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       

Abstract— The ongoing evolution in constellation/formation of 
CubeSats along with steadily increasing number of satellites 

deployed in Lower Earth Orbit (LEO), demands a generic 

reconfigurable multimode communication platforms. As the  

number of satellites increase, the existing protocols combined 
with the trend to build one control station per CubeSat become  a 

bottle neck for existing communication methods to support data 

volumes from these spacecraft at any given time. This paper 

explores the Software Defined Radio (SDR) architecture for the 

purposes of supporting multiple-signals from multiple-satelli tes , 
deploying mobile and/or distributed ground station nodes to 

increase the access time of the spacecraft and enabling a future 

SDR for Distributed Satellite Systems (DSS). Performance results 

of differing software transceiver blocks and the decoding success 

rates are analysed for varied symbol rates over different cores to 
inform on bottlenecks for Field Programmable Gate Array 

(FPGA) acceleration. Further, an embedded system architecture 

is proposed based on these results favouring the ground station 

which supports the transition from single satellite communication 

to multi-satellite communications.  

 
Index Terms — Central Processing Unit (CPU), Field 

Programmable Gate Array (FPGA), Satellite communication, 
Software Defined Radio (SDR), System-on-chip (SoC). 

I. INTRODUCTION 

MALL satellites are fast becoming a way to perform 

scientific and technological missions more affordably due 

to reduced build time, more frequent launch opportunities, 

larger variety of missions, more rapid expansion of the 

technical and/or scientific knowledge base and greater 

involvement of small industries/universities [1, 2]. 

Furthermore, there is an ongoing evolution of multiple small 

satellite scenarios such as FLOCK-1 [3], QB50 [4], 

Autonomous Assembly of a Reconfigurable Space Telescope 

(AAReST) [5], Surrey Training Research and Nano-Satellite 

Demonstrator (STRaND -2) [6] and Edison Demonstration of 

Smallsat Network (EDSN) [7]. The objectives of these 

missions are very ambitious and are driven by new 

complexities which require multi-mode operation of wireless 

transceivers [8].  
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This work aims at three specific application areas. Firstly, 

the ground station that can handle multiple satellite signals at 

any given time as seen in Fig. 1. The increasing number of 

satellites in Lower-Earth Orbit (LEO) occupying Amateur 

Radio Spectrum together with variety of modulation 

techniques, data rates and protocols [9] used across the 

CubeSat community demands the integration of a multitude of 

communication standards onto a single platform. This is 

compounded by the problem of crowded spectrum [10] which 

is driving research on more efficient use of the available 

spectrum e.g., by de-confliction or Cognitive Radio (CR) 

techniques. For all such applications, a universal 

programmable hardware is desirable, which intensifies the 

interest in Software Defined Radio (SDR) in recent years [11]. 

Such an SDR must be robust in noisy and/or contested 

spectrum and make maximum use of a priori information to 

minimise initial acquisition and detection bandwidths.  

 

 
Fig. 1. Radar View of the Antenna Showing Different             

Satellites in Visibility 

Secondly, the need for deployable mobile ground station 

network for the purposes of increased access time such as 

ESA’s Global Educational Network for Satellite Operations 

(GENSO) system [12] and Satellite Networked Open Ground 

Station (SatNOGS) [13]. A ground station based on SDR 

hardware is suitable for worldwide distributed systems, where 

updates containing the software for communicating with new 

waveforms could be shared among different distant stations 

without the need for hardware upgrades.   
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Finally, a candidate embedded design is presented as a 

possible enabler of the future SDR for distributed satellite 

communication systems. The growth of SDR offers small 

satellites the opportunity to improve the way space missions 

develop and operate transceivers for communication network 

in space as seen in [36] and [40]. The ability to change the 

operating characteristics of a radio through software once 

deployed to space offers the flexibility to adapt to new science 

opportunities and recover from anomalies within the science 

payload or communication system e.g., in Global Navigation 

Satellite Systems (GNSS) receivers as in [38, 39]. Also, 

potentially reduce development cost and risk by adapting 

generic space platforms to meet specific mission requirements. 

However, the flexibility and adaptability comes with an 

expense of power consumption and complexity in integrating 

previously separated building blocks on a single die.  

