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RF ENGINEERING - BASIC CONCEPTS 

F. Caspers, P. McIntosh, T. Kroyer 
 
ABSTRACT 

The concept of describing RF circuits in terms of waves is discussed and the S matrix and related 
matrices are defined.  The signal flow graph (SFG) is introduced as a graphical means to visualise 
how waves propagate in an RF network.  The properties of the most relevant passive RF devices 
(hybrids, couplers, non-reciprocal elements, etc.) are delineated and the corresponding S 
parameters are given.  For microwave integrated circuits (MICs) planar transmission lines such as 
the microstrip line have become very important.  A brief discussion on the Smith Chart concludes 
this paper. 

1. INTRODUCTION 

For the design of RF and microwave circuits a practical tool is required.  The linear dimensions of 
the elements that are in use may be of the order of one wavelength or even larger.  In this case the 
equivalent circuits which are commonly applied for lower frequencies lead to difficulties in the 
definition of voltages and currents.  A description in terms of waves becomes more meaningful.  
These waves are scattered (reflected, transmitted) in RF networks.  Having introduced certain 
definitions of the relation between voltages, currents and waves we discuss the S and T matrices 
such for the description of 2-port networks.  Nowadays the calculation of complex microwave 
networks is usually carried out by means of computer codes.  These apply matrix descriptions and 
conversions extensively.  Another way to analyze microwave networks is by taking advantage of 
the signal flow graph (SFG).  The SFG is a graphical representation of a system linear equations 
and permits one to visualise how, for example, an incident wave propagates through the network.  
However, for a systematic analysis of large networks the SFG is not very convenient; computer 
codes implementing the matrix formulation are generally used these days. In a subsequent section 
the properties of typical microwave n-ports (n = 1, 2, 3, 4) are discussed.  The n-ports include 
power dividers, directional couplers, circulators and 180° hybrids.  Historically many microwave 
elements have been built first in waveguide technology.  Today waveguide technology is rather 
restricted to high-power applications or for extremely high frequencies.  Other less bulky types of 
transmission lines have been developed such as striplines and micro striplines.  They permit the 
realisation of microwave integrated circuits (MICs) or, if implemented on a semiconductor 
substrate, the monolithic microwave integrated circuits (MMICs).  This paper concludes with a 
description of the Smith Chart, a graphical method of evaluating the complex reflection coefficient 
for a given load.  Several examples including the coupling of single-cell resonators are mentioned. 

2. S PARAMETERS 

The abbreviation S has been derived from the word scattering.  For high frequencies, it is 
convenient to describe a given network in terms of waves rather than voltages or currents.  This 
permits an easier definition of reference planes.  For practical reasons, the description in terms of 
in- and outgoing waves has been introduced.  Now, a 4-pole network becomes a 2-port and a 2n-
pole becomes an n-port.  In the case of an odd pole number (e.g. 3-pole), a common reference point 
may be chosen, attributing one pole equally to two ports.  Then a 3-pole is converted into a (3+1) 
pole corresponding to a 2-port.  As a general conversion rule for an odd pole number one more 
pole is added. 
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Fig. 1  Example for a 2-port network: A series impedance Z. 

Let us start by considering a simple 2-port network consisting of a single impedance Z connected 
in series (Fig. 1). The generator and load impedances are ZG and ZL, respectively. If Z = 0 and ZL = 
ZG (for real ZG) we have a matched load, i.e. maximum available power goes into the load and U1 = U2 
= U0/2. Please note that all the voltages and currents are peak values. The lines connecting the different 
elements are supposed to have zero electrical length.  Connections with a finite electrical length are 
drawn as double lines or as heavy lines.  Now we would like to relate U0, U1 and U2 with a and b. 

Definition of “power waves” 

The waves going towards the n-port are a = (a1, a2, ..., an), the waves travelling away from the n-port 
are b = (b1, b2, ..., bn).  By definition currents going into the n-port are counted positively and 
currents flowing out of the n-port negatively. The wave a1 is going into the n-port at port 1 is 
derived from the voltage wave going into a matched load. 

In order to make the definitions consistent with the conservation of energy, the voltage is 
normalized to 0Z . Z0 is in general an arbitrary reference impedance, but usually the 
characteristic impedance of a line (e.g. Z0 = 50 Ω) is used and very often ZG = ZL = Z0. In the 
following we assume Z0 to be real. The definitions of the waves a1 and b1 are 
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Note that a and b have the dimension power  [1]. 

The power travelling towards port 1, P1
inc,  is simply the available power from the source, while 

the power coming out of port 1, P1
refl,  is given by the reflected voltage wave. 

I1 I2 
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Please note the factor 2 in the denominator, which comes from the definition of the voltages and 
currents as peak values (“European definition”). In the “US definition” effective values are used 
and the factor 2 is not present, so for power calculations it is important to check how the voltages 
are defined. For most applications, this difference does not play a role since ratios of waves are 
used. 

In the case of a mismatched load ZL there will be some power reflected towards the 2-port from ZL 
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There is also the outgoing wave of port 2 which may be considered as the superimposition of a 
wave that has gone through the 2-port from the generator and a reflected part from the 
mismatched load.  We have defined ( )1 0 0 02 inca U Z U Z= =  with the incident voltage wave 

Uinc. In analogy to that we can also quote 1 0
inca I Z=  with the incident current wave Iinc. We obtain  

the general definition of the waves ai travelling into and bi travelling out of an n-port: 
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Solving these two equations, Ui and Ii can be obtained for a given ai and bi as 
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For a harmonic excitation u(t) = Re{Uejωt} the power going into port i is given by 
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The term (ai
*bi – aibi

*) is a purely imaginary number and vanishes when the real part is taken. 

The S matrix 

The relation between ai and bi (i = l...n) can be written as a system of n linear equations (ai being the 
independent variable, bi the dependent variable) 
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or, in matrix formulation  

  Sab =  (2.8) 

The physical meaning of S11 is the input reflection coefficient with the output of the network 
terminated by a matched load (a2 = 0).  S21 is the forward transmission (from port 1 to port 2), S12 
the reverse transmission (from port 2 to port 1) and S22 the output reflection coefficient.  

When measuring the S parameter of an n-port, all n ports must be terminated by a matched load 
(not necessarily equal value for all ports), including the port connected to the generator (matched 
generator). 

Using Eqs. 2.4 and 2.7 we find the reflection coefficient of a single impedance ZL connected to a 
generator of source impedance Z0 (Fig. 1, case ZG = Z0 and Z = 0) 
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which is the familiar formula for the reflection coefficient ρ (often also denoted Γ). 

