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Preface

The field of high-frequency circuit design is receiv-
ing significant industrial attention due to a host of radio-frequency (RF) and microwave
(MW) applications. Improved semiconductor devices have made possible a prolifera-
tion of high-speed digital and analog systems as observed in wireless communication,
global positioning, RADAR, and related electrical and computer engineering disci-
plines. This interest has translated into a strong demand for engineers with comprehen-
sive knowledge of high-frequency circuit design principles.

For the student, the professional engineer, and even the faculty member teaching
this material there is, however, a general problem. The majority of existing textbooks
appear to target two separate audiences: A) the advanced graduate-level population
with a broad theoretical background, and B) the technologists with little interest in
mathematical and physical rigor. As a result, RF circuit design has been presented in
two very different formats. For the advanced students the entry into this field is often
pursued through an electromagnetic field approach, while for the technologists the
basic circuit aspect embedded in Kirchhoff's laws is the preferred treatment. Both
approaches make it difficult to adequately address the theoretical and practical issucs
surrounding high-frequency design principles. The basic circuit approach lacks, or only
superficially covers, the wave nature of currents and voltages whose reflection and
transmission properties constitute indispensable ingredients of the RF circuit behavior.
The electromagnetic field approach certainly covers the wave guide and transmission
line aspect, but falls far short of reaching the important aspects of designing high-fre-
quency amplifier, oscillator, and mixer circuits.

The objective of this textbook is to develop the RF circuit design aspects in such a
way that the need for transmission line principles is made clear without adopting an
electromagnetic field approach. Therefore, no EM background is necessary beyond a
first year undergraduate physics course in fields and waves as provided by most colleges
and universities. Students equipped with the knowledge of basic circuit theory and/or an
exposure to microelectronics can use this book and cover the entire spectrum from the
basic principles of transmission and microstrip lines to the various high-frequency cir-
cuit design procedures. Lengthy mathematical derivations are either relegated to the
appendices or placed in examples, separated from the main text. This allows the omis-
sion of some of the dry theoretical details and thus focuses on the main concepts.

Accepting the challenge of providing a high degree of design experience, we have
included many examples that discuss in considerable detail, in many cases extending
over several pages, the philosophy and the intricacies of the various design approaches.



vl Preface

This has caused some problems as well, specifically with respect to the circuit simula-
tions. Obviously, we cannot expect the reader to have ready access to modern computer
simulation tools such as MMICAD or ADS to name but two of the popular choices.
Professional high-frequency simulation packages are generally expensive and require
familiarity to use them effectively. For this reason we have created a considerable num-
ber of MaTLAB M-files that the interested student can download from our website listed
in Appendix G. Since MATLAB is a widely used relatively inexpensive mathematical
tool, many examples discussed in this book can be executed and the results graphically
displayed in a matter of seconds. Specifically the various Smith-Chart computations of
the impedance transformations should appeal to the reader. Nonetheless, all design
examples, specifically the ones presented in Chapters 8 to 10, have been independently
simulated and verified in MMICAD for the linear circuit models, and ADS for the non-
linear oscillator and mixer models.

In terms of material coverage, this textbook purposely omitted the high-speed dig-
ital circuits as well as coding and modulation aspects. Although important, these topics
would simply have required too many additional pages and would have moved the book
too far away from its original intent of providing a fundamental, one- or two-semester,
introduction to RF circuit design. At WPI this does not turn out to be a disadvantage,
since most of the material can readily be acquired in available communication systems
engineering courses.

The organization of this text is as follows: Chapter 1 presents a general explana-
tion of why basic circuit theory breaks down as the operating frequency is increased to
a level where the wavelength becomes comparable with the discrete circuit compo-
nents. In Chapter 2 the transmission line theory is developed as a way to replace the
low-frequency circuit models. Because of the voltage and current wave nature, Chap-
ter 3 introduces the Smith Chart as a generic tool to deal with the impedance behavior
on the basis of the reflection coefficient. Chapter 4 discusses two-port networks with
their flow-chart representations and how they can be described on the basis of the so-
called scattering parameters. These network models and their scattering parameter
descriptions are utilized in Chapter 5 to develop passive RF filter configurations.
Before covering active devices, Chapter 6 provides a review of some of the key semi-
conductor fundamentals, followed by their circuit models representation in Chapter 7.
The impedance matching and biasing of bipolar and field effect transistors is taken up
in Chapter 8 in an effort to eliminate potentially dangerous reflections and to provide
optimal power flow. Chapter 9 focuses on a number of key high-frequency amplifier
configurations and their design intricacies ranging from low noise to high power appli-
cations. Finally, Chapter 10 introduces the reader to nonlinear systems and their
designs in oscillator and mixer circuits.
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This book is used in the Electrical and Computer Engineering Department at WPI
as required text for the standard 7-week (5 lecture hours per week) course in RF circuit
design (EE 3113, Introduction to RF Circuit Design). The course has primarily
attracted an audience of 3rd and 4th year undergraduate students with a background in
microelectronics. The course does not include a laboratory, although six videotapes of
practical circuit performances conducted at Philips Semiconductors and in-class RF cir-
cuit measurements with a network analyzer are included. In addition, MMICAD and
ADS simulations are incorporated as part of the regular lectures. Each chapter is fairly
self-contained, with the goal of providing wide flexibility in organizing the course
material. At WPI the content of approximately one three semester hour course is com-
pressed into a 7-week period (consisting of a total of 25-28 lectures). The topics cov-

ered are shown in the table below.

EE 3113, Introduction to RF Circuit Design

Chapter 1, Introduction Sections 1.1-1.6
Chapter 2, Transmission Line Analysis Sections 2.1-2.12
Chapter 3, Smith Chart Sections 3.1-3.5

Chapter 4, Single- and Multi-Port Networks | Sections 4.1-4.5

Chapter 7, Active RF Component Modeling Sections 7.1-7.2

Chapter 8, Matching and Biasing Networks Sections 8.1-8.4

Chapter 9, RF Transistor Amplifier Designs Sections 9.1-9.4

The remaining material is targeted for a second (7-week) term covering more
advanced topics such as microwave filters, equivalent circuit models, oscillators and
mixers. An organizational plan is provided below.

Advanced Principles of RF Circuit Design

Chapter 5, A Brief Overview of RF Filter Design Sections 5.1-5.5
Chapter 6, Active RF Components Sections 6.1-6.6
Chapter 7, Active RF Component Modeling Sections 7.3-7.5
Chapter 9, RF Transistor Amplifier Designs Sections 9.5-9.8
Chapter 10, Oscillators and Mixers Sections 10.1-10.4
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However, the entire course organization will always remain subject to change
depending on total classroom time, student background, and interface requirements
with related courses.

