
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1



Abstract— The ongoing evolution in constellation/formation of
CubeSats along with steadily increasing number of satellites

deployed in Lower Earth Orbit (LEO), demands a generic

reconfigurable multimode communication platforms. As the

number of satellites increase, the existing protocols combined
with the trend to build one control station per CubeSat become a

bottle neck for existing communication methods to support data

volumes from these spacecraft at any given time. This paper

explores the Software Defined Radio (SDR) architecture for the

purposes of supporting multiple-signals from multiple-satelli tes ,
deploying mobile and/or distributed ground station nodes to

increase the access time of the spacecraft and enabling a future

SDR for Distributed Satellite Systems (DSS). Performance results

of differing software transceiver blocks and the decoding success

rates are analysed for varied symbol rates over different cores to
inform on bottlenecks for Field Programmable Gate Array

(FPGA) acceleration. Further, an embedded system architecture

is proposed based on these results favouring the ground station

which supports the transition from single satellite communication

to multi-satellite communications.

Index Terms — Central Processing Unit (CPU), Field

Programmable Gate Array (FPGA), Satellite communication,
Software Defined Radio (SDR), System-on-chip (SoC).

I. INTRODUCTION

MALL satellites are fast becoming a way to perform

scientific and technological missions more affordably due

to reduced build time, more frequent launch opportunities,

larger variety of missions, more rapid expansion of the

technical and/or scientific knowledge base and greater

involvement of small industries/universities [1, 2].

Furthermore, there is an ongoing evolution of multiple small

satellite scenarios such as FLOCK-1 [3], QB50 [4],

Autonomous Assembly of a Reconfigurable Space Telescope

(AAReST) [5], Surrey Training Research and Nano-Satellite

Demonstrator (STRaND -2) [6] and Edison Demonstration of

Smallsat Network (EDSN) [7]. The objectives of these

missions are very ambitious and are driven by new

complexities which require multi-mode operation of wireless

transceivers [8].

This paragraph of the first footnote will contain the date o n wh ich y o u

submitted your paper for review. It will also contain sup po rt in formation,
including sponsor and financial support acknowledgment. For example, “This

work was supported in part by the U.S. Department of Commerce under Grant
BS123456”.

M. R. Maheshwarappa and C. P. Bridges are with the Surrey Space Centre,
Faculty of Engineering and Physical Sciences (FEPS), University of Sur rey ,

Guildford, United Kingdom - GU27XH (e-mail: m.maheshwarappa@
surrey.ac.uk; c.p.bridges@surrey.ac.uk).

M. D. J. Bowyer is with Airbus Defence and Space Ltd., Anchorage Road,

Portsmouth, Hampshire, United Kingdom – PO35PU.

This work aims at three specific application areas. Firstly,

the ground station that can handle multiple satellite signals at

any given time as seen in Fig. 1. The increasing number of

satellites in Lower-Earth Orbit (LEO) occupying Amateur

Radio Spectrum together with variety of modulation

techniques, data rates and protocols [9] used across the

CubeSat community demands the integration of a multitude of

communication standards onto a single platform. This is

compounded by the problem of crowded spectrum [10] which

is driving research on more efficient use of the available

spectrum e.g., by de-confliction or Cognitive Radio (CR)

techniques. For all such applications, a universal

programmable hardware is desirable, which intensifies the

interest in Software Defined Radio (SDR) in recent years [11].

Such an SDR must be robust in noisy and/or contested

spectrum and make maximum use of a priori information to

minimise initial acquisition and detection bandwidths.

Fig. 1. Radar View of the Antenna Showing Different

Satellites in Visibility

Secondly, the need for deployable mobile ground station

network for the purposes of increased access time such as

ESA’s Global Educational Network for Satellite Operations

(GENSO) system [12] and Satellite Networked Open Ground

Station (SatNOGS) [13]. A ground station based on SDR

hardware is suitable for worldwide distributed systems, where

updates containing the software for communicating with new

waveforms could be shared among different distant stations

without the need for hardware upgrades.

Improvements in CPU & FPGA Performance

for Small Satellite SDR Applications
Mamatha R. Maheshwarappa, Student Member, IEEE, Mark D. J. Bowyer, Member, IEEE and

Christopher P. Bridges, Member, IEEE

S

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

Finally, a candidate embedded design is presented as a

possible enabler of the future SDR for distributed satellite

communication systems. The growth of SDR offers small

satellites the opportunity to improve the way space missions

develop and operate transceivers for communication network

in space as seen in [36] and [40]. The ability to change the

operating characteristics of a radio through software once

deployed to space offers the flexibility to adapt to new science

opportunities and recover from anomalies within the science

payload or communication system e.g., in Global Navigation

Satellite Systems (GNSS) receivers as in [38, 39]. Also,

potentially reduce development cost and risk by adapting

generic space platforms to meet specific mission requirements.

However, the flexibility and adaptability comes with an

expense of power consumption and complexity in integrating

previously separated building blocks on a single die.

The objectives of this paper are:

1. SDR implementation and profiling analysis of

SmallSat Telemetry, Tracking and Command

(TT&C) waveform on state-of–the-art Radio

Frequency (RF) (Analog Devices AD9361) and Base

Band SoC (Xilinx Zynq) based architecture, with

emphasis on ground system multi-satellite reception.

2. Profiling of C/C++ based reference waveform design

on dual, quad and octa-core CPUs with the aim of

moving minimum functionality from General

Purpose Processor (GPP) Software to (FPGA)

firmware, in order to meet performance goals,

maximise flexibility and minimise expenses

associated with implementation of many variant

waveforms.

3. Using a low cost Zynq SoC solution (the Zedboard),

the desired multi-satellite reception can accommodate

up to 4 concurrent satellites by moving waveform

independent front-end tuning, filtering and

decimation functions from software to firmware,

leaving waveform dependent matched filtering,

demodulation and decoding functions in software.