Let us now determine the S parameters of the impedance Z in Fig. 1, assuming again ZG = ZL = Z0. 
From the definition of S11 we have  
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and in a similar fashion we get  
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Due to the symmetry of the element S22 = S22 and S12 = S21. Please note that for this case we obtain 
S11 + S21 = 1. The full S matrix of the element is then  
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The transfer matrix 

The S matrix introduced in the previous section is a very convenient way to describe an n-port in 
terms of waves.  It is very well adapted to measurements.  However, it is not well suited to for 
characterizing the response of a number of cascaded 2-ports. A very straightforward manner for 
the problem is possible with the T matrix (transfer matrix), which directly relates the waves on the 
input and on the output [2] 

 1 11 12 2

1 21 22 2

b T T a
a T T b

⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟
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 (2.13) 

The conversion formulae between S and T matrix are given in Appendix I. While the S matrix 
exists for any 2-port, in certain cases, e.g. no transmission between port 1 and port 2, the T matrix 
is not defined. The T matrix TM of m cascaded 2-ports is given by (as in [2, 3]): 

  m21M TTTT K=  (2.14) 

Note that in the literature different definitions of the T matrix can be found and the individual 
matrix elements depend on the definition used. 

3. SIGNAL FLOW GRAPH (SFG) 

The SFG is a graphical representation of a system of linear equations having the general form: 

   y = Mx + M’y (3.1) 
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where M and M’ are square matrices with n rows and columns, x represents the n independent 
variables (sources) and y the n dependent variables.  The elements of M and M’ appear as 
transmission coefficients of the signal path. When there are no direct signal loops, as is generally 
the case in practise, the previous equation simplifies to y = Mx, which is equivalent to the usual S 
parameter definition 

   b = Sa (3.2) 

The SFG can be drawn as a directed graph. Each wave ai and bi is represented by a node, each 
arrow stands for an S parameter (Fig. 5). 

For general problems the SFG can be solved for applying Mason’s rule (see Appendix II). For not 
too complicated circuits, a more intuitive way is to simplify step-by-step the SFG by applying the 
following three rules (Fig. 4): 

1. Add the signal of parallel branches  

2. Multiply the signals of cascaded branches 

3. Resolve loops 

 

Fig. 4: The three rules for simplifying signal flow charts. 

Care has to be taken applying the third rule, since loops can be transformed to forward and 
backward oriented branches. No signal paths should be interrupted when resolving loops. 

Examples 

We are looking for the input reflection coefficient b1/a1 of a two-port with a non-matched load ρL 
and a matched generator (source ρS = 0), see Fig. 5.   
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Fig. 5:  A 2-port with a non-matched load 

The loop at port 2 involving S22 and ρL can be resolved, given a branch from b2 to a2 with the signal 
ρL *(1-ρL*S22). Applying the cascading rule and the parallel branch rule then yields 
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 (3.3) 

As a more complicated example one may add a mismatch to the source (ρS = dashed line in Fig. 5) 
and ask for b1/bs. 

As before, first the loop consisting of S22 and ρL can be resolved. Then the signal path via b2 and a2 
is added to S11, yielding a loop with ρS. Finally one obtains 
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The same results would have been found applying Mason’s rule on this problem. 

As we have seen in this rather easy configuration, the SFG is a convenient tool for the analysis of 
simple circuits [8, 12].  For more complex networks there is a considerable risk that a signal path 
may be overlooked and the analysis soon becomes complicated.  When applied to S-matrices, the 
solution may sometimes be read directly from the diagram.  The SFG is also a useful way to gain 
insight into other networks, such as feedback systems.  But with the availability of powerful 
computer codes using the matrix formulations, the need to use the SFG has been reduced. 

Element S matrix SFG 
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d) Lossless line (length l) matched   
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e) Passive 3-port   
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f) Passive n-port   

Fig. 6:  SFG and S matrices of different multiports (reproduced from [12] with the permission of the 
publisher) 

4. PROPERTIES OF THE S MATRIX OF AN N-PORT 

A generalized n-port has n2 scattering coefficients.  While the Sij may be all independent, in general 
due to symmetries etc the number of independent coefficients is much smaller.  

• An n-port is reciprocal when Sij = Sji for all i and j. Most passive components are reciprocal 
(resistors, capacitors, transformers, . . . , except for structures involving ferrites, plasmas etc, 
active components such as amplifiers are generally non-reciprocal. 

• A two-port is symmetric, when it is reciprocal (S21 = S12) and when the input and output 
reflection coefficients are equal (S22 = S11).  

• An N-port is passive and lossless if its S matrix is unitary, i.e. S†S = 1, where x† = (x*)T is the 
conjugate transpose of x. For a two-port this means 
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which yields three conditions 
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 11 12 21 22 0* *S S S S+ =   (4.3) 

Splitting up the last equation in the modulus and argument yields 
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where arg(x) is the argument (angle) of the complex variable x. Combining Eq. 4.2 with the first of 
Eq. 4.4 then gives 
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Thus any lossless 2-port can be characterized by one modulus and three angles. 

In general the S parameters are complex and frequency dependent.  Their phases change when the 
reference plane is moved.  Often the S parameters can be determined from considering symmetries 
and, in case of lossless networks, energy conservation. 

Examples of S-matrices 

1-ports 
• Ideal short  S11 = -1 
• Ideal termination  S11 = 0 
• Active termination (reflection amplifier) ⏐S11⏐ > 1 

 
2-ports 

• Ideal transmission line of length l 
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 where γ = α + jβ is the complex propagation constant, α the line attenuation in [Neper/m] 
and β = 2π/λ with the wavelength λ. For a lossless line |S21| = 1. 

 
• Ideal phase shifter 
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For a reciprocal phase shifter ϕ12 = ϕ21, while for the gyrator ϕ12 = ϕ21 + π. An ideal gyrator 
is lossless (S†S = 1), but it is not reciprocal. Gyrators are often implemented using active 
electronic components, however in the microwave range passive gyrators can be realized 
using magnetically saturated ferrite elements. 
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• Ideal, reciprocal attenuator 
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with the attenuation α in Neper. The attenuation in Decibel is given by A = -20*log10(S21), 1 
Np = 8.686 dB. An attenuator can be realized e.g. with three resistors in a T circuit. The 
values of the required resistors are  
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      where k is the voltage attenuation factor and Z0 the reference impedance, e.g. 50 Ω. 

• Ideal isolator 
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The isolator allows transmission in one directly only, it is used e.g. to avoid reflections from 
a load back to the generator. 

• Ideal amplifier 
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  with the gain G > 1. 
 
