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Abstract: Wireless systems often make use of the quadrature 
relationship between pairs of signals to effectively cancel 
out-of-band and interfering in-band signal components. The 
understanding of these systems is often simplified by consider-
ing both the signals and system transfer-functions as ‘complex’
quantities. The complex approach is especially useful in 
highly-integrated multi-standard receivers where the use of 
narrow-band fixed-coefficient filters at the RF and high IF fre-
quencies must be minimized. A tutorial review of complex sig-
nal processing for wireless applications emphasizing a 
graphical and pictorial description rather than an equa-
tion-based approach is first presented. Next, a number of clas-
sical modulation architectures are described using this 
formulation. Finally, more recent developments such as com-
plex filters, image-reject mixers, low-IF receivers, and 
over-sampling A/D converters are discussed.

 1. Introduction
 A complex signal consists of a pair of real signals at an 

instance in time. If one denotes the complex signal, , as 
, where , then a Hilbert Space 

can be defined using appropriate definitions for addition, mul-
tiplication, and an inner-product and norm. In an actual physi-
cal system, the signals are both real (but are called the real and 
imaginary parts) and are found in two distinct signal paths. The 
multiplier ‘ ’ is used to help define operations between differ-
ent complex signals, and is to some degree imaginary, i.e., it 
doesn’t actually exist in real systems. Often the dependence of 
signals on time is not shown explicitly.

The use of complex signal processing to describe wireless 
systems is increasingly important and ubiquitous for the fol-
lowing reasons: it often allows for image-reject architectures to 
be described more compactly and simply, it leads to a graphical 
or signal-flow-graph (SFG) description of signal-processing 
systems that gives insight, and it often leads to the develop-
ment of new systems where the use of high-frequency, highly 
selective image-reject filters is minimized leading to more 
highly integrated transceivers using less power and requiring 
less physical space.

As an example, consider the popular ‘image-reject’ mixer 
having a real input as shown in Fig. 1. In the complex SFG, 
two real multiplications have been replaced by a single com-
plex multiplication. Furthermore, since in the time domain we 
have

(1)

then taking the Fourier Transform we have

(2)

and we see that an ideal image-reject mixer results in a simple 
frequency-shift of the input signal with no images occurring, a 
conclusion that is obvious from Fig. 1. (b), but is certainly not 
obvious from Fig. 1. (a).

The use of complex signal processing for wireless applica-
tions has blossomed recently. This is especially true for 
high-bit-rate standards, such as local-area-networks (LAN’s), 
and for multi-standard transceivers. Evidence of this prolifera-
tion is that in 2001, 2002, and 2003, the majority of the papers 
in IEEE ISSCC sessions on wireless transceivers for LAN 
applications employed complex signal processing.

Much, but not all, of this paper deals with a tutorial review 
of complex signal processing, especially as applicable to wire-
less systems. A great deal of the tutorial material on complex 
analog signal processing is directly based on the pioneering 
research of W. Martin Snelgrove as described in [1][6][7], and 
in some theses of his graduate students in [9] and [11]. Unfor-
tunately, no journal publications of this early work were pub-
lished1. Some of the early published work on complex digital 
filters is described in [2] and [5]. It is speculated that the devel-
opment of complex filters was partially due to the use of For-
tran to simulate and design filters and the fact that Fortran 
could do complex math — an example of a solution finding a 
problem.

This paper starts with a review of the fundamentals of com-
plex signal processing. Some important identities are given. 
Examples are given using complex SFG representations. In the 
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Fig. 1. A signal-flow-graph (SFG) of an image-reject mixer 
using (a) a real SFG and (b) a complex SFG.

1.  A paper was submitted to the IEEE Transactions on Circuits and Systems, 
in 1981, but it was inexplicably rejected; a copy of this key paper submission 
has been obtained and is available at [8].
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third section, a number of classical wireless modulations sys-
tems are described using the complex formulation. These sys-
tems include Weaver and Hartley modulators and polyphase 
filters. Errors due to non-ideal coefficients in mixers are quan-
tified. In the fourth section, complex analog and digital filters 
are discussed. The fifth section describes more-recent complex 
signal-processing applications. These include complex adap-
tive image-reject mixers, complex low-IF receiver architec-
tures including a new modulation approach that doubles the 
data rate for a given A/D sampling frequency, and complex 
band-pass over-sampling A/D converters, as examples. These 
systems are especially useful in multi-standard wireless appli-
cations as they are inherently wide-band (without excessive 
imaging errors) and allow the systems to be adapted to individ-
ual standards using digital programming after the A/D convert-
ers.

 2. Complex Signal Processing
Complex signal processing systems operate on ordered-pairs 

of real signals. The typical definition of a complex inner-prod-
uct is

(3)

Combining this definition with the typical definitions for com-
plex inversion, addition and multiplication, and the properties 
of commutation and association, constitutes a Hilbert Space. It 
is assumed that all signals are effectively of finite-energy and 
frequency and time limited (or periodic). This implies that a 
signal,  can be represented as a finite series of complex-
oids2

(4)

where  is in general complex [5]. In this paper, we will limit 
our consideration normally to a single (or a few) complexoids 
to simplify explanations. The generalization to signals as 
defined by (4) is left for a later date.

 2.1 Complex Operations
A complex addition of two complex signals simply adds the 

two real parts and the two imaginary parts independently. Con-
sider the real SFG that represents adding a complex signal to a 
second complex signal as shown in Fig. 2. (a). Its complex 
SFG is shown in Fig. 2. (b).

Slightly more complicated is a complex multiplication; con-
sider multiplying a complexoid  by a complex 
coefficient . We have

(5)

The real SFG of this operation is shown in Fig. 3. (a). Once 

again the complex SFG of a multiplication operation, as shown 
in Fig. 3. (b), is considerably simpler. Note that the real SFG 
does not include the constant  anywhere, whereas in the com-
plex SFG, it is admissible.

A special case of multiplication is when multiplying an 
input signal by the constant j. This is shown using a complex 
SFG in Fig. 4. (a) and a real SFG in Fig. 4. (b). It is seen this 
operation is simply an interchanging of the real and inverted 
imaginary parts; this operation is the basis behind realizing 
imaginary components in complex networks.