Please refer to the companion website at hitp://www.prenhall.com/ludwig for
more material including all of the art files in this text in pdf format.
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CHAPTER 1

Introduction

It is common knowledge that both analog and digi-
tal design engineers are continually developing and refining circuits for increasingly
higher operational frequencies. Analog circuits for wireless communication in the giga-
hertz (GHz) range and the ever-increasing clock speeds of computer circuits in high-
performance mainframes, workstations, and, of course, personal computers exemplify
this trend. Global positioning systems require carrier frequencies in the range of
1227.60 and 1575.42 MHz. The low-noise amplifier in a personal communication sys-
tem may operate at 1.9 GHz and fit on a circuit board smaller in size than a dime. Satel-
lite broadcasting in the C band involves 4 GHz uplink and 6 GHz downlink systems. In
general, due to the rapid expansion of wireless communication, more compact ampli-
fier, filter, oscillator, and mixer circuits are being designed and placed in service at fre-
quencies generally above 1 GHz. There is little doubt that this trend will continue
unabated, resulting not only in engineering systems with unique capabilities, but also
special design challenges not encountered in conventional low-frequency systems.

This chapter reviews the evolution from low- to high-frequency circuit operations. It
motivates and provides the physical rationales that have prompted the need for new engi-
neering approaches to design and optimize these circuits. The example of a cellular phone
circuit, components of which will be analyzed in more detail in later chapters, serves as a
vehicle to outline the goals and objectives of this textbook and its organization.

The chapter begins with a brief historical discussion explaining the trfimsition from
direct current (DC) to high-frequency modes of operation. As the frequency increases
and the associated wavelengths of the electromagnetic waves becomes comparable to
the dimensions of the discrete circuit components such as resistors, capacitors, and
inductors, these components start to deviate in their electric responses from the ideal
frequency behavior. It is the purpose of this chapter to provide the reader with an appre-

1



2 Chapter 1 + Introduction

ciation and understanding of high-frequency passive component characteristics. In par-
ticular, due to the availability of sophisticated measurement equipment, the design
engineer must know exactly why and how the high-frequency behavior of his or her cir-
cuit differs from the low-frequency realization. Without this knowledge it will be impos-
sible to develop and understand the special requirements of high-performance systems.

1.1 Importance of Radiofrequency Design

The beginning of electrical circuit design is most likely traced back to the late
eighteenth and early nineteenth centuries when the first reliable batteries became avail-
able. Named after their inventor A. Volta (1745-1827), the Voltaic cells permitted the
supply of reliable DC energy to power the first crude circuits. However, it soon became
apparent that low-frequency alternating current (AC) power sources can transport elec-
tricity more efficiently and with less electric losses when transmitted over some dis-
tance and that rerouting the electric energy could be facilitated through transformers
that operate in accordance with Faraday’s induction law. Due to pioneering work by
such eminent engineers as  Charles Steinmetz, Thomas Edison, Werner Siemens, and
Nikolas Tesla, the power generation and distribution industry quickly gained entry into
our everyday life. It was James Maxwell (1831-1879) who, in a paper first read in 1864
to the Royal Society in London, postulated the coupling of the electric and magnetic
fields whose linkage through space gives rise to wave propagation. In 1887 Heinrich
Hertz experimentally proved the radiation and reception of electromagnetic energy
through air. This discovery heralded the rapidly expanding field of wireless communi-
cation, from radio and TV transmissions in the 1920s and 1930s to cellular phones and
Global Positioning Systems (GPS) in the 1980s and 1990s. Unfortunately, the design
and development of suitable high-frequency circuits for today’s wireless communica-
tion applications is not so straightforward. As will be discussed in detail, conventional
Kirchhoff-type voltage and current law analysis tools, as presented to first- and second-
year undergraduate electrical engineering students, apply strictly only to DC and low-
frequency lumped parameter systems consisting of networks of resistors, capacitors,
and inductors. They fail when applied to circuits governed by electromagnetic wave
propagation.

The main purpose of this textbook is to provide the reader with theoretical and
practical aspects of analog circuit design when the frequency of operation extends into
the radio frequency (RF) and microwave (MW) domains. Here conventional circuit
analysis principles fail. The following questions arise:

* At what upper frequency does conventional circuit analysis become inappropriate?
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» What characteristics make the high-frequency behavior of electric components so
different from their low-frequency behavior?

» What “new” circuit theory has to be employed?

« How is this theory applied to the practical design of high-frequency analog circuits?

This book intends to provide comprehensive answers to these questions by developing
not only the theoretical framework but also delivering the practical applications through

a host of examples and design projects.
To identify more clearly the issues that we will address, let us examine the generic

RF system shown in Figure 1-1.

Antenna

:
—+ |
——DAC ;
E— I :
: ’1 - Transmitter Switch |
 Digital-to-Analog i Power Amplifier |
i Converter | OSC

: Local Oscillator

F——|ADC)e—+—{ LPF @

Digital Circuitry

—
g ii Low-Pass Receiver Power
i Analog-to-Digital{;  Filter Amplifier
Converter ||
S ——~—" I o
Mlx?d S_1gna1 Analog Signal Circuits
Circuits

Figure 1-1 Block diagram of a generic RF system.

Typical applications of this configuration are cellular phones and wireless local
area networks (WLANSs). The entire block diagram in Figure 1-1 can be called a
transceiver, since it incorporates both transmitter and receiver circuits and uses a single
antenna for communication. In this configuration the input signal (either a voice or a
digital signal from a computer) is first digitally processed. If the input signal is a voice
signal, as is the case in cellular phones, it is first converted into digital form; then com-
pressed to reduce the time of transmission; and finally appropriately coded to suppress
noise and communication €rrors.
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After the input signal has been digitally preprocessed, it is converted back to ana-
log form via a digital-to-analog converter (DAC). This low-frequency signal is mixed
with a high-frequency carrier signal provided by a local oscillator. The combined signal
is subsequently amplified through a power amplifier (PA) and then routed to the
antenna, whose task is to radiate the encoded information as electromagnetic waves
into free space.

In the block diagram of Figure 1-1 let us focus on the transmitter PA. This could be
a 2 GHz PA for cellular phones that may be implemented as a dual-stage amplifier.
Details of the circuit diagram for the first stage PA are shown in Figure 1-2(a).

RF Blocking

...........................

ol
:—[ V;
i?ggtlg . C To the Second
c, 3 }—° Stage
RF,, °—| Interstage
DC Blocking c g, | . . Blocking Capactitor
Capacitor I 4 BFG425W Interstage Matching
T T Network
Input Matching
Network

Figure 1-2(a) Simplified circuit diagram of the first stage of a 2 GHz power
amplifier for a cellular phone.

We notice that the input signal is fed through a DC blocking capacitor into an
input matching network, needed to match the input impedance of the transistor (type
BFG425W of Philips Semiconductors), operated in common ermitter configuration, to
the output impedance of the mixer that precedes the PA. The matching is needed to
ensure optimal power transfer as well as to eliminate performance degrading reflec-
tions. The interstage matching network must then match the output impedance of the
transistor to the input impedance of the second stage of the PA. Key components in the
matching networks are microstrip lines shown by the shaded rectangles in Figure
1-2(a). At high frequency these distributed elements exhibit unique electric properties
that differ significantly from low-frequency lumped circuit elements. We also notice
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additional networks to bias the input and output ports of the transistor. The separation
of high-frequency signals from the DC bias conditions is achieved through two RF
blocking networks that feature so-called radio frequency coils (RFCs).