3-ports 
 
Several types of 3-ports are in use, e.g. power dividers, circulators, T junctions, etc. It can be shown 
that a 3-port cannot be lossless, reciprocal and matched at all three ports at the same time. The 
following three components have two of the above characteristics: 

• Resistive power divider: It consists of a resistor network and is reciprocal, matched at all 
ports but lossy. It can be realized with three resistors in a triangle configuration. When port 
3 connected to ground, the resulting circuit is similar to a 2-port attenuator but not matched 
any more at port 1 and port 2. 
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• The T splitter is reciprocal and lossless but not matched at all ports. 

Port 1 Port 2 

Port 3 

Z0/3 Z0/3 
Z0/3 

R1 R1 
R2 Port 1 Port 2 
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Fig. 7:  The two versions of the H10 waveguide T splitter: H-plane and E-plane splitter 

Using the losslessness condition and symmetry considerations one finds, for appropriate reference 
planes for H and E plane splitters 
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The ideal circulator is lossless, matched at all ports, but not reciprocal. A signal entering the ideal 
circulator at one port is transmitted exclusively to the next port in the sense of the arrow (Fig. 8). 

 

Fig. 8:  3-port circulator and 2-port isolator. The circulator can be converted into isolator by putting 
matched load to port 3. 

Accordingly, the S matrix of the isolator has the following form: 
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When port 3 of the circulator is terminated with a matched load we get a two-port called isolator, 
which lets power pass only from port 1 to port 2 (see section about 2-ports). A circulator, like the 
gyrator and other passive non-reciprocal elements contains a volume of ferrite.  This ferrite is 
normally magnetized into saturation by an external magnetic field.  The magnetic properties of a 
saturated RF ferrite have to be characterized by a μ-tensor. The real and imaginary part of each 
complex element μ are μ’ and μ’’. They are strongly dependent on the bias field. The μ+ and μ- 
represent the permeability seen by a right- and left-hand circular polarized wave traversing the 
ferrite (Fig. 9).   

2 
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Fig. 9 The real part μ’ (left) and imaginary part μ’’ (right) of the complex permeability μ. The right- 
and left-hand circularly polarized waves in a microwave ferrite are μ+ and μ-. At the gyromagnetic 
resonance the right-hand polarized has high losses, as can be seen from the peak in the right 
image. 

In Figs. 10 and 11 practical implementations of circulators are shown. The magnetically polarized 
ferrite provides the required nonreciprocal properties. As a result, power is only transmitted from 
port 1 to port 2, from port 2 to port 3 and from port 3 to port 1. A detailed discussion of the 
different working principles of circulators can be found in the literature [2,13]. 

 

Fig.10  Waveguide circulator 

 

Fig. 11  Stripline circulator 

The Faraday rotation isolator uses the TE10 mode in a rectangular waveguide, which has a 
vertically polarized H field in the waveguide on the left (Fig. 12). After a transition to a circular 
waveguide, the polarization of the waveguide mode is rotated counter clockwise by 45o by a 
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ferrite. Then follows a transition to another rectangular waveguide which is rotated by 45o such 
that the rotated forward wave can pass unhindered. However, a wave coming from the other side 
will have its polarization rotated by 45o clockwise as seen from the right side. In the waveguide on 
the left the backward wave arrives with a horizontal polarization. The horizontal attenuation foils 
dampen this mode, while they hardly affect the forward wave. Therefore the Faraday isolator 
allows transmission only from port 1 to port 2.  

 

Fig. 12:  Faraday rotation isolator 

The frequency range of ferrite-based, non-reciprocal elements extends from about 50 MHz up to 
optical wavelengths (Faraday rotator) [13]. Finally, it is shall be noted that all non-reciprocal 
elements can be made from a combination of an ideal gyrator (non-reciprocal phase shifter) and 
other passive, reciprocal elements, e.g. 4-port T-hybrids or magic tees.  

The S matrix of a 4-port 

As a first example let us consider a combination of E-plane and H-plane waveguide ‘T’s (Fig. 13).  
This configuration is called a Magic ‘T’ and has the S matrix: 
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Fig. 13:  Hybrid ‘T’, Magic ‘T’, 180° hybrid.  Ideally there is no crosstalk between port 3 and port 4 
nor between port 1 and port 2. 

As usual the coefficients of the S matrix can be found by using the unitary condition and 
mechanical symmetries. Contrary to 3-ports a 4-port may be lossless, reciprocal and matched at all 
ports simultaneously. With a suitable choice of the reference planes the very simple S matrix given 
above results.  

In practice, certain measures are required to make out the ‘T’ a ‘magic’ one, such as small matching 
stubs in the center of the ‘T’.  Today, T-hybrids are often produced not in waveguide technology, 
but as coaxial lines and printed circuits.  They are widely used for signal combination or splitting 
in pickups and kickers for particle accelerators.  In a simple vertical-loop pickup the signal outputs 
of the upper and lower electrodes are connected to arm 1 and arm 2, and the sum (Σ) and 
difference (Δ) signals are available from the H arm and E arm, respectively.  This is shown in Fig. 
13 assuming two generators connected to the collinear arms of the magic T.  The signal from 
generator 1 is split and fed with equal amplitudes into the E and H arm, which correspond to the Δ 
and Σ ports.  The signal from generator 2 propagates in the same way. Provided that both 
generators have equal amplitude and phase, the signals cancel at the Δ port and the sum signal 
shows up at the Σ port.  The bandwidth of a waveguide magic ‘T’ is around one octave or the 
equivalent H10-mode waveguide band.  Broadband versions of 180° hybrids may have a frequency 
range from a few MHz to some GHz. 

Another important element is the directional coupler.  A selection of possible waveguide couplers 
is depicted in Fig. 14. 

 

Fig. 14:  Waveguide directional couplers: (a) single-hole, (b,c) double-hole and (d,e) multiple-hole 
types. 

There is a common principle of operation for all directional couplers:  we have two transmission 
lines (waveguide, coaxial line, strip line, microstrip), and coupling is adjusted such that part of the 
power linked to a travelling wave in line 1 excites travelling waves in line 2.  The coupler is 

 λg/4 

a b c 

d 
e 
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directional when the coupled energy mainly propagates in a single travelling wave, i.e. when there 
is no equal propagation in the two directions. 

The single-hole coupler (Fig. 14), also known as a Bethe-coupler, takes advantage of the electric 
and magnetic polarizability of a small (d<<λ) coupling hole.  A propagating wave in the main line 
excites electric and magnetic currents in the coupling hole.  Each of these currents gives rise to 
travelling waves in both directions.  The electric coupling is independent of the angle α between 
the waveguides (also possible with two coaxial lines at an angle α).  In order to get directionality, 
at least two coupling mechanisms are necessary, i.e. two coupling holes or electric and magnetic 
coupling. For the Bethe coupler the electric coupling does not depend on the angle α between the 
waveguides, while the magnetic coupling is angle-dependent.  It can be shown that for α = 30° the 
electric and magnetic components cancel in one direction and add in the other and we have a 
directional coupler. The physical mechanism for the other couplers shown in Fig. 14 is similar.  
Each coupling hole excites waves in both directions but the superposition of the waves coming 
from all coupling holes leads to a preference for a particular direction. 

