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Preface

Synchronization is a critical function in digital communications; its failures
may have catastrophic effects on the transmission system performance.
Furthermore, synchronization circuits comprehend such a large part of the
receiver hardware that their implementation has a substantial impact on the
overall costs. For these reasons design engineers are particularly concerned
with the development of new and more efficient synchronization structures.
Unfortunately, the advent of digital VLSI technology has radically affected
modem design rules, to a point that most analog techniques employed so far
have become totally obsolete.

Although digital synchronization methods are well established by now in
the literature, they only appear in the form of technical papers, often
concentrating on specific performance or implementation issues. As a
consequence they are hardly useful to give a unified view of an otherwise
seemingly heterogeneous field. It is widely recognized that a fundamental
understanding of digital synchronization can only be reached by providing the
designer with a solid theoretical framework, or else he will not know where to
adjust his methods when he attempts to apply them to new situations. The task
of the present book is just to develop such a framework.

This is achieved by considering synchronization as a parameter estimation
problem and approaching it with the techniques of estimation theory. In doing
so two main goals are attained. One is to offer a coherent and systematic
methodology to follow when looking for new synchronization structures. The
other is to provide the designer with precise indications on the inherent
performance limits of these structures.

Synchronization circuits are occasionally devised on an ad hoc basis and
proven eventually by demonstration in hardware or computer simulation. Ad
hoc synchronization procedures are welcome and fully acknowledged in this
book. They result from application of physical insight and may lead to valuable

v



vi Preface

solutions. When facing more complex problems, however, like those
encountered with continuous-phase modulations, they seem of lesser efficacy
and a theoretical oriented approach is indispensable.

Exercises have been inserted throughout the text as a convenient means
for providing examples of application of the proposed techniques. They are not
merely routine manipulations of equations. Their purpose is rather to
supplement the text in various ways: (i) to gain familiarity with important
concepts; (i) to apply these concepts to practical situations; (iif) to fill in miss-
ing details.

The book is intended for three categories of readers. Primarily, it should
be a valuable tool for design engineers in telecommunications industry.
Second, it might be used as supplementary material in digital transmission
courses or as a separate course in synchronization or digital modem design. As
a text for a graduate-level course the book can be covered in one semester.
Finally, it should be useful to researchers. On several occasions in the book we
have pointed out open problems of considerable technical relevance.

The book is self-contained and any significant results are derived either in
the text or in the appendices. The underlying assumptions and methods
employed in the derivations are accurately outlined and the final outcomes are
discussed and compared with other situations, in order to stress the physical
significance. Nevertheless, as many aspects of synchronization can only be
expressed in mathematical terms, the reader must have some mathematical
background. In particular, a working knowledge of linear system theory,
Fourier transforms, and stochastic processes is needed.

This leaves only the pleasant task of acknowledging the contribution of
several people to the creation of this book. Many thanks go to our good friends
and colleagues Floyd Gardner, Des Taylor, and Ruggero Reggiannini, who
suggested valuable improvements and reviewed several portions of the
manuscript. We would also like to express gratitude to our co-workers and
students Antonio D'Amico, Alberto Ginesi, Michele Morelli, and Giorgio
Vitetta, who performed many simulations, reviewed the manuscript in detail,
and offered corrections and changes. There are no words to describe adequately
our indebtedness to all of them.
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Introduction

1.1. What Synchronization Is About

In synchronous digital transmissions the information is conveyed by
uniformly spaced pulses and the received signal is completely known except
for the data symbols and a group of variables referred to as reference parame-
ters. Although the ultimate task of the receiver is to produce an accurate replica
of the symbol sequence with no regard to reference parameters, it is only by
exploiting knowledge of the latter that the detection process can properly be
performed. A few examples are sufficient to illustrate this point.

In a baseband pulse amplitude modulation (PAM) system the received
waveform is first passed through a matched filter and then is sampled at the
symbol rate. The optimum sampling times correspond to the maximum eye
opening and are located (approximately) at the “peaks” of the signal pulses.
Clearly, the locations of the pulse peaks must be accurately determined for reli-
able detection. A circuit that is able to predict such locations is called a timing
(or clock) synchronizer and is a vital part of any synchronous receiver.

Coherent demodulation is used with passband digital communications
when optimum error performance is of paramount importance. This means that
the baseband data signal is derived making use of a local reference with the
same frequency and phase as the incoming carrier. This requires accurate fre-
quency and phase measurements insofar as phase errors introduce crosstalk
between the in-phase and quadrature channels of the receiver and degrade the
detection process. Circuits performing such measurements are referred to as
carrier synchronizers.

Carrier phase information is not always needed. In applications where
simplicity and robustness of implementation are more important than achieving
optimum performance, differentially coherent and noncoherent demodulation
are attractive alternatives to coherent detection. For example, differential de-
modulation of phase shift keying (PSK) signals is accomplished by computing

1



2 Chapter 1

the difference between the signal phases at two consecutive sampling times and
making a decision on this difference. As the decision statistic is independent of
the actual carrier phase, phase recovery is not performed. Only carrier fre-
quency and symbol timing information is necessary.

In addition to phase, frequency, and timing, other reference parameters
may be involved in the detection process. For example, this occurs with coded
modulations or when the communication channel is time shared by several
users on a regular basis, as happens with time division multiple access
(TDMA) systems. With block coding the decoder has to know where the
boundaries between codewords are. This operation is performed by word syn-
chronizers. Similarly, the encoded sequence from a convolutional encoder is
composed of symbol segments of fixed length and the start of each segment
must be located for proper metric computation. This task is accomplished by
node synchronizers. Finally, frame synchronizers are indispensable with time-
shared channels to identify the boundaries between channel users and establish
where the information is coming from and to where it must be routed.

All of the above examples are concerned with measuring reference param-
eters at the receiver, with no regard to what happens at the opposite side of the
link. There are instances, however, when the transmitter assumes a positive role
and, in fact, it varies the timing and frequency of its transmissions so as to meet
the expectations of the receiver. This usually implies a two-way communica-
tion system, or a network, and the alignment operations are called network syn-
chronization. A typical example takes place with pulse code modulation (PCM)
networks where multiplexing and switching operations are performed at spa-
tially separate nodes. Bits arriving at a given multiplexer must be available at
the right time so that the assigned time slots are correctly filled and no bits are
lost. Clearly, as the bits come from different nodes, it is necessary that the
clocks located at those nodes, as well the local clock, all be time aligned.
Another example occurs with satellite communications where many terrestrial
terminals transmit signal bursts to a single satellite, trying to keep their bursts
aligned in the receiver data frame. In most cases the transmitter exploits a re-
turn path from the receiver to determine the accuracy of the alignment.

From the foregoing discussion it is clear that measuring reference parame-
ters is a vital function in data communication systems. This function is called
synchronization and is the subject of the present book. To better define a frame-
work for our study we think it useful to point out some limitations to the scope of
our treatment and indicate distinguishing features that make the following ma-
terial of particular interest for those involved in the design of modern receivers.

One basic limitation is that we shall be concerned only with timing, phase
and frequency parameters. There are two basic motivations for this choice. One
is the limited authors’ experience with frame and network synchronization. The
other is that, to a great extent, frame and network synchronization are subjects
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with rather specific characteristics. For example, the marker concept plays a
fundamental role in traditional frame synchronization. A marker is a single bit
or a short pattern of bits that the transmitter injects periodically into the data
stream to help the receiver identify the starts of the frames. Now, the idea of
using ad hoc means to achieve synchronization is at odds with the approach
normally followed with timing and carrier recovery where it is regarded as de-
sirable not to waste channel capacity with special signals multiplexed onto the
data stream. In general, timing, phase and frequency must be directly derived
from the modulated signal.

The synchronization literature is so vast as to comprise over 1000 techni-
cal papers with applications in diverse areas such as communications, teleme-
try, time and frequency control, and instrumentation systems. This enormous
accumulation of knowledge has been incorporated and elaborated in excellent
books like those by Viterbi [1], Stiffler [2], Lindsey [3], Lindsey and Simon
[4], Gardner [5], Meyr and Ascheid [6], and in the ESA technical report by
Gardner [7]. The present book takes advantage of all this material and develops
synchronization methods for digital communications with certain features that
are now indicated.

The first feature is that we focus on digital synchronization methods, which
means that we want to recover timing, phase and carrier frequency by operating
only on signal samples taken at a suitable rate. This is in contrast with the
familiar analog methods which work on continuous-time waveforms. Although
digital methods are well established in the synchronization literature by now,
they are mostly in the form of technical papers, with the exceptions of report
[7] and the forthcoming book by Meyr, Fechtel and Moeneclaey [8].

Digital circuits have an enormous appeal in communication technology
and influence the design of all modern receivers. This is so because they do not
need alignment operations, have less stringent tolerances than their analog
counterparts, have low power consumption and can be integrated into small
size and low cost components. Clearly, all of the above features tend to en-
hance performance since more complex circuitry may be used to get better
functional characteristics. Also, there are some specific traits of digital circuits
that directly affect the feasibility of certain synchronization algorithms. Digital
memory is an important example, for it makes practicable some operations that
would be complicated or even impossible in analog form.

A second feature of this study is concerned with the range of application
of our results. In most synchronization books, baseband and passband PAM
transmission are the dominant signaling schemes; very little space is devoted to
continuous phase modulation (CPM). Of course, this lack of balance has histor-
ical and practical reasons. On the one hand, CPM techniques have become an
intensive research area in the eighties, approximately with the publication of
the book by Anderson, Aulin and Sundberg [8]. On the other hand, their practi-
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cal application has been slowed down by implementation complexity and syn-
chronization difficulties. Luckily, methods to reduce receiver complexity sub-
stantially and solve several synchronization problems have been proposed in
the last few years. Thus, the time seems ripe for a more effective exploitation
of CPM in satellite communications, digital mobile radio and low-capacity
digital microwave radio systems. In this book we develop synchronization
methods for both PAM and CPM.

A third feature has to do with the conceptual tools to approach synchro-
nization problems. One possible route is to resort to heuristic reasoning. This is
good as long as it works but, unfortunately, it is of limited assistance in tack-
ling new situations such as those arising with advanced modulation schemes.
On the other hand, it is widely recognized that maximum likelihood (ML) es-
timation techniques offer a systematic and conceptually simple guide to the
solution of synchronization problems. Actually, ML methods offer two major
advantages: they easily lead to appropriate circuit configurations and, under
certain circumstances, provide optimum or nearly optimum performance. In
this book we adopt the ML approach as our primary investigation method.

A final feature is concerned with performance evaluation. As timing,
phase and frequency are continuous-valued parameters, it is natural to express
synchronization accuracy in terms of bias and estimation variance. Ideally, we
want zero bias and small variance, but what does “small” mean? Can other
synchronizers have smaller variance? A rational answer is found in the Cramer-
Rao bound (CRB), which establishes a fundamental lower limit to the variance
of any unbiased estimator. As no estimator can provide lower variance, this
bound can serve as a benchmark for performance evaluation purposes.
Unfortunately, the CRB cannot be easily computed in many practical situations
and the need arises for a more manageable performance limit. One such limit is
the modified CRB (MCRB). In this book we consistently use the MCRB as a
reference when speaking of synchronization accuracy.

Finally, a few words on prerequisites in the reader’s background are use-
ful. People involved in the design of synchronization systems need good foun-
dations in communication theory and the underlying mathematics. Also indis-
pensable is an adequate knowledge of digital transmission systems and modu-
lation techniques. Textbooks like those by Benedetto, Biglieri and Castellani
[10] or Proakis [11] provide excellent background material.

1.2. Outline of the Book

The remaining chapters are organized as follows.
Chapter 2 lays the groundwork for further developments and is divided
into three parts. The first is concerned with the effects of synchronization errors
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on detection performance. Various receiver configurations and modulation
formats are considered and, in each case, theoretical or simulation results are
illustrated. The purpose is to establish ball-park limits on allowable synchro-
nization errors. The second part concentrates on estimation criteria and gives a
self-contained account of ML estimation methods. In particular, likelihood
functions for continuous-time and discrete-time observations are derived for the
additive white Gaussian noise (AWGN) channel and the concept of wanted and
unwanted parameters is discussed. These parameters play a fundamental role in
the computation of the MCRB. The third part gives closed-form expressions of
the MCRBs for timing, phase and frequency under various modulation condi-
tions.

Chapter 3 investigates carrier frequency estimation with passband PAM
modulation. A distinction is made between two rather different situations, de-
pending on whether the carrier frequency offset is expected to be small or com-
parable with the symbol rate. Different estimation methods apply in the two
cases. In particular, data-aided or decision-directed schemes can be used with
small offsets whereas non-data-aided schemes are inevitable otherwise. As is
intuitively clear, data-aided and decision-directed methods are much more ac-
curate than non-data-aided ones. In fact, circuits in the first category perform
close to the MCRB while the others are far from it.

Chapter 4 concentrates on frequency estimation with CPM modulation.
The same distinction between “small” and “large” frequency offsets is made as
in Chapter 3. As opposed to PAM modulation, however, few methods are
available for small frequency offsets and, what is worse, they are limited to bi-
nary symbols and a modulation index equal to 1/2. On the contrary, a variety of
estimation schemes can be used with large frequency offsets. Their perfor-
mance is far from the MCRB, however, especially with long frequency pulses.
In consequence, narrow-band tracking loops are needed to achieve small esti-
mation variances. Of course, this translates into rather long acquisition times.

Chapter 5 is the longest and is concerned with phase estimation in PAM
modulations. Its first part focuses on phase recovery for transmissions over
AWGN channels. Costas loops are popular synchronization schemes for con-
tinuous transmissions over these channels. They are easily designed to com-
pensate for (small) frequency offsets and have excellent tracking performance
in the absence of phase noise. In any practical situation, however, some degree
of phase noise is inevitable due to oscillator imperfections. The resulting track-
ing degradations can be limited by proper loop design. This subject is ade-
quately addressed and criteria are provided to minimize the phase errors. The
central part of the chapter considers frequency-flat fading channels. Here, the
signal is affected by a multiplicative distortion (MD) which is modeled as a
slowly varying Gaussian random process. As samples of the MD (taken at the
symbol rate) are needed for coherent detection, the problem arises of estimating
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the MD random sequence from the received waveform. This is a generalization
of the carrier phase recovery problem on AWGN channels where the parameter
under estimation is a constant (the channel phase shift). MD estimation can be
accomplished in various ways. One is to exploit known symbols multiplexed
onto the data sequence. This leads to the so-called pilot symbol assisted
schemes, which work well for fading rates up to about 1% of the symbol rate.
Another solution is to perform ML joint channel and sequence estimation. This
approach is effective with Doppler rates up to about 5% of the symbol rate. The
last part of the chapter returns to the AWGN channel and explores open-loop
phase estimation methods for applications in packet transmissions.

Chapter 6 investigates phase recovery with CPM modulation. To some
degree it has the same structure as the previous one. Its size is reduced, how-
ever, as many ideas developed earlier also apply to CPM formats. Decision-di-
rected tracking loops are the most popular synchronization schemes for contin-
uous transmission over the AWGN channel and are explored in the first part of
the chapter. Their performance is quite close to the MCRB at signal-to-noise
ratios of practical interest. With frequency-flat fading channels several approx-
imate ML decoding schemes are available, with very good performance for
fading rates up to 5% of the symbol rate. The last part of the chapter focuses on
open-loop estimation methods for applications in packet transmissions.

Chapter 7 deals with clock synchronization in baseband transmissions.
The structure of the chapter reflects the fact that timing recovery consists of
two basic operations: (i) estimation of the positions of the signal pulses relative
to a local time reference; (ii) application of this information to the computation
of symbol-spaced signal samples (strobes) for use in the detection process. The
former is called timing measurement, the latter timing adjustment. Two ap-
proaches to timing adjustment are investigated. In one case the strobes are ob-
tained by sampling the received signal with a clock locked to the incoming data
stream (synchronous sampling). In the other, the sampling times are dictated by
a free-running oscillator and the strobes are computed by interpolating between
samples (non-synchronous sampling). Timing measurements are discussed in
the second part of the chapter. They can be performed by either open-loop or
closed-loop circuits. The former provide a direct estimate of the pulse positions
relative to a local time reference. The latter compute an error signal which is
proportional to the difference between the actual pulse positions and their esti-
mates. The error signal is then exploited to update the estimates.

Chapter 8 investigates timing recovery with passband PAM modulation.
The chapter structure reflects the fact that carrier phase plays an important role
in timing estimation and, in consequence, it is useful to distinguish between
two scenarios. In the first one, carrier phase is estimated in conjunction with
timing. This leads to joint phase and timing synchronization schemes. In the
second scenario, the phase estimation problem is either postponed until after
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timing recovery or is not approached at all, as occurs with differential detection
receivers where no phase information is needed. In these circumstances it is
desirable to have timing circuits that are insensitive to phase variations.
Methods to achieve this goal are analyzed. Finally, the problem of timing re-
covery with flat-fading is discussed. Here, the received signal is not only ro-
tated (as happens with the AWGN channel) but is also attenuated. Thus, timing
recovery is a more complex function with fading channels. Two solutions are
proposed and compared. One is to use the same methods suitable for AWGN
channels. The other is to employ new schemes that take the fading channel fea-
tures into account.

The last topic is timing recovery with CPM signals and is covered in
Chapter 9. The chapter is organized as the previous one except that only
AWGN channels are considered. This is so because timing recovery with fad-
ing channels has not received much attention in the literature so far. Decision-
directed feedback synchronizers for joint phase and timing estimation are in-
vestigated in the first part of the chapter. They have excellent tracking perfor-
mance but may exhibit spurious locks, depending on the alphabet size and the
frequency response of the modulator. Methods to detect and correct spurious
locks are proposed. Phase information is not needed with differential detection
and the problem arises of estimating timing in a phase-independent fashion.
Timing algorithms that operate in this manner are investigated. They have good
performance with full response systems but fail with long frequency pulses.
The chapter concludes with two open-loop timing circuits for minimum shift
keying (MSK) and Gaussian minimum shift keying (GMSK).

References

[1]1 A.J.Viterbi, Principles of Coherent Communication, New York: McGraw-Hill, 1966.

[2] J.J.Stiffler, The Theory of Synchronous Communications, Englewood Cliffs: Prentice-
Hall, 1971.

[31 W.C.Lindsey, Synchronization Systems in Communication and Control, Englewood
Cliffs: Prentice-Hall, 1972.

[4] W.C.Lindsey and M.K.Simon, Telecommunication System Engineering, Englewood
Cliffs: Prentice-Hall, 1973.

[51 F.M.Gardner, Phaselock Techniques, New York: John Wiley&Sons, 1979.

[6] H.Meyr and G.Ascheid, Synchronization in Digital Communications, vol. 1, New York:
John Wiley&Sons, 1990.

[71 F.M.Gardner, Demodulator Reference Recovery Techniques Suited for Digital
Implementation, European Space Agency, Final Report, ESTEC Contract No.
6847/86/NL/DG, August, 1988.

[8] H.Meyr, S.Fechtel and M.Moeneclaey, Synchronization in Digital Communications, vol.
2, New York: John Wiley&Sons, to be published.

[9] J.B.Anderson, T.Aulin and C-E.Sundberg, Digital Phase Modulation, New York: Plenum
Press, 1986.



8 Chapter 1

[10] S.Benedetto, E.Biglieri and V.Castellani, Digital Transmission Theory, Englewood
Cliffs: Prentice-Hall, 1987.
[11] J.G.Proakis, Digital Communications, New York: McGraw-Hill, 1989.



Principles, Methods and
Performance Limits

2.1. Introduction

This chapter lays the groundwork for the material in the book and
addresses three major themes. Section 2.2 describes synchronization functions
in a digital receiver and indicates methods to pinpoint design limits on the
synchronization errors. Section 2.3 is an overview of maximum likelihood
parameter estimation theory, with emphasis on synchronization applications. A
distinction is made between wanted and unwanted parameters, the former being
those of interest in a given situation and with respect to which the maximum of
a likelihood function is to be sought. The computation of likelihood functions
for wanted parameters is investigated. Section 2.4 establishes limits to the
performance of practical synchronizers. The most popular limit is the Cramer-
Rao bound to the variance of unbiased estimators. It is argued that this limit is
difficult to compute in most practical cases. A simpler limit is the modified
Cramer-Rao bound, which is used as a benchmark in performance evaluations
throughout the book.

2.2. Synchronization Functions

In surveying the synchronization functions we consider three signaling
formats: baseband pulse amplitude modulation (PAM), passband PAM
modulation (or linear PAM modulation) and continuous phase modulation
(CPM). The discussion is kept at a conceptual level so as to highlight the
synchronization aspects. The reader is assumed to be familiar with digital
transmission methods at a level comparable with that of the textbooks by

9
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Wozencraft and Jacobs [1], Benedetto and Biglieri [2] and Proakis [3].

2.2.1. Timing Recovery with Baseband Systems

Baseband PAM transmission is used in many commercial applications, for
example in T1 carrier systems, in subscriber circuits for the integrated services
digital network and in coaxial cable or fiber local area networks. In a PAM
system the data stream is encoded into the amplitude values of a sequence of
uniformly spaced pulses. Figure 2.1 illustrates the block diagram of a baseband
PAM receiver. The incoming waveform is composed of signal plus noise:

r(t) =s(t)+ w(t) (2.2.1)

The noise is a white Gaussian process with (two-sided) spectral density N, /2
while the signal is constructed from time translates of a pulse g(#):

s(t)= Y c;g(t=iT -7) (22.2)

In this equation {c;} are data symbols belonging to some M-ary alphabet
{£1,13,....£(M-1)}, g(¢) is the channel response, T is the signaling interval, and
Trepresents the channel delay.

The received waveform is first filtered to remove the out-of-band noise
and then is sampled at T-spaced instants, say t=kT+%, (k=0,1,2,...). The
samples are fed to the detector to generate estimates {ék} of the transmitted
data. In most practical cases the receiver filter is matched to g(t), which means
that its impulse response has the form

gr(®)=g(-t+1) (2.2.3)

where #, is a delay that makes g(—+f,) a causal function (no tails on the
negative time axis). As is done in many theoretical investigations, in the sequel
we set ¢, to zero, for this affects the filter output only by an immaterial delay. In

nt) x() , x(k) a,

»|  FILTER ——-c/c»-—-> DETECTOR [—>»
t
:Sample at

| tmne | KTHT

> RECOVERY

Figure 2.1. Block diagram of a baseband receiver.



Principles, Methods and Performance Limits 11

other words, we write (2.2.3) as

gr()=g(-1) (2.2.4)

Another circumstance which is often met in practice is that the
convolution (t)2 g(t) ® gr(?) satisfies the first Nyquist criterion

HAT) = 1 for k=0 225)
|0 for k%0 -

In the frequency domain, the relationship h(t)ég(t) ® gx () becomes

H(f)=G(f)Gg(f) (2.2.6)

and equation (2.2.4) reads

Gr(f)=G'(f) (2.2.7)

where the superscript “star” means complex conjugate. From (2.2.6)-(2.2.7) it
follows that G(f) and Gg(f) have the same amplitude characteristic:

IG(F)]=|Gr(f)=VH(f) (2.2.8)

One class of Nyquist functions which is extensively used is the raised-
cosine-rolloff characteristic

[ 1-a
T <—=
|] T
1-a 1+a
H(f)=4Tcos?| Z-(]2 —1+a] <|fl< 229
(f)=4Tcos [ 2g 2T ) 7 <lfs—7 (2.2.9)
LO otherwise

where the parameter ¢ is restricted to the interval 0 < <1 and is called the
rolloff or excess-bandwidth factor. The inverse Fourier transform of H(f) is
found to be

sin(t/T) cos(ant/T)
m/T 1-40%?|T?

h(t) = (2.2.10)

For further reference we note that the integral of H(f) on the frequency axis
equals A(0). Thus, for a Nyquist function we have
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(mod T)

Optimum
sampling
phase

Figure 2.2. Maximum eye opening.
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(2.2.11)

Substituting (2.2.9) into (2.2.8) gives a root-raised-cosine-rolloff function

-

G(f) =71

T |f|sl"—“
«/_cos[ (2/71- 1+a)} % <lfl< ”“
0 otherwise

(2.2.12)

Returning to the baseband receiver, the purpose of the timing recovery
circuit (TRC) is to provide sampling instants ¢=kT +7 that minimize the
detector error probability. Roughly speaking, this amounts to sampling the
filter output at the maximum eye opening (see Figure 2.2). Timing errors are
unavoidable, however, and tend to degrade the detector performance, as is now

illustrated.

2.2.2. Degradations Due to Timing Errors

Call P(e]r) the detector error probability conditioned on a fixed samplmg
epoch 7. Physical reasons indicate that this is a concave-up function of 7, with
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P(elt)
p(?)

W )

To
Figure 2.3. Illustrating the shape of P(e|f) and p(%).

a minimum at some abscissa 7 = 7, as shown in Figure 2.3. Thus, an ideal
TRC should issue sampling pulses at t=kT+7,. Notice that 7, need not coincide
with the channel delay 7 in (2.2.2). For example, if the filter impulse response
satisfies (2.2.3) and (2.2.12), then the optimum sampling epoch turns out to be
T=T+t,. From Figure 2.1 it is clear that the sampling phase can be changed, if
needed, by delaying the TRC pulses.

The fundamental feature of a practical TRC is that the separation between
adjacent pulses is not exactly constant but varies slowly in a random manner.
The variations are referred to as timing jitter and are a consequence of the ran-
dom nature of the waveform at the TRC input. Timing jitter may be incor-
porated into the TRC model by describing 7 as a random variable with some
probability density function p(7).

For simplicity assume that 7 has a mean value 7,:

7, = [Ep(?) dt (2.2.13)

Note that this is not a restriction insofar as it can be satisfied by suitably
delaying the TRC pulses. Then, averaging P(e|7f') over 7 gives the average
error probability:

P(e)= TP(eI’?) p(%)dt (2.2.14)

Unfortunately this equation is not very useful as P(e‘f) is only known for
uncoded transmissions [4]-[5]. Nevertheless, as is now indicated, the very form
of (2.2.14) leads to an interesting expression of P(e) involving the timing jitter
variance. A more quantitative analysis is provided by Bucket and Moeneclaey
in [6].
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Write P(e|?) as a truncated Taylor series in that neighborhood of 7, where
p(7) assumes significant values (see Figure 2.3):

P(e|?) = P(elry) + %P(z)(elfo)(f -1,)° (2.2.15)

Here, P®(elr,) is the second derivative of P(e[f) at 7 = 7,,. Note that the term
containing (% - 7,) is missing since, by assumption, P(e|T) has a minimum at
7 = 1,. Then, substituting into (2.2.14) yields the desired relation between P(e)
and the timing jitter variance o2 2E{(% -1,)*}:

P(e) ~ P(eft) + %P‘”(elro)oz (2.2.16)

This relation indicates that P(e) is degraded in proportion to 0'3. The
coefficient P (e|t,) represents the jitter sensitivity of the detector. It turns out
that P®(elr,) increases with the size of the symbol alphabet and decreases
with the signal bandwidth. This is illustrated in the simulations in Figures 2.4-

PAM
M=2, 6,=005T

Symbol Error Probability

EyNy, dB

Figure 2.4. SEP degradation due to timing jitter for binary PAM modulation.
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PAM

L M=4, 6,=005T

Symbol Error Probability
S

0 2 4 6 8 10 12 14 16 18 20 22 24

E/N,, dB

Figure 2.5. SEP degradation due to timing jitter for quaternary PAM modulation.

2.5 which show the symbol error probability (SEP) versus E,/N,for binary
(M=2) and quaternary (M=4) baseband transmission. Note that F, is the
transmitted energy per bit of information and G(f) and Gg(f) are root-raised-
cosine-rolloff functions. The parameter 7 is modeled as a zero-mean Gaussian
random variable with a standard deviation of 0,=0.05T. The lowest curve
indicates the SEP with perfect symbol timing.

An interesting feature of the upper curves in Figure 2.5 is that they exhibit
an irreducible error floor as E,/N, increases. The explanation is that timing
errors generate intersymbol interference (ISI) which, in turn, produces decision
errors even in the absence of noise. It should be noted that this problem is not
specific to the PAM system in Figure 2.5. In fact, an error floor would
eventually show up even with the case in Figure 2.4 if the signal-to-noise ratio
were adequately increased.

2.2.3. Passband PAM Systems

Passband PAM signals are generated by linearly modulating baseband
PAM sequences onto a sinusoidal carrier. Passband PAM signals are efficient
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in power and bandwidth [2]-[3] and are well suited for applications in high-
speed voiceband transmission, digital microwave radio and mobile radio
communications. Phase shift keying (PSK) and quadrature amplitude
modulation (QAM) are two prominent members in this class. Another member
of practical interest is offset quadriphase modulation (OQPSK), which is
similar to conventional quadriphase PSK, except that the bit transitions on the
sine and cosine carrier components are offset in time by the inverse of the bit
rate. The time offset serves to limit the signal envelope variations and thereby
control adjacent channel interferences in microwave radio systems employing
power-efficient amplifiers [7, Ch. 4].
The mathematical model for a modulated PAM signal is

sip(t) = Re{sg (1)e/ ™} (2.2.17)

where f, represents the carrier frequency and sqg(¢) is the signal complex
envelope relative to f,. The expression for sz (f) varies according to whether
we consider non-offset (PSK or QAM) or offset modulation. With the former
we have

sce(t)= Y, c;8(t—iT) (2.2.18)

where g(¢) is the signaling pulse and {c;} are information symbols. In
particular, with QAM modulation c; has the form

¢ =a;+jb (2.2.19)
with a; and b, belonging to {+1,13,...,(@-1)}. Vice versa, with PSK we have
c;=el% (2.2.20)

with «; €{0,2n/M,...,2x(M —1)/M}. Finally, with OQPSK modulation the
signal complex envelope is

scp(t) = Za,.g(t —iT)+ ijig(t —-iT-T/2) (2.2.21)

and a; and b, take values 1.
When the signal is transmitted over a channel with a delay 7, the received
waveform becomes

() = 5;p(t = T) + wip(1) (2.2.22)

where w(¢) is the channel noise. To retrieve the transmitted information it is
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common practice to translate r;(f) in frequency down to baseband
(demodulation) and then operate on the resulting low-frequency waveform. It
can be shown that this procedure, in addition to being convenient from an
engineering point of view, does not degrade the achievable error performance
of the receiver [1, Ch. 7].

As indicated in Figure 2.6, the demodulation is accomplished by
multiplying r(¢) by two local references 2cos(2af,t+¢,;) and
—2sin(2nf,;t+¢;) and then feeding the products to low-pass filters to
eliminate the frequency terms around f, + f,; . In general, the local frequency
f.. is not exactly equal to f, and the difference VA —f, is referred to as
carrier frequency offset. Assuming that the filters have a unity frequency
response for the low-pass signal components and performing standard
calculations [2]-[3] it can be shown that the filter outputs r,(¢) and 7,(f) may
be represented by a single complex-valued waveform r(t)érR(t) + jr;(¢) given
by

r(t) = s(t) + w(t) (2.2.23)
with
s(1)2e/ PO (1 ~1) (2.2.24)

In these equations 6 is a phase shift equal to -(2af7+¢;) and
w(t) = wg(t) + jw,(¢) is low-pass noise. Also, s(f) is given by

st = ej(z’"’""e)ZCig(t -iT-1) (2.2.25)
i

with non-offset modulation and

0]
—+@—> LPF

2cos(@, t +¢;)

rip(f)

=2sin(@,; +¢;)

n(®
—+(§)-—> LPF  —>

Figure 2.6. Demodulation operation.
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PSD of wg(t) and w,(r)

PSD of s(f) ‘V Y
| Ny N
-B 0 B f

Figure 2.7. Signal and noise spectral densities.

s(t) = ej(2m+9){2 a;g(t—iT—7)+j Y bgt—iT-T/2- r)} (2.2.26)

with offset modulation.

As for w(t), the following remarks are useful. Suppose that the channel
noise has a constant (two-sided) power spectral density (PSD) N,/2 over the
RF signal bandwidth. Then it can be shown that the noise components wg(t)
and w;(¢) are independent Gaussian processes with the same PSD S,,(f)= N,
over the signal bandwidth +B (see Figure 2.7). The shape of S, (f) beyond
1B is irrelevant to the detection process because further processing of r()
always involves some filtering that tends to cut off the out-of-band noise.
Accordingly, in the sequel we take S, (f)= N, over the entire frequency axis,
which amounts to saying that we model wg(t) and w,(t) as white Gaussian
processes. A more profound justification to this approach relies on the
application of the reversibility theorem and can be found in the book by
Wozencraft and Jacobs [1].

2.2.4. Synchronization in PAM Coherent Receivers

It is clear from (2.2.25)-(2.2.26) that the baseband signal contains
unknown parameters (v,0,7) in addition to the data symbols. As is now
illustrated, knowledge of these parameters is vital for reliable data detection.
Let us put aside timing as the subject has already been discussed in Section
2.2.2. The problem with v and @ arises from the presence of the multiplicative
distorsion ¢/@™*9_ To give an example, consider non-offset modulation and
imagine what would happen if the baseband waveform r(t) were matched
filtered and then passed to the detector without any distortion compensation.
For simplicity assume that the convolution h(t)é g(®)® g(—1) is Nyquist and
the frequency offset v is very small compared with the signal bandwidth so
that the matched-filter output can be approximated as
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x(t)= /™Y ch(t—iT - 1)+ n(r) (2.2.27)
i

where n(t) is the noise component. Then, sampling x(¢) at kT +7 would yield
the following detector input:

x(k) = ¢, /ET+40) 1y gy (2.2.28)

where notations of the type x(k)2x(kT + ) have been used. Clearly, the signal
components would be rotated away from their correct positions with disabling
effects on the detection process.

The above discussion points out the necessity of compensating for the
distortion e/™*6) and estimating the timing epoch 7. A possible method is
illustrated in the block diagram of Figure 2.8. Here, the blocks indicated as
frequency-, phase- and timing-recovery provide estimates v, 6 and 7 of the
synchronization parameters. It should be stressed that this receiver
configuration has only illustration purposes. For example, timing can be
derived from r(#) (prior to frequency correction) or from the matched-filter
output (after phase correction). Similarly, phase correction can be performed
after matched filtering. Finally, each synchronization block may contain some
kind of prefilter to hold the noise level within bounds.

