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Abstract

Based on different sampling theorem, for example classic Shannon’s sampling theo-
rem and Papoulis’ generalized sampling theorem, signals are processed by the sam-
pling devices without loss of information. As an interface between radio receiver
front-ends and digital signal processing blocks, sampling devices play a dominant
role in digital radio communications.

Under the concept of Software Defined Radio (SDR), radio systems are going
through the second evolution that mixes analog, digital and software technologies
in modern radio designs. One design goal of SDR is to put the A/D converter as
close as possible to the antenna. BandPass Sampling (BPS) enables one to have
an interface between the RF or the higher IF signal and the A/D converter, and
it might be a solution to SDR. However, three sources of performance degradation
present in BPS systems, harmful signal spectral overlapping, noise aliasing and
sampling timing jitter, hinder the conventional BPS theory from practical circuit
implementations.

In this thesis work, Generalized Quadrature BandPass Sampling (GQBPS) is
first invented and comprehensively studied with focus on the noise aliasing problem.
GQBPS consists of both BPS and FIR filtering that can use either real or complex
coefficients. By well-designed FIR filtering, GQBPS can also perform frequency
down-conversion in addition to noise aliasing reduction. GQBPS is a nonuniform
sampling method in most cases. With respect to real circuit implementations, uni-
form sampling is easier to be realized compared to nonuniform sampling. GQBPS
has been also extended to Generalized Uniform BandPass Sampling (GUBPS).
GUBPS shares the same property of noise aliasing suppression as GQBPS besides
that the samples are uniformly spaced. Due to the moving average operation of FIR
filtering, the effect of sampling jitter is also reduced to a certain degree in GQBPS
and GUBPS. By choosing a suitable sampling rate, harmful signal spectral overlap-
ping can be avoided. Due to the property of quadrature sampling, the ”self-image”
problem caused by I/Q mismatches is eliminated. Comprehensive theoretical anal-
yses and program simulations on GQBPS and GUBPS have been done based on
a general mathematic model. A circuit architecture to implementing GUBPS in
Switched-Capacitor circuit technique has been proposed and analyzed. To improve
the selectivity at the sampling output, FIR filtering is extended by adding a 1st
order complex IIR filter in the implementation.
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GQBPS and GUBPS operate in voltage-mode. Besides voltage sampling, BPS
can also be realized by charge sampling in current-mode. Most other research
groups in this area are focusing on bandpass charge sampling. However, the theo-
retical analysis shows that our GQBPS and GUBPS in voltage mode is more efficient
to suppress noise aliasing as compared to bandpass charge sampling with embed-
ded filtering. The aliasing bands of sampled-data spectrum are always weighted by
continuous-frequency factors for bandpass charge sampling with embedded filtering
while discrete-frequency factors for GQBPS and GUBPS. The transmission zeros
of intrinsic filtering will eliminate the corresponding whole aliasing bands of both
signal and noise in GQBPS and GUBPS, while it will only cause notches at a lim-
ited set of frequencies in bandpass charge sampling. In addition, charge sampling
performs an intrinsic continuous-time sinc function that always includes lowpass
filtering. This is a drawback for a bandpass input signal.
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Chapter 1

Introduction

After the prediction by British scientist J. C. Maxwell in 1860s that electromagnetic
waves would travel at the speed of light, people started to knock on the door of
wireless communications. Following the successful experiment with wireless teleg-
raphy by Italian scientist G. Marconi in the 1890s, wireless communication systems
were established initially consisting of a transmitter and a receiver [1]. Many sci-
entists have made contributions to the development of the systems since then. The
development of wireless communication has experienced many milestones for more
than 100 years.

In the beginning, receivers were passive consisting only of a tuned bandpass
filter to the dominant frequency. Later, amplifiers were introduced such that the
receivers could get an amount of gain and compensate for the path loss. The com-
munication systems of the days were completely in the analog domain, i.e. the
information signal was processed by bandpass filtering, frequency translation and
analog (de)modulation. With the development of digital computers and signal pro-
cessing, digital techniques were also introduced in communication systems. Today,
digital communication still dominates wireless communications [2].

Shannon’s sampling theorem from 1948, which arose from the work of Nyquist
in 1924 [3], established the mathematical foundations for information transmission
in digital communication systems. The sampling theorem [4] states that a signal
s(t) of bandwidth W can be reconstructed from samples s(n) taken at the Nyquist
rate of 2W samples per second using the interpolation formula

ŝ(t) =
∑

n

s
( n

2W

) sin[2πW (t − n/2W )]
2πW (t − n/2W )

(1.1)

The sampled-data signal is further quantized by an Analog-to-Digital (A/D) con-
verter in the receiver to obtain a pure digital signal (a binary signal consisting of bit
‘1’ or ‘0’) or a Digital-to-Analog (D/A) converter in the transmitter to transform
the signal back to the analog domain for transmission.

1



2 CHAPTER 1. INTRODUCTION

Table 1.1: Wireless Communication Standards

Standard

Mobile
Frequency

Range
(MHz)

Access
Method

Frequency
Band
(MHz)

Carrier
Spacing
(MHz)

Data
Rate

(Mbps)

IS-54/-136
UL:824-849
DL:869-894

TDMA 25 0.03 0.048

IS-95
UL:824-849
DL:869-894

CDMA 25 1.25 1.228

GSM
UL:890-915
DL:935-960

TDMA 25 0.2 0.2708

DCS 1800
(EDGE)

UL:1710-1785
DL:1805-1880

TDMA 75 0.2 0.2708

PCS 1900
(EDGE)

UL:1850-1915
DL:1930-1990

TDMA 60 0.2 0.2708

PDC
UL:940-956
DL:810-826

TDMA 16 0.025 0.042

DECT 1880-1900 TDMA 20 1.728 1.152
IEEE 802.11a 5150-5350 CSMA-CA 200 OFDM: 20 6-54

IEEE 802.11b ISM:2400-2483.5 CSMA-CA 83.5
FHSS:1
DSSS:25

1-2
5.5-11

IEEE 802.11 g ISM:2400-2483.5 CSMA-CA 83.5 OFDM:20 6-54

BluetoothTM ISM:2400-2483.5 TDMA 83.5 FHSS:1 1
DCS 1800

(W-CDMA)
UE:1710-1785
BS:1805-1880

CDMA 75 5 3.84

PCS 1900
(W-CDMA)

UE:1850-1915
BS:1930-1990

CDMA 60 5 3.84

UMTS(3G)
UL:1920-1980
DL:2110-2170

CDMA
/TDMA

60 5 3.84

Signal transmission in wireless communication systems makes use of electromag-
netic waves located at a certain frequency band. One natural challenge in wireless
communication is the shared and limited radio spectrum. An international organi-
zation, International Telecommunication Union (ITU) [5], was established to allo-
cate frequency bands to the various radio services and to launch new generations of
communication standards globally. In the recent 30 years, wireless communications
have emerged from the first generation (1G) in the 1980s to the second generation
(2G) in the 1990s and the early 2000s, and from the third generation (3G) in the
2000s to the fourth generation (4G) which is still under discussion. The modula-
tion technology emerged correspondingly from analog modulation in 1G to digital
modulation in 2G and thereafter. With the rapid growth in the number of wireless
subscribers and increasing demand for high data-rate multimedia applications, dig-
ital modulation does not use the channel bandwidth efficiently, which motivates the
use of channel coding techniques. Information on wireless communication standards
in 2G and 3G are contained in Table 1.1.

In the recent past, the concept of multi-mode and multi-standard radio com-
munication has become more and more attractive, especially with the introduction
of 4G which promises to integrate different modes of wireless communication –
from indoor networks such as wireless LANs and Bluetooth, to cellular phone, ra-
dio and TV broadcasting, and to satellite communications. Short distance wireless
provides cheap local access, interacting with long distance wireless to realize a seam-
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less merger. Under the concept of 4G, users of mobile devices can roam freely from
one standard to another. A smart design of transceiver (consisting of transmitter
and receiver) is necessitated for the mobile terminals. In contrast to the variety of
radio frequency (RF) receiver approaches, transmitter designs are relatively plain
performing modulation, up-conversion and power amplification. The performance
requirement on each building block in RF receivers is more stringent because a
weak RF signal is always received in the presence of strong images and interfering
signals. More efforts should be paid on the design of radio receiver front-ends from
the system architecture and circuit integration perspective.

1.1 Conventional Receiver Architectures

Superheterodyne Receivers

The conventional radio receiver architecture, superheterodyne, has existed for al-
most one century and was proposed by Edwin H. Armstrong in the 1910s. In the
literature there is usually no distinction between heterodyne and superheterodyne
architectures. To “heterodyne” means to mix two frequencies and produce a beat
frequency defined by either the difference or the sum of the two. To “superhetero-
dyne” is only to produce a beat frequency defined by the difference of the two
frequencies.

Two stages of down-conversion (dual-IF, IF stands for intermediate frequency)
based on the theme of superheterodyne is mostly used in today’s RF receivers,
see Figure 1.1. This receiver translates the signal to a low frequency band by two
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Figure 1.1: Conventional dual-IF superheterodyne receiver architecture
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stages of down-conversion mixing. If the second IF of a dual-IF receiver is equal to
zero, the second down-conversion normally separates the signal to I (in-phase) and
Q (quadrature) components for Single-SideBand (SSB) communication systems or
frequency-/phase-modulated signals, and the corresponding demodulation and de-
tection are performed at baseband, see Figure 1.2. This down-conversion is realized

IF
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Figure 1.2: Superheterodyne receiver architecture with the second IF being equal
to zero

by quadrature mixers, which have a 90◦ phase shift between two Local Oscillators
(LOs) signals. Any offset from the nominal 90◦ phase shift and amplitude mis-
matches between I and Q components will raise the Bit Error Rate (BER). If the
second IF is not equal to zero, the receiver becomes a digital-IF receiver. The IF
bandpass signal is processed by an A/D converter, and the I/Q mismatches can be
avoided by signal processing in the digital domain.

The choice of IFs influences the trade-off between the image rejection (or sen-
sitivity) and channel-selection (or selectivity). If the IF is high, the image band
appears far away from the information band such that the image can be easily sup-
pressed by an Image-Reject Filter (IRF). However, the channel selection filter will
require a high Q-factor to select a narrow channel at a high IF. On the contrary,
if the IF is low, the design of the channel selection filter becomes easier but the
image band is so close to the information band that it becomes difficult to achieve
a proper image suppression by a BandPass Filter (BPF). More than one stage of
down-conversion makes the trade-off easily achievable. In a dual-IF superhetero-
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dyne receiver, the first IF is selected high enough to efficiently suppress the image,
and the second IF is selected low enough to relax the requirement on the channel
selection filter. The selectivity and sensitivity of the superheterodyne makes it a
dominant candidate in RF receiver architectures. Unfortunately, the high Q-factors
of the discrete-components in the superheterodyne receiver make it difficult to fully
integrate the complete front-end on a single chip.

Homodyne Receivers

In a homodyne receiver, no IF stage exists between RF and baseband. The input
of the A/D converter is located at baseband, see Figure 1.3. The channel selection
filter is just a LowPass Filter (LPF) prior to the A/D converter. The homodyne
receiver has two advantages compared to the superheterodyne receiver. First, the
architecture is more simple. Second, the image problem can be avoided due to zero
IF such that no IRF is needed.
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Figure 1.3: Homodyne receiver architecture

The homodyne receiver allows a higher level of integration than the super-
heterodyne receiver as the number of discrete components is reduced. However,
this receiver inevitably suffers from the problems of LO leakage and DC-offset. The
output of the LO may leak to the signal input port of the mixer or the Low Noise
Amplifier (LNA) due to improper isolation. The leaked signal will be mixed with
the output of the LO (i.e., the origin of the leaked signal) and produce a DC com-
ponent at the output of the mixer. This is called self-mixing. LO leakage to the
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antenna may result in a time-varying DC offset due to self-mixing. The undesired
DC component and DC offset will corrupt the information signal that is present in
the baseband. I/Q mismatches are other associated problems due to the quadra-
ture down-conversion in homodyne receivers. Because the down-converted signal is
located at zero frequency, flicker noise or 1/f noise of devices will also corrupt the
information signal.

IF Receivers

IF receivers combine the advantage of both superheterodyne and homodyne re-
ceivers. The received RF signal is down-converted to IF by an LO, where the IF
could be either one or two times the information bandwidth (in low-IF receivers)
or arbitrary (in wideband-IF receivers) depending on the system specifications in
terms of sensitivity and selectivity [6].

Low-IF receivers

In the low-IF receiver, a low IF stage is present between RF and baseband, and
the low IF signal is directly digitized in the A/D converter [6, 7], see Figure 1.4.
This architecture is also simple and promising for a higher level integration. As
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Figure 1.4: Low-IF receiver architecture

compared to homodyne receivers, low-IF receivers have no DC-offset problem since
the signal after the first down-conversion is not around DC. The IF is very low (one
or two times the information bandwidth), and it is hard to reject the image signal
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in the RF BPF. Both image and wanted signal will be sampled and quantized in the
A/D converter. Further frequency down-conversion from the low IF to baseband
is realized in the digital domain to avoid problems such as I/Q mismatches in the
analog domain.

Wideband IF receivers

A superheterodyne receiver with an RF channel-select frequency synthesizer and
an IF or baseband channel-select filter is a narrowband receiver. An alternative
architecture based on IF receiver architectures is the wideband IF receiver, see
Figure 1.5. In the wideband IF receiver, the entire band containing the information
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Figure 1.5: Wideband IF receiver architecture with double down-conversion

signal located at RF is translated to IF by multiplying the output of the LO with
a fixed frequency. The IF signal passes through an LPF such that the frequency
components above the IF band are removed. One channel out of the entire band
is then translated to DC by a tunable LO and fed into an LPF [6, 8]. The selected
lowpass channel signal is processed further by an A/D converter which is the same
as in the superheterodyne and homodyne receivers.

As compared to the low-IF receiver, this receiver architecture with dual conver-
sion possesses the same properties of high sensitivity and selectivity as the conven-
tional superheterodyne receiver. Image signals can be well rejected by filters prior
to the A/D converters, and the resolution requirement on the A/D converters can
be reduced. However, I/Q mismatches of image-rejection down-conversion mixer in
the analog domain can never be avoided. This architecture is also well-suited for full
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integration, and it has the potential to be implemented for multi-band multi-mode
radio communications.

It is of advantage to use conventional receiver architectures for single-mode nar-
rowband radio communications since the technologies are mature and it is also
easy to fulfill the system performance requirements. Nevertheless, driven by the
increased processing power of microprocessors and modern high performance A/D
converters, a wideband radio architecture has drawn more and more attention for
the support of multi-band multi-mode radio communications. From a general as-
pect, the wideband IF receiver is not a real wideband receiver since the input to
the A/D converter is still narrowband.

A generic wideband receiver evolved from the conventional receiver architecture
shown in Figure 1.2 has been used in cellular phone base stations to support multiple
wireless communication standards and to meet the rapidly increasing demands of
cellular services [9]. In this application, multiple channels at the RF are selected
by the first tunable LO instead of a single channel in superheterodyne receivers.
All the selected channels are translated to baseband by the second LO with a fixed
frequency and then digitized in a wideband A/D converter for I and Q components
respectively.

1.2 Subsampling Receiver Architecture

The concept of Software Defined Radio (SDR) was originally conceived for mili-
tary applications. It consists of a single radio receiver to communicate with dif-
ferent types of military radios using different frequency bands and modulation
schemes [10]. This concept is starting to be introduced into commercial appli-
cations. SDR means a radio where functionality is extensively defined in software,
and it supports multi-band multi-mode radio communication. It establishes the
second radio evolution since the migration from analog to digital in 1970s and
1980s. Modern radio designs mix analog hardware, digital hardware and software
technologies.

Two key issues of SDR are placement of the A/D converters and DSP per-
formance to cope with the large number of samples [11]. One goal of SDR is to
place the A/D converter as close as possible to the antenna. The ideal case is
doing sampling and digitization directly on an RF signal. Due to the presence of
strong interferers around weak RF information signal, an A/D converter with a
higher dynamic range up to around 100 dB might be needed. However, it is hard
to achieve by current A/D converter technology. It is more reasonable to do an
IF digitization as shown in Figure 1.6. The sampling function can be either classic
LowPass Sampling (LPS) or BandPass Sampling (BPS). In LPS, the IF bandpass
signal is directly sampled and digitized by an A/D converter, and I/Q mismatches
are avoided. However, the LPS rate on an IF bandpass signal is high based on
Shannon’s sampling theorem (see eq. (1.1)), and the performance requirements,
e.g., linearity and dynamic range, on the A/D converter are stringent. In BPS with
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Figure 1.6: Subsampling receiver architecture by BPS

a low sampling rate that is only slightly larger than twice the information band-
width, the requirements on the following A/D converter are alleviated. In addition,
BPS can realize down-conversion through the intentional signal spectral folding,
which is similar as down-conversion mixing.

1.3 Multistandard Receiver Architectures

A multistandard receiver might be realized by stacking different receivers for dif-
ferent standards into a single receiver. However, the area and power consumption
would be extremely high. Instead, a well-designed architecture of a multistandard
receiver should optimally share the available hardware resources and make use of
the tunable and programmable devices. A proper system specification should be
defined for each of the involved standards. Moreover, for battery powered devices
it is more important that a highly integrated solution is used so that the area and
power consumption are considerably reduced.

From the view of multi-band multi-mode radio communications and the place-
ment of the A/D converter, both the homodyne receiver and the subsampling re-
ceiver are candidates for SDR implementation because the A/D converter directly
has an interface to RF or higher IF signals. From the view of high level integra-
tion, the homodyne receiver, low-IF receiver and the subsampling receiver are most
suitable.
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Multistandard Zero-IF Receivers

A single-chip multimode receiver for four standards, GSM900, DCS1800, PCS1900
and W-CDMA, was designed in zero-IF (or homodyne) [12]. All the problems as-
sociated with the homodyne receiver, e.g., LO leakage, DC-offset, I/Q mismatches
and flicker noise, inevitably happen and are treated in many different ways. The
corresponding block diagram of the receiver is shown in Figure 1.7. The selection
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Figure 1.7: Multi-standard receiver architecture by zero-IF

among different standards is realized by an external digital controller and the hard-
ware is shared as much as possible by different standards. Four different standards
use two different channel selection filters. A divide-by-two circuit is used to provide
quadrature LO signals for the mixers. The LO signal is generated on-chip such
that the LO leakage on the PCB is eliminated and the LO leakage to the RF in-
put is better suppressed. The baseband circuit has two operation modes, one for
WCDMA and the other for DCS1800/PCS1900/GSM900.

Multistandard Low-IF Receivers

Another fully integrated multistandard radio receiver was designed in low-IF to-
ward mobile terminals that support five wireless communication standards, Blue-
tooth, two GSM standards (DCS1800 for Europe, PCS1900 for USA), UMTS,
802.11a/b/g [13]. The corresponding block diagram of the radio receiver is shown
in Figure 1.8. Bluetooth provides a wireless link between the radio terminal and
other peripherals (e.g., headphone), and it should be active all the time, while the
other four standards covering five frequency bands are activated by an RF switch.

1.4 Motivations and Thesis Outline

According to the literature study, there is so far no design for fully integrated mul-
tistandard subsampling receivers because of the well known noise aliasing problem
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in the subsampling system [14, 15], although some single chip RF subsampling re-
ceivers have been designed for GSM [16], Bluetooth [16, 17] and 802.11b [18, 19].
Bandpass charge sampling with intrinsic FIR moving average operation and a 1st
order IIR filter were used to treat the noise aliasing problem in [16, 17]. Direct
RF sampling by quadrature BPS in voltage mode was used in [18, 19] without any
specific treatment to noise aliasing. A more general solution compared to the work
in [16, 17] using quadrature bandpass charge sampling with composite FIR and IIR
filtering was proposed in [20, 21, 22]. Both simulation results and circuit imple-
mentations on an IF signal have shown that this solution is promising to suppress
noise aliasing in subsampling or bandpass sampling receivers. However, it is known
that other processing blocks in radio receiver front-ends operate in voltage mode.
Before using charge sampling, an analog voltage signal needs to be first converted
to a current signal by a transconductance cell, but it is not necessary for using
bandpass voltage sampling and the corresponding front-end receiver architecture is
simpler.