The objectives of this paper are: 

1. SDR implementation and profiling analysis of 

SmallSat Telemetry, Tracking and Command 

(TT&C) waveform on state-of–the-art Radio 

Frequency (RF) (Analog Devices AD9361) and Base 

Band SoC (Xilinx Zynq) based architecture, with 

emphasis on ground system multi-satellite reception. 

2. Profiling of C/C++ based reference waveform design 

on dual, quad and octa-core CPUs with the aim of 

moving minimum functionality from General 

Purpose Processor (GPP) Software to (FPGA) 

firmware, in order to meet performance goals, 

maximise flexibility and minimise expenses 

associated with implementation of many variant 

waveforms. 

3. Using a low cost Zynq SoC solution (the Zedboard), 

the desired multi-satellite reception can accommodate 

up to 4 concurrent satellites by moving waveform 

independent front-end tuning, filtering and 

decimation functions from software to firmware, 

leaving waveform dependent matched filtering, 

demodulation and decoding functions in software. 

 

This paper is an extension of the work carried out in [33] and 

[34] where a novel SDR architecture on an embedded system 

is proposed as seen in section 2. The implementation and 

validation process of the proposed transceiver architecture is 

briefed in section 3 (more details on transceiver 

implementation and validation can be found in [34]). The 

focus of this paper is to understand the CPU load caused by 

each transceiver block as discussed in section 4. Further in 

section 5, an improvement in the design is achieved by re-

distributing the transceiver blocks within the SoC. Lastly, 

section 6 summarises the contributions and future work. 

II. TRANSCEIVER ARCHITECTURE 

For over two decades, SDR technology has promised to 

revolutionise the communication industry by delivering low 

cost, flexible software solutions for communication protocols 

[9]. In this decade, the introduction of BB SoC and, most 

recently, RF programmable transceiver SoC can fulfill the 

early promise. Also, open source simulation tool such as 

GNURadio [35] is widely used to implement low-cost digital 

beacon receiver based on SDR [37], Emergency Managers 

Weather Information Network (EMWIN) and Low-Rate 

Information Transmission (LRIT) Software Receiver using 

GNURadio [41]. GNURadio was used in this research initially 

to understand the working of the existing/generated filters, 

channel codes, synchronization elements, equalisers, 

demodulators, decoders and other processing blocks using pre-

recorded or generated data as addressed in [33].  

Towards achieving the attributes discussed in the previous 

section, this work proposes a new SDR architecture on an 

embedded system as seen in Fig. 2 [33]. This architecture 

Fig. 2. SDR Architecture Implemented on Zynq 
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consists of a BB SoC paired with RF SoC. The BB SoC 

contains FPGA fabric and ARM dual-core Cortex A9 

processor. For initial development, the Avnet Zedboard 

containing the Xilinx Zynq 7020 FPGA SoC [14] is chosen 

providing a low-cost and well supported back-end for the 

signal processing functionalities.  

On the RF programmable transceiver SoC, initial evaluation 

took place using the Lime Micro Myriad RF containing the 

LMS6002D RF SoC [15]. More recent development has taken 

place using the Analog Devices AD-FMCOMMS3-EBZ 

containing the newer AD9361 RF SoC [16]. It is hoped that 

future developments will incorporate the latest and most 

capable Lime Micro SoC, the LMS7002M [17]. The two 

boards (and constituent SoCs) communicate using 

conventional parallel I/O for high speed sampled data (up to 

~123 complex MSPS) and Serial Peripheral Interface (SPI) for 

configuration, control and monitoring. Detailed description of 

the SDR architecture can be found in [33] and [34]. 

III. IMPLEMENTATION  

As a first step towards validating the architecture, a simple 

coder modulator/demodulator decoder reference model for a 

well-known CubeSat beacon telemetry was implemented. The 

FUNcube-1 (AO-73) CubeSat [18] provides a good starting 

point for our work because the telemetry beacon is 

documented and addressed by number of Open Source 

Software (OSS) demodulator decoder implementations written 

in C/C++.  