The compensation for the distortion e/?™*9) is performed in two steps.
First, the received waveform is multiplied by e~/2*", which amounts toa
counter-rotation at an angular speed V. Next, the product r(f)e™/*™ is
multiplied by e, Bearing in mind equatlon (2.2.24), it is clear that perfect
distortion suppression would require V= v and 6=6.1In practice, vV does not
exactly coincide with v and the task of eliminating the residual distortion
e/27v=0+9] is entrusted to the phase recovery circuit (PRC). This is feasible if
the frequency error v -V is sufficiently small so that the angle 27(v— V)t + 6

J mmine |
~| RECOVERY !
|
|
‘
r(t) xt) Y, x(k) ¢,
MATCHED |/ 5| DETECTOR [—>
Sample at
kT+t
FREQ. | | PHASE
RECOVERY RECOVERY

Figure 2.8. Block diagram of a coherent receiver.
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is approximately constant over the measuring time T; of the PRC. In such
conditions, in fact, the PRC makes periodic measurements of 27z(v — f/)t+ 6
(with period T;) and compensates for them by counter-rotating r(t)e™’ 22t

2.2.5. Degradations Due to Phase Errors

Assuming for simplicity that perfect frequency and timing estimation has
been achieved, one important question is to establish the degradations in error
probability resulting from inexact phase estimates. With uncoded modulation
the following analytical approach may be pursued. .

The first step is to model the phase error ¢26 -6 as a random variable
with some probability density function p(¢). A Gaussian shape for p(¢) is
reasonable in most cases if the phase errors are not too large (as happens in a
well designed system). So, letting ¢, and 0'; be the mean value and the
variance of ¢, we have

1 ~(9-¢,)*[20}
= m 2.2.29
P@) c¢«/27r ¢ ( )

Note that ¢, and O'z depend on the operating conditions of the synchronizer
and can be derived by either analytical or experimental methods.

The second step is to compute P(el¢), the symbol error probability
conditioned on a fixed value of ¢. This is often the most demanding task and is
illustrated in Exercise 2.2.1 for quadriphase PSK (QPSK). Finally, the average
error probahility is evaluated by numerical integration as

P(e) = JP(e|¢)P(¢)d¢ (2.2.30)

Figure 2.9 illustrates P(e) as a function of the ratio E /N, (energy-per-bit
to noise-spectral-density) for QPSK and some values of 0. It is assumed that
¢,, =0 and we have a Nyquist channel. With larger values of g, we see that
the curves exhibit a floor as E,/ N, increases. This is so because occasional
large phase errors take the samples x(k) away from the correct decision zone
even in the absence of noise.

Exercise 2.2.1. Compute P(el¢) for uncoded QPSK making the following
assumptions: (i) transmit and receive filters are root-raised-cosine-rolloff
functions; (ii) frequency and timing references are ideal (V=v and T=1).

Solution. Bearing in mind that V = v, from (2.2.23) and (2.2.25) we derive
the following expression for the input to the matched filter (see Figure 2.8):
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Figure 2.9. SEP degradations due to phase errors with QPSK modulation.

rt)=e?Y cgt—il ~1)+w'(1) (2.2.31)

with ¢26 -6 and
Ww(t) = w(t)e 120 (2.2.32)
The filter output is the convolution of r'(f) with g(—f). Hence

x(t) =€y ¢t —iT - 1) +n(r) (2.2.33)

with h(H)2g() ® g(~t) and

n(t)4w'(t) ® g(-t) (2.2.34)

The sampling times are t=k7+7. Thus, as h(f) is Nyquist, from (2.2.33) we
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have
x(k) = c,e’® +n(k) (2.2.35)

As expected, there is no intersymbol interference and the signal component is
rotated by ¢. The QPSK symbol alphabet is {e/™*, ¢/3™4, /54 ¢/T74) a5 is
illustrated in Figure 2.10 where circles represent alphabet elements while dots
are their rotated versions. The four quadrants are the detector decision regions.
In particular, the receiver declares that ¢™ has been transmitted when x(k)

belongs to the first quadrant.
To get P(el¢) we first compute the probability of correct detection, P(cl@),
and then derive P(elg) as

P(elp) =1- P(c|p) (2.2.36)
In doing so we may assume that the symbol ¢/™ has been transmitted since,
for symmetry, the probability of correct detection is the same with any symbol.
Letting n(k) = ng(k) + jn,;(k), from (2.2.35) we have
x(k) = cos(@ + m/4) + ng(k) + jlsin(@+ =/ 4) +n, (k)]  (2.2.37)
and the probability that x(k) belongs to the first quadrant is given by

P(clp) = Pr{cos(¢ + 7/ 4) + ng(k) 2 0; sin(@+ 7w/ 4)+n; (k) 20}  (2.2.38)

To proceed further we need the statistics of ng(k) and n,(k). To this end we

L.
>

x x(k)

\J

Figure 2.10. QPSK constellation.
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consider the complex-valued random process w'(t) in (2.2.32). It is easily seen
that, since w(f) is white, so is w'(¢), with the same PSD. It follows that ng(k) and
n,(k) are independent and zero-mean Gaussian random variables with variance

0p =Ny TH(f)df (2.239)

where H(f) is the Fourier transform of h(f). As H(f) is Nyquist, the integral in
(2.2.39) is unity (see (2.2.11)) and (2.2.39) reduces to

o2 =N, (2.2.40)
It is desirable to express 0'3 as a function of the signal-to-noise ratio

E /N,. Under the previous assumptions the signal energy is E =1/2 (see
Appendix 2.A.2) and from (2.2.40) we get

E__L (2.2.41)
N, 20,
Hence
o= L (2.2.42)
2E,/N,

At this stage the probability in (2.2.38) can be written as

I e [ )

n o-n

with

Q(x)4

L PR A (2.2.44)
7[ X

Finally, substituting (2.2.42)-(2.2.43) into (2.2.36) yields

Pleg) = Q(J’i (¢+n/4>] Q(\/i sm(¢+n/4)]
el

in(¢p+7/ 4)) (2.2.45)
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For example, with E,/N,=10 dB and ¢=5°, it is found P(elp =5°)=
2.3x107. With a zero phase error this same probability would be achieved
with E,/Ny=9.68 dB. Thus, a phase error of ¢ =5° entails a 0.3 dB loss in
E,/N,. -

For ¢=0 equation (2.2.45) reduces to the well-known formula for the
symbol error probability with a perfect phase reference [2]-[3]:

Plep=0)= ZQE \E,—: ) - Qz( %) (2.2.46)
0

Exercise 2.2.2, Let ¢ be a random variable with zero mean and variance
0';. Assume o$<<1 and E,/N, large enough so that the last term in (2.2.45)
may be neglected (as its factors are much less than unity). Accordingly, P(el¢)

becomes
P(elp) = Q( 2E, cos(¢+ n/4)) + Q[ Z—Eisin(q) + 7:/4)) (2.2.47)
\} N, \/ N,

Compute the average symbol error probability P(e).
Solution. Expanding (2.2.47) into a power series about ¢=0 and keeping
only the terms up to the second power yields

P(elp) = 2Q[J%) - % (1 + %0] oV [ %)«pz (2.2.48)

where QV(x) is the derivative of Q(x)

0V (x) = —\/—;—;e"‘z/z (2.2.49)

Averaging P(el¢) with respect to ¢ gives the result sought:

- E | |E [ E o0 B |42
P(e)~2Q[ \/’; ] m [1+NOJQ ( NJq,, (2.2.50)

We see that the increase in error probability due to phase errors is proportional
to 0';. The reader should be careful when using (2.2.50) as it has been derived
assuming very small phase errors. In fact, the equation gives accurate results
only for o, on the order of a few degrees.



Principles, Methods and Performance Limits 25

Exercise 2.2.3. Consider again the QPSK communication system
described in the previous exercise but assume that an ideal phase reference is
now available for demodulation. Under these conditions a given error
probability can be achieved at a reduced signal energy. The saving in energy
represents the degradation in signal-to-noise ratio due to phase errors. Compute
such a degradation as a function of 0';.

Solution. Call E] the signal energy that is needed to achieve P(e) in the
absence of phase errors (0'5 =0). From (2.2.50) we have

0

P(e) = ZQ[ f;’ J (2.2.51)

Expanding the right-hand side into a Taylor series yields

_ E, | (E-E) o [E
P(e) = 2Q( N, J+_—_\/-E:Ng (0] ( Noj (2.2.52)

and comparing with (2.2.50) results in the following relation between E, and
E.:

s

E_|_[1+E o2 (2.2.53)
E N,

;)

The signal-to-noise degradation is defined as

D2-10- loglo(%-) dB (2.2.54)

§

Thus, making the approximation log,,(1 —¢€) = —0.43¢ and collecting (2.2.53)-
(2.2.54) produces the desired result

E | 2
D=431+==* o 2.2.55
i gass

For example, with 6,=5° and E/N,;=10 dB, we have D=0.36 dB.

2.2.6. Synchronization in PAM Differential Receivers

Differential detection is used in applications where simplicity and
robustness of implementation are more important than achieving the optimum
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performance of coherent receivers. Differential detection has mostly been
applied to PSK modulation but its extension to QAM formats is possible and
has been discussed in [8]-[9].

In an M-ary PSK differential detection system the information is
represented by a sequence {J,} whose elements take values from the set
0,2/ M,...,2n(M - 1)/ M}. The sequence is first differentially encoded as

o =0y +6, mod 2rm (2.2.56)

and then is mapped into channel symbols ¢, = e/** which satisfy the recursion
¢ = Cp_ie* (2.2.57)
At the receiver side the data {6, } are retrieved without any carrier phase
knowledge, as indicated in Figure 2.11. Let us concentrate on the samples from
matched filter. Paralleling the arguments leading to (2.2.28) it is found that

x(k) = c,e JRRAVUT4)+0] 4 ) (2.2.58)

where Av2v -7 is the residual frequency error. Thus, the detector input
2(k)2 x(k)x* (k — 1) results in

2(k) = ¢, c; 1™ + N(k) (2.2.59)

where N(k) is a noise term. Alternately, bearing in mind (2.2.57) we have

2(k) = e/% 2™V 4 N(k) (2.2.60)
o TMmne |
”| RECOVERY ]
|
|
|
v
{0)] | marcreD x(1) / x(k.) _
| FLTER > > To
—2mvt SampIeAat detector
e kT+7
FREQ. P » ()
RECOVERY

Figure 2.11. Block diagram of a differential receiver.
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which has the same form as the detector input in a coherent receiver (see
(2.2.35))

x(k) = /% e/ + n(k) (2.2.61)

except that N(k) has a larger variance than n(k) (see [2]-[3]) and the rotation
27AVT replaces the phase error ¢. No trace of the carrier phase is present in
(2.2.60), which means that the detector performance is phase insensitive. In fact
it is only influenced by the frequency-induced rotation 27AVT.

Figure 2.12 illustrates the degradations in symbol error probability due to
imperfect frequency recovery. Timing is assumed ideal and the overall channel
response is Nyquist. Also, the frequency error Av is constant and equal to a
fraction of the symbol rate. The lower curve in the figure represents the
performance of a coherent receiver with ideal carrier recovery. It is worth
noting that the horizontal distance between the coherent curve and the lowest
differential curve is about 2.3 dB. This is the minimum loss incurred by using
differential rather than coherent detection. Additional losses are due to
imperfect frequency compensation.

1 T T T T T T T T T T T T T T T T
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Differentiatl | DQPSK
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ool el
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Symbo! Error Probability

T

|

E/N, dB

Figure 2.12. SEP degradations due to uncompensated frequency offsets.
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2.2.7. Synchronization in CPM Systems

Continuous phase modulations (CPMs) are used in satellite
communications, digital mobile radio and low-capacity digital microwave radio
systems. One remarkable feature of CPM signals is that they have a constant
envelope and, therefore, can be amplified without distortion by low-cost
nonlinear devices operating near the saturation point. No expensive com-
pensation for the nonlinearity is needed and no extra DC power is wasted to
support a less efficient linear amplifier.

The complex envelope of a CPM signal is given by [10]

scp(t) = f%E- /v (2.2.62)

where E; is the signal energy per symbol, T is the symbol period, aé{a,-} are
data symbols from the alphabet {£1,13,..,£(M-1)} and Y(,00) is the
information-bearing phase

y(t,0)=2mh Y o,q(t—iT) (2.2.63)

The parameter 4 is the modulation index and is the ratio of two relatively prime
integers

h=— (2.2.64)

Also, q(?) is the phase response of the modulator and is normalized in such a
way that

_jo =0 22.65
D=2 17 (2.2.69)

Its derivative dg(r)/dtg(t) is the frequency response of the modulator. It is
clear from (2.2.65) that the frequency response is limited to the interval
te (0,LT), where L is an integer called the correlation length. Modulation
formats with L=1 are said to be of full-response type whereas those with L>1
are of partial-response type.

By choosing different frequency responses and varying the parameters h
and M, a great variety of CPM schemes may be formed. For example,
minimum shift keying (MSK) corresponds to h=1/2, M=2 and a rectangular
frequency response
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= 0 t<0, t>T 2266
8= J2T) O0<t<T (2.2.66)

Alternately, Gaussian MSK (GMSK) is obtained by letting h=1/2, M=2 and
taking g(#) as the convolution of (2.2.66) with a Gaussian shaped pulse.

As is now explained, a CPM modulator may be viewed as a trellis
encoder. For this purpose let us rearrange (2.2.63) as follows:

vt )it C,o)+®,, KkT<t<(k+1)T (2.2.67)
with
k
n(t,C. e )22mh Y a,q(t—iT) (2.2.68)
i=k-L+1
C A0 pgr s 0220 y) (2.2.69)
k-L
@, &7h Y o, mod2r (2.2.70)

i=0

In these equations the quantities C, and ®, are called the correlative state and
the phase state of the CPM signal at the k-th step. From (2.2.67) it appears that
w(t,a) is uniquely defined by the present symbol ¢,, the correlative state, and
the phase state. Assuming independent symbols, from (2.2.69) it is clear that
there are MX™! correlative states. Also, it can be shown [11] that @, takes P
distinct values. It follows that y(z,a) has a total of P M states, say
Sk é(C,c,<I>k), and the CPM modulator may be viewed as the cascade of a trellis
encoder with states {Sk} and a mapper generating the phase elements (2.2.67).

A maximum likelihood (ML) receiver takes the form of a Viterbi
algorithm which searches for the most likely path in the modulator trellis. The
input to the baseband receiver has the form

r(t) = s(t) + w(t) (2.2.71)

with
s()2e/ @0 (1 -1) (2.2.72)
Figure 2.13 illustrates the receiver block diagram [10]. After frequency

compensation, the received waveform is fed to a bank of M L filters with
impulse responses
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Sample at

TIMING k+1) T4 D4
RECOVERY _l %
A
VA BRANCH | {4, Q
() _| FLTER {2 VETRIC {"1 VITERBI | ~*-DD
- BANK COMPUT. ALGOR.
e-)2ﬂvt
N -0
FREQ. e
RECOVERY
PHASE
RECOVERY

Figure 2.13. Block diagram of the ML receiver.

@1 g<r<T

() é{(e) (2.2.73)

elsewhere

with (I=1,2,....M%). Here, (C,a")=(@Y),,,....a®, o) is the generic
realization of (@/_p,;s..,0_;,0) and 1;(t,C", ) is expressed as

0
(. CP.af’)y=2mn Y aiq(t-iT) (2.2.74)

i==L+1

The filter outputs are sampled at (k+1)T+7 and are used to produce the
statistics

F4+(k+1)T L
Zy(Cpo, D)2 [r(p)e eI %y (2.2.75)
T+kT

for the branch metric computation.

The Viterbi algorithm operates on the modulator trellis as follows. There
are M branches stemming from a given node S, =(C,,®,), one for each
possible transmitted symbol «, . The metric

Ak(Ek,&k)éRe{zk(Ek,dk,f)e‘f‘mk’} (2.2.76)

is assigned to the branch associated with &, and the algorithm searches for the
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Figure 2.14. Effect of timing errors with MSK modulation

best path in the trellis. Decisions &;_p, are delivered with a delay DD relative
to the current time k.

Error probability degradations due to synchronization imperfections are
difficult to assess analytically and, in fact, computer simulations are the only
viable route. As an example, Figure 2. 14 shows the sensitivity of the error
probability to a constant timing offset AT27 —%. Carrier recovery is assumed
ideal (V=V and 6 =6) and the modulation is MSK. As is seen, MSK is quite
tolerant of timing errors. For example, a A7 as large as 20% of the symbol
period produces a signal energy loss of only 0.5 dB.

2.2.8. Synchronization in Simplified CPM Receivers

The foregoing discussion indicates two possible obstacles to the imple-
mentation of an ML receiver. On the one hand, the modulator trellis may have
a very large number of states (P M""), which implies an intensive com-
putational load for the Viterbi algorithm. On the other hand, the number of
filters in the filter bank (M) may be enormous, especially with partial response
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and/or multilevel schemes.

Although several methods have been discovered to alleviate these
difficulties (see [10], Ch. 8), most current commercial systems use suboptimum
receivers. The simplest receiver employs a limiter-discriminator [12]-[14], as
indicated in Figure 2.15. The input is

rip(t) = Refsce (t = 1)e/ %0} 4w (1) (2.2.77)

where w(t) is thermal noise (restricted in frequency to the signal bandwidth)
and s.z(?) is the signal complex envelope:

scp(t) = /% eV (2.2.78)

As the signal component from the discriminator is the derivative of the phase
y(i-1,00,ie.,

j“‘l’(_id‘tf’_“l = 27hY o g(t —iT - 7) (2.2.79)
it is clear that the output from the low-pass filter is a PAM signal embedded in
noise:

x(®) = Zaih(t —iT = 7T)+n(t) (2.2.80)

In this equation A(t) is the filter response to g(¢) and n(f) is a noise term. Thus,
data detection can be performed by sampling x(f) at the symbol rate and
making decisions in a threshold detector. The samples must be taken at the
maximum eye opening which occurs at some instants kT +7+¢,, with ¢,
depending on the actual shape of A(r).

Other forms of suboptimum receivers are based on differential methods or
symbol-by-symbol coherent detection (as opposed to ML coherent detection
considered in the previous section). For simplicity we shall concentrate on

e x(%) o
IF k
—| LMTER |—»| DISCRIMIN. —>] L‘g"’l‘fj;gss /| DETECTOR |—3
A
¥ !
| sample at
TIMING | j kT+7+1¢,
RECOVERY

Figure 2.15. Block diagram of the limiter-discriminator receiver.
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binary modulation with index h=1/2, which is referred to as MSK-type modu-
lation. One feature of this format is that the exponential ¢/¥**® in (2.2.62) can
be approximated as a baseband PAM waveform [15] of the type

VD =Y g0 ho(t—iT) (2.2.80)
i

where the parameters a,; are called pseudo-symbols and are related to the data
{ag,0y,...,0;} by the relation

ag; = exP[J%Z%) | (2.2.81)
1=0

Also, the pulse hy(¢) depends on the phase response g(z). In particular, equation
(2.2.80) holds exactly for MSK signaling, in which case h,(?) is given by

sin(——nl) 0<LL2T
hy(t) =" 2T

0 elsewhere

(2.2.82)

Using the above notations it is readily shown that the demodulated
waveform at the receiver input takes the form

r(t) =s(t) +w(r) (2.2.83)
where

s(t) = eSO gy ho(t-iT - 1) (2.2.84)

and we have dropped the coefficient /2E, /T in the right-hand side of (2.2.84)
for the sake of simplicity.

The strong similarity between (2.2.84) and the corresponding expression
for linear modulations can be exploited when looking for detection algorithms.
One option is to adopt a differential scheme like that in Figure 2.11. The first
part of this diagram is redrawn in Figure 2.16 with two important changes.
First, the low-pass filter (LPF) is no longer matched to hy(f), as one might
expect. Choosing a matched filter, in fact, would result in a badly shaped pulse
h(t) at the LPF output and a high level of intersymbol interference. This
problem has been discussed by Kawas Kaleh [16], who has provided design
criteria for the LPF. The second change is in the time shift 7, of the sampling
times. Minimum intersymbol interference is achieved by suitably selecting ¢,
as a function of the shape of A(z).
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Figure 2.16. Block diagram of the differential receiver.

The differential detector operates on the samples x(k) according to
&, = sgn[Im{x(k)x" (k- D] (2.2.85)

where sgn[z] equals 1 according to whether z is positive or negative. To see
how this rule works, assume ideal frequency and timing recovery and neglect
intersymbol interference and noise. Under these conditions x(k) takes the form

x(k) = h(0)e’%ay , (2.2.86)
Hence
x(k)x* (k- 1) = K2 (0)e/™/? (2.2.87)

from which (2.2.85) is readily understood.

Symbol-by-symbol coherent detection may be used as an alternative to
differential methods to improve error performance [17]-[19]. Clearly, the price
to pay lies in building the phase recovery system, as indicated in Figure 2.17.
In general, the LPF is not matched to hy(t) (for the same reasons given
previously). One important exception occurs with MSK signaling, in which
case optimum performance is achieved with an LPF impulse response that is
exactly a half-sinusoidal pulse of duration 27 (see (2.2.82)). Design criteria for
the LPF are discussed in [10], [17] .

The detection process relies on the fact that the information symbols
7; = 1 are differentially encoded into modulation symbols ¢; = %1 as follows:

o =0, (2.2.88)



Principles, Methods and Performance Limits 35

o TMNG | _
RECOVERY 1
|
I
I
v
no x(1) / x(k) y(k)
> LPF o ’ >
- Sample at _i6 To
~J2 vt N J detector
¢ kT+T+t,
FREQ. PHASE
RECOVERY RECOVERY

Figure 2.17. Block diagram of the coherent receiver.

Decisions are derived from the derotated samples y(k) = x(k)e™ 6, Actually, the
detector computes the real-valued statistic

sgn{Re[y(k)]} k=o0dd
k)2 2.2.89
(k) {sgn{lm[y(k)]} k =even ( )
and makes decisions according to (see Exercise 2.2.4)

M ==2(k)z(k -2) (2.2.90)

Figure 2.18 shows error probability degradations due to phase errors in an
MSK system. Frequency and timing recovery are ideal and the LPF is a half-
sinusoidal pulse of duration 27. Phase errors are modeled as outcomes of a
Gaussian random variable with zero mean and standard deviation o,. We see
that the error curves exhibit a floor as o, grows large. Comparing it with
Figure 2.9 we see that MSK is less sensitive to phase errors than QPSK.

Exercise 2.2.4. Explain the decision rule (2.2.90) making the following
assumptions: (i) synchronization is ideal; (ii) noise and intersymbol in-
terference are negligible; (iii) pulse h(z) is positive at the origin.

Solution. Under the assumed conditions the derotated samples y(k) have
the form

y(k) = h(0)ay ; (2.2.91)

Thus, using (2.2.81) and keeping in mind that #(0)>0 it is readily found that
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Figure 2.18. SEP degradations due to phase errors.
&
sgn{Re[y(k)]} = cos EZa, k = odd
=0
&
sgn{Im[y(k)]} = sin —52(1, k=even
=0
On the other hand

k k=1
cos[EZa,) = cos[zak +£2a,]
2i2 2 2i%
k-1
¥
=—q;sinj — )

and, similarly,

Chapter 2

(2.2.92)

(2.2.93)

(2.2.94)
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k k-1
R .| T
Sln(—zal] = Sln[—ak + —2&,)
2 1=0 2 2 =0

T k-1
=, COS —Za, (2.2.95)
212

Putting these facts together and bearing in mind (2.2.89) yields

z2(k)z(k-1) k=even

% {—Z(k)z(k -1) k=odd (2.2.96)

from which it follows that

0y =—z(k)z(k - 2) (2.2.97)

for any integer k (either even or odd). On the other hand, equation (2.2.88) may
be rewritten as

OOy =Ty (2.2.98)

Comparing it with (2.2.97) we conclude that (2.2.90) provides correct decisions
when synchronization is ideal and both noise and intersymbol interference are
negligible.

2.3. Maximum Likelihood Estimation

The preceding section has illustrated the synchronization functions. No
details have been given on particular circuits as they will be thoroughly
discussed in later chapters. For now we are only concerned with general
principles and, in this context, one important question that comes to mind is
whether there are general methods to derive synchronization schemes. Recent
literature [20]-[22] indicates that most of the existing synchronization algo-
rithms have been discovered through heuristic arguments or by application of
ML estimation methods. As the former approach can hardly be expounded in a
structured manner, in the following we concentrate on the latter and provide a
short review of ML methods. Our treatment is particularly focused on the
estimation of synchronization parameters. The reader interested in more
general applications is referred to the textbooks by Van Trees [23] and Kay
[24].

ML parameter estimation requires different mathematical tools, depending
on whether the observation is a continuous-time waveform or a sample se-
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quence. At first glance the first case looks more natural, as physical signals
have a continuous-time support. On the other hand the second case is
particularly tailored for digital receiver operations. In the sequel we first
illustrate the continuous-time approach and then we extend the results to
sample sequences.

2.3.1. ML Estimation from Continuous-Time Waveforms

For the time being we concentrate on passband signals but the discussion
will later be adapted to baseband transmission. From the previous section it
appears that the signal component s(¢) is a completely known function of time,
except for a set of parameters . This set may include v, 6, T and the data
symbols, but not necessarily all these things at once. For example, if a training
sequence is transmitted, the symbols are known and do not appear in 7. Also,
7 does not contain 7 if clock information is provided to the receiver through a
separate channel. Whatever the case, to stress the signal dependence on
unknown parameters we temporarily adopt the notation s(t, ) in place of s(2)
and rewrite the baseband waveform as

r(t) = s(2,Y) +w(r) (2.3.1)

Now, suppose we are allowed to observe r(f) on a given interval 0 <t < T,
and are requested to provide an estimate of ¥ based on this obsevation. What
can we do? The most popular approach to this problem [23]-[24] is based on
the ML principle which, in rather intuitive terms, may be expressed as follows.
Call ¥ a hypothetical (trial) value of ¥ and consider the process

2(t)2s(2,7) + w(?) (2.3.2)

Notice that r(f) is a realization of #(¢) when ¥ =Y. In general, the realizations
of #(¢) resemble r(t) to various degrees, depending on how close s(¢,%) is to
s(t,7) and, ultimately, on the “distance” of ¥ to . The ML principle suggests
computing the estimate of ¥ as that ¥ that maximizes the “resemblance” of r(¢)
to the realizations of #(z).

A more precise formulation of the ML principle is now given in geometric
terms. Denote by # and r the vector representations of #(¢) and r(¢) on a
complete orthonormal basis {¢,.(t)} and call p(#|¥) the pdf of & for a given 7.
Figure 2.19 shows two functions p(#|¥) corresponding to ¥=% and ¥=7%,.
We see that

p(e=rlf) < p(e=rlp) (2.3.3)
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po%)
p(ei1)

*y

Figure 2.19. Illustrating the ML principle.

What is the physical meaning of this inequality? An answer is found bearing in
mind that, when s(¢, ¥) is transmitted, the probability that ® lies in a volume
de around r equals p( =r|¥)de. Thus, if many observations of #(r) are made
with either ¥=% and ¥=%,, the event { # is close to r} will turn up more fre-
quently with ¥= ¥, than with ¥= %,. Accordingly, we say that ¥, is more like-
ly than % (when r is observed).

Extending this idea to the case where 7 takes multiple values, it is readily
concluded that the most likely value of 7 is that ¥ where p(® =r|¥) achieves a
maximum. The location of the maximum is referred to as the ML estimate of ¥
and is customarily indicated as

Yoar (r) =arg{m;1x{p(r|7)}} (23.4)

where the shorthand notation p(r|'jr)é p(z= r|’}’) has been adopted.

In many synchronization problems the ML principle is formulated in a
slightly different manner to reflect the fact that we are interested only in some
components of ¥, say A. As mentioned earlier, in general ¥ contains both syn-
chronization parameters and information symbols. Now, suppose we are only
interested in some synchronization parameters A (perhaps just one) while we do
not care about the remaining (unwanted) components of ¥, say u. Then, what
is the ML estimate of 4 ?

Let A and @ be trial values of A and u and assume that u can be modeled
as a random vector with a pdf p(x) independent of A. Then, application of the
total probability theorem yields

p(rid) = [ p(rly)pti)dii 235)
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Hence, with the same arguments used above we conclude that the ML estimate
of A is that A that maximizes p(r|A):

Ay ()= arg{miax{ p(r|i)}} 2.3.6)

Some remarks about this procedure are of interest. In the following
chapters we shall normally be concerned with the case in which A4 is a scalar,
A, which means that we shall consider the independent estimation of each
synchronization parameter individually, rather than the joint estimation of all
parameters simultaneously. Independent estimation is much easier to visualize
and generally leads to more robust estimation schemes. Then, a problem of
logical consistency arises insofar as the method leading to (2.3.6) requires that
A be a fixed quantity of unknown value whereas the other parameters (in
particular, the synchronization ones) be random. How can we get around this
contradiction? There are two options: (i) assume that v, 8 and 7 are all
nonrandom and consider the averaging operation (2.3.5) as an ad hoc approach;
(i) turn a blind eye to the above contradiction and take (2.3.5) as an application
of the total probability theorem. To keep the flavor of ML methods in the
following we adopt the latter approach.

Two drawbacks arise in the application of (2.3.5). One is that the vector
representation of r(t) has infinite dimensions (see Van Trees [23], Ch. 5) and,
in consequence, the functions p(r|¥) and p(r|A) are not well defined. Luckily,
this obstacle can be overcome by introducing the concept of likelihood
function, as is now explained. The other difficulty is concerned with the
averaging operation in (2.3.5). In most practical cases, in fact, the integration
cannot be performed analytically and one must resort to approximations which,
inevitably, lead away from the true ML estimates. Here we illustrate the notion
of likelihood function, while we defer approximation issues to later chapters.

Letr, #, s(¥) and w be vector representations of r(t), #(t), s(t,7) and w(t)
over a complete orthonormal basis {¢i(t)} and denote by a prime their
truncated versions (to N components):

r’é(’i”é"'ﬂrN) (2.37)
' E(n.n,..0) (2.3.8)
SDEY5® 5P sn(P)] (23.9)

W AW, Wy, Wy) (2.3.10)
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In particular, the k-th component of 7' is given by [23]
T
A
n2 [rng (2.3.11)
0

The probability density p(s’ |'7) is computed as follows. From (2.3.2) we get
=5'(P+w’ (23.12)

Next, separating w(t) into real and imaginary parts

Wity 2 wi(t)+ jw (1) (2.3.13)
and using (2.3.11) produces
Wy = Wee + JWy 2.3.14)
with
T
Wwee = [ W9, (Dt 2.3.15)
0
Ty
wi = [w (O (Dt (23.16)
0

Also, since wg(f) and w(r) are independent Gaussian random processes with
spectral density N, with the arguments of Appendix 2.B it is found that

E{kaw,,,} =0, kn=12,...,.N 2.3.17)
N, k=n
E{WRkWRn} = E{wlkwln} = { 00 otherwise (2.3.18)

Putting all these facts together and recognizing the Gaussian nature of the
variables {wp, } and {wy,} leads to the desired result

- N l"k - sk('}')|2
, -_— — — ————————
p(’[p) = 3 exp{ 2N,

1 & .
=Cy CXP{—WZI@C -sk(r)lz} (2.3.19)

0 k=1
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with
Cy 2(2N,) ™" (2.3.20)

To compute the ML estimate iML(r) we would be tempted to proceed as
follows: (i) make N tend to infinity in (2.3.19) so as to get p(s|7); (ii) set #=r
in the limit; (iii) substitute the result into (2.3.5) to produce p(r|d); (iv) solve
equation (2.3.6). Unfortunately, convergence problems prevent a direct
application of this method since the sum in the second line of (2.3.19) diverges
as N increases (see Exercise 2.3.1). To sidestep the obstacle we shall exploit the
fact that, if f(/'l) is an arbitrary function and we look for the location of its
maximum, then we can divide f A by any positive quantity independent of 1
without affecting the result.

To proceed, let p(r'|A)2 p(e’ =1’

p(ri) = [ pr'[pp(a)di 2321)

Based on the previous observation, the maximum of p(r’|i) can be sought by
replacing p(r’|7) by

A(r’li')é%p(r’lif) (2.3.22)

where B is any positive constant independent of ¥. In other words, maximizing
(2.3.21) is equivalent to maximizing

A@|D4 [ MG pptdi (2.3.23)

In particular, if we choose

B=Cy exp{ z[rkI } (2.3.24)
0 k=1
and note that
Ine = e =[ff +lse (P - 2Re{nss (P} (23.25)

then equation (2.3.22) becomes
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"N 1 u *~ 1 ul ~ 2
AP =exp]— > Refns; (M} - =— Y s ()] (2.3.26)
Ny 31 2N i1

One important feature of this formula is that the argument of the exponential
converges as N tends to infinity [23] (as opposed to the argument in (2.3.19)
which diverges). .

Now, consider the location of the maximum of A(r’|2,)

ir)= arg{mgx{A(r'li)}} (2.3.27)
A

Clearly, A(r’) is only an approximation to 4, (r) since the function A(r’|A)
does not incorporate all the information contained in r(f). The approximation
improves, however, when N increases and in fact the limit of A(r’) as N tends
to infinity provides the exact value of 4, (r). On the other hand, we have [23]

Ty
lim iRe{rk si (P} = [Re[r(n)s’ . 7)}dt (2.3.28)
k=1 0

N Ty
lim Y fs (7 = [t dr
T7k=1 0 (2.3.29)

so that the limit of A(r’|¥) takes the form
1% 1 R 2
AGrly) = expi— [Re{r()s” (t, P}de - —— [|st. P dep (2.3.30)
No 3y 2N, 3

The corresponding limit of A(r'|/'~l) is obtained by averaging A(r|y) over &
(see (2.3.23)), i.e.,

INGDE ]:A(rli/)p(ﬁ)dﬁ (2.3.31)

A

and A, (r) is computed as

Ay (r)= arg{n?x{A(rPrl)}} (2.3.32)

Functions A(r]¥) and A(r]i) are referred to as likelihood functions.
Comparing (2.3.31)-(2.3.32) with (2.3.5)-(2.3.6) we see that, as the dimen-
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sionality of r goes to infinity, the ML estimation rules still hold provided that
probability densities are replaced by likelihood functions.

2.3.2, Baseband Signaling

The arguments leading to (2.3.30) are easily adapted to baseband signals.
To do so it is sufficient to bear in mind that: (i) the waveforms are now real-
valued; (i) the spectral density of the noise equals Ny2 (while, earlier, real and
imaginary components of w(t) had spectral density N;). Skipping the details, it
is found

T, T,
A(r]y) =exp 2 r(t)s(t,'}')dt——l— s2(t, Pdt (2.3.33)
Ny 0 N, 0

whereas (2.3.31)-(2.3.32) remain unchanged.

Exercise 2.3.1. In the discussion leading to (2.3.30) it has been claimed
that sums of the type

N
sy =Y il (2.3.34)
k=1

diverge as N tends to infinity. Consider the simple case in which the signal
component is zero and show that the expectation of S(N) grows unboundedly as
N increases.

Solution. By assumption, r,=w, and from (2.3.34) we obtain

E{S(N)} = gE{|wk|2} (2.3.35)
On the other hand, application of (2.3.14) yields
it = why +wh (2.3.36)
so that, bearing in mind (2.3.18), we conclude that
Efw [} =2n, (2.3.37)

Substituting into (2.3.35) produces
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E{S(N)} = 2NN, (2.3.38)
which indicates that E{S(N)} diverges as N tends to infinity.