Example:  the 2-hole, λ/4 coupler 

For a wave incident at port 1 two waves are excited at the positions of the coupling holes in line 2 
(top of Fig. 14b). For a backwards coupling towards port 4 these two wave have a phase shift of 
180°, so they cancel. For the forward coupling the two waves add up in phase and all the power 
coupled to line 2 leaves at port 3. Optimum directivity is only obtained in a narrow frequency 
range where the distance of the coupling holes is roughly λ/4.  For larger bandwidths, multiple 
hole couplers are used.  The holes need not be circular; they may be longitudinally or transversely 
orientated slots, crosses, etc. 

Besides waveguide couplers there exists a family of printed circuit couplers (stripline, microstrip) 
and also lumped element couplers (like transformers).  To characterize directional couplers, two 
important figures are always required, the coupling and the directivity.  For the elements shown in 
Fig. 14, the coupling appears in the S matrix as the coefficient 

⏐S13⏐=⏐S31⏐=⏐S42⏐=⏐S24⏐ 

with αc = -20 log⏐S13⏐in dB being the coupling attenuation. 

The directivity is the ratio of the desired coupled wave to the undesired (i.e. wrong direction) 
coupled wave, e.g. 

[ ]31

41
20 dBd

S
log directivity

S
α = . 

Practical numbers for the coupling are 3 dB, 6 dB, 10 dB, and 20 dB with directivities usually better 
than 20 dB.  Note that the ideal 3 dB coupler (like most directional couplers) often has a π/2 phase 
shift between the main line and the coupled line (90° hybrid).  The following relations hold for an 
ideal directional coupler with properly chosen reference planes 

S11  =  S22  =  S33  =  S44  =  0 
                                  S21  =  S12  =  S43  =  S34 (4.6) 
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                                                                 S31  =  S13  =  S42  =  S24 
                                    S41  =  S14  =  S32  =  S23 
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13 13

2
13 13

2
13 13
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13 13
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1 0 0

0 0 1
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 (4.7) 

and for the 3 dB coupler (π/2-hybrid) 

 3

0 1 0
1 0 01

0 0 12
0 1 0

dB

j
j

S
j

j

±⎛ ⎞
⎜ ⎟±⎜ ⎟=
⎜ ⎟±
⎜ ⎟

±⎝ ⎠

 (4.8) 

As further examples of 4-ports, the 4-port circulator and the one-to-three power divider should be 
mentioned.   

For more general cases, one must keep in mind that a port is assigned to each waveguide or TEM-
mode considered.  Since for waveguides the number of propagating modes increases with 
frequency, a network acting as a 2-port at low frequencies will become a 2n-port at higher 
frequencies (Fig. 15), with n increasing each time a new waveguide mode starts to propagate. Also 
a TEM line beyond cutoff is a multiport.  In certain cases modes below cutoff may be taken into 
account, e.g. for calculation of the scattering properties of waveguide discontinuities, using the S 
matrix approach. 

There are different technologies for realizing microwave elements such as directional couplers and 
T-hybrids.  Examples are the stripline coupler shown in Fig. 16, the 90°, 3 dB coupler in Fig. 17 and 
the printed circuit magic T in Fig. 18. 

 

x,y 

 

Increasing 
frequency 

      TEM         H10          H11,x  H20 

        H11,y 

  4   5   6 7 8 9

 

f = 0 Hz
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Fig. 15:  Example of a multiport comprising waveguide ports. At higher frequencies more 
waveguide modes can propagate; the port number increases correspondingly. 

 

Fig. 16:  Two-stage stripline directional coupler. curve 1: 3 dB coupler, curve 2: broadband 5 dB 
coupler,  curve 3: 10 dB coupler (cascaded 3-dB and 10-dB coupler) [2]. 

 

Fig. 17:  90° 3-dB coupler [2] 

 

Fig. 18:  Magic T in a printed circuit version [2] 
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5. BASIC PROPERTIES OF STRIPLINES, MICROSTRIP AND SLOTLINES 

5.1 Striplines 

A stripline is a flat conductor between a top and bottom ground plane.  The space around this 
conductor is filled with a homogeneous dielectric material.  This line propagates a pure TEM 
mode.  With the static capacity per unit length, C’, the static inductance per unit length, L’, the 
relative permittivity of the dielectric, εr and the speed of light c the characteristic impedance Z0 of 
the line is given by 

 

0

0

1

1

ph
r

r

LZ
C
c

L C

Z
C c

′
=

′

ν = =
′ ′ε

= ε ⋅
′

 (5.1) 

 

Fig. 19:  Characteristic impedance of striplines [14] 

For a  mathematical treatment, the effect of the fringing fields may be described in terms of static 
capacities (see Fig. 20) [14].  The total capacity is the sum of the principal and fringe capacities Cp 
and Cf. 

 2121 22 ffpptot CCCCC +++=  (5.2) 
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Fig. 20:  Design, dimensions and characteristics for offset center-conductor strip transmission line 
[14] 

For striplines with an homogeneous dielectric the phase velocity is the same, and frequency 
independent, for all TEM-modes.  A configuration of two coupled striplines (3-conductor system) 
may have two independent TEM-modes, an odd mode and an even mode (Fig. 21). 

 

Fig. 21:  Even and odd mode in coupled striplines [14] 

The analysis of coupled striplines is required for the design of directional couplers.  Besides the 
phase velocity the odd and even mode impedances Z0,odd and Z0,even must be known. They are given 
as a good approximation for the side coupled structure (Fig. 22, left) [14]. They are valid as a good 
approximation for the structure shown in Fig. 22.  
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Fig. 22:  Types of coupled striplines [14]: left: side coupled parallel lines, right: broad-coupled 
parallel lines 
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A graphical presentation of Equations 5.3 is also known as the Cohn nomographs [14]. For a 
quarter-wave directional coupler (single section in Fig. 16) very simple design formulae can be 
given. 
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  (5.4) 

where C0 is the voltage coupling ratio of the λ/4 coupler. 

In contrast to the 2-hole waveguide coupler this type couples backwards, i.e. the coupled wave 
leaves the coupler in the direction opposite to the incoming wave. The stripline coupler technology 
is rather widespread by now, and very cheap high quality elements are available in a wide 
frequency range.  An even simpler way to make such devices is to use a section of shielded 2-wire 
cable. 