A. Transmitter 

The particular scheme, from AO-40 heritage [19], common 

among several CubeSats [18], is based on Binary Phase Shift 

Keying (BPSK) modulation and a robust concatenated code 

comprising Viterbi (Rate 1/2) [20] and two Reed Solomon 

(160,128) blocks [21]. Much work here derives from Phil 

Karn’s well-known AO-40 design and implementation 

[KA9Q] [19]. The Analog Devices AD-FMCOMMS3-EBZ 

has bare metal and Linux Operating System (OS) based device 

drivers accompanied by application examples. For this work, 

we have started with the Zynq ARM Linux OS based 

approach as the integration and test of application related OSS 

may be simplified. To this  end, Analog Devices provide a 

capable AD9361 Linux device driver, dependent on and 

accessed, using Linux industrial I/O (IIO) framework [22]. 

Linux IIO allows user space waveform applications to 

configure/query/sample-stream to and from the AD9361 using 

familiar UNIX calls (open/close/read/write/ ioctl) and perhaps, 

and more preferred, by a user space library called libiio [23]. 

The Linux libiio provides a modern high performance 

abstraction to all IIO devices including the AD9361. Using 

IIO, it has been possible to create a soft real time reference 

encoder called “iio-fcenc”.  

Successful interoperability testing of iio-fcenc took place 

for different symbol rates such as 1.2K, 2.4K, 4.8K, 9.6K and 

19.2K.  Fig. 3 show the signals being received on a FUNcube 

Pro+ dongle and spectrum analysis performed using SDR 

Sharp [24].   

 

 
Fig. 3. Signal Received on SDR Sharp at Different Data Rates 1.2K, 

2.4K, 4.8K, 9.6K and 19.2K (from left to right) 

It was possible to run iio_fcenc on different platforms of 

varying architecture and core capacity, including – ARM 

Cortex 15 and ARM Cortex A7, ARM Cortex A9 and Intel 

x86. The transmission was also verified on a Rohde & 

Schwarz FSV3 Vector Signal Generator (VSG) [25] as seen in 

Fig. 4 and the constellation plot of the BPSK signal can be 

seen in Fig. 5. The Error Vector Magnitude (EVM) is ~2% 

which is within acceptable values for low order modulations. 

The carrier frequency offset is 225 Hz from the centre 

frequency (145.935 MHz) suggesting absolute accuracy of 

AD-FMCOMMS3-EBZ crystal to be ~1.5 ppm.  

The AD-FMCOMMS3-EBZ provides the flexibility to 

transmit at any desired frequency within the range of 70 MHz 

to 6.0 GHz. Also, the freedom to adjust centre frequencies and 

sample rates under software control helps compensating  

thermal drift, clock timing and Doppler Effects. This 

architecture demonstrates the SDR attributes such as post-

launch re-configurability, scalability and affordability to 

promote commercially available computer software and 

hardware products/standards which was not achievable by 

traditional transmitters.  

 

 
Fig. 4. Transmission Verified on Rohde & Schwarz VSG
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Fig. 5. Constellation Plot of the Transmitted Signal 

B. Receiver 

The chosen OSS starting point to form a “reference 

implementation” is Alex Csete’s FUNcube Decoder (fcdec) 

available on github [26]. This C/C++ code base, targeted for 

Linux, is designed to work offline using sample files captured 

from the FUNcube Pro Dongle [24]. Using IIO, along with 

fcdec it has been possible to create a soft real time reference 

decoder called “iio-fcdec” similar to “iio-fcenc”. This was 

tested for interoperability agains t FUNcube-1 reference 

waveforms up-sampled, stored and played back on a Rohde & 

Schwarz SMBV100 VSG [25].  

The transmitted signals were looped back to the receiver 

port to transmit and receive the signals simultaneously. Fig. 6 

shows the decoded packets from the loopback test. It was also 

possible to run iio_fcdec on an x86 PC and Odroid-XU Lite 

(Octa - ARM Cortex A15 Quad Core and ARM Cortex A7 

Quad Core) [27] and stream samples from Zedboard (which is 

running iiod by default) over Ethernet network to compare the 

performance of the blocks on different processors. Different 

symbol rates (1.2K, 2.4K, 4.8K, 9.6K and 19.2K) were 

achieved by changing the interpolation ratio and decimation 

ratio in iio_fcenc and iio_fcdec respectively similar to what 

was achieved on the Zedboard. 