Exercise 2.3.2. Estimate the phase of a sinusoid Acos(27f,t+6) embedded
in white Gaussian noise, assuming that A and f;, are known.

Solution. Two alternative routes may be followed, depending on whether
we view Acos(27nfyt+0) as a baseband or a modulated signal. As both views are
legitimate, we arbitrarily choose the latter.

The baseband equivalent of Acos(27fyt+0) is

5(1,0) = Ae’® (2.3.39)

and the ML estimate of 6 is obtained by maximizing the likelihood function
A(r]@). From (2.3.30) we get

T 2
A(rl6)= exp{Tv“‘—Re[e"ﬂ’ Jr(t)dt]— ’;AITO} (2.3.40)
0

0 0

Clearly, maximizing A(rlé) is equivalent to maximizing the function

Ty
F(é)éRe[e'fé | r(t)dt] (2.3.41)
0
or
Ty
F(8) =| [ rt)dt| cos(y - 6) (2.3.42)
0

where v is the argument of the integral in (2.3.41). On the other hand F(é)
achieves a maximum for 6 = y . Hence, the ML estimator of 8 is

T
0,,.(r) = arg{j r(t)dt} (2.3.43)

0

Figure 2.20 illustrates a block diagram for the estimator. The left-hand
side of the scheme, up to the low-pass filters, provides real and imaginary
components of r(t), say rg(t) and r(f). The filters have unity gain and serve to
eliminate double-frequency terms. From a functional point of view they are not
necessary as their low-pass action is performed by the integrator.
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R AC)
tpF |
| I 1
Sinusoid o
. 2cosayt 0
+Noise _[(')d’ —>» arg(’) >
—2sinwgt
Fe=77770 00
LPF |
I, J

Figure 2.20. ML-estimation of the phase of a sinusoid.

Exercise 2.3.3. In the previous exercise the ML estimator has been
computed in closed form. This is a rather exceptional case as, in general, only
implicit solutions are arrived at. To give an example, consider the transmission
of a real-valued pulse g(7) through a channel with an unknown delay 7 (see
Figure 2.21). We want to estimate T under the following circumstances:

() the noise has spectral density Ny/2;
(#) the signal component of r(f) is
s(t)=cy8(t—7) (2.3.44)
where ¢, is a random variable taking values +1 or —1 with the same
probability;

(iii) the delayed pulse g(r—7) falls entirely within the observation interval

0 <1 <T,, so that the following integral is independent of 7
T

[g@-vdr=E, (2.3.45)
0

Solution. The delay is the only parameter of interest to us, while ¢, is
unwanted. With the notations of Section 2.3.1 we have A=7 and u=c, and the
likelihood function (2.3.33) becomes

w(t)

t t
c&(t) DE;AY n(t)

Figure 2.21. Channel with a delay 7.
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~ Ty
A(r[E,8,) = Cexp{iv& [rngee- %)dt} (2.3.46)
00

where C is a positive constant, independent of 7 and ¢,. Next, we average
A(r]z,é,) over ¢,. As a consequence of assumption (ii), the pdf of &, may be
written as

pE) = %6(50 - 1)+%6(50 +1) (2.3.47)

where &x) is the delta function. Thus, application of (2.3.31) yields

T
A(rfH) = Ccosh{l [ringee- f)dt} (2.3.48)
Ny

and the ML estimate is obtained looking for the maximum of this function.
Note that, as 7 varies, the hyperbolic cosine achieves a maximum at the
same abscissa as the absolute value of the integral (2.3.48). Hence

H (2.3.49)

Unfortunately, no explicit solution is available for (2.3.49). Approximate
estimates of T may be obtained in two ways. One is to record r(¢), compute the
integral in (2.3.49) for different values of 7 and look for the largest result.
Alternatively, the parallel processing method indicated in Figure 2.22 may be
adopted, where 7,,7,,...,T) are trial values of 7.

T

[rygte - #yde
0

Ty (r)= arg{m_ax{

2.3.3. ML Estimation from Sample Sequences

At this point we turn our attention to ML estimation when the observation
consists of a sample sequence. As in Section 2.3.1, we first consider passband
signaling and then we extend the results to baseband transmission. We assume
that the (baseband) received waveform is first filtered in a low-pass filter H(f)
and then is sampled at some rate 1/T, as indicated in Figure 2.23. Also, we
make three major hypotheses:

(i) The filter has an ideal rectangular characteristic

1 |f|S BLPF

(2.3.50)
0 elsewhere

H(f)={
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J'(-)dt > |-
8(1_71)

[ o > 1 ™ seiect | -
rt) TuL
8t-1,) THE
> -] LARGEST

J(-)dt > | >
8(t=7y)

Figure 2.22. Block diagram of the delay estimator.

(@) Its bandwidth is sufficiently large as to pass the signal components
undistorted.

(iii) The sampling rate 1/T is twice the filter bandwidth

% =2B,pr (2.3.51)
N

Although mathematically convenient, the choice of a rectangular char-
acteristic may be objectionable on practical grounds as the jumps at the band
edges are physically unrealizable. One answer to this problem is that, in effect,
a rectangular form is not necessary and can be readily replaced by a more
realistic one with no consequences. For example, a root-raised-cosine-rolloff
function (see Figure 2.24)

kT,
r(1) HP x(t) , x(kT,)

A
[

I
Sample at k7

Figure 2.23. Observation in sampled form.
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A Signal Rectangular
/

spectrum

B 1-u 1 1+o
2r 2T 27,

Figure 2.24. Rectangular and root-raised-cosine-rolloff characteristics.

( -
1 <
s 5
/4 -« 1+
H(H= —{]2/T|-1 <lfl< 2.3.52
6 <cos[ 2o (21T +a)] o Wsor @35
0 otherwise

satisfies the assumption (ii) if the signal bandwidth B is limited to

(2.3.53)

Furthermore, it can be shown that the samples from this filter are statistically
equivalent to those from the rectangular filter if (2.3.51) holds true. In fact, they
represent sufficient statistics for the estimation of the synchronization
parameters [25]. For these reasons in the sequel we adopt the simple
rectangular characteristic (2.3.50).

Returning to Figure 2.23, the following remarks can be made about the
filter output. First, x(¢) has the form

x()=s(t, ) +n(t) (2.3.549)

where n(t) is complex-valued Gaussian noise with power spectral density

2]\]0 |f|S BLPF

(2.3.55)
0 elsewhere

Sn(f)={
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Second, the transformation r(f)—x(?) is reversible. In fact, we can go back
from x(t) to r(t) by adding Gaussian noise to x(¢), say w'(¢), so as to make
n(9)+w'(?) a white process. This is achieved taking w'(f) independent of n(f) and
with power spectral density

2Ny |f|> Ber

(2.3.56)
0 elsewhere

Sw,(f)={

Third, from sampling theory it follows that x(f) can be reconstructed from
its samples xé{x(klg)}. In other words, the transformation x(f)—x is
reversible.

The fourth and final point is that, as the transformations r(f)—x(¢) and
x(t)—x are reversible, the overall transformation r(f)—x is also reversible and
anything that can be accomplished with r(¢) can also be accomplished with x
(and vice versa) without loss in performance [1].

At first glance this conclusion sounds like an invitation to put aside
discrete-time methods and stick to the continuous-time estimation techniques
developed earlier. Indeed, if anything that can be done with x can also be done
with r(¢) and we already know how to manage with the latter, why should we
bother further? One possible answer is that this book deals with digital
algorithms which, by definition, operate on sampled waveforms. Thus,
discrete-time methods are the natural route to take here.

Discrete-time estimation methods may be developed by paralleling the
treatment in Section 2.3.1. The major points may be summarized as follows.
Call

X(KT,) = s(KT,, y) + n(kT,) (2.3.57)

the available samples (k=0,1,...,L,—1) and let ¥ be a trial value of 7.
Consider the sample sequence

2(KT,) = s(kT,, %)+ n(kT,) (2.3.58)

In particular, letting #2{#(kT,)}, we look for the pdf p(#]¥). To this end we
write n(kT)) in the form

n(kT;) = ng(kT,) + jn,(kT,) (2.3.59)

From (2.3.51) and (2.3.55) it can be checked that both {ng(kT,)} and {n,(kT;)}
are white sequences satisfying the relationships

E{ngn,}=0 Vikm (2.3.60)
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N 4o
E{npngn} =E{ngnp,} =1 T (2.3.61)
0 otherwise

Then, denoting p(x|¥)2 p(# = x|%), we have

= X(KT,) - s(kT., )’
p(xn = Xp _BT) 51, )
k=0 27W0/1; 2N0/T.;
T o2
= Cexp{~==+- ) |x(kT,) - s(kT,, ¥) (2.3.62)

21\,0 k=0

where
Ly
_cé(L] (2.3.63)
27N,

The pdf of x subject to a generic A, p(x|/'~l), is obtained by averaging out
the unwanted parameters from p(xﬁr) ,ie.,

pxld) = [ p(x[Pp(@)di (2.3.64)
Then, the ML estimate of A is found as that A that maximizes p(x|/'~L):
A ()= arg{n%ax{ p(xli)}} (2.3.65)

Note that, in contrast with the discussion in Section 2.3.1, no convergence
problems arise in computing p(x|¥) since the summation in (2.3.62) involves
only a finite number of terms. Nevertheless, scaling p(x|y) is still useful to
ease comparisons with estimators operating on continuous-time waveforms.
Let us choose the scaling factor

Ly-1
B= Cexp{— 2@ ¥ x4, )|2} (2.3.66)
0 k=0

and, in analogy with (2.3.22), define the likelihood function as
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A(xl?)é%p(xl"r) (2.3.67)

Then, combining (2.3.62) and (2.3.66)-(2.3.67) yields

- T, & T A S
A(xlr)=exp{N—J > Re[x(kT,)s" (T, D] - 7% le(kTs,r)l} (23.68)
0 k=0 0 k=0

which is perfectly similar to (2.3.30). Finally, letting A(.a\:|/'~l)é p(xli)/ B, from
(2.3.64)-(2.3.65) we get the ML estimation equations

A2 [ Ax[pp(a)dis (2.3.69)
Ay () = arg{miax{A(xlj.)}} (2.3.70)

2.3.4. Baseband Signaling

The likelihood function A(x|¥) for baseband transmission is easily
derived by paralleling the foregoing developments. In doing so it is sufficient
to keep in mind that the waveforms are now real-valued and the noise spectral
density equals Ny/2. Skipping the details, it is found that

3 2T Rt I -
AG|p) =expi =t Y x(kT)s(kT,, ) ——= > s* (KT, ) (2.3.71)
NO k=0 NO k=0

Equations (2.3.69)-(2.3.70) remain unchanged.

Exercise 2.3.4. A sinusoidal signal embedded in white Gaussian noise is
passed through a rectangular filter with a transfer function as indicated in
(2.3.50). Letting B, 5 be the filter bandwidth and Ae’ the baseband signal
component, estimate the parameter 8 from the samples of the filter output taken
at the rate 1/ T, = 2B, pr. Assume that the signal amplitude is known.

Solution. The signal component at the filter output is

5(1,0) = Ae’® (2.3.72)

and the likelihood function for @ is obtained from (2.3.68) in the form
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< AT, sl AT,
A@) = 2 ¥ Re{x(kT)e ¥} - A 0ls 3.
) exp{ . Z}) e{x(k e } i } 2.3.73)

The maximum of A(xlé) is attained for that @ that maximizes the function
Ll -
F@)2Y Re{x(k?;)e‘f" } (2.3.74)
k=0

The location of the maximum is given by

. Lol
By (x) = arg{ Zx(kTs)} (2.3.75)
k=0
This result is perfectly similar to that expressed in (2.3.43) for the continuous-
time approach.

2.4. Performance Limits in Synchronization

In the previous section we have described ML methods for estimating
synchronization parameters. At this point the question arises of assessing the
ultimate accuracy that can be achieved in synchronization. Establishing bounds
to this accuracy is an important goal as it provides benchmarks against which
to compare the performance of actual synchronizers. Tools to approach this
problem are available from parameter estimation theory in the form of Cramer-
Rao bounds (CRBs) [23][24]. Other bounds are described in [26]-[29]. In the
following we present a brief overview of CRBs and point out some difficulties
that are encountered in their application to synchronization problems [30]-[33].
We also introduce a variant to the CRB, called the modified Cramer-Rao bound
(MCRB), which does not exhibit such difficulties (but has some other
drawbacks that will be pointed out in due time). Finally, we compute the
MCRB:s for various synchronization parameters and modulation formats.

2.4.1. True and Modified Cramer-Rao Bounds

To simplify the discussion we concentrate on the estimation of a single
element of { 6,7,v}. Such an element is denoted A and is viewed as a constant
(not a random variable). Accordingly, the vector u of unwanted parameters will
contain data symbols plus two elements from {6,7,v}. In the case of baseband
transmission there is only one synchronization parameter, 7, and the only
possible components of u are data symbols.
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. Consider a generic estimation procedure for A (not necessarily ML) and let
A(r) be the corresponding estimate. We arbitrarily assume a continuous-time
signal description but everything we shall say is also valid in a discrete-time
context. Note that A(r) depends on the observation r and, in consequence,
different observations lead to different estimates. In other words, A(r) is a
random variable. Its expectation may, or may not, coincide with the true value
of A. If it does (for any allowed value of A) then we say that the estimate is
unbiased. Being unbiased is clearly a favorable feature as, on average, the
estimator will yield the true value of the unknown parameter. Even an unbiased
estimator, however, may be unsatisfactory if the errors A(r)— A are widely
scattered around zero. Thus, one wonders what is the minimum error dispersion
that can be achieved.

An answer is given by the Cramer-Rao bound, which is a lower limit to
the variance of any unbiased estimator. This bound is expressed as

Var{i(r) - ,1} > CRB(A) (2.4.1)
where
1
CRB(A)&-———— = _
@ E d*In A(rjA)
AT
- 1 (2.4.2)

~_ [TomAE)T
w5

In this equation the following notation has been used:

) 7 (2.4.3)

dln A(r|A) A[aln A(r|2~.)}
i=1

and E {-} is the expectation of the enclosed quantity with respect to r. No
unbiased estimator can provide smaller errors than those indicated by (2.4.2)-
(2.4.3).

Unfortunately, application of this bound to practical synchronization prob-
lems is difficult due to the necessity of computing A(r|A). In fact, this function
is to be derived by averaging out the unwanted parameters from A(r|A,u)

A(rd) = TA(r[i,a)p(a)da (2.4.4)



Principles, Methods and Performance Limits 55

and this is seldom feasible, either because the integration (2.4.4) cannot be
performed analytically or because the expectation in (2.4.2) poses insuperable
obstacles.

As indicated in [34], a route to overcome this drawback is to resort to the
modified Cramer-Rao bound (MCRB), which still applies to any unbiased
estimator but has the following form:

Var{i(r) - ,1} > MCRB()) (2.4.5)
with
A NO
MCRB(A)4—— - (2.4.6)
5 { I" As(t, A, ) dt}
“12
in the case of passband signals and
MCRB(A)2— No/2 - (24.7)
. { j’&s(t,/l,u) dt}
“I3 oA

with baseband signals. In (2.4.6)-(2.4.7) the notation s(t,A,u) is used in place of
s(t, y) and the expectation E,{-} is over the unwanted parameters u.

Two remarks about the MCRB(A) are useful. The first is about its
calculation. This issue is addressed later but we anticipate that the MCRB(/) is
easy to derive provided that certain assumptions on # are met. The
assumptions reflect our basic ignorance of the unwanted parameters and are
formally expressed as follows. Denote u as u,, uy or u,, according to whether
A=v, A=0 or A=7. For example, when dealing with the bound for v, the vector
u, consists of 8, T and (possibly) the data symbols. We assume that: (i) the
timing parameter 7 in u, and u, is uniformly distributed over the symbol
interval (0,7); (ii) the probability density functions of 6 in u, and u,, and of v
in uy and u,, are assigned (but need not be specified for they do not affect the
final results); (iii) the data symbols {c;} are zero-mean independent random
variables with

E{ ,}_ C, fori=k 2.4.8)
“%I=10  otherwise o

In the sequel these assumptions are referred to as standard.
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The second remark is about the relationship between CRB(A) and
MCRB(A). This issue is addressed in [34], where it is shown that the former is
greater than or equal to the latter, i.e.,

CRB(A) 2 MCRB(A) (24.9)

The equality holds only in two special cases: when u is perfectly known or it is
empty (there are no unwanted parameters).

Equation (2.4.9) indicates that MCRB(A) might be loose, i.e., too low even
compared to the error variances of good estimators. This point is illustrated in
Figure 2.25, where Var{l(r) A}, CRB(A) and MCRB(A) are qualitatively
drawn as a function of the signal-to-noise ratio E /N, . Clearly, an estimator
corresponding to the top line is good as its error variance is close to CRB(A).
On the other hand, its performance looks bad as compared to MCRB(A). Thus,
taking MCRB(A) as a reference may be pessimistic.

Further discussions in [34] point out that, if MCRB(A) is computed under
the above standard assumptions while CRB(A) is computed taking u as a known
vector, then the two bounds coincide when the observation interval is much
larger than the symbol interval. In particular, CRB(A4) and MCRB(A) coincide in
the following cases:

(i) estimation of 8 when v, 7, and data are known;

(i) estimation of Twhen v, 6, and data are known,;

Var{A(r)- 4}

CRB(A)

MCRBQ)
B O | L | L I

E,/N,

Figure 2.25. Error variance, CRB(A) and MCRB(A).
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(iii) estimation of v with M-PSK modulation, when 7 and differential data are
available but 8 is unknown.

These results suggest that MCRB(A) represents a good performance
reference under rather favorable operating conditions. In fact, many practical
synchronizers exist that attain the bound in the circumstances (i)-(iii) above.
Vice versa, MCRB(A) may not be a useful reference when little information is
available about the unwanted parameters. For example, in the next chapter we
shall see that practical frequency estimators fall short of the bound unless data
symbols and a good timing reference are provided.

2.4.2. An Alternative Approach to the Bounds

An alternative route to establish bounds is now illustrated which provides
further insight into the notion of MCRB. In the foregoing discussion the
estimation of the vector {6,7,v} has been broken into three separate operations,
each concentrating on one component at a time. There is no logical necessity to
proceed in this way, however. Two or even three synchronization parameters
may be jointly estimated, in principle [21]. Then, one wonders whether the
bounding problem becomes easier when synchronization is viewed as a single
operation.

Cramer-Rao bounds in multiple parameter estimation can be derived as
extensions of the corresponding scalar problem [23]-[24]. A summary of the
major results is as follows. Denote 4,2v, 1,20, 4,27 and A4(A,,4,,4,). Also,
suppose that A is deterministic (not random). Then, if A4 is an unbiased
estimator of A, a bound on the variance of its i-th component is computed as
the (i,i) element of the inverse of the Fisher information matrix I(A), which is
defined as

A |9 InA@r|d)
(1), 4 E,{ Ao (2.4.10)
Formally

var{A(n -4} 2 [ @) 2.4.11)

Clearly, equations (2.4.10)-(2.4.11) are a generalization of the scalar CRB
(2.4.2).

Let us concentrate on the computation of these bounds. A little thought
reveals that we still have a problem insofar as A(r|4) is not readily available.
In fact, as the data symbols ¢ are generally unknown, we should first compute
A(r|A,¢) and then pass to A(r|A) through the integral
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A(r|d) = j A(r|A,é)p(é)dé (2.4.12)

As we mentioned earlier, however, this route presents unsurpassable obstacles
in general.

The obstacles could be overcome by assuming a known symbol sequence.
Under these conditions, in fact, p(¢) would become a delta function and the
right-hand side of (2.4.12) would reduce to A(r|A,c). How can we justify our
knowing ¢ other than for reasons of mathematical convenience? An intuitive
answer is that data knowledge is expected to improve estimation accuracy.
Hence, taking ¢ as a known sequence should still lead to lower bounds to
estimation errors.

One drawback with this approach is that the results depend on the
assumed c¢. To give an example, consider a rectangular pulse sequence.
Intuitively, the achievable accuracy in timing estimation depends on the
number of transitions in the sequence. In particular we expect that an alternate
pattern (...,+1,~1,+1,...) is very suitable for clock recovery whereas an all-one
pattern (...,+1,4+1,4+1,...) is not, as it does not bear any timing information. In
general, “good” sequences will provide low bounds and, vice versa, “bad”
sequences will produce high bounds.

This problem can be sidestepped by considering long sequences. In fact, if
the symbol process {c;} is “regular,” bad and good sequences will tend to
become less and less probable as the length of the sequence grows large.
Asymptotically, as the length tends to infinity, the bounds should converge
toward limits that depend only on the average statistics of {c;}.

Performing long calculations it turns out that, as the observation interval
grows large, these limits essentially coincide with the MCRBs discussed in the
previous section. This is an interesting result as it shows that logically different
routes lead to the same conclusion. It also confirms the idea that the MCRBs
coincide with the true CRBs as computed assuming known data and long
observation intervals.

2.4.3. MCRB(v) with PAM Modulation

We limit ourselves to non-offset PAM modulation, as offset modulation
can be treated in the same manner and produces the same result. The starting
point is equation (2.4.6) with A=v. Taking s(¢,v,u) from (2.2.25), with simple
manipulations it is found that

o

0

as(t,v,u)
v

zdt} =47 Tj')ﬁ E,{im(o)f Jat (2.4.13)
0
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with

mt)2Y c,g(t—iT - 1) (2.4.14)

The vector u is formed by 7, 0 and the data symbols cé{c,-}. However, as
m(?) is independent of 6, the expectation in (2.4.13) may be limited to ¢ and 7.
Also, as ¢ and 7 are independent, we may first compute the average over ¢ and
then over 7. Recalling (2.4.8) and (2.4.14) we get

E{mof} =Y g (-iT-7) (2.4.15)
i
Next, application of the Poisson formula yields
Y g (t-iT-1)= %ZGZ (%)eﬂ”"“'”” (2.4.16)
i n

where G,(f) is the Fourier transform of gz(t). Substituting into (2.4.15) and
taking 7 uniformly distributed over (0,T) results in

B o} - S50

= ?2 _J;|G( HEdf (2.4.17)

In Appendix 2.A it is shown that the average signal energy per symbol is given
by

G T 2
E = TZ_EG(M df (2.4.18)

Thus, collecting (2.4.13) and (2.4.17)-(2.4.18), and assuming that the length of
the observation interval is a multiple of T, say T=L,T, gives

|astz,v,)|’ 87t2E
{j v o (LOT) (2.4.19)

Finally, inserting into (2.4.6) produces the desired result:

3 1

(2.4.20)
s/NO

2 x MCRB(v) =
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As is seen, MCRB(v) is inversely proportional to the signal-to-noise ratio and
the third power of the observation length.

In the foregoing discussion we have tacitly taken the time origin as the
beginning of the observation interval. One wonders how (2.4.20) is affected
choosing the interval (f, <t<t,+T;) instead. The answer is found by turning

(2.4.6) into
1o+T,
Es | dt
ty

and computing the expectation in the denominator. With the same arguments
used above it is found that

ty +T0
E, j
)

which indicates that MCRB(v) does depend on ¢,. The dependence on the
beginning of the observation interval is inherent in many discussions (see [23]
and [26] for example) but is generally not mentioned. Simple algebra shows
that MCRB(v) is maximum for #, =-T;,/2 and this maximum reads

No

(9s(t l,u)
e

MCRB(L)&

(2.4.21)

ast,v,u)f
v

dt} 81’ T e[t + LY - 1] (2.4.22)

T? x MCRB(V) = ——3— L (2.4.23)

LO s/ N 0
In the sequel we take (2.4.23) as the modified CRB for frequency estimation.

2.4.4. MCRB(v) with CPM Modulation

The modified CRB with CPM modulation is computed with the same
methods of the previous section. Taking s(t,v,u) as the product of e/®™*9 by
the signal complex envelope in (2.2.62) and choosing the observation interval
+T,/2 yields

T2 2
f |as(:9: u)} dt = 2” E, (LoT) (2.4.24)

-T /2I

The right-hand side is independent of u and, therefore, it coincides with its own
expectation with respect to ». Thus, substituting into (2.4.6) gives
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3 1

T?> X MCRB(V) = —5—
21’ L3 E, [N,

(2.4.25)

which coincides with (2.4.23).

This result may be surprising, considering the differences between PAM
and CPM modulation. To push the point further, one wonders what happens
with an unmodulated carrier Acos[2z(f,+Vv)t+6]. The signal complex
envelope is

s(,v,0) = Ae/¥™*9) (2.4.26)
Hence

“Clawevof  _PAT

(2.4.27)
—TO/Zl av I 3
or, alternatively, bearing in mind that T\=L,T,
/2 2 2
|3s(t, v, e)l dt = 2 Es (LOT)3 (2.4.28)

i /2| O ar

where E:=A2T/2 is the carrier energy in T seconds. Substituting into (2.4.6)
produces the same bound as with PAM and CPM.

Again, this is puzzling as, intuitively, frequency measurements with
unmodulated carriers should be easier than with modulated signals. The only
possible explanation is that the bounds (2.4.23) and (2.4.25) are loose. This
conclusion is confirmed by the observation that many practical frequency
estimators are far from MCRB(V). An exception occurs when both timing and
data are known so that the modulation can be wiped out. Under these
conditions, simple algorithms are available [35]-[37] that achieve the bound.

2.4.5. MCRB(6) with PAM and CPM Modulations

We limit ourselves to non-offset PAM signaling since offset PAM and
CPM modulations lead to the same result. Also, we consider the observation
interval (0,7;) since it turns out that the bound is independent of where the
observation begins. Taking s(¢,6,u) from (2.2.25) produces

o

0

os(t,0,u)
20

2dt} = ]QE,,{|m(t)|2 Yt (2.4.29)
0
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where m(t) is still as in (2.4.14). Here, u is formed by ¢, v and 7. However, as
m(t) depends only on ¢ and 7, the expectation Eu{lm(t)lz} is the same as that
computed in Section 2.4.2. Inserting into (2.4.29) yields

Y

and substituting into (2.4.6) gives the result sought:

os(t,0,u)
00

2
dt} =2E,L, (2.4.30)

MCRB(6) = 11

2L, E /N,

(2.4.31)

As with frequency estimation, the modified bound is inversely
proportional to the signal-to-noise ratio. However, the parameter L, in the
denominator is now raised to the first power, not the third, which says that
phase errors are less sensitive to the observation length than frequency errors.

Exercise 2.4.1. Compute MCRB(6) for an unmodulated carrier
Acos(2rf,t+6) embedded in white Gaussian noise. Assume that the amplitude
and carrier frequency are known.

Solution. The complex envelope of the carrier is s(¢,0) = Ae’®. Hence

g_%@ = jAe® (2.4.32)
and
@gat_ée_) —A (2.4.33)
Thus, calling
EA 1_4;2 (2.4.34)

the carrier energy in T seconds and substituting into (2.4.6) yields

MCRB(6) = L1

2L, E,/N,

(2.4.35)

which coincides with (2.4.31).
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Exercise 2.4.2. Compute CRB(6) for an unmodulated carrier
Acos(2nfyt+6) embedded in white Gaussian noise. Assume again that A and f;
are known.

Solution. The likelihood function A(rlé) is given in (2.3.40). Thus, paral-
leling the arguments in Exercise 2.3.2, it is found that

A(rlf) = Cexp{Ag ie)} (2.4.36)
where C is independent of 6 and F(0) is given by
T, Ty
F(B) = cos [ rg(t)dt +sinf [ r,(t)dt (2.4.37)
0 0
Hence
Iln ;\B(’IG) - A‘;:)S? ]Qr, (t)de - 2500 Ter(t)dt (24.38)
0 0 o
On the other hand, bearing in mind that
rp(t) = Acos @ + wy(t) (2.4.39)
ry(t) = Asin@ + w(z) (2.4.40)
equation (2.4.38) becomes
dInA(r|6) _Acos ?w,(t)dt _ Asinf ffwk(t)dt (2.4.41)
a0 Ny 3 o 0

Next, observe that w,(f) and wg(#) are independent processes with spectral
density N,. Then the two integrals in (2.4.41) are independent random variables
with a common variance given by (see Appendix 2.B)

o =T,N, = L,IN, (2.4.42)

Putting these facts together, the mean square value of (2.4.41) is found to be

2
Er{[alnA(ﬂG)] }= A’L,T (2.4.43)

Y] N,
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so that, substituting into (2.4.2) and defining E; as in (2.4.34) yields

CRB(0) = —1— 1
2L, E,/N,

(2444)

which coincides with MCRB(6) in (2.4.35). This result should be expected as
there are no unwanted parameters in Acos(27ft+6) and, in consequence, CRB
and MCRB coincide [34].

2.4.6. MCRB(7) with PAM Modulation

As we did earlier, we limit ourselves to non-offset passband modulation
since offset passband and baseband PAM may be approached in the same
manner and have the same bound. Taking s(,7,u) from (2.2.25) yields

E, {Tfo 0. 50) zdf} = ?Eu{lm’(t)lz}dt (2.4.45)
0 ar 0
with
m' (A ¢, p(t —iT -7) (2.4.46)

and p(t)2dg(t)/dt. It is easily checked that the Fourier transform of p(¢) is

P(f) = j27fG(f) (2.4.47)

As m’(?) is independent of v and 6, the expectation on the right of (2.4.45)
may be limited to the data symbols. With the same arguments leading to
(2.4.15)-(2.4.16) it is found that

E, {|m'(t)|2} = %Zg(%)eﬂ”"“-”” (2.4.48)
n

where C, 2E, {lc,- |2} and P,(f) is the Fourier transform of p?(¢). This is related to
P(f) by

B(f)= [PW)P(f -v)dv (2.4.49)

In particular, using (2.4.47) gives
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B(0)= [[dg(v/drTdt
- (2.4.50)
=4n’ [ PGP df
Next, assuming T = LT, it can be shown that
Ty
JB{m@f}dt = LR 0) (2.4.51)
0

Hence, from (2.4.45) and (2.4.18) we obtain

Ty 2 2

os(t,T,u) 8n°ELyE

E REA A RtEL d =— 23" 2452
"{! or t} T? ( )

where £ is an adimensional parameter:

[Flerdr
EAT? == (2.4.53)
[lecofar

—oo

Finally, substituting (2.4.52) into (2.4.6) produces the desired result

1 1 1
72 X MCRB(1) = ST2EL BN, (2.4.54)

As with phase estimation, the modified bound is inversely proportional to
the signal-to-noise ratio and the observation length. Also, it is inversely
proportional to & which may be viewed as the normalized mean square
bandwidth of G(f). This suggests that timing estimation should be easier with
wideband signals. Physically, wideband pulses have comparatively short
duration and, therefore, are better “seen” in the presence of noise.

Exercise 2.4.3. Compute the parameter £ assuming G(f) as a root-raised-
cosine function as given in (2.2.12).

Solution. Inserting (2.2.12) into (2.4.53) and performing straightforward
manipulations, it is found that
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E= é + a{% -~ %) (2.4.55)

As is physically intuitive, £ is an increasing function of the rolloff factor c.

Exercise 2.4.4. The real-valued waveform r(f)=g(+~7)+w(t) is observed
over the infinite interval —oo <t < oo, The pulse g(¢) has finite energy and, in
particular, it satisfies the condition

lim g(£)=0 (2.4.56)
t—>s

The noise w(f) is white, with a spectral density N;/2. Compute CRB(7) and
compare the result with MCRB(7).

Solution. The likelihood function A(r|%) is obtained from (2.3.33) letting
s(t,¥) = g(t—7) and changing the integration interval from (0,7,) to (—ee,e0).
This results in

A@rff) = exp{l—i— [rtgt-%)ar - %} (2.4.57)
0 0

where E | is the energy of g(¢). Taking the logarithm yields
o 27 s E
InA(r|t)=— | r(t)g(t - T)dt ——~ 2.4.58
(rff) N()i()g( i = (24.58)

To compute CRB(7) we need the derivative dInA(r|f)/d7 for T=1 (see
(2.4.2)-(2.4.3)). From (2.4.58) we have

dlnA(rfr)y _ 2 7 dg(t-1)
o N Ir(t) a

=——I[g(t )+ (t)]dg(t 2 gy

2 [ wn98t-0) 2.4.59
Njw(t) o dt (2.4.59)

where the relationship (2.4.56) has been exploited.
The mean square value of (2.4.59) is now computed making use of the
results in Appendix 2.B:
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{[aﬁ;@] } j[dg(z)/dz (2.4.60)
Alternatively, because of (2.4.50), we may write
Er{[a—h’gﬂ]z} = %ifﬂG( iar (2.4.61)
Finally, substituting into (2.4.2) and rearranging yields
1 1 1
77 X CRB(1) = SPEE N, (2.4.62)

where € is still as defined in (2.4.53).

Comparing with (2.4.54) we see that CRB(7) is L, times larger. It should
be noted however that, in deriving (2.4.62), we have assumed a single pulse
whereas, in (2.4.54), we considered L, adjacent pulses. Solving the present
problem with a sequence of L, non-overlapped pulses leads to a result which is
L, times smaller, i.e., just to (2.4.54).

2.4.7. MCRB(7) with CPM Modulation

Taking s(t,7u) as the product of ¢/*™*9 by the signal complex envelope
in (2.2.62) yields

{ J-|3s(t ;’u)l d} 87°h’E, _fE{ (1)12}(1; (2.4.63)

where

m' ()2 c,g(t-iT-7) (2.4.64)

and g(¢) is the frequency response of the modulator.
Paralleling the argument used with (2.4.15)-(2.4.17) gives

{|m (t)l} ZZG( )!2’"'“"”” (2.4.65)

where C, = E{cf} and G,(f) is the Fourier transform of g%(f). Note that
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G,(0)= [yt (2.4.66)

Next, substituting (2.4.65) into (2.4.63) and assuming T, = L,T produces

2 2
{ i t} - 817SLE, ff;)E (2.467)
where
CAGHT [ (rydt (2.4.68)

is an adimensional parameter analogous to &in (2.4.53).
Finally, substituting into (2.4.6) yields the desired result

1 1
8ﬂ2§l0 E:/NO

The similarity with (2.4.54) is striking. The two formulas differ only in the
parameters & and §. To make a comparison let us consider the following modu-

lations:

1
7 X MCRB(t) = (2.4.69)

(i) QPSK with a rolloff factor a=0.5;
(ii) CPM with quaternary symbols, 4=0.3, and a frequency response

g = 317[1 - cosi—?] for 0<t<3T (2.4.70)

This choice is motivated by the fact that power and spectral efficiencies are
almost the same in the two cases. Calculations yield £=0.095 and {=0.0375,
which indicates that timing estimation with CPM might be more difficult than
with PAM.