5.2 Microstrip 

A microstripline may be visualized as a stripline with the top cover and the top dielectric layer 
taken away (Fig. 23).  It is thus an asymmetric open structure, and only part of its cross section is 
filled with a dielectric material.  Since there is a transversely inhomogeneous dielectric, only a 
quasi-TEM wave exists.  This has several implications such as a frequency-dependent 
characteristic impedance and a considerable dispersion (Fig. 24). 

 

Fig. 23  Microstripline: a) Mechanical construction, b) Static field approximation [16].  

An exact field analysis for this line is rather complicated and there exist a considerable number of 
books and other publications on the subject [16, 17].  Due to the dispersion of the microstrip, the 
calculation of coupled lines and thus the design of couplers and related structures is also more 

metallic strip: ρ 

ρ 
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complicated than in the case of the stripline.  Microstrips tend to radiate at all kind of 
discontinuities such as bends, changes in width, through holes etc. 

With all the disadvantages mentioned above in mind, one may question why they are used at all.  
The mains reasons are the cheap production, once a conductor pattern has been defined, and easy 
access to the surface for the integration of active elements.  Microstrip circuits are also known as 
Microwave Integrated Circuits (MICs).  A further technological step is the MMIC (Monolithic 
Microwave Integrated Circuit) where active and passive elements are integrated on the same 
semiconductor substrate. 

In Figs. 25 and 26 various planar printed transmission lines are depicted.  The microstrip with 
overlay is relevant for MMICs and the strip dielectric wave guide is a ‘printed optical fibre’ for 
millimeter-waves and integrated optics [17]. 

     

Fig. 24:  Characteristic impedance  (current/power definition) and effective permittivity of a 
microstrip line [16] 

          

Fig. 25:  Planar transmission lines used in 
MIC   

Fig. 26:  Various transmission lines derived from 
microstrip [17] 
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5.3 Slotlines 

The slotline may be considered as the dual structure of the microstrip.  It is essentially a slot in the 
metallization of a dielectric substrate as shown in Fig. 27.  The characteristic impedance and the 
effective dielectric constant exhibit similar dispersion properties to those of the microstrip line.  A 
unique feature of the slotline is that it may be combined with microstrip lines on the same 
substrate.  This, in conjunction with through holes, permits interesting topologies such as pulse 
inverters in sampling heads (e.g. for sampling scopes).  

 

Fig. 27:  Slotlines a) Mechanical construction, b) Field pattern (TE approximation), c) Longitudinal 
and transverse current densities, d) Magnetic line current  model. Reproduced from [16] with 
permission of the author. 

Fig. 28 shows a broadband (decade bandwidth) pulse inverter.  Assuming the upper microstrip to 
be the input, the signal leaving the circuit on the lower microstrip is inverted since this microstrip 
ends on the opposite side of the slotline compared to the input.  Printed slotlines are also used for 
broadband pickups in the GHz range, e.g. for stochastic cooling [15]. 
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Fig. 28:  Two microstrip-slotline transitions connected back to back for 180° phase change [17] 

6. APPLICATION OF THE SMITH CHART 

A very useful and common tool for both measurements and calculations on RF components is the 
Smith Chart (SC) shown in Fig. 29.  It indicates in the plane of the complex reflection coefficient ρ 
the corresponding values of the complex terminating impedance Z = R + jX (Fig. 29a). 
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or in terms of the admittance Y = 1/Z = G + jB (Fig. 29b) 
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Fig. 29:  Construction of the Smith Chart: a) Constant resistance circles, b) Constant reactance 
circles 

In general the impedances are normalized to the characteristic impedance Z0; the admittances are 
normalized to the characteristic admittance Y0 = 1/Z0.  
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 (6.3) 

Changing the normalization from Z0 or Y0, which is required when adding admittances does not 
change ρ, but system of circle coordinates is turned by 180°. 

When going from the Z-plane to the ρ-plane generalized circles are converted into generalized 
circles.  A straight line is considered as a circle with infinite radius. In practise, for doing 
transformations of circle the fact is used that a circle is fully defined by three points. To transform a 
circle from the Z plane to the ρ plane, three points on the Z plane circle are chosen and 
transformed to the ρ plane. The ρ plane circle can then be constructed geometrically. Combining 
Figs. 29a and 29b produces the Smith Chart in the ρ-plane (Fig. 30). 
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Fig. 30:  The Smith Chart. The center is the origin of the ρ coordinate system, the circumference is 
given by the circle |ρ| = 1. For a given point ρ the inscribed circles allow to find the corresponding 
impedance Z. Source: http://www.sss-mag.com/smith.html 
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Exercise:  Imagine a Cartesian coordinate system superimposed and visualize a few important 
reference points. 

 ρ = 0 R/Z0 = 1 X/Z0 = 0 Matched load 
 ρ = -1 R/Z0 = 0 X/Z0 = 0 Short 
 ρ = +1 R/Z0 = ∞ X/Z0 = ∞ Open 
 ρ = +j R/Z0 = 0 X/Z0 = +1 Shorted λ/8 line (Z0) 
 ρ = -j R/Z0 = 0 X/Z0 = 1 Shorted 3 λ/8 line (Z0) 

The loci of constant real and imaginary part are obtained from the conformal mapping of Eq. 6.1. 

As a further exercise one may read modules and phase of ρ for a few impedances: 

 Z1 = 25 Ω Z0 = 50 Ω 
 Z2 = 100 Ω Z0 = 50 Ω 
 Z3 = 50 + j50 Ω Z0 = 50 Ω Try also parallel and serial 
 Z4 = 50 + j50 Ω Z0 = 100 Ω combinations of Z1 ... Z6 
 Z5 = + j200 Ω Z0 = 50 Ω 
 Z6 = 100 - j25 Ω Z0 = 100 Ω 

Impedances are added in an SC normalized to Z0 when they are connected in series.  Admittances, 
i.e. parallel elements are added in an SC normalized to Y0. 

Adding a lossless line of with a length l to a given impedance makes ρ turn clockwise about the 
center of the SC by 4π x l/λ rad, i.e. π/2 for λ/8, π for λ/4, etc. Note that a line of length λ gives 
two full rotations, which is due to the fact that since the reflection coefficient is plotted, the wave 
runs along line twice.  

Thus a line of length λ/4 turns ρ by π rad, or in other words it reflects is about the origin of the SC. 
A short circuit is transformed into an open circuit and vice versa. Such a line is often used as a 
“λ/4 transformer” and with line termination Z1 and a line input impedance Z2 we obtain 

 2
021 ZZZ =  (6.4) 

However, for practical applications the bandwidth of a single λ/4 transformer is often not 
sufficient.  Thus multistage line transformers are used which requires a renormalization of the 
Smith Chart for each line impedance. 