 
Fig. 6. Decoded Signal 

A practical problem encountered stems from the lowest 

filtered decimated sample rate, of order 1.5 Msps that can be 

output from AD9361 RF SoC. To address this, the AD9361 is 

configured to produce an integer multiple of an oversampled 

symbol rate (e.g. 40x1.2K) that is conveniently larger than the 

1.5 Msps limit imposed. In this implementation, 1.536 Msps 

was chosen that derives from 16 x 96 ksps. Therefore, the 

received sample stream is decimated by 16. The resulting 96 

ksps sample stream has sufficient bandwidth to allow 

sufficient bandwidth to address spacecraft Doppler and 

oscillator uncertainties but discard LO breakthrough and IQ 

imbalance artifacts by halving the available bandwidth to ~40 

kHz. The 96 ksps sample stream is processed in software for 

flexibility and simple access to floating point arithmetic. This 

receiver processing is embedded (on the Zedboard’s ARM 

Cortex A9) or streamed remotely to a more powerful host such 

as Intel x86 and Odroid-XU Lite as in Table I using sample 

streaming provided by Analog Device’s iiod [28].  

 

The first signal processing step is coarse carrier acquisition 

performed using an 8192 point Fast Fourier Transform (FFT). 

This results in a further 96 ksps sample stream that is 

approximately band centred on the largest (wanted) carrier. A 

software based Finite Impulse Response (FIR) filter, 27-taps 

long, containing a low-pass impulse response, is used to 

further filter and decimate the signal by factor of 10 to 9.6 

ksps and offset by 1.2 kHz from baseband (for heritage 

reasons). At this stage the underlying signal is down-converted 

to baseband and matched filtered followed by carrier phase 

recovery. Finally, from symbol timing recovery a 1.2K symbol 

stream is produced and passed to the decoder. As the receiver 

input signal bandwidth is limited to ~40 KHz by the reference 

design the symbol rate was limited to 19.2K (and still includes 

excess bandwidth for Doppler uncertainty).  

IV. PROFILING 

Profiling can decompose and tabulate the execution weight 

of each block in the compiled C/C++ program. We are using 

GNU gprof [29] to identify critical regions, determine which 

blocks need to be optimised, vectorised and/or moved to 

FPGA firmware (HDL). The aim here is to exploit vectorised 

instructions within the BB SoC hardcore (ie. ARM NEON 

TABLE I 
COMPARISON OF DIFFERENT PLATFORMS  

 Dell Optiplex 
745 

Odroid 
XU Lite 

Zedboard 

Processor Intel x86 ARM Cortex A15 

& A7  

ARM Cortex A9  

Number of 
Cores 
 

Dual  Octa – Quad A15  
& Quad A7  

Dual
 

CPU 
Frequency 
 

2.13 GHz A15 – 1.4 GHz 
A7 – 1.2 GHz 

700 MHz 

Linux 

Version  
 

3.13.0 3.4.98
 

3.15.0 

System 
type 

 

64-bit  32-bit  32-bit 

Application  Identical Application from Source 
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VLIW capability [30]) and FPGA softcores (DDC/FFT [31]) 

to optimise the implementation in order to accommodate more 

than one signal path on the BB SoC. GNU gprof helps in 

making the above choices in an educated and incremental 

fashion. During profiling, the packet/frame decoding, success  

rates are recorded to later aid results reconciliation. In this 

approach, the data rate is increased to (and beyond) the point 

that CPU starvation sets in. Using a block based waveform 

realised in pure software, the observed effects of CPU 

starvation are not catastrophic rather a graceful degradation 

occurs.  

A. Transmitter Profiling 

Fig. 7 shows the flow of the computationally intensive 

transmitter blocks implemented on the Xilinx Zynq – 

Processing System where main() which is streaming the 

samples and  FCsample() which is performing up-sampling 

reports the maximum CPU consumption. 

 
 

Fig. 7. Computationally Intensive Transmitter Blocks 

During profiling, both transmitter and receiver programs are 

executed for different data rates and on different platforms 

discussed in Table I such as Zedboard, Odroid-XU Lite and 

Dell Optiplex 745 to understand the function distribution for 

higher symbol rates. 