The actual dual-stage circuit board implementation is given in Figure 1-2(b),
which shows the microstrip lines as copper traces of specific lengths and widths.
Attached to the microstrip lines are chip capacitors, resistors, and inductors.

. Interstage Matching
0.5 inch
e = > _. -7 Network

First Stage
Transistor

Second Stage

Input Matchin, Transistor
Network - .
N Output Matching
=~ Network

RF, RF

-\

: Dual Transistor I[C DC Bi?a\s Network
Figure 1-2(b) Printed circuit board layout of the power ampilifier.

To understand, analyze, and ultimately build such a PA circuit requires knowledge
of a number of crucial RF topics discussed in this textbook:

» Microstrip line impedance behavior is discussed in “Transmission Line Analysis”
(Chapter 2) and its quantitative evaluation is considered in Chapter 3, “The Smith
Chart.”

» The ability to reduce a complicated circuit into simpler constituents whose input-
output is described through two-port network description. This is discussed in
Chapter 4, “Single- and Multiport Networks.”

* Strategies of generically developing particular impedance versus frequency
responses as encountered in filter design. Chapter 5, “A Brief Overview of RF Fil-
ter Design,” outlines the basic discrete and distributed filter theories, and Chapter
8, “Matching Netwq(rks,” delves into a detailed circuit implementation as related
to Figure 1-2(b).
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» High-frequency bipolar junction and field effect transistors as well as RF diodes
are investigated in “Active RF Components” (Chapter 6) in terms of their physical
basis followed by “Active Circuit Device Models” (Chapter 7), where large signal
and small signal circuit models are analyzed.

« The overall amplification requirements, as related to gain, linearity, noise, and sta-
bility, are basis of “RF Transistor Amplifier Design” (Chapter 9).

o In addition to amplifiers, Chapter 10, “Oscillators and Mixers,” focuses on addi-
tional important RF circuit design concepts, as shown in Figure 1-1.

A successful RF design engineer knows about and applies all these concepts in the
design, construction, and testing of a particular RF circuit project. As the preceding
example implies, our concern in this textbook is mostly geared toward analog RF cir-
cuit theory and applications. We purposely neglect mixed and digital RF signals since
their treatment would exceed the size and scope of this textbook.

1.2 Dimensions and Units

To understand the upper frequency limit, beyond which conventional circuit the-
ory can no longer be applied to analyze an electric system, we should recall the repre-
sentation of an electromagnetic wave. In free space, plane electromagnetic (EM) wave
propagation in the positive z-direction is typically written in sinusoidal form:

E, = E,, cos(wt-Bz) (1.1a)

X

H, = Hoycos(mt—ﬁz) (1.1b)

where E_ and H, are the x-directed electric and the y-directed magnetic field vector
components, as shown qualitatively in Figure 1-3. Here E,, and H, represent con-
stant amplitude factors in units of V/m and A/m.

These waves possess an angular frequency ®, and a propagation constant {3 that
defines the spatial extent in terms of the wavelength A, such that B = 2m/A . Classical
field theory based on Maxwell’s equations reveals that the ratio between electric and
magnetic field components is defined in terms of the so-called intrinsic impedance Z,

E

Erﬁ = Z, = JWe = J(uoh,)/ (€€,) = 377 Q u./¢, (1.2)
y

based on the material dependent permeability B = HoH, and permittivity € = &y€,,
with |1, and &, being absolute permeability and permittivity of free space and W, and &,
denoting relative values. We also point out that the field components are orthogonal to
each other and both are orthogonal to the direction of propagation. This is known as
transverse electromagnetic mode (TEM) and, since we deal exclusively with RF, it is
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Figure 1-3 Electromagnetic wave propagation in free space. The electric and
magnetic fields are recorded at a fixed instance in time as a function of space
(X, § are unit vectors in x- and y-direction).

the only mode that is considered in this text. TEM wave propagation is in stark contrast
to the various transverse electric (TE) and transverse magnetic (TM) wave modes,
which are the underlying principles of MW and optical communication. In these cases
the field vectors are no longer perpendicular to the direction of propagation.

The phase velocity v, of the TEM wave can be found via

® 1

Vp B T (1.3)
Relevant quantities, units and symbols used throughout the book are summarized in
Tables A-1 and A-2 in Appendix A. Although we are dealing here with rather abstract
concepts of electromagnetic wave quantities, we can immediately relate (1.1) to circuit
parameters by observing that the electric field, as the unit of V/m already implies, can
intuitively be understood as a normalized voltage wave. Similarly, the magnetic field,
given in units of A/m, is a normalized current wave.

RFEMW—

Example 1-1: Intrinsic wave impedance, phase velocity, and
wavelengths

Compute the intrinsic wave impedance, phase velocity, and wave-
lengths of an electromagnetic wave in free space for the frequencies
f=30 MHz, 300 MHz, 30 GHz.



8 Chapter 1 » Introduction

Solution:  Relative permeability and permittivity of free space
are equal to unity. Therefore, from (1.2) we determine that intrinsic
impedance in this case is equal to

—7
ZO=JE=JE0= /_‘&012_:3779
€ €o 8.85x10"

The phase velocity according to (1.3) is equal to

1 1 8
v o= L o = 2.999x10° m/s
P e

which happens to be the speed of light v, = c¢. The wavelength 18
evaluated by the following expression:

A="%=—~=12F (1.4)

where f is the operating frequency. Using equation (1.4), we find
that the wavelength for an electromagnetic wave propagating in free
space at a frequency of 30 MHz is equal to A = 10 m; at 300 MHz it
is already reduced to A = 1 m; and at 30 GHz the wavelength is a
minute A =1 cm.

This example conveys an appreciation of how the wavelength
changes as a function of frequency. As the frequency increases, the
wavelength reduces to dimensions comparable to the size of circuit
boards or even individual discrete components. The implication of
this fact will be analyzed in Chapter 2.

1.3 Frequency Spectrum

Because of the vast scope of applications, engineers have to deal with a broad
range of frequencies of circuit operation. Over the years several attempts have been
made to classify the frequency spectrum. The first designations for industrial and gov-
ernment organizations were introduced in the United States by the Department of
Defense during and shortly after World War 1I. However, the most common frequency
spectrum classification in use today was created by the Institute of Electrical and Elec-
tronic Engineers (IEEE) and is listed in Table 1-1.