Another important operation is complex conjugation. Con-
sider

(6)

We have

(7)

and we see that besides being phase rotated,  has been trans-
formed from a positive frequency into a negative frequency 
complexoid. Conjugation also changes negative frequencies 
complexoids to positive frequencies. The conjugation opera-
tion is shown in the real SFG of Fig. 5. (a). Alternative com-
plex SFG’s are shown in Fig. 5. (b) and (c).

2.  Historically, a complexoid had been called a cissoid. The author prefers the 
former name.
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Fig. 2. (a) The real SFG for adding two complex signals and 
(b) the equivalent complex SFG.

Fig. 3. (a) The real SFG of a complex multiply and (b) the 
equivalent complex SFG.

Fig. 4. Multiplying a signal by .

Fig. 5. The complex conjugation operation.
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Two additional operations are required for realizing com-
plex filters, namely the delay operator for digital filters and the 
integration operator for analog filters. These operations simply 
consist of independently applying the real operation to each 
part of the complex signal as shown in Fig. 6.

 2.2 Polar to Rectangular Conversion
Complex signals at a single frequency, possibly positive, 

possibly negative, or possibly both, can be expressed in either 
polar or rectangular form. In polar form we have

(8)

where  and  are possibly complex coefficients. Alterna-
tively, we can express  in rectangular form as

(9)

It is straight-forward to show ,  are related to ,  using 
the duality

(10)

and

(11)

This duality, along with some simple trigometric identities, are 
useful in quantifying many of the imaging non-idealities.

 2.3 Hilbert Transforms and Positive-Pass Filters
One of the most important transformations in realizing com-

plex signal processing systems is that of a positive-pass filter
(PPF). This is a filter that can take a possibly complex input 
signal3 and produces a necessarily complex output signal that 
has positive frequency components only. A signal with posi-
tive-frequency components only is called an Analytic Signal. It 
has the property that for every real spectral component, there is 
a corresponding imaginary spectral component that is equal in 
magnitude but delayed in time by [1]. A complex SFG of a 
system that produces analytic signals from possibly complex 
signals is shown in Fig. 7. (a) and the equivalent real SFG is 
shown in Fig. 7. (b). As shown, Hilbert Transform filters are 
required to produce the time-delay . For negative frequen-
cies, which have phases continually changing more negative, 

this means the outputs are phase shifted by  as opposed to 
 for positive frequencies which have increasing phases4. 

In a generalization, one is led to complex filters which have 
passbands at positive frequencies only for a PPF (negative fre-
quencies only for a NPF). These are discussed in Section 4.

 3. Complex Modulation and Classical Wireless 
Systems

We have already seen in the Introduction that a real input 
signal can be frequency shifted without imaging errors using 
two real multipliers. This operation frequency shifts both posi-
tive and negative frequency components in the same direction 
by the same amount. This operation, when combined with an 
appropriate low-pass filter can be used to frequency demodu-
late an RF input to a complex IF frequency or directly to 
base-band [12][13][14].
 3.1 Direct-Conversion Receiver

The direct-conversion receiver is a good choice of architec-
ture for less demanding, but highly integrated applications 
[39][40]. A simplified receiver architecture is shown in Fig. 8.
using both a complex SFG (Fig. 8. (a)) and a real SFG (Fig. 8.
(c)). Example spectra of various locations of Fig. 8. (a) are 
shown in Fig. 8. (b). 
 3.2 Direct-Conversion Transmitter

In a direct-conversion transmitter, a complex input signal is 
directly modulated to RF using a complex mixer, and then con-
verted to a real RF signal by simply ignoring the imaginary 
output of the complex mixer; this allows us to simplify the 
complex mixer to two real multipliers as shown in Fig. 9. (c).
 3.3 Single-Side-Band (SSB) Generation

One of the first uses of complex processing was for SSB 
generation. For example, consider the Weaver architecture as 
shown in Fig. 10.5 In this approach, the base-band signal, 
which is symmetric about dc, is frequency shifted up so it is 
centered at . The lower sideband is then extracted using two 

Fig. 6. (a) The digital delay operator and (b) the analog 
integration operator for complex signals.

3.  Most texts [5] only consider the special case of real input signals.
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4.  This is inherent in the conjugate-symmetry property of real transfer func-
tions.
5.  This is a good example of how complex SFG’s can be used to describe sys-
tems without using equations.
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real lowpass filters. The complex signal is then further fre-
quency shifted to the desired RF frequency, in this case , 
and the imaginary part is discarded resulting in the final SSB 
signal at RF. The spectra of various locations of the complex 
SFG of Fig. 10. (b) are shown in Fig. 10. (c).

An alternative architecture for SSB generation, called 
Weaver’s second method, replaces the first complex mixer and 
the low-pass filters with a complex PPF (or NPF) to extract the 
desired side-band directly before frequency shifting to the 
desired RF frequency.
 3.4 SSB Receivers

A closely related architecture to SSB transmitters is an alter-
native for a SSB receiver based on using a PPF after a complex 
demodulation from RF. The PPF is used to attenuate images as 
shown in the real SFG of Fig. 11. (a) and the equivalent com-
plex SFG of Fig. 11. (b)6. From the plots of the spectra at dif-
ferent locations of the complex SFG, it is seen that the first 
complex mix frequency shifts the spectra so the only signifi-
cant components at positive frequencies is the desired 
side-band. The side-band is extracted using a PPF. The final 
real demodulated output signal is obtained by simply taking the 
real output of the PPF and discarding its imaginary output. 
This approach was originally proposed by Hartley [16] where the PPF was implemented as two low-pass filters cascaded 

with simple RC phase-shift networks as shown in Fig. 12. (a). 
An alternative means of realizing a wide-band passive PPF, 

Fig. 8. An image-reject down-converter. (a) The complex 
SFG, (b) example spectra, and (c) an equivalent real SFG.

Fig. 9. An image-reject up-converter. (a) The complex SFG, 
(b) example spectra, and (c) an equivalent real SFG.

6.  This is a good example of using complex filtering to eliminate interfering 
images.
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Fig. 11.  Demodulating a SSB signal using a Hartley 
architecture [16].