 

 
Fig. 8. Absolute CPU Consumption – Transmitter 

Fig. 8 gives the comparison of the absolute CPU 

consumption on dissimilar platforms while the encoder is 

running at varied data rates. It is evident that the CPU 

consumption increases along with an increase in the symbol 

rates. The behaviour appears linear on ARM Cortex A9 

operating at 700 MHz, quadratic on ARM Cortex A15/A7 

operating at 1.4/1.2 GHz and cubic on Intel x86 operating at 

2.13 GHz. This behaviour can also be observed on relative 

CPU consumption plots of the encoder program across the 

platforms.  

Table II gives the relative comparison of the CPU 

consumption by different transmitter functions on Dual Core 

ARM Cortex A9. FCsample() which is up-sampling and 

main() responsible for streaming the samples and managing 

buffers are the two dominant functions, with other functions 

being negligible. Though main() and FCsample() contribute 

~50% towards the CPU consumption at 1.2K, the relative 

contribution of FCsample() increases whereas main() 

decreases linearly with symbol rate. 

The behavior of these functions on “the quad cores” ARM 

Cortex A15 and A7 appears quadratic. Here the sample 

streaming is quicker compared to “the dual core” ARM Cortex 

A9 and therefore the FCsample() dominates over main(). On 

Intel x86, the sample streaming is the fastest and therefore 

FCsample() is the only function contributing towards 80-100% 

of the relative CPU load. The rate of change of CPU 

consumption by FCsample() reduces on faster platforms with 

an increase in the symbol rate. Since this is a relative measure 

of CPU consumption, other functions apart from main() and 

FCsample() are less prevalent (almost negligible) on all 

platforms.  
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C
P

U
 L

o
a

d
 (

%
)

Data Rate (bps)

ARM

Cortex - A9

ARM

Cortex-  A15

Inte l x86

Functions 1.2K (bps) 2.4K (bps) 4.8K (bps) 9.6K (bps) 19.2K (bps) 

 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

Main() 52.1 16.25 31.57 42.75 10.33 18.82 30.21 5.16 8.49 20.53 1.8 2.8 14.34 1.18 0.9 

FCsample

() 
46.99 83.68 66.34 62.38 90.71 78.39 74.7 95.5 88.41 83.19 97.72 94.84 90.04 98.63 98.16 

TABLE II 
RELATIVE COMPARISON OF THE CPU CONSUMPTION BY DIFFERENT TRANSMITTER FUNCTIONS ON DUAL CORE ARM CORTEX A9 (1), DUAL CORE INTEL X86 (2) AND 

OCTA CORE ARM CORTEX A15 AND A7 (3) 
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The aim here was to identify the most dominant block 

which is distinctly FCsample() - performing up-sampling, and 

this will be moved to FPGA firmware (HDL) for optimisation 

and thereby enabling multiple-signal transmission. 

 

B.  Receiver Profiling 

Similarly, Fig. 9 shows the computationally intensive 

functions in the receiver chain (on Intel x86). The down 

sampling is done in three different stages: main(), in the 

function called go and RxDownSample() which are the most 

dominant followed by ProcessFFT() where the appropriate 

signal is selected. Fig.10 shows the absolute CPU 

consumption on dissimilar platforms while the decoder is 

running at varied data rates. The decoder consumes more than 

50% CPU at 1.2K on ARM Cortex A9 and reaches almost 

100% (appears linear) resulting in low success rate as the 

symbol rate increases (Fig 11). The behaviour appears 

quadratic on ARM Cortex A15 and A7 and reaches ~50% at 

higher data rate. 

 

 
Fig. 10. Absolute CPU Consumption – Receiver 

This results in unsuccessful decoding at data rates 9.6K and 

19.2K as shown in Fig.11 along with differences in profiling 

behavior as shown in Table III. Whereas Intel x86 which 

exhibits cubic behaviour is well within 50% even at 19.2K and 

ensuring 100% success rate.  