Frequency Spectrum

Table 1-1 |EEE Frequency Spectrum

Frequency Band Frequency Wavelength
ELF (Extreme Low Frequency) 30-300 Hz 10,000-1000 km
VF (Voice Frequency) 300-3000 Hz 1000-100 km
VLF (Very Low Frequency) 3-30kHz 100-10 km
LF (Low Frequency) 30-300 kHz 10-1 km
MF (Medium Frequency) 300-3000 kHz 1-0.1 km
HF (High Frequency) 3-30 MHz 100-10 m
VHF (Very High Frequency) 30-300 MHz 10-1 m
UHF (Ultrahigh Frequency) 300-3000 MHz 100-10 cm
SHF (Superhigh Frequency) 3-30 GHz 10-1 cm
EHF (Extreme High Frequency) |30-300 GHz 1-0.1 cm
Decimillimeter 300-3000 GHz 1-0.1 mm
P Band 0.23-1 GHz 130-30 cm
L Band 1-2 GHz 30-15 cm
S Band 2-4 GHz 15-7.5 cm
C Band 4-8 GHz 7.5-3.75 cm
X Band 8-12.5 GHz 3.75-2.4 cm
Ku Band 12.5-18 GHz 2.4-1.67 cm
K Band 18-26.5 GHz 1.67-1.13 cm
Ka Band 26.5-40 GHz 1.13-0.75 cm
Millimeter wave 40-300 GHz 7.5-1 mm
Submillimeter wave 300-3000 GHz 1-0.1 mm

Based on Table 1-1 and calculations carried out in Example 1-1 we note that the
VHF/UHF band, as typically encountered in television sets, constitutes the point at
which the wavelength first reaches dimensions equivalent to the physical extent of the
electronic system. It is this region where we need to begin to take into account the wave
nature of current and voltage signals in the respective electronic circuits. The situation
becomes even more critical when for instance 30 GHz frequency in the EHF band is
considered. Without being able to assign exact limits, the RF frequency range is cus-
tomarily associated from VHF to the S band. The MW frequency range has been tradi-

tionally associated with radar systems operating in the C band and above.
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1.4 RF Behavior of Passive Components

From conventional AC circuit analysis we know that a resistance R is frequency
independent and that a capacitor C and an inductor L can simply be specified by their
reactances X and X; as follows:

1 (1.5a)

wC
X; = oL (1.5b)

The implications of (1.5), for example, are such that a capacitor of C =1 pF and an
inductor of L = 1 nH at low frequencies of 60 Hz represent, respectively, either an open
or short circuit condition because

Xc

X (60 Hz) = L =265x10° @~ (1.62)
2m- 60 - 10
X,(60 Hz) = 27-60- 107 =3.77x107’ Q=0 (1.6b)

It is important to point out that resistances, inductances, and capacitances are not only
created by wires, coils, and plates as typically encountered in conventional low-fre-
quency electronics. Even a single straight wire or a copper segment of a printed circuit
board (PCB) layout possesses frequency dependent resistance and inductance. For
instance, a cylindrical copper conductor of radius a, length [, and conductivity G .4
has a DC resistance of

!

2
Ta ©

Rpc = (1.7)

cond
For a DC signal the entire conductor cross-sectional area is utilized for the current flow.
At AC the situation is complicated by the fact that the alternating charge carrier flow
establishes a magnetic field that induces an electric field (according to Faraday’s law)
whose associated current density opposes the initial current flow. The effect is strongest
at the center » = 0, therefore significantly increasing the resistance in the center of the
conductor. The result is a current flow that tends to reside at the outer perimeter with
increasing frequency. As derived in Appendix B, the z-directed current density J, can be
represented by
_pl Jo(pr)
© " 2mal 1(pa)

(1.8)

where p2 = —jWUOC, 4, and Jy(pr), J,(pa) are Bessel functions of zeroth and first
order, and [ is the total current flow in the conductor. Further calculations reveal that the
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normalized resistance and inductance under high-frequency conditions ( f >500 MHz)
can be put in the form

R/Rpc=a/(28) (1.9)

and
(wL)/Rp-=a/(29) (1.10)

In these expressions & is the so-called skin depth
d = (7'|:ﬂ-L0-c011d)_1/2 (L.11)

which describes the spatial drop-off in resistance and reactance as a function of fre-
quency f, permeability 1, and conductivity G4 . For the equations (1.9) and (1.10) to
be valid it is assumed that & « a. In most cases, the relative permeability of the conduc-
tor is equal to unity (i.e., 4, = 1). Because of the inverse square root frequency behav-
ior, the skin depth is large for low frequencies and rapidly decreases for increasing
frequencies. Figure 1-4 exemplifies the skin depth behavior as a function of frequency
for material conductivities of copper, aluminum, and gold.

1 —T
091
0.8}
0.7
0.6
05+
04 r
03+t

6, mm

10* 10° 10° 107 10° 10°
f.Hz
Figure 1-4  Skin depth behavior of copper 6, = 64.516><1066 S/m, aluminum
G, = 40.0x10° S/m, and gold 6, = 48.544x10" S/m.

If we consider the conductivity of copper, we can plot the AC current density (1.8)
normalized with respect to the DC current density J,, = I/(na?) as schematically
shown for the axisymmetric wire depicted in Figure 1-5(a).

For a fixed wire radius of, let us say, @ = 1 mm we can now plot J,/J , as a
function of radius r for various frequencies as given in Figure 1-5(b).
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High current Low current
density density

Y

Current Flow —a a

Figure 1-5(a) Schematic cross-sectional AC current density representation
normalized to DC current density.

2 L T Lad —T —T
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Figure 1-5(b) Frequency behavior of normalized AC current density for a
copper wire of radius a =1 mm.

We notice the significant increase in current flow at the outer perimeter of the wire
even for moderate frequencies of less than 1 MHz. At frequencies around 1 GHz, the
current flow is almost completely confined to the surface of the wire with negligible
radial penetration. An often used high-frequency approximation for the z-directed cur-
rent density 1s

a-—r
Ip ’(1"'])—"5-—

=——e¢ (1.12)
¢ j2naﬁ'

J
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As seen in (1.12), the skin depth & has a simple physical meaning. It denotes the
reduction in the current density to the e~! factor (approximately 37%) of its original
DC value. If we rewrite (1.9) slightly, we find

na?

a
R = Rpcys = Rpcs—s (1.13)

This equation shows that the resistance increases inverse proportionally with the
cross-sectional skin area, see Figure 1-6.

Figure 1-6 Increase in resistance over the cross sectional surface area. The
current flow is confined to a small area defined by the skin depth &.

To standardize the sizes of wires, the American Wire Gauge (AWG) system is
commonly used in the United States. For-instance, the diameter of the wire can be
determined by its AWG value. A complete listing of all AWG values and their corre-
sponding diameters is given in Table A-4 in Appendix A. The general rule is that in the
AWG system, the diameter of the wire roughly doubles every six wire gauges starting
with 1 mil for a AWG 50 wire (see Table A-4).

RFEMW—>

Example 1-2: Conversion between wire diameter and AWG
size

Determine the radius of the AWG 26 wire if the diameter of the
AWG 50 wire is 1.0 mil (or 2.54><10_5 m).
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Solution:  The increase in diameter is computed as follows:
AWG 50 d=1mil
AWG 44 d =2 mils
AWG 38 d=4mils
AWG 32 d=8mils
AWG 26 d=16mils
Thus we determined that the diameter of a AWG 26 wire is equal to
16 mils. Therefore, the radius is

8 mil = 8x(2.54x107°m) = 0.2032 mm

Even in today’s increasingly metric world, AWG has retained
its importance, and knowledge of how to convert mil-based AWG
size wires into millimeters often proves indispensable.