Since in practise there are no lossless lines, the transformation over a lossy line has to be 
considered. It leads to a logarithmic spiral which is not easy to draw but can be constructed 
pointwise. Such a spiral can be easily visualized by connecting an open or shorted transmission 
line to a network analyser and displaying the reflection as a function of frequency in the Smith 
Chart. 
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Measurement of the quality factor in the Smith Chart 

The quality factor of a resonant circuit is defined as the ratio of the stored energy W over the 
energy dissipated P in one cycle. 

P
WQ ω

=  

where ω is the angular frequency. Usually one wants to determine the unloaded quality factor Q0 of 
an unperturbed system, such as a closed cavity. In practise one has to connect the external 
measurement apparatus to the resonant circuit, which will change the initial conditions. The 
quality factor of the resonant circuit together with the external circuitry is called the loaded Q factor 
QL and Qext is the Q factor of the external circuitry. The three Q factors are related by 

 
extL QQQ
111

0
+=  (6.5) 

The Q factor of a resonance peak or dip can be calculated from the center frequency f0 and the 3 dB 
bandwidth Δf as 

f
fQ

Δ
= 0  

 A very convenient way of characterizing resonant circuits is by measuring the locus of S11, i.e. the  
reflection coefficient as a function of frequency. On a vector network analyzer with Smith Chart 
display option the locus of S11 will be a circle (dashed thick red circle in Fig. 31). The size of this 
circle increases with the coupling to the resonant circuit. It may be rotated about the origin of the 
Smith Chart due to transmission lines between the network analyser and the resonant circuit. In 
the following, we consider the circle to be in the “detuned short” position, that is, it is symmetric 
about the horizontal axis and for frequency far off-resonance it approaches the short position ρ = -
1. In practise, the circle displayed on the Smith Chart can be easily rotated into this position by 
adjusting the phase offset. The electrical delay should not be used for rotating the circle, since this 
results in a distortion. The seven frequency points f0 through f6 can be used to calculate the 
different Q values: 

 
( )
( )
( )

0 0 5 6

L 0 1 2

0 3 4ext

Q f / f f

Q f / f f

Q f / f f

= −

= −

= −

  

The points f0 through f6 can be found geometrically by drawing the blue artificial circles and lines 
[6,7], or by directly searching the points on the network analyser using special marker settings, as 
described below. 

• f0 gives the center frequency of the resonator. Condition: |S11| → min. Procedure in Smith 
Chart: 

o Resonator in “detuned short” position 
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o Marker format: S11 (amplitude and phase)  

o Search for the minimum of |S11| 

o Read f0 and the resonator shunt impedance R = Re{S11} 
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Fig. 31:  The typical locus of a resonant circuit in the Smith chart is a circle (dashed red). From the 
different marked frequency points the quality factor can be determined. 

• The unloaded Q0 can be determined from f5 and f6. Condition: Re{Z} = Im{Z} in detuned 
short position.  

o Resonator in “detuned short” position 

o Marker format: Z 

o Search for the two points where Re{Z} = Im{Z} ⇒ f5 and f6 

• The loaded QL can be calculated from the “half-power” points f1 and f2. Condition: 
|Im{S11}| → max in detuned short position.  

f 1 f 3 

f 5 

f 2 
f 4 

f 6 

f 0 
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o Resonator in “detuned short” position 

o Marker format: Re{S11} + jIm{S11} 

o Search for the two points where |Im{S11}| → max ⇒ f1 and f2 

• The external QE can be calculated from f3 and f4. Condition: Z = ±j in detuned open 
position, which is equivalent to Y = ±j in detuned short position. 

o Resonator in “detuned open” position 

o Marker format: Z 

o Search for the two points where Z = ±j ⇒ f3 and f4 

There are three ranges of the coupling factor β defined by 

 
0

ext

Q
Q

β =  (6.6) 

or, using Eq. 6.6 

 
0

1L
Q

Q =
+ β  (6.6) 

This allows us to define: 

• Critical Coupling:   β = 1, QL = Q0/2.   
The locus of ρ touches the center of the SC. At resonance all the available generator power 
is coupled to the resonance circuit. The phase swing is 180°. 

• Undercritical Coupling:   (0 < β < 1).   
The locus of ρ in the detuned short position is left of the center of the SC. The phase swing 
is smaller than 180°. 

• Overcritical coupling:   (1 < β < ∞).   
The center of the SC is inside the locus of ρ. The phase swing is larger than 180°.  

When using a network analyzer with a Cartesian display for ⏐ρ⏐ one cannot decide whether the 
coupling is over- or undercritical; the phase of the complex reflection factor ρ is required to make 
the distinction. 
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Appendix I 

The T matrix (transfer matrix), which directly relates the waves on the input and on the output, is 
defined as [2] 

 1 11 12 2

1 21 22 2

b T T a
a T T b

⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
 (AI.1) 

As the transmission matrix (T matrix) simply links the in- and outgoing waves in a way different 
from the S matrix, one may convert the matrix elements mutually 

 

22 11 11
11 12 12

21 21

22
21 22

21 21

1

S S ST S , T
S S

ST , T
S S

= − =

= − =

 (AI.2) 

The T matrix TM of m cascaded 2-ports is given by a matrix multiplication from the ‘left’ to the 
right as in [2, 3]: 

  m21M TTTT K=  (AI.3) 

There is another definition that takes a1 and b1 as independent variables. 

 2 11 12 1

2 121 22

b T T a
a bT T

⎛ ⎞⎛ ⎞ ⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

% %

% %
 (AI.4) 

and for this case 

 

22 11 22
11 21 12

12 12

11
21 22

12 12

1

S S ST S , T
S S

ST , T
S S

= − =

= − =

% %

% %

 (AI.5) 