LPF

ω1t( )cos

ω1t( )sin

yr t( )

(a)

xr t( )

LPF

ω2t( )cos

ω2t( )sin

X t( )
xr t( ) j 0×+

ejω1t

LPF
X1

(b)

Re{ }

ejω2t

yr t( )
X2 X3

0

X

0

X1

0

X2

ejω1t

(c)

LPF

ejω2t

0

X3

0

Y

ω1t( )cos

ω1t( )sin–

yr t( )

(a)

xr t( )

X t( )
xr t( ) j 0×+=

e j– ω1t

PPF
X1

(b)

Re{ } yr t( )
X2

0

X

0

X1

0

X2

e j– ω1t

(c)

Desired SSB Signal

0

yr(t)

PPF

yq t( )

Undesired Images

(Discarded)

PPF



that is less sensitive to component tolerances and is currently 
popular, is the poly-phase network shown in Fig. 12. (b) 
[17][18][19]. The poly-phase network is well-analyzed in [19]
where it is shown that it is an example of a complex filter 
obtained from frequency-shifting a high-pass filter as is dis-
cussed in section 4.
 3.5 Imaging Errors in Complex Mixers

Perhaps the major motivation for using image-reject or com-
plex mixers is they allow for frequency translation while mini-
mizing the necessity of highly selective and sensitive 
image-reject filters at RF and IF frequencies. This is only true 
to the extent that image-reject mixers operate ideally. For 
example, if the complexoid that is modulating the input signal 
has negative frequency components, then interferers can be 
imaged to fall in band. In addition to errors in the modulating 
complexoid, gain and phase errors in the two signal paths also 
cause imaging errors. Assuming these gain and phase errors are 
wide-band, then they can be modelled assuming error-free sig-
nal channels, but additional gain and phase errors in the modu-
lating complexoid. Thus, under this assumption, we only need 
to quantify wide-band imaging errors due to non-ideal modu-
lating complexoids and not the channels.

Consider the case of demodulating an SSB, but where now 
the lower side-band is desired for simplicity. This case is simi-
lar to that of Fig. 11., but now the ideal demodulating complex-
oid is at a positive frequency. Assume, it is not ideal; we will 
show this results in there being a small modulating complexoid 
at a negative frequency as well, as shown in Fig. 13. (a). The 
assumed input signal is shown in Fig. 13. (b). The desired fre-
quency shift takes the negative input signal and modulates it so 
the negative lower side-band is just above dc as shown in Fig. 

13. (c). However, the smaller negative modulating complexoid 
shifts the positive input signals so the upper side-band, 
although attenuated, is sitting directly at the same frequency 
band as the desired lower side-band as shown in Fig. 13. (d). 
The subsequent filtering by the PPF will output both the 
desired lower side-band and the interfering image. For this rea-
son, it is important to quantify the magnitude of the imaging 
complexoid (in this case at a negative frequency) as a function 
of the magnitude and phase errors of the modulating wave-
form.

Consider an ideal image-reject mixer having a multiplying 
complexoid given (using rectangular coordinates) as

(12)

If we assume there are phase and magnitude errors, we can 
write

(13)

where  is the magnitude error and  is the phase error. This 
assumes we have normalized the complexoid so the magnitude 
of the  term is unity. We can use the well-known trigo-
metric identity

(14)

to get

(15)

We can now directly apply (10) to give

(16)

where

(17)

and

Fig. 12. (a) The PPF used in the Hartley SSB receiver, and 
(b) the poly-phase approach for realizing a PPF from [17].
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(18)

For , we see that the positive frequency term is slightly 
changed in magnitude and phase, these errors are normally 
small and easy to compensate; however, the negative fre-
quency complexoid, ideally zero, now has a multiplier given 
by

(19)

which is also the multiplier for the final resulting images. It 
might be mentioned that (19) is the basis for a possible adap-
tive image-reject mixer to be described later.

 4. Complex Filters
In addition to image-reject mixers, complex filters are very 

important and widely-used signal processing blocks in modern 
wireless transceivers [44]. Complex filters use cross-coupling 
between the real and imaginary signal paths to realize asym-
metrical (in the frequency domain) filters having transfer func-
tions that do not have the conjugate symmetry of real filters. 
This implies their transfer functions have complex coefficients. 
The positive-pass filters described previously can be consid-
ered a special case of complex filters. Complex filters can be 
realized using the basic operations of addition, multiplication, 
and the delay operator for digital filters or the integrator opera-
tor for analog filters. Complex analog transfer functions can be 
realized by either frequency-translating real filters [1][2][10], 
or by directly deriving transfer complex functions to match 
asymmetrical specifications using procedures similar to those 
used for real filters [1][8], and [20]. Similar choices exist for 
obtaining suitable transfer functions for digital filters 
[2]-[4],[21]-[25]. In this tutorial introduction, only the 
real-to-complex transformations will be discussed for reasons 
of brevity. For the same reason, we will limit our discussions to 
poly-phase and integrator-based analog filters, and delay-based 
digital filters. 

A complex transfer function can be realized using four real 
SFG filters [1][12] as shown in Fig. 14. for analog filters. An 
identical realization is possible for digital filters where the 
transfer functions are functions of z. For Fig. 14., we have

(20)

and

(21)

When the filters leading from the real and imaginary branches 
of Fig. 14. do not exactly match, imaging errors (plus less 
harmful magnitude response errors) occur as we shall see.

 4.1 Frequency-Translated Analog Filters
One method for obtaining complex transfer functions is to 

do a complex substitution for the Laplace variable . For 
example, to effect a positive frequency shift, one uses the sub-
stitution

(22)

The effect of this substitution on a low-pass filter is shown in 
Fig. 15. Thus, one can replace the procedure of realizing a PPF 

filter via a Hilbert Transform as shown in Fig. 7. by the more 
general problem of designing a complex filter that has a pass-
band restricted to the desired frequencies, possibly positive 
only, possibly negative only, or a combination of the two.

