. Thus, the 
NDA-ELD is not suitable for narrow-band signaling. 

8.3.2. The Gardner Detector and Its Performance 

The following alternative NDA detector has been proposed by Gardner 
[10]: 

It is identical to the GAD discussed in the context of baseband transmission 
except that the samples of y(t) are now complex-valued. Its S-curve is found by 
paralleling the steps in Exercise 8.3.1 and is the same as with the NDA-ELD. 
Thus, as the latter is phase independent, so is GAD. 

Figures 8.11-8.12 illustrate the tracking performance of NDA-ELD and 
GAD as obtained by simulation. Modulation is 16-QAM and the overall chan­
nel response is Nyquist with rolloffs of 75% and 25%. In both cases a loop 
bandwidth of 5.10-3 IT is chosen. As is seen, performance is strongly depen­
dent on the rolloff factor. 

Self-noise elimination by means of prefiltering [11]-[12] can be pursued 
with the methods discussed in Section 6.5.3 in Chapter 6. It turns out that, even 
with modulated carriers, short prefilters (of 3-5 taps) are sufficient to practical­
lyachieve the goal. Figure 8.13 illustrates this fact by comparing the tracking 
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Figure 8.13. Tracking performance of GAD with/without pre-filtering for a = 0.25. 

performance of a plain GAD with that of a GAD with prefiltering. Modulation 
is 16-QAM with a 25% rolloff and a 5-tap prefilter is used. 

8.4. Non-Data-Aided Feedforward Estimators with Non-Offset 
Formats 

In the previous sections several feedback recovery schemes have been il­
lustrated. Their tracking performance is generally good (with well-behaved 
channels) but their acquisitions may be too long for burst transmissions. 
Feedforward methods are preferable when short estimation times are needed. In 
the following we illustrate two NDA feedforward estimators for these applica­
tions. As they are simple extensions of the ML-based estimator and the Oerder 
and Meyr (O&M) method discussed in Chapter 7, the treatment will be rather 
concise as we can draw heavily for notations and approximations from the pre­
ceding chapter. 

The derivation of the ML-based estimator strictly follows the approach in 
Section 7.6.1. In particular, the received waveform is first fed to an anti-alias 
filter (AAF) and then sampled at some rate 11 ~, a multiple N of the symbol 
rate. An oversampling factor of 2 is generally sufficient but the ensuing formu-
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las are developed for a generic N. We make the usual assumptions that: (i) the 
AAF has an ideal brick-wall transfer function with an edge frequency BAAF 
which is sufficiently large so as not to distort the signal components; (ii) the 
sampling rate equals 2BAAF. Then, denoting x£{x(k~)} the samples from the 
AAF, the likelihood function A(xli,e,c) is written as 

A(xli,(J,c) = exp _s L Re[x(k~)s'(k~)]--s L Is(k~)12 
_ {T NLo-I T NLo-I } 

No k=O 2No k=O 
(8.4.1 ) 

where s(t) is the trial signal 

(8.4.2) 

Next, the second summation in (8.4.1) is dropped for simplicity and the 
exponential is expanded into a Taylor series truncated to the third term. Finally, 
the result is averaged with respect to data symbols and carrier phase. Skipping 
the details, this leads to 

NLo-I NLo-I 

A(rli) "'" L Lx(kl~)x'(kz~)F(kl'kz, i) (8.4.3) 
k) =0 k2 =0 

with 

(8.4.4) 

In Section 7.6.1 it is shown that the function F(kl,kz,f) is periodic over f 
of period T and, if g(t) is bandlimited to ±1I T, it can be represented as 

(8.4.5) 

with 

T 

F (k k) = !fF(k lr i)e-j2mnflT di 
m I' 2 T 1''''2' 

o 
(8.4.6) 

Then, substituting into (8.4.3) and pruning off immaterial constants yields 

(8.4.7) 
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from which the desired estimator is obtained by noting that the right-hand side 
in (8.4.7) achieves a maximum for 

(8.4.8) 

This estimator may be written in an alternative form using the following 
formula from Appendix 7.A: 

(8.4.9) 

where q(t) is an even function with a Fourier transform 

(8.4.10) 

and G(j) is the Fourier transform of get). Inserting (8.4.9) into (8.4.8) and 
following the same steps as in Section 7.6.1 produces the estimator in its final 
form 

i = -2.-arg Lx[(k - ND)T.]e-jlr(k-NDll N z[(k - ND)T.] (8.4.11) {
N(Lo+Dl-I } 

2;r k=ND 

with 

(8.4.12) 

Here, the integer D represents the semi-duration of q(t) in symbol periods, i.e., 

q(t) "" 0 for It I > DT (8.4.13) 

The estimator (8.4.11) is illustrated in Figure 8.14. As is seen, the samples 
from the anti-alias filter follow two parallel branches. In the upper branch 
x(kT.) is first complex-conjugated, then is multiplied by e-jlrk/N and finally is 
filtered. In the lower branch it is multiplied by e-jlrk/N and then is delayed. 
Branch outputs are multiplied together and the products are accumulated. The 
argument of the accumulator output gives the timing estimate within a factor of 
-T/(2;r). 

The O&M estimator has the form [13] 

i = --arg L Ix(kT.)12 e-j21rk/N T {NLo-I } 

2;r k=O 
(8.4.14) 



436 ChapterS 

x(kT.) 

Figure 8.14. Block diagram of the ML-based estimator. 

where x(k~) are samples from the matched filter (not from the AAF, as hap­
pens in the ML-based scheme). As noted earlier with baseband transmission, 
the O&M algorithm is simpler to implement than the ML-based scheme as it 
does not involve any filtering of x(k~). In fact it can be viewed as a limit case 
of the ML-based scheme when: (i) the AAF is replaced by a matched filter; (ii) 
the filter q[(k - ND)~] and the delay block in Figure 8.14 are by-passed. The 
O&M estimator needs an oversampling of N=4, however, whereas N=2 is suf­
ficient with the ML-based method. 

Figures 8.15-8.16 compare the error variances of the two estimators in the 
case of 16-QAM modulation. The following assumptions are made with the 
ML-based algorithm: 

(i) the anti-alias filter is an eight-pole Butterworth one with a -3 dB 
bandwidth of liT; 

(ii) the oversampling factor is N=2; 

(iii) the pulse get) corresponds to a root-raised-cosine rolloff function; 

(iv) the impulse response q[(k - ND)~] is derived by truncating q(t) to ±5T; 

(v) the delay ND is set equal to 10. 

With the O&M algorithm it is assumed that: 

(i) the low-pass filter is matched to get), which has the same shape as with 
the ML-based algorithm; 

(ii) the oversampling factor is N=4. 

It appears that the two methods are basically equivalent with large rolloffs 
whereas the ML-based scheme has significantly less self noise with small 
rolloffs. 
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8.5. Timing Recovery with Frequency-Flat Fading Channels 

In several mobile communication systems the transmission medium can 
be modeled as a frequency-flat fading channel [14]-[16] and the received signal 
component has the form 

set) = a(t) Lcig(t - iT - r) (8.5.1) 

where the channel gain aCt) is a complex-valued Gaussian process with a 
(Doppler) bandwidth Jd' Also, in many applications the frequency Jd is small 
compared with the symbol rate liT so that aCt) is nearly constant over the dura­
tion of the generic pulse in (8.5.1) and we can write 

a(t)g(t - iT - r) :::: a(i)g(t - iT - r) (8.5.2) 

where aU) is short for a(iT+r). Correspondingly, equation (8.5.1) becomes 

set) :::: L a(i)cig(t - iT - r) (8.5.3) 

A warning about this approximation is useful. Filtering (8.5.3) into the 
matched filter g( -t) produces 

La(i)cih(t - iT - r) (8.5.4) 

with h(t)g,g(t)®g(-t). So, if h(t) is Nyquist, the samples of (8.5.4) taken at 
the correct decision times exhibit no intersymbol interference (lSI). By con­
trast, filtering (8.5.1) results in some amount of lSI which, of course, tends to 
vanish when the product JdT goes to zero [17]. In other words, approximation 
(8.5.3) implies total lSI elimination with Nyquist filtering. By contrast, filtering 
the true signal (8.5.1) will always result in some residual lSI. As we shall see, 
this residual lSI manifests itself as self noise even in synchronizers that would 
be self-noise free if (8.5.3) were exact. 

For mathematical convenience in the following we investigate timing 
recovery making the approximation (8.5.3). In approaching this problem we 
shall distinguish between decision-directed (DD) and non-data-aided (NDA) 
methods. The first instance is motivated by the intuitive notion that timing 
accuracy can be improved by exploiting knowledge of the transmitted symbols. 
Furthermore, since data and channel are jointly estimated [18]-[21] in a 
coherent receiver, DD and channel-aided (CA) timing recovery becomes a 
practical option. This topic is investigated in the next sub-section. 
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Interactions between data detection, channel estimation and timing recov­
ery in DD-CA schemes might slow down the receiver start-up. As this subject 
has not yet been investigated in the literature, the range of application of DD­
CA techniques is not clear at this time. Intensive computer simulations are 
required to understand the problem, even though some limitations are likely to 
arise with burst transmissions or digital voice services due to restrictions in 
acquisition times. For these applications a more secure route is to rely on NDA 
and non-channel-aided (NCA) methods. This subject is addressed in Sections 
8.5.2 and 8.5.3. 

8.S.1. DD-CA Timing Recovery 

Assume that reliable estimates, {cj } and {aU)}, of data symbols and chan­
nel gains are available. Then, the trial signal becomes 

(8.5.5) 

Comparing (8.5.5) with the signal we would face with an A WGN channel and 
a variable carrier phase OJ, i.e., 

(8.5.6) 

it appears that the two fonnulas coincide with the substitution 

(8.5.7) 

Hence, the same methods adopted in Section 8.2 can be used here with only 
marginal adjustments. Skipping the details, this leads to the following timing 
detectors: 

(i) ML-based TED 

e(k) = Re{ c;a' (k{Y'(kT + i,) - .~~.a(m)h'[(k - m)T]]} (8.5.8) 

(ii) ELD 

(8.5.9) 
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(iii) ZCD 

(iv) MMD 

e(k) = Re{c;_la*(k)y(kT + ik) - c;a*(k -I)y[(k -I)T + ik-d} (8.5.11) 

where the notations a(k) and a(k -1/2) mean a(kT + i k ) and a(kT - TI2 + i k_l ) 
respectively. For example, Figure 8.17 shows a block diagram for a symbol 
synchronizer endowed with an MMD. 

The tracking behavior of timing loops endowed with these detectors can 
be assessed with the methods indicated in Section 8.2 for the A WGN channel. 
The only novelty is that, in the present context, expectations must also be per­
formed with respect to the channel gains {a(i)}. 

Figure 8.18 illustrates simulation results for the tracking performance of a 
synchronizer using an ML-based TED. Modulation is QPSK and the overall 
channel response is Nyquist with 50% rolloff. The simulated signal is modeled 
as indicated in (8.5.1) and the complex-valued gain a(t) is generated by filter­
ing two independent real-valued white Gaussian noise processes into fourth-or­
der Butterworth filters. The 3 dB bandwidth of the filters is taken as the fading 
bandwidthfd' For convenience, the fading power is normalized to unity so that 
the average received signal energy Es coincides with the transmitted energy. 
The detector parameter D is set equal to 2. As perfect channel gain knowledge 
and data decisions are assumed, the indicated results represent lower bounds 
for practical systems employing channel estimation and data detection tech­
niques (see [18]-[21]). It is seen that simulations stay close to the MCRB up to 
certain SNR values, depending on the fading rate. Then, self noise shows up as 
a consequence of fading-induced lSI as predicted earlier. 

~ g(-t) I to--..,.......;~ 
A I L...::..;:':"::;:;~.:.J 

tk= kT +t'k i 
I 
I 
I 
I 
I 
I 
I 

Figure 8.17. Block diagram of a symbol synchronizer. 
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Figure 8.18. Tracking performance of an ML-based synchronizer. 

Exercise 8.S.1. Compute the S-curve about the ongm for an ELD 
assuming that: (i) timing errors are small and decisions are reliable (ck "" ck); 
(ii) symbols are uncorrelated, with zero-mean and variance C2. 

Solution. The matched-filter output has the form 

y(t) = La(i)c;h(t - iT - -r) + n(t) 

Inserting into (8.5.9) and letting i k- 1 = i k = i and ck = ck yields 

e(k) = Re{ ~a(i)a·(k)c;C;h[(k - i)T + Tj2 - a]} 

-Re{ ~a(i)a·(k)cl;h[(k- i)T - Tj2 - a]} 

+ Re{c;£t*(k)[n(kT + Tj2+ i) -n(kT - Tj2 + i)]} 

(8.5.12) 

(8.5.13) 
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Next, averaging over noise, data and fading produces 

S(O) = R(O)C2 [h(T 12 - 0)- h(-T 12-0)] (8.5.14) 

where R('r)£E{a(t+'t")a*(t)} is the fading autocorrelation function. 
For R(O) = 1 equation (8.5.14) reduces to the same S-curve as with an 

AWGN channel (see Exercise 7.4.4). Also, as h(t) is even, S(o) has a null with 
a positive slope at the origin, which means that f = 't" is a stable tracking point. 

8.5.2. NDA Timing Recovery 

In Sections 8.3.1 and 8.3.2 two NDA detectors have been discussed for the 
A WGN channel, the NDA-ELD 

e(k) = Re{y*(kT + fk)[y(kT + TI2 + fk ) - y(kT - TI2 + fk-\)]} (8.5.15) 

and the GAD 

e(k) = Re{[Y(kT - T + fk_ l ) - y(kT + fk)]y*(kT - TI2 + fk-\)} (8.5.16) 
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Figure 8.19. Tracking performance of a synchronizer endowed with GAD. 
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Physical and mathematical considerations suggest that these detectors may also 
be useful with fading channels. Indeed, Exercise 8.5.2 shows that the NDA­
ELD is a low-SNR approximation to the ML timing estimator. Furthermore, 
Exercise 8.5.3 indicates that the S-curve for GAD has essentially the same 
shape either with or without fading. 