In this thesis, bandpass voltage sampling is mainly discussed and also com-
pared with bandpass charge sampling. Three sources of performance degradation
in bandpass sampling systems, harmful signal spectral overlapping, noise aliasing
and sampling timing jitter, are comprehensively studied. With respect to noise
aliasing problem, the theory of generalized BPS in voltage mode is proposed, in-
cluding the examples of Generalized Quadrature BandPass Sampling (GQBPS) and
Generalized Uniform BandPass Sampling (GUBPS). GQBPS and GUBPS perform
also FIR filtering that can use either real or complex coefficients besides sampling.
The input signal of GQBPS and GUBPS is an RF or a higher IF bandpass signal.
The interesting folded information band after GQBPS and GUBPS is located at
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baseband or lower IF. Higher order intrinsic FIR filtering provides immunity to
noise aliasing and suppresses sampling jitter effects to a certain degree. General-
ized bandpass sampling receivers based on the theory of generalized BPS may be
a good candidate for SDR applications. By using Switched-Capacitor (SC) circuit
technique, generalized bandpass sampling with intrinsic FIR filtering is designed
and analyzed at circuit level. To improve the selectivity at the sampling output,
FIR filtering is extended by adding a 1st order complex IIR filter in the GUBPS
implementation. It is a strong motivation that a multistandard bandpass sampling
receiver will be seen in a near future based on the contribution of the thesis.

This thesis will be organized as following. In chapter 2, Uniform Sampling (US)
and NonUniform Sampling (NUS), voltage sampling and charge sampling, deter-
ministic sampling and random sampling are discussed and compared, respectively.
With respect to NUS, nine reconstruction algorithms are evaluated and compared in
terms of reconstruction performance and computational complexity. In chapter 3,
the basic theory of BPS is reviewed regarding the associated technical problems.
The state-of-the-art in BPS applications is presented. In chapter 4, Generalized
BPS is proposed based on the Papoulis’ generalized sampling theorem with focus
on suppressing noise aliasing in BPS systems, although it is also noticed that gen-
eralized BPS provides certain improvement on the jitter performance. In chapter 5,
eight papers included in this thesis are summarized. Finally in chapter 6, the thesis
is concluded and future work is proposed.

Through the thesis, all the signals involved in the theoretical analysis are as-
sumed ideal band-limited, which means that their Fourier transforms are zero for
|f | > B, although this is not ideally realizable in practice. For a more general pur-
pose, all the frequency variables shown in the thesis use absolute frequency with no
specific unit, which means the value of frequency can be scaled up or scaled down
by any value of factor without any influence on the conclusions.



Chapter 2

Sampling and Reconstruction

With the launch of digital radio communications, A/D and D/A converters become
important devices as the interface between RF conversions and digital signal pro-
cessing. Natural signals such as speech, music, images and electromagnetic waves,
are generally analogue signals in the continuous-time (CT) domain. To process a
signal digitally, it has to be represented in digital format in the discrete-time (DT)
domain. It is required that this digital format is fixed, and uniquely represents all
the features of the original analogue signal. The reconstructed CT signal from this
digital format may not be exactly the same as the original analogue signal, but it
is a goal to minimize the difference as much as possible.

The two basic operations during A/D conversion are sampling and quantization.
Sampling is to convert a CT analogue information signal into a DT representation
by measuring the value of the analogue signal at uniform or nonuniform intervals.
Quantization is to convert a value or range of values into a digital value. The num-
ber of quantization levels determines the resolution of the A/D converter (in bits
per sample). In this chapter, Uniform Sampling (US) and Nonuniform Sampling
(NUS), voltage sampling and charge sampling, deterministic sampling and random
sampling are introduced and compared. A filter generalized by a Reconstruction
Algorithm (RA) is proposed and studied in terms of a Basis-Kernel (BK). Nine
RAs are evaluated and compared based on their performance and computational
complexity.

2.1 Sampling

Nowadays the sampling theorem plays a crucial role in signal processing and com-
munications. Obtaining the DT sequence x(tn) to represent a CT function x(t) is
known as sampling. An ideal sampling process can be modeled as an input CT sig-
nal x(t) multiplied by an infinite sequence of Dirac delta functions, see Figure 2.1.
The CT sampled-data signal xs(t) is given by

13
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x(t) xs(t)

∑∞
n=−∞ δ(t − ts(n))

Figure 2.1: Ideal sampling process

xs(t) = x(t)
∞∑

n=−∞
δ(t − ts(n)), (2.1)

where ts(n) represents the sampling time instants.
Whether the sampled-data signal uniquely represents the original signal or not

depends on the sampling patterns and their implementations. Referring to the
sampling period (or interval), sampling can be ideally divided into two categories,
Uniform Sampling (US) and NonUniform Sampling (NUS). It is justified to assume
that the sampling set is uniformly distributed in many applications, i.e., the samples
are acquired at the regular time instants. However, in many realistic situations,
the data is known only in a irregularly spaced sampled set. This irregularity is a
fact of life and prevents the standard methods of Fourier analysis. For example in
communication systems, when data from uniformly distributed samples are lost, the
obtained samples are generally nonuniformly distributed, the so-called missing data
problem. Scratching a CD is also such kind of a problem. On the contrary, it may
be of advantage to use NUS patterns for some special cases (e.g., an aliasing-free
sampling) [23, 24]. For NUS, there are four general sampling scenarios: Generalized
nonuniform sampling [25], Jitter sampling [26], Additive random sampling [23],
and Predetermined nonuniform sampling. Without any specifications, the NUS
mentioned in this chapter is predetermined and each sampling instant is known
with high precision.

Sampling methods in electrical circuits include voltage sampling and charge sam-
pling. Voltage sampling is a conventional method that is realized by the sample-
and-hold (S/H) circuit. It tracks an analog signal and stores its value as a voltage
across a sampling capacitor for some length of time. Charge sampling does not
track the signal voltage but integrates the signal current within a given time win-
dow [27]. An analog signal in voltage mode is first converted to current mode by
a transconductance cell before charge sampling. As compared to voltage sampling,
charge sampling has the advantage that the bandwidth of the charge sampling de-
vice only relies on the sampling duration but not on the switch-on resistance so
that a wide-band sampler design is more feasible [28]. BPS can also be performed
by both charge sampling [17, 29, 30] and voltage sampling.

Sampling is ideally deterministic. Under the effects of jitter, deterministic sam-
pling becomes random sampling, including jitter sampling (JS) and additive random
sampling (ARS) [23]. The main property of random sampling is that the sampling
time is not predetermined but is defined by the stochastic process of random jitter.
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JS is a common form in real life since the intentional US is generally used. ARS is
equivalent to a nominal ideal NUS under the effects of jitter.

2.1.1 Uniform sampling and Nonuniform sampling

Uniform Sampling (US) For an ideal US process, ts(n) = nTs. Starting from
eq. (2.1), the Fourier transform of xs(t) can be expressed as

Xs(f) =
∫ ∞

−∞
xs(t)e−j2πftdt

=
∞∑

n=−∞
x(nTs)e−j2πfnTs . (2.2)

This is the well-known Discrete-Time Fourier Transform (DTFT). The Discrete
Fourier Transform (DFT) is a special case of DTFT, which is defined to be the
DTFT evaluated at equally spaced frequencies over the Nyquist interval [0, 2π).
The N -point DFT of a length M signal is defined as

X(k) =
M−1∑
m=0

x(m)e−j2πkm/N , k = 0, 1, · · · , N (2.3)

under the assumption that the signal x(m) is periodic with period M . By using
Poisson summation formula [31], eq. (2.2) can be written as

Xs(f) = fs

∞∑
m=−∞

X(f − mfs), (2.4)

where fs = 1/Ts. Obviously, the frequency spectrum of a sampled-data signal is
a series of copies of the original CT signal and Xs(f) is a periodic function with
period fs, see Figure 2.2.

A band-limited signal can be completely determined by a US sequence with
the sampling rate of at least twice the maximum frequency B (critical- or over-
sampling) according to the Shannon’s sampling theorem [32]:

Theorem 1: If a function f(t) contains no frequencies higher than W cps

(in cycles per second), it is completely determined by giving its ordinates at

a series of points spaced 1/2W seconds apart.

For fs < 2B (undersampling), the frequency components above B will be aliased
back into the Nyquist band [−fs/2, fs/2] such that the original signal cannot be
uniquely reconstructed from the sampled-data signal. For an LPS process, the
input signal is regarded as a baseband signal or lowpass signal with a bandwidth
consisting of the maximum frequency component, and critical- or over-sampling



16 CHAPTER 2. SAMPLING AND RECONSTRUCTION

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

−0.05

0

0.05

0.1

−400 −300 −200 −100 0 100 200 300 400
0

0.005

0.01

0.015

−400 −300 −200 −100 0 100 200 300 400
0

0.005

0.01

0.015

a) 

b) 

c) 

t 

f 

f 

x(t) 

X(f) 

T
s
X

s
(f) 

Figure 2.2: a) Original CT band-limited signal, B = 50 and samples by US, fs =
200; b) The corresponding frequency spectrum of CT signal; c) Corresponding
frequency spectrum of the sampled-data signal.

is normally used to avoid the harmful signal spectrum aliasing. The input signal
of BPS is, however, always a passband signal or bandpass signal such that BPS
can make use of a harmless signal spectrum aliasing by tactically selecting the
undersampling rate. More discussion about BPS will be presented in chapter 3.

Nonuniform Sampling (NUS) For an ideal NUS process, ts(n) = tn 6= nTs.
Starting from eq. (2.1), the frequency spectrum of xs(t) is not necessarily periodic
and the Fourier transform becomes

Xs(f) =
∞∑

n=−∞
x(tn)e−j2πftn . (2.5)

The corresponding Energy Density Spectrum (EDS) of an ideal NUS is the magni-
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tude squared of the Fourier transform [33], i.e.,

Ps(f) = |Xs(f)|2
= [· · · + x(t0) cos 2πft0 + x(t1) cos 2πft1

+ x(t2) cos 2πft2 + · · · + x(tn) cos 2πftn + · · · ]2
+ [· · · + x(t0) sin 2πft0 + x(t1) sin 2πft1

+ x(t2) sin 2πft2 + · · · + x(tn) sin 2πftn + · · · ]2. (2.6)

NUS technique is well used for obtaining oscillograms in oscilloscopes and spectro-
grams for spectral analysis [34]. In Jerri’s tutorial review [24], it was mentioned
that unless the signal is ideally band-limited, there will always be an aliasing error
when we sample at the required Nyquist rate. So if there is any alias free sampling
it must be based on a rate different from the Nyquist rate or in other words sam-
pling at unequally spaced instants of time. The aperiodic property of the frequency
spectrum enables NUS to suppress harmful signal spectrum aliasing.

As shown in Figure 2.3, given a wanted signal s(t) = cos(2π · 2t) (solid line)
and a feigned signal i(t) = cos(2π · 3t) (dashed line), when fs = 5, the component
at f = 3 is larger than fs/2 = 2.5 and will be folded back to f = 2 (see a)).
The samples obtained by US can not uniquely determine the wanted signal. By
intentionally introducing a random shift with a uniform distribution U(−αTs, αTs)
(α is a scale factor) on the equidistant US time instants, for instance α = 0.3 for b)
and 0.7 for c) in Figure 2.3, the aliasing effect is reduced to a certain degree and the
wanted signal can be clearly identified. Obviously, NUS relaxes the requirements
on the anti-aliasing (AA) filter.

2.1.2 Voltage sampling and Charge sampling

Voltage sampling Ideally, a voltage sampling process can be directly modeled
as the input voltage signal sampled by ideal sampling (see Figure 2.1). In real
implementations, voltage sampling is simply modeled in an Sample-and-Hold (S/H)
circuit as shown in Figure 2.4 together with the appropriate clock scheme. Assume
that tn = nTs (fs = 1/Ts), τ is the duty cycle of sampling clock φ (0 < τ < 1) and
the output voltage level in track mode is neglected (or equal to zero), the sampling
function is not a series of Dirac delta functions but the convolution of the Dirac
delta functions with a pulse shape, normally a zero-order S/H function. The output
voltage by S/H is then given by

Vout(t) = xs(t) ? h(t), (2.7)

where xs(t) is the sampled-data signal by ideal voltage sampling that is defined by
eq. (2.1) and h(t) is given by

h(t) =
{

1, nTs ≤ t ≤ (n + τ)Ts

0, otherwise. (2.8)
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Figure 2.4: Voltage sampling in Switched-Capacitor (SC) circuit with the appro-
priate clock scheme.
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The convolution in the time domain is equivalent to the multiplication in the fre-
quency domain and

Ṽout(f) = Xs(f)H(f),

= τ · e−jπ f
fs

τ · sinc(
f

fs
· τ)

∞∑
k=−∞

X(f − kfs), (2.9)

where Xs(f) is given by eq. (2.4).

Charge sampling Charge sampling integrates charge within a time window
[tn, tn +∆t] instead of storing the voltage value across a sampling capacitor. It can
be modeled as shown in Figure 2.5, where s(t) =

∑∞
n=−∞ δ(t− tn −∆t) represents

xs(t)

s(t)

x(t) ∫ tn+∆t

tn

x′(t)

Figure 2.5: Charge sampling process

an ideal sampling process and tn represents the set of starting instants to integrate.
The sampled-data signal xs(t) is given by

xs(t) = x′(t)s(t) =
∞∑

n=−∞

(∫ tn+∆t

tn

x(ξ)dξ

)
δ(t − tn − ∆t). (2.10)

In real implementation, charge sampling can also be modeled as an SC circuit with
an input current signal, see Figure 2.6 together with the appropriate clock scheme.
Assuming that tn = nTs (fs = 1/Ts) and starting from eq. (2.10), the output
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Figure 2.6: Charge sampling in SC circuit with the appropriate clock scheme, where
φ1, φ2 and φo represent the phase of charge integral, reseting and holding/readout,
respectively.
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voltage of charge sampling and the corresponding Fourier transform spectrum are
given as (see Appendix A)

Vout(t) =
1

CL

(∫ t

t−∆t

Iin(ξ)dξ

) ∞∑
n=−∞

δ(t − nTs − ∆t) (2.11)

and

Ṽout(f) =
∆t

CL · Ts

∞∑
k=−∞

Iin(f − kfs)sinc[(f − kfs)∆t]e−jπ(f+kfs)∆t(2.12)

respectively, without considering the zero-order S/H function at the hold phase,
where sinc(x) = sin(πx)/(πx).

S/H circuit implementations using voltage sampling has been extensively ap-
plied in common data acquisition systems (e.g., speech communication, music, im-
age processing). As compared to charge sampling, voltage sampling is easier to be
realized with a simple clock scheme and connected to other front-end conventional
voltage processing parts. However, with respect to the frequency performance, the
3dB bandwidth is controlled by the width of time window ∆t in charge sampling
but τ = RonC (Ron is on resistance of sampling switch) in voltage sampling and the
accuracy of Ron and C is always limited by current silicon technology. Additionally,
further down-scaling of CMOS technologies introduces new problems. A reduction
of the power supply voltage, for example, might have an influence on the dynamic
range as the random variation of noise does not scale down with process technology
and supply voltage. The current mode circuits provide a better alternative [36],
although many researchers are also working on low-voltage CMOS circuit designs in
voltage mode. Both sampling methods can be used in bandpass sampling receivers
under the concept of SDR.

2.1.3 Random sampling

All sampling processes discussed above are deterministic and the Fourier transform
is normally used to analyze corresponding properties in the frequency domain.
A stochastic process xs(t) by random sampling is not absolutely integrable, i.e.,∫ ∞
−∞ |xs(t)| 6< ∞, and the Fourier transform of xs(t) does not exist [33]. The study

of Power Spectral Density (PSD) is a normal way to analyze random sampling.

Jitter sampling (JS) JS is also called jittered periodic sampling [23] which
is an ideal periodic sampling affected by timing jitter. The set of sampling time
instants is in the form

ts(n) = nTs + τn, n = 0,±1,±2, · · · , (2.13)

where Ts is an ideal US interval, τn are a family of independent, identically dis-
tributed (iid) Gaussian random variables with a zero-mean and a standard deviation
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στ . Normally στ << Ts. In [37], timing jitter is classified into readin jitter and
readout jitter depending on the way to be introduced in the system. Readin jitter
is introduced when the analog signal is being sampled, whereas readout jitter when
the samples of the output of the digital filter are being read out for reconstruction
back to an analog signal. In the present thesis work, only the case of readin jitters
is considered. It is assumed that the effects of jitter are unknown. If they were
known, the sampling theory for deterministic NUS could be used [38, 39].

The PSD spectrum of JS is given by (see Appendix B)

Rx̃x̃(f) =
1

T 2
s

∞∑
k=−∞

Rpp(kfs)Rxx(f − kfs) +
1
Ts

Rxx(f) ? (1 − Rpp(f)) , (2.14)

where ? denotes the convolution operator, Rpp(f) is the PSD of the input signal
x(t), Rpp(f) is the Fourier transform of rpp(γ) and rpp(γ) represents the Probability
Density Function (PDF) of the sum of two independent random jitter processes. It
can be observed that the PSD of JS consists of a discrete-frequency (DF) compo-
nent (first term in eq. (2.14) and a continuous-frequency (CF) component (second
term in eq. (2.14), and it is equivalent to the weighted power spectrum of the orig-
inal signal plus “additive uncorrelated noise”. The DF component is a weighted
sum of periodically shifted copies of the input spectrum Rxx(f) in the period of
average sampling rate fs. Rx̃x̃(f) is not necessarily a periodic function except
when Rpp(kfs) is periodic. When the jitter is small, Rpp(kfs) decreases slowly and
the DF component is almost periodic. For a special case where jitter τn is zero,
Rpp(f) = 1, eq. (2.14) reduces to the average PSD of US:

Rx̃x̃(f) =
1

T 2
s

∞∑
k=−∞

Rxx(f − kfs). (2.15)

The PSD of JS on a sinusoidal input signal with a random phase is shown in
Figure 2.7 (dashed line) for different jitter. The corresponding theoretical weights
Rpp(f) in CF (dash-dot line), Rpp(kfs) in DF (symbol box) and theoretical PSD
evaluation based on eq. (2.14) (solid line) are superimposed. The input frequency
is 2 and the average sampling rate is 5. The jitter is assumed to have a uniform
distribution U(−αTs, αTs) where α = 0, 0.1, 0.3, 0.5 is a scale factor defined by jitter
and 1/Ts is the average sampling rate. The simulation result matches with the
theoretical estimation very well. When α = 0 (or ideal US), image spectra appear
at higher order Nyquist bands (2nd order [2.5, 7.5], 3rd order [7.5, 12.5], etc.). The
corresponding weight is a flat straight line since the PDF rpp(γ) = δ(γ) in the
time domain. With the increase of α, the amplitude of image spectra decreases
for increasing frequency, and the peak level is shaped by the DF weight factor
Rpp(kfs). When α is increased to 0.5, all image spectra in higher order Nyquist
bands disappear and the spectrum uniquely identifies the input signal. Wojtiuk [40]
highlighted that alias terms can be suppressed by increasing jitter variance, and
also showed that a jitter with a uniform distribution over [−0.5Ts, 0.5Ts] has the
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Figure 2.7: The PSD of JS on a sinusoid input signal with f = 2 for different jitter
and fs = 5 (in dashed line). The CF function Rpp(f) (in dash-dot line), the DF
weight factor Rpp(kfs) in different order of Nyquist band (symbol box) and the
theoretical PSD evaluation based on eq. (2.14) (in solid line) is superimposed. [a]
α = 0; [b] α = 0.1Ts; [c] α = 0.3Ts; [d] α = 0.5Ts.
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potential to eliminate the discrete frequency components of the sampled-data signal
except for the information signal. This simulation result is consistent with the
conclusion given by Wojtiuk [40]. The corresponding sampling scenario with α =
0.5 is a kind of alias-free sampling. The PSD analysis of JS shown above was
obtained independently, although more simulation examples for the jitter with both
a Gaussian distribution and a uniform distribution were shown in [41].

