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PREFACE

HaroldWheeler, in his classic 1947 papers (Wheeler, 1947a, 1947b), created the field

of electrically small antennas (ESA), although, as shown in the history (Appendix A),

the early antennas were all electrically small. This field has long been important for

frequencies below roughly 1GHz, where a half-wavelength is about 6 in. These

electrically small antennas have characteristics in common that limit performance:

low radiation resistance, high reactance, low efficiency, narrow bandwidth, and

increased loss in the matching network. Most of these limitations are shared by two

other classes of antennas: superdirective antennas and superconducting antennas.

The original intent was to update Electrically Small, Superdirective, and Super-

conducting Antennas with a second edition. Sufficient material became available to

broaden the scope of that book; the result is this book with a new title. This book

provides mathematical foundations for important topics including ENG shells, ESA

with m or « cores, including lossy cores, and focused/subwavelength imaging.

Chapter 1 contains detailed electromagnetic derivations of Chu and Thal Q

formulations, formulas for Q when m or « cores are used, and effects of loss on Q.

Finally, work on fundamental limitations using spheroids instead of the radian sphere

is covered. Chapter 2 is a treatise on bandwidth and matching, and Foster’s reactance

theorem. Precise data are given for Fano’s matching limitations and bandwidth

improvement. The effects of loss in matching circuits and cables on VSWR are

shown. The relatively new field of non-Foster matching is next discussed. Finally,

performance of a short monopole that is matched is compared with that of monopole

with high-impedance preamp. Chapter 3 provides updated coverage on canonical

antennas: dipoles, loops, self-resonant ESA, PIFA, and dielectric resonator antennas.

A comparison is made of Q of various antennas with the Chu–Thal fundamental

limitation. In Chapter 4 are presented six ideas that are clever but with performance

xiii



numbers that are poor. Eighteen nutty antenna ideas are detailed in Chapter 5; the list

keeps growing! Chapter 6 on superdirective antennas has been updated with recent

data on the use of self-resonant elements. These allow modest supergain but

bandwidth and tolerance limitations remain. Also included is new material on

maximum directivity of arrays. The last chapter, on superconducting antennas, has

been updated with new delay line data. The earlier conclusion that superconductors

should be considered for the matching network, but not the antenna, still holds.

Aworld history of ESA is presented in Appendix A. Antenna terms important to

ESA are defined in Appendix B. Appendix C contains a paper by Karawas and Collin

(2008) on NIM shells enclosing an ESA dipole. The analytical errors associated with

perfect lenses and subwavelength focusing are treated in detail by Collin (2010) in

Appendix D. Each chapter includes extensive references. An overall subject index

and an author index are provided at the end of the book.

We antenna engineers have done what is possible by rearranging the wires; future

significant advances will come through the use of new low-loss magnetic materials

and through the use of circuits to compensate for impedance deficiencies.

R. C. HANSEN AND R. E. COLLIN
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CHAPTER 1

QUALITY FACTORS OF ESA

1.1 INTRODUCTION

In a 1947 paper, Harold Wheeler defined an electrically small antenna (ESA) as an

antenna that could be enclosed within a radian sphere (Wheeler, 1947). The radian

sphere was a sphere of radius equal to l=2p, where l is the wavelength. The antennas
used by Marconi and Fessenden in the early years of wireless telegraphy were

electrically small antennas even though they were very large physical structures,

often involving wires strung as an inverted fan or cone from masts several hundred

feet tall. These antennas were electrically small antennas since in order to achieve

long-distance transmission the wavelengths used, typically greater than 3000m,

were much longer than the antenna heights. These electrically small antennas were

characterized by a very low radiation resistance and a large capacitive input

reactance. The purpose of the large inverted fans and cones was to increase the

antenna capacitance and thus reduce the capacitive reactance. Wheeler introduced

the radiation power factor (RPF) as a figure of merit for these electrically small

antennas. He considered two basic antenna types: the magnetic dipole or loop

antenna consisting of a solenoid coil with N turns, length b, and radius a; and a short

electric dipole antenna consisting of a thin wire of length b and with capacitive

loading at each end by means of circular conducting disks of radius a. The radiation

power factor was defined as the ratio of the radiation resistance to the reactance of

the antenna. For the solenoid loop antenna, the radiation resistance is given by

Rm ¼ 320N2p6ða=lÞ4. An approximate expression for the inductance of the solenoid

Small Antenna Handbook, Robert C. Hansen and Robert E. Collin.
� 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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coil is L ¼ m0N
2ðpa2=bÞ. For the small electric dipole, the radiation resistance

is given by Re ¼ 80p2ðb=lÞ2 and the capacitance between the two circular plates is

C ¼ «0pa2=b when the fringing effects are neglected. From these expressions,

we can calculate the radiation power factors, pm for the magnetic dipole and pe
for the electric dipole, as follows:

pm ¼ Rm

vL
¼ 4

3

p3a2b

l3
ð1:1aÞ

pe ¼ RevC ¼ 4

3

p3a2b

l3
ð1:1bÞ

Wheeler modified Equation 1.1 by magnetic and electric shape factors derived

from statics. For ESA, the radiation power factors are very small. Also see

Wheeler (1975).

Wheeler’s radiation power factors are related to the Q parameter introduced by

Kenneth S. Johnson, an authority on wire transmission at Bell Telephone Laborato-

ries. Initially, Johnson used the symbol K to represent the ratio of the inductive

reactance to the resistance of a coil, K ¼ vL=R. In 1920, while working on wave

filters, invented by G. A. Campbell, he replaced the symbol K by the symbol Q and

introduced the lowercase symbol q for the analogous quantity vC=G for a capacitor

C, where G is the parallel conductance of a capacitor (called condenser in those

days). Later on in 1927 he used Q for both in his U.S. Patent No. 1,628,983.

His introduction of this symbol was adopted by most people working with tuned

circuits in radio receivers in the early days of radio broadcasting.

It is easily shown that the response of a tuned circuit, consisting of a parallel or

series connection of an inductor and a capacitor, is reduced by the factor 1=
ffiffiffi
2

p
when

the circuit is detuned by a fractional amount Dv=v ¼ 1=2Q, provided the Q is equal

to 10 or more. Thus, 1/Q is the 3 dB bandwidth (BW) of the tuned circuit. If a resistive

load is connected across the tuned circuit such that a maximum amount of power can

be obtained from the circuit, theQ of the loaded circuit is reduced by a factor of 2 and

the 3 dB bandwidth is increased by a factor of 2. Tuned circuits with high values ofQ

were needed in order to achieve high selectivity in the tuned radio frequency radios.

This led to extensive efforts to design radio frequency coils with low loss resistance.

During the World War II years, the Q became widely used to describe the sharpness

of the resonance curve of both electric and mechanical resonators such as microwave

cavities, quartz crystal resonators, and so on. If we have a tuned circuit with a

capacitor C in parallel with an inductor L, it is known that the resonant frequency of

the circuit is given by v0 ¼ 1=
ffiffiffiffiffiffi
LC

p
and that at resonance the time-averaged

energy stored in the capacitor is equal to that in the inductor. If the inductor has

a series resistance R and the current in the inductor is I, then the average energy

stored in the magnetic field around the inductor is given by Wm ¼ I2L=4 and the

average power dissipated in the resistor is PL ¼ I2R=2.When we introduce these into

the definition of Q, as used by Johnson, we can express Q in the form

2 QUALITY FACTORS OF ESA



Q ¼ vL

R
¼ 2vðI2L=4Þ

I2R=2
¼ 2vWm

PL

¼ vðWm þWeÞ
PL

Q ¼ vðaverage energy stored in resonant circuitÞ
ðaverage energy dissipated per secondÞ ð1:2aÞ

This latter definition of the quality factor or Q of a resonant circuit is the most

commonly used one.

For ESA, it is approximately

Q ’ v dX=dv

2R
ð1:2bÞ

Harrington (1965) and Rhodes (1966, 1974) extended the bandwidth relationship

for circuits, BW ¼ 1=Q, to dipole-type antennas. Dipole bandwidth and 1=Q were

compared by Hansen (2007); the match was excellent for ka � 0:3 and good for

ka � 0:5.
The Q of electrically small antennas represents a fundamental limit on the

performance of these antennas, in particular their bandwidth. If the designer of

electrically small antennas is cognizant of this fundamental limit, he (she) will not

expend excessive time designing an antenna to achieve what cannot be achieved.

Although the operational bandwidth of electrically small antennas can be increased

by the use of multiple tuned circuits in the matching network or by inclusion of

magnetic materials, this invariably introduces significant additional loss and a

reduced efficiency of the antenna. Fano’s theory of broadband matching,

which will be briefly discussed in a later section, shows that a maximum increase

in the 3 dB bandwidth is by a factor of 3.2. A realistic goal is to increase the

bandwidth by a factor of 2. The double-tuned coupled circuits used in intermediate-

frequency (IF) transformers in superheterodyne radio receivers, to increase the

audio fidelity of these amplifiers, increased the bandwidth by a factor of around 2

(see Terman, 1943). Active circuits, called non-Foster networks, can in principle

provide broadband matching. These are discussed in Chapter 2 but have their own

limitations.

Canonical types of ESA are loaded dipoles, patch antennas with uncommon

substrates, loop antennas with air or magnetic cores, dielectric resonator antennas, as

well as bent conductors of unusual shapes, and antennas incorporating metamater-

ials. Many of the latter cannot be realistically fabricated and do not work according to

the theories proposed for them. These antennas are discussed in later sections. Some

clever ideas have been found to be impractical. A long list of antenna ideas that

resemble science fiction is given in Chapter 5.

L. J. Chu (1948) applied the concept ofQ to small antennas and used the definition

given by Equation 1.2a to find a lower bound for Q of small antennas whose radiated

fields could be expressed in terms of spherical waves. The results obtained by Chu

provide a more accurate measure of the limitations of ESA than Wheeler’s power
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factors do. Since the pioneering work of Chu, many other authors have contributed to

the evaluation of antenna Q.

1.2 CHU ANTENNA Q

Chu considered a hypothetical antenna that was contained entirely within a sphere of

radius a. The electromagnetic field outside this sphere can be described in terms of

infinite series of spherical transverse electric (TE) and transverse magnetic (TM)

modes. The vector wave functions in a spherical coordinate system were derived by

W. W. Hansen (1935). These modes consist of two sets of transverse (divergence-

free) modes and a set of longitudinal modes (modes with zero curl). The former are

designated by the symbolsMnmðrÞ andNnmðrÞwhile the latter are represented by the
symbol LnmðrÞ. In regions external to the source region, only the transverse modes

are required in the expansion of an arbitrary electromagnetic field. Thus, in the region

external to a sphere of radius a that completely encloses the small antenna, the

electric and magnetic fields can be represented in the following form (Stratton, 1941;

Collin, 1990):

EðrÞ ¼
X
n;m

Ce
nmMnmðrÞþ

X
n;m

De
nmNnmðrÞ ð1:3aÞ

HðrÞ ¼
X
n;m

Ch
nmMnmðrÞþ

X
n;m

Dh
nmNnmðrÞ ð1:3bÞ

where

MnmðrÞ ¼ r � ar Pm
n ðcos uÞk0rh2nðk0rÞcossin �

� � ð1:3cÞ

NnmðrÞ ¼ r �r� ar Pm
n ðcos uÞk0rh2nðk0rÞcossin �

� � ð1:3dÞ

In these expressions, Pm
n ðcos uÞ are the associated Legendre polynomials, h2nðk0rÞ

is the spherical Hankel function of order n, and k0 ¼ 2p=l0 is the free space wave

number. Ce
nm;C

h
nm;D

e
nm; andD

h
nm are amplitude constants. For each individual mode,

the stored electric and magnetic energy divided by the radiated power is independent

of the azimuthal index m. Also, the transverse electric or TEnm and the transverse

magnetic or TMnmmodes are duals of each other with the electric and magnetic fields

interchanged, so their Q’s are the same. Thus, it is sufficient to consider only the

TMn0 mode, which is what Chu did.

For the TMn0 modes, the electric and magnetic fields are given by

Eu ¼ Ch
n

� k0 sin u

jv«0

dPnðcos uÞ
dðcos uÞ

d½k0rh2nðk0rÞ�
dðk0rÞ ð1:4aÞ
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Er ¼ Ch
n

nðnþ 1Þ
jv«0r2

Pnðcos uÞ k0rh
2
nðk0rÞ

� � ð1:4bÞ

H� ¼ Ch
n

sin u

r

dPnðcos uÞ
dðcos uÞ k0rh

2
nðk0rÞ

� � ð1:4cÞ

where Ch
n is an amplitude constant. The mode wave impedance at r ¼ a is given by

Zw;n ¼ Eu

H�
¼ jZ0

d k0ah
2
nðk0aÞ

� �
=dðk0aÞ

k0ah2nðk0aÞ
ð1:5Þ

Instead of evaluating the stored reactive electric and magnetic energy and the

radiated power from the electric and magnetic fields, Chu expanded the mode wave

impedance into a continued fraction that could be interpreted as a ladder network

with 2n elements consisting of alternating capacitors and inductors, and terminated

in a normalized resistance of 1W. Conventional circuit analysis could then be used to

determine the stored electric energy in the capacitors and the stored magnetic energy

in the inductors, as well as the radiated power, which equals the power dissipated in

the terminating resistor.

The mode normalized wave impedance can be expressed in the form

Zw;n

Z0
¼ j

r
þ j

h2n

dh2n
dr

� �
ð1:6Þ

where r ¼ k0a. We now use the following recurrence relation for spherical Bessel

functions fnðrÞ:

fn ¼ 2n� 1

r
fn� 1 � fn� 2

and the relation

dfn

dr
¼ fn� 1 � nþ 1

r
fn

where r ¼ k0a, to get

Zw;n

Z0
¼ j

r
þ j

h2n
h2n�1�

nþ 1

r
h2n

2
4

3
5 ¼ n

jr
þ 1

h2n
jh2n�1

¼ n

jr
þ 1

1

jh2n�1

2n�1

r
h2n�1�h2n�2

2
4

3
5

¼ n

jr
þ 1

2n�1

jr
þ 1

h2n�1

jh2n�2

¼ n

jr
þ 1

2n�1

jr
þ 1

2n�3

jr
þ

. .
. 1

3

jr
þ 1

1

jr
þ1

ð1:7Þ

CHU ANTENNA Q 5



This expansion can be interpreted as the impedance of the ladder network

illustrated in Figure 1.1 for TM modes. L and C values decrease with each step.

The TMn0 modes store more electric energy than magnetic energy and hence the

mode must be tuned to resonance by adding some additional magnetic energy, that is,

by an inductive reactance. If we assume that this is done, then the total stored reactive

energy will be twice the electric energy We, which equals the energy stored in the

capacitors in the equivalent electric circuit. The stored electric energy and the power

dissipated in the 1W terminating resistance can be determined by conventional

circuit analysis, but it becomes very tedious to carry out for n > 3. For the n ¼ 1

mode, the Q was found to be given by

Q1 ¼ 2vWe

Pr

¼ 1

ðk0aÞ3
þ 1

k0a
ð1:8Þ

Note that the Q in Hansen (1981) has a typo error.

Chu evaluated the Q of the higher order modes by using an approximate

equivalent circuit that was obtained as follows. For a series RLC circuit, the input

reactance is X ¼ vL� 1=vC and dX=dv�X ¼ Lþ 1=v2C� L ¼ 1=v2C. When

the input current to the circuit is I, the power dissipated in R is jIj2R=2 and the electric
energy stored in C is jIj2=4v2C. Hence, the Q is given by

Q ¼ 2vWe

Pr

¼ v

v2CR
¼ 1

2R

dX

dv
� X

v

� �
ð1:9Þ

Chu equated X to the imaginary part of Zw;n=Z0 given by Equation 1.6. Chu also
evaluated the Q of the higher order modes using this method. In addition, Chu

also evaluated the Q of a combination of a TEn1 and a TMn1 mode. When the

amplitudes of the two modes are equal, a circularly polarized field can be

produced. By using his approximate value of the Q, it was found that the Q of

the combined modes was one-half that of a single mode.

The ratio of the directive gain to the Q for an antenna radiating a total of Nmodes

was also determined by Chu but he did not find the optimum gain for a given Q, a

problem that later authors solved. Any antenna that is contained within a sphere of

radius a will have additional energy storage within the enclosing sphere and will

consequently have a higher Q. Thus, the Q that Chu found is a lower bound on the Q

FIGURE 1.1 Chu ladder network.
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of any lossless antenna. Many ESA have a Q that is considerably larger than

Chu’s lower bound. When the antennaQ is large, one can infer that the bandwidth of

the antenna will be small but one cannot always assume that it will be equal to 1=Q
since the tuning circuit and losses may provide a larger bandwidth. Harrington (1958,

1960, 1961) expanded on the work of Chu, but followed Chu’s approximate method

to obtain the Q’s of TEn1 and TMn1 modes. Harrington showed that the maximum

gain of an antenna, obtained by using only a finite number of TEn1 and TMn1 modes,

was given by

Gmax ¼
XN
n¼1

ð2nþ 1Þ ¼ N2 þ 2N ð1:10Þ

If there was no constraint on the mode amplitudes, an arbitrarily large gain would

theoretically be possible. However, high-order modes are very difficult to excite

because their wave impedances (wave admittances for the TEn0 modes) are very

large, so in practice unusually large gains cannot be achieved. The high-order modes

also store large amounts of reactive energy, so high gain implies a large antenna Q

and a narrow bandwidth. Other investigators have considered optimizing the ratio of

gain divided by the antenna Q.

A different approach to Q was taken by Thiele et al. (2003), based on the far-field

pattern of a small source. A “pattern”Q is based on the integral of pattern over visible

space and that integral over all space, including invisible. Their Q values are higher

than those of Chu. An electrically small dipole with sinusoidal current distribution

was used to provide the fields for the integrations. These pattern Q values are eight

times larger than the Chu results. Dipole bandwidth calculations were also made by

Hujanen and Sten (2005). Kalafus (1969) calculates Q for higher modes as well,

using series expansions for the integrals of energy. Then coefficients of polynomials

representing Q are given. Another calculation of Q due to higher modes is done by

Harrington (1960).

An egregious example of claiming antennas that violate the fundamental limita-

tions on small antennas is provided by Underhill and Harper (2002, 2003). For a short

folded dipole of length L, they have reactance proportional to kL. However, it is well

known that the folded dipole reactance is four times that of the constituent dipole,

which is proportional to 1=kL. For a small loop of diameter D, they have radiation

resistance proportional to kD2, when it is widely accepted that it is proportional

to k4D4. These errors appear to be due to applying static formulations to electro-

magnetic problems.

Another paper claims that orthogonal TE and TM modes produce a gain of 3 and

a Q half that of either mode (Kwon, 2005). Both are in error; the input power

and the peak power density are both doubled, leaving the gain at 1.5 and theQ that of

one mode.

An erroneous calculation of bandwidth limitations occurred because of

confusion between total energy, stored energy, and radiated energy. This resulted in

a bandwidth of 16p times the fundamental limit for VSWR � 2 (Chaloupka, 1992).
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Geyi (2003a, 2003b) reexamines the task of maximizing the ratio D=Q, directivity
divided byQ. He corrects some inconsistencies in Fante (1969), with the result that the

maximumD=Q for a directive antenna (with both TE and TMmodes) is 3=Q, whereas
that for an omnidirectional antenna is, as expected, 3=2Q.

1.3 COLLIN AND ROTHSCHILD Q ANALYSIS

The next contribution to evaluating antenna Q was the paper by Collin and

Rothschild (1964), where the stored energy was evaluated in terms of the electro-

magnetic fields. This work provided convenient closed-form formulas for the Q of

any mode and was expanded upon by Fante (1969) and also by McLean (1996).

The configuration that will be analyzed consists of a spherical core of radius a

with a current sheet located on the surface. The current sheet is chosen so as to excite

only a single TEn0 mode for which the electric and magnetic fields in the region r > a

can be chosen to be

E� ¼ Ce
n

sin u

r

dPnðcos uÞ
dðcos uÞ k0rh

2
nðk0rÞ

� � ð1:11aÞ

Hu ¼ Ce
n

k0 sin u

jvm0r

dPnðcos uÞ
dðcos uÞ

d k0rh
2
nðk0rÞ

� �
dðk0rÞ ð1:11bÞ

Hr ¼ �Ce
n

nðnþ 1Þ
jvm0r

2
Pnðcos uÞ k0rh

2
nðk0rÞ

� � ð1:11cÞ

An electric current sheet proportional to a�HuðaÞ will support this mode. For

simplicity, we will assume that the amplitude constants Ce
n are equal to unity. The

TEnm modes store more magnetic energy than electric energy. The Q can be

expressed in terms of the total average stored reactive magnetic energy both inside

and outside the spherical surface r ¼ a since wewill assume that the antenna is tuned

to resonance with an additional capacitive reactance. Thus, the Q is given by

Qn ¼ 2vWm

Pr

ð1:12Þ

where Pr is the total radiated power. The total energy in the electromagnetic field is

infinite since it includes the energy associated with the far-zone radiation field, which

is energy that is being transmitted to infinity as radiated power. The radiated power is

obtained by integrating the real part of the complex Poynting vector over the surface

of a sphere with very large radius and is readily found to be given by

Pr ¼ k0p
vm0

2nðnþ 1Þ
2nþ 1

ð1:13Þ
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The power flow at infinity is equal to the energy density in the electromagnetic

field multiplied by the velocity c ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
m0«0

p
integrated over u and �. The energy

density in the radiation field is split equally between that in the electric field and that

in the magnetic field. By using the asymptotic value of the Hankel function,

the energy density for the electric and magnetic fields for very large values of r

is found to be

we ¼ wm ¼ «0 sin
2u

4r2
dPnðcos uÞ
dðcos uÞ

� �2
ð1:14Þ

After multiplying by r2sinu and integrating over u and �, we will denote these

energy densities by We;Rad and Wm;Rad. It is found that

We;Rad ¼ Wm;Rad ¼ p«0nðnþ 1Þ
2nþ 1

ð1:15Þ

It is easy to verify that cðWe;Rad þWm;RadÞ ¼ 2cWm;Rad ¼ Pr. In the original paper

by Collin and Rothschild, they made the hypothesis that the energy density we þwm

should be subtracted from the total energy density ð«0=4ÞjEj2 þðm0=4ÞjHj2 before
integrating over the total volume in order to obtain the average stored reactive energy.

After evaluating the total reactive energy, they used the integral of the complex

Poynting vector over the surface r ¼ a to obtain an expression for Wm �We, which

does not contain the energy associated with the radiation field. By this means,

they obtained separate expressions for the average stored electric and magnetic

reactive energy. McLean (1996) simplified this procedure by simply subtracting

the energy densities we and wm, respectively, from the total electric and magnetic

field energy densities. We will follow McLean’s procedure in the derivation

given below.

By using the expressions for the magnetic field given in Equations 1.11b

and 1.11c, the stored magnetic reactive energy in the volume outside the surface

r ¼ a is found to be given by

Wm ¼
ð1
a

ðp
0

m0

4
jHuj2 þ jHrj2
h i

� «0 sin
2u

4r2
dPnðcos uÞ
dðcos uÞ

� �2( )
2pr2sin udu dr ð1:16Þ

When r becomes very large, r2jHrj2 is asymptotic to 1=r2, so the integral of this

term vanishes at the upper limit r ¼ 1. The asymptotic limit of the termm0jHuj2=4 is
ð«0 sin2u=4r2Þ½dPnðcos uÞ=dðcos uÞ�2 and is cancelled by the last term in the above

integral. Hence, the integral over r converges as r tends to infinity. If the magnetic

energy density in the radiation field had not been subtracted out, the integral would

have diverged as r tended toward infinity.
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The evaluation of Wm requires the following two integrals:

ðp
0

½Pnðcos uÞ�2sin u du ¼ 2

2nþ 1
ð1:17aÞ

ðp
0

dPnðcos uÞ
du

� �2
sin u du ¼ 2nðnþ 1Þ

2nþ 1
ð1:17bÞ

After completing the integrations over u, the expression for Wm reduces to

Wm ¼ p«0nðnþ1Þ
k0ð2nþ1Þ

ð1
k0a

dr jnðrÞ
dr

� �2
þ dr ynðrÞ

dr

� �2
þnðnþ1Þ j2nðrÞþy2nðrÞ

� ��1

( )
dr

ð1:18Þ

where jn and yn are the spherical Bessel functions of the first and second kinds. In

order to carry out the integrations in Equation 1.18, the following integral is used

(Morse and Feshbach, 1953):

ð
r2½fnðrÞ�2dr¼ r2

2
ðf 2n � fn�1fnþ1Þ ð1:19aÞ

where fn can be jn or yn. In order to transform all of the integrals into this form, the

following relations are needed:

jn ¼ r

2nþ1
ðjn�1þ jnþ1Þ ð1:19bÞ

dðrjnÞ
dr

¼ r

2nþ1
ðnþ1Þjn�1�njnþ1½ � ð1:19cÞ

From Equations 1.19b and 1.19c, we can derive the relations

jnþ 1 ¼ nþ 1

r
jn � 1

r

djnðrÞ
dr

ð1:19dÞ

jn� 1 ¼ 1

r
njn þ 1

r

djnðrÞ
dr

� �
ð1:19eÞ

By using these relations, we can show that

dðrjnÞ
dr

� �2
¼ r2

2nþ 1
ðnþ 1Þj2n� 1 þ nj2nþ 1

� �� nðnþ 1Þj2n ð1:19fÞ
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The integral in Equation 1.18 now becomes

Wm ¼ p«0nðnþ1Þ
k0ð2nþ1Þ

ð1
k0a

ðnþ1Þr2
2nþ1

j2n�1ðrÞþy2n�1ðrÞ
� �þ nr2

2nþ1
j2nþ1ðrÞþy2nþ1ðrÞ
� ��1

8<
:

9=
;dr

¼ p«0nðnþ1Þ
k0ð2nþ1Þ k0a�ðk0aÞ3ðnþ1Þ

2ð2nþ1Þ j2n�1ðk0aÞ�jn�2ðk0aÞjnðk0aÞ
�8<

:

þ n

nþ1
j2nþ1ðk0aÞ�

n

nþ1
jnðk0aÞjnþ2ðk0aÞ�

)
þ corresponding terms in

yn; yn�1; yn�2; ynþ1; and ynþ2 ð1:20Þ

The quality factorQ for the nth mode, which wewill designate by the symbolQTE
n ,

is obtained by multiplying by 2v=Pr and is given by

QTE
n ¼ k0a� ðk0aÞ3ðnþ 1Þ

2ð2nþ 1Þ j2n� 1ðk0aÞ� jn� 2ðk0aÞjnðk0aÞþ n

nþ 1
j2nþ 1ðk0aÞ

2
4

� n

nþ 1
jnðk0aÞjnþ 2ðk0aÞ

#
þ corresponding terms in

yn; yn� 1; yn� 2; ynþ 1; and ynþ 2

This expression can be simplified by using the recurrence relation

(Equation 1.19b) to eliminate the Bessel functions of order n� 1, n� 2, and

nþ 2. When this is done, we obtain

QTE
n ¼k0a� ðk0aÞ2

2
þðnþ1Þk0a

2
4

3
5 j2nðk0aÞþy2nðk0aÞ
� ��ðk0aÞ3

2
j2nþ1ðk0aÞþy2nþ1ðk0aÞ
� �

þ2nþ3

2
ðk0aÞ2 jnðk0aÞjnþ1ðk0aÞþynðk0aÞynþ1ðk0aÞ½ � ð1:21Þ

which is the same expression as that given in the Collin and Rothschild’s (1964)

paper. The QTE
n can be expressed as a power series in inverse powers of k0a by using

ðk0aÞ2 j2nðk0aÞþy2nðk0aÞ
� �¼C2

nþD2
n ð1:22aÞ

ðk0aÞ2½jnðk0aÞjnþ1ðk0aÞþynðk0aÞynþ1ðk0aÞ�¼CnDnþ1�DnCnþ1 ð1:22bÞ
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where

Cn¼
X2m�n

m¼0

ð�1Þmðnþ2mÞ!
ð2mÞ!ðn�2mÞ!22mðk0aÞ2m

and

Dn¼
X2m�n�1

m¼0

ð�1Þmðnþ2mþ1Þ!
ð2mþ1Þ!ðn�2m�1Þ!22mþ1ðk0aÞ2mþ1

For the first three modes, the results are

Q1 ¼ 1

k0a
þ 1

ðk0aÞ3
ð1:23aÞ

Q2 ¼ 3

k0a
þ 6

ðk0aÞ3
þ 18

ðk0aÞ5
ð1:23bÞ

Q3 ¼ 6

k0a
þ 21

ðk0aÞ3
þ 135

ðk0aÞ5
þ 675

ðk0aÞ7
ð1:23cÞ

The Q of the first three modes is shown in Figure 1.2. Note that the Q rapidly

becomes very large as soon as the parameter k0a becomes less than unity, and that

Equations 1.23a–1.23c are exact.

Collin and Rothschild (1964) applied the same method to calculate the Q of

cylindrical modes excited outside the surface of a cylinder with radius a. The Q

of cylindrical modes was found to have a similar dependence on the radius of the

cylinder as the spherical modes have on the radius of the circumscribing sphere.

The TMn1 modes are the dual of the TEn1 modes and have the same value for the

Qn. The expressions for the electric and magnetic reactive energies are interchanged,

so We > Wm. If the TE10 and TM10 modes are excited with equal amplitude from a

one-port input network, then the electromagnetic field outside the sphere with radius

a will contain equal amounts of reactive electric and magnetic energies. Since the

TEn1 and TMn1 modes are orthogonal for energy storage and radiated power, these

quantities can be summed when both sets of modes are excited. In general, there will

also be some energy stored within the circumscribing sphere. We will let these

be represented by W
0
e and W

0
m. For the purpose of discussion, we will assume that

Wm > We. The following situations can occur:

Wm þW
0
m > We þW

0
e

Wm þW
0
m < We þW

0
e

For the first case, we would need to add some stored electric energy DWe in order

to tune the system to resonance, that is,
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Wm þW
0
m ¼ We þW

0
e þDWe

Clearly, if the Q is calculated using Wm for the time-averaged stored magnetic

energy, this will give a lower bound on the antenna Q since the total stored magnetic

energy is larger because it includes the internal stored magnetic energy W
0
m. For the

second case, we would need to add additional magnetic energy DWm such that

Wm þW
0
m þDWm ¼ We þW

0
e

Again it is clear that using only the external stored magnetic energy will give a

lower bound on the antenna Q.

If the TE10 mode is excited with a phase angle p=2 relative to that for the TM10

mode but with an equal amplitude, then the radiated field everywhere will be

circularly polarized. The power across any spherical surface will be independent

of time. If the internal stored electric and magnetic energies are also balanced, then

the system will be resonant at all frequencies. The radiated power will be twice that

of a single mode. The stored energy will be the sum ofWm from the TE10 mode and

that from the TM10 mode, which is proportional to 1=k0a and thus leads to the

following lower bound on the Q (McLean, 1996; Collin, 1998):
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FIGURE 1.2 The quality factors (or the first three TEn0 and TMn0 modes. Only the stored

reactive energy outside the circumscribing sphere of radius a is included.
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QTEþTM ¼ 1

2

1

ðk0aÞ3
þ 1

k0a

" #
þ 1

k0a

( )
¼ 1

2ðk0aÞ3
þ 1

k0a
ð1:24Þ

1.4 THAL ANTENNA Q

Any antenna that is contained within a sphere of radius a will have additional energy

storage within the enclosing sphere and will consequently have a higherQ. Thus, the

Q that Chu found is a lower bound on theQ of any lossless antenna. Many ESA have a

Q that is considerably larger than Chu’s lower bound. When the antenna Q is large,

one can infer that the bandwidth of the antenna will be small but one cannot always

assume that it will be equal to 1=Q since the tuning circuit and losses may provide for

a larger bandwidth.

In order to complete the derivation of the new lower bound on antennaQ, we need

to consider the effects of energy stored within the sphere of radius a. In two recent

papers, Thal (1978, 2006) reevaluated the Q of TEn1 and TMn1 modes by assuming

that the antenna consisted of a suitable current sheet on the surface of the sphere of

radius a. This allowed the modes excited in the interior of the sphere to be included in

the energy storage and hence led to larger values for the minimum achievableQ. This

work was based on the use of continued fraction expansions for the mode impedances

in both the internal and external regions. This current sheet can be chosen so as to

excite a single TEn0 or TMn0 mode. The only boundary condition that needs to be

applied is the continuity of the tangential electric field across the current sheet. Thal

extended the circuit analysis of Chu by developing a ladder network that included the

energy inside the enclosing sphere.

Hansen and Collin (2009) extended the exact formulation in terms of spherical

modes to include the energy stored inside the sphere. The result is a quotient of

spherical Bessel and Hankel functions. Numerical values are shown in Table 1.1, and

as expected these agreewith those published by Thal. Figure 1.3 shows the Chu-Q for

TE1 and TM1, and the Thal-Q for TE1 and Thal-Q for TM1. Exact formulas are those

in Section 1.5 for m ¼ 1 and « ¼ 1.

TABLE 1.1 New Q Values

ka Chu-Q (TM or TE) Thal-Q (TM) Thal-Q (TE)

0.1 1010.0 1506.0 3030.0

0.15 302.96 448.51 908.90

0.2 130.00 190.58 390.00

0.25 68.000 98.506 204.00

0.30 40.370 57.684 121.11

0.35 26.181 36.850 78.540

0.40 18.125 25.111 54.380

0.45 13.196 17.991 39.590

0.50 10.000 13.421 30.004
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The increase in Q due to the energy stored inside the sphere is (Hansen and

Collin, 2009)

DQ ¼ SF
ðkaÞ3
2

jn
2 � jn� 1 jnþ 1

� �þ ðkaÞ2
2nþ 1

ðnþ 1Þ jn jn� 1 � njn jnþ 1½ �
* +

ð1:25Þ

The scale factors are

SFTM ¼ 1þ ½ðnþ 1Þyn� 1 � nynþ 1�2
½ðnþ 1Þjn� 1 � njnþ 1�2

SFTE ¼ ½jnðkaÞ�2 þ ½ynðkaÞ�2
½jnðkaÞ�2

ð1:26Þ

Unlike the Chu-Q case, the new formulas do not have Q expressed as a two- or

three-term formula. This was remedied by Hansen and Collin (2009) who performed

a least pth fit to the exact values for both the TM1 and TE1 modes for two terms.

Least-squares fitting has a limitation in that the errors at the interval ends are different

from those in the middle of the interval. This was corrected by Bandler and

Charalambous (1972) with the least pth fit. It takes the pth root of the sum of the

200

Q

100

TM,  TE

TM

TE

0
0 0.1 0.2 0.3

ka

0.4 0.5

QChu

QTha1

QTha1

0.6

FIGURE 1.3 Q for lowest order modes.
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function values each raised to the pth power. For p � 10, the errors are evenly

distributed. The calculated values were fitted with p ¼ 20, for both TM1 and TE1

modes. The TM coefficients were close to 0.707 and 1.5, so these were used; TE

coefficients were close to 3.

TM1 : Q ¼ 1ffiffiffi
2

p
ka

þ 1:5

ðkaÞ3

TE1 : Q ¼ 3

ka
þ 3

ðkaÞ3
ð1:27Þ

Table 1.2 shows the errors versus ka for the TM1 case; the maximum error is

0.43% over the important range of ka � 0:5; for the TE1 formula, the errors are even

smaller. These useful formulas will be easy to remember!

1.5 RADIAN SPHERE WITH MU AND/OR EPSILON: TE MODES

One could assume that the spherical core was a material with permittivity and

permeability greater (or less) than those of free space. Indeed, Wheeler (1958)

did evaluate a spherical antenna consisting of a coil wound on the surface of a

sphere, with a permeability greater than that of free space. Two recent papers by

Kim et al. (2010) and Kim and Breinbjerg (2011) also address this problem. See also

McLean, Foltz, and Sutton, 2011. The analysis starts with the Collin and

Rothschild’s (1964) and Hansen and Collin’s (2009) papers, modifying the analysis

to allow a dielectric–magnetic core. The papers by Kim’s group show that for TE

modes and a magnetic core, a Q approaching the Chu lower bound can be realized

when the radius of the core tends toward zero.

Now consider the case of the excitation of TEn0 modes and assume that the interior

of the sphere is filled with lossless material having a relative permittivity «r and a

relative permeability mr. The only case that can be analyzed without having to

specify the details of the system of currents used to excite the electromagnetic field is

TABLE 1.2 TM Q Formula Errors

ka Qnew Qapprox % Error

0.10 1506.0 1507.1 0.07

0.15 448.51 449.20 0.15

0.20 190.58 191.00 0.22

0.25 98.506 98.830 0.33

0.30 57.684 57.910 0.39

0.35 36.850 37.010 0.43

0.40 25.111 25.210 0.39

0.45 17.991 18.030 0.22

0.50 13.421 13.410 � 0.08
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the use of a current sheet located on the surface r ¼ a. This current sheet can be

chosen so as to excite a single TEn0 or TMn0 mode. The only boundary condition that

needs to be applied is the continuity of the tangential electric field across the current

sheet. For the case of TEn0 modes, the fields are given by Equations 1.11a–1.11c but

with the Hankel functions replaced by the spherical Bessel functions jnðkaÞ and k0
replaced by k ¼ ffiffiffiffiffiffiffiffiffi

«rmr

p
k0, thus

E� ¼ Ce
n

sin u

r

dPnðcos uÞ
dðcos uÞ krjnðkrÞ½ � ð1:28aÞ

Hu ¼ Ce
n

ksin u

jvmrm0r

dPnðcos uÞ
dðcos uÞ

d½krjnðkrÞ�
dðkrÞ ð1:28bÞ

Hr ¼ �Ce
n

nðnþ 1Þ
jvmrm0r

2
Pnðcos uÞ krjnðkrÞ½ � ð1:28cÞ

The stored magnetic energy within the sphere is given by an integral similar to

Equation 1.18 but with the terms involving yn dropped, changing k0 to k, and «0 to
«r«0, which gives

Wm ¼ jCe
nj2

p«r«0nðnþ 1Þ
kð2nþ 1Þ

ðka
0

drjnðrÞ
dr

� �2
þ nðnþ 1Þj2nðrÞ

( )
dr ð1:29aÞ

Note that r ¼ ffiffiffiffiffiffiffiffiffi
«rmr

p
k0a and there is no propagating energy density subtracted at

infinity. In addition, the limits on the integral are now from 0 to ka. The evaluation of

this integral is similar to that for Equation 1.18 and can be inferred to be

Wm ¼ jCe
nj2

p«r«0nðnþ 1Þ
kð2nþ 1Þ

ðkaÞ3ðnþ 1Þ
2ð2nþ 1Þ

�
j2n� 1ðkaÞ� jn� 2ðkaÞjnðkaÞ

(

þ n

nþ 1
j2nþ 1ðkaÞ�

n

nþ 1
jnðkaÞjnþ 2ðkaÞ

�)
ð1:29bÞ

We can simplify this expression by using the Bessel function recurrence relations

to eliminate the Bessel functions of order n� 2 and nþ 2. This gives the result

Wm ¼ jCe
nj2

p«r«0nðnþ 1Þ
kð2nþ 1Þ

r3

2
j2nðrÞ� jn� 1ðrÞjnþ 1ðrÞ
� ��

þ r2

2nþ 1
ðnþ 1ÞjnðrÞjn� 1ðrÞ� njnðrÞjnþ 1ðrÞ½ �

�
ð1:29cÞ

Whenwemultiply by 2v and divide by the radiated power given by Equation 1.13,

we obtain the change in the antenna Q due to the energy stored internal to the sphere.

We will denote this change by DQTE
n , which is given by

RADIAN SPHERE WITH MU AND/OR EPSILON: TE MODES 17



DQTE
n ¼ jCe

nj2
ffiffiffiffiffi
«r
mr

r
r3

2
j2nðrÞ� jn� 1ðrÞjnþ 1ðrÞ
� ��

þ r2

2nþ 1
ðnþ 1ÞjnðrÞjn� 1ðrÞ� njnðrÞjnþ 1ðrÞ½ �

�
ð1:30Þ

The last step is to find the value of jCe
nj2, which is the scale factor that the interior

field must be multiplied by, from the condition that the tangential electric field must

be continuous across the current sheet. This condition gives

Ce
n

		 		2 ¼ SFTE ¼ k20 j2nðk0aÞþ y2nðk0aÞ
� �

k2j2nðkaÞ
ð1:31Þ

The final result for the change in the Q for the TEn0 mode due to energy stored

within the circumscribing sphere is

DQTE
n ¼ k0

mrk

j2nðk0aÞþ y2nðk0aÞ
j2nðkaÞ

r3

2
j2nðrÞ� jn� 1ðrÞjnþ 1ðrÞ
� ��

þ r2

2nþ 1
ðnþ 1ÞjnðrÞjn� 1ðrÞ� njnðrÞjnþ 1ðrÞ½ �

�
ð1:32aÞ

When «r ¼ mr ¼ 1, the above result agrees with that given by Hansen and

Collin (2009).

For the TE10 mode, a simplified expression is easily derived by using the sine and

cosine expressions for the spherical Bessel functions, thus

DQTE
1 ¼

ffiffiffiffiffi
«r
mr

r ðkaÞ2
ðk0aÞ2

1þðk0aÞ2

ðkaÞ2cos2 ka�ðkaÞsin 2kaþ sin2 ka
h i

� ka

2
� sin 2ka

4
� cos2 ka

ka
þ sin 2ka

ðkaÞ2 � sin2 ka

ðkaÞ3
" #

ð1:32bÞ

We can obtain an alternative expression by using

1þðk0aÞ2 ¼ ðk0aÞ3 1

ðk0aÞ3
þ 1

k0a

" #
¼ ðk0aÞ3Q1;Chu

where Q1;Chu is given by Equation 1.23a and is the contribution to the Q due to

the external stored energy. We now find that the new lower bound on the total Q for

the TE10 mode can be expressed in the form

18 QUALITY FACTORS OF ESA



QTE
1 ¼ Q1;Chu þDQTE

1

¼ 1þ 2

mr

ðkaÞ4=4� ðkaÞ3sin 2ka

 �

=8� ðkaÞ2cos2ðkaÞ

 �

=2þðka sin 2kaÞ=2� sin2ðkaÞ� 

=2

h i
ðkaÞ2cos2ðkaÞ� ka sin 2kaþ sin2ðkaÞ
h i

8<
:

9=
;Q1;Chu

ð1:33Þ

This result is the same as that given by Kim et al. (2010). However, the above

authors do not give any formulas for the Q for the higher order TEn0 modes. The

above results also support the result Q1 ¼ ð1þ 2=mrÞðk0aÞ� 3
given many years ago

by Wheeler (1958).

From Equation 1.33, it can be seen that the new lower bound for the total Q

depends only on the permeability parameter mr and the size of the core through the

parameter ka ¼ ffiffiffiffiffiffiffiffiffi
«rmr

p ðk0aÞ. For very small values of ka, the contribution DQTE
n to

the total Q of the antenna is very small provided that the permeability is very

large. Hence, for a core with a small value of ka, the lower bound is very close to

the value of Q1;Chu. As ka increases in value, the DQTE
n increases but the total Q

decreases because Q1;Chu is decreasing at a rapid rate. After Q reaches a minimum

value, it begins to increase without limit as the resonant frequency of the internal

spherical core is approached. The resonant frequency occurs when the denominator

term jnðkaÞ in Equation 1.31 equals zero. At the resonant frequency, the tangential

electric field equals zero on the interior side of the surface of the circumscribing

sphere. Since the tangential electric field is continuous across the current sheet, it

must also be zero on the exterior side of the current sheet and consequently there is no

external radiation at the resonant frequencies. This is a manifestation of the

nonuniqueness of the external scattering problem for a sphere at the internal

resonances.

When «r andmr are equal to unity, DQTE
1 for the TE10 mode is very close to 2Q1;Chu

for k0a < 0:7, which makes the new lower bound on the antenna Q for this mode

approximately three times as large as that obtained by considering only the energy

stored outside of the circumscribing sphere. In Figure 1.4a, we show some typical

results for the new lower bound on the Q as a function of k0a for mr ¼ 4, 16, and 64

and «r ¼ 4. The curve for mr ¼ 64 shows a large increase in Q when the frequency

approaches the resonance value. These resonances are also encountered for the lower

values of mr, and also for the case of an air core, but at larger values of k0a. For mr

equal to 16 and larger, the curves of Q versus k0a are almost identical except in the

near vicinity of the resonances, which are different for each case because these occur

when ka ¼ tan ka for the k0a mode and thus depend on both core permittivity

and permeability. From Equation 1.33, we can see that the new lower bound QTE
1 for

the TM10 mode depends only on ka and the relative permeability mr. For this reason,

the same results shown in Figure 1.4a are shown in Figure 1.4b plotted as a function

of ka. These curves show additional resonance points and illustrate the minimum

values of QTE
1 that can be achieved. Note that when QTE

1 is plotted as a factor of

kaQTE
1 decreases with an increase in mr, but when plotted as a function of ka the

quality factor increases with an increase in mr.
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In the paper by Kim and Breinbjerg (2011), the ratio of the total stored magnetic

field energy to the total stored electric field energy is plotted as a function of k0a for

mr equal to 1, 2, 8, and 100, with «r ¼ 1. It was found that the stored electric field

energy became equal to the stored magnetic field energy at the cavity resonant
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FIGURE 1.4 (a) A plot of lower bound QTE
1 for TF10 mode as a function of ka for various

electrical parameters for the spherical core. (b) Comparison of the new lower bound for QTE
1

for the TE10 mode with the new lower bound taking into account internal energy stored in a

core with relative permittivity of 16. Also shown is theQ for an air core and the originalQ1,Chu

that is based only on the external stored energy.

20 QUALITY FACTORS OF ESA



frequencies, but never exceeded the stored magnetic field energy. We have verified

these calculations for ka up to 100 and also included «r values of 2, 4, 16, 64, and 100.
The same property that the total stored electric field energy did not exceed the total

stored magnetic field energy continued to hold. Thus, the formula given by

Equation 1.33 for the Q of the TE10 will hold for all values of k0a, which is contrary

to a conclusion given by Kim and Breinbjerg (2011).

The next issue we wish to explore is whether or not the frequency dependence of

the tuned antenna admittance will result in a 3 dB bandwidth that is equal to 2=QTE
1 ,

where QTE
1 is the Q of the TE10 mode with the dielectric–magnetic core and no

external conductive loading; that is, QTE
1 is the unloaded antenna Q. The

antenna configuration analyzed above consists of a dielectric–magnetic core of

radius a and wound with a current sheet in the � direction. The admittance presented

to the current sheet source is the parallel combination of the wave admittance Ye
looking in the outward direction with the wave admittance Yi looking inward from

the surface at r ¼ a. These wave admittances can be obtained from the expressions

for the fields of the TE10 mode given in Equations 1.11a, 1.11b, 1.28a, and 1.28b

and are, after normalization with respect to the characteristic admittance

Y0 ¼ ð«0=m0Þ1=2 of free space,

Ye ¼ � Hu

E�
¼ j

d ðk0aÞh21ðk0aÞ
� �

=ðdk0aÞ
ðk0aÞh21ðk0aÞ

ð1:34aÞ

Yi ¼ � j

ffiffiffiffiffi
«r
mr

r
d ðkaÞj1ðkaÞ½ �=dðkaÞ

ðkaÞj1ðkaÞ ð1:34bÞ

We now use

xj1ðxÞ ¼ sinðxÞ
x

� cosðxÞ

and

xh21ðxÞ ¼
sinðxÞ
x

� cosðxÞþ j
cosðxÞ

x
þ sinðxÞ

� �

to obtain

Ye ¼
j k0a cosðk0aÞ� sinðk0aÞþ ðk0aÞ2sinðk0aÞþ j ðk0aÞ2cosðk0aÞ� cosðk0aÞ� k0a sinðk0aÞ

h in o
k0a sinðk0aÞ� ðk0aÞ2cosðk0aÞþ j k0a cosðk0aÞþ ðk0aÞ2sinðk0aÞ

h i

¼ ðk0aÞ3 � j

k0a 1þðk0aÞ2
h i ð1:35aÞ
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Yi ¼ j

ffiffiffiffiffi
«r
mr

r
sinðkaÞ� ka cosðkaÞ� ðkaÞ2sinðkaÞ

ka sinðkaÞ� ðkaÞ2cosðkaÞ

" #
ð1:35bÞ

The external admittance Ye is that of a lumped element circuit consisting of an

inductive reactance jk0a in parallel with the reactance of a series capacitor and resistor

1þ 1=jk0a (Harrington, 1961). The internal admittance cannot be represented by a

lumped element circuit, except when ka is small so that a first-order power series

expansion of Yi can be used. In the low-frequency range, Yi can be approximated as an

inductive reactance jka ¼ jvmrm0a
ffiffiffiffiffiffiffiffiffi
«=m

p
, which is connected in parallel with

jk0a ¼ jvm0

ffiffiffiffiffiffiffiffiffiffiffiffi
«0=m0

p
. It canbe seen that theparallel combinationof these two inductive

reactances will be dominated by the jk0a one whenmr and «r are large. The admittance

seen by the current source is Ye þ Yi. This admittance is inductive. The antenna can

be tuned to resonance by connecting a capacitive admittance jBc ¼ j ImðYe þ YiÞ in
parallel.Wewill assume thatBðvÞ ¼ BðvcÞv=vc so that at the center frequencyvc the

input admittance is a pure conductance equal to the radiation conductance of the

antenna. Away from the center frequency, the antenna input admittance will no longer

be a pure conductance. The issue we wish to explore is whether or not the frequency

dependence of the tuned antenna admittancewill result in a 3 dBbandwidth that is equal

to 2=QTE
1 ,whereQTE

1 is theQof theTE10 modewith thedielectric–magnetic core andno

external conductive loading; that is,QTE
1 is the unloaded antennaQ.Asample evaluation

of theVSWRas a function ofk0a for the loaded antenna has been calculated for the case

of an antenna with k0a ¼ 0:25 at the center frequency, with a core having «r ¼ 4 and

mr ¼ 16, and having a load conductance equal to that of the conductance of Ye at the

center frequency. For this antenna, theQ is very nearly equal to ð1þ 2=mrÞQ1;Chu,which

equals 76.5. TheVSWRis shown inFigure1.5. From thefigure, itwas estimated that the

3 dB bandwidth was 0.0065 in units of k0a, which gives a fractional bandwidth of

0.0065/0.25¼ 0.026. From this bandwidth, we can determine the circuit loaded Q,

which is given by 1/0.026¼ 38.45. The unloaded antennaQ is equal to twice this value

and is 76.9, which is slightly greater than the theoretical lower bound given by

Equation 1.33. This exmple suggests that an antenna using a core with a large value

of permeability andwith the excitation in the form of a surfacewinding in the azimuthal

direction is an optimum design.

1.6 RADIAN SPHERE WITH MU AND/OR EPSILON: TM MODES

We will now analyze an antenna consisting of a dielectric–magnetic core that is

excited by a current sheet in the u direction so as to radiate only TMn1 modes. The

external fields are given by Equations 1.4a–1.4c. The internal fields have the same

form but with the Hankel functions replaced by Bessel functions, thus

Eu ¼ Dh
n

� k sin u

jv«r«0r

dPnðcos uÞ
dðcos uÞ

d½krjnðkrÞ�
dðkrÞ ð1:36aÞ
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Er ¼ Dh
n

nðnþ 1Þ
jv«r«0r2

Pnðcos uÞ krjnðkrÞ½ � ð1:36bÞ

H� ¼ Dh
n

sin u

r

dPnðcos uÞ
dðcos uÞ krjnðkrÞ½ � ð1:36cÞ

For these modes, the stored electric energy is greater than the stored magnetic

energy. For the external fields, the stored electric energy is given by an expression

similar to that in Equation 1.20 since the TMn1 modes are the dual of the TEn0 modes.

Thus, the external stored energy leads to the same contribution to the antenna Q that

is given by Equation 1.21. Consequently, we need to evaluate only the additional

contribution to the antennaQ arising from the internal stored energy. The integral for

the stored electric energy will be similar to that for the stored magnetic energy as

given by Equation 1.29a. By using the expressions from Equations 1.36a and 1.36c,

we obtain
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FIGURE 1.5 VSWR as a function of k0a for an antenna tuned to resonance at the frequency

corresponding to k0a¼ 0.25. The core has a relative permittivity of 4 and a relative

permeability of 16. The 3 dB loaded antenna Q is equal to 38.45. The unloaded antenna Q

equals 76.9.
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We ¼
ða
0

ðp
0

«r«0
4

Euj j2 þ Erj j2
h i

2pr2sin u du dr

¼
ða
0

ðp
0

Dh
n

		 		2 mrm0

4

dPnðcos uÞ
dðcos uÞ

d krjnðkrÞ½ �
dðkrÞ

8<
:

9=
;

28<
:

þ nðnþ 1ÞPnðcos uÞjnðkrÞ½ �2
)
2psin3u du dr

¼ mrm0p
k

nðnþ 1Þ
2nþ 1

ðka
0

Dh
n

		 		2 drjnðrÞ
dr

2
4

3
5
2

þ nðnþ 1Þj2nðrÞ
8<
:

9=
;dr ð1:37aÞ

where r ¼ ka. This integral is the same as that in Equation 1.26 and the result will be

the same as that given by Equation 1.27. Thus, we have

We ¼ Dh
n

		 		2 pmrm0nðnþ 1Þ
kð2nþ 1Þ

ðkaÞ3ðnþ 1Þ
2ð2nþ 1Þ

h
j2n� 1ðkaÞ� jn� 2ðkaÞjnðkaÞ

(

þ n

nþ 1
j2nþ 1ðkaÞ�

n

nþ 1
jnðkaÞjnþ 2ðkaÞ

i)
ð1:37bÞ

The total radiated power is given by Equation 1.13 multiplied by m0=«0 and is

2nðnþ 1Þ=ð2nþ 1Þ½ �p ffiffiffiffiffiffiffiffiffiffiffiffi
m0=«0

p
, so the contribution DQTM

n to the antenna Q from the

internal stored energy will be similar to that in Equation 1.29:

DQTM
n ¼ 2vWe

Pr

¼ Dh
n

		 		2 ffiffiffiffiffi
mr

«r

r
r3

2
j2nðrÞ� jn� 1ðrÞjnþ 1ðrÞ

� ��

þ r2

2nþ 1
ðnþ 1ÞjnðrÞjn� 1ðrÞ� njnðrÞjnþ 1ðrÞ½ �

�
ð1:38Þ

We must also choose the scale factor SFTM ¼ Dh
n

		 		2 so that the tangential

electric field is continuous across the current sheet. This requires the constant Dh
n

to be given by

Dh
n ¼

ffiffiffiffiffi
«r
mr

r
d r0h

2
nðr0Þ=dr0

� �
d rjnðrÞ=dr½ �

which gives

SFTM ¼ Dh
n

		 		2 ¼ «r
mr

dr0jnðr0Þ=dr0½ �2 þ dr0ynðr0Þ=dr0½ �2
drjnðrÞ=dr½ �2 ð1:39Þ
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The final expression obtained for DQTM
n is

DQTM
n ¼ SFTM

ffiffiffiffiffi
mr

«r

r
r3

2
j2nðrÞ� jn� 1ðrÞjnþ 1ðrÞ
� �þ r2

2nþ 1
ðnþ 1ÞjnðrÞjn� 1ðrÞ½

�

� njnðrÞjnþ 1ðrÞ�
�

ð1:40Þ

Hence, for the TMn0 modes excited by a current sheet on a dielectric–magnetic

spherical core, the new lower bound for the Q is

QTM
n ¼DQTM

n þ k0a� ðk0aÞ2
2

þðnþ1Þk0a
" #

j2nðk0aÞþy2nðk0aÞ
� ��ðk0aÞ3

2
j2nþ1ðk0aÞ
�(

þy2nþ1ðk0aÞ�þ
2nþ3

2
ðk0aÞ2 jnðk0aÞjnþ1ðk0aÞþynðk0aÞynþ1ðk0aÞ½ �

)
ð1:41Þ

For n ¼ 1, this expression can be simplified to the form

QTM
1 ¼ DQTM

1 þ 1

ðk0aÞ3
þ 1

k0a

" #
ð1:42Þ

where

DQTM
1 ¼

ffiffiffiffiffi
«r
mr

s
r4ð1þ r40 � r20Þ

r40 r2cos2ðrÞþ ð1� r2Þ2sin2ðrÞ� rð1� r2Þsinð2rÞ
h i

2
64

3
75

� r

2
� sin2ðrÞ

r3
þ ð4r� r3Þsinð2rÞ

4r3
� cos2ðrÞ

r

2
4

3
5

ð1:43Þ

Typical values of QTM
1 are shown in Figure 1.6a for representative values of «r

andmr. For an air core, the above formula shows that for small values of k0a ¼ r0 the
new lower bound on QTM

1 is very nearly equal to 1.5 Q1;Chu and decreasing to 1.34

Q1;Chu for k0a ¼ 0:5, where Q1;Chu is given by the term appearing after the term

DQTM
1 in the above equation. For the case of a relative permeability greater than 1, or

a relative permittivity greater than 1, or when both are greater than 1, the Q is

increased.

Overall, the relative permeability has very little effect on theQ as long as it does not

result in a value for ka that is close to the resonant frequency for the core. Thus, an air

core is the best choice for TMn1 modes. Resonanceswill occurwhen «r andmr are large

enough tomake d rjnðrÞ½ �=dr ¼ 0 and thesewill occur for smaller values ofk0a. At the
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resonant frequencies, the external radiation vanishes and since the core has been

assumed to be lossless QTM
1 becomes infinite. In Figure 1.6b, the value of QTM

1 as a

function of ka for «r equal to 16 and 64, with mr ¼ 1, is shown in order to illustrate the

multiple resonances that occur.
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FIGURE 1.6 (a)QTM
1 for TM10 mode as a function of k0a for various electrical parameters of

the spherical core. For an air core, theQTM
1 is approximately 1.5 times theQChu value. (b)Q

TM
1

plotted as a function of ka for «r equal to 1, 16, and 64 with mr equal to 1.
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The final topic we will examine is the evaluation of the Q of the antenna system,

consisting of the dielectric–magnetic core wound with a current sheet in the u
direction, in terms of the frequency behavior of its equivalent circuit. It will be shown

that the loaded 6 dB fractional bandwidth calculated from the equivalent circuit,

when tuned to resonance by a shunt inductive reactance, is equal to twice theQ given

by Equation 1.42, to a high degree of accuracy. This result is similar to that found for

the TE10 mode driven by a current sheet. It is a verification of the generally held

assumption that for simple antennas the fractional bandwidth is inversely propor-

tional to the antenna Q.

For the TM10 mode, the wave admittance seen looking outward from the current

sheet at r ¼ a may be found using Equations 1.4a and 1.4c and is given by

Ye ¼ H�

Eu
¼ � jðk0aÞh21ðk0aÞ

d k0ah
2
1ðk0aÞ

� �
=dðk0aÞ

¼ r0 cosðr0Þþ r20 sinðr0Þ� jr0 sinðr0Þþ jr20 cosðr0Þ
� �

r0 cosðr0Þþ r20 sinðr0Þ� sinðr0Þ
� �þ j r20 cosðr0Þ� cosðr0Þ� r0 sinðr0Þ

� �
¼ r40 þ jr0

1þ r40 � r20

ð1:44Þ

after normalization with respect to the characteristic admittance of free space. Note

that r0 ¼ k0a. The equivalent circuit for the external admittance consists of a

capacitive admittance jk0a connected in series to an inductive reactance jk0a in

parallel with a 1W resistance (Harrington, 1961).

The normalized admittance seen looking inward from the current sheet can be

found by using Equations 1.36a and 1.36c and is given by

Yi ¼ j

ffiffiffiffiffi
«r
mr

r
rj1ðrÞ

d½rj1ðrÞ�=dr ¼ j

ffiffiffiffiffi
«r
mr

r
rsinðrÞ� r2cosðrÞ

r2 sinðrÞ� sinðrÞþ rcosðrÞ ð1:45Þ

where r ¼ ka. Both Ye and Yi are capacitive for TMmodes. The antenna can be tuned

to resonance by connecting a parallel inductive admittance in parallel with Ye þ Yi
such that � jBL þ jImðYe þ YiÞ ¼ 0 at the center frequency, where we have assumed

that at the center frequency (resonant frequency) the net susceptance of the tuned

circuit is zero. Away from the resonant frequency, we will assume that BL is given by

BLðvÞ ¼ BLðvcÞvc=v, where vc is the resonant frequency of the circuit. The last

assumption will be that the circuit is loaded by a conductance equal to the radiation

conductance ReðYe þ YiÞ at the resonant frequency. We can now evaluate the input

reflection coefficient seen by the current source and the resultant VSWR. From the

fractional 6 dB bandwidth, the QTM
1 for the antenna system described can be found

from the relationship QTM
1 ¼ 2=BW, where BW is the 6 dB fractional bandwidth of
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the loaded tuned circuit. In Figure 1.7, we show the VSWR curve for the case

where «r ¼ 16 and the center frequency corresponds to k0a equal to 0.4. From

the VSWR curve, the estimate of the quality factor QTM
1 is 231. The calculated value

from Equation 1.42 is 230.2. Several other cases were also checked and gave similar

very close agreements between the circuit-based Q and the value based on stored

energy.