Figure 8.19 illustrates simulations for the tracking performance of a syn­
chronizer endowed with GAD. Modulation is QPSK and the overall channel re­
sponse is Nyquist with 50% rolloff. The channel gain is modeled as with the 
simulations in Figure 8.18. Again, the self-noise level increases withfd as a 
consequence of fading-induced lSI. 

Exercise 8.5.2. Paralleling the arguments in Section 8.3.1, show that the 
NDA-ELD is a low-SNR approximation to the ML timing estimator [22]. 

Solution. Start with the likelihood function 

A(rli',Q,c) = exp{_l Re{f r(t)s*(t)dt} __ 1_fls(t)12 dt} (8.5.17) 
No 0 2No 0 

with 

s(t) = L/i(i)c;g(t - iT - i') (8.5.18) 

Neglect the last integral in (8.6.17) for simplicity. Then, letting Lo~1Q/T and 
writing 

To 1.0-1 

f r(t)s*(t)dt "" L/i*(i)c;"y(iT+i') (8.5.19) 
o ;=0 

yields 

A(rli',Q,c) "" exp{_l Re{Ila*(i)C;*y(iT + i')}} 
No 1=0 

(8.5.20) 

Assume a low SNR such that the exponential can be expanded into a Taylor 
series truncated to the third term. Then, averaging with respect to data symbols 
and channel gains leads to 

1.0 
A(rli') "" :Lly(iT + i')12 (8.5.21) 

;=1 

where some irrelevant constants have been dropped. 
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Equation (8.5.21) is identical to (8.3.4) which applies for NDA-ML timing 
estimation with A WGN channels. On the other hand, the NDA-ELD has been 
brought out just from (8.3.4). Thus, the NDA-ELD is an approximation to the 
ML timing estimator even with fading channels. 

Exercise 8.5.3. Compute the S-curve for the GAD in (8.5.16). 
Solution. Letting fk-1 =fk =f and 8=-r-f in (8.5.16) and using 

(8.5.12) yields 

e(k) = Re{L~a'(il)a(~)<Ci2h[(k- i1)T- T/2- O]h[(k- ~-I)T- 8]} 
'1 '2 

-Re{~~a'(il)a(~)<Ci2h[(k - i1)T - T/2 - O]h[(k- ~)T - 8]} 
'1 '2 

+N(k) (8.5.22) 

where N(k) is a zero-mean noise term. Next, averaging with respect to data, 
fading and thermal noise produces 

S(8) = -R(O)C2Lh(iT - 8)h(iT - T/2 - 8) 

+R(O)C2 Lh(iT - T/2 - 8)h(iT - T - 8) 

Finally, reasoning as in Exercise 8.3.1 gives 

where K is defined as 

S(8) = 4R(O)C2K sin(2n8/T) 
T 

and H(j) is the Fourier transform of h(t). 

8.5.3. High SNR Approximation to the ML Estimator 

(8.5.23) 

(8.5.24) 

(8.5.25) 

In Exercise 8.5.2 it has been shown that the NDA-ELD is a low-SNR ap­
proximation to the ML timing estimator. Unfortunately, the low-SNR argument 
adopted there is questionable with transmissions over fading channels where 
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Es / No values on the order of 20-30 dB are typical. Actually, a high-SNR ap­
proximation would be more useful. This route has been pursued by Ginesi in 
[23] under the assumption of Rayleigh fading. His method is now illustrated. 

The starting point is still equation (8.5.17) but the subsequent steps 
involve somewhat milder approximations than in Exercise 8.5.2. In particular, 
the second integral in (8.5.17) is not discarded here. In fact, assuming an 
observation interval of many symbols (1.0 » 1), the integral is written as 

where 

To 1.0-11.0-1 

fI:~(t)12 dt "" L La(il)a·(~)ci/i:hil.i2 
o il =0 i2 =0 

To 

hil 'i2 ~ f g(t - ilT - f)g(t- ~T - f)dt 
o 

Thus, substituting (8.5.19) and (8.5.26) into (8.5.17) yields 

1.0-11.0-1 } 1 _ . _* . __ * 
-- ~ ~ a(ll)a (1~)C. c· h . 2N. £.. .£.. "1. '1'2 '1.'2 

o 'I =0 '2 =0 

(8.5.26) 

(8.5.27) 

(8.5.28) 

At this point A(rlf,Q,c) is expressed in a more compact form by 
introducing the following matrix notations: 

Q~[a(O),a(1), ... ,a(1.o _1)]T (8.5.29) 

t ~iag(co, (;1"'" (;1.0 -I) (8.5.30) 

Y ~[y(f),y(T + f), .. . ,y[(1.o -1)T + f]t (8.5.31) 

(8.5.32) 

(8.5.33) 

where the superscript "T" means transpose. Inserting into (8.5.28) produces 
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(8.5.34) 

Note that the dependence of A(rlf,a,c) on f takes place via y and H. 
The next step is to average the likelihood function over the channel gains 

(while keeping c and f fixed). To this end we observe that (8.5.34) depends 
on b = Ca rather than a itself and, therefore, A(rlf,a,c) can be averaged with 
respect to b. On the other hand, for a given c and with Rayleigh fading, b is a 
zero-mean Gaussian vector with covariance matrix 

(8.5.35) 

where Rii, is the covariance matrix of a. Thus, its probability density function 
has the form [9, p. 199] 

fb(b) = 1-0 1 exp{-b*TRtb} 
1r det[Rjj] 

(8.5.36) 

Then, multiplying A(rlf,a,c) by fb(b) and integrating with respect to b yields 
after some algebra 

(8.5.37) 

where I is the Lo x Lo identity matrix. 
To go further we should average A(rlf,c) with respect to the data. 

Unfortunately this appears a formidable task and, in consequence, we choose to 
make some approximations. In particular, we assume a high SNR and look for 
the asymptotic expression of A(rlf,c) as No tends to zero. As is argued in 
Appendix 8.A, decreasing No makes A(rlf,c) independent of C and, in fact, 
the logarithm of A(rlf,c) takes the limit form (within irrelevant constants) 

(8.5.38) 

Physically speaking this means that data symbols are useless for ML timing 
estimation when the SNR is large. An analogous property for A WGN channels 
has been pointed out in [8] and [24]. 
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Next we concentrate on the location of the maximum of (8.5.38) or, 
equivalently, of the null of the derivative of iT H-Iy over i. In Appendix 8.B 
it is shown that the derivative is given by 

, t. dy 
y = di 

and Q is an Lo x Lo matrix with entries 

To 

Qil,i2,@,- f g'(t-iIT-i)g(t-~T-i)dt 
o 

g'(t) being the derivative of g(t). 

(8.5.39) 

(8.5.40) 

(8.5.41) 

Let us tum the right-hand side of (8.5.39) into scalar terms. Denoting by 
Zk the elements of z produces 

(8.5.42) 

The location of the null of (8.5.42) can now be found by the usual feedback 
method wherein the generic term in the sum over i is used as an error signal to 
recursively adjust the timing estimate. Formally, we update i k as 

(8.5.43) 

where 

(8.5.44) 

and r is a step-size parameter. 
The error signal can be put in a simpler form under the following assump­

tions: 

(i) the channel response h(t) is Nyquist; 

(ii) the time index k is far from the extremes of the interval (O,Lo -1). 
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The procedure can be divided into three steps. First, since h(t) = get) ® g( -t), 
from assumption (i) and (8.5.27) we have 

(8.5.45) 

for indexes i 1 and i2 away from 0 or Lo-l. Denoting by ±LT the range where 
h(t) takes significant values, equation (8.5.45) holds as long as i l and i2 are at 
least L steps away from both 0 and Lo-l. Since L« Lu, this means that H is 
nearly an identity matrix and, in consequence, vectors y and z are approxi­
mately equal (since z = H-1y). 

Second, from (ii) and (8.5.41) it is recognized that 

00 

qk,m "" - f g'(t - kT - f)g(t - mT - f)dt 

= -h'[(k - m)T] (8.5.46) 

where h'(t) is the derivative of h(t). 
Third, as h'[(i - m)T] decays to zero when the distance Ik - ml increases 

beyond some value D and index k is far from either 0 or Lo-I by assump 
tion, then the sum over m in (8.5.44) can be extended over the interval 
k - D S; m S; k + D without consequences. 

Putting these facts together leads to the following expression of the NDA­
ML detector: 

which is strikingly similar to the error signal (8.2.7) for the DD j9int phase and 
timing estimation. Indeed the two formulas coincide when ckej8k in (8.2.7) is 
replaced by the sample y(kT+ik ) and the slowly varying nature of Ok is rec­
ognized. 

Figure 8.20 illustrates simulations for the tracking performance of a 
synchronizer endowed with detector (8.5.47). Modulation is QPSK and the 
overall channel impulse response is Nyquist, with 50% roll off. Parameter D is 
set equal to 2. The fading distortion is modeled as described with the sim­
ulations in Figures 8.18 and 8.19. Comparing with those figures it appears that 
the NDA-ML detector loses 2-3 dB with the respect to the DD-CA-ML­
detector in Figure 8.18 whereas it has better performance than the GAD in 
Figure 8.19. 
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Figure 8.20. Tracking performance of the ML synchronizer. 

8.5.4. Modified ML Algorithm 

The NDA-ML-based algorithm (8.5.47) requires a derivative-matched 
filter to generate y'(kT+fk ). This represents an extra complexity that would 
be desirable to avoid. A simple method to achieve this goal is to make the 
approximation 

(8.5.48) 

as has been done in Section 8.3. It should be noted that (8.5.48) implies 
increasing the sampling rate to two samples per symbol. So, the elimination of 
the derivative-matched filter does not come entirely free. Also, it can be shown 
that replacing y'(kT + f k ) by (8.5.48) generates self noise even with very slow 
fading. 

Ginesi [23] has pointed out that the self-noise degradation due to the 
approximation (8.5.48) can be eliminated by replacing the coefficients 
h'[(k - m)T] in (8.5.47) by 
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I 
h'[(k - m)T] "" -{h[(k - m)T + T12] - h[(k - m)T - T12l} 

T 

or, in other words, by turning the algorithm (8.5.47) into 

e(k) = Re{Y*(kT+ ik{Y(kT + T12+ i k) 

k+D J} - m~~(mT + im)h[(k - m)T + T12] 

-Re{Y*(kT + ik{Y(kT - TI2 + ik-I) 

k+D J} - m~~(mT + im)h[(k - m)T - T12] 

ChapterS 

(8.5.49) 

(8.5.50) 

A possible explanation for this favorable feature is as follows. As SNR grows 
large, the timing estimates become sufficiently accurate so that we can make 
the approximation 
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Figure 8.21. Tracking perfonnance of the modified ML synchronizer. 
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(8.5.51) 

Furthermore, neglecting thermal noise we have 

y(t) "" La(i)c;h(t - iT - r) (8.5.52) 

Then, substituting into (8.5.50) and letting D ~ 00 makes e(k) vanish, which 
means that the error signal is self-noise free. 

Figure 8.21 displays simulation results for the tracking performance of the 
modified ML algorithm (8.5.50). Modulation and channel model are as in 
Figure 8.20. Comparing the two figures it is seen that the original and modified 
ML detectors are essentially equivalent. Thus, we can obviate the derivative 
matched filter with negligible performance penalties. In retrospect, it is ex­
pected that this same method can be applied to the algorithms discussed in 
Section 8.3. 

Exercise 8.5.3. Compute the S-curve for detector (8.5.47) when D ~ 00. 

Assume that h(t) is Nyquist and is bandlimited to ±lIT. 
Solution. The samples from the matched filter and the derivative matched 

filter have the form 

(8.5.53) 

(8.5.54) 

Letting fk = f and 8 = r - f in (8.5.47) yields 

e(k) = Re{LLa·(il)a(~)<c;2h[(k - i1)T - 8]h'[(k - ~)T - 8]} 
'I '2 

- Lh'[(k - m)T]Re{L~>·(il)a(~)<C;2 
m ~ ~ 

x h[(k - i1)T - 8]h[(m - ~)T - 8]} + N(k) (8.5.55) 

where N(k) represents zero-mean noise. Thus, averaging with respect to data, 
fading and thermal noise and rearranging produces 

S(8) = R(0)C2Lh(iT - 8)h'(iT - 8) 

- R(O)C, i h' (mT{ :P(iT -8)h[(i - m)T - 8l] (8.5.56) 
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where R(O) is the power of the fading distortion aCt) and C2 is the symbol 
variance. 

Next, observe that the sum within square brackets is even with respect to 
m whereas h'(mT) is odd (since h(t) is even). Thus the second line in (8.5.56) 
sums to zero and the S-curve reduces to 

S(8) = R(O)CzLh(iT - 8)h'(iT - 8) (8.5.57) 

Equation (8.5.57) can be put in a simpler form by application of the 
Poisson sum formula [9, p. 395] to w(t)&:h(t - 8)h'(t - 8). As a result we get 

Lh(iT - 8)h'(iT - 8) =.!. Lw(m) 
i T m T 

(8.5.58) 

with 

= 

W(f)&: j21Ce- jZ1Cjo f vH(v)H(j - v)dv (8.5.59) 

As Hif) is bandlimited to ±1I T by assumption, it follows from (8.5.59) that 
W(mlI) is zero unless m = ±1. Thus, collecting (8.5.57)-(8.5.59) yields the 
final result 

with 

S(8) = 2R(0)CzK sin(21C8/T) 
T 

= 

K &:21C f f H(f)H(l/T - f)df 

(8.5.60) 

(8.5.61) 

8.6. Decision-Directed Joint Phase and Timing Recovery with 
Offset Formats 

We now return to the A WGN channel and address the problem of joint 
phase and timing estimation with OQPSK modulation. In doing so we follow 
the same steps as in Section 8.2 and, in particular, we assume that any possible 
carrier frequency offset has been perfectly compensated. In these conditions the 
received signal has the form 
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(8.6.1) 

where the symbols ai and hi take on the values ±1 independently and with the 
same probability. We first illustrate an estimation approach based on ML 
methods. 