An example of using a complex frequency translation is a 
derivation of a poly-phase network7. Consider the passive RC 
high-pass filter shown in (a). In this example, the transmission 
zero at dc will be frequency-shifted to negative frequencies, so 
we use the substitution . This transforms the 
admittance for the capacitor according to

(23)
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Fig. 15.  (a) A base-band prototype magnitude filter response 
and (b) the magnitude response of a complex filter obtained 
by the substitution .

7.  The derivation presented here is an alternative to that presented in [19].
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(24)

gives the required substitution as

(25)

Thus, the frequency-shifted high-pass is now as shown in Fig-
ure 16 (b). The complex admittance, , will be realized 
using cross-coupling between the real and imaginary signal 
paths. However, the cross-coupling often (from the imaginary 
to the real signal path) requires inversion (realizing negative 
components also requires inversion usually); to realize this 
using passive circuits, fully-differential networks are neces-
sary. A fully-differential version of the circuit of Figure 16 (b) 
is shown in Figure 16 (c). This can be realized using only real 
components by a) replicating the circuit for the imaginary path, 
and b) realizing the complex components using cross-coupling 
between the two signal paths. Note the input signals to the 
cross-coupling components going from the imaginary path to 
the real path are connected from the inverted nodes. The result-
ing network is shown in Figure 16 (d). Upon examination, this 
is seen to be identical to the poly-phase network of Figure 12
(b) except for the inclusion of load resistors  in Figure 16
(d). Taking  would result in very narrow notches. Nor-
mally poly-phase networks are intended to be cascaded 
[17][19] and the load on each section is the succeeding section 

as discussed in depth in [19].

The procedure just described is general and can be applied 
to any RC filter whether active or passive to realize a fre-
quency-shifted complex filter.

Alternatively, one can apply a similar procedure for directly 
frequency-translating SFG filters based on integrators [1]. This 
procedure is illustrated by applying it to the single integrator 
shown in Fig. 17. (a). In Fig. 17. (b) and (c) are shown complex 

SFG’s that realize the frequency-shifted integrator. The com-
plex SFG of Fig. 17. (c) is converted to the equivalent real SFG 
of Fig. 17. (d) where the necessary cross-coupling is explicit. 
The procedure for frequency-shifting any real SFG integra-
tor-based filter is simply: a) replicate the real SFG filter for the 
imaginary path, and b) cross-couple at each integrator as 
shown in Fig. 17. (d). As always, this cross-coupling is simpli-
fied by using fully-differential circuits.
 4.2 Frequency-Translated Digital Filters

Complex discrete-time and digital filters are as essential to 
modern wireless systems as the complex analog blocks already 
described. For example, digital complex filters are used as dec-
imation filters for complex A/D’s and also as band-limiting fil-
ters at base-band for spectral shaping. A similar approach can 
be used for frequency shifting real discrete-time delay-based 
digital filters to complex asymmetrical filters [2] as was used 
for analog filters. Consider the real delay operator

(26)

being frequency shifted by applying the substitution

(27)

We have

(28)

Fig. 16. Using a complex frequency translation to realize a 
PPF: (a) the high-pass prototype, (b) the complex 
band-stop having a complex admittance, (c) a 
fully-differential version of (b), and (d) replacing the 
complex admittances with cross-coupled real admittances 
between the real and imaginary paths.

xr

G1

C

G1

yr X Y

C

jG2

C

G1/2

jG2

C

xr
+

xr
-

yr
+

yr
-

C

G2

C

G2

xr
+

xr
-

yr
+

yr
-

xq
+

xq
-

C

G2

C

G2

xq
+

xq
-

yq
+

yq
-

xr
+

xr
-

(a)
(b)

(c)

(d)

G1/2

G1/2

jG2

ω0
G2
C
------=

sC sC jG2+→

jG2

G1 2⁄
G1 0=

Fig. 17. Frequency shifting a real integrator to a complex 
positive-frequency integrator.

xr 1 s⁄ yr

(b)

1
s jω0–
-----------------X Y

1 s⁄

jω0

X Y

(c)

1 s⁄

1 s⁄

ω0

ω0

xr

xq

yr

yq
(d)

(a)

z 1– e jωT–=

ω ω ω0–→

e jωT– e j ω ω0–( )T–→ z 1– ejω0T=



 
 

Thus, discrete-time filters can be transformed by once again 
replicating the filter for the imaginary path and then placing a 
complex-coefficient multiplier directly after every delay opera-
tor as shown in Fig. 18. It is obvious that this approach can be 

used to realize complex filters that have their frequency-shifts 
programmable. As an additional note, the complex rotation 
implied by the multiplication by  is called a Cordic oper-
ation and its realization has been well studied [26][27].

Some special cases of frequency-shifted discrete-time filters 
are worth mentioning. For example, some discrete-time filters 
are based on using as fundamental building blocks forward and 
backward-difference integrators; these are bases for many 
switched-capacitor (SC) filters realizations. The filters before 
frequency translation have unity-gain feedback around the 
delay operators. After translation, it is desirable to preserve this 
unity-gain feedback to facilitate their realization using SC inte-
grators. This is possible as shown in the original and trans-
formed discrete-time integrators of Fig. 19. Realizing the 
complex SFG’s of Fig. 19. (b) and Fig. 19. (d) using real SFG’s 
is straightforward.

Another interesting special case is a frequency shift by 
 times the sampling frequency. For this case, we have

(1)
and using Fig. 4., we see that we need only interchange signal 
paths (and invert one of the paths); this leads to simplified 
implementations for this popular choice.

 4.3 Imaging Errors in Complex Multipliers and Transfer 
Functions

The analysis of imaging errors due to real coefficient errors 
in complex multipliers and transfer functions is similar to that 
presented in Section 3.5 for complex mixers. Consider a gener-

alized multiplication function as shown in Fig. 20. (a) and (b). 
Assuming

(29)

and

(30)

then it is straightforward to show Fig. 20. (b) is equivalent to 
Fig. 20. (a). Using (6) and (7), we see that real coefficients 
errors result in shifting positive frequencies to negative fre-
quencies, and vice versa, with the magnitude of these imaging 
errors being proportional to the differences of the real coeffi-
cients. For example, in-band signal components can be shifted 
into the stopband. Also, out-off-band interferers can be shifted 
into the pass-band. If these coefficients errors occur at multipli-
ers inside digital filters, then at the output of each non-ideal 
multiplier, these imaging components are generated. The imag-
ing components are multiplied by the transfer functions from 
the multiplier outputs to the filter outputs and subsequently 
appear as imaging errors at the filter output. To minimize sig-
nal-to-stopband errors, one should design to have out-of-band 
notches in the transfer function from the multiplier output to 
the filter output [29]. In addition, to minimize interferer to sig-
nal errors, one should design to have out-of-band notches in 
the transfer function from the filter input to the input of the 
multiplier. These situations can be quantified using the inter-
mediate-function analysis approach described in [1].