 

  
 

Fig. 9. Computationally Intensive Receiver Blocks 
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1.2K 2.4K 4.8K 9.6K 19.2K

C
P

U
 L

o
a

d
 (

%
)

Data Rate (bps)

ARM Cor tex-

A9

ARM Cor tex-

A15

Inte l x86

Functions 1.2K (bps) 2.4K (bps) 4.8K (bps) 9.6K (bps) 19.2K (bps) 

 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

Main() 89.6 61.07 60.24 84.05 54.45 55.82 74.58 50.49 49.02 60.23 47.19 42.56 54.07 44.3 38.97 

CTryDecode::go(fl

oat*) 
6.73 16.42 22.41 8.26 17.33 24.91 14.41 18.94 27.68 25 21.16 32.5 29.63 23.49 36.38 

CDecoder::RxPutN

extUCSample 
1.83 12.88 6.75 3.13 13.97 5.2 3.81 14.87 8.53 5.68 17.47 6.14 8.15 18.52 8 

CDecoder::RxDow
nSample 

0.92 5.65 5.06 3.13 8.83 5.5 3.81 8.7 6.78 5.11 8.98 6.37 5.19 9.21 7.53 

CDecoder::Process

FFT 
0.61 1.54 5.06 0.85 2.23 6.39 3.39 2.9 8.53 3.98 3.21 5.97 2.96 3.89 7.62 

TABLE III 
RELATIVE COMPARISON OF THE CPU CONSUMPTION BY DIFFERENT RECEIVER FUNCTIONS ON DUAL CORE ARM CORTEX A9 (1), DUAL CORE INTEL X86 (2) AND 

OCTA CORE ARM CORTEX A15 AND A7 (3) 
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The function main() is decimating the samples from 1.536 

Msps to 96 ksps becomes less dominant as the data rate 

increases on all three platforms whereas the function go() 

which does further down-sampling from 96 ksps to 96 bps 

along with Reed Solomon and Viterbi (embedded within 

FECDecode which works on hard bits but capable of working 

on soft symbols) is more prevalent on the ARM Cortex A15 

and A7 when compared to ARM Cortex A9 and Intel x86 and 

thus suppressing other functions as seen in Table III. Although 

there is a significant difference in the relative CPU 

consumption between two different stages of down-sampling 

[main() and go()] at 1.2K, the difference gradually reduces and 

they consume almost the same CPU (~50%) at 19.2K on ARM 

Cortex A15 and A7 unlike on ARM Cortex A9 Intel x86 

where the down-sampling from 1.536 Msps to 96 ksps 

dominates the other functions. The significant observation 

here is that the CPU consumption of down-sampling [main()] 

on ARM Cortex A9 is more than 50% at different data rates 

and reaches maximum of 90% at 1.2K where the signal is 

down-sampled to a greater value (16).  

 
Fig. 11. Success Rate Comparison on Different Architectures 

In addition, the compilers were found to be different across  

the platforms as seen in Table IV. There is a difference in the 

instruction sets used across various architectures to perform 

similar functions and was observed using ‘objdump’. On Intel 

x86 architecture ‘move’ instructions dominate over ‘add’ 

functions, whereas on the ARM architectures ‘add’ 

instructions are called more frequently. This may suggest that 

memory operations are the key, reducing the number of 

read/write to the memory and decimating the samples would 

make the design more efficient. 

V. IMPLEMENTATION OF DDC BLOCK IN FPGA 

Based on the profiling results obtained earlier it is evident 

that the up-sampling and down-sampling are computationally 

intensive blocks in the transceiver. The architecture was 

revised in order to efficiently utilise the FPGA firmware and 

take advantage of its flexibility and speed. The FPGA 

firmware was re-configured to include the sample DDC block. 

The reference design includes the core from Analog Devices 

which fetches the samples from RF SoC interface core and 

provides them to Zynq PS for further processing. The sample 

DDC block was implemented in between RF core 

(AXI_AD9361) and sample packer block which packs I and Q 

signals from different channels before the signal is stored in 

Direct Memory Access (DMA). Other blocks such as 

modulation/demodulation, frequency/phase correction and 

packet handling which are computationally less intensive were 

retained in ARM Cortex A9 processors.  