The preceding work assumed a spherical core of permeability material. Stuart and

Yaghjian (2010) have shown that a solid core is not necessary. They used a monopole

with a circular plate top hat; a high-m cylindrical shell of diameter equal to that of the

top hat, and height equal to that of the monopole, was added to the antenna. Results

using m > 100 were close to the Chu limit. Figure 1.8 shows the decrease of Q as m
increases; also shown is the importance of an « close to unity. See also Kim and

Breinbjerg (2011).

1.7 EFFECTS OF CORE LOSSES

The results derived above showed that for TEn0 and TMn0 modes excited by means of

current sheets located on the surface of a sphere of solid dielectric or magnetic

material, the resultant Q would be dependent on the constituent parameters of the

core material. The use of dielectric material with a relative permittivity greater than

unity increased the quality factor of TMn0 modes and thus would not be a useful way

to increase the bandwidth of the antenna. On the other hand, the use of magnetic

material with a relative permittivity greater than unity had the effect of significantly

reducing the Q of excited TEn0 modes. Since physical materials will have some loss,
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FIGURE 1.7 VSWR as a function of k0a for the TM10 mode with a dielectric core

with a relative permittivity of 16. The quality factor QTM
1 is equal to 231 for the unloaded

antenna.

28 QUALITY FACTORS OF ESA



an inevitable penalty to be paid by the use of a solid core is the increase in the loss and

a decrease in the efficiency of the antenna. The reduction in the Q results in an

increase in the bandwidth, which is normally a desirable effect, but it is offset by the

decrease in efficiency.

For isotropic lossy material, the power loss is related to the average stored electric

and magnetic energy within the core through the imaginary parts of the constitutive

parameters. Consider the integral of the inward directed complex Poynting vector

over the surface of the core at r ¼ a,

� 1

2

ð2p
0

ðp
0

E�H* � ar sin u du d� ¼ jv

2

ða
0

ð2p
0

ðp
0

m0ðm
0
r � jm

00
rÞH �H*

h

� «0ð«0
r þ j«

00
rÞ�sin u du d� dr

The real part of the right-hand side represents the average power loss within the

core. The imaginary part represents 2jvðWm �WeÞ, where Wm andWe are the time-

averaged stored magnetic and electric energies in the core material, respectively.

When the core losses are small, the stored energy may be evaluated by assuming that

the losses are zero. In terms of the stored energy, we can express the power loss in the

following form:

PL ¼ 2vm
00
r

m
0
r

Wm þ 2v«
00
r

«
0
r

We ð1:46Þ
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FIGURE 1.8 Top hat monopole with cylindrical permeable shell. Courtesy of Stuart and

Yaghjian (2010).
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The new reduced Q of the system is given by Q
0
, where

Q
0 ¼ Pr

Pr þPL

Q ð1:47Þ

andQ is the quality factor in the absence of core losses.Pr is the average radiated power

from the excited TEn0 or TMn0 mode. The reduced efficiency of the antenna is given by

the factor Pr=ðPr þPLÞ. For the TEn0 and TMn0 modes, we have already obtained

expressions for Wm and We, respectively. The other stored energy function can be

obtained by direct evaluation of thevolume integral of the corresponding energy density.

For the TEn0 modes, the stored energy in the magnetic field in the core is given by

Equation 1.29c, which is repeted below:

Wm ¼ Ce
n

		 		2 p«0
r«0nðnþ 1Þ
kð2nþ 1Þ

r3

2
j2nðrÞ� jn� 1ðrÞjnþ 1ðrÞ
� ��

þ r2

2nþ 1
ðnþ 1ÞjnðrÞjn� 1ðrÞ� njnðrÞjnþ 1ðrÞ½ �

�
ð1:48Þ

The stored electric field energy is given by (see Equations 1.17b and 1.19a)

We ¼ «
0
r«0
4

ðp
0

ða
0

E�

		 		22pr2sin u du dr

¼ «
0
r«0
4k

ðp
0
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0

Cnej j2 dPnðcos uÞ
du

2
4

3
5
2
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p Cnej j2 nðnþ 1Þ
2nþ 1

ðkrÞ3 j2nðkrÞ� jn� 1ðkrÞjnþ 1ðkrÞ
� �

ð1:49Þ

The loss arising from themagneticmaterial is obtainedbymultiplyingWm givenby

Equation 1.48 by the factor 2vm
00
r=m

0
r. Similarly, the power loss in the core due to the

lossy dielectric material is given by multiplying Equation 1.49 by the factor 2v«
00
r=«

0
r.

For the TE10 mode, the expressions for the power loss in the core are given by

PLm ¼ 4p
3

ffiffiffiffiffiffiffiffiffiffi
«

0
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m
0
rm0

s
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00
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m
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PLe ¼ 4p
3

ffiffiffiffiffiffiffiffiffiffi
«

0
r«0

m
0
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s
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ð1:51Þ

where r ¼ ka is the argument for the Bessel functions.
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A useful parameter is the ratio of power loss to power radiated

hTE ¼ PLm þPLe

Pr

ð1:52Þ

in terms of which the new lower Q of the antenna with a lossy core is given by

Q
0 ¼ Q

0
TE

1þhTE

ð1:53Þ

For the special case of the TE10 mode when n ¼ 1, we obtain

hTE ¼ PL

Pr

¼ Ce
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where
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1
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sin2rþ r2 cos2 r� r sinð2rÞ� �

A similar derivation may be carried out to obtain an expression for the total core

loss for the TE10 mode. The factor hTM for the TE10 mode is given by

hTM ¼ PL

Pr

¼ Dh
1

		 		2
ffiffiffiffiffi
m

0
r

«
0
r

s
«

00
r

«
0
r

r

2
� sinð2rÞ

4
� sin2ðrÞ

r3
þ sinð2rÞ

r2
� cos2ðrÞ

r

� ��

þ m
00
r

m
0
r

r

2
þ sinð2rÞ

4
� sin2ðrÞ

r

� ��
ð1:55Þ

where
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r40
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Representative values of QTM
1 and QTE

1 are plotted in Figure 1.9a and b as a

function of k0a for a core with relative permittivity of 4 and a relative permeability of

16, and with loss tangents «
0
r=«

00
r ¼ m

0
r=m

00
r equal to 0.01, 0.001, and 0.0001. For the

TE10 mode, the Q is about 5–10 times larger than that for the TE10 mode with the

same core parameters.
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FIGURE 1.9 (a) The Q of the TMio mode for a core with relative permittivity of 4 and

relative permeability of 16, for loss tangents «
0
r=«

00
r ¼ m
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00
r equal to 0.01, 0.001, and 0.0001.

(b) The Q of the TE10 mode for a core with relative permittivity of 4 and relative permeability

of 16, for loss tangents «
0
r=«

00
r ¼ m

0
r=m

00
r equal to 0.01, 0.001, and 0.0001.
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FIGURE 1.11 Q of spheroid in sphere. Courtesy of Peder Hansen, SPAWAR, San

Diego, CA.
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1.8 Q FOR SPHEROIDAL ENCLOSURES

A rigorous Chu-type fundamental limitation-type formulation for nonspherical

volumes would require that a low-order mode exists in the enclosure, and that

stored and radiated energy can be calculated. The prolate spheroid, which approx-

imates a cylinder, and the oblate spheroid, which approximates a flat disk, are

candidates. The first effort was made by Foltz and McLean (1999) who attempted a

numerical partial fraction expansion (ala Chu) of the prolate spheroid modal

impedance. A Herculean spheroidal mode approach has been underway by Adams

and Hansen (2004, 2008) of SPAWAR. Spheroidal functions were described by

Hobson (1931), Stratton (1941), and Morse and Feshbach (1953). EM applications

have been discussed by Li et al. (2002). Tables of functions are provided by Stratton

et al. (1956), Flammer (1957), and Chang and Yeh (1966).

The spherical mode theory developed by Collin utilized closed-form integrals and

recursion relationships (Equations 1.17 and 1.19) to develop the energy formulas.

The spheroidal mathematical toolbox is much more sparse, so that numerical

methods were used by Adams and Hansen to supplement the few available functional

relationships. Figure 1.10 shows the prolate spheroid geometry, where the spheroid

height is 2b and the diameter is 2a. Because the Q of a spheroid depends upon both

the dimensions in wavelengths and the prolateness, data in only two dimensions can

be provided by comparing the spheroid with a sphere. Figure 1.11 shows the ratio of

spheroid Q to Q of the sphere that just encloses the spheroid. It can be observed that

the relative Q increases as the prolate spheroid becomes thinner, or as the oblate

spheroid becomes fatter. Figure 1.12 shows the Q ratio for a sphere and a spheroid of

equal volume. As shown, theQ peaks slowly at b=a ¼ 0:55, with aQ ratio of 1.1251.

Maximum
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Q/Qsph = 1.1251

Spheriod aspect ratio (b/a)
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FIGURE 1.12 Q ratio: equal-volume sphere and spheroid. Courtesy of Hansen and

Adams (2010).
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TheQ=Qsphere ratio versus cylinder aspect ratio for a cylinder enclosed in a prolate

spheroid is shown in Figure 1.13. Data are shown for three cases: maximum Q, Q for

maximum volume, and Q for the cylinder enclosed in a hemisphere.

All these data are summed up in Figure 1.14, which shows normalized Q versus

aspect ratio, when sphere and spheroid have equal Q, for several dimensional

equivalences.

Wheeler (1975), as mentioned earlier, used electrostatics and magnetostatics to

develop Q boundaries for cylindrical boundaries. This work was continued by

Gustafsson and colleagues (Gustafsson and Nordebo, 2006; Gustafsson et al.,
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FIGURE 1.13 Q ratio: cylinder in prolate spheroid. Courtesy of Adams and Hansen (2008).
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FIGURE 1.14 Sphere and spheroid of equal Q. Courtesy of Hansen and Adams (2010).
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2007, 2009). Figure 1.15 shows Q=QChu as a function of cylinder height/diameter.

See also Yaghjian and Stuart (2010). These data, based on static fields, are accurate

only for ka � 1.
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CHAPTER 2

BANDWIDTH AND MATCHING

2.1 INTRODUCTION

Chapter 1 was concerned with ESA values of Q. In this chapter, the emphasis is on

impedance matching limitations and the relation between Q and bandwidth (BW).

Key names of the major contributors are Foster (reactance theorem), Fano (matching

limitations), and Moreno (loss magnification). Finally, a comparison is made

between a matched short whip antenna and a whip with a high-impedance preamp.

In relating bandwidths for different VSWR, a convenient formula is

BWx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VSWRx

p
=ðVSWRx � 1Þ ¼ BWy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VSWRy

p
=ðVSWRy � 1Þ ð2:1Þ

For example,

BWHP ¼ 2
ffiffiffi
2

p
BWVSWR¼2 ð2:2Þ

2.2 FOSTER’S REACTANCE THEOREM AND SMITH CHART

In 1924, R. M. Foster published a paper showing that a lossless reactance always has

a positive slope of reactance or susceptance with frequency (Foster, 1924). This has

become known as Foster’s reactance theorem. Such networks have their poles and

zeroes on the real axis, and they alternate. See also Bode (1945) and Guille-

min (1935). Because all antennas have a virtual loss due to the radiation resistance,

Foster’s theorem should not apply to antennas. There has been some controversy

regarding whether Foster’s reactance theorem applies to antennas, and in particular,

Small Antenna Handbook, Robert C. Hansen and Robert E. Collin.
� 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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to electrically small antennas. Best (2004) claims that it does not apply near

antiresonance, where the reactance is rapidly changing sign. Others such as Geyi

et al. (2000) claim that Foster’s theorem does apply. Yaghjian and Best (2005) invoke

a far-field “dispersion energy,” which is the integral involving the complex far-field

pattern and the antenna conductivity. If s is dispersive, this energy integral adds to

the reactance calculation, and voids the Foster theorem for antennas, as expected.

Bandwidth and impedance are the crucial parameters in all antenna considera-

tions. As usual, bandwidth is between upper frequency f2 and lower frequency f1, at a

center frequency of f0:

BW ¼ f2 � f1

f0
ð2:3Þ

From a practical standpoint, the applicability of the Foster theorem to antennas is

irrelevant. The proper question to ask is: Does the impedance locus of an antenna

always travel clockwise with increasing frequency around the Smith chart? To

demonstrate that this is true for dipoles, a computer program was written to calculate

dipole impedance versus frequency, using the Carter (1932) impedance formulation

involving sine and cosine integrals. Figures 2.1 and 2.2 show the resistance and

reactance versus dipole length in wavelengths over the range 0.1–1.5, for

length=radius ¼ 500. Similar data for length=radius ¼ 20 are given in Figures 2.3

and 2.4. As asserted by Best, it is immediately obvious that there are impedance

regions where the reactance slope does not obey Foster’s theorem. However,

Figure 2.5 is a Smith chart showing the dipole impedance for length/radius¼ 500,

and it is clear that the rotation is always clockwise. Figure 2.6 is for

length=radius ¼ 20, and again the rotation is clockwise. When the impedance locus

has resonances with small loops on the Smith (1949) chart, the rotation is still

clockwise. We believe that this result holds true for all types of antennas.
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FIGURE 2.1 Resistance versus dipole length for length/radius¼ 500.
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2.3 FANO’S MATCHING LIMITATIONS

The fundamental limits on matching were derived more than 50 years ago by R. M.

Fano (1950a, 1950b). Matthaei et al. (1964) in their treatise gave solutions to the

simultaneous equations developed by Fano:

tanh na

cosh a
¼ tanh nb

cosh b
ð2:4Þ

cosh nb ¼ G cosh na ð2:5Þ

sinh b ¼ sinh a� 2d sinðp=2nÞ ð2:6Þ
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FIGURE 2.2 Reactance versus dipole length for length/radius¼ 500.
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FIGURE 2.3 Resistance versus dipole length for length/radius¼ 20.
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Here, there are nmatching sections (including the antenna as one), d is decrement

(1=Q at band edges), and a and b are parameters to be determined. G is the reflection

coefficient. These simultaneous equations were solved by Matthaei et al. with

results presented in graphical form. Subsequently, the Newton–Raphson method
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FIGURE 2.4 Reactance versus dipole length for length/radius¼ 20.
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FIGURE 2.5 Smith chart showing dipole impedance for length/radius¼ 500.
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(Stark, 1970) was used by Hansen (2006) to obtain precise values of a and b.

Tables 2.1 and 2.2 give values of a, b, and d for VSWR values of 2 and 5.828 (half-

power). Note that n ¼ 1 is for the antenna alone. The bandwidth improvement factor

(BWIF) is just d for n ¼ 1 divided by d for n > 1: BWIF¼BWmatched/BWantenna.

Table 2.3 gives these BWIF for several values of VSWR. Actual matching devices

will have loss, and this will increase the bandwidth at the expense of efficiency. Note

that for the commonly used VSWR ¼ 2, an infinite number of matching circuits will

increase bandwidth 3.8 times.

L/λ = 0.2

1.0

1.5

0.5

FIGURE 2.6 Smith chart showing dipole impedance for length/radius¼ 20.

TABLE 2.1 Fano Data: VSWR � 2

N a b d

1 1.81845 0.32745 1.3333

2 1.03172 0.39768 0.57735

3 0.76474 0.36693 0.46627

4 0.62112 0.33112 0.42416

5 0.52868 0.30027 0.40264

1 0 0 0.34970
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A word of caution is needed on the use of the Bode (1945) criterion for BWIF.

BWIF ¼ p
‘nð1=GÞ ð2:7Þ

Bode assumed constant G over the band of interest; this clearly invalidates his

results. An exact correction was provided by Hansen (2008), in terms of G and

VSWR:

BWIF ¼ 1�G2

2G
p

‘nð1=GÞ ð2:8Þ

BWIF ¼ 2VSWR

VSWR2 � 1

p
‘n½ðVSWRþ 1Þ=ðVSWR� 1Þ� ð2:9Þ

These equations give results that are exactly the same as the Fano results (Table 2.3

for an infinite number of sections). Figures 2.7 and 2.8 give BWIF versus G and

VSWR.

TABLE 2.2 Fano Data: VSWR � 5:828

n a b d

1 1.14622 0.65848 0.35355

2 0.76429 0.56419 0.17416

3 0.59982 0.47449 0.14394

4 0.50164 0.41026 0.13207

5 0.43483 0.36284 0.12589

1 0 0 0.11032

TABLE 2.3 Maximum Bandwidth Improvement Factors

Number of Additional

Matching Circuits

VSWR

1.5 2 3 5.828

1 2.6833 2.3094 2.1213 2.0301

2 3.4202 2.8596 2.5864 2.4563

3 3.8001 3.1435 2.8271 2.6772

4 4.0242 3.3115 2.9699 2.8083

1 4.6848 3.8128 3.3993 3.2049
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Lopez (2004, 2005) developed a formula for BWIF that closely matches the exact

Fano BWIF of Table 2.3. His coefficients were labeled an and bn, but to avoid

confusion they are relabeled cn and dn, and n has been reduced by 1, to match

previous notation. The coefficients are given in Table 2.4. His formula is

8
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0

1 2 3 4VSWR

BWIF

5 6

FIGURE 2.7 Bandwidth improvement versus VSWR.
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FIGURE 2.8 Bandwidth improvement versus [T].
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BWIF ¼ sinh½‘nð1=GÞ�
dn sinh½ð1=cnÞ‘nð1=GÞ� þ ½ð1� dnÞ=cn�‘nð1=GÞ ð2:10Þ

Table 2.5 gives the exact Fano results and those of Equation 2.10. The approxi-

mate formula is excellent.

2.4 MATCHING CIRCUIT LOSS MAGNIFICATION

A matching network for an electrically small antenna or for a superdirective array

must cancel the large reactance and must transform the small radiation plus loss

resistance to the nominal value, usually 50W. Generally, each element of an array

will require a different matching network, although symmetric (broadside) arrays

need fewer. If the matching network is composed of discrete L andC components, the

low-R and high-X requirements will produce very large circulating currents in the

overall circuit, consisting of the antenna, the matching network, and the generator.

These circulating currents will magnify the intrinsic loss to a much larger realized

loss. Similarly, a distributed matching network under low-R and high-X conditions

TABLE 2.4 Lopez Coefficients

h cn dn

1 2 1

2 2.413 0.678

3 2.628 0.474

4 2.755 0.347

5 2.838 0.264

6 2.896 0.209

7 2.937 0.160

1 p 0

TABLE 2.5 Bandwidth Improvement Factors

Fano Lopez

Number of Circuits VSWR ¼ 2 VSWR ¼ 5:828 VSWR ¼ 2 VSWR ¼ 5:828

1 2.3094 2.0301 2.3094 2.0301

2 2.8596 2.4563 2.8608 2.4559

3 3.1435 2.6772 3.1457 2.6772

4 3.3115 2.8083 3.3129 2.8079

1 3.8128 3.2049 3.8128 3.2049
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will have very large standing waves along the stubs and transformer sections. Again

the intrinsic loss is magnified. In both cases, the larger loss is due to power being

proportional to voltage (or current) squared; the circulating currents or standing

waves are large.

A transmission line transformer is typical. Let the matched loss be L and the

antenna voltage standing wave ratio be VSWR. Then the actual loss La is

(Moreno, 1948)

La ¼ ðVSWRþ 1Þ2L2 �ðVSWR� 1Þ2
4L �VSWR

ð2:11Þ

For VSWR � 1, the actual loss is

La ’ VSWRðL2 � 1Þ
4L

ð2:12Þ

Figure 2.9 shows the actual loss versus VSWR for intrinsic (matched) losses

of 0.1, 0.2, 0.3, 0.5, 1, 2, 3, and 5 dB (Hansen, 1990). For R � R0,

VSWR ’ ðR2
0 þX2Þ=RR0, whereas for X � R0, VSWR ’ X2=RR0. The latter holds

also for R � R0 and X � R0. Some typical values are given in Table 2.6. For

example, a case of R=R0 ¼ 0:1 and X=R0 ¼ 10 produces a VSWR ¼ 1010. A

matched loss of 0.01 dB becomes an actual loss of 3.35 dB and a matched loss of

0.1 dB becomes an actual loss of 11.01 dB. A more likely case, because the reactance

10
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0.1
1 10 100

VSWR

Standing

wave

loss

Loss

(dB)

1000

FIGURE 2.9 Line loss with mismatch.
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ratio is usually higher, is R=R0 ¼ 0:1 and X=R0 ¼ 30, giving VSWR ¼ 9010. A

matched loss of 0.01 dB now yields an actual loss of 10.56 dB and a matched loss of

0.1 dB gives an actual loss of 20.2 dB.

2.5 NETWORK AND Z0 MATCHING

The simplest kind of impedance matching adjusts the load impedance Z0 such that

the mismatch at center frequency equals that at band edges. The load resistance Z0 is

related to the antenna resistance R0 by a factor T (Pues and Van de Capelle, 1989):

T ¼ Z0=R0 ð2:13Þ

Normally, the Q–bandwidth product QB equals

QB ¼ VSWR� 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VSWR

p ð2:14Þ

This is maximized for

T ¼ VSWR2 þ 1

2VSWR
ð2:15Þ

Table 2.7 shows the optimum value of T and the improved QB. It is apparent that

the improvement is minor for low values of VSWR.

TABLE 2.6 VSWR from Impedance Mismatches

X=R0

R=R0 1 3 10 30 100

1 1.000 10.91 102.0 902.0 1.00� 104

0.3 6.820 33.60 337.0 3004.0 3.334� 104

0.1 20.05 100.0 1010.0 9010.0 1.000� 105

0.03 66.68 333.4 3367.0 3.003� 104 3.334� 105

0.01 200.0 1000.0 1.010� 104 9.010� 104 1.000� 106

TABLE 2.7 Bandwidth Improvement Due to Mismatched L

VSWR Topt QBopt T QBT¼1

1 1 0 0

1.5 1.0833 0.417 0.408

2 1.2500 0.750 0.707

3 1.6667 1.333 1.155

4 2.1250 1.875 1.500

5.828 3.0000 2.828 2.000
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A thorough discussion of impedance matching techniques is provided in Chapter

5 of Collin (2001). A general treatment of dissipation matching networks was given

by Carlin and LaRosa (1952). Use of the multifunction Darlington equivalent load

impedance has been made unnecessary by Youla (1964). Butterworth and Chebyshev

bandpass matching networks are discussed by Chen and Chaisrakeo (1980). See also

Dedieu et al. (1994). A novel technique for transmit antennas uses a circulator, a

directional coupler, and a phaser to adjust the phase of the reflected power and return

it to the antenna (Brennan, 1992).

Often the antenna is connected to the receiver or transmitter by a transmission

line. When the line has loss, there is a demagnification of VSWR, somewhat the

inverse of the matching circuit loss magnification. This problem was worked out by

Smith (1949) of Bell Labs. Let the antenna VSWR be Vin and the load VSWR be Vout.

The line loss is L; as always, L¼ power in/power out, so that L	 1. Loss is given by

expð2alÞ, wherea is the attenuation coefficient and l is the line length. These are now

related by

Vout ¼ ðLþ 1ÞVin þ L� 1

ðL� 1ÞVin þ Lþ 1
ð2:16Þ

Note: There are typos in Smith’s formula. Figure 2.10 shows Vout and Vin for a

lossless line and for line losses from 0.1 to 3 dB. These losses are for the entire line,

100
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VSWRout

VSWRin

23 1 0.3 0.1 Loss = 0 dB

100

FIGURE 2.10 VSWR reduction due to line loss.
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from input to output. Even modest loss (1 dB or more) will substantially reduce half-

power Vin to low values. The inverse equation is

Vin ¼ ðLþ 1ÞVout �ðL� 1Þ
ð� Lþ 1ÞVout þðLþ 1Þ ð2:17Þ

2.6 NON-FOSTER MATCHING CIRCUITS

A new dimension in the impedance matching and impedance transformation of ESA

and of superdirective antennas is now offered by non-Foster circuits. These circuits

produce negative resistance, inductance, or capacitance. They are non-Foster in that

their impedance circles the Smith chart with frequency the wrong way. Thus, they

violate Foster’s reactance theorem for passive lossless circuits. Such circuits are also

called negative impedance converters (NIC). It is also possible to transform

impedances with such circuits.

NIC were developed at Bell Labs in the early 1930s and were used for many years

in long-line telephony repeaters, where they provided both amplification and modest

negative resistance, the latter to offset long-line losses. These repeaters made

transcontinental telephone service possible and were used until microwave repeaters

came into wide use after World War II. The BTL repeaters, of course, used vacuum

tubes. To quote Linvill (1953), “the ideal NIC is an active four-polewith input current

equal to output current, and input voltage equal to the negative of the output voltage.”

Positive feedback is used to obtain these properties. As shown by Linvill, the

transistor quickly replaced the vacuum tube in NIC circuits. Applications include

raising the Q of filters using negative resistance, and negative and positive inductors

at microwave frequencies, where conventional inductors are less attractive (Hara

et al., 1988; El Khoury, 1995). TheMTT Transactions contain many papers on filter

applications. See Sussman-Fort (1998) for an extensive reference list. Papers on NIC

topology include Tek and Anday (1989) and Sinsky and Westgate (1996). A novel

technique was used by Pedinoff (1961) in which a tunnel diode biased into the

negative conductance region was used with a slot antenna to provide amplification.

Non-Foster circuits have been applied to loudspeakers, where a partial cancellation

of voice coil inductance and resistance enhances the lower octaves (Werner and

Carrell, 1958).

These concepts were applied to antennas by Mayes and Poggio in 1970. Negative

impedance units were placed in series at several locations in the arms of a dipole

(Mayes and Poggio, 1973; Poggio and Mayes, 1971). This was extended in an MS

thesis under Mayes (Quirin, 1971) using Op Amps. Subsequently, transistors with

much improved characteristics became available, allowing operation at microwave

frequencies.

An early paper on non-Foster matching used two transistors to provide negative

inductance for a loop antenna (Albee, 1976). Whether this was reduced to practice is

not known. This was followed by Bahr (1976), who built a current inverting NIC to
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match a monopole antenna. A related approach uses an Op Amp with feedback to

provide a charge amplifier, as opposed to a voltage amplifier (Ryan, 1983), for a short

monopole (plate) antenna. Another patent concerns an OpAmpNIC applied to a loop

antenna (Sutton, 1994). Op Amps are readily available but are not good choices,

because of parasitics, limited unity gain bandwidth, poor efficiency, and noise. A

significant advance was made by Skahill et al. (1998), who matched a short dipole

with a Khoury current conveyor using three transistors. A patent (Skahill et al., 2000)

by these authors provides, in addition to the reactance match, a most important

frequency-squared transformer NIC that converts the short dipole radiation resis-

tance to a constant value.

Because NIC employ positive feedback, stability is always a concern; parasitic

and implementation defects are critical. Llewellyn (1952) reported on Bell Labs

work on non-Foster circuits, and in particular that any two-port circuit needs to be

stable with respect to the terminating impedances. Rollett (1962) developed neces-

sary and sufficient conditions for external stability; these were three inequalities in

impedance (or admittance) that must be satisfied. However, open- and short-circuit

tests are inadequate. More important is that the internal stability is not addressed by

Rollett conditions. A non-Foster circuit can have hidden loops and modes that are

unstable, yet have external stability. This is a well-known problem for control theory

practitioners. The Nyquist (1932) test, again from Bell Labs, looks at the loops in the

complex frequency plane. Stearns (2010) has studied the stability of many non-

Foster circuits, with special attention to internal loops. His work is the most thorough

of any, with additional publications in process.

Sussman-Fort (1994, 1998) terminates an NIC in a one-port network designed

to compensate for both active and passive parasitics. A negative inductance circuit

was applied to a patch antenna (Kaya et al., 2004; Kaya and Y€uksel, 2007).
Because patch antennas are easily matched, the extended bandwidth observed was

probably due to the NIC losses. Non-Foster matching of a short dipole using a

negative capacitance has produced typically a 10 dB improvement over more than

an octave of frequency (Sussman-Fort and Rudish, 2005; Rudish and Sussman-

Fort, 2005). Figure 2.11 shows the four-transistor NIC used. AVHFmonopole with

non-Foster match developed for CECOM gave up to 6 dB improvement over a

conventionally matched antenna (Sussman-Fort, 2006). Clearly, a judicious use of

non-Foster matching can make a major improvement in receiving ESA. For

transmitting ESA, the transistor circuit efficiency and the ability to handle the

circuit high voltage are critical. Research is ongoing; the use of Class E (switching)

circuits in NIC holds promise.

Although not the subject of this book, non-Foster circuits have advantages for

phased arrays, either for matching or for connected arrays (see Hansen, 2003, 2004).

2.7 MATCHED AND HIGH-Z PREAMP MONOPOLES

Whip antennas for receiving HF and VHF are sometimes provided with a high-

impedance preamp at the base. It is useful to compare the S=N performance of these
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with that of an impedance matched monopole. The analysis is in terms of measurable

parameters: loss, noise figure, reflection coefficient, and so on. Once these para-

meters are calculated or measured, the results should be useful regardless of the

details of the transistors and accompanying circuits. This work is an extension of

Radjy and Hansen (1979) and Sainati (1982).

The frequency at which the atmospheric noise equals city business noise is

roughly 20MHz (Middleton, 2002). Thus, a useful frequency range of interest

is 10–30MHz: 10MHz is comfortably where atmospheric noise temperature Ta
controls and 30MHz is where standard temperature T0 ¼ 290K prevails. K is

Boltzmann’s constant: � 198.60 dBm. Preamplifier noise temperature is as usual,

T ¼ ðNF� 1ÞT0, where NF is noise figure.

2.7.1 A Short Monopole Matched at One Frequency

The monopole is 1m long and has a radius of 5mm. Monopole impedances at 10

and 30MHz are Z1 ¼ 0:4386� j1213:3W and Z2 ¼ 3:948� j354:97W. Monopole,

cable, and connector losses are subsumed in Rloss; the corresponding loss is

La ¼ ðRrad þRlossÞ=Rrad. These parameters are common to the cases considered.

Figure 2.12 shows the block diagram, where La covers antenna and cable losses.

The preamplifier has gain G and noise figure NF. The incident wave has power

density Pa and the external noise temperature is Ta. The calculation would be

straightforward except for the behavior of the matching network. All matching

networks have an intrinsic loss, here called L, which is the loss incurred when both

input and output are matched, usually 50W in this case. As shown by Moreno

(1948), when a matching network matches an impedance with a large VSWR, the
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FIGURE 2.11 Measurement of short dipole non-Foster match. Courtesy of Rudish and

Sussman-Fort (2005).
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actual loss can be greatly magnified. See Section 2.4. The formula for the actual

loss, Lm, is

Lm ¼ ðVSWRþ 1Þ2L2 �ðVSWR� 1Þ2
4L �VSWR

ð2:18Þ

Total loss is now Lt ¼ LaLm. Curves and tabular data are given in Section 2.4. The

VSWR at the input to the matching section is

VSWR ¼ jZa þ 50j þ jZa � 50j
jZa þ 50j � jZa � 50j ð2:19Þ

At the preamp output, with preamp gain G, the signal is

S ¼ PaG

Lt
ð2:20Þ

As usual, T0 is nominal ambient temperature of 290K and B is the bandwidth. The

noise at the preamp output (Mumford and Scheibe, 1968) is

N ¼ ðLt � 1ÞT0 þ Ta

Lt
þðNF� 1ÞT0

� �
GKB ð2:21Þ

The signal-to-noise ratio is now given by

S=N ¼ Pa

½ðLt � 1ÞT0 þ Ta þ LtðNF� 1ÞT0�KB ð2:22Þ

At the low-frequency end of the band, Ta is much greater than T0 so that

S=N ’ Pa

LtKTaB
ð2:23Þ

La

Match

L, Lm

G

NF

Preamp

50 Ω

FIGURE 2.12 Narrowband match.
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At the high-frequency end of the band, typically Ta < T0 and the matching

network loss is modest as the impedance mismatch is much smaller. The result is

S=N ’ Pa

ðLtNF� 1ÞKT0B ð2:24Þ

At 30MHz, the antenna VSWR ¼ 651. Assuming an intrinsic matching circuit

loss of L ¼ 0:1 dB gives an actual matching circuit loss of Lm ¼ 8:496 ¼ 9:29 dB.
With an antenna loss of 0.1 dB, the total loss is Lt ¼ 8:896. For this frequency range,
a noise figure of 2 dB is available (Spectrum Microwave); this makes the S=N
degradation at 30MHz equal to 7.2 dB.

2.7.2 Short Monopole with High-Impedance Amplifier

Figure 2.13 sketches this configuration. Parameters are the same as used before

except that Rp is the input impedance of the preamp. At the preamp input, the

reflection coefficient, where Za is the antenna impedance, is

G ¼ Za �Rp

Za þRp

ð2:25Þ

The signal at the preamp input is S ¼ Pa=La and the signal at the preamp output is

S ¼ PaG

La
½1� jGj2� ð2:26Þ

The noise at the preamp input is

N ¼ ðLa � 1ÞT0 þ Ta

La
KB ð2:27Þ

The noise at the preamp output is

N ¼ ðLa � 1ÞT0 þ Ta

La
ð1� jGj2Þþ ðNF� 1ÞT0

� �
GKB ð2:28Þ
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NF
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FIGURE 2.13 High-impedance FET.
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Finally, the S=N at the preamp output is

S=N ¼ Pað1� jGj2Þ
f½ðLa � 1ÞT0 þ Ta�½1� jGj2� þ LaðNF� 1ÞT0gKB

ð2:29Þ

At the low-frequency end of the band, Ta � T0 and the reflection coefficient is

modest. Thus, S=N is given by

S=N ’ Pa

KTaB
ð2:30Þ

At the high-frequency end of the band, typically R2 � Rp, so

1� jGj2 ’ 4R2

Rp

’ 0 ð2:31Þ

This reduces S=N to

S=N ’ Pa

LaðNF� 1ÞKT0B ð2:32Þ

The S/N at the low-frequency end of the band is controlled by the external noise

temperature; at the high-frequency end of the band S/N is controlled by To, and is

reduced by the inverse of Noise Figure minus one.

Note that the high-Z preamp S=N degradation is much less than that for the

matched whip as the latter incurs a large matching section loss. Linearity is a major

concern for octave or multioctave preamps; the transistor should be selected to have

good IP2 and IP3 (intercept points).

Noise figure can be measured using a signal generator (Montgomery, 1947) or by

using hot and cold noise sources (Bryant, 1988).
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CHAPTER 3

ELECTRICALLY SMALL ANTENNAS:
CANONICAL TYPES

3.1 INTRODUCTION

The term electrically small antennas (ESA) applies to antennas whose dimensions

are small compared to the wavelength. As will be shown, these are mostly dipoles or

loops, or minor modifications of these. Various techniques for improving perfor-

mance are discussed below.

Both short dipoles and small loops are superdirective; the directivity remains at

1.5 as the dimensions decrease, but the radiation resistance decreases and the

reactance increases. Thus, the bandwidth is narrow, the efficiency may be low, and

the necessary tolerances will be small. See Chapter 6 for more discussion of

superdirectivity.

3.2 DIPOLE BASIC CHARACTERISTICS

3.2.1 Dipole Impedance and Bandwidth

First take the case of dipole (or monopole) that is transmitting. A typical equivalent

circuit is shown in Figure 3.1. The dipole radiation resistance, loss resistance, and

reactance are Rr, Ra, and Xa. The source and matching circuit has loss resistance and

reactance R‘ and X‘ and load resistance R. The important parameters are the radiated

Small Antenna Handbook, Robert C. Hansen and Robert E. Collin.
� 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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power efficiency and the bandwidth. Assume that at the center frequency the antenna

is matched, X‘ ¼ �Xa. Then the efficiency h at center frequency is

h ¼ Rr

RrþR‘þRa

ð3:1Þ

Equation 3.1, of course, states the well-known fact that efficiency is the ratio of

radiation resistance to total circuit resistance; clearly, the Rr should be as large as

feasible and equal to R‘. For a short dipole of half-length h and a simple monopole

also of length h, the radiation resistance is

Rr ¼ 20k2h2 dipole

Rr ¼ 10k2h2 monopole
ð3:2Þ

The loss resistance is a simple function of the dipole dimensions; the reactance

also involves the dimensions but is subject to modification through structural

changes. The reactance and loss resistance formulas for simple dipoles/monopoles

are

Xa ¼ 120

�
1�‘n

h

a

�
cot kh dipole

Xa ¼ 60

�
1�‘n

h

a

�
cot kh monopole

Ra ¼ 1

2d
Rdc

1

3
¼ hRs

3pa
dipole

ð3:3Þ

Here d is the skin depth and Rs is the resistivity in W=&. This formula for loss

resistance is valid for short antennas (triangular current distributions) where the loss

V

R

X
XaR Ra

Rr

FIGURE 3.1 Transmitting dipole equivalent circuit.
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is one-third that for uniform current and for dipole radius large in skin depths. For a

fixed h=a, the resistance is independent of length. Surface resistivity of copper at

room temperature is 1:5E�7
ffiffiffi
f

p
, with f in Hz. A typical value of Rs for copper at

200MHz is 2.6mW. Figure 3.2 shows the dipole parameters, using a fixed

h=a ¼ 100. Reactance for other thicknesses can be found by multiplying the

reactance from Figure 3.2 by a normalized thickness factor

‘nðh=aÞ�1

‘n 100�1
ð3:4Þ

Figure 3.3 gives this factor. Note that a flat strip dipole of widthw is equivalent to a

cylindrical dipole of radius w=4. The radiation resistance, over the range of h=l from
0.005 to 0.01, varies from 0.02 to 8W; the reactance varies from�14,000 to�600W.

Not surprisingly, the efficiency is close to 100%, dipping only to 88% at

h=l ¼ 0:005.

FIGURE 3.2 Dipole parameters.
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In the simple equivalent circuit of Figure 3.1, the resistance and reactance vary

with frequency. It is sometimes useful to have an equivalent circuit whose parameters

are fixed. Such a circuit was developed by Chu (1948), valid for electrically short

dipoles (below resonance). It is shown in Figure 3.4. The component values are

FIGURE 3.3 Normalized thickness factor.

C

L R

FIGURE 3.4 Chu equivalent circuit for short dipole.
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C ¼ jXantj=ð2pf Þ
L ¼ CRradþ1=ðv2CÞ
R ¼ L=ðRradCÞ

ð3:5Þ

A simple bandwidth calculation assumes that the radiation resistance is constant

with frequency, the loss resistance is negligible, and Q ¼ 1=v0RC, where v ¼ 2pf
and the antenna reactance is X ¼ 1=vC. Using a series equivalent circuit, the

impedance divided by R is

Z

R
¼ vRCþjðv2LC�1Þ

vRC

Z

R
¼ 1þjQ

�
v

v0

�v0

v

� ð3:6Þ

The VSWR, abbreviated as V , becomes

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2v2

p
þQvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þQ2v2
p

�Qv
ð3:7Þ

and bandwidth v becomes

v ¼ v

v0

�v0

v
¼ BW ð3:8Þ

For a given V , the Q–bandwidth product

Q �BW ¼ V�1

2
ffiffiffiffi
V

p ðantenna onlyÞ ð3:9Þ

A calculation useful for short dipoles starts with the reactance derivative formula

of Harrington (1968), valid for ESA:

Q ¼ v0 dX=dv

2R0

ð3:10Þ

When the dipole is in the resonance region,Equation 80ofYaghjian andBest (2005)

should be used. For the reactance and resistance, the Carter formula codified by

Hansen (1972) is simplified for self-impedance; x0 ¼ 0 in the formula. Note that the

series coefficients should be Að�2Þ ¼ Að2Þ ¼ 1, Að�1Þ ¼ Að1Þ ¼ �4 cos kd, and

Að3Þ ¼ 2ð1þ2 cos2 kdÞ. The half-power bandwidth is given approximately by
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BW ¼ 1=Q ð3:11Þ

To determine the utility of this result for low-Q dipoles, exact bandwidth was

calculated as the difference between two frequencies that satisfy

V ¼ ½ZþR0�þ½Z�R0�
½ZþR0��½Z�R0� ð3:12Þ

A conjugate impedance match at the center frequency v0 is used. The load

resistance R0 equals the antenna radiation resistance at v0, and the matching

reactance equals the negative of the antenna reactance X0 at v0. No losses are

included; matching coil Q could be easily included.

Figure 3.5 shows BW ¼ 2=Q and exact bandwidth for half-power: VSWR ¼
3þ ffiffiffi

8
p ¼ 5:828; the 2=Q results are surprisingly accurate for Q as small as 2.

FIGURE 3.5 Q versus bandwidth, half-power.
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Similar calculations for VSWR ¼ 2 are given in Figure 3.6. Again 1=Q is accurate

for Q � 3.

Next is a look at bandwidth versus dipole length. Given the dipole half-length h=l,
h=a, and VSWR, thev2 >v andv1 <v0 that satisfy Equation 3.12 can be found using

a root finder, in this case Wegstein (1960) rooter. This subroutine is advantageous in

that it does not require explicit derivatives. Figure 3.7 gives % bandwidth for

VSWR � 2 for dipole lengths from 0:1l to 0:5l. Two curves are shown for L=a ¼ 50

and L=a ¼ 200. 1=Q is also shown in the figure (Hansen, 2007); 1=Q and BW are a

close match for ka up to 0.5.

These calculations assume that the matching inductance is lossless. In practice, it

will have losses, and this loss will widen the bandwidth and lower the efficiency.

Also, a transformer is often used to transform the low radiation resistance to a

convenient value such as 50W. All transformers have loss and again the bandwidth is

improved at the cost of efficiency. To reduce the losses, both the matching inductor

and transformer can be made of HTS material; see Chapters 2 and 7. To convert

bandwidth for any VSWR, given bandwidth for VSWR ¼ 2,

FIGURE 3.6 Q versus bandwidth, VSWR¼ 2.
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BW ¼ BW2

ffiffiffi
2

p ðVSWR�1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VSWR

p ð3:13Þ

The quantity most useful for evaluating short receiving antennas is effective

length le, which gives the open-circuit voltage produced by a unit electric field

strength: Voc ¼ leE. For a short dipole, le ¼ h is independent of frequency. The

equivalent circuit is the same as Figure 3.1 for transmitting. The low Rr and large X

lead, of course, to a narrow bandwidth. For a receiving antenna, the goal is to

deliver as much of the incident power as possible to the load. The receiving case is

thus the same as the transmitting case: minimize losses and utilize a good matching

network.

Bandwidth is easily measured by connecting the antenna to a network analyzer,

such as the HP 8510. This gives return loss (RL), which is

100

Half-power

bandwidth

and

l/Q

10

1
0 0.1 0.2 0.3l/λ

l/a = 200

l/Q (%)

BW (%)

l/a = 500

0.4 0.5

FIGURE 3.7 Dipole bandwidth.
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RL ¼ ðVSWRþ1Þ2
ðVSWR�1Þ2 ð3:14Þ

VSWR ¼
ffiffiffiffiffiffiffi
RL

p þ1ffiffiffiffiffiffiffi
RL

p �1
ð3:15Þ

Q can be measured with a time-domain procedure (Liu et al., 1999).

3.2.2 Resistive and Reactive Loading

Distributed resistive loading can be used to make a broadband dipole (Wu and

King, 1965; Shen and Wu, 1967; Shen, 1967; Taylor, 1968; Lally and Rouch, 1970).

Unfortunately, this technique is not effective for short dipoles; results are good for

dipole lengths of the order of a quarter-wavelength. Distributed loading also helps

short pulse response (Kanda, 1978, 1994; Esselle and Stuchly, 1990), but again only

for longer dipoles. To avoid the drop in efficiency produced by resistive loading,

distributed capacitive loading has been used (Rao et al., 1969). Again short dipoles

do not benefit. Other loadings include impedance loads at two locations (Lin

et al., 1970), multiple loads (Fanson and Chen, 1973), and loading with a resonant

circuit at one location (Smith, 1975). Again these are not useful for a short dipole.

S=N performance has been analyzed by Maclean and Saini (1981).

It has been accepted practice for many years to improve the performance of a short

monopole (whip) by inserting an inductor into the whip. A pioneering work was done

by Bulgerin andWalters (1954). They performed a series of experiments on short, fat

monopoles of various lengths at 100MHz. For each length, a number of loading

points were used. Because of the relatively large gaps where the loading coil was

located, these data have not been widely circulated. Also, modern ferrite toroid coils

offer much higher Q values. Harrison (1963) analyzed the loaded monopole (dipole)

with superposition of asymmetrically excited dipoles. However, because the coupled

integral equations for the current distribution on an asymmetric dipole have not been

solved except in principle, the current distribution used for each asymmetrically

excited dipole was obtained from a zero-order solution. With this approach, Harrison

calculated input impedance, current, and loading inductor currents for several

lengths and for a number of loading coil Q values. The results showed a gradual

increase in efficiency as the load point moved closer to the dipole ends; the data

essentially stopped at a 2/3 load point, that is, 2/3 from the feed to the end. These

results have been superceded by the more accurate moment method results discussed

below. Czerwinski (1965, 1966) measured monopoles with distributed inductance

where the monopole is a helix of small diameter with tapered pitch. For narrowband

operation, a discrete coil offers better performance than a helix (see Figure 3.8).

Moment method calculations, described below, have indicated that the maximum

efficiency point occurs closer to the feed than the 2/3 value predicted by the

approximate theories.
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Moment method calculations (Hansen, 1975a, 1975b) used piecewise sinusoidal

expansion and test functions, a Galerkin stationary form. Carter mutual impedances

were used, in a convenient subroutine (Hansen, 1972). A simultaneous equation

solver provided the currents, from which input impedance was found. Discrete

loading was included by adding the loading RþjX to the matrix of mutual

impedances at the proper segment junction. The load was added to the self-

impedance on the diagonal for that segment. A restriction on the use of the moment

method occurs for fat monopoles; each segment must have a length-to-diameter ratio

sufficiently large that the filamentary current approximation can be employed. At the

same time, there must be sufficient segments to accurately represent the current

distribution. When the wire is too fat for the number of segments used, the

susceptance exhibits a shift. Also, the number of segments must be chosen such

that a segment junction occurs at each desired loading point. If N is the number of

symmetrical segments on the dipole wire and I is the segment number at the loading

point to dipole half-length (or monopole length),

N

2I
¼ 1

1�g
ð3:16Þ

The ratio of distance from feed to load to dipole half-length is g . All data presented
here were obtained by using N ¼ 12, which allowed loading points of 1/6, 1/3, 1/2,

2/3, and 5/6 to be considered. Results were spot checked with N ¼ 6 and 48 to

validate the runs.

In principle, the loading inductor functions by keeping the current distribution

nearly constant from the feed to the load point, thereby increasing the current

moment. Because the radiation resistance varies as current moment squared and the

effective length varies with current moment, it is clear that inductive loading will

improve short monopole performance (Fournier and Pomerleau, 1978). There is a

value of loading reactance that allows the current to approximate a constant value out

to ghwith a linear drop-off beyond. This value of inductance is, however, insufficient
to produce input impedance resonance. The resonant value of load produces a modest

Loading coil

Feed coax

FIGURE 3.8 Inductively loaded monopole.
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current peak just beyond gh so that the current moment is increased by an additional

amount over that expected from the constant current model. Figure 3.9 shows

two typical current distributions calculated for a thin dipole using N ¼ 40.

Figures 3.10–3.12 show the resonant input resistance as a function of the load point

g for lengths of monopole h=l ¼ 0:05, 0.1, and 0.15, for loading coil Q ¼ 1; 300,

6
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2

1

0

Feed

R
e
l
a
t
i
v
e
 u

n
i
t
s

End

FIGURE 3.9 Current distributions for loading at 1/2 and 2/3 points. Courtesy of

Hansen (1972).
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0.2 0.4 0.6 0.8
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h/a = 500

h/λ = 0.05
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FIGURE 3.10 Input resistance versus loading point. Courtesy of Hansen (1972).
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and 100, and for two monopole length-to-radius ratios h=a ¼ 50 and 500. Radiation

resistance improvement factor b is given in Figures 3.13 and 3.14 for the same cases.

It should be noted in Figures 3.10–3.12 that a significant part of the input resistance is

due to coil losses, and this is reflected in the efficiency values. An empirical fit has

been made to the radiation resistance enhancement factors based on the model of a

40

 Q =100

300

300

100

 h/a = 50

 h/a = 500

 h/λ = 0.1

30

R

20

10

0

0 0.2 0.4

Feed End

γ 0.6 0.8

∞

1.0

FIGURE 3.11 Input resistance versus loading point. Courtesy of Hansen (1972).
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 Q =100
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 h/λ = 0.15
30
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20
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0

0 0.2 0.4

Feed End

γ 0.6 0.8

∞

1.0

FIGURE 3.12 Input resistance versus loading point. Courtesy of Hansen (1972).

70 ELECTRICALLY SMALL ANTENNAS: CANONICAL TYPES



current rising to a peak and then linearly dropping to zero at the wire end.

The improvement factor b is the ratio of loaded to unloaded radiation resistance,

and is

b ¼ 1þgþ g1=2

2
1� h=l

0:25

� �� �2
ð3:17Þ

5

4

3

2

1
0 0.2 γ0.4 0.6

0.15

0.1

h

a

= 50
–
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λ

β

= 0.05
–

0.8 1.0

EndFeed

FIGURE 3.13 Radiation resistance improvement factor. Courtesy of Hansen (1975a).
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FIGURE 3.14 Radiation resistance improvement factor. Courtesy of Hansen (1975a).
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This will be used later in finding efficiency transition values. It is interesting to

note that the radiation resistance improvement can for short antennas be larger than 4,

the value that results with uniform antenna current. As mentioned, these results are

due to the current peaking at or just beyond the load point.

As the load point moves toward the end, the loading reactance must increase to

maintain resonance, finally becoming infinite at the end. For monopole lengths below

roughly 0:1l, the antenna reactance increases linearly (inversely) with length; the

loading reactance does also, as seen in Figure 3.15. Here values for three loading

points are shown. Figure 3.16 gives the factor a ¼ XLOAD=XANT for the same three

load points. An empirical fit to be used later is just a ¼ 1=ð1�gÞ.
Efficiency versus load point g is of interest. Figures 3.17 and 3.18 give efficiency

for h=a ¼ 50 and 500, h=l ¼ 0:05, 0.1, and 0.15, and loading coil Q ¼ 1, 300, and

100. With ferrite toroid coils, Q values approaching 300 are practical over the

HF–UHF range; the higher permeability cores are typified by the Q ¼ 100 values.

Lengths below 0:05l are usually not practical as the efficiency is well below 50%. At

the other extreme, monopoles longer than 0:15l are seldom loaded as their radiation

resistance and bandwidth are more tractable. Of course, the fatter monopoles have

higher efficiency as there is less antenna reactance to offset. Maximum efficiency

occurs for a loading point between 0.3 and 0.4 from the feed, although the efficiency

10
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FIGURE 3.15 Resonant loading reactance. Courtesy of Hansen (1975a).
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FIGURE 3.16 Ratio of loading reactance lo antenna reactance. Courtesy of Hansen (1975a).
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FIGURE 3.17 Efficiency versus loading paint. Courtesy of Hansen (1975a).
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varies slowly with load point. There is no apparent variation of the maximum point

with Q or with monopole length. It should be noted that when the loading coil is

located at the feed, the efficiency is always lower. Thus, for maximum efficiency, the

inductive load should be located at roughly 0:4h. However, in most cases, a

small sacrifice in efficiency should be made to obtain a higher input resistance.

Figures 3.10–3.12 show the input (radiation) resistance versus g , and the trade-off

may bemade between these figures and Figures 3.17 and 3.18. Antenna copper loss is

not included as it is always much smaller than the loading coil loss.

An efficiency transition formula has been derived. Efficiency h is

h ¼ QbRr

QbRrþaX
ð3:18Þ

where for short monopoles Rr ¼ 10k2h2 and X ¼ 60ð‘n h=a�1Þ=kh. Putting h ¼ 0:5
and using the empirical formulas for a and b gives the h=l for 50% efficiency:

h

l
¼ 1

2p
6ð‘n h=a�1Þ

Qð1�gÞ½1þgþg1=2ð1�4h=lÞ=2�2
 !1=3

ð3:19Þ

As the ð1�4h=lÞ factor has a weak influence on the result, the equation is readily
solved by iteration. Note that the transition length varies as the cube root of Q and

even more slowly with h=a. For lengths below the transition length, the efficiency
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FIGURE 3.18 Efficiency versus loading point.
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drops rapidly, in the limit as f 3, or as length/wavelength cubed. Use of HTS materials

can improve h, but it is the loading coil that needs to be HTS. Even with the coil at the
base, this conclusion is still true. Thus, the important overall conclusion: With

ordinary inductances, loading monopoles shorter than 0:06l is not practical because
of the low efficiency. There are, of course, special cases where the application is

sufficiently important to warrant acceptance of low efficiencies, for example, VLF

transmitting antennas.

A remark on bandwidth is in order. With an ideal loading coil ðQ ¼ 1Þ, the
bandwidth is essentially unchanged by loading. Although the radiation resistance is

substantially increased by loading, the slope of reactance is correspondingly

increased, so the overallQ, which is the inverse of fractional bandwidth, is essentially

unchanged. Real loading coils will have losses, with Q in the 100–300 range for

ferrite toroids and in the 50–100 range for air core coils. These coil losses will, of

course, decrease antenna Q and increase bandwidth.

To further quantify inductive loading, a dipole of length 0:2l and radius 0:001l
was studied, with lumped inductive loads at either 1/2 or 2/3 point; the latter is with

loads near the ends. The inductive loads were adjusted to give resonance, while the

load Q was adjusted to give an input resistance of 50W. Table 3.1 gives loading

reactance with its Q, input resistance, efficiency due to loads, and VSWR ¼ 2

bandwidth, all with inductive load at the 1/2 point of each dipole arm. Table 3.2 gives

similar data for the loads nearer to dipole ends, at the 2/3 points. It can be seen that

1/2 point loading gives higher efficiency, while 2/3 point loading gives larger

bandwidth. In both cases, the inductor Q needed for resonance is easily within the

ferrite core range: 40–66.

Inductive loading of a closely spaced parasitic dipole is also effective. A parasite

of equal length to the dipole and parallel to it is evaluated. Two cases are computed:

TABLE 3.1 Dipole with Inductive Loading at 2/3 Points

Q Loading X (W) Input R (W) h BW (%)

1 753.80 22.56 1 1.363

200 753.95 31.63 0.7773 1.910

100 754.20 41.72 0.6917 2.457

50 754.96 59.02 0.6184 3.556

66.304 754.54 50.00 0.6459 3.015

TABLE 3.2 Dipole with Inductive Loading at 1/2 Points

Q Loading X (W) Input R (W) h BW (%)

1 538.25 18.76 1 1.546

200 538.33 25.04 0.7996 2.063

100 538.45 31.32 0.7139 2.581

50 538.77 43.92 0.6359 3.618

40.306 538.97 50.00 0.6156 4.112
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a single inductance at the parasite center, and nine equal loads, spaced equally, with

one at the center and four on each side except at parasite ends, of course. Table 3.3

gives resonant resistance, load reactance, Q, efficiency, and bandwidth. A summary

of these data is as follows: center-loaded parasite gives best bandwidth

(BW �h ¼ 2:41) and distributed loads in the parasite give higher efficiency

(BW �h ¼ 2:57). These bandwidth� efficiency numbers are slightly better than

those of Tables 3.1 and 3.2. Where the physical arrangement favors use of a parasitic

dipole, the results are roughly equivalent to loading the dipole alone.

3.2.3 Other Loading Configurations

A half-bowtie monopole is an excellent antenna; a wire frame monopole can be used

(Wong and King, 1986), as sketched in Figure 3.19. This is a zigzag meander

construction and adjacent parasitic monopole is of similar shape. Performance is

roughly equal to a l=4 monopole, with half the length.

Capacitive loading is also effective. If space allows, a flat disk or plate at the

monopole end and a perpendicular top hat can be used. An extreme example is the

top-loaded VLF antenna described in Appendix A. A novel, but less effective,

capacitive load is the trefoil knot monopole of Figure 3.20 (Hong et al., 2010). The

arms are connected by vias to sublayer straps. Capacitive loading, where a wire

TABLE 3.3 Loaded Parasitic Dipole

Resonant

Resistance (W)

Loading

Reactance (W) Q Efficiency Bandwidth (%)

28.5 871.1 1 1.0000 –

50.0 871.4 81.28 0.6993 3.44

44.3 324.0 1 1.0000 –

50.0 324.0 362.00 0.9653 2.66

FIGURE 3.19 Wire frame monopole. Courtesy of Wong (1986).
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antenna is enclosed in a dielectric, is not effective. Resonant length is reduced but

efficiency and bandwidth are severely reduced. See Section 4.4 for details.

A folded dipole may also be loaded to reduce its size. The folded dipole is often

used because it offers a 4:1 impedance step up over a dipole, and this ratio can be

changed over wide limits by making the two arms of different diameters (Guertler,

1950; Hansen, 1982). When the folded dipole is short, the transmission line currents

see a low impedance, thus reducing the effectiveness of the element. One way of

overcoming this shorting out effect, and making the folded dipole usable at lower

frequencies, is to use a series impedance at the ends where the two arms join, in the

center of the folded arm, or both. Figure 3.21 shows the general configuration. A

short folded dipole has radiating currents in a triangular distribution, like a dipole,

with maximum radiating current at the feed (and shorted) end and zero current at the

other end where the arms join. Insertion of an inductor reduces the transmission line

currents but probably has no effect on the radiating currents if the dipole is short.

Analyses have been made of the end-loaded folded dipole (Harrison and King, 1961)

and of the base-loaded folded monopole (Leonhard et al., 1955), but calculations of

the radiation resistance as a function of loading are not available. Basically, the short

loaded folded dipole will have a more useful input reactance—not very large as that

of the same length dipole nor very small as that of the unloaded folded dipole.

Radiation properties are probably not much affected. The ability to produce

FIGURE 3.20 Monopole with trefoil load. Courtesy of Hong et al. (2010).
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broadband behavior through judicious choice of loading is as yet a very poorly

understood situation.

To sum up, inductively loading a short dipole gives the best trade of performance

versus space. Top hat loading is effective, if space allows (Francavilla et al., 1999).

Loops are inefficient, but ferrite-cored loops are good for receiving. Fat dipoles such

as bowtie dipoles offer good bandwidth. If space allows, the Goubau antenna offers

the best performance for a given small volume; see Section 3.2.6. There are no

ultrawideband electrically small antennas.

An antenna on a ground plane that fits within a hemispherical volume uses eight

arc arms, fed in parallel at the ground plane and ending at the apex of the sphere. See

Figure 3.22. Each arm is inductively loaded to increase the radiation resistance, but

the parallel connection reduces it by a factor of 8 (Adams and Bernhard, 2008;

Adams et al., 2011).

3.2.4 Short Flat Resonant Dipoles

Some applications require a flat dipole-type antenna. These can be made resonant by

adding extra wire length. Several geometries for adding length are compared here.

All dipoles are 0:2l long and 0:05l in width. Conducting strips are replaced by

equivalent round wires of radius a, where a ¼ w=4 (Lo, 1953). The flat dipoles are

analyzed using a 64-bit piecewise sinusoidal Galerkin moment method code (MBC)

(Tilston and Balmain, 1990). The code is also available in a 32-bit version. The

candidate flat dipoles are evaluated on resonant resistance and VSWR ¼ 2 band-

width. Some lossy versions are also evaluated on efficiency h.

FIGURE 3.21 Loaded folded monopole. Courtesy of Harrison (1961).
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The flat dipole candidates are four- and eight-arm meander dipoles, 10- and 20-

section zigzag dipoles, three- and four-folded-arm (Tai) dipoles (Rashed and

Tai, 1991), and a simple fat dipole. Figure 3.23 shows a four-arm meander dipole,

with a small gap between folds and dipole ends. Figure 3.24 shows a corresponding

eight-arm meander dipole. Figure 3.25 shows a 10-section zigzag antenna; note that

the dipole size is now 0:2l� 0:05l. Figure 3.26 shows a 20-section zigzag antenna

and now the width is 0:038l. The zigzag widths were chosen to give close to a 50W
resonant impedance. Figure 3.27 shows a Tai three-folded-arm antenna; this is not a

folded dipole, and for want of a more descriptive term, it is called here “folded-arm”

FIGURE 3.22 Helical Antenna. (a) 4 arms. Courtesy of Adams and Bernhard (2008);

(b) 8 arms. Courtesy of Adams et al. (2011).