8.6.1. ML-Based Joint Phase and Timing Estimation 

Assuming that reliable decisions from the data detector are available, the 
log-likelihood function is found to be 

L(rIO, i) = ~Re{ llie-iJ 1 r(t)g(t - iT - i)dt} 

{
_To } 

+ ~Im bie-j6 ! r(t)g(t - iT - Tj2 - f)dt 

-.!. LLllillm f g(t- iT - f)g(t- mT - f)dt 
2 i m 0 

1 To 
--LLbjbm f g(t-iT- Tj2 -f)g(t-mT- Tj2- f)dt 

2 j m 0 

(8.6.2) 

Maximizing this function over 0 and f requires looking for the nulls of the 
partial derivatives 

dL(rIO, f) ~I {A -j{/'fO 
( ) ( 'T -)d} -'--'::-_ '--'- = £..i m aje r t g t - I - r t 

de j 0 

- ~Re{bje-jOl r(t)g(t- iT - T 12 - f)dt} (8.6.3) 

dL(rIO,f) ~R {A _joT.fO ()'( 'T -)d} 
::I'::: = - £..i e aje r t g t - I - r t 
U·' i 0 

- ~Im{bie-jOl r(t)g'(t - iT - T 12 - f)dt} 

To 

+ LLlljllm f g'(t-iT-f)g(t-mT-f)dt 
j m 0 

To 

+ LLbjbm f g'(t-iT- T/2-i)g(t-mT- T/2-f)dt (8.6.4) 
j m 0 
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Equations (8.6.3)-(8.6.4) may be simplified by expanding the limits of the 
integrals to ±oo while restricting the summations over i from 0 to Lu -1. This 
results in 

JL(rli},i) ~lIm{A (·T -) -jill ~lR {bA (·T TI2 -) -jill (865) -~-~= £..J aiy I +-r e - £..J e iY I + +-r e .. 
Je i=O i=O 

(8.6.6) 

where y(t) is the matched-filter output and y'(t) is its derivative. Also, h(t) is 
the convolution g(t) ® g( -t), h'(t) is its derivative and D is an integer such 
that h'(mT) "" 0 for Iml> D. 

The simultaneous nulls of the derivatives are sought resorting to the usual 
recursive method employing the following error signals: 

ep(k) = Im{aky(kT + f k)e-j8k } - Re{bky(kT + T/2 + f k)e-j8k } (8.6.7) 

er(k) = Re{ a.[y'(kT + i.)e -'" - m%~mh'[(k -m)T]]} 

+ Irn{b.[Y'(kT + T /2 +f.V'" - j m%!mhl(k- m)Tl]} (8.6.8) 

A more suitable form for ep(k) and el..k) is obtained by introducing the in-phase 
(I) and quadrature (Q) signal components which are defined as 

(8.6.9) 

(8.6.10) 

and their time derivatives 

I'(k) + jQ'(k)£y'(kT+fk)e-j8k (8.6.11) 

I'(k + 1/2) + jQ'(k + 1/2) £ y'(kT + T/2 + f k)e-j8k (8.6.12) 
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Substituting into (8.6.7)-(8.6.8) yields 

(8.6.13) 

[ 
k+D 1 

eT(k) = ak I'(k) - m~~mh'[(k - m)T] 

[ 
k+D 1 +bk Q'(k + 1/2) - m~~mh'[(k - m)T] (8.6.14) 

Equation (8.6.13) is an obvious extension of the phase detector obtained in 
Section 7.4 for clock-aided phase recovery. Equation (8.6.14), in turn, may be 
viewed as the sum of two timing measurements of the type (8.2.10) which are 
derived from the I and Q components. The disalignment by a half symbol 
between such components is reflected in the half index difference between the 
two terms in (8.6.14). 

Exercise 8.6.1. Compute the S-surfaces about the origin in the ¢> - 8 plane 
for the detectors (8.6.13)-(8.6.14). Assume that h(t) is Nyquist, i.e., 

h(t) = sin(nt/T) cos(ant/T) 
n tiT 1- (2a t/T)2 

(8.6.15) 

Solution. Letting Ok = 0 and ik = i, ¢> = () - 0 and 8 = r - i, the 
matched-filter output reads 

y(t) = ej9 {~ajh(t- iT - r)+ j~bjh(t - iT - T/2 - r)} + net) (8.6.16) 

Inserting into (8.6.9)-(8.6.12) yields 

J(k) = cos¢> Lajh[(k - i)T - 8] 
j 

-sin¢> Lbjh[(k - i)T - T/2 - 8] + nl(k) (8.6.17) 

Q(k) = sin¢> Lajh[(k - i)T - 8] 
j 

+cOS¢>Lbjh[(k - i)T - T 12 - 0]+ nQ(k) (8.6.18) 
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I(k + 1/2) = coscp I,ajh[(k - i)T + TI2 - 0] 
j 

-sincp LAh[(k - i)T - 0] + n[(k + 1/2) (8.6.19) 

Q(k + 1/2) = sincp Lajh[(k - i)T + TI2 - 0] 
j 

+coscpLbjh[(k - i)T - o]+nQ(k+ 1/2) (8.6.20) 

I'(k) = coscp I,ajh'[(k - i)T - 0] 
j 

-sincp I,bjh'[(k - i)T - TI2 - 0] + n;(k) (8.6.21) 

Q'(k + 1/2) = sincp Lajh'[(k - i)T + TI2 - 0] 
j 

+coscp I,bjh'[(k - i)T - 0] +nQ(k + 1/2) (8.6.22) 

where terms of the type n[(k), nQ(k) represent thermal noise contributions. 
Next, keeping in mind that the I and Q detectors make decisions according 

to 

ak = sgn[/(k)] (8.6.23) 

bk = sgn[Q(k + 1/2)] (8.6.24) 

and the synchronization errors cp and 0 are small by assumption, from (8.6.17) 
and (8.6.20) it is recognized that the decisions are correct (apart from noise­
induced errors), i.e., 

(8.6.25) 

Thus, substituting into the expressions for ep(k) and er(k) and averaging with 
respect to data and noise gives the desired result 

Sp(cp,O) = 2h(0)sincp 

Sr(CP,o) = -2h'(0)cosCP 

(8.6.26) 

(8.6.27) 



Timing Recovery with Linear Modulations 457 

Exercise 8.6.2. Under the same assumptions as in the previous exercise 
show that the following tracking points are stable: 

Oeq = 0, ¢Jeq = 0,1r 

Oeq = T/2, ¢Jeq = ±1r/2 

(8.6.28) 

(8.6.29) 

Solution. The goal is to demonstrate that, at each of the above points, the 
S-surfaces are zero and the synchronizer's parameters A pp, Am ApT and ATP 
satisfy conditions (8.2.47)-(8.2.48). 

Consider Oeq = 0, ¢Jeq = 0, for example. From the previous exercise we 
know that in the vicinity of Oeq = 0, ¢Jeq = ° the S-surfaces are expressed by 
(8.6.26)-(8.6.27). By inspection it is seen that Sp(O,O)= ST(O,O)=O, which 
means that Oeq = 0, ¢Jeq = ° is an equilibrium point. Furthermore, application of 
(8.2.39)-(8.2.42) yields 

App =2 (8.6.30) 

21r2 [1 2 8 ] A =- -+a (1--) 
rr T2 3 1r2 

(8.6.31) 

(8.6.32) 

which satisfy the stability conditions (8.2.47)-(8.2.48). 
A similar procedure can be followed in the other cases. For example, in 

the vicinity of Oeq = T/2, ¢Jeq = 1r/2 the S-surfaces are found to be 

Sp(¢J,O) = -2h(T/2 - O)cos¢J 

ST(¢J,O) = 2h'(T/2 - o)sin¢J 

(8.6.33) 

(8.6.34) 

By inspection it is seen that Sp(1r/2,T/2)=ST(1r/2,T/2)=0. Also, from 
(8.2.39)-(8.2.42) we get for App, Am APT and ATP the same values as indicated 
in (8.6.30)-(8.6.32). Thus, point Oeq = T/2, ¢Jeq = 1r/2 is stable. 

It is worth noting that the parameters App, Arr,APT and ATP are the same at 
any tracking point. In particular, as APT andATP are both zero, phase and timing 
loops are decoupled. 

Exercise 8.6.3. Neglecting thermal noise and retaining the assumptions of 
the previous exercise, compute the decisions from the I and Q detectors for 
each tracking condition (8.6.28)-(8.6.29). As will be seen, each detector 
produces one of the four sequences {a;l, {-ai}, {b;l, {-bi}, depending on the 
actual tracking point. Indicate a coding scheme to cope with this ambiguity. 



458 Chapter 8 

(a) 

(b) 

Figure 8.22. Differential encoding and decoding schemes. 

Solution. Substituting (8.6.17) and (8.6.20) into (8.6.23)-(8.6.24) results in 

(8.6.35) 

(8.6.36) 

Oeq = T/2, tPeq = rr/2 (8.6.37) 

Oeq = T/2, tPeq = -rr/2 ~ (8.6.38) 
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As is intuitively clear, the I detector releases {a;} and the Q detector re­
leases {b;} only if Oeq = 0, ifJeq = O. Sign inversions and/or sequence exchanges 
between I and Q rails occur in all of the other cases. As the actual equilibrium 
point is unpredictable (it depends on the receiver's initial conditions), some­
thing must be done to avoid an invalid output when the tracking point is other 
than Oeq = 0, ifJeq = O. 

A simple solution is to encode the data on the I1Q rails as indicated in 
Figure 8.22(a). Here, the information sequence .. . ,ak-\,/3k-\,ak,f3k is split into 
two paths by the serial-to-parallel (SIP) converter and the resulting streams 
{ak} and {/3k} are differentially encoded as 

(8.6.39) 

At the receiver side, differential decoding is performed as indicated in 
Figure 8.22(b). It is readily verified that, apart from decision errors, the 
sequence from the parallel to serial converter (PIS) is again 
... ,ak-i,/3k-\,ak,/3k' independently of the synchronizer's tracking point. 

8.6.2. Other Timing Detectors 

Two NDA schemes have been suggested by Gardner in [1, Chapter 11] as 
an alternative to the ML-based detector (8.6.14). One is obtained from (8.6.14) 
setting D to zero and replacing the decisions ak and bk by the corresponding 
samples J(k) and Q(k+ 112). This results in 

eT(k) = J(k)I'(k) + Q(k + 1/2)Q'(k + 1/2) (8.6.40) 

The second is even more interesting as it does not require derivative 
matched filters to generate I'(k) and Q'(k + 1/2). It consists of the sum of two 
baseband Gardner algorithms as derived from the I and Q signal components, 
i.e., 

eT(k) = -J(k -1/2)[l(k) - J(k -1)] - Q(k)[Q(k + 1/2) - Q(k -1/2)] (8.6.41) 

For obvious reasons this algorithm is denoted by I1Q-GAD in the sequel. 
The tracking performance of the ML-based detector and the I1Q-GAD 

have been assessed by simulation and some results are displayed in Figures 
8.23-8.24. The phase detector (8.6.13) has been used in both cases. Parameter 
D in the ML-based algorithm has been chosen equal to 2. A Nyquist channel 
response with either 75% or 25% roll off is assumed. Phase and timing loops 
have a noise bandwidth of 5· 10-3 IT. At high rolloffs the two detectors appear 
nearly equivalent whereas the ML-based is definitely superior as a decreases. 
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Exercise 8.6.4. Compute Sr(t/J,O) for the I1Q-GAD assuming a Nyquist 
channel. 

Solution. Substituting (8.6.17)-(8.6.20) into (8.6.41) and averaging with 
respect to data and noise yields, after some manipulations, 

Sr(t/J,O) = 2cos(2t/J) }2hUT - o)[hUT + TI2 - 0) - h(iT - TI2 - 0)] (8.6.42) 

Then, proceeding as in Exercise 8.3.1 produces 

with 

Sr(t/J,O) = 8K cos(2t/J)sin(2noIT) 
T 

(8.6.43) 

(8.6.44) 

It is easily seen that K decreases with the bandwidth of H(j). 
Correspondingly, function Sr(t/J,O) decreases and the synchronizer's perfor­
mance worsens. In the limit, if H(j)=O for If I > 1I2T, the S-surface vanishes 
and the timing recovery method fails. 

Exercise 8.6.5. Consider a synchronizer using the phase detector (8.6.7) 
and an I1Q-GAD algorithm. Assuming a Nyquist channel, show that there are 
the following stable points: Oeq = 0, <fJeq = O,n, and Oeq = T 12, <fJeq = O,±n 12. 
Compute the parameters App, A1T' APT and Arp at these points. 

Solution. The phase detector is as in Exercise 8.6.2 and, in consequence, 
function Sp(<fJ,O) remains unchanged. Function Sr(t/J,O), vice versa, is given 
by (8.6.43). It is readily verified that the S-surfaces vanish at Oeq = 0, 
t/Jeq = 0, nand Oeq = T 12, <fJeq = O,±n 12. In addition, parameters App, A1T' APT 
and Arp take on the values 

App =2 (8.6.45) 

K 
(8.6.46) Arr =16n2 

T 

APT =Arp =0 (8.6.47) 

at any equilibrium point. As they satisfy conditions (8.2.47)-(8.2.48), it is con­
cluded that Oeq = 0, <fJeq = O,n and Oeq = T 12, t/Jeq = O,±n 12 are all stable. 
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S.7. NDA Feedforward Joint Phase and Timing Recovery with 
Offset Formats 

In the preceding section we have investigated feedback recovery schemes. 
Although they have good tracking performance, they are not suitable for 
applications requiring short acquisitions. Here we describe afeedforward joint 
phase and timing ML-based estimator developed in [25]. 

8.7.1 Computation of the Likelihood Function 

The received waveform is first passed through an anti-aliasing filter 
(AAF) and then is sampled at rate 1/ ~, a multiple N of liT. Although an 
oversampling factor of 2 is sufficient with signals bandlimited to liT, the 
ensuing formulas are developed for a generic N. Also, the assumption is made 
that: (i) the AAF has a bandwidth BAAF sufficiently large so as not to distort the 
signal components; (ii) the sampling rate equals 2BAAF ; (iii) the noise samples 
are independent. In particular, independence occurs if the AAF transfer 
function is rectangular but other (more practical) filter transfer functions are 
conceivable. 