This paper is an extension of the work carried out in [33] and

[34] where a novel SDR architecture on an embedded system

is proposed as seen in section 2. The implementation and

validation process of the proposed transceiver architecture is

briefed in section 3 (more details on transceiver

implementation and validation can be found in [34]). The

focus of this paper is to understand the CPU load caused by

each transceiver block as discussed in section 4. Further in

section 5, an improvement in the design is achieved by re-

distributing the transceiver blocks within the SoC. Lastly,

section 6 summarises the contributions and future work.

II. TRANSCEIVER ARCHITECTURE

For over two decades, SDR technology has promised to

revolutionise the communication industry by delivering low

cost, flexible software solutions for communication protocols

[9]. In this decade, the introduction of BB SoC and, most

recently, RF programmable transceiver SoC can fulfill the

early promise. Also, open source simulation tool such as

GNURadio [35] is widely used to implement low-cost digital

beacon receiver based on SDR [37], Emergency Managers

Weather Information Network (EMWIN) and Low-Rate

Information Transmission (LRIT) Software Receiver using

GNURadio [41]. GNURadio was used in this research initially

to understand the working of the existing/generated filters,

channel codes, synchronization elements, equalisers,

demodulators, decoders and other processing blocks using pre-

recorded or generated data as addressed in [33].

Towards achieving the attributes discussed in the previous

section, this work proposes a new SDR architecture on an

embedded system as seen in Fig. 2 [33]. This architecture

Fig. 2. SDR Architecture Implemented on Zynq

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

consists of a BB SoC paired with RF SoC. The BB SoC

contains FPGA fabric and ARM dual-core Cortex A9

processor. For initial development, the Avnet Zedboard

containing the Xilinx Zynq 7020 FPGA SoC [14] is chosen

providing a low-cost and well supported back-end for the

signal processing functionalities.

On the RF programmable transceiver SoC, initial evaluation

took place using the Lime Micro Myriad RF containing the

LMS6002D RF SoC [15]. More recent development has taken

place using the Analog Devices AD-FMCOMMS3-EBZ

containing the newer AD9361 RF SoC [16]. It is hoped that

future developments will incorporate the latest and most

capable Lime Micro SoC, the LMS7002M [17]. The two

boards (and constituent SoCs) communicate using

conventional parallel I/O for high speed sampled data (up to

~123 complex MSPS) and Serial Peripheral Interface (SPI) for

configuration, control and monitoring. Detailed description of

the SDR architecture can be found in [33] and [34].

III. IMPLEMENTATION

As a first step towards validating the architecture, a simple

coder modulator/demodulator decoder reference model for a

well-known CubeSat beacon telemetry was implemented. The

FUNcube-1 (AO-73) CubeSat [18] provides a good starting

point for our work because the telemetry beacon is

documented and addressed by number of Open Source

Software (OSS) demodulator decoder implementations written

in C/C++.

A. Transmitter

The particular scheme, from AO-40 heritage [19], common

among several CubeSats [18], is based on Binary Phase Shift

Keying (BPSK) modulation and a robust concatenated code

comprising Viterbi (Rate 1/2) [20] and two Reed Solomon

(160,128) blocks [21]. Much work here derives from Phil

Karn’s well-known AO-40 design and implementation

[KA9Q] [19]. The Analog Devices AD-FMCOMMS3-EBZ

has bare metal and Linux Operating System (OS) based device

drivers accompanied by application examples. For this work,

we have started with the Zynq ARM Linux OS based

approach as the integration and test of application related OSS

may be simplified. To this end, Analog Devices provide a

capable AD9361 Linux device driver, dependent on and

accessed, using Linux industrial I/O (IIO) framework [22].

Linux IIO allows user space waveform applications to

configure/query/sample-stream to and from the AD9361 using

familiar UNIX calls (open/close/read/write/ ioctl) and perhaps,

and more preferred, by a user space library called libiio [23].

The Linux libiio provides a modern high performance

abstraction to all IIO devices including the AD9361. Using

IIO, it has been possible to create a soft real time reference

encoder called “iio-fcenc”.

Successful interoperability testing of iio-fcenc took place

for different symbol rates such as 1.2K, 2.4K, 4.8K, 9.6K and

19.2K. Fig. 3 show the signals being received on a FUNcube

Pro+ dongle and spectrum analysis performed using SDR

Sharp [24].

Fig. 3. Signal Received on SDR Sharp at Different Data Rates 1.2K,

2.4K, 4.8K, 9.6K and 19.2K (from left to right)

It was possible to run iio_fcenc on different platforms of

varying architecture and core capacity, including – ARM

Cortex 15 and ARM Cortex A7, ARM Cortex A9 and Intel

x86. The transmission was also verified on a Rohde &

Schwarz FSV3 Vector Signal Generator (VSG) [25] as seen in

Fig. 4 and the constellation plot of the BPSK signal can be

seen in Fig. 5. The Error Vector Magnitude (EVM) is ~2%

which is within acceptable values for low order modulations.

The carrier frequency offset is 225 Hz from the centre

frequency (145.935 MHz) suggesting absolute accuracy of

AD-FMCOMMS3-EBZ crystal to be ~1.5 ppm.

The AD-FMCOMMS3-EBZ provides the flexibility to

transmit at any desired frequency within the range of 70 MHz

to 6.0 GHz. Also, the freedom to adjust centre frequencies and

sample rates under software control helps compensating

thermal drift, clock timing and Doppler Effects. This

architecture demonstrates the SDR attributes such as post-

launch re-configurability, scalability and affordability to

promote commercially available computer software and

hardware products/standards which was not achievable by

traditional transmitters.