0.1λ 0.1λ
0.00847λ

0.004λ

FIGURE 3.23 Four-arm meander antenna, a¼ 0.2016, ka¼ 1.267
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antenna. Figure 3.28 shows a four-folded-arm antenna; both are approximately 0:2l
long. Again the width is adjusted to give a resonant 50W impedance. These folded-

arm antennas have three sections along the length of the dipole; one could construct

dipoles with five, seven, or more segments but these have not been investigated.

Table 3.4 gives the calculated results for these flat dipoles: bandwidth, resonant

resistance, width in wavelengths, and wire length in wavelengths. It can be seen that

the zigzags are superior, probably because they have no parallel wires with opposing

currents, and the extra wires are very short and are cross-polarized. They also have a

modest wire length compared to meander dipoles. Current alignment effects are

discussed by Best and Morrow (2003).

0.1λ 0.1λ
0.00324λ

FIGURE 3.24 Eight-arm meander antenna, a¼ 0.20128 ka¼ 1.265.

0.02λ

0.0500λ

FIGURE 3.25 Ten-section zigzag antenna, a¼ 0.10308l, ka¼ 0.6477.

0.01λ

0.038λ

FIGURE 3.26 Twenty-section zigzag antenna, a¼ 0.10179l, ka¼ 0.6396.

0.0184λ
0.064λ 0.064λ

FIGURE 3.27 Three-folded-arn antenna, a¼ 0.19549l, ka¼ 1.228.
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Of the short flat dipoles evaluated, the 10-section zigzag gave the best perfor-

mance. An option to increase bandwidth is to use lossy wire or lossy strips. Cases

were run with the total resistance from 1 to 10W. Table 3.5 gives the bandwidth in

percent, the efficiency, and the input resistance in ohms. Also shown is the bandwidth

ratio and efficiency ratio, all with respect to the perfectly conducting case. As the

loading resistance increased, the bandwidth increased and almost doubled at 10W
resistance. The efficiency almost decreased to half. The net result was that the

bandwidth–efficiency product was roughly constant at 2.75. As expected, the input

resistance increased but did not achieve a 50W value. When efficiency can be traded

0.0090λ

0.064λ 0.064λ

FIGURE 3.28 Four-folded-arm antenna, a¼ 0.19389 l, ka¼ 1.218.

TABLE 3.4 Short Flat Dipole Results

Dipole BW (%) R (W) Width (l)
Wire

length (l)

Four-arm meander 2.00 8.6 0.025 0.84

Eight-arm meander 2.00 8.7 0.023 1.62

Ten-section zigzag 2.81 16.4 0.050 0.75

Twenty-section zigzag 2.69 15.9 0.038 0.99

Three-folded-arm 2.18 12.8 0.037 0.79

Four-folded-arm 1.82 13.0 0.027 0.89

Simple dipole 1.41 7.9 � j586 0.050 0.20

TABLE 3.5 Zigzag with Lossy Conductor

R (W) BW (%) h BW Ratio h Ratio h (dB) Input (W)

0 2.184 0.9747 1 0 16.4

1 2.964 0.9249 1.053 1.054 �0.23 17.3

2 3.194 0.8605 1.135 1.133 �0.54 18.6

3 3.403 0.8046 1.209 1.211 �0.83 19.9

4 3.621 0.7558 1.287 1.290 �1.10 21.2

5 3.838 0.7127 1.364 1.368 �1.36 22.5

6 4.054 0.6743 1.441 1.445 �1.71 23.7

7 4.339 0.6261 1.542 1.557 �2.03 25.6

8 4.608 0.5927 1.638 1.645 �2.27 27.0

9 4.855 0.5722 1.725 1.734 �2.50 28.5

10 5.605 0.5344 1.814 1.824 �2.61 30.0
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for bandwidth, use of lossy film conductors is a useful option. Figure 3.29 shows the

bandwidth improvement factor versus loading resistance, and for all but very small

loading values the improvement is almost linear with resistance.

3.2.5 Spherical Helix Antennas

Any attempt to approach the Chu limit should make full use of the radian sphere. One

clever way of doing this is the spherical helix antenna. As developed by Best (2004–

2007), the spherical helix can be nonfolded or folded. In the nonfolded one, all of the

turns are in the same direction. Figure 3.30 shows a one-turn nonfolded antenna. Best

2.0

1.5

Bandwidth

improvement

factor

1.0

0 5 10

R (Ω)

FIGURE 3.29 Zigzag dipole BWIF versus wire resistance.

x

x

y z

Feed point

y

FIGURE 3.30 One-turn, nonfolded spherical helix antenna.
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evaluated these antennas with 1/2, 1, and 3/2 turns. In contrast, the folded spherical

helices have one or more arms circularizing in one direction, and then reversing.

Figure 3.31 shows a four-arm spherical helix antenna, where each arm makes one

turn. It will be seen below that the four-arm antennas perform exceedingly well.

These folded antennas exhibit a single resonance and can be readily designed to

match 50W. Cross-polarization is small, and the folded spherical helix operates as a

dipole. Table 3.6 gives data for both folded and nonfolded spherical helix antennas

(Best, 2004). Of primary interest here are Q, ka, and input resistance. All the

antennas in the table have a ¼ 5:89 cm.

A spherical antenna with one turn in each of two planes provides a more isotropic

pattern (Mehdipour et al., 2008). With ka ¼ 0:624, it providesQ ¼ 12:14, but this is
significantly higher than the Chu–Thal limit value, probably due to using only one

turn in each plane.

A novel spherical antenna is a magnetic dipole (TE mode) excited by a curved

dipole (Kim, 2010). Figure 3.32 sketches this antenna. An eight-turn version

has ka ¼ 0:254 and Q ¼ 207. The Chu–Thal Q ¼ 195, so this antenna performance

x

x

y

y

z

FIGURE 3.31 Depiction of the electrically small one-turn, four-arm, folded spherical helix

monopole. The antenna height is 5.77 cm and the wire diameter is 2.6mm. The antenna

exhibits a first series resonance at 300.3MHz with a resonant resistance of 43.1W.

TABLE 3.6 Spherical Helix Properties

Turns f (MHz) Q ka

Nonfolded

1/2 468.9 28 0.578

1 274.25 92 0.338

3/2 194.35 184 0.240

Folded: two arms

1/2 469.3 15.6 0.579

1 284.95 50.0 0.352

3/2 203.80 114.0 0.251

Folded: four arms

1/2 515.8 5.6 0.636

1 300.3 32.0 0.370

3/2 210.0 88.0 0.259
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is within 6% of the fundamental limit. A folded spherical slot antenna with eight arms

has ka ¼ 0:28 and Q ¼ 193:8 (Best, 2009). As the Chu–ThalQ ¼ 147, the Q ratio is

1.18. A four-arm version is shown in Figure 3.33.

3.2.6 Multiple Resonance Antennas

3.2.6.1 Spherical Dipole; Arc Antennas A significant advance in spherical

antennas was made by Stuart and Tran (2005, 2007). The basic structure is a dipole

FIGURE 3.32 Fabricated prototype of the SSR antenna. Courtesy of Kim (2010).

FIGURE 3.33 Depiction of the four-arm folded slot spherical helix magnetic dipole.

Courtesy of Best (2009).
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with spherical arcs connected to the dipole ends; the arcs define the radian sphere.

One or two coplanar dipoles are fed; other dipoles plus arcs are parasitically coupled.

The four-arm antenna has two dipole arcs in one plane, and two more in a plane at

90�. The six-arm antenna uses three planes, and so on. Figure 3.34 shows the dipole

arcs. Figure 3.35 shows four- and six-arm antennas. Stuart (2008) has analyzed these

multielement spherical antennas in terms of eigenmodes and eigenvalues. Table 3.7

Trace width

Radius

Gap

Stub lengthTL gap

Center half lenght

(a)

(b)

FIGURE 3.34 Dipole arc Antenna.
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gives the resonant frequencies, ka, andQ for one-, two-, four-, and six-arm antennas.

The number of resonant frequencies appears to equal the number of arms; the higher

resonances appear to have very high Q values. Stuart et al. (2007) have shown that in

the vicinity of resonanceQ and bandwidth are no longer simply related. For a six-arm

antenna, with ka ¼ 0:54, the Q ¼ 13:94. For this case, the Chu–Thal Q ¼ 10:84, so
this antenna is 1.29 times the fundamental limit, a very good performance.

3.2.6.2 Multiple Mode Antennas The simple formulas forQ given in Chapter

1 are for an antenna with a single TM or TE mode. Exciting both modes in an ESA

increases the bandwidth. As shown by McLean (1996), the Chu Q is now

Q ¼ 1

ka
þ 1

2k3a3
ð3:20Þ

FIGURE 3.35 Examples of (a) the four-arm antenna and (b) the six-arm antenna. A chip

balun is used to interface the balanced feed to the unbalanced coaxial cable. A pair of series

chip capacitors are visible along the feed line in the six-arm antenna.

TABLE 3.7 Spherical Antenna Eigenmodes

Resonant

Frequency (MHz) ka Q

One-arm 38.5 0.60 19.6

Two-arm 47.7 0.75 10.6

54.9 90.2

Four-arm 43.0 0.67 9.61

55.0 89.60

57.4 3864.00

Six-arm 40.2 0.63 9.91

52.7 72.20

57.6 2422.00

59.0 13,938.00
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Attempts to excite both modes using a single-turn loop and a coplanar short dipole

have not been successful due to the low radiation resistance of the small loop and the

pattern incompatibility. See Section 5.4. An improved configuration uses a capaci-

tively loaded bowtie dipole interconnected with a dual loop (McLean and

Crook, 2001).

Grimes and Grimes (1995, 1996) claimed that an antenna exciting both TM and

TE modes would provide a Q value below that prescribed by Chu. Alas, there is no

free lunch! Collin (1998) integrated the time-dependent Poynting vector to get

reactive power, and then used an incorrect energy conservation law. Further, the

constant of integration for the integral of the time derivative of standing energy

density was incorrectly chosen.

An effective dual-mode design using three dimensions is a cloverleaf dipole with

coupling loops over a ground plane (or double cloverleaf dipole without ground

plane) developed by Goubau (1976). This antenna, as sketched in Figure 3.36, in

symmetric form requires ka ¼ 1:04 and gives an octave bandwidth, or Q ¼ ffiffiffi
2

p
. An

improved version has been developed by Friedman (1985). Another version, but with

less bandwidth, is developed by Jung and Park (2003).

3.2.6.3 Q Comparisons It is useful to compare the values of Q achieved with

various ESA previously described. The most useful comparison isQ versus the Chu–

Thal limit, the latter of course being a function of ka (see Equation 1.27). Antennas

compared are

. flat meander dipoles;

. flat zigzag dipoles;

0.277λ

h = 0.097λ

FIGURE 3.36 Goubau antenna.
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. nonfolded spherical helix;

. two-arm folded spherical helix;

. four-arm folded spherical helix;

. two-plane folded spherical antenna;

. multiple resonance spherical antenna.

Figure 3.37 shows the results; the curve is the Chu–Thal limit of Q versus ka. The

remarkable accomplishment is that the four-arm spherical helix almost exactly fits

the curve. The two-arm folded spherical helix antennas are moderately higher than

the curve; the nonfolded spherical helix antennas are moderately higher than the two-

arm. For ka>0:5, the multiple resonance antennas have Q close to the limit, as does

the two-plane folded antenna. Zigzag models have Q moderately above the Q limit;

however, meander antennas have Q way above the limit.

The Goubau antenna is not shown in the figure as its ka is too large (1.04).

Reasonable recommendations would be that four- or six-arm (not shown) spherical

helix antennas are excellent; the multiple resonance spherical antennas and the two-

plane spherical antennas are very good. This, of course, assumes that the spherical

volume is available. For flat (planar) antennas, the zigzag dipole is best.

3.2.7 Evaluation of Moment Method Codes for Electrically
Small Antennas

The most useful simulation codes for ESA are moment method codes. The emphasis

is on piecewise sinusoidal codes as these are superior. The choice of expansion

(basis) and test functions is critical. The Galerkin solutions are important, due to

reduction of first-order errors. Subroutines for piecewise sinusoidal codes are critical,

and are discussed. Finally, seven codes are compared for thin half-wave and short

dipoles. These codes include 32- and 64-bit RCH codes, 64-bit MBC code, and 32-

and 64-bit NEC-2 and NEC-4 codes. Finally, cautions and recommendations are

made. Most ESA involve linear, as opposed to planar, conductors. The moment

method for electromagnetics was apparently invented byMei and Van Bladel (1963).

They represented the current on a conductor by a sequence of short, contiguous,

constant values (pulses). Then delta functions were used as test functions (point

matching). At roughly the same time, Andreasen (1964) represented the current as a

sum of entire trig functions: sin Axþcos Axþconstant. This was a carryover from his

graduate work with R. W. P. King at Harvard. Andreason, at MB Associates,

developed the precursor of the NEC code. The NEC-2 and NEC-4 versions use

delta test functions. In NEC, the current flows on the conductor surface, while the

testing is performed on the conductor axis. The choice of NEC expansion function

requires an odd number of functions. Meanwhile, Richmond (1965) at OSU was

developing piecewise sinusoidal expansion and test functions, including three-

dimensional wire geometries. He used current on the conductor axis, with testing

on the conductor surface. His papers date from 1965, but detailed OSU unclassified

reports were published circa 1963. Harrington (1967), who erroneously claimed to
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FIGURE 3.37 Q comparisons.
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have invented moment methods for antennas, published his first reports circa 1966.

He used piecewise linear expansion functions and delta test functions.

The electric field integral equation (EFIE) for wires utilizes a current on the axis of

a wire, but calculates the field on a narrow strip on the circumference of the wire.

This, of course, is to avoid a singularity in the EFIE. For linear or planar wire

structures, this is not a problem as all the offsets are in the same plane. But for three-

dimensional structures, the radius offsets will produce a small asymmetry in the

resulting impedance matrix. This was resolved by the multiradius bridge current

(MBC) code of Tilston and Balmain (1990). This code is basically a Richmond code

with piecewise sinusoidal expansion and test functions, with a bridge current

modification to produce a symmetric matrix. The MBC code calculates the four

monopole–monopole impedances, rotating the offset planes to produce matrix

symmetry. The rotation produces discontinuities, which are bridges. For wire

antennas and scattering problems, this is the best frequency-domain code.

There are several procedures for solving integral equations, such as least squares,

but the most useful is the Galerkin. This uses expansion (basis) and test functions that

are the same, for example, piecewise sinusoidal expansion and test functions. The

major advantage of the Galerkin procedure is that the results are stationary; that is,

results have second-order errors for first-order errors in the currents. Formulations

that are not stationary, hence less accurate, include Mei’s early work, Harrington’s,

and NEC. The Galerkin procedure is closely related to the Rayleigh–Ritz procedure

and to the reaction concept of Rumsey (1954). For antennas and scatterers that

employ flat or curved metallic surfaces, the same rules apply, but of course the

calculations are more intricate. Themost widely used, and probably the best, moment

method codes here utilize the Rao–Wilton–Glisson (Rao et al., 1982) formulation.

This Galerkin formulation uses as an expansion function two planar triangles with a

common side; the triangles can form a dihedral angle and a faceted 3D structure can

be represented by these dihedral triangles.

Moment method codes employing piecewise sinusoidal expansion and test

functions use mutual impedances based on the 1932 work of Carter. He expressed

mutual impedance between two dipoles in echelon in terms of finite sums of sine

and cosine integrals. His formulas were put in form suitable for computers by

Hansen (1972). The several mutual impedance subroutines require sine and cosine

integrals, and the choice of this subroutine has a marked effect on the resulting

accuracy. The basic subroutine used by RCHI in calculating mutual impedances is an

echelon dipole code. It has been used with three different sine and cosine integral

subroutines, and the resulting accuracies were compared. One subroutine has double-

precision results and single-precision argument. It is based on Abramowitz and

Stegun (1970). Another subroutine was originally in the IBM Scientific Subroutine

Library; it was based on calculations published by Luke and Wimp (1961). This

subroutine has output and argument all single precision. A third subroutine is based

on coefficients in a book by Luke (1975); this is a completely double-precision

routine. Finally, the Richmond OSU code, and the derivativeMBC code, used a table

of coefficients to calculate exponential integrals; the coefficients are based on

Abramowitz and Stegun (1970).
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Comparative results are given in Tables 3.8 and 3.9. Table 3.8 gives dipole

impedance for dipole lengths of 0:5l and Table 3.9 for dipole lengths of 0:05l, and
a ¼ 0:001l, for RCH codes using the best 32- and 64-bit sine and cosine integral

subroutine. Results from the 64-bit MBC code are also shown. Subroutines tested

include a 32-bit code from the IBM Scientific Subroutine Library, a 32-bit code from

Abramowitz and Stegun, and a 64-bit code from Luke (1975). The IBM/Luke code

was the best of the 32-bit codes, but as Table 3.8 shows, results are useful only for

roughly 10 or less segments, both for resonant and for short dipoles. The 64-bit

subroutines, which use Chebyshev expansions via Luke (RCH code) and numerical

integration (MBC code), give excellent results. N ¼ 2 gives the Carter impedances.

Tables 3.10 and 3.11 give results for NEC-2 and NEC-4 codes, for both 32- and

64-bit versions. For the half-wave dipole, all four NEC results are good and are close

TABLE 3.8

No. of Segments 64-Bit RCH 32-Bit RCH 64-Bit MBC

2 73.13þ j42.17 72.73þ j42.17 73.40þ j42.96

4 81.19þ j41.32 80.82þ j41.39 81.54þ j42.10

6 82.79þ j42.03 82.18þ j42.19 83.14þ j42.81

10 84.05þ j43.17 88.05þ j40.73 84.42þ j43.95

14 84.61þ j43.89 66.37þ j93.58 84.99þ j44.67

20 85.11þ j44.59 33.99� j7.54 85.48þ j45.36

24 85.32þ j44.91 44.81� j16.11 85.69þ j45.69

30 85.55þ j45.28 72.65þ j39.97 85.93þ j46.05

34 85.68þ j45.47 14.77� j130.1 86.06þ j46.25

40 85.84þ j42.71 56.40� j345.3 86.22þ j46.49

Carter 73.13þ j42.17

Dipole: l=l ¼ 0:5 a=l ¼ 0:001

Comparative results for L¼ l=2:

TABLE 3.9

No. of Segments 64-Bit RCH 32-Bit RCH 64-Bit MBC

2 0.495� j1724 0.520� j1724 0.507� j1722

4 0.420� j1695 0.395� j1695 0.430� j1693

6 0.396� j1637 0.671� j1637 0.406� j1634

10 0.364� j1561 3.21� j1561 0.374� j1558

14 0.341� j1500 2.22� j1500 0.349� j1498

20 0.310� j1420 0.752� j1418 0.317� j1418

24 0.290� j1369 40.1� j1364 0.297� j1367

30 0.260� j1290 173.0� j1319 0.266� j1289

34 0.239� j1236 14.7� j1242 0.245� j1234

40 0.209� j1150 214� j1510 0.214� j1148

Carter 0.495� j1095

Dipole: l=l ¼ 0:05 a=l ¼ 0:001

Comparative results for L¼ l=20:
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to the piecewise sinusoidal expansion function results of Table 3.8. However, data

(not shown) indicate that 32-bit NEC-2 for 81 and 101 segments are unstable. NEC-2

64-bit is all right for these larger segments numbers. For short dipoles, things are

different. The values of input resistance are way off: roughly 0.03–0.07 instead of the

correct values, roughly 0.2–0.5W. Reactance values are also slightly off. Clearly, all

NEC codes should be used with caution for electrically short antennas.

These results indicate why the choice of codes is critical. NEC-2, for example, is

poor for short dipoles, and poor for many segments. Commercial variations on NEC-

2 and NEC-4 must be carefully examined, and probably should not be used. NEC-4 is

superb for earth or substrate problems where Sommerfeld integrals are involved, but

is not the best choice for other geometries. When many expansion functions are

needed, the 32-bit codes must be used carefully. In Table 3.8, results are good for

half-wave dipoles with number of segments �10; for short dipoles, 64-bit codes are

recommended. The NEC reactances are somewhat different from those calculated

TABLE 3.10

No. of Segments 32-Bit NEC-2 64-Bit NEC-2 32-Bit NEC-4 64-Bit NEC-4

3 81.25 43.89 81.25 43.89 81.25 43.89 81.25þ j43.89

5 81.95 45.54 81.95 45.54 81.95 45.54 81.95þ j45.54

7 82.70 46.31 82.70 46.31 82.70 46.31 82.70þ j46.31

11 83.67 47.13 83.67 47.13 83.07 47.12 83.67þ j47.12

15 84.26 47.58 84.26 47.59 84.26 47.59 84.26þ j47.59

21 84.83 48.13 84.82 48.03 84.82 48.02 84.82þ j48.02

25 85.09 48.33 85.08 48.24 85.08 48.22 85.08þ j48.22

31 85.38 48.57 85.38 48 46 85.38 48.45 85.38þ j48.45

35 85.60 49.00 85.54 48.58 85.53 48.57 85.53þ j48.56

41 85.65 47.72 85.73 48.72 85.72 48.70 85.72þ j48.70

Dipole: l=l ¼ 0:5 a=l ¼ 0:001

Comparative results for L¼ l=2:

TABLE 3.11

No. of

Segments 32-Bit NEC-2 64-Bit NEC-2 32-Bit NEC-4 64-Bit NEC-4

3 0.0710 �2188 0.07101 �2188 0.07100 �2189 0.07100� j2189

5 0.0596 �1963 0.05966 �1965 0.05963 �1966 0.05963� j1966

7 0.05418 �1848 0.05428 �1859 0.05420 �1861 0.05420� j1861

11 0.04838 �1741 0.04837 �1743 0.04813 �1746 0.04813� j1746

15 0.04472 �1664 0.04471 �1670 0.04428 �1676 0.04428� j1676

21 0.04102 �1579 0.04073 �1589 0.04002 �1599 0.04002� j1599

25 0.03851 �1544 0.03853 �1543 0.03768 �1554 0.03768� j1554

31 0.03548 �1472 0.03551 �1478 0.03453 �1489 0.03453� j1489

35 0.03422 �1446 0.03357 �1435 0.03254 �1447 0.03254� j1447

41 0.03006 �1409 0.03067 �1369 0.02961 �1380 0.02961� j1380

Dipole: l=l ¼ 0:05 a=l ¼ 0:001

Comparative results for L¼ l=20:
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with piecewise sinusoidal Galerkin codes. This is probably due to the NEC use of

delta “function” (point matching) test functions. All moment method codes are less

accurate (Cebik, 1998), and results must be examined carefully, when

. wires have large steps in radius;

. wires are joined with a small included angle;

. parallel wires are closely spaced.

3.3 PARTIAL SLEEVE, PIFA, AND PATCH

3.3.1 Partial Sleeve

The partial sleeve antenna, which is a two-dimensional transmission line antenna,

was developed by Nash and others at the University of Illinois Antenna Lab in the

early 1950s, but data were published only in reports to USAF ASD. The antenna

consists of a square or rectangular plate located adjacent to a ground plane and

shorted to the ground plane. A feed is connected at a point that gives a convenient

impedance level, as shown in Figure 3.38. A capacitor may be used to tune the end of

the sleeve. The ground plane and the sleeve may be curved in either dimension.

Feed

Cap

(a)

(b)

FIGURE 3.38 Partial sleeve antenna: (a) top view; (b) side view.
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The term sleeve arose as such an antenna may be used on a curved aircraft surface.

Typical sizes are separation 1/10 of the length, and length from 0:01l to 0:1l. The
radiating portion of the antenna consists of a U-shaped slot, which for small lengths

will have a nearly triangular distribution of current. Radiation from the two side slots

will mostly cancel out, leaving the end slot as the primary source. However, the side

slots act as a form of loading to increase the current moment of the primary radiator.

Assuming a square plate or sleeve, the current moment of the end slot is 5L=6, which
is 1.67 times better than that of a short dipole of length L. This is the same

improvement factor (2.78 in radiation resistance) produced by the dipole with

optimum inductive loading in the dipole. Both the transmission line antenna and

the partial sleeve are useful when l=4 of length is available but are not attractive

when short because of the low impedance.

The important fact about the partial sleeve is that it led to the invention of the

ubiquitous patch antenna by Deschamps and Sichak (1953). It is also the PIFA

(planar inverted-F antenna): a flat plate shorted at one end and fed near the open end.

See Section 3.3.2.

3.3.2 PIFA Designs

As previously mentioned, the PIFA is simply a small flat plate parallel to and closely

spaced to a ground plane, and shorted to the ground plane at one end. A feed is

located along the plate at a point to provide the desired impedance. Figure 3.39

sketches a PIFAwith a shorting tab at one corner of the antenna. Taga (Hirasawa and

Haneishi, 1992) has given extensive design data for the basic patch. This includes

electric field distributions over the PIFA as a function of aspect ratio. Figure 3.40

gives bandwidth (for VSWR � 1:5) versus height of the plate above the ground

screen for several aspect ratios. The shorting plate is along one edge. Pinhas and

Shtrikman (1988) also give data on bandwidth versus height for several widths.

Figure 3.41 gives relative bandwidth for a square plate as a function of the width of

the shorting tab and the height of the plate above the ground screen. He analyzed

FIGURE 3.39 PIFA with tab short. Courtesy of Hirasawa and Haneishi (1992).
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these antennas by representing the antenna as a three-dimensional lattice network,

solved in the time domain. Figure 3.42 shows normalized resonant frequency of a

square plate PIFA versus width of the shorting strap compared to the width of the

plate. It can be seen that the calculations and measurements agree well.
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FIGURE 3.40 Bandwidth versus aspect ratio. Courtesy of Hirasawa and Haneishi (1992).
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In general, the best way of numerically analyzing a PIFA is through the use of a

patch-type moment method code. This allows the plate and shorting straps to be

accurately represented. And of course the probe feed can be located as desired. This

applies to antennas on a large ground plane. Of course, most PIFA are employed on

handheld or portable electronic devices where the ground plane is not flat and not

large in wavelengths. When the feed terminal is accessible, measurements can be

made with a conventional network analyzer.

Most applications for PIFA are not single frequency but multiband. There are

many two-, three-, and four-band designs. Bands of interest are 824–894MHz

(GSM), 1710–1880MHz (GSM), 2.4–2.5 GHz (Bluetooth and WLAN), 5.15–

5.25GHz (WLAN), and 8–12GHz (SATCOM). Dual- or multiple-band PIFA can

be designed in either of the two ways. First, individual PIFA of successively smaller

size can be nested together to provide multiple band coverage. Figure 3.43 is an
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FIGURE 3.42 Resonant frequency versus shorting tab width. Courtesy of Hirasawa and

Haneishi (1992).
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Feed 3

Short

Short

Short

FIGURE 3.43 Three-band PIFA. Courtesy of Wong (2003).

96 ELECTRICALLY SMALL ANTENNAS: CANONICAL TYPES



example of a three-band PIFA covering roughly 900, 1800, and 2450MHz

(Wong, 2003). The contrasting approach, which is more commonly used, incorpo-

rates one or more slots in the PIFA and perhaps divides part of the PIFA into fingers.

Figure 3.44 shows a two-band PIFA employing a single L-shaped slot, for a 1.8 and

2.45GHz band (Wong, 2002). Another dual-band design is shown in Figure 3.45

where there are now two slots, one L-shaped and one reentrant (Hsiao et al., 2002).

This is a 900–1800MHz design. A PIFA with a U-shaped slot is developed by

Salonen et al. (2000). A folded design where the folded section acts as a capacitor

with a ground plane provides dual band at 900 and 2300MHz (Villeger et al., 2003)

(Figure 3.46). A quad-band design, shown in Figure 3.47, utilizes a capacitor end

load plate, and three U-shaped slots in the top plate. This covers bands at roughly

900, 1800, 2450, and 5200MHz (Nashaat et al., 2005). A more radical design

for quad-band incorporates one finger and a truncation of one side of the PIFA

(Figure 3.48). By appropriately adjusting the dimensions, this covers 2, 5, and

8–12GHz (Sim and Cheng, 2010). For additional information, good references are

theHirasawa–Haneishi bookreferencedearlier andbooksbyK.L.Wong(2002,2003).

FIGURE 3.44 PIFA with L slot. Courtesy of Wong (2002).
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3.3.3 Patch with Permeable Substrate

The conventional patch antenna is not electrically small, but it may be so when

constructed with a high-« substrate. Ceramic substrates embodying barium,

strontium, and calcium titanates, among others, may have a large range of «, perhaps

Short

feed

FIGURE 3.45 PIFA with folded and L slots. Courtesy of Hsiao et al. (2002).

FIGURE 3.46 Folded PIFA. Courtesy of Villeger et al. (2003).

FIGURE 3.47 Quad-band PIFA. Courtesy of Nashaat et al. (2005).
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«>100 (Middleton, 2002). When used as a substrate for a patch, the resonant width is

decreased by
ffiffiffi
«

p
. Such a patch can be electrically very small, and along with the

reduced size goes a narrower bandwidth and tighter tolerances. Bandwidth, for

VSWR � 2, is approximately 4tð ffiffiffiffiffiffiffi
2«r

p
l0Þ, where t is the substrate thickness. A

thorough treatment of patch antennas is given by Balanis (2005). A closely related

antenna, the dielectric resonator antenna (DRA), is discussed in Section 3.5.

What if a low-loss material with both m and « is used as a patch substrate; how

would the characteristics change? The first answer was given by Hansen and

Burke (2000), where a square patch with m, « substrate was analyzed via a

transmission line model. This zero-order analysis assumed that the patch length

was resonant, a=l ¼ 1=
ffiffiffiffiffiffiffiffiffi
2m«

p
, and the edge susceptance was omitted. The edge

(radiation) conductance is given by (Wheeler, 1965)

G ¼ 1

120p2

ðp
0

sin2½ðp=2 ffiffiffiffiffiffi
m«

p Þcos u�sin3 u du
cos2 u

ð3:21Þ

In many works, it is stated that an approximation valid for small a=l (large m«) is

G ’ a2

90l2
¼ 1

360m«
ð3:22Þ

A similar approximation stated to be valid for large a=l (small m«) is

G ’ a

120l2
¼ 1

240
ffiffiffiffiffiffi
m«

p ð3:23Þ

It will be shown that Equation 3.23 for large m« is good, whereas Equation 3.22

for small m« is poor. Figure 3.49 shows the exact integral, along with the two

FIGURE 3.48 Truncated quad-band PIFA. Courtesy of Sim and Cheng (2010).

PARTIAL SLEEVE, PIFA, AND PATCH 99



approximations, for m« ¼ 1�10; a 128-point Gaussian integrator was used. In this

figure, half of the conductance is used as the patch has two radiating slots. Note that

the large m« approximation is useful for m«>3. The small approximation is good for

m«<1. Even with an added factor of 1/2 as shown in Figure 3.49, the approximation is

poor for m« ¼ 1. A good fit is given for the entire range of m« ¼ 1�10 by

G ’ 1

40
ffiffiffiffiffiffi
m«

p þ170m«
ð3:24Þ

This conductance will be used with the transmission line analysis. From

Wheeler (1965), the characteristic admittance of a wide microstrip line is

Y0 ¼ a
ffiffiffi
«

p
ht

ffiffiffiffi
m

p ¼ l
2hmt

ð3:25Þ

where h ¼ 120p and t is the dielectric thickness. It should be noted that, for the

resonant patch, the characteristic impedance involves only m. The radiation quality

factor is Q ¼ pY0=4G (Wheeler, 1947), and the VSWR ¼ 2 bandwidth BW is

1=
ffiffiffi
2

p
Q (with matched load). The result is that the zero-order bandwidth is

BW ¼ 96
ffiffiffiffiffiffiffiffiffi
m=«

p
t=l0ffiffiffi

2
p ½4þ17

ffiffiffiffiffiffi
m«

p � ð3:26Þ
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FIGURE 3.49 Exact and approximate square patch radiation conductance. Courtesy of

Hansen and Burke (2000).
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Unfortunately, this result is not simply a function of m=«. The bandwidth result

(Balanis, 2005; Hansen, 1998)

BW ’ 4
ffiffiffiffi
m

p
t=l0ffiffiffiffiffi
2«

p ð3:27Þ

is seen to be fair for « ¼ 1�2 and poor for « > 2. The other approximate result

BW ’ 16tl0
3
ffiffiffi
2

p
«

ð3:28Þ

is fair for « > 4 and poor for « < 4. However, Equation 3.26 is accurate for the entire

range of m«.
The resonant patch length is reduced by

ffiffiffiffiffiffi
m«

p
. Two cases are of interest.

. Case 1: m ¼ «. If m is put equal to « and the small m« result were applicable,

then this shortened patch would enjoy the same bandwidth as the air larger

patch. Amore accurate evaluation is obtained by settingm ¼ « in Equation 3.26;
the result is

BW ’ 96t=l0ffiffiffi
2

p ½4þ17«� ð3:29Þ

A comparison of values from Equation 3.26 with Equation 3.29 where « ¼ 10

and m ¼ 1 shows that only a small improvement in bandwidth results. Specifi-

cally, for m ¼ « ¼ 10, the improvement in bandwidth is only 5%. However, the

patch length is shortened by 1=m.

. Case 2: « ¼ 1, m>1. A substrate with « ¼ 1 and m>1 would offer a modest

increase in bandwidth over the « ¼ 1 ¼ m patch. For m � 1, the increase in

bandwidth would be 21=17 ¼ 1:235. Compared to a typical patch with « ¼ 3

and m ¼ 1, the improvement in bandwidth is 330%.

Metaferrites is the term given to a lamination of layers, where each thin layer

has a pattern of short segments of a mixture of high-mmaterials. The objective is

to realize a large m and a modest «, with low loss (Walser, 2001).

3.4 LOOPS

3.4.1 Air Core Loops, Single and Multiple Turns

It is usually desirable for small loops to have a pattern that is omnidirectional in the

plane of the loop. This requires the loop diameter D to be less than roughly 0:1l
(Balanis, 2005). When the loop has multiple turns, the winding length must be

�0:1l. The equivalent circuit is simply the inductive reactance X in series with
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the radiation resistance Rr and the loss resistance R‘. For a loop with N turns,

the radiation resistance is proportional to N2 and to the square of effective

permeability:

Rr ¼ 5p2N2k4D4m2
e

4
ð3:30Þ

Magnetic core effects are discussed below. The single-turn loop will be treated

first. Now a single conductor, single turn, will act as a very thin tube of conductor

because of skin effect. Rosa and Grover (1916) give the inductance of an infinitely

thin tube bent into a circle, from which the reactance in ohms is

X ¼ 60pkD 1þ a2

D2

� �
‘n

4D

a
�2

� �
ð3:31Þ

Here D is the mean diameter of the loop and a is the tube radius. Most practical

single-turn loops will have D � a, so the reactance is well approximated by

X ¼ 60pkD ‘n
4D

a
�2

� �
ð3:32Þ

If the loop diameter is much larger than the wire diameter, the proximity effect,

which tends to concentrate the current on the inside of the loop, can be neglected

(Smith, 1972). Then

R‘ ¼ D

2asd
¼ RsD

2a
ð3:33Þ

Here Rs is the surface resistivity, in W=&. Figure 3.50 gives RsD=a versus D=a
and frequency. The efficiency formula is the same as for dipoles:

h ¼ Rr

RrþR‘
ð3:34Þ

Immediately, the efficiency is found to be

h ¼ 5p2k4D4

5p2k4D4þ2RsD=a
ð3:35Þ

Efficiency is shown in Figure 3.51 for D=a ¼ 50. The Q is given by

Q ¼ 240pkD½‘nð4D=aÞ�2�
5p2k4D4þ2RsD=a

ð3:36Þ
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Because small loops have high Q, half-power bandwidth becomes

BW ’ 1=Q ð3:37Þ

Half-power bandwidth is given in Figure 3.52. It is a minimum for

D

l
¼ 1

2p
2RsD=a

15p2

� �1=4
ð3:38Þ

The bandwidth� efficiency merit factor is

BW �h ¼ Rr

X
¼ pk3D3

48½‘nð4D=aÞ�2� ð3:39Þ

For the largest feasible small loop, D=l ¼ 0:1, and for D=a ¼ 50, the

bandwidth� efficiency product is

BW �h ¼ 0:004922 ð3:40Þ

10

1

0.1

0.01

0.1 1 10

Frequency (MHz)

50

100

200

500

1000

2000

= 5
000

–
D

a

100

RsD/a

FIGURE 3.50 Loss factor for copper.
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Figure 3.53 shows Rr, X, and BW �h for D=a ¼ 50. The range of D=l is 0.01–0.1.
As expected, the radiation resistance and bandwidth� efficiency product are small.

Because the loop resistivity enters into both, data are shown for RsD=a ¼ 1, 0.1, and

0.01. All of these graphs are forD=a ¼ 50; the Rs values are 0.02, 0.002, and 0.0002.

For copper, these values cover the range of 0.6MHz to 6GHz.

The air core loop may be squished into a narrow rectangle to allow convenient

mounting on a platform. It must be remembered that loop performance is propor-

tional to area.

Since the total wire length in a loop is limited, it is useful to write the radiation

resistance in terms of wire length (WL):

Rr ¼ WL
kD

4
ð3:41Þ

When the maximumWL is used, the kD factor means that D=l should be as large
as possible, that is, a single-turn loop. Nonetheless, physical constraints sometimes

require a smaller diameter, multiturn loop.
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FIGURE 3.51 Loop efficiency, D/a¼ 50.

104 ELECTRICALLY SMALL ANTENNAS: CANONICAL TYPES



A typical multiturn air core loop is either circular or square in shape, with a

winding of rectangular cross section, that is, many layers with each layer having

many turns. Such a loop is a short multilayer solenoid, with reactance given

approximately by

X ¼ 60pN2kD ‘n
9D

b
�1

� �
ð3:42Þ
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FIGURE 3.52 Loop bandwidth, D/a¼ 50.
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Solenoid diameter and axial length are D and b, respectively. This result, derived

by Maxwell (Rosa and Grover, 1916), is adequate for comparative purposes. Such

coils are usually designed for optimumQ; the only parameters that significantly affect

radiation resistance are diameter and number of turns. Various formulas are available

for optimum design of multilayer solenoids. That of Butterworth (Terman, 1943)

requires b, D, and winding radial thickness t to obey

3tþ2b ¼ D ð3:43Þ

Examination of the loss formulas for short multilayer solenoids shows that the loss

of the optimum designs varies slowly as the ratio t=b changes around unity. Because a
coil with square winding cross section is physically attractive, the loss results will be

quoted for t ¼ b. Then for the optimum, t=D ¼ 0:2 and the Butterworth parameter

KbD. Assuming the wires are spaced with one wire diameter air gap, the ratio of AC

and DC resistance, using Butterworth’s H and G functions, is
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FIGURE 3.53 Loop parameters, D/a¼ 50.
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Rac

Rdc

¼ Hþ0:49GN ’ HþGN

2
ð3:44Þ

If now the wire diameter is large in skin depths, which may not be a valid

assumption but yields an upper bound, H and G may be approximated by

H ’ a=2d ’ 2G, giving

Rac

Rdc

¼ a

2d
1þN

4

� �
ð3:45Þ

The lower limit is, of course, Rac ¼ Rdc. Rdc ¼ ND=a2s, which gives the coil

resistance

R‘ ¼ NRsD

2a
1þN

4

� �
ð3:46Þ

Although this value was derived under a number of assumptions, it is weak only in

the assumption of wire diameter large in skin depths. The corresponding reactance is

given by

X ¼ 168pN2kD ð3:47Þ

With these reactance and resistance results, the efficiency and bandwidth�
efficiency merit factors may be obtained. The efficiency is

h ¼ 5p2Nk4D4

5p2Nk4D4þ2RsðD=aÞð1þN=4Þ ð3:48Þ

The Q is found to be

Q ¼ 672pNkD
5p2Nk4D4þ2RsðD=aÞð1þN=4Þ ð3:49Þ

The bandwidth–efficiency merit factor is independent of N, and is

BW �h ¼ 5pk3D3

672
ð3:50Þ

This result is similar to that for a single-turn loop with D=a ¼ 50.

3.4.2 Permeable Core Loops

The most common loop with a magnetic core is the “loop stick,” a single layer

winding on a cylindrical ferrite rod. Equation 3.30 gives radiation resistance in terms
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of effective permeability me and turns N. The effective permeability of a ferrite or

other magnetic core depends on the length-to-diameter ratio of the core, with large

ratios required to realize me close to the intrinsic permeability of the material.

Therefore, ferrite core loops will usually be long but not large in diameter. Figure 3.54

gives effective permeability, normalized to permeability, as a function of core length-

to-diameter ratio (Wait, 1953a). Effective permeability, normalized by the shape

factor L=2a, is given in Figure 3.55. Whether the coil is distributed over most of the

length of the core or lumped at the center is not critical and affects mainly distributed

capacity and the flux enhancement of the end turns. The core need not be solid, as thin

ferrite walls will give a significant increase of flux density.

For a long single-layer solenoid of many turns and with ferrite core, the reactance

is given by

Xa ¼ 30p2N2kLkme

ðL=2aÞ2 ð3:51Þ

where L is now the length of the core and a the radius of the winding rather than the

radius of the wire; k is Nagaoka’s constant (Langford-Smith, 1953), which for large

L=a is approximately 1�0:08=ðL=aÞ, and thus for L=a � 1 is nearly unity. There

exist formulas for calculating loss of long air core solenoids, but formulas for

computing loss of ferrite core solenoids are very poor. Because the derivation of

formulas of sufficient generality to be of use here is too arduous a task, a simpler but

adequate scheme will be used. If low-loss ferrites are utilized, and if the coil

dimensions are in the neighborhood of optimum, the coil Q will vary slowly with
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FIGURE 3.54 Effective permeability of solid core.
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dimensions, number of turns, and so on. That is, the Qmaximum is very broad.

Table 3.12 gives parameters for TDK materials, and it may be observed that the

maximum Q is roughly independent of frequency from 50 to 200MHz. Of course, at

higher frequencies the ferrite permeability is lower so that copper and dielectric

losses tend to play a larger role.

Using the previously defined symbols, the principal parameters, starting with the

radiation resistance, are

Rr ¼ 5p2N2k4L4m2
e

4ðL=2aÞ4

X ¼ 30p2N2kLme

ðL=2aÞ2
ð3:52Þ
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FIGURE 3.55 Shape factor for cylindrical core.

TABLE 3.12

K5 K6a K8

Upper frequency (MHz) 8 50 200

m 290 25 16

tan d 0.008 0.004 0.004

Curie temperature (�C) >280 >450 >500

TDK ferrite cores.
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The core length is L; the core radius is a and the coil radius is also a, as the coil

wire is usually of small diameter. The factor L=2a is separated as it controls me=m.
Loss resistance is

R‘ ¼ 30p2N2kLmetan d

ðL=2aÞ2 ð3:53Þ

Efficiency and bandwidth� efficiency merit factors are, again, neglecting the

effect of distributed capacity on bandwidth:

h ¼ k3L3½me=ðL=2aÞ2�
k3L3½me=ðL=2aÞ2�þ24 tan d

ð3:54Þ

BW �h ¼ k3L3me

24ðL=2aÞ2 ð3:55Þ

In all these formulas, the shape of the coil and the core effect are contained in the

factor me=ðL=2aÞ2. In the curves of Figure 3.55, this shape factor is plotted as a

function of length-to-diameter ratio of the core. It can be seen that most cores will

have shape factors between 0.1 and 1, with a few perhaps as low as 0.01.

Accordingly, calculations of loop antenna parameters were made with three values

of shape factor: 1, 0.1, and 0.01. In Figure 3.56 are plotted R=N2, X=N2, and Rr=N
2
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FIGURE 3.56 Magnetic core loop parameters, L/2a¼ 1.
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for a shape factor of 1. Note that the number of turns is included by multiplying all

these values by N2. The value of tan d for R‘ is 0.004. Also the vertical scales for R‘

and Rr are different, so the crossing of these two in Figure 3.56 does not represent

h ¼ 50%. Efficiency and bandwidth� efficiency merit factors are given in

Figure 3.57. In the figures, values of me=ðL=2aÞ2 are 1 (solid line), 0.1 (dashed

line), and 0.01 (dot-dashed line).

The effective permeability data in Figure 3.54 were obtained by Wait (1953a). He

assumed that the core was a prolate spheroid, with a coil around the center of the

spheroid. For thin rod cores, this is good approximation. Using the spheroidal

functions, the boundary conditions are matched, resulting in

me

m
¼ 1

1þðm�1Þðh2
0�1ÞQ1ðh0Þ

ð3:56Þ

Note that the spheroidal coordinates are ðh; dÞ. Q1 is a spheroidal wave function

Q1 ¼ h

2
‘n

hþ1

h�1
�1 ð3:57Þ
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FIGURE 3.57 Ferrite loop parameters.
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The coordinate h0 is

h0 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4a2=L2

p
ð3:58Þ

where L is core length and a is core radius. These result in Figure 3.54, where me=m is

plotted versus L=2a. Higher permeability cores need to be longer to reach the

intrinsic permeability. It was discovered that most of the flux density is near the

surface of the core, so that hollow cores could be used. This problem was also solved

byWait (1953b), using prolate spheroidal geometry. In Figure 3.58, core external and

internal radii are a and a
0
. The results are

me

m
¼ 1þBQ

0
1 ð3:59Þ

where

B ¼ B1½Q1ðh0Þ�mh0Q
0 ðh0Þ��h0ðm�1Þ

B1ðm�1ÞQ1ðh0ÞQ0
1ðh0ÞþmQ1ðh0Þ�h0Q

0
1ðh0Þ

ð3:60Þ

B1 ¼ ðm�1Þh1

Q1ðh1Þ�mh1Q
0
1ðh1Þ

ð3:61Þ

Q
0
1 ¼

1

2
‘n

hþ1

h�1
� h

h2�1
ð3:62Þ

Figure 3.59 gives me versus L=2a for m ¼ 50, and Figure 3.60 is for m ¼ 200.

These design data have proved satisfactory for loop stick antenna design. In

summary, a ferrite loop antenna should first use as high a permeability ferrite as

possible, and second, the length (of core) should be as large as feasible. When

length L is fixed, then the core should be made stubby, that is, with low L=2a as

the improvement in coil area increases faster than effective permeability

decreases.

It should also be noted that both efficiency and radiation Q are independent of

number of turns. Thus, the low efficiencies of Figure 3.57 are inescapable and are a

result of the intrinsically poor performance of a loop small in wavelengths. A short

folded dipole has similar low efficiency. Parameters for L> 0:1l are not shown, as the
loop is resonant just above L ¼ 0:1l.

2a' 2a

2b

µ

FIGURE 3.58 Loop with hollow prolate spheroidal core.
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FIGURE 3.59 Effective permeability of hollow core, m0¼ 50.
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FIGURE 3.60 Effective permeability of hollow m0¼ 200.
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3.4.3 Receiving Loops

The effective length for a single-turn air core receiving loop is

leff ¼ pkD2

4
ð3:63Þ

and when this is normalized to open-circuit voltage per unit field strength in volts per

wavelength,

leff

l
¼ Voc

lE
¼ k2D2

8
ð3:64Þ

Now for low distributed capacitance, as before, the voltage at the preamp is simply

the open-circuit voltage multiplied by the circuit Q:

V

lE
¼ kleffX

2pðR‘þRrÞ ð3:65Þ

where the tuning capacitor loss and input circuit loss are assumed to be small with

respect to R‘ and Rr. With current technology, this assumption is quite valid. Using

values of X, R‘, and Rr previously derived, the output voltage for a single-turn

loop is

V

lE
¼ 30pk3D3½‘nð4D=aÞ�2�

5p2k4D4þ2RsðD=aÞ ð3:66Þ

This merit factor, normalized output voltage, is plotted in Figure 3.61 for three

values of the loss factor RsD=a as before. Effective length depends only on D=l as

shown. The output voltage peaks for

D

l
¼ 1

2

6RsD=a

5p2

� �1=4
ð3:67Þ

Just as the lower loss factor gave higher efficiency, the lower loss factor here gives

a higher output voltage, with a higher peak.

For a magnetic core loop, the effective length is now

leff ¼ p
4
NkD2me ð3:68Þ

and this normalized as before, using the shape factor me=ðL=2aÞ2, is

leff

l
¼ Voc

lE
¼ Nk2L2me

8ðL=2aÞ2 ð3:69Þ
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The normalized output voltage is simply

V

lE
¼ leQ

l
¼ Nk2L2meX

8ðL=2aÞ2ðRrþR‘Þ
ð3:70Þ

Using previously developed results for R‘, X, and Rr, the output voltage merit

factor becomes

V

lE
¼ 3Nk2L2me

ðL=2aÞ2½k3L3me=ðL=2aÞ2þ24 tan d� ð3:71Þ

This merit factor is shown in Figure 3.62 for three values of the shape factor

me=ðL=2aÞ2, as before. The value of tan d used is 0.01. The output voltage merit

factor is larger for larger D=l.
Noise reception must be discussed, as it is sometimes said that loop antennas pick

up less noise. At sufficiently low frequencies (VLF) and close to electrical storms, the

antenna may be in the near-field of the source such that the wave impedance is higher

20
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V

1

0.1

RsD/a = 1

0.01

—

0.1

0.01 0.1D/λ

λE

FIGURE 3.61 Receiving loop merit factor, D/a¼ 50.
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than 120p. In these cases, the dipole/monopole will pick up more noise than the loop.

But at any usable communications frequency, this does not happen; loops treat signal

and noise equally. Precipitation static may also affect a dipole more than a loop. In

many cases, the noise of a loop is low because its signal is also low.

3.4.4 Vector Sensor

Avector sensor has six antennas, three of which are electric dipoles (dipole antennas)

and the other three magnetic dipoles (loop antennas). Typically, the loops and dipoles

are all orthogonal and are co-centered. Figure 3.63 is a sketch of such a vector sensor.

This configuration has been called the CART antenna, after Compact Array Radi-

olocation Technology (Hatke, 1993). Here, the capabilities and limitations of vector

sensors, using electrically small antennas, are investigated. Emphasis is on the

practical problems of impedance matching, bandwidth, and gain degradation.

For angle-of-arrival (AOA) applications, the vector sensor should be isotropic,

that is, be effective for all angles of incidence. Single-turn loops should be no larger

than 0:1l in diameter, as larger loops have patterns that are not omnidirectional and

have impedance swings.

Many papers on AOA estimation using vector sensors state that loops respond to

magnetic field whereas dipoles respond to electric field, thereby implying that this is

0.01
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µ
e

D/λ

0.1

V

NλE
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FIGURE 3.62 Receiving loop merit factor, tan d¼ 0.01.
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why performance is better than that obtained by tripoles, for example. This is a

misconception: Loops are magnetic field sensors and dipoles are electric sensors only

in the near-field region, where distance between source and antenna is less than a

wavelength. For all practical applications, vector sensor sources are in the far-field;

both loops and dipoles couple to the incident field, which has both E and H, with

E=H ¼ 120p.
The salient advantage of a vector sensor is that it allows Poynting vector (AOA) to

be determined. This is possible because the response of a dipole depends simply on

the angle between the dipole axis and AOA, and the response of a small loop depends

simply on the angle between the loop axis and AOA. By taking ratios of the three

dipole outputs, the scale factors are removed, leaving angular functions of AOA.

Similarly, ratios of the three loop outputs yield additional angular functions; these

together allow AOA to be estimated. Collectively, the six antennas are isotropic, so

that polarization nulls are effectively removed. Now some ambiguity suppression

and signal discrimination is feasible. As each antenna has its own preamplifier, the

gains can be adjusted to provide equal sensitivities, taking into account the dipole and

loop efficiencies. The behavior of a coplanar loop–dipole pair has been analyzed by

FIGURE 3.63 Notional vector sensor. Courtesy of Hatke (1993).
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Overfelt (1998). For the loop and dipole to act independently, the relative phasing

must be 90�.
It is crucial that the loop arms for a coplanar loop and dipole not contact the dipole

arms. This means that the loop arms must connect across the dipole arms either by an

insulated feed-through or by an insulated bypass outside the dipole conductor.

Figure 3.64 sketches a possible configuration in which the dipole arms are tubes, with

a twin line feed for the loop contained in one of the tubes. The dipole plane and the

loop plane could be offset to avoid intersections, but although this is easy for one loop

plus one dipole, it does not alleviate the problem for three loops and three dipoles. An

easy fabrication for one loop plus one dipole would be to print a loop and feed line on

one side of a board and print a dipole on the other side. But three boards cannot be

“egg-crated” together without cutting some conductors, thereby necessitating pigtail

or wire bond connections.

Figure 3.65 shows a loop and two dipoles, all coplanar. Each dipole arm would

need to allow two loop sides to connect through the arm; maintenance of symmetry

will be a challenge. Each loop will connect through four dipole arms, as sketched in

Figure 3.65. Also, each loop feed point will need a shunt tuning capacitor, so that the

twin line can be effectively utilized as a matching transformer (details given below).

Each dipole arm connect through will need to accommodate two independent loops

but for three arms a tuning capacitor as well. This imposes fabrication and assembly

difficulties.

Segmented loops, which allow larger diameters, require multiple feed lines; a

two-segment configuration is sketched in Figure 3.66. Both dipole arms contain twin

FIGURE 3.64 Coplanar segmented loop and dipole.
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FIGURE 3.65 Coplanar loop and two dipoles.

FIGURE 3.66 Coplanar segmented loop and dipole.
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line feeds that are paralleled at the final feed point. One pair is reversed, so that the

current around the loop is in the same direction.

A vector sensor consists of three loops and three dipoles. Because any single

antenna has at least one null direction for a given polarization, use of orthogonal

antennas removes nulls. Because all signals will be in the far-field of the antenna,

there will be some redundant outputs from a vector sensor. The plane wave response

will involve both E andH fields. The principal difference among redundant signals is

due to the patterns. For example, the dominant electric field pattern of a dipole,

normalized to unity, is

E ¼ cosðkh cos uÞ�cos kh

sin u
ð3:72Þ

where k ¼ 2p=l, h is the dipole half-length, and u is measured from the dipole axis.

For a loop coplanar with the dipole, the loop normalized electric field is

E ¼ J1ðka sin uÞ ð3:73Þ

where J1 is the Bessel function, a is the loop radius, and u is measured from the loop

axis. Loops and dipoles small in wavelengths will behave approximately the same.

Orthogonal co-centered dipoles have zero coupling, as the radial component of

the near electric field from a dipole is zero in the normal plane through the dipole

center. Similarly, orthogonal co-centered loops have zero coupling. A constant

current loop has only an H�, and this flux does not enter the loop. Thus, a vector

sensor made of thin orthogonal dipoles and loops should provide six terminals that

are decoupled from each other.

Because the determination of Poynting vector direction, either direct or implicitly,

involves all six antenna outputs, fabrication and assembly asymmetries must be

minimized and the feed-matching circuits must produce sufficiently small phase and

amplitude errors. For a specific vector sensor implementation, an error analysis should

bemade, relatingmechanical and electrical errors to error in the Poynting vector. This

error function can then be incorporated into the AOA estimation algorithm.

There are many papers on the algorithms for processing vector sensor outputs,

such as maximum likelihood, MUSIC, and ESPRIT; see Ko et al. (2002) for

references.

3.5 DIELECTRIC RESONATOR ANTENNAS

The dielectric resonator antenna is simply a block of low-loss dielectric placed on a

ground plane. A precursor was probably a short monopole surrounded by a centered

cylindrical dielectric (pillbox); the monopole has the same height as the pillbox

(James and Burrows, 1973). As expected, a short monopole may be resonated by high

«, but the bandwidth is reduced. Long et al. (1983) introduced the DRA, where the

dielectric body is resonant. They considered both rectangular slab dielectrics and
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cylindrical (pillbox) dielectrics. A rectangular block DRA can be fed by a probe

(McAllister et al., 1983) as sketched in Figure 3.67, by a microstrip (Mridula

et al., 2004), or by a microstrip line with a tee (Bijumon et al., 2005). Circular disk

(pillbox) DRA (McAllister and Long, 1984) have been fed by a microstrip excited

slot (Leung and To, 1997), an inverted microstrip (Leung et al., 1997a), a waveguide

with a slot in the guide top wall–ground plane (Eshrah et al., 2005a), a waveguide

with a probe extending into both the guide and the DRA (Eshrah et al., 2005b), or a

vertical metal strip on the disk exterior, with the strip connected to a feed line (Leung

et al., 2000). Unusual DRA shapes include a hemisphere fed by a slot in the ground

plane with microstrip excitation (Leung et al., 1995), a half-cylinder with axis

parallel to the ground plane and fed by a probe (Mongia, 1989; Kishk et al., 1999), a

cylindrical ring with axis normal to the ground plane and fed by a microstrip (Leung

et al., 1997c), and conical dielectric shapes (Kishk et al., 2002). A further reduction

in size results from a metal top plate connected to a center grounded rod

(Mongia, 1997). A different configuration utilizes a tall, narrow, and thin high-«
dielectric slab normal to the ground plane and fed by a metal strip along the flat side,

with a thicker, low-« block attached (Moon and Park, 2000; see Figure 3.68). Size

reduction also occurs when metallic plates connected to the ground plane are placed

at the E walls (of a rectangular DRA). This, however, also reduces the bandwidth

(Cormos et al., 2003). Some bandwidth can be recovered by adding a grounded metal

strip on an H wall, thus exciting also a higher mode (Li and Leung, 2005). Another

bandwidth enhancement technique top loads a circular disk with a thin, high-« disk of
larger diameter (Leung et al., 1997b).

Feed
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Coaxial

line
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Ground

plane

Ground

plane
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ε

ε

FIGURE 3.67 DRA with probe feed. Courtesy of McAllister et al. (1983).
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Because of the needs of mobile communications devices, there has been work on

dual-band DRA. Two rectangular blocks placed on either side of a coupling slot

produce two narrowband responses (Fan and Antar, 1997). A circular disk fed by a

stripline can produce dual-band response if the feed line is properly placed (Kumar

et al., 2005). An oval cylindrical disk, by proper choice of diameters, produces dual-

band operation (Paul et al., 2004). An alternate geometry uses a circular disk with a

concentric circular cavity, fed by microstrip lines at right angles (Sung et al., 2004).

Finally, a circular disk of modest « with a higher «, smaller diameter, and smaller

height disk inside with a probe feed provides dual-band operation (Nannini

et al., 2003). All of these dual-band configurations have a few percent

(VSWR ¼ 2) bandwidth in each band.

Field distributions inside a cylindrical dielectric were studied via the moment

method by Glisson et al. (1983) and by Kajfez et al. (1984). Analyses of resonant

frequency and Q of rectangular DRAwere made by Mongia (1992) and by Mongia

and Ittipiboon (1997). Details on calculations are given below. For cylindrical DRA,

Tsuji et al. (1982) and Mongia and Bhartia (1994) derived the relevant equations.

Measurements of DRA Q appear to have been made primarily on cylindrical DRA

(Mongia et al., 1994a, 1994b). Although a high « considerably reduces the size of a

DRA, metallic loading such as a top plate (Mongia, 1997) or a side plate (Li and

Leung, 2005) can further reduce the size. Luk and Leung (2003) have extensively

covered the art of DRA.

Most of the analyses and experiments have been made on the cylindrical or

spherical configuration, because the wave functions are well-known cylindrical or

spherical harmonics, which allow easy satisfaction of the boundary conditions. In

Low-permittivity
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material
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FIGURE 3.68 Rectangular DRA with high-« vertical strip. Courtesy of Moon (2000).
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contrast, rectangular DRA usually require a numerical method such as the moment

method. But for practical antennas, the rectangular DRA is the best choice: it is low

profile and easy to fabricate; the three dimensions provide versatility in resonant

frequency, polarization, and bandwidth. Thus, only the rectangular DRA is consid-

ered in detail here.

It is analogous to the conventional patch antenna, where the patch–dielectric–

ground plane forms a cavity supporting the dominant TM mode. Polarization and

pattern for the DRA are similar to those of the patch antenna. However, in a

rectangular DRA, the length-to-width ratio may need to be adjusted to give an

omnidirectional pattern. Circular polarization requires proper location of the feed.