Then, for the cascade, we obtain 

 11
~~~~ TTTTM K−= mm  (AI.6) 

i.e. a matrix multiplication from ‘right’ to ‘left’. 

In the following, the definition using Eq. AI.1 will be applied. 
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In practice, after having carried out the T matrix multiplication, one would like to return to S 
parameters 

 

12 12 21
11 12 11

22 22

21
21 12

22 22

1

T T TS , S T
T T

TS , S
T T

= = −

= = −

 (AI.7) 

For a reciprocal network (Sij = Sji) the T-parameters have to meet the condition det T = 1 

 11 22 12 21 1T T T T− =  (AI.8) 

So far, we have been discussing the properties of the 2-port mainly in terms of incident and 
reflected waves a and b.  A description in voltages and currents is also useful in many cases.  
Considering the current I1 and I2 as independent variables, the dependent variables U1 and U2 are 
written as a Z matrix: 

 ( ) ( ) ( )1 11 1 12 2

2 21 1 22 2
or

U Z I Z I
U Z I

U Z I Z I

= +
= ⋅

= +
 (AI.9) 

where Z11 and Z22 are the input and output impedance, respectively.  When measuring Z11, the all 
other ports have to be open, in contrast to the S parameter measurement, where matched loads are 
required. 

In an analogous manner, a Y matrix (admittance matrix) can be defined as 

 ( ) ( ) ( )1 11 1 12 2

2 21 1 22 2
or

I Y U Y U
I Y U

I Y U Y U

= +
= ⋅

= +
 (AI.10) 

Similarly to the S matrix, the Z- and Y-matrices are not easy to apply for cascaded 4-poles (2-ports).  
Thus, the so-called ABCD matrix (or A matrix) has been introduced as a suitable cascaded network 
description in terms of voltages and currents (Fig. 1) 

 1 2 11 12 2

1 2 21 22 2

U U A A UA B
I C D I A A I

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞
= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ − −⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 (AI.11) 

With the direction of I2 chosen in Fig. 1 a minus sign appears for I2 of a first 4-pole becomes I1 in 
the next one. 

It can be shown that the ABCD matrix of two or more cascaded 4-poles becomes the matrix 
product of the individual ABCD-matrices [3] 
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1 2K k

A B A B A B A B
C D C D C D C D

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= ⋅⋅⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (AI.12) 

In practice, the normalized ABCD matrix is usually applied.  It has dimensionless elements only 
and is obtained by dividing B by Z0 the reference impedance, and multiplying C with Z0.  For 
example, the impedance Z (Fig. 1) with ZG = ZL = Z0 would have the normalized ABCD matrix [3, 
4] 

 01
0 1N

Z/ZA B
C D

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

The elements of the S matrix are related as 

 
11 12

12 22

2

2

A B C D det AS , S
A B C D A B C D

A B C DS , S
A B C D A B C D

+ − −
= =

+ + + + + +

− + − +
= =

+ + + + + +

 (AI.13) 

to the elements normalized of the ABCD matrix.  Furthermore, the H matrix (hybrid) and G 
(inverse hybrid) will be mentioned as they are very useful for certain 2-port interconnections [3]. 

 ( )
1 11 1 12 2

1 1

2 2
2 21 1 22 2

or
U H I H U

U I
H

I U
I H I H U

= +
⎛ ⎞ ⎛ ⎞

= ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= +

 (AI.14) 

and 

 ( )
1 11 1 12 2

1 1

2 2
1 12 1 22 2

or
I G U G I

I U
G

U I
U G U G I

= +
⎛ ⎞ ⎡ ⎤

= ⋅⎜ ⎟ ⎢ ⎥
⎝ ⎠ ⎣ ⎦= +

 (AI.15) 

All these different matrix forms may appear rather confusing, but they are applied in particular, in 
computer codes for RF and microwave network evaluation.  As an example, in Fig. 2, the four 
basic possibilities of interconnecting 2-ports (besides the cascade) are shown.  In simple cases, one 
may work with S-matrices directly, eliminating the unknown waves at the connecting points by 
rearranging the S parameter equations. 
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Fig. 2 Basic interconnections of 2-ports [1]. 
 a)  Parallel-parallel connection; add Y matrix 
 b)  Series-series connection; add Z matrix 
 c)  Series-parallel connection; add H matrix 
 d)  Parallel-series connection; add G matrix [3]. 

Figure 3 shows ABCD-, S- and T-matrices (reproduced with the permission of the publisher [3]). 

Element ABCD matrix S matrix T matrix 
1. A transmission line 
section 
 

 

Ch Z Sh

Sh Ch
Z

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
( )

( )

2 2
0 0

s 2 2
0 0

Z Z Sh 2ZZ
1

D
2ZZ Z Z Sh

⎡ ⎤−
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

 

2 2 2 2
0 0

0 0
2 2 2 2

0 0

0 0

Z Z Z Z
Ch Sh Sh

2ZZ 2ZZ

Z Z Z Z
Sh Ch Sh

2ZZ 2ZZ

⎡ ⎤+ −
−⎢ ⎥

⎢ ⎥
⎢ ⎥

− +⎢ ⎥− +⎢ ⎥⎣ ⎦

 

 where Sh = sinhγl,  Ch = coshγl and Ds = 2ZZ0 Ch + (Z2 + Z02) Sh 

2. A series impedance 
 

 

1 Z

0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
2 1 1 2

s
1 2 1 2

Z Z Z 2 Z Z
1

D
2 Z Z Z Z Z

⎡ ⎤+ −
⎢ ⎥
⎢ ⎥
⎢ ⎥

+ −⎢ ⎥⎣ ⎦

 
1 2 2 1

s
2 1 1 2

Z Z Z Z Z Z
1

D
Z Z Z Z Z Z

+ − − +⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− − + −⎣ ⎦

 

 where Ds = Z + Z1 + Z2 and Dt =  1 22 Z Z  

3. A shunt admittance 
 

 

1 0

Y 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
1 2 1 2

s
1 2 2 1

Y Y Y 2Y Y
1

D
2 Y Y Y Y Y

⎡ ⎤− −
⎢ ⎥
⎢ ⎥
⎢ ⎥

− −⎢ ⎥⎣ ⎦

 
1 2 1 2

s
1 2 1 2

Y Y Y Y Y Y
1

D
Y Y Y Y Y Y

+ − − −⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− + + +⎣ ⎦

 

 where Ds = Y + Y1 + Y2 and Dt =  1 22 Y Y  

   γl 

 t

 t
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4. A shunt-connected 
open-ended stub 
 

 

2 0

1 1
jZT

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
s

s
s

1 D 1
1

D
D 1 1

− −⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

− −⎢ ⎥⎣ ⎦

 
0 0

0 0

Z Z
1 T j T

2Z 2Z
Z Z

j 1 j T
2Z 2Z

⎡ ⎤− −⎢ ⎥
⎢ ⎥
⎢ ⎥+⎢ ⎥⎣ ⎦

 

 
where T = tanβl and Ds = 1 + 2jZT/Z0 

5. A shunt-connected 
short-circuited stub 
 

 

1 0

jT 1
Z

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 
s

s
s

1 D 1
1

D
D 1 1

+⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

+⎢ ⎥⎣ ⎦

 
0 0

0 0

Z Z
1 j j

2ZT 2ZT