Additive random sampling (ARS) Due to the contribution of nTs, the PSD
of JS at ts(n) = nTs + τn still retains the periodic property in the period of 1/Ts

such that the aliasing is still presented in JS for most cases. It is also observed that
when jitter has a uniform distribution over [−0.5Ts, 0.5Ts], i.e., the samples of JS
get rid of the characteristics of US and distribute completely irregularly, aliasing
from higher order Nyquist bands are significantly suppressed.

Shapiro [23] first introduced ARS and noticed that it breaks up the regular
property from JS. It was defined that the samples by ARS are located at

tn = tn−1 + γn, (2.16)

where tn−1 and tn are two successive sampling time instants, γn is an iid stochastic
process with a certain distribution. There exists an average Ts such that E[γn] = Ts

but tn − tn−1 6= Ts. The PDF of {γn} is equal to zero (i.e., p(γn) = 0) for γn < 0.
This condition corresponds to the requirement that a set of samples in a given set
of indices should come in the order of time.

This is equivalent to a nominal ideal NUS under the effects of jitter, since

ts(n) = tn + τn = tn−1 + γn−1 + τn = tn−1 + γ′
n, (2.17)

where {tn} is the set of sampling time instants of nominal ideal NUS, E[τn] = 0
and E[γ′

n] = E[γn] = Ts.

Alias-free sampling It was discussed in section 2.1.1 that NUS has the poten-
tial to suppress harmful spectrum aliasing. However, it is still a challenge to select
the nonuniformly distributed sampling scheme such that the input nonideal band-
limited signal is uniquely determined by the samples without the harmful effects
of aliasing (i.e., alias-free sampling). Shapiro and Silverman [23], Beutler [42] and
Marsy [43] successively gave or extended the definition and conditions for alias-free
sampling. Shapiro [23] also showed that some random sampling schemes (e.g., Pois-
son sampling) can eliminate aliasing and lead to an unambiguous determination of
the PSD.

For the given Poisson process {γn}, the corresponding Poisson distribution in
terms of the average rate ρ is given by [23]

p(γ) = ρe−ργ . (2.18)

The same sinusoidal input signal with a random phase that is used for presenting
the PSD of JS is also used for simulating the PSD of ARS. The input frequency
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is 2 and the average sampling rate is 5. The inter-sample intervals (ISI) {γn}
satisfy the Poisson process defined by eq. (2.18). The corresponding simulated
PSD is shown in Figure 2.8 (Left). The set of {γn} used in the simulation has a
Poisson distribution, see Figure 2.8 (Right). It is observed that only the frequency
component of f = 2 in the PSD exists and aliasing effects from other Nyquist bands
are completely avoided. However, the noise floor is significantly increased such that
SNR is degraded. Compared to Figure 2.7 [d], the in-band noise power by such ARS
is higher than that by JS with the jitter distribution U [−0.5Ts, 0.5Ts].
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Figure 2.8: (Left:) The PSD of ARS with Poisson process. The input frequency is
2 and the average sampling rate is 5. (Right:) The practical p(γ) (in vertical bar)
used for the ARS simulation as compared to the theoretical p(γ).

Most JS cases have cyclical jitter errors, i.e., the errors are repeating and cor-
related to the input signal. By making use of complete random sampling, i.e.,
alias-free sampling, the correlated jitter errors are turned into uncorrelated errors
(or noise). Signal distortions are reduced such that the signal may be easily identi-
fied by a signal detector, e.g., human ear. Random sampling may also provide some
degree of analog dithering for eliminating the quantization distortions in the follow-
ing A/D converter [31]. However, it is inevitable that random sampling causes SNR
performance degradation and the signal reconstruction becomes hardly achievable.

2.2 Reconstruction

Depending on the context, “reconstruction” has different definitions. Image re-
construction is defined in imaging technology wherein data is gathered through
methods such as computerized tomography-scan (CT-scan) and magnetic resonance
imaging (MRI), and then reconstructed into viewable images [44]. In analog signal
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processing, reconstruction mostly means that a CT signal is obtained from the DT
data by an interpolation filter or some other filtering processes.

Although modern data processing always use a DT version of the original signal,
obtained by a certain sampling pattern on a discrete set, reconstruction to a contin-
uous version of sampled data is also needed for some specific applications. In Hi-Fi
applications such as digital audio, to maintain high quality in the resulting recon-
structed analog signal, a very high quality analog reconstruction filter (postfilter) is
required. Reconstruction from one discrete set to another is also useful in the non-
fractional sampling rate alternation in digital signal processing. Additionally, in
radio receiver front-ends, if the output of the sampling process is not uniformly dis-
tributed, a reconstruction process is needed to reconstruct the nonuniform samples
to uniform distributed samples prior to the quantizer.

According to Shannon’s sampling theorem [4], a band-limited signal can be
exactly reconstructed from its samples by US. The perfect reconstruction formula
derived by Whittaker [45] for critical uniform sampling is given by

x(t) =
∞∑

n=−∞
x(nTs)sinc[2B(t − nTs)], (2.19)

where x(nTs) represents samples at the series of equidistant sample instants, Ts =
1/(2B), and sinc(x) = sin(πx)/(πx). The reconstruction of the input signal is
realized by a convolution summation of uniform distributed samples x(nTs) with a
sinc function equivalent to ideal low-pass filtering.

In practice, the CT signal reconstruction is enhanced by first passing the sampled-
data signal xs(t) through a holding circuit with the function of eq. (2.8), and then
feeding it into an LPF or other RAs. The reconstruction discussed in the thesis
is only realized by a certain RA without any enhancement from the zero-order
holding.

For NUS, even if there is a large number of samples, only few of them possess
a uniform distribution property with respect to the average sampling rate. The
expansion of X(f) does not consist of periodic replicas of the fundamental spectrum.
Consequently, the signal cannot be determined uniquely by the samples with only
a lowpass filter. Based on the Fourier series expansion, X(f) can be generally
expanded as

X(f) =
∞∑

n=−∞
cne−j2πfts(n), (2.20)

where ts(n) is the set of sampling instants either uniformly or nonuniformly dis-
tributed. Using inverse Fourier transform, we obtain the general reconstruction
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formula:

x(t) =
∫ B

−B

( ∞∑
n=−∞

cne−j2πfts(n)

)
ej2πftdf

= 2B
∞∑

n=−∞
cnsinc[2B(t − ts(n))]. (2.21)

For US ts(n) = nTs, cn = x(nTs)/2B and eq. (2.21) is exactly the same as
eq. (2.19). However, for NUS, since ts(n) = tn and cn 6= x(tn)/2B except when
tn = nTs, the reconstruction formula of eq. (2.21) cannot directly represent the
original signal x(t) unless cn is determined. RAs are expected to accurately predict
the original signal x(t) from the nonuniform samples x(tn).

In biomedical image processing, CT-scan and MRI frequently use the NUS pat-
tern in the frequency domain. Four sampling patterns are shown in Figure 2.9.
The sampled data of CT-scan and MRI are measured in the Fourier frequency do-
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Figure 2.9: Sampling patterns of nonuniform sampling [46]. (Top-left): Polar
sampling grid; (Top-right): Spiral sampling grid; (Bottom-left): variable-density
nonuniform sampling grid; (Bottom-right): general nonuniform sampling grid.
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main. The RA is needed to derive the Cartesian US grid (see Figure 2.10) from
the acquired data prior to the inverse Fourier transform operation. Inspired by the
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Figure 2.10: Cartesian uniform sampling grid.

applications in biomedical image processing, some RAs extensively used in image
reconstructions are proposed for the applications of radio communications.

However, the reconstruction process in radio communications is different from
that in biomedical image processing. In radio communications, both sampling and
reconstruction are in the time domain while they are in the frequency domain in
image processing. Additionally, in radio communications, the RA can be used to
reconstruct a set of unknown data at a regular time set from the NUS sequence.
Then the reconstructed result can be directly fed into the following digital signal
processing block (e.g., A/D converter). It is also possible to convert the samples
by NUS to a CT signal when an analog signal is needed (e.g., in Hi-Fi) in the
processing steam, which is different from the reconstruction in image processing.

2.3 Basis-Kernel (BK)

It is known that {ej2πftn} is a complete basis for X(f) within the bandwidth
[−B,B] and that {sinc[2B(t− tn)]} forms a complete basis for x(t) in t ∈ (−∞,∞),
given in eq. (2.19) and eq. (2.21). In [47], another sampling basis k(t, tn) which
is the unique reciprocal basis of {g(t, tn)} = sinc[2B(t − tn)] was introduced by
Higgins. An expression in terms of Kronecker delta function δmn is given by

〈k(t, tm), g(t, tn)〉 = δmn, (2.22)

where 〈a, b〉 denotes the inner product of a and b which is given by 〈a, b〉 =∫ ∞
−∞ a(t)b(t)dt. In t ∈ (−∞,∞), {k(t, tn)} is also a complete basis-kernel for x(t).
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Therefore, x(t) can be given either by

x(t) =
∞∑

n=−∞
〈x(•), k(•, tn)〉g(t, tn)

= 2B
∞∑

n=−∞
cng(t, tn) (2.23)

in terms of cn or by

x(t) =
∞∑

n=−∞
〈x(•), g(•, tn)〉k(t, tn)

=
∞∑

n=−∞
x(tn)k(t, tn) (2.24)

in terms of the nonuniform samples x(tn). It was also mentioned in [47] that this
method is appropriate in the case of L2 signals only. In other words, the CT function
x(t) has to satisfy

∫ ∞
−∞ |x(t)|2dt < ∞ [48], i.e., having finite energy. According to

Parseval’s equation [31],
∫ B

−B
|X(f)|2df < ∞. This CT function has a finite energy,

in other words, this method is only suitable for a band-limited signal.
However, the only complete orthonormal sampling basis for χ are of the form

{g(t, tn)} = {g(t, nTs)} (where χ is a subspace of L2-space in the time domain).
Obviously, Higgins sampling theorem includes the Shannon’s sampling theorem as
a special case: For US tn = nTs,

k(t,mTs) = g(t,mTs) = sinc[2B(t − mTs)],
〈k(t,mTs), g(t, nTs)〉 = sinc[2B(n − m)Ts] = δmn. (2.25)

A close form of the basis kernel (BK) k(t, tn) is needed for the reconstruction of
NUS, and k(t, tn) 6= g(t, tn).

2.4 Reconstruction Algorithms (RAs)

A filter generalized by a certain RA is expected to reconstruct the signal as close as
possible to the original from the nonuniformly distributed samples. The selection
of the BK k(t, tn) or the determination of the coefficient cn determines the recon-
struction performance. The reconstruction filter can be in either CT or DT. Based
on eq. (2.23) and eq. (2.24), a new sampling paradigm with RAs is proposed as
shown in Figure 2.11 and Figure 2.12.

Frequently used RAs for NUS include

• Low-pass Filtering (LPF) [interpolation],

• Lagrange Interpolating Polynomial [interpolation] [47],
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Figure 2.11: Identity elements of (a) interpolation reconstruction with a CT filter;
(b) interpolation reconstruction with a DT filter; (c) iterative reconstruction [49]
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Figure 2.12: Identity elements of (a) svd reconstruction with a CT filter; (b) svd
reconstruction with a DT filter.

• Spline Interpolating [interpolation],

• Gridding Algorithm [interpolation] [46],

• Least Square Reconstruction (LSR) Algorithm [svd],

• Iterative Algorithms [iterative] [50, 51],

• Yen’s Interpolations [interpolation] [52],

• Coefficient cn Determination Reconstruction Algorithm [svd],
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• “Minimum-Energy” Signals [svd] [52].

These methods can be simply classified into three types: interpolation, iterative and
svd methods. Interpolation is a common way to reconstruction and directly related
to eq. (2.24) with a well-defined BK k(t, tn). Iterative methods are extensively used
in image processing. They consist of three steps: orthogonal projection, iteration
and procedure convergence. svd is an important element of many numerical matrix
algorithms. If the matrix of eigenvectors of a given matrix is not a square matrix,
the matrix of eigenvectors has no matrix inverse, and the given matrix does not
have an eigen decomposition. The standard definition for the matrix inverse fails.
By svd, it is possible to obtain a pseudoinverse which is defined as

A−1 = (A∗A)−1A∗ = V DUT , (2.26)

where A = UDV T is a given m × n real matrix, U and V are m × m and n × n
unitary matrices (i.e., U∗ = U−1, V ∗ = V −1), D is a m×n diagonal matrix and the
elements in the diagonal consist of the singular values of A and zeros, {•}T denotes
the matrix transpose operator. All the RAs involving matrix inverse operations are
classified within the family of svd methods, e.g., LSR algorithm and coefficient cn

determination. Four BKs which are based on interpolation are shown and compared
in Figure 2.13. It is observed that they are symmetric around the origin for US but
asymmetric for NUS.
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Figure 2.13: The basis-kernels of interpolations in time domain.
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2.5 Performance Evaluation of RAs

A reconstruction error curve e(t) can characterize the reconstruction performance,
where

e(t) = x(t) − x̂(t), (2.27)

x(t) and x̂(t) are the original input signal and the reconstructed signal, respectively.
The Signal-to-Noise-and-Distortion-Ratio (SNDR) is normally used to numerically
evaluate the accuracy of reconstruction which is defined as [53]

SNDR =
∑L

i=1 x2
i∑L

i=1(xi − x̂i)2
, (2.28)

where i = [1, L] denotes the evaluated points, normally L > N , xi and x̂i represent
the points from the original and reconstructed signal, respectively. The SNDR in
dB is evaluated for the reconstruction performance of sampled and interpolated
points of NUS respectively by different RAs, see Table 2.1.

Table 2.1: SNDR (in dB) comparison of different algorithms (N=34, L=201) for
the NUS pattern shown in Figure 2.14

Algorithm Nonuniform sampling
Sampled points Interpolated poin ts

Lowpass filtering (LPF) 17.33 17.97
Lagrange interpolating polynomial ∞ ∞†

Spline interpolation ∞† 69.22
Gridding algorithm 18.49 19.22

LSR algorithm ∞† 39.54
Iterative algorithm 18.63 13.89
Yen’s interpolation ∞† 40.22
cn determination ∞† 39.54

”Minimum-energy” signals ∞† 37.30

† It is a reasonable assumption that SNDR is approximated by ∞ when SNDR> 100.

The computational complexity of a reconstruction filter depends on the accu-
racy requirement of the simulation model. For the interpolation reconstruction
filter, the approximation error between x(t) and x̂(t) can be decreased by increas-
ing the order of the filters or the degree of the interpolation. For the iterative
reconstruction, increasing the number of iterations is also helpful for reducing the
error when the repeating procedure is convergent. All the RAs are divided into two
groups, sinc-based and nonsinc-based, and the number of floating point operations
(FLOP) is evaluated by using matlab 5.3 and compared in Table 2.2 for different
RAs maintaining the performances shown in Table 2.1.
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Table 2.2: Computational complexity comparison of different algorithms by evalu-
ating the number of FLOP (floating point operations) [49]

Algorithm Sinc-based Nonsinc-based
LPF 55,141 –

Lagrange – 697,072
Spline – 8.088 × 109

Gridding 64,307 –
LSR – 1,131,518

Iterative 1,160,311 –
Yen’s – 1,376,353

“Minimum-energy” 610,676 –
Coefficient 996,532 –
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Figure 2.14: Sample distributions by US (Top) and NUS (Bottom), “+” shows the
sampling location and “◦” the sampled value.

It is noticed that Lagrange interpolating polynomial shows the best reconstruc-
tion performance for both nonuniformly sampled points and interpolated points.
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However, it is observed from eq. (2.24) that the input samples by NUS intercept
the interpolating filter impulse response at different time instants. This implies
that it has a time-varying characteristic. Currently, Lagrange fractional delay fil-
tering [54, 55, 56] and time-invariant filterbank [57] with synthesis filters generalized
to Lagrange interpolating polynomial are two feasible methods for the implemen-
tation of Lagrange interpolating polynomial. Lowpass filtering using sinc kernel
cannot pick up the correct values at the nonuniformly sampled points, and have
bad reconstruction performance at both sampled points and interpolated points, al-
though it provides good reconstruction performance for US except at the ends due
to the truncation error of the sinc function [49]. Yen’s interpolation is a modified
interpolation function based on LPF [52], and it does improve the reconstruction
performance of NUS to a certain degree. Spline has also a rather good reconstruc-
tion performance of NUS, although it is the most expensive technique. Repeating
the procedure many times causes a large number of FLOP for the iterative algo-
rithm.

Those RAs (i.e., gridding and iterative algorithm) which are extensively used
in image processing cannot immediately be used for radio communications. One
important difference between radio communication and image processing is that
the former always requires real-time processing but the latter does not. These RAs
together with those based on svd (i.e., LSR algorithm, coefficient determination
and “minimum-energy” signals) have to be applied to blocks of data while the
other methods (i.e., Lagrange interpolating polynomial, spline interpolation, Yen’s
interpolation) can be applied on a sample-by-sample basis.

2.6 RAs Implementation

In general, filters can be implemented with passive components, active components
or switched-capacitor (SC) circuit [58].

Passive filters consist of only resistors, capacitors and inductors without ampli-
fying elements e.g., transistors, operational amplifiers (opamps), etc. Passive
filters are very simple and do not need power supplies. They can be used
at very high frequency since they are not limited by the finite bandwidth of
opamps. Passive filters do not provide any signal gain.

Active filters use opamps with resistors and capacitors in their feedback loops.
They have high input impedance, low output impedance and arbitrary gains.
Moreover, they avoid use of bulky and nonlinear inductors. The performance
at high frequency is limited by the gain-bandwidth products of opamps.

Switched-capacitor filters are sampled-data filters consisting of only transistor
switches and capacitors along with clocks. The operation of SC filters is
based on the ability of on-chip capacitors and MOS switches to simulate
resistors [59]. SC filters provide signal gain but also introduce more noise,
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both clock feedthrough and thermal noise. Obviously, SC filters are DT filters
which is different from passive and active filters. A CT anti-aliasing filter is
needed prior to the SC filters.

Due to the discrete-time property of sampled-data signal, the SC filter is a
well-suited candidate for the implementation of RAs.



Chapter 3

Classic Bandpass Sampling

Signals can be categorized as lowpass versus bandpass in terms of the center fre-
quency. The lowpass information signal is carrier-modulated in the transmitter
such that the transmitted signal is centered at a non-zero frequency, i.e., a band-
pass signal. In the transmission of an information signal over a communication
channel, bandpass signals are always encountered. The demodulation at the re-
ceiver recovers the information signal from the bandpass signal through frequency
down-conversion. The carrier-modulated bandpass signal can be represented either
as a Double-SideBand (DSB) signal or a Single-SideBand (SSB) signal depending
on the definition of the equivalent lowpass information signal [60]. A DSB signal
requires twice the channel bandwidth of the equivalent lowpass signal for transmis-
sion. For saving transmission bandwidth, an SSB signal is generally used in radio
communications, at the cost of a more complicated modulation approach and com-
plex signal processing. A Single-SideBand Suppressed Carrier (SSB-SC) Amplitude
Modulated (AM) bandpass signal is expressed as

y(t) = Re{a(t)ej2πfct} = i(t) cos(2πfct) − q(t) sin(2πfct), (3.1)

where fc is the carrier frequency, a(t) is the equivalent complex lowpass signal and
given by

a(t) = i(t) + jq(t), (3.2)

i(t), q(t) are called the quadrature (I/Q) components of the bandpass signal, and
q(t) is the Hilbert transform of i(t) [60]. The Fourier transforms of the equiva-
lent complex lowpass signal a(t) and its complex conjugate a∗(t) are illustrated in
Figure 3.1 a)-d), where I(f) and Q(f) are the Fourier transform of i(t) and q(t),
respectively. The spectrum of the corresponding bandpass signal y(t) is shown in
Figure 3.1 e).