Increasing «r reduces the size by
ffiffiffiffi
«r

p
, but the bandwidth is also reduced. Dielectric

loss is an important factor as it reduces efficiency and gain.

The analysis given here is fromMongia (1992) andMongia and Ittipiboon (1997).

Let the ground plane be the X–Z plane, with Z the resonant direction, and let

the dielectric block have length l (along Z), width w, and height h. Their wave

numbers are

kx ¼ p
w
; ky ¼ p

2h
; k2z ¼ «k2�k2x�k2y ð3:74Þ

The indicial equation for resonance is

kz tan
kzl

2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð«�1Þk2�k2z

q
ð3:75Þ

These combine to give an equation for kzl from which the resonant frequency can

be found:

k2z 1þ« tan2
kzl

2

� �
¼ ð«�1Þðk2xþk2yÞ ð3:76Þ

In terms of convenient design parameters l=h and w=h, Equation 3.76

becomes

k2z l
2 1þ« tan2

kzl

2

� �
¼ p2

4
ð«�1Þ l

h

� �2

1þ 2h

w

� �2
" #

ð3:77Þ

Given «, l=h, and w=h, this equation is solved by this author by a Newton–

Raphson rooter (Stark, 1970), a good choice as the required derivative function is

easily found. Figure 3.69 shows kzl versus l=h for values of w=h ¼ 1, 2, 5, and 10.

The curves are accurate within 1% for « from 10 to 40, and probably higher «. It
should be noted that kzl is a function of only « and of the ratios of dimensions.

Because l=lg ¼ kzl=2p, the resonant guide length approaches lg=2 as l=h becomes
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large, and as w=h becomes small. The resonant value kdl is now found from

k2l2 ¼ 1

«
k2z l

2þ p2

4

l

h

� �2

1þ h

w

� �2
" #" #

ð3:78Þ

The resonant frequency fr is given by

fr ¼ 0:3kl=2p ð3:79Þ

where fr is in gigahertz and l is in millimeters.

In free space wavelengths, the square root of Equation 3.78 is divided by 2p to get

l=l. For example, « ¼ 20, l=h ¼ 5,w=h ¼ 5, kzl ¼ 2:5421, l=lg ¼ 0:4046, and the
resonant length is l=l ¼ 0:314.
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FIGURE 3.69 Propagation constant vs aspect ratio.
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Bandwidth for a matched load and for VSWR � 2 is given by

BW ¼ Pffiffiffi
2

p
W

ð3:80Þ

The radiated power P is given by (Mongia and Ittipiboon, 1997)

P ¼ 640k4v2«20ð«�1Þ2sin2ðkzl=2Þ
k2xk

2
yk

2
z

ð3:81Þ

Energy times 2v is

2vW ¼ v«0«lhðk2xþk2yÞð1þsinc kzlÞ
16

ð3:82Þ

Since v«0 ¼ k=120p, the bandwidth becomes

BW ¼ 128k5ð«�1Þ2sin2ðkzl=2Þ
3
ffiffiffi
2

p
p«wlhk2xk2yk2zðk2xþk2yÞð1þsinc kzlÞ

ð3:83Þ

Inserting dimensional ratios,

BW ¼ 512ð«�1Þ2ðw=hÞ3ðklÞ5sin2ðkzl=2Þ
3
ffiffiffi
2

p
p7«ðl=hÞ4½1þðw=2hÞ2�k2z l2ð1þsinc kzlÞ

ð3:84Þ

It is interesting to note that the bandwidth is a function of only « and the ratios l=h
and w=h. Figure 3.70 shows bandwidth for VSWR ¼ 2, for « ¼ 20, and for w=h ¼ 2,

5, and 10. The range of l=h is 1–10. As expected, longer and wider DRA have more

bandwidth. Figure 3.71 shows bandwidth for « ¼ 40 for the same parameters. The

bandwidth is reduced close to the «1:5 factor that has been suggested for large «.
Finally, Figure 3.72 gives bandwidth for a square DRA, with « ¼ 20 and 40. These

bandwidths are the intrinsic values for the dielectric resonator; the effect of the feed

on efficiency and bandwidth can be expected to be important.

A brief comparison with a conventional patch is now made. For the DRA take

« ¼ 20, a square ðl ¼ wÞ dielectric, with l=h ¼ 40. The value of kl is 1.6637 so that

l=l0 ¼ 0:2648, and h=l0 ¼ 0:0662. VSWR ¼ 2 bandwidth is 5.38%. For the square

patch, use « ¼ 3. Patch bandwidth is approximately

BW ¼ 4tffiffiffiffiffi
2«

p
l0

ð3:85Þ

Using the same bandwidth, the patch thickness is t=l0 ¼ 0:03295. The patch

length is l=l0 ¼ 1=2
ffiffiffi
«

p ¼ 0:2887. The DRA and patch lengths are nearly the same,
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with nearly the same resonant frequency, but the DRA thickness is about double that

of the patch.
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CHAPTER 4

CLEVER PHYSICS, BUT BADNUMBERS

4.1 CONTRAWOUND TOROIDAL HELIX ANTENNA

The first example of an ESA concept that was clever and sound, but has unfortunate

characteristics (tight tolerances, low radiation resistance, etc.), is the contrawound

toroidal helix antenna (CWTHA). This was invented and patented by Corum (1986,

1988), who started with a coil of many turns bent into a ring or toroid. Inexplicably,

some years later the patent office granted patents for the CWTHA to former lab

assistants of Corum! Applying a voltage at the terminals produces a ring of current,

like a single-turn loop. Then a second toroidal coil is added in the same volume, but

wound in the opposite direction. If the second winding is excited 180� out of phase
with the first, the loop currents cancel. Figure 4.1 is a sketch of a CWTHA; the loop

lines represent lines of magnetic flux. The feeds are at the origin. However, the

currents around the turns add, and a vertical (dipole) electric field is created. The

CWTHA was heavily promoted by others without any careful measurements or

calculations. Maclean and Rahman (1978) showed that the CWTHA coordinates

could be exactly written in terms of a single spherical coordinate variable. A ring-bar

analysis, adapted from TWT work, was performed by Hansen and Ridgley (1999);

this was followed by an exact analysis (Hansen and Ridgley, 2001) using exact

geometry. The exact vector potential integrals were integrated numerically. It was

shown that any combination of dimensions that gave an omnidirectional pattern (in

the plane of the toroid) produced a very small ratio of dipole/loop fields. Thus, the

mechanical and excitation tolerances are very tight. The corresponding radiation

resistance is low, where the reactance is modest. When the dimensions produce

resonance, the radiation resistance is again low and the bandwidth is narrow

Small Antenna Handbook, Robert C. Hansen and Robert E. Collin.
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(Hansen, 2001). Figures 4.2 and 4.3 show resistance and reactance for a 20-turn

model, with the ratio of toroid diameter to turn diameter of 10. Figure 4.4 shows the

azimuth pattern. Even a two-turn CWTHA, which can be implemented with printed

flat strips, is narrowband (Hansen, 2002). Other approximate analyses are done by

Miron (2001) and Pertl et al. (2005); the second paper is about patterns and has no

information about the critical areas of tolerances, radiation resistance, impedance,

and so on. See also Hansen (2005). So the CWTHAwas a good idea, but the very tight

tolerances and low radiation resistances doomed it.

FIGURE 4.1 Contrawound toroidal helix (on foam core). Courtesy of R. C. Hansen,

and R. D. Ridgley.
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FIGURE 4.2 Resistance of 20-turn CWTHA. Courtesy of Hansen (2001).
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FIGURE 4.3 Reactance of 20-turn CWTHA. Courtesy of Hansen (2001).
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4.2 TRANSMISSION LINE ANTENNAS

The transmission line antenna, sketched in Figure 4.5, is simply a wire or strip over a

ground plane. The wire length is usually l=4 or less, and the height above the ground
plane is much less. A shunt stub or capacitor may be employed at the end. This

antenna is essentially a vertical monopole loaded by a wire parallel to the ground

plane (King et al., 1960; Prasad and King, 1961; Guertler, 1977). The loading may

allow the monopole to have a nearly uniform current, with a nearly quadrupling of

the monopole-alone radiation resistance. In that case, the radiation resistance would

be 40k2h2, where h is the monopole height. Thus, the limitation on the transmission

line antenna is the low radiation resistance.

4.3 HALO, HULA HOOP, AND DDRR ANTENNAS

A small loop antenna can be folded, as sketched in Figure 4.6. This has been called

the halo loop (Harrison and King, 1961). It could also be the result of bending a

folded dipole into the halo shape. A narrow bandwidth results. The closely spaced

half-loop conductors carry opposing currents, resulting in a radiation resistance

reduction of 5:1, and a reactance increase of 2:1, over the folded dipole, for half-wave

size. For smaller antennas, the performance is even poorer. Radiation resistance is

roughly 30k2a2, with a the loop radius.

The hula hoop antenna is simply a short monopole with capacitive loading bent

into a hoop to save space (Boyer, 1963; Nakano et al., 1993; see Figure 4.7). The

wire is l=4 in length. It was observed by Burton and King (1963) that such an antenna
behaves essentially the same when the wire is straight or in a hoop, and thus the

radiation resistance is again 30k2h2. Although the silhouette is low, the resistance is

very low. If the wire length is electrically short, the reactance becomes very high and

the resistance even lower. Thus, this antenna experienced only a brief flurry of

interest before being consigned to history.

The simplest top loading of a short monopole is with a top hat, a metal plate at the

monopole end, which acts as a capacitive load. A large hat might produce a nearly

FIGURE 4.5 Transmission line antenna. Courtesy of King et al. (1960).
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constant current in the monopole, with nearly quadruple the radiation resistance, but

the hat diameter would be larger than the monopole length. A moment method

analysis of a monopole with large top disk was given by Simpson (2004), who found

that the load could produce resonance, but the resulting bandwidth was narrow.

FIGURE 4.6 Halo loop.

(a)

(b)

FIGURE 4.7 Hula hoop antenna: (a) top view; (b) side view.
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More elaborate transmission line antennas were developed by Fenwick (1965).

Here the single capacitivewire above ground plane is replaced by a meandering wire,

by a planar strip spiral, or by a partially counterwound planar strip spiral. The end

opposite from the feed may be grounded or connected to a resistor. These config-

urations tend to be less effective than a top plate. See also Hallbj€orner (2004). The
transmission line may be zigzagged, to reduce the length (Lee and Mei, 1970).

When a simple planar wire spiral, with the outside end connected to the ground

plane by a capacitor, is used as the top load (Wanselow and Milligan, 1966), the

radiation resistance is improved somewhat, but the resonant circuit Q reduces the

bandwidth. This configuration was called the direct driven resonant radiator

(DDRR); the name was more impressive than the performance (see Figure 4.8).

Top loading schemes for MF and HF monopoles are described and evaluated by

Trainotti (2001).

4.4 DIELECTRIC-LOADED ANTENNAS

The first attempt in this roughly chronological chronicle was to encapsulate a short

dipole in dielectric, in the hope that the result would be similar to that produced by

loading a loop with a high-permeability core. Unfortunately, the loop and dipole are

not analogs; there are no magnetic currents.

In gross terms, dielectric loading of antennas is undesirable; the current is

decreased by 1=«r (Wheeler, 1947; Schelkunoff and Friis, 1952). Dipoles or

monopoles with dielectric sleeves have been investigated for over 40 years.

Polk (1959) analyzed a biconical dipole embedded in a dielectric sphere, using the

Schelkunoff transmission line approach. For a short biconical dipole, the reactance

was reduced by the dielectric, but the bandwidth was also reduced. Grimes (1958)

showed that a dielectric sleeve around a dipole would affect the impedance due to «,

(a)

Feed

Cap.

(b)

FIGURE 4.8 DDRR antenna: (a) top view; (b) side view.
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but not fromm. Galejs (1962, 1963) used a spherical mode approach for a short dipole

in a dielectric sphere. Using the lowest mode, he showed that the

efficiency � bandwidth product varies as 9«=ð«þ 2Þ2. For « ¼ 1 this factor is 1,

of course, and for large « it approaches 9=«. The maximum occurs for « ¼ 2, and is

1.125. This contradicts the results of Wheeler (1958), who assumed a dielectric

surface tangential to E. The results of Galejs were recapitulated by Chatterjee (1985).

Measurements were made of short probes with dielectric sleeves by Birchfield and

Free (1974): the sleeves improved the impedance match, but data are sparse. A

moment method analysis of dielectric-coated dipoles was made by Richmond and

Newman (1976). Resonant conductance increased roughly linearly with

ð«�1Þ=« ‘n b=a, where a is the dipole radius and b is the sleeve radius. Bandwidth

is reduced, but no data are given. See also Popovic et al. (1981). Smith (1977) in a

brief note indicates that the efficiency� bandwidth product is reduced by the

addition of the dielectric, based on the work of Galejs. A cylindrical dielectric or

ferrite sleeve on a dipole was treated as a resonator by James et al. (1974) and James

and Henderson (1978). See also Fujimoto et al. (1987). The external field has a

continuous eigenvalue spectrum, and the cavity has discrete modes. Their perturba-

tion approach ensures that the cavity fields are only slightly changed by loss and by

radiation. A variational method is then used to find the fields. Results show decrease

in efficiency (due to material losses) and decrease in bandwidth. The degradation

appears less when m ¼ « for the dielectric. Reduced dipole length, for resonance,

may not compensate adequately for the lower efficiency and smaller bandwidth.

Returning now to subresonant cladding, King and Smith (1981) formulated an

integral equation for the currents; only a few results are given. Sinha and Saou-

dy (1990) did a Weiner–Hopf analysis of a dielectric-coated dipole; the asymptotic

approximation of current shows unexplained small changes in impedance with «. An
FDTD approach was used by Bretones et al. (1994), for the case where sleeve

thickness equals wire radius, with « ¼ 3:2. A small shift in impedance peaks was

observed. Francavilla et al. (1999) added a circular dish top hat to a monopole, with

dielectric between hat and ground plane. Cylindrical wave functions and mode

matching were used. As « was increased, the resonant frequency decreased, and the

bandwidth decreased, both as expected. See also Janapsatya and Bialkowski (2004).

A different use of dielectric loading uses a permeable bead placed on a long

monopole, to make the monopole act as a l=4 monopole (Kennedy et al., 2003).

Dielectric coatings on monopoles or dipoles can produce resonance at lengths

well below l=4, but the lower efficiency and lower bandwidth are generally a poor

trade. Better results are obtained by inserting a series inductor as mentioned in

Section 3.2.2.

4.5 MEANDERLINE ANTENNAS

The resonant size of a dipole can be reduced by meandering the conductor, as in

Figure 4.9 (Rashed and Tai, 1991). For resonance, the wire length is roughly half-

wave. These antennas can be used over a ground plane at quarter-wave spacing, or as
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a patch. Ameanderline monopole for a notebook computer has been described by Lin

et al. (2005). Meander patches have been used by the HTS community; see Section

7.3.2. Probe feeding was used by Chang and Kuo (2005). A less effective arrange-

ment inserts a folded dipole crosswise in the center of a monopole (Altshuler, 1993).

Although the meander monopole antenna can be resonant in a width (or length)

below l=4, there are several significant disadvantages (Best, 2003). The closely

spaced wires store reactive energy, which reduces bandwidth. Radiation resistance

tends to be that of a monopole with the physical length, not the wire length; thus, it is

often low. And thewire length introduces nonnegligible loss resistance. Comparisons

of meanderline and zigzag antennas are made in Section 3.2.4.

4.6 CAGE MONOPOLE

A novel monopole loading scheme uses a cage of four monopoles with a loading wire

at the top of each; the monopoles are independently fed (Breakall et al., 2002, 2003).

Each monopole is connected to a transmission line transformer to raise the low

radiation resistance; then the four transformer coax are connected in parallel (see

Figure 4.10). Moment method simulations have been concerned with modeling the

ground wires and the earth. A simple understanding of how this antenna works is

provided by amodel of four closely spaced dipoles, all much shorter than l=4. Unlike
the monopoles, where the top loads make the vertical current nearly constant, the

short dipoles have a triangular current, but for understanding impedance and

performance the cage of dipoles is adequate. If one dipole alone has impedance

Z11, the mutual impedances Z12, Z13, and Z14 will be very close to Z11, but with

somewhat less reactance, as the dipoles are closely spaced. Then the impedance of

each dipole in the cage is closely 4Zin. The impedance transformation process does

not change this basic result. Thus, the Q of the cage is essentially that of one

monopole as fat as the cage. Better performance (easier matching) would result from

FIGURE 4.9 Meanderline antenna. Courtesy of Rashed and Tai (1991).
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using a single fat monopole (four or more wires connected together at the feed point)

with an equivalent top load. Thus, the separate feeding is of no value as the

monopoles are eventually connected together.
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CHAPTER 5

PATHOLOGICAL ANTENNAS

Claims on these antennas typically have performance characteristics that violate the

physical laws we work under.

5.1 CROSSED-FIELD ANTENNA

The crossed-field antenna (CFA) was conceived by Hately and Kabbary in the late

1980s. It was based on several “new” principles: that E and H fields could be created

independently, that Maxwell’s displacement current produces magnetic fields, and

that the near-fields could be avoided. The basic geometry is shown in Figure 5.1: Two

horizontal circular metallic disks form a capacitor that is excited by the transmitter,

but it is alleged that the displacement current between the plates produces an

azimuthal magnetic field. Two hollow metallic circular cylinders are stacked

vertically, and above the horizontal plates. The transmitter also excites the cylinders,

but 90� out of phase with the plate excitation. An electric field is produced by the

cylinders as sketched. Because of the Poynting vector, the H and E fields radiate a

wave into space. Several of these CFAs have been built, at MF. Later versions have

incorporated a large flare structure into the upper cylinder, presumably to increase the

electric field in Figure 5.1. To quote the authors, “E and H fields are produced from

separate electrodes,” “the two fields are compelled to cross at right angles in the

interaction zone,” “any CFA is capable of radiation over a decade of frequency,” and

“Moment Method cannot be used to model CFA, as it only models currents” (see

Kabbary et al., 1989, 1997, 1999; Hately et al., 1991; see also U.K. Patent 2215524

and U.S. Patent 5155495). It is significant that peer-reviewed antenna journals have

not accepted papers on CFA.

Small Antenna Handbook, Robert C. Hansen and Robert E. Collin.
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A critical analysis was made by Smith (1992). He performed a simple circuit

analysis on one of the CFA antennas, with the result that the efficiency is below 50%

and the Q is roughly 20. This value is due to the “fatness” of the CFA monopole.

Belrose (2000a, 2000b) did both a moment method analysis and experiments on a

CFA (Figure 5.2). This experimental model closely follows a CFA built at Tanta,

Egypt. Both the E cylinders and the H plates had high Q (low radiation resistance),

and the 90� phasing resulted in power oscillating between the cylinders and plates,

further increasing loss. The NEC simulation and measurements both showed that,

unlike the claims of Kabbary, (1) the relative voltage drives of the disk and cylinder

are not critical; (2) in the vicinity of the CFA “electrodes,” the wave impedance is

much greater than 120pW; and (3) the CFA gain is not sensitive to the relative phase

of the two voltage drives. The moment method calculations agreed well with

measured data.

Hatfield (2000) calculated that for a typical CFA tomaintain theE/H ratio of 120p,
the plates would require a voltage of more than 1MV. Kabbary and Hately apparently

do not understand that both the H plates and the E cylinders produce near-fields, that

the impedance of these near-fields is not 120p, and that it varies with distance.

Furthermore, the near-fields are not orthogonal.

All measurements made by Kabbary et al. are doubtful for the following reasons:

Almost all CFAs were mounted on top of buildings, where the building had at least a
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FIGURE 5.1 CFA geometry.
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partial metal skin; almost all CFA measurements were made at radio transmitting

sites where extensive ground wire systems existed. In at least one case, the

measurement inspectors were denied access to the phasing and matching cabinet;

in at least one case, a hidden ground cable was discovered; in general, the tuning and

adjustment of the CFA has proved difficult, and all performances have been

narrowband. A variant of the CFA is the EH antenna (see Section 5.3), but the

“principles” are the same. Foolishness leads to fraud? (Robert Park).

5.2 INFINITE EFFICIENCY ANTENNA

Kabbary Antenna Technologies (KAT) now claims to have designed and built an

improved crossed-field antenna, called the Superpower Positive Feedback Antenna.

KAT claims that this antenna can radiate at least five times its input power, thus

almost infinite efficiency. Among the statements by KAT to justify the new antenna

are the following: Ampere’s law does not exist; and the fourth equation of Maxwell

needs major correction. Not everyone understands that the Kabbary claims are

absurd: Isle of Man International Broadcasting is trying to retrieve the £300,000

advance payment paid to KAT.

FIGURE 5.2 CFA built and tested by Belrose.
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5.3 E–H ANTENNA

This antenna, patented by Hart (2002), is a fat dipole, consisting of two collinear fat

cylinders slightly separated so that each can be connected to a “phasing and matching

network.” Claims are that the phasing network allows the E- andH-field components

to be in phase. Of course, the far-field Ez andH� components radiated by a dipole are

in phase. But the near-field relative phases depend upon both distance and angles. No

feed network can alter this basic electromagnetics. The patent also claims that the EH

antenna does not accept noise.

A more recent variant is the “Super C” antenna. This VHF–UHF antenna

consists of a wire (mesh) basket 6 ft� 6 ft� 6 ft that surrounds a monopole. All

this is over a slightly larger counterpoise. The usual claims are made: E and H

fields are independent; the antenna is extremely wideband. The performance is

probably due to radiation from the long vertical and horizontal feed cable. This is

apparently based on the “high-efficiency compact antenna” of Henf (1997). Don’t

we ever learn?

5.4 TE–TM ANTENNA

It has been recognized since thework of Chu that exciting an ESAwith both TM1 and

TE1 modes would improve the bandwidth as much as twofold. That is because the

Chu Q of the TM1 and TE1 modes are equal. However, the work of Thal (see Section

1.4), which included energy storage in the radian sphere, revealed that the TE1 mode

Q is twice that of the TM1 mode. This, of course, limits the bandwidth of a dual-mode

antenna.

Dockon, Inc. (Reno, NV) is building dual-mode antennas consisting of a single-

turn loop and a coplanar dipole whose length roughly equals the loop diameter.

They cite papers by Grimes and Grimes that purport to show that a dual-mode

antenna has lower Q than a TM1 mode antenna. In one paper, Grimes and

Grimes (1999) announce a compound antenna with Q ¼ 0. All of the Grimes

papers (1995, correction 1996, 2001) have basic errors in calculating stored energy.

Collin (1998) showed that Grimes calculated stored energy from the integral of the

time-dependent Poynting vector over a spherical surface without considering the

detailed energy density expressions. Another Grimes approach in calculating

energy density used the sum of traveling and standing energy density. The

continuity equation in space and time was applied, and differentiated with respect

to time. But as pointed out by Collin, there is no Lorentz frame corresponding to

uniform motion in the radial direction at velocity c. Alas, Q ¼ 0 is a mirage. Their

errors were admitted (Grimes and Grimes, 2005). The Grimes and Grimes work is

now widely discredited.

The second problem is concerned with loop and dipole dimensions. The total

length of wire in the loop must be roughly less than l=10 in order to avoid pattern

breakup and impedance swings. Thus, a single-turn square loop as shown in

Figure 5.3 has a maximum side length of l=40. The radiation resistance will be
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a maximum of a few ohms and this will reduce the efficiency somewhat. A dipole on

the other hand with length of the order l=40 has bandwidth of roughly 1%

(Hansen, 2007). To achieve significant bandwidth, say 10% half-power bandwidth,

the dipole needs to be roughly l=4 long. Of course, such a long dipole can be

packaged with a much smaller loop but at best the Q is reduced by one-half. Of

course, losses can increase the bandwidth at the cost of efficiency. If the copper loss

of the loop is comparable to its radiation resistance, the efficiency will be of the order

50% and the loop bandwidth will be doubled. The pattern problem is that a vertical

dipole has an omnidirectional azimuth pattern. A loop in the same plane has a figure-

eight azimuth pattern. A second loop could be added with appropriate feed circuitry

but this increases the volume of the antenna significantly. There is no hope that this

technology will provide a wideband electrically small antenna.

5.5 CROSSED DIPOLES

An idea for a wideband dipole uses two dipoles roughly at right angles, with the

shorter dipole roughly half the length of the longer dipole (Kuo et al., 2010).

The concept is simple: The orthogonal dipoles have zero mutual coupling, and the

resonant impedance peaks are staggered in frequency, thereby providing a wideband

impedance. There are two major flaws in this configuration. First, the polarizations

are orthogonal, or nearly so. Second, at frequencies where either dipole is just over a

wavelength in length, the pattern breaks up and splits.

FIGURE 5.3 Dockon loop and dipole.
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5.6 SNYDER DIPOLE

A dipole with built-in coaxial matching stubs was invented by Snyder (1984a,

1984b); wideband performance was claimed. The Snyder dipole is sketched in

Figure 5.4; the radiating currents are indicated in the figure. This configuration can

be decomposed into the parallel combination of three structures: a thin wire dipole

and two short-circuited transmission line stubs (see Figure 5.5). Thus, an

equivalent circuit for this antenna is simply composed of dipole and transmission

line components. Note that the coaxial structure shields the stub currents,

preventing them from radiating, as long as the stubs are near resonant length.

Call the dipole length L, the length of each stub S, and the diameter D; the wall

thickness is assumed to be negligible. It is convenient to normalize the electrical

stub length by the resonant electrical stub length and the stub diameter by the

dipole length:

a ¼
ffiffiffi
«

p
kS

p=2
and b ¼ D=L ð5:1Þ

Short

circuits

Radiating Currents

FIGURE 5.4 Snyder dipole.
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L

D

Short

circuit Short

circuit

FIGURE 5.5 Snyder dipole components.
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« is the stub transmission line dielectric constant, and the characteristic impedance is

given by

Z0‘ ¼ 60ffiffiffi
«

p ‘n D=2a ð5:2Þ

where a is the wire radius. The input impedance of one stub, where k ¼ 2p=l, is

Zs ¼ jZ0‘ tan a p=2 ð5:3Þ

If the dipole impedance is called Zd, the input impedance of the Snyder dipole

will be

Zin ¼ ZsZd

Zsþ2Zd
ð5:4Þ

Note that this is different from that of a folded dipole, whose impedance is given

by (Stutzman and Thiele, 1981)

Zin ¼ 4ZsZd

Zs þ 2Zd
ð5:5Þ

This folded dipole result is four times the Snyder formula; both contain the

parallel combination of dipole and two stubs.

The Snyder dipole is used with a matching transformer, and approximate value for

its impedance Z0 can be indicated by a simple analysis. An admittance Gþ jB

connected to a circuit of characteristic admittance Y0 ¼ 1=Z0 has a VSWR given

implicitly by

Y0GðV2 þ 1Þ ¼ VðY2
0 þG2 þ B2Þ ð5:6Þ

For VSWR¼ 2, this reduces to

Y0 ¼ 5G

4
� 1=ð4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9G2�16B2

p
Þ ð5:7Þ

When a simple resonant matching circuit is used optimally, the VSWR has a peak

of 2 near center frequency and rises at band edges. Thus, near resonance, the dipole

susceptance Bd and the stub susceptance Bs are both small, giving the approximate

result that Y0 should be 2Gd or 0:5Gd. It will appear that the second is a good choice.

Snyder (1984b) uses as comparison a thin wire dipole with no matching

transformer. This is obviously unfair. The comparison dipole used here uses a

resonant tuning circuit as well as a transformer. This makes a fair comparison

between the Snyder dipole, where the tuning is provided by coaxial stubs, and a
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dipole where the tuning is provided by a lumped resonant circuit at the feed

terminals. A parallel resonant circuit is used in parallel with the feed terminals

(see Figure 5.6). The admittance of this circuit is given by

Yckt ¼ ð1þ jQHÞ=R ð5:8Þ

where H ¼ f=f0�f0=f , Q ¼ 2pf0RC, and f 20 ¼ 1=ð4p2LCÞ. It is convenient to use Q

and R=Q as input parameters. Q should be selected very large so that the matching

circuit loss does not increase the bandwidth. The parameter R=Q can be determined

for maximum bandwidth. The matching transformer ratio, or, equivalently, the

characteristic impedance of the dipole plus circuit, is selected to make

VSWR ¼ 2 at the resonant peak.

The Snyder dipole and the comparison dipole model have been implemented by

this author in computer programs for ease of determining optimum results. A wire

diameter of 0.005 times dipole length is used.

For the comparison dipole with matching resonant circuit, the circuit Q is set at

1000, a value sufficiently large so as to have little effect on bandwidth. The matching

circuit is tuned to dipole resonance. It may be possible to improve the bandwidth

somewhat by staggering the dipole and circuit resonance frequencies, but this is not

done here. As occurred for the Snyder dipole, the optimum match impedance is a

little less than twice the resonant resistance; Z0 ¼ 126W. To find the optimum pair of

values of R=Q and Z0, a number of values of R=Q are used. For each R=Q, value of Z0
is adjusted to make the VSWR peak around resonance equal to 2. Finally, the

bandwidth of each pair is evaluated, and the largest is chosen. Note that R=Qmust be

carefully chosen; it controls the circuit reactance that offsets the dipole reactance.

The value used was 30. Use of lower Q matching circuit components will increase

bandwidth; a value of Q ¼ 100 significantly improves bandwidth but lowers

efficiency. The bandwidth was 21.0%.

For the Snyder dipole, taking a ¼ 1, which is for a stub that is resonant at the

dipole resonant frequency, the maximum VSWR ¼ 2 bandwidth occurs for Z0‘ ¼ 45

W and Z0 ¼ 127W; the normalized bandwidth is 20.7%. Calculations were made by

picking values of a and Z0‘, then adjusting Z0 to make the VSWR peak around center

Dipole

To

transformer

FIGURE 5.6 Dipole with matching circuit.
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frequency equal to 2. This allows the low and high VSWR ¼ 2 frequencies to be

determined, hence the bandwidth. When the stub is tuned off the dipole resonance,

the bandwidth decreases; this is typical of matching of high-Q circuit (the dipole)

with a high-Q resonant circuit. Maximum bandwidth for a ¼ 0:95 occurs for

Z0‘ ¼ 42W and Z0 ¼ 110W; the normalized bandwidth is 18.3%.

At center frequency where the coaxial stubs are resonant, the radiating currents on

the Snyder dipole are just those of an equivalent fat plain dipole. Thus, the basic gain

is expected to be that of a dipole: 1.64 or 2.15 dB. In the center of the band and at band

edges, where the VSWR ¼ 2, there is a mismatch loss of 0.51 dB. In addition, the

gain is reduced by the loss in the coaxial stubs, due to dissipation both in the coaxial

dielectric and in the metallic conductors. A further gain reduction occurs away from

center frequency, where the stubs are no longer resonant. This results in currents

flowing from the inside of the stub around the open end to the outside. These exterior

currents will radiate, and in some parts of the frequency band their radiation will

oppose the primary radiation; thus, there will be a gain reduction. So the bandwidth

calculations presented here are optimistic, in that the dipole gain diminished by the

mismatch loss will not be realized over the entire bandwidth.

One might consider replacing the Snyder dipole with twin conductor stubs, but

this configuration is not equivalent to the coaxial stub antenna. In the Snyder dipole,

the return stub current is shielded, whereas in the twin conductor stubs the currents

nearly cancel.

In summary, the Snyder dipole performance is no better than a fat dipole of the

same diameter as the stub diameter. At band edges, it is worse because of stub

transmission line currents that flow on the outside of the stubs away from resonance;

this was not included in the simple analysis used here.

5.7 LOOP-COUPLED LOOP

In this configuration, a large tuned parasitic loop is excited by a coplanar, but

eccentric, small loop (Dunlavy, 1971; see Figure 5.7). The large loop couples loss to

the small loop, thereby increasing bandwidth and decreasing efficiency, but the gain

is low for the large size. This antenna is also dispersive (Barrick, 1986). For some

years, this loop was sold commercially by a U.S. company.

Because both loops are small in wavelengths, the performance can be analyzed by

simple circuit theory. Figure 5.8 shows the equivalent circuit of the two loops. For the

large single-turn loop, Rr is the radiation resistance, R‘ is the loss resistance, L is the

inductance, andC is the tuning capacitor. For the small loop, the loss resistance isR‘1,

the inductance is L1, and the load resistance is R0. The mutual inductance is Xm. The

circuit equations are

V ¼ I1½RrþR‘þjðXcþX‘þXmÞ�
A

� I2½R0þR‘1þjðX‘1þXmÞ�
B

O ¼ I1j Xm
C

� I2½R0þR‘1þjðX‘1þXmÞ�
D

ð5:9Þ
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The complex brackets are called A and B for brevity. The solution for the two

currents is

I1 ¼ V

A�C
; I2 ¼ VC

BðA�CÞ ð5:10Þ

The power delivered to the load resistor as a result of the induced voltage is

P1 ¼ I2I
*
2R0 ¼ V2R0

C

BðA�CÞ
� �

C

BðA�CÞ
� �*

ð5:11Þ

To maximize this power, the quantity BðA�CÞ times its conjugate should be

minimized. If the loop dimensions are fixed, the minimization occurs when Xc ¼ X‘;

that is, the big loop is tuned for the desired frequency. This gives received power as a

50 Ω

FIGURE 5.7 Loop-coupled loop.
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FIGURE 5.8 Loop-coupled loop equivalent circuit.
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function of the resistances, the mutual inductance, and the small loop inductance:

P1 ¼ V2R0X
2
m

½R0þR‘1þjðX‘1þXmÞ�½R0þR‘1þjðX‘1þXmÞ�*½RrþR‘þjXm�½RrþR‘þjXm�*
ð5:12Þ

Because the maximum diameter of the large loop is roughly 0:1l to avoid pattern
breakup and impedance swings, the large loop reactance is significant while the

radiation resistance and loss resistance are typically much smaller than 1W. Thus, the

power can be approximated with the result

P1 ¼ V2R0

ðX‘1þXmÞ2
ð5:13Þ

In comparison, the large loop by itself, when matched, has a power delivered to

the load of

P ¼ V2R0

ðRrþR‘þR0Þ2
ð5:14Þ

The efficiency of the loop-coupled loop system is now found from the ratio of its

power to the single-loop power just derived. This ratio is given by

ht ¼
P1

P
¼ ðRrþR‘þR0Þ2

ðX‘1þXmÞ2
ð5:15Þ

Overall performance of the loop-coupled loop system now requires this efficiency

to be multiplied by that of the single large loop, which is

h ¼ Rr

RrþR‘
ð5:16Þ

It is immediately clear that the resistances in the numerator of Equation 5.15 are

all very small, whereas the reactances in the denominator, although less than those

for the large loop, are still much larger than the resistances. Thus, the transfer

efficiency is very small. The formulas for the approximate mutual inductance

between single-turn coplanar but noncoaxial loops are complicated (Grover, 1946).

Very roughly, the ratio of mutual inductance to self-inductance varies as
ffiffiffiffiffiffiffiffiffi
d=D

p
,

where d is the diameter of the small loop and D is the diameter of the large loop. It

appears that the mutual inductance term in Equation 5.15 may be comparable to the

self-inductance of the small loop. In any case, the transfer efficiency is very small. It

might be thought that the load resistance in Equation 5.15 could be increased in order

to increase the transfer impedance. However, this would violate the assumptions

made in reducing Equation 5.12 to Equation 5.13. It is expected that if the load
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resistance value were raised, and the exact formulas used, the transfer impedance

would still be very small. The single-loop efficiency, which multiplies the transfer

efficiency, may or may not be small. For the 0:1l-diameter loop, the radiation

resistance is 1.923W, and it should be easy to build a loop of a large conductor with

high efficiency. However, most loops are much smaller than 0:1l, and for these the

efficiency may be poor, as the radiation resistance varies as the diameter in

wavelengths to the fourth power. Thus, in all cases the efficiency of the loop-coupled

loop system is small. Belrose (2004, 2005a, 2005b) has modeled the loop-coupled

loop with the NEC-4 moment method code and has performed measurements on a

model that he constructed. Because he was interested in modeling the effect of the

earth on the antenna, a moment method analysis was appropriate. His results show in

detail that the efficiency of the antenna is very poor, and that the bandwidth is very

narrow, because of the high Q of the large loop. The conclusion is that if a loop

antenna is needed for a given application, it should be a single loop tuned with a

capacitor. Whether the loop is comprised of single turn or multiple turns will depend

on a variety of other factors.

5.8 MULTIARM DIPOLE

A multiarm dipole represents an idea that has reappeared, phoenix like, many times

from the ashes of critical engineering evaluation (Turner and Richard, 1968). The

concept is simple. In Figures 5.9 and 5.10, each pair of arms is cut to a different

frequency, so the ensemble should be broadband. However, whether the arms are

resonant or short, the ensemble acts like a single fat antenna because of mutual

coupling among the closely spaced arms. The result is again a narrowband antenna

resulting from the lack of basic understanding of antennas and mutual coupling.

5.9 COMPLEMENTARY PAIR ANTENNA

In the complementary pair antenna (Schroeder, 1964, 1969; Schroeder and Soo

Hoo, 1976), two antennas are connected to the side arms of a 180� hybrid junction

(see Figure 5.11). The concept is that the reactances are cancelled because of the p
phase, whereas the radiation resistances are added. Hybrids with highly mismatched

(and usually not quite equal) loads give only a partial reactance cancellation. The

cancellation may also vary with frequency. Furthermore, the environment of the two

FIGURE 5.9 Multiarm dipole.
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antennas may make the reactances somewhat different. Thus, the reactance cancel-

lation may be only partial. Mutual coupling between the two antennas will also affect

the hybrid performance. When the volume occupied by the two antennas is utilized

by a single, fatter antenna, the complementary pair advantage disappears. The single

antenna is simpler.

5.10 INTEGRATED ANTENNA

This is the name given by Turner andMeinke to an electrically small antenna that has

a semiconductor element, usually a transistor, connected in the interior of an antenna.

The first discussion of the integrating semiconductor electronics into antennas was

given by Frost, who conceived a parametric amplifier using portions of the antenna as

resonant circuits (Frost, 1960, 1964). This work was followed at OSU, where an

amplifier was integrated with the antenna, although in a more conventional sense

(Copeland et al., 1964). For the integrated antennas, although many configurations

have been devised, the most common is a folded monopole with capacitive “top hat.”

The transistor is inserted at the top hat junction (see Figure 5.12). Other connections

of the transistor have been tried; this is the broadband configuration (Flachenecker

andMeinke, 1967). The transistor can be located just below the top hat or can be near

FIGURE 5.10 Multiarm dipole. Courtesy of Turner and Richard (1968).

180°

hybrid

FIGURE 5.11 Complementary pair antenna.
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the feed point, with the location affecting the frequency of minimum VSWR.

Operation of this scheme can be understood by considering only the example of

Figure 5.12, with the transistor just below the top plate. Effectively, all the induced

voltage appears from base to emitter, as the folded monopole operating as a loop will

yield a much smaller voltage. Thus, the transistor acts as a variable resistance

inserted at the loop of the folded dipole, with the resistance value depending on the

bias level. Such a loaded folded antenna was discussed above. The resistance makes

the folded monopole broadband, with no increase in output voltage. The transistor

may also be used as a variable reactance circuit to add capacitance to tune the

monopole inductance. However, this application and the broadband application are

only partly compatible, with the relative effectiveness of each depending on the

transistor drive phase angle. The integrated antenna has an effective length like that

of the top hat monopole alone, but the transistor loss broadens the bandwidth, reduces

efficiency, and introduces appreciable noise (Maclean and Ramsdale, 1975). In-

stabilities incurred in active loading of dipoles were examined by Fanson and

Chen (1973). After years of high-level hype, the consensus was reached that the

optimum placement of active devices is not in the antenna, but at the antenna

terminals. Subsequent amplification can be accomplished with appropriate band

limiting for noise factor control.

5.11 Q ¼ 0 ANTENNA

As discussed in Chapter 1, an antenna radiating both TM and TE modes should

realize a Q lower than a single-mode antenna. In their 1999 Radio Science paper,

FIGURE 5.12 Integrated antenna. Courtesy of Plachenccker and Meinke (1967).
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Grimes and Grimes show that an antenna consisting of four dipoles, x and y directed

electric dipoles and x and y directed magnetic dipoles, can have Q ¼ 0!

As mentioned in Section 5.5, Collin (1998) showed that they made errors in the

calculation of stored energy, and that their definition ofQ is not in agreement with all

earlier investigators. In their later paper (Grimes and Grimes, 1997), a time-domain

calculation of stored energy is performed, and then a time and space continuity

equation is applied to obtain the stored energy. But as Collin points out, there is no

Lorentz frame corresponding to uniform motion in the radial direction at velocity c.

The moral is: If it sounds too good to be true, it probably is not true.

5.12 ANTENNA IN A NIM SHELL

In another attempt to beat the fundamental limits on bandwidth of an electrically

small antenna, such as a short dipole, Ziolkowski and colleagues (Ziolkowski and

Kipple, 2003; Ziolkowski and Erentok, 2006, 2007; Arslanagic et al., 2007) placed a

thin shell around a short dipole, with the shell diameter also small in wavelengths

(see Figure 5.13). When the shell has the ideal properties of a negative index

metamaterials (NIM), it can act as an impedance transformer over that part of the

dispersion curve versus frequency where the NIM property exists. It is claimed that

the shell can greatly increase radiation resistance and bandwidth of the dipole and

FIGURE 5.13 NIM shell and dipole.
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decrease reactance. And the Wheeler–Chu–McLean limit is violated by a significant

amount.

However, in these papers the dipole with shell and the dipole in free space are

both fed by 1A of current. This results in a comparison of radiation resistance for the

two cases (Kildal, 2006). As this is not directly related to Q, the low Q values

calculated are not valid. Other examples in the Ziolkowski papers use 1W of

available power for both dipole cases. This results in a comparison of antenna

mismatch factors for the two dipoles, but not a comparison ofQ values. The papers’

evaluation ofQ calculates total complex power at some point r¼ a, and then divides

it by the square of current to get input impedance. This is not correct as the complex

power must be evaluated at the location of the source. For the Hertzian dipole, it

would be infinite.

An attempt was made to demonstrate experimentally the NIM shell effects. The

design and construction of the shell and the very small loop antenna was so poorly

done that the results were useless (Holloway, 2007). A subsequent software

simulation (Greegor et al., 2009) used Floquet unit cell analysis; this simulated an

infinite array of shells instead of a single shell.

Alas, the electrically small, thin NIM shell is made of that well-known material,

unobtainium. NIM require at least one of several awkward features: an array of long

(in wavelengths), closely spaced wires parallel to the E field; a conducting ground

plane not small in wavelengths (for mushroom NIM); or conductive waveguide walls

that allow circuit elements. None of these configurations fits into an electrically

small, thin shell. Closely spaced and long wires (in wavelengths) greatly attenuate

the field transmitted through, although several papers have shown the field without

attenuation. The reviewers should be ashamed.

A further difficulty is that the metallic inclusions that are integral to any NIM are

small in wavelengths and are close to the dipole wire in wavelengths. Just as a

plethora of higher order wire dipoles result in one lowest order wire dipole, because

of mutual coupling, the NIM inclusions have their induced currents and scattering

properties altered with the resulting loss of NIM properties.

In addition to the calculation errors in the Ziolkowski papers, there is a

catastrophic problem. Inclusion of realistic dispersion in the shell removes the NIM

properties. Because this information is so critical for antenna R&D, the paper

(Karawas and Collin, 2008) that contains a thorough analysis is included as

Appendix C.

To quote Robert Park, “It never pays to underestimate the human capacity for self-

deception.”

5.13 FRACTAL ANTENNAS

The science of fractals was developed byMandelbrot and published in seminal books

(Mandelbrot, 1977, 1982). Fractal antennas have incurred a large interest and a large

number of papers in recent years. Only the most significant are mentioned here. This

activity arose because there is very little new in antennas, and fractal antennas are a
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new frontier. In addition, the mathematics is fairly simple, and the antenna forms are

neat. For ESA, the forms are either monopoles (dipoles) or loops, and there are five

general categories, each with its initiator and generators. These are shown in the

various stages:

. von Koch (1870–1924) snowflake, 1904 (Puente et al., 1998a; Baliarda

et al., 2000a). Figure 5.14 shows stages and Figure 5.15 shows a segment that

could be a monopole.

FIGURE 5.14 von Koch stages.

FRACTAL ANTENNAS 163



. Sierpinski (1882–1969) gasket (Puente et al., 1996, 1998b; Baliarda

et al., 2000b). Figure 5.16 shows stages and Figure 5.17 shows a segment that

could be a monopole.

. Hilbert (1862–1943) curve (Vinoy et al., 2001; Anguera et al., 2003).

Figure 5.18 shows monopoles.

. Minkowski (1864–1909) island, circa 1890 (Cohen, 1995; Best and Morrow,

2003). Figure 5.19 shows monopoles and Figure 5.20 shows loops.

. Peano (1858–1932) curves (Zhu and Engheta, 2004). Figure 5.21 shows

monopoles.

Most of the papers concern Sierpinski monopoles.

Fractals occur in many places in nature, and in biology in particular. Ferns, leaves,

and coral are among the many examples. Fractals may be useful in scattering from

rough surfaces or ocean waves (Jaggard, 1990). However, there is nothing in

Maxwell’s equations that indicates any particular spatial periodicity in performance

parameters, so one must look to the world of practical antennas to see whether fractal

mathematics would improve performance. Wideband antennas such as the spiral, the

log-periodic dipole array (LPDA), and the TEM horn have in common the frequency-

independent principle: The feed point excites a small geometry first. If this geometry

is a resonant active region, it radiates. If not, the exciting currents are passed on

FIGURE 5.15 von Koch monopole.
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FIGURE 5.16 Sierpinski stages.

FIGURE 5.17 Sierpinski monopole.

FRACTAL ANTENNAS 165



without significant change to a subsequent larger active region. The active regions

start small at the feed point and become large at the end of the antenna. In the spiral

antenna, the active region is an annulus that starts immediately around the feed point

and as frequency decreases it moves to the periphery of the spiral at the lowest

operating frequency. Similarly, the LPDA has a high-frequency resonant region

consisting of short dipoles near the feed and longer, lower frequency dipoles situated

along the boom. The active region for the lowest frequency contains long dipoles at

the big end of the LPDA (see Figure 5.22). Similarly, the TEM horn radiation is

primarily from the throat region at high frequencies and primarily from the mouth

region at low frequencies.

Fractals, in contrast, tend to behave in just the opposite manner. The classic

Mandelbrot diagram (see Figure 5.23) starts with a large figure at the origin (feed

point); smaller replicas are then clustered at strategic points around the large figure,

and even small figures are clustered around each of these medium-sized figures, and

so on. Thus, the feed point occurs at the large structure instead of at the small active

region; the currents to excite the small structures must travel through the large

structure, clearly violating the principles of broadband radiation.

H0 H1

H2 H3

FIGURE 5.18 Hilbert monopoles.
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Best and Morrow (2002, 2003) have shown that, for the von Kock, Hilbert,

Minkowski, and Peano fractal antennas, although their space-filling nature reduces

resonant frequency, the strong coupling between parallel segments with opposite

currents reduces the antenna effective length. Also, reactance is increased over that

of simple antennas such as dipoles and bowties, thereby reducing bandwidth.

Hilbert fractal antennas with narrow bandwidth at resonance are shown by Zhu

et al. (2003) and by Guterman et al. (2004). Similarly, Koch fractal antennas have

narrow bandwidth at resonance (Best, 2002). The Sierpinski holes in the bowtie

shape produce higher frequency resonances, but these make a multiple narrowband

antenna rather than a broadband antenna (see Puente, 1998b; Liang and Chia, 1999;

Soler et al., 2002). The resonant frequency of wire monopoles such as Hilbert,

Minkowski, and meander is controlled primarily by wire length (Best and Morrow,

2002, 2003; Best, 2002). Self-resonant ESA because their input resistance is not

small (Best, 2005) do not need the matching circuit loss enhancement described in

Section 2.4. Thus, we may conclude that in general fractal antennas should not be

expected to contribute performance improvement in size or bandwidth.
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FIGURE 5.19 Minkowski monopoles.

FRACTAL ANTENNAS 167



Electrically small planar monopoles, broadly speaking, have only two design

parameters besides height. These are the fatness and the wire length (for a wire

monopole). It is well known that fat monopoles, such as bowtie monopoles, have

muchwider bandwidth thanwiremonopoles. Awiremonopole can become resonant

even if the overall height is small in wavelengths. Best (2002, 2003) compared ESA

resonant wire antennas of meander, Koch fractal, meander helix, Hilbert fractal, and

Minkowski fractal. The wire length-controlled resonance and the bandwidth were

essentially the same. The increase in resistance usually did not affect bandwidth

significantly because of a large radiation resistance. For loops, the wire length

affects efficiency because of a small radiation resistance. Gonz�alez-Arbesú
et al. (2003) showed that space-filling monopoles, such as meander, Hilbert fractal,

and Peano fractal, store a lot of energy in the near-field and havemore loss. Thus, the

bandwidth and efficiency are both diminished. If wire length is used to produce

resonance in an ESA, the wires should be disposed to minimize cross-polarization

and to maximize radiation resistance. Generally, higher order fractal designs have

less bandwidth and lower efficiency. A closely spaced meanderline monopole is

M
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FIGURE 5.20 Minkowski loops.

168 PATHOLOGICAL ANTENNAS



better than Koch and Hilbert fractal monopoles, but fat bowties or top-loaded fat

dipoles are better.

The Sierpinski monopole is slightly poorer in efficiency and thus slightly better in

bandwidth, because of slightly higher loss resistance, than a solid bowtie. The

Sierpinski holes in the bowtie shape produce higher frequency resonance, but these

make a multiple narrowband antenna rather than a broadband antenna.

Fractal array designs, such as Cantor set arrays, are outside the scope of this book,

but they offer no advantages and have high sidelobes; there are much better

nonuniformly spaced array designs available. An array design related to fractals

uses difference sets (a brand of combinatorial mathematics) to formulate a thinned

array with constant sidelobe envelope (Leeper, 1999).

A careful review of the many papers on fractal antennas shows that they offer no

advantages over fat dipole, loaded dipoles, and simple loops with or without

magnetic core. Nonfractals are always better.

Feed point
Feed point

Feed point

Feed point
n = 1

n = 3

n = 4

n = 2

FIGURE 5.21 Peano curves.
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5.14 ANTENNA ON A CHIP

A few years ago, a large telecommunications company announced an “antenna on a

chip,” an antenna so small that it resided on the printed circuit board. Measurements

were made with the chip connected to a network analyzer by a small diameter coax.

Results were excellent. Later, when the cable was removed and the antenna was

∼

FIGURE 5.22 Log-periodic dipole array.

Generating

point

FIGURE 5.23 Original Mandelbrot fractal.

170 PATHOLOGICAL ANTENNAS



activated by the circuit board, the antenna did not operate. This was another case of

an unbalanced antenna connected to a coax cable; the cable often makes an excellent

radiator! All announcements on the chip antenna ceased. Similar problems occurred

in most of the CWTHA tests.

5.15 RANDOM SEGMENT ANTENNAS

It has become fashionable to design wire antennas with some type of optimizer

program, almost independent of good physics or high-quality performance. The

results sometimes have wire segments in all directions; see Figure 5.24 for an

example. A long total wire length may achieve resonance in a small volume, but

there are several disadvantages. If Z is the normal monopole direction, the X currents

tend to cancel, as do the Y currents. However, in certain directions the cross-

polarized field may not be negligible. Longer total wire length increases loss

resistance, reduces efficiency, and increases reactance. And generally the bandwidth

is narrow. Examples are Altshuler and Linden (2004), Choo et al. (2005),

Altshuler (2005), and Best (2002, 2003). Use of fractals and meanderlines to fill

space (Gonz�alez-Arbesú et al., 2003; Best and Morrow, 2002) suffers from the same

problems.

“Do not confuse inexperience with creativity” (Linda Whittaker) is appropriate

here.

5.16 MULTIPLE MULTIPOLES

The fundamental limitations on antennas make it clear that the maximum bandwidth

of an ESA occurs when both the electric dipole mode and the magnetic dipole mode

FIGURE 5.24 Random segment antenna. Courtesy of Choo et al. (2005).
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are excited. For many years, an effort has been made to show that higher order modes,

or multipoles, could also be excited within the imaginary enclosing small sphere,

and thereby invalidate Chu’s results. Grimes and Grimes (1995, 1996) improperly

applied Poynting’s theorem to individual modes and “derived” a non-Maxwellian

equation for the conservation of power. Grimes andGrimes (1997, 1999) produced a

“standing energy density” (reactive power) that cannot be derived from electrody-

namics. It was stated that ESA Q could be as low as zero! It is well known from

antenna theory that a dipole along the axis of a loop, with the dipole center in the

loop plane, has zero mutual impedance to the loop. McLean (1996), using the

moment method, showed this but, more importantly, showed that a coplanar dipole

and loop were coupled and that the dipole and loop energy densities were

interrelated. Notwithstanding, Grimes et al. (2000a, 2000b) claimed that two

loop–dipole pairs used “energy that returns from the radiation field to the antenna,”

and that when the pairs are excited for CP, “large near-field energy is not supported.”

In a review paper (Grimes and Grimes, 2001), it was stated again that Q ¼ 0 was

possible. Collin (1998) gives a detailed critique of how Grimes has bent the laws of

electrodynamics.

The several Grimes papers only vaguely explain how to produce higher order

multipoles in a small volume. Of course, for the lowest order TE and TM modes, a

dipole along the loop axis suffices. In a patent (Grimes and Grimes, 1989), it is

suggested that the lowest order mode may be produced by a dipole, the next mode

may be produced by two parallel dipoles fed 180� out of phase, and so on, and

similarly for the loops (see Figure 5.25). Of course, what happens is that the

mutual coupling of three closely spaced dipoles is very strong, with the result that

all the dipoles revert to a single fatter dipole, but of course with reactance changed.

This is much like the multiarm dipole of Section 5.8. Similar effects can be

expected from the loops. Also damaging is that the dipoles and loops must be

connected to the external world by wire segments inside the enveloping sphere.

These wires cross-couple the multipoles and become part of the antenna. It is not

FIGURE 5.25 Multipoles, after Grimes and Grimes (1989).
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surprising that there are no credible measurements of antennas that beat the

Chu limit.

As Robert Park states in Voodoo Science: The Road from Foolishness to Fraud:

“Where accepted laws of electrodynamics must be changed to give the researcher the

results he wants, he is almost certainly wrong.”

5.17 SWITCHED LOOP ANTENNAS

The switchingof energybetween a capacitor and a loop to providewidebandoperation

was invented by Merenda (2001). As shown in Figure 5.26, an energy storage device

(capacitor) and a loop are connected with a DC supply by four switches. Figure 5.27

depicts the cycle:Current flows through the loop for thefirst 60� of cycle, buildingup to
a peak value. During the next 60�, the loop is short-circuited; the current decays
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somewhat. For the next 120�, the loop excitation is reversed; the current decays to zero
and builds up in the opposite direction. From 240� to 300�, the loop is again shorted,
thus allowing a slow current decay. Finally, from 300� to 360�, the current decays to
zero and starts the buildup in the next cycle. The capacitor and power supply are

connected to the loop during the current increasing cycles. The waveform of

Figure 5.27 approximates a sine wave, the RF carrier.

The question arises: How does this switching scheme differ from simply con-

necting a capacitor in parallel with the loop and connecting both to an RF source?

The switching circuit effectively generates the RF carrier. Disadvantages of the

Merenda circuit are that the waveform of Figure 5.27 contains, in addition to the RF

carrier frequency, some higher harmonics, which cause interference, corrupt the

signal modulation, and reduce efficiency somewhat, and that the switching circuit

transistors will reduce the DC to RF carrier efficiency and introduce noise. In both

cases, the antenna is basically a loop with a shunt capacitor; the bandwidth will be

limited by the Q of the tuned loop.

“The absolute ingenuity of this idea almost blinds one to its utter worthlessness”

(Air Marshall Tedder) is appropriate here.

5.18 ELECTRICALLY SMALL FOCAL SPOTS

A complementary problem to that of the ESA is the production of an electrically

small focal spot. An early work by Carlin (1964) used the Heisenberg uncertainty

principle to show that a spot size roughly half that of the normal pattern could be

produced. This was refined using a uniformly excited linear array by Hansen (1965);

the minimum spot size available is roughly 0:35l.
In 2000, Pendry showed that Veselago-type negative refraction could produce a

“perfect lens” (Pendry, 2000). His calculations indeed showed a subwavelength focal

spot! Using thermodynamic arguments, Markel (2008) showed that negative refrac-

tion is not possible in Pendry’s case. Many readers may not be comfortable with

thermodynamic calculations. Collin (2010) showed, in electromagnetic detail, that in

addition to Pendry’s solution there will exist resonant surface wave modes and other

modes that preclude a coherent reconstruction of the object in the image plane. The

Pendry lens does produce a small focal spot, just as a focused antenna does. But there

is no useable modulation transfer function.1 The lengthy but important Collin paper

is included as Appendix D.

5.19 ESA SUMMARY

Although there have been many attempts to make electronically small antennas

that outperform the fundamental limitations, none has succeeded. The Wheeler–

1MTF is the spatial frequency amplitude response, in lines/mm or pixels/mm2 (RCAContributors, 1968).
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Chu–McLean fundamental limitations are absolute, regardless of government needs

or expenditures. What has changed over the years is that the attempts have become

more sophisticated, although in each case, basic principles were ignored.

Clever antenna design can make the most of available space; a reasonable

objective is to get close to the limits. In general, dipole-type ESA should use as

much area (and volume) as feasible, for example, bowtie, to take advantage of “free”

bandwidth. Judicious inductive loading is also productive. Bandwidth can be

improved further through use of clever matching networks. HTS materials will

affect these conclusions only by allowing more efficient matching sections to be

used. Non-Foster matching circuits will become very important.

The reader is urged to read the fascinating Voodoo Science by Robert Park (2000):

“Foolishness, if pursued can lead to denial, and that sometimes leads to fraud.”
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CHAPTER 6

SUPERDIRECTIVE ANTENNAS

6.1 HISTORY AND MOTIVATION

A useful operational definition of antenna array superdirectivity (formerly called

supergain) is directivity higher than that obtained with the same array length and

elements uniformly excited (constant amplitude and linear phase). Superdirectivity

applies in principle to ESA, to apertures, to arrays of isotropic elements, and to actual

antenna arrays composed of nonisotropic elements such as dipoles, slots, and

patches. Small dipoles and loops are superdirective; their directivity remains at

1.5 as size decreases, but their efficiency decreases. Excessive array superdirectivity

inflicts major problems in low radiation resistance (hence low efficiency), sensitive

excitation and position tolerances, and narrow bandwidth. It is important to distin-

guish between directivity and gain. Gain as used in this book follows the antenna

industry definition: Gain includes the effects of both losses (conductor and dielectric)

and impedance mismatch. The IEEE and textbook definition where only loss is

included is unrealistic and of little use; directivity includes neither loss nor imped-

ance match. Thus, the gain of a superdirective antenna may be low.

Taylor (1948) was one of the first to use the term “superdirectivity”; supergain

should include efficiency, which in many cases would negate the directivity increase.

He proposed a physical explanation of superdirectivity in terms of spherical modes

and their cutoff due to dimensions. Taylor (1955) defined a most useful parameter:

superdirective ratio (SDR). This is the ratio of array (or aperture) directivity to the

directivity that would be obtained if the amplitude(s) were uniform, and the phase

Small Antenna Handbook, Robert C. Hansen and Robert E. Collin.
� 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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constant or progressive. It is the ratio of radiated power plus reactive power to

radiated power, which for a broadside line source is

SDR ¼
Ð1
�1 f ðuÞd e2duÐ pL=l

�pL=l f ðuÞd e2du
ð6:1Þ

where u ¼ ðL=lÞsin u and f(u) is the aperture distribution.

For other than broadside, the limits in the denominator change. For a long

uniform-amplitude line source, the broadside SDR ¼ 1, whereas for endfire

SDR ¼ 2. Values of SDR for 10l uniform-amplitude line sources are given by

Stutzman and Thiele (1998):

SDR

Broadside 1.01

Endfire 2.01

Hansen–Woodyard 8.23

Because Q may be expressed as the ratio of reactive power to radiated power,

Q ¼
Ð � pL=l
�1 f ðuÞd e2duþ Ð1

pL=l f ðuÞd e2duÐ pL=l
� pL=l f ðuÞd e2du

ð6:2Þ

These two equations give SDR ¼ 1þQ.