A similar situation occurs when realizing complex filters 
using the approach of Fig. 14. (b) where we now have 
non-matched filters , , , and . The 
non-translated frequency components are filtered by the aver-
age transfer functions

(31)

Fig. 18. Frequency shifting a real delay operator to a 
complex positive-frequency.
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whereas imaging components are produced (both in-band and 
out-of-band) by first conjugating the input signals, which 
changes the signs of the frequencies of the spectral compo-
nents, and then filtering these images by the difference transfer 
function [1].

(32)

In this case, the images occur directly at the filter outputs and 
there is less freedom to minimize images by careful choice of 
the intermediate transfer functions as compared to when filters 
are cross-coupled internally.

 5. Recent Wireless Applications of Complex Sig-
nal Processing
 5.1 Adaptive image reject mixers

Many recent wireless receivers tune or adapt the systems to 
eliminate image errors due to non-ideal image-reject mixers. 
This tuning can be done in either the analog or the digital 
domain.

As a preliminary to discussing adaptive algorithms, note that 
most adaptive systems require the output of a sensitivity filter, 

, which is correlated with is an error  to drive the error 
to zero. A possible update algorithm is given by

(33)

where  is a small constant controlling the update rate. Often 
this update is approximated using the stochastic instantaneous 
update to give

(34)

Note that  is conjugated. Alternatively,  could have 
been conjugated. The required sensitivity filter,  is often 
trivial for FIR systems, and often not too complicated even for 
IIR systems [30][31] (and can be found using Tellegen’s Theo-
rem [5]).

A possible approach to adapt an image-reject mixer is based 
on (19). In this approach, assume a complex mixer is used to 
demodulate an RF signal to a low IF. A complex PPF can be 
used to extract the desired signal. In addition, assume a NPF is 
used to extract the undesired signal-induced image at negative 
frequencies. If the PPF and NPF complex outputs are multi-
plied together, then the approximate result is a complex dc sig-
nal given by (19). Thus, the real output of the multiplication 
can be used to drive the gain error to zero, and the imaginary 
part can be used to drive the phase errors to zero. This assumes 
the errors are frequency-independent. In normal practice, the 
signal processing would be done in the digital domain, but the 
tuning would be done in the analog domain at the multipliers. 
This approach can suffer from biases due to interferers. The 
approach just proposed is similar to that described in [32], 
except in [32] the adaptation was done with an interferer only 
used as a reference input, the error functions minimized are 
different, and the adaptation update was performed in the ana-
log domain.

Alternative improved approach, where the signal processing 
and the tuning are both done in the digital domain, are 
described in [33][34], with a realization based on [34]
described in [35]. The approach is shown in Fig. 21. As in the 

previous approach a complex PPF is used to extract the desired 
signal, and a second NPF is used to extract the images. An 
improvement of this approach is that a symmetric decorrelating 
filter is used to minimize image components in  and signal 
components in  [36]. This helps minimize biases. Another 
advantage of this approach is frequency-dependent imaging 
errors are cancelled as well. It is speculated that the decorrelat-
ing technique could also be applied to improve the previous 
algorithm. A recently proposed algorithm [37], although com-
pletely implemented in the digital domain, does include some 
features of both of the above algorithms. Another interesting 
adaptive image-reject approach that again is completely in the 
digital domain is based on blind source separation compensa-
tion [38].

The alternatives just described are just the beginning of what 
is expected to be a fruitful area of research. One future possi-
bility is to tune in both the analog and the digital domain. Tun-
ing the mixer inputs in the analog domain is useful in 

Fig. 20. (a) A generalized multiplication where ,  are 
not necessarily equal to , , and (b) an equivalent 
complex SFG.
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preventing overload in the IF stages and to help attain timing 
acquisition, but is only useful for correcting frequency-inde-
pendent errors. A second adaptive fine-tuning in the digital 
domain similar to [34] can be used to further eliminate fre-
quency-dependent errors of, for-example, complex over-sam-
pling A/D’s used at the IF.
 5.2 Low-IF Receivers.

A currently popular architecture for realizing highly-inte-
grated moderately wide-band wireless transceivers is the 
low-IF architecture [41][42][43]. An example of a low-IF 
receiver is shown in Fig. 22. In a low-IF receiver, the RF signal 

is demodulated in two stages; the first stage is a standard 
image-reject mixer which requires two analog real multipliers. 
This translates the RF input signal down to a low-IF frequency, 
after which a second complex mixer is used to shift the IF sig-
nal to base-band. The second complex mixer requires four real 
multipliers. These can be realized using analog multipliers as 
in [42]. Alternatively, the A/D conversion can be done at the IF 
stage as shown in Fig. 22., and then the second complex fre-
quency shift can be realized in the digital domain [43]. This 
allows the second complex modulation to be almost ideal. 
Also, if the A/D sampling frequency is chosen to be a small 
multiple of the IF frequency, then the second mix is signifi-
cantly simplified. For example, if the sampling frequency is 
four times the IF frequency, then the oscillator inputs to the 
second complex digital mixer are  or 0. This digital modula-
tion alternative is often preferable.

Low-IF architectures are especially suitable for multi-stan-
dard receivers when the channel-selection filters are realized 
after the A/D converters using digital circuits, and, thus, can be 
programmed to accommodate the requirements of the different 
standards. The low-IF architectures greatly minimize errors 
due to feedback of the local-oscillator (LO) and the large 1/f 
noise of MOS transistors. They do suffer from images when 
the IF frequency is low, but these can be significantly mini-
mized by using even relatively simple complex filters at the IF 
[44].