The bandpass signal defined by eq. (3.1) could be sampled by using either Low-
Pass Sampling (LPS) or BandPass Sampling (BPS). Assume that the bandwidth of
the equivalent lowpass information signal a(t) is B and B << fc. Based on Shan-
non’s sampling theorem, fs ≥ 2(fc +B) for LPS. BPS is a technique for undersam-

35
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Figure 3.1: Illustration of SSB signal spectra (a-d) and SSB-SC AM bandpass signal
spectrum (e) based on the definition in eq. (3.1).

pling a bandpass signal to realize frequency down conversion through intentional
aliasing with the sampling rate of being slightly larger than twice the information
bandwidth, i.e., Fs ≥ 2B. Obviously fs >> Fs. An example of sampled-data
signal spectrum by LPS and BPS is shown in Figure 3.2. The randomly generated
SSB-SC AM bandpass signal is sampled by LPS (fs = 2.5(fc + B) = 1375) and
BPS (Fs = 2.5B = 125), respectively, where fc = 500 and B = 50. To avoid harm-
ful signal spectral folding, the minimum sampling rate 2B is not used. Obviously,
the output signal spectrum of LPS is a periodic replica of the original modulated
bandpass signal spectrum with period of fs, while the output spectrum of BPS is
equivalent to a periodic replica of the equivalent lowpass signal spectrum in the pe-
riod of Fs, see Figure 3.2 b) and c). The sampled-data signal at the output by BPS
is located at a lower frequency, centered at ±25 in Figure 3.2 c). The BPS technique
shrinks the fundamental Nyquist interval [−fs/2, fs/2] = [−687.5, 687.5] based on
the first Nyquist criterion to the new narrow one [−Fs/2, Fs/2] = [−62.5, 62.5] and
realizes a frequency down-conversion at the same time. Different orders of Nyquist
bands can be selected and filtered out after BPS in consideration of different im-
plementations [61, 62]. With a goal of low power consumption, BPS becomes more
attractive to mixed-signal system design. It has been extensively studied in optics,
radar, sonar, communications and general instrumentation, etc.

As discussed in chapter 1, the concept of Software Defined Radio (SDR) has
gained more and more attention for its support of multi-mode wideband radio
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Figure 3.2: a) Original SSB-SC AM bandpass signal with a bandwidth of B = 50
and fc = 500; b) The corresponding frequency spectrum of sampled-data signal by
LPS, fs = 2.5(fc + B); c) The corresponding frequency spectrum of sampled-data
signal by BPS, Fs = 2.5B. Symbol “·” and “×” in a) represents the samples from
LPS and BPS, respectively.

communications. One key technology of SDR is the placement and design technique
of A/D converter in the channel processing stream, and the goal is to put the
A/D converter as close as possible to the antenna. By using conventional LPS, the
sampling rate would be too high to be realizable by current design technology. BPS
may be a solution for SDR by using a much lower sampling rate, see Figure 1.6.

Besides the advantage of lower sampling rate, BPS has also limitations in real
implementations. The BPS rate has to be carefully chosen in order to avoid harmful
signal spectral aliasing [63]. Noise aliasing is a direct consequence of lower sam-
pling rate as compared to the highest frequency component of the input bandpass
signal [15, 64]. The input signal frequency of BPS is still high even though the sam-
pling rate is low. It was shown that the jitter effects depend on both the variance of
the random jitter and the input frequency. The performance at the output of BPS
is degraded as compared to the equivalent LPS system, an ideal image-rejecting
mixer followed by an ideal lowpass sampler [15, 64]. Finally before this chapter is
concluded, some existing implementation examples using BPS will be shown and
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compared with regards to the noise aliasing performance.

3.1 Sampling Rate Selection

The classic bandpass sampling theory states that for Uniform Sampling (US) the
signal can be reconstructed if the sampling rate is at least twice the information
bandwidth, i.e., Fmin

s = 2fu/n, where n = bfu/Bc denoting the largest integer
less than or equal to fu/B, fu is the upper boundary frequency of the bandpass
signal [14]. Feldman & Bennett [65] and Kohlenberg [66] also showed that for
US, the minimum BPS rate is only valid for integer band position [14, 67], i.e.,
bfu/Bc = fu/B. The sampling rate selection of BPS depends significantly on the
band position which represents the distance between DC and the information band.

Assume that a real SSB bandpass signal is located at [−fu,−fl] ∪ [fl, fu] with
a fractional band position (i.e., it is not necessary that bfu/Bc = fu/B), where fl

and fu are given by fl = f0 − B/2, fu = f0 + B/2, B is the equivalent lowpass
information bandwidth, and f0 is the center frequency of the information band (see
Figure 3.3). By using BPS with the sampling rate of Fs, there exist many Nyquist
bands represented by dashed-line triangles in Figure 3.3. The value of x and Fs/2
determines the center frequency of the corresponding sampled-data spectrum at
the output. Then we can easily get

(f0 − x) − (n − 1)
Fs

2
= 0,

Fs =
2(f0 − x)

n − 1
. (3.3)

To avoid harmful signal spectral folding, the following constraints should be satis-
fied: {

x > B/2 (3.4.a)
B
2 + x < Fs

2 (3.4.b)

Substituting eq. (3.4.a) and eq. (3.4.b) into eq. (3.3), the acceptable sampling rate
should be in the range of

2fu

n
< Fs <

2fl

n − 1
. (3.4)

This is consistent with the conclusions presented in [14, 68]. For a special case when
x = Fs/2, the process of BPS is equivalent to homodyne or direct down-conversion.
Starting from eq. (3.3), the corresponding sampling rate is given by

Fs =
2f0

n
. (3.5)

This special case causes loss of information for a non-symmetric SSB signal since the
spectra down-converted from the positive and negative frequency band are folded



3.2. NOISE SPECTRUM ALIASING 39

|Y (f)|

fFs/20−Fs/2
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fcfl fu−fl−fu

Figure 3.3: An example of SSB bandpass signal with a fractional band position
located at [fl, fu] ∪ [−fu,−fl]

over at DC and can never be separated later. This sampling rate is only suitable
for sampling a symmetric DSB signal, e.g. a sinusoidal signal or a carrier signal
modulated by a real lowpass signal.

Based on eq. (3.4), the constraints of acceptable sampling rates for SSB signals
can be depicted graphically by Figure 3.4 [14, 65]. The sampling rates indicated by
the dashed line within the restricted area in Figure 3.4 are defined by eq. (3.5) [69].
However, it is difficult to adjust the BPS rate exactly to be equal to one value. Any
small sampling rate variation will cause Fs move into the disallowed area, resulting
in an incorrect folding of the signal spectrum.

It is also observed from Figure 3.4 that the set of allowable BPS rates consists
of n disconnected segments within [2B,∞). To do sampling efficiently, a lower
sampling rate is more attractive. With the increase of fu/B, n is increased and
consequently the gap between any two disallowed segments in the area of lower Fs

becomes narrower and narrower. Even a small error in the sampling rate might
cause Fs to fall into a disallowed area. Selection of sampling rate becomes more
and more difficult.

3.2 Noise Spectrum Aliasing

It is known that a resistor charging a capacitor gives rise to a total thermal noise
with power kT/C [70], where k is Boltzmann constant, T is the absolute temper-
ature and C is the capacitance. The on-resistance of the switch will introduce
thermal noise at the output. The noise is stored on the capacitor along with the
instantaneous value of the input voltage when the switch turns off. As shown in
Figure 3.5, the resistor Ron and sampling capacitor C construct an LPF with a
transfer function of

H(f) =
1

1 + j2πfRonC
, (3.6)
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Figure 3.4: The allowed and the disallowed (shaded area) uniform sampling rates
versus the band position, Fs is BPS rate, B is the bandwidth, and the information
band is located at [fl, fu] ∪ [−fu,−fl] [14].

with the 3dB bandwidth of f3dB = 1/(2πRonC). Thermal noise is known as Ad-
ditive White Gaussian Noise (AWGN) in communication theory, i.e. having a
delta-function autocorrelation with a flat Power Spectral Density (PSD). The PSD
of thermal noise introduced by the resistor Ron can be given as Sin(f) = 4kTRon

with a one-sided representation, or Sin(f) = 2kTRon with a two-sided representa-
tion. The corresponding noise PSD at the output of LPF is given by

Sout(f) = Sin(f)|H(f)|2 = 2kTRon
1

1 + 4π2f2R2
onC2

(3.7)

by a two-sided representation, and the total noise power is obtained as

Pout =
∫ ∞

−∞
Sout(f)df =

kT

C
. (3.8)

For modeling purposes, the output noise of LPF performed by the RC network can
be made equivalent to AWGN with a constant PSD within an effective noise band-
width Beff . Both noise sources share the same noise power kT/C, see Figure 3.5
(b), i.e.

Pout =
kT

C
= 2kTRon · (2Beff ), (3.9)

and
Beff =

1
4RonC

=
π

2
f3dB . (3.10)
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Figure 3.5: (a) A switched-capacitor (SC) sampling device. (b) Illustration of the
effective noise bandwidth, where Beff = π

2 f3dB .

The effective noise bandwidth of the sampling device Beff depends on the on-
resistance in the switch and the sampling capacitance, and it is normally larger
than the maximum frequency of the input signal. Besides the capacitor switching
noise (kT/C noise), opamp wide-band noise and opamp 1/f noise are two other
less dominant noise sources in practical SC circuits [71]. To simplify the following
analysis, the capacitor switching noise is regarded as the only noise source in the
sampling device, and the RC-filtered white noise is replaced by band-limited white
noise with the same power within an effective bandwidth Beff .

By using BPS, the wideband kT/C noise will be folded due to the effect of
subsampling such that the resulting SNR by BPS is lower than the equivalent LPS
system (i.e. an ideal image reject mixer followed by LPS) in the presence of the
same noise source, see Figure 3.6. The SNR degradation in dB is given as [15]

SNRdeg ≈ 10 log10

Beff

B
· B

Fs/2
= 10 log10

2Beff

Fs
. (3.11)

An anti-aliasing filter (either LPF or BPF) is normally used to reduce the out-of-
band noise prior to the sampler.

LPSLPF

(b)

(a)

BPF BPS

x(nT )y(t)

cos(2πfct)

x(t)

t = nT

t = nT

x(nT )y(t)

Figure 3.6: Illustration of (a) BPS system and (b) the equivalent LPS system.



42 CHAPTER 3. CLASSIC BANDPASS SAMPLING

The effect of noise aliasing can be graphically interpreted by the PSD. It is
known that an ideal uniform BPS is identical to an ideal uniform LPS followed by
a decimation operation [64] (see Figure 3.7) provided that the BPS rate Fs ≥ 2B

LPSBPS
y(n/fs)y(t)y(t) y(n/Fs) ↓M

M = fs/Fs

yd(n/fs)

Figure 3.7: Bandpass sampling equivalence

and the LPS rate fs ≥ 2(fc + B) according to the Nyquist rate, where M is the
decimation factor and M = fs/Fs. To avoid the noise aliasing in LPS, it is assumed
that fs ≥ 2Beff , although the thermal noise with a constant PSD of 2kTRon is still
present. The PSD of noise by LPS in the fundamental Nyquist band is illustrated
in Figure 3.8 (a). Assume that the minimum sampling rate 2B is used for BPS

LPS
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(a)

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

· · · Beff

· · ·......

M

· · · · · ·

· · · 0

0 B 2B

Yd(fN)

2kTRon

2M · 2kTRon

−Beff

Y (f)

...

(M − 1)B f

f

−Beff

· · ·

Beff· · ·2B (M − 1)BB

2

1

↓ M M =
Beff

B

... ... ... ...
... ... ... ...

Figure 3.8: Illustration of noise aliasing. (a) The PSD of noise by LPS in the
fundamental Nyquist band; (b) The PSD of noise by BPS, where the shaded area
represents the fundamental positive Nyquist band.

and Beff is an integer multiple M of B. By doing an M -fold decimation on the
output of LPS, the sampling rate will be reduced to the rate of BPS. The PSD of
the decimation output Yd(f/fs) in terms of the input PSD Y (f/fs) is given by [72]

Yd(f/fs) =
1
M

M−1∑
k=0

Y ((f/fs − k)/M), (3.12)
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where

Y (f) =
{

2kTRon, −Beff ≤ f ≤ Beff

0, otherwise. (3.13)

The decimation operation is equivalent to first stretching Y (f/fs) by a factor M to
obtain Y (f/(M · fs)), then create M − 1 copies of this stretched version by shifting
it uniformly in successive amounts of 1, and finally add all these shifted stretched
versions to the unshifted stretched version Y (f/fs) and then divided by M . The
final PSD after the M -fold decimation is illustrated in Figure 3.8 (b). The PSD of
noise from −Fs/2 to Fs/2 is increased by M such that the output SNR by BPS is
degraded as compared to the equivalent LPS system shown in Figure 3.6 (b).

The effects of noise aliasing was also demonstrated by simulations using the
matlab psd function, see Figure 3 in attached Paper III. If the sampled-data
signal of LPS is first fed into a BPF and then decimated, the out-of-band noise is
suppressed by the BPF and hence SNR is increased as compared to that of BPS.
Note that when using BPS, the out-of-band noise cannot be suppressed by a discrete
filter. Some special considerations to the noise aliasing is needed in the process of
sampling. Regarding the noise aliasing problem in BPS systems, a new sampling
concept, generalized bandpass sampling is proposed specially for treating the noise
aliasing problem and will be discussed in chapter 4.

3.3 Jitter Effect

The intention of sampling systems is to obtain a sample value at the corresponding
time instant for an input signal. Based on sampling theories, it is expected to
uniquely determine the input signal by the sampled data information. The effects
of random errors on the nominal sampling time instant are commonly called timing
jitter. As shown in Figure 3.9, the random error τn which is a time offset from the
nominal time instant tn causes a random error ετ (n) in the amplitude. The effect

●

●y(tn)

y(tn + τn)

tn + τntn

ετ (n)

t

y(t)

τn

Figure 3.9: Illustration of jitter on time and amplitude
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of jitter on the spectrum of the signal may give rise to new discrete components
and produce frequency selective attenuation [26].

For a sinusoidal input signal y(t) = A sin(2πfint), the theoretical Signal-to-
Noise-and-Distortion ratio (SNDR) in the presence of jitter is given by [15]

SNDR =
A2/2
Nτ

=
{

1/(4π2f2
inσ2

τ ), 2πfinστ << 1
1/[2(1 − e−2π2f2

inσ2
τ )], otherwise,

(3.14)

where Nτ is the average noise power, στ is the standard deviation of jitter and nor-
mally defined as a percentage of the sampling period Ts. Moreover, the expression
of SNDR for 2πfinστ << 1 is valid for all jitter distributions while the other SNDR
expression only applies to a random jitter with Gaussian distribution N(0, στ ).
Note that SNDR depends on both the standard deviation of random jitter στ and
the input frequency fin, but not the sampling frequency. Small jitter noise can
be approximately regarded as sampled AWGN. For large jitter, this assumption
is not valid anymore. For the same sampling rate, the input frequency of BPS is
normally larger than that in the equivalent LPS system. The noise power of BPS
corresponding to the same standard deviation of jitter στ is normally larger than
for LPS.

Jitter effects for a general input signal was discussed in [73, 74]. The time skew
problem in A/D converter system is very similar to the jitter problem and was
analyzed and compared in [74].

3.4 Overview of Studies on Bandpass Sampling

BPS theory does not only stand by the theoretical analysis but has also been im-
plemented and measured in various communication systems, e.g., the subsampling
mixers [17, 19, 20, 30, 75, 76, 77] and in ∆Σ modulators [78]. Switched-capacitor
(SC) circuits are often used in these designs based on either voltage-mode or current-
mode sampling.

Conceptual subsampling mixer

1. Starting from the basic concept of a subsampling mixer, Eriksson and Ten-
hunen [79] performed noise figure analysis and measurement on a conventional
subsampling mixer (see Figure 3.10) consisting of only one sampling switch, one
sampling capacitor and one output buffer. The measurement result showed that
the noise figure of the subsampling mixer can be described by a model containing
contributions of aliased thermal noise and the noise from buffer amplifier. The
SNR performance of the mixer depends significantly on the sampling rate, which is
consistent with the theoretical analysis presented here.

2. Following the basic concept of a subsampling mixer, Pekau and Haslett [77]
proposed an alternative implementation of a differential subsampling mixer. Fig-
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Buffer

Vclk(t)

+
Vc(t)−

Vout(t)

Vin(t)

Rin

Cs

Figure 3.10: Sampling mixer conceptual model

ure 3.11 only shows single ended version of the circuit. The input signal of the mixer
is at an RF frequency of 2.4 GHz, the sampling rate is 100 MHz and the output
frequency is 20 MHz. The subsampling mixer is combined with a low-noise ampli-
fier (LNA) such that the signal before sampling has a gain. The parallel resonant
LC load of the proposed sampler filters out some of the thermal noise due to the
resistance of the signal noise Rin. The mixer has better noise figure performance
as compared to the work in [19, 20, 79]. However, it doesn’t provide any immunity
to the problem of noise aliasing.

BufferLNA

Vclk(t)

+
Vc(t)−

Vout(t)

Rin

Vin(t) Ls Cs

Figure 3.11: A subsampling mixer incorporating with an LAN
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Continuous-time bandpass Σ∆ modulator

Σ∆ A/D converters have been extensively studied because they are robust against
circuit imperfections, have inherent linearity due to the use of single-bit quantizers
and can achieve high resolution. It is known that Σ∆ modulators provide noise
shaping on the quantization noise through the feedback loop such that the SNR
performance at the output is dramatically increased as compared to not using
a Σ∆ modulator. Making use of the feedback loop, a Σ∆ modulator provides
noise shaping to both the quantization noise and noise aliasing due to subsampling.
Hussein [78] proposed a continuous-time (CT) bandpass Σ∆ modulator with a
second order bandpass filter. The block diagram of the proposed modulator is
shown in Figure 3.12. The center frequency fin is tuned to (N − 1/4)fs and fs is

Continuous−time
Bandpass filter

S/H Quantizer

N
Divided by

DAC

fafin

fa = ±(fin − N · fs)

fs

fLO = N · fs

Figure 3.12: Block diagram of a CT bandpass Σ∆ modulator

the subsampling rate with respect to fin. Note that subsampling exists inside the
loop such that noise aliasing is attenuated by the CT bandpass loop filter. However,
the effective Q-factor of the CT bandpass filter is reduced after the subsampling
operation, see eq. (11) in [80]. The requirements on the CT bandpass filter can be
very demanding in this solution.

Charge sampling with FIR/IIR filtering

The previous BPS implementations are all based on voltage mode sampling. It
has been analyzed that the wideband thermal noise introduced in the sampling
device will be folded in the fundamental Nyquist band by voltage mode BPS. As
compared to voltage sampling, charge sampling has the unique property that the
different Nyquist bands of the sampled data spectrum are weighted by an sinc
function sinc[(f − kfs)∆t], see eq. (A.4) in Appendix A, where fs is the sampling
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rate, ∆t is the duration to charge integration and k represents different order of
Nyquist bands. Obviously such sinc weighting factor provides zeros or notches at
f = N/∆t + kfs (N is an arbitrary integer) and improves the SNR performance at
the sampling output. BPS in current mode or bandpass charge sampling is realized
by integrating the input current at a high rate while sampling or reading-out the
output of the integral at a low rate.

1. The simple intrinsic notch filter by the sinc function is not sufficient enough
to compensate for the effect from noise aliasing. A bandpass charge sampling
combined with an Nth order FIR moving average filter and a 1st order IIR filter (the
so called direct sampling mixer) was proposed in a discrete-time (DT) Bluetooth
receiver [17, 30]. The corresponding schematic and the appropriate clock scheme
are shown in Figure 3.13. The charge sharing among CH and CR realizes a single-

φ2

φ1

φ

b)

a)

vIF

φ2 φ1

CR

CR

φ2φ1

CH

φgm

vRF

iRF

Figure 3.13: a) Direct sampling mixer with intrinsic 1st order IIR filtering and b)
the appropriate clock scheme.

pole recursive IIR operation. The combination of the sinc function, the FIR moving
average filter, and the IIR operation provides a certain noise aliasing suppression.