Superdirectivity is a mature technical area, but many newer researchers have not

been exposed to its capabilities and limitations. Thus, this chapter aims at providing a

broad reference framework, as well as some more recent results. Probably, the first

work on this subject was due to Oseen, in 1922. The next work that appeared was

dated 1938. A flurry of papers appeared around the World War II era, up to roughly

1960. Another burst of activity occurred from 1964 to 1974. Since then, only a few

papers have appeared. Details of these advances are given below.

6.2 MAXIMUM DIRECTIVITY

6.2.1 Apertures

The question arises whether a continuous aperture with amplitude and phase chosen

appropriately can have an infinite directivity. Oseen (1922) discussed forming an

arbitrarily narrow beam, analogous to the quantum mechanical “needle” radiation of

Einstein, and the possibilities of superdirectivity. See Bloch et al. (1953, 1960) for a

list of early references. Another early contributor was Franz (1943). Schelkunoff, in a

classic paper (1943) on linear arrays, discussed, among other topics, array spacings
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less than l=2, showing how equal spacing of the array polynomial zeroes over that

portion of the unit circle represented by the array gives superdirectivity. The field

received wide publicity when La Paz and Miller (1943) purported to show that a

given aperture would allow a maximum directivity. However, Bouwkamp and

De Bruijn (1945/1946) showed that they had made mathematical errors and that

there was no limit on theoretical directivity. Thus, the important theorem: A fixed

aperture size can achieve (in theory) any desired directivity value. This theorem is

now widely recognized, but the practical implications are less well known. Bloch

et al. (1960) say that the theorem has been rediscovered several times; the practical

limitations of superdirectivity occur as a surprise to systems engineers and others

year after year!

Reid (1946) generalized the Hansen–Woodyard endfire directivity as d! 0. The

Bouwkamp and De Bruijn work was extended to a two-dimensional aperture by

Riblet (1948). Kyle (1959) discussed transforming a linear superdirective distribu-

tion to a cylindrical distribution. Superdirective aperture design thus requires a

constraint; see Section 6.3.

6.2.2 Arrays

6.2.2.1 Broadside Arrays of Fixed Spacing An array with fixed length and

number of elements represents a determinate problem. Clearly, a maximum

directivity exists. Uzkov (1946), and later Gilbert and Morgan (1955), showed

that in the limit of zero element spacing the maximum directivity is

D ¼
XN� 1

n¼0

ð2nþ 1Þ½Pnðsin uÞ�2 ð6:3Þ

The array has N elements, and broadside is u ¼ 0. Pn is the Legendre polynomial

of order n. The broadside case is discussed next and the endfire case in

Section 6.2.2.2.

Tai (1964) developed broadside array results starting with the mutual resistance

series and then optimizing by setting derivatives to zero and evaluating the resulting

matrix. He plotted directivity for 0 � d=l � 2 for isotropes, parallel dipoles, and

collinear dipoles. For broadside in the d ¼ 0 limit, the Uzkov result is obtained:

D ¼
XN� 1

n¼0

ð2nþ 1Þ½Pnð0Þ�2 ð6:4Þ

The Legendre polynomial of argument 0 can be written as a product of factors

(Burington, 1973); the result for maximum directivity is a double sum. It is simpler

to use Pn(0) from Jahnke and Emde. Since Podd(0)� 0, thus the following result:

three- and four-element arrays have the same limiting value, five- and six-element

arrays have the same value, and so on. This maximum directivity is plotted in

Figure 6.1.
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Blochetal.(1953)usedaformulationinvolvingmutualresistances(seeHansen,1998;

Section 2.4.3), but only very limited calculations were presented.

The maximum value of directivity can be found by using the Lagrange multiplier

method (Sokolnikoff and Sokolnikoff, 1941). The directivity D of an array of

isotropes at broadside can be written as

D ¼
PN

n¼1 An

� �2
PN

n¼1

PN
m¼1 AnAm SINC½ðn�mÞ2pd=l� ð6:5Þ

Here it is assumed that N array elements are isotropic and equally spaced by d. In

the formulation in Equation 6.6, the array amplitudes are An and the SINC function

½ðsin xÞ=x� represents the mutual impedance between isotropic elements (Hansen,

1983), which is 120 SINCkd . Although the directivity expression could be maxi-

mized directly, it is convenient to constrain the sum of the coefficients to unity, and

then to minimize the denominator. The Lagrangian equations are

2
XN
n¼1

AnSINC½ðn� iÞ2pd=l� �b ¼ 0; i ¼ 1; 2; 3; . . . ;N

XN
n¼1

An ¼ 1

ð6:6Þ

FIGURE 6.1 Maximum broadside directivity in zero spacing limit.
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where b is the Lagrangian multiplier. Solving the first equation for i ¼ 1 for b and

substituting gives N equations in the unknown coefficients for an N-element array.

These are easily solved by using simultaneous equation computer subroutines with

multiple precision as needed. These were solved by hand for N ¼ 3, 5, and 7 by

Pritchard (1953). Hansen (1983) compares the maximum directivity of small arrays

with the uniform-amplitude directivity versus element spacing (see Figure 6.2).

Above d=l ¼ 0:5, the two are very close. Also, some minor oscillations in the

directivity curves have been smoothed out, as they are not important here. The

coalescing of pairs of curves at zero spacing occurs because arrays of 2N and 2N� 1

elements have the same number of degrees of freedom as previously mentioned.

Togive an idea of the coefficients, input resistances, and pattern of a small arraywith

modest superdirectivity, Table 6.1 shows the amplitude coefficients for an array of

seven elements with quarter-wave spacing. Directivity is 5.21, and the pattern is the

solid line in Figure 6.3. Also shown (dashed line) is the pattern of the same length array

with half-wave spacing. Directivity of a corresponding uniform-amplitude array is

3.64. Three of the input resistances in the table are negative; these elements have power

flow in the reverse direction, a phenomenon not unusual in superdirective arrays.
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FIGURE 6.2 Maximum directivity for fixed spacing.

TABLE 6.1 Seven-Element Superdirective Array (d¼ k/4)

Element Number Amplitude Resistance (W)

1 1.443 0.13299

2 � 3.933 � 0.04879

3 7.122 0.002694

4 � 8.264 � 0.02322

5 7.122 0.02694

6 � 3.933 � 0.04879

7 1.443 0.13299
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An extreme example of a superdirective array was computed by Yaru (1951); this

was a nine-element broadside array of isotropes with an overall length of l=4. The
design was a nominal Chebyshev pattern with 25 dB SLR. Because of the limitations

of desk calculators circa 1950, the currents calculated by Yaru contain small errors,

which were corrected (Jordan and Balmain, 1968). Correct values are

I1 ¼ I9 ¼ 260;840:2268

I2 ¼ I8 ¼ 2;062;922:9994

I3 ¼ I7 ¼ 7;161;483:1266

I4 ¼ I6 ¼ 14;253;059:7032

I5 ¼ 17;787;318:7374

The net broadside current is 0.039! The superdirective ratio is 17.3!

Almost all papers have neglected the network used to feed the array elements, but

Harrington (1965) sets up a matrix representing array element self- and mutual

impedances. Directivity is a ratio of products of current and impedance matrices,

which is then differentiated to find maximum D. An eigenvalue equation results with

one nonzero eigenvalue. Unfortunately, no examples or calculations accompanied

this work.

6.2.2.2 Endfire Arrays The Uzkov–Gilbert–Morgan result for maximum

endfire directivity as element spacing goes to zero is

D ¼
XN� 1

n¼0

ð2nþ 1Þ½Pnð1Þ�2 ð6:7Þ
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FIGURE 6.3 Maximum directivity array, N¼ 7, d¼ l/4.
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Because Pnð1Þ ¼ 1, the directivity limit is

D ¼
XN� 1

n¼0

ð2nþ 1Þ ¼ N2 ð6:8Þ

Although calculations are scarce, this result was validated by Tai (1964) and by

Stearns (1961). Another validation, both theoretical and experimental, for two-

element monopole arrays has been given by Altshuler et al. (2005).

Endfire superdirectivity is produced by interference whereby the main beam is

scanned into the invisible region where uj j > pL=l or cos u0j j > 1. This causes

energy to be stored in the near-field, resulting in a large antenna Q.

Hansen and Woodyard (1938) developed an endfire line source with modest

superdirectivity. This is of interest because the distribution can be sampled to get

array excitations and because the amplitude is constant, a feature that is attractive

for arrays. They observed that if the free space phase progression along the aperture

was increased, the space factor power integral decreased faster than the peak value;

thus, the directivity increases up to a point. The endfire pattern, for a source of

length L, is

f ðuÞ ¼ SINC
L

2
ðk sin u�bÞ

� �
ð6:9Þ

where b is the wave number over the aperture. Inverse directivity is proportional to

1

D
/ 1

SINC2½ðL=2Þðk�bÞ�
ð
SINC2

�
L

2
ðk sin u�bÞ

�
cos u du

¼ 1

SINC2ð�=2Þ

�
p
2
þ Si �þ cos �� 1

�

� ð6:10Þ

Here Si is the Sine Integral, and � ¼ Lðk�bÞ, the additional phase along the

aperture (in addition to the progressive endfire phase). Maximum directivity of

7:2143L=lwas determined to occur for � ¼ 2:922 rad. In many books, it is carelessly

stated that p extra radians of phase are needed, but there is no physical reason for this;
a better approximation to 2.922 is 3. Directivity increase over normal endfire is

2.56 dB, and the sidelobe ratio is 9.92 dB. The distribution is suitable for long arrays;

for short arrays, a computer optimization of phase is recommended; see Hansen

(1992). A modest improvement was made by Goward (1947) by adjusting the endfire

source amplitude.

The Hansen–Woodyard distribution is endfire. In general, the maximum direc-

tivity does not occur there. The most general solution of uniform amplitude would

allow any element phase needed to maximize directivity. Such a solution could be

formally realized for a given number of elements and spacing, but the equations
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would require a numerical solution. A slightly simpler problem was worked by

Bach (1970); he started with a uniform-amplitude array of isotropic elements that

was phased to produce a main beam at u0. The interelement phase factor is

d ¼ kd sin u0, and the directivity is

D ¼ N

1þð2=NÞPN� 1
n¼1 ðN � nÞ SINCðnkdÞcosðndÞ ð6:11Þ

Calculations were made for 2-, 3-, 4-, and 10-element arrays for all beam angles,

and for spacings up to l. Figure 6.4 shows the results for 2- and 3-element arrays, and

Figure 6.5 for 4- and 10-element arrays. Figure 6.5 is striking in that high directivity

occurs along a line roughly for kd þ d ¼ 0, or u0 ¼ � p2, with peak directivity near
endfire at l spacing. Along the line, roughly for kd ¼ dþ 2p directivity is changing
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FIGURE 6.4 Uniform array directivity, N¼ 2 and 3. Courtesy of Bach (1970).
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rapidly, perhaps owing to the appearance of another lobe. Directivity values are

shown at u0, but in some cases a “sidelobe” may have higher amplitude. Thus, even

for uniform amplitude an array is complex.

The simplicity of linear arrays of isotropic elements allows the directivity to

be exactly written in closed form when the excitation coefficients are given. A

three element linear array of isotropes is used as an example. Let the phase

parameter c be:

c ¼ kdðcosu� cosu0Þ ð6:12Þ
Then the array excitation coefficients and function are a, b, c, d, e, f, and F.

F ¼ aþ jbþ ðcþ jdÞexpðcÞ þ ðeþ jf Þexpð2cÞ ð6:13Þ
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The directivity is given by:

D ¼ 2jF0j2Ð p
0
jFðuÞj2sinudu ð6:14Þ

When the magnitude squared of the array function is expanded and inserted into the

integral above, the resulting integration reduces to integrals of two basic types,

where kd and 2kd are the parameters. The scan angle u0 is zero for endfire, and 90

deg. for broadside. The two key integrals are:

ðp

0

cos½kdðcosu� cosu0Þ�sinudu ¼ cosðkd cosu0Þ
ðp

0

cosðkd cosuÞsinudu

þ sinðkd cosu0Þ
Ð p
0
sinðkd cosuÞsinudu

ð6:15Þ

Fortunately both of the integrals on the right hand side can be evaluated (Grobner

and Hofreiter, 1958). These integrals are:

Ð p
0
sinðkd cosuÞsinudu ¼ 0Ð p

0
cosðkdcosuÞsinudu ¼ 2sinc kd

ð6:16Þ

Now the directivity can be written in closed form using the given array excitation

coefficients. The directivity is given by:

D ¼ ðaþ cþ eÞ2 þ ðbþ d þ f Þ2
DENOM

ð6:17Þ

The steering factor is g:

g ¼ kd cosu0 ð6:18Þ

Now the denominator can be written in exact closed form.

DENOM ¼ 4ðacþ bd þ ceþ df ÞcosðgÞsinc kd
þ 4ðbc� ad � cf þ deÞsinðgÞsinc kd
þ 4ðaeþ bf Þcos 2g sinc 2kd þ 4ðbe� af Þsin 2g sinc 2kd
þ a2 þ b2 þ c2 þ d2 þ e2 þ f 2

ð6:19Þ

There are eighteen terms in the denominator resulting from the six excitation

coefficients. This formula has been validated for broadside arrays of three istoropes

using results from Ma (1974) and for endfire using coefficients found from

minimization codes described below.

Lo et al. (1966) formulated maximum endfire directivity by setting derivatives

of the array polynomial to zero. They compare D for a 10-element array of

isotropes for four cases: D(U)—uniform-amplitude, progressive endfire phase;

D(OC)—amplitude-optimized, progressive endfire phase; D(HW)—Hansen–
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Woodyard; D(O)—amplitude and phase optimized. Figure 6.6 shows results; for

d � l=4, which is the normal endfire range, the Hansen–Woodyard case gives

better directivity than the uniform-amplitude or the optimized-amplitude case. Of

course, the fully optimized case gives directivity equal to N2 in the d ¼ 0 limit.

Note that Figure 6.6 (Lo, 1988) is a correction of Figure 4 of Lo et al. (1966). With

the high directivity of D(O) goes severe bandwidth and tolerance problems; see

Section 6.4.1.

Cheng and Tseng (1965) optimized directivity by using the Hermitian quadratic

forms ratio; their calculations for an eight-element endfire array are not useful as the

element spacing was > l=4, thereby producing additional main lobes.
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A special case of an endfire dipole array was investigated by Bacon and

Medhurst (1969). Here four unequally spaced dipoles were used, with one dipole

fed. Mutual resistances were used, with the spacings optimized. Array lengths of

0:5l, 0:6l, and 0:7lwere used. It was necessary to couple dipole 2 to dipole 4 (dipole
1 is fed). This configuration gave a maximum directivity of 19.7, with an overall

length of l=2. From the feed end, spacings were 0:05l, 0:25l, and 0:20l. A typical

Yagi–Uda array of 0:5l length will have a directivity of about 5 (Hansen, 2002).

Hansen–Woodyard directivity would be 1:8L=l ¼ 3:6. The superdirectivity ratio of

10.7 is accompanied by tight tolerances and a small input resistance.

Seeley (1963a, 1963b) investigated arrays of two and three loops; phasing was

used to steer nulls. As expected, tolerances were tight.

6.2.2.3 Minimization Codes Another method for maximizing directivity of a

linear array is to minimize 1/D. The reader is warned that this process is full of

pitfalls: trendy codes such as genetic algorithm and simulated annealing often lock

up on subsidiary minima and are hard to shift. Recommended codes are the Fletcher

variable metric (quasi-Newton). Versions are available that do not require explicit

derivatives (Fletcher, 1987). Calculations described below utilize double precision

on a 64-bit workstation but the large slopes in superdirectivity may require more that

double precision as the element spacing becomes very small.

Of particular interest is how the excitation coefficients (currents) behave as the

spacing between elements approaches zero. For the broadside case the currents are

real, but an equal set of imaginary currents gives the same results. For N¼ 3,

broadside, as the spacing approaches zero the currents approach A, � 2A, A. As d/l
approaches zero, A approaches infinity. For d/l¼ .01, A¼ 885. For a four-element

broadside array the coefficients for small spacing are A, �A, �A, A. Again as

spacing approaches zero A approaches infinity. For d/l¼ .01, A¼ 470.

For the endfire case for N¼ 3 as spacing approaches zero, the real part of the

currents are �A, 2A, �A where for d/l¼ .02, A¼ 496 plus a small imaginary part.

For N¼ 4 the coefficients are �A, 2A, � 2A, A. For d/l¼ .05, A¼ 300 plus a small

imaginary part. These results have been validated for three-elements using the exact

formulation and also using Romberg numerical integration, both using the coeffi-

cients from the minimization codes.

6.2.2.4 Resonant Endfire Arrays The classic superdirective arrays have

been electrically small, using small elements and small element spacings. A new

class of superdirective arrays uses electrically small resonant elements of the

type discussed in Sections 3.2.4 and 3.2.5. This allows the isolated elements to

be designed for a desired radiation resistance, say 50W. The array may then have

radiation resistance of a few ohms, instead of the usual milliohm values of

superdirective arrays. And so the efficiency will be much higher than that for

conventional superdirective arrays. There is still an impedance matching problem

due to the radiation resistance. Best et al. (2008) detail a two-element
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superdirective array using folded monopoles. This array is electrically small only

in width. More advanced antennas are described by Yaghjian et al. (2008). Their

studies have shown that in two-element superdirective arrays, one driven and one

parasitic element are almost as effective, as the spacing becomes small. Figure 6.7

shows top-loaded and folded monopoles in a two-element ESA superdirective

array. Peak gain of 6.9 and 8 occurs for an element spacing of 0:15l. Another two-
element ESA parasitic array is shown in Figure 6.8; only one element is shown,

Driven

Parasite

FIGURE 6.7 Top-loaded, folded, and bent antennas. Courtesy of Yaghjian et al. (2008).

FIGURE 6.8 Doubly folded and bent element. Courtesy of Best et al. (2008).
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and it is bent and doubly folded. Peak gain is 20 dB at a spacing of 0:1l. For both
these arrays, the Q is roughly 40; the bandwidth is narrow. Also the tolerance

problem, while somewhat better, is still serious. Note that the gain values have

been quoted; not directivity. Clearly, the use of resonant elements has

significantly improved the efficiency. A related development uses quarter-wave

monopoles in an endfire array (Altshuler et al., 2005), but these of course are

not ESA.

6.3 CONSTRAINED SUPERDIRECTIVITY

To avoid impractical values of bandwidth, tolerances, and efficiency, it is useful to

constrain the optimization process. Constraints can involve SDR, sidelobe level,

Q, tolerance, or efficiency. Probably the simplest, and most investigated, is a

sidelobe constraint.

6.3.1 Dolph–Chebyshev Superdirectivity

The principles and design equations for arrays with equal-level sidelobes, Dolph–

Chebyshev arrays, were covered in detail in Hansen (1998). However, Dolph’s

derivation (Dolph, 1946) and the formulas of Stegen are limited to d � l=2.
Riblet (1947) showed that this restriction could be removed, but only for N odd.

For spacing below half-wave, the space factor is formed by starting at a point near

the end of the Chebyshev �1 region,1 tracing the oscillatory region to the other end,

and then retracing back to the start end and up the monotonic portion to form the

main beam half. Because the Mth-order Chebyshev has M� 1 oscillations, which

are traced twice, and the trace from 0 to 1 and back forms the center sidelobe

(in between the trace out and back), the space factor always has an odd number of

sidelobes on each side, or into a Chebyshev array for d < l=2. The pattern is

given by

TMða cosYþ bÞ ð6:20Þ

a ¼ z0 þ 1

1� cos kd

b ¼ z0 cos kd þ 1

cos kd � 1

ð6:21Þ

where Y ¼ kd sin u. The value of z0 is

z0 ¼ cosh
arc cosh SLR

M
ð6:22Þ

1 The exact starting point depends on N and kd.
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The sidelobe ratio is

SLR ¼ TMðz0Þ ð6:23Þ
Formulas have been developed by DuHamel (1953), Brown (1957, 1962),

Salzer (1975), and Drane (1963, 1964). Those of Drane will be used here, as they

are suitable for computer calculation of superdirective arrays. The array amplitudes

are

An ¼ «n
4M

XM1

m¼0

«m«M2 �mTmðxnÞ½TMðaxn þ bÞþ ð� 1ÞnTMðb� axnÞ� ð6:24Þ

where «i ¼ 1 for i ¼ 0 and is equal to 2 for i > 0; xn ¼ cos np=M. The integersM1

andM2 are, respectively, the integer parts ofM=2 and ðMþ 1Þ=2. This result is valid
for d � l=2. Small spacings (highly superdirective arrays) may require multiple

precision because of the subtraction of terms. Many arrays are half-wave spaced;

for these the a and b reduce to

a ¼ 1

2
ðz0 þ 1Þ; b ¼ 1

2
ðz0 � 1Þ ð6:25Þ

For half-wave spacing, this approach and that of Dolph give identical results! In

fact, owing to the properties of the Chebyshev polynomial, the two space factors, in

precursor form, are equal:

TN� 1 zN� 1
0 cos

Y
2

� �
� TM

zM0 ðcosYþ 1Þþ cosY� 1

2

� �
; N� 1 ¼ 2M ð6:26Þ

where the superscripts on z0 indicate that each must be chosen for the proper form.

Because many computers have no inverse hyperbolic functions, it is convenient to

rewrite the z0 as

z0 ¼ 1

2
SLRþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SLR2 � 1

ph i1=M
þ 1

2
SLR�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SLR2 � 1

ph i1=M
ð6:27Þ

Directivity is given by

D ¼
PN

n¼1 An

� �2
PN

n¼1

PN
m¼1 AnAm SINC½ðn�mÞkd� ð6:28Þ

where the An coefficients are given by Equation 6.18. Directivity for arrays of

three, five, seven, and nine elements has been calculated, for sidelobe ratios of

10 and 20 dB. The superdirectivity can be seen in Figures 6.9 and 6.10 for spacing

below 0:5l, as the ordinary directivity (using the Chebyshev coefficients that are

independent of spacing) goes smoothly to 0 dB at zero spacing. The figures display

these calculated directivities versus element spacing. Thus, a three-element array

offers roughly 3 dB directivity for small spacings and a five-element array offers

roughly 5 dB.
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The Q is given by

Q ¼ 120
P

AnA
*
mP

n

P
mAnA*

mRnm

ð6:29Þ

Rnm is the mutual resistance between the n and m elements. Normally, the latter

would, for thin wire dipoles, be computed by the efficient algorithm using sine and
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FIGURE 6.9 Chebyshev array directivity, SLR¼ 10 dB.
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FIGURE 6.10 Chebyshev array directivity, SLR¼ 20 dB.
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cosine integrals developed by Hansen (1972). But superdirectivity typically involves

subtracting large numbers, especially for Q. It is necessary to employ double

precision in the calculation of the mutual resistances, and hence in the sine and

cosine integrals. Because such a subroutine could not be found, a Chebyshev

economized series expansion, developed by Luke (1975), was used by this author

to construct a double-precision sine and cosine integral subroutine. The results check

all digits given in Abramowitz and Stegun (1970, Tables 5.1–5.3). Note the similarity

between the D and Q formulas, Equations 2.21 and 2.22.

Riblet (1947) also showed that the Chebyshev polynomials Tn alone, of all real

and complex polynomials, have the optimum properties that if the first null angle is

specified the sidelobe level is minimized, and that if the sidelobe level is specified

the first null angle is minimized. DuHamel (1953) modified the Dolph–Chebyshev

design equations so that they would apply to a broadside or an endfire array of odd

number of elements. He compared four endfire designs, for a seven-element array

with d=l ¼ 0:25. These were uniform amplitude, normal phase (U); Hansen–

Woodyard (HW); Schelkunoff, where the array polynomial zeroes are equally

spaced on the unit circle (S); and an optimum design with the same SLR as the

Schelkunoff design (O). Table 6.2 gives beamwidth, SLR, and ratio of largest to

smallest current. Computing facilities circa 1953 did not allow calculation of either

directivity or input resistances. Note that the element spacing is too large to allow

significant superdirectivity, as borne out by the current ratios.

Another case of modest superdirectivity was given by Sanzgiri and Butler (1971).

Stepwise sidelobe constraints were employed, and the optimum directivity was

formulated as the ratio of two Hermitian quadratic forms, as previously described.

Lagrangian methods were used to solve for max D. The array was broadside with

nine elements at d=l ¼ 0:6. Several sidelobe envelopes were used; the case with

constant SLR¼ 20 dB was typical. Directivity was 14.83, with an SDR of 1.55. This

very modest value was due to the large element spacing; significant SDR for a

broadside array requires d=l much less than 0.5.

Multiple power pattern constraints were used by Kurth (1974) with directivity

optimization. Constraints on both main beam and sidelobe were used, leading to the

common ratio of Hermitian quadratic forms solved by Lagrangian multipliers. A

circular array of dishes was used as an example. Cox et al. (1986) obtained a

modest superdirectivity for an acoustic endfire array for various angular distributions

of white noise. He also discussed “oversteering” past endfire to increase directivity.

Apparently, the acoustics community was not familiar with Hansen–Woodyard!

TABLE 6.2 Comparison of Four Endfire Array Designs

u3 SLR I4=I1

U 99 13.3 1

HW 57 7.4 1

S 53 28 9.19

O 52 31 8.78
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Dawoud and Anderson (1978) used Chebyshev polynomials to optimize the

ratio of beam peak value for a superdirective array to beam peak value for a

uniformly excited cophasal array. As the beamwidth narrows, this ratio rapidly

decreases. However, there seems to be no simple relationship between this ratio

and SDR. Another polynomial approach, by Dawoud and Hassan (1989), used

Legendre polynomials instead of Chebyshev polynomials. The former yields

slightly greater directivity for a broadside array with small spacing in wave-

lengths. The calculated directivities (SDR¼ 6.2) seem to be much too high for the

3 dB beamwidth shown.

6.3.2 Superdirective Ratio Constraint

By specifying an SDR, the designer can design the array and then evaluate

bandwidth, tolerances, and efficiency. Using the definition of SDR provided by

Taylor, the aperture or array problem was cast by Fong (1967) into a ratio of two

Hermitian quadratic forms, which are then solved by Lagrangian methods. Let the

scalar product of coefficients be

hAjA*i ¼ jAnj2 ð6:30Þ
where * indicates the complex conjugate. Call the row vector of complex array

excitations J and the column vector of path length phases F:

F ¼
expð� jkr1 sin uÞ

..

.

expð� jkrn sin uÞ

							

							
ð6:31Þ

where rn is the distance from the reference point to the nth element. For a uniformly

spaced array, rn ¼ ðn� 1Þd. Now define matrices A and B, where A is

jAj ¼ jF*ihFj ð6:32Þ
and the elements of B are

Bnm ¼ 1

4p

ð
f1ðu; �Þexp½ � jkdðn�mÞsin u�dW ð6:33Þ

The pattern of the ith element is fi. Isotropic elements and a uniformly spaced

array allow simplifications of A and B. The elements then become

Anm ¼ exp½ � jkdðn�mÞsin u�; Bnm ¼ SINC½ðn�mÞkd� ð6:34Þ
Now the directivity can be written in abbreviated form:

D ¼ hJjAjJ*i
hJjBjJ*i ð6:35Þ
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The tolerance sensitivity S is defined as the ratio of variance of peak field strength

produced by errors of variance s2
T (Uzsoky and Solymar, 1956):

S ¼ s2
E

s2
j

¼ ðDEÞ2=E2

s2
j

¼ s2
j hJjJ*i=hJjAjJ*i

s2
j

¼ hJjJ*i
hJjAjJ*i ð6:36Þ

Thus, sensitivity is also written in abbreviated form.Q is conveniently found from

Q ¼ SD, or

Q ¼ hJjJ*i
hJjBjJ*i ð6:37Þ

The directivity is a ratio of two Hermitian quadratic forms, with B positive and A

at least positive semidefinite. Thus, all the eigenvalues of the associated equation are

zero or positive real. Because A is a single-term dyad, there is one nonzero

eigenvalue. The eigenvector (excitation) is given by

jJi ¼ jBj � 1
Fi ð6:38Þ

The corresponding maximum directivity is given by

Dmax ¼ hFjBj � 1
F*i ð6:39Þ

In many applications, it is important to maximize D=T , directivity/system noise

temperature. This is equivalent to maximizing signal-to-noise ratio S=N. To do this,

the element pattern in the integral for Bnm is multiplied by the antenna noise

temperature Tðu; �Þ. Then the excitation vector that maximizes S=N or D=T is that

of Equation 6.32.

Another ratio that can be directly minimized is beam efficiency: the fraction of

power contained within the main beam, null-to-null. This is

hb ¼
hJjAjJ*i
hJjBjJ*i ð6:40Þ

To avoid the practical difficulties of finding the complex roots of a complex

polynomial of high order, Winkler and Schwartz (1972) transformed that problem

into one of finding the eigenvalues of a real matrix. This is numerically much

faster, and readily available subroutines can be used. Maximum directivity

(equivalent to SNR for a uniform noise field) was calculated for a four-element

array of isotropes. Their calculations show that for broadside array spacing less

than l=5 the Q rises very fast while directivity is slowly increasing. Thus, for this

broadside array the tolerance factor2 T ¼ D=Q increases very fast as d! 0. For

an endfire array, both Q and D are increasing as d! 0, but again the tolerance

factor increases very fast.

A related constrained D optimization used as a constraint the integral of current

squared divided by radiated power (Margetis et al., 1998). This constraint is related to

the SDR constraint.
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A different approach was taken by Rhodes (1971), who optimized directivity of a

line source subject to a fixed SDR. The pattern and aperture distribution are expanded

in a series of prolate spheroidal functions. The SDR of Taylor was generalized to

include edge effects (element pattern). When the SDR approaches a large value, the

aperture distribution approaches a delta function spike at each end. For a given SLR,

the series of spheroidal functions provides the maximum directivity that can be

achieved.

6.3.3 Bandwidth or Q Constraint

Bandwidth is probably the most useful constraint. Constraining Q is equivalent,

because for narrowband antennas (and all superdirective antennas are narrowband),

the 3 dB bandwidth is simply 1=Q. Again the problem is formulated as the ratio of

two Hermitian quadratic forms, by Lo et al. (1966) and Cheng (1971). Using a scalar

p proportional to the Lagrangian multiplier, the problem can be reduced to a complex

polynomial of 2ðN � 1Þ degrees of freedom in p, for an N-element array. Unfortu-

nately, solving such an equation for large N is extremely tedious. See Winkler and

Schwartz (1972) for an alternative solution. The paper lists quadratic ratios for

directivity andQ, for the uniform case, optimum directivity, and optimum directivity

for a prescribed Q. They also compared several endfire cases, as discussed in

Section 6.2.2.2. See Section 6.4.1 for additional bandwidth data.

Kov�acs and Solym�ar (1956) treated the inverse problem: Given directivity for an

array configuration, find the excitation that minimizes Q. They showed that the

minimum Q increases as D2 for a fixed array size.

6.3.4 Phase or Position Adjustment

An iterative perturbation approach was used by Cheng (1971) to provide optimum

directivity for an array. This was applied first to a ring array of uniformly spaced

isotropic elements. Both amplitudes and phases were adjusted. The directivity

increases rapidly with decreasing ring diameter below 2l. Because amplitudes are

difficult (expensive in hardware and losses) to adjust, phase-only optimization was

applied to a 12-element ring array; for diameters less than 3l, or element spacings

less than 0:78l, roughly 2 dB increase in D is obtained.

Phase-only optimization of an endfire array of isotropes was given by Voges and

Butler (1972); they used steepest descent to solve for maximum directivity. Their 10-

element array had spacing of d ¼ 0:4l, so there is some uncertainty about the

pattern, due to d � l=4. The SDR was 1.71. Q was just above 4, a value slightly less

than a corresponding Hansen–Woodyard array.

Optimization of D by varying the interelement spacing in a linear array was

performed by Butler and Unz (1967). Steepest descent methods were used on

quadratic forms. A seven-element array was optimized with uniform amplitude.

The maximum D agreed with the maximum calculated by Tai (1964) of 11.5. The

SDR was 1.92; the spacings were symmetric, and changed slightly.
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6.3.5 Tolerance Constraint

Because tolerances, in excitation amplitude and phase, in element position, and in

element orientation, are critical for superdirective arrays, it is logical to optimize

superdirectivity subject to a constraint on tolerances. Tseng and Cheng (1967)

assumed standard deviations for element amplitude, for phase, and for element

position. Directivity was maximized by reducing the Hermitian ratio to a determi-

nantal equation; the matrix equation was solved via standard computer eigenvector

routines. An example was calculated: An equally spaced eight-element endfire array

of short dipoles; the normal directivity for d ¼ 0:3l was 12.6, while the no-error

optimum value was 45, and SDR was 3.57. Modest phase or amplitude errors

transformed a directivity curve that was increasing as d! 0 into a curve that turned

down around d 	 0:35l to 0:4l, and rapidly decreases as d=l! 0. Endfire arrays

appear to be more sensitive to errors, perhaps because the sidelobe region occupies

more of the pattern volume.

Uzsoky and Solymar (1956) introduce a tolerance factor T that is the ratio of Q

to D: T ¼ Q=D. It has also been used by Lo et al. (1966), but called the sensitivity

factor S. This factor is important as it tells whether Q is increasing faster than D as

the SDR increases. They show that for endfire arrays, the uniform case has T 	 1

over a wide range of spacings; the Hansen–Woodyard case has T 	 0:3 over a wide
range of spacings; the amplitude-optimized case gives a rapidly rising T for

spacings below about 0:2l; the fully optimized case T rapidly rises for spacings

below about 0:45l. Thus, the Q is rising fast (roughly exponentially) while the

directivity is rising slowly.

A different approach was taken by Newman et al. (1978); they defied a

sensitivity factor, which was the sum of element current magnitudes squared

divided by the magnitude of the sum of currents. Also defined was a safety factor,

and of course errors in terms of rms values of amplitude, phase, and position errors.

For sidelobe fidelity in the � 20, � 30, and � 40 dB regions, the sensitivity factor

should be 103, 104, and 105, respectively. Using a safety factor of 1, the total

allowable error (1s) was roughly 3%, 1%, and 0.3%. Gilbert and Morgan (1955)

maximized directivity subject to a fixed “background pattern” (see also Sec-

tion 6.4.3).

6.4 BANDWIDTH, EFFICIENCY, AND TOLERANCES

6.4.1 Bandwidth

Thefirstof threemajordifficultieswithsuperdirectivearraysisbandwidth,whichrapidly

becomes a problem as the element spacing decreases below l=2 for broadside arrays

orbelowl=4 for endfirearrays.Thus, theQ is ofconcern; fornarrowbandantennas,half-

power bandwidth ’ 1=Q and the impedancematched bandwidth ’ 2=Q. Note that the
VSWR � 2 bandwidth is given by 1=

ffiffiffi
2

p
Q. The ratio of stored to dissipated energy,Q,
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can similarly be written in terms of array coefficients and mutual coupling, which for

isotropic elements at broadside is:

Q ¼
PN

n¼1 A
2
nPN

n¼1

PN
m¼1 AnAm SINC½ðn�mÞ2pd=l� ð6:41Þ

Directivity D at broadside is given by

D ¼
PN

n¼1 An

� �2
PN

n¼1

PN
m¼1 AnAm SINC½ðn�mÞkd� ð6:42Þ

Calculations have shown (Hansen, 1981b) that, for broadside arrays of fixed

length, both directivity and Q increase with the number of elements as expected.

Figure 6.11 shows Q of Chebyshev arrays of odd numbers of elements versus

element spacing. An array with an even number of elements has a slightly higher

Q than the array with the next larger odd number of elements, possibly because

the odd-element sampling is more efficient. Figures 6.12 and 6.13 show Q versus

directivity for Chebyshev arrays two wavelengths long. For all the cases com-

puted, Q varied approximately linearly with directivity. Figure 6.14 shows log Q

versus directivity for odd arrays with lengths 1l, 2l, and 5l. The circles represent
points calculated in double precision; extended precision is required for arrays of

more elements than those shown in the figure. The straight lines are drawn
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FIGURE 6.11 Q of broadside Chebyshev arrays versus element spacing.
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through the uniform excitation directivity point (equal to D0) with slope of p,
where D0 ¼ 1þ 2L=l. There is at this time no physical significance to using

this value of slope, but it is suggested by calculations of Rhodes (1974) on

superdirective line sources. In making a best straight-line fit to the set of points for

each of the three arrays, the slopes were in fact clustered around the value of 3.14.

However, it is difficult to perform this fit with precision because, as pointed out by

Rhodes, the curve of log Q versus directivity has an oscillatory behavior for low

values of Q. If the assumptions above are true, superdirective broadside array

behavior is predicted by the equation

logQ ¼ pðD�D0Þ ð6:43Þ
The 20 dB Chebyshev data of Figure 6.13 are close to this result. Thus, the

superdirective array clearly fits into the category of fundamental limitations in
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FIGURE 6.12 Q versus directivity, SLR¼ 10 dB, L¼ 2l.

BANDWIDTH, EFFICIENCY, AND TOLERANCES 203



antennas (Hansen, 1981a). Whether the assumed slope of p can be physically

justified remains an interesting problem at this time.

TheQ to be expected from an array of isotropes is approximately a function of the

number of elements divided by d=l. Figure 6.15 shows this relationship for many

arrays; each array is represented by a circle. Spacings larger than 0:3l are not

included, as the amount of superdirectivity achieved is small for these. log Q is

approximately linear with Nl=d; the straight-line fit in the figure is

logQ ’ 0:16043
Nl
d

� �
� 1:53476 ð6:44Þ

These data allow the array designer to estimate the degree of superdirectivity (Q)

for a given array geometry.
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Calculations of performance have been made for superdirective linear arrays of

parallel dipoles. Collinear dipoles are not considered, as they would overlap

neighbors. Figure 6.16 shows log Q versus directivity for arrays two wavelengths

long. Both 0:1l and 0:5l dipoles are used. Again, logQ versusG is a straight line. As

expected, the half-wave dipole array has higher Q than the corresponding isotropic

array, owing to energy storage in the dipole near-field. With short (0:1l) dipoles, this
energy storage is much larger, resulting in much higher Q.

For endfire linear parallel dipole arrays, the variation of log Q with directivity is

again linear but the slope changes as the length of the array changes. Figure 6.17

gives data for arrays of lengths 1l, 2l, and 5l; the number of elements in each array is

shown in the figure (Hansen, 1998).

6.4.2 Efficiency

A second undesirable feature of superdirective arrays is low efficiency, due to both

matching network losses (see Section 6.6) and losses in the antenna elements. Both

losses are caused by the low radiation resistances of these arrays. In many cases, but

not all, the elements at the array center show the lowest radiation resistance;

calculations for many small broadside arrays of an odd number of isotropes show
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that Rrad / 1=
ffiffiffiffi
Q

p
. Figure 6.18 shows these data, where each circle represents one

array. The straight-line log–log fit is

Rrad ’ 0:8058ffiffiffiffi
Q

p ð6:45Þ

Odd arrays were used, as there are more variables per length, allowing better

control of superdirectivity.

Loss resistance of cylindrical or strip dipoles is easily computed: A dipole of

length l, radius a, and made of material with surface resistance Rs has a loss

resistance Rloss of

Rloss ¼ Rslð1� SINC klÞ
4pa sin2ð1=2Þkl ð6:46Þ

For half-wave or resonant dipoles, Rloss ¼ Rsl=4pa. Strip dipoles are equivalent to
cylindrical dipoles, with strip width equal to 4a. Copper wires have an ideal surface

resistivity of

Rs ’ 0:000261
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f MHz

p
ð6:47Þ
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FIGURE 6.15 Q of broadside linear SD arrays of isotropes.
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Over the range of 10–1000MHz, Rs varies from 0.000825 to 0:00825W=&.

Using a value of l=a ¼ 25, a moderately fat dipole, the loss resistance varies from

0.0066W at 10MHz to 0.066W at 1 GHz. When these typical loss resistance

numbers are compared with the radiation resistance values of Figure 6.18, it is

clear that superdirective array efficiency may be a severely limiting consideration.

Use of high-temperature superconductor (HTS) materials in the array and feed

network can produce high efficiencies, but now the Q is that from Figures 6.16

and 6.17.

6.4.3 Tolerances

The third significant problem with superdirective arrays is tight tolerances.

Because superdirectivity involves a partial cancellation of the element contribu-

tions at the main beam peak, with more cancellation for more superdirectivity, the

tolerance of each element coefficient (excitation) becomes smaller (tighter) with

more superdirectivity (Uzsoky and Solymar, 1956). A simple calculation has been

made of these effects for Dolph–Chebyshev arrays by perturbing the center

element of an odd array, finding the tolerance to reduce the directivity by 0.5 dB.

This is not expected to be sensitive to sidelobe ratio, and a value of 20 dB was

used. Calculations were made for N ¼ 3 and 5 as a function of spacing, with the

results shown in Figure 6.19. It was noted that the percentage error versus d=l
curve is linear up to spacings of roughly 0:1l. For N ¼ 3 the slope is 2:1, and for

N ¼ 5 the slope is 4:1. Thus, for N ¼ 3, if the element spacing is halved, the

tolerances must be four times tighter. The percentage tolerance for the center
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FIGURE 6.18 Q versus R; broadside arrays.
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element, to maintain close (0.5 dB) to the expected directivity, is approximately

given by

100ffiffiffiffi
Q

p ð6:48Þ

but the constant varies with the number of elements.

Thus, with Q ¼ 1000, for example, the tolerance is 3.2%. Bandwidth and

radiation resistance are more serious limitations of superdirective arrays.

An extreme example is the array of Yaru described above. An error in the center

element excitation of only one part in 109 produces a directivity drop of roughly 3 dB.

In general, the best way to evaluate tolerances for a given array design is to calculate

the currents and then calculate the directivity change for a small change in one of the

currents. Typically, an amplitude error of sa (standard deviation) is equivalent to a

phase error of s� in radians.

6.5 MISCELLANEOUS SUPERDIRECTIVITY

Solymar (1958) found the maximum directivity of a line source whose distribution

was a Fourier series. Superdirectivity can occur when the number of harmonics N

exceeds the source L=l.
Analogous situations between acoustics and electromagnetic waves were de-

scribed by Kock (1959). These include waveguides, and other guiding structures, and
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FIGURE 6.19 Center element tolerance versus element spacing; 0.5 dB D drop.
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wave diffraction. Of interest here is his demonstration of superdirectivity using five

small loudspeakers with rheostats and reversing switches (normal excitation for

comparison). Superdirectivity of about 4
was easily achieved!

An arc, or partial circle, of open loops or slotted cylinders with only one driven

element can be tuned for resonance by adjusting the gaps (King, 1989). At resonance,

it may be possible to produce a very narrowband peak of directivity (Veremy and

Shestopalov, 1991). What degree of superdirectivity, if any, can be realized is not yet

apparent. Measurements of an array of seven open loops on an arc with only one

driven element (Bokhari et al., 1992) are promising but not yet conclusive. This area

is not yet well understood. Closely related is a circular (ring) array of short, parallel,

dipoles, with only one excited element. This ring can support a surface (slow) wave,

and the closed ring can produce extremely sharp resonances (King et al., 2002;

Fikioris et al., 1990; Fikioris, 1998). The small input resistance, narrow bandwidth,

and narrow beams are characteristic of superdirectivity. It was shown by Janning and

Munk (2002) that a planar array of short closely spaced dipoles could support a

surface wave.

An analogy between superdirectivity and data processing to provide superresolu-

tion was provided by Buck and Gustincic (1967). Superresolution provides main

beamwidth less than the Rayleigh limit l=L (see Hansen, 1981a). Processing of the

array outputs, for example, is by maximum entropy spectral analysis (Burg) or by

maximum likelihood (Capon). The paper shows how noise limits the superresolution,

just as errors limit superdirectivity.

6.6 SUPERDIRECTIVE ANTENNA SUMMARY

An aperture can have any superdirectivity; an array can have limited superdirectivity.

Both will suffer from low radiation resistance, narrow bandwidth, low efficiency, and

tight tolerances. A modest superdirective ratio is usable. Small dipoles and loops are

superdirective and share many of these problems. Q is of interest only if it is large, so

that bandwidth ¼ 1=Q. Antennas with large VSWR need a matching network with

very low intrinsic loss. Here HTS can offer a significant advantage. We can have

superdirectivity, but only a small supergain is useful. Use of self-resonant ESA

allows a better efficiency but bandwidth and tolerances are still limiting.
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CHAPTER 7

SUPERCONDUCTING ANTENNAS

7.1 INTRODUCTION

The advent of high-Tc superconducting materials has presented new opportunities for

improving antenna performance. Many antenna workers are not familiar with the

current findings on superconductors. Considered here are electrically small antennas,

and matching of them, and millimeter-wavelength antennas. Not included are

SQUID devices that incorporate a loop or other antenna. These are primarily of

interest as very low-frequency magnetic field sensors.

7.2 SUPERCONDUCTIVITY CONCEPTS FOR ANTENNA ENGINEERS

There are many excellent books on superconductivity; only a basic overview is given

here. An excellent treatise on all aspects of high- and low-temperature super-

conductivity, including a thorough mathematical treatment, is provided by Tinkham

(1996). A physical understanding, with a minimum of mathematics, is provided by

Ginzburg and Andryushin (2004). And there are many others. Lancaster (1997) has

written a useful book on HTS applications including antennas. Table 7.1 shows a

brief chronology up through the fullerenes. It is interesting to note the first step

toward HTS: in 1975, Sleight, Gibson, and Bierstedt discovered superconductivity

in a barium lead bismuth metallic oxide at 13K. This significant increase in Tc, for a

ceramic material, was a forerunner of HTS. In 1986, Bednorz and Muller discovered

a material that had Tc ¼ 35K, a major advance. This was quickly followed by Chu,

who developed the first compound of the HTS family: YBCO, with Tc ¼ 92K. The

most recent development was the discovery by Hosono in 2008 of iron-based

superconductors, initially with Tc ¼ 26K, but quickly evolving to 55K. Although

Small Antenna Handbook, Robert C. Hansen and Robert E. Collin.
� 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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YBCO has a higher Tc, the iron-based materials are offering new insights into the

mechanisms of superconductivity (Day, 2009).

Superconductors have two remarkable properties: zero DC resistance and mag-

netic flux expulsion except for a thin shell of l thickness (Meissner effect). The

superconducting state occurs when the temperature of certain materials drops below

a critical temperature Tc; see Table 7.2. Then the material is in the lowest energy

state, and conduction electrons form coupled pairs, called Cooper pairs, through

phonon (lattice) interactions, for LTS (low-temperature superconductors). These

Cooper pair electrons flow without loss; they are coupled over the coherence length.

For example, for LTS such as niobium it is roughly 44 nm and for aluminum it is

1600 nm. For HTS, the coherence length for YBCO is 140 nm. As temperature

increases from 0K, the thermal lattice vibrations excite some electrons out of the

ground state, breaking up some Cooper pairs. See Table 7.3 for penetration depth1

l and coherence length j. Crystal defects and impurities can change the coherence

length, so purity is always a goal. The normal current flow produces loss. However,

the increase in resistivity is small until Tc is approached. As frequency increases from

zero, the electron pair kinetic energy produces a delay that creates an electric field

along the surface. An applied magnetic field can also force all electrons to normal;

this is the critical field, Hc.

The conventional definition of fields in metals is not suitable; a discussion of

definitions for superconductors has been given by Campbell (2007).

TABLE 7.1 Brief History of Superconductivity

1911 Discovery by Onnes @ 4K; Hg DC resistance ¼ 0

1933 Meissner effect: H expulsion on cooling

1934 London: H penetration depth, two-fluid model of normal and SC electrons, flux

quantization

1950 Ginzburg and Landau: microscopic quantum theory

1956 Cooper: paired electrons

1957 BCS microscopic theory: Hc, Yc relationship, and so on

1957 Abrikosov: current vortices in type II materials, each containing one flux

quantum

1961 Kunzler: high-field, high-current superconductors

1962 Josephson: tunneling effects

1965 Silver et al.: squid, SC loop with JJ

1975 Sleight et al.: BaPbBiO, 13K

1984 Yagubskii et al.: organic SC

1986 Bednorz and Muller: high-Hc materials, 35K

1987 Chu: YBCO materials, 92K

1991 Hebard et al.: doped fullerenes

2008 Hosono: LaOFeAs, 26K

2009 Chen and others: SmOFeAs, 55K

1 In most of this book, l is the wavelength; in this chapter, the SC terminology is used, except in

Section 7.4.
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It is useful to compare a superconductor with a perfect electric conductor (PEC).

As seen in the sketch of Figure 7.1, the PEC at any temperature and any applied

magnetic field contains an internal magnetic field; current can flow without loss. For

the superconductor, when a magnetic field is applied and the temperature lowered

below Tc, the magnetic field is expelled, except at the surface. Again, current can flow

without loss.

Bardeen–Cooper–Schrieffer theory makes a quantum mechanical formulation

for the paired electrons. It relates critical temperature, critical magnetic field Hc,

coherence length, and so on. It represents LTS well, but only partially for HTS.

For both LTS and HTS, there are two types of materials: type I and type II. Type I

TABLE 7.2 Some Superconductor Critical Temperatures

Elements

A1 1.2K

Sn 3.7K

Hg 4.2K

Pb 7.2K

Nb 9.3K

Alloys

NbTi 10.5K

NbN 16K

Compounds

Nb3Sn 18.4K Widely used for magnets because of

strong pinning forces

Nb3Ge 23.2K

MgB2 40K

Ceramics

La2Ba2Cu1O4 35K Bednorz and Muller (April 1986)

Y1Ba2Cu3O7 92K Chu et al. (February 1987)

Bi2Sr2Ca2Cu2O10 110K Asano and Hermann (1988)

Th2Ba2Ca2Cu3O10 125K Beyers and Parkin (1988)

SmFeAsO 55K Chen and others (2009)

TABLE 7.3 Penetration Depth and Coherence Length

l (nm) j (nm)

Type I Pb 39 87

Nb 44 38

Sn 51 230

Type II Nb3Sn 65 3

PbBi 200 20

YBaCuO 140 0.2–0.6

LaSrCuO 200 0.6
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materials are typically soft metallic elements, exhibiting theMeissner effect up toHc.

Coherence length is roughly comparable to penetration depth. The London penetra-

tion depth is the depth of current induced by a magnetic field. It is analogous to skin

depth, which is the depth of current in a normal conductor. Type II materials have two

critical magnetic fields, Hc1 and Hc2. These have short coherence length and long

penetration depth. The Meissner effect exists for fields up to Hc1; at Hc2, the

conductor is normal. Between Hc1 and Hc2 flux cores or vortices exist, with

the spacing between them decreasing as H approaches Hc2. Each vortex contains

one flux quantum; a supercurrent circulates around the core. Vortices are typically

cylindrical, with radius of one or two coherence lengths. Table 7.4 gives critical fields

for representative materials.

Superconductivity is destroyed not only by high current density, by high magnetic

fields, or by high temperature, but also by high frequency, in particular by frequency

greater than the energy gap frequency. For LTS, the energy gap frequency is roughly

1 THz, whereas for HTS it is roughly 10 THz. Thus, HTS are more suitable for

submillimeter applications.

Top : Perfect conductor with magnetic field

Bottom : Superconductor with magnetic filed

T > T
c

H
a
 = O

T > T
c

H
a
 = O

H
a
 = O

T > T
c

H
a
 < H

c

T > T
c

H
a
 < H

c

T < T
c

T < T
c

H
a
 = O

T < T
c

H
a
 < H

c

T < T
c

H
a
 < H

c

Raise

field

Raise

field

Cool Lower

field

Room

temperature

(a) (b) (c) (d)

(e) (f) (g) (h)

Room

temperature

Room

temperature

Room

temperature

Low

temperature

Low

temperature

Low

temperature

Low

temperature

Cool Lower

field

FIGURE 7.1 PEC versus SC.
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The HTS crystal structure is perovskite; electrically active planes of copper and

oxygen are sandwiched between other layers that are reservoirs of charge. Figure 7.2

is a sketch of YBCO. Such a crystal structure is highly anisotropic, with poor

conductivity along the copper axis. The HTS parents are insulators, and the

symmetry of order parameter is d-wave. Although a superconductor below Tc, the

material, like most ceramics, is a poor conductor at room temperature. The SC

current (Cooper paired electrons) flows along the CuO planes. Because of the crystal

structure, the electron pairing is more complex than that of the BCS theory. The two-

fluid model is useful for HTS: a mixture of normal and SC currents flow. For the

normal currents, J ¼ s1E. For the SC currents, the London equations apply:

r� Jsc ¼ �H=l2;
dJsc

dt
¼ E

m0l
2

ð7:1Þ

TABLE 7.4 Some Superconductor Critical Fields

Material Hc1 (at/cm) Hc2 (at/cm)

Nb 1600 2400

NbTi 2800 88,000

Nb3Sn 2800 185,000

Superconducting

plane

Superconducting

plane

Superconducting

plane1
1
.6
5
 Å

Superconducting

plane

Copper

Oxygen or vacancy

Ba

Y

Ba

FIGURE 7.2 YBCO lattice.
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Typical data on surface resistivity versus frequency are shown in Figure 7.3, for

copper at room temperature and for copper and HTS at liquid nitrogen temperature.

Data on the frequency where HTS resistivity is equal to that of copper at 77K were

given by Alford et al. (1991). Data on LTS niobium were given by Piel and

Muller (1991); measurements and BCS theory agree very well. The surface resis-

tance, from measurements and theory, is given by

Rs ’ 1

2
v

02
m2
0l

3s1 ð7:2Þ

where s1 is the normal state conductivity and v is angular frequency. Note that Rs

varies as frequency squared. In contrast, for a normal conductor the surface

resistance varies as f 1=2. Surface reactance is simply

Xs ¼ vm0l ð7:3Þ

In both formulas for Rx and Xs, the penetration depth l is

l ¼ l0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðT=TcÞ4

q ð7:4Þ

Cu at 20ºC

Cu at 77K

0.1 10

Frequency (GHz)

10–2

10–3

10–4

10–5

1001

(Ω /   )
Rs High Tc

FIGURE 7.3 Surface resistivity trends.
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where l0 is the penetration depth at 0K. Most antenna and circuit work now utilizes

SC thin films, with the CuO plane parallel to the substrate. With films, it is easier to

control lattice defects and impurities in order to reduce RF losses. Substrates ideally

should have a lattice match, have low loss and low «, and be nonreactive with HTS at

all processing temperatures.

In contrast to the ceramic oxides of copper, such as YBCO, the parents of the new

iron-based materials are semimetals, and the symmetry of order parameter is s-wave.

Both types have alternating layers of atoms.

An indication of how superconductors might affect antennas can be gleaned from

considerations of external and internal fields. The performance of almost all antennas

is governed by size and shape in free space wavelengths, that is, external fields.

Examples are dipoles, slots, spirals, log-periodics, Yagi–Uda, horns, and reflectors.

Superconductivity generally has a small effect on external fields, so the size/shape of

most antennas will not be reduced. Internal fields exhibit only loss, thereby reducing

efficiency. Superconductors can improve efficiency, often at the expense of band-

width. Most important, superconductors can make a significant increase in the

efficiency of an impedance matching network.

It is useful to reflect on the progress of superconductivity. There have been three

periods of spectacular progress, roughly 40 years apart. The period 1905–1911 saw

liquefaction of helium, helium cryostats, discovery of mercury superconductivity,

and discovery of tin and lead superconductivity. The period 1952–1962 saw

microscopic quantum theory, Cooper pairs, BCS theory, current vortices,

Josephson effect, high-field superconductors, and superconducting magnets. The

period 1986–1991 saw the discovery of HTS, the YBCO family, the lanthanum

family, fullerenes, and organics. And 2008 brought a new class of HTS, the iron-

based family. Will we see room-temperature superconductors around 2030?

7.3 DIPOLE, LOOP, AND PATCH ANTENNAS

Immediately after the discovery of high-temperature superconductors, antenna

people looked at how these new materials might improve the performance of

antennas. One company actually proposed building the surface of a dish antenna

out of HTS in the vain hope that the typical dish aperture efficiency of 65% would be

increased to close to 100%. Of course, the conduction loss in a dish antenna is usually

less than 1% of the total loss, and the 65% is due to aperture taper and blockage

losses. In the following, only antennas that have been built and tested are discussed.

Antenna configurations incorporating Josephson junctions are outside the scope of

this book.

With the discovery of HTS, LaBaCuO in 1986 by Bednorz and Muller and

YBaCuO in 1987 by Chu, it was inevitable that the new technology would be applied

to antennas. Intensive activity was reported between 1988 and 1995. This work is

reported by type of antenna. No measured data are reported here on ESA; it will

appear later that none of the ESA needs HTS, only the matching network for short

dipoles should employ HTS (Lancaster et al., 1992b).
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7.3.1 Loop and Dipole Antennas

Khamas et al. (1988), Wu et al. (1989), and Lancaster et al. (1992a) measured a short

dipole and matching twin line, all made of YBCO, and compared results to a similar

system made of copper (see Figure 7.4). The HTS antenna gain was 12 dB higher.

However, essentially all of the 12 dB improvement was due to the HTS matching

(Hansen, 1990). Section 2.4 discusses network losses. The reduction in gain of this

configuration as the input power increased was noted by Gough et al. (1989); see also

Portis et al. (1991). Dinger and colleagues (Dinger and White, 1990; Dinger

et al., 1991) calculated the efficiency for such a twin line fed dipole and showed

that dielectric loss tangents should be less than 10�4. Additional work on HTS

dipoles was done by He et al. (1990, 1991). AYBCO thick film loop and matching

network was developed and measured by Lancaster et al. (1993) (Figure 7.5).

  Line
section

  Dipole

  Stub

Substrate
50 Ω feed line 

FIGURE 7.4 Short dipole with twin line match. Courtesy of Lancaster et al. (1992a).

YBCO

Zirconia

Input

FIGURE 7.5 Loop and matching circuit. Courtesy of Lancaster et al. (1993).
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Determination of loop-alone performance was made using backscatter measure-

ments (Khamas et al., 1993; see Figure 7.6). Multiturn loops made of BSCCO were

tested by Itoh et al. (1993). Matching sections made of copper reduced the overall

gain, due to matching loss. In addition, the bandwidth was narrow as the loop

radiation resistance was small compared to the reactance. Several ways of feeding

small loops were compared by Ivrissimtzis et al. (1994a) (Figure 7.7). Effects of

impurities on bandwidth were predicted with a two-fluid model by Cook et al. (1992).

A related study evaluated the efficiency of an HTS ESA over a lossy ground plane,

using Sommerfeld integrals (Cook et al., 1994, 1995). Environmental perturbations

were investigated by James and Andrasic (1994). A novel technique is the control of

loop or dipole radar cross section by temperature (Cook and Khamas, 1993) or by

applied magnetic field (Cook and Khamas, 1994). In both cases, the RCS decreases

as the surface resistance increases.

7.3.2 Microstrip Antennas

Work on arrays of microstrip patches is reported below; single patch efforts have

been sparse. Richard et al. (1993) compared edge feeding and gap feeding. H-shaped

patches have been investigated by Chaloupka et al. (1991) and by Lancaster

et al. (1998); see Figure 7.8. A meanderline patch fed by coax (Figure 7.9) was

constructed by Chaloupka (1992); Wang and Lancaster (1999) fed a meanderline

patch by an H-shaped coupling aperture (Figure 7.10). Resonant size is reduced to

roughly l=10. A meanderline antenna using EuBaCuO was described by Suzuki

et al. (1992). Current density on patches has been measured using the kinetic

inductance photoresponse (Newman and Culbertson, 1993). The real part of the

Source

Power splitter
Absorber

Target1.7 m

Tx

Rx

01 m

Phase
shifter

Attenuator

Reference

Test

      HP 4195A
Network analyzer

FIGURE 7.6 Backscatter measurement using nulling. Courtesy of Khamas et al. (1993).
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FIGURE 7.7 Loop feeding and matching: (a) resonant loop; (b) coplanar strip and capacitor;

(c) coplanar strip meander; (d) coplanar strip inside. Courtesy of Ivrissimtzis et al. (1994a).
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FIGURE 7.8 H-patch. Courtesy of Chaloupka et al. (1991).
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surface impedance affects the patch input impedance,whereas the imaginary part alters

the resonant frequency (Ali et al., 1999a). Yoshida et al. (2001) and Tsutsumi

et al. (2005) proposed a slot fed by coplanar waveguide, with a multisection matching

circuit. The HTS matching section was critical, as the radiation resistance was less

than 1W. A bowtie patch with HTS matching circuit was tested by Chung (2001).

Bandwidth was small compared to a bowtie dipole in free space. Richard et al. (1992b)

built an annular ring antenna with YBCO, but only a trivial improvement in efficiency

over a silver ring resulted. Oda et al. (2007) and Kanaya et al. (2007) developed

U-shaped and straight slot antennas with YBCO; the unique feature was use of

superconducting matching circuits; see Section 2.4 on matching circuit loss.