Fig. 4. Transmission Verified on Rohde & Schwarz VSG

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

Fig. 5. Constellation Plot of the Transmitted Signal

B. Receiver

The chosen OSS starting point to form a “reference

implementation” is Alex Csete’s FUNcube Decoder (fcdec)

available on github [26]. This C/C++ code base, targeted for

Linux, is designed to work offline using sample files captured

from the FUNcube Pro Dongle [24]. Using IIO, along with

fcdec it has been possible to create a soft real time reference

decoder called “iio-fcdec” similar to “iio-fcenc”. This was

tested for interoperability agains t FUNcube-1 reference

waveforms up-sampled, stored and played back on a Rohde &

Schwarz SMBV100 VSG [25].

The transmitted signals were looped back to the receiver

port to transmit and receive the signals simultaneously. Fig. 6

shows the decoded packets from the loopback test. It was also

possible to run iio_fcdec on an x86 PC and Odroid-XU Lite

(Octa - ARM Cortex A15 Quad Core and ARM Cortex A7

Quad Core) [27] and stream samples from Zedboard (which is

running iiod by default) over Ethernet network to compare the

performance of the blocks on different processors. Different

symbol rates (1.2K, 2.4K, 4.8K, 9.6K and 19.2K) were

achieved by changing the interpolation ratio and decimation

ratio in iio_fcenc and iio_fcdec respectively similar to what

was achieved on the Zedboard.

Fig. 6. Decoded Signal

A practical problem encountered stems from the lowest

filtered decimated sample rate, of order 1.5 Msps that can be

output from AD9361 RF SoC. To address this, the AD9361 is

configured to produce an integer multiple of an oversampled

symbol rate (e.g. 40x1.2K) that is conveniently larger than the

1.5 Msps limit imposed. In this implementation, 1.536 Msps

was chosen that derives from 16 x 96 ksps. Therefore, the

received sample stream is decimated by 16. The resulting 96

ksps sample stream has sufficient bandwidth to allow

sufficient bandwidth to address spacecraft Doppler and

oscillator uncertainties but discard LO breakthrough and IQ

imbalance artifacts by halving the available bandwidth to ~40

kHz. The 96 ksps sample stream is processed in software for

flexibility and simple access to floating point arithmetic. This

receiver processing is embedded (on the Zedboard’s ARM

Cortex A9) or streamed remotely to a more powerful host such

as Intel x86 and Odroid-XU Lite as in Table I using sample

streaming provided by Analog Device’s iiod [28].

The first signal processing step is coarse carrier acquisition

performed using an 8192 point Fast Fourier Transform (FFT).

This results in a further 96 ksps sample stream that is

approximately band centred on the largest (wanted) carrier. A

software based Finite Impulse Response (FIR) filter, 27-taps

long, containing a low-pass impulse response, is used to

further filter and decimate the signal by factor of 10 to 9.6

ksps and offset by 1.2 kHz from baseband (for heritage

reasons). At this stage the underlying signal is down-converted

to baseband and matched filtered followed by carrier phase

recovery. Finally, from symbol timing recovery a 1.2K symbol

stream is produced and passed to the decoder. As the receiver

input signal bandwidth is limited to ~40 KHz by the reference

design the symbol rate was limited to 19.2K (and still includes

excess bandwidth for Doppler uncertainty).

IV. PROFILING

Profiling can decompose and tabulate the execution weight

of each block in the compiled C/C++ program. We are using

GNU gprof [29] to identify critical regions, determine which

blocks need to be optimised, vectorised and/or moved to

FPGA firmware (HDL). The aim here is to exploit vectorised

instructions within the BB SoC hardcore (ie. ARM NEON

TABLE I
COMPARISON OF DIFFERENT PLATFORMS

 Dell Optiplex
745

Odroid
XU Lite

Zedboard

Processor Intel x86 ARM Cortex A15

& A7

ARM Cortex A9

Number of
Cores

Dual Octa – Quad A15
& Quad A7

Dual

CPU
Frequency

2.13 GHz A15 – 1.4 GHz
A7 – 1.2 GHz

700 MHz

Linux

Version

3.13.0 3.4.98

3.15.0

System
type

64-bit 32-bit 32-bit

Application Identical Application from Source

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

VLIW capability [30]) and FPGA softcores (DDC/FFT [31])

to optimise the implementation in order to accommodate more

than one signal path on the BB SoC. GNU gprof helps in

making the above choices in an educated and incremental

fashion. During profiling, the packet/frame decoding, success

rates are recorded to later aid results reconciliation. In this

approach, the data rate is increased to (and beyond) the point

that CPU starvation sets in. Using a block based waveform

realised in pure software, the observed effects of CPU

starvation are not catastrophic rather a graceful degradation

occurs.

A. Transmitter Profiling

Fig. 7 shows the flow of the computationally intensive

transmitter blocks implemented on the Xilinx Zynq –

Processing System where main() which is streaming the

samples and FCsample() which is performing up-sampling

reports the maximum CPU consumption.

Fig. 7. Computationally Intensive Transmitter Blocks

During profiling, both transmitter and receiver programs are

executed for different data rates and on different platforms

discussed in Table I such as Zedboard, Odroid-XU Lite and

Dell Optiplex 745 to understand the function distribution for

higher symbol rates.

Fig. 8. Absolute CPU Consumption – Transmitter

Fig. 8 gives the comparison of the absolute CPU

consumption on dissimilar platforms while the encoder is

running at varied data rates. It is evident that the CPU

consumption increases along with an increase in the symbol

rates. The behaviour appears linear on ARM Cortex A9

operating at 700 MHz, quadratic on ARM Cortex A15/A7

operating at 1.4/1.2 GHz and cubic on Intel x86 operating at

2.13 GHz. This behaviour can also be observed on relative

CPU consumption plots of the encoder program across the

platforms.