2. Karvonen et al. also noticed the advantage of using the intrinsic CT sinc function
in charge sampling and proposed a quadrature charge-domain sampler with embed-
ded FIR and IIR filtering functions [22]. The composite filtering of the CT built-in
sinc function in charge sampling and the embedded FIR, IIR filtering functions
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integrated into the sampling process would improve the noise aliasing suppression.
The principles of the proposed charge domain FIR and IIR sampler are shown in
Figure 3.14. The function of DT FIR filtering is realized by the multiple accumu-

−

Vin

Voutim(nTs)

Voutre(nTs)

Pim−

Pim+

Pre−

−

+
t = nTs

Cs
Pre+

+

−

t = nTs

Cs

+

−

+
t = nTs

Cs

+

−

t = nTs

Cs

+

−

Gm

−

+

t = nTs

t = nTs −

Pre−
Cs

t = nTs t = nTs

Ca
Voutre(nTs)

Voutim(nTs)

+
− t = nTs

Cb

Ca

+
Vre+(nTs)

t = nTs t = nTs

Pre+

Qre+(nTs)

Vin Gm

+

+

Pim+

Cs

Qim+(nTs)
Vim+(nTs)

Qim−(nTs)
Vim−(nTs)

t = nTs t = nTs

Ca

−

+

t = nTs −

Pim−
Cs

t = nTs t = nTs

Ca

Qre−(nTs)
Vre−(nTs)

−

Ca

Qre+(nTs) Vre+(nTs)
Qre−(nTs)
Qim+(nTs)

Vre−(nTs)
Vim+(nTs)

Qim−(nTs) Vim−(nTs)

Figure 3.14: The principle of quadrature charge-domain FIR sampler (Left) and
IIR sampler (Right) [22].

lation of charge into the sampling capacitors. Different integration of input current
results in different sequences of weights that correspond to the filtering coefficients.
Starting from eq. (A.4), the frequency spectrum of sampled-data signal by charge
sampling combined with FIR filtering can be expressed as (see Appendix A)

Ṽ ′
out(f) =

∆t

CL · te
−j2πf/fs

∞∑
k=−∞

H(f − kfs)Ĩin(f − kfs)sinc[(f − kfs)∆t], (3.15)
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where the transfer function of FIR filtering is given by

H(f − kfs) =
N∑

n=0

hne−jπ(f−kfs)(2n−1)∆t (3.16)

and hn is the filtering coefficient. To improve the selectivity, the charge-domain
FIR sampler can be further combined with a 1st order IIR filter by simply adding
one additional shared switched capacitor into the feedback loop of the integrator,
see Figure 3.14 (Right).

Voltage sampling with FIR/IIR filtering

Besides bandpass charge sampling, it is also possible to introduce FIR and IIR
filtering into bandpass voltage sampling. For bandpass charge sampling, the fre-
quency down-conversion or mixing is realized by decimating a high rate integrated
value. However, it is possible to realize sampling, filtering and frequency down-
conversion at the same time in the process of voltage sampling by using complex
FIR filtering [81, 82]. In addition, the built-in FIR sinc function and the introduced
DT FIR filtering function in bandpass charge sampling only provide noise aliasing
suppression at a certain set of frequencies corresponding to the notches of the com-
posite filtering function, see eq. (3.15). Moreover, the CT sinc function in charge
sampling always includes a lowpass function, which is a drawback for a bandpass
input signal.

Generalized bandpass sampling combined with FIR filtering in voltage mode was
proposed in [61, 81, 83, 84]. The corresponding frequency spectrum of sampled-data
signal is expressed as

Xs(f) =
1
Ts

∞∑
k=−∞

H(kfs)X(f − kfs), (3.17)

where the transfer function of intrinsic FIR filtering is given by

H(kfs) =
N∑

n=0

hne−j2πkfsTD·n (3.18)

and hn is the filtering coefficient, TD represents a unit-time delay of FIR filtering.
Comparing eq. (3.15) and eq. (3.17), it is of more advantage to use voltage mode
generalized bandpass sampling since the introduced FIR filtering function provides
a discrete-frequency magnitude response such that the whole noise aliasing band
corresponding to the notches of the filtering function will be cancelled. In the next
chapter, generalized bandpass sampling with FIR filtering will be discussed in more
detail.





Chapter 4

Generalized Bandpass Sampling
Receivers

In 1949, Shannon stated that any function limited to the bandwidth B and the time
interval T can be specified by giving 2BT samples [4]. Besides classic Shannon’s
sampling theorem, there are actually many other ways to extract the data from the
signal and still be able to fully reconstruct the signal. For example, the samples by
nonuniform sampling or the samples from the signal and its derivative at half the
Nyquist rate at least for each (i.e., derivative sampling) can also uniquely deter-
mine the signal without loss of information. Papoulis established the generalized
nonuniform sampling theorem in 1977 [25] which is an extension of classic Shannon’s
sampling theorem. It states that a band-limited signal is uniquely determined by
the samples on the outputs from M linear systems with input of the signal at 1/M
times the Nyquist rate at least for each. The Papoulis’ generalization of sampling
theorem extensively summarizes many different sampling cases: (i) derivative sam-
pling [85], (ii) Recurrent nonuniform sampling [52], (iii) quadrature sampling [69],
and so on.

In digital communications, the modulated signal is always expressed in terms
of I/Q format or in quadrature. The main advantage of I/Q modulation is the
symmetric case of combining independent signal components into a single composite
signal and later splitting such a composite signal into its independent component
parts [86]. It is more attractive to use quadrature mixers or quadrature sampling to
separate the signal into I and Q parts before the baseband in radio communications.
It is inevitable to encounter signal processing of complex signals in quadrature
processing systems. Using quadrature processing has also the advantage of image
rejection [70, 81, 87].

Regarding the noise aliasing problem in BPS systems and starting from Pa-
poulis’ generalized sampling theorem, a new sampling concept using bandpass volt-
age sampling, Generalized Quadrature BandPass Sampling (GQBPS) is invented.
GQBPS performs intrinsic FIR filtering that uses either real or complex filter co-

51
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efficients. Both theoretical analysis and simulation results show that GQBPS with
inherent FIR filtering is promising to avoid noise aliasing when increasing the filter
order. The jitter effect is also suppressed to a certain degree under the moving
averaging operation of inherent FIR filtering. However, GQBPS has always limited
noise and jitter performance improvement that is determined by the time resolution
of the sampling scheme. Alternatively, Generalized Uniform BandPass Sampling
(GUBPS) that is an extension of GQBPS is then proposed. GUBPS has the same
property to noise aliasing suppression and jitter reduction as GQBPS while it has
no any limitation of the performance improvement on noise and jitter. In addi-
tion, GUBPS with evenly spaced samples is normally easier to be implemented as
compared to GQBPS with nonunformly spaced samples in most cases. Finally, a
generalized bandpass sampling receiver based on the concept of GUBPS is imple-
mented at circuit level by Switched-Capacitor (SC) circuit technique. To improve
the selectivity at the sampling output, FIR filtering is extended by adding a 1st
order complex IIR filter in the implementation.

4.1 Papoulis’ Generalized Sampling Theorem

The generalized sampling expansion was first introduced in [25]. As shown in Fig-
ure 4.1, given M linear systems with transfer functions of {Hk(ω)}, k = 1, 2, · · · ,M ,

...

H1(ω)

H2(ω)
f(t) f̂(t)

HM(ω)

...
...

g1(t)

g2(t)

gM(t)

Y1(ω, t)

Y2(ω, t)

YM(ω, t)

∑
n δ(t − nTs)

∑
n δ(t − nTs)

∑
n δ(t − nTs)

Figure 4.1: Identity of signal representation by Papoulis’ generalized sampling the-
orem.

the output responses from the linear systems to an input band-limited signal f(t)
is given by

gk(t) =
∫ ω0

−ω0

F (ω)Hk(ω)ejωtdω, (4.1)

where ω0 = 2πB is the bandwidth of the signal, and F (ω) is the Fourier transform
of f(t). Each of the M output responses is ideally sampled at time instant nTs in
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at least 1/M times Nyquist rate. The combination of M linear systems {Hk(ω)}
and ideal sampling represents an alternative to classic sampling. For an acceptable
sampling case, there always exist M Linear Time-Invariant (LTI) functions {yk(t)}
such that the input signal f(t) can be obtained at the final output in terms of
{gk(nTs)} (i.e., the samples of {gk(t)}) and {yk(t)}:

f(t) =
∞∑

n=−∞
[g1(nTs)y1(t−nTs)+ g2(nTs)y2(t−nTs)+ · · ·+ gM (nTs)yM (t−nTs)],

(4.2)
where Ts = 1/fs, {yk(t)} is given by

yk(t) =
1

∆ω

∫ −ω0+∆ω

−ω0

Yk(ω, t)ejωtdω, (4.3)

and ∆ω = 2ω0/M , Ts = 2π/∆ω, the M unknown functions {Yk(ω, t)} are deter-
mined by M linear expressions that can be written in matrix form:




H1(ω) H2(ω) · · · HM (ω)
H1(ω + ∆ω) H2(ω + ∆ω) · · · HM (ω + ∆ω)

...
...

...
...

H1[ω + (M − 1)∆ω] H2[ω + (M − 1)∆ω] · · · HM [ω + (M − 1)∆ω]




·




Y1(ω, t)
Y2(ω, t)

...
YM (ω, t)


 =




1
ej∆ωt

...
ej(M−1)∆ωt


 (4.4)

Generalized sampling with M branches is also called Mth-order sampling. It
could be either US or NUS depending on the distribution of sampling time instants
from all the branches. For the special case of M = 1, the generalized sampling
theorem is reduced to the classic Shannon’s sampling theorem.

4.1.1 Example 1 – Recurrent nonuniform sampling

Starting from the generalized sampling theorem and Figure 4.1 and assuming that
the sampling time instant of one branch lags behind the previous one by αk (|αk| <
Ts/2), we have

gk(t) = f(t + αk)

and
Hk(ω) = ejαkω.
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...

f(t) f̂(t)

...
...

f(t)

ejα1ω

1

ejαM−1ω

Y1(ω, t)

Y2(ω, t)

YM(ω, t)

f(t + α1)

f(t + αM−1)

∑
n δ(t − nTs)

∑
n δ(t − nTs)

∑
n δ(t − nTs)

Figure 4.2: Identity of signal representation of recurrent nonuniform sampling.

Such sampling is also referred to as bunched or interlaced sampling [38]. The M
unknown Yk(ω, t) are given by




1 ejα1ω · · · ejαM ω

1 ejα1(ω+∆ω) · · · ejαM (ω+∆ω)

...
...

...
...

1 ejα1[ω+(M−1)∆ω] · · · ejαM [ω+(M−1)∆ω]


·




Y1(ω, t)
Y2(ω, t)

...
YM (ω, t)


 =




1
ej∆ωt

...
ej(M−1)∆ωt


 .

(4.5)
By using the Vandermonde determinant, a closed form of the reconstructing

function yk(t) is given by eq. (4.47) in [38]. Yen also showed a similar expression
of yk(t) for recurrent nonuniform sampling, see eq. (9) in [52]. For the special case
when M = 2, Papoulis gave an exact reconstruction formula, see eq. (16) in [25].
One can always find the M LTI functions {yk(t)} so that the input signal f(t)
is uniquely determined by the sampled data f(nTs + αk) in recurrent nonuniform
sampling. Recurrent nonuniform sampling is applicable in real implementations.

4.1.2 Example 2 – Quadrature lowpass sampling

Starting from Figure 4.1 and assuming M = 2, H1(ω) = 1 and H2(ω) = Htr(ω),
generalized sampling is specialized to the example of quadrature lowpass sampling,
see Figure 4.3. The filter Htr(ω) is called Hilbert transformer. The impulse response
and the frequency response of this filter is given by [60]

h(t) =
1
πt

, −∞ < t < ∞, (4.6)
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Y1(ω, t)

Y2(ω, t)

f(t) f̂(t)

1
f(t)

Htr(ω)
f̃(t)

∑
n δ(t − nTs)

∑
n δ(t − nTs)

Figure 4.3: Identity of signal representation of quadrature lowpass sampling, where
f̃(t) represents the Hilbert transform of f(t).

H(ω) =
∫ ∞

−∞
h(t)e−jωtdt =




−j, ω > 0
0, ω = 0
j, ω < 0,

(4.7)

This filter realizes a 90◦ phase shift for all frequencies within the bandwidth of
the real input signal. Obviously f̃(t) is a shifted version of f(t) by 90◦. The
corresponding sampled-data signal consists of the samples from f(t) and f̃(t) by
lowpass sampling.

Starting from eq. (4.4), the two unknown LTI systems Y1(ω, t) and Y2(ω, t) are
given by [

1 Htr(ω)
1 Htr(ω + ωo)

]
·
[

Y1(ω, t)
Y2(ω, t)

]
=

[
1

ejω0t

]
, (4.8)

where ω0 = 2πB. Hence,

Y1(ω, t) = 1 − Htr(ω) · ejω0t − 1
Htr(ω + ω0) − Htr(ω)

,

Y2(ω, t) =
ejω0t − 1

Htr(ω + ω0) − Htr(ω)
. (4.9)

The corresponding reconstruction function y1(t) and y2(t) exist and can easily be
obtained as

y1(t) =
sin(2πBt)

2πBt
, y2(t) =

cos(2πBt) − 1
2πBt

, (4.10)

based on eq. (4.3). Quadrature lowpass sampling is also applicable in real imple-
mentations.

4.1.3 Example 3 – Quadrature Bandpass Sampling

For an SSB-SC AM bandpass input signal in radio communication front-ends,
quadrature mixers controlled by a quadrature LO are normally used to down-
convert the bandpass signal and split the bandpass signal into the corresponding
modulated I and Q parts before sampling. As we discussed in chapter 3, BPS
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x̂(t)x(t) ∑
n δ(t − nTs)

s(t)

s(−t)

∑
n δ(t − nTs − α)

Figure 4.4: Identity of signal representation of quadrature bandpass sampling based
on Kohlenberg’s sampling theorem.

technique realizes frequency down-conversion which is similar to a mixer. A smart
design of BPS system can realize both down-conversion and quadrature sampling
on a bandpass signal.

Starting from Figure 4.2 for recurrent nonuniform sampling, assuming M = 2,
α1 = 1/(4fc) ± m/(2fc),m = 0, 1, 2, · · · (fc is the carrier frequency of f(t)), input
signal f(t) is a bandpass signal defined by eq. (3.1), the output responses of two
linear systems f(t) and f(t + α1) are given by

f(t) = i(t) cos(2πfct) − q(t) sin(2πfct)

f(t + α1) = i(t + α1) cos
[
2πfc(

1
4fc

± m

2fc
)
]
− q(t + α1) sin

[
2πfc(

1
4fc

± m

2fc
)
]

= (−1)m+1 [i(t + α1) sin(2πfct) + q(t + α1) cos(2πfct)] .

Without losing generality, it can be assumed that α1 = 1/(4fc), i.e. m = 0.
Note that there exists a 90◦ phase shift between f(t) and f(t + α1). Such special
recurrent nonuniform sampling exhibits the properties of quadrature sampling. This
is the so called quadrature bandpass sampling. Based on the Kohlenberg’s sampling
theorem [66] that an SSB signal x(t) located at (fl, fu)∪ (−fu,−fl) can be exactly
represented by

x̂(t) =
N−1∑
n=0

[x(nTs)s(t − nTs) + x(nTs + α)s(nTs + α − t)], (4.11)

the quadrature bandpass sampling can be equivalently modeled as shown in Fig-
ure 4.4, where Ts ≥ 1/B is the BPS rate, α = 1/(4fc) and s(t) are given by eq. (31)
in [66]. The samples of quadrature bandpass sampling are sufficient to represent the
input SSB bandpass signal as long as the sampling rate on each sampling branch is
equal to or larger than half of the acceptable minimum BPS rate (i.e., ≥ 2B). Note
that when α = Ts/2, the quadrature bandpass sampling becomes the conventional
uniform BPS. The I (in-phase) and Q (quadrature) component are obtained by
alternating between two sampling branches.
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Besides the exact interpolating function developed by Kohlenberg for an SSB
bandpass signal reconstruction, Ries [88] also suggested a form of general recon-
struction function derived from a lowpass reconstruction kernel. An alternative way
to represent a bandpass signal by the samples is to use a carrier-modulated sinc
function based on theorem 4.2 in [88]:

x̂(t) =
∞∑

n=−∞
x(tn)s(t − tn)

where
s(t, tn) = Re{sinc[2B(t − tn)]ej2πfct} (4.12)

and the set of {tn} consists of the samples from both I and Q branches. In general,
eq. (4.12) could be extended to

s(t, tn) = Re{k(t, tn)ej2πfct} (4.13)

for any BK discussed in section 2.4 provided that the expression of k(t, tn) could
be found, where k(t, tn) is defined by eq. (2.24).

4.2 Generalized Quadrature Bandpass Sampling

Based on the concept of quadrature bandpass sampling, the algorithm of General-
ized Quadrature BandPass Sampling (GQBPS) was first addressed in [61] especially
for treating the problem of noise aliasing in BPS systems. Both theoretical analysis
and simulation results show that GQBPS is promising to suppress noise aliasing
and also increases the jitter performance to a certain degree.

The proposed GQBPS receiver in terms of quadrature bandpass sampling is
shown in Figure 4.5, and can be generalized to an arbitrary order of sampling. An

   Bandpass Signal

A/D

A/D

s(t)

∑
n δ(t − nTs − α)

q̂(m)

î(m)î(mT ′
s)

q̂(mT ′
s)

x̂(t)xs(t)∑
n δ(t − nTs)x(t) = Re{a(t)ej2πfct}

∑
m δ(t − mT ′

s)

∑
m δ(t − mT ′

s − α)

Figure 4.5: The model of GQBPS receiver based on quadrature bandpass sampling.

RF/IF bandpass signal x(t) = Re{a(t)ej2πfct} is sampled by quadrature bandpass
sampling, where a(t) represents the upper sideband of the equivalent lowpass sig-
nal, see eq. (3.2) and Figure 3.1, although the complex conjugate of a(t), a∗(t)
that represents the lower sideband of the equivalent lowpass signal can also be



58 CHAPTER 4. GENERALIZED BANDPASS SAMPLING RECEIVERS

used in the model. The sampled-data signal is fed into a bandpass reconstruction
filter s(t) that might be realized by using a carrier-modulated sinc function, see
eq. (4.12). Decimation or resampling may be required to realize either the second
down-conversion or the data rate reduction prior to A/D conversion.

4.2.1 GQBPS with real FIR Filtering

Starting from the basic concept of sampling theory in chapter 2, the sampled-data
signal xs(t) by 2nd order GQBPS is given by

xs(t) = x(t)

[ ∞∑
n=−∞

δ(t − nTs) +
∞∑

n=−∞
δ(t − nTs − α)

]
, (4.14)

and the corresponding Fourier transform of xs(t) is

Xs(f) =
1
Ts

∞∑
k=−∞

(1 + e−j2πkfsα)X(f − kfs), (4.15)

where the second sampling sequence lags behind the first by α and

α = 1/(4fc) + m/(2fc) (m = 0,±1,±2, · · · ) (4.16)

for quadrature bandpass sampling, X(f) is the Fourier transform of the determin-
istic input SSB bandpass signal x(t) with a bandwidth of B. Note that 2nd order
GQBPS performs 1st order FIR filtering and the transfer function is given by

H(f) = 1 + e−j2πfα (4.17)

sampled at discrete-frequencies f = kfs. The corresponding magnitude response of
H(kfs) is illustrated in the dashed-line in Figure 4.6 for fc = 700, B = 5, fs = fc/4,
α = 1/(4fc). Note that a single transmission zero is located at f = fc − B/2.

The corresponding frequency spectral analysis is illustrated in Figure 4.7, where
Al(f) and Ar(f) represent respectively the folded spectra of the negative and pos-
itive frequency components of the input signal, and Xs(f) = Al(f) + Ar(f). To
avoid signal spectra overlapping, the ratio of fc to fs should be an integer or a half
integer and fs ≥ 2B [61, 82]. It is observed that the whole folded band located at
fc−B/2 (k = 2fc/fs) that corresponds to the transmission zero of H(kfs) for Al(f)
is completely eliminated while the band located at the same band position of X(f)
(k = 0) is the same as X(f) multiplied by a gain factor. Note that the transmission
zero of H(kfs) causes the whole band being zeroed out due to the discrete frequency
property by quadrature sampling. In addition to the whole folded information sig-
nal band, the whole noise aliasing band is also eliminated correspondingly. This
is in contrast to charge sampling where the aliasing products are a function of the
continuous frequency, see eq. (3.15) in chapter 3. The transmission zeros provided
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Figure 4.6: Magnitude response of inherent 1st order and 3rd order real FIR filtering
in GQBPS, where k ∈ [−fc/fs, 2fc/fs], f ∈ [−(fc + B/2), fc − B/2], fc = 700,
B = 5, fs = fc/4, α = 1/(4fc), Hmax and Hzero represent the expected maximum
transmission and the transmission zero, respectively.

by the intrinsic FIR function in charge sampling only cause notches at a limited set
of frequencies, but not the whole bands.