7.3.3 Array Antennas

A superdirective array of two parallel dipoles in an endfire mode showed an increase

in directivity, an increase in Q (Huang et al., 1991; Lancaster et al., 1992a), and a

decrease in efficiency (Altshuler, 2005). A linear array of parallel dipoles was series

fed with feed wires crossed between dipoles (Ivrissimtzis et al., 1994b, 1994c; see

Figure 7.11). Gain was improved but was less than the potential superdirectivity.

Coaxial

feed line

Ground plane

Z
L
 = 50 Ω

LaAlO
3

YBCO

FIGURE 7.9 Meander patch. Courtesy of Chaloupka (1992).

Ground plane

Microstrip

X

Y

Z

Coupling

aperture

Meander

line

Joined

Joined

FIGURE 7.10 Aperture coupled meander patch. Courtesy of Lancaster et al. (1998).
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Four parallel dipoles were excited in a superdirective endfire manner (Ivrissimtzis

et al., 1995a; see Figure 7.12). Gain was good, but bandwidth was narrow. This was

extended to a 4� 4 endfire dipole array (Figure 7.13), with series feeding of each of

the four subarrays and a corporate overall feed. Again gain was good, but bandwidth

was narrow (Ivrissimtzis et al., 1995b). An endfire array of two helices and matching

circuit in BSCCO was investigated by Itoh et al. (1993). Performance was several dB

better than a copper array. A 4� 4 12GHz patch array with proximity coupled feed

network, all HTS, was developed by Herd et al. (1993) (see Figure 7.14). A two-layer

4� 4 patch array was developed at 20GHz (Herd et al., 1996); see Figure 7.15.

Another two-layer array is developed by Ali et al. (1999b). A broadside corporate fed

4� 4 patch array at 20GHz in YBCO was developed by Morrow et al. (1999).

At 30K gain was roughly 2 dB better than that of a copper equivalent array, but at 77K

the improvement was only about 0.5 dB. A 2� 2 broadside patch array was built and

tested by Richard et al. (1992a). Another 2� 2 patch array used phase rotation to

produce circular polarization (Chung et al., 2003) at 12GHz. Cryostat and mounting

details were also provided (Chung et al., 2005). Gain over a comparable gold array

was about 2 dB, probably because of the complexity of the HTS feed and matching

network. A departure from YBCO was made by Lewis et al. (1993). They used

thallium calcium barium copper oxide in an 8� 8 patch array, with corporate feed, at

30GHz (see Figure 7.16). This is probably the most advanced application of HTS to
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FIGURE 7.11 Series fed array: (a) dipoles; (b) equivalent circuit. Courtesy of Ivrissimtzis

et al. (1994b).
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arrays to date. AYBCO thin film patch array at 12GHz showed improved gain over

a comparison copper array, apparently because of feed loss reduction (Ali

et al., 1999b). Superdirective arrays used for adaptive beamforming or for multiport

applications, because of the strong mutual coupling, benefit from the insertion of

decoupling networks (Chaloupka, 1993, 2001; Chaloupka et al., 2003).

Lower

face

arms

Upper

face

arms

Sectorial

power divider YSZ substrate

L
1

L
2

FIGURE 7.12 Endfire dipole array. Courtesy of Ivrissimtzis et al. (1995a).

Lower
faceBalun

FIGURE 7.13 Endfire array with tapered baluns. Courlesy of Ivrissimtzis et al. (1995b).
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FIGURE 7.14 Proximity coupled patch array. Courtesy of Herd et al. (1993).
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FIGURE 7.15 Multilayer patch array. Courtesy of Herd et al. (1996).
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7.3.4 Millimeter-Wave Antennas

Most reflector and array antennas have low dissipative losses (losses are primarily

due to impedance mismatches). However at millimeter wavelengths, transmission

line loss, whether waveguide, stripline, or microstrip, is important in determining the

feasibility of an array. To illustrate this point, examples are calculated for both

waveguide and microstrip planar arrays.

7.3.4.1 Waveguide Flat Plane Array A planar array of waveguide slots is

typically constructed of side-by-side waveguide linear slot arrays (sticks), with these

fed by another waveguide at right angles, utilizing cross-guide couplers (see

Hansen, 2009, Section 10.2). Often the array is divided into quadrants for

monopulse operation. Resonant stick array design produces a fixed, broadside

beam. For a square array of width L, the feed path length is 2L. And for small to

moderate loss, the array efficiency due to waveguide loss is just

efficiency ¼ 1�4aL ð7:5Þ

where a is the attenuation coefficient. Formulas for a arewidely available and are not

repeated here. For an example, the lower portion of a waveguide band is used:

FIGURE 7.16 8 � 8 corporate fed patch array. Courtesy of Lewis et al. (1992).
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b=k ¼ 0:5 and a ¼ 2b, using common waveguide notation. Assuming the

conductivity of copper, array efficiency due to guide loss is calculated for arrays

of directivity 40, 50, and 60 dB (see Figure 7.17). Gain then is the directivity minus

the efficiency (in dB). Of course, for low efficiencies the results are only

approximate, as the usual low-loss assumptions have been used (tangential

magnetic field at the waveguide walls is unchanged). Although the curves show

that modest gain (40 dB) may be realizable at 100GHz, the higher frequencies often

require large gains to offset increased path loss.

Traveling wave array sticks have an effective path length of half (Begovich, 1966),

or L, which reduces the losses compared with resonant arrays. However, the losses

are still appreciable. Use of a corporate feed probably incurs an effective path length

greater than 2L, so its loss will exceed that of the resonant array. In practice, for all

arrays, the actual loss will be greater, because of surface roughness, metal imperfec-

tions, and so on. Thus, waveguide loss has been a major factor against construction

and utilization of high-gain arrays in the 40–100GHz range.

Use of superconducting waveguides would in principle allow the efficiency to

approach 0 dB, and thus high-Tc materials may allow a significant extension of array

techniques.

7.3.4.2 Microstrip Planar Array A microstrip array of patch elements is

assumed, with loss only in the connecting microstrip lines. Because several
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FIGURE 7.17 Waveguide slot flat plane array efficiency.

230 SUPERCONDUCTING ANTENNAS



approximate results for microstrip loss exist, that used here is given below (Pucel

et al., 1968; Wheeler, 1977):

aZ0h

R
¼ ½ððw0

=hÞþðw0
=phÞÞ=ððw0

=2hÞþ0:94Þ�½1þðh=w0 Þþðh=pw0 Þð‘nð2h=tÞ�ðt=hÞÞ�
½ðw0=hÞþð2=pÞ‘n½2peððw0=2hÞþ0:94Þ��2

ð7:6Þ

where

w
0

h
¼ 120

Z0
�2

p
1þ‘n

120p2

Z0
�1

� �� �
ð7:7Þ

In this formula, w=h has been written in terms of Z0, for thin strips. The dielectric is

air, to remove dielectric losses. Microstrip conductor width is w, thickness is t, and

the spacing is h. A path length of L, giving efficiency equal to 1�2aL, is used.

Parameters used in the calculation are Z0¼ 50, h=l¼ 0:03, and t=h¼ 0:01.
Figure 7.18 shows efficiency for arrays of directivity of 40, 50, and 60 dB, and

the results are similar to those for waveguide arrays: Only modest gains are

obtainable for 40–100GHz.

Superconducting microstrip behavior is more complex than that of superconduct-

ing waveguide for several reasons. As edge current behavior is different, the strip
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FIGURE 7.18 Microstrip flat plane array efficiency.
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conductors may be very thin without the high loss engendered by edge current

singularities in normal conductors. And use of narrow strips allows the dielectric

thickness to be reduced, thereby reducing dielectric losses (Kautz, 1979). If the

dielectric loss needs to be reduced further, low-loss structures such as suspended

substrate microstrip or inverted microstrip can be used (Young and Itoh, 1988). The

relative value of conductor and dielectric loss will depend on frequency, as the

supercurrent component of surface resistance increases with the square of frequency,

as predicted for low frequencies by the London two-fluid theory, and for frequencies

near the energy gap frequency by the Mattis–Bardeen theory (Kautz, 1978). It is

assumed that the residual resistance component is negligible. It appears that micro-

strip of conventional dimensions could experience a loss reduction of the order of

20 dB at 100GHz, while thin film microstrip should show another 10 dB of loss

reduction. Thus, superconductors will allow high-gain microstrip arrays to be used at

millimeter wavelengths.

7.3.5 Submillimeter Antennas

A slot antenna with quasi-optical mixer using an LTS(Nb) trilayer junction operates

in the range of 400–810GHz (Zmuidzinas and Leduc, 1992; Zmuidzinas et al., 1995;

Zmuidzinas and Richards, 2004; Gaidis et al., 1996). For these short wavelengths,

two parallel slots, with the trilayer SIS chip2 in between, are all cooled to about 4K by

locating them on the cold finger of a helium Dewar. The incoming wave is focused on

the double slot by a hemispherical silicon lens. This technology has been used in U.S.

space probes. These SIS mixers apparently work below 4:5K, so an HTS version may

not be possible.

7.3.6 Low-Temperature Superconducting Antennas

One of the first experiments measured efficiency of a short dipole at 4, 77, and 290K

(Moore and Travers, 1966). Significant increases in efficiency were measured as the

temperature was lowered. The dipole did not become superconductive; the material

was not specified. Low-temperature measurements have been performed on a loop

(Walker and Haden, 1969; Walker et al., 1977) and on an endfire array of lead-plated

loops in a liquid helium environment (4.2K). Efficiency rose to near 100% over room

temperature, but the bandwidth became extremely narrow. Adachi et al. (1976)

worked on dipoles, and later on dipole arrays. Russian work using niobium has been

reported: Pavlyuk et al. (1978). Bob Hansen measured relative gain and Q for a loop

and for a dipole; Krivosheev and Pavlyuk (1979) measured a two-loop endfire array

and Vendik et al. (1981) determined the input power a loop could accept while

remaining superconductive.

2 See Tucker and Feldman (1985) for a comprehensive review of SIS technology.

232 SUPERCONDUCTING ANTENNAS



7.4 PHASERS AND DELAY LINES

Phasers, or phase shifters, are used at each element of a phased array to steer the

beam. For wideband arrays, time delay (all time delay is “true”) is also needed for

frequency-independent beam steering. At microwave frequencies, the loss, espe-

cially for long room-temperature time delays, may become unacceptable. Super-

conductors possess an interesting property where the SC Cooper pair currents have

kinetic inductance, allowing appreciable delay in a short segment of transmission

line. Pond et al. (1987, 1989) measured LTS delay on a NbN transmission line; the

dielectric loss was critical. With the kinetic inductance of the Cooper paired

electrons goes loss; the SC layer thickness must be carefully chosen to reach an

acceptable compromise between low phase velocity (thin film) and low loss (thick

film). For an SC, the conductivity is complex, and it varies with the penetration

depth and SC layer thickness (Ma and Wolff, 1996). The penetration depth changes

with temperature, going to zero at Tc. The real part of conductivity relates to

the loss, and the imaginary part relates to the kinetic inductance. Strong currents

or strong magnetic fields will affect all parameters. Sheen (1991) has formulated

surface resistance, normal inductance, kinetic inductance, and current distribution

for stripline, all as a function of penetration depth and film thickness. See also

Ma and Wolff (1996) for formulations of complex conductivity and effective

dielectric constant.

There was much interest in delay lines in the early 1990s. Liang et al. (1991) used

YBCO on a lanthanum aluminum oxide substrate. A reflection configuration with

PIN diode switches was used, with 4 bits of phase produced. Each bit utilizes a 3 dB

hybrid and two diodes; see Figure 7.19. The difference in line length between the

switched and unswitched lines gives the phase bit. Loss at 10GHz was 1.1 dB, a

value considerably less than that for copper phasers. Because a 4-bit phaser provides

H
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2

l2
2

l1
2

l2
2

FIGURE 7.19 3dB hybrid PIN diode phaser. Courtesy of Liang et al. (1991).
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up to 0:9375l of delay, the loss per wavelength was 1.2 dB. However, most of this

loss was due to substrate loss, diode loss, and mismatch loss. Shen et al. (1991) built a

spiral delay line in coplanar line, using ThBaCaCuO on a LaAlO substrate. Delay

time was 11 ns, and the loss was 0.25 dB/ns at 8GHz. Liang et al. (1993) worked on

spiral delay lines in YBCO; delays were 27 and 44 ns, with losses of 6 and 16 dB at

6GHz. These losses are 0.22 and 0.36 dB/ns, and 0.042 and 0:061 dB=l. A spiral

YBCO delay line on sapphire (Liang et al., 1994) produced 9 ns of delay at 77K.

Surface resistance was 0.5mW at 10GHz; insertion loss was 1.5 dB at 6GHz. This is

0.167 dB/ns at 6GHz. Also, at 6GHz the delay line is 54l long, giving a loss of

0:0278 dB=l. Another spiral delay line (Hofer and Kratz, 1993) has 3 ns delay but no
data on loss. Track et al. (1993) and Martens et al. (1993) built both NbN and YBCO

delay lines, using a meanderline pattern. The delay was 8 ns, with a loss of 3 dB at

20GHz, or 0.375 dB/ns. At 20GHz, this loss is 0:0125 dB=l. Other work on

meanderline delay lines was done by Hattori et al. (1999) with 2.8 ns delay and

1.1 dB loss at 70K, and at 10GHz, a loss of 0.39 dB/ns or 0:039 dB=l; and by

Hohenwarter et al. (1993), using NbN and coplanar waveguide, with 45 ns delay and

with loss of 0.01 dB/ns and 0:001 dB=l at 10GHz. Huang et al. (1993) developed a

3 ns YBCO delay line; loss at 8GHz was 0.73 dB/ns or 0:092 dB=l. Talisa

et al. (1995) used a closely wrapped spiral of YBCO on LaAlO, in stripline. The

line is 1.5m long! See Figure 7.20. Surface resistance at 10GHz and 77K is 0.5mW.

Delay is 45 ns. Loss is 2 dB at 10GHz and 6 dB at 20GHz. At 10GHz the loss is

0.0044 dB/l, and at 20GHz it is 0:0067 dB=l. Loss is 0.044 dB/ns at 10GHz and

0.133 dB/ns at 20GHz. Fenzi et al. (1994) developed a 100 ns delay line using

TBCCO on a LaAlO substrate with meandered coplanar waveguide; see Figure 7.21.

Loss at 6GHz was below 0.08 dB/ns, which is 0:013 dB=l. This is the type of delay
that might be suitable for wideband phased array steering. Fabrication details of a

YBCO meanderline delayer using epitaxial liftoff were given by Koh and Hohka-

wa (1999). Important practical implementation considerations such as insulation

Stripline

Coaxial

Microstrip/
coplanar

Coplanar pads

FIGURE 7.20 22.5 ns stripline delay line. Courtesy of Talisa et al. (1995).
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package, cooler, vacuum package, and electronics package were discussed by

Kapolnek et al. (1993). A convenient formula relates line length and delay:

L=l ¼ tnsfGHz

Su et al. (2004) developed a wideband delay line, with low insertion loss up to

20GHz. It is a double spiral meander line, in YBCO; see Figure 7.22.

A different approach uses an HTS transmission with many SQUID devices

coupled to it. Each SQUID contains one Josephson junction. The first work was

FIGURE 7.21 100 ns delay line. Courtesy of Fenzi et al. (1994).

Out

Feeding
line

In

FIGURE 7.22 Double spiral meander delay line. Courtesy of Su et al. (2004).
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done on LTS using niobium (Durand et al., 1992). This was followed by an HTS

YBCO (Takemoto-Kobayashi et al., 1992) delay line. A variable magnetic field on

the SQUIDs changes the delay. The experimental model with 40 SQUIDs produced

60� of phase shift at 10GHz. Problems of temperature, dynamic range, and

complexity appear to make SQUID phasers less attractive than those using single

line length.

7.5 SUPERCONDUCTING ANTENNA SUMMARY

The field of superconducting antennas was changed by the emergence of three

important principles (Hansen, 1990, 1991; Khamas et al., 1990). Principle 1:

Dipole-type ESA made of copper or aluminum have radiation resistance much

larger than loss resistance; efficiencies are close to 100%. For example, a dipole

0:02l long has a radiation resistance of 100mW, a value much larger than typical

loss resistance. Principle 2: Loop-type ESA usually have radiation resistance well

below loss resistance, so use of HTS will greatly increase loop efficiency.

However, Q is unacceptably high. Principle 3: A network matching an ESA to

50W sees a high VSWR, and this greatly increases the intrinsic loss in the

matching network.

Thus, it may be concluded that HTS ESA are not useful or cost effective except

in special circumstances. The matching circuit can benefit significantly by employ-

ing HTS components. HTS delay lines with long delays are promising for steering

of wideband phased arrays. Millimeter-wave arrays can benefit from HTS, not

necessarily in the antenna elements, but in the feed network. Submillimeter

antennas using integrated SIS sensors and antennas are a promising area.
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APPENDIX A

AWORLD HISTORY OF ELECTRICALLY
SMALL ANTENNAS

In the beginning, all antennas were electrically small, as Marconi in 1908

recognized that long wavelengths were needed for long-distance transmission.

The first commercial transatlantic service was initiated in 1910 at 82 kHz! An

extensive network of VLF stations was built around the world before World War

I. There were stations at Kootwijk, Malabar, and Java (Dutch); at Paris, Lyon, and

Saigon (French); at Carnarvon (UK); at Naven (Germany); and at Sayville and

Tuckerton (USA). Between World War I and World War II, VLF stations were

added at Balboa, Cavite, Criggion, Leafield, Rigby, and Kalbe. Watt (1967) lists

just short of 100 VLF stations. Finally, the most advanced and most powerful

stations were built at Jim Creek (Washington) and Cutler (Maine). The U.S. Navy

VLF communications system was started after World War I and continues till

date. Frequencies ranged from roughly 10 to 100 kHz, with wavelength from 30

to 3 km. Tall towers were used, many hundreds of meters high. Antenna

engineering consisted primarily of tower design, structural engineering, proper-

ties of cables, and properties of high-voltage insulators. Umbrella loading, as

sketched in Figure A.1, was used starting in 1913. An analysis was given by

Smith and Johnson (1947). It was recognized almost immediately that top loading

would significantly improve radiation resistance, and thereby the critical para-

meter efficiency (Carter and Beverage, 1962). Figure A.2 shows an idealized top-

loaded fan, while Figure A.3 shows the Cutler Maine VLF antenna with its

extensive top-loaded structure. In addition to the worldwide VLF communica-

tions network, the OMEGA navigation system started in 1968 with nine

Small Antenna Handbook, Robert C. Hansen and Robert E. Collin.
� 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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transmitters around the world, operating at 10–14 kHz. A few years later, this

system was superseded by the LORAN navigation system, which operated at

90–110 kHz. The shorter wavelength allowed a significant increase in location

accuracy. The efficacy of these simple loading schemes for improving the

radiation resistance of a monopole is shown by their use today in various

configurations.

Interestingly, a recent survey of ESA (Sylusar, 2007) references only U.S. authors,

all of which are discussed later in this appendix.

Support towers
not shown

FIGURE A.2 VLF top-loaded monopole.

Monopole

8–12
ribs

FIGURE A.1 VLF umbrella antenna.
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A.1 ELECTRICALLY SMALL ANTENNA CHRONOLOGY

1889 loop; Hertz

1901 long wire; Marconi

1936 inductive loading; Brown

1939 ferrite loopstick; Polydoroff

1947 fundamental limitations; Chu and Wheeler

1948 dielectric loading; Wheeler

1950 partial sleeve, PIFA; Jordan and Nash

1952 cavity antenna; Master

1953 patch; Deschamps

1960 active antenna; Frost and Meinke

1964 resonant wire; Fenwick and Best

1971 non-Foster; Poggio and Mayes

1976 dual mode; Goubau

1997 Q ¼ 0 antenna; Grimes and Grimes

1998 fractal; Puente and Baliarda

2003 antennas with metamaterials

2009 double resonance; Stuart

2010 magnetic loading; Kim, Breinberg, and Yaghjian

A.2 LOOPS

Loops are usually electrically small, as a single-turn loop approaches resonance

as the diameter (circular loop) approaches 0:1l. Larger loops experience large

FIGURE A.3 Cutler maine VLF antennas. Courtesy of Watt (1967).
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impedance resonances and pattern breakup. Thus, the rule of thumb is that the total

wire length for a multiturn loop should be no greater than l=10 (Storer, 1956).

Segmented loops can be larger and still maintain constant current but they are outside

the scope of this book. Often a loop is tuned by a series capacitor; this arrangement

significantly increases the output but the bandwidth becomes very narrow. Because

the radiation resistance of a small loop varies as the diameter in wavelengths to the

fourth power, typical radiation resistances are in the tens or hundreds of milliohms.

Because of this, typical loop efficiencies can be very small.

A novel coupling scheme was invented by Dunlavy (1971); this is the loop-

coupled loop. It consists of a small loop coupled to the source or receiver and a much

larger usually coplanar enveloping loop. This larger parasitic loop is usually

tuned with a capacitor. See Figure A.4. Another implementation uses a copper

FIGURE A.4 Loop-coupled loop. Courtesy of Dunlavy (1971).
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sheet half-loop over a ground plane with parallel plate capacitor and a small coupling

loop. See Figure A.5. Analyses of the loop-coupled loop (Hansen, 2006, Section

1.5.3; Belrose, 2007) show that the efficiency is very low. Loop-coupled loop

antennas were manufactured by ARA for a while but eventually the customers

discovered the above facts. A better antenna uses only the larger tuned loop, with the

feed across the capacitor.

A.3 MONOPOLES WITH INDUCTIVE LOADING

Probably the first work on inductive loading of an electrically short monopole

antenna was by George Brown of RCA (Brown, 1936). No documented work on

series inductive loading of dipoles had been found for the period duringWorldWar II

and the years immediately after. Brown’s work was extended by Belrose (1953); he

was primarily concerned with antennas located on vehicles near the ground. At about

the same time, Bulgerin and Walters (1954) were working at the Naval Ordnance

Lab, Corona, on monopoles with series inductive loading. They calculated input

resistance and reactance versus height of the loading coil as well as losses in the coil.

These results were experimentally obtained and laid the foundation for more detailed

computer analyses later on. A decade later, Harrison (1963) used King–Middleton

theory to analyze the inductively loaded dipole using a superposition of asymmetri-

cally excited dipoles. However, for the asymmetrically excited dipole, only zero-

order solutions are available. As the feed point (loading point) moves toward the end,

the results become less accurate. The U.S. Army Electronics Lab, Fort Monmouth,

was also working on inductive loading, with a brief summary given by Czerwinski

(1965). Several years later, the faculty at Michigan State University was investigating

series inductive loading of dipoles (Lin et al., 1970). Their limited results were based

on approximate solutions to the integral equations. The design of inductively loaded

FIGURE A.5 Copper sheet loop-coupled loop. Courtesy of Erentok and Ziolkowski (2007).
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dipole (or monopole) antennas was put on a sound basis by Hansen

(1973, 1975a, 1975b). Modeling the antenna with the piecewise sinusoidal moment

method allowed accurate determination of efficiency, input resistance, and ratio of

loading reactance to antenna reactance. Extensive data of input resistance versus

loading point (where the load is placed) for monopole lengths over wavelength from

0.05 to 0.15, radiation resistance improvement factors, resonant loading reactance,

efficiency versus loading point, and ratio of loading reactance to antenna reactance

were given. These data allow design trades to be readily performed. Examples are

Figure A.6, which shows the current distribution peaking at the load point, and

Figure A.7, which shows the radiation resistance improvement factor versus load

point for three dipole lengths (l ¼ 2h).

Experimental measurements of inductively loaded short monopoles were made by

Fournier and Pomerleau (1978). Their results largely confirm the moment method

results just mentioned. Resistive loading, either discrete or continuous, can be

considered. However, the efficiency rapidly decreases as the loading resistance is

increased.

The art of calculating and measuring inductively loaded antennas has not

changed significantly since the papers cited above. What has changed is the wider

availability of ferrite materials, covering a wider range of frequencies and perme-

abilities. In general, losses have been reduced somewhat in recent years. A new

material, which is suitable for frequencies above which ferrites are not suitable, has

appeared. This is metaferrite from Metamaterials Limited, Austin, TX. This
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FIGURE A.6 Current distribution. Courtesy of Hansen (1972).
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material consists of a stack of many laminates where each layer is a thin plastic sheet

with a deposited film of magnetic compounds chosen for each frequency band, and

patterned so as to minimize eddy current loss. This material promises to allow

inductively loaded monopoles to be designed at higher frequencies than with

ferrites. Loading of dipoles via capacitance, either using series capacitors or

dielectric sleeves, is covered in Section A.6.

A.4 FERRITE LOOPSTICK

During World War II, the loopstick antenna was developed in Germany. It consisted

of a cylindrical plastic tube filled with powered iron, which served as a magnetic

core, with a coil wrapped around the core near the center of the core. It may have

been based on the work of Polydoroff (1941); he patented a loop with a hollow

ferromagnetic core, with the core length roughly twice the coil diameter. See

Figure A.8. One of the German antennas was evaluated for WFAFB by University

of Illinois—Urbana Antenna Lab. The results were published in the 1952 Allerton

USAF Antenna Research and Development Symposium (Jordan and Hansen, 1952).

A ferrite loopstick was also tested, and as expected the losses were considerably

lower and the affective permeability higher. Ferroxcube (Van Suchtelen, 1954) was

used. A short ferrite loopstick antenna for aircraft application is shown in Figure A.9.

Note that it uses a hollow core. This antenna lab ferrite loopstick was apparently the

first. Of course, they are now widely used in portable electronic devices. A typical
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FIGURE A.7 Radiation resistance improvement factor. Courtesy of Hansen (1975a).
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loopstick antenna with a distributed winding is shown in Figure A.10. The winding

can also be a short multilayer concentrated at the core center.

The effective permeability of a loopstick core was calculated by JimWait in a pair

of classic papers published in 1953. He replaced the cylindrical core with a prolate

FIGURE A.8 Polydoroff loopstick antenna. Courtesy of Polydoroff (1941).

FIGURE A.9 Experimental loopstick. Courtesy of Jordan and Hansen (1952).

FIGURE A.10 Loopstick antenna.
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spheroidal core, where the two lengths are the same and the central diameter of the

spheroid is the same as the cylinder diameter. The effective permeability is equal to

the intrinsic permeability times a factor, which involves spheroidal Q1 wave

functions and a parameter that depends upon the core length-to-diameter ratio. It

was discovered that cores with higher permeability needed to be longer to realize the

intrinsic permeability. See Figure A.11 for the effective permeability of a solid core.

Also, most of the flux density is near the surface of the core so that hollow cores could

be used. This problem was also solved by Wait again using prolate spheroidal

geometry. The hollow inside of the core is represented by a second prolate spheroid.

Again the effective permeability is obtained from an equation involving many

spheroidal wave functions, and again a parameter depending on length-to-diameter

ratio. Data for both solid cores and hollow cores, and the appropriate equations, are

conveniently provided in a recent book (Hansen, 2006, Section 1.3.3.3).

If the graphs in the reference are not adequate, the effective permeability is readily

calculated because the prolate spheroidal wave functions are tabulated in Abramo-

witz and Stegen (1970).

A.5 FUNDAMENTAL LIMITATIONS

Harold Wheeler, along with Lan Chu, was a founder of the basic understanding of

electrically small antennas (ESA). In a series of three papers (Wheeler, 1947, 1958,
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FIGURE A.11 Effective permeability versus length/diameter. Courtesy of Wait (1953).
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and 1959), he established several widely used and important concepts. The radian

sphere of radius a encompasses electrically small antennas; now it is commonly

taken to be ka � 0:5, where k ¼ 2p=l. This is a practical limit for ESA. The second

concept was radiation power factor. This was a hangover from the power commu-

nity, and is equal to the reciprocal of Q. Wheeler called his limits on ESA

“fundamental,” but it is more realistic to call them practical limitations. For

example, for dipole-type antennas he considered a cylindrical volume, which

included any top hat loading; he derived a practical limitation on Q for this

geometry, based on electrostatics. See Section A.6. Another limitation involved

spherical coils, with or without magnetic cores. Again the limitation was in terms of

practical coil and materials. These formulas have proved useful, but are not

rigorous. In contrast, the fundamental limitations derived by Chu utilize spherical

modes, both TE and TM.

Chu (1948) derived the fundamental limitation for an ESA, which could be

contained within a hypothetical sphere, the radian sphere of Wheeler. The normal-

ized radial wave impedance was expressed as a continued fraction, equivalent to a

ladder network. For TM spherical modes, the network R, L, and C were calculated,

along with the stored energy external to the sphere and the radiated power. From

these, the minimum Q was obtained for each mode. For the lowest mode, TM1, the

well-known result is

Q ¼ 1

ka
þ 1

k3a3

Here a is the radius of the sphere. It has been pointed out by many people that the

formula for minimum Q should include energy stored within the enveloping sphere.

This was done by Thal (2006), using the same ladder network theory of Chu.

Subsequently, Hansen and Collin (2009) provided exact formulas for minimumQ for

both TE and TMmodes. These formulas are in terms of spherical Bessel and Hankel

functions, and the results agree with the numerical calculations of Thal.

Because the original Chu Q formulation is expressed in spherical Bessel func-

tions, which have closed forms, the exact Chu TE and TM values for the first three

modes are (Collin and Rothschild, 1964)

Q1 ¼ 1

ka
þ 1

ðkaÞ3

Q2 ¼ 3

ka
þ 6

ðkaÞ3 þ
18

ðkaÞ5

Q3 ¼ 6

ka
þ 21

ðkaÞ3 þ
135

ðkaÞ5 þ
675

ðkaÞ7

As mentioned by Chu, Q becomes large when ka � n.
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When the energy inside the radian sphere is included, theQ formula has an infinite

number of terms, because now the formula has spherical Hankel functions in

the denominator. A best fit for the TM1 mode was made by Hansen and Collin

and is the following:

Q ¼ 1
ffiffiffi

2
p

ka
þ 1:5

k3a3

Inclusion of permeable material inside the radian sphere for a TE mode antenna,

as discussed later, can reduce the TE factor of 3 to close to the original Chu factor

of 1.

A.6 DIELECTRIC LOADING

Probably the first to consider loading a dipole or a monopole antenna with dielectric

material was Wheeler (1947). A dielectric cylinder was assumed to surround the

dipole, with the dipole on the cylinder axis. Wheeler derived Q (actually radiation

power factor, which is the inverse of Q) as

Q ¼ 6

kak3a2l

In this equation, the radius and length of the cylinder are a and l, respectively. As

usual, k ¼ 2p=l. The factor ka is Wheeler’s shape factor and it was evaluated only

for limiting cases. For tall cylinders, where length is much greater than radius, ka
approaches 4l=pa. At the other extreme, for short cylinders, ka approaches 1. These

factors were apparently based on electrostatics. Thus, the nominal Q for short

cylinders is 6=k3a2l, while for long cylinders it is 3p=2k3al2. At least two groups of
researchers are working on extending Chu theory to a cylindrical enclosing volume,

but no results are yet available. Raymond and Webb (1948) investigated a monopole

loaded with a dielectric cylinder; they assumed a sinusoidal current distribution and

calculated the resulting radiation resistance for several cases. They also performed

measurements using dielectric material consisting of polystyrene mixed with varying

amounts of titanium dioxide to give dielectric constants of 1.5–22. Their measure-

ments roughly corroborate their theoretical calculations. The dielectric loading, as

one might expect, reduces the radiation resistance and also reduces the bandwidth.

Polk (1959) evaluated biconical antennas, which were loaded with either di-

electrics or ferromagnetic materials. In both cases, the material was in the form of a

sphere, which included the biconical antenna. For electrically small antennas, the

result was a reduced bandwidth. A suitable combination of antenna length and

dielectric constant could produce resonance and a further increase in either could

induce a condition of superdirectivity, with all its limitations. Work on a short dipole

in a dielectric sphere was continued by Galejs (1962). Again it was found that the Q

increased by a factor of ð«þ 2Þ2=9«. The Q is unchanged for « ¼ 1 and 4, and there
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is a small diminution for « between these two values. Larger values of « can

significantly raise theQ as expected. Galejs pointed out that the cylindrical results of

Wheeler do not apply, as the dielectric surface here is not tangential to the electric

field, as it was in Wheeler’s case. Careful measurement of a dipole with a cylindrical

sleeve was made by Lamensdorf (1967). He measured admittance and current

distributions for various antenna lengths, antenna diameters, and dielectric constants.

Unfortunately, no bandwidth or Q for a dipole measurements were made. In general,

the principal effect of the dielectric sleeve was to increase the electrical length of the

dipole. James and Burrows (1973) used powdered dielectric to form a cylindrical

cover. Both radiation resistance and bandwidth were reduced compared to the

monopole alone. Dielectric constants of 18 and 90 were used.

The previous theoretical investigations approximately solved integral equations

for assumed current distribution. The more accurate moment method approach for

dielectric sleeve coded dipoles was developed by Richmond and Newman (1976).

Their moment method approach used piecewise sinusoidal expansion and test func-

tions. The dielectric sleeve was accounted for by modifying the matrix equation. The

thin dielectric sleevewas replaced by an equivalent sourcewith electric current density

and from this a correctionwas calculated for the impedancematrix.A similar approach

was used by Popovic (1982, 1991) except that the current expansion function was an

entire domain polynomial. This is an interesting alternative to subsectional expansion

functions, but it is not clear that this is the best approach for many problems.

Another investigation concerned insulated long wire antennas in lossy media

(Chen andWarne, 1992). A special case was the insulted wire in free space. However,

the long wire results are not useful for short antennas. Finally, the most recent paper

FIGURE A.12 Two loaded dipoles. Courtesy of Turner (1977).
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(Jaisson, 2008) derived closed-form results for a monopole with a dielectric sleeve.

A sinusoidal current distribution is assumed and the quasi-static effect of the sleeve

used by Popovic and Richmond and Newman was used. Admittance was calculated

for dielectric constants of 3.2, 9, and 15 but only for one length. Thus, his results are

less useful than some work previously cited.

In the nut case category is an electrically small dipole antenna consisting of two

adjacent dipoles, with each bent into a large U such that the four dipole arms fit inside

a circle (Turner, 1977). The dipole arms have many series capacitor loads and each

dipole end has a zigzag inductor. Asmentioned elsewhere, the series capacity loading

degrades the performance, and the inductive loads are located at the end instead of

near the center of each dipole arm. See Figure A.12.

To summarize the effects of dielectric loading on a monopole or dipole, the

radiation resistance is increased but the bandwidth is decreased.

A.7 PIFA, TRANSMISSION LINE, AND PATCH ESA

An early ESAwas the partial sleeve antenna developed at the University of Illinois—

Urbana Antenna Lab in the early 1950s. It was described in detail in a report

(Jordan, 1953) (since declassified). Figure A.13 shows the partial sleeve, which is

a curved plate, shorted to the correspondingly curved fuselage skin, tuned at one end

and fed roughly near the center. When the sleeve is located over a flat ground plane, it

takes the form shown in Figure A.14 and thismay be recognized as the planar inverted-

F antenna (PIFA), widely used in mobile communications and computer devices of all

types. The capacitive tuning allows the PIFA to be electrically short. PIFA design

details are given by Hirasawa and Haneishi (1991). For multiple frequencies, PIFA

often have fingers, cutouts, additional posts, and so on.When the planar strip reduces to

a wire, it is the transmission line antenna (Hansen, 2006); see Figure A.15.

The patch antenna was invented by Deschamps and Sichak (1953). The patch

antenna is normally not considered an ESA. A high dielectric constant substrate

Airfoil edge Tuning
capacitor

End of
sleeve
shorted
to skin

Gaps

Feed

FIGURE A.13 Partial sleeve antenna. Courtesy of Jordan (1953).
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reduces not only the resonant size, but also the bandwidth. However, a low-loss

magnetic substrate also reduces the resonant size, but the bandwidth is increased

(Hansen and Burke, 2000). One such material is metaferrite (from Metamaterials

Limited, Austin, TX).

A.8 ELECTRICALLY SMALL CAVITY ANTENNAS

The electrically small cavity antenna consists of rectangular cavity with a feed post

across the width of the cavity; the feed post is interrupted at its center by two

perpendicular capacitor plates, which act to tune the antenna. A feed connection

across the gap couples energy in or out (Masters, 1952). Another effort on reducing

cavity size used a ferrite powder loaded cavity with the slot across the face; closely

related is the loading of a cavity backed slot antenna with a ferrite powder (Adams

et al., 1962). Further work on a ferrite-loaded cavity slot antenna used bars of ferrite

material (Adams and Lyon, 1963). A major advance uses low-loss metaferrite

material in the cavity as it allows a shallow cavity. The material is a many-layer

laminate of thin dielectric sheets, each with a patterned deposition of magnetic alloys

(Metamaterials Limited, Austin TX).

A.9 ACTIVE ANTENNAS

Antennas are typically connected to an amplifier, either for receiving or for

transmitting. These are sometimes called “active antennas,” but this nomenclature

is deprecated. Herein active antenna means that an electronic device such as a

transistor is inserted into the antenna itself, not just at the terminals.

The first active antenna seems to be the “parametric amplifier antenna” by

Frost (1960). In this, a symmetric coaxial line cavity is terminated at each end by

a tunnel diode. Energy is coupled out of the cavity by a small loop. See Figure A.16.

Wire

FIGURE A.15 Transmission line antenna.

Top plate

Feed
wire

FIGURE A.14 Basic planar inverted-F antenna.
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FIGURE A.16 Parametric amplifier antenna. Courtesy of Pedinoff (1961).
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The capacity of the tunnel diode allows a shorter coaxial cavity to achieve resonance.

An advantage parametric amplifiers have is a potentially low noise figure. This work

was followed by a negative-conductance slot amplifier (Pedinoff, 1961). Here a slot

is cut into the end plate of a waveguide and a tunnel diode is placed across the slot.

Due to the many problems associated with tunnel diodes, such as nonlinearity, the

next step was to replace the diode with a transistor. This was initiated by Copeland

et al. (1964), who called their antenna the “antennafier.” The antenna is used as a

circuit element of the transistor amplifier. The transistor is connected between the

midpoint of the dipole and a gamma match rod. Although the dipole was half-wave,

the notion of integrating antenna and transistor was important.

The next step was to insert the transistor into each arm of a dipole, with a parasitic

conductorprovidingthe third terminal.SeeFigureA.17.Thisconceptwaspromotedby

Ed Turner of the WPAFB, in particular with contracts at the Technische Hochschule

in Munich (Turner, 1970). Papers were published by Meinke (1966), Meinke and

Landstorfer (1968), Landstorfer and Meinke (1971), and Flachenecker et al. (1972).

I1

I2

I3

Output terminals

Transistor
two-port

FIGURE A.17 Dipole with transistor and shunt feed.
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Figure A.18 shows the three possible connections. These papers were primarily

concerned with handling the noise problem. The major difficulty with these circuits

is that thereisnonoisebandwidthfilteringexcept throughtheimpedanceof theantenna.

Nor is it possible to adjust transistor circuit parameters to minimize the noise. As a

result of these difficulties, active antennas quickly fell into disuse. Maclean and

Ramsdale (1975) and Maclean and Morris (1975) analyzed system noise versus

transistor position in the dipole ormonopole. Another active antenna is a folded dipole

with a transistor in the center of the arm opposite to the feed (Daniel et al., 1975).

In 1971, a new paradigm appeared. Poggio and Mayes (1971) proposed and

analyzed a loaded dipole, where negative inductances were placed at several points

along each dipole arm. This landmark paper ushered in the era of non-Foster circuits

applied to antennas. They have application primarily to the matching of electrically

small antennas, as opposed to the loading technique investigated by Poggio and

Mayes. See Section A.11.

A.10 RESONANT ESA

Increasing wire length in an ESA to improve performance via fractal geometry is not

satisfactory. However, there are three ways of increasing wire length that need to be

examined. The first is a meander dipole, sketched in Figure A.19. Here each arm of

the dipole (or monopole) is continued back and forth parallel to and closely spaced to

1

3 3 3

2 1 2 1 2

FIGURE A.18 Three possible connections of a transistor.Q3 Courtesy of Meinke (1966).

0.1λ 0.1λ
0.00324λ

FIGURE A.19 Eight-arm meander antenna.
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the dipole arm. The second configuration called the zigzag antenna is sketched in

Figure A.20. Now the back and forth wire excursions are perpendicular to the dipole

axis. The third scheme to be discussed later is three dimensional and winds a

monopolewire in the form of a spiral helix. Moment method calculations have shown

that the zigzag construction has better bandwidth and higher radiation resistance than

the meander dipole, as there is less cancellation of currents in the zigzag antenna.

There is some confusion in nomenclature as some authors call our zigzag antenna a

meanderline antenna (Best, 2004a, 2004b).

The spherical helix, sketched in Figure A.21, uses multiple turns of wire to get

performance close to resonance. A radiation resistance of 50W can be achieved. Both

spherical helix monopole and a folded version can be used (Best, 2005).

A less effective way of using wire length involves a flat spiral winding parallel to

the ground plane with the center of the spiral connected to the ground plane.

The edge of the spiral is excited by a monopole. See Figure A.22. This scheme

x

y

z

FIGURE A.21 Four-arm folded spherical helix monopole. Courtesy of Best (2005).

0.02λ

0.0500λ

FIGURE A.20 Ten-section zigzag antenna.
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(Fenwick, 1964) is less effective as the radiating monopole and its parasite

monopole are both very short.

Another scheme for using multiple turns of wire to improve performance uses

four monopoles each made of a tightly coiled wire, with the four monopoles

following the Chu hypothetical hemisphere (Adams and Bernhard, 2008); see

Figure A.23. The four curved monopoles are approximating the ideal sin u current

distribution over the hemisphere. Sufficient wire can be used to provide resonance;

however, the radiation resistance of 16W is divided by 4, yielding 4W, because

the four monopoles are fed in parallel. Thus, this arrangement is less efficient than

the spherical helix.

The intelligent use of wire length in an electrically small volume to improve

performance is one of the significant recent contributions to electrically small

antenna understanding and practice.

FIGURE A.23 A photograph of the constructed antenna. Courtesy of Adams and

Bernhard (2008).

∼
FIGURE A.22 Monopole with spiral load. Courtesy of Fenwick (1964).
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A.11 NON-FOSTER ANTENNAS

Foster’s reactance theorem states that any passive, lossless, one-port network has a

reactance or susceptance slope always increasing with increasing frequency

(Foster, 1924). Antennas are not non-Foster as the radiation resistance makes them

lossy even without conduction loss. However, an equivalent for antennas is that the

impedance locus on a Smith chart always moves clockwise with increasing

frequency.

In principle, non-Foster circuits can provide negative resistance, negative induc-

tance, or negative capacitance. It is also possible to transform the resistance by a

frequency-squared factor. The first application of non-Foster circuits was not to

antennas but to telephony. In the early 1930s, Bell Laboratories developed a long-line

amplifier that employed a modest amount of negative resistance to partially offset the

long-line resistance (Crisson, 1931; Merrill et al., 1954). These long-line repeaters

enabled transcontinental telephony and were used until the microwave links became

available after World War II.

A major advance occurred when transistors were applied to negative-impedance

converter circuits by Linvill (1953). This bypassed the significant limitations of tubes

for non-Foster circuits. There have been many papers on various types of circuits for

non-Foster performance using transistors.

The earliest application to antennas appears to be a patent filed in 1966 and

granted in 1970 by Albee for a loop antenna with a non-Foster circuit

(Albee, 1966). Next was the application of non-Foster to a monopole by Harris

and Myers (1968). The first formal publication of non-Foster applied to antennas

was by Poggio and Mayes (1971), where in theory several non-Foster circuits were

inserted along each of the arms of a dipole. A closely related effort by Quirin

(1970) investigated dipole antennas with a non-Foster match at the feed point. The

first experimental results appear to be those of Bahr (1977). He used a current

inverting NIC and a short monopole. More extensive work was reported by Skahill

et al. (1998).

Non-Foster circuits can also be used to produce broadband phased arrays,

particularly of the connected type. In a linear or planar array of dipoles, the

dipoles in a collinear line can be connected end-to-end by a non-Foster circuit

(Hansen, 2003, 2004a). In a conventional array, as the frequency decreases below

that where the dipoles are roughly half-wave, the scan reactance increases rapidly.

However, connecting the collinear dipole ends by a negative inductance non-Foster

circuit allows the entire line of dipoles to act as a single dipole. Thus, the bandwidth

of a connected array (Hansen, 2009) is roughly from the frequency where the line of

dipoles is l=4 long up to where each dipole is l=2. Thus, an array of many octaves

can be achieved. There is some degradation near half-wave frequency, as there the

dipoles would like to be unconnected. Note that connecting the dipole ends with

capacitors has exactly the wrong physics. As the frequency decreases, the dipoles

become less coupled, and the reactance higher. As the frequency approaches for

dipole length of half-wave, the capacitors connect the contiguous dipoles and this

262 A WORLD HISTORY OF ELECTRICALLY SMALL ANTENNAS



degrades the impedance. No non-Foster connected arrays have yet been built

although the results are very promising (Hansen, 2004b).

Non-Foster circuits for antenna matching must be evaluated in terms of power

dissipated, added noise, impedance matching performance, but most of all stability.

Initially, open- and short-circuit stability criteria were used but more recent studies

have shown that these are necessary but not sufficient. Non-Foster circuits can have

internal loops whose effects do not appear on open and short circuits. A more careful

stability design, employing Nyquist stability, is more appropriate and has begun to

yield positive results. Of the many types of non-Foster circuits, most have one or

more poles in the right half Nyquist plane; a small number of circuits can be made

stable but this work is just underway. All in all, non-Foster matching is one of the few

options available to ESA.

A.12 GOUBAU ANTENNA

A multimode antenna was developed by Goubau (1976); see Figure A.24. It consists

of two monopoles fed in parallel, and two fat parasitic monopoles connected to the

ground plane. The four monopoles are in a square shape. Each monopole is top

loaded by a petal; those attached to the thin feed posts are each larger than a quarter

circle, while those attached to the fat parasitic monopoles are smaller than a quarter

circle. Just below the top-loaded plates are wire loops, each of which connects the

adjacent plates. Use of both TM1 and TE1 modes roughly doubles the bandwidth.

The Goubau antenna is electrically small only for the lower part of its octave

bandwidth. At the upper frequency, ka ’ 1.

FIGURE A.24 Goubau multimode antenna. Courtesy of Goubau (1976).
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A.13 NUT-HOUSE ESA

A.13.1 Q ¼ 0 Antenna

In a 1997 paper and in several subsequent publications (1999), Grimes and Grimes

announced that an electrically small antenna consisting of several elements properly

spaced and phased would produce aQ of zero, that is, infinite bandwidth. No onewith

either practical or theoretical antenna experience would believe this. Collin (1998)

showed that the Grimes attempt to calculate stored energy from the integral of the

time-dependent Poynting vector over a spherical surface, without the need to

consider the detailed expressions for the energy density in the field, is not possible.

Another Grimes approach for calculating energy density used the sum of traveling

energy density and standing energy density. They then applied the continuity

equation in space and time, and then differentiated with respect to time. But as

Collin observed, there is no Lorentz frame corresponding to uniform motion in the

radial direction at velocity c. Thus, the Grimes second derivation is also incorrect.

The Grimes and Grimes work is now widely discredited.

Nonetheless, Dockon, Inc. (2010) is attempting to piggyback on theQ ¼ 0 antenna.

They are combining a square single-turn loop with a dipole in the plane of the loop,

parallel to one of the loop sides, and centered. See Figure A.25. A feed network

presumably provides the feed necessary to optimize the bandwidth. However, basic

electromagnetic principles are against the successful operation of this loop and dipole.

The total length of conductor in the loopmust be roughly less than l=10 to avoid pattern
breakup and impedance swings. The single-turn square loopwill thus have amaximum

side length of l=40. The resulting radiation resistance will be a maximum of a few

FIGURE A.25 Dockon loop and dipole.
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ohms. The l=40 dipole will have a very high reactance as well as a low radiation

resistance. Efficiency will be problemwith the loop, and impedance matchingwill be a

problemwith the dipole. Thebest that canbedonewith any loop–dipolepair is todouble

the bandwidth. There is also a serious pattern problem that in the plane perpendicular to

the dipole the dipole pattern is omnidirectional while the loop pattern is a figure eight.

The resulting loop–dipole antenna is narrowband and is not omnidirectional. It is a pity

that more antenna people do not read the readily available literature.

A.13.2 Multiarm Dipole

Figure A.26 shows two conceptions of a multiarm dipole (Turner and Richard, 1968).

The simple-minded concept is that connecting together dipoles of various lengths

gives a broadband dipole. Unfortunately, what results from the multiarm dipole is an

equivalent fat single dipole. Increasing the fatness of the dipole does increase the

bandwidth by a modest amount over a thin dipole, but this multiarm dipole is far from

a broadband antenna.

A.14 FRACTAL MONOPOLES AND LOOPS

Nature, especially plants, is fractal as shown in wonderful detail by Mandel-

brot (1977, 1982). For ESA, there are five general categories, each with its initiator

and generator. The first stage of all consists of a small number of connected straight-

line segments, which may be used as a monopole or fed as a loop. As the fractal stage

increases, the segments become shorter and increase greatly in number (Hansen,

2006, Section 1.5.8). Figure A.27 shows a Von Koch monopole, while Figure A.28

shows a Sierpinski monopole. Hilbert and Minkowski monopoles are shown in

Figure A.29. A Minkowski loop is shown in Figure A.30; the conductor is open near

FIGURE A.26 Multi-arm dipoles. Courtesy of Turner and Richard (1968).
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FIGURE A.27 Von Koch monopole.

FIGURE A.28 Sierpinski monopole.
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(a)

(b)

FIGURE A.29 (a) Hilbert and (b) Minkowski monopoles.

FIGURE A.30 Minkowski loop.
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the center for the feed. For fractal references, see Hansen (2006, Section 1.5.8). These

high-stage fractals, by incorporating a significant length of wire, can become resonant

even though the overall width still qualifies as an ESA (Best, 2003). Unfortunately,

these configurations store considerable energy in the near-field and have more loss.

Thus, the bandwidth and efficiency are both diminished.Aclosely spacedmeanderline

monopole (see Section A.10) is better than any fractal monopole.

Alas, Maxwell’s equations and the wave equation are not fractal. There are better

ways of using longer wire lengths in making an ESA. See Section A.10.

A.15 DOUBLE RESONANCE ESA

Electrically small antennas can be improved by using enough wire tomake a resonant

ESA, or by exciting the lowest TE and TM modes together (Goubau). Another way

was developed by Stuart and Tran (2005, 2007), where several collocated elements

are operated together. Typically, one element is excited and one is parasitically

coupled. Figure A.31 shows a two-arm antenna where the dipole arms are partially

curved to fit inside the hypothetical Chu sphere. Four-arm antennas are shown in

I

Two-arm antenna.

Courtesy of H. R. Stuart, LGS, Bell Labs, Innovations, Whippany, NJ. 

FIGURE A.31 Two-arm antenna. Courtesy of H. R. Stuart, LGS, Bell Labs, Innovations,

Whippany, NJ.

268 A WORLD HISTORY OF ELECTRICALLY SMALL ANTENNAS



Figures A.32 and A.33. Themultiple arms allow two or more resonances; it should be

noted that these are not simply related to the spherical harmonic modes. Stuart (2008)

has done an eigenmode analysis of multielement antennas with one, two, four, and

six arms. For example, the four-arm resonator has ka ¼ 0:67 and a Q of 9.61. This is

exactly twice the value using the basic Chu formula. These resonator antennas all

show a double resonant impedance response. As more arms are added, the band-

widths of the antennas improve, for the same size.

It has been well established for single resonance antennas that the bandwidth, for

VSWR � 2, is equal to 1=2
ffiffiffi

2
p

Q. However, for double resonant ESA, this simple

relationship becomes highly inaccurate when the two impedance resonances are

closely spaced (Stuart et al., 2007). For a band narrow enough that the resonant peak

is well defined, one of the traditional formulas for calculating Q yields a result that

will predict the bandwidth. This is (Hansen, 2007)

Q ¼ v

2R0

dX

dv
ðA:1Þ
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−

−
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Mode 1 Mode 2

Mode 3

LOW Q

Four-arm antenna.

Courtesy of H. R. Stuart, LGS, Bell Labs, Innovations, Whippany, NJ. 

FIGURE A.32 Four-arm antenna. Courtesy of H. R. Stuart, LGS, Bell Labs, Innovations,

Whippany, NJ.
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A.16 MAGNETIC LOADING OF LOOPS

It is well known that dielectric loading of dipoles (TM modes) reduces the available

bandwidth. However, magnetic loading of loops (TEmodes) can decreaseQ as shown

by Wheeler (1947). Kim et al. (2010) have extended the work of Thal, including a

permeable material inside the Chu sphere. They found that magnetic cores of low loss

and large permeability could significantly decrease Q. A value of m around 100 can

reduce theQ to nearly that of the original Chu result, an improvement by nearly a factor

of 3. This provides what is probably the ultimate in small loop antennas.

A.17 METAMATERIALS AND ANTENNAS

Metamaterials is a general term, which includes those with negative permeability

and/or negative permittivity, as well as other artificial materials. Here the term

includes negative parameter materials only. Here the focus is on only one typical

application. This is an electrically short dipole surrounded by a thin spherical shell

with �m and/or �«; the shell diameter is small in wavelengths.

Ziolkowski and Kipple (2003) used a thin shell of double negativematerial about a

short dipole; see Figure A.34. They assumed a constant drive in voltage or current and

calculated the power radiated. This was an unbelievable error, as the power radiated in

that case has no relation to gain, directivity, or efficiency. There is also an error in the

FIGURE A.33 Four-arm antenna. Courtesy of H. R. Stuart, LGS, Bell Labs, Innovations,

Whippany, NJ.
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formula for Q for the TM1 mode. The power radiated problem was pointed out by

Kildal (2006). A similar paper (Ziolkowski and Erentok, 2006, 2007) like the earlier

paper shows that without dispersion the thin shell can improve the bandwidth of the

short dipole. When a dispersion model suitable for optical wavelengths is included,

there is a significant reduction in improvement, but still better than the Chu result.

Comment will be given later on the proper choice of dispersion model. Part of the

improvement in bandwidth is due to the major decrease in efficiency: a 5% efficient

antenna has 20 times the bandwidth of 100% efficient antenna. Simulations were

performed with HFSS, a finite-element simulation code. However, these simulations,

and all others, are of little value unless the detailed fine structure of all themetallic and

dielectric pieces that make up the thin shell is simulated.

All evidence to date points to negative parameter properties existing under plane

wave excitation. Furthermore, these properties appear to exist only for regular

structures large in wavelengths. The mutual coupling in such structure, which is an

integral part of their performance, is well represented by Floquet modes in the

periodic structure. When there is no unit cell, and the metamaterial structure is small

in wavelengths, the mutual coupling among internal components is vastly different.

We believe that this in essence removes any negative properties.

Early studies on metamaterial antennas assumed no dispersion. But of course any

material exhibiting any negative parameters must be dispersive, and the dispersion

can significantly reduce bandwidth, and can sometimes increase loss markedly.

Karawas and Collin (2008) use a more appropriate dispersion model and showed that

without dispersion the structure can exhibit a non-Foster reactance, and that with

dispersion this reactance disappears, and the magical properties of the thin shell also

FIGURE A.34 Dipole in metamaterial shell. Courtesy of Ziolkowski and Kipple (2003).
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disappear. See Tretyakov et al. (2005). The Erentok paper also uses the incorrect Q

formula: it is shown (Hansen and Collin, 2009) that the TM1 Q formula is a simple

two-term formula and it is exact. When the energy inside the sphere is included as by

Thal, all of the Chu formulas have an infinite number of terms.

Much effort and computer time have been spent on metamaterial antennas, but

there is a dearth of measurements. The only measurement on the dipole with shell

that has been published (Holloway et al., 2007; Greegor et al., 2009) was unfortu-

nately inconclusive. The measurements were poorly planned and badly executed.

The test antenna was very small compared to the shell, and the feeding structure was

unacceptable. Measurements weremade in a reverberation chamber. These chambers

are excellent for such arcane measurement problems as multipath, and for EMC

measurements on devices where cable terminals are unavailable. To have validity, the

antenna and shell should have undergone gain measurements on a compact range, in

an anechoic chamber, or as last resort on an outdoor range. From the measured gain,

one can adduce efficiency. Bandwidth can also be readily measured under such

setups. As a result, in spite of much analytical activity on dipoles in shells, no

reputable measurements exist.

REFERENCES

ABRAMOWITZ, M. AND STEGEN, I. A.Handbook of Mathematical Functions, National Bureau of

Standards, 1970, Section 21.

ADAMS, A. T. AND LYON, J. A. M. Ferrite Loaded Slot and Traveling Wave Antennas. USAF

Antenna Research and Development Symp., Allerton, IL, 1963.

ADAMS, A. T. ET AL. Pattern and Efficiency Studies of Miniaturized Slot Antennas Utilizing

High “Q” Materials.USAF Antenna Research and Development Symp., Allerton, IL, 1962.

ADAMS, J. J. AND BERNHARD, J. T. A Class of Electrically Small Spherical Antennas with Near-

Minimum Q. Antenna Applications Symp., Allerton, IL, 2008, pp. 86–103.

ALBEE, T. K. Submarine Communications Antenna System, U.S. Patent No. 3,528,014,

June 10, 1966.

BAHR, A. J. On the Use of Active Coupling Networks with Electrically Small Receiving

Antennas. Trans. IEEE, Vol. AP-25, November 1977, pp. 841–845.

BELROSE, J. S. Short Antennas for Mobile Operation—Loading theWhip for Low Frequencies.

QST, September 1953, pp. 30–35, 108.

BELROSE, J. S. Performance Analysis of Small Tuned Transmitting Loop Antenna as Evaluated

by Experiment and Simulation. IEEE AP Mag., Vol. 49, June 2007, pp. 128–132.

BEST, S. R. On the Performance Properties of the Koch Fractal and Other Bent Wire

Monopoles. Trans. IEEE, Vol. AP-51, June 2003, pp. 1292–1300.

BEST, S. R. A Discussion on the Properties of Electrically Small Self-Resonant Wire Antennas.

IEEE AP Mag., Vol. 46, December 2004a, pp. 9–22.

BEST, S. R. The Radiation Properties of Electrically Small Folded Spherical Helix Antennas.

Trans. IEEE, Vol. AP-52, April 2004b, pp. 953–960.

BEST, S. R. Low Q Electrically Small Linear and Elliptical Polarized Dipole Antennas. Trans.

IEEE, Vol. AP-53, March 2005, pp. 1047–1053.

272 A WORLD HISTORY OF ELECTRICALLY SMALL ANTENNAS



BROWN, G. H. A Critical Study of the Characteristics of Broadcast Antennas as Affected by

Antenna Current Distribution. Proc. IRE, Vol. 24, January 1936, pp. 48–81.

BULGERIN, M. A. AND WALTERS, A. B. Small Antenna Investigation, NOLC Report 154, 1954,

pp. 67–83.

CARTER, P. S. AND BEVERAGE, H. H. Early History of the Antennas and Propagation

Field Until the End of World War I, Part I—Antennas. Proc. IRE, Vol. 50, May 1962,

pp. 679–682.

CHEN, K. C. AND WARNE, L. K. A Uniformly Valid Loaded Antenna Theory. Trans. IEEE,

Vol. AP-40, November 1992, pp. 1313–1323.

CHU, L. J. Physical Limitations of Omni-Directional Antennas. J. Appl. Phys., Vol. 19,

December 1948, pp. 1163–1175.

COLLIN, R. E. Minimum Q of Small Antennas. J. Electromagn. Waves Appl., Vol. 12, 1998,

pp. 1369–1393.

COLLIN, R. E. AND ROTHSCHILD, S. Evaluation of Antenna Q. Trans. IEEE, Vol. AP-12, January

1964, pp. 23–27.

COPELAND, J. R., ROBERTSON, W. J., AND VERSTRAETE, R. G. Antennafier Arrays. Trans. IRE,

Vol. AP-12, March 1964, pp. 227–233.

CRISSON, G. Negative Impedances and Twin 21-Type Repeater. Bell Syst. Tech. J., Vol. 10,

July 1931, pp. 485–513.

CZERWINSKI, W. P. On Optimizing Efficiency and Bandwidth of Inductively Loaded Antennas.

Trans. IEEE, Vol. AP-13, September 1965, pp. 811–812.