Exercise 2.4.5. Spectral and power efficiencies of CPM modulations are
very sensitive to the frequency response g(¢). In many theoretical studies two
forms of g(t) are adopted: rectangular (REC) and raised-cosine (RC). Thus,
denoting by L the duration of g(#) in symbol intervals, we have either LREC or
LRC pulses. Formally
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1

—— 0<t<LT
LREC: g(t)=42LT 2.4.71)
0 elsewhere
—1—[l—c0s2—m] 0<t<LT
LRC: g(t)=<2LT LT 24.72)
0 elsewhere

Compute the MCRB(t) with LREC and LRC pulses.
Solution. As a first step let us compute the energy of g(r). Straightforward
algebra yields

LT
j g2(t)dt=—1-, with LREC (2.4.73)
< 4LT
LT 3
2 .
tdt = —, th LRC 24.74
,([g (1) s M ( )

Hence, substituting into (2.4.68) and then into (2.4.69) produces

1 L 1
— X MCRB(7) = ,
T? 2 2m*C,h L, E, /N,

with LREC (2.4.75)

1 L 1

= X MCRB(t) = 3 thO E/N , with LRC (2.4.76)
2 s/ Y0

It is seen that MCRB(7) increases in proportion to the length of g(),
meaning that long pulses are more difficult to synchronize than short ones.
Practical evidence confirms this conclusion.

2.5. Key Points of the Chapter

* Synchronization consists of the recovery of some reference parameters from
the received signal and their application to data detection. In this book we
consider three basic parameters: carrier frequency, carrier phase and timing
epoch. Timing epoch is the only synchronization parameter in baseband
transmission.

* Most synchronization algorithms have been discovered using either
heuristic arguments or by application of maximum likelihood methods. The
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latter involve maximizing certain functions, referred to as likelihood
functions, which depend on the observed waveform and on trial values of
the synchronization parameters.

* The observation may be either a continuous-time waveform or a sample
sequence. If sampling rate is properly chosen, no loss of information is
incurred with sampling and the resulting ML estimates are as good as those
derivable from the original continuous-time waveform. The choice between
continuous-time and discrete-time methods is a question of mathematical
convenience.

* Establishing bounds to parameter estimation accuracy is an important goal
as it provides benchmarks for evaluating the performance of real world
synchronizers. Cramer-Rao bounds indicate lower limits to estimation error
variances. Unfortunately, their application to synchronization problems
leads to serious mathematical difficulties. Modified Cramer-Rao bounds are
much easier to employ, but are looser than true Cramer-Rao bounds.

¢ Modified and true Cramer-Rao bounds coincide when the data are known.

Appendix 2.A

In this Appendix we provide a brief overview of the calculation of the
power spectral density for PAM signals. The reader interested in more details is
referred to the textbooks [2] and [3].

2.A.1. Baseband Transmission

The mathematical model for a baseband PAM signal is

s(t) =Y c,g(t—iT) (2.A.1)

where {c;} are real-valued symbols belonging to the M-ary alphabet
{£1,43,...,2(M-1)}. For the time being they are assumed to be equiprobable and

independent so that
E{¢,}=0 (2.A2)

C m=0
E{c,-mci}={02 20 (2.A3)
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with

2 —
c,=X 3 L (2.A4)

Under conditions (2.A.2)-(2.A.4) the power spectral density (PSD) of s(¢) is
found to be

S(f) = %IG(f g 2.A.5)

where G(f) is the Fourier transform of g(#).
Integrating S(f) yields the signal power

c =
B =2 [lG(f) df 2.A6)
T —00
The signal energy per symbol equals P T and has the expression
T 2
E, =G, [|G(Hfdf Q2.A.7)

In many practical cases G(f) is a square-root Nyquist function

G(f) = /Grro() (2.A.8)

with

k=0

= . 1
[ Gavo(He™™ df = {0 L0 2.A.9)

When this happens, (2.A.7) reduces to E=C,.

2.A.2. Passband Transmission

The mathematical model for a modulated signal is
s1¢(t) = Re{scp (e} (2.A.10)
where sq;(#) represents the complex envelope of s,,(t) with respect to the

nominal carrier frequency f,. The form of s.;(t) depends on whether modula-
tion is non-offset or offset.
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Non-Offset Modulation

In this case we have

scp(t) = Zc,- gt —iT) (2.A.11)

where c; are complex-valued symbols. For example, the symbol alphabet is
{a+jb; a,b=t143,...+(M-1)} with MXM-QAM and {¢'% a = 0, 27/M,...,
2n(M-1)/M} with M-PSK. Again, we assume equiprobable and independent
data symbols so that

E{c;}=0 (2.A.12)

{Cz m=0

Blanit={o  meo 2.A.13)

where the constant C, depends on the signal constellation. In particular

2 —-— —
c,= 2AM*-1)/3  for MxM-QAM QAL
1 for M-PSK
Offset Modulation
The signal complex envelope reads
sce() =Y, a;8(t—iT)+jY bg(t—iT~T/2) (2.A.15)

where a; and b; are real valued. The most common instance of offset
modulation is OQPSK, where g; and b; take values £1 independently and with
the same probability. Accordingly, one has

1 m=0
E{ai+mai} = E{bi+mbi} = {0 m=0 (2.A.16)

Returning to (2.A.10), denote by S,z(f) and Sqz(f) the power spectral

densities of s,(f) and s(f). It can be shown that the following relation holds
(for either offset or non-offset modulations):

S,p<f)=§sc,5(f—ﬁ,>+§s@<f+ £) QA1)
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The computation of S-z(f) is performed with the methods used with baseband
signals and reads

See(f) = %IG(f K (2.A.18)

where C, depends on the modulation format (non-offset versus offset) and the
signal constellation. C, is given by (2.A.14) with non-offset modulation while
it equals 2 with OQPSK.

The average power of s;(f) is obtained by integrating S;z(f) over the
frequency axis. Bearing in mind (2.A.17)-(2.A.18), this results in

_G i o
R=2% _L]G( HEdr (2.A.19)

which differs from (2.A.6) by a factor 1/2. The average energy per symbol is
E =P Tand is expressed by

B =2 [lofas (2.A.20)

When G(f) is a square-root Nyquist function, the signal power becomes
P=C,/2T and the signal energy E =C,/2.

2.A.3. Extension to Trellis-Coded Modulations

The above results hold true only with zero-mean and uncorrelated
symbols. In particular, conditions (2.A.12)-(2.A.13) must be satisfied with non-
offset PAM signaling. It turns out, however, that these conditions are satisfied
not only with uncoded modulations but also with most good trellis codes [39]-
[40]. Thus, the previous spectral density formulas are generally applicable even
with trellis code modulations.

Appendix 2.B

In this Appendix we compute the mean square value of an integral of the
type

X= Jw(t)h(t)dt (2.B.1)
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where w(f) is a zero-mean noise process with power spectral density S,,(f) and
h(?) is a (generally complex-valued) function with Fourier transform H(f) and
energy

E, = [|H(f)df 2B.2)

To begin, we write the squared amplitude of X as

Ixi* = J. IW(tl)W*(tz)h(ﬁ)h*(tz)dtldtz (2.B.3)

—00 —00

Taking the statistical expectation yields

E{lx?} = T T&(t, — 1)h(e)h" (1)dndt, (2B.4)

—o0 —o0

where R, (7) is the autocorrelation function of w(t) and is related to S,,(f) by

5,(f)= [R, (e dr (2B.5)

Next, letting 7 =t —t, into (2.B.4) and rearranging produces

—oo|_—co

E{|x} = T [TRw(r)h(r + tz)d't}h*(tz )dt, (2.B.6)

The internal integral in this equation can be expressed as a function of S,,(f)
and H(f) by means of Parseval theorem:

[R, @Az +1)dT= [S,(HH(fe 2 df (2B.7)
Then, substituting into (2.B.6) produces the desired result
BlIxP} = [s,(OHG d&f 2B3)

The following special cases are of interest.



Principles, Methods and Performance Limits

Case (i): S, (f) and H(f) have disjoint supports.

75

Suppose that S,,(f) is zero where H(f) takes significant values, i.e.,

Sy(HH(f)=0

(2.B.9)

Then, (2.B.8) says that E{|X|2} =0. In conclusion, the random variable X has
zero mean and zero variance and, in consequence, is zero with probability one.

Case (ii): S,,(f) is a constant.

Suppose that w(?) is a white process, i.e.,

N,
s.(n)=22
Then, (2.B.8) yields
E,N,
E{jx} = 2

Case (iii): S,,(f) = Ny/2 and h(?) is a rectangular pulse.

Suppose

1 <
h(t)={ for |f|<Ty/2
0 elsewhere

Then the energy of A(#) is just T, and (2.B.11) becomes

E{|x’}= %
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Carrier Frequency Recovery
with Linear Modulations

3.1. Introduction

A frequency recovery system accomplishes two basic functions: (i) it
derives an estimate V of the carrier frequency offset; (ii) it compensates for this
offset by counter-rotating the received waveform r(¢) at an angular speed 27v.
In the ensuing discussion we distinguish between two major cases [1]:

(i) the offset is much smaller than 1/T,
(i) the offset is on the order of the symbol rate 1/T.

Case (i) occurs when a receiver is operating in steady-state conditions. In
these circumstances, timing information can be recovered first, even in the
presence of moderate frequency offsets, and then exploited for estimating v.
Data symbols may or may not be available. For example, known
synchronization preambles make possible data-aided operation in time-
division-multiple-access (TDMA) systems. Alternately, decision-directed
operation may be employed with PSK differential demodulation.

Case (ii) corresponds to initial frequency acquisitions in low-capacity
digital radios and satellite communication systems. In these applications we
can reasonably assume that data symbols, carrier phase and, perhaps, timing are
all unknown. Reduction of the frequency error to a small percentage of the
symbol rate is necessary before other synchronization functions can
successfully begin.

This chapter is organized as follows. Frequency estimation under
condition (i) is discussed in Sections 3.2 to 3.4. In particular, Section 3.2 deals
with data-aided recovery and Section 3.3 with decision-directed recovery with
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differential PSK. In Section 3.4, data symbols are unknown and frequency
estimation is addressed using either open-loop or closed-loop methods.
Frequency recovery under condition (ii) is studied in Sections 3.5 and 3.6.
Here, neither data nor clock information is available.

3.2. Data-Aided Frequency Estimation

3.2.1. Maximum Likelihood Estimation

In addressing maximum likelihood frequency estimation we assume that:
() data symbols are known; (ii) timing is ideal; (iii) the frequency offset is a
small fraction of the symbol rate. A few remarks on these restrictions are
useful. In TDMA systems condition (i) is ensured by appending a preamble
with a known pattern to the beginning of each burst. Carrier frequency offset
may be reestimated on each individual burst or, alternatively, by processing
several stored preambles at a time. The second procedure takes advantage of
the fact that frequency varies slowly and remains constant over many bursts.

Condition (ii) implies that accurate timing information can be gathered
even in the presence of moderate frequency errors. Actually, good clock
recovery is possible even with frequency errors as large as 20% of the symbol
rate.

Finally, frequency offsets in this section are in the range of a few percents
of the symbol rate 1/T, say less than 10%. For example, in a point-to-point
microwave radio at 30 GHz, with typical oscillator instabilities of 5 parts per
million, the combined transmit/receive oscillator instability can be as large as
300 kHz, which is less than 10% of 1/T only if the latter exceeds 3
Msymbols/s. Otherwise, frequency offset must be measured in two steps. A
first coarse measurement (performed with the methods of Sections 3.5 and 3.6)
allows one to locate the offset within a range narrower than +0.1/T. Then, this
estimate is subtracted from the carrier frequency and the residual offset is
measured with the methods discussed here.

In this subsection we approach frequency estimation via ML methods. As
we shall see, while the problem can be put into a simple mathematical
framework, its practical solution requires some approximations.

To begin we observe that, if timing and data are known, the signal has
only two unknown parameters: frequency offset and carrier phase. Based on the
results of Chapter 2, the likelihood function for these parameters has the form

T, T,
Alrl.6) = exp{Nio {Re{r(z)s*(t)}dt - ﬁ ! |§(t)|2dt} 3.2.1)
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where

502/ O ¢ o(t—iT - 1) (3.2.2)
i

and 6 and ¥ are trial values of 6 and v. In the following 6 is modeled as a ran-
dom variable uniformly distributed on [0,27) while V is a fixed albeit unknown
quantity.

It is easily checked that the second integral in (3.2.1) is independent of v
and 6 and, therefore, can be dropped (remember that dividing a likelihood
function by anything that does not depend on the trial parameters still yields a
likelihood function). Thus, maximizing A(r|V,0) is equivalent to maximizing

)
A(rw,é) = exp{Nl j Re{r(t)ﬁ*(t)}dt} (3.2.3)

00
/\g(t—iT-T)

~ N~ >

0 T, t
@)

g(t—iT-7)

q
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T
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o 4

g(t=iT-7)
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Ty

(iii)

o -

Figure 3.1. Illustrating the location of g(t —iT — ) over the observation interval.
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To proceed, let us concentrate on the integral in (3.2.3). Using (3.2.2)
yields
T . T
[rs" de =Y ¢ [rine ™ g(t—iT - vyt (3.2.4)
0 i 0

Now, bear in mind that g(¢) has a limited duration (say, a few symbol intervals
about the origin). Thus, when computing the integrals in the right-hand side of
(3.2.4), three distinct cases may occur (see Figure 3.1): (i) g(t—iT - 1) is to-
tally inside the observation interval (0,7,); (if) it is totally outside this interval;
(#ii) it lies across one of the extremes. In the first instance the integration can be
extended to the infinite line. In the second, the integral is zero. The third situa-
tion cannot be further simplified. Nevertheless, assuming T, much greater than
the duration of g(t), it is realized that type-(iii) cases are comparatively few.
Putting these facts together leads to the approximation

T Lyl
[roF" 0de = Y cix(h) (3.2.5)
0 k=0

where L, éTb /T is the length of the observation interval in symbol periods (we
assume 7T, a multiple of T) and x(k) is the sample at k7+7 of te waveform

x(r)2 Tr(é)e'j 2K o(E - 1)dE (3.2.6)

As is shown in Figure 3.2, x(f) represents the response of the matched filter to
the voltage r'(f)&r(r)e /2™
Returning to (3.2.5), let us write

Lo-1

e Y chx(k) e’V (3.2.7)
k=0
with
o) 20) x(1)
—»%—» g
e—ﬁ7r\7t

Figure 3.2. Physical interpretation of x(f).



Carrier Frequency Recovery with Linear Modulations 83

L
|X|e’ &Y cpx(k) (3.2.8)
k=0

Then, substituting into (3.2.3) yields
Alrl7, é) = exp{%—'— cos(y — é)} (3.2.9)
0

Elimination of 6 from A(r[fl,é) is accomplished by averaging over
[0,27). This produces

A(rfv)= lo(m) (3.2.10)
Ny
where Ij(«) is the modified Bessel function of zero order
1 2n
I(@) == [e**dz (3.2.11)
2

As [ (@) is an even function of & with an upward concavity and the argument
of I,(e) in (3.2.10) is positive, it is seen that A(r|V) achieves a maximum at the
same location as |X|. From (3.2.8) we conclude that the ML estimate is ob-
tained by maximizing

INE

Ly -1
> cix(k) (3.2.12)

k=0

Figure 3.3 illustrates the computation of I'(V).

One difficulty with maximizing T'(V) is apparent from the simulation
results shown in Figure 3.4, where I'(V) is drawn versus v for QPSK mod-
ulation and root-raised-cosine-rolloff pulses with rolloff a=0.5. Here, the true
frequency offset v equals zero, the ratio E /N, equals 30 dB and the

1) x(k) r'(v)
ﬁ?—? g-t) —{0—»%—» |Z| >
|
|

t=kT+7T .
-2 vt S

Figure 3.3. Illustrating the computation of T(V).
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40 T T T T T
- QPsK .
L | a=05, L=30 i
30 ™ | E/N=30aB ]
1; 20 [ -
= i i
10 —
-1.50 -1.00 -0.50 0.00 0.50 1.00 1.50

Normalized frequency, VT

Figure 3.4. Typical shape of the T'(V) function.

observation length is 30 symbols. Clearly, as there are many local maxima, the
location of the global maximum must be preliminarily found.

In principle this can be done by breaking the estimation algorithm into a
two-step search. The first part (coarse search) calculates T'(V) for a set of v
values covering the uncertainty range of v and determines that v which
maximizes (V) over this set. The second part (fine search) makes an
interpolation between the samples of I'(V') and computes the local maximum
nearest to the V that has been picked up in the first part. Note that,
occasionally, I'(¥) will be so distorted by noise that its highest peak will occur
at a distance from v. When this happens the ML algorithm makes large errors
(outliers) [2]. In a practical situation outliers have disabling effects on the
receiver performance as they result in bursts of errors. Also, outliers become
more and more likely as the E /N, decreases. Indeed, estimation accuracy
exhibits a threshold which is clearly visible from a graph of error variance
versus E;/N,. At large E /N, the variance increases at a fixed rate as E /N,
decreases. However, as E;/N, approaches some critical value, the curve rises
rapidly due to the insurgence of outliers.

3.2.2. Practical Frequency Estimators

The above discussion shows that ML estimation is a burdensome process
and indicates that simpler methods are desirable. Here we discuss four such
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methods, all based on the following signal model.
Suppose that

(i) the convolution g(#) ® g(—t) is Nyquist, i.e.,

T 1 k=0
jg(t)g(t —kT)dt= { , (3.2.13)
e 0 otherwise
(ii) data symbols belong to a PSK constellation
{Ck =e/% 1oy =0,2n/M,....2n(M - 1)/M} (3.2.14)

(iii) the uncertainty range of v is small compared with the symbol rate.

Feeding
r(t) = ej(27rvt+9)zci g—iT-1)+w(r) (3.2.15)

into the matched filter g(-f) produces a waveform y(#) whose samples
y(k)2 y(kT + 1) have the form

y(k) = jr(t)g(t —kT-1)dt (3.2.16)

—o0

Then, substituting (3.2.15) into (3.2.16) yields

yk)=e?Y ¢ j e/ g(t—iT-1)g(t—kT - 7)dt +n(k)  (3.2.17)

—oc0

where the last term (the noise contribution) is given by
n(k)= [w(t)g(t - KT —7)dt (3.2.18)

As w(t) is Gaussian and has independent components with PSD N, it can be
shown that n(k) may be written as

n(k) = ng(k)+ jn, (k) (3.2.19)

where ng(k) and n,(k) are independent zero-mean Gaussian random variables
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with the same variance N, .

Let us concentrate on the factor e/™ g(t—iT -1) in (3.2.17). Since
g(t —iT — 7) takes significant values only over an interval Z; of a few symbols
around #=iT+7 and we have assumed |v| << 1/T, the exponential e/*™ may be
approximated with a constant e/*™“"*? for te T, and, in consequence, we have

€™ g(t—iT - 1) = /™ Tt T — 1) (3.2.20)

Substituting into (3.2.17) and bearing in mind (3.2.13) yields
(k) = ¢, PP ) (3.2.21)
As is seen, the signal component in (3.2.21) depends on v as well as on 7,
6 and the modulation c,. Modulation is easily removed, however, taking
advantage of the PSK property c,c; =1. In fact, multiplying y(k) by c¢; and

letting z(k)2 y(k)c; gives

2(k) = POy (g (32.22)

where n’(k)én(k)c,: has the same statistics as n(k). Figure 3.5 shows the com-
putation of z(k). Equation (3.2.22) is the basis for the estimation methods dis-
cussed in the sequel. They all operate on the data set {z(k),k=0,1,...,L, —1}.

3.2.3. First Method (Kay [3])
Rearrange (3.2.22) as follows:
2(k) = p(k)ej[va(kT+1)+6+¢(k)] (3.2.23)

where p(k) and ¢(k) are implicitly defined as

plk)e’*® &1 4 ' (k)e BT +e)+6] (3.2.24)

k k

LCA N _/‘@.y_‘l@?_“,’
|
|

t=kT+71 .
Ci

Figure 3.5. Illustrating the computation of z(k).
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As E,/N, grows large it can be shown that the random variables {¢(k)} are
approximately independent, zero-mean and Gaussian [3].

Next consider the argument of the product z(k)z*(k—1). Using (3.2.23) it
is found that

arg{z(k)z" (k- 1)} =27vT + ¢(k) — (k- 1) (3.2.25)

Clearly, the quantity arg{z(k)z*(k — 1)} may be viewed as a noisy measurement
of 2zvT. Note that up to L;-1 such measurements are available from the data
set {z(k)} and the question arises as to how they can be exploited to estimate v.
The following procedure has been proposed by Kay [3].

Denote a(k)2arg{z(k)z"(k—1)} and let a2{o(1),q(2),...,00(L, —1)} be
the available measurements. Also, call @ that e corresponding to the trial
frequency offset V. Its components have the form

a(k)22nVT + ¢(k) - p(k—1), k=12,..,L 1 (3.2.26)

As we mentioned earlier, the phases {¢(k)} are independent and approximately
Gaussian at high E,/N,. Thus, @ is approximately Gaussian and its
probability density function p(&lfl) can be written in closed form. Then,
maximizing p(&=a|\7) as a function of V yields the ML estimate of v based
on the observation of arg{z(k)z (k—-1)}, k =1,2,...,L, — 1. It is worth stressing
that this is not the same as maximizing the function I'(V) in (3.2.12). Indeed,
the estimator maximizing (3.2.12) observes the set {x(k)} whereas Kay's
estimator observes the sequence arg{z(k)z"(k —1)}.
Analysis in [3] shows that the maximum of p(& =a|\7) is reached for

V= Zy(k)arg{z(k)z (k-D} (3.227)

where {y(k)} is a smoothing function given by

2
1_(2k—lﬂ] } k=12,...,L[i-1  (3.2.28)

3 L
k)=
y(k) -

2015-1

It is also indicated in [3] that the estimator (3.2.27) is unbiased and reaches the
modified Cramer-Rao bound

3 1

T2 x MCRB(V) = LN,
s/ 470

(3.2.29)

at high E /N, values.
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3.2.4. Second Method (Fitz [4])

Fitz has proposed two frequency estimators [4]-[5]. As they have
comparable performance, in the sequel we report only on that described in [4].
Call R(m) the autocorrelations of z(k) as obtained from the data {z(k)}, i.e.,

Lo-1
R(m)éz-l_—m— Y k)2 (k-m), 1Sm<Ly-1 (3.2.30)

k=m

Substituting (3.2.22) into this equation yields
Rm) =&/ +n"(m), 1<m<Ly-1 (3.2.31)

where n”(m) is a zero-mean noise term.

Next, assume that |n”(m)| is small compared with unity (which is true at
high E /N, values). At first sight one might think that the argument of R(m)
equals approximately 27mvT. This is not necessarily true, however, because
the difference

e(m)2arg{R(m)} - 2mmvT (3.2.32)

is occasionally large. To see why, bear in mind that the argument in (3.2.32) is
taken modulo 27, which means that its values are restricted to the interval [-7,
7). Figure 3.6 illustrates equation (3.2.32) in two different situations. In Figure
3.6(a), 2rvmT is far from either —x or 7 and it is clear that arg{R(m)}=
2rvmT . In Figure 3.6(b), instead, 2zzm VT is close to 7 and e(rn) may be about
—27 even with a small n”(m) (an analogous situation takes place when 2xmvT
is close to —n).

From the foregoing discussion it appears that the errors e(m) are generally
small (at high E,/N,) provided that m is restricted to 1<m < N and N is upper
bounded by

1

where v, ,, denotes the uncertainty range of v. Then, summing (3.2.32) for
1<m< N and dividing by N yields

N N
%Ze(m) =%2arg{R(m)}-—n(N+1)vT (3.2.34)
m=1

m=1

The left-hand side is now small as its terms tend to compensate each other.
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Figure 3.6. Illustrating equation (3.2.32).

Thus, setting to zero the righthand side and solving for v produces the Fitz
estimation formula

N
m Y arg{R(m)} (3.2.35)

m=1

V=

The Fitz estimator is found to be unbiased in the range |[v|<1/(2NT) and
achieves the MCRB(V) provided that N equals Ly/2. Its estimation accuracy de-
grades as N decreases but, at the same time, the computational load gets lighter
and the estimation range wider, as is seen from (3.2.33). Thus, there is a trade-
off between estimation range, on the one hand, and accuracy and computational
simplicity on the other.

3.2.5. Third Method (Luise and Reggiannini [6])

The approach adopted by Luise and Reggiannini (L&R) in [6] starts again
from (3.2.31) but follows a different route. As a first step, the index m is
restricted to 1< m < N, where N is a design parameter less than L;—1. Thus,
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R(m) = eJ2mmVT o n”(m), 1<sm<N (3.2.36)

Next, the average of (3.2.36) is computed so as to smooth out the noise. This
yields

N N
-—ZR(m) —Zef“"'” +%2n"(m) (3.2.37)
m=l m=1

m-l

which reduces to

Zef"-’""‘f’ ZR(m) (3.2.38)

m=1

presuming that the last term in (3.2.37) is negligible.
Equation (3.2.38) is now solved for v. To this end consider the identity

N .
zeﬂnmﬂ‘ - SH}”NVT e.i”(N*'l)ﬂ (3.2.39)
sinzvT

and observe that the ratio sin(zZNVT)/sin(nvT) is positive for

1
V| — 3.2.40
Ms <7 (3240

Thus, taking the argument of both sides of (3.2.39) gives

Jj2rmvT
n(N+ o7 {2 } (3.241)

m=1

and using (3.2.38) leads to the L&R formula

V= E(N+ T ™ {2 R(m)} (3.2.42)

m=]

Figure 3.7 illustrates a block diagram for the L&R estimator. A look-up
table is employed to compute the argument of the sum.

Analysis and computer simulations reported in [6] indicate that the L&R
estimator is unbiased in the range (3.2.40). It is also shown that it achieves the
MCRB(v) at E /N, values as low as 0 dB for N=Ly/2. As happens with the Fitz
estimator, the accuracy degrades rather slowly as N decreases while the
estimation range gets wider (see (3.2.40)).
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Figure 3.7. Block diagram of the L&R frequency estimator.

3.2.6. Fourth Method (Approximate ML Estimation)

The last method relies on an approximation to the function I'(V) in
(3.2.12), which is valid when v is confined in a small interval around the
origin. To see how this comes about let us compute x(k)2x(kT +7) from
(3.2.6):

x(k) = jr‘(r)e'fz"“' g(t—kT - 7)dt (3.2.43)

—o0

Then, assuming V sufficiently small and reasoning as with (3.2.20) yields
e™g(t —iT - 1) = /™ T+ gt —iT - 17) (3.2.44)

from which we get
x(k) = €D [ r(r)g(t = kT = 7)dt

= y(k)e_jzﬂ‘.'(kT+T) (3.2.45)

where y(k) is the matched-filter output at kT+7 (see Figure 3.7). Substituting
this equation into (3.2.12) and letting z(k)éy(k)c; produces the desired
approximation

L i
T (V) =Y 2(k)e>™ (3.2.46)

k=1

At first sight it seems we are still bogged down by the same difficulties
encountered with (3.2.12). It should be noted, however, that the variable V in
(3.2.12) is hidden in the samples x(k) whereas it appears explicitly in (3.2.46).
This means that while the samples {x(k)} must be recomputed for every v, the
{z(k)} need only be computed once. In addition, the coarse search for the
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maximum of (3.2.46) can be made rapid by means of fast Fourier transform
(FFT) techniques [2].

It is interesting to compare the complexity of this (approximate) ML
estimator with that of the Fitz or L&R methods (which are approximately
equivalent for a given N). Consider (3.2.42), for example. Here, the bulk of the
operations goes into computing the correlations {R(m)}. Actually, from
(3.2.30) and (3.2.42) we see that a total of N(2L,~N-1)/2 complex
multiplications is required. As for the ML estimator, most of the computational
effort goes into computing ['(V) with a sufficiently high resolution. It would
seem sufficient to take T'(V) at the points V=n/L;, n=0,1,..., L,~1. It turns
out, however, that to achieve the MCRB even at low E /N, the number of
points must be increased by a factor M (the so-called zero-stuffing factor) equal
to 2 or 4, depending on L, (see [2]). In general, M=4 is needed when L, is small
(say, less than 64) while M=2 is sufficient with a larger L,. Using an FFT of
size ML, results in a complexity on the order of (1/2)ML, Xlog,(ML,)
multiplications.

As we mentioned earlier, the L&R algorithm achieves the MCRB for
N=Ly/2. For L=128, this amounts to 6112 multiplications. With the ML algo-
rithm, instead, we have 1024 multiplications. Thus, the latter is simpler. Now,
suppose we decrease N from 64 to 8. The complexity of the L&R algorithm re-
duces to 988, less than with the ML algorithm. At the same time performance
deteriorates, however. Simulations run with QPSK and 50% rolloff show a
degradation of about 6 dB in terms of E /N,. Thus, the L&R algorithm (as
well as Fitz’s) provides a trade-off between accuracy and implementation
complexity.

3.2.7. Performance Comparisons

Comparisons between the above estimators are not straightforward as their
performance depends on several parameters such as: (i) signal-to-noise ratio
E [/N,; (ii) observation length L,; (iii) parameter N (in Fitz and L&R
estimators). In the following we report on simulation results obtained with
L,=32 and N=16. As mentioned earlier, this choice of N provides the minimum
error variance with the Fitz and L&R estimators. Also, the zero-stuffing factor
M in the ML estimator is set to 4. A QPSK scheme is assumed, with an overall
raised-cosine-rolloff response and a rolloff factor ¢=0.5.

Figure 3.8 illustrates the (normalized) average estimates, E{VT }, versus
vT at E, /N,=2 dB for all the above algorithms, except the ML (which is found
to be unbiased over the full range +15% of the symbol rate). From the figure it
appears that the Kay algorithm has a (very small) bias only toward the
extremes of the interval [VI]<0.15. The L&R and Fitz algorithms have a much
narrower operating range.
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Figure 3.9. Estimation variance versus E, /N, for QPSK.
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Figure 3.9 shows estimation variance versus E,/N,. It appears that the
Kay method departs from the MCRB(v) at moderate E /N, values, say below
8.5 dB, whereas the other three stay close to MCRB(v) up to 0 dB.

Exercise 3.2.1. The simulation results in Figure 3.9 indicate that the Kay
algorithm has a much worse threshold than the other methods. Provide an
intuitive interpretation for this fact.

Solution. In writing (3.2.25) we have overlooked the fact that the arg-
function takes values in the interval [-7, ) whereas the right-hand side may be
greater than 7 in absolute value. A modulo 27 operation is needed, which
amounts to changing (3.2.25) into

arg(z(k)z" (k= 1)} = 2aVT + ¢(k) - ¢p(k — 1) = 27wm(k) (3.247)

where m(k) is an integer. Note that m(k) is normally zero at high signal-to-
noise ratio (SNR) since the noise-induced phase errors ¢(k) are small and we
have assumed 2avT <<1. As the SNR decreases, however, the chances
that m(k) be nonzero increase. Clearly, an event m(k)#0 makes
arg{z(k)z"(k—1)} a bad estimate of 27vT. Accordingly, the Kay method is
bound to fail as SNR decreases.

It might be argued that this same drawback is also inherent in the Fitz and
L&R algorithms although it does not produce visible degradations. The answer
is that Kay operates on z(k)z'(k—1) by first applying the hard arctan
nonlinearity and then smoothing the results (see (3.2.27)) whereas Fitz and
L&R apply smoothing before the nonlinearity (see (3.2.34) and (3.2.37)).

Exercise 3.2.2. In a TDMA transmission system each burst consists of a
preamble of 20 known symbols plus a segment of M=400 data symbols. The
modulation is uncoded QPSK and the signal-to-noise ratio is E,/N,=10 dB.
Timing recovery is ideal. The carrier phase measurements (independently
derived from each preamble) are so accurate that negligible phase errors can be
assumed at the start of each data segment. Due to uncompensated frequency
errors, however, the carrier phase changes across a data segment and achieves
the value

Ap=2aM(v-W)T (3.2.48)

at the end of the segment. Clearly, a non-negligible A¢ degrades the symbol
error rate (SER). Indicate the maximum error |v — V| that corresponds to a SER
degradation of about 0.3 dB at the end of the data segment. Also, suppose that
frequency estimates are derived with the methods described in the previous
sections. Each estimate is based on an observation of L, symbols and is
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possibly longer than a single preamble (this is made possible by putting
together several consecutive preambles). Compute the total observation length
L, that is needed to achieve a frequency estimation accuracy consistent with an
SER degradation of 0.3 dB. How many preambles should be collected to
achieve this accuracy?

Solution. In Exercise 2.2.3 of Chapter 2 it has been found that an SER
degradation of 0.36 dB corresponds to phase errors of about 5° at E, /N,=10
dB. Substituting this result into (3.2.48) yields

3.5-107°
T

A

V-V

(3.2.49)

All of the frequency estimation methods discussed earlier achieve the
MCRB at E /N,=10 dB. The value of the bound is

0.3

MCRB(V) = —+—
) 2m* L T?

(3.2.50)

The standard deviation of the estimates is the square root of (3.2.50). Equating
this quantity to the error in (3.2.49) and solving for L, results in

L, = 230 symbols (3.2.51)

As each preamble has a length of 20 symbols, about 12 preambles are needed
to produce a frequency estimate.

Exercise 3.2.3. For N=1 the L&R estimator takes the form

.1 I
V= ﬁarg{ Z{z(k)z (k- 1)} (3.2.52)

Compute its variance as E; /N, grows large.
Solution. Start from equation (3.2.22) written in the form

2(k) = BP0 L y)] (3.2.53)

with
V(k)&n' (ke B UT+oe] (3.2.54)
Recalling that {n'(k)} are independent and Gaussian random variables, it is

easily seen that the sequence {V(k)} is statistically equivalent to {n'(k)}. In
particular, real and imaginary components of V(k) have the same variance N,
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Next, using (3.2.53) we get
2k (k-1 = eﬂ’“’f[1 +VE&)+V k-1 +V(k)V (k- 1)] (3.2.55)

When E,/N, is large, V(k) and V*(k—1) have small amplitudes relative to
unity and the product V(k)V*(k —1) can be neglected in (3.2.55). Also, only the
imaginary part of V(k)+V*(k-1) may be kept as the real part is small in
comparison with unity. Thus, letting

V(k)2 Ve (k) + jV, (k) (3.2.56)
we obtain
2(k)z" (k= 1) = e*™ 1+ jV, (k) - jV;(k = 1)] (3.2.57)
Hence
£y : V,(Ly =1 - V(0)
Y 2(k)z" (k1) = (L, - 1)e12’“”{1 + j—’———-——'—] (3.2.58)
k=1 LD -1
from which, taking the argument and inserting into (3.2.52) produces
R/ C /1) (3.2.59)

21T (Lo~ 1)

The variance of V equals the mean square value of the last term in
(3.2.59). Formally

Var{v} = 7 2N, (3.2.60)

7L'2T2(L0 _ 1)2

To express this result in terms of E;/N, we note that the signal energy equals
1/2. This is easily checked from the results of Appendix 2.A.2 of Chapter 2,
bearing in mind that the channel is Nyquist and the signal constellation is
circular with a unity radius. In summary

2E,/N,

(3.2.61)

and (3.2.60) becomes

1 1

P BN (3.2.62)

T? x Var{¥} =
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Comparing with MCRB(v) in (3.2.29) it is seen that the variance (3.2.62) is
inversely proportional to I3 while the MCRB(V) is inversely proportional to

L.