1.4.1 High-Frequency Resistors

Perhaps the most common circuit element in low-frequency electronics is a resis-
tor whose purpose is to produce a voltage drop by converting some of the electric
energy into heat. We can differentiate among several types of resistors:

+ Carbon-composite resistors of high-density dielectric granules
 Wire-wound resistors of nickel or other winding material

» Metal-film resistors of temperature stable materials

o Thin-film chip resistors of aluminum or beryllium based materials

Of these types mainly the thin-film chip resistors find application nowadays in RF and
MW circuits as surface mounted devices (SMDs). This is due to the fact that they can
be produced in extremely small sizes, as Figure 1-7 shows.

As the previous section has shown, even a straight wire possesses an associated
inductance. Consequently, the electric equivalent circuit representation of a high-
frequency resistor of nominal value R is more complicated and has to be modified such
that the finite lead dimensions as well as parasitic capacitances are taken into account.
This situation is depicted in Figure 1-8.

The two inductances L model the leads, while the capacitances are needed to
account for the actual wire arrangement, which always represents a certain charge sepa-
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Figure 1-7 One- and quarter-watt thin-film chip resistors in comparison with a
conventional quarter-watt resistor.

G,
[
I
L R L
A Y A
Gy
I
|

Figure 1-8 Eliectric equivalent circuit representation of the resistor.

ration effect modeled by capacitance C, and interlead capacitance C,. The lead resis-
tance is generally neglected when compared with the nominal resistance R. For a wire-
wound resistor the model is more complex, as Figure 1-9 shows.
C/
L
I
R L, L,

A — T

2
I
I

I

I

Figure 1-9 Electric equivalent circuit representation for a high-frequency wire-
wound resistor.
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Here, in addition to the lead inductances L, and the contact capacitance, we need
to include the inductance L, of the wire-wound resistor, which acts as a coil, and the
stray capacitance C, established between the windings. The interlead capacitance C,
(or C, in Figure 1-8) is usually much smaller than the internal or stray capacitance and
in many cases can be neglected.

RFEMW—

Example 1-3:\\ RF impedance response of metal film resistors

Find the high frequency impedance behavior of a 500 Q metal film
resistor (see Figure 1-8) with 2.5 cm copper wire connections of
AWG 26 and a stray capacitance C, of 5 pF.

Solution:  In Example 1-2 we have determined that the radius of
an AWG 26 wire is a = 2. 032x10™ m. According to (1.10) the
inductance of the straight wire at high frequency is approximately
equal to L = Rpca/(2®3). Substituting (1.11) for the skin depth,
we get the following expression of a lead mductance (we set the
conductivity of copper to be 6, = 64.516% 10°Q™ 1):

B _ 21 21 Ho  1.54
L = RDc2 T WOy = ona 241tf Tf UWoOcy 41ta TCGCuf ﬁ kH

where the length of the leads is doubled to account for two connec-
tions. The preceding formula for the computation of the lead induc-
tance is applicable only for frequencies where the skin depth is
smaller than the radius of the wire [i.e., 8 = (mfuo)1/2«a]orin
terms of frequency f » 1/(nuc,a?) = 95 kHz.

Knowing the inductance of the leads, we can now compute the
impedance of the entire circuit as

1
Z = JoL+ o TUR

The result of the computation is presented in Figure 1-10, where the
absolute value of the impedance of the resistor is plotted versus
frequency.

As seen, at low frequencies the impedance of the resistor is
equal to R. However, as the frequency increases and exceeds
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Figure 1-10 Absolute impedance value of a 500-Q thin-film resistor as a
function of frequency.

10 MHz, the effect of the stray capacitance becomes dominant,
which causes the impedance of the resistor to decrease. Beyond the
resonance at approximately 20 GHz, the total impedance increases
due to the lead inductance, which represents an open circuit or infi-
nite impedance at very high frequencies.

This example underscores the care that is required when deal-
ing with the ubiquitous, seemingly frequency-independent resistors.
While not all resistors exhibit exactly the same response as shown in
Figure 1-10, it is the single, often multiple, resonance point that
occurs when the frequency reaches into the GHz range.

1.4.2 High-Frequency Capacitors

In most RF circuits chip capacitors find widespread application for the tuning of
filters and matching networks as well as for biasing active components such as transis-
tors. It is therefore important to understand their high-frequency behavior. Elementary
circuit analysis defines capacitance for a parallel plate capacitor whose plate dimen-
sions are large compared to its separation as follows:
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C = %i‘ - eogrg (1.14)
where A is the plate surface area and d denotes the plate separation. Ideally there is no
current flow between the plates. However, at high frequencies the dielectric materials
become lossy (i.e., there is a conduction current flow). The impedance of a capacitor

must thus be written as a parallel combination of conductance G, and susceptance 0C:

1

-+ 1.15
z G,+joC ( )

In this expression the current flow at DC is due to the conductance G, = G4,A4/4,
with 64, being the conductivity of the dielectric. It is now customary to introduce the
series loss tangent tanA = ®€/0y, and insert it into the expression for G, to yield

_OgaA  weA _ oC

= = = 1.16
¢ d dtanA;  tanA; (1.16)

Some practical values for the loss tangent are summarized in Table A-3. The corre-
sponding electric equivalent circuit with parasitic lead inductance L, series resistance R
describing losses in the lead conductors, and dielectric loss resistance R, = 1/G,, is
shown in Figure 1-11.

—— e

—0

Re
Wy

Figure 1-11 Electric equivalent circuit for a high-frequency capacitor.

RF&EMW—

Example 1-4: RF impedance response of capacitor

Compute the high frequency impedance of a 47 pF capacitor whose
dielectric medium consists of an aluminum oxide (AL,O,) possess-
ing a series loss tangent of 10~ (assumed to be frequency indepen-
dent) and whose leads are 1.25 cm AWG 26 copper wires

(Gg, = 64.516x10°Q7" - m ™).
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Solution:  Similar to Example 1-3, the inductance associated
with the leads is given by

ye— Ho 771
L= RDCZ ™ HoCcu = 4na noc S J}

The series resistance of the leads is computed from (l 13) to be

R, = DC26 2na0Cu‘V % loOcy = O'Cu

Finally, in accordance with (1.16), the parallel leakage resistance is
equal to

= 4.8./f uQ

1 1 _ 33 9x10°
Re = G, 2ufCtand,  f ME
The frequency response of the magnitude of the impedance based on

equation (1.15) for the capacitor is shown in Figure 1-12.

2

10
10'F Real capacitor
a
- 10"F
N
10"
Ideal capacitor
2
10 L .
108 109 1010 1011
|, Hz
Figure 1-12 Absolute value of the capacitor impedance asa function of
frequency.

In computing the parallel leakage resistance R, we have
assumed the loss tangent tanA; to be frequency independent. In
reality, however, this factor may significantly depend upon the oper-
ating frequency. Unfortunately, data sheets often do not, or only
very incompletely, report this behavior.



20 Chapter 1 « introduction

Since the loss tangent can also be defined as the ratio of an
equivalent series resistance (ESR) to the capacitor’s reactance, many
data sheets list ESR instead of tanA_ . The ESR value is thus given as

: wC
This indicates that ESR — 0 as tanA; — 0.