DANIEL, J. P., DUBOST, G., AND ROSPARS, J. Transistor-Fed Thick Folded Dipole with Large

Bandwidth at Reception. Electron. Lett., Vol. 11, February 1975, pp. 90–92.

DESCHAMPS, G. AND SICHAK, W. Microstrip Microwave Antenna. USAF Antenna Research and

Development Symp., Allerton, IL, 1953.

Dockon, Inc., Reno, NV, Microwaves and RF, May 2010.

DUNLAVY, J. H. Wide Range Tunable Transmitting Loop Antenna, U.S. Patent No. 3,588,905,

June 28, 1971.

ERENTOK, A. AND ZIOLKOWSKI, R. W. An Efficient Metamaterial-Inspired Electrically-Small

Antenna. Microwave Opt. Technol. Lett., Vol. 49, June 2007, pp. 1287–1290.

FENWICK, R. C. A New Class of Electrically Small Antennas. USAF Antenna Research and

Development Symp., Allerton, IL, 1964.

FLACHENECKER, G. ETAL. Active Receiving Antennas, Elektronica en Telecommunicatie 6, June

16, 1972, pp. ET 74–ET 80.

FOSTER, R. M. A Reactance Theorem. Bell Syst. Tech. J., Vol. 3, April 1924, pp. 259–267.

FOURNIER, M. AND POMERLEAU, A. Experimental Study of an Inductively Loaded Short

Monopole Antenna. Trans. IEEE, Vol. VT-27, February 1978, pp. 1–6.

FROST, A. D. Parametric Amplifier Antenna. Proc. IRE, Vol. 48, June 1960, pp. 1163–1164.

GALEJS, J. Dielectric Loading of Electric Dipole Antennas. J. Res. NBS D: Radio Propag.,

Vol. 66D, September–October 1962, pp. 557–562.

GOUBAU, G. Multi-Element Monopole Antennas. Proc. Workshop on Electrically Small

Antennas, USARO, Ft. Monmouth, NJ, May 6–7, 1976, pp. 63–67.

GREEGOR, R. B. ET AL. Demonstration of Impedance Matching Using a mu-Negative (MNG)

Metamaterial. IEEE AWPL, Vol. 8, 2009, pp. 92–95.

REFERENCES 273



GRIMES, D.M. ANDGRIMES, C. A. Power inModal Radiation Fields: Limitations of the Complex

Poynting Theorem and the Potential for Electrically Small Antennas. J. Electromagn.

Waves Appl., Vol. 11, 1997, pp. 1721–1747.

GRIMES, D. M. AND GRIMES, C. A. Radiation Q of Dipole-Generated Fields. Radio Sci., Vol. 34,

March–April 1999, pp. 281–296.

HANSEN, R. C. Formulation of Echelon Dipole Mutual Impedance for Computer. Trans. IEEE,

Vol. AP-20, November 1972, pp. 780–781.

HANSEN, R. C. Efficiency Transition Point for Inductively Loaded Monopole. Electron. Lett.,

Vol. 9, March 1973, pp. 117–118.

HANSEN, R. C. Efficiency and Matching Tradeoffs for Inductively Loaded Short Antennas.

Trans. IEEE, Vol. COM-23, April 1975a, pp. 430–435.

HANSEN, R. C. Optimum Inductive Loading of Short Whip Antennas. Trans. IEEE, Vol. VT-24,

May 1975b, pp. 21–29.

HANSEN, R. C.Wideband Dipole Arrays Using Non-Foster Coupling.Microwave Opt. Technol.

Lett., Vol. 38, September 25, 2003, pp. 453–455.

HANSEN, R. C. Linear Connected Arrays. IEEE Antenn. Wireless Propag. Lett., Vol. 3, 2004a,

pp. 154–156.

HANSEN, R. C. Non-Foster and Connected Planar Arrays. Radio Sci., Vol. 39, 2004b, RS4004.

HANSEN, R.C.Electrically Small, Superdirective, and SuperconductingAntennas, Wiley, 2006.

HANSEN, R. C. Q and Bandwidth of Electrically Small Antennas. Microwave Opt. Technol.

Lett., Vol. 49, May 2007, pp. 1170–1171.

HANSEN, R. C. Phased Array Antennas, Second Edition, Wiley, 2009.

HANSEN, R. C. AND BURKE, M. Antennas with Magneto-Dielectrics. Microwave Opt. Technol.

Lett., Vol. 26, July 2000, pp. 75–77.

HANSEN, R. C. AND COLLIN, R. E. A New Chu Formula for Q. IEEE AP Mag., Vol. 51, October

2009, pp. 38–41.

HARRIS, A. D. AND MYERS, G. A. An Investigation of Broadband Miniature Antennas, Naval

Postgraduate School Report 52MV8091A, September 1968.

HARRISON, JR., C. W. Monopole with Inductive Loading. Trans. IEEE, Vol. AP-11, July 1963,

pp. 394–400.

HIRASAWA, K. AND HANEISHI, M. Analysis, Design, and Measurement of Small and Low-Profile

Antennas, Artech House, Dedham, MA, 1991, Chapter 5.

HOLLOWAY, C. L. ET AL. Metamaterials and Metafilms: Overview and Applications. IEEE EMC

Symp., 2007.

JAISSON, D. Simple Model for the Input Impedance of a Wire Monopole Radiator with a

Dielectric Coat. IET Microwaves Antenn. Propag., Vol. 2, 2008, pp. 316–323.

JAMES, J. R. AND BURROWS, R. M. Resonance Properties of Dielectric-Loaded Short Unipoles.

Electron. Lett., Vol. 9, 1973, p. 300.

JORDAN, E. C. Final Engineering Report, ContractW 33-038-ac-20778(20018), February 1953,

pp. 30–71.

JORDAN, E. C. AND HANSEN, R. C. Ferrite Antennas for High Speed Aircraft. USAF Antenna

Research and Development Symp., Allerton, IL, 1952.

KARAWAS, G. K. AND COLLIN, R. E. Spherical Shell of ENGMetamaterial Surrounding a Dipole

Antenna. Proc. IEEE MILCOM, 2008, pp. 1–7.

KILDAL, P.-S. Comments on “Application of Double Negative Materials to Increase the Power

Radiated by Electrically Small Antennas”. Trans. IEEE, Vol. AP-54, February 2006, p. 766.

274 A WORLD HISTORY OF ELECTRICALLY SMALL ANTENNAS



KIM, O. S., BREINBJERG, O., AND YAGHJIAN, A. D. Electrically Small Magnetic Dipole Antennas

with Quality Factors Approaching the Chu Lower Bound. Trans. IEEE, Vol. AP-58, June

2010, pp. 1898–1906.

LAMENSDORF, D. An Experimental Investigation of Dielectric-Coated Antennas. Trans. IEEE,

Vol. AP-15, November 1967, pp. 767–771.

LANDSTORFER, F. M. AND MEINKE, H. H. Transistorized Microwave Antenna with 1GHz Centre

Frequency. European Microwave Conf., Stockholm, August 1971, pp. B7/4: 1–4.

LIN, C. J., NYQUIST, D. P., AND CHEN, K. M. Short Cylindrical Antennas with Enhanced

Radiation or High Directivity. Trans. IEEE, Vol. AP-18, July 1970, pp. 576–580.

LINVILL, J. G. Transistor Negative-Impedance Converters. Trans. IRE, Vol. 41, June 1953,

pp. 725–729.

MACLEAN, T. S. M. AND MORRIS, G. Short Range Active Transmitting Antenna with Very Large

Height Reduction. Trans. IEEE, Vol. AP-23, March 1975, pp. 286–287.

MACLEAN, T. S. M. AND RAMSDALE, P. A. Signal/Noise Ratio for Short Integrated Antennas.

Electron. Lett., Vol. 11, February 1975, pp. 62–63.

MANDELBROT, B. B. Fractals: Form, Chance and Dimension, W. H. Freeman, 1977.

MANDELBROT, B. B. The Fractal Geometry of Nature, W. H. Freeman, 1982.

MASTERS, R. W. Small Tunable Cavity Antenna for Nominally Circular Polarization. USAF

Antenna Research and Development Symp., Allerton, IL, 1952.

MEINKE, H. H. Transistors Integrated with Electrically Small Radiators. USAF Antenna

Research and Development Symp., Allerton, IL, 1966.

MEINKE, H. H. AND LANDSTORFER, F. M. Noise and Bandwidth Limitations with Transistorized

Antennas. IEEE AP Symp., 1968, pp. 245–246.

MERRILL, JR., J. L., ROSE, A. F., AND SMETHURST, J. O. Negative Impedance Telephone

Repeaters. Bell Syst. Tech. J., Vol. 33, September 1954, pp. 1055–1092.

PEDINOFF, M. E. The Negative-Conductance Slot Amplifier. Trans. IRE, Vol. MTT-9, Novem-

ber 1961, pp. 557–566.

POGGIO, A. J. AND MAYES, P. E. Bandwidth Extension for Dipole Antennas by Conjugate

Reactance Loading. Trans. IEEE, Vol. AP-19, July 1971, pp. 544–547.

POLK, C. Resonance and Supergain Effects in Small Ferromagnetically or Dielectrically

Loaded Biconical Antennas. Trans. IRE, Vol. AP-7, December 1959, pp. S414–S423.

POLYDOROFF, W. J. Antenna System for Wireless Communication, U.S. Patent No. 2,266,262,

December 16, 1941.

POPOVIC, B. D. CAD of Wire Antennas and Related Radiating Structures, Research Studies

Press/Wiley, 1991.

POPOVIC, B. D., DRAGOVIC, M. B., AND DJORDJEVIC, A. R. Analysis and Synthesis of Wire

Antennas, Research Studies Press/Wiley, 1982.

QUIRIN, J. D. A Study of High-Frequency Solid-State Negative-Impedance Converters for

Impedance Loading of Dipole Antennas, MS Thesis, University of Illinois, Urbana, 1971.

RAYMOND, R. C. AND WEBB, W. Radiation Resistances of Loaded Antennas. J. Appl. Phys.,

Vol. 20, August 1948, pp. 328–330.

RICHMOND, J. H. AND NEWMAN, E. H. Dielectric Coated Wire Antennas. Radio Sci., Vol. 11,

January 1976, pp. 13–20.

SKAHILL, G., RUDISH, R. M., AND PIERO, J. A. Electrically Small, Efficient, Wide-Band, Low-

Noise Antenna Elements. Antenna Applications Symp., Allerton, IL, 1998, pp. 214–231.

REFERENCES 275



SMITH, C. E. AND JOHNSON, E. M. Performance of Short Antennas. Proc. IRE, Vol. 35, October

1947, pp. 1026–1038.

STORER, J. E. Impedance of Thin-Wire Loop Antennas. Trans. AIEE, Part 1: Commun.

Electron., Vol. 75, November 1956, pp. 606–619.

STUART, H. R. Eigenmode Analysis of Small Multielement Spherical Antennas. Trans. IEEE,

Vol. AP-56, September 2008, pp. 2841–2851.

STUART, H. R. AND TRAN, C. Subwavelength Microwave Resonators Exhibiting Strong

Coupling to Radiation Modes. Appl. Phys. Lett., Vol. 87, 2005, 151108.

STUART, H. R. AND TRAN, C. Small Spherical Antennas Using Arrays of Electromagnetically

Coupled Planar Elements. IEEE Antenn. Wireless Propag. Lett., Vol. 6, 2007, pp. 7–10.

STUART, H. R., BEST, S. R., AND YAGHJIAN, A. D. Limitations in Relating Quality Factor to

Bandwidth in a Double Resonance Small Antenna. IEEE Antenn. Wireless Propag. Lett.,

Vol. 6, 2007, pp. 460–463.

SYLUSAR, V. I. 60 Years of Electrically Small Antenna Theory. Int. Conf. on Antenna Theory

and Techniques, Sevastopol, Ukraine, September 17–21, 2007, pp. 116–118.

THAL, JR., H. L. New Radiation Q Limits for Spherical Wire Antennas. Trans. IEEE, Vol. AP-

54, October 2006, pp. 2757–2763.

TRETYAKOV, S. A. ET AL. The Influence of Complex Material Coverings on the Quality Factor of

Simple Radiating Systems. Trans. IEEE, Vol. AP-53, March 2005, pp. 965–970.

TURNER, E. M. Electrically Small Antennas Made Easy. USAF Antenna R&D Program,

Allerton, IL, 1970.

TURNER, E. M. Broadband Passive Electrically Small Antennas for TVApplication. Antenna

Applications Symp., Allerton, IL, 1977.

TURNER, E. M. AND RICHARD, D. J. Development of an Electrically Small Broadband Antenna.

USAF Antenna Research and Development Symp., Allerton, IL, October 1968.

VAN SUCHTELEN, H. Ferroxcube Aerial Rods. Electron. Appl. Bull., Vol. 13, No. 6, 1954,

pp. 88–100.

WAIT, J. R. Receiving Properties of a Wire Loop with a Spherical Core. Can. J. Technol.,

Vol. 31, January 1953, pp. 9–14.

WATT, A. D. VLF Radio Engineering, Pergamon Press, 1967, Table 2.8.1.

WHEELER, H. A. Fundamental Limitations of Small Antennas—AHelical Antenna for Circular

Polarization. Proc. IRE, Vol. 35, December 1947, pp. 1479–1488.

WHEELER, H. A. The Spherical Coil as an Inductor, Shield, or Antenna. Proc. IRE, Vol. 46,

September 1958, pp. 1595–1602.

WHEELER, H. A. The Radiansphere Around a Small Antenna. Proc. IRE, Vol. 47, August 1959,

pp. 1325–1331.

ZIOLKOWSKI, R. W. AND ERENTOK, A. Metamaterial-Based Efficient Electrically Small

Antennas. Trans. IEEE, Vol. AP-54, July 2006, pp. 2113–2130.

ZIOLKOWSKI, R. W. AND ERENTOK, A. At and Below the Chu Limit: Passive and Active Broad

Bandwidth Metamaterial-Based Electrically Small Antennas. IET Microwaves Antenn.

Propag., Vol. 1, 2007, pp. 116–128.

ZIOLKOWSKI, R. W. AND KIPPLE, A. D. Application of Double Negative Materials to Increase the

Power Radiated by Electrically Small Antennas. Trans. IEEE, Vol. AP-51, October 2003,

pp. 2626–2640.

276 A WORLD HISTORY OF ELECTRICALLY SMALL ANTENNAS



APPENDIX B

DEFINITIONS OF TERMS
USEFUL TO ESA

Bandwidth The frequency range over which the impedance

mismatch factor does not exceed a specified value.

Common values are half-power (VSWR � 5:828)
and 88% power (VSWR � 2). Bandwidth is often

expressed as a percent; the frequency range is divided

by the center frequency.

Broadband antenna An antenna whose bandwidth is roughly an octave or

more.

Directivity The ratio of the peak of the radiation intensity to the

radiation intensity averaged over all directions.

Efficiency The ratio of peak radiation intensity to the one that

would be obtained if conduction and dielectric losses

were absent.

ESA An electrically small antenna; usually taken as fitting in

a sphere of diameter l=4p ¼ 0:0796l.
Gain Directivity reduced by conduction and dielectric

losses, and by impedance mismatch losses.

Note: The IEEE definition does not include

mismatch losses; industry uses the definition given

above.

Radian sphere A hypothetical sphere of radius l=2p; the sphere

encloses the antenna.

Note: ESA usually use a radian sphere whose radius

is half that above.

Small Antenna Handbook, Robert C. Hansen and Robert E. Collin.
� 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

277



Superdirective antenna An antenna, usually an array, with directivity higher

than that of the same array with all elements uniformly

excited.

Supergain antenna The low radiation resistance of most superdirective

antennas produces low efficiency, so that supergain is

usually not realized.

TE; TM modes Electric and magnetic fields that can be expressed as a

spherical mode. These utilize spherical Bessel and

Hankel functions, associated Legendre functions, and

trig functions.
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APPENDIX C

SPHERICAL SHELL OF ENG
METAMATERIAL SURROUNDING
A DIPOLE ANTENNA

GEORG K. KARAWAS
US Army CERDEC S&TCD, Fort Monmouth, NJ, USA

ROBERT E. COLLIN
Case Western Reserve University, Cleveland, OH, USA

C.1 INTRODUCTION

In recent years, considerable interest has arisen with respect to the application of

materials with negative permittivity and/or negative permeability to various elec-

tromagnetic devices. Ideal lossless and nondispersive materials with negative

permittivity and permeability do not exist in nature. Artificial materials with these

properties are referred to as metamaterials (Smith et al., 2000).

Recently, several papers have appeared that consider the use of a thin spherical

shell of metamaterial surrounding a small dipole antenna for the purpose of

improving its electrical performance (Ziolkowski and Kipple, 2003; Ziolkowski

and Erentok, 2006; Tretyakov et al., 2005).

In Ziolkowski and Kipple (2003), the thin spherical shell consisted of ideal double

negative material with permittivity «¼ � «0 and permeability m¼ �m0. In

Ziolkowski and Erentok (2006), the spherical shell had a negative permittivity

(epsilon negative or ENG material) with « ¼ � 3«0; the solution for the electro-

magnetic field was obtained numerically.

In both of the papers mentioned above, it was found that the presence of a thin

spherical shell surrounding the small dipole antenna resulted in a sharp resonance

effect when the radial thickness of the shell was varied. It was also found that

the frequency response of the dipole antenna showed a resonance effect but the

resonance curve half-power bandwidth was not nearly as sharp.

Small Antenna Handbook, Robert C. Hansen and Robert E. Collin.
� 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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The effects uncovered were somewhat unexpected and, unfortunately, the nu-

merical solutions did not provide a physical insight into the fundamental causes for

the observed resonances. For this reason, we have reconsidered the dipole antenna

surrounded by a thin shell of ENG material.

We use the field equivalence principle to construct a constant current source

consisting of a current sheet on the surface of a perfect magnetic conducting sphere,

and its dual, a constant voltage source consisting of a sheet of magnetic current on the

surface of a perfect electric conducting sphere.

We then apply spherical transmission line theory, which leads to a straightforward

exact analytical solution for the problem involving only TM10 modes. The use of

transmission line theory makes it unnecessary to solve a system of simultaneous

equations, such as that used in the Special Issue of the IEEE Transactions on

Microwave Theory and Applications (2005).

Our analytical solution, based on transmission line theory, provides a physical

insight into why the resonances occur. Within the spherical ENG shell, the formal

expression that usually represents the time-averaged electric field energy in the

complex Poynting vector theorem, now in the context of the interpretation of the

complex Poynting vector theorem, represents inductive energy. Outside the ENG

shell, the reactive energy in the near-zone field region of the TM10 mode is

predominantly capacitive field energy. Thus, for a certain critical thickness of the

ENG shell, a condition of resonance can occur whenever the stored capacitive and

inductive energies are equal.

The transmission line solution also shows that the inner and outer boundaries

between the ENG shell and free space are highly reflective. The power transmission

across these boundaries is predominantly reactive power with relatively little real

power. The shell acts like a high-Q resonator.

Our analysis also explains why the frequency response of this system shows a

much broader impedance bandwidth than would be expected based on the high

energy-based Q of the system.

We construct an equivalent circuit with lumped elements consisting of a large

capacitive reactance in series with a small inductive reactance and a small series

radiation resistance to represent the field conditions outside the shell.

The circuit elements representing the field behavior within the shell are a large

negative capacitance arising from the negative permittivity, along with a small

inductive reactance arising from the relatively small amount of normal stored

magnetic energy within the shell.

The negative capacitance can also be viewed as a non-Foster inductive

reactance having an inverse dependence on frequency. Such a reactance results in

an equivalent impedance-related Q that is as small as a few percent of the intrinsic

energy-based Q.

There is no simple relationship between the energy-based Q and the impedance

half-power bandwidth when non-Foster reactance elements are present. The much

greater impedance half-power bandwidth does not represent a violation of the Chu

lower bound on the energy-based Q. The equivalent parallel resonant circuit is

similar to the classical parallel RLC circuit.
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The small radiation resistance ra can be represented as a large parallel resistance

having the classical value ofQ2ra, where Q is the energy-basedQ. It is found that the

equivalent parallel resistance can be as large as 600,000W or more because the

energy-based Q in examples considered is around 1000. Likewise, the equivalent

reactance can be very large and passes through zero at resonance.

Our analysis does not reveal any useful set of conditions that would yield a

reasonable value for the radiation resistance and a small radiation reactance. Thus,

the thin ENG shell does not appear to be useful for the purpose of providing an

acceptable impedance match for the small dipole antenna. See also Tretyakov

et al. (2005).

C.2 IMPEDANCE TRANSFORMATION ALONG A SPHERICAL
TRANSMISSION LINE

We can view space as a spherical transmission line and will consider the TM10 mode

for which the transverse magnetic field is given by

H� ¼ C1h
2
1ðkrÞþC2h

1
1ðkrÞ ðC:1Þ

where h11 and h21 are, respectively, the spherical Hankel functions of the first and

second kind and of order 1. These are defined by

h11ðrÞ ¼ � j

r2
þ 1

r

� �
ejr and h21ðrÞ ¼

j

r2
� 1

r

� �
e� jr ðC:2Þ

where k ¼ v
ffiffiffiffiffiffi
m«

p
, Z ¼ v

ffiffiffiffiffiffiffiffiffi
m=«

p
, and r¼ kr.

We have omitted throughout a factor sin u that describes the variation of the field

with the polar angle. The transverse electric field is given by

Eu ¼ ½C1Z
þ
w ðrÞh21ðrÞþC2Z

�
w ðrÞh11ðrÞ� ðC:3Þ

where the wave impedances Z�
w are now defined by

Z þ
w ðrÞ ¼ 1� r2 þ jr

jr� r2
Z ðC:4aÞ

Z �
w ðrÞ ¼ 1� r2 � jr

r2 þ jr
Z ¼ �ðZ þ

w Þ* ðC:4bÞ

Moreover, we can express C2 in Equations C.1 and C.3 as G2C1, where G2 can be

considered to be a reflection coefficient.
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Equations C.1 and C.3 are similar to the transmission line equations for voltage

and current but now the wave impedances depend on the variable r as well.

Consider now a problem for which the medium beyond r¼ r2 is free space and the

medium for r less than r2 is a dielectric. Let k and k0 be the propagation constants in

the dielectric medium and free space, respectively, and Z0 the intrinsic impedance of

free space. Equations C.1 and C.3 represent the incident and reflected waves in the

dielectric medium. In the free space region beyond r¼ r2, there will be only outgoing

waves, so we will have

H�ðk0rÞ ¼ C3h
2
1ðk0rÞ ðC:5aÞ

Eu ¼ C3Z
þ
w ðk0rÞh21ðk0rÞ ðC:5bÞ

The boundary conditions require equality of all tangential fields on either side of

the common boundary at r ¼ r2, which implies that their respective ratios, defined as

the total wave impedance, must also match:

Z þ
w ðkr2Þh21ðkr2ÞþG2Z

�
w ðkr2Þh11ðkr2Þ

h21ðkr2ÞþG2h
1
1ðkr2Þ

¼ Z þ
w ðk0r2Þ ðC:6Þ

which can be solved for G2 to give

G2 ¼ Z þ
w ðkr2Þ� Z þ

w ðk0r2Þ
Z þ
w ðk0r2Þ� Z �

w ðkr2Þ
h21ðkr2Þ
h11ðkr2Þ

ðC:7Þ

Once G2 is evaluated, the amplitude C3 can be determined in terms of C1 from

Equations C.1 and C.5a:

C3 ¼ h21ðkr2ÞþG2h
1
1ðkr2Þ

h21ðk0r2Þ
C1

On a second interface at r ¼ r1, we can express the transverse fields at r1 by

simply setting r ¼ r1 in Equations C.1 and C.3. The ratio of the transverse

electric field to the transverse magnetic field at r1 defines the total wave

impedance at r1.

If we have an incident and a reflected field in the region r < r1, we can repeat the

matching of the total wave impedances at this interface. We can then solve for the

reflection coefficient at this interface as well as all the field amplitudes, except that of

the incident wave in the region r < r1, which is determined by a boundary condition

at the source. There will be some straightforward algebra involved but the overall

procedure based on transmission line analysis is quicker and easier than solving a

system of simultaneous equations, which for the problem described above involves
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four unknown amplitudes that must be found in terms of that of the incident wave in

the region r < r1.

When there are several interfaces present, the total transverse field wave im-

pedances are equated at each interface and the corresponding reflection coefficients

solved for. The reflected and transmitted wave amplitudes at each interface are then

easily solved for. This process is carried through until the input region is arrived at. In

the input region, the only remaining unknown amplitude is that of the incident wave

and this is determined by a boundary condition at the source. The use of transmission

line theory avoids the need to solve a large system of simultaneous equations and also

gives a much clearer interpretation of the solution in terms of incident, reflected, and

transmitted waves.

C.3 WAVE SOLUTION WITHIN A SPHERICAL SHELL OF ENG
MATERIAL

We now consider the wave solution within a spherical shell of material with a

negative dielectric permittivity as shown in Figure C.1. The inner radius of the shell

is r1 and the outer radius is r2. The shell material is referred to as epsilon negative

material or ENG material (Epsilon NeGative). The propagation constant for this

medium is given by

v
ffiffiffiffiffiffiffiffi
«m0

p ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� j«jm0

p
¼ � jk ðC:8Þ

r2

r1

FIGURE C.1 A thin spherical shell of ENG material surrounding a small dipole antenna.
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The equations for the field are the same as those given by Equations C.1 and C.2

provided we replace k by � jk. When this is done, we find that

h21ð� jkÞ ¼ � j
1

r2
þ 1

r

� �
e� kr ¼ f þ ðrÞ

and

h11ð� jkÞ ¼ j
1

r2
� 1

r

� �
ekr ¼ f � ðrÞ

where r¼ kr and the new wave functions are represented by the symbols f þ ðrÞ and
f � ðrÞ. The new expressions for the wave functions and wave impedances become

f þ ðkrÞ ¼ h21ð� jkrÞ ðC:9aÞ

f � ðkrÞ ¼ h11ð� jkrÞ ðC:9bÞ

Z þ ðrÞ ¼ jZ
1þ r2 þ r

r2 þ r
ðC:9cÞ

Z � ðrÞ ¼ � jZ
1þ r2 � r

r2 � r
ðC:9dÞ

where

ffiffiffiffiffiffi
m0

«

r
¼ j

ffiffiffiffiffiffi
m0

j«j
r

¼ jZ

Note that in the ENG material the wave impedances are pure imaginary and the

waves are evanescent.

We can solve for G2 as outlined earlier or by making appropriate substitutions in

Equation C.7. We replace the wave impedances Z þ
w ðkr2Þ by Zþ (kr2) and Z �

w ðkr2Þ
by Z � ðkr2Þ.

In addition, the ratio of the two Hankel functions in Equation C.7 is replaced by

the ratio f þ ðkr2Þ=f � ðkr2Þ. For this problem, the solution for G2 is

G2 ¼ Z þ ðkr2Þ� Z þ
w ðk0r2Þ

Z þ
w ðk0r2Þ� Z � ðkr2Þ

f þ ðkr2Þ
f � ðkr2Þ ðC:10Þ

At the inner surfaceof theENGshell, r¼ r1.The totalwave impedanceat this surface is

the ratioof the transverseelectricfield to the transversemagneticfieldatr¼ r1.Wehave
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H�ðkr1Þ ¼ C1½f þ ðkr1ÞþG2f
� ðkr1Þ� ðC:11aÞ

Euðkr1Þ ¼ C1½Z þ ðkr1Þf þ ðkr1ÞþG2Z
� ðkr1Þf � ðkr1Þ� ðC:11bÞ

We will call the total wave impedance at this inner surface Zin(kr1). Using

Equation C.11, we obtain

Zinðkr1Þ ¼ Z þ ðkr1Þf þ ðkr1ÞþG2Z
� ðkr1Þf � ðkr1Þ

f þ ðkr1ÞþG2f � ðkr1Þ ðC:12Þ

If we have a small dipole antenna located at the origin and within the region r � r1,

then the impedance presented to this dipole antenna at the surface at r¼ r1 is that

given by Equation C.12. The purpose of using a thin spherical shell of ENG material

is to try and present a more favorable impedance to the dipole antenna so as to

enhance the radiation from this antenna.

C.3.1 Power Transmission in ENG Media

Consider a field consisting of a forward and backward evanescent wave in ENG

media. We assume that it consists of a TM10 mode only and we will omit the sin u
factor. The transverse magnetic and electric fields are expressed as follows:

H� ¼ C½f þ þG2f
� �

Eu ¼ C½jXþ f þ þG2jX
� f � �

where C is an amplitude factor and the wave impedances are

Z þ ðkrÞ ¼ jZ
1þ k2r2 þ kr

k2r2 þ kr
¼ jX þ

Z � ðkrÞ ¼ � jZ
1þ k2r2 � kr

k2r2 � kr
¼ jX�

Note that both Xþ and X� are positive for kr less than 1. The reflection coefficient

will be expressed as G2 ¼ Gr þ jGi. The complex Poynting vector is proportional to

jCj2½jXþ f þ þ jG2X
� f � �½f þ þG2f

� �*

When we multiply by 1/2, restore the sin u factors, and integrate over the surface of a
sphere with radius r, we obtain

P ¼ jCj2 jX þ f þ þ jG2X
� f �½ �½f þ þG2f

� �* 4pr
2

3
ðC:13Þ

WAVE SOLUTION WITHIN A SPHERICAL SHELL OF ENG MATERIAL 285



From the definitions for fþ and f� , we see that jXþ f þ ¼ jXþ f þ j and jX � f � ¼
� jX� f � j. The real and imaginary parts of the Poynting vector are thus given by

Pr ¼ 4pr2

3
jCj2Gijf þ f � jðX��Xþ Þ

¼ jCj2Gijf þ f � j 8pk2r4

3ð1� k2r2Þ ¼ jC2jGi

8p
3k2

Z0

ðC:14aÞ

Pi ¼ 4pr2

3
jC2j Xþ jf þ j2 �GrðXþ þX� Þjf þ f � jþ ðG2

r þG2
i ÞX� jf � j2

h i

� 16p
3

jCj2 1

k3r
Z0

ðC:14bÞ

Note that the real power across any spherical surface of radius r is a constant as it

must be in order to conserve power. For a single outward or inward propagating

evanescent wave, there is no real power flow because the wave impedances are pure

imaginary. Real power transfer between the input interface and the output interface

occurs only if there is a reflected wave. Furthermore, the real power depends directly

on the imaginary part of the reflection coefficient G2. Since Gr is very close to unity,

and Gi is very small as calculations show, we set it equal to 1 and also set Gi¼ 0 to

obtain the approximate expression for the reactive power. The ratio of real power

transmitted to the reactive power is given approximately by GiðkrÞ=2, which is very

small. When r¼ r2, therewill be very little real power transmitted across the interface

compared with the amount of reactive power. This is an unfavorable situation as far

as trying to improve the amount of radiated power from a small dipole antenna.

The only parameter in the above analysis that is controlled by the source and input

interface between free space and the DNG shell is the amplitude C of the field

transmitted into the DNG shell.

C.4 DIPOLE ANTENNA SOURCE

In order to make a realistic evaluation of the effect of a thin spherical shell of ENG

material on the radiation properties of a small dipole antenna, we must specify a

realistic model of a dipole antenna. We could consider a small thin wire antenna with

a small gap at the center. The boundary value problem of solving for the current and

radiation from this type of antenna must be done numerically. Furthermore, this type

of dipole would require that we include many spherical mode functions in the

solution. The analysis would become very complex and would require a numerical

solution, which has the disadvantage of obscuring what is happening physically. If

we could use a suitable current distribution on the surface of a small sphere of radius

a, we would have a problem with the required spherical symmetry that would allow

an analytical solution involving only spherical TM10 modes to be constructed. We
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can obtain an equivalent source with the desired properties by use of a field

equivalence principle first stated by Schelkunoff (1936). We assume that the surface

of the sphere with radius a is a perfect magnetic conductor. Just outside this surface,

we place an electric current sheet with a density equal to the total tangential magnetic

field, both the primary field and the scattered field. Since the tangential magnetic field

must vanish on the perfect magnetic conducting surface, this current sheet does

support the total magnetic field in the space exterior to the sphere of radius a. In order

to relate the current sheet density to a real source, we will assume that the real source

is an infinitesimal Hertzian dipole at the origin that radiates a tangential magnetic

field given by

H� ¼ Apsin u h
2
1ðk0rÞ

where Ap is the known primary field amplitude, which is determined by the current in

the Hertzian dipole, and h21ðk0rÞ is the spherical Hankel function of the second kind

and order 1. We choose a small sphere of radius a, which is a perfect magnetic

conductor, on which we specify an electric current sheet of density given by

JðuÞ ¼ � J0 sin u au ¼ �Aph
2
1ðk0aÞsin u au ðC:15Þ

With this known specified current distribution, we can match the total tangential

magnetic field—the sum of the primary and scattered fields—to the current density

on the sphere using only the TM10 mode. The required boundary condition is

ar �H ¼ J ðC:16aÞ

which is equivalent to

H� ¼ J0 ðC:16bÞ

where we have omitted the common factor sin u.
An alternative source that also leads to an easy analytical solution is the use of a

magnetic current sheet on a perfectly conducting metal sphere of radius a. This

corresponds to using a specified voltage to drive the dipole antenna. The solution to

this problem is presented later on in this paper.

In the region a � r � r1, we must include both an outward and an inward

propagating spherical wave since we must match the total field wave impedances

at the surface r ¼ r1 and also satisfy the boundary condition given in Equation C.16b

above.

Thus, we assume that

H� ¼ A
�
h21ðk0rÞþG1h

1
1ðk0rÞ

� ðC:17aÞ

Eu ¼ A
�
Z þ
w ðk0rÞh21ðk0rÞþG1Z

�
w ðk0rÞh11ðk0rÞ

� ðC:17bÞ
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where A is an unknown amplitude constant and G1 is an unknown reflection

coefficient.

At a ¼ r1, these tangential fields must match those given by Equation C.11a. Note

that the amplitude A is different from that of the primary field because the presence of

a spherical shell outside the source region changes the amplitude of the outward

radiated field from the source.

The reflection coefficient can be determined by using the impedance matching

condition at the surface r ¼ r1, which requires that

Eu

H�
¼ Z þ

w ðk0r1Þh21ðk0r1ÞþG1Z
�
w ðk0r1Þh11ðk0r1Þ

h21ðk0r1ÞþG1h
1
1ðk0r1Þ

¼ Zinðkr1Þ

From this equation, we obtain

G1 ¼ Z þ
w ðk0r1Þ� Zinðkr1Þ

Zinðkr1Þ� Z �
w ðk0r1Þ

h21ðk0r1Þ
h11ðk0r1Þ

ðC:18Þ

The remaining boundary condition at the source can be stated as

H� ¼ A
�
h21ðk0aÞþG1h

1
1ðk0aÞ

� ¼ J0 ðC:19Þ

from which the constant A is determined in terms of the specified source strength. If

the reflection coefficient G1 is zero, there is no scattered field and the amplitude A

becomes equal to that of the primary field.

C.5 ANTENNA RADIATION RESISTANCE AND REACTANCE

At the surface r¼ a, the complex Poynting vector is

1

2
EuH

*
� ¼ 1

2
EuJ

*
0

¼ 1

2

Z þ
w ðk0aÞh21ðk0aÞþG1Z

�
w ðk0aÞh11ðk0aÞ

h21ðk0aÞþG1h
1
1ðk0aÞ

J0J
*
0 sin

2 u

where we have restored the sinu factors. We now replace J0 by I0/2pa, which is the

total current measured at the equator of the source sphere. Next we multiply by

a2 sin u and integrate over the surface of the sphere. This produces a factor 8pa2=3.
The total complex radiated power is then found to be

P ¼ 1

3p
Z þ
w ðk0aÞh21ðk0aÞþG1Z

�
w ðk0aÞh11ðk0aÞ

h21ðk0aÞþG1h
1
1ðk0aÞ

I0I
*
0 ðC:20Þ
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Note that,whena ¼ r1, the totalwave impedance at the boundary r ¼ r1 is the sameon

either sideof theboundary.Thus,apart fromthe factor1=3pand thecurrent squared,we
can substitute for the numerator and denominator the expression Zin given by

Equation C.12. This can be verified by substituting for G1 from Equation C.18.

For this case, the computation of the radiation resistance and radiation reactance can

be found without any further elaborate calculation from the expression

P ¼ 1

3p
Z þ ðkr1Þf þ ðkr1ÞþG2Z

� ðkr1Þf � ðkr1Þ
f þ ðkr1ÞþG2f � ðkr1Þ I0I

*
0 ðC:21Þ

The radiation resistance and reactance calculated from the complex Poynting vector

are smaller by a factor 2=3p than those given by Zin in Equation C.12. We only need

the expression given by Equation C.20 when a is less than r1.

Consider the special casewhen the small spherical dipole radiates into a free space

environment.

In this case G1¼ 0, so the complex radiated power is given by

P ¼ 1

3p
Z þ
w ðk0aÞI0I*0

¼ Z0

3p
ðk0aÞ2

1þðk0aÞ2
� j

k0að1þ k20a
2Þ

2
4

3
5I0I*0

ðC:22Þ

The radiation resistance Ra is obtained by equating 1
2
I0I

*
0Ra to the real part of the

complex radiated power. For small values of k0a, we get

Ra ¼ 80p2
2a

l0

� �2
ðC:23Þ

where l0 is the wavelength. This agrees with the classical expression for the radiation
resistance of a small dipole antenna of length 2a. The capacitive reactance of the

small dipole antenna is large since it is proportional to 1=k0a.

C.6 VOLTAGE-DRIVEN DIPOLE ANTENNA

For later reference, we point out that calculations show the real part of G2 to be

slightly greater than unity with a small imaginary part, while the real part of G1 is

slightly less than unity with a very small imaginary part. In Equation C.21, both fþ

and f� are pure real quantities for ENGmedia. Thus, the real part of the denominator

in Equation C.21 can vanish. In Equation C.20, the magnitude of the denominator can

also become very small when the outer radius r2 has the same value that makes the

real part of the denominator in Equation C.20 vanish. This leads to a very large

increase in the radiation resistance. The radiation reactance goes through a very rapid
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change from large positive values to very large negative values in the vicinity of

where the radiation resistance peaks. This is not a normal resonance phenomenon. It

is primarily an interface effect that causes a large impedance mismatch between the

outer boundary of the ENG shell and the free space region when that outer boundary

is located in the near-zone field of the dipole antenna. After transformation back to

the surface at r¼ r1, we can find a critical value of r2 that makes the real part of the

denominator in Equation C.21 for the complex power to vanish. At the point r¼ r1,

the tangential magnetic field, apart from the amplitude factor J0, is almost zero and

the input impedance is almost an open circuit. This makes it very difficult to force a

significant current into the dipole antenna. Note that this phenomenon is not

dependent on the interface to the ENG shell at r¼ r1. The inner boundary of the

ENG shell could be located at a radius r0 < r1 and the total wave impedance in the

outward direction at r ¼ r1 is still given by Equation C.12. The vanishing of the real

part of the denominator does not depend on wave interaction between the inner and

outer boundaries of the ENG shell.

If the dipole antenna is driven by a fixed current, then the amount of radiated

power will be large. But the voltage that would have to be applied to drive the current

into the dipole antenna would be unrealistically large. The local electric field would

be large and any losses present in the media near the dipole antenna would result in

significant losses. In view of the large increase in the input impedance, it would be

more realistic to consider driving the dipole antenna from a specified voltage source.

An equivalent voltage source can be postulated in the form of a magnetic current

source outside of but adjacent to the surface of a metal sphere of radius a. The field

equivalence principle can be used to relate the required strength of the magnetic

current sheet to the strength of the Hertzian dipole at the origin. For this model of a

small dipole radiator, we assume that adjacent to the sphere of radius a we have a

magnetic current sheet given by

Jm ¼ � a�Jm0 sin u ¼ � a�ApZ
þ
w ðk0aÞh21ðk0aÞsin u ðC:24Þ

where Ap is the amplitude of the primary electric field radiated by the Hertzian

dipole.

This model allows us to also account for the losses associated with the electric

current on the metal sphere, which we now assume to have a finite conductivity.

The electric field along the surface of the metal sphere is given by

Eu ¼ JsZs ¼ Js
1þ j

sds
ðC:25Þ

where Js is the current density equal to �H�, s is the conductivity of the sphere, and

ds is the skin depth. The above equation defines the surface impedance Zs.

For this model of the dipole antenna, the boundary condition at the surface of the

small sphere is

Eu þ JsZs ¼ Eu þH�Zs ¼ Jm0 ðC:26Þ
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Just outside the magnetic current source, we have

Eu ¼ A
�
Z þ
w ðk0aÞh21ðk0aÞþG1Z

�
w ðk0aÞh11ðk0aÞ

� ðC:27aÞ

H� ¼ A
�
h21ðk0aÞþG1h

1
1ðk0aÞ

� ðC:27bÞ

where we have dropped the sin u factor and A is an unknown amplitude constant.

When we use these expressions in Equation C.26, we obtain

A ¼ Jm0

½Z þ
w ðk0aÞþ Zs�h21ðk0aÞþG1½Z �

w ðk0aÞþ Zs�h11ðk0aÞ
ðC:28Þ

We will express the equivalent voltage driving the small dipole antenna as being

equal to the total magnetic current across the equator of the small sphere, thus

Vm ¼ 2paJm0

The complex radiated power at r ¼ a is obtained from the integral of the Poynting

vector over the surface of the sphere. It is given by

P ¼ 1

3p

�
Z þ
w h21 þG1Z

�
w h11

��
h21 þG1h

1
1

�*��½Z þ
w þ Zs�h21 þG1½Z �

w þ Zs�h11
��2 VmV

*
m ðC:29Þ

All expressions for Z�
w and h

1;2
1 are evaluated at k0a.

Another useful formula for the complex power can be formed by using

Equation C.26 to obtain

EuH
*
� ¼ H*

�Jm0 �H�H
*
�Zs ðC:30Þ

The term on the left-hand side is proportional to the outward radiated electromag-

netic complex power. The first term on the right-hand side is proportional to the total

power supplied by the source. The last term on the right-hand side has a negative sign

and gives the complex power delivered to the complex surface impedance of the

conducting metal sphere.

We will substitute into the above equation the expressions for the field compo-

nents as given by Equation C.27a and use Equation C.28 to obtain

1

2
EuH

*
� ¼ 1

2

Jm0J
*
m0

�
h21 þG1h

1
1

�*�½Z þ
w þ Zs�h21 þG1½Z �

w þ Zs�h11
	* � 1

2

Jm0J
*
m0

��h21 þG1h
1
1

��2Zs��½Z þ
w þ Zs�h21 þG1½Z �

w þ Zs�h11
��2

Again, all expressions for Z�
w and h

1;2
1 are evaluated at k0a.
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We now use Vm ¼ 2paJm0, restore the sin u factors, and integrate over the surface
of the sphere of radius r ¼ a to obtain the following alternative expression for the

complex power balance equation:

P ¼ 1

3p

�
h21 þG1h

1
1

�*
VmV

*
m�½Z þ

w þ Zs�h21 þG1½Z �
w þ Zs�h11

	* � 1

3p

��h21 þG1h
1
1

��2ZsVmV
*
m��½Z þ

w þ Zs�h21 þG1½Z �
w þ Zs�h11

��2
ðC:31Þ

The left-hand side represents the outward radiated complex power. The first term on

the right-hand side represents the total complex power supplied by the voltage source

while the last term represents the power dissipated in losses in the conducting sphere

and reduces the amount of radiated power.

If we neglect the losses from the current on the metal sphere, that is, set Zs to zero,

the above equation simplifies to

P ¼ 1

3p

�
h21 þG1h

1
1

�*�
Z þ
w h21 þG1Z �

w h11
�* VmV

*
m ðC:32Þ

This expression is the reciprocal of the complex conjugate of that given earlier by

Equation C.20 for the current-driven dipole. Hence, the radiation admittance of the

dipole antenna is the reciprocal of the complex conjugate of the radiation impedance.

This expression shows that, for the voltage-driven dipole, the radiated power

becomes very small whenever the numerator becomes small. This means that the

admittance of the dipole becomes very small. It would not be useful as an antenna

under these conditions.

In the absence of the ENG shell, G1¼ 0. From Equation C.24,

Vm ¼ 2paJm0 ¼ Ap2paZ þ
w ðk0aÞh21ðk0aÞ ¼ Z þ

w ðk0aÞI0 ðC:33Þ

where the last step was the substitution for Ap from Equation C.13 and using

I0 ¼ 2paJ0.When we use this result in Equation C.29 with G1 ¼ 0, the expression for

the complex power becomes equal to that given by Equation C.22. Thus, the two

different sources lead to consistent results. From Equation C.29, it becomes clear

that, whenever the outer radius of the ENG shell is chosen to coincide with the value

needed for resonance, the required voltage needed to produce any significant radiated

power becomes very large.

Our computations show that for an ENG shell with « ¼ � 3«0, r1 ¼ 10 mm, and

r2 ¼ 16:0112 mm at a frequency of 300MHz, the radiation impedance was

(519,685 � j705)W. A minute change in r2 will make the radiation reactance

vanish. Thus, in order to radiate 1W of power, a voltage equal to 1019.5V would

be required. A small change in the value of r2 will dramatically reduce the value of

the radiation resistance and substantially increase the radiation reactance. The

impedance properties of the antenna surrounded by a thin shell of ENG material

are so sensitive to small variations in the thickness of the shell that they would pose

difficult manufacturing problems. If the thickness and frequency are chosen away
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from the resonance point, then the impedance properties of the shell enclosed dipole

are not significantly better than those for a dipole in free space. The ratio of radiation

reactance to radiation resistance is still large and thus poses a difficult impedance

matching problem. This ratio is of order 100. If we increased the size of the dipole to

that of the outer diameter of the shell, say to 34mm, then the reactance to resistance

ratio for the dipole in free space is also of order 100.

Since the constant voltage source leads to results that are the dual of those for the

constant current source, we will not consider the constant voltage source any further.

C.7 NUMERICAL RESULTS

In this section, we present some numerical results that will illustrate the general

features of the spherical shell of ENG material. We assume for simplicity that the

radius a of the source sphere is equal to the inner radius of the spherical shell. We

have chosen this to be 10mm, which corresponds to that considered in Ziolkowski

and Erentok (2006). In Figure C.2, the radiation resistance Ra and reactance Xa are

plotted as a function of the outer radius of the spherical shell having « ¼ � 3«0.
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FIGUREC.2 Plot of radiation resistance Ra and reactance Xa as a function of the outer radius

of the spherical shell. Inner radius is 10mm; «¼ � 3«0.
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The frequency is chosen as 300MHz. This plot shows how extremely sensitive the

condition for resonance is to the thickness of the shell. The 6 dB width of the

resonance-like curve of Ra versus the outer radius of the shell is .025mm. In

Figure C.3, Ra and Xa are shown as a function of frequency for a shell with inner and

outer radii equal to 10 and 16mm, respectively, at a frequency of 300MHz. If the

antenna is driven from a constant current source, then the half-power point occurs

when the resistance and reactance are equal. For a standard resonance curve, this

point occurs where the resistance is one-half of the peak value. The 6 dB width of the

curve for the resistance is approximately 25MHz and the maximum radiation

resistance is about 5.197� 105W at the resonant frequency. The energy-based Q

is 982 and the effective Qe is 300/25¼ 12. The peak positive value of the radiation

reactance is approximately 3.84� 105W. The maximum negative value of the

reactance is approximately � 2.56� 105W. The large impedance bandwidth is

caused by the presence of a non-Foster inductive reactance that is present in the

equivalent circuit for the ENG shell, as we show later on.

C.8 EQUIVALENT CIRCUIT FOR THE ENG SPHERICAL SHELL
RESONATOR

In this section, we will show that the thin spherical shell with ENG material behaves

like a resonator. The closest classical circuit that exhibits the essential features of the
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FIGURE C.3 Plot of Ra and Xa as a function of frequency for a shell with inner radius of

10mm and outer radius of 16mm; «¼ � 3«0.
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ENG shell resonator is the parallel combination of an inductor L and a capacitor C

in series with a small resistance ra as shown in Figure C.4. It is well known from

classical network theory of simple resonant circuits that the ratio of the capacitive

reactance to the series resistance is the Q of the circuit and that when the Q is large

we can replace the small series resistance with a large parallel resistance R given by

R¼Q2ra. The input impedance of this circuit is given by the expression

Zin ¼ jvLR

R


1�v2=v2

0

�þ jvL
¼ R

1þ jðR=vLÞ�ðv�v0Þðvþv0Þ=v2
0

� ðC:34aÞ

By introducing the Q given by R=jvL, this equation can be expressed in the form

Zin ¼ R½1� jQð2Dv=v0Þ�
½1þ 4Q2ðDv=v0Þ2�

ðC:34bÞ

This impedance function has a frequency response similar to that of the thin ENG

spherical shell. The essential concepts underlining this analogy are developed below.

Consider the complex Poynting vector theorem given by

P ¼ 1

2
y
a

EuH
*
� dS�

1

2
y
¥
EuH

*
� dS

¼ 2j

�
vm0

4
:
V

H�H
*
� dV � v«

4
:
V

EuE
*
u dV


 ðC:35Þ

Note that we are evaluating the complex power directed into the volume enclosed.

The first term is the complex power flowing through the surface at r ¼ a. The second

term is the negative of the real power radiated through a spherical surface at infinity.

The volume integrals are classically interpreted as the difference between the time

average of the stored magnetic and electric energy in the enclosed volume. In

general, such an interpretation would be correct only for conventional lossless and

nondispersive media.

Ce

~Ce

Q2ra

~Lc

–C1 –C1

Le

L2 L2

ra

FIGURE C.4 A classical parallel RLC resonant circuit.
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However, even if these terms are not expressions for physical stored energy, they

are still valid for the interpretation of the inductive and capacitive reactances of the

system. Since in ENG media epsilon is negative, we will not make any energy

interpretation of these two terms but we will refer to the integral of the squared

electric field in the ENG shell, where epsilon is negative, as inductive energy and

when combined with the integral involving the square of the magnetic field we see

that within the ENG shell we have only inductive energy.

For TM10 modes in free space, the stored energy in the near-zone field is

predominantly electric, so the net energy stored is capacitive. We can now anticipate

that for a suitable thickness of the ENG shell a condition of resonance can occur

where the inductive and capacitive energies are equal. We have noted earlier that

there is very little real power transmitted across the interface between the ENG shell

and free space. Thus, the boundaries of the ENG shell are highly reflective and one

can anticipate that this could make the structure behave like a high-Q resonator.

A further consideration of thewave impedance of the spherical TM10mode in the

near zone shows that the resistive part is proportional to ðk0rÞ2 and the reactive part
is given by � j=k0r to a good accuracy in the near-zone field region. This

corresponds to a capacitive reactance in series with a small resistance. The inductive

loading from the ENG shell then provides an equivalent parallel inductive reactance

and thus we obtain a structure that should behave similarly to the simple circuit

introduced at the beginning of this section.

In Equation C.21 for the complex power within the ENG shell, the square of the

magnitude of the denominator is given by jf � j2½ðf þ =f � þGrÞ2 þG2
i �, where Gr

and Gi, respectively, are the real and imaginary parts of the reflection coefficient G2.

Since f þ =f � is negative, the real part of the denominator can vanish.

The general behavior of the denominator is similar to that of the LC circuit. There

is, however, one significant difference and that is due to the part of what we called

inductive energy within the ENG shell that arises from the integral of the square of

the electric field multiplied by the negative epsilon.

A positive epsilon leads to a capacitive reactance having an inverse dependence on

frequency. A negative epsilon corresponds to a negative capacitance or an inductive

reactance having an inverse dependence on frequency.

This type of reactance, as a function of frequency, has a negative slope and

is called a non-Foster element. Thus, instead of a pure inductive reactance jvL,
we should use jvL2 þ j=vC1 in the lumped circuit model described by

Equation C.34a, where the first term arises from the conventional stored magnetic

energy and the second term represents the inductive energy associated with

the negative capacitance. The primary effect of this is to make the apparent Q of

the circuit much smaller. For this reason, the plot of Rin and Xin as a function

of frequency shows a much broader half-power bandwidth than that predicted by

the Q based on the energy definition of stored energy divided by the radiated

power.

This shows that the definition of Q based on the half-power bandwidth associated

with the input impedance of the circuit disagrees with the definition based on energy

when a non-Foster reactance element is present in the circuit. An extreme example is
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a negative capacitance equal to the capacitance of the dipole antenna. These two, in

series or parallel, would make the reactance equal to zero for all frequencies and the

resultant bandwidth of the dipole antenna would be large. This phenomenon has been

known for many years.

There are several papers and patents devoted to the use of active circuits to

produce equivalent negative inductive and capacitive reactances and the use of these

to obtain broadband matching of short dipole antennas (Skahill et al. 2000; Quirin,

1971; Sussman-Fort, 2006).

It is generally accepted that the Q of a spherical mode based on the energy stored

outside the smallest circumscribing sphere that encloses the antenna provides a lower

bound on the Q of the antenna. The physical argument for this hypothesis is that the

total stored energy will be greater than or equal to that in the region outside the

circumscribing sphere, since a physical system cannot store negative energy within

the circumscribing sphere.

The lower bound is given by the approximate result derived by Chu 1948 or the

more accurate result derived by Collin and Rothschild (1964) as well as many others.

For a high-Q situation and the TM10 mode, this Q is given by 1=ðk0r2Þ3. For our
example, this Q is around 1000.

On the other hand, the half-power bandwidth was found to be around 0.1, so

clearly the classical relation that the half-power bandwidth is closely approximated

by the reciprocal of the Q is not valid. The reason for this unusual behavior of our

example is the presence of a non-Foster reactance in the equivalent circuit. In the next

section, we will determine an equivalent circuit for the dipole antenna encased by a

thin shell of ENG material.

Since the parameters k0r and kr are small, we can expand all functions that

occur in Equation C.12 for Zin in power series of these parameters and retain only

the low-order terms. This will lead to a simpler expression for Zin that can be

interpreted as an equivalent circuit. The branch on the left consists of the non-

Foster inductive reactance, which can also be considered to be a negative

capacitance. This reactance will be denoted by j=vC1. A second inductive

reactance, jvL2, arising from the conventional stored magnetic energy within

the ENG shell, is connected in series with the previous one. In parallel with this

branch is the series connection of the capacitance, inductance, and resistance,

which accounts for the stored electric field energy, stored magnetic field energy,

and radiated power in the free space region outside the ENG shell. The impedance

of this branch is represented by jvLe þ ra � j=vCe. The power series expansions

that are required to establish the equivalent circuit are given in Section C.10.

The power series expansion of the numerator of Zin is given by

2

3p
f þZþ þG2f

�Z�½ � ¼ �2Zf �
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ðC:36aÞ
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where we have multiplied by the factor 2=3p to make Zin correspond to Za obtained

from the complex power given by Equation C.21. The power series expansion of

the denominator of Zin is given by

f þ þG2f
� ¼ f �

"
f þ

f �
þG2

#

¼ �ðkaÞ3f �
�
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� 1
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þ 1

10

r52
a5

�
ðkaÞ2� j

3

8
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a3

ðk0r2Þ3
2
4

3
5

ðC:36bÞ
With the above approximations and also approximating 1þðkaÞ2 by unity, the

antenna input impedance can be expressed as the ratio of Equation C.36a to

Equation C.36b and is

Raþ jXa ¼ � j
2Z

3p

4

3
þ 1

6

�
r32
a3

�
�
�
2

5
þ 1

10

r52
a5

�
ðkaÞ2þ j

3

8

r32
a3



k0r2

�32
4

3
5

�
2

5
þ 1

10

r52
a5

�

ka
�3��1

6

r32
a3

� 2

3

�
ka� j

3

8

r32
a3



k0r2

�3

ka
�2

4
3
5

ðC:37Þ
For the equivalent circuit shown in Figure C.7, the input impedance is given by

Zeq ¼ � j
ð1þv2L2C1Þð1�v2LeCeÞþ jvCerað1þv2L2C1Þ

vðCe�C1Þþv3C1CeðL2þLeÞ� jv2CeC1ra

We can rewrite this expression in the form

Zeq ¼ ½ð1þv2L2C1Þ=vC1�þ½ð1þv2L2C1Þð1�v2LeCeÞ=v2CeC1ra�þ½ð1þv2L2C1Þ=vC1�
1� j½ðC1�CeÞ=vCeraC1�½1�v2½CeC1=ðC1�CeÞ�ðLeþL2Þ�

We now note that the quality factor of the circuit is given by Q¼vCera and can be

assumed to remain constant over the narrow operating bandwidth of the circuit.

We also introduce the resonant frequency given by v2
0 ¼ ðC1�CeÞ=C1CeðL2þLeÞ

and the approximation ðv2�v2
0Þ=v2

0 ¼ 2ðDv=v0Þ.
We are now able to express the equivalent circuit input impedance in the form

Zeq ¼ ð1=vC1Þð1þv2L2C1Þð1þ jÞþ ðCe=C1ÞRð1�v2LeCeÞ
1þ jQeð2Dv=v0Þ

� Ce=C1

1þ jQeð2Dv=v0ÞR
ðC:38Þ
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where we have introduced the equivalent quality factor Qe ¼ ½ðC1 �CeÞ=C1�Q.
The equivalent parallel resistance R is given by R ¼ ra=v

2C2
er

2
a ¼ Q2ra.

The equivalent circuit quality factor arises from the non-Foster reactive element

in the equivalent circuit. It makes the half-power bandwidth of the circuit larger

than the one that would have occurred if the bandwidth were governed by the

energy-based quality factor. For the equivalent circuit parameters derived from

Equation C.37, the effective quality factor can be as small as 5% or less of the

energy-based value.

In order to identify the values of the equivalent circuit parameters, we will express

the antenna impedance given by Equation C.37 in a form like that in Equation C.38

for the equivalent circuit. Thus,

Ra þ jXa ¼ 2Z
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We now identify the following parameters:
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1
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When we equate Equation C.39b to unity, it becomes an equation for the resonant

frequency as determined by ka.
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By introducing the above definitions into the equation given above for the antenna

impedance, it becomes

Za ¼ Ra þ jXa

¼ 2Z0

3
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When we retain only the dominant term in the numerator, we obtain

Za ¼ 2Z0
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This equation gives a good approximation to the behavior of the ENG shell–dipole

antenna system. Note that the radiation resistance given by the numerator without

the Q2 factor is almost the same as that for a dipole antenna of total length 2r2 and

radiating into free space. For the parameters a¼ 10mm, r2¼ 16.0mm, frequency

¼ 287MHz, and « ¼ � 3«0, the exact analytical solution shows that the ENG shell

is resonant, the bandwidth is approximately 25MHz., and the maximum radiation

resistance is about 6.79� 105W. The energy-based Q is 1124 and the effective Qe is

287/25¼ 11.5.

From the equivalent circuit, we found that, for r2¼ 16mm, the resonant frequency

was 288MHz, the Q was 1112, and the effective Qe was 11.3. The approximate

equivalent circuit gives results that are in good general agreement with those

provided by the analytical solution. Figure C.5 shows a plot of Ra and Xa as a

function of frequency for r2¼ 16mm, based on the equivalent circuit. Since the

bandwidth is quite broad, the variation of Q and Qe was taken into account.

The effective Q is critically dependent on the dimensions of the ENG shell. An

examination of Equation C.39a shows that the effective Q becomes zero when

r2=a ¼ 41=3, that is, r2 � 1:587a. This condition means that the negative capacitance

C1 and the external capacitance Ce are equal. Under these conditions, the frequency

response of the circuit is much flatter and the half-power bandwidth becomes large.

In Figure C.6, a plot of Ra and Xa, obtained from the exact analytical solution, is

given for r2 ¼ 1:59 mm. This plot shows the much greater bandwidth of the circuit,

as predicted from the equivalent circuit.
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FIGURE C.5 Plot of Ra and Xa obtained from Equation C.41 for the equivalent circuit.
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FIGUREC.6 Plot of Ra and Xa showing the broadband behavior when the outer radius of the

shell is 15.9mm. Exact analytical solution.
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When we change r2 from 16.0 to 16.1mm, which is a very small change, the

resonant frequency obtained from Equation C.39b is 383MHz, the energy-based Q

is 464, and the effective Q is 8.7. This illustrates how sensitive the behavior of the

ENG shell is to small changes in its dimensions.

The equivalent circuit is not needed for the numerical determination of the

behavior of the dipole antenna enclosed within a thin spherical shell of ENG

material. The analytical solution is best suited for that purpose. However, the

equivalent circuit does provide a clearer understanding of why the thin shell of

ENG material behaves in the way that it does, in particular why the impedance

bandwidth is much larger than one would expect from a consideration of the energy-

based Q.