In general, when the A/D conversion occurs before the 
channel-selection filters, then the A/D conversion must neces-
sarily be high dynamic range, and the A/D converter is almost 
always the limiting factor determining the maximum achiev-
able data rate of the receiver. Assuming the A/D converter is 
the limiting factor on the maximum achievable data rate, then 

it is possible to double the maximum-achievable data rate 
using the modulation approach proposed in [45]. A typical 
low-IF architecture has IF spectral components at positive or 
negative frequencies only; this wastes half the available band-
width of the A/D’s8. It is possible to send additional data in the 
unused frequency band. In the simplest implementation, one 
channel is implemented at positive frequencies and one chan-
nel is implemented at negative frequencies; in more-advanced 
realizations, multiple channels are implemented at both posi-
tive and negative frequencies using orthogonal-frequency-divi-
sion-multiplexing (OFDM) techniques. In both cases the 
physical hardware is the same as for typical low-IF receivers 
(as shown in Fig. 22.); the increase in complexity is all in the 
digital domain and is quite feasible.

The approach for single channels only at positive and nega-
tive frequencies is shown in Fig. 23. At the transmitter, two 

quadrature input channels are used; one is modulated to posi-
tive frequencies, and one is modulated to negative frequencies. 
A guard-band is left at dc. The congregate is modulated up to 
the RF and transmitted. This approach is much like a double 
single-side-band system where both an upper and a lower 
side-band are transmitted together. At the receiver, the RF sig-
nal is demodulated so one channel is again at a positive IF and 
the second channel is at a negative IF. The guard-band at dc 
allows the IF signal to be ac coupled which eliminates errors 
due to the local feedback of the RF oscillator and 1/f noise. The 
IF signal is then digitized similar to a typical low-IF architec-
ture. After the A/D conversion, the individual channels can be 

Fig. 22. A low-IF architecture for a receiver.
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f 
independently demodulated as shown in Fig. 23. using com-
plex signal processing in the digital domain 
 5.3 Complex and Quadrature Over-sampling A/D Con-
verters

All signal processing blocks preceding the channel-selection 
filters in a receiver must be high dynamic range. Typical speci-
fications are linearities equivalent to 14-bit ideal A/D convert-
ers or more (86 dB SNDR or more). Typical specifications for 
the analog bandwidths are now in excess of 2MHz and as high 
as 5MHz. Realizing A/D converters that can meet these 
demanding specifications is a challenging task. A possible 
architecture that is gaining in popularity is the complex 
over-sampling A/D converter. Complex over-sampling  
A/D converters (invented by W.M Snelgrove and S. Jantzi) 
combine the complex filtering ideas of [1] and the real band-
pass over-sampling  A/D converters of [46]. By using a 
complex filter in the  loop, the effective signal bandwidth is 
cut in half which doubles the over-sampling-ratio (OSR) giv-
ing ideally a much-improved SNDR [47][48] depending on the 
order of the over-sampling loop and the resolution of the D/A’s 
included in it. Also, it is possible to choose the locations of the 
zeros of the noise-transfer function (NTF) to minimize errors 
due to quantization effects, and, finally, the zeros of the sig-
nal-transfer function (STF) can be independently chosen to fil-
ter out images from an imperfect preceding image-reject mixer, 
effectively combining complex image-reject filtering and the 
A/D conversion in a single unit. The basic architecture of the 
complex over-sampling  A/D converter is shown in Fig. 24.

In [48], a 4’th order (complex — 8’th order real) complex 
over-sampling A/D was reported which used 1-bit internal con-
verters. A complex SFG of the architecture showing the com-
plex resonators is shown in Fig. 25. It should be noted that each 

of the  coefficients are complex. The design of the internal 
complex resonator-based filter was done to maximize SNDR 
by careful choice of the noise-transfer function (NTF) and sig-
nal-transfer function (STF) transmission zeros [29]. The con-
verter was implemented using switched-capacitor (SC) 
circuits. A single-ended version of the converter is shown in 
Fig. 26. This first integrated quadrature  converter had 

measured SNDR of 65 dB for a 100kHz signal bandwidth. It 
was also found to have better stability properties than real 
over-sampling converters. Recently, there have been examples 
of continuous-time complex  A/D converters reported as 
well [49][50]. For example, the converter reported in [50]
exhibited an SNDR of 76 dB for a 1MHz signal bandwidth, yet 
dissipated just 4.4mW. These are excellent results.

Currently, there has been little published on how to best 
implement the complex digital filters required for decimation 
after the analog modulators to eliminate quantization noise. 
This is expected to be an active area for future research.

 6. Conclusion
A tutorial description of the use of complex signal process-

ing in wireless systems has been presented. First, the funda-
mentals have been explained and then their use in a number of 
applications has been described. Throughout, a highly-graphi-
cal signal-flow-graph approach has been used. The applica-
tions of complex mixers, filters, low-IF receivers, and A/D 
converters have been emphasized.

 7. References
[1]  W. M. Snelgrove, Intermediate Function Synthesis, Ph.D. Thesis, Univer-
sity of Toronto, 1982.
[2]  T. H. Crystal and L Ehrman, “The Design and Applications of Digital Fil-
ters with Complex Coefficients,” IEEE Trans. Audio and Electroacoustics, 
AU-16, No. 3, pp. 315-320, Sept. 1968.
[3]  R. Boite and H. Leich, “On Digital Filters with Complex Coefficients,” in 
Network and Signal Theory (edited by J.K. Skwirzynski and J.O. Scanlan), pp. 
344-351, Peter Peregrinus, London, 1973.
[4]  M.T. McCallig, “Design of Digital FIR Filters with Complex Conjugate 
Pulse Responses,” IEEE Trans. on Circuits and Systems, CAS-25, pp. 
1103-1105, Dec. 1978.
[5]  A.V. Oppenheim and R.W. Schafer, Digital Signal Processing, Pren-
tice-Hall, 1975.
[6]  W.M. Snelgrove and A.S. Sedra, “State-Space Synthesis of Complex Ana-
log Filters,” in Proc. of the European Conference on Circuit Theory and 
Design, pp. 420-424, 1981.
[7]  G. R. Lang and P.O. Brackett, “Complex Analogue Filters,” in Proc. of the 

Fig. 24. A complex  over-sampling A/D converter 
architecture.