A. Post-Profiling Results 

Once the DDC block was implemented on the FPGA fabric, 

profiling was repeated to understand the improvement 

achieved. Fig. 12 shows the percentage reduction in the 

absolute CPU consumption at different data rates. This 

improvement in the average load allows parallel reception of 

up to 5 signals (without accounting for instantaneous peak 

load), so upto 4 signals could be a better expectation at 1.2K 

while it was limited to one earlier. Similarly, two signals at 

2.4K can be decoded simultaneously in place of single signal. 

 

 
Fig. 12. Absolute CPU Consumption - ARM Cortex A9 

 
T ABLE V 

 IMPROVEMENT ACHIEVED WITH SAMPLE DDC BLOCK ON FPGA 

Data Rate 
Average reduction in 

the CPU consumption 

1.2K 36.76% 

2.4K 31.14% 

4.8K 21.5% 

9.6K 0.7% 
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TABLE IV 
COMPARISON OF INSTRUCTION SET ACROSS DIFFERENT PLATFORMS 

 
Dell Optiplex 

745 
O droid 
XU Lite  

Zedboard 

 
C Compiler 

 
GCC 4.8.2 GCC 4.8.2 GCC 4.6.3 

No. of different 
Instructions 

 

88 150 144 

No. of Similar 

Instructions across 
the platforms 

9 9 9 

- 131 131 

Dominant 
Instructions 

(top 5) 

mov(693) 
callq(186) 
add(130) 

movss(123) 
cmp(100) 

add(238) 
ldr(235) 

mov(156) 

movw(146) 
movt(141) 

ldr(256) 
add.w(246) 
movw(176) 

add(169) 
mov(155) 
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The 1st digit in the x-axis stands for hardware decimation and 

the 2nd digit for software decimation. It is unambiguous that as 

the hardware decimation increases the CPU consumption 

decreases. Table V summarizes the improvement achieved at 

different data rates. Similar progress can be seen in relative 

performance measures as  seen in Table VI, main() which was 

contributing towards 89.6% of the CPU is now reduced to 

50% with hardware decimation at 1.2K, from 84.05% to 56.72 

% at 2.4K, 74.58% to 57.12% at 4.8K and from 60.23% to 

52.59% at 9.6K. 

 

Table VII shows FPGA processor logic utilisation before 

and after the front end DDC function being moved to 

firmware and includes the percentage increase in FPGA 

utilisation that results . Adding a sample DDC block to the 

original increased the power consumption and the hardware 

requirements. Total overhead of on-chip power is 13.14% with 

5% increase in flip-flops and memory LUTs, 8% increase in 

LUTs, 18% increase in BRAMs and 3% increase in DSPs. 

This analysis suggests that approximately 4-5 DDC/DUCs can 

be implemented in order to aid parallel reception. Here, we 

Functions 1.2K (bps) 2.4K (bps) 4.8K (bps) 9.6K (bps) 
19.2K 

(bps) 

h/w_s/w 1_16 2_8 4_4 8_2 16_1 1_8 2_4 4_2 8_1 1_4 2_2 4_1 1_2 2_1 1_1 

Main() 89.6 83.25 71.09 63.74 50 84.05 73.57 61.49 
56.7

2 
74.58 60.23 57.14 60.23 52.59 54.07 

CTryDecode::go(fl

oat*) 
6.73 9.42 18.75 21.98 30.77 8.26 17.62 22.41 

28.3

6 
14.41 23.39 27.07 25 28.15 29.63 

CDecoder::RxPut

NextUCSample 
1.83 4.19 4.69 7.69 8.97 3.13 3.96 6.32 5.97 3.81 7.6 7.52 5.68 10.37 8.15 

CDecoder::RxDow

nSample 
0.92 1.57 3.91 5.49 6.41 3.13 2.64 5.75 4.48 3.81 5.26 6.02 5.11 5.93 5.19 

CDecoder::Process

FFT 
0.61 1.05 1.56 1.1 3.85 0.85 1.32 4.02 4.48 3.39 2.34 1.5 3.98 2.96 2.96 

O riginal Design (Software DDC) With DDC Block on FPGA O verhead 

Power:  Power:  Power:  

 Total On-Chip Power : 2.2 W  Total On-Chip Power : 2.489 W  Total On-Chip Power : 13.14% 