Denoting by x~{x(k~)} the samples from the AAF, the likelihood func­
tion reads 

A(xlf,6,a,b) = exp _s L Re[x(k~)s'(k~)]--S L Is(k~)12 _ _ {T N4;-i T N4;-i } 

No k=O 2No k=O 
(8.7.1) 

where a ~{a;l, b ~{h;l are the data sequences and s (t) is the trial signal: 

(8.7.2) 

It is a simple matter to show that the first sum in (8.7.1) may be written as 

N4;-i 

L Re[ x(k~)s' (k~)] = Ze + Zo (8.7.3) 
k=O 

with 

Ze ~ ~aj Re{e-/Jz(2i)} (8.7.4) 
I 
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Zo £ ~bj Im{e- j9z(2i + 1)} (8.7.5) 
I 

NLo-l 

z(i)£ :Lx(kT.)g(kT. -iT/2-f) (8.7.6) 
k=O 

Thus, dropping the second sum in (8.7.1) for simplicity and assuming a low 
SNR such that the exponential can be approximated by the first three terms of 
its Taylor expansion produces (within immaterial constants) 

(8.7.7) 

As we look for an NDA estimator, we need the marginal likelihood func­
tion A(xlf,O), which is the expectation of (8.7.7) over ii and b. The calcula­
tion of A(xlf,O) is carried out in Appendix 8.C where it is shown that 

and 

Eii,;;{(Ze + Zo)2} = ~Re{e-j29(xej21riIT + Ye-j21riIT)} + C 

where the following notations have been used: 

NLo-l 

X £ :L[ x(kT.)e-jlrk/N]u(kT.) 
k=O 

NLo-l 

Y £ :L [ x( kT. )e jlrk/ N ]v( kT. ) 
k=O 

NLo-l 

u(kT.)£ :L[ x(nT.)e-jnn/N]q[(k - n)T.] 
n=O 

NLo-l 

v(kT.)£ :L[ x(nT.)ejnn/N]q*[(k - n)T.] 
n=O 

In the above equations function q(t) has Fourier transform 

(8.7.8) 

(8.7.9) 

(8.7.10) 

(8.7.11) 

(8.7.12) 

(8.7.13) 

(8.7.14) 
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Figure 8.25. Function q(t). 

(8.7.15) 

where G(j) is the Fourier transform of g(t). From (8.7.15) and the property 
G(-f) = G*(j) (which holds because g(t) is real-valued) it can be shown that 
q(t) is even. Figure 8.25 illustrates the shape of q(t) for a root-raised-cosine 
rolloff function G(j) with roll off a. 

It is worth noticing that X and Yare both independent of 8 and f. In 
Appendix 8.C it is shown that this is also true for the sum in (8.7.14). Putting 
these facts together it is concluded that maximizing A(xlf,8) is equivalent to 
maximizing 

(8.7.16) 

In the next section this result is exploited to estimate e and 'r. 

8.7.2 ML-Based Estimator 

To locate the maximum of ,1,(8, f) we first compute the partial derivatives 

(8.7.17) 
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_JA_(,-O..:..., i~) 21r I {-j2ii( X j2tri/T v -j2tr'f/T)} =-me - e +~e a:r T 

Then, setting them to zero and solving for 0 and i yields 

A 1 1r e = -[ arg(X) + arg(Y)] + me-
4 4 

A T [ ] T r = - -arg(X) + arg(Y) + mT -

41r 4 
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(8.7.18) 

(8.7.19) 

(8.7.20) 

where me and mT are arbitrary integers and the arguments of X and Yare 
restricted to the interval (-1r,1r]. It should be noted that the pairs (e, f) from 
(8.7.19)-(8.7.20) do not all correspond to maxima for A(i,O). In fact, inserting 
(8.7.19)-(8.7.20) into (8.7.16) and rearranging yields 

(8.7.21) 

which indicates that the maxima occur only when (mT - me)/2 and mT are 
even numbers, say 21 and 2m. In other words, the locations for the maxima are 
expressed by 

A 1 1r e = -[ arg(X) + arg(Y)] + m- -11r 
4 2 

A T [ ] T r=- -arg(X)+arg(Y) +m-
41r 2 

for arbitrary integers I and m. 
The following remarks are of interest. 

(8.7.22) 

(8.7.23) 

(i) From (8.7.23) it appears that the timing estimates are ambiguous by 
multiples of T12. This should be expected in view of the TI2 delay 
between I and Q signal components. 

(U) For a given timing estimate (i.e., for a fixed m), equation (8.7.22) tells us 
that the phase estimates are ambiguous by multiples of 1r. Again, this is 
intuitively obvious since an OQPSK signal may be written as either 

(8.7.24) 

or 
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s(t) = ej (8±1r) { ~(-ai)g(t - iT - r) + j~(-bi)g(t - iT - T/2 - r)} (8.7.25) 

which suggests that either { e, a, b} or { e ± 7r, -a, -b} may be viewed 
as unknown signal parameters. 

(iii) As differential encoding/decoding can be used to resolve the above ambi­
guities (see Exercise 8.6.3), in the sequel we arbitrarily set 1= m = 0 for 
simplicity. 

The quantities X and Yappearing in (8.7.19)-(8.7.20) are now written in a 
more convenient form following the same arguments as in Section 6.6.1 of 
Chapter 6. The passages may be divided into three major steps as follows. 

First, since the function q(t) has a duration of a few symbol intervals 
about the origin (see Figure 8.25) and the estimation interval is usually much 
longer than T, equations (8.7.12)-(8.7.13) are only marginally affected if the 
summations are extended from -00 to +00. This turns the right-hand sides into 
convolutions so that u(k~) and v(k~) may be viewed as outputs of two (non­
causal) filters, q(k~) and q*(k~), driven by x(k~)e-j1rk/N and x(k~)ej1rk/N, 
respectively. 

Second, the filters can be made causal by shifting their impulse responses 
rightward by ND samples. The shift must be sufficient to make the tails on the 
negative axis negligible. In doing so the filter outputs are delayed ND steps and 
become 

u[(k - ND)~) = [x(k~)e-j1rk/N] ® q[(k - ND)~] 

v[(k - ND)~) = [x(k~)ej1rk/N] ® q*[(k - ND)~] 

(8.7.26) 

(8.7.27) 

Finally, u[(k-ND)~] and v[(k-ND)~] are inserted into (8.7.10)­
(8.7.11) to produce the desired expressions of X and Y: 

N(Lo+D)-1 
X = I,[ x[(k - ND)~]e-j1r(k-ND)jN]u[(k - ND)~] 

k=ND 

N(Lo+D)-i 
Y = I,[ x[(k - ND)~]ej1r(k-ND)/N]v[(k - ND)~] 

k=ND 

(8.7.28) 

(8.7.29) 

A block diagram for the estimator is depicted in Figure 8.26. Some obser­
vations can be made about this scheme. First, when G(f) is real-valued it fol­
lows from (8.7.15) that Q*(f) = Q(-f). This implies q*(t) = q(t) which means 
that the filters in the estimator are real. Second, a considerable simplification 
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x(kT,) 

Figure 8.26. Block diagram of the joint phase and timing estimator. 

occurs when the oversampling factor N equals 2, as occurs with rolloff values 
less than unity. In these circumstances, in fact, the exponentials e jTrkjN and 
e-jTrkjN reduce to (j/ and (-I/(j/, respectively, and the multiplications by 
e±jTrkjN involve only sign inversions and/or exchanges between real and imagi­
nary parts of x(k~). Thus, significant savings in computational load are possi­
ble. Third, it should be stressed that phase and timing are estimated in parallel, 
not sequentially. In particular, the timing estimator remains the same even if no 
phase information is required (as happens with differential detection). 

Exercise 8.7.1. The approach described above differs from that followed 
in Section 8.4 with non-offset formats insofar as the carrier phase is no longer 
viewed as a nuisance parameter and, as such, is not averaged out from the like­
lihood function. What happens if the averaging procedure is pursued with 
OQPSK signals? 

Solution. The starting point is equation (8.7.16) which is an (approximate) 
expression for the likelihood function in the parameters (e, f). We should aver­
age A(e, f) over e, taking e uniformly distributed over [O,27r). As is readily 
seen, however, the average is zero and searching for its maximum is meaning­
less. 

This failure is clearly due to the rough approximations leading to (8.7.16). 
Still, it is somewhat surprising that the obstacle disappears if we look for a joint 
estimator of (8, -r) rather than a carrier-independent estimator of -r. 

8.7.3 Estimator Performance 

An analysis of the joint estimator (8.7.19)-(8.7.20) is discussed in [25]. In 
the sequel we only report on simulations which have been run under the 
following conditions: 
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(i) The AAF is implemented as an 8-pole Butterworth FIR filter with band-
width liT. 

(ii) Sampling is performed at twice the symbol rate (N=2). 

(iii) Function g(t) has a root-raised-cosine Fourier transform with rolloff a. 
(iv) Parameter D in equations (8.7.28)-(8.7.29) is a function of the rolloff and 

is indicated in the figures. In general D is larger with small rolloffs. 

(v) An observation interval of Lo=l00 symbols has been adopted. 

Figure 8.27 illustrates the phase error variance as a function of Es / No 
with rolloff as a parameter. The reader may want to compare these results with 
those shown in Section 5.10 which correspond to a different c10ckless phase 
recovery method. It is seen that the present method is slightly superior. Other 
differences are that the algorithm considered in Chapter 5 is simpler to 
implement but requires a sampling rate of four samples per symbol, as opposed 
to two samples per symbol in the present scheme. 

Figures 8.28-8.29 display timing error variance versus Es/ No. With 
a = 0.75 it appears that the performance of the timing estimator is within 1 dB 
of the MCRB. 
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Figure 8.27. Perfonnance of the phase estimator. 
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8.8. Key Points of the Chapter 

• Several methods are available for joint phase and timing recovery with non­
offset formats. They can be divided into two categories: either feedback or 
feedforward. 

• Feedback schemes consist of two distinct loops, one for phase tracking and 
the other for timing tracking. Interactions between loops may lead to acqui­
sition failures (spurious locks). The occurrence of spurious lock points is 
related to the signal constellation and the operating SNR. Roughly speaking, 
large signal constellations and high SNR increase the chances of spurious 
locks. 

• With PSKlQAM modulations, loop interactions are negligible in the steady 
state. Thus, the tracking performance of a joint phase/timing synchronizer 
can be established with the methods applicable to isolated loops. 

• Feedback schemes have typically good tracking performance but have poor 
acquisition properties. Feedforward methods are preferable with burst mode 
transmissions. Two NDA feedforward schemes have been indicated. They 
allow some trade-off between performance and implementation complexity. 

• Timing recovery for transmissions over frequency-flat fading channels may 
be pursued using either DD and channel-aided methods or NDA techniques. 
The former route is only viable with coherent receivers where data and 
channel estimates are generated in the Viterbi detector. 

• With noncoherent detectors, vice versa, NDA synchronizers are indispens­
able. A close approximation to the NDA-ML timing estimator has been in­
dicated. 

• Feedback methods for joint phase and timing recovery are readily available 
for OQPSK transmissions over the A WGN channel. 

• Joint phase and timing recovery with OQPSK may also be realized in a 
feedforward fashion. One method is described in the last section of the 
chapter. Alternately, the carrier phase can first be estimated in a clockless 
manner, as indicated in Chapter 4. Then, timing can be extracted (still, in a 
feedforward fashion) from the resulting I and Q signal components. 

Appendix 8.A 

In this Appendix we show that, as No decreases, the logarithm of the 
likelihood function 
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A 1- -) I 
(r 'f,C = { ] _ _ } 

det I + [lj(2No) CRaC*H (S.A.I) 

X exp{ [lj(2No)]2 Y *T[ CRaIC' + [lj(2No)]H r y} 

takes on the fonn 

(S.A.2) 

As a first step in this direction we write the logarithm of (S.A.I) as 

(S.A.3) 

with 

r l (rli,c)~-ln{ det[ 1+ [1/(2No) ]CRaC' H]} (S.A.4) 

r 2 (rli,c)~[ lj(2No)]2 yT {CRaIC' + [1/(2No)]H r y (S.A.5) 

Let us first concentrate on rI(rli,c). For No sufficiently small it is obvious that 

det{I + [lj(2No)]CRaC'H} "" det{[lj(2No)]CRaC'H} 

= [l/(2No)to det[CRaC*H] 

and substituting into (8.A.4) yields 

Next we turn our attention to r 2(rli,c). Rewrite (S.A.5) in the fonn 

For No sufficiently small this equation becomes 

(8.A.6) 

(S.A.7) 

(S.A.S) 

(S.A.9) 

Then, substituting (S.A.7) and (S.A.9) into (S.A.3) and letting No ~ 0 gives 
the desired result (8.A.2). 
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Appendix S.B 

In this Appendix we show that the derivative of iT H-Iy with respect to 
i may be written in the form 

:i (iTH-Iy) = 2 Re{z*T(y' + Qz)} 

where y'!dyldi, z!H-Iy and Q is an 1-0 x 1-0 matrix with entries 

To 

Qi l .i2 !- J g'(t - ilT - i)g(t - ~T - i)dt 
o 

g'(t) being the derivative of g(t). 
The derivative of iT H-Iy is given by 

d ( *TH-I) ,*TH-I *TH-I, *r( d H-I) di y y = y y + y y + y di y 

Next observe that 

,*rH-I (*rH-I ,)* y y= y y 

*r(.!!...-H-Il .. = [ *r(.!!...-H-I) J* y di Y Y di Y 

.!!...-H-I =-H-I(.!!...-H)H-I 
di di 

(S.B.I) 

(S.B.2) 

(S.B.3) 

(S.B.4) 

(S.B.5) 

(S.B.6) 

Equations (S.B.4)-(S.B.5) follow from the fact that H, H-I and dH-I I di are 
all real-valued and symmetric matrixes while equation (S.B.6) is obtained by 
differentiating the identity HH- I = I. Inserting into (S.B.3) and recalling the 
definition z!H-Iy yields 

(S.B.7) 

Now, keep in mind that H has the entries 

To 

h;lh! J g(t- ilT - i)g(t- ~T - i)dt (S.B.S) 
o 

Thus 
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(8.B.9) 

where the elements of Q are defined in (8.B.2). On the other hand, since 
z T Qz* is a scalar, it equals its transpose Z*TQT z, i.e., 

(8.B.10) 

Inserting (8.B.9)-(8.B.1O) into (8.B.7) yields the desired result (8.B.1). 