3.3. Decision-Directed Recovery with DPSK

3.3.1. Decision-Directed Algorithms with Differential PSK

In the foregoing discussion the data have been taken from a preamble.
Alternatively, they can be derived from the detector (assuming that decisions
are sufficiently accurate). In the latter case we speak of decision-directed (DD)
methods rather than data-aided (DA) methods. One obvious question is
whether reliable decisions can be obtained even in the presence of a carrier
frequency offset. In coherent detection systems this is not the case since
frequency recovery is a prerequisite to phase recovery and, ultimately, to
correct decisions. For PSK with differential detection, vice versa, reliable
differential decisions are possible even in the presence of (moderate) frequency
offsets. This suggests that DD frequency estimation might be feasible.

To investigate this point consider again the samples y(k) from the matched
filter output and let D (k) be the detector decision corresponding to
y(k)y*(k —1) (see Figure 3.10). Also, assume reliable decisions so that

D(k) = c,cp_, (3.3.1)

For m=1, equation (3.2.30) reads

1

1 ks .
RQ) = 7 Z;z(k)z (k-1 (3.3.2)

y(k)y (k-1)

y(k) DIFF.

D(k)
DETECTOR | >

» DELAY

Y
-~

Figure 3.10. Differential detection with PSK modulation.
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where z(k)2 y(k)c;. On the other hand, we have
k

2(k)z" (k= 1) = y(k)y" (k = 1)(cecr_y)"

=~ y(k)y*(k~1)D" (k) (3.3.3)
Hence
R .
R()=—— Y y(k)y"(k-1)D"(k) (3.3.4)
Ly-133

Substituting this result into either Fitz formula (3.2.35) or L&R formula
(3.2.42) with N=1 yields the following DD frequency estimator:

A 1 L()“l * *
V= -27T—arg{ Z‘; y(k)y' (k-1)D (k)} (3.3.5)

This algorithm is reminiscent of the rotational frequency detector described in
[7] and is similar (but not identical) to the method proposed in [8].

Figure 3.11 shows simulation results for the variance of the normalized
estimates VI as obtained from (3.3.5) with QPSK modulation. The overall
channel response g(#) ® g(—t) is Nyquist with a 50% rolloff factor and the
observation interval is of 100 symbols. The true offset value is either zero or
5% of the symbol rate. We see that in both cases the threshold is rather high, on
the order of 15-20 dB.

Exercise 3.3.1. The assumption made earlier about reliable differential
decisions is valid only with a limited frequency offset. Provide a ball-park
value for the maximum v that is consistent with the hypothesis of correct
decisions. Assume QPSK modulation.

Solution. Using (3.2.21), the input to the differential detector may be writ-
ten as

Y)Y (k=1) = cyc;_e”*™ +n'(k) (3.3.6)

where n'(k) is a noise term contributed by SignalxNoise and NoisexNoise
interactions in the product y(k)y"(k—1). Denoting ¢, =e’* as the generic
QPSK symbol, the information is transmitted through the differences o~ _,.
The detector tries to establish the value of oy~ _; in the set {mm/2, m=0,1,2,3}
or, which is the same, the value of the integer m corresponding to a,—o,_;. To
achieve this goal it chooses that m which minimizes the distance of mn/2 to

d(k)2arg{y(k)y" (k—1)}, ie.,
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Figure 3.11. Normalized estimation variance.

= arg{n}"in{|¢(k) - mn'/2|}} (3.3.7)

For the sake of argument, suppose 04—¢,_;=0. Then, in the absence of
noise and with v=0, from (3.3.6) it is seen that ¢(k)=0. Correspondingly,
(3.3.7) yields m =0, which is correct. Suppose instead v#£0 (but still a
negligible noise level). Then, ¢(k)=27vT and the detector decision depends on
v. Inspection of (3.3.7) reveals that correct decisions still occur provided that
27vT is less than 71/4 in absolute value.

In the presence of noise the situation is more complex as decision errors
may occur anyway (with certain probabilities). From the foregoing discussion,
however, it is clear that the error probability increases as v departs from zero
and the increase may be significant unless [277vT] is a small fraction of 7/4, say
10-20%. Taking this as a reasonable figure, it is concluded that reliable
differential decisions require v values limited to a few percents of the symbol
rate.



100 Chapter 3
3.4. Non-Data-Aided but Clock-Aided Recovery

3.4.1. Closed-Loop Algorithm

In this section we concentrate on frequency estimation for PAM signaling
with coherent detection. In doing so we still assume that timing is ideal and the
Nyquist condition is satisfied. However, since some (moderate) frequency
errors are involved, we do not expect that symbol decisions are correct. A
closed-loop estimation scheme is described first, while open-loop methods are
treated in Section 3.4.2.

For simplicity we start with QPSK. Extensions to general PSK and QAM
constellations are discussed later. Our aim is to illustrate a frequency recovery
scheme proposed in [9] and represented in the block diagram of Figure 3.12.
Here, samples from the matched filter are multiplied by ¢;, the complex-
conjugate decisions from the detector, and are fed to an error generator. The
purpose of the generator is to give an indication of the difference between v
and its current estimate V(r) provided by the voltage controlled oscillator
(VCO). The error signal is filtered (to smooth out the noise) and used to steer
the VCO frequency toward v. Note that the VCO in the figure is the baseband
equivalent for the real VCO. In particular, the oscillating frequency V(¢) in the
former equals the difference between oscillating frequency and free running
frequency in the latter. The offset v is tracked under the action of the signal
u(k) provided by the loop filter. As we shall see, when V(¢) is less than v, u(k)
has a positive DC component and the VCO is forced to speed up. Similarly,
when V(¢) is greater than v, the VCO is forced to slow down.

The heart of the scheme is the error generator whose operation is now
described. Noise is neglected for simplicity and the Nyquist condition is
assumed. Accordingly, the received signal is modeled as

r(t) = ej(z”"”e)ZCig(t —iT-1) (34.1)
10) y (k) () p——— ()
) —</? “—’%9—' GENERATOR
| ~
t=kT+7 G
- u(k) LooP
VCo [ FILTER

Figure 3.12. Generation of the frequency error.
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In all practical cases the VCO frequency varies slowly and may be considered a
constant over several symbol periods. Thus, for several transmission intervals
around the generic sampling time k7+7 the VCO output is well approximated
by an exponential e~/27" (=constant) and the matched-filter input becomes

r(t)e ™ = TN ¢ ot~ iT - 1) (3.4.2)

with f Ay _V. Then, with the reasoning leading to (3.2.21) it is easily
concluded that the k-th sample from the matched filter has the form

y(k) = c,e!*® (3.4.3)

with
o(k)227f, (kT +7)+ 6 (3.4.4)

Alternately, as ¢, has unit amplitude, we may write

y(k)=e® (3.4.5)

with
w(k) = arg{c, } + ¢(k) (3.4.6)
Next, we turn our attention to the decision rule. The detector makes the

decision ¢, =2 where m is that integer that minimizes the difference
between y(k) and mm/2 in absolute value:

= arg{rr}nin{lw(k) - m7r/2|}} (3.4.7)

This decision rule is illustrated in Figure 3.13, where circles represent QPSK
constellation points. Calling z(k) = y(k)¢; the input to the error generator, from
this figure it is seen that the argument of z(k) is always in the range tn/4.
Formally

/4

arg{z()} =y (k) - /2|7, (3.4.8)

where [x]°  means “x reduced to the interval [-,¢).” Thus, substituting
(3.4.4)-(3.4.6) into (3.4.8) and bearing in mind that both arg{c,} and m=x/2 are
multiples of 7/2, it is concluded that
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=

Figure 3.13. Decision rule for QPSK.

/4

arg{z(k)} = [2nf, T + 1)+ 6]", (3.4.9)

Figure 3.14(a) and (b) illustrate arg{z(k)} versus time for f, >0 and f; <0
respectively. We see that arg{z(k)} varies in a saw-tooth fashion, with
increasing or decreasing ramps depending on the sign of f;. As is explained
soon, this is a crucial point to understand the operation of the error generator.

The purpose of the error generator is to provide a signal that, on average,
has the same sign as f,;. The method proposed in [9] is to relate the error signal
e(k) to the argument of z(k) as follows:

() {arg{z(k)} if |arg{z(k?}| <a (3.4.10)
e(k-1) otherwise

where ¢ is a positive parameter less than /4. The rationale behind this rule is
apparent from inspection of Figure 3.15(a)-(b) which illustrates e(k) versus
time for the same arg{z(k)} values indicated in Figure 3.14. These figures show
that the average of e(k), S(f;), is positive for f;>0 and negative in the
opposite case.

The exact dependence of S(f;) on the frequency error f, is difficult to
establish analytically. Figure 3.16 illustrates the shape of S(f;) as obtained by
simulation for two values of the signal-to-noise ratio. The overall channel
response g(¢) ® g(—t) is Nyquist with a 35% rolloff factor. The parameter o
in (3.4.10) is chosen equal to m/8. As is seen, the range where S(f,) takes
significant values is on the order of £10% of the symbol rate and represents the
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arg{z(k)}

n/4

—7t/4

arg{z(k)}
/4

—nt/4
(b

Figure 3.14. Function arg{z(k)} versus time.

Figure 3.15. Explaining the operation of the error generator.
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Figure 3.16. Function S(f;) for QPSK.

acquisition range of the loop. The name comes from the fact that an error
signal with a nonzero DC component is needed to move the VCO frequency,
which can happen only if S(f,;)# 0. Further discussion on this concept is
deferred to Section 3.5.4.

3.4.2. Extension to M-ary PSK and QAM

The above ideas are easily extended to M-ary PSK. In this case equation
(3.4.9) becomes

arg{z(k)} = [22, (kT + )+ 0]} (34.11)
Correspondingly, the error signal is still as indicated in (3.4.10) except that a¢is
less than /M.

The case of QAM modulation is trickier as a consequence of the more
complex signal constellation. A possible solution for 16-QAM is as follows.
From Figure 3.17 we see that a 16-QAM constellation is formed by two QPSK
sub-constellations with a total of 8 points. The remaining points lie in an
annular region between the indicated circles. The idea is to distinguish between
points from the sub-constellations and those from the annular region. When the
former are transmitted the signal error is computed as indicated for QPSK;
otherwise it is left unchanged. This is done by turning (3.4.10) into



Carrier Frequency Recovery with Linear Modulations 105

A
o o o ™S 0
Rm A C I..'.
o o o ,\iEos
Ry,
o (& o o
e] o ¢} o

Figure 3.17. QAM constellation.

k if k d z(k)yeC
(e arg{z(k)} if |arg{z(k)}| < and z(k)¢ 34.12)
e(k-1) otherwise
where Cis the annular region, i.e.,
C4{R, <[z(k)| < Ry} (3.4.13)

Curves of S(f;) versus f; are provided in [9] for 16-QAM modulation.
They take significant values in a range of about £3% of the symbol rate.
Frequency detectors of this type are currently incorporated in many modems
for digital microwave radios.

3.4.3. Open-Loop Algorithms

The frequency recovery methods illustrated above have a closed-loop
structure and are suitable for continuous mode transmission. Open-loop
schemes are more appealing for burst mode applications because of their
shorter estimation times. Here we describe one such scheme, which has been
proposed in [10] for QPSK modulation but can be extended to M-ary PSK.

As in Section 3.2, we assume that v is a small fraction of the symbol rate.
Accordingly, the matched-filter output is approximately

(k) = ¢, P ETD0 4y (3.4.14)
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Let us first concentrate on a QPSK constellation {e/™™?, m=0,1,2,3}. It is
easily checked that c,‘f =1. Thus, raising y(k) to the fourth power yields

¥ (k) = /B8] iy (3.4.15)

where n’(k) is a noise term resulting from SignalxNoise and NoisexNoise
interactions. We see that the modulation has been removed from y“(k). Next,
multiplying y*(k) by [y*(k—1)]* yields

[y(k)y“ (k- 1)]4 =¥ 4 n"(k) (3.4.16)

where, again, n”(k) comes from SignalxNoise and NoisexNoise products.
Equation (3.4.16) indicates that [y(k)y"(k —1)]* is an estimate of e/*™. The
estimation accuracy can be improved by smoothing out the noise as follows:

1 Ly—-1 . 4 T 1 Ly-1 .
1 Y [y -] =¢ *T Yn'k) (417
k=1 k=1

Finally, presuming that the last term in (3.4.17) is small in amplitude as
compared with unity and taking the argument of both sides yields

r=r arg{l; [ytey" (e=1) } (3.4.18)

Figure 3.18 illustrates a block diagram for the algorithm (3.4.18). It should
be noted that, as arg{-} takes values in the range *7x, the estimates vary
between £1/(87). This is in keeping with the simulation results of Figure 3.19
wherein the average of V (normalized to the symbol rate) is drawn versus the
true frequency offset for two values of the signal-to-noise ratio. The channel
response is Nyquist with a 50% rolloff factor. As is seen, E{VT} is proportional
to VT in the range |VT|<1/8. Figure 3.20 shows the estimation variance as a

y(k)y'(k-1)

y(k)
' (X)—>¢ )
‘k_
L DELAY ¢y y(k-1)

Figure 3.18. Block diagram of the open-loop estimator.

Y

arg {3} —>

Y
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function of E,/N, when the true offset is either zero or 10% of the symbol
rate. The MCRB is also indicated as a reference. Comparing with Figure 3.11
we see that the degradations as VI' departs from zero are now quite limited.

The above concepts can be extended to M-ary PSK modulation in a
straightforward manner. In particular, modulation removal requires raising y(k)
to the M-th power. This produces

yM (k) = /M ETHERME] | (3.4.19)

Then, reasoning as before yields

k=1

L1 ! . M
= arg{ Y, [yky* k-1 } (3.4.20)

Note that the estimation range is now reduced to (approximately) +1/(2MT).

3.5. Closed-Loop Recovery with No Timing Information

3.5.1. Likelihood Function

So far a very small frequency offset has been assumed. Henceforth we
take the opposite viewpoint and allow Vv to achieve values on the order of the
symbol rate. A first consequence of this change in perspective is that previous
assumptions of an ideal clock and, even more, of known data symbols are no
longer tenable. With a large frequency offset, in fact, data symbols are not
available and timing information is totally lacking, meaning that our best guess
of the timing phase is anything in the interval (0,7). Thus, significant changes
must be made on the signal model, as is now indicated.

Let us start from the complex envelope of the incoming waveform

r(t) =s(t)+ w(r) (3.5.1)

The signal has two different expressions, according to whether non-offset or
offset modulation is considered. For now we concentrate on the former but the
results are subsequently extended to the latter. For non-offset modulation we
have

s(t) = ef(Z”"‘*")Zc,. g(t—iT-1) (3.5.2)
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The parameters involved in (3.5.2) are modeled as follows:
* vis an unknown constant, in the range +1/T;
* @is a random variable uniformly distributed over [0, 27);
* Tis arandom variable uniformly distributed over [0, T);

* {c;} are zero-mean independent random variables with the following
second-order moments:

E{ *} Cz fOI' i'—_k (353)
ciCy b= 5.
ik 0 elsewhere

0, 7, and {¢;} are independent of each other.

Consider the likelihood function
1% P
A(r]7,8,%,6) = exp{— [Re[r()5* (1) |dt - — [[5(O) dt 3.5.4
(rl c) exp{N0 !)‘ e[r( )§ ()] 2N, £|S( ) } (3.5.4)
where 5(?) is the trial signal
5()2e/ 2O & ot - iT —7) (3.5.5)

To compute the marginal likelihood function A(r|V) we must average
A(r}7,6,%,é) with respect to 8, ¥ and &. Unfortunately, this operation is diffi-
cult and we are compelled to make approximations. We assume a low SNR,
such that the expansion of the exponential in (3.5.4) into a power series can be
truncated to the quadratic term. Letting

Ty
X,, & [Re[r(t)5" (1)]dt (3.5.6)
0
Ty
X, & [ ar (3.5.7)
0

this amounts to writing (3.5.4) as

A(rlo,é,%,a) ~1+ %(2)(” -X,)+ —§(2X,s -x,)}  (3.58)
0
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It is worth noting that this assumption is not valid in many practical cases and,
in fact, its true raison d'étre is that it leads to a mathematically convenient
formula involving only quadratic nonlinearities. As we shall see repeatedly in
this book, mathematics with quadratic nonlinearities can often be carried
through to closed-form solutions with reasonable efforts. Higher nonlinearities
would generally prevent any useful conclusion.

The right-hand side of (3.5.8) contains several terms that must be
averaged with respect to the unwanted parameters &2{6,7,}. This operation is
straightforward but tedious and is skipped. Nevertheless, it turns out that X,
X,., X% and the product X, X, all have expectations independent of V. Thus,
they can be ignored as they do not affect the maximization. In conclusion,
letting A(r|V) be the expectation of A(r|V,0,7,¢) with respect to @, we have

AGrl7) = A E{X%}+ 4, (3.5.9)

where A, and A, are constants independent of V (in particular, A, is positive).
Furthermore, as we are not interested in the actual value of the maximum of
A(r|V) but in its location, the values of A, and A, are immaterial and we may
concentrate on maximizing

A(rf7)2E{x2} (3.5.10)

As a first step in this direction consider the integral in (3.5.6). Using
(3.5.5) and the same arguments leading to (3.2.5) it is found that

T L1
[ (t)dt =7 Y & x(T +%) (3.5.11)
0 i=0

where L2 T, /T is the length of the observation interval in symbol periods and
x(iT + 7) is the sample of

x(n)# °fr(é,‘)ez'””%g(é ~)dé (35.12)

at t=iT+7. As illustrated in Figure 3.21, x(?) is the response of the matched
filter to r'())2r(H)e /™.
Next, collecting (3.5.6)-(3.5.11) produces

L1 g1
X = %e-ﬂ’ & x(iT +%) + %e’e Y &x°(T +%) (3.5.13)
i i=0

B

i
o
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Figure 3.21. Physical interpretation of x(z).

from which we get

+%e'j2é & xGT + F)x(kT +7)
+=e? EE %" (T +T)x" (kT +7) (3.5.14)

We now perform the expectation of X? indicated in (3.5.10). Clearly, the
last two terms in (3.5.14) give a zero contrlbutlon as the exponential %28
has zero mean with respect to 6. Thus, bearing in mind (3.5.3) we obtain

E;{X2)= %Loz (T +7)] (3.5.15)

Also, averaging with respect to 7 (which is uniformly distributed over [0,T))
yields

L-1T
Arl) = % > [T+ ofae (3.5.16)
i=0 ¢

As a final step we observe that the sum in (3.5.16) equals the integral of
|x(t)| over the observation interval. Thus, discarding the immaterial factor
C,/2T, we are led to maximizing

T
A" (rfi)4 [lx(o) de (3.5.17)
0

The integral in (3.5.17) represents the energy of the matched-filter output. In
the following some methods to find where the maximum energy occurs are
considered. Before proceeding, however, we offer a physical interpretation of
(3.5.17).
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The ratio of the integral (3.5.17) to T, gives the average power of x(z).
When T/T grows large, such a power tends to the statistical power of x(t). This
is the sum of two terms, Pg and Py, associated with signal and noise
respectively. The noise power P, is contributed by the voltage w'(1)2
w(t)exp{—j2nvr} at the matched-filter input (see Figure 3.21). As w(?) is white,
so is w'(t), which implies that Py, is independent of V. Thus, maximizing P+Py
amounts to maximizing Py.

The quantity P can be computed from the power spectral density of the
signal component in r(#), which reads (see Appendix 2.A.2 to Chapter 2)

S(f) = %G( f-Avf (3.5.18)

with Av&v - 7. Hence (see Figure 3.22)
P, = [S(HIG( df

- ETZ_ [l6¢r - aviPiG(rPdr (3.5.19)

Application of the Schwartz inequality [11, p. 395] to (3.5.19) indicates that Py
reaches a maximum for Av=0. It is concluded that the integral in (3.5.17) has a
maximum for V=v.

The above argument suggests a potential drawback when operating with
frequency selective channels. In fact, a condition for the maximum of (3.5.17)
to occur at v = v is that the channel has a flat frequency response. To see why,
assume that the channel transfer function is C(f). Then the spectrum of the
signal component at the matched filter input becomes

S(f) = %IG( F-aviflecr+ i) (3.5.20)
G G( £~ av)*®
0 Av f

Figure 3.22. Functions |G(f)]* and |G(f - Av).
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and the signal power at the filter output results in

C

P, =2 [|6(f - aviFlc(f + 0 |GOHP df (3.5.21)

NS

From this equation it is seen that Pg need not be maximum at Av=0 and, in
consequence, maximizing Pg may result in an estimation error. How large this
error is depends both on the channel transfer function and the shape of the
signal spectrum. In general, small errors are incurred with limited excess
bandwidth factors. In fact, Exercise 3.5.1 shows that there would be no errors
with an ideal rectangular spectrum.

So far we have considered non-offset PAM modulation. The case of offset
modulation may be treated in a similar manner and leads again to formula
(3.5.17). Thus, even with offset modulation, an approximate ML estimate is
obtained by feeding the matched filter with r(¢)exp{—;2zvt} and adjusting the
demodulating frequency v so as to maximize the output power.

Exercise 3.5.1. Assuming a G(f) with a rectangular shape

1
T f <—
T for fls

G(f)= (3.5.22)

0 elsewhere

show that the maximum of (3.5.21) occurs for v =v for any C(f).

Solution. For simplicity we solve the problem letting v=0 but the dis-
cussion is readily extended to non-zero offsets. For v=0 equation (3.5.21)
becomes

p=S o oflcr+ofionfs  es2
or, making the change of variable f, = f+V,
B =2 [lficchfod -of ¢ (3.5:24)

Since G(f) is rectangular in the range +1/(27), the product G(f))G(f; —V) is
zero if |V| exceeds 1/T. Hence, the right hand side of (3.5.24) is zero for
[V|>1/T. Vice versa, if V is confined in the interval £1/7, from (3.5.24) we
obtain (see Figure 3.23)
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Figure 3.23. Illustrating the computation ot Fs.

1/(2T)

P=GT [lc(h)ldf for 0<V<|T

—YQ2T)+¥

YT+

P=GT [l for —1)T<¥<0

-1/(2T)

1/(2T)
P=GT [lchfds for V=0
-1(2T)

Chapter 3

(3.5.25)

(3.5.26)

3.5.27)

To see where P achieves its maximum, we compute the derivative of Pg

with respect to V. With simple manipulations it is found that

2

é£3=—C2TC(——1—+\7) for O<\7<l

dv 2T T
2

d—li‘=C2T L+\7 for —l<\7<0

av 2T T

(3.5.28)

(3.5.29)

which indicate that dP,/dV is positive for ¥ <0 and negative for v >0. This
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means that Pg decreases anyway as v departs from zero and achieves its
maximum just at v =0. No estimation error is incurred, whatever the shape of
the channel transfer function.

3.5.2. Open-Loop Search

Returning to equation (3.5.17), a first method to maximize the integral is
to divide the range of V into small intervals with midpoints v, =v, +kAv,
k=0, 1, 2,...,N-1, and proceed as follows:

(i) take a record of r(#) over (0,7);

(ii) for each v, compute r(r)e™/>™+

Figure 3.24;

(iii) take the greatest energy, E™™, and approximate v with the corre-
sponding Vv, .

and the energy E, of x(¢), as indicated in

The unavoidable quantization error involved in this procedure can be reduced
by interpolating between the E, values closest to E™ and looking for the
location where the interpolating curve is maximum. Clearly, the method is
computationally simple but time consuming.

An alternative approach is to use a parallel structure, as indicated in
Figure 3.25. Here, the estimation time is just 7;,, which entails a reduction by a
factor N with respect to the serial processing. The system complexity is N times
larger, however.

3.5.3. Closed-Loop Estimator

A third approach described in [12]-[14] is to employ a closed loop
structure wherein an error signal is generated (at multiples of the symbol
period) which is proportional to the difference between v and its current
estimate v. This signal is then used to improve the estimate in a recursive
fashion. Again, the algorithm applies to both non-offset and offset PAM
modulation.

) x(1)
g) >

[Oat —>

4

e— Jj2 Ay

Figure 3.24. Arrangement to measure E;.
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To explain the procedure we start with the derivative of (3.5.17) with
respect to V, say dA”(r[v)/dV. Clearly, maximizing A”(r[V) amounts to
solving the equation dA”(r|V)/dV=0. As we shall see, this can be done in a
manner that is suitable for digital implementation. From (3.5.17) we have

dA"(r|7) ox’ @)
s _2JR{ (t) }

Also, from (3.5.12) we obtain after some manipulations

ax(t)
av

= jy(t) - j2mx(t)
where y(?) is defined as
()2 [r&)e ™ 2m(t - g€ ~ dé

Substituting into (3.5.30) results in

dA"(rl?) _

=2 j Im{x()y" ()}t

where Im(z} means “imaginary part of z.”

(3.5.30)

(3.5.31)

(3.5.32)

(3.5.33)
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A physical interpretation of y(t) is illustrated in Figure 3.26. It is seen that

¥(t) is the response of the filter h(t) 2mg(-t) to r(t)e"z”"’ Denoting by G(f)

the Fourier transform of g(?), it is easily shown that the Fourier transform of
h(?) is proportional to the conjugate derivative of G(f):

dG 4G (f)
df

For this reason 27tg(~t) is often referred to as the derivative matched filter.

Next we turn our attention to (3.5.33). Voltages x(t) and y(¢) are outputs
from low-pass filters (matched filter and derivative matched filter). As they
have no components beyond |f|>1/T (we assume G(f) to be bandlimited to
+1/T), the integrand Im{x(#)y"(#)} is bandlimited to |f|<2/T and the integral
in (3.5.33) can be computed through the samples of the integrand taken at twice
the symbol rate. Formally,

H(f)= (3.5.34)

” 2Ly-1
. 21, Sim{x0%)y 4] (3:5.35)

where Ly =T, /T is the observation length in symbol periods and T, 2T/2.
To solve the equation

MIV—) =0 (3.5.36)
dv
we resort to a recursive procedure in which the parameter V is replaced by a
time-varying function V(k7,) and the summation (3.5.35) is used as an error
signal to steer V(kT,) toward v. In practice the idea is implemented as follows.
Assume that a mechanism to produce V(kT,) has already been devised and

take

k
ukT)= Y Im{x(T)y"(T,)} (3.5.37)

i=k—-N+1

nt) r'(t) y(@)
—>?-—> 2mg(t) |—>

e—j27r§t

Figure 3.26. Physical interpretation for y(f).
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as an error signal, where N is some integer parameter. In this equation x(iT})
and y(iT,) are computed letting v = V(iT,) in (3.5.12) and (3.5.32). The problem
is to choose the sequence V(iT,), i=1, 2,..., so as to force u(kT,) to zero.
Intuitively, u(kT,) will tend to vanish when V(kT,) (and its N prior values)
approaches v. Vice versa, a non-zero u(kT,) will indicate that V(KT,) is still far
from the desired value and a better estimate must be sought. In this case a
reasonable move is to change V(kT,) in proportion to u(kT,), i.e.,

Pl(k+1DT,]= V(KT,) + yu(kT,) (3.5.38)

where 7 is a suitable constant (step-size).

It should be noted that (3.5.38) represents a digital integrator and, as such,
has a low-pass action on u(kT;). On the other hand, u(kT;) is a smoothed
version of Im{x(kT,)y"(kT,)}. Thus, there are two low-pass transformations in
cascade, Im{x(kT,)y"(kT,)} = u(kT,) and u(kT,)=> V(kT,), and the former can
be suppressed for the sake of simplicity. This is accomplished by replacing
u(kT,) by Im{x(kT,)y"(kT,)} in (3.5.38), which results in

Pl(k+1DT,] = V(KT,) + yIm{x(kT,)y" (kT;)} (3.5.39)

Frequency estimates in (3.5.39) are updated at twice the symbol rate
(1/T=2/T). A symbol-rate updating is preferable, however, to ease the
computing load. To do so we replace Im{x(kT,)y"(kT,)} by its average over
one symbol interval. In other words, defining

e(kT)é%Im{x(ZkTs )y (2kT,)} + %Im{x[(Zk +DL ]y’ [k +DT]} (3.5.40)

we update V(kT) according to
VI(k +1)T1= v(kT) + ye(kT) (3541

Figure 3.27 illustrates the block diagram of a frequency recovery circuit
based on equations (3.5.40)-(3.5.41). Here, the blocks MF and DMF represent
the matched filter and the derivative matched filter. The digital integration
(3.5.41) is performed by the loop filter whereas the VCO generates an
exponential e™/*”, with ¢(f) given by

51%52 =27V (kT) for kT<t<(k+1)T (3.5.42)

The above equations establish an algorithm for solving (3.5.36). Other
methods exist that achieve similar results. An interesting option is to keep only
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Figure 3.27. Block diagram for the frequency estimator.

one term in the right-hand side of (3.5.40). This turns out to be useful for
further savings in computing load. The interested reader is referred to [13]-[14]
for an in-depth discussion on the pros and cons of such an approximation.

So far phase rotations and filtering have been described as continuous-
time (analog) operations. In a practical implementation r(f) is first sampled and
all further processing is done digitally. If the sampling rate is sufficiently high,
analog and digital models are equivalent.

The digital counterpart of the scheme in Figure 3.27 is illustrated in Figure
3.28. The received waveform is first fed to an anti-aliasing filter (not shown in
the figure) and then is sampled at some rate 1/T,, £ N/T.. The filter bandwidth B
must be large enough to pass the signal components undistorted and the
oversampling factor N must be greater than 2BT to avoid aliasing. In these
conditions no loss of information is incurred with sampling. The samples
r(nTy) are counter-rotated by @(nTy) (as is done with r(f) on a continuous-
time basis) and are fed to the MF and DMF. Filter outputs are decimated to 1/T;
before entering the error generator.

error | ¢KD)

GENERATOR
o -».—|

LOOP -
v kT) FILTER

A

VvCO

Figure 3.28. Digital implementation of the algorithm.
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kT k+1)T
+ + + + + = + >

time

Ao
nT, @+DT,
Figure 3.29. Partition of the k-th symbol interval.

The sequence ¢(nTy) is derived as follows. Dividing the interval
kT<t<(k+1)T into N sub-intervals of length T\=T/N (see Figure 3.29) and
integrating (3.5.42) over the generic sub-interval, say nT,<t<(n+1)T,, yields

#[(n+ DTy | = ¢(nT,,) +2xV(kT)T/N (3.5.43)

This equation involves two indexes: a sample index n and a symbol index k.
From Figure 3.29, it appears they are related by

k= im(%) (3.5.44)

where int(z) means “the largest integer not exceeding z.” In practice,
computing @¢(nT,) through (3.5.43) may not be easy as the phase may grow
large, causing overflows in the computing unit. Overflows are avoided by
taking ¢ modulo 27, i.e.,

P(n+ DTy | =¢(nT)+27V(kT)T/N  mod27m  (3.545)

The performance of the above algorithms is qualitatively discussed in the
next subsection. No quantitative details are provided as they involve lengthy
calculations. The interested reader is referred to [1] and [12] for an in-depth
discussion on their acquisition characteristics and to [13]-[14] for performance
assessments. Some simulation results are shown later.

3.5.4. Frequency Acquisition

To understand the operation of the loop in Figure 3.27 it is expedient to
disconnect the VCO from the mixer and drive the latter at a fixed frequency V.
Under these conditions the resulting error signal has an average Ef{e(kT)|V} that
depends on the frequency difference f,2v-7,ie.,

S(f,)2E{e(kD)|V} (3.5.46)

In practice, function S(f;) looks like an “S” (rotated by 90°) and is usually
dubbed the “S-curve.” Figure 3.30 shows S(f;) for QPSK modulation, as
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Figure 3.30. S-curve for QPSK modulation.

obtained taking a root-raised-cosine-rolloff channel with @=0.5 and random
data (significant deviations from the “regular” shape illustrated in the figure are
possible for particular data patterns [1], [12]). It appears that S(f}) is zero at
the origin and extends over the range f; =*1.5/T. As is now explained, the
loop will eventually lock on the incoming carrier frequency provided that f, is
within this range.

To see how this comes about let us return to Figure 3.27. The VCO
instantaneous frequency equals V(kT) and the DC component in the signal
error is S[v — V(kT)]. Thus, e(kT) is the sum of S[v— V(kT)] plus some zero-
mean disturbance n(kT), which accounts for the thermal noise and data pattern

e(kT) = S[v - v(kT)] + n(kT) (3.5.47)
Collecting (3.5.41) and (3.5.47) yields
VI(k +1)T]= V(kT) +yS[v — V(kT)] + yn(kT) (3.5.48)

which suggests the loop-equivalent model in Figure 3.31.

A quantitative analysis of this circuit is difficult since n(kT) depends in a
complex way on the data and thermal noise. Some insight into the loop
behavior may be gathered by ignoring n(kT). Under these conditions, (3.5.48)
becomes an autonomous equation and its solution is found with methods that
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n(kT)
(kT)
o N ¢
+_ 4‘
V() Ik +1)T]
2
V(KT) T}'

Figure 3.31. Equivalent circuit for the frequency loop.

are now summarized (see [15] for further details).
Briefly, let fd(kT)év — V(kT) be the frequency error at the k-th step and
rewrite (3.5.48) in the form

fal(ke+ DT = fy(KT) =y SLfy(kT)] (3.5.49)

Figure 3.32(a) illustrates the shape of S(f;). Next, draw the curves y,( fd)é fa
and y,( fd)é f1—7S(f;) on the same reference system as indicated in Figure
3.32(b). Start from P, and move vertically to meet y,(f;) at P,. It is clear from
(3.5.49) that the ordinate of P, is f;(0)—yS[f;(0)1= f,(T). Next, move hor-
izontally to meet the line y,(f;). As y,(f,) is the bisector of the coordinate axes,
the abscissa of P, equals the ordinate of P, f;(T). At this stage we look for
fA2T). To this end, move vertically from P, to meet y,(f,) at P;. From (3.5.49) it
is seen that the ordinate of Pj is f,(2T). Next, move horizontally up to P, on the
straight line y,(f,) ... and so on.