Table II gives the relative comparison of the CPU

consumption by different transmitter functions on Dual Core

ARM Cortex A9. FCsample() which is up-sampling and

main() responsible for streaming the samples and managing

buffers are the two dominant functions, with other functions

being negligible. Though main() and FCsample() contribute

~50% towards the CPU consumption at 1.2K, the relative

contribution of FCsample() increases whereas main()

decreases linearly with symbol rate.

The behavior of these functions on “the quad cores” ARM

Cortex A15 and A7 appears quadratic. Here the sample

streaming is quicker compared to “the dual core” ARM Cortex

A9 and therefore the FCsample() dominates over main(). On

Intel x86, the sample streaming is the fastest and therefore

FCsample() is the only function contributing towards 80-100%

of the relative CPU load. The rate of change of CPU

consumption by FCsample() reduces on faster platforms with

an increase in the symbol rate. Since this is a relative measure

of CPU consumption, other functions apart from main() and

FCsample() are less prevalent (almost negligible) on all

platforms.

0

10

20

30

40

50

60

70

80

90

100

1.2K 2.4K 4.8K 9.6K 19.2K

C
P

U
 L

o
a

d
 (

%
)

Data Rate (bps)

ARM

Cortex - A9

ARM

Cortex- A15

Inte l x86

Functions 1.2K (bps) 2.4K (bps) 4.8K (bps) 9.6K (bps) 19.2K (bps)

 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Main() 52.1 16.25 31.57 42.75 10.33 18.82 30.21 5.16 8.49 20.53 1.8 2.8 14.34 1.18 0.9

FCsample

()
46.99 83.68 66.34 62.38 90.71 78.39 74.7 95.5 88.41 83.19 97.72 94.84 90.04 98.63 98.16

TABLE II
RELATIVE COMPARISON OF THE CPU CONSUMPTION BY DIFFERENT TRANSMITTER FUNCTIONS ON DUAL CORE ARM CORTEX A9 (1), DUAL CORE INTEL X86 (2) AND

OCTA CORE ARM CORTEX A15 AND A7 (3)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

The aim here was to identify the most dominant block

which is distinctly FCsample() - performing up-sampling, and

this will be moved to FPGA firmware (HDL) for optimisation

and thereby enabling multiple-signal transmission.

B. Receiver Profiling

Similarly, Fig. 9 shows the computationally intensive

functions in the receiver chain (on Intel x86). The down

sampling is done in three different stages: main(), in the

function called go and RxDownSample() which are the most

dominant followed by ProcessFFT() where the appropriate

signal is selected. Fig.10 shows the absolute CPU

consumption on dissimilar platforms while the decoder is

running at varied data rates. The decoder consumes more than

50% CPU at 1.2K on ARM Cortex A9 and reaches almost

100% (appears linear) resulting in low success rate as the

symbol rate increases (Fig 11). The behaviour appears

quadratic on ARM Cortex A15 and A7 and reaches ~50% at

higher data rate.

Fig. 10. Absolute CPU Consumption – Receiver

This results in unsuccessful decoding at data rates 9.6K and

19.2K as shown in Fig.11 along with differences in profiling

behavior as shown in Table III. Whereas Intel x86 which

exhibits cubic behaviour is well within 50% even at 19.2K and

ensuring 100% success rate.

Fig. 9. Computationally Intensive Receiver Blocks

0

10

20

30

40

50

60

70

80

90

100

1.2K 2.4K 4.8K 9.6K 19.2K

C
P

U
 L

o
a

d
 (

%
)

Data Rate (bps)

ARM Cor tex-

A9

ARM Cor tex-

A15

Inte l x86

Functions 1.2K (bps) 2.4K (bps) 4.8K (bps) 9.6K (bps) 19.2K (bps)

 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Main() 89.6 61.07 60.24 84.05 54.45 55.82 74.58 50.49 49.02 60.23 47.19 42.56 54.07 44.3 38.97

CTryDecode::go(fl

oat*)
6.73 16.42 22.41 8.26 17.33 24.91 14.41 18.94 27.68 25 21.16 32.5 29.63 23.49 36.38

CDecoder::RxPutN

extUCSample
1.83 12.88 6.75 3.13 13.97 5.2 3.81 14.87 8.53 5.68 17.47 6.14 8.15 18.52 8

CDecoder::RxDow
nSample

0.92 5.65 5.06 3.13 8.83 5.5 3.81 8.7 6.78 5.11 8.98 6.37 5.19 9.21 7.53

CDecoder::Process

FFT
0.61 1.54 5.06 0.85 2.23 6.39 3.39 2.9 8.53 3.98 3.21 5.97 2.96 3.89 7.62

TABLE III
RELATIVE COMPARISON OF THE CPU CONSUMPTION BY DIFFERENT RECEIVER FUNCTIONS ON DUAL CORE ARM CORTEX A9 (1), DUAL CORE INTEL X86 (2) AND

OCTA CORE ARM CORTEX A15 AND A7 (3)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

The function main() is decimating the samples from 1.536

Msps to 96 ksps becomes less dominant as the data rate

increases on all three platforms whereas the function go()

which does further down-sampling from 96 ksps to 96 bps

along with Reed Solomon and Viterbi (embedded within

FECDecode which works on hard bits but capable of working

on soft symbols) is more prevalent on the ARM Cortex A15

and A7 when compared to ARM Cortex A9 and Intel x86 and

thus suppressing other functions as seen in Table III. Although

there is a significant difference in the relative CPU

consumption between two different stages of down-sampling

[main() and go()] at 1.2K, the difference gradually reduces and

they consume almost the same CPU (~50%) at 19.2K on ARM

Cortex A15 and A7 unlike on ARM Cortex A9 Intel x86

where the down-sampling from 1.536 Msps to 96 ksps

dominates the other functions. The significant observation

here is that the CPU consumption of down-sampling [main()]

on ARM Cortex A9 is more than 50% at different data rates

and reaches maximum of 90% at 1.2K where the signal is

down-sampled to a greater value (16).