Z Z

j 1 j
2ZT 2ZT

⎡ ⎤+⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥⎣ ⎦

 

 
where T = tanβl and Ds = -1 + 2jZ/(Z0T) 

6. An ideal transformer 
 

 

n 0

0 1 n/

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
2

2
2

n 1 2n
1

n 1
2n 1 n

⎡ ⎤−
⎢ ⎥
⎢ ⎥

+ ⎢ ⎥
−⎣ ⎦

 

2 2

2 2

n 1 n 1
1

2n
n 1 n 1

⎡ ⎤+ −
⎢ ⎥
⎢ ⎥
⎢ ⎥

− +⎣ ⎦

 

    

7. π-network 
 

 

2

3 3

1

3 3

Y 11+
Y Y

YD 1
Y Y

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

+⎢ ⎥
⎣ ⎦

 

2
0 0 0 3

s
2

0 3 0 0

Y PY D 2Y Y
1

D
2Y Y Y PY D

⎡ ⎤− −
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+ −⎣ ⎦

 
0

2 2
0 0 0

0 3 2 2
0 0 0 0

Y QY D Y PY D
1

2Y Y
Y PY D Y QY D

⎡ ⎤− + − − −
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− − + + +
⎣ ⎦

 

 
where Ds = Y02 + QY0 + D, D = Y1Y2 + Y2Y3 + Y3Y1, Q = Y1 + Y2 + 2Y3 and P = Y1 – Y2 

8. T-network 
 

 

1

3 3

2

3 3

Z D1+
Z Z

Z1 1
Z Z

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

+⎢ ⎥
⎣ ⎦

 

2
0 0 0 3

s
2

0 3 0 0

Z PZ D 2Z Z
1

D
2Z Z Z PZ D

⎡ ⎤− + +
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− − +⎣ ⎦

 

2 2
0 0 0 0

0 3 2 2
0 0 0 0

Z QZ D Z PZ D
1

2Z Z
Z PZ D Z QZ D

⎡ ⎤− + − − + +
⎢ ⎥
⎢ ⎥
⎢ ⎥

+ − + +⎢ ⎥⎣ ⎦

 

 
where Ds = Z02 + QZ0 + D, D = Z1Z2 + Z2Z3 + Z3Z1, Q = Z1 + Z2 + 2Z3 and P = Z1 – Z2 

9. A transmission line 
junction 
 

 

1 0

0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
2 1 1 2

s
1 2 1 2

Z Z 2 Z Z
1

D
2 Z Z Z Z

⎡ ⎤−
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

 
1 2 2 1

s
2 1 1 2

Z Z Z Z
1

D
Z Z Z Z

+ −⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− +⎣ ⎦

 

 
where Ds = Z1 + Z2 and Dt =  1 22 Z Z  

10. An α-db attenuator 
 
 

 

0

0

A B A BZ
2 2

A - B A B
2Z A

⎡ + − ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥

⎢ ⎥+
⎢ ⎥
⎣ ⎦

 

0 B

B 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

A 0

0 A

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
where A = 10α/20 and B = 1/A 

 

Fig. 3 (continued) ABCD-, S- and T-matrices for the elements shown. 
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Appendix II 

The SFG is a graphical representation of a system of linear equations having the general form: 

   y = Mx + M’y (AII.1) 

where M and M’ are square matrices with n rows and columns, x represents the n independent 
variables (sources) and y the n dependent variables.  The elements of M and M’ appear as 
transmission coefficients of the signal path. When there are no direct signal loops, as is generally 
the case in practise, the previous equation simplifies to y = Mx, which is equivalent to the usual S 
parameter definition 

  b = Sa (AII.2) 

The purpose of the SFG is to visualize physical relations and to provide a solution algorithm of Eq. 
AII.2 by applying a few rather simple rules: 

1. The SFG has a number of points (nodes) each representing a single wave ai or bi. 

2. Nodes are connected by branches (arrows), each representing one S parameter and indicating 
direction. 

3. A node may be the beginning or the end of a 
branch (arrow). 

4. Nodes showing no branches pointing towards 
them are source nodes.  5. Each node 
signal represents the sum of the signals carried by 

all branches entering it. 

6. The transmission coefficients of parallel signal paths are to be added. 

7. The transmission coefficients of cascaded signal paths are to be multiplied. 

8. An SFG is feedback-loop free if a numbering of all nodes can be found such that every branch 
points from a node of lower number towards one of higher number. 

9. A first-order loop is the product of branch transmissions, starting from a node and going along 
the arrows back to that node without touching the same node more than once.  A second-order 
loop is the product of two non-touching first-order loops, and an nth-order loop is the product 
of any n non-touching first-order loops. 

10. An elementary loop with the transmission coefficient S beginning and ending at a node N may 
be replaced by a branch (1-S)-1 between two nodes N1 and N2, going from N1 to N2.  N1 has all 
signals (branches) previously entering N, and N2 is linked to all signals previously leaving 
from N. 

All other nodes are dependent signal nodes. 
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In order to determined the ratio T of a dependent to an independent variable the so-called ‘non-
touching loop rule’, also known as Mason’s rule, may be applied [11] 

 
( )( ) ( )( ) ( )( )

( ) ( ) ( )

1 1 2
1 21 1 2 1 1

1 1 2 3

P L L P L
T

L L L

⎡ ⎤ ⎡ ⎤− ∑ + ∑ − ⋅⋅⋅ + − ∑ ⋅⋅⋅⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦=
− ∑ + ∑ − ∑ + ⋅⋅⋅

 (AII.3) 

where: 

 Pn are the different signal paths between the source and the dependent variable. 

 ΣL(1)(1) represents the sum of all first-order loops not touching path 1, and ΣL(2)(1) is the 
sum of all second-order loop not touching path 1. 

 Analogously ΣL(1)(2) is the sum of all first-order loops in path 2. 

 The expressions ΣL(1), ΣL(2) etc. in the denominator are the sums of all first-, second-, etc. 
order loops in the network considered. 

Examples 

We are looking for the input reflection coefficient of a e-port with a non-matched load ρL and a 
matched generator (source) (ρS = 0) to start with.  ρL, ρS are often written as ΓL, ΓS. 

 

Fig. 1  2-port with non-matched load 

By reading directly from the SFG (Fig. 1) we obtain 

 1
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1 221
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b ρS S S
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−

 (AII.4) 

or by formally applying Mason’s rule in Eq. AII.3  

 ( )11 22 21 121

1 22

1
1

L L

L

S S ρ S ρ Sb
a S ρ

− +
=

−
 (AII.5) 

As a more complicated example one may add a mismatch to the source (ρS = dashed line in Fig. 1) 
and ask for b1/bs 

 ( )
( )
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s 11 22 12 21 11 22 22

1
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 (AII.6) 