The transfer function H(f) given by eq. (4.17) is a special case of 1st order
FIR filtering that all the coefficients are one. It can be extended to a more general
case with arbitrary order of filtering and arbitrary coefficients. By increasing the
order of filtering, more transmission zeros are introduced while the transmission
to the interesting folded information band is still the same such that the SNR
performance is increased. Increasing the order of filtering is equivalent to increasing
the effective sampling rate of GQBPS, i.e., putting more sampling branches in
parallel and maintaining the time lag between any two successive sampling branches
being equal to α. For 4th order GQBPS with 3rd order FIR filtering that can be
modeled in Figure 4.8, one more transmission zero is introduced, see solid-line in
Figure 4.6. It is a promising technique to be able to suppress the effect of noise
aliasing significantly by GQBPS when the order of FIR filtering is high enough or
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Figure 4.7: Illustration of spectral folding for 2nd order GQBPS with 1st order
FIR filtering, where fs = fc/4 > 2B, α = 1/(4fc). A real bandpass filter S(f)
with a bandwidth of fs is shown here, although it can be a complex filter with a
bandwidth as narrow as B.

the effective sampling rate is large enough compared to the effective noise bandwidth
Beff . The frequency spectrum of GQBPS combined with FIR filtering can in
general be expressed as

Xs(f) =
1
Ts

∞∑
k=−∞

H(kfs)X(f − kfs), (4.18)

where the discrete frequency transfer function of intrinsic FIR filtering is given by

H(kfs) =
N∑

n=0

βne−j2πkfsαn (4.19)

and βn represents the real filtering coefficients.
Based on the above analysis, the interesting folded information band is still

located at the same band position as the input signal. The advantage of BPS,
realizing the frequency down-conversion by signal spectral folding, is not reflected
by this sampling scheme.
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∑
n δ(t − nTs)

∑
n δ(t − nTs − α)

∑
n δ(t − nTs − 2α)

∑
n δ(t − nTs − 3α)

x(t) xs(t)

β2

β3

β0

β1

Figure 4.8: 4th order GQBPS with 3rd order FIR filtering, where α = 1/4fc.

4.2.2 GQBPS with complex FIR filtering

It is noticed that the interesting folded band corresponding to k = 0 could be
shifted to a very low frequency if real FIR filtering is transformed to complex FIR
filtering. Starting from the “modulation” property of the z-transform, the new
transfer function in the z-domain is given by

H(z) =
N∑

n=0

(z0 · z)−n|z=ej2πkfs·α , (4.20)

assuming that the corresponding real FIR filtering has all-one coefficients. The
“modulation” factor z−1

0 is equal to e−j2πfc·α such that the interesting folded band
is shifted to the left by fc in the frequency domain (equivalent to a phase shift of
π/2). The illustration of spectral folding in GQBPS with transformed filtering is
shown in Figure 4.9, and it is consistent with the magnitude response of transformed
FIR filtering, see Figure 4.10. Comparing with eq. (4.19), the coefficient βn is not
real but complex due to the filtering transformation. The coefficient βn of complex
FIR filtering transformed from all-one-coefficient real FIR filtering is given as

βn = e−j π
2 ·n. (4.21)

Finally, we can easily obtain a general expression of the resulting SNR (in dB)
for (N + 1)th order GQBPS in the presence of band-limited white thermal noise



62 CHAPTER 4. GENERALIZED BANDPASS SAMPLING RECEIVERS

����
����
����
����

����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

−fc

k = 6 k = 7 k = 8

fc
S2 S3S0 S1 S5 S6 S7

k = 1 k = 2

Ar(f )

k = −4

k = 0
Al(f )

k = 4k = 3

0

k = 5

0

S4

S−4

0 fc−fc
X(f )

0 fc−fc

X(f )

0 fc−fc

S−8

Ts/2fs/2

S(f )

S8

k = −5k = −6 k = −3 k = −2k = −7k = −8

−fc

k = −1 k = 0

fc
S0S−7 S−6 S−5 S−3 S−2 S−1

a)

b)

c)

e)

d)

f

f

f

f

f

Figure 4.9: Illustration of spectral folding by 2nd order GQBPS with complex FIR
filtering for fs = fc/4 > 2B, α = 1/(4fc), β0 = 1, β1 = −j. A real lowpass filter
S(f) with a bandwidth of fs/2 is shown here, although it can be a complex upper
sideband filter with a bandwidth as narrow as B.

introduced in the process of sampling:

SNRtot = SNRdeg − SNRimp

= 10 log10

2Beff

2 · fs
− 10 log10

N + 1
2

= 10 log10

2Beff

(N + 1)fs
, (4.22)

where Beff is the effective noise bandwidth, SNRdeg by 2nd order GQBPS is
defined by eq. (3.11) with Fs = 2 · fs, fs is the sampling rate of single sampling
branch in GQBPS, N + 1 is the total number of sampling branches of higher order
GQBPS and (N + 1)fs represents the corresponding effective sampling rate. The
effect of noise aliasing is completely avoided when SNRtot = 0, although it could
never happen for GQBPS due to the limited effective sampling rate 4fc that is
defined by the time resolution (i.e., α = 1/(4fc)) of the sampling scheme. The
SNR improvement by higher order GQBPS is valid for GQBPS with both real and
complex FIR filtering.
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Figure 4.10: Magnitude response of inherent 1st order and 3rd order complex FIR
filtering in GQBPS, where k ∈ [−fc/fs, 2fc/fs], f ∈ [−(2fc + B/2), fc − B/2],
fc = 700, B = 5, fs = fc/4, α = 1/(4fc), Hmax and Hzero represent the expected
maximum transmission and the transmission zero, respectively. For 1st order FIR
filtering, β0 = 1, β1 = −j, while for 3rd order, β0 = 1, β1 = −j, β2 = −1, β3 = j.

Moreover, it is also observed from Figure 4.7 that the “self-image” folding bands
(i.e., k = ±2fc/fs) are always transfered to zero due to the quadrature property of
sampling. GQBPS provides the immunity to the “self-image” problem due to I/Q
mismatches. However, the performance of “self-image” rejection strongly depends
on the phase shift of the sampling clock accuracy [82].

Note that the samples are still nonuniformly spaced in GQBPS except for some
special cases, e.g. (N + 1) · α = Ts. It is known that conventional uniform BPS
has the same noise aliasing performance as GQBPS with the same order of sam-
pling [61]. With respect to the circuit implementation, it is much easier to realize
uniform sampling with inherent FIR filtering compared to nonuniform sampling.
Under the concept of uniform quadrature bandpass sampling [14], GQBPS strategy
is extended to Generalized Uniform BandPass Sampling (GUBPS).
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4.3 Generalized Uniform Bandpass Sampling

A special case of 2nd order GQBPS is when the sampling rate for each sampling
branch satisfies [14]

fs =
2fc

2m − 1
, m = 1, 2, · · · (4.23)

which is called Uniform Quadrature BandPass Sampling (UQBPS). UQBPS pos-
sesses all the properties of quadrature BPS and the sampling time instants are
uniformly distributed. When more sampling branches with the same sampling rate
fs are introduced and the time lag between any two successive sampling sequences
is TD = 1/[(N + 1) · fs] (where N is the order of FIR filtering or N + 1 is the order
of sampling), the phase shift between any two samples at the output of sampling is
not equal to 90◦ any more, which is not quadrature sampling and will be referred to
as Generalized Uniform BandPass Sampling (GUBPS)1. UQBPS is a special case of
GUBPS with 2nd order sampling and 1st order FIR filtering. Similar to GQBPS,
GUBPS also performs FIR filtering besides sampling. The transfer function of
intrinsic FIR filtering in GUBPS is in general expressed as [81, 82]

H(kfs) =
N∑

n=0

βne−j2πkfs·TD·n, (4.24)

where βn could be either real or complex. The coefficients of complex FIR filtering
transformed from all-one-coefficient real FIR filtering is defined as

βn = e−j2πbfc/fsc· n
(N+1) , (4.25)

where bxc denotes the largest integer less than or equal to x. The magnitude
responses of H(kfs) with and without filtering transformation are shown in Fig-
ure 4.11. For the special case when N = 1 and N = 3, there is no difference
between FIR filtering with real coefficients and the corresponding transformed fil-
tering. The illustration of spectral folding for 2nd order GUBPS (or UQBPS) is
shown in Figure 4.12.

GUBPS maintains all the same properties to noise aliasing suppression and “self-
image” band rejection as GQBPS, while GUBPS has no limitation on the maximum
effective sampling rate. Starting from eq. (4.22) with fs defined by eq. (4.23), we
can easily have

SNRtot = 10 log10

Beff · (2m − 1)
(N + 1)fc

(4.26)

for GUBPS. When Beff · (2m − 1)/[(N + 1)fc] = 1, noise aliasing is completely
suppressed, i.e., the required order of FIR filtering is N = (2m−1)dBeff

fc
e−1, where

dxe is the smallest integer larger than or equal to x. Note that the interesting output
1In all the published papers, UQBPS was used as a general name for both N = 1 and N > 1.

GUBPS is a more suitable name and will be used instead in the dissertation.
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Figure 4.11: Magnitude response of inherent 1st order, 3rd order and 7th order
FIR filtering in GUBPS, where k ∈ [−fc/fs, 2fc/fs], f ∈ [−(2fc + B/2), fc −B/2],
fc = 700, B = 5, fs = 2fc/9, α = 1/(4fc), Hmax and Hzero represent the maximum
transmission and the zero transmission, respectively: (Top) Real FIR filtering with
all-one coefficients; (Bottom) Complex FIR filtering with the coefficients defined by
eq. (4.25).

samples by GUBPS are not located at baseband but centered at fs/2 + B/2, and
further down-conversion is needed by either resampling or decimation. This is often
a small problem since this operation is performed at the low frequency fs compared
to fc.

4.4 Noise and Jitter Performances

The noise and jitter performances of GQBPS and GUBPS when increasing the order
of intrinsic FIR filtering are evaluated and compared by using matlab simulations.
A randomly generated bandlimited SSB signal with B = 5 is frequency translated
to fc = 700 by multiplying with a sinusoidal carrier. Oversampling with respect
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Figure 4.12: Illustration of spectral folding by 2nd order UQBPS for fs = 2fc/9 >
2B (m = 5). A real bandpass filter S(f) with a bandwidth of fs is shown here,
although it can be a complex filter with a bandwidth as narrow as B.

to the classic BPS theorem is used to show the effect of noise aliasing, where
fs = fc/4 for GQBPS and fs = 2fc/9 (i.e., m = 5 in eq. (4.23)) for GUBPS. The
time shift between any two successive sampling branches is always α = 1/(4fc) in
GQBPS and TD = 1/[(N + 1)fs] (N is the order of FIR filtering) in GUBPS. The
impulse response of real FIR filtering are all one, and all complex FIR filtering is
transformed from real FIR filtering with all-one coefficients. The simulation results
are also compared with the theoretical expectation.

4.4.1 Noise aliasing performance

To evaluate noise aliasing performance, bandlimited white Gaussian noise is added
such that the in-band noise power is equal to the out-of-band noise power, and
the effective noise bandwidth Beff = 10fc. The sampling time instants are well
predetermined, i.e., no sampling jitter is present. The simulation results of SNR (in
dB) in the presence of noise aliasing versus the order of FIR filtering for GQBPS
and GUBPS are shown in Figure 4.13. The evaluated SNRs based on eq. (4.22) are
superimposed.
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Figure 4.13: The simulated and theoretically evaluated SNR in the presence of noise
aliasing versus the order of intrinsic FIR filtering (a) in GQBPS; (b) in GUBPS.
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As discussed in section 4.2.2, the effective sampling rate in GQBPS cannot be
increased any more when it reaches to 4fc that is determined by the time resolution
α of the sampling scheme. For current simulation environment, the effective sam-
pling rate becomes 4fc when N = 15, which is consistent with the simulation result,
see Figure 4.13. When N ≤ 15, the simulation and theoretical evaluation results
are consistent, namely, the SNR performance is improved by 3dB when the order
of sampling is doubled. As stated before, GUBPS has no effective sampling rate
limitation. However, the noise power at the sampling output can never be lower
than that at the input. In other words, when the effective sampling rate (N + 1)fs

is equal to or larger than 2Beff , noise aliasing is avoided completely, see eq. (4.22)
and the SNR performance is not improved anymore by increasing the order of FIR
filtering. For the current simulation, this corresponds to N = 63. However, it is
observed from Figure 4.13 that the in-band noise aliasing at the interesting band
is avoided completely when the order of filtering N ≥ 49, even though the effective
sampling rate is still lower than 2Beff and some other folded bands still suffer from
noise aliasing. This result is consistent with the simulation result shown in Figure 8
in [81].

4.4.2 Jitter performance

To evaluate jitter performance, the randomly generated input signal is sampled in
the presence of small random jitter with a Gaussian distribution N(0, στ ), where the
standard deviation of jitter στ = λTs/3 and λ = 0.01, Ts = 1/fs (fs is the sampling
rate for each sampling branch), i.e., στ = 1.9×10−5 for GQBPS and στ = 2.1×10−5

for GUBPS. The simulated SNRs (in dB) in the presence of only jitter versus the
order of FIR filtering in GQBPS and GUBPS are shown in Figure 4.14.

It is known that GQBPS performs both sampling and FIR filtering, where the
process of FIR filtering performs moving average and provides the function of noise
reduction. Assuming that FIR filtering has a unity gain at DC and all the sampling
branches have equal weights, the noise reduction ratio (NRR) of length-N FIR
filtering is defined as

NRR =
N−1∑
n=0

|βn|2 = N · ( 1
N

)2 =
1
N

, (4.27)

where βn are the coefficients that could be either real or complex. Based on the
properties of βn, see eq. (4.21) and eq. (4.25), the definition of NRR is the same for
both real and complex FIR filtering. Once the order of sampling is doubled, i.e.,
N → 2N , the variance of noise at the output of FIR filtering will theoretically be
reduced by 3dB, see dashed-line in Figure 4.14.

It is observed that the simulated SNR is very consistent with the theoretical
expectation for GQBPS within 1 ≤ N ≤ 15 and GUBPS. For GUBPS, the SNR in
the presence of jitter is always improved with increased order of FIR filtering until
it approaches the SNR of ideal GUBPS. However, for GQBPS under the current
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Figure 4.14: The simulated and theoretically evaluated SNR in the presence of
timing jitter versus the order of intrinsic FIR filtering (a) in GQBPS; (b) in GUBPS.
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simulation, the effective sampling rate reaches the maximum when N = 15, and
the jitter performance is not increased any more when N > 15.

Besides suppressing noise aliasing, GQBPS and GUBPS with FIR filtering also
provides certain immunity to jitter noise, which can not be achieved by conven-
tional oversampling. As discussed in [89], the jitter effects in conventional mixers
are similar in sampling systems. It is inevitable to encounter jitter in mixers if
clock jitter is present in oscillators. It is of more advantage to use GQBPS and
GUBPS with complex FIR filtering to realize frequency down-conversion instead of
a conventional mixer since one can make use of the FIR filtering process to improve
the jitter performance. The moving average operation of FIR filtering can be also
used to explain the improvement of noise aliasing in GQBPS and GUBPS.

4.5 Complex Signal Processing

Complex signal processing is extensively used in wireless communication systems,
e.g., image-rejecting systems in RF receivers and quadrature modulation systems,
although all the physical circuits only deal with a real voltage or current signal.
Due to the presence of quadrature sampling and complex filtering in GQBPS and
GUBPS, complex signal processing is needed.

Complex signal processing normally includes four basic operations: complex
addition, complex multiplication, complex integration for continuous-time (CT)
filters or complex delay in discrete-time (DT) filters [90]. A complex signal consists
of a pair of real value signals at a certain time instant denoted as the real and
imaginary part. All the complex operations can be equivalently realized by doing
corresponding real operations on these two real signals. A complex addition is
simply to add two real parts and two imaginary parts independently. A complex
multiplication operation can be directly defined from the mathematic definition.
Assume a complex input signal x(t) = xr(t) + jxi(t) multiplied by the impulse
response of a complex filter h(t) = hr(t) + jhi(t) equals y(t), i.e.,

y(t) = [xr(t) + jxi(t)] · [hr(t) + jhi(t)]
= [xr(t)hr(t) − xi(t)hi(t)] + j[xr(t)hi(t) + xi(t)hr(t)]
= yr(t) + jyi, (4.28)

where the superscript r and i represent real and imaginary part of a complex signal,
respectively. The signal-flow graphic of the complex multiplication operation is
illustrated in Figure 4.15. A complex integration for CT filters or complex delay
in DT filters is simply to integrate or delay the input real and imaginary parts,
respectively.
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Figure 4.15: Illustration of complex signal multiplication by a) a complex operation;
b) the equivalent real operations.

4.6 CMOS Implementations

4.6.1 Passive and active sampling

Passive sampling circuits consisting of only capacitors and switches permit very fast
sampling and can handle a large input bandwidth [91]. The circuit bandwidth is
determined by the on-resistance of the switch and the sampling capacitance. It has
been shown that passive sampling can successfully sample a 900MHz signal [75]. It
might be a good candidate to GQBPS and GUBPS implementations.

Passive sampling is extensively used in high-speed time-interleaved A/D con-
verters. To increase the effective sampling rate, several sampling branches can
operate in parallel which is similar to the sampling architecture of GQPBS and
GUBPS. However, the total number of converters in time-interleaved A/D convert-
ers is equal to the total number of parallel sampling branches while only two A/D
converters are needed in the proposed GQBPS and GUBPS architecture, one for
real and the other for imaginary data processing. The conventional passive sam-
pling architecture is very sensitive to clock skew between parallel sampling channels.
An improved passive sampling technique that is insensitive to skew was proposed
by Gustavsson and Tan [92]. As shown in Figure 4.16, a global sampling clock φ
is introduced. When the clock phases φi (i = 1, 2, · · ·M) and φ are high, the input
is charging the ith sampling capacitor. When φ goes low, the input analog value
is sampled by the sampling capacitor since one plate of the sampling capacitor is
floating. The advantage of the circuit is that the clock phase φi always goes low af-
ter φ goes low. Even if there are large phase skews between successive clock phases
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Figure 4.16: Illustration of improved passive sampling technique that is insensitive
to phase skew.

φi, they do not have any influence on the sampling instant and the problem with
skew is eliminated.

However, passive sampling can inevitably encounter offset or distortion prob-
lems in RC sampling network [93]. Active sampling circuits consisting of switches,
sampling capacitors and operational amplifiers (opamp) can realize offset cancella-
tion or autozero by using a unit gain feedback [94]. However, active sampling takes
more time than passive sampling due to the settling time of the opamp limiting
the sampling rate. Additionally, the circuit bandwidth is limited by both the RC
sampling network and the opamp bandwidth. Based on the resettable gain circuit
architecture [95], an available implementation method for GQBPS and GUBPS in
active sampling was proposed [84], and the corresponding unit cell of schematic for
1st order sampling is shown in Figure 4.17 (a). It is obvious that the circuit cancels
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Figure 4.17: Unit cell of schematic for 1st order sampling by (a) resettable gain
circuit; (b) capacitive-reset gain circuit.

the DC-offset, although the output level is always reset to zero which requires an
opamp with a high slew rate. To reduce the slew rate requirement, capacitive-reset
gain circuit can be used instead [95], see Figure 4.17 (b). Such a circuit architecture
has the same valid output level and DC-offset property as resettable gain circuit,
but the output is always reset to the value that is determined by the value of the
output at the previous phase and the DC-offset instead of zero. Both two reset
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gain circuits possess the property of highpass response from the opamp’s input to
the output although the response of the whole circuit does not necessarily have
a high-pass response. The 1/f noise introduced in opamp located at the low fre-
quency range is then highpass filtered. One can put multiple unit cells in parallel
with appropriate clock scheme to realize higher order sampling with higher order
FIR filtering [84].