It is clear from the figure that the trajectory P, P, P, ..., etc. converges to
the origin provided that the initial frequency error f,(0) is within the range
where S(f) is nonzero. This range is referred to as the loop acquisition range.
In [12] it is found that this range equals +2B_ (B is the signal bandwidth) and
is independent of the modulation format (either offset or non-offset).

Examination of Figure 3.32(b) reveals that the number of iterations
required to achieve the origin depends on the vertical distance between y,(f,)
and y,(f,). The larger the distance, the quicker the convergence. As the
difference y,(f,)-y,(f,) equals yS(f,), it follows that the acquisition process
grows faster as y increases. As we shall see, however, increasing ¥ deteriorates
the loop tracking performance. Thus, acquisition rapidity and tracking accuracy
are contrasting goals and some trade-off is needed to meet a satisfactory
balance between them. We shall return to this subject later, after discussing
loop tracking performance.
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Figure 3.32. Graphical solution for (3.5.49).

Exercise 3.5.2. Solve (3.5.49) under the assumption that frequency errors
are so small that S(f;) can be approximated by Af,, where A is the slope of the
S-curve at the origin.

Solution. From (3.5.49) we get in succession

f(T) = £,0)(1-14)
2T = f(D)(1-1) = £,(0)1 - A
(3T = £,T)(1- 1) = £,(0)(1 - 1A)°

£ (kT) = £,(0)(1 - A)* (3.5.50)

which is the solution sought.
Letting
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a1
g_h{l_m) (3.5.51)

equation (3.5.50) may also be written as

f(kT) = f,(0)e™* (3.5.52)

3.5.5. Frequency Tracking

The tracking performance of the loop in Figure 3.27 is now assessed with
the methods indicated in [13]. The major steps in the analysis may be
summarized as follows. In the steady state the errors f,(kT)= Vv~ V(kT) are so
small that the approximation S(f;)=Af; can be made. In consequence
(3.5.48) reduces to

filtk+D)T]=(1-yA)f,(kT)~yn(kT) (3.5.53)
Note that, as n(k7) is zero mean, so is (k7). Also, application of Z-transform

methods shows that f(k7T) may be viewed as the response to n(kT) of a digital
filter with transfer function

H(z)=-—FL 3.5.54
() = a-74) ( )

or, which is the same, with impulse response

-y1-yA k21
h(kT)= 3.5.55
«D { 0 k<1 ( )
Accordingly, (3.5.53) becomes
fi(kT) =Y n(T)h(k - i)T] (3.5.56)

From this equation the frequency error variance of f(kT) is computed as

0% = Y R,(m)n(m) (3.5.57)

m=—oo

where R,,(m)éE{n[(k+m)T]n(kT )} is the noise autocorrelation function and
1n(mT) is the convolution of A(k) with h(-k)
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n(mT) = ih(iT)h[(i -m)T] (3.5.58)

j=—c0

On the other hand, collecting (3.5.55) and (3.5.58), after some manipulations it
is found that

Y A TN
n(mT)—A(z_yA)(l yA) (3.5.59)

Hence, substituting into (3.5.57) yields
1Y % i
= 1-vA 3.5.60
o A(Z_YA)mij,.(m)( v4) (3.5.60)

In particular, with uncorrelated noise, (3.5.60) reduces to

o= m&,(m (3.5.61)

An alternative method to compute o involves spectral analysis techiques.
Let S,(f) be the power spectral density of n(kT)

S,(f)=T iR,,(m)e'jz””'ﬂ (3.5.62)

m=—oo
and denote by H(f) the right-hand side of (3.5.54) for z =¢/*™", i.c.,

A_ Y
HD = oy (3.5.63)

Then, the error variance o7 is given by [11, p. 332]

1/Q2T)

o= [S,(NHFdf (3.5.64)

=1/2T)

In some practical cases S,(f) is nearly flat over the interval £B; around the
origin, where H(f) takes significant values and (3.5.64) becomes

1/(2T)
o?=5,00) [[H(fdf (3.5.65)
~1/(2T)
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The parameter B, is referred to as the noise equivalent bandwidth of the
loop and is defined as

1@2T)

1
B £ H(H df (3.5.66)
2|H (0)| I/E.;T)
Using (3.5.63) it is found that

Br=—"Y4

22-714A)
YA (3.5.67)

4

since YA is usually much less than unity.
In conclusion, collecting (3.5.65)-(3.5.67) yields

2 _ 5,0

o A2

2B, (3.5.68)

which establishes a proportionality between error variance and loop bandwidth.
This equation indicates that o can be made as small as desired by reducing B;
or, which is the same, the step size 7. As we have pointed out earlier, however,
decreasing B; may result in acquisitions that are too long. Thus, a trade-off is
needed between acquisition length and tracking performance.

An interesting question is whether a relation can be established between
acquisition time T, and loop bandwidth B;. The answer is not simple because
T,, is not a flxed quantlty that can be computed as a function of the loop
parameters (as happens with B;). Indeed, examination of the loop equivalent
model in Figure 3.31 indicates that T, is a random variable whose outcomes
depend on the noise level and the initial error f,(0).

An approximate relationship between T,., and B, could be obtained if
f4(0) were sufficiently small to allow a linear analysis and noise were
negligible. For example, in Exercise 3.5.3 it is shown that the time needed for
the frequency error to pass from 0.1/7 to 0.001/T (the latter value being in the
range of practical values when the loop is in steady-state conditions) is
approximately

_L15

T, 3.5.6
acqg = BL (3.5.69)

Unfortunately, the assumption of linear operations is normally not valid as
initial frequency errors may be large. When this happens, the acquisition is
longer than predicted by the linear analysis. This may be visualized by ignoring
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Figure 3.33. Actual versus fictitious acquisition.

noise and drawing trajectories like those in Figure 3.32(b) for two different S-
curves: the actual S(f;) and a fictitious curve, Sg(f,), which is just a straight line
with the same slope as S(f,) at the origin, i.e.,

Se(f) = Afy (3.5.70)

Intuitively, S;.(f,) tells us how things would go under linear operations. From
Figure 3.33 it appears that real acquisitions may be much longer than fictitious
ones and, accordingly, T, may be quite longer than (3.5.69). Considering
these facts, the following rule-of-thumb formula is sometimes adopted as a
rough estimation of T, ,:

T

n
=— 3.5.71
acq BL ( )

with 7 varying from 1.5 to 2.5.

Exercise 3.5.3. With reference to the equivalent model in Figure 3.31
assume S(f;)=Af,; and neglect n(kT). Compute the time needed to pass from an
initial error f,(0) to a fraction of this error, say f(0)/N.

Solution. Denote by kT the time wherein f(kT) attains the value f,(0)/N.
Application of (3.5.52) yields

k= llnN (3.5.72)

3

where £ is given in (3.5.51). For YA << 1, equation(3.5.51) gives £=7A or,
taking (3.5.67) into account,

E=4B,T (3.5.73)
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Substituting into (3.5.72) yields the “acquisition time”

1
Toes = 25,0V (3.5.74)

Exercise 3.5.4. Assume that a linear amplifier with gain K>1 is put in
front of the frequency loop in Figure 3.27. How does this affect the frequency
error variance?

Solution. Looking at Figure 3.27 it is clear that x and y are both multiplied
by K and, in consequence, e(k7) is multiplied by K2 1t follows that:

(#) the slope of the S-curve increases by a factor K
(ii) the loop bandwidth increases by a factor K (see (3.5.67))
(iii) the noise n(kT) increases by a factor K

(iv) the power spectral density of n(kT) increases by a factor K.

Putting all these facts together it is seen from (3.5.68) that the error variance
becomes K times larger. This emphasizes the need to keep the amplifier gain
constant (by means of an automatic gain control) to prevent changes in the loop
operating conditions.

3.5.6. Comparison with MCRB

The modified Cramer-Rao bound for carrier frequency estimation is given
by

T* x MCRB(v) = —3—— L (3.5.75)

7Ly E,/Ny

In comparing this bound with (3.5.68) a difficulty arises in that MCRB(v) has
been derived for estimators operating over finite-length observations whereas
the scheme in Figure 3.27 observes all the past up to the current time, as is
readily recognized from the presence of an integrator in the loop. Even if the
past is not uniformly weighted (its recent part counts more), it is not obvious
how an infinitely long “weighted” observation compares with a time-limited
“uniformly weighted” observation.

To address this problem we transform the original scheme (OS) in Figure
3.27 into an equivalent scheme (ES) with the same estimation errors (in mean
square sense) but with a finite observation length. This length will be taken as
the equivalent observation length for the OS.
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Figure 3.34. Block diagram for the equivalent estimator.

A block diagram for the ES is shown in Figure 3.34. Here, an oscillator
operating at a fixed frequency V is used in place of the VCO. The oscillator
output is given by e *”, where

fl—(g9=27t\7 for 0<t<L,T (3.5.76)

and an estimate of v is provided according to the rule

A

L,
V=V+ LZe(kT) (3.5.77)
A k=1

where e(kT) is the error generator output and A is the slope of the S-curve at the
origin. As indicated in (3.5.47), e(k7) is the sum of a DC component, S(v-V),
plus some zero-mean noise n(k7):

e(kT)=S(v—V)+n(kT) (3.5.78)
To understand the ES operation, assume that V is close to v so that
S(v-V)=A(v-V) (3.5.79)
Then, substituting (3.5.78)-(3.5.79) into (3.5.77) results in
3 1 &
V=v+—> n(kT) (3.5.80)
ALy 5

which says that, on average, the estimator gives the correct v.
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The variance of the estimation error f, Ay_Vis computed assuming the
noise samples to be uncorrelated, i.e.,

E{n[(k + mTlncky} = { 7/ for m=0 (3.5.81)
n = 5.
e 0 elsewhere
Under these conditions from (3.5.80) it is easily found that
o2 = 10 (3.5.82)

AT

Comparing (3.5.82) with (3.5.68) it is concluded that OS and ES have the same
tracking errors provided that L, is related to the OS noise equivalent bandwidth

by
1
2B, T

L, (3.5.83)

Having established an equivalent length for the OS observations, it is
interesting to compare the OS tracking performance with MCRB(v). Figure
3.35 shows the simulated error variance for the ML-based tracking loop
discussed in Section 3.5.3 (see Figure 3.28). The modulation format is QPSK
and the overall channel response is Nyquist with an excess bandwidth factor
o =0.5. Also, the anti-aliasing filter is an 8-th order Butterworth type with a
—3 dB bandwidth of 1/T and the oversampling factor is N =2. A loop band-
width of B;T=5-10" is used, which corresponds to an observation of Ly=100
symbols. We see that the estimator variance falls short of the MCRB by orders
of magnitude and exhibits a floor as the SNR increases. This is a manifestation
of the so-called self noise, which means that the signal error has a considerable
thermal-noise-independent component contributed by SignalxSignal
interactions.

3.5.7. Other Frequency Error Detectors

Error generators of the type in (3.5.40) are referred to as frequency error
detectors (FEDs) as they measure frequency offsets from a locally generated
reference. In Section 3.5.3 an FED has been derived from maximum likelihood
methods. Other types proposed in the literature have been discovered by ad hoc
reasoning. Interestingly enough, they are close or equivalent to the ML-based
FED. In the following we briefly report on two such FEDs: the
quadricorrelator [1], [16]-[20] and the dual filter detector [1], [21].
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Figure 3.35. Normalized error variance for the ML-based estimator.

Figure 3.36 illustrates the block diagram of a quadricorrelator. The error
signal e(¢) has the form

e(t) =Im{x(1)y" (1)} (3.5.84)

where x(¢) and y(#) are obtained by low-pass filtering r'(¢) in £,(¢) and A,(z). In
particular, taking h,(f)=g(-t) and h,(f)=2mtg(-f) makes (3.5.84) the continuous-
time version of the FED in (3.5.39).

x(t)

M) e 7(0) "0 T e()
| ™

Y

Im{xy’} }—>

Y

h,()

y()

~j2mvt
e

Figure 3.36. Block diagram of a quadricorrelator.
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An interesting question is how h,(f) and h,(r) should be chosen for
optimum performance and how such a performance compares with that of an
ML-based FED. Notice that the ML-based FED is not necessarily optimum
since a number of approximations have been made in its derivation. The first
issue is addressed in [19]-[20], where it is shown that self noise can be entirely
eliminated by suitably designing 4,(f) and h,(f). Without entering into details,
Figure 3.37 shows simulations for the estimation error variance with an
optimized quadricorrelator. The operating conditions are the same as in Figure
3.35 and the filters h,(f) and h,(f) are designed according to [20]. We see that
the quadricorrelator error variance has no floor, which means that self noise has
been deleted. The quadricorrelator performance is much better than the ML-
based detector’s, even though its distance from the MCRB is still huge. The
explanation is that it uses very limited information about the signal. This is in
contrast with the algorithms in Section 3.2, which are data-aided and clock
aided and, in fact, come close to or even attain the MCRB.

The block diagram of a dual filter detector (DFD) is depicted in Figure
3.38. It is formed by two parallel branches, each comprising a band-pass filter

Optimized
Quadricorrelator

QPSK
0=0.5

Normalized frequency variance

B, T=5.10°

PRI

5 10 15 20 25 30
E/N,, dB

Figure 3.37. Normalized error variance for the optimized quadricorrelator.
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Figure 3.38. Block diagram of a dual filter detector.

in cascade with a square-law nonlinearity. Filters are centered at +1/(27). The
DFD operation is easily understood from Figure 3.39, which shows the
spectrum of r'(f), S(f), along with the frequency responses of the filters. The DC
components in x;(f) and x;(¢) represent the signal powers from the upper and
lower filter, respectively. When the difference fdév—f/ is zero, S(f) is
centered about the origin and the above powers are equal. Thus, the output e(r)
has no DC component. On the contrary, if f; is nonzero, a power unbalance
arises that contributes to the DC part of e(¢) in proportion to f;;.

At first glance there seems to be no connection between DFDs and
quadricorrelators. It can be shown, vice versa, that they can be designed so as
to be equivalent [19]. This means that choosing between DFDs and
quadricorrelators is only a question of practical implementation.

3.6. Open-Loop Recovery with No Timing Information
3.6.1. Delay-and-Multiply Method

The acquisition time of closed-loop schemes depends on the loop band-
width in a way that is roughly expressed in (3.5.71). Bearing in mind (3.5.83),

AS(f)

|

o

=

-
™y

Figure 3.39. Explaining the DFD operation.
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it follows that the acquisition time may be related to the “equivalent”
observation length of the loop by

Tpop = 20 LeT (3.6.1)

As 1 is in the range from 1.5 to 2.5, equation (3.6.1) says that a closed-loop
estimator needs from three to five “equivalent” observation intervals to release
its estimate. On the contrary, an open-loop estimator does it in just L,T
seconds. In the following we discuss an open-loop estimator having an
acquisition range of about +1/T and mean square errors comparable with those
of the closed-loop methods. Because of its shorter acquisition time this new
scheme is more suited for burst-mode transmission.

The proposed method is based on the delay-and-multiply arrangement
depicted in Figure 3.40. For simplicity we assume that the low-pass filter (LPF)
has a rectangular characteristic. Also, its bandwidth B, p is sufficiently large to
pass the signal components undistorted. Although a rectangular characteristic is
not physically realizable, the ensuing discussion can be readily adapted to
practical situations. As is now explained, the estimation scheme is based on the
statistics of the voltage

(1) = x(t)x* (t — AT) (3.6.2)

where the value of delay AT is a design parameter.
Suppose the modulation is non-offset and write the incoming signal as

s(t)= /OO ¢ g(t—iT - 7) (3.6.3)

Since the LPF does not distort s(¢), its output may be expressed as

x(t)=¢ (2”"+9)2c,. gt—iT-1)+n(t) (3.6.4)

where the noise n() has the same power spectral density as w(r) for |f|< Bjpp
and is zero elsewhere. Then, inserting into (3.6.2) results in

()] LPF x(t)

> DELAY > (- )‘

AT

Figure 3.40. Delay-and-multiply scheme.
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2t)=e"™TY Y e gt —iT ~T)g(t — kT — 7 - AT)
ik
+s()n" (t = AT) +n(t)s" (¢ — AT) + n(t)n" (t - AT) (3.6.5)

With zero-mean uncorrelated symbols, the expected value of z(f) over data and
thermal noise is found to be

E{z(t)} = C,e"*™ T A(t - T)+ R (AT) (3.6.6)

where C, éE{lc,.|2} , the function A(?) is defined as
A(t)2 Y g(t—iT)g(t —iT - AT) (3.6.7)

and R (&) is the autocorrelation of n(z):

sin27B ppé

3.6.8
27Bpré G685

Rn(g) =4NoBpp

Clearly, A(?) is a periodic function of period 7. Thus the voltage z() may
be seen as the sum of a periodic component, E{z(#)}, plus a zero-mean random
process N(#):

2(t) =E{z()}+ N() (3.6.9)

Integrating (3.6.9) and bearing in mind (3.6.6) yields
17 :
- _[ 2(B)dt = CAE"™ T + R (AT)+ X (3.6.10)
009
where A, is the DC component of A(f) and X is the time average of N(¢):
17
xi— j N(r)dt (3.6.11)
Toy

At this point we note that: (i) A, is positive for moderate values of AT (see
Exercise 3.6.1); (ii) X is a zero-mean random variable; (iii) R,(AT) vanishes for

k

LPF

AT =

, k=12,.. (3.6.12)

Thus, assuming that AT satisfies (3.6.12), equation (3.6.10) reduces to
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Ty
—Tl— jz(t)dt =G A ™ + X (3.6.13)
09

so that, taking the arguments of both sides under the presumption of a small X
yields the frequency offset estimator

Ty
L1
e arg{ {z(t)dt} (3.6.14)

The performance analysis of this algorithm involves lengthy calculations
and is not addressed here. The interested reader is referred to [22] for an in-
depth discussion. The estimation range, instead, can be computed as follows.

Rewrite (3.6.13) in the form

Ty
—Tl— fz(t)dz = Gy (1+ X, + jXp )™ (3.6.15)
09

with

X, + jXQéE%e'ﬂ”VAT (3.6.16)

2

and note that, as X is zero mean, so are X, and XQ. Also, if X; and X, are small
compared with unity (as happens in all practical cases) and A, is positive, then
substituting (3.6.15) into (3.6.14) yields

oo 1 . Jj2nvAT

Ve arg{(l + X, )e } (3.6.17)
It is easily seen that arg{(l1+ jXQ)ejz"VAT} is approximately equal to
27vAT + X5, provided that 277vAT is not close to the extremes of the interval

+ . Hence
XQ
2nAT

V=v+ (3.6.18)

which indicates that V is unbiased since X, has zero mean.

It should be noted that this conclusion is no longer true if 27VAT is close
to either 7 or —. To see this point, suppose that 277VAT is slightly less than 7 or
(which is the same) v is slightly less than 1/(2AT). Then, as illustrated in Figure
3.41, even a small X, can make arg{(1+ jX,)e’*™"} overcome 7 and reach —7.
When this happens, (3.6.14) gives an estimate which is near —1/(2AT) rather
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Figure 3.41. Determining the estimation range of the algorithm.

than 1/(2AT). A similar shortcoming occurs when v is near —1/(2AT) (with the
estimator saying vV =1/(2AT) instead of V=-1/(2AT)). In summary, con-
sistent frequency estimates are obtained only if v is well within £1/(2AT).

Exercise 3.6.1. Compute the parameter A; in (3.6.10) as a function of the
delay AT and G(f), the Fourier transform of g(z). Specify the result when G(f) is
a root-raised-cosine-rolloff function with rolloff «.

Solution. As A(f) is periodic of period T, its time average reads

1 T
A= { A(Ddt (3.6.19)
or, using (3.6.7),
T
A= %2 [ 8t - iT)g(t~iT - AT)at (3.6.20)
i0

Making the change of variable ¢,=t—iT yields

—iT+T
A=1Y, |8t -aTd (3.621)
i T
or
A =% [s(t)g(t - AT)dt (3.6.22)

since the sum of the integrals may be written as a single integral on the entire
line. Finally, application of the Parseval formula produces the desired result
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]:IG( e df (3.6.23)

—00

A0=

N

which shows that A, is the inverse Fourier transform of |G(f )|2 / T as computed
at t=AT.

If G(f) is a root-raised-cosine-rolloff function, |G(f)] is Nyquist and its
inverse Fourier transform is expressed by

sin(mt/T) cos(omt/T)
m/T 1-40%/T?

gt = (3.6.24)

Then, from (3.6.23) we get

_ 1sin(mAT/T) cos(amAT/T)
T 7#ATIT 1-4a*(AT/T)?

Ay (3.6.25)

It should be noted that A, vanishes when AT is a multiple of the symbol
period. Thus, AT values close to multiples of T should be avoided since the
estimation accuracy deteriorates as A, becomes small.

Exercise 3.6.2. In Section 3.6.1 a non-offset PAM modulation has been
assumed. Show that the estimator (3.6.14) can also be used with OQPSK
signaling.

Solution. The OQPSK signal model is

s(t) = ef<2""+9>{2[a,. g(t—iT—71)+ jbg(t—iT - T/2 - r)]} (3.6.26)

where a; and b, take independently the values +1 with the same probability.
Paralleling the passages leading to (3.6.5) yields

)= TN Y aa,g(t-iT - 7)g(t—kT - AT - 1)
i k
+e/>™TY' Y bbg(t—iT - T/2-7)g(t—kT - T/2 - AT - 7)
i k
—je”*™ TN ab, g(t —iT - T)g(t —kT - T/2 - AT - 1)
i k
+je’™ Y'Y ba,g(t —iT - T/2 - T)g(t - kT — AT - 1)
i k

+s(n*(t— AT) +n(t)s* (t — AT) + n(t)n* (¢t — AT) (3.6.27)
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Let us compute the expectation of z(f). By assumption

E{aa,} =E{bb, } = {1 fori=k (3.6.28)
0 otherwise
E{ab }=0 Vik (3.6.29)
Hence, from (3.6.27) it is found that
E{z(t)} = ™ T A(t - 7) + R,(AT) (3.6.30)

with
A2 Y [g(t—iT)g(t—iT - AT)
+g(t—iT - T/2)g(t —iT - T/2~ AT)] (3.6.31)

Clearly, the function A(f) has the same features as in (3.6.7) (it is periodic
of period T and has nonzero DC). Then, following the lines of Section 3.6.1, it
is concluded that the estimator (3.6.14) applies also to OQPSK signaling.

3.6.2. Digital Implementation

The digital implementation of the delay-and-multiply scheme in Figure
3.40 proceeds as follows. Start with the LPF bandwidth and observe that: (i)
B, pr must be large enough to pass s(¢) undistorted even when the frequency
offset is at its maximum, say tv,,,; (ii) the signal bandwidth equals (1+a)/2T,
where « is the rolloff factor. Thus, for v,,, on the order of 1/T and ¢ about 0.5,
one needs an LPF bandwidth of approximately 2/7. In the sequel we take
B, pr=2IT.

Next, let us concentrate on the integral in (3.6.14). As x(¢) is bandlimited
within #2/T,, it follows that z(¢) = x(¢)x"(t — AT) is bandlimited within +4/T.
Then, if T, is much larger than 7, it can be shown (see Appendix 3.A) that the
integral can be computed from the samples of z(f) taken at a rate R=4/T.
Formally

Ty T 4L
[2(tyar = 7 2 x(kT/4+1)x' (kT/4+1, - AT) (3.6.32)
0 k=0

where Ly=T/T and ¢, is an arbitrary sampling phase. Actually, R need not be
exactly 4/T. Small deviations from this value are equivalent to periodically
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Figure 3.42. Block diagram for the digital estimator.

sweeping £, between 0 and 7/4. If the sweeping process is so slow that ¢ keeps
approximately constant over T, seconds, then (3.6.32) remains valid.

Setting 7,=0 for simplicity and substituting (3.6.32) into (3.6.14) yields the
desired estimation algorithm

1 4Ly-1
V= arg{ Zx(kT/4)x*(kT/4—AT)} (3.6.33)

k=0

In general, the summation in (3.6.33) involves 8L, samples of x(¢). This number
may be halved, however, if AT equals a multiple of 7/4 (note that this choice is
consistent with condition (3.6.12) because B, p=2/T). In particular, choosing
AT=T/4 results in

4Ly-1
o=iarg{ Zx(kT/4)x*[(k—l)T/4]} (3.6.34)
nT k=0

Figure 3.42 shows a block diagram for the algorithm (3.6.34). Here, x(k)
stands for x(k7/4) and 7! represents a T/4 delay. As mentioned earlier,
performance analysis of this estimator is complex and is pursued in [22].
Figure 3.43 illustrates simulation results for the estimation variance with QPSK
signaling. The pulse g(f) corresponds to a root-raised-cosine-rolloff filter with
50% of excess bandwidth. The curve has been drawn for v =0 but the same
results are obtained for any v in the range +1/7T. Comparing with Figure 3.35
it is seen that the accuracy of the two estimators is virtually identical.

3.6.3. Effects of Adjacent Channel Interference

A weakness of the delay-and-multiply estimator (and of all the non-data-
aided (NDA) frequency estimators, in general) is the sensitivity to adjacent
channel interference. To illustrate this point let us return to the analog model in
Figure 3.40 and suppose that the received waveform is the sum of the desired
signal at carrier frequency f;, plus an interfering PAM signal at frequency fy+F.
As we did earlier, we assume that the desired signal is passed through the LPF
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Figure 3.43. Error variance of the delay-and-multiply estimator.

undistorted. The interfering signal, instead, is distorted but not totally elim-
inated. Under these conditions the LPF output reads

x(t) = /PO ¢ g(t—iT - 1)
i

+ej[2n<v+F>r+9']zc;g'(t —iT-7)+n() (3.6.35)

where {c/} and {c,} are independent data sequences with the same statistics and
£'(?) is some complex-valued function, whose energy depends on the overlap of
the interfering signal spectrum and the LPF response.

With the arguments of Section 3.6.1 it is seen that the expected value of
the multiplier output is now

E{z(t)} = C,e™™™ T A(t - T) + G/ ™ PAT At~ ) + R, (AT)  (3.6.36)

with
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A'(t)éz g (t—iT)g"*(t—-iT - AT) (3.6.37)
i

Correspondingly, the time average of z(f) over the observation interval be-
comes

)
Ti jz(t)dt = CyeP™ (A + Age”™T)+ R (AT)+ X' (3.6.38)
09

where A; represents the DC component of A'(f) and X' is a zero-mean random
variable. Note that A, + Aje/2"T is a complex number, in general.

From this equation the effect of adjacent channel interference is apparent.
Even ignoring X' and assuming R,(AT)=0, the argument of the right-hand side
is no longer proportional to v, as happens with (3.6.13), and the estimates
(3.6.14) are biased.

An obvious question is whether a similar problem arises with the closed-
loop scheme in Figure 3.27. Clearly, when the VCO frequency is near v, the
low-pass action of the MF and DMF filters will tend to attenuate the interfering
signal components and, in consequence, their effects on the loop operation. A
total elimination is not possible, however, unless the interfering signal has no
spectral overlap into the above filters.

Exercise 3.6.3. Suppose that the LPF in Figure 3.40 has a rectangular
transfer function. Assuming that the desired and interfering signals are un-
modulated carriers, s(f) = X,e/>™" and s'(f) = pX,e/2"*P" with 0< p<1,
compute the estimation errors of (3.6.14) in the absence of thermal noise.

Solution. Suppose that the interfering signal passes through the LPF
(otherwise there would be no interference). Then, the LPF output reads

x() = Xye'™ + pX, e/ 27+ (3.6.39)
and the voltage 2R x(t)x* (¢ - AT) is easily found to be
2 = X2, ej27rvAT(1 + pleltFAT 4 g 2RFAT pjaft | pejZﬂFt) (3.6.40)

Substituting into (3.6.14) yields (with an observation time much longer than

1/F)

= arg{e/?™7 (1+ pzeﬂ”m)} (3.6.41)

2rAT

For p2<<l and v not too close to £1/(2AT), from this equation it is found that
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5yt p2 sin(2nFAT)

P (3.6.42)
2mAT

As expected, the estimation error decreases with p.

3.7. Key Points of the Chapter

* Data-aided ML frequency estimation is time-consuming and involves a two-
step search routine. The first step requires calculating the maximum of I'(V)
over a set of v values covering the range of interest. The second part locates
the maximum of I'(V) nearest to the point picked up in the first step.

* Because of its implementation complexity, true data-aided ML frequency
estimation is not used, in general, and simpler methods are resorted to. In
this context the algorithms by Kay [3], Fitz [4]-[5], Luise and Reggiannini
(L&R) [6] and the approximate ML estimator in Section 3.2.6 are
remarkable. The Kay algorithm has a rather high threshold, however, and is
unsuitable with many coded modulations. The Fitz and L&R methods have
comparable complexity and achieve the Cramer-Rao bound up to about zero
dB. Their computational load may be reduced at the expense of some
performance degradation. The approximate ML estimator is as efficient as
the Fitz and L&R methods or better and, depending on the operating
conditions, may be easier to implement.

* Decision-directed frequency estimation is simple to implement with differ-
ential PSK, as is illustrated in Section 3. The basic idea is that modulation
can be removed from signal samples making use of differential decisions.
Once this is done, frequency offset can be estimated by measuring phase
rotations between consecutive samples.

* Modulation removal with M-ary PSK can also be obtained by raising the
signal samples to the M-th power.

* This trick does not work with QAM modulation. More complex algorithms
are needed to cope with constellations that do not exhibit the PSK rotational
symmetry. One possibility is indicated in Section 3.4.

» Estimation of large frequency offsets can be accomplished with either
closed-loop or open-loop (feedforward) schemes. A variety of frequency
difference detectors exist for use in frequency loops. Delay-and-multiply
methods appear simpler to implement and achieve comparable performance.
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Appendix 3.A

Let x(#) be a realization of a random process with a power spectral density
S(f) restricted to |f| < B, i.e.,

S(f)=0 for |f|2B (3.A.1)
In this Appendix we argue that the integral of x(#) over an interval much longer

than 1/B can be expressed as a function of the samples of x(f) taken at a
sampling rate

1
—=B 3.A2
T ( )
Formally, we maintain that
Ty Ly
[x(0de = T,y (KT, +15) (3.A.3)
0 k=1

where Ly2T,/T, and the sampling phase t, is arbitrarily chosen within
The proof may be broken into three steps. First, define

X (t)A{x(t) 0<t<T,
T, \F)=

(3.A4)
0 elsewhere

and call XTO (f) the Fourier transform of xr, (). As the integral of x(t) over
(0,Ty) equals the integral of x; () over the entire line, and as the latter equals
XTO (0), we have

T
[x(tydt = X, 0) (3.AS5)
0

Second, define the periodogram of x(f) over 0<t< T, as

2
X (f)
S(f,To)é|—T‘1T(f—| (3.A.6)
0

It can be shown [11, Ch. 13] that, when T}, is large compared with 1/B, the
expectation of S(f,T;) tends to the power spectral density of x(z):
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lim E{S(f,]},)} =S5(f) (3.A7)
Ty—e
Thus, recalling (3.A.1)-(3.A.2), from (3.A.6)-(3.A.7) it is recognized that
X, (f)=0  for If12 YT, (3.A.8)

provided that T is sufficiently large.
Third, application of the Poisson sum formula [11, p. 395] yields

T, Y xg, (KT, + 1) = Y Xp (k/T,)e’> "0/ (3.A9)
k==00 k=—co

from which, bearing in mind (3.A.8), we obtain

T, ixro (kT +15) = X1, (0) (3.A.10)

k=—cc

At this point (3.A.3) follows easily by combining (3.A.5) and (3.A.10) and
taking the definition of xr, (?) into account.
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Carrier Frequency Recovery
with CPM Modulations

4.1. Introduction

Continuous phase modulation (CPM) encompasses a class of signaling
schemes that conserve and reduce signal energy and bandwidth at the same
time. Furthermore, the signals in this class have a constant envelope and
therefore are very attractive in radio channels employing low-cost non-linear
power amplifiers. Notwithstanding these favorable features, current CPM
applications are still limited to a few simple modulation schemes (basically,
MSK and its generalizations) because of implementation complexity and
synchronization problems [1]. Research efforts are under way and advances in
these areas are expected in the near future.

We have seen in Chapter 3 that a number of algorithms are available to
accomplish carrier frequency recovery with PAM modulation under diverse
operating conditions. Unfortunately, the state of the art with CPM is less devel-
oped. Studies in this area are quite recent and results are still limited. Most of
the material in this chapter is concerned with the estimation of “large” fre-
quency offsets, on the order of the symbol rate. As pointed out in Chapter 3,
this generally implies that frequency recovery must be performed without ex-
ploiting data and timing information. There are two exceptions, however,
which are of interest in burst transmission applications. The first one is dis-
cussed in Section 4.3, where we address data-aided and clock-aided frequency
recovery for MSK. This is an interesting issue not only because MSK is so
popular but also in view of possible extensions of the same ideas to MSK-type
modulation. The other is considered in Section 4.6 in the context of clock-aided
(but non-data-aided) frequency estimation. The motivation for discussing
clock-aided methods is that, in the presence of moderate frequency offsets, tim-
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ing information can be gathered first (in a non-data-aided fashion) and then
exploited for frequency recovery.

The chapter is organized as follows. The next section summarizes basic
notations for MSK-type signals and gives an overview of the so-called Laurent
expansion. As we shall see, this is a useful mathematical tool that provides
good insight into the notion of MSK-type modulation and forms the basis for
later discussions. Section 4.3 deals with data-aided and clock-aided frequency
recovery with MSK-type signals. Non-data-aided and non-clock-aided methods
are investigated in Section 4.4. The same approach, but with general multilevel
CPM, is discussed in Section 4.5. Clock-aided (but not data-aided) recovery is
treated in Section 4.6.

4.2. Laurent Expansion

In this section we concentrate on a subset of CPM formats denoted MSK-
type modulations. Here, the information symbols are binary, the modulation
index is A =1/2, and the signal complex envelope has the form [1]-[2]

sce()= 2—5%!"”“’“) (4.2.1)

with

YAy aq(t—iT) (4.2.2)

In these equations, E, represents the energy per symbol, T is the signaling
interval, aé{a,-} are independent data symbols taking values +1 with same
probability, and g(f) is the phase response of the modulator, which is related to
the frequency response, g(t), by the relationship

)= [0yt 423)

The frequency response is time-limited to the interval (0,LT) and satisfies the
following conditions:

LT 1
Jedt=> (4.2.4)
0

g()=g(LT-1) (4.2.5)



Carrier Frequency Recovery with CPM Modulations 149

Condition (4.2.4) implies a scaling on g(f) whereas (4.2.5) means that g(¢) is
symmetric around the instant r=L77/2.