As already known from the RF resistor impedance response in
Example 1-3, the capacitor reveals a similar resonance behavior
due to the presence of dielectric losses and finite lead wires.

The construction of a surface-mounted ceramic capacitor is shown in Figure 1-13.
The capacitor is a rectangular block of a ceramic dielectric into which a number of
interleaved metal electrodes are sandwiched. The purpose of this type of packaging is
to provide a high capacitance per unit volume by maximizing the electrode surface
area. Capacitance values range from 0.47 pF to 100 nF with operating voltage ranging
from 16V to 63V. The loss tangent is usually listed by the manufacturer as
tanA, < 10~ at a 1 MHz test frequency. Again, this loss tangent can significantly
increase as the frequency reaches into the GHz range.

Terminations

Ceramic material

Figure 1-13  Actual construction of a surface-mounted ceramic multilayer
capacitor.
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Besides capacitance and loss tangent, manufactures list a nominal voltage that
cannot be exceeded at a particular operating temperature (for instance, T < 85°C). Fur-
thermore, the capacitance is temperature dependent, as further discussed in the problem
section of this chapter.

1.4.3 High-Frequency Inductors

Although not employed as often as resistors and capacitors, inductors generally
are used in transistor biasing networks, for instance as RF coils (RFCs) to short circuit
the device to DC voltage conditions. Since a coil is generally formed by winding a
straight wire on a cylindrical former, we know from our previous discussion that the
windings represent an inductance in addition to the frequency-dependent wire resis-
tance. Moreover, adjacently positioned wires constitute separated moving charges, thus
giving rise to a parasitic capacitance effect as shown in Figure 1-14.

Figure 1-14 Distributed capacitance and series resistance in the inductor coil.

The equivalent circuit model of the inductor is shown in Figure 1-15. The para-
sitic shunt capacitance C, and series resistance R, represent composite effects of distrib-
uted capacitance C,; and resistance Ry, respectively.

L R;

— T — W

G
|
I

Figure 1-15 Equivalent circuit of the high-frequency inductor.
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RFEM W

Example 1-5: RF impedance response of an RFC

Estimate the frequency response of an RFC formed by N = 3.5 turns
of AWG 36 copper wire on a 0.1 inch air core. Assume that the
length of the coil is 0.05 inch.

2r

d
Figure 1-16 Inductor dimensions of an air-core coil.

Solution:  The dimensions of the coil are shown in Figure 1-16.
From Table A-4 in Appendix A, we find that the radius of the
AWG 36 wire is a = 2.5 mils = 63.5 pum. The radius of the coil core
is r=50 mils = 1.27 mm. The length of the coil is /=50 mils
=1.27 mm. The distance between two adjacent turns is
d=1/N=36x10"m.
To estimate the inductance of the coil we will use a well-
known formula for the inductance of an air core solenoid:
nrzp,ON 2
=—F
Strictly speaking, this formula is valid only for the case when r « [
and the number of turns N is large. In our case, the length of the coil
is comparable with its radius and the number of turns is relatively
small. Therefore, (1.17) will not give an exact value for the induc-
tance, but a rather good approximation. Substituting the given val-
ues into (1.17), we obtain L = 61.4 nH.
To approximate the effect of the capacitance C,, we will use
the formula for an ideal parallel-plate capacitor (1.14). In our case

(1.17)
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the separation d between the plates is assumed to be equal to the
distance between the turns d = [/N = 3. 6x10™* m, and the area A

can be estimated as A = 2al,,;,., where [, = 27rN is the length
of the wire. We conclude that
SO-ZTErN-Za raN2
C, = N = 4mg, = 0.087 pF

Since the radius of the wire is only 63.5 wm, we can neglect the skin
effect and compute the series resistance R as a DC resistance of the
wire.

[ .
R = _wie _ 2“”"2 — 0034 OQ

§ 2
Oc,Fa  Oc,Ria

The frequency response of the RFC impedance just analyzed is
shown in Figure 1-17.
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Figure 1-17 Frequency response of the impedance of an RFC.

RFCs find widespread use for biasing RF circuits. However, as
Figure 1-17 shows, the frequency dependency can form complicated
resonance conditions with additional elements in an RF system.
Indeed, certain matching circuits rely on the RFCs as tuning elements.

23
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As can be seen from Figure 1-17, the behavior of the RFC deviates from the
expected behavior of an ideal inductance at high frequencies. First, the impedance of
the RFC increases more rapidly as the frequency approaches resonance. Second, as the
frequency continues to increase, the influence of the parasitic capacitance C; becomes
dominant and the impedance of the coil decreases.

If the RFC had zero series resistance, then the overall impedance behavior at reso-
nance would reach infinity, but due to the nonzero value of R, the maximum value of
the impedance is of finite value. To characterize the impact of the coil resistance, the
quality factor Q is commonly used:

X
0=z (1.18)

s

where X is the reactance and R, is the series resistance of the coil. The quality factor
characterizes the resistive loss in this passive circuit, and for tuning purposes it is desir-
able that this factor is as high as possible.

e

1.5 Chip Components and Circuit Board Considerations

The practical realization of passive components on printed RF circuit boards is
primarily accomplished in chip form and placed on specially fabricated board materi-
als. In the following section we examine the three most common passive chip elements
in terms of their sizes and electric characteristics.

1.5.1 Chip Resistors

The size of chip resistors can be as small as 40 by 20 mils (where 1 mil = 0.001
inch = 0.0254 mm) for 0.5 W power ratings and up to 1 by 1 inch for 1000 W ratings in
RF power amplifiers. The chip resistor sizes that are most commonly used in circuits
operating up to several hundred watts are summarized in Table 1-2.

A general rule of thumb in determining the size of the chip components from the
known size code is as follows: the first two digits in the code denote the length L in
terms of tens of mils, and the last two digits denote the width W of the component. The
thickness of the chip resistors is not standardized and depends on the particular compo-
nent type.

The resistance value range from 1/10 Q up to several M . Higher values are diffi-
cult to manufacture and result in high tolerances. Typical resistor tolerance values range
from +5% to £0.01% . Another difficulty that arises with high-value resistors is that they
are prone to produce parasitic fields, adversely affecting the linearity of the resistance ver-
sus frequency behavior. A conventional chip resistor realization is shown in Figure 1-18.
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Table 1-2 Standard sizes of chip resistors

Geometry Size Code Length L, mils Width W, mils
0402 40 20
0603 60 30
0805 80 50
1206 120 60
1218 120 180

Marking

Protective coat -
\ Resistive layer

e

End contact

\ / \ End contact
Ceramic substrate

Inne{ electrodes

Figure 1-18 Cross-sectional view of a typical chip resistor.

A metal film (usually nichrome) layer is deposited on a ceramic body (usually
aluminum oxide). This resistive layer is trimmed to the desired nominal value by reduc-
ing its length and inserting inner electrodes. Contacts are made on both ends of the
resistor that allow the component to be soldered to the board. The resistive film is
coated with a protective layer to prevent environmental interferences.