The above results are all based on the assumption that the ENG material is

dispersionless. This is not a valid assumption. If we use the same dispersion model as

in Ziolkowski and Erentok (2006), then the negative permittivity is given by

« ¼ «0ð1�v2
p=v

2Þ, which has a frequency derivative given by qðv«Þ=qv ¼
«0ð1þv2

p=v
2Þ. Thus, the susceptance is now no longer a non-Foster element.

The frequency behavior of this susceptance is somewhat different from that of an

ideal capacitor. Nevertheless, one can expect that the effectiveQ for the dipole–ENG

shell system will be comparable to the intrinsic energy-based value of Q.
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FIGURE C.7 Plot of Ra and Xa for a shell with inner radius of 10mm and outer radius of

16mm, but with a dispersive ENGmaterial. At the resonant frequency of 287MHz, «¼ � 3«0.
Note the much narrower bandwidth. For the dispersive material, there is no non-Foster

reactance present in the equivalent circuit.
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In Figure C.7, a plot of the radiation resistance and reactance as a function

of frequency is given for the case where a ¼ r1 ¼ 10 mm, r2¼ 16mm, and

fp ¼ 574MHz making « ¼ � 3«0 for fp ¼ 287MHz.

The plot shows that the width of the resistance curve at the 6 dB point

is approximately 0.55MHz. This corresponds to an effective Q of 522, which is

approximately one-half of the intrinsic energy-based Q. From this one example, it

seems reasonable to expect that for any physically realizable ENG material the

dispersion will not allow a broad impedance bandwidth to be obtained. From this

fact alone, one would not expect the use of a thin shell of DNG material to be

useful for the purpose of matching a small dipole antenna to free space. If we

choose a dipole antenna with a total length equal to 32mm, the outer diameter of

the ENG shell, the intrinsic energy-based Q is only 123. This is less than that of a

dipole enclosed within a thin shell of ENG material that exhibits dispersion.

It would be easier to match the dipole alone using a conventional matching

network.

C.9 CONCLUSIONS

Using transmission line theory, we developed an exact analytical solution for the

radiation impedance of a dipole antenna modeled as a current sheet on a small

spherical surface, surrounded by a thin spherical shell of ENG material. This

approach avoids the need to solve a system of simultaneous equations for the wave

amplitudes in each region.

We found that the radiation resistance and reactance are critically dependent on

the thickness of the shell. We also developed an equivalent circuit for the dipole–

sphere system.

The negative permittivity of the material of the shell implies a non-Foster

inductive reactance (negative capacitive susceptance). The presence of a non-Foster

reactance greatly reduces theQ of the circuit. Even though the intrinsic energy-based

Q is around 1000, the effectiveQ is only around 8–12. Consequently, the impedance

bandwidth of the system is much broader than would be expected from the energy-

based value of the quality factor.

Realistic materials with negative permittivity must be frequency dispersive.When

a simple dispersion model is used to characterize the ENG material, the non-Foster

reactance vanishes and the system displays a bandwidth corresponding to approxi-

mately one-half of the energy-based quality factor Q.

The analysis for this problem, in terms of reflected and transmitted waves along

with the equivalent circuit, provides a clearer understanding of the properties

exhibited by a dipole antenna surrounded by a thin shell of ENG material than the

one obtained by the numerical solution presented earlier by Ziolkowski and

Erentok (2006). Many of the same features found by these authors were also found

from our analysis but in a more quantitative way.

We did not find any particular dimension for the spherical shell of ENGmaterial

that would make it useful as a device to match a small dipole antenna to free space.
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It became quite clear that neglecting the frequency dispersion of realistic meta-

materials leads to erroneous conclusions on how useful some devices utilizing

metamaterials might be.

C.10 ADDENDUM

In this section, we list a number of formulas for various quantities used in the

analysis, as well as the power series expansions needed for the determination of the

equivalent circuit.
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The following power series expansions have been derived:
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The power series expansion of the denominator of Zin is
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APPENDIX D

FREQUENCY DISPERSION LIMITS
RESOLUTION IN VESELAGO LENS

ROBERT E. COLLIN
Life Fellow Member, IEEE, Highland Heights, OH, USA

D.1 INTRODUCTION

In 1968, Veselago introduced the concept of a material having simultaneous negative

values of epsilon and mu. He discussed a number of properties of such media, such as

negative refraction, left-handed wave solutions, and a flat lens configuration, among

other features (Veselago, 1968). Veselago pointed out that any medium with negative

mu or epsilon would have to be frequency dispersive in order for the field energy to be

positive.Many years later, Pendry considered a flat slab lens made frommaterial with

the relative values of both epsilon and mu equal to �1 (Pendry, 2000). He showed

that a propagating plane wave incident upon this lens would be perfectly matched at

the interface; that is, the reflection coefficient would be zero and the transmission

coefficient through the slab would equal 1 whenever the relative values of epsilon and

mu were both equal to �1. In the case of an incident evanescent wave, the reflection

and transmission coefficients become infinite when the index of refraction becomes

equal to �1, so the standard method of solving for the reflected and transmitted

waves cannot be used. In order to overcome this difficulty, Pendry beganwith relative

values of epsilon and mu different from �1 and expressed the solution as a series of

multiple reflected waves within the slab. This series is a geometric series that was

summed and then the limit was taken as the relative values of epsilon and mu

approached �1. The result showed that the overall transmission through the slab for

the evanescent waves was in the form of a single exponentially growing wave within

the slab. This was a somewhat surprising result but was generally considered to be a

correct result by many people carrying out research on negative index of refraction

media. It is interesting to note that in Pendry’s original work he assumed the presence

of a decaying wave in the slab but after summing the multiple reflected wave series

Small Antenna Handbook, Robert C. Hansen and Robert E. Collin.
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and letting the relative values of epsilon and mu become equal to �1 this part of the

solution was cancelled out. At the frequency for which the index of refraction is �1

in the slab and 1 outside the slab, the evanescent wave attenuation constants are the

same in both media. Consequently, the exponential growth of the waves within

the slab compensates for the exponential decay outside the slab and results in the

amplitude of all evanescent waves to be restored to their original values at the image

plane as illustrated in Figure D.1. From this result, Pendry concludes that such a lens

would reproduce the original scene on the object plane with infinite resolution at

the image plane.

There is a flaw in Pendry’s method that was overlooked, which is that as the

relative values of epsilon and mu become quite close to �1 in value the magnitude

of the ratio of successive terms in Pendry’s multiple reflected wave series

becomes greater than 1 and the geometric series does not converge. However,

there is a mathematical solution that satisfies the boundary conditions and that is

consistent with Pendry’s solution for a lossless lens. The final result he obtained

may be easily demonstrated in the following way. Assume that the relative values

of epsilon and mu are equal to �1 and let an exponentially decaying evanescent

wave be incident on the first interface between free space and the negative index

of refraction medium. It is then easy to show that the boundary conditions on the

tangential electric and magnetic fields at the first interface can be satisfied by

assuming that in the negative index of refraction slab the field consists of a single

exponentially growing wave. Likewise it can be shown that at the output interface

the boundary conditions can be satisfied by assuming an exponentially decaying

wave on the output side, which confirms Pendry’s result. These three waves

together will satisfy the boundary conditions that require the tangential electric

and magnetic fields to be continuous across the two interfaces. This solution is a

solution of the source-free Maxwell’s equations and must be a resonant mode

even though the evanescent wave on the input side was the incident evanescent

wave in Pendry’s solution.

d/2–d/2

n = 1
n = –1

n = 1

z

FIGURE D.1 Electric field distribution for Pendry’s solution for an evanescent incident

wave on a slab with an index of refraction equal to �1.
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Pendry’s solution requires the field to be a steady-state time harmonic oscillation

of infinite duration, at the frequency for which the index of refraction is exactly equal

to �1. If we view this solution as a resonant mode, then it is not a proper physical

solution since the field grows exponentially away from both sides of the first

interface. For a single interface, a surface wave that decays away from both sides

of the interface can also be supported by the surface. This is a proper physical mode

solution. A proper physical solution must vary in a continuous manner when the

physical parameters that characterize the problem change. Pendry’s solution fails

this test as can be seen by noting that if the relative values of epsilon, mu, or the index

of refraction change from the exact value of �1 the boundary conditions are no

longer satisfied because the tangential magnetic field will no longer be continuous

across each interface, the latter requiring the attenuation constants to be the same in

the slab as in the surrounding medium and the relative value of mu to equal�1. Thus,

any change in epsilon and mu, even the addition of small loss, will cause a change in

the solution such that the tangential magnetic field is no longer continuous across the

interfaces. If Pendry’s solution is viewed as a resonant mode, then it also fails the

uniqueness test for field solutions since the field becomes infinite at infinity.

When the relative values of epsilon and mu do not equal �1, then the transfer

function obtained by Pendry before the limit of setting the relative values of epsilon

and mu equal to�1 must be used. This transfer function, which describes the electric

field at the output interface of the lens in terms of the field at the input interface, has

the following form for an incident evanescent wave (Pendry, 2000):

trðkx;vÞ ¼ tt0e�ad

1�r02e�2ad
¼ 4ma0ae

�ad

ðma0 þaÞ2�ðma0 �aÞ2e�2ad

where m and «, respectively, are the relative values of the permeability and

permittivity of the lens slab material. The attenuation constants in the free space

region and within the lens are given by a0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x�k20

p
and a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x�m«k20

p
,

where kx is the transverse wave number of the evanescent wave and k0¼v/c is

the free space wave number. When the relative values of epsilon and mu become

equal to �1, then tr ¼ ead , which cancels the corresponding decay e�a0d in the field

between the object plane and the first interface of the lens and that from the output

interface of the lens to the image plane. This results in the amplitudes of all

evanescent waves to be restored at the image plane and results in a lens with perfect

resolution. However, the field within the slab becomes divergent for large values of

the transverse wave number. This divergent behavior raises some questions as to

whether or not Pendry’s solution is a valid physical solution. In our analysis, we

arrive at the conclusion that it is not a complete solution by itself.

Several authors have derived modifications to Pendry’s transfer function given

above by introducing small losses in epsilon and mu or by considering a small

perturbation in epsilon or mu away from the value of �1 for large values of the

transverse wave number (Smith et al., 2003; Merlin, 2004; Milton et al., 2005;

Marqués et al., 2008; Ruppin, 2001; Haldane, 2002; Gómez-Santos, 2003;

INTRODUCTION 309



Grbic, 2007; Yaghjian and Hansen, 2006; de Wolf, 2005, 2006; Chew, 1995). This

has the effect of eliminating the field divergence problem but reduces the resolving

power of the lens, thus limiting the resolution that can be obtained.

Various authors have recognized that the negative index slab can support resonant

surface wave modes and that these modes play an important role in the behavior of

the lens (Smith et al., 2003; Merlin, 2004; Milton et al., 2005; Marqués et al., 2008;

Ruppin, 2001; Haldane, 2002; Gómez-Santos, 2003; Grbic, 2007; Yaghjian and

Hansen, 2006; de Wolf, 2005, 2006). The excitation of these resonant surface wave

modes does not appear in the strict steady-state solutions. Gómez-Santos considered

an input sinusoidal signal that was turned on at t¼ 0 and turned off at t ¼ t (Gómez-

Santos, 2003). He proposed modeling the lens as two coupled mechanical resonators,

with resonant frequencies corresponding to those of the even and odd surface wave

modes that can exist on the negative index slab. The resonant frequencies are well

separated for small values of the wave attenuation constants, which occur for small

values of kx, but merge together as kx approaches infinity. From the solution to the

coupled oscillator problem, Gómez-Santos showed that the length of time for the

oscillations to build up to the steady-state value was proportional to the reciprocal of

the resonant frequency separation Dv of the two modes. In the limit, the amplitude of

the response of the second oscillator, corresponding to the output interface of the

lens, was found to be proportional to ðDvtÞ2e�2ad in the initial phase of the buildup of

the oscillations. Thus, in the limit of infinitely large transverse wave numbers, the

oscillations would never build up to infinite values in any finite time interval. This

mechanism was proposed by Gómez-Santos to eliminate the singularity in Pendry’s

solution. On this basis, he concluded that Pendry’s solution was acceptable.

Grbic also considered a time-domain solution and included frequency dispersion

in epsilon andmu (Grbic, 2007). He chose a cosinusoidal input signal of semi-infinite

duration that had a frequency spectrum proportional to 1=ðv2�v2
0Þ, where v0 is the

frequency at which the relative values of epsilon and mu equal �1. He obtained a

result similar to that obtained by Gómez-Santos. Neither Grbic nor Gómez-Santos

include the branch cut integrals that occur in the inverse Fourier or Laplace transform

evaluations. A similar input signal, but with a finite duration, was considered by

Yaghjian and Hansen (2006). They also analyzed the effect of losses on the resolving

power of the lens. For the case of a sinusoidal signal turned on at t ¼ �t0 and turned

off at t ¼ t0, their spectral function given by Equation 36 in their paper should have

been expressed as a spectral function that is applicable for ðLþ 2dÞ=c�t0 < t

< t0 þðLþ 2dÞ=c and a spectral function applicable for t>ðLþ 2dÞ=cþ t0; that is,

causality requires the output to be delayed by the propagation time delay. In the

first time interval, the spectral function exhibits poles at v ¼ �v0 and would

produce a dominant wave at the frequency v0, corresponding to Pendry’s solution,

plus the excitation of the even and odd surface waves that would interfere with the

dominant wave. After the signal is turned off, their spectral function as given by

their Equation 36 is applicable. We will also analyze the problem using a

sinusoidal signal of finite duration but evaluate the inverse Fourier transform

using the residues at the poles plus branch cut integrals, and thus obtain a more

complete solution.
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An approximate solution to the lens problem when the dispersion obeys the

Smith–Kroll model was developed by de Wolf (2005, 2006). He found approximate

expressions for the resonant surface wave modes but did not identify these as

resonant surfacewavemodes. He considered the input signal spectrum to be a narrow

band of frequencies with finite density and obtained an expression for the slab

transmission coefficient by integrating the transmission coefficient over a narrow

band of frequencies, but did not evaluate the solution as an inverse Fourier transform

that would have included a e jvt time factor. Thus, his solution is not in the form of

resonant surface wave modes. However, he did find from his approximate solution

that for a narrowband signal spectrum the field in a slab lens did not grow

exponentially for slabs with a thickness greater than some minimum value, which

typically was very small. Chew has also examined this problem but he uses a strict

steady-state solution and thus encounters wave solutions that diverge (Chew, 2005).

However, by introducing loss along the lines other earlier investigators followed, the

field divergences can be eliminated. There have been a number of studies of other

lens configurations that depart from the specific configuration considered by Pendry

but these will not be reviewed here.

Several researchers have built periodic structures to simulate a negative index of

refraction medium and constructed flat slab lenses and attempted to demonstrate

super-resolution, but with only limited success (Eleftheriades, 2007; Grbic and

Eleftheriades, 2003; Eleftheriades et al., 2002; Sanada et al., 2004).

Even though a number of authors have expressed the view that the resonant

surface wave modes will play an important role in the behavior of Veselago’s lens, it

does not appear that anyone has expressed the complete field solution for Veselago’s

lens, and explicitly including the excitation of the even and odd resonant surface

wave modes within the slab as well as exterior to the slab, probably because they do

not appear directly in a steady-state solution when epsilon and mu are not frequency

dependent. The fact that for Pendry’s solution the boundary conditions at the first

interface can be satisfied by a single exponentially growing wave on each of the two

sides of the interface is a troubling result because we are at liberty to assume that for

the slab of negative index of refraction media the thickness of the slab can be made

arbitrarily large and we then have the capability to create an electric field with

enormous intensity. This can hardly be accepted as being a valid physical result. The

original solution for the transmission factor or transfer function from the object plane

through the negative index of refraction slab and to the image plane was dependent

on the relative values of epsilon and mu being exactly equal to �1. Furthermore, the

incident field was assumed to be a steady-state single-frequency oscillation. The

operation of the lens depended critically on the excitation of a resonant mode that

was intimately tied to the two interfaces of the lens. The assumption of a strict steady-

state solution is the primary cause of the divergence associated with Pendry’s

solution when the losses are set equal to zero. Clearly, an input signal of semi-

infinite or infinite duration is nonphysical.

In view of the above considerations, we were led to consider the effect of

frequency dispersion, which as Veselago stated, is necessary. We therefore examined

a simple model where both epsilon and mu were considered to have a simple
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dependence on frequency, as was used for an example in Veselago’s paper (1968). In

the analysis given below, we first consider the problem of a single interface that is

found to support a resonant surface wave mode for which the field decays in an

exponential manner away from both sides of the interface. The results of this analysis

showed that at the frequency ve, where the relative values of epsilon and mu become

equal to �1, a pole in the frequency response of a single interface occurs. This leads

to a discrete mode with frequency ve, which undergoes exponential decay, not

growth, in the negative index of refraction medium. If the incident field consists of a

sinusoidal signal at the frequency ve for which the relative values of epsilon and mu

are equal to �1, and of finite duration, then a double pole occurs in the response

function for which the time response is proportional to te jvet. Thus, this example

suggests that if frequency dispersion is taken into account, the dilemma of a

single exponentially growing wave on the output side of the first interface in

Veselago’s lens will be eliminated.

We next consider the two-interface problem on which a pair of resonant coupled

surface wave modes are excited. When the incident field has a continuous frequency

spectrum with finite density, our solution results in a set of proper surface waves or

resonant modes on the slab and does not require the introduction of loss or small

perturbations in epsilon or mu in order to avoid the short transverse wavelength

divergence. This leads to a proper solution for the Veselago lens, but this solution

does not support the exponential growth of the evanescent waves within the slab and

thus for this type of incident field no super-resolution is possible. We also consider an

incident field consisting of a single discrete frequency sinusoidal oscillation of finite

duration. For this case, the field at the image plane is found to consist of a driven

mode, corresponding to Pendry’s solution, at the frequency of the incident field along

with the resonant even and odd surface wave modes, plus fields with continuous

frequency spectra that arise from branch cut integrals. For the lossless slab, the

unavoidable excitation of the even and odd surface wave modes at their resonant

frequencies produces interference at the image plane that makes it difficult, if at all

even possible, to coherently reconstruct the amplitudes of the evanescent waves at

the image plane. We also found that a continuous spectrum of interfering propa-

gating waves would also be produced at the image plane, which will cause blurring

of the image. This solution is based on the evaluation of the excitation of the

resonant surface wave modes in terms of the residues at the poles and sheds new

insight into the operation of the flat lens. When the excited surface waves are

included as part of the solution, the divergence of the field for large transverse wave

numbers is eliminated.

The existence of surface wave poles can be accounted for by using standard

Fourier or Laplace transform techniques and thus obtaining finite responses in terms

of the residues at the poles. There is a very large body of literature dealing with

radiation from various kinds of sources over layered media that dates back to the

1909 classical work by Sommerfeld for dipole radiation over a lossy earth

(Ishimaru, 1991; Chew, 1995; Felson and Marcuvitz, 1973). The many techniques

developed in that research can be applied equally well to the Veselago’s lens

problem. This is a very realistic approach since many scenes that one might want
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to image are best represented by a stochastic process that has a broad frequency

spectrum. A quantity of interest is the optical coherence function and this is best dealt

with using Fourier transforms (Papoulis, 1968).

D.2 ANALYSIS: SINGLE INTERFACE

Consider the interface at z¼ 0 between free space and a negative index of refraction

medium as shown in Figure D.1. The medium parameters of the output half-space

will be assumed to be given by ««0 and mm0, where

« ¼ 1� 2v2
e

v2
ðD:1aÞ

m ¼ 1� 2v2
e

v2
ðD:1bÞ

For this medium, the relative values of both epsilon andmu become equal to�1 at the

frequency ve and remain negative for v <
ffiffiffi
2

p
ve. In the analysis given below, we

will make use of Gabor’s concept of an analytic signal (Born and Wolf, 1964).

Consider a real-time signal f ðtÞ and its Fourier transform

FðvÞ ¼
ð1

�1
f ðtÞe�jvt dt

The original signal can be recovered using the inverse Fourier transform, thus

f ðtÞ ¼ 1

2p

ð1
�1

FðvÞejvt dv ¼ 1

p
Re

ð1
0

FðvÞejvt dv

because Fð�vÞ ¼ F*ðvÞ, which is the complex conjugate function. The integral

without the real part designation is called the analytic signal. The advantage gained

by using the analytic signal is that we only need to include positive frequencies.

The real part of the analytic signal gives the physical solution.

We will assume that the source illumination comes from a finite-width aperture

that is located at z¼�a and extends fromminus to plus infinity along the y-direction.

The electric field will be assumed to be in the y-direction and its intensity is a

function of x only. The Fourier transform of the spatial intensity will be represented

by Aðkx;vÞ and its frequency spectral density by Sðv; kxÞ. In general, the aperture

field will be a function of the radian frequency v and the frequency spectrum of each

spatial component may be different. Thus, we show the spatial spectral density and

the frequency spectral density as a function of both v and kx. The incident field will
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be assumed to be that of a S polarized wave (TE wave) with a y-directed electric field

and a magnetic field with x and z components. Let the incident electric field of an

evanescent wave be given by the Fourier transform

Ei ¼ 1

2p

ð1
�1

Aðkx;vÞSðv; kxÞe�jkxx�a0ðvÞðzþ aÞe jvt dv ðD:2aÞ

The corresponding Fourier transform representation of the output signal will be

Eo ¼ 1

2p

ð1
�1

Aðkx;vÞSðv; kxÞTðvÞe�jkxx�a0a�aðvÞze jvt dv ðD:2bÞ

where the transmission coefficient across the interface for an S polarized wave is

TðvÞ. On the input side, there will be a reflected evanescent decaying wave with a

reflection coefficient RðvÞ. The reflection and transmission coefficients are given by

(Pendry, 2000)

RðvÞ ¼ ma0�a

ma0 þa
ðD:3aÞ

TðvÞ ¼ 2ma0

ma0 þa
¼ 1þRðvÞ ðD:3bÞ

where a0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x�k20

p
, a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x�m«k20

p
, and k0 ¼ v=c. (Note that Pendry uses the

e�ivt time dependence.) The transmission coefficient can be expressed in the

following form:

TðvÞ ¼ 2ma0ðma0�aÞ
m2a2

0�a2
¼ 2ma0ðma0�aÞ

½1�ð2v2
e=v

2Þ�2ðk2x�k20Þ�k2x þ ½1�ð2v2
e=v

2Þ�2k20

which can be simplified to the form

TðvÞ ¼ � 2ma0ðma0�aÞv4

4v2
ek

2
xðv2�v2

eÞ
ðD:4Þ

We see that TðvÞ has poles at v ¼ �ve. When v becomes very large, both a0 and a
become equal to jv=c. Hence, for t < ðaþ zÞ=c, the contour of integration can be

closed in the lower half of the complex v plane and there will be no contribution to

the output field before t ¼ ðaþ zÞ=c, which is required by causality. We will assume

that the spectral density function Sðv; kxÞ vanishes sufficiently fast for large values of
v so that the integral converges in the upper half of the v plane and we choose a
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contour of integration that runs below the poles at �ve. The pole contribution to the

integral may be evaluated by residue theory and gives

Eo¼�2pjAðkx;veÞma0ðma0�aÞve

8pk2x
Sðve;kxÞejvete�jkxx�a0a�azþc:c:

¼�jAðkx;veÞk
2
x�k20
2k2x

veSðve;kxÞejvete�jkxx�a0a�azþc:c:; t >ðaþzÞ=c
ðD:5aÞ

where all terms are evaluated for v¼ve and c.c. represents the complex conjugate

term. The first term by itself represents the analytic signal that we designate as eEo,

thus

eEo ¼�jAðkx;veÞk
2
x�k20
2k2x

veSðve;kxÞejvete�jkxx�a0a�az; t>ðaþzÞ=c ðD:5bÞ

This solution is a discrete exponentially decaying wave at the frequency ve. The

discrete wave represents some type of resonance, which could be said to be due to

surface plasmons (Pendry, 2000).

From Equation D.3b it is clear that the tangential electric field will be

continuous across the interface. The tangential magnetic field on the input side

is proportional to

1�RðvÞ½ � ja0

vm0

Aðkx;vÞ ¼ j2a0aðma0�aÞ
vm0½ðma0Þ2�a2�Aðkx;vÞ ðD:6aÞ

while on the output side it is proportional to

1þRðvÞ½ � ja

vmm0

Aðkx;vÞ ¼ j2ma0aðma0�aÞ
vmm0½ðmaÞ2�a2�Aðkx;vÞ ðD:6bÞ

These two expressions are equal and have the same residues at the poles. However, it

should be noted that there is no pole associated with the incident field. The reflection

coefficient and the transmission coefficient have the same residues. The tangential

electric andmagnetic fields of this resonantmode are continuous across the interface

and the field has exponential decay away from the interface on both sides. Thus, this

discrete frequency mode that is excited is clearly a resonance effect. Once this mode

is excited by the incident field, it will continue to oscillate, eventually decaying to

zero because of losses that usually will be present. Themodemay also be viewed as a

surface wave that is bound to the interface and its electric field decays in an

exponential manner away from both sides of the interface.

An interesting variation of the above results is obtained if we consider a sinusoidal

signal of finite duration and with a frequency equal to the resonant frequency of the

surface wave. Thus, consider the input signal consisting of a sinusoidal oscillation
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sinvet at the frequency ve, which is turned on at t ¼ 0 and turned off at t ¼ t. For
this signal, the spectral function is given by

SðvÞ¼ ejðve�vÞt�1

2ðv�veÞ � e�jðvþveÞt�1

2ðvþveÞ

¼ jejðve�vÞt=2 t
2

sinðv�veÞt=2
ðv�veÞt=2 �je�jðvþveÞt=2 t

2

sinðvþveÞt=2
ðvþveÞt=2

ðD:7Þ

The part of SðvÞ that involves the terms depending on t does not contribute to the

output for t < tþðaþ zÞ=c. Prior to that time, the spectral function has a pole at the

resonant frequency of the surface wave. Thus, the system has a double pole at

v ¼ ve. The time response for a double pole is �tejvet and thus the response for the

single interface is given by

Eo ¼ jAðkx;veÞðk
2
x�k20Þve

4k2x
e�jkxx�a0a�azðtejvetÞþc:c:; ðaþzÞ=c < t < tþðaþzÞ=c

ðD:8Þ
This type of response is well known for a lossless resonant circuit when excited by a

sinusoidal signal of finite duration and at the resonant frequency of the circuit.

Later on wewill show that for a lossless slab there will be two surface wavemodes

whose frequencies coalesce at v ¼ ve, when the transverse wave number kx
approaches infinity, to produce a triple pole with a time response proportional to

t2ejvet. This result was obtained by Gómez-Santos (2003) from a model of the slab as

a pair of coupled mechanical resonators. The signal output does not become infinite

since the signal is turned off at t ¼ t. When the signal input is turned off, the

frequency spectrum no longer has a pole and is of the form that makes the output

become small because of a rapidly oscillating spectral function.

The integrand also has branch points at v ¼ �kxc and v ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2xc

2 þ 2v2
e

p
,

where c is the velocity of light in free space. Thus, in addition to the pole

contributions, there are additional contributions to the field from branch cut integrals.

The branch cut integrals give rise to a continuous spectrum of waves and these fields

will satisfy the boundary conditions at the interface. The branch cut integrals will not

give rise to exponentially growing fields because the branches for which the real part

of a0 and a are greater than zero must be chosen in order to ensure that the fields

remain finite as z approaches infinity. The analysis to include the branch cut integrals

would be similar to that described by Stratton for propagation in a dispersive medium

but will not be pursued in this paper for the single-interface problem (Stratton, 1941).

D.3 SOLUTION FOR THE TWO-INTERFACE PROBLEM

The Veselago’s flat lens involves two interfaces, one at z¼�d/2 and the other at

z¼ d/2, as shown in Figure D.2. Each interface by itself can support a resonant
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surface plasmon mode, that is, surface wave. When the spacing between the two

interfaces is finite, these two modes will interact and the result will be two new

perturbed modes with resonant frequencies that lie above and below that of the mode

supported by a single interface. An analogy with a similar waveguide problem will

help to clarify the phenomenon involved. Consider a rectangular waveguide that is

operated below cutoff. Let a short section of this waveguide be filled with a high

dielectric constant material so that it forms a resonant cavity. Since a dielectric slab

–d–d d
2

n = 1 n = 1n = –1

d
2

(a)

–d–d

d

2

n = 1 n = 1n = –1

d
2

(b)

FIGURE D.2 (a) The even surface wave mode field distribution in a flat slab lens. (b) The

odd surface wave mode field distribution in a flat slab lens.
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can support even and odd surface wave modes at discrete frequencies, these

represent the resonant modes of the cavity. The response function of this cavity

will have poles at the resonant frequencies of the cavity. If a spectrum of

evanescent waves with a continuous frequency spectrum is incident on this cavity,

this incident field will excite a finite response in the resonant cavity at its resonant

frequencies. If we assumed that a steady-state sinusoidal field at the resonant

frequency of one of the cavity modes was incident upon it, the response would be

infinite. But with a field having a finite frequency spectral density, the response of

the cavity is also finite and is determined by the residues at the poles that lie in the

frequency range of the incident field spectrum. This same phenomenon occurs

with a slab of negative index material sandwiched between two regions with a

positive index of refraction. When we include frequency dispersion, the overall

transmission factor through the slab of negative index material exhibits poles

corresponding to the new frequencies for the two coupled resonators. Thus, an

incident field with a continuous but finite frequency spectrum will excite these

resonances in addition to a continuous spectrum of transmitted waves. These

resonant responses do not exhibit growing exponential waves. If the Veselago lens

was to be used to image the aperture field distribution at z¼�d at an image plane

located at d/2 beyond the second interface, then the excitation of the surface

plasmons would represent an artifact that should not be present in the image since

the aperture field does not contain discrete frequency components (by assumption)

(Smith et al., 2003). When frequency dispersion is taken into account and the

analysis is carried out in a more complete manner, rather than assuming a steady-

state sinusoidal incident field of infinite duration, the results are different from

what Pendry obtained.

Our solution has a number of features similar to what Gómez-Santos included

but differs in some important aspects. If we assume an incident field with a

continuous frequency spectrum that overlaps both resonant frequencies, and with a

finite spectral density, the response of the lens can be evaluated in terms of the

residues at the two poles corresponding to the surface wave mode resonances. This

results in a field distribution within the lens that does not grow exponentially and is

quite different from what Pendry had found. For a lossless slab and a sinusoidal

input signal of finite duration, and at the frequency for which the relative values of

epsilon and mu equal �1, the response does not become exponentially large when

the transverse wave number approaches infinity because of the excitation of the

surface wave modes. The interference produced by the excited surface wave modes

destroys the super-resolution properties of the lens. We also show that an

interfering signal that blurs the output at the image plane for the propagating

waves also occurs. This interfering signal arises from branch cut integrals that are

part of the complete solution.

The analysis given below will provide the details that support the above

description and conclusions. We will take advantage of the symmetry inherent in

the problem and construct the even and odd mode solutions in separate steps. We

can superimpose the two solutions so as to obtain the solution for a field incident
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from one side of the slab only. This has the advantage that it provides simpler

expressions to evaluate for the residues at the poles. We will express the even

solution, for one component of the spatial spectrum Aðkx;vÞ of the electric field, in
the form

Ee ¼ 1

2p

ð1
�1

YeðvÞe�jkxxejvt dv ðD:9Þ

where

YeðvÞ ¼ C1e
�a0ðzþ dÞ þC2e

a0ðzþ d=2Þ; �d < z < �d=2

¼ C3 cosh az; �d=2 < z < d=2

¼ C1e
a0ðz�dÞ þC2e

�a0ðz�d=2Þ; d=2 < z

The corresponding spectral function for the magnetic field is (we omit a factor

1=jvm0Þ

YheðvÞ ¼ �a0C1e
�a0ðzþ dÞ þa0C2e

a0ðzþ d=2Þ; �d < z < �d=2

¼ a

m
C3 sinh az; �d=2 < z < d=2

¼ C1a0e
a0ðz�dÞ�a0C2e

�a0ðz�d=2Þ; d=2 < z

We now match the fields at the interfaces and solve for the amplitude constants to

obtain

C2 ¼ C1

ma0 coshðad=2Þ�a sinhðad=2Þ
ma0 coshðad=2Þþa sinhðad=2Þ e

�a0d=2 ðD:10aÞ

C3 ¼ C1

2ma0e
�a0d=2

ma0 coshðad=2Þþa sinhðad=2Þ ðD:10bÞ

where a0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x�k20

p
and a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x�m2k20

p
. For the odd mode solution, the electric

field spectral functions are chosen as

YoðvÞ ¼ C1e
�a0ðzþ dÞ þD2e

a0ðzþ d=2Þ; �d < z < �d=2

¼ �D3 sinh az; �d=2 < z < d=2

¼ �C1e
a0ðz�dÞ�D2e

�a0ðz�d=2Þ; d=2 < z
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The magnetic field spectral functions are

YhoðvÞ ¼ �a0C1e
�a0ðzþ dÞ þa0D2e

a0ðzþ d=2Þ; �d < z < �d=2

¼ � a

m
D3 cosh az; �d=2 < z < d=2

¼ �C1a0e
a0ðz�dÞ þa0D2e

�a0ðz�d=2Þ; d=2 < z

The solutions for the amplitude constants are

D2 ¼ C1

ma0 sinhðad=2Þ�a coshðad=2Þ
ma0 sinhðad=2Þþa coshðad=2Þ e

�a0d=2 ðD:11aÞ

D3 ¼ C1

2ma0e
�a0d=2

ma0 sinhðad=2Þþa coshðad=2Þ ðD:11bÞ

where all amplitude constants are functions of kx and v. The superposition of the

two solutions gives the expressions for the electric field spectral functions in the

three regions. However, we will leave the solutions in the form of the even and odd

modes since the expressions we need to evaluate to obtain the residues at the poles

are simpler. In the slab, the superposition of the even and odd modes reduces to the

results obtained by Pendry when the frequency is set equal to ve and D3¼�C3;

that is, a strict steady-state solution is assumed to exist. Since we still have to carry

out the inversion of the Fourier transform, the final solution will be determined

by the residues at the poles along with contributions from integration along the

branch cuts.

The expressions for the pole locations are obtained by equating the denominators

in Equations D.10a and D.11a to zero. These equations are, for the even and odd

modes, respectively (Smith et al., 2003; Haldane, 2002; Gómez-Santos, 2003),

coth
ad

2
¼ � a

ma0

ðD:12aÞ

tanh
ad

2
¼ � a

ma0

ðD:12bÞ

An alternative form of these equations that are convenient to use for numerical

calculations is

e�ad ¼ aþma0

a�ma0

ðD:13aÞ

e�ad ¼ ma0 þa

ma0�a
ðD:13bÞ
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The first equation has a zero when v ¼ vþ
e >ve, while the second equation has a zero

whenv ¼ v�
e < ve. The negatives of these two frequencies are also zeroes. It is easy

to interpret the formof the equations given above.The two resonantmodes correspond

to a mode with an even electric field distribution about the midplane of the slab and a

second mode with an electric field distribution that is odd about the midplane of the

slab. Equation D.12a is a statement of the equality of the field impedance seen when

looking into the slab with an open circuit at the midplane to that seen looking outward

from the interface. Similarly, Equation D.12b corresponds to setting the impedance

seen looking into the slab with a short circuit at the midplane and equating this to the

impedance looking out from the interface. This is an application of the well-known

transverse resonance method that is used to solve for the surface waves on many

microwave structures. For each value of the transverse wave number kx, there is a

pair of resonantmodeswith resonant frequencies that depend on kx. For large values

of kx, the two interfaces are electrically far apart, so the interaction between the two

modes is small and the two resonant frequencieswill be close tove. The electric field

in the slab for the even mode is described by the function cosh az and by �sinh az
for the odd mode, as illustrated in Figure D.2. Both of these modes will be excited

when the input signal has a spectral width that extends from at leastv�
e tovþ

e . These

modal solutions can be evaluated in terms of the residues at the poles.

We now superimpose the even and odd solutions to obtain the final solution with a

field incident only from the object plane at z¼�d/2. On the input side, the electric

field is given by

E ¼ 1

2p

ð1
�1

½2C1e
�a0ðzþ dÞ þ ðC2 þD2Þea0ðzþ d=2Þ�e�jkxxþ jvt dv

¼ 1

2p

ð1
�1

Aðkx;vÞSðvÞ
�
2e�a0ðzþ dÞ þ ma0 coshðad=2Þ�a sinhðad=2Þ

ma0 coshðad=2Þþa sinhðad=2Þ e
a0z

þ ma0 sinhðad=2Þ�a coshðad=2Þ
ma0 sinhðad=2Þþa coshðad=2Þ e

a0z

�
e�jkxxþ jvt dv;

�d < z < �d=2 ðD:14aÞ

which is an equation that shows that the constant C1 ¼ Aðkx;vÞSðvÞ. Within the

slab, the total electric field is

E ¼ 1

2p

ð1
�1

Aðkx;vÞSðvÞ 2ma0e
�a0d=2coshðazÞ

ma0 coshðad=2Þþa sinhðad=2Þ
�

� 2ma0e
�a0d=2sinh az

ma0 sinhðad=2Þþa coshðad=2Þ
�
e�jkxxþ jvt dv;

�d=2 < z < d=2 ðD:14bÞ
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while at the image plane at z¼ d the solution is given by

Eo ¼ 1

2p

ð1
�1

Aðkx;vÞSðv; kxÞ ma0 coshðad=2Þ�a sinhðad=2Þ
ma0 coshðad=2Þþa sinhðad=2Þ e

�a0d

�

� ma0 sinhðad=2Þ�a coshðad=2Þ
ma0 sinhðad=2Þþa coshðad=2Þ e

�a0d

�
e�jkxxþ jvt dv; z ¼ d

ðD:14cÞ

The residues can be found by the usual procedure of evaluating the frequency

derivative of each denominator at the corresponding zero. For the first factor, the

denominator vanishes when v ¼ vþ
e , where ma0 coshðad=2Þ ¼ �a sinhðad=2Þ.

The residue associated with this factor is

Resðvþ
e Þ ¼ �2a sinhðad=2Þe�a0d þ jvt

q½ma0 coshðad=2Þþa sinhðad=2Þ�=qv vþ
e

����
¼ �2veað1�e�adÞe�a0dejv

þ
e t

ðAþBþCþDÞþ e�adðEþF�GHÞ vþ
e

����
¼ dResðvþ

e Þe�a0ðvþ
e Þd þ jvþ

e t ðD:15aÞ

Similarly, the residue at the pole v ¼ v�
e is given by

Resðv�
e Þ ¼ 2a coshðad=2Þe�a0d þ jvt

q½ma0 sinhðad=2Þþa coshðad=2Þ�=qv v�
e

����
¼ 2veað1�e�adÞe�a0dejv

�
e t

ðAþBþCþDÞ�e�adðEþF�GHÞ v�
e

����
¼ dResðv�

e Þe�a0ðv�
e Þd þ jv�

e t ðD:15bÞ

where A ¼ 4k3ea0=k
3
0, B ¼ �mk0ke=a0, C ¼ �4mk3e=ak0, D ¼ �m2k0ke=a, E ¼

�mk0ke=a0, F ¼ 4a0k
3
e=k

3
0, G ¼ ða�ma0Þd�1, H ¼ ð4mk3e=ak0Þþ ðm2k0ke=aÞ,

and ke ¼ ve=c.
We note that A, B, and C are positive constants and that the sum AþBþCþD is

never zero. Thus, the residues at the image plane will be proportional to e�a0d .

The form of the solution obtained from Equation D.14c is thus (we only need

to evaluate the expressions for the poles at v�
e to obtain the analytic signal

representation)
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eEo ¼ 2pj
2p

Aðkx;vþ
e ÞSðvþ

e Þe�jkxxdResðvþ
e Þe�a0ðvþ

e Þdejv
þ
e t

h
þ Aðkx;v�

e ÞSðv�
e Þe�jkxxdResðv�

e Þe�a0ðv�
e Þdejv

�
e t
i
;

z ¼ d; t>2d=c ðD:16Þ
Inside the slab, the solution is given by Equation D.14b and the contribution from the

surface waves when evaluated in terms of the residues is given by

eE ¼ j Aðkx;vþ
e ÞSðvþ

e Þe�jkxxdResðvþ
e Þe�a0ðvþ

e Þd=2þ jvþ
e t coshðazÞ

coshðad=2Þ vþ
e

�����

þAðkx;v�
e ÞSðv�

e Þe�jkxxdResðv�
e Þe�a0ðv�

e Þd=2þ jv�
e t

sinhaz

sinhðad=2Þ v�
e

���� �
;

�d=2 < z < d=2; t>ðzþ dÞ=c ðD:17Þ
The residues are given by Equation D.15a and the extra factors compensate for the

difference in the numerators in Equations D.14b and D.14c. These resonant surface

wave modes that are excited are proportional to e�a0d=2 at z¼ d/2 and do not exhibit

exponential growth. In Figure D.3, we show the resonant frequencies for the even and

odd surface wave modes and their residues as a function of kx/ke. Note that the

residues remain bounded as kx becomes large. The above solutions are also valid for

kx < k0 with a0 and a replaced by jb0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k20�k2x

p
and jb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m«k20�k2x

p
.

Let us, at this point, assume that the field in the aperture plane consists of a

sinusoidal oscillation sin vet at the frequency ve, which is turned on at t ¼ 0 and

turned off at t ¼ t. For this signal, the spectral function is given by Equation D.7 and
is repeated below:

SðvÞ ¼ e jðve�vÞt�1

2ðv�veÞ � e�jðvþveÞt�1

2ðvþveÞ

¼ jejðve�vÞt=2 t
2

sinðv�veÞt=2
ðv�veÞt=2 �je�jðvþveÞt=2 t

2

sinðvþveÞt=2
ðvþveÞt=2

ðD:18Þ

For notational convenience, we will let the function in the integrand in

Equation D.14c be denoted by Fða0;vÞ, where

Fða0;vÞ ¼ ma0 coshðad=2Þ�a sinhðad=2Þ
ma0 coshðad=2Þþa sinhðad=2Þ�

ma0 sinhðad=2Þ�a coshðad=2Þ
ma0 sinhðad=2Þþa coshðad=2Þ

24 35e�a0d

¼ 8ma0ae
�a0d�ad

ðma0 þaÞ2�ðma0�aÞ2e�2ad
ðD:19Þ

SOLUTION FOR THE TWO-INTERFACE PROBLEM 323



which was obtained by combining the even and odd mode solutions in

Equation D.14c. At the frequencies v ¼ �ve, where the relative values of epsilon

and mu are equal to �1, this function equals 2. There are no poles at �ve. However,

the function Fða0;vÞ has poles at �v�
e , which are the resonant frequencies of the

even and odd surface wave modes.

The inversion contour for the Fourier transform runs parallel to the real v axis and

just below the poles at �vþ
e , �v�

e , and �vF. From a consideration of the wave

function ejvt�jvt�j2
ffiffiffiffiffiffiffiffiffiffi
k2
0
�k2x

p
d , we see for large values of v that for t < tþ 2d=c the

wave function will become small on the semicircle at infinity in the lower half of

the complexv plane. Thus, we can close the inversion contour in the lower half of the

complex plane and since no singularities are enclosed the value of the integral will be

zero. For the part of the spectral density function in Equation D.18 that does not

1.1

1

0.9
1 2 3

(a)
4 5

ωe

ωe
+
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ke

ωe
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–
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–

Res(ωe)+
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FIGURE D.3 A plot of the resonant frequencies for the even and odd surface wave modes,

and their residues, as a function of kx=ke ¼ kxc=ve.
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depend on t, the inversion contour can also be closed in the lower half of the complex

v plane when t < 2d=c and will not give any contribution to the field. These

conditions are simply the requirements of causality. Note that as v becomes very

large the propagation factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m«k20�k2x

p
in the slab becomes the same as that in free

space because epsilon and mu approach the free space values, and hence there is no

problem with time running backward as far as imposing the causality condition is

concerned. The spectral density function of the input signal that depends on t will
give the output field at the image plane after the sinusoidal signal has been turned

off. This signal would be of less interest since it is unlikely that measurements of the

field at the image plane would be made after the illumination of the object has been

turned off.

The evaluation of the fields in terms of the residues requires that the Fourier

inversion integral be taken over a closed contour enclosing the poles and that the

integrand be single valued within the contour. The expression in Equation D.14a is an

even function of a and hence has branch points associated only with a0. Suitable

branch cuts are the lines joining the two branch points, corresponding to the zeroes

v ¼ �kxc ¼ �vx of a0, to plus and minus infinity as shown in Figure D.4. The

original inversion contour runs parallel to the real axis, from minus infinity to plus

infinity, but below the poles at �v�
e and �ve. This contour is closed by the contour

shown in Figure D.4, which includes a contour running around the branch cut from

vx ¼ �kxc to�1 and from kxc to1, and closed by a semicircle contour at infinity

in the upper half of the complex vþ js plane. There is no contribution to the

integrals from the semicircle contour. The poles are enclosed within the contour.

The value of the integral in Equation D.14a thus consists of the terms corresponding

to the residues at the poles plus integrals around the branch cuts but traversed in

the opposite direction. In the absence of loss, the poles lie on the real v axis. On the

–ωx –ωe –ωe
+ ωe ωe

– ωe ωx
+–ωe

–

FIGURE D.4 The modified integration contour showing the contours around the branch cuts.
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bottom side of the branch cut in the left half plane a0 ¼ j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x�k20

p
, but on the top

side of this branch cut a0 changes sign. On the branch cut in the right half plane

a0 ¼ j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x�k20

p
on the top side of the cut and equals the negative of this on the lower

side of the cut. The integration along the top and bottom sides of the branch cuts can

be combined and is given by

I1 ¼ 1

2p

ð�vx

�1
AðkxÞ

"
F j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k20�k2x

q
;v

� �
�F �j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k20�k2x

q
;v

� �#

1

2ðvþveÞ�
1

2ðv�veÞ

24 35e�jkxxþ jvt dv

þ 1

2p

ð1
vx

AðkxÞ
"
F

�
�j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k20�k2x

q
;v

�
�F

�
j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k20�k2x

q
;v

�#

1

2ðvþveÞ�
1

2ðv�veÞ

24 35e�jkxxþ jvt dv ðD:20Þ

For the propagating waves, the solution at the image plane consists of the residue

wave from the poles at �ve with a frequency of ve, plus the field from the branch

cut ‘integrals, which is given by Equation D.20. The desired wave is the pole wave at

the frequencies �ve, which is given by the residues at �ve (note that

Fð j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k20�k2x

p
;veÞ ¼ 2),

Eop ¼ jAðkxÞe�jkxxþ jvet þ c:c:; 2d=c < t < tþ 2d=c ðD:21aÞ

where c.c. is the complex conjugate term. The contribution from the branch cut

integrals is

� 1

2p

ð1
vx

AðkxÞ 4mb0be
�jðb0 þbÞd

ðmb0 þbÞ2�ðmb0�bÞ2e�j2bd
þ 4mb0be

�jðb�b0Þd

ðmb0�bÞ2�ðmb0 þbÞ2e�j2bd

" #

vee
�jkxxþ jvt

v2�v2
e

dvþ c:c:; 2d=c < t < tþ 2d=c ðD:21bÞ

where b0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k20�k2x

p
and b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m«k20�k2x

p
. For large values of k0 and for « ¼ m, the

integrand in the above expression becomes

AðkxÞ
�8j

ffiffiffiffiffiffi
«m

p
sin½ð ffiffiffiffiffiffi

«m
p þ 1Þk0d�

ð ffiffiffiffi
m

p þ ffiffiffi
«

p Þ2
( )

ve

v2
e�jkxxþ jvt

¼ �2jAðkxÞsin 2ð1�v2
e=v

2Þk0d
� 	ve

v2
e�jkxxþ jvt
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(When the complex conjugate of this expression is added) This result shows that the

contribution from the branch cut integrals vanishes for large values of k0.

If the frequency ve is greater than vx, then the point v ¼ ve lies on the branch cut

but the rest of the integrand vanishes forv ¼ ve, so there is no pole on the branch cut.

There are no surface wave poles associated with the propagating waves.

For the evanescent waves, the solution consists solely of the pole waves. Thus, for

2d=c < t < tþ 2d=c, the sum of the dominant wave given by Equation D.21a and

the excited surface waves is given by

Eo ¼ j

2
AðkxÞe�jkxx 2e jvet þ vee

�a0ðvþ
e Þd

vþ
e �ve

dResðvþ
e Þejvþ

e t�vee
�a0ðv�

e Þd

ve�v�
e

dResðv�
e Þejv

�
e t

� �
þ c:c:

ðD:22Þ

where c.c. is the complex conjugate term. The values of the residues are given by

Equations D.15a and D.15b. The first wave at �ve corresponds to Pendry’s solution

for the loss-free lens. The other two terms are the resonant surface wave modes at

�v�
e whose excitation cannot be avoided when frequency dispersion is included for

epsilon and mu. These resonant modes will cause interference with the desired mode

with frequency ve and thus will make it very difficult to obtain a coherent

reconstruction of the evanescent wave amplitudes since the resonant frequencies

of the surface wave modes vary with the transverse wave number. One can anticipate

that some loss will be present in the slab and this will limit the lifetime of the resonant

surface wave modes (surface plasmons), so the interference will die out. But as noted

by a number of investigators, the presence of loss will limit the subwavelength

resolution of the lens. With either scenario, the performance of the lens is reduced. In

either case, the frequency dispersion or loss, or a combination of both, will avoid any

field divergence for large values of the transverse wave number. It is also important to

keep in mind that for large values of kx the surface wave resonant frequencies are

very close tove, so the frequency of the incident field must be carefully controlled. If

the frequency of the incident field is shifted to either vþ
e or v�

e , this will create a

double pole with a time response proportional to tejv0te�a0ðv0Þd , where v0 equals v
þ
e

or v�
e instead of the desired dominant wave at ve.

It can be shown that for kx greater than 5 the resonant surface wave frequencies

are essentially equal, and furthermore to a high degree of accuracy (Gómez-

Santos, 2003),
ve

vþ
e �ve

e�a0d � ve

ve�v�
e

e�a0d � 2 ðD:23Þ

Also as reference to Equations D.15a and D.15b shows, the residues are approxi-

mately equal to�0:5vee
�a0d and 0:5vee

�a0d because A is the dominant coefficient in

the denominator and very nearly equal to 4kx. Thus, we can express the solution in

the form

Eo ¼ jAðkxÞe�jkxx½ejvet�ejðv
þ
e þv�

e Þt=2 cosDvt� þ c:c:; 2d=c < t < tþ 2d=c ðD:24Þ
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whereDv ¼ ðvþ
e �v�

e Þ=2.We can alsomake the approximation ðvþ
e þv�

e Þ=2 � ve.

This is essentially the result obtained by Gómez-Santos by using a model of two

coupled mechanical resonators (Gómez-Santos, 2003). For Dvt small, the expansion

of the cosine function gives

Eo � j

2
AðkxÞe�jkxxðDvtÞ2ejvet ¼ j

2
AðkxÞe�jkxxþ jvetðvetÞ2e�2a0d ðD:25Þ

which shows that it takes a considerable length of time for the field at the image plane

to build up to its steady-state valuewhen the decaying exponential factor is very small.

For example, if d ¼ l0=4 and kx ¼ 20k0, then

t ¼ 1

Dv
¼ 1

ve

e20k0l0=4 ¼ 4:4� 1013
1

ve

which for a frequency of 10GHz gives t equal to 11.7min. The result shown in

Equation D.25 can also be obtained from a different approach. When kx approaches

infinity, Dv approaches zero and vþ
e and v�

F coalesce to produce a triple pole

given by

1

4
e�a0d

ve

v�vþ
e

� ve

v�v�
e

� �
1

v�ve

! ve

4
e�a0d

vþ
e �v�

e

ðv�veÞ3
! v2

e

4
e�2a0d

1

ðv�veÞ3

which has the time response ðj=8ÞðvetÞ2e�2a0de jvet. Since the signal is turned off at

a finite time t, the field at the image plane vanishes as kx approaches infinity. For

finite values of kx and Dvt that is large, the field described by Pendry’s solution is

slowly modulated by the cosine factor. Since the resonant frequency of the surface

wave modes depends on kx, the field at the image plane is not coherent in frequency

and thus it would be virtually impossible to achieve a coherent reconstruction of the

evanescent wave amplitudes at the image plane. If features as small as one-tenth of

a wavelength were to be observed, values of kx up to about 10ke � 10k0 would have

to be retained. The interference from the excited resonant surface waves would

make it unlikely that any useful coherent reconstruction of the evanescent waves

with these values of kx could be achieved.

After the signal has been turned off, the spectral function SðvÞ that must be used is

SðvÞ ¼ jejðve�vÞt=2 t
2

sinðv�veÞt=2
ðv�veÞt=2 �je�jðvþveÞt=2 t

2

sinðvþveÞt=2
ðvþveÞt=2

For this spectrum, there are no poles at �ve. The rapid oscillations of the spectral

function for large values of jv�vej and jvþvej will ensure that the branch cut

integrals are small.

Various authors have shown that losses in the negative index slab would also

reduce the resolution capability of the lens even if there was no frequency dispersion
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in epsilon and mu. The excited resonant surface wave modes will decay to zero

because of losses that will be present, even though we did not include losses in the

above analysis that focused on the limitations of the loss-free Veselago lens because

of frequency dispersion in epsilon and mu.

When the losses in the lens material are small, the new surface wave eigenvalues

can be found using a perturbation method based on the Newton–Raphson method.

Consider the eigenvalue equation (Equation D.13a) and let

f ðvÞ ¼ ma0�aþðma0 þaÞead

We now assume that the loss in the material is the same for epsilon and mu and

thus let

« ¼ 1� 2v2
e

vðvþ jgÞ � 1� 2v2
e

v2
þ j2gv2

e

v3
¼ m

where g is the loss parameter and is considered to be very small relative to ve. Since

the root for this equation is very close to ve, the first approximation to the root when

loss is included is given by

f ðvÞ ¼ f ðveÞþ qf
qv

veðv�veÞ ¼ 0

����� ðD:26aÞ

which gives

v ¼ ve� f ðveÞ
qf ðvÞ=qv vej ðD:26bÞ

This expression can be evaluated and when only the first-order terms in g are retained
and the transverse wave number kx is assumed to be large it is found that

v ¼ vþ
e þ jðg=2Þ, and similarly v ¼ v�

e þ jðg=2Þ, for the eigenvalues of the even

and odd surface wave modes when a small loss is included. This result is the same as

that found by Grbic (2007). When these values for the eigenvalues are used in

Equation D.19, it is found that for large kx

Fða0;veÞ � 2

1þðg=veÞ2e2kxd
ðD:27Þ

which is now the residue for the dominant wave. The solution for the excited surface

waves will now be

Eo ¼ j

2
AðkxÞe�jkxx

vee
�a0ðvþ

e Þd

vþ
e �ve þ jg=2

dResðvþ
e Þejvþ

e t�gt� vee
�a0ðv�

e Þd

ve�v�
e �jg=2

dResðv�
e Þejv

�
e t�gt

� �
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We now make use of Equation D.23 to obtain

ve

ðvþ
e �veÞ½1þ jg=2ðvþ

e �veÞ� ¼
2ea0d

1þ jve=½ðvþ
e �veÞQ� ¼

2ea0d

1þ jea0d=Q

where Q is the quality factor ve=g for the surface wave resonator. A similar

expression will hold for the odd surface wave mode. In place of Equation D.22,

the solution for the evanescent waves for large values of kx is now given by

Eo � jAðkx;veÞe�jkxx
e jvet

1þ e2a0d=Q2
� 1

2½1þ jea0d=Q� e
�gt=2ðe jvþ

e t þ e jv
�
e tÞ

� �
þ c:c: ðD:28Þ

for 2d=c < t < tþ 2d=c.
For the propagating waves where kx < k0, the result given in Equation D.21a

should be replaced by

jAðkx;veÞe�jkxx
ð1�j=QÞejvet

1þ e j2bdk2x=ðb2
0Q

2Þ

� �
þ c:c:; 2d=c < t < tþ 2d=c ðD:29Þ

which is valid for small losses and jkxj < k0. This term, together with the branch cut

integrals, when integrated over jkxj < k0, gives the total image field arising from the

propagating waves at the image plane. As noted earlier, the propagating wave

spectrum given by the branch cut integrals produces some blurring of the image, an

artifact that was not present in Pendry’s ideal lens solution. Equation D.29 shows that

losses will also produce some blurring of the image.

The loss reduces the amplitudes of the residues by a substantial amount. In addition,

it can be seen that the excited surface wave modes will decay quite rapidly. For

example, if the quality factor or Q of the surface wave mode resonances equals 104,

then the surface wave modes become negligible in less than a microsecond if the

frequency is equal to 10GHz. Hence, interference from the excited surface wave

modes is not likely to be a serious factor in reducing the performance of a lossy

Veselago lens. However, the factor multiplying the dominant pole wave will become

small whenever the factor ðg=veÞea0d ¼ Q�1ea0d � Q�1ekxd>1. For the above exam-

ple, this occurs for kx> 9.2/d. If d ¼ l0=4, this corresponds to lx>0:17l0. The
amplitude of features smaller than this will be reduced by a factor of more than

1=2 at the image plane. This reduction in the amplitudes of the evanescent waves

increases exponentially with kx. Merlin showed that a small perturbation s in the

relative value of « reduced the resolution of the lens in accordance with a formula like

that inEquationD.28with j2g=ve replacings (Merlin, 2004). Thus, if the frequency of

the incident field drifts away from thevalueve, thiswill be equivalent to a change in the

relativevalues of epsilon andmu from�1 andcanproduce a significant reduction in the

resolution of the lens.Hence, in practice, if a Veselago lens could be constructed, it will

be the losses and the frequency stability of the source that illuminates the object that

will limit the resolution, not the interference from the excited surface wave modes.
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We can now understand what happens when a steady-state sinusoidal incident

field at the frequency ve is assumed. For this case, the frequency spectral function

can be represented by a delta function, that is, SðvÞ ¼ 2pdðv�veÞ, and thus the

inverse Fourier transform results in the field solutions being evaluated at the

frequency ve, where « ¼ m ¼ �1, which gives Pendry’s solution. When frequency

dispersion is neglected, then the only pole is a double pole that occurs when kx
becomes infinite. Although Pendry’s solution has some of the characteristics of a

resonant mode, its resonant frequency is not clearly defined except perhaps through

the condition that the relative values of epsilon and mu must equal �1. This is the

cause for the divergent behavior of Pendry’s solution since it corresponds to a steady-

state sinusoidal signal being applied to a resonant system at its resonant frequency.

When frequency dispersion is included and an incident field with finite frequency

spectral density is assumed, then the response is obtained in terms of the residues at

the surface wave poles and this response is finite even when kx becomes infinite. For

the case of a sinusoidal signal turned on at t¼ 0 and later turned off, the frequency

spectrum contains a pole term at the frequency of the sinusoidal signal instead of a

delta function spectral term. The use of a sinusoidal signal of finite duration reveals

much richer physical phenomena associated with Veselago’s lens that is completely

missed in a steady-state sinusoidal solution.

D.4 CONCLUSIONS

An analysis of transmission through a flat slab lens was carried out. For the first case

considered, it was assumed that the input field had a continuous frequency spectrum

with finite density, and that both epsilon andmu exhibited frequency dispersion. The

field excited in the lens was expressed in terms of the even and odd resonant surface

wave modes whose amplitudes were evaluated in terms of the residues at the poles.

For this case, it was found that there were no exponentially growing evanescent

waves in the slab. However, when the incident fieldwas chosen as a sinusoidal signal

with finite duration, a dominant wave at the frequency ve, at which the relative

values of epsilon and mu were equal to�1, was also excited, but due to interference

from the excited surface wave modes a coherent reconstruction of the evanescent

wave amplitudes was not possible. As a consequence of this result, a lossless

Veselago flat lens with super-resolution is not physically possible. When small loss

is included in the material parameters, the excited surface wave modes decay away

in a very short period of time and their interference effects become negligible. The

resolution of the Veselago lens in now limited by the loss, a result previously

established by a number of investigators, and/or a signal frequency that deviates

from that for which the relative values of epsilon and mu are exactly equal to�1. A

new result that others had not found was the existence of a continuous spectrum of

propagatingwaves that arise frombranch cut integrals and that will blur the image of

these waves at the image plane. It was also concluded that Pendry’s solution for a

lossless lens was not a continuous function of the physical parameters and hence did

not constitute a proper physical solution. The analysis presented in this appendix is a
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classical one and gives a solution that satisfies the required conditions for a proper

physical solution.
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