Fig. 11. Success Rate Comparison on Different Architectures

In addition, the compilers were found to be different across

the platforms as seen in Table IV. There is a difference in the

instruction sets used across various architectures to perform

similar functions and was observed using ‘objdump’. On Intel

x86 architecture ‘move’ instructions dominate over ‘add’

functions, whereas on the ARM architectures ‘add’

instructions are called more frequently. This may suggest that

memory operations are the key, reducing the number of

read/write to the memory and decimating the samples would

make the design more efficient.

V. IMPLEMENTATION OF DDC BLOCK IN FPGA

Based on the profiling results obtained earlier it is evident

that the up-sampling and down-sampling are computationally

intensive blocks in the transceiver. The architecture was

revised in order to efficiently utilise the FPGA firmware and

take advantage of its flexibility and speed. The FPGA

firmware was re-configured to include the sample DDC block.

The reference design includes the core from Analog Devices

which fetches the samples from RF SoC interface core and

provides them to Zynq PS for further processing. The sample

DDC block was implemented in between RF core

(AXI_AD9361) and sample packer block which packs I and Q

signals from different channels before the signal is stored in

Direct Memory Access (DMA). Other blocks such as

modulation/demodulation, frequency/phase correction and

packet handling which are computationally less intensive were

retained in ARM Cortex A9 processors.

A. Post-Profiling Results

Once the DDC block was implemented on the FPGA fabric,

profiling was repeated to understand the improvement

achieved. Fig. 12 shows the percentage reduction in the

absolute CPU consumption at different data rates. This

improvement in the average load allows parallel reception of

up to 5 signals (without accounting for instantaneous peak

load), so upto 4 signals could be a better expectation at 1.2K

while it was limited to one earlier. Similarly, two signals at

2.4K can be decoded simultaneously in place of single signal.

Fig. 12. Absolute CPU Consumption - ARM Cortex A9

T ABLE V

 IMPROVEMENT ACHIEVED WITH SAMPLE DDC BLOCK ON FPGA

Data Rate
Average reduction in

the CPU consumption

1.2K 36.76%

2.4K 31.14%

4.8K 21.5%

9.6K 0.7%

0

10

20

30

40

50

60

70

80

90

100

1.2K 2.4K 4.8K 9.6K 19.2K

S
u

c
c
e
ss

 R
a

te
 (

%
)

Data Rate (bps)

ARM Cor tex A9

ARM Cor tex

A15 & A7

Inte l x86

0
10
20
30
40
50
60
70
80
90

100

1
_

1
6

2
_

8

4_
4

8_
2

1
6

_
1

1
_

8

2_
4

4_
2

8
_

1

1
_

4

2_
2

4_
1

1
_

2

2
_

1

1_
1

1.2K 2.4K 4.8K 9.6K 19.2K

C
P

U
 L

o
a

d
 (

%
)

Data Rate (bps)

TABLE IV
COMPARISON OF INSTRUCTION SET ACROSS DIFFERENT PLATFORMS

Dell Optiplex

745
O droid
XU Lite

Zedboard

C Compiler

GCC 4.8.2 GCC 4.8.2 GCC 4.6.3

No. of different
Instructions

88 150 144

No. of Similar

Instructions across
the platforms

9 9 9

- 131 131

Dominant
Instructions

(top 5)

mov(693)
callq(186)
add(130)

movss(123)
cmp(100)

add(238)
ldr(235)

mov(156)

movw(146)
movt(141)

ldr(256)
add.w(246)
movw(176)

add(169)
mov(155)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

The 1st digit in the x-axis stands for hardware decimation and

the 2nd digit for software decimation. It is unambiguous that as

the hardware decimation increases the CPU consumption

decreases. Table V summarizes the improvement achieved at

different data rates. Similar progress can be seen in relative

performance measures as seen in Table VI, main() which was

contributing towards 89.6% of the CPU is now reduced to

50% with hardware decimation at 1.2K, from 84.05% to 56.72

% at 2.4K, 74.58% to 57.12% at 4.8K and from 60.23% to

52.59% at 9.6K.

Table VII shows FPGA processor logic utilisation before

and after the front end DDC function being moved to

firmware and includes the percentage increase in FPGA

utilisation that results . Adding a sample DDC block to the

original increased the power consumption and the hardware

requirements. Total overhead of on-chip power is 13.14% with

5% increase in flip-flops and memory LUTs, 8% increase in

LUTs, 18% increase in BRAMs and 3% increase in DSPs.

This analysis suggests that approximately 4-5 DDC/DUCs can

be implemented in order to aid parallel reception. Here, we

Functions 1.2K (bps) 2.4K (bps) 4.8K (bps) 9.6K (bps)
19.2K

(bps)

h/w_s/w 1_16 2_8 4_4 8_2 16_1 1_8 2_4 4_2 8_1 1_4 2_2 4_1 1_2 2_1 1_1

Main() 89.6 83.25 71.09 63.74 50 84.05 73.57 61.49
56.7

2
74.58 60.23 57.14 60.23 52.59 54.07

CTryDecode::go(fl

oat*)
6.73 9.42 18.75 21.98 30.77 8.26 17.62 22.41

28.3

6
14.41 23.39 27.07 25 28.15 29.63

CDecoder::RxPut

NextUCSample
1.83 4.19 4.69 7.69 8.97 3.13 3.96 6.32 5.97 3.81 7.6 7.52 5.68 10.37 8.15

CDecoder::RxDow

nSample
0.92 1.57 3.91 5.49 6.41 3.13 2.64 5.75 4.48 3.81 5.26 6.02 5.11 5.93 5.19