1.5.2 Chip Capacitors

The chip capacitors are implemented either as a conventional single-plate configu-
ration, as shown in Figure 1-19, or a multiple-layer design (see Figure 1-13).

Frequently, single-plate capacitors are combined in clusters of two or four ele-
ments sharing a single dielectric material and a common electrode, as shown in Figure
1-20.
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Chip capacitor Ribbon lead or wire

Circuit traces

Figure 1-19 Cross section of a typical single-plate capacitor connected to the
board.

Dual capacitor Quadrupole capacitor

Figure 1-20 Clusters of single-plated capacitors sharing a common dielectric
material.

The standard sizes of the capacitors range from a minimum of 15 mils square in a
single layer configuration to 400 by 425 mils at higher values. Typical values for com-
mercial capacitors range from 0.1 pF to several uF. The tolerances vary from +2% to
150% . For small capacitances tolerances are usually expressed in terms of pF instead
of percent; for example, we often encounter capacitors with the nominal values given as
(0.5£0.25) pF.

1.5.3 Surface-Mounted Inductors

The most common implementation of surface-mounted inductors is still the wire-
wound coil. A typical example of such an inductor with air core is shown in Figure 1-21.
Modern manufacturing technology allows us to make these inductors extremely small.
Their dimensions are comparable to those of chip resistors and capacitors. Typical sizes
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Figure 1-21 Typical size of an RF wire-wound air-core inductor in comparison
with a cellular phone antenna (courtesy of Coilcraft, inc.).

of the surface-mounted wire-wound inductors range from 60 by 30 mils to 180 by 120
mils. The inductance values cover the range from 1 nH to 1000 uH.

When thickness constraints of the circuit play a major role, flat inductors are often
employed that can be integrated with microstrip transmission lines. A generic configu-
ration of a flat coil is shown in Figure 1-22. Although such thin-wire coils have rela-
tively low inductances on the order of 1 to 500 nH, it is the frequency in the GHz range
that helps push the reactance beyond 1 k€. The physical construction can be as small
as 2 mm by 2 mm.

(

!

Terminals Terminals

Air bridge

Figure 1-22 Flat coil configuration. An air bridge is made by using either a wire
or a conductive ribbon.

Flat coils are used in both integrated and hybrid circuits. Hybrid circuits are very
similar to an ordinary circuit, but discrete semiconductor elements are placed on the
dielectric substrate in die form (without case) and are connected to the conductors on
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the board using bond wires. After the entire circuit is assembled, it is then placed into a
single case to protect it from environmental interferences. Resistors and capacitors for
hybrid circuits can directly be implemented on the board by metal-film deposition. This
approach permits significant reduction in the size of the circuit.

1.6 Summary

In this chapter the evolution from low- to high-frequency systems is discussed and
placed in a historical context. A key concept when dealing with high-frequency applica-
tions is the fact that the electromagnetic wave nature begins to dominate over Kirch-
hoff’s current and voltage laws. Issues such as propagation constant and phase velocity,

o 1
B=2rn/Aandv, \/B o
gain importance.

A consequence of the electromagnetic wave nature is the skin effect, which forces
the current to flow close to the surface of the conducting structures. The depth of pene-
tration from the surface can be determined via the skin depth equation:

1

NG
With the skin depth we can approximately characterize the frequency dependent resis-
tance and reactance of components at RF frequency. As an example, the simple cylin-

drical lead wires exhibit resistances and reactances that become a function of frequency

o =

RzRDC—z-a—8 and X = a)LzRDCZES

These wires, in conjunction with the respective R, C, and L elements, form electric equiv-
alent circuits whose performance markedly deviate from the ideal element behavior. We
find that the constant resistance at low frequency is no longer constant, but displays a
second-order system response with a resonant dip. The dielectric material in a capacitor
becomes lossy at high frequencies (i.e., allows the flow of a small conduction current).
The degree of loss is quantified by the loss tangent, which is tabulated for a range of
engineering materials. Therefore, a capacitor exhibits an impedance behavior that fol-
lows an inverse frequency response only at low frequencies. Finally, inductors represent
an impedance response that follows a linear increase at low frequencies before deviating
from the ideal behavior by reaching a resonance peak and then turning capacitive.

A passive RF component vendor will always attempt to keep the physical dimen-
sions of resistors, capacitors, and inductors as small as possible. This is desired since
the wavelength of high-frequency voltage and current waves becomes ever smaller,
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eventually reaching the characteristic sizes of the circuit components. As discussed in
subsequent chapters, when the wavelength is comparable in size with the discrete elec-
tronic components, basic circuit analysis no longer applies.
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Problems

1.1 Compute the phase velocity and wavelength in an FR4 printed circuit board
whose relative dielectric constant is 4.6 and where the operational frequency
is 1.92 GHz.
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1.4

1.5

1.6
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The current flowing in a microstrip line (agssumed to be infinite and lossless)
is specified to be i(¢) = 0.6cos(9x 1077 — 500z) A. Find the (a) phase
velocity, (b) frequency, (c) wavelength, and (d) phasor expression of the cur-
rent.

A coaxial cable that is assumed lossless has a wavelength of the electric and
magnetic fields of A = 20 cm at 960 MHz. Find the relative dielectric con-
stant of the insulation.

The electric wave field of a positive z-traveling wave in a medium with rela-

tive dielectric constant of £, = 4 and with frequency of 5 GHz is given by
E, = Eycos(t—kz) V/m

(a) Find the magnetic field if E,, = 10° V/m.

(b) Determine phase velocity and wavelength.

(¢) Compute the spatial advance of the traveling wave between time intervals

ty = 3us and £, = Tus.

Find the frequency response of the impedance magnitude of the following
series and parallel LC circuits:

L=10nH
666 L=10nH
| Cc=10
I = 10pF
C=10pF
Compare your results to the situation when the ideal inductance is replaced
by the same inductance and a 5 £ resistance connected in series. Assume

that these circuits operate in the VHF/UHF frequency band of 30-3000
MHz.

For the circuit shown, derive the resonance frequency and plot the resonance
frequency behavior as a function of the resistance R.

L=10nH R
—J00— W
q C=1pF —




Problems

1.7

1.8

1.9

1.10

1.11

1.12

31

Repeat Problem 1.6 for the following circuit.
R

r=100H —\WW\
[
i
C:

IpF

For the following circuit we chose R « (JL/C)/2.

MA— ° %

Find |V,/V|| as a function of frequency and identify the dominant circuit
portions for the low-, mid-, and high-frequency domains.

One of the objectives of Chapter 1 is to sensitize the reader to high-fre-
quency phenomena that are usually neglected in a low-frequency circuit ana-
lysis. One such phenomenon is the skin effect. To show its importance in RF
calculations, (a) compute the frequency behavior of an inductor formed by
10 turns of AWG 26 copper wire on a 5 mm air core. The length of the coil is
5 mm. (b) repeat the computations by first neglecting the skin effect and then
including it.