 Dynamic Power : 2.03 W  Dynamic Power : 2.309 W  Dynamic Power : 13.74% 

 Device Static : 0.17 W  Device Static : 0.180 W  Device Static : 5.88% 

Post Implementation:  Post Implementation:   Post Implementation:  

 Flip Flop : 19%  Flip Flop : 24%  Flip Flop : 05% 

 LUT : 24%  LUT : 32%  LUT : 08% 

 Memory LUT : 04%  Memory LUT : 09%  Memory LUT : 05% 

 I/O : 61%  I/O : 61%  I/O : 0% 

 BRAM : 06%  BRAM : 24%  BRAM : 18% 

 DSP48 : 31%  DSP48 : 34%  DSP48 : 03% 

 BUFG : 28%  BUFG : 28%  BUFG : 0% 

 MMCM : 50%  MMCM : 50%  MMCM : 0% 

Implementation on FPGA Fabric 
 

Implementation on FPGA Fabric 

TABLE VI 
POST PROFILING RESULTS ON DUAL CORE ARM CORTEX A9  

TABLE VII 
OVERHEAD ANALYSIS OF DDC IMPLEMENTATION 
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use the Zynq 7020 but in case of more number of signals with 

higher data rates, a larger FPGA may be selected [32]. 

VI. CONCLUSIONS 

This paper presents the design and implementation of an 

adaptive SDR architecture on different platforms with varied 

symbol rates such as 1.2K, 2.4K, 4.8K, 9.6K and 19.2K. 

C/C++ was preferred over VHDL for initial implementations 

due to the reduced implementation time of simple blocks such 

as decoding/encoding/demodulation and modulation. Profiling 

using gprof tabulates the relative and absolute performances 

along with success rates due to CPU saturation. Also, the 

functions exhibit diverse behaviour such as linear/quadratic 

and cubic on dissimilar platforms. The obtained performance 

results demonstrate the need to move blocks demanding 

higher computation capacity such as  up/down sampling 

blocks.  

The sample DDC block was moved to FPGA and the post-

profiling results show the improvement in the performance 

thereby facilitating more than one signal at any given time. 

The significant improvement being at lower data rates such as 

36.76% at 1.2K and 31.14% at 2.4K. This comes with a cost 

of 13.14% more on-chip power and 5 -15 % increase in on-

chip resources. Therefore, it has been concluded that for this 

reference design, moving the Front End DDC function alone, 

from software to firmware, is sufficient to allow multiple 

satellite reception at typical CubeSat telemetry rates.  

 Future work includes the implementation of the proposed 

design with n-stage pipeline architecture on FPGA SoC as 

shown in Fig. 13 based on different stages of transmission 

synchronisation. The objective of the pipeline architecture is 

to receive the signal from more than one satellite operating at 

different modulation techniques, data rates and centre 

frequencies. RF SoC would acquire the desired signal present 

in the spectrum with predefined software configuration of the 

frontend such as gain, filters, bandwidth and centre frequency. 

The next stage in the architecture includes parallel wrappers 

of DDCs consisting of Digital Quadrature Tuner (DQT) and 

Cascaded Integrator Comb (CIC) blocks. Each valid signal in 

the spectrum is mapped to separate channel based on the 

available on-chip resources. Each signal is stored under 

different offset address in the DMA which is configured 

according to the pre-calculated memory requirements. The last 

stage in the architecture is proposed to be asynchronous as the 

signal stored in the DMA can be accessed independently using 

different decoder threads running on dual core processors .  

Using a single programmable baseband SoC to execute 

several baseband processing programs at the same time can 

benefit in increased hardware reuse, shared software kernel 

functions and use of shared information, such as link state and 

channel parameters. However, in order to avoid data loss, 

dropped packets or frames, the combined FPGA logic and 

processor must have the resources to support the worst case 

load in all supported standards simultaneously. 

In conclusion, this paper demonstrates the concept of 

combining state-of-the-art low cost SDR hardware and open 

source software tools towards achieving a new generic 

communication platform for satellite communications. 

Potential applications of the proposed embedded system 

architecture are the ground station for multi-satellite 

Fig. 13. Future Pipeline Architecture 
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communications, deployable mobile ground station network 

and can be further extended to distributed satellite system 
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