CDecoder::Process

FFT
0.61 1.05 1.56 1.1 3.85 0.85 1.32 4.02 4.48 3.39 2.34 1.5 3.98 2.96 2.96

O riginal Design (Software DDC) With DDC Block on FPGA O verhead

Power: Power: Power:

 Total On-Chip Power : 2.2 W  Total On-Chip Power : 2.489 W  Total On-Chip Power : 13.14%

 Dynamic Power : 2.03 W  Dynamic Power : 2.309 W  Dynamic Power : 13.74%

 Device Static : 0.17 W  Device Static : 0.180 W  Device Static : 5.88%

Post Implementation: Post Implementation: Post Implementation:

 Flip Flop : 19%  Flip Flop : 24%  Flip Flop : 05%

 LUT : 24%  LUT : 32%  LUT : 08%

 Memory LUT : 04%  Memory LUT : 09%  Memory LUT : 05%

 I/O : 61%  I/O : 61%  I/O : 0%

 BRAM : 06%  BRAM : 24%  BRAM : 18%

 DSP48 : 31%  DSP48 : 34%  DSP48 : 03%

 BUFG : 28%  BUFG : 28%  BUFG : 0%

 MMCM : 50%  MMCM : 50%  MMCM : 0%

Implementation on FPGA Fabric

Implementation on FPGA Fabric

TABLE VI
POST PROFILING RESULTS ON DUAL CORE ARM CORTEX A9

TABLE VII
OVERHEAD ANALYSIS OF DDC IMPLEMENTATION

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

use the Zynq 7020 but in case of more number of signals with

higher data rates, a larger FPGA may be selected [32].

VI. CONCLUSIONS

This paper presents the design and implementation of an

adaptive SDR architecture on different platforms with varied

symbol rates such as 1.2K, 2.4K, 4.8K, 9.6K and 19.2K.

C/C++ was preferred over VHDL for initial implementations

due to the reduced implementation time of simple blocks such

as decoding/encoding/demodulation and modulation. Profiling

using gprof tabulates the relative and absolute performances

along with success rates due to CPU saturation. Also, the

functions exhibit diverse behaviour such as linear/quadratic

and cubic on dissimilar platforms. The obtained performance

results demonstrate the need to move blocks demanding

higher computation capacity such as up/down sampling

blocks.

The sample DDC block was moved to FPGA and the post-

profiling results show the improvement in the performance

thereby facilitating more than one signal at any given time.

The significant improvement being at lower data rates such as

36.76% at 1.2K and 31.14% at 2.4K. This comes with a cost

of 13.14% more on-chip power and 5 -15 % increase in on-

chip resources. Therefore, it has been concluded that for this

reference design, moving the Front End DDC function alone,

from software to firmware, is sufficient to allow multiple

satellite reception at typical CubeSat telemetry rates.

 Future work includes the implementation of the proposed

design with n-stage pipeline architecture on FPGA SoC as

shown in Fig. 13 based on different stages of transmission

synchronisation. The objective of the pipeline architecture is

to receive the signal from more than one satellite operating at

different modulation techniques, data rates and centre

frequencies. RF SoC would acquire the desired signal present

in the spectrum with predefined software configuration of the

frontend such as gain, filters, bandwidth and centre frequency.

The next stage in the architecture includes parallel wrappers

of DDCs consisting of Digital Quadrature Tuner (DQT) and

Cascaded Integrator Comb (CIC) blocks. Each valid signal in

the spectrum is mapped to separate channel based on the

available on-chip resources. Each signal is stored under

different offset address in the DMA which is configured

according to the pre-calculated memory requirements. The last

stage in the architecture is proposed to be asynchronous as the

signal stored in the DMA can be accessed independently using

different decoder threads running on dual core processors .

Using a single programmable baseband SoC to execute

several baseband processing programs at the same time can

benefit in increased hardware reuse, shared software kernel

functions and use of shared information, such as link state and

channel parameters. However, in order to avoid data loss,

dropped packets or frames, the combined FPGA logic and

processor must have the resources to support the worst case

load in all supported standards simultaneously.

In conclusion, this paper demonstrates the concept of

combining state-of-the-art low cost SDR hardware and open

source software tools towards achieving a new generic

communication platform for satellite communications.

Potential applications of the proposed embedded system

architecture are the ground station for multi-satellite

Fig. 13. Future Pipeline Architecture

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

communications, deployable mobile ground station network

and can be further extended to distributed satellite system

ACKNOWLEDGMENT

The authors would like to thank Dr. Brian Yeomans,

Research Fellow, Surrey Space Centre for his valuable time,

discussions and contributions towards the paper.

REFERENCES

[1] R. Sandau, K. Brieß, and M. D’Errico, “Small satellites for global
coverage: Potential and limits,” ISPRS Journal of Photogrammetry a n d

Remote Sensing, vol. 65, no. 6, pp. 492-504, Nov, 2010.
[2] D. J. Barnhart, T . Vladimirova, and M. N. Sweeting, “Very-Small-

Satellite Design for Distributed Space Missions,” Journal of
Spacecraft and Rockets, vol. 44, no. 6, pp. 1294-1306, Nov, 2007.

[3] (2015) Planet Labs: FLOCK 1 - CubeSat Satellite Constellation,
San Francisco, California, USA [Online] Available:
https://www.planet.com/flock1/

[4] H. Bedon, C. Negron, J. Llantoy, C. M. Nieto, and C. O. Asma,
"Preliminary internetworking simulation of the QB50 cubesat
constellation," in Communications (LATINCOM), 2010 IEEE
Latin-American Conference on, 2010, pp. 1-6.

[5] C. Underwood, S. Pellegrino, V. Lappas, C. Bridges, B. Taylor, S.