Appendix S.C 

In this Appendix we compute the expectations of Ze + Zo and (Ze + Zo)2 
over the data ii~{ai}' b ~{bi}. 

Start with the definition of Ze + Zo: 

Ze + Zo = LA Re{e-jiiz(2i)} + LA Im{e- jiiz(2i + l)} (8.C.1) 
I I 

where 

NLo-1 

z(i)= Lx(k~)g(k~-iT/2-f) (8.C.2) 
k=O 

As the data are zero mean, it is clear that 

(8.C.3) 

Next we concentrate on (Ze + Zo)2. From (S.C.i) and the statistics of the 
sequences {ai } and {bi } (recall that they are independent and each consists of 
independent and zero-mean symbols) it is readily shown that 

Ea,;;{(Ze + Zo)2} = ~[Re{e-jiiZ(2i)}r + ~[Im{e-jiiZ(2i + l)}r (8.C.4) 
I I 

Next, writing [Re{x}]2 and [Im{X}]2 in the form 

[Re{x}]2 =.!. Re{x2} + .!.lxl2 
2 2 

[Im{X}]2 = _.!. Re{x2} + .!.lxl2 
2 2 

and substituting into (S.C.4) yields 

(8.C.S) 

(8.C.6) 



474 Chapter 8 

(S.C.7) 

with 

(S.C.S) 

Assuming that g(t) in (S.C.2) is bandlimited to ±lI T, i.e., 

G(f) = 0, If I ~ liT (S.C.9) 

we now prove that C is independent of i and the sum in (S.C.7) may be 
written as 

(S.C. to) 

where 

NLo-INLo-1 

X! L Lx(kl~)x(kz7;)q[(kl _kz)7;]e-j1r(k1+k2 )/N (S.C.II) 
kl =0 k2=0 

NLo-INLo-1 

y! L Lx(kl7;)x(k27;)q*[(kl _kz)7;]e j1r(k1+k2 )/N (S.C.12) 
kl =0 k2=0 

(S.C.13) 

Note that function q(t) is even. This is seen making the change of variable 
f' = -fin (S.C.13) and using the relation G( - f) = G* (f). 

The proof relies on the following version of the Poisson sum formula: 

T L gl (tl - iT)g2 (t2 - iT) 
i 

= Le jlln(11+t2 )IT j G:(f -2~ )G2(f + 2~ }-j21!f(11-12 )df (S.C.14) 
n --<>0 

where gl(t) and g2(t) are arbitrary functions and G1(f), G2(f) are their 
Fourier transforms. 

Let us first concentrate on C. Inserting (S.C.2) into (S.C.S) yields 
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I NLo-INLo-l 

C="2 L Lx(kl~)X·(~~) 
kl =0 k2=0 

X [~g(kl~ - iT/2 - i)g(~~ - iT/2 - i)] (8.C.IS) 

On the other hand, application of (8.C.14) under the bandlirniting condition 
(8.C.9) produces 

which indicates that C is independent of i. 
Relation (S.C. 10) is derived as follows. Using (S.C.2) yields 

NLo-INLo-l 

L(-I)i z2(i) = L Lx(kl~)X(~~) 
i kl =0 k2=0 

X [~(-li g(kl~ - iT/2 - i)g(~~ - iTj2 - i)] (8.C.17) 

Next write 

L(-I)i g(kl~ -iT/2-i)g(~~ -iT/2-i) 
i 

= Lg(k1T. - iT - i)g(~T. - iT - i) 
i 

- Lg(k1 ~ - iT - T/2 - i)g(k2T. - iT - T/2 - i) (8.C.IS) 
i 

Application of (S.C.I4) to each sum in the right-hand side of (S.C.I8) leads 
eventually to (S.C.I 0). 
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9 

Timing Recovery 
with CPM Modulations 

9.1. Introduction 

The last topic in this book is timing recovery with CPM signals. The chap­
ter has the same profile as the previous one, except that we shall only be con­
cerned with transmissions over A WGN channels since CPM timing recovery 
with multipath channels has received scarce attention thus far. Although it is 
widely believed that conventional clock synchronizers can be used even with 
fading channels, a closer look at the question will be worthwhile as it is likely 
that better methods can be discovered by taking the fading channel statistics 
into account. This problem is left as a subject of further study. 

For convenience, feedback algorithms are investigated first (Sections 9.2 
to 9.4) while feedforward methods are left to the second part ofthe chapter. 

As happens with PAM modulations, carrier phase plays an important role 
in timing recovery. In a coherent receiver, phase and timing parameters are 
required in the detection process and, accordingly, Section 9.2 investigates DD 
joint phase and timing recovery. The resulting algorithms have excellent 
tracking performance but their acquisitions are comparatively slow and prone 
to spurious locks. In particular, spurious locks occur with partial response 
formats and multilevel alphabets. Thus, the methods proposed in Section 9.2 
are only useful with either full response formats or binary (possibly partial 
response) modulations. Alternative schemes are needed otherwise. 

One alternative is to use phase-independent timing algorithms so as to 
eliminate interactions between timing and phase recovery. This is the only 
sensible approach in differential receivers (where no phase information is 
required). Phase-independent algorithms are addressed in Section 9.3 making 
use of ML methods. As we shall see, the resulting schemes have good accuracy 
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with full response signaling; with partial response formats, vice versa, their 
performance is poor, especially with long frequency pulses. 

In summary, multilevel partial response systems cannot be synchronized 
either by the methods of Section 9.2 (because of spurious locks) or by those in 
Section 9.3 (because of poor performance). What can be done then? A solution 
is proposed in Section 9.3.4 where a lock detector is employed with the joint 
phase and timing estimator of Section 9.2. In this way the joint estimator can be 
used even with multilevel partial response formats. 

Section 9.4 concludes our discussion on feedback algorithms and 
describes a simple ad hoc detector for MSK-type signals. 

Sections 9.5 and 9.6 deal with feedforward timing synchronizers. In 
particular, Section 9.5 derives a feedforward version of the timing loop 
proposed in Section 9.3. Its estimation accuracy is comparable with that of the 
feedback synchronizer, assuming that the usual relation 

1 LoT=-
2~ 

(9.1.1) 

holds between the length of the observation interval and the bandwidth of the 
feedback loop. 

Section 9.6 discusses two ad hoc timing synchronizers for MSK. They are 
simple to implement and have fairly good accuracy. One of them can be 
extended to GMSK signaling with only minor adjustments. 

9.2. Decision-Directed Joint Phase and Timing Recovery 

9.2.1. ML Formulation 

Before addressing the estimation problem it is useful to refresh some 
notations about CPM signals and their ML detection [1]-[2]. To begin, the 
received signal is modeled as 

s(t) = e j (21M+9) ~2:s ejy!(t-1:,a) (9.2.1) 

where the phase If/(t,a) has the form 

(9.2.2) 

with 
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k 

1](t,Ck ,ak )g,27rh Lajq(t- iT) 
j=k-L+I 

K 
h=­

P 

k-L 
<I> k g, trh L a; mod 2n 

;=0 
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(9.2.3) 

(9.2.4) 

(9.2.5) 

(9.2.6) 

In the above equations ag,{a;l are the data symbols, Ck is the correlative state 
and <I>k is the phase state of the modulator. Note that there are M L- l 

correlative states and P phase states. The symbols belong to the M-ary alphabet 
{±1,±3, .. . ,±(M -I)} and are equally likely and independent. The modulation 
index is denoted by h. Finally, the phase response of the modulator is 
normalized so that 

q(t) = {1~2 t~O 

t"?LT 

where L is a parameter called the correlation length. 

(9.2.7) 

Figure 9.1 illustrates a block diagram for the ML receiver under the 
assumption that the synchronization parameters {v,e, -r} are all known. The 
filter bank is made of an array of ML filters with impulse responses 

O~t~T 

elsewhere 
(9.2.8) 

. h (I-I 2 ML) I h' . (C(l) (1»_( (I) (I) (I». . WIt -" ... , .ntIsequatIon o,ao -a_L+I, ... ,a_l,aO Isagenenc 
aI· . f ( ) d (c(l) (I». . b re IzatIon 0 a-L+l , ... ,a_l,aO an 1]/ t, 0 ,ao IS gIven y 

o 
1]/(t,C61) ,ag» = 27rh La~l)q(t - iT) (9.2.9) 

;=-L+I 

The filters are all driven by the common voltage r(t)e- j21rvt and their 
outputs are sampled at (k + I)T + r to produce the statistics 

H(k+l)T 

Zk(Ck,ak,r)g, f r(t)e-j21rvte-jT/(t-r,Ck.ak)dt (9.2.10) 
r+kT 
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Figure 9.1. Block diagram of the ML receiver. 
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which are needed for the computation of the branch metrics. In fact, the Viterbi 
algorithm operates on a trellis of PML- 1 nodes, the generic of which (at the k­
th step) is denoted Sk ~(Ck,<I>k)' There are M branches stemming from a given 
node ~ = (~, <I>k)' one for each possible transmitted symbol a k and the 
metric for the branch associated with ak is given by 

(9.2.11) 

Decisions are delivered by the Viterbi decoder with a delay DD. 
With these definitions at hand we now turn our attention to the estimation 

problem. In doing so we assume that the carrier frequency offset and the data 
symbols are known, with the understanding that the latter will eventually be 
replaced by the decisions from the Viterbi algorithm. In these conditions the 
only unknown parameters are (J and 'l" and the associated likelihood function 
becomes 

A(rle,i)=exp _1_ 2Es L Re{Zk(Ck,ak,i)e-j(O+<l>k)} { f,FLo-1 - } 

No T k=O 
(9.2.12) 

where, as usual, 4J is the observation length. Clearly, the maximum of 
A(rle, i) corresponds to the maximum of the sum in (9.2.12). So, setting to 
zero the partial derivatives of the sum yields 

(9.2.13) 
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(9.2.14) 

where lie is the derivative of Zk with respect to i. 
It is worth noting that {lie} can be derived in two ways: either by 

differentiating the output of the filters (h(l)(t)} (and sampling at (k + I)T + r) 
or by feeding r(t)e- j21rVt into a bank of derivative filters with impulse responses 
(dh(l) (t)/dt} . The first approach seems difficult as it is known that an exact 
derivative is hard to obtain by digital means. The other looks awkward as it 
requires building a second bank of filters, an expensive task in many practical 
cases. In spite of this apparent deadlock, we shall see in Section 9.2.3 that the 
question can be settled in a rather simple manner. 

To solve equations (9.2.13)-(9.2.14) we use the k-th term in each sum as 
an error signal to update the current estimates of () and r. In doing so two 
questions arise. The first is to replace the true data sequence { .. . ,ak_2,ak_pak} 
involved in the calculation of Zk' lie and CPk by some reliable estimate thereof. 
As we have argued in other similar circumstances, a reasonable procedure is to 
exploit the decisions from the best survivor { .. . ,ak~3,ak~2,ak~d in the Viterbi 
I . h Th d .. h h I f { (b) (b) (b) } a gont m. e secon questIOn IS t at, as tee ements 0 •.. ,ak-3,ak-2,ak-l 

become more and more reliable as the sequence is traced backward, it seems 
sensible to use only those elements at some distance D or greater from the cur­
rent time k. Putting these facts together leads to the following updating equa­
tions: 

with 

Ok+l = Ok + r pep(k - D) 

i k+1 = i k + rreT(k - D) 

e (k-D)g,Re{y. (C(b) a(b) i )e-j[Bk-D+<I>~~DI} 
T k-D k-D' k-D' k-D 

(9.2.15) 

(9.2.16) 

(9.2.17) 

(9.2.18) 

where D is a delay parameter. Note that a large D entails more reliable 
decisions but also large delays in the loops. Thus, some trade-off is called for 
between opposite requirements. Simulations indicate that a good compromise is 
achieved with D = 1. 

Exercise 9.2.1. The S-surfaces of a joint phase and timing synchronizer 
have been defined as 

(9.2.19) 
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(9.2.20) 

where ¢k £6 - Ok and Ok £r - ik are phase and timing errors. Compute 
Sp(¢,O) assuming ideal decisions from the Viterbi detector (Le., replace 
{ (b) (b) (b) } b h . d { }) .. . ,ak-3,ak-2,ak-l Y t e transmttte sequence . .. ,ak-3,ak-2,ak-l . 

Solution. For our purposes we can set D to zero in (9.2.17) as it turns out 
that the S-surfaces do not depend on time. Thus, letting i k = r (which 
follows from the assumption 0 = 0) and replacing { ... ,al~3,ai~2,ai~l} by 
{ ... ,ak-3,ak-2,ak-d in (9.2.17) yields 

(9.2.21) 

where Ck and <I>k are the "true" correlative and phase states. On the other hand 
we have by definition 

H(k+l)T 

Zk(Ck,ak,r) = f r(t)e-j21Me-j'1(t-T.ck,ak)dt (9.2.22) 
HkT 

and 

(9.2.23) 

Thus, substituting into (9.2.21) yields 

(9.2.24) 

where n(k) is a zero-mean noise term. Hence, setting ¢k = t/J and taking the 
expectation of (9.2.24) over n(k) produces the desired result 

(9.2.25) 

Exercise 9.2.2. Compute the slope of the S-curve ST(O,O) at 0 = 0 
assuming ideal decisions from the Viterbi detector. 