Fig. 25. Complex SFG of fourth-order quadrature  
modulator from [48].

∆Σ

∆Σ
∆Σ

∆Σ

Complex
Resonators

A/D

A/D

D/A

D/A

yr

yq

xr

xq

∆Σ

1
z-p1

1
z-p4

y

x

1
z-pn

A4A3A2A1

B1 B2 B3 B4

complex
signal

complex
quantizer

complex
integrator

1
z-p2

1
z-p3

z 1–

∆Σ

Fig. 26.  A single-ended SC realization of the ∆Σ converter o
Fig. 25.

pi

∆Σ

RS
FF

1-bit
DAC

1
2d

Ci1

Cc1
Cd1

Cb1

1
2d

1 2
2d 1

1 2
2d 1

1 2
2d 1

1 2
2d 1

1 2
2d 1

1 2
2d 1

12
2d1

2
1

1
2d

2
1

2
1

Cx2

Ca1

Cf1

Ce1

Ci2

Cc2
Cd2

Cb2

Cx3

Ca2

Cf2

Ce2

Ci3

Cc3
Cd3

Cb3

Cx4

Ca3

Cf3

Ce3

Ci4

Cc4
Cd4

Cb4

Ca4

Cf4

Ce4

Ci1

-Cc1

Cd1

-Cf1

Cx2

-Ce1

Cb1

Ca1

Ci2

-Cc2

Cd2

-Cf2

Cx3

-Ce2

Cb2

Ca2

Ci3

-Cc3

Cd3

-Cf3

Cx4

-Ce3

Cb3

Ca3

Ci4

-Cc4

Cd4

-Cf4

-Ce4

Cb4

Ca4

1-bit
DAC

2

RS
FF

2

latch

latch

xim

xre

yre

yim

∆Σ



European Conference on Circuit Theory and Design, pp. 412-419, 1981.
[8]  W.M. Snelgrove, A.S. Sedra, G.R. Lang, and P.O. Brackett, “Complex 
Analog Filters,” 1981, ftp://ftp.eecg.toronto.edu/pub/software/mar-
tin/snelgrove_cmplx.pdf.
[9]  R. Allen, “Complex Analog Filters Obtained from Shifted Lowpass Proto-
types,” M.A.Sc. Thesis, University of Toronto, 1985.
[10]  A. Sedra, W. Snelgrove, and R. Allen, “Complex Analog Bandpass Fil-
ters Designed by Linearly Shifting Real Low-Pass Prototypes,” in Proc. of Int. 
Symp. on Circuits and Systems, Vol. III, pp. 1223-1226, 1985.
[11]  Q. Liu, “Switched-Capacitor Complex Filters,” M.A.Sc. Thesis, Univer-
sity of Toronto, 1985.
[12]  E.A. Lee and D.G. Messerschmitt, Digital Communication, Kluwer Aca-
demics Publishers, Boston, 1988.
[13]  J. Crols and M. Steyaert, CMOS Wireless Transceiver Design, Kluwer 
Academics Publishers, Boston, 1997.
[14]  B. Razavi, RF Microelectronics, Prentice Hall, NJ, 1998.
[15]  D. K. Weaver, Jr., “A Third Method of Generation and Detection of Sin-
gle-Sideband Signals,” Proc. IRE, pp. 1703-1705, June 1956.
[16]  R. Hartley, “Modulation System,” U.S. Patent 1666206 Apr. 1928.
[17]  M. J. Gingell, “Single-Sideband Modulation Using Sequence Asymmet-
ric Polyphase Networks,” Electrical Communication, Vol. 48, No. 1-2, pp. 
21-25, 1973.
[18]  J. Crols and M. Steyaert, “An Analog Integrated Polyphase Filter for a 
High-Performance Low-IF Receiver,” Proc. VLSI Circuits Symposium, Kyoto, 
pp. 87-88, June. 1995.
[19]  F. Behbahani, Y. Kishigami, J. Leete, A. Abidi, “CMOS Mixers and 
Polyphase Filters for Large Image Rejection,” IEEE J. of Solid-State Circuits,
Vol. 36, No. 6, June 2001.
[20]  C. Cuypers, N. Voo, M. Teplechuk, and J. Sewell, “The General Synthe-
sis of Complex Analogue Filters,” 9’th Intl. Conf. on Elect., Circuits, and Sys-
tems, Vol. 1, pp. 153-156, 2002.
[21]  A. Fettweis, “Principles of Complex Wave Digital Filters,” Int. J. Circuit 
Theory Appl., Vol. 9, pp. 119-134, Apr. 1981.
[22]  X. Chen and T.W. Parks, “Design of FIR Filters in the Complex Domain,: 
IEEE Trans. on Acoustics, Speech, and Signal Processing, Vol. 35, No. 2, pp. 
144-153, Feb. 1987.
[23]  P. Regalia, S. Mitra, and J. Fadavi-Ardekani, “Implementation of Real 
Coefficient Digital Filters Using Complex Arithmetic, IEEE Transaction on 
Circuits and Systems, Vol. CAS-34, No. 4, pp. 345-353, Apr. 1987.
[24]  X. Chen and T. Parks, “Design of IIR Filters in the Complex Domain, 
“IEEE Trans. on Acoustics, Speech, and Signal Processing, Vol. 38, No. 6, pp. 
910-920, Jun. 1990.
[25]  M. Komodromos, S. Russell, and P.T.P. Tang, “Design of FIR Filters with 
Complex Desired Frequency Response Using a Generalized Remez Algo-
rithm,” IEEE Transactions on Circuits and Systems-II, vol. 42, no. 4, pp. 
428-435, Apr. 1995.
[26]  J. Volder, “The CORDIC Trigometric Computing Technique,” IEEE 
Trans. on Computers, Vol. EC-8, pp. 330-334, Sept. 1959.
[27]  A. Madisetti, A. Kwentus, and A.N. Willson, Jr., “A 100-MHz 16-b 
Direct Digital Frequency Synthesizer with a 100-dBc Spurious-Free Dynamic 
Range, IEEE Journal of Solid-State Circuits, vol. 34, no. 8, pp. 1399-1410, 
Aug. 1999.
[28]  K.W. Martin, “Small Side-Lobe Filter Design for Data Communication 
Applications,” IEEE Transactions on Circuits and Systems-II, vol. 45, no. 8, 
pp. 1155-1161, Aug. 1998.
[29]  S. Jantzi, K. Martin, and A.S. Sedra, “The effects of Mismatch in Com-
plex Bandpass  Modulators,” Proc. IEEE Intl. Symp. on Circuits and Sys-
tems (ISCAS), pp. 227-230, May 1996.
[30]  K. Martin and M.T. Sun, “Adaptive Filters Suitable for Real-Time Spec-
tral Analysis,” IEEE Trans. on Circuits and Systems, Vol. CAS-33, No. 2, pp. 
218-229, Feb. 1986.