Chhaniyara, T . Theodorou, P. Shaw, M. Arya, and J. Breckinridge,
“Autonomous Assembly of a Reconfiguarble Space Telescope
(AAReST) – A CubeSat/Microsatellite Based Technology

Demonstrator,” presented at Small Satellite Conference, Utah
State University, Logan, UT, USA, 2013. [Online]. Available:
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=2952&
context=smallsat

[6] C. P. Bridges, B. Taylor, N. Horri, C. I. Underwood, S. Kenyon, J.
Barrera-Ars, L. Pryce, and R. Bird, "STRaND-2: Visual inspection,
proximity operations & nanosatellite docking," in Proc. Aerospace
Conference, 2013 IEEE, 2013, pp. 1-8.

[7] H. B. Smith, S. H. K. Hu, and J. J. Cockrell, “NASAs EDSN Aim s t o
Overcome the Operational Challenges of CubeSat Conste lla tions an d
Demonstrate an Economical Swarm of 8 CubeSats Useful for Space
Science Investigations,” presented at Small Satellite Conference,

Utah State University, Logan, UT, USA, 2013. [Online]. Available:
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140009202.pdf

[8] C. Cordeiro, K. Challapali, D. Birru, and N. Sai Shankar, "IEEE 802.22:

the first worldwide wireless standard based on cognitive radios," in New
Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005.
2005 First IEEE International Symposium on, 2005, pp. 328-337.

[9] T. De Cola, and M. Marchese, “Performance analysis of dat a t r an sfer

protocols over space communications,” Aerospace and Electronic
Systems, IEEE Transactions on, vol. 41, no. 4, pp. 1200-1223,Oct, 2005.

[10] M. J. Marcus, “Spectrum issues in FCC'S national broadband plan
[Spectrum Policy and Regulatory Issues],” Wireless Communication s,

IEEE, vol. 17, no. 2, pp. 6-6, April, 2010.
[11] J. Mitola, “Software radio architecture: a mathematical p er spective,”

Selected Areas in Communications, IEEE Journal on, vol. 17, no. 4, pp.
514-538, April, 1999.

[12] K. Leveque, J. Puig-Suari, and C. Turner, “Global Educational Network
for Satellite Operations (GENSO),” presented at Small Satellite
Conference, Logan, UT, USA, 2007. [Online] Available:

http://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1506&conte
xt=smallsat

[13] (2015) SatNOGS: Satellite Networked Open Ground Station, Ath ens,
Greece. [Online]. Available: https://satnogs.org/

[14] (2015) Avnet – Zedboard: A Development board for Xilinx Zynq-7020,
Phoenix, AZ, USA. [Online]. Available: http://zedboard.org/

[15] (2015) Lime Microsystems: Field programmable RF ICs LMS6 0 02 D,
Guildford, Surrey, United Kingdom. [Online]. Available:

http://www.limemicro.com/products/field-programmable-rf-ics-
lms6002d/

[16] (2015) Analog Devices: AD-FMCOMMS3-EBZ: AD9361 Software
development Kit , Norwood, MA, USA. [Online]. Available:

http://www.analog.com/en/evaluation/eval-ad-fmcomms3-ebz/eb.html
[17] (2015) Lime Microsystems: Field programmable RF ICs LMS7 0 0 2M,

Guildford, Surrey, United Kingdom. [Online]. Available:

http://www.limemicro.com/products/field-programmable-rf-ics-
lms7002m/

[18] (2015) FUNcube: UK Amateur Radio Educational Satellite, Blandfo rd,
Dorset, UK [Online]. Available: http://funcube.org.uk/overview/contact-
us/

[19] P. Karn (2002, Jan 7) Proposed Coded AO-40 Telemetry Format (v1.2).
[Online]. Available: http://www.ka9q.net/papers/ao40tlm.html

[20] S. W. Shaker, S. H. Elramly, and K. A. Shehata, "FPGA implementation
of a configurable viterbi decoder for software radio receiver," in Pro c.

AUTOTESTCON, 2009 IEEE, 2009, pp. 140-144.
[21] J.Miller (2003) Oscar-40 FEC Telemetry. [Online]. Available:

http://www.amsat.org/amsat/articles/g3ruh/125.html
[22] (2015) Analog Devices: AD-FMCOMMS3-EBZ User Guide,Norwoo d,

USA. [Online]. Available: http://wiki.analog.com/resources/eval/user -
guides/ad-fmcomms3-ebz

[23] (2015) Analog Devices: GitHub-Library for interfacing with IIO
devices. [Online]. Available: https://github.com/analogdevicesinc/libiio

[24] (2015) FUNcube Dongle: FUNcube Dongle Pro+, Blandford, U.K.
[Online]. Available: http://www.funcubedongle.com/?page_id=1073

[25] (2015) Rohde & Schwarz: SMBV100A Vector Signal Generator,

Berkshire, U.K. [Online]. Available: http://www.rohde-
schwarz.co.uk/en/product/smbv100a-productstartpage_63493-
10220.html

[26] A.Csete (2015) Fcdec-GitHub: FUNcube telemetry decoder for Lin u x.

[Online]. Available: https://github.com/csete/fcdec
[27] (2015) Hardkernel: Odroid-XU Lite, [Online] Available:

http://www.hardkernel.com/main/products/prdt_info.php?g_code=G138
503207322

[28] (2015) Analog Devices: GitHub-Library for IIO devices. [Online].
Available: https://github.com/analogdevicesinc/libiio/tree/master/iiod

[29] (2015) GNU gprof: Profiling tool. [Online] Available:
https://sourceware.org/binutils/docs/gprof/

[30] L. Codrescu (2013) Qualcomm Hexagon DSP: An architecture
optimized for mobile multimedia and communications [Online].
Available:
http://pages.cs.wisc.edu/~danav/pubs/qcom/hexagon_hotchips2013.pdf

[31] P. Wang, J. McAllister, and Y. Wu, "Soft-core stream p rocessing o n
FPGA: An FFT case study," in Proc. Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference o n, 2 013 ,

pp. 2756-2760.
[32] (2015) Zynq-7000 All programmable SoC overview. [Online].