Solution. Letting D = 0, 6(k) = 6 and replacing { ... ,al~3,al~2,al~l} by 
{ ... ,ak-3,ak-2,ak-d in (9.2.18) yields 

(9.2.26) 

with 
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(9.2.27) 

and 

Tk+(k+l)T 
Zk(Ck,ak, i k ) = f r(t)e-j21Me-jl1(t-Tk.Ck'(Xk)dt (9.2.28) 

Tk+kT 

Next, recalling that 

(9.2.29) 

the slope of ST(O,8) at 8 = 0 may be written as 

(9.2.30) 

On the other hand, from (9.2.28) it is found (after some manipulations) that 

(9.2.31) 

where T]'(t,Ck,ak) and T]"(t,Ck,ak) are the first and second derivatives of 
T](t,Ck,ak) with respect to time and n(k) is a zero-mean noise term. 
Substituting into (9.2.30) and performing some further calculations yields the 
desired result 

ffE LT 

Arr = E{aJ} _s (2lrh)2 f l(t)dt 
T 0 

(9.2.32) 

9.2.2. Approximate Digital Differentiation 

In the previous section we have pointed out the necessity of 
approximating the statistics {lk} in some manner. As is now explained, a 
solution to this problem is readily found when the receiver is implemented in 
digital form. In these circumstances the waveform r(t)e- j21M is first fed to an 
anti-aliasing filter (AAF) and then is sampled at some rate 1/T. = NIT. The 
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sampling times {tm} are related to the timing estimates i k by the relation 

tm =kT+nT.+ik (9.2.33) 

with 

k~in{;) (9.2.34) 

n~m modN (9.2.35) 

and int(m/ N) is the integer part of m/ N. The meaning of the three indexes m, k 
and n is as follows: m counts samples, k counts symbol intervals and n counts 
samples within a symbol interval. 

The samples from the AAF are fed to a filter bank, as indicated in Figure 
9.2. The impulse response h(l)(mT.) of the generic filter in the bank is the 
sampled version of its analog counterpart h(l) (t) in Figure 9.1. Actually, the se­
quence Z(/)(m) from h(l)(mT.) closely approximates the samples of Z(I)(t) 
from h(l)(t), provided that the oversampling factor N is adequate. 

Our task is to approximate the statistics {lk}. As mentioned earlier, they 
may be thought of as the samples of the waveforms Z'(I)(t)~dZ(I)(t)/dt 
(l=1,2, ... ,ML) taken at the instants t = t(k+l)N' Formally 

y;(I) - Z,(I) (t ) 
k - (k+l)N 

FILTER 
{Z(l)(m)} BRANCH 

I--.,.....,~ 
BANK 

Figure 9.2. Digital implementation of the ML receiver. 

VITERBI 

ALGOR. 

(9.2.36) 

Best 
survivor 
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Therefore, a simple approximation to Z,(I) (t(k+l)N) is provided by the two-point 
differentiation formula 

Z'(/)(tm) "" 2~ [Z(I)(m + 1) - Z(I)(m -1)] 
s 

(9.2.37) 

Note that in this manner the outputs of the filter bank {h(l) (mT.)} are sufficient 
to compute both {Zk/)} and {lk(l)} and, ultimately, the error signals ep(k - D) 
and eT(k - D), as well as the branch metrics 

(9.2.38) 

9.2.3. Tracking Performance and Spurious Locks 

Figures 9.3-9.4 show simulations illustrating the tracking performance of 
the synchronizer under the following conditions: (i) the symbols are binary and 
the frequency pulses are 3RC; (ii) the modulation index equals 112; (iii) the 
noise equivalent bandwidths of the loops are BT = 5.10-3 IT and Bp = 10-2 IT; 
(iv) the oversampling factor N is chosen equal to 4; (v) the approximation 
(9.2.37) is adopted; (vi) phase errors are expressed in radians, timing errors in 
cycles (meaning that they are normalized to the symbol period T). The 
modified Cramer-Rao bounds are also shown as benchmarks. We see that the 
error variances are very close to the MCRBs for Es/ No values of practical 
interest. 

Similar results are obtained with full response formats (either binary or 
multilevel) and with binary partial response schemes. In all these cases the 
synchronization errors may be made so small as to achieve ideal receiver 
performance. When it comes to partial response and multilevel schemes, 
however, the situation is more complex insofar as spurious locks take place 
(see also [3]). A spurious lock is illustrated in the simulation shown in Figure 
9.5. Here, 3RC pulses are used as in Figures 9.3-9.4 but the alphabet is 
quaternary, not binary. As is seen, while the phase errors wander around zero, 
the timing errors fluctuate around 0.35. In a practical situation this would result 
in a very poor receiver performance. 

In summary, the joint synchronizer discussed so far is only suitable with 
full response schemes (for example, with continuous-phase frequency shift 
keying) or with binary modulations. We shall see later that it can also be used 
with partial response multilevel schemes provided that a lock detector is 
employed. Before describing the lock detector, however, it is useful to discuss 
NDA timing estimation. 
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Figure 9.5. Simulation results showing a spurious lock. 

9.3. NDA Feedback Timing Recovery 

9.3.1. Approximate Expression for the Likelihood Function 
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In this section we investigate an ML-oriented timing error detector (TED) 
for use with general CPM formats. The algorithm is non-data-aided (NDA) and 
is independent of the carrier phase. Although it is noisier than the DD detector 
discussed previously, it does not suffer from spurious locks and, as we shall 
see, it can be conveniently exploited as a false lock detector in conjunction with 
the DD synchronizer in Section 9.2. 

The starting point in our discussion is the likelihood function for the data 
a~{ai} and the synchronization parameters (J and l' (carrier frequency is as­
sumed known). Denoting 0::; t ::; loT the observation interval, this function is 
found to be 

A(rlii. Ii. 1') = exp{ ~o P:' R+ -j' Ir( tV j[2=,.(H.O"dt ]} (9.3.1) 

with 

r(t) = ej () ~2:s ej [21rV1+'I'(t-•• a)] + w(t) (9.3.2) 
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00 

If/(t,a) = 27rh 2,aiq(t - iT) (9.3.3) 
i=-oo 

Letting 

LoT f r(t)e-j[21M+'I'(I-i',ii)]dt~!Y(ft, i)!ejy(ii,i'l (9.3.4) 
o 

equation (9.3.1) may be rewritten in the form 

(9.3.5) 

Our task is to compute the marginal likelihood function A(rli). As a first 
step in this direction we average (9.3.5) over the carrier phase, taking 8 
uniformly distributed over [0,211:). This produces 

(9.3.6) 

where Io(x) is the zero-order modified Bessel function. Next, assuming a low 
Es/ No so that we can make the approximation 

(9.3.7) 

from (9.3.6) we get 

(9.3.8) 

where immaterial constants, independent of ci and i, have been dropped for 
simplicity. Making use of (9.3.4), equation (9.3.8) becomes 

LoT LoT 
A(rlft, i)". f f r(t\ )r· (t2 )ej [21fV(12 -II l+'I'(l2 -i',iil-'I'(lI-i',iil]dt\dt2 (9.3.9) 

o 0 

Thus, defining 

F(llt, t) ~Eii {e j ['I'(I,iil-'I'(I-6t,ii)]} (9.3.10) 

and averaging A(rlft, i) over the data yields 
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LoT LoT 
A(rli):::: f f r(tl)r (t2)e j2TrV(t2-ll) F(t2 - tl,t2 - i)dt1dt2 

o 0 

The expectation (9.3.10) has been computed in Appendix 4.B and reads 

F(~t t) = Ii..!.. sin[27rMp(t - iT,~t)] 
, i=-ooM sin[2np(t - iT,~t)] 

where M is the alphabet size and p(t,~t) is defined as 

p(t,~t)g,q(t) - q(t - ~t) 
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(9.3.11) 

(9.3.12) 

(9.3.13) 

Our ultimate goal is to compute the argument f that maximizes A(rli). It 
is clear from (9.3.11), however, that this is a formidable task because of the 
cumbersome form of F(~t, t). In an attempt to sidestep the obstacle we observe 
that F(~t, t) is periodic with respect to t of period T and, as such, it can be 
expanded into a Fourier series. Our hope is that only a few terms in the series 
are significant. To explore this point we write F(t2 - tl, t2 - f) in the form 

m=-oo 

and we substitute it into (9.3.11) to produce 

with 

~ 

A(rlf):::: LA(m)ej2trmf/T 
m=-oo 

LoT LoT 
A(m)g, f f r(tl)r (t2)ej2TrV(t2-ll)Cm(t\ ,t2)dt\dt2 

o 0 

(9.3.14) 

(9.3.15) 

(9.3.16) 

The coefficients Cm(t\,t2) are computed in Appendix 9.A and are found to 
be 

(9.3.17) 

where hm(t) is a real-valued function 

T 
hm(t)g,ejtrml/T ~ f F( _t,u)ej2trmu/T du 

o 
(9.3.18) 
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which satisfies the relation 

(9.3.19) 

Inserting these results into (9.3.15)-(9.3.16) and performing some ordinary 
manipulations gives 

(9.3.20) 

with 

LoT 
A(m) = f[r(t)e-j2nvte-jnmt/T]Y:(t)dt (9.3.21) 

o 

and 
LoT 

Ym(t)£ f[r(u)e-j21rVUejnmU/T]hm(t - u)du (9.3.22) 
o 

At this point the question arises of how many terms in the sum (9.3.20) 
must be retained. An indication comes from Figure 9.6, which illustrates the 
shape of hm (t) for tREe pulses, binary symbols and h = 1/2. As is seen, ~ (t) 
is by far the largest pulse. This indicates that y; (t) is the dominant function in 

0.20 

0.15 

'" r{ 0.10 
Ii 
E: 
~ ... 

0.05 
~ 

0.00 

.0.05 
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-2.0 -1.0 0.0 
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1REC 

h=1I2, M=2 

1.0 2.0 

Figure 9.6. Shape of hm (t) for tREC pulses, binary symbols and h=1I2. 
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Table 9.1. Ratio Em / E1 for some LREC formats. 

M h L E2/EI E3/EI E4/EI 

2 112 3.40.10-2 6.05'10-3 1.85.10-3 

2 112 2 4.33,10-2 8.09,10-3 2.51,10-3 

4 114 3.00,10-2 5.32,10-3 1.61.10-3 

8 118 3.06,10-2 5.31,10-3 1.61.10-3 

Table 9.2. Ratio Em / E1 for some LRC formats. 

M h L E2/E\ E3/E\ E4/E\ 

2 112 1.80.10-2 1.08'10-4 4.33,10-6 

2 112 2 3.55,10-4 2.76,10-6 2.01,10-7 

4 114 1.85.10-2 2.27,10-4 5.79,10-6 

8 118 1.88.10-2 2.76,10-4 6.25,10-6 

the set {y:(t)} and, ultimately, the term with m=1 in (9.3.20) is the most 
significant. It turns out that this conclusion applies to most modulation formats. 
For example, Tables 9.1 and 9.2 show the ratio of the energy of hm(t), Em' to 
the energy of hI (1) for a few LREC and LRC formats. 

The foregoing considerations indicate that we can limit the summation in 
(9.3.20) to the first term, which implies that we can concentrate on the simple 
formula 

(9.3.23) 

This approximation is now used to derive a timing error detector. 

9.3.2. Timing Error Detector 

The following procedure may be applied to locate the maximum of 
A(rli). Rewrite A(1) as 

Lo-I 
A(1) = LAk (1) (9.3.24) 

k=O 

with 
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t. (k+')T . . 
Ak(1)= f[r(t)e-J21M e-}1rt/T]y~ (t)dt (9.3.25) 

kT 

Also, assume that the duration of h, (t) is much shorter than the observation 
interval so that y,(t) in (9.3.22) can be approximated as the output of a filter 
~ (t) driven by r(t)e- j21M ejtrt/T, i.e., 

00 

y, (t) "" f[r(u)e- j21WUej /ru/T]h, (t - u)du (9.3.26) 

Then, equation (9.3.23) becomes 

Lo-' 
A(rli) "" L Re[Ak (1)e j2/rflT] (9.3.27) 

k=O 

and the maximum of A(rli) can be found through the usual recursive method 
wherein the derivative of the generic term in the sum (9.3.27) is used as an 
error signal. Simple calculations show that this signal is given by 

(9.3.28) 

and the recursive equation becomes 

(9.3.29) 

Figure 9.7 depicts a block diagram for the computation of the error signal. 
In drawing this figure we have made some minor changes motivated by practi­
cal considerations. First, the filter h, (t) has been made causal by rightward 

r(t)e -j21rvI 

Figure 9.7. Timing error generator in analog form. 
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Figure 9.8. Digital implementation of the timing error detector. 

shifting its impulse response by DTseconds, the semi-duration of hi (t) (for ex­
ample, D may be chosen equal to 2 in the case of Figure 9.6). Second, to com­
pensate for this delay, an identical delay has been introduced in the lower 
branch of the diagram. Third, the extremes of integration in the integrate-and­
dump circuit have been changed as follows: 

(k+I-D)T+Tk 

Ak_D(1) = f[r(t)e-j21Me-jll't/T]y~(t)dt (9.3.30) 
(k-D)T+Tk 

In a digital implementation the incoming waveform is first passed through 
an anti-aliasing filter and then is sampled with some oversampling factor N. 
Denoting 1'. = T/ N the sampling period and x(m) the sample at tm = m1'. + i k 

from the AAF, the block diagram of the detector becomes as indicated in 
Figure 9.8 where the accumulator computes the sum 

(k+l)N+DN-I 
Ak- D(1) = I[x(m - ND)e-jll'(m-ND)/N]y~(m - ND) (9.3.31) 

m=kN+DN 

9.3.3. Performance 

The acquisition capability of the tracking system (9.3.29) is established by 
the S-curve of the timing detector. The calculation of this curve is a boring 
task, however, and is not pursued here. A detailed derivation is provided in [4] 
and the outcome is 

(9.3.32) 
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where t5~'r - f is the timing error and H is the energy of {~(m~)}, i.e., 

(9.3.33) 
m=-oo 

Some remarks about (9.3.32) are useful. First, the curve has a sinusoidal 
shape of period T, with a zero upcrossing at the origin. This says that the only 
stable point of the loop is t5 = O. Second, as the S-curve is independent of the 
carrier phase, there cannot be interactions between timing and phase recovery 
and, in consequence, no false locks can occur. This is in contrast with the 
behavior of the joint phase and timing recovery scheme discussed in Section 
9.2.3. Third, the amplitude of the S-curve depends on the modulation 
parameters through the coefficient H. As this coefficient decreases when the 
length L of the frequency pulses increases, the S-curve may eventually become 
too small for proper loop operation. Figure 9.9 shows H as a function of L for 
LREC pulses with h= 112 and binary modulation. As is seen, H decreases very 
rapidly. For example, H is reduced to one-tenth in passing from £=1 to L=2. 

LREC 

h=ll2. M=2 

10-4 

o 2 4 

Correlation length, L 

Figure 9.9. Coefficient H versus correlation length for LREC pulses. 
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Figure 9.10. Tracking perfonnance with LREC pulses. 