[31]  T. Kwan and K. Martin, “Adaptive Detection and Enhancement of Multi-
ple Sinusoids Using a Cascade IIR Filter,” IEEE Trans. on Circuits and Sys-
tems, Vol. CAS-36, No. 7, pp. 937-947, July 1989.
[32]  L. Der and B. Razavi, “A 2-GHz CMOS Image-Reject Receiver with 
LMS Calibration,” IEEE Journal of Solid-State Circuits, Vol. 38, No. 2, pp. 
167-175, Feb. 2003.
[33]  J. Paez-Borrallo, and F.J. Casajus Quiros, “Self adjusting digital image 
rejection receiver for mobile communications,” IEEE Vehicular Technology 
Conference, Vol. 2, pp. 686 -690, May 1997
[34]  L. Yu and W.M. Snelgrove, “A Novel Adaptive Mismatch Cancellation 
System for Quadrature IF Radio Receivers, IEEE Transactions on Circuits and 
Systems-II, vol. 46, no. 6, pp. 789-801, Jun. 1999.
[35]  K. Pun, J. Franca, and C. Azeredo-Leme, “The Correction of Fre-
quency-Dependent I/Q Mismatches in Quadrature Receivers by Adaptive Sig-
nal Separation,” Proc. IEEE Intl. Symp. on Circuits and Systems (ISCAS), pp. 
424-427, 2001.
[36]  D.V. Compernolle, and S.V. Gerven, “Signal Separation in a Symmetric 
Adaptive Noise Canceler by Output Decorrelation,” IEEE Trans. Signal Pro-
cessing, Vol. 43. pp. 1602-1612, July 1995.
[37]  C.C. Chen and C.C. Huang, “On the Architecture and Performance of a 
Hybrid Image Rejection Receiver, IEEE J. on Selected Areas in Communica-
tions, Vol. 19, No. 6, pp. 1029-1040, Jun. 2001.
[38]  M. Valkama and M. Renfors, “Advanced Methods for I/Q Imbalance 
Compensation in Communication Receivers,” IEEE Trans. on Signal Proc., 
Vol. 49, No. 10., pp. 2335-2334, Oct. 2001.
[39]  A.A. Abidi, “Direct-Conversion Radio Transceivers for Digital Commu-
nications,” IEEE Journal of Solid-State Circuits, vol. 30, no. 12, 1995, pp. 
1399-1410.
[40]  B. Razavi, “Design Considerations for Direct-Conversion Receivers,” 
IEEE Transactions on Circuits and Systems-II, vol. 44, No. 6, pp. 428-435, 
1997.
[41]  J. Crols and M.S.J. Steyaert, “A Single-Chip 900 MHz CMOS Receiver 
Front-End with a High Performance Low-IF Topology,” IEEE Journal of 
Solid-State Circuits, Vol. 30, No. 12, pp. 1483-1492, Dec. 1995.
[42]  J.C. Rudell, J. Ou, T.B. Cho, G. Chien, F. Brianti, J.A. Weldon, and P.R. 
Gray, “A 1.9-GHz Wide-Band IF Double Conversion CMOS Receiver for 
Cordless Telephone Applications,” IEEE Journal of Solid-State Circuits, Vol. 
32, No. 12, pp. 2071-2088., Dec. 1997.
[43]  J. Crols and M. Steyaert, “Low-IF Topologies for High-Performance 
Analog Front Ends of Fully Integrated Receivers,” IEEE Transactions on Cir-
cuits and Systems-II, vol. 45, no. 3, pp. 269-282, Mar. 1998.
[44]  P. Kong-pang, J.E. Franca, C. Azeredo-Leme, “A Quadrature Sampling 
Scheme with Improved Image Rejection for Complex-IF Receivers,” Proc. 
IEEE Intl. Symp. on Circuits and Systems (ISCAS), pp. 45-48, May 2001.
[45]  S. Mirabbasi and K. Martin, “Hierarchical QAM: A Spectrally Efficient 
DC-Free Modulation Scheme,” IEEE Communications Magazine, Vol. 38, No. 
11, pp. 140-146, November 2000.
[46]  S.A. Jantzi, W.M. Snelgrove, and P.F. Ferguson, Jr., “A Fourth-Order 
Bandpass Sigma-Delta Modulator,” IEEE Journal of Solid-State Circuits, Vol. 
28, pp. 282-291, Mar. 1993.
[47]  S. Jantzi, “Quadrature Bandpass Delta-Sigma Modulation for Digital 
Radio,” Ph.D. Thesis, University of Toronto, 1997.
[48]  S.A. Jantzi, K. Martin, and A.S. Sedra, “Quadrature Bandpass  Mod-
ulation for Digital Radio,” IEEE Journal of Solid-State Circuits, Vol. 32, No. 
12, pp. 1935-1949, Dec. 1997.
[49]  F. Henkel, et al., “A 1MHz-Bandwidth Second-Order Continuous-Time 
Quadrature Bandpass Sigma-Delta Modulator for Low-IF Receivers, IEEE 
ISSCC, pp. 214-215, Feb. 2002.
[50]  K. Philips, “A 4.4mW 76dB Complex  ADC for Bluetooth Receiv-
ers, IEEE ISSCC, pp. 64-65, Feb. 2003.

Σ∆

∆Σ

Σ∆