Available:
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-

7000-Overview.pdf
[33] M. R. Maheshwarappa and C. P. Bridges, "Software defined radio s fo r

small satellites," Adaptive Hardware and Systems (AHS), 2014
NASA/ESA Conference on, Leicester, 2014, pp. 172-179.

[34] M. R. Maheshwarappa, M. Bowyer and C. P. Bridges, "Software
Defined Radio (SDR) architecture to support multi-satellite
communications," Aerospace Conference, 2015 IEEE, Big Sk y , MT ,
2015, pp. 1-10

[35] GNURadio. Free and Open Source Toolkit for Software Radio .
Available: http://gnuradio.org

[36] P. Angeletti, M. Lisi, and P. Tognolatti, "Software Defined Radio: A key

technology for flexibility and reconfigurability in space applications," in
Metrology for Aerospace (MetroAeroSpace), 2014 IEEE, 2014.

[37] M. Cheffena and L. E. Bråten, "Low-cost digital beacon receiver based
on software-defined radio," IEEE Antennas and Propagation Magazine,

vol. 53, pp. 50-55, 2011.
[38] I. Lucresi, A. Di Carlofelice, and P. Tognolatti, "SDR-based system for

satellite ranging measurements," IEEE Aerospace and Electronic
Systems Magazine, vol. 31, pp. 8-13, 2016.

[39] L. L. Presti, P. di Torino, E. Falletti, M. Nicola, and M. T . Gamba,
"Software defined radio technology for GNSS receivers," in Metro lo gy
for Aerospace (MetroAeroSpace), 2014 IEEE, 2014, pp. 314-319.

[40] F. Pinto, F. Afghah, R. Radhakrishnan, and W. Edmonson , " So f tware

Defined Radio implementation of DS-CDMA in inter-satellite
communications for small satellites," in Wireless for Space and Extreme
Environments (WiSEE), 2015 IEEE International Conference on, 2015 ,

pp. 1-6.
[41] E. L. Valles, K. Tarasov, J. Roberson, E. Grayver, an d K. Kin g, " An

EMWIN and LRIT software receiver using GNU radio," in 2009 IEEE
Aerospace conference, 2009, pp. 1-11.

http://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1506&context=smallsat
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1506&context=smallsat
https://satnogs.org/
http://zedboard.org/
http://www.limemicro.com/products/field-programmable-rf-ics-lms6002d/
http://www.limemicro.com/products/field-programmable-rf-ics-lms6002d/
http://www.analog.com/en/evaluation/eval-ad-fmcomms3-ebz/eb.html
http://www.limemicro.com/products/field-programmable-rf-ics-lms7002m/
http://www.limemicro.com/products/field-programmable-rf-ics-lms7002m/
http://funcube.org.uk/overview/contact-us/
http://funcube.org.uk/overview/contact-us/
http://www.ka9q.net/papers/ao40tlm.html
http://www.amsat.org/amsat/articles/g3ruh/125.html
http://wiki.analog.com/resources/eval/user-guides/ad-fmcomms3-ebz
http://wiki.analog.com/resources/eval/user-guides/ad-fmcomms3-ebz
https://github.com/analogdevicesinc/libiio
http://www.funcubedongle.com/?page_id=1073
http://www.rohde-schwarz.co.uk/en/product/smbv100a-productstartpage_63493-10220.html
http://www.rohde-schwarz.co.uk/en/product/smbv100a-productstartpage_63493-10220.html
http://www.rohde-schwarz.co.uk/en/product/smbv100a-productstartpage_63493-10220.html
https://github.com/csete/fcdec
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G138503207322
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G138503207322
https://github.com/analogdevicesinc/libiio/tree/master/iiod
https://sourceware.org/binutils/docs/gprof/
http://pages.cs.wisc.edu/~danav/pubs/qcom/hexagon_hotchips2013.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://gnuradio.org/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

BIOGRAPHY

Mamatha R. Maheshwarappa (B.Eng,

2009; MSc 2012) received her BEng in

Electronics and Communication

Engineering from Nitte Meenakshi Institute

of Technology, Bangalore in 2009. She was

the system engineer for STUDSAT-1-

India’s first pico-satellite, designed and

developed by undergraduate students. Late r

she received MSc in Space Technology and Planetary

Exploration from the University of Surrey in 2012 and

currently a PhD student at Surrey Space Centre, University of

Surrey. Her research is in Software Defined Radios for multi-

satellite links.

Dr Mark Bowyer (BEng, 1987; PhD,

1993) is a Senior Expert in Secure

Communications at Airbus defence and

Space working in the Communications,

Intelligence and Security business unit. He

has over 20 years work experience in

Satellite Communications (SATCOMS)

Systems. He has led activities in SATCOM

Software Defined Radio R&D since its

inception in 1997. This has included development of three

generations of hardware platform and software applications.

Today, he consults on all aspects of secure SATCOM

including RF, signal processing and waveform design for

ground, air, and space-based modem systems. Mark holds a

BEng (1st) from Birmingham University and PhD from the

University of Kent at Canterbury.

Dr Christopher P. Bridges (BEng, 2005;

PhD 2009) leads the On-Board Data

Handling (OBDH) research group within

Surrey Space Centre (SSC). He researches

software defined radios, real-time

embedded systems, agent computing, Java

processing, multi-core processing in

FPGAs, and astrodynamics computing

methods in many spaceflight payloads. In

2013, he designed, built and still operates the UK’s first

CubeSat (STRaND-1) with SSTL and now contributes

towards computing hardware and software in missions with

SSTL, on ESA’s ESEO mission and also the NASA-

JPL/CalTech AaRREST mission.