Figure 9.10 illustrates simulation results for the loop performance with 
LREC pulses, binary modulation and h=1I2. The loop bandwidth is 
BT = 10-3 f T and the anti-aliasing filter is implemented as an 8-th order 
Butterworth type of bandwidth 2fT. The oversampling factor is N=4. As ex­
pected, the tracking accuracy worsens dramatically as L increases as a conse­
quence of the diminishing amplitude of the S-curve. 

9.3.4. False Lock Detection 

As pointed out earlier, the DO detector in the previous section (say, DO­
TED) has good tracking performance even with long correlation lengths but 
suffers from false locks when operating with multilevel signaling. On the other 
hand, the NDA detector in Section 9.3.2 (say, NDA-TED) has poor tracking 
performance with long frequency pulses but has no false locks. Thus, the idea 
arises of putting together the two detectors so as to make up for their individual 
weaknesses. A possible way to achieve this goal is now explained with the help 
of Figure 9.11. 
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Figure 9.11. Receiver block diagram. 
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At any given time the timing loop is driven by either NDA-TED or DD­
TED. In particular, the former is in command during acquisition, the latter in 
the tracking mode. When the NDA-TED is in stand-by, its error signal 
eWDA)(k) is fed to a first-order IIR filter (not shown in the diagram) to produce 
the statistic u(k) given by 

u(k + 1) = (1- a)u(k) + ae~NDA)(k) (9.3.34) 

from which a lock signal is derived in the form lu(k)l. The rationale behind this 
procedure is that, if the synchronizer is in a false lock, then eWDA)(k) exhibits 
some DC component which can be exploited to switch the loop from DO-TED 
to NDA-TED mode. For this purpose the signal eWDA)(k) is filtered (to smooth 
out as much noise as possible) and the result, u(k), is monitored. An out-of­
lock is declared as soon as lu(k)1 overcomes some fixed threshold A. When this 
happens the DD-TED is switched off and the NDA-TED is activated in its 
place. Furthermore, the control signal u(k) is set to zero and the NDA-TED is 
put in command for the next K symbols, with K on the order of the inverse of 
the loop bandwidth. This allows the loop to reach a steady-state condition. As 
soon as this occurs, the DD-TED is switched on again and the tracking 
operation restarts. 

A simulation study illustrating an acquisition from a false lock is shown in 
Figure 9.12. Modulation is 3RC with quaternary symbols and a modulation 
index of 112. A bandwidth of Bp = 10-2 I T is chosen for the phase loop 
whereas the timing loop bandwidth is either BT = 5 . 10-3 I T or BT = 5 . 10-4 IT, 
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Figure 9.12. Timing acquisition with quaternary 3RC and h=1I2. 
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depending on whether the DD-TED or the NDA-TED is used. This is so 
because the latter is noisier and we have tried to keep the same steady-state 
errors in both cases. The parameter K equals 2000 and the step size a in 
(9.3.34) is set to 5 ·10-4. The threshold A is chosen equal to 0.02, a bit lower 
than the amplitude of the NDA-TED S-curve at the false-lock point (which is 
about 0.025). 

As indicated in Figure 9.12, the experiment begins with the lock indicator 
lu(k)1 equal to zero. At the start the DD-TED is on and the normalized timing 
errors fluctuate around 0.3. The system is clearly in a false lock and this makes 
the lock indicator output increase. When lu(k)1 reaches the threshold, the NDA­
TED takes control and keeps operating for 2000 symbols. Then, the DD-TED 
is turned on again and the synchronizer proceeds in the tracking mode. During 
the first part of the acquisition, carrier phase errors (not shown) wander in a 
random manner. They converge to zero, however, as soon as the timing errors 
decrease. 

9.4. Ad Hoc Feedback Schemes for MSK-Type Modulations 

We now restrict our attention to MSK-type modulations. In this context 
two viable routes to timing recovery have been identified so far, either the DD 
method described in Section 9.2 or the NDA approach in Section 9.3. The 
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choice between the two methods depends on the application. For example, the 
DD method has superior tracking accuracy but involves a phase recovery 
section which would be useless in a differential receiver. In the following we 
consider again carrier-phase-independent timing detectors as in Section 9.3 but 
we proceed on a heuristic ground as indicated in [5]. This will lead us to a new 
scheme which is considerably simpler to implement than those encountered 
previously. 

The TED proposed in [5] may be described as follows. After compensa­
tion for the frequency offset, the incoming waveform is passed through an AAF 
and is sampled at the instants 

(9.4.1) 

with 

(9.4.2) 

ng,m modN (9.4.3) 

As usual, the integer N represents the oversampling factor and ~ = T / N is the 
sampling period. Of particular interest to us are the samples x(kT + ~ + i k ) 

and x(kT - 1'. + f k - 1) taken one step after and before the start of the generic 
symbol interval, kT + i k' They are used to form the following TED: 

e(k) = (_l)D+l Re{ x 2(kT - 1'. + ik_1)X'2 [(k - D)T - 1'. + ik-D-d} 

- (_I)D+l Re{x2 (kT + ~ + i k )x'2 [(k- D)T + ~ + i k - D ]} (9.4.4) 

where D is a design parameter taking integer and positive values. This parame­
ter is set to unity in [5]. Further simulations have shown that D=l is a good 
choice with MSK whereas D=2 is preferable with GMSK. 

An intuitive motivation for (9.4.4) is not available and the simplest way to 
explain the detector operation is to show that its S-curve has a regular form, 
with a unique up-crossing at the origin. In the following we derive this curve 
making two simplifying assumptions: 

(i) The AAF bandwidth is sufficiently large to pass the signal components 
undistorted. 

(ii) Thermal noise is negligible. 

In a practical situation the noise may not be negligible but, as indicated in [5], 
its effects on the calculation of the S-curve can be ignored. 
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To begin we observe that (as a consequence of assumptions (i)-(ii» the 
output x(t) from the AAF coincides with the received signal. So, we have 

(9.4.5) 

with 

00 

lfI(t , a) = 21rh L aj q(t - iT) (9.4.6) 
;=-00 

Next, recalling the definition 

(9.4.7) 

from (9.4.4) we get 

S(o) = (_1)D+l(2:s r Re{c(kT - 1'. - 0) - c(kT + 1'. - O)} (9.4.8) 

with 

(9.4.9) 

Note that the carrier phase () does not appear in (9.4.8), which means that the 
detector is phase-insensitive. 

A general expression for the expectation in (9.4.9) is computed in 
Appendix 4.B for an arbitrary modulation. In particular, with a binary alphabet 
and a modulation index of 112 this expression becomes 

00 

c(t) = II cos[ 2np(t - iT, DT)] (9.4.10) 
;=-00 

with 

p(t,DT)gq(t) - q(t - DT) (9.4.11) 

Collecting (9.4.8) and (9.4.10) yields S(O) for any q(t). 
Unfortunately, the actual shape of the S-curve is not readily recognizable 

from the above equations. The only exception occurs with MSK and D=1, in 
which case the following simple result is found in Exercise 9.4.1: 
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(9.4.12) 

Note that the maximum amplitude of the sinusoid is achieved for N=4 whereas 
S(o) vanishes for N=2. Thus, the synchronizer would not work with a sampling 
rate of2lT. 

Figure 9.13 shows S-curves for MSK (D=I) and GMSK (D=2). In draw­
ing these curves the factor (2Es/T)2 in (9.4.8) has been set to unity for 
simplicity. Also, the AAF is implemented as an eighth-order Butterworth filter 
of bandwidth liT and the pre-modulation filter with GMSK has a normalized 
bandwidth BT = 0.3 .The oversampling factor is set to N=4 and the ratio 
Es/No equals 10 dB. Solid lines represent the theoretical curves as given by 
(9.4.8) while circles indicate simulation results. As is seen, simulation and the­
ory agree fairly well. The small discrepancy with MSK is due to signal distor­
tions in the anti-aliasing filter (GMSK has a smaller bandwidth and is less af­
fected by the AAF). 

Figure 9.14 compares the ad hoc algorithm (9.4.4) with the ML-based 
NDA detector in (9.3.28). The parameter D equals 1 with MSK whereas it is 
set to 2 with GMSK. As in Figure 9.13, the bandwidth of the pre-modulation 
filter is BT = 0.3 and a loop bandwidth of BTT = 10-3 is chosen. It appears that 
ad hoc and ML-based detectors have comparable performance with MSK but 
the latter is considerably worse with GMSK. This fact should not sound 
paradoxical as the derivation of the ML-based TED has involved a number of 
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Figure 9.13. S-curves for MSK and GMSK. 
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Figure 9.14. Comparison between algorithms. 

approximations and deviations from the true ML method. At any rate, it should 
be stressed that the ML-based TED is useful with general CPM modulation 
whereas the ad hoc algorithm works only with MSK-type signals. 

Exercise 9.4.1. Derive equation (9.4.12) assuming MSK modulation and 
D=I. 

Solution. The phase response q(t) with MSK is given by 

Thus, (9.4.11) becomes 

q(t) = {t/(~T) 
1/2 

{ 
t/(2T) 

p(t, T) = 1- t~2T) 

t<O 

O~t~T 

t> T 

O~t~T 

T<t~2T 

elsewhere 

(9.4.13) 

(9.4.14) 
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Next we concentrate on the function c(t) in (904.10). Clearly c(t) is periodic of 
period T and, as such, it is completely defined by the values it takes on the 
interval (O,T). On the other hand, as p(t,T) is zero outside the interval (0,2T), 
it follows that cos[2np(t-iT,T)] is unity over (O,T) except for i=O and 
i = -1. Thus, for O:S; t :s; T equation (904.10) becomes 

c(t) = cos [2np(t, T)]cos[2np(t + T, T)] (904.15) 

and taking (904.14) into account, we get 

c(t) = -±[1+co{2;)] (904.16) 

Substituting this result into (904.8) with D=l and rearranging yields (904.12). 

9.5. NDA Feedforward Timing Estimation 

Henceforth we concentrate on feedforward estimation methods. We begin 
with an ML-oriented scheme which is based on the same ideas used in Section 
9.3 in the context of feedback synchronization. In effect, as the present deriva­
tion has many points in common with that discussion, our account will be 
rather condensed for we can draw from previous results. A more comprehen­
sive description of this estimator may be found in [6]. 

A general CPM modulation format is assumed as in Section 9.3 but the 
signal samples are no longer synchronized to the transmitter clock. In fact they 
are derived from a free-running oscillator at some rate 1/ T,. As usual, we 
suppose that the signal components at the output of the anti-aliasing filter are 
undistorted and the noise samples are independent. Thus, denoting by La the 
length of the observation interval and choosing the ratio TIT, as an integer N 
for convenience, the likelihood function for the data a£{aj } and the 
synchronization parameters 8 and 1" becomes (carrier frequency is assumed 
known) 

A(xla.O, f) = exp -~ L x(kT,) - 2Es ej [9+'I'(kT,-i'.a)] (9.5.1) { NLo-11 ft - 12} 
2an k=O T 

Here, x(t) represents the AAF output, kT, (k = 0,1,2 ... ) are the sampling times 
and 2a~ is the variance of the noise samples. Noting that 
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IX(k~) - ~2:s ej[9+1I'(kT,-r'ii)r = 

Ix(k~)12 + 2:s _ 2~2:s Re{x(k~)e-j[9+'I'(kT,-r.ii))} (9.5.2) 

and eliminating immaterial constants, equation (9.5.1) becomes 

- { 1 fF"'E [.9N~-1 . (kT. - -)]} A(xla,O, i) = exp -2 _s Re e-J ~ x(k~)e-J'I' ,-'t",a 

an T k=O 
(9.5.3) 

The computation of the marginal likelihood A(xli) can now be performed 
following the same arguments used in Section 9.3. Skipping the details, the 
final result is very similar to that in (9.3.23) and has the form 

(9.5.4) 

with 

NLo-1 

A(I)~ I[ x(k~)e-jnk/N]y*(k~) (9.5.5) 
k=O 

NLo-1 

y(k~)~ I[ x(n~)ej1rn/N]hl[ (k - n)~] (9.5.6) 
n=O 

where ~ (t) is as given in (9.3.18). 
As the observation interval is usually much longer than the duration of 

hl(t), equation (9.5.5) can be rearranged as follows. First, the summation in 
(9.5.6) is extended from -00 to +00 and, correspondingly, y(k~) can be 
viewed as the output of a (non-causal) filter hI (k~) driven by x(k~)ejnk/N, 
i.e., 

(9.5.7) 

Second, the filter hI (k~) is made causal by rightward shifting its impulse 
response by some steps, say ND. In doing so the filter output becomes 

(9.5.8) 

and equation (9.5.5) may be rewritten as 
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N(Lo+DH 
A(l) = Lx[(k-ND)~]e-jn(k-NDl/Ny'[(k-ND)~] (9.5.9) 

k=ND 

At this point, substituting into (9.5.4) and recogmzmg that 
Re{A(1)ej2ni/T} achieves a maximum when the argument of A(1) equals 
-2ni' I T leads to the estimation rule 

f = -~arg Lx[(k - ND)~]e-jn(k-ND)1 N y*[(k - ND)~] {
N(Lo+Dl-l } 

2n k=ND 
(9.5.10) 

whose block diagram is shown in Figure 9.15. 
A performance analysis of this estimator is rather lengthy and is provided 

in [6]. Roughly speaking, the estimation accuracy is the same as that of the 
feedback scheme in Section 9.3 provided that the observation length La is 
related to the bandwidth BT of the feedback loop by 

LaT=_l-
2BT 

(9.5.11) 

Thus, the merits and weaknesses of the present method are the same as those 
pointed out in Section 9.3. On the bright side, the algorithm is carrier-phase-in­
sensitive and can be used with multilevel signaling. Its performance is poor 
with long frequency pulses however. Figure 9.16 illustrates the variance of the 
normalized estimates fiT for quaternary lREe and IRe pulses with a modu­
lation index h = 1/2. The observation length is La = 100 and the oversampling 
factor equals 4. The bandwidth of the anti-alias filter is 21T. We see that 1REe 
format is much more difficult to synchronize than IRe. 

x(kT.) 