In many theoretical studies g(f) is given one of the following shapes:
rectangular (REC), raised-cosine (RC) and Gaussian-MSK (GMSK). A
rectangular frequency pulse of length L is denoted (LREC). For example,
1IREC pulses are used with MSK. Similarly, (LRC) means RC of length L.
Formally,

1
— 0<:<ILT
LREC: g(t)=42LT (4.2.6)

0 elsewhere

—1—1—0052—7“] 0<t<LT
LRC: g()=<2LTL LT

0 elsewhere

GMSK: g(1) =%{Q 51%32_(:— (L +21)T)]

_J2mB( (L-1T
Q[ «/Ei(t 5 )}} (4.2.8)

4.2.7)

with
Q[x]év-;_; [erar (4.2.9)

The parameter B in (4.2.8) represents the -3 dB bandwidth of the Gaussian
pulse-shaping filter prior to the modulator and g(¢) is the response (delayed by
(L+1)T/2 seconds) of this filter to a 1REC pulse. In particular, the pan-
European digital cellular mobile radio system adopts a bandwidth BT =0.3.
The parameter L in (4.2.8) must be chosen sufficiently large so that g(¢) is
approximately limited to the interval (0,LT). For example, L=4 is adequate with
BT=0.3.

From (4.2.1)-(4.2.2) it appears that the signal depends in a nonlinear
manner on the data {¢;}. In many theoretical investigations this is a drawback
as it considerably complicates the analysis. It has been shown by P.A. Laurent
[3] however that a binary CPM signal with an arbitrary modulation index may
be written as a superposition of a few time functions that look like linearly
modulated PAM waveforms. This is the so-called Laurent expansion which is
now overviewed for a modulation index of 1/2 (MSK-type signaling).

As indicated in [3], the exponential function in (4.2.1) may be expressed
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as the superposition of M =25~! PAM waveforms

M-1
eV =%Na, h,(t—iT) (4.2.10)
m=0 i
where A4,(f) is given by
L-1
ha(®)=c(t = LT)[] et - LT +IT +7,,,LT) 4.2.11)

I=1

In this equation the pulse c(f) is defined as

cos[mq(t)] 0<t<LT
c(O& c(~-1) -LT<t<0 (4.2.12)
0 elsewhere

and the coefficient y,,, is the I-th digit (0 or 1) in the binary representation of
the integer m, i.e.,

m=Yy,2"" (4.2.13)

The coefficients a,,; look like data symbols and will referred to as pseudo-
symbols in the sequel. It turns out that they are related to the information
symbols o; by the relationship

T p 1= i
;s =exp( ]Eai)exp ]-Z—Zym,,ai_, exp| j5 Y 4.2.14)
=1

[EY

with 7,,,81-7,,,.
The following remarks are of interest:

(¥) The right-hand side in (4.2.10) is an exact representation of the
exponential. It may be intriguing that a limited number of PAM
waveforms add up to a unity amplitude time function but this is precisely
the meaning of Laurent expansion. The interested reader may want to
look at Figures 5-7 in Laurent's paper [3] for a pictorial explanation of
(4.2.10).

(#i) With full response systems (L=1), the integer M is unity and the Laurent
expansion has a single PAM component. With partial response schemes
(L>1), vice versa, M may be large and, in consequence, (4.2.10) may be
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awkward to handle. Fortunately, in most cases of practical interest the
signal power is mostly concentrated in the first component, i.e., the one
corresponding to the zero-order pulse

L
ho(@®) =[] ct-1T) (4.2.15)
I=1

When this happens, the Laurent expansion reduces to

VD Zao,iho(t —iT) (4.2.16)

(iif) Moments of the pseudo-symbols a,,; are needed in later developments. It
can been shown that the first-order moments are zero and the second-
order ones are given by

E{ . }_ 1 m=nandi=k 42.17)
Imi%nk =10 otherwise -

Exercise 4.2.1. Apply Laurent expansion to MSK signaling.
Solution. With MSK modulation the parameter L is unity and the Laurent
expansion has just one component (recall that M = 2°7"). Hence,

VD =3 g0 h(t—iT) (4.2.18)

This means that an MSK signal can be exactly represented as a PAM wave-
form. Indeed it can be viewed as an OQPSK signal with half-cycle sine-shaped
pulses.

To see how this comes about, bear in mind that MSK uses 1REC fre-
quency pulses. Accordingly, the phase response g(f) has the form

2T) 0<t<T

gq)={ 0 t<0 (4.2.19)
1/2 t>T
and (4.2.12) yields
005(7_”_) H<T
c(t) = 2T (4.2.20)

0 elsewhere
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Correspondingly (4.2.15) becomes

sin(—@) 0<tL2T
hy(t) = 2T

0 elsewhere

(4.2.21)

which is a half-cycle sine function of length 27.
Next, let us concentrate on the pseudo-symbols a, ;. They are derived from
(4.2.14) letting L=1 and m=0. Assuming i>0, we have

.y
ay; = €xp 1‘2‘ zal

=—o

; T
= e"’exp(] -520!,) (4.2.22)
=1
with
e’? éexp ]—2— Zal 4.2.23)
l=—00

It is easily seen that ¢ takes the values {0, /2, 7,37 /2}, depending on the
data pattern.

The summation in the second line of (4.2.22) is either even or odd, de-
pending on the index i. As a consequence we have

cos[%Za,) i=even
exp[ j%Za, = = (4.2.24)
o jsin[Z’-Za,j i=odd
2 I=1

Thus, letting

2i
a2cos £ o (4.2.25)
2i 2 !
=1

T 2i+1
@y 2sin > Yo (4.2.26)
I=1
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and substituting into (4.2.18) results in

eV® = ei¢[i ay; ho(t = 2iT) + ji ay_ o[t - (2i - 1)T]} (4.2.27)

i=1 i=1

which is the traditional OQPSK representation for MSK signals.

Exercise 4.2.2. Compute h(¢) for 2REC pulses.
Solution. With 2REC pulses the phase response ¢(¢) has the form

t/(4T) 0<t<2T
q)={ 0 t<0 (4.2.28)
1/2 t>2T

Substituting into (4.2.12) yields

cos(ﬂ) <21
c(t)= 4T (4.2.29)

0 elsewhere

Finally, using (4.2.15) after some further manipulations produces

1 .| T T
ho(t) = —27_5{1 + «/Esm|:ﬁ(t - 5)]} 0<t<3T 4.2.30)

0 elsewhere

Exercise 4.2.3. Show that MSK-type signals can be expressed in an
approximate manner as OQPSK waveforms.

Solution. As mentioned earlier, in many practical cases the PAM wave-
form with index m=0 in (4.2.10) contains most of the signal power. Thus,
keeping only this waveform in the Laurent expansion yields (4.2.16). This
equation is formally identical to (4.2.18) except that the pulse k(¢) in the latter
is a half-cycle sine function whereas, in (4.2.16), it has a more general form
that can be computed from (4.2.15). As for the pseudo-symbols ay, it is recog-
nized from (4.2.14) that they are the same as with MSK (since %,,=0) and,
therefore, an MSK-type signal has (approximately) the OQPSK structure indi-
cated in (4.2.27).
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4.3. Data-Aided Frequency Estimation

4.3.1. Frequency Estimation with MSK

In this section we investigate data-aided and clock-aided carrier frequency
estimation with MSK signaling. The problem is similar to that discussed in
Chapter 3 with PSK modulation and, in fact, we shall adopt the same approach
here.

As a start, collecting (4.2.1) and (4.2.18) yields

sce(t) = ’253 Zao,,.ho(z—iT) 4.3.1)

The pulse hy(#) is a half-cycle sinusoid, as indicated in (4.2.21), and the pseudo-
symbols a,; are given in (4.2.22). It is worth stressing that they must be thought
of as known quantities since so are the data { ¢; }.

The signal component in the demodulated waveform is obtained from
(4.3.1) by introducing an exponential factor ¢/?™+6) (to account for
phase/frequency errors in the demodulation process) and delaying the pulses by
7. This leads to the following expression for the received waveform:

r(t) = s(6) + w(), 4.3.2)

where w(t) is white Gaussian noise and s(f) has the form
2E; j2mv+6) .
s()= | =7*e Y agho(t=iT - 1) (4.3.3)

Our task is to derive an estimate of v from the observation of r(¢). In doing
so the parameters {a,;} and 7 are viewed as known quantities while 0 is
unknown and can be anywhere in the interval [0,27). The operations to
perform on r(t) are illustrated in Figure 4.1. The block LPF is a low-pass filter
with a bandwidth sufficiently large to pass the signal components undistorted.

rt) x(k) z(k)
—>» LPF —</A v—»?—»
|
|

t=kT+71 .
0,k-1

Figure 4.1. Received waveform processing.
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Thus, the filter output x(¢) is formed by (4.3.3) plus some low-pass noise n(t).
Samples of x(f) are taken at t=kT+7 and are denoted x(k). Formally,

x(k) = 2_?-ef[2’”("7”)+912a0_,.h0[(k —)T]+nk)  (434)

This formula can be simplified bearing in mind the form of Ay(f) in
(4.2.21). In fact, since

(kT) = 1 for k=1 435
ho(KT) = 0  otherwise (4.3.5)
equation (4.3.4) becomes

x(k) = TS /B UTH 18l +n(k) (4.3.6)

Clearly, x(k) depends on the modulation format through the pseudo-symbols.
On the other hand, from (4.2.22) it is seen that |a0 41* =1. Hence, the mod-
ulation can be wiped out by multiplying x(k) by ao - and this produces

2k) = Lffef[m"‘“”*"] +n'(k) (4.3.7)

where n’(k)én(k)ag,k_, is a noise term. Note that n’(k) has the same variance
as n(k).

The right-hand side of (4.3.7) represents a discrete-time sinusoid
embedded in noise and our aim is to estimate the sinusoid’s frequency. As this
problem has already been discussed in Chapter 3 in connection with PSK
modulation, the same solutions (for example, either the Fitz or Luise and
Reggiannini algorithms) can be adopted.

An interesting question arises about the accuracy of these algorlthms in
the present circumstances. In particular, recalling that they achieve the
modified Cramer-Rao bound with PSK, we wonder whether this same
performance is obtained with MSK. Intuitively, it should not be so since no
matched filtering is used here. In fact, matching the LPF response to A(?)
would result in a significant amount of intersymbol interference and,
eventually, in large performance losses. A more quantitative answer is now
given under some restrictive conditions.

Assume an ideal LPF with a rectangular characteristic over |f|<1/T.
With most MSK-type modulations this LPF passes the signal components with
only minor distortions. In addition, it has the nice property that the noise
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samples at its output are independent (recall that sampling is performed at the
symbol rate). The sample noise variance is readily found to be
E{In(k)|2}=4No/T. Then, dividing both sides of (4.3.7) by 1/2ES/T and
letting z'(k)éz(k)/ ~2E,/T produces

2(k) = PRV Ly 4.3.8)

where n”(k) are independent and Gaussian random variables with variance
2N, /E;. This equation is formally identical to (3.2.22) in Chapter 3, except
that the variance of the noise term is doubled. Thus, the estimation accuracy is
degraded by 3 dB with respect to PSK.

4.3.2. Extension to MSK-Type Modulation

In many practical cases the signal power of an MSK-type signal is
concentrated in the first Laurent component. When this happens the
representation (4.3.1) is still approximately valid, although the shape of A(¢) is
no longer a half-cycle sinusoid as with MSK. Nevertheless, hy(f) may be
transformed into a Nyquist pulse by proper equalization. Now, suppose that the
equalized pulse A,(r) satisfies the condition (see Figure 4.2)

1 for k=K

ho (KT + t5) = 3.
Fo(kT+10) {0 elsewhere 39

for some value of ¢,. Then, absorbing the equalization operations into the LPF
in Figure 4.1, the signal component at the filter output is still as indicated in
(4.3.3) (perhaps, with a different initial phase)

s(1) = 2—5,5-ej(2”V'+9')Zao,,.fq)(t—iT—r) (4.3.10)
i
0
o KT+t, t
+—=T——T—+T—+T—+

Figure 4.2. Equalized pulse (7).
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and the same procedure described for MSK can be adopted to estimate v. In
fact, sampling the LPF output at t=kT+1y+7 yields

x(k) = Zf_s ej[21rv(kT+to+r)+6’] Gop-i + n(k) 4.3.11)

which has the same form as (4.3.6). Modulation is eliminated from x(k) by
multiplying by ag,_x and this produces a result essentially identical to (4.3.7).
All further steps remain the same. A frequency estimation method based on
these ideas has been proposed in [4]-[5].

4.4. ML-Based NDA Frequency Estimation

4.4.1. MSK-Type Modulation

Symbols and timing information have been exploited for frequency
estimation in the previous discussion. The underlying idea is that symbols can
be taken from a known preamble, while timing can be established prior to
frequency offset compensation. Henceforth we concentrate on frequency
estimation methods that dispense with data symbols and, in general, with
timing information as well. In particular, in this section we report on algorithms
based on ML methods whereas, in Section 4.5, we describe ad hoc techniques.
As we have seen in Chapter 2, ML methods can be applied either to
continuous-time waveforms or sampled versions thereof. The continuous-time
approach is now adopted with MSK-type modulations. The sample-based
method will be used in Section 4.4.2 for general multilevel CPM signaling.

Non-data-aided and non-clock-aided frequency estimation with MSK-type
signaling can be formulated within the same framework described in Section
3.5.1 of Chapter 3 in connection with PAM modulation. Therefore, we do not
need to reiterate previous developments and may limit ourselves to drawing
conclusions directly from that chapter. To see how this comes about, let us
compare MSK-type and QPSK complex envelopes:

MSK-type: sqz(f) = 2—fsZa(,,,.ho(t—iT) (4.4.1)
QPSK: scg(t)= Y, cig(t—iT) (4.4.2)

Note that the Laurent expansion has been limited to the first term in (4.4.1). We
see that, apart from an immaterial factor ./2E /T and the substitution
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hy(t) = g(t), the differences in the envelopes are limited to the symbol
statistics. Although a,; and c; belong to the same alphabet {ej’""’ 2 m=0,1,2,3},
the former are intrinsically coded (as is clear from (4.2.14)) whereas the c; are
independent (assuming uncoded QPSK). The crucial point is to see whether
this has any bearing on the derivation of ML-based estimators.

To address this issue recall from Section 3.5 of Chapter 3 that (assuming
low signal-to-noise ratios and random data) the ML estimate V,,, is that ¥ that
maximizes the energy of the matched-filter output x(f) when the input is fed by
r(t)e~/2_ Actually, the energy of x(f) depends on the data symbols only
through the symbol correlations. Higher-order moments do not matter. On the
other hand, as the c; are uncorrelated, so are the ay; (see (4.2.17)), and this
implies that the difference in symbol statistics with QPSK and MSK-type is
immaterial as far as the energy of x(¢) is concerned. We conclude that the
methods discussed in Section 3.5 are still valid in the present context.

In particular the closed-loop scheme discussed in Section 3.5 can be
employed. Figure 4.3 illustrates such a scheme. Here, MF is matched to Ay(f)
while DMF is matched to -27thy(f). Sampling is performed at twice the
symbol rate and the error signal e(kT) is computed according to the formula

e(kT) = —;—Im{x(kT)y* (kD)}+ %Im{x(kT +T/2)y" (kT +T/2)}  (4.4.3)
Finally, the current offset estimate V(kT') is updated at symbol rate as follows:
V[(k + D)T]=V(kT) + ye(kT), (4.4.4)
where 7 is the step size.

Figures 4.4-4.5 show S-curves for the frequency error detector (4.4.3) as
obtained with LREC and GMSK pulses (see [6] for detailed calculations).

v —/.o—'
o) erron | ¢KD)

GENERATOR

[
2T

VCO < LOOP |

v *T) FILTER

Figure 4.3. Block diagram of the closed-loop frequency estimator.
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Here, f, is the difference v -V and, in consequence, the variable f,T represents
the frequency error normalized to the symbol rate. From the width of the curves
we see that the loop has an acquisition range of about 50-70% of 1/T.

Digital implementation, acquisition and tracking performance of the above
scheme can be addressed with the methods of Section 3.5 and are reported in
[6]. Figure 4.6 shows the simulated error variance of the synchronizer with
GMSK modulation (B7=0.3) and a loop bandwidth BLT=5-10'3. We see that
the curve is approximately horizontal, which means an overwhelming pre-
dominance of self noise. It is interesting to notice that the same performance is
obtained with a similar loop operating with OQPSK signals [7]. Of course, this
is not surprising as GMSK is an approximate form of linear offset modulation.

An important question is whether it is possible to reduce self noise by
exploiting the methods proposed by Alberty and Hespelt [8] and D’ Andrea and
Mengali [9] in the context of linear modulations. Considering the similarity
between MSK-type and OQPSK modulations it is tempting to think that this is
the case. Unfortunately, things might not be so simple. In fact the procedure
discussed in [9] can be easily adapted to eliminate the self noise contribution

T
IR

10° F E
Q@ 4 —
g 10
&
g
g
2 s b A
g 100 E 3
QL E 3
= C
[=a
& ]
B 0° GMSK, BT=03 |
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=]
Z 10" F 3

E
]
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Figure 4.6. Tracking error variance of the synchronizer with GMSK.
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from the first (most important) Laurent component. It is not clear, however, to
what extent the interference from other components would add to the overall
noise. This subject deserves in-depth examination and is left as an item for
further research.

4.4.2. General CPM Modulation

In the preceding subsection the Laurent expansion has been exploited to
transform MSK-type signals into sums of linearly modulated waveforms. In
this way the ML estimation problem has been approached with the same
methods previously developed for PAM modulation. In dealing with multilevel
CPM we follow a different route based on discrete-time methods. To this end
the received waveform r(¢) is passed through a rectangular anti-aliasing filter
(AAF) and then is sampled at a rate 1/T,, as indicated in Figure 4.7. The filter
bandwidth B; pp is assumed large enough not to distort the signal components
and the sampling rate equals 2B, pr.

The samples from the filter have the form

x(kT,) = s(kT,) + n(kT,) (4.4.5)

where n(kT,) represents noise and s(kT;) is a sample of

s(t) = /™9 /-Z—Eief'”"m’ (4.4.6)
T
with
y(t,0) =27h Y. a;q(t - iT) (4.4.7)

The filter output is observed over the interval (0,7;) and we assume that
the ratio T/T is an integer, L. Also, we take T, a sub-multiple N of the symbol
period, i.e., we set T,=T/N. Then, denoting by

kT,
0] AAF x(t) : x(kT,)

|
|
T,

Figure 4.7. Filtering and sampling operations.
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x ={x(0), x(T,), xT,),.... | (NLy - DT, ]} (44.8)

the samples of x(f), the likelihood function A(x|@, 7,0,%) may be written as

. NLy-1 NLy-1 )
A(x|&,fi,0,%)=exp{ Re{ Y x(kT,)5" (kT, )} BGT) } (4.4.9)
NO k=0 k=0
with
§(r) 2@+ /ZE J-i®) (4.4.10)
T

As 5(t) has a constant envelope, the second summation in (4.4.9) is
independent of the unknown signal parameters and can be dropped for
simplicity. Accordingly, we have

NLy-1
A(x|7,0,7) = exp{N Re{ Zx(kT)ﬁ'(kT)H (4.4.11)
0

k=0

and eventually, using (4.4.10),

) ML=l o
A(x|é 7,0,%) = exp{CxRe{e"e Zx(kTs)e"z”"kT’e""’("T‘"’“)}} (4.4.12)
k=0

with

Céi,/—z—Ei (4.4.13)
NN T

The derivation of the frequency estimator may be divided into two steps:
first we compute the average of A(x|&,V, 6, 7) with respect to (a,9 T) so as to
obtain A(x]¥), the marginal likelihood function. Then, we propose an
algorlthm to locate the maximum of A(x|V). In doing so, the parameters 6 and
7 are taken uniformly distributed over [0,27) and [0,T), respectively, and the
symbols ¢; are modelled as independent and equally likely random variables
belonging to the alphabet {£1,13,....(M-1)}.

To begin, let us define

NLy-1 . ) .
X2 ) x(kT,)e /2 g ¥ T -0%) (4.4.14)
k=0
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and put X =|X|e’*. Also, observe that X is a function of &, V and 7 but not of
0. Then, inserting (4.4.14) into (4.4.12) produces

A 7,8,7) = exp{CiXfcos(s, - 6)} (4.4.15)
Also, averaging with respect to  yields
Ax|av,7) = I,(CX]) (4.4.16)
where

2n
1
I,(&)2— [e¥*da (4.4.17)
2r 2‘;

is the zero-order modified Bessel function.

Next, we perform the expectation of A(x|@ V,7) over @& and 7. In doing
so we assume that the signal-to-noise ratio is sufficiently low so that the power
series expansion of IO(CIXI) can be truncated to the quadratic term, i.e.,

2
L(ax) =1+ CT|X|2 (4.4.18)
Averaging (4.4.18) yields
Ax|7 c 2
=fp) = I+TEM{|X| } (4.4.19)
Clearly, maximizing A(x|V) amounts to maximizing
T(N4E, X7} (4.4.20)

In Appendix 4.A it is shown that I'(V) may be written as
NLy~1 NLy-1
T#= Y Y xkT)x (L) "L H[(k, - k)T,] (4.4.21)

k=0 k=0

where H(kT,) is a real-valued function defined as

1 sin[2mhM p(t - iT KT, )]} . 4.4.22)

al
HGT,)= I H{M sin[27h p(t — iT,kT,))
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In this equation M is the size of the symbol alphabet and p(,kT}) is related to
the phase response of the modulator by

p(t.KT,)Rq(r) - q(t - kT,) (4.4.23)

Useful remarks for the numerical calculation of the integrand in (4.4.22) are
given in Appendix 4.C.

Next, we look for the value of V that maximizes I'(V) or, equivalently,
that makes the derivative dI'(¥)/dV vanish. The expression of dI'(¥)/dV is
readily derived from (4.4.21) and reads

dr) NLy-1 NLy-1 )
—a.,—=j27ﬂ} Y D KTy (kT H(ky — k)T, (4.4.24)
k=0 k=0

where y(kT,) is a rotated version of x(kT)
Y(kT,)& x(KT,)e 1> (4.4.25)
and h(kT,) is related to H(kT,) by
h(kT,)2kH(KT,) (4.4.26)

Figures 4.8-4.9 show h(kT,) for IREC frequency pulses and a sampling
interval T=7/4. In particular, a binary alphabet and a modulation index of 0.5
is considered in Figure 4.8, whereas Figure 4.9 corresponds to an octal alphabet
and a modulation index of 0.125. It appears that h(kT,) takes significant values
only for [kT;|< 2T in both cases.

Equation (4.4.24) is now put in a form that leads to a practical solution for
the equation dI'(¥)/dV =0. As a first step note that, since I'(V) is real-valued
(see (4.4.20)), so is dI'(¥)/dV and, in consequence, the double summation in
(4.4.24) is a purely imaginary quantity. Hence

dr' () NLy-1 NLy-1
5 =2 Imi 3, D L)Y RT)H(k, kL] (4427)
k=0 k=0

Second, assume an observation interval much longer than the duration of
h(kT,). Then the summation with respect to k, in (4.4.27) can be extended from
—oo 10 oo, i€,

NLy-1 o

S YKT)Hky k)T ] = Y ykT)H[(k, —k)T,]  (4.4.28)

kl =0 ky=—c0
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so that, denoting

2kT)AT, iy(k@)h[(k—klﬂ;] (4.4.29)

kl =—00

and substituting into (4.4.27), after some algebra we obtain

arey) e .
5 = Zalm{y(kTs)z (kT,)} (4.4.30)

Third, the quantity z(kT,) may be viewed as the output of a filter h(kT,) driven
by y(kT,). The filter is non-causal but can be made causal by suitably delaying
h(kT,) by some sampling intervals, say D. For example, D=2N is an adequate
delay in the cases indicated in Figures 4.8-4.9. The output of the causal filter is
then w(kI,) = y(kT,)® h[(k - D)TS] and (4.4.30) may be rewritten in terms of
w(kT,) and y(kT,) as

NLy+D-1

LD o0 Y Im{{(k- D)T,]w" (kT,)} (4.4.31)
k=D

dv

An algorithm to solve the equation dI'(¥)/dV =0 is now within reach.
The basic idea is to exploit the sum of some consecutive terms in (4.4.31) as an
error signal to drive dI'(V)/dV toward zero. The application of this idea is
discussed in Appendix 3C and leads to the loop indicated in Figure 4.10. In this
diagram two time indexes are used, the symbol index n and the sample index k.
They are related by

. [k
n= 1nt(ﬁj (4.4.32)

Y(KT,) w(kT)
FILTER > ()

Y

DELAY y[(k_ D)T;]

> DT >
v(n e(n
VCO 4( D LOOP 4( D ERROR
D FILTER GEN.

Figure 4.10. Block diagram of the frequency loop.
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where int(z) means “the largest integer not exceeding z.” In essence, n tells us
the symbol interval corresponding to the k-th sample.

The filter generating w(kT,) has impulse response A[(k—D)T,] and the
error signal is given by

(n+1)N-1

enT)= Y Im{y[(k - D)T, Jw' (kT,)} (4.4.33)

k=nN

Also, the frequency estimates are updated (at symbol rate) according to the
formula

V[(n+1)T]=V(nT)+ye(nT) (4.4.34)
where 7 is a step-size parameter. Finally, the VCO computes the phases

o[k + DT, = §(KT,) + 22T, 9(nT)  mod 27 (4.4.35)

and produces the mapping @¢(kT,) — e JOUT)

4.4.3. Loop Performance

The performance of the frequency loop in Figure 4.10 can be assessed
with the methods indicated in Section 3.5 of Chapter 3. As the calculations are
exceedingly long, in the sequel we limit ourselves to some comments on
numerical results drawn from [10].

Acquisition capability is established by the S-curve of the error generator,
which is the expectation of the error signal for a fixed frequency estimate
V(nT) = V. This expectation turns out to depend on the difference f,2v—V
between the true frequency offset and its estimate V and is denoted S(f,). As
discussed in Chapter 3, the width of S(f,) establishes the acquisition range of
the loop.

S-curves with LREC pulses, binary symbols and a modulation index of
0.5 have been computed with an oversampling factor N=4 and a loop delay
D=8 (corresponding to two symbol intervals). They are virtually identical to
those for the frequency loop in Section 4.4.1 (see Figure 4.4). This is not
surprising as the approach followed there exploits the same quadratic
approximation to the likelihood function. The novelty is that the present results
apply to any modulation index (not just 0.5, as in Section 4.4.1) and to general
M-ary alphabets. For example, Figure 4.11 illustrates the S-curve for 1REC,
quaternary modulation and modulation index £=0.25 (again, an oversampling
factor N=4 and a loop delay D=8 have been used). We see that the curve is
rather wide, which means that the loop has large acquisition ranges (on the
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Figure 4.13. Tracking error variance with 1REC pulses and quaternary/octal modulation.

order of the signal bandwidth).

Numerical calculations reported in [10] indicate that, with a binary
alphabet and a modulation index of 0.5, the loop tracking accuracy is
essentially the same as that with the scheme in Figure 4.3. Again, this is
intuitively clear in view of the equivalence between the discrete-time approach
adopted here and the treatment in Section 4.1 based on the Laurent expansion.
Figure 4.12 shows the tracking error variance (normalized to the squared
symbol rate) with LREC pulses, binary alphabet and 4=0.5. The loop noise
bandwidth is B, 7=5-10",

Figure 4.13 provides analogous results for multilevel modulation. Here,
the horizontal axis represents the ratio of the energy per bit E, to the noise
spectral density (E, is related to the energy per symbol by E,=E /log,M). As in
Figure 4.12, self noise appears as the prevailing disturbance.

4.5. Delay-and-Multiply Schemes

4.5.1. Open-Loop Scheme

The frequency loops in the previous sections have been derived with ML
arguments. In the following we address the same problem with ad hoc
methods. In particular, we discuss delay-and-multiply schemes, wherein the
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frequency offset is estimated from products of signal samples. These schemes
operate in a non-data-aided and non-clock-aided fashion and have either an
open-loop or a closed-loop topology.

Let us start with the open-loop scheme indicated in Figure 4.14. The
sample sequence {x(kT,)} is obtained from the received waveform through
filtering and sampling operations as shown in Figure 4.7. The same
assumptions as in Section 4.4.2 are made here and, in particular, a rectangular
filter with a bandwidth of twice the sampling rate is used. In these conditions
the noise samples are uncorrelated. No restrictions are imposed on the mod-
ulation format and, in particular, the modulation index is arbitrary.

Carrier frequency offset is estimated through the formula

NLy-1
V= arg{ Zz(k]})} 4.5.1)
s k=0
where L, is the observation length and z(kT,) is given by
2KT,) = x(kT;) x"[(k - D)T;] 4.5.2)

Equation (4.5.1) has the following interpretation. Let us split x(kT,) into signal
and noise

x(kT,) = s(kT,) + n(kT,) (4.5.3)
with
S(kT,) = /@149 ’%ej"'(”* Bt (4.5.4)

Now, substituting into (4.5.2) yields

Z(kT,

s

)= 2—?82’”’”@{“’”‘“'f’“"V[("'D)Ts"'“]} +NGT,) (455

x(kT) Z(kT) v
’ ‘ —>

Y

| arg{-} |
)y | 2707,

x'[(k=D)T,]
DELAY | of ()
DT,

Figure 4.14. Open-loop delay-and-multiply frequency estimator.
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where N(kT,) is a zero-mean noise term. Finally, averaging produces

E{z(kT))} = 25; A(KT, - 7)e/*™PTs (4.5.6)
where A(?) is defined as
A = Efe/lveo-v(-oLall| 4.5.7)

Lengthy calculations in Appendix 4.B show that A(#) may be expressed as

_ v/ 1 sin[27hM p(: - iT, DT;)]
AB= H{M sin[27hp(t - iT, DT,)] } @38

j=—oc0

with p(¢, Dl;)éq(t)—q(t— DT,). Clearly, A(z) is a real-valued function. It is
also periodic of period 7, as is seen from the fact that (4.5.8) does not change if
t is replaced by #+T. Figure 4.15 illustrates the shape of A(¢) for MSK
modulation.

140 T
120 MSK | |
Lo = DT=m4 7]
) - -
¥ 080 /\Dr,:m
=1
8 i 7
g
2 o060 - —
DT=T
040 - -
020 - —
0.00 L s | L | . |
0.00 0.20 040 0.60 0.80 100

Normalized time, ¢/T

Figure 4.15. Shape of A(#) with MSK.
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Returning to (4.5.6) and summing over 0 <k < NI —1 yields
! 2E -
E{ Y 2(kT,)p = = NL A/ (4.5.9)
k=0 T
where A is the sample average of A(f)

Ad A(kT; -1) (4.5.10)

1§
N

i [\42

At this point the following interpretation of (4.5.1) can be given. In all practical
cases A is positive. Then, taking the arguments of the two sides of (4.5.9) and

solving for v results in
1 NLy-1
= args E kT, 4.5.11
22D, g{ {,Ef( s)} (4.5.11)

This equation says that v could be computed exactly if the expectation of the
sum were available. As this is not the case, we replace the expectation by the
sum itself and this results in equation (4.5.1).

It is worth noting that, as the arg-function takes values in the range +r,
the estimates (4.5.1) vary between +1/(2DT,). For example, with DT, =T/2
the estimation range equals +1/T. In practice, useful operation is limited to a
narrower range, as indicated in Figure 4.16 which shows simulation results for
E{f/l‘ } versus VI' with 1REC pulses, M=4 and a modulation index of 0.5.
Here, the delay DT, equals T/3, the anti-alias filter bandwidth equals 3/T, and
the oversampling factor is set to 6. As is seen, as v approaches *1.5/T, the
average E{\/T } deviates from the true value and approaches zero.

The estimation accuracy of (4.5.1) is investigated in [12] where formulas
are given for the error variance as a function of the modulation parameters and
the signal-to-noise ratio. It turns out that the results are insensitive to the
sampling phase when the oversampling factor is sufficiently large (say 4 or 6,
depending on the signal bandwidth). Comparisons with the ML-based schemes
in Section 4.4 give mixed results, depending on the signal alphabet and the
modulation index. In any case the error variance curves exhibit a high level of
self noise. An example is given in Figure 4.17 in the case of MSK signaling.
The oversampling factor is N=4 and two values of the delay DT, are used. We
see that self noise is overwhelming.
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Figure 4.16. Expectation of V versus v with a quaternary alphabet.
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4.5.2. Closed-Loop Scheme

The delay-and-multiply method can also be employed in a closed-loop
configuration. To see how this comes about consider Figure 4.18. Denoting

x'(kT,) & x(kT, )e ™" : (4.5.12)
and
Z(kT,)&x(kT,)x"[(k - D)T,] (4.5.13)

let us concentrate on the quantity

(n+1)N-1
om g{ Zz’(kTs)} (4.5.14)

2ﬂ:DT K

From (4.5.3)-(4.5.4) and (4.5.12) it is seen that x’(kT,) and x(kT,) have the
same signal component, except that the frequency offset is now v—v, not v.
Then, Q(n) may be viewed as an estimate of v — vV and can be used as an error
signal to steer v toward v. This operation is performed as indicated in Figure
4.19. Here, n represents the symbol index and is related to the sample index k
by k =int(n/ N). The error generator produces

1 (n+1)N-
e(nT)ézﬂDT arg{ Zz’(kn)} (4.5.15)
s k=nN

which serves to update the VCO frequency

[(n+DT]= P(nT) + ye(nT) (4.5.16)
x(kT) X(T,) Z(kT)
_'m"' DELAY .
D% > O

Figure 4.18. Explaining the delay-and-multiply concept for closed loops.
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X(KT)) X (kT,)

e—j¢(kT,)
> D%LZJ;AY > ]
o e er 1 e 1240
Figure 4.19. Frequency estimation loop.
Finally, the phase ¢(kT,) is updated according to
§[(k+DT,] = 9(kT,) +2aT,0(nT) mod 27 (4.5.17)

Interestingly enough, a simpler error signal can be adopted in place of
(4.5.15). In fact the arg-function takes very small values when V(nT) is close
to v (as happens in the tracking mode) and the following approximation can be
made:

Im{Z}

Re(Z} (4.5.18)

arg{Z} =

Hence, replacing Re{Z} with its average value and substituting into (4.5.15)
yields the simpler error signal

(n+1)N~-1
enT)= Y Im{z'(KT,)} (4.5.19)

k=nN

where an immaterial factor has been dropped, for it can be absorbed into the
step-size parameter.

There is some degree of resemblance between (4.5.19) and the error signal
(4.4.33) in Section 4.4.2. In fact it can be checked that the frequency loop in
Figure 4.10 is transformed into that in Figure 4.19 (with the error generator
(4.5.19)) by setting D =0 and replacing the filter by a delay DT,.

Exercise 4.5.1. Compute the S-curve of the frequency error detector
(4.5.19).