4.6.2 Implementation of FIR and IIR filtering

Starting from the theoretical analysis on GQBPS with complex FIR filtering (see
section 4.2.2), when the complex FIR coefficient βn is defined by eq. (4.21), the
outputs from complex FIR filtering are repeatedly obtained as

{
i(nTs + k

4fc
), 0, i(nTs + k+2

4fc
), 0 real data

0, q(nTs + k+1
4fc

), 0, q(nTs + k+3
4fc

) imaginary data,

where k = 4m, m = 0, 1, 2, · · · , bN/4c and N is the order of FIR filtering. The
I/Q components corresponding to the equivalent lowpass signal a(t) are directly
obtained at the output of GQBPS. The sampled-data signal can be decimated
and quantized by the following process step, but a real lowpass anti-aliasing filter
with the bandwidth of 2B (B is the SSB information bandwidth) is needed before
decimation on each real and imaginary data path.

For GUBPS with complex FIR filtering, a complex signal multiplication is
needed, see Figure 4.15. The output after each complex coefficient multiplica-
tion in the process of sampling consists of real and imaginary parts which are the
inputs to the following digital processing. As shown in Figure 4.12 the interesting
information band of sampled-data signal is located at fs/2 + B/2, where fs is the
sampling rate for each sampling branch. The sampled data are modulated at this
lower IF. A bandpass filter located at the interesting band is needed prior to the
second frequency down-conversion (or decimation) and quantization process. Such
bandpass filter is normally realized as a complex filter since either the positive or
negative frequency components are needed in real implementations, and it could be
either an FIR, IIR filter or a combination of an FIR and an IIR. The corresponding
implementation block diagram for GUBPS is shown in Figure 4.18. FIR filters can
have linear phase and guaranteed stability, but filter orders are normally large for
small transition bands and delays are large as well. However, a small transition
band can be achieved by a small IIR filter order. A common implementation of
higher order IIR filters is to cascade 2nd order IIR filters (or “biquads”). IIR filters
are the digital counterpart to analog filters. They use feedback, and will normally
require less computing resources than an FIR filter for similar performance. Nev-
ertheless IIR filters may be unstable and very dependent on the filter architecture.

In the following, GUBPS with complex FIR filtering will be implemented by
Switched-Capacitor (SC) circuit technique. The sampling function combined with
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Figure 4.18: Block diagram of GUBPS combined with complex FIR filtering and
βn (n = 0, 1, · · ·N) represents the corresponding set of complex coefficients. The
interesting band of sampled-data signal is further filtered out by a complex FIR/IIR
bandpass filter.

FIR filtering is realized by passive sampling. The digital complex bandpass filter
is designed as an IIR filter using complex SC filter design method [96].

Due to the sampled-data nature of SC technique, FIR filtering can be imple-
mented in parallel structure, see Figure 4.19. To simplify it is assumed that the
input-offset voltage of opamp is neglected and no offset compensation is considered
in the circuit. This compensation circuit can be easily added when it is needed, see
Figure 4.17. The corresponding appropriate clock scheme is shown in Figure 4.20.
The input voltage is sampled by N + 1 parallel sampling channels, where the sam-
pling clock on each channel lags behind the one on the previous channel by TD.
On each sampling channel, the voltage is sampled by two different capacitors in
parallel Cbi

, Cbi+1 (i = 2n, n = 0, 1, 2, · · ·N). The sampled voltage level must be
held by using an opamp with a capacitor and a reset switch in the negative feed-
back loop. Obviously this implementation use passive sampling since no opamp is
used to generate delay resulting in less power consumption. Using charge conser-
vation analysis, one can easily get the transfer function of the sampling circuit (see
Appendix C):

HFIR(z) = z−1/2
N∑

i=0

[
Cb2i

Ch
+ j

Cb2i+1

Ch

]
z−i, (4.29)

where the values of complex impulse response coefficients Cb2i

Ch
,

Cb2i+1
Ch

are de-
termined by eq. (4.25)), and the unit-time delay element z−1 is given by z−1 =
e−j2πkfsTD . It is obvious that this sampling circuit performs Nth order FIR fil-
tering. The extra delay element z−1/2 in the numerator only causes a phase shift.
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Figure 4.19: FIR filter design by passive sampling.

The sampled voltage levels determined by the ratios of Cb2i

Ch
and

Cb2i+1
Ch

represent
the real and imaginary voltages, respectively. The equivalent sampling rate of the
circuit is (N + 1)/Ts. An extra switch operating at a lower rate 1/Ts realizes a
decimation operation at the output.

In order to improve selectivity, we extend the FIR filtering function by adding a
1st order complex IIR filter. It is easy to see that the circuit shown in Figure 4.21
is a 1st order real IIR lowpass filter, where φ and φ are a pair of complementary
clocks. The corresponding transfer function is given by

HIIR−LP (z) =
Cbz

−1

(Ca + Ch) − Chz−1
. (4.30)

A 1st order complex bandpass filter can be obtained by frequency shifting or “mod-
ulating” a lowpass filter [96]:

z → z0z, (4.31)
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Figure 4.21: An example of 1st order lowpass filter.

where
z0 = e−j2πf0Ts = cos(2πf0Ts) − j sin(2πf0Ts) = α − jβ, (4.32)

and f0 is the center frequency of the bandpass filter, and 1/Ts is the operating fre-
quency of the IIR filter. The transfer function of the IIR bandpass filter transformed
from HIIR−LP (z) is obtained as

HIIR−BP (z) =
Cb(α − jβ)z−1

(Ca + Ch) − Ch(α − jβ)z−1
. (4.33)

The corresponding circuit implementation for a real input signal is shown in Fig-
ure 4.22. The “modulation” factor z0 introduces two cross-coupled capacitors be-
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Figure 4.22: Circuit implementation of 1st order complex IIR bandpass filter trans-
formed from the 1st order IIR lowpass filter shown in Figure 4.21.

tween the inputs and outputs of the opamps in the real and imaginary datapaths,
and also cross terms from the signal input. Assuming φ=‘0’ and φ=‘1’ at t = nTs

and it toggles to φ=‘1’ and φ=‘0’ at t = (n + 1)Ts. The input-output equation can
be written as

Vin(n)Cbα + V Im
out (n)Chβ = V Re

out(n + 1)(Ch + Ca) − V Re
out(n)Chα

−Vin(n)Cbβ − V Re
out(n)Chβ = V Im

out (n + 1)(Ch + Ca) − V Im
out (n)Chα. (4.34)

One can easily get the transfer function of the circuit:

V Re
out(z) + jV Im

out (z)
Vin(z)

=
Cb(α − jβ)z−1

(Ch + Ca) − Ch(α − jβ)z−1
,
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which is consistent with the expectation, see eq. (4.33). This circuit can be easily
extended for a complex input signal Vin(t) = V Re

in (t)+jV Im
in (t) by adding two more

cross terms for the imaginary part.
The circuit architectures discussed above are proposed only for single ended

output implementations. It is known that fully differential opamps provide a larger
output voltage swing than their single ended counterparts, which is important when
the input supply voltage is small. Two outputs with complementary signs are
obtained at the same time in the differential output. Even-order nonlinearilities
can be rejected by a balanced circuit [97]. In addition, it is seen from eq. (4.34)
that two cross-coupled capacitors Chβ cause opposite signs in charge conservation
because the upper one is inverting bottom plate sampling and the lower one toggle
switching. So do the cross terms Cbα and Cbβ at the signal input. Toggle switching
is parasitics sensitive and normally unexpected in practice [98, 99]. It can be
avoided by using fully differential technique. A fully differential implementation of
the 1st order complex IIR bandpass filter with a perfect balance circuit is shown
in Figure 4.23 which replaces all the toggle switches by inverting bottom plate
sampling. Note that this IIR complex bandpass filtering implementation is only
valid for α, β > 0, but it is easy to be adjusted for α, β < 0 by changing the
components in the opamps’ feedback loops [96].

The numerator of HIIR−BP (z) in eq. (4.33) is determined by the passive sam-
pling array in the 1st order complex IIR bandpass filter. It can be easily replaced by
the sampling array with intrinsic FIR filtering to achieve a composite FIR/IIR fil-
tering function. A single ended implementation of GUBPS with composite FIR/IIR
filtering and the appropriate clock scheme are proposed, see Figure 4.24. As dis-
cussed in section 4.2.2, the wanted band is centered at fs/2 + B/2 after GUBPS.
The IIR filter is combined with the extra decimation switch so that the operating
rate of IIR filtering is 1/Ts. Based on eq. (4.32), α, β < 0 for GUBPS implemen-
tations. The circuit realization of 1st order complex IIR bandpass filtering shown
in Figure 4.22 is used after minor changes. The circuit is analyzed using charge
conservation, see Appendix C. The transfer function of the circuit is given by

HFIR−IIR =
z−1

∑N
i=0[Cb2i

+ jCb2i+1 ]z
−i

(Ch + Ca) − Ch(α − jβ)z−(N+1)
. (4.35)

The numerator is determined by the passive sampling array with intrinsic FIR
filtering in a high operating rate and the denominator determines the pole of the
1st order complex IIR filter in a 1/N times lower operating rate as compared to FIR
filtering. Two more toggles switches are introduced to compensate the negative α
that can be avoided in fully differential implementations. A sharper roll-off in the
gain response of IIR filter can be obtained by adding more stages to the first order
IIR filter, either by cascade coupling or using ladder structures [98].

For the same specification as in Figure 4.11, the magnitude responses of 15th
order FIR filtering, 1st order complex bandpass IIR filtering, and the combination
of FIR/IIR filtering are shown in Figure 4.25. The coefficients of FIR filtering
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Figure 4.23: Fully differential realization of 1st order complex IIR bandpass filter
transformed from the 1st order IIR lowpass filter shown in Figure 4.22.

are defined by eq. (4.25) for GUBPS implementations. It is observed that FIR
filtering realizes the maximal transformation at the interesting frequency band and
IIR filtering functions as a bandpass filter to select the interesting band. Note that
the repeated bands from the IIR filter are at the notches of the FIR filter, except for
the wanted band. The magnitude response of composite FIR/IIR filtering shows
good selectivity. The 3 dB bandwidth and the center frequency of the 1st order
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Figure 4.25: Magnitude responses of intrinsic 15th order complex FIR filtering in
GUBPS (Top in solid line), 1st order complex IIR filtering at the output of GUBPS
(Top in dashed line) and the composite FIR/IIR filtering HFIR/IIR(f) (Bottom) for
k ∈ [−2fc/fs, 0] in the range of f ∈ [−(2fc + B/2), fc −B/2], where k is the index
of folding bands shown in eq. (4.24), fc = 700, B = 5, fs = 2fc/9, TD = Ts/16,
Ts = 1/fs. The complex coefficients of FIR and IIR filtering are determined by
eq. (4.25) and eq. (4.32), respectively.

complex IIR bandpass filter determine the selectivity performance. The complex
IIR bandpass filter defined by eq. (4.35) has the same 3 dB bandwidth as the
corresponding lowpass prototype defined by eq. (4.30):

cos ω−3dB = 1 − 1
2(Ch

Ca
+ 1)Ch

Ca

. (4.36)

Obviously the 3 dB bandwidth only depends on the ratio of Ch to Ca. The center
frequency of the composite FIR/IIR filter is determined by α and β. Starting from
eq. (4.32) with f0 = fs/2 + B/2,

α = − cos(πξ), β = − sin(πξ), (4.37)
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Figure 4.26: The gain response of the designed 1st order complex IIR bandpass filter
(a) with different 3dB bandwidth and the same center frequency (i.e. ξ = 0.5); (b)
with the same 3dB bandwidth (i.e. Ch/Ca = 9) but different center frequency.

where ξ = B/fs. The magnitude response of only |HIIR−BP (ejω)|2 is shown in
Figure 4.26 with respect to the ratio of Ch/Ca and the value of ξ.



Chapter 5

Summary of appended papers

Paper I: Nonuniform sampling and reconstruction theory are studied. Starting
from Basis-Kernel (BK), a general reconstruction formula is given for nonuni-
form sampling (NUS). Six NUS reconstruction algorithms that have been
mostly used in image processing are reviewed based on different BK expres-
sions. The corresponding reconstruction performances and hardware imple-
mentations in radio receiver applications are compared and discussed.

Paper II: Three sources of performance degradation in BandPass Sampling (BPS)
systems, harmful signal spectral folding, noise spectral folding and timing jit-
ter, are reviewed. The performance of reconstruction algorithms for nonuni-
form BPS in the presence of the noise sources are discussed based on simula-
tions.

Paper III: This journal paper is a summary of Paper II and part of Paper I.

Paper IV: Regarding the noise aliasing in BPS systems and starting from the
Papoulis’ generalized sampling theorem, Generalized Quadrature BandPass
Sampling (GQBPS) is proposed and studied in the frequency domain for both
deterministic and stochastic input signal. The noise aliasing performance of
GQBPS and conventional BPS are compared. The theoretical analysis shows
that GQBPS might be a potential way to reduce noise aliasing at the cost of
a more complicated reconstruction algorithm.

Paper V: GQBPS in voltage-mode with inherent FIR filtering is presented. By
using sampling equivalence, this sampling strategy is comparable to another
strategy, charge sampling with intrinsic FIR/IIR filtering. The theoretical
analysis and simulation results show that this inherent FIR filtering not only
has the advantage to reject or attenuate images and interferences, but is also
helpful to suppress noise aliasing. GQBPS is NUS except for some special
cases. GQBPS with inherent FIR filtering is then extended to a special case
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of uniform sampling, Generalized Uniform BandPass Sampling (GUBPS)1

with inherent FIR filtering, that is easier to be implemented than GQBPS.

Paper VI: GUBPS1 is analyzed for both ideal sampling and a sample-and-hold.
It is shown that the noise aliasing performance of GUBPS1 with intrinsic FIR
filtering is not degraded by the effect of sample-and-hold in real sampling
circuits. In addition, one available implementation method to GUBPS1 by
using active sampling based on reset gain circuit is proposed and discussed
at circuit level.

Paper VII: The filtering transformation in GQBPS is studied. Inherent FIR fil-
tering in GQBPS and GUBPS1 with real coefficients is transformed such that
the interesting band is shifted to a lower frequency. The main advantage of
such transformation is to achieve a frequency down-conversion besides sam-
pling and noise aliasing suppression. The whole subsampling system with
GQBPS and GUBPS1 is simplified by using complex filtering.

Paper VIII: This submitted journal paper is a summary of Paper IV, Paper V
and Paper VII together with the analysis on the sensitivity to the accuracy
of sampling clock in generalized bandpass sampling systems.

1In all the published papers, UQBPS was used as a general name for both 2nd order and
higher order generalized uniform bandpass sampling. GUBPS is a more suitable name and will
be used instead in the dissertation.



Chapter 6

Conclusions and Future Work

The first part of this thesis reviews and compares different radio receiver architec-
tures for conventional and subsampling receivers, single standard and multistandard
receivers. The motivation of the thesis is to investigate a novel receiver architec-
ture for Software Defined Radio (SDR). Under the concept of SDR, subsampling
receivers in BandPass Sampling (BPS) technique becomes more and more attrac-
tive.

After that, sampling is discussed, including Uniform Sampling (US) and NonUni-
form Sampling (NUS), voltage sampling and charge sampling, deterministic sam-
pling and random sampling. A single ideal lowpass filter based on Shannon’s sam-
pling theorem is not good enough to reconstruct the signal from the samples by
NUS. A general reconstruction formula in terms of a basis-kernel is proposed and
nine reconstruction algorithms (RAs) starting from the formula are evaluated and
compared especially for deterministic NUS in terms of reconstruction performance
and computational complexity. It is investigated that most of these RAs are exten-
sively used in off-line image processing, but algorithms based on interpolation are
also possibly used in on-line radio communications. Reconstruction becomes hard
for random sampling, but random sampling may be helpful for signal identification
and eliminating the quantization distortions in the following A/D converters.

Then the classic BPS theory is reviewed from the aspects of sampling rate
selection, noise aliasing and jitter. The existing studies on BPS are presented and
compared. It is noticed that noise aliasing plays an important role in the BPS
applications.

Starting from the Papoulis’ generalized sampling theorem, generalized band-
pass sampling including Generalized Quadrature BandPass Sampling (GQBPS)
and Generalized Uniform BandPass Sampling (GUBPS) are invented especially for
dealing with the performance degradation due to noise aliasing in BPS systems.
It is observed that GQBPS and GUBPS perform intrinsic FIR filtering that uses
either real or complex filter coefficients. The theoretical analysis and simulation
results show that both GQBPS and GUBPS realize sampling, frequency down-
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conversion and noise aliasing suppression by well-designed intrinsic FIR filtering.
Both noise and jitter performance will be theoretically increased by 3 dB when
the length of FIR filtering is doubled. However, GQBPS has always limited noise
and jitter performance improvement that is determined by the time resolution of
sampling. Additionally, the samples by GQBPS are nonuniformly spaced for most
cases. GUBPS has better noise and aliasing performance and is easier to be imple-
mented as compared to GQBPS. In the final part, a generalized bandpass sampling
receiver based on the concept of GUBPS is implemented at circuit level by Switched-
Capacitor (SC) circuit technique. To obtain a better selectivity at the sampling
output, an extra IIR filter combined with a decimation operation is introduced.

Bandpass voltage sampling and bandpass charge sampling are two promising
candidates for subsampling receivers. In this thesis, these two sampling methods
are also analyzed and compared in theory. It is shown that generalized bandpass
sampling in voltage-mode is more efficient to suppress noise aliasing than bandpass
charge sampling with embedded filtering technique. This is determined by the
different frequency responses of two sampling techniques. The same noise aliasing
suppression may be achieved by lower order FIR filtering in generalized bandpass
voltage sampling as compared to bandpass charge sampling.

Regarding the problems in real SC circuit implementations, further studies are
still needed for the proposed SC circuit architecture of generalized bandpass sam-
pling receiver, e.g. cross-talk among multiple sampling branches, charge injection
and clock feedthrough of switches, parasitic issues in physical level and the trade-off
between other performances and power consumption, etc. A final silicon implemen-
tation of the proposed SC circuit architecture is expected.