Figure 9.15. Block diagram of the estimator. 
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Figure 9.16. Timing error variance with M=4, IRe pulses and h=1I2. 

9.6. Ad Hoc Feedforward Schemes for MSK Modulation 

We conclude this chapter with two more feedforward timing schemes for 
MSK modulation. Both of them are based on heuristic arguments and are 
considerably simpler to implement than the scheme in the previous section. We 
first report on the method by Mehlan, Chen and Meyr (MCM) [7] and then on 
that by Lambrette and Meyr (LM) [8]. It turns out that the former can be 
extended to GMSK modulation with only minor adjustments. 

9.6.1. MCM Scheme 

The incoming signal is fed to an anti-aliasing filter whose output is 
denoted x(t). For the time being we assume a negligible noise level so that we 
can write 

(9.6.1) 
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with 
~ 

lJf(t, a) = 7r LPiq(t - iT) 
i=-oo 

q(t) = {t/~T) 
1/2 

t<O 

O~t~T 

t> T 

Chapter 9 

(9.6.2) 

(9.6.3) 

and a i = ±1. Note that a non-zero carrier frequency offset has been assumed in 
(9.6.1). This is in keeping with the signal model adopted in [7] and is necessary 
to arrive at the same estimator developed in the original paper. 

The rationale behind the MCM algorithm is best understood focusing on 
the process 

z(t)g,[x(t)x· (t - T) r (9.6.4) 

As we shall see, its statistics depend on the timing parameter 'r and therefore 
we can estimate 'r by processing z(t) in some manner. The following consid­
erations are useful to understand how this can be done. 

Collecting (9.6.1) and (9.6.4) yields 

z(t) = (2:s J ej4trVT ej2 [V'(I-'t".a)-V'(t-T-'t".a)] (9.6.5) 

which indicates that z(t) depends not only on 'r but also on V and the data. To 
eliminate the dependence on the data we average z(t) over a. Using the rela­
tion (see Exercise 9.4.1) 

(9.6.6) 

and denoting by z(t) the expectation Ea (z(t)}, it is found that 

_( ) 1 (2Es )2 j4TrvT[1 [27r(t - 'r)]J z t =-- - e +cos --'----'-
2 T T 

(9.6.7) 

Next, the residual dependence on v is removed by taking the absolute value of 
z(t) 

(9.6.8) 
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where K is a positive constant. 
Equation (9.6.8) establishes a link between rand z(t). An explicit 

expression of r is now obtained observing that z(t) is periodic and computing 
the coefficient at frequency f = 1fT in its Fourier series 

T 
..!. jlz(t)le-j2lrt/T dt = K e-j2n/T 
To 2 

(9.6.9) 

Solving for r yields 

T {IT . } r = --arg - jlz(t)le-J2lrt/T dt 
27r T 0 

(9.6.10) 

This result is important as it indicates a procedure to derive r from z(t) (and 
ultimately from x(t)) in the absence of noise. In practice the noise can seldom 
be neglected and the right-hand side of (9.6.10) gives only an estimate of r. 

The estimator (9.6.10) can be implemented in digital form as follows. As a 
first step, the integral in (9.6.10) is expressed as a function of the samples of 
z(t) taken at some rate l/T,. Choosing T, = T/ N produces 

1 T 1 N-I 
- jlz(t)le-j2lrt/T dt "" - Llz(kT,)le-j2lrk/N 

ToN k=O 

(9.6.11) 

for N sufficiently large. The second step is to compute the expectation z(kT,) 
as a function of the samples of z(t). As z(t) is a cyclostationary process of pe­
riod T, its samples have the same statistics at multiples of T, and a reasonable 
approximation to z(kT,) is obtained by averaging over T-spaced samples of 
z(t): 

(9.6.12) 

Incorporating these approximations into (9.6.10) produces the MCM estimator 

T {N-I 11.0-1 I'} f=--arg L Lz[(k+iN)T,) e-J2lrk/N 

27r k=O ;=0 

(9.6.13) 

with 

z(kT,) = [x(kT,)x*[(k - N)T,]t (9.6.14) 
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The performance of the MCM algorithm is investigated in [7] and is now 
discussed making use of some simulations. Before doing so, however, a few 
words about the applicability of (9.6.13) are useful. It is clear from the previous 
derivation that the MCM algorithm is specifically tailored for MSK. Thus, it is 
not obvious that it also will work with other modulation formats. In fact its per­
formance with GMSK is found to be poor. It turns out, however, that signifi­
cant improvements are achieved by replacing x*[(k - N)J;] by x*[(k - 2N)J;] 
in (9.6.14), i.e., choosing 

z(kJ;) = [x(kJ;)x*[(k - 2N)J;]t (9.6.15) 

As is seen, (9.6.15) involves samples of x(t) at a distance 2T instead of T. In 
the simulations to follow, the variant (9.6.15) is always used with GMSK. 

Simulations with MSK and GMSK are shown in Figures 9.17-9.18. The 
AAF is implemented as an eighth-order Butterworth filter of bandwidth liT 
and the oversampling factor equals 4. Figure 9.17 deals with MSK and 
compares the timing error variance with MCM to that of the feedback scheme 
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Figure 9.17. Timing error variance with MSK. 
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described in Section 9.4. The loop bandwidth in the latter is BTT = 5 . 10-3, 

which corresponds to 1.0 = 100. It appears that the two methods give equiva­
lent results. 

Figure 9.18 illustrates similar results for GMSK (with a pre-modulation 
bandwidth of BT = 0.3). Here the loop bandwidth of the feedback scheme is 
set to 10-3 / T, which corresponds to an observation length of 1.0 = 500. Again, 
the MCM method and the feedback scheme exhibit comparable performance. 

9.6.2. LM Scheme 

We assume MSK modulation and make the same approximations as in the 
previous section, with the only exception that we now take v = 0 for further 
simplicity. As happens with the MCM algorithm, the incoming signal is first 
passed through an AAF to produce x(t). Neglecting thermal noise, we have 

(9.6.16) 
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The motivation for the LM scheme can be explained by considering the 
following process: 

z(t)B:larg{x(t)x*(t - T)}I (9.6.17) 

where the argument function is taken in the interval (-Jr,Jr]. To proceed, 
denote by [x]~1f the value of x reduced to the interval (-Jr,Jr]. Then, from 
(9.6.16) we have 

(9.6.18) 

or, making use of (9.6.2), 

(9.6.19) 

with 

pet, T)B:q(t) - q(t - T) (9.6.20) 

Figure 9 .19( a) shows the shape of p(t, T) for MS K signaling. It is clear 
from the figure that the sum 

(9.6.21) 

takes values between ±Jr 12 and, in consequence, (9.6.19) reduces to 

z(t) = IJr ~ai pet - iT - 'r,T)1 (9.6.22) 

Figure 9.19(b) depicts z(t) for the symbol pattern ... ,+1,+1,-1,+1,+1, ... 
(the reader may check that this same z(t) would also be generated by the 
opposite pattern ... ,-1,-1,+1,-1,-1, ... ). We see that z(t) has a constant value 
Jr 12 as long as there is no pattern variation. When a variation occurs, z(t) may 
be viewed as the sum of Jr/2 and a couple of triangular pulses as indicated in 
Figure 9.19(c). Extending these results to a general data pattern, it is realized 
that z(t) can be written as 

(9.6.23) 
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pet ,7) 
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T 2T 
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z(t) 
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1C 12 +--------.. 
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-r+2 T 'l"+3T -r+ 4T 

-1C12 

(c) 

Figure 9.19. Illustrating the shape of z(t). 

where get) is a triangular pulse given by 

{ 
2tfT O~t~Tf2 

g(t) = 2(1- tfT) Tf2 ~ t ~ T 

. 0 elsewhere 

(9.6.24) 

From (9.6.23) it appears that z(t) depends not only on the timing 
parameter but also on the data. The latter can be removed by averaging over the 
possible symbol sequences. Denoting by z(t) the resulting average yields 

z(t) = !!..[1-.!. Lg(t - iT - r)] 
2 2 j 

(9.6.25) 

The next step is to establish an explicit expression of r as a function of z(t). 
To this end we observe that z(t) is periodic of period T and, as such, it can be 
expanded into a Fourier series. Computing the coefficient at frequency f = 1fT 
in the series gives 
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T 
.!. f z(t)e- j2trt/T dt = _1_e-j2trT:/T 
To 2n 

(9.6.26) 

from which the following expression of 'Z' is obtained: 

'Z' = -I...-arg{..!.. f z(t)e-j2trt/T dt} 
2n To 

(9.6.27) 

At this point we face the same situation encountered with (9.6.10). In 
particular we have a procedure to derive 'Z' from the observed waveform x(t) 
and we want to implement this procedure in digital form. Using the same 
method adopted with the MCM leads to the LM estimator 
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Figure 9.20. Comparison between LM and MCM. 
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with 

z(t) = Jarg{ x(kT.)x*[(k - N)T.]}J (9.6.29) 

The performance of the LM estimator is investigated in [8] and is com­
pared in Figure 9.20 with that of the MCM. The AAF bandwidth equals liT 
and the oversampling factor is set to N = 4 with both algorithms. An observa­
tion interval of 100 symbols is considered. As the LM exhibits some bias (in 
the range ±1 % of T, depending on the value of r), the algorithm accuracy is 
expressed in terms of mean square error rather than variance with both LM and 
MCM. The parameter r is taken uniformly distributed in the range (0, T) in the 
simulations. It appears that LM is slightly superior at SNR values of practical 
interest. 

9.7. Key Points of the Chapter 

• Several timing synchronizers are available for CPM modulations. For 
convenience they have been divided into two categories, feedback and 
feedforward schemes. Feedforward schemes are better suited for burst mode 
data communications. 

• The most accurate feedback method is described in Section 9.2 and is based 
on ML estimation criteria. The synchronizer is decision-directed and per­
forms joint carrier phase and timing estimation. Its performance is close to 
the modified CRB at SNR values of practical interest. Although it is appli­
cable to general CPM modulation, the synchronizer has a rather complex 
structure and is associated with an ML coherent receiver. Moreover, with 
multilevel and partial response formats it needs a lock detector to resolve 
false locks. 

• A simpler feedback method, still based on ML estimation concepts, is 
described in Section 9.3. It applies to general CPM modulation and operates 
in a non-data-aided and carrier-independent manner. This makes it useful 
with less complex detection schemes and, in particular, with differential 
receivers. Its performance depends on the modulation parameters and 
worsens as the length of the frequency pulse increases. 

• An even simpler method is reported in Section 9.4. This is based on ad hoc 
reasoning and, like the scheme in Section 9.3, operates in a non-data-aided 
and carrier-phase-independent manner. With a loop bandwidth of ErT = 
10-3 the tracking accuracy is fairly good with MSK modulation (about 5 dB 
from the MCRB), a little worse with GMSK (about 8 dB from the MCRB). 
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• In summary, efficient feedback timing recovery appears to be viable only 
with short frequency pulses. With long pulses the only possible route is to 
resort to decision-directed estimation which, however, is more complex to 
implement. 

• Feedforward timing methods are reported in Sections 9.5 and 9.6. In 
particular, in Section 9.5 a non-data-aided scheme is discussed which is 
useful with general CPM formats and has a performance comparable with 
that of the feedback synchronizer in Section 9.3. 

• Section 9.6 describes two ad hoc synchronizers for MSK signaling. They 
have comparable performance and are very easy to implement. 

Appendix 9.A 

Letting 

F(ll.t t)= IT ~ sin[2hnMp(t-iT,&)] 
, i=-oo M sin[2h7lp(t - iT,&)] 

(9.A.I) 

in this Appendix we investigate the properties of the coefficients Cm(tl,t2 ) in 
the following Fourier expansion: 

00 

F(t2 - tl ,t2 - i) = L Cm(tl ,t2)ej2lrmi'/T (9.A.2) 
m=-oo 

In particular, we show that the coefficients can be written as 

C (t t ) = h (t - t )e-jTrm(tl+f2 )/T 
m I' 2 m I 2 (9.A.3) 

where hm (t) is defined by 

T 
hm(t)g,ejlrmf/T ~f F(_t,u)ej2lrmujTdu 

o 
(9.A.4) 

and satisfies the relation 

(9.A.5) 

As a first step we prove that F(&,t) satisfies the relations 

F(-Il.t,t) = F(&,t + &) (9.A.6) 
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provided that the condition 

is met. Bearing in mind that 

F(-ilt,t) = F(ilt,-t) 

I 
q(t)=--q(LT-t) 

2 

t~O 

t~LT 
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(9.A.7) 

(9.A.8) 

(9.A.9) 

the meaning of (9.A.8) is that q(t) must be anti-symmetric around t=LTI2, 
which is true in most practical cases. 

To prove (9.A.6) consider the definition 

p(t,ilt) = q(t) - q(t - ilt) (9.A.1O) 

It is readily seen that p(t, -ilt) = -pet + ilt,ilt). Then, substituting into (9.A.1) 
yields (9.A.6). 

To arrive at (9.A.7) we write (9.A.1O) in the form 

p(t, -ilt) = q(t) - q(t + ilt) (9.A.1l) 

Then, combining with (9.A.8) results in 

p(t,-ilt) = -p(LT - t,ilt) (9.A.12) 

from which (9.A.7) follows, bearing in mind that F(ilt,LT - t) = F(ilt,-t) 
(since F(ilt,t) is periodic of period T with respect to t). 

Next, we tum our attention to the coefficients Cm(tl,t2 ) in (9.A.2). They 
are expressed by 

(9.A.13) 

Letting f = t2 - t and integrating yields 

C (t t ) = (t - t )e-j2rrmt2/T m I' 2 em 2 1 (9.A.14) 

with 

(9.A.15) 
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As F(ilt,t) is real valued, from (9.A.15) it follows that 

(9.A.16) 

Also, substituting (9.A.6)-(9.A.7) into (9.A.15) yields cm(-t) = cm(t)e-j2rrmt/T 
and cm(-t) = c:(t). Putting these facts together it follows that the function 

(9.A.17) 

is real valued and satisfies the relations 

(9.A.18) 

Hence, combining (9.A.14) with (9.A.17) leads to (9.A.3) whereas (9.AA) 
follows from (9.A.15) and (9.A.17). 
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