Solution. Let us open the loop in Figure 4.19 and drive the leftmost mul-
tiplier by the exponential ¢~/2™%:+9O) I these conditions the voltage x'(KT,)
becomes
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X' (KT,) = x(kT, ) /127 +90)] (4.5.20)
Since
x(KT,) = s(KT,) + n(kT,) 4.521)
we have
X'(KT,) = s(kT,)e B0 4 et 4.5.22)

where n’(kT,) is a noise term equivalent to n(kT,).

Next, compare (4.5.22) with the expression of x(kT,) resulting from
(4.5.3)-(4.5.4). It can be checked that there are only two differences: the signal
component in (4.5.22) has a frequency offset equal to v — v instead of v and an
initial phase equal to 6 — ¢(0) instead of 8. It follows that the expectation

(n+1)N-1
E{ 2z'(k7})} (4.5.23)
k=nN

can be computed by paralleling the arguments leading to (4.5.9). As a result we
get

(n+1)N-1 2E o
E{ Y z/(KT;)p === NA/2m-PL (4.5.24)
k=nN T

Hence, taking the expectation of (4.5.19) and using (4.5.24) yields the result
sought

2E,

S(fy) = TS NAsin(2#f,DT,) (4.5.25)

with f; 2y —7. As is seen, the S-curve has a sinusoidal shape of period
/(DT,). _

The definition of A in (4.5.10) might suggest that the amplitude of the S-
curve depends on the sampling phase. Computer simulations indicate however
that this is not the case as long as the oversampling factor is sufficiently large.

4.6. Clock-Aided Recovery

4.6.1. Delay-and-Multiply Method

In discussing the estimation schemes in Sections 4.4 and 4.5 we have
assumed that no timing information is available. Actually, the performance of
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the resulting schemes is largely insensitive to the sampling phase (but it is
plagued by a great deal of self noise). Of course, the insensitivity to timing is
an appealing feature as clock information is generally unavailable in the
presence of large frequency offsets. With small frequency errors, however,
timing information can be derived first and then exploited for frequency
estimation. In these conditions the question arises as to whether delay-and-
multiply methods can be rearranged so as to exploit timing information,
perhaps to alleviate the self noise problem. This subject is now addressed
concentrating first on MSK modulation.

Return to the scheme in Figure 4.14 and assume that: (i) sampling is
performed at the instants kT + 7; (ii) the delay DT, in the lower branch equals
T; (iii) the anti-aliasing filter (not visible in the figure) introduces negligible
signal distortions. In summary, let us model the samples from the filter as

x(kT +7) = s(kT +7) + n(kT +T) (4.6.1)
where
j[2av(kT+1)+0 2E, ; kT,
S(KT + 1) = /P (T+D+6l T‘e""( o« (4.6.2)

In these conditions the following frequency estir atur . us been proposed for
MSK in [13]:

. 1 Lt
V= —marg{ g)z(kT+1)} (4.6.3)
with
(kT + 1) 2 x* (KT +7)[x* (kT ~ T + r)]* (4.6.4)

An interesting feature of this estimator is that it has no self noise, which
amounts to saying that the estimates tend to the true parameter value as the
SNR grows large. To prove this claim let n(kT + ) = 0 in (4.6.1). Then, (4.6.4)
becomes

2
kT +7)= (E) e/ 4™ g2V UT. 2y (T =T.0) (4.6.5)
T
On the other hand, with MSK modulation it is readily shown that
Ayt a)-y(t-T.0)]=2xY a;p(t-iT,T) (4.6.6)
i

with
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t/2T) O0<tsT

p(t,T)&{1-1/2T) T<t<2T (4.6.7)
0 elsewhere
Hence
Ay*T, o) - y(kT-T,0)| =17 (4.6.8)

and the last exponential in (4.6.5) equals —1. Then, substituting into (4.6.3)
gives V = v, which proves the claim.

Figure 4.20 illustrates the estimation error variance as obtained by
simulation with MSK and GMSK formats. The AAF filter is an 8th-order
Butterworth type of bandwidth 1/T. Comparing with Figure 4.17 it is seen that
self noise is practically eliminated with MSK. The residual floor in the variance
curve is caused by signal distortions in the AAF (whose bandwidth 1/T is not
sufficiently large to pass the MSK signal). Self noise with GMSK is still high,
however. Actually, it turns out that with GMSK the present clock-aided method
is not much better than the non-clock-aided scheme [13].

LI L S B B s B B

GMSK&MSK
L=100

Normalized frequency variance

E/N,, dB

Figure 4.20. Error variance with MSK and GMSK.
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4.6.2, 2P-Power Method with Full Response Formats

Another way to exploit timing information is to remove the modulation
from the signal samples. Return to the mathematical expression for the signal

s(t) = /™9 /£ A (4.6.9)
T
with
y(t,0) =21th Yy oyq(t - iT) (4.6.10)

and consider full response formats. This means that q(#)=0 for r<0 and g(£)=1/2
for £>T. Assuming that transmission starts at #=0 (so that =0 for i<0) from
(4.6.10) we get

k=1
y(kT,0)=7h) o (4.6.11)
i=0
In all practical cases the modulation index is a rational number, say

K
h=— 4.6.12
P ( )

where K and P are integers with no factors in common. For example, X is unity
and P=2 with MSK signaling. Thus, equation (4.6.11) takes the form

K k-1
y(kT, o) = nFZa,. (4.6.13)
i=0

from which it is easily realized that
[2Py (T, )] ., €{2m, 0< ps(P-1)} (4.6.14)

This equation says that 2Py (kT,o) is a multiple of 2z and, in con-
sequence, e/2PY*T-® jg unity. Thus, sampling s(¢) at ¢ =kT + 7 and raising to
the 2P-th power yields

2P 2E\° i(ATKPVT+0)
s kT +71)= —T—S e’ (4.6.15)

with ¢é4ﬂPVT+2P6. As is seen, s*7(kT +7) is a discrete-time sinewave at
frequency 2Pv.
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In practice s(f) is embedded in thermal noise and only the sum
r(t)=s(t)+w(t) is available. As an approximation, however, r(f) can be
filtered (to eliminate as much noise as possible) and used in place of s(f).
Denoting by x(¢) the filtered version of r(¢) (see Figure 4.21), and n(t) the
residual noise, we have

x(kT +7)=s(kT + 1) + n(kT + 1) (4.6.16)

A
A,2P

from which, letting z(k)=x“" (kT + 1), it is easily found that

2E\" jumeviee)
z2k)= —# e’ +NKkT +1) 4.6.17)

where N(kKT + ) results from the products SignalxNoise and NoisexNoise in
the binomial expansion of (s +n)*”.

The sequence {z(k)} represents measurements of a sinewave embedded in
noise, and our task is to estimate the sinewave’s frequency. This problem has
already been discussed in Chapter 3 in connection with PSK modulation and
can be solved with the same methods proposed there. For example, either the
Fitz or Luise and Reggiannini algorithms can be employed.

Figures 4.22-4.23 yield simulation results corresponding to MSK and an
observation interval of L;=100 symbols. Timing is assumed ideal and the low-
pass filter prior to the 2P-th power nonlinearity has a rectangular transfer
function of bandwidth B, ,-T=1.2/T. Also, the samples {z(k)} are fed to a Luise
and Reggiannini frequency estimator that computes

’= marg{gmm)} (4.6.18)
with
PO R
R(m)2 L-m kg,nz(k)z (k ~ m) (4.6.19)

\

rt) x(t) 2(k) v
/ 2P o | FREQUENCY >
> LPF AIA > (+) ESTIMATOR

|
t=kT+7

Figure 4.21. Block diagram of the 2P-power frequency estimator.
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The parameter N in (4.6.18) equals 10. Figure 4.22 shows the expected value of
the estimate (normalized to the symbol rate) versus the true frequency offset. It
appears that the estimates are practically unbiased for frequency offsets within
+1% of the symbol rate. In Figure 4.23 the variance of the estimates
(normalized to the symbol rate) is shown. We see that at low SNR the slope of
the curve is steeper than for MCRB. Clearly this is a consequence of the noise
enhancement due to the 4-power nonlinearity. A negligible self noise level is
observed at high SNR. Comparing with Figure 4.20 it appears that the 2P-
power is superior though it is more complex to implement.

4.7. Key Points of the Chapter

* Data-aided and clock-aided frequency estimation with MSK-type formats
can be approached with the same methods adopted with linear modulations.
This is so because MSK-type signals can be approximated as OQPSK
waveforms (Laurent expansion). Estimation accuracy is about 3 dB from the
modified Cramer-Rao bound with true MSK. With general MSK-type
modulations, instead, performance is worse, due to approximations in
truncating the Laurent expansion.

* A variety of algorithms are available to estimate large carrier frequency
offsets. They are non-data-aided and, in general, non-clock-aided. Some of
them are derived from maximum likelihood methods and have a closed-loop
configuration. Their acquisition range is on the order of the signal
bandwidth. Accuracy is far from the modified Cramer-Rao bound, however.
With binary modulations, in particular, it is comparable with that of
analogous estimation algorithms for OQPSK.

* Alternatively, ad hoc estimation schemes can be used. They are of the
delay-and-multiply type and are simple to implement. Their topology may
be either open- or closed-loop. Their estimation range is as large as with the
ML-based schemes. Accuracy may be either better or worse than with ML-
based methods, depending on the specific modulation format.

* Clock information can be exploited to improve frequency estimation
accuracy. This subject has not received much attention in the literature but a
few results concerning MSK clearly indicate that the idea is promising and
can provide significant improvements.



Carrier Frequency Recovery with CPM Modulations 183

Appendix 4.A

In this appendix we compute the following expectation:

(V) = B, {|XI'} (4.A.1)
where X is defined as
NLy-1 . i .
X=) x(kT,)e /2™ V10 (4.A.2)
k=0

As a first step let us rewrite (4.A.1) in the form
r(7) =B {E,{x"}} 4.A3)

meaning that |X|? is first averaged over the symbols and then over the timing
epoch. Noting that

NLy—1NLy-1

|X|2 = Z z x(kﬂ})x* (k,ZT;)e—ﬂm"(kx -k, )T}ej['lf(sz,-?,&)-v/(leJ_f’a)] (4A4)
k=0 ky=0
we have
5y MarINo-t .
Bl P} = Y D, xkT)x (T, e -k
kl =0 k2 =0
XE,{e/rOsn T vt 4.A5)

The expectation Et-,{ej["’(kzn'f'&)"“’(klr"f'&)]} is computed in Appendix
4.B and reads

E { ej[w(kzr,—f,m—w(k,n—ia)]}
a

_ | L sin{2mMpll T, ~ 7 —iT(k, ~ k)T, ]} A6
== M sin{2mhplk,T, - £ - iT, (k, - k)T, ]} o

where p(t,AT) is related to the phase response g(¢) of the modulator by
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p(t,AT)44(1) - q(t - AT) 4.A7)
and the generic factor

1 sin{ZnhMp[kQTs =T ~iT,(ky - kl)T;]}
M sin{27rhp[k27; - —iT,(k, - k1)7}]}

(4.A8)

is replaced by unity when p[kQT T—iT,(k, — kl)T] 0 (this is because
(4.A.8) tends to unity as p[kQT T—iT,(k, - kl)T] goes to zero).

Next, we note that the right-hand side in (4.A.6) is a periodic function of
T with period T (in fact, the right-hand side does not change if 7 is changed to
T+T). Also, averaging E &{lXIZ} with respect to 7 yields I'(V), as indicated in
(4.A.3). Thus, bearing in mind that 7 is uniformly distributed between 0 and
T, from (4.A.5)-(4.A.6) we get

NLy-1NLy—-1
T =Y Y xkT)x" (T)e ™ L H(k, -k)T,] (4.A9)

k=0 k=0
with

al 1 sin 2n'hMp[k2T T —iT,(k, - kl)T]}
H[(k, - k)T,]2 IQ[M SalzmlT, =7 T R)T] di

1 I Il[ 1 sin{2mhMp[t - iT, (k, - k,)T]}]dt wALO)

M sm{27rhp[t—lT,(k2 kl)Ts]}

The second line follows from the periodicity of the integrand with respect to 7.
Assuming that the symmetry condition

q(t)= % -q(LT-1) (4.A.11)

is satisfied, it can be shown that H(kT,) is an even function. In fact, substituting
(4.A.11) into (4.A.7) yields

p(t,~AT) = —p(LT - 1,AT) @.A.12)

and inserting this result into (4.A.10) produces
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__ 1 sin{27hMp(t - iT,—kT,)}
HEHL) H,I:M sin{27hp(t - iT,— kT)}]

_1 f 11[1 sin{2mhMp(LT - t +iT, kT)}] "

M sin{27hp(LT -t +iT,kT,)}

= H(KT,) (4.A.13)

which proves the claim.

Appendix 4.B

In this appendix we compute the expectation E &{ej [vn.@-va “)]}, where

v(t,0) =2mh idiq(t -iT) (4B.1)

j=—o0

Using the definition (4.A.7) we have

E &{ej[V(tz,&)"W(tl,&)]} =E &{expli Jj2mh 26{,- pt, —=iT,t, -t )}}

j==00

=E &{ [1expli27ha; pt, —iT,t, - tl)]} (4.B.2)
As the symbols are independent, each factor in the second line can be
averaged separately. Hence,

E&{ef['l’('zﬁ)-ll/(fl,&)]} = ﬁE&. {eﬁ”hdip(’z""rv'z ‘fl)} (4.B.3)
i=.‘w i

On the other hand, as «; € {£1,%3,..£ (M - 1)}, the factors on the right-hand

side in (4.B.3) take the form
-1

E

E {ejZnhd,»p(tz —iT,t -'1)} — i ej27thmp(t2 =iT,ty-t;)
o; M

LR
b-)

m

X

-1
¢ ~j2mhmp(t, —iT,t, 1) (4.B.4)

"M

+L
i

m=
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Also, it is easily proved that

M-1 M/2-1
Zej2nhmp(t2 =iT,ty—1;) = 2ej27rh(2n+1)p(12-—iT,t2—tl)
m=13,... n=0

sm[n:hMp(t2 —iT,t, - tl)] oMUy =iT. 1y -11)
* sin[27hp(t, —iT,t, - tl)]

(4.B.5)

Hence

E. {e 270068, 1ty ~iT 1y —tl)} 1 sin[27hMp(t, —iT,1, - 1,)] @4B.6)
% M sin[2mhp(t, - iT,t, ~ )] o

and inserting this into (4.B.3) yields the final result

{eJ[W('z LatIE H 1 sin[27hMp(t, = iT,t, = ;)] 4B.7)
M sin[2mhp(t, —iT,t, - 1,)] o

In deriving (4.B.6) it has been implicitly assumed that p(¢,—iT,t,—¢,) is
nonzero. When p(t,—iT,t,—1,) equals zero the exponential e/2™®PUzil-iz)
equals one and we have

Eg, {el2manta-Ta-i] = (4B.8)

This equation is consistent with (4.B.6) provided that the right-hand side of
(4.B.6) is computed as the limit for p— 0. It is concluded that equation
(4.B.7) is valid in general provided that the factors with p(t,~iT,t,—¢)=0 are
set to unity.

When computing the right-hand side of (4.B.7) the question arises of
recognizing the non-unity factors. In other words, we want to establish the set
J such that p(t,—iT,t,—#)#0 for ieJ. From (4.B.2) it is clear that
p(t, —iT,0) is zero anyway, which means that J is empty for #,=t,. The case
t,;#t, can be handled bearing in mind (4.B.2) and the very form of the phase
response g(#):

t<0

0
q(t)={1 2 12T (4.B.9)

In this way it is readily concluded that

J={-“‘£(T’1’L)—L<i<9a"—¥"—tﬁ} (4.B.10)
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Appendix 4.C

In this appendix we illustrate the steps leading to the block diagram in
Figure 4.10. In doing so we set D=0 throughout in the formulas in Section
3.4.2, for this greatly simplifies the discussion without affecting the conclu-
sions. The starting point is the derivative of T'(V) (see equation (4.4.31) in the
text)

areyy . Mt .
oy =2 LImbUTw L) (“.C.1)
where
YkT,) & x(kT, e /2™ (4.C2)

Also, x(kT,) is the output from the anti-aliasing filter and w(kT;) is the
response to y(kT,) of the filter h(KT):

w(kT,) = y(KT,) ® h(KT,) 4.C3)

Our task is to compute that V where dT'(V)/dV vanishes. The basic idea is to
exploit the sum of some consecutive terms in (4.C.1) as an error signal to drive
dI’(v)/dv toward zero.

For convenience we take N terms (as many as the samples in a symbol pe-
riod) and introduce a symbol index n, which is related to the sample index k by

. [k
n—mt(ﬁj 4.C4)

where int(z) means “the largest integer not exceeding z.” In essence, n gives
the symbol interval corresponding to the k-th sample. Then, the frequency
estimates are updated according to

V[(n+1)T]=V(nT)+ye(nT) 4.C.5)

where 7 is a step-size parameter and e(n7) is the error signal:

(n+1)N-1

e(nT)= Y Im{y(kT,)w' (kT,)} (4.C.6)

k=nN

Let us concentrate on the computation of the samples y(kT,) appearing in
(4.C.6) (once the y(kT,) are known, the corresponding w(kT,) are derived from
(4.C.3)). To this end consider the piecewise varying function ¢(t) such that

% =210(nT) for nT<t<(n+1)T 4.C.7)
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Bearing in mind (4.C.2), it is recognized that the following approximation
holds true:

Y(KT,) = x(KT,)e~ 94T (4.C.8)

Thus, to compute y(kT,) we need @(kZy) which, in turn, can be derived by
integrating (4.C.7) over kT, <t < (k+1T:

¢[(k+DT,|= ¢(kT,)+22T,¥(nT)  mod 27 (4.C9)

To summarize, suppose that V(nT) is known. Then, equation (4.C.9) gives
{¢(KT;)} and (4.C.8) gives {y(kT,)}. Next, equation (4.C.3) yields {w(kT;)} and
substituting into (4.C.6) produces e(nT). Finally, the new estimate V[(n+1)T]
is derived from (4.C.5). These steps are illustrated in the block diagram in
Figure 4.10.
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Carrier Phase Recovery
with Linear Modulations

5.1. Introduction

In this chapter we investigate algorithms for carrier phase estimation with
linear modulations. As with frequency recovery, ML estimation methods will
play a central role in our study. We shall see that various approximations to the
ML formulation are possible, leading to different estimation methods. Thus, a
rather disparate set of synchronization schemes is anticipated. This is also a
consequence of the many scenarios that can be thought of, depending on the
specific modulation format and the availability of data/clock information. In
this regard the following categories may be envisaged:

() Modulation format:

¢ Modulation may be either offset or non-offset.
(ii) Additional knowledge:

* Clock information may be available or not.

* Information symbols may be known or not. When they are, they may
come either from a known preamble (data-aided schemes) or from the
detector output (decision-directed schemes)

(iii) Estimator topology:

 Estimators may be either open loop or closed loop.

Another distinction arises from the presence of carrier frequency offsets.
For the sake of simplicity phase estimation is usually approached assuming that
frequency recovery has already been accomplished. This is in keeping with the

189
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fact that most phase estimators can cope with moderate residual frequency
errors. Frequency errors are not always that moderate, however. When this
happens, it is necessary to endow the phase synchronizer with extra frequency
acquisition capabilities.

The chapter is organized as follows. In the next few sections we address
data-aided and clock-aided phase estimation. Next, we gradually loosen these
assumptions and eventually discuss phase recovery with no data and no clock
information.

5.2. Clock-Aided and Data-Aided Phase Recovery

5.2.1. ML Estimation with Non-Offset Formats

Start with the complex envelope of the received waveform
r(t) = s(t)+w(t) (5.2.1)

where

s(t) = P™ON ¢ o(t —iT - 1) (5.22)

and w(¢) is thermal noise. Its real and imaginary components are independent
and each have a power spectral density N, The parameter v represents the
frequency offset, 0 is the carrier phase we want to estimate, 7 is the timing
phase, {c;} are information symbols, T is the symbol period and g(¢) is the
signaling pulse shape.

The phase 6 is an unknown constant, taking values in the range *z. All
the other parameters, v, T and {c;}, are assumed to be perfectly known to the
receiver. As mentioned earlier, knowledge of the data symbols may come from
a known preamble. Carrier frequency and symbol epoch may either be esti-
mated in advance and independently of the carrier phase or, as happens in some
burst mode transmissions, can be accurately tracked between bursts. B

To estimate 6 with ML methods we need the likelihood function A(r|9).
This has been derived in Chapter 2 and is expressed by

T, T,
A(rf) = exp{—Al,— [Re{r)s* )}dt - 5117 [or dt} (5.2.3)
090 09

where 0 <t <Tj, is the observation interval and §(r) is the trial signal
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5()48e/CPOY ¢ g(t - iT - 1) (5.2.4)
i

Note that @ is the only parameter bearing a “tilde”. This reflects the fact that
the other parameters are all known. It is also worth observing that [5(s)] is inde-
pendent of 6. Hence, taking the logarithm of (5.2.3) yields (within some con-
stants)

Ty
InA(r|f) = Re{ j ROAG )dt} (5.2.5)
0
Using (5.2.4) we get
Ty . T
j r(05" (dr=e Y ¢} j [r)e™ gt - iT - 7)dt (5.2.6)
0 i 0

Hence, reasoning as in Section 3.2.1, it is easily found that the integral in
(5.2.5) may be expressed as

Ty Lyl
[r@5" (nde = e Y, cpx(k) (5.2.7)
0 k=0

where Ly 2T, /T is the length of the observation interval in symbol periods and
x(k) represents the sample at ¢ = kT + T of the convolution

x(0)&[r(e ™| ® g(~1) (5.2.8)
In summary, collecting (5.2.5) and (5.2.7) yields
) Sk
InA(r|f) = Re{e"e Zc‘;x(k)} (5.2.9)
k=0

and the maximum of A(r|§) is achieved for

A Lt
0= arg{ ZC,:x(k)} (5.2.10)

k=0

The block diagram of the ML phase estimator is illustrated in Figure 5.1.
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ne) x(k) 6
—-»?—» g ——c/?o—»?—r Y, » arg{-} |—>
|
t=kT+7 .

c

e—j27rvt k

Figure 5.1. Block diagram of the ML phase estimator.

5.2.2. Performance with Non-Offset Formats

We maintain that algorithm (5.2.10) achieves the Cramer-Rao bound
CRB(0) when the ratio E /N, is sufficiently large and the convolution
g(t) ® g(-1)2h(z) is Nyquist, i.c.,

1 k=0
h(kT) ={o (20 (5.2.11)

To prove our claim recall from Chapter 2 that, if there are no unwanted
parameters (as happens in the present case), the CRB(8) coincides with the
modified bound MCRB(6). So, we only need to show that the error variance of
the estimator (5.2.10) equals the modified bound

1 1

MCRB(0)=— (5.2.12)
2L, E, /N,
To proceed, consider the matched-filter output
x(8) =€y ¢;h(t~iT - 1) +n(2) (5.2.13)
with
n(t)&]w(t)e>™| ® g(-1) (5.2.14)

It is easily checked that n(#) has independent real and imaginary components,
each with variance N, Also, the signal energy E, equals C,/2, where C, is the
expectation of IC;|2 (see Appendix 2.A). Thus, we have

__ G
97 2E,/N,

(5.2.15)

Now observe that the samples of x(¢) at kT+7 are given by
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x(k) = e’c, +n(k) (5.2.16)
from which, multiplying both sides by c; yields
* jo 2 *_
cpx(k)=e[Jo,f + i @) (5.2.17)
with n’(k)2n(k)e™’® . Note that n’(k) has the same statistics as n(k) and, in par-

ticular, its real and imaginary components are zero mean and independent ran-
dom variables of variance N,. Substituting into (5.2.10) and rearranging yields

0 =arg{e’*(1+ Ny + jN))} (5.2.18)
with
Ly-1
Y cin'(k)
Ng+ jN &40 — (5.2.19)
2
|Ck|
k=0

From this equation it is easily seen that Nz and N, both have zero mean.
Thus, assuming that they are small compared with unity, (5.2.18) reduces to

6=0+N, (5.2.20)

which says that the estimate of @ is unbiased and the estimation variance is
given by

Var{6- 6} =E{N}} (5.2.21)
Next, write
Var{6-6} = E{E{Nﬂc}} (5.2.22)

meaning that we first take the expectation with respect to noise (while keeping
cé(co,cl,...,clﬂ_l) fixed) and then we average the result over the symbols.
Solving (5.2.19) for N, and substituting into (5.2.22) it is found, after some
algebra, that

Var{é - 6} = N"sz E{éz—} (5.2.23)
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where C, is the expectation of |¢,|* and C, is the aritmetic mean
- A 1 Lt 2
GE=Y o (5.2.24)
k=0

Bearing in mind (5.2.15), equation (5.2.23) may be put in the alternative
form

j_gl-_L G gl L
var{6 -6} = TR E{ 622} (5.2.25)

Now, as L, increases, the mean C, approaches C, and (5.2.25) becomes

Var{é - 9} = EIE ES/INO

which shows that the Cramer-Rao bound is achieved. For example, an error
standard deviation of 4.8° is obtained with only E/N,=6 dB and L;=18.

(5.2.26)

5.2.3. ML Estimation with Offset Formats

We now address ML phase estimation with offset signals. The signal
model is

s(t) = ef‘“"”’){z a,g(t—iT-17)+jY bgt—iT-T/2~ r)} (5.2.27)

where a; and b; are real-valued information symbols. In particular, with
OQPSK modulation they take the values 1. As the derivation of the ML
estimator follows the same lines described earlier, we limit ourselves to
highlighting the major steps.

Paralleling the passages from (5.2.3) to (5.2.9) produces

. L=t Ly-1
InA(r|f) = Re{e"’e[ Y ax(k)=j Y, b x(k+ 1/2)]} (5.2.28)
k=0 k=0

where x(¢) is the matched-filter output and x(k) and x(k-+1/2) are its samples
taken at r=kT+7 and t=kT+T/2+7, respectively. Maximizing (5.2.28) as a
function of @ gives the desired estimate
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t 0
ﬂ</? o—> /P Y > arg{-} —>
|
2T
x(k+1/2)
b
Figure 5.2. Block diagram of the ML estimator.

R Ly-1 Ly-1

6= arg{ Y ax(k)-j Y b x(k+ 1/2)} (5.2.29)
k=0 k=0

Figure 5.2 illustrates the block diagram of the estimator. As is seen, the
samples from the matched filter are now taken at the rate 2/T and a serial-to-
parallel converter (S/P) separates the sequences {x(k)} and {x(k +1/2)}.

5.2.4. Performance with Offset Formats

The performance of estimator (5.2.29) is now assessed with the same
methods adopted earlier. In doing so we still assume that the Nyquist condition
holds and the modulation is uncoded.

The matched-filter output has the form

x(t)= ef"{z ah(t—iT = 7)+j Y bh(t—iT-T/2- T)} +n(t)  (5.2.30)

Again, real and imaginary components of the noise have zero mean and
variance 0'5 = N,. Thus, as the signal energy is unity (see Appendix 2.A), we
have

Es/NO

(5.2.31)

and, correspondingly,
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2 1
o, =
E,/N,

(5.2.32)

Sampling x(¢) at k7T+7 and kT+7/2+7 and bearing in mind that h(f) is Nyquist
yields

x(k) = e’®| a, + J'Zb,.h(k—i-l/z)J +n(k) (5.2.33)

- “

x(k+1/2)=e”| jb + Y ah(k-i+1/2) |+nk+1/2)  (5.2.34)

Then, substituting into (5.2.29) and rearranging produces

0 =arg{e’* (1 + jS+ Ny + jiN))} (5.2.35)
with
a1 ¥

=-Z Y Zakb h(k—i-1/2)- Zbka h(k-i+1/2)| (5.2.36)

1 &
N+ jN 2= Y ['(k) +n"(k +1/2)] (5.2.37)

2Ly %
n'(k)2n(k)a,e™° (5.2.38)
n”(k+1/2)2~ jn(k +1/2)b,e™® (5.2.39)

It may be checked that Ny and N, have zero mean and the same variance

2 1 1

A (5.2.40)

Also, straightforward manipulations show that the random variable S in
(5.2.36) has zero mean and variance

o2 = (5.2.41)

<
21,

with
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R | L L
C2 Y W (k-1/2)=— Y, Y hk, -k +1/2)h(k, — k, = 1/2) (5.2.42)
k=—oo k=1 ky=1

Next, assume that E /N, and L, are sufficiently large so that S, Nyand N,
are all small compared to unity. Then, (5.2.35) reduces to

6=0+S+N, (5.2.43)

from which the variance of the estimation errors is seen to be o3 + o%,, ,ie.,

Var{é—9}=—1- L +£

2Ly E /N, 2L,
This equation indicates that the estimator (5.2.29) does not achieve the Cramer-
Rao bound. Note that the second term C/(2L,) in (5.2.44) is independent of the
thermal noise level and, in fact, it is contributed by interactions between signal
components (self noise). Figure 5.3 compares qualitatively (5.2.44) with the
Cramer-Rao bound.

In practice (5.2.44) may be quite close to the bound. For example, assume
Ly=18 and suppose that the Fourier transform of A(f) has a raised-cosine-rolloff
shape with =0.5. From (5.2.42) it is found that C=0.0225. Thus, for E /N,=
6 dB equation (5.2.44) yields a phase error standard deviation of about 5°
(instead of 4.8°, which corresponds to the bound).

(5.2.44)

Figure 5.3. Comparison with CRB.
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5.2.5. Degradations Due to Frequency Errors

To assess the effects of frequency errors on phase recovery it is useful to
bear in mind that: (i) O represents the phase of the demodulated carrier
'™ 4t the time origin; (ii) in the previous discussion the time origin has
been chosen as the beginning of the observation interval. To investigate phase
estimation in more general terms it is expedient to shift the time origin to a
point internal to the observation interval. In particular we choose the center of
the observation interval at a generic time #=mT, as indicated in Figure 5.4. This
will allow us to assess the dependence of the phase estimates on the parameter
mT.

For the sake of simplicity let us take an observation interval with an odd
number of symbol intervals. Then, proceeding as in Section 5.2.1, the ML
estimate of 6 with non-offset modulation is found to be

. 1 m+(Ly-1)/2
0 =arg I Y cix(k) (5.2.45)

k=m—(Ly-1)/2

where x(¢) is still as defined in (5.2.8). Note that an immaterial factor 1/ L, has
been inserted in (5.2.45) for convenience. Our aim is to assess the performance
of this estimator in the presence of a frequency error and, in particular, to
compute the first- and second-order moments of 8. In doing so we make the
following simplifying assumptions:

(i) the modulation is PSK;
(i) the difference f; between v and its estimate is much less than 1/7;

(iii) the Nyquist condition is satisfied.

To account for frequency errors, we suppose that the demodulation
operation indicated in Figure 5.1 is performed with a reference frequency v
other than v. Then the filter output x(f) becomes

A

N/

-~

Figure 5.4. Observation interval centered around t=mT.
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x(t) =[r(e " ] ® g(-t) (5.2.46)

Substituting r(t)=s(f)+w(t) into (5.2.46) and using (5.2.2) yields (instead of
(5.2.13))

x(t) = ef"zCi[ef2’9‘d'g(t —iT - 1)] ® g(~t) +n(t) (5.2.47)

As g(t-iT-7) takes significant values only over a few symbol periods
around iT+7 and | deI is much less than unity (by assumption), the exponential
e/2M4' in (5.2.47) can be approximated as e/’ Thus, bearing in mind the
relation g(r) ® g(—t) = h(t), we have

x(t)=e* Y ce’™ i h(t ~iT - 1) +n(t) (5.2.48)

Sampling at k7+7 produces
x(k) = c,e®e”™4" + n(k) (5.2.49)

from which we get (recall that |ck|2 =1)
cox(k) = [T (k)] (5.2.50)

with n’(k)én(k)c;e'jg. Finally, substituting into (5.2.45) yields

R 11 m+(Ly—1)/2
f=argie’ — Y ™M+ N+ N, (5.2.51)
k=m~(Ly—1)/2

where the complex number Np+jN, is defined as

A m+(Ly~1)/2
Ne+jNE2—  Yn'(k) (5.2.52)
k=m—(Ly-1)/2

Simple manipulations show that the summation in (5.2.51) may be put in
the form

1 m+(Ly=1)/2 ‘
o Y 24T = p(f,T)e/> ™ (5.2.53)
k=m—(Ly-1)/2

with
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A sin(zily f,T)
pfT _——_I_Osin(mT) (5.2.54)

Note that p(0)=1. Furthermore, in a small interval around the origin, p(f,T)
decreases as f,;T departs from zero.
Collecting (5.2.51) and (5.2.53) and rearranging yields
6 = arg{e ™ 1+ Ve + V) (5.2.55)

where Vj and V, are related to N, and N, by

e~ IemfaT
N
P (5.2.56)
A e j2rmf,T
Vi=N,-
p(f,T)
It is easily checked that Vi and V, have zero mean and variance
o}, =0} L L (5.2.57)

Y T 2Lp2(f,T) E, I N,

The performance of the estimator is readily assessed at high signal-to-
noise ratio. In these conditions in fact V and V, are small compared with unity,
and (5.2.55) reduces to

6 ~0+2mmf,T+V, (5.2.58)

from which it is clear that the average estimate is 6+ 2zmf,T and coincides
with the phase of ¢/*"4*® gt the center of the observation interval. Thus, if
this same estimate is used for demodulation over the entire interval, a position-
dependent bias is incurred. The estimation variance is given by

1 1
2Ly p*(fyT) E,/N,

and is larger than the CRB(6) for f#0 (since p(f,T)<1).

As an example consider again the case discussed in Section 5.2.2, i.e.,
non-offset modulation with E /N,=6 dB and L;=18. We have seen that, for
zero frequency error, the estimates have a mean 6 and a standard deviation of
4.8°. With f;=0.001/T, the mean increases by 3.2° while the standard de-
viation remains essentially the same.

(5.2.59)

Var{é - 0} =
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5.3. Decision-Directed Phase Recovery with Non-Offset
Modulation

5.3.1. Feedback Structures

From the preceding discussion it appears that ML data-aided phase
estimation methods lead to open-loop (feedforward) schemes. As is now ex-
plained, closed-loop (feedback) structures are unavoidable when detector de-
cisions are exploited in place of true data.

Assume that carrier frequency and timing are ideal. To get an estimate of
0 it would seem sufficient to replace the known symbols by their estimates ¢,
in (5.2.10). This produces

N
0= arg{ Zé;x(k)} (5.3.1)

k=0

Unfortunately a closer look at the problem reveals that estimator (5.3.1) does
not work. In fact, as indicated in (5.2.16), the signal constellation at the
detector input is rotated by an angle € from its correct position (see Figure 5.5)
and, in consequence, the quality of the detector decisions strongly depends on
the amount of rotation. As an example consider QPSK modulation and 8=7m/4.
Also, assume Nyquist pulses so that

x(k) = ce”™* +n(k) (5.3.2)
In these conditions 50% of the decisions are wrong on average. In fact, as
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