Both GQBPS and GUBPS were invented orienting to single-band RF/IF ap-
plications. More deep studies on multi-band RF bandpass sampling have come
out [62, 100, 101], and it is of more interest to further investigate GQBPS and
GUBPS for multi-band RF applications. It is promising to see multistandard sub-
sampling receivers using the concept of generalize bandpass sampling in the near
future.
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Appendix A

Fourier Transform Analysis of Conventional Charge
Sampling and Charge Sampling with FIR filtering

As shown in Figure 2.5, the ideal sampled-data signal by conventional charge sam-
pling process has been written as eq. (2.10) and is shown here again:

xs(t) =
∞∑

n=−∞

(∫ tn+∆t

tn

x(ξ)dξ

)
δ(t − tn − ∆t). (A.1)

Assuming that tn = nTs (fs = 1/Ts), the output voltage of charge sampling in
Figure 2.6 in the time domain is given by

Vout(t) =
1

CL

∞∑
n=−∞

(∫ nTs+∆t

nTs

Iin(ξ)dξ

)
δ(t − nTs − ∆t)

=
1

CL

(∫ t

t−∆t

Iin(ξ)dξ

) ∞∑
n=−∞

δ(t − nTs − ∆t). (A.2)

The infinite periodic Dirac delta function can be represented as its corresponding
Fourier series:

∞∑
n=−∞

δ(t − nTs − ∆t) =
1
Ts

∞∑
k=−∞

ej2πkfs(t−∆t), (A.3)
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the corresponding Fourier transform spectrum of Vout(t) is given by

Ṽout(f) =
∫ ∞

−∞
Vout(t)e−j2πftdt

=
1

CL

∫ ∞

−∞

(∫ t

t−∆t

Iin(ξ)dξ

)
·
(

1
Ts

∞∑
k=−∞

ej2πkfs(t−∆t)

)
e−j2πftdt

=
1

CL · Ts

∫ ∞

−∞

(∫ t

t−∆t

(∫ ∞

−∞
Ĩin(ν)ej2πνξdν

)
dξ

)

·
∞∑

k=−∞
ej2πkfs(t−∆t)e−j2πftdt

=
1

CL · Ts

∫ ∞

−∞

(∫ ∞

−∞
Ĩin(ν)

(∫ t

t−∆t

ej2πνξdξ

)
dν

)

·
∞∑

k=−∞
ej2πkfs(t−∆t)e−j2πftdt

=
∆t

CL · Ts

∞∑
k=−∞

∫ ∞

−∞

(∫ ∞

−∞
Ĩin(ν)sinc(ν∆t)ej2πν(t−∆t/2)dν

)

·ej2πkfs(t−∆t) · e−j2πftdt

=
∆t

CL · Ts

∞∑
k=−∞

∫ ∞

−∞
Ĩin(ν)sinc(ν∆t)

·
(∫ ∞

−∞
e−jπkfs∆t · ej2π(ν+kfs)(t−∆t/2) · e−j2πf(t−∆t/2) · e−jπf∆tdt

)
dν

=
∆t

CL · Ts

∞∑
k=−∞

∫ ∞

−∞
Ĩin(ν)sinc(ν∆t)e−jπ(f+kfs)∆tδ(f − ν − kfs)dν

=
∆t

CL · Ts

∞∑
k=−∞

Ĩin(f − kfs)sinc[(f − kfs)∆t]e−jπ(f+kfs)∆t,

(A.4)

where Ĩin(ν) is the Fourier transform of Iin(ξ), and sinc(x) = sin(πx)/(πx).
With introducing Nth order FIR filtering in the charge sampling process, the

output voltage in the time domain is changed to

V ′
out(t) =

1
CL

∞∑
n=−∞

[
h0

∫ tn+∆t

tn

Iin(ξ)dξ + h1

∫ tn+2∆t

tn+∆t

Iin(ξ)dξ + · · ·

+hN

∫ tn+1

tn+(N−1)∆t

Iin(ξ)dξ

]
δ(t − tn+1). (A.5)
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Assuming tn = nTs (fs = 1/Ts), tn+1 = (n + 1)Ts, i.e., N · ∆t = Ts and using
the Fourier series of infinite periodic Dirac function, the corresponding Fourier
transform spectrum becomes:

Ṽ ′
out(f) =

∫ ∞

−∞
V ′

out(f)e−j2πftdf

=
1

CL · Ts

∫ ∞

−∞

[
h0

∫ t−Ts+∆t

t−Ts

(∫ ∞

−∞
Ĩin(ν)ej2πνξdν

)
dξ

+h1

∫ t−Ts+2∆t

t−Ts+∆t

(∫ ∞

−∞
Ĩin(ν)ej2πνξdν

)
dξ + · · ·

+hN

∫ t

t−Ts+(N−1)∆t

(∫ ∞

−∞
Ĩin(ν)ej2πνξdν

)
dξ

] ∞∑
k=−∞

ej2πkfs(t−Ts)e−j2πftdt

=
1

CL · Ts

∫ ∞

−∞

[
h0

∫ ∞

−∞
Ĩin(ν)

(∫ t−Ts+∆t

t−Ts

ej2πνξdξ

)
dν

+h1

∫ ∞

−∞
Ĩin(ν)

(∫ t−Ts+2∆t

t−Ts+∆t

ej2πνξdξ

)
dν + · · ·

+hN

∫ ∞

−∞
Ĩin(ν)

(∫ t

t−Ts+(N−1)∆t

ej2πνξdξ

)
dν

] ∞∑
k=−∞

ej2πkfs(t−Ts)e−j2πftdt

=
1

CL · Ts

∫ ∞

−∞

[
h0

∫ ∞

−∞
Ĩin(ν)sinc(ν∆t)ej2πν(t−Ts+∆t/2)dν

+h1

∫ ∞

−∞
Ĩin(ν)sinc(ν∆t)ej2πν(t−Ts+3∆t/2)dν + · · ·

+hN

∫ ∞

−∞
Ĩin(ν)sinc(ν∆t)ej2πν[t−Ts+(2N−1)∆t/2]dν

]

·
∞∑

k=−∞
ej2πkfs(t−Ts)e−j2πftdt

=
∆t

CL · Ts
e−j2πfTs

∞∑
k=−∞

∫ ∞

−∞
Ĩin(ν)sinc(ν∆t)δ(f − ν − kfs)

·
N∑

n=0

hne−jπν(2n−1)∆tdν

=
∆t

CL · Ts
e−j2πfTs

∞∑
k=−∞

Ĩin(f − kfs)sinc[(f − kfs)∆t]H(f − kfs),

(A.6)
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where the transfer function of FIR filtering is given by

H(f − kfs) =
N∑

n=0

hne−jπ(f−kfs)(2n−1)∆t, (A.7)

and hn represents the coefficients of FIR filtering.
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Appendix B

PSD Spectrum Analysis of Jitter Sampling

Starting from eq. (2.1) and eq. (2.13), the CT sampled-data signal by JS is given
by

x̃js(t) = x(t)
∞∑

n=−∞
δ(t − nTs − τn)

=
∞∑

n=−∞
x(ts(n))δ(t − nTs − τn), (B.8)

where the input signal x(t) could be either deterministic or stochastic process, nTs is
the expected uniform sampling time instants, τn represents a family of iid random
variables, and normally τn << Ts, x̃js(t) is a stochastic process. The statistic
process τn and x(t) are independent. The autocorrelation function of x̃js(t) is
given by

rx̃x̃(γ, t) = Ex,γ

[
x̃js(t + γ)x̃∗

js(t)
]

= Eγ [
∞∑

m=−∞

∞∑
n=−∞

Ex [x(t + γ)x∗(t)] · δ(t + γ − mTs − τm)δ(t − nTs − τn)]

= Eγ [
∞∑

m=−∞

∞∑
n=−∞

rxx(γ) · δ(t + γ − mTs − τm)δ(t − nTs − τn)]

=
∞∑

m=−∞

∞∑
n=−∞

∫ ∞

−∞

∫ ∞

−∞
rxx(γ) · δ(t + γ − mTs − τm)δ(t − nTs − τn)

p(τm, τn)dτmdτn

=
∞∑

m=−∞

∞∑
n=−∞

∫ ∞

−∞

∫ ∞

−∞
rxx(γ) · δ(t + γ − mTs − τm)δ(t − nTs − τn)

p(τm)p(τn)dτmdτn

=
∞∑

m=−∞

∞∑
n=−∞

rxx(γ)p(t − mTs + γ)p(t − nTs), (B.9)
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for m 6= n, where E[•] represents an expectation operator, Ex,γ is the average over
the product statistics of τn and x(t), Eγ is over the statistics of τn and Ex over
the statistics of x(t), rxx(γ) is the autocorrelation function of x(t), γ is a time-
lag between any two variables of stochastic process x̃js(t), p(τm, τn) is the joint
probability density function (PDF) of {τn} and {τm}. The random variables τn

and τm are assumed independent such that p(τm, τn) = p(τn)p(τm), where p(x) is
the PDF of stochastic process x. When m = n, τm = τn,

rx̃x̃(γ) = rxx(0)δ(γ), (B.10)

where rxx(0) corresponds to the total input signal power. Assuming that x̃js(t) is
a wide-sense stationary (WSS) process and x̃js(t), x̃js(t + γ) are jointly ergodic,
the time average may be used to replace the ensemble average. The autocorrelation
function of x̃js(t) is simplified by time-average over a single sampling period [102]:

rx̃x̃(γ) =
1
Ts

∫ Ts/2

−Ts/2

rx̃x̃(γ, t)dt

=
1
Ts

rxx(γ)

( ∞∑
l=−∞

rpp(lTs + γ) − rpp(γ) + δ(γ)

)
, (B.11)

where rpp(lTs + γ) is the convolution of two PDF functions. Based on Wiener-
Khintchine Theorem, the PSD of the WSS process x̃js(t) can be obtained from the
Fourier transform of the autocorrelation function rx̃x̃(γ) [102],

Rx̃x̃(f) =
1
Ts

∫ ∞

−∞

[
rxx(γ)

( ∞∑
l=−∞

rpp(lTs + γ) − rpp(γ) + δ(γ)

)
e−j2πfγ

]
dγ

=
1
Ts

(∫ ∞

−∞
rxx(γ)e−j2πfγdγ

)

?

( ∞∑
l=−∞

[rpp(lTs + γ) − rpp(γ) + δ(γ)] e−j2πfγdγ

)

=
1
Ts

Rxx(f) ?

( ∞∑
l=−∞

Rpp(f)ej2πlTs − Rpp(f) + 1

)

=
1
Ts

Rxx(f) ?

(
1
Ts

Rpp(f)
∞∑

k=−∞
δ(f − kfs) + [1 − Rpp(f)]

)

=
1

T 2
s

∞∑
k=−∞

Rpp(kfs)Rxx(f − kfs) +
1
Ts

Rxx(f) ? (1 − Rpp(f)) , (B.12)

where ? denotes the convolution operator, Rxx(f) and Rpp(f) is the Fourier trans-
form of rxx(γ) and rpp(γ), respectively and fs = 1/Ts.
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Appendix C

Charge Conservation Analysis of the SC FIR Filter and the
Composite FIR/IIR Filter in the GUBPS Implementation

1. FIR filter:

Starting from Figure 4.19 with the corresponding appropriate clock scheme shown
in Figure 4.20, the circuit can be analyzed by charge conservation [98]. The clock
skew problem is not considered in the analysis, and it is assumed that clock φ=‘1’
when φ2i=‘1’ (i = 0, 1, 2, · · · , N). The input-offset voltages of the opamps are
neglected. The charges stored on different capacitors at different clock phases are
listed below:

t = nTs : φ0=‘1’, φm=‘0’ (m 6= 0) and φa=‘1’

Q
(0)
Cb0

(n) = Cb0V
(0)
in (n) Q

(0)
Cb1

(n) = Cb1V
(0)
in (n)

Q
(0)
Ch1

(n) = 0 Q
(0)
Ch2

(n) = 0

t = nTs : φ1=‘1’, φm=‘0’ (m 6= 1) and φa=‘0’

Q
(1)
Cb0

(n) = 0 Q
(1)
Cb1

(n) = 0

Q
(1)
Ch1

(n) = V
Re(1)
out (n)Ch Q

(1)
Ch2

(n) = V
Im(1)
out (n)Ch

...
...

t = nTs : φ2N=‘1’, φm=‘0’ (m 6= 2N) and φa=‘0’

Q
(2N)
Cb0

(n) = Cb0V
(2N)
in (n) Q

(2N)
Cb1

(n) = Cb1V
(2N)
in (n)

Q
(2N)
Ch1

(n) = Q
(2N−1)
Ch1

(n) Q
(2N)
Ch2

(n) = Q
(2N−1)
Ch2

(n)

t = nTs : φ2N+1=‘1’, φm=‘0’ (m 6= 2N + 1) and φa=‘0’

Q
(1)
Cb0

(n) = 0 Q
(1)
Cb1

(n) = 0

Q
(2N+1)
Ch1

(n) = V
Re(2N+1)
out (n)Ch Q

(2N+1)
Ch2

(n) = V
Im(2N+1)
out (n)Ch
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t = (n + 1)Ts : φ0=‘1’, φm=‘0’ (m 6= 0) and φa=‘1’

Q
(0)
Cb0

(n + 1) = Cb0V
(0)
in (n + 1) Q

(0)
Cb1

(n + 1) = Cb1V
(0)
in (n + 1)

Q
(0)
Ch1

(n + 1) = 0 Q
(0)
Ch2

(n + 1) = 0

where Ch1 and Ch2 represent the integrating capacitor in the feedback loop of
opamp for the real and imaginary datapath, respectively. It is observed that the
charges stored in the sampling capacitors are conserved by Ch at each holding
phase. General charge conservation equations are given by

Q
(2i+1)
Ch1

(n) = Q
(2i)
Ch1

(n) + Q
(2i)
Cb2i

(n) Q
(2i)
Ch1

(n) = Q
(2i−1)
Ch1

(n)

Q
(2i+1)
Ch2

(n) = Q
(2i)
Ch2

(n) + Q
(2i)
Cb2i+1

(n) Q
(2i)
Ch2

(n) = Q
(2i−1)
Ch2

(n)

The charges stored on Ch before Ch is reset is given by

Q
(2N+1)
Ch1

(n) =
N∑

i=0

Q
(2i)
Cb2i

(n) + Q
(0)
Ch1

(n)

Q
(2N+1)
Ch2

(n) =
N∑

i=0

Q
(2i)
Cb2i+1

(n) + Q
(0)
Ch2

(n)

The corresponding input-output relation is written as

(
V

Re(2N+1)
out (n) + jV

Im(2N+1)
out (n)

)
Ch =

N∑
i=0

Cb2i
V

(2i)
in (n) + j

N∑
i=0

Cb2i+1V
(2i)
in (n),

and the the transfer function is given by

HFIR(z) =
Vout(z)
Vin(z)

= z−1/2
N∑

i=0

[
Cb2i

Ch
+ j

Cb2i+1

Ch

]
z−i. (C.13)

where z−1 = e−j2πkfsTD and TD is the time delay between any two successive
sampling branches.

2. Composite FIR/IIR filter:

Starting from Figure 4.24 with the appropriate clock scheme, it is assumed that

Cpi = Ch(1 − α), Cai = Ca, Chi = Ch, Cqi = Ch|β|,
where subscripts i = 1, 2 are used to distinguish that the capacitor is the upper
one or the lower one, and the clock φ is going ‘1’ when φ2i (i = 0, 1, 2, · · · , N) is
going to ‘1’. Because both α and β are negative in the GUBPS implementation,
an absolute value of β is used here. The duty cycle of φ determines the charging
time. The charges stored on different capacitors at different clock phases are listed
below:
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t = nTs : φ2N+1 = φ0=‘1’, φm=‘0’ (m 6= 2N + 1, 0) and φb=‘1’

Q
(0)
Cb2N

(n) = 0 Q
(0)
Cb2N+1

(n) = 0

Q
(0)
Cb0

(n) = Cb0V
(0)
in (n) Q

(0)
Cb1

(n) = Cb1V
(0)
in (n)

Q
(0)
Cp1

(n) = V
Im(0)
out (n)Cp1 Q

(0)
Cp2

(n) = V
Re(0)
out (n)Cp2

Q
(0)
Ca1

(n) = 0 Q
(0)
Ca2

(n) = 0
Q

(0)
Ch1

(n) = V
Re(0)
out (n)Ch1 Q

(0)
Ch2

(n) = V
Im(0)
out (n)Ch2

Q
(0)
Cq1

(n) = V
Re(0)
out (n)Cq1 Q

(0)
Cq2

(n) = V
Im(0)
out (n)Cq2

t = nTs + TD : φ1 = φ2=‘1’,φm=‘0’ (m 6= 1, 2) and φb=‘1’

Q
(1)
Cb0

(n) = 0 Q
(1)
Cb1

(n) = 0

Q
(1)
Cb2

(n) = Cb2V
(1)
in (n) Q

(1)
Cb3

(n) = Cb3V
(1)
in (n)

Q
(1)
Cp1

(n) = V
Im(1)
out (n)Cp1 Q

(1)
Cp2

(n) = V
Re(1)
out (n)Cp2

Q
(1)
Ca1

(n) = 0 Q
(1)
Ca2

(n) = 0
Q

(1)
Ch1

(n) = V
Re(1)
out (n)Ch1 Q

(1)
Ch2

(n) = V
Im(1)
out (n)Ch2

Q
(1)
Cq1

(n) = V
Re(1)
out (n)Cq1 Q

(1)
Cq2

(n) = V
Im(1)
out (n)Cq2

...
...

t = nTs + NTD : φ2N−1 = φ2N=‘1’,φm=‘0’ (m 6= 2N − 1, 2N) and φb=‘1’

Q
(N)
Cb2N−2

(n) = 0 Q
(N)
Cb2N−1

(n) = 0

Q
(N)
Cb2N

(n) = Cb2N
V

(N)
in (n) Q

(N)
Cb2N+1

(n) = Cb2N+1V
(N)
in (n)

Q
(N)
Cp1

(n) = V
Im(N)
out (n)Cp1 Q

(N)
Cp2

(n) = V
Re(N)
out (n)Cp2

Q
(N)
Ca1

(n) = 0 Q
(N)
Ca2

(n) = 0
Q

(N)
Ch1

(n) = V
Re(N)
out (n)Ch1 Q

(N)
Ch2

(n) = V
Im(N)
out (n)Ch2

Q
(N)
Cq1

(n) = V
Re(N)
out (n)Cq1 Q

(N)
Cq2

(n) = V
Im(N)
out (n)Cq2

t = (n + 1)Ts : φ2N = φ1=‘1’,φm=‘0’ (m 6= 2N, 1) and φb=‘0’

Q
(0)
Cb2N

(n + 1) = 0 Q
(0)
Cb2N+1

(n + 1) = 0

Q
(0)
Cb0

(n + 1) = Cb0V
(0)
in (n + 1) Q

(0)
Cb1

(n + 1) = Cb1V
(0)
in (n + 1)

Q
(0)
Cp1

(n + 1) = 0 Q
(0)
Cp2

(n + 1) = 0

Q
(0)
Ca1

(n) = V
Re(0)
out (n + 1)Ca1 Q

(0)
Ca2

(n) = V
Im(0)
out (n + 1)Ca2

Q
(0)
Ch1

(n) = V
Re(0)
out (n + 1)Ch1 Q

(0)
Ch2

(n) = V
Im(0)
out (n + 1)Ch2

Q
(0)
Cq1

(n + 1) = 0 Q
(0)
Cq2

(n + 1) = 0
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It is assumed that the input-offset voltages of the opamps are neglected. The charge
conservation equations at the switching-off activity of φb (‘1’ → ‘0’) are obtained
as

Q
(N)
Cb2N

(n) − Q
(N)
Cp1

(n) + Q
(N)
Ca1

(n) + Q
(N)
Ch1

(n) − Q
(N)
Cq1

(n)

= Q
(0)
Cb2N

(n + 1) − Q
(0)
Cp1

(n + 1) + Q
(0)
Ca1

(n + 1) + Q
(0)
Ch1

(n + 1) − Q
(0)
Cq1

(n + 1)

Q
(N)
Cb2N+1

(n) − Q
(N)
Cp2

(n) + Q
(N)
Ca2

(n) + Q
(N)
Ch2

(n) + Q
(N)
Cq2

(n)

= Q
(0)
Cb2N+1

(n + 1) − Q
(0)
Cp2

(n + 1) + Q
(0)
Ca2

(n + 1) + Q
(0)
Ch2

(n + 1) + Q
(0)
Cq2

(n + 1).

Starting from the basic integrating equations:

V
Re(N)
out (n) · CRe =

N−1∑
i=0

V
(i)
in (n)Cb2i

+ V
Re(0)
out (n) · CRe

V
Im(N)
out (n) · CIm =

N−1∑
i=0

V
(i)
in (n)Cb2i+1 + V

Im(0)
out (n) · CIm,

where CRe and CIm represent the total integrating capacitance at the output of real
and imaginary datapath, and substituting charge equations of different capacitors
for different clock phases into the above charge conservation equations, we have

N∑
i=0

V
(i)
in (n)Cb2i

+ V
Re(0)
out (n)Ch − V

Re(0)
out (n)Ch(1 − α)

− V
Im(0)
out (n)Ch|β| = V

Re(0)
out (n + 1)(Ch + Ca)

N∑
i=0

V
(i)
in (n)Cb2i+1 + V

Im(0)
out (n)Ch − V

Im(0)
out (n)Ch(1 − α)

+ V
Re(0)
out (n)Ch|β| = V

Im(0)
out (n + 1)(Ch + Ca).

The input-output equation is then obtained as

N∑
i=0

(Cb2i
+ jCb2i+1)V

(i)
in (n) = V

(0)
out (n + 1)(Ch + Ca) − V

(0)
out (n)Ch(α − jβ),

where Vout(n) = V Re
out(n)+ jV Im

out (n), and the corresponding transfer function of the
composite FIR/IIR filter is given by

HFIR−IIR(z) =
Vout(z)
Vin(z)

=
z−1

∑N
i=0(Cb2i

+ jCb2i+1)z
−i

(Ch + Ca) − Ch(α − jβ)z−(N+1)
, (C.14)

where z−1 = e−j2πkfsTD .

104