The leads of a resistor in an RF circuit are treated as straight aluminum wires
(65 = 4.0x10'S/m) of AWG size 14 and of total length of 5 cm. (a)
Compute the DC resistance. (b) Find the AC resistance and inductance at
100 MHz, 1 GHz, and 10 GHz operating frequencies.

Compute the skm depths for copper (G, = 64.516 X 10° S/m), aluminum
(0, = 40x10 S/m) and gold (0,, = 48.544 X 10° S/m) at 1 GHz and
10 GHz, and find the resistance of a 10 cm wire with diameter of 1 mm.

A typical PCB substrate consists of Al,O; with a relative dielectric constant
of 10 and a loss tangent of 0.0004 at 10 GHz. Find the conductivity of the
substrate.
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For the series RLC circuit with R = 1 Q, L = 1 nH, and C = 1 pF,
compute the resonance frequency and quality factor at £10% of the reso-
nance frequency. Does the presence of the resistor affect the resonance fre-
quency?

A 4.7 pF capacitor with relative dielectric constant of 4.6 and series loss tan-
gent of 0.003 is used in a circuit operated at 10 GHz. For a combined copper
lead length of 6 cm and diameter of 0.5 mm, determine (a) the lead resis-
tance and lead reactance, and (b) the conductance and the total 1m[iedance
The conductivity of copper is given as G, = 64.516X 1000

A manufacturer data sheet records the series loss tzzlngelpt of a capacitor to be
10~ at 5 GHz. For a total plate dimension of 10 “cm” and plate separation

of 0.01 mm and a relative dielectric constant of 10, find the conductance.

A two-element impedance of the generic form

Z =R+ jX
has to be converted into an equivalent admittance form Y = 1/Z such that
Y =G+ jB

Find the conductance G and susceptance B in terms of resistance R and reac-
tance X.

A more elaborate model of a capacitor is sometimes represented by the fol-
lowing circuit:
I
R, I

—A— Rt

r

Wy

Here the loss tangent is specified as consisting of two parts involving the
admittance Y, = 1/R, + joC with a parallel-circuit loss tangent
tanA |Re{Y VIm{Y }| and series impedance Z; = Ro+ 1/(joC)
with a series-circuit loss tangent tanA¢ = |Re{Z st/ Im{Z S}| (it is noted
that R is different from Example 1-4). Show that for low-loss capacitances
we approximately obtain tanA =~ tanAg + tanA where
tanA = |Re{Z}/Im{Z}| and Z is the total impedance.

When recording the capacitance with a measurement equipment, the user
has often the choice to select a suitable circuit representation. For the series
representation, the instrument attempts to predict Rg and Cg, while for the
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parallel representation the prediction involves Rp and Cp. Which mode
should be chosen if large capacitors of more than 100 uF are to be mea-
sured? Is this mode also suitable for small values of less than 10 UF?
Explain your answers.

The ability to store electric charge, expressed through the capacitance,
depends on the operating temperature. This behavior can be quantified
through the relation C = Cy[1+ (T —20°C)], where C is the nominal
capacitance and ¢ is a temperature coefficient that can be positive or nega-
tive. If the capacitance C at T = 20°C is recorded to be 4.6 pF, which
increases to 4.8 pF at T = 40°C, what is the temperature coefficient o ?
Determine the capacitance at 0°C and 80°C.

When measuring impedance at low frequency we connect the measurement
equipment to a device using a pair of wires and assume that the reading
reflects the impedance of the device under test (DUT). As we have seen in
this chapter, at high frequencies we have to take into account the influence of
the parasitic elements. The typical circuit representation of the measurement
arrangement is as follows.

Z, Z
R, L, purT

Measurement G
Equipment ' P

:| DUT

Cables and Fixture i

. 1
¥ !

Measurement Device
Plane Plane
Here the fixture and cables are replaced by an equivalent circuit of the lead
impedance (Rg+ jwLg) and stray admittance (Gp+ joCp). Ideally, we
would like to perform the measurement at the device plane. However, due to
the influence of the fixture, the measurement plane is shifted away from the
DUT.

To measure accurately the impedance of the DUT, the test fixture with
connecting cables has to be taken into account. The methodology adopted by
most manufacturers is to compensate for these undesired, fixture-related
influences through an open- and short-circuit calibration. The first step is to
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replace the DUT by a short circuit and record the resulting impedance. Due
to the influence of the fixture, the measured impedance will not be equal to
zero. Next, the short circuit is replaced by an open circuit and the impedance
is recorded again. These two measurements allow us to quantify the parasitic
influence of the fixture.

After calibration, we can connect the DUT and measure the input
impedance. The equivalent circuit in this case is as follows.

Z;=RstjolLg

Yp=GptjoCp I::I Zpur

Knowing the values of the parasitic elements (Z¢ and Yp), we can now
compute the true impedance of the DUT.

Explain the procedure with all necessary equations, and specify under
what conditions such a calibration is possible. Next, develop the formula that
allows us to find the desired DUT impedance in the absence of the fixture.

The results of a frequency sweep impedance measurement of an unknown
passive device are shown in the following figure.
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Based on the shape of the impedance response, develop a circuit that can be
used as an equivalent circuit to replicate this device under test. What device
can it be: resistor, inductor, or capacitor?

To measure the impedance of a passive component at RF frequencies is quite
a challenge. Conventional techniques such as bridge circuits and resonance
techniques fail beyond a few MHz. A technique pursued by several instru-
ment manufactures is the current voltage recording based on the following
simplified schematic.

Here the voltages are measured with vector voltmeters that allow the record-
ing of magnitude and phase. Explain how the impedance of the component
under test is determined and discuss the purpose of the transformer and
operational amplifier.

An RFC is constructed by winding four turns of AWG 38 copper wire on a
2 mm ceramic core diameter (L, = 1) of 0.1 mm length. Based on Example
1-5, estimate the inductance, stray capacitance, resistance, and resonance
frequency.

Using data and the equivalent circuit diagram developed in the previous
problem, find values of the equivalent circuit parameters for the magnitude
of the impedance if the device is 100 Q under DC conditions and 1257 €
at 100 GHz. Assume the resonance frequency point to be at 1.125 GHz.

A quadrupole capacitor as shown in Figure 1-18 consists of four equal-size
electrodes of 25 mils square separated 5 mils from a common ground plane
through a dielectric medium of a relative dielectric constant of 11. Find the
individual and total capacitance that can be achieved.
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Consider the following diode circuit.

DG a50
RFC
RF, o . © RF;yr
/
5nH S
= ¢,
o o

As will be shown in Chapter 6, a reverse biased diode can be represented as
a series combination of a resistor R¢ and junction capacitor C, where the
capacitance is bias dependent. Its value is approximately given by the

expression
C = CO(I _ Vbias)_—”2
Vit
Assuming that RFC and blocking capacitor Cp have infinite values, find the
biasing voltage such that the circuit exhibits a resonance at the frequency of
1 GHz. The diode is characterized as follows: C, = 10 pF, Rg = 3 Q,
and barrier voltage V j = 0.75 V.




CHAPTER 2

Transmission Line Analysis

As we already know, higher frequencies imply
decreasing wavelengths. The consequence for an RF circuit is that voltages and currents
no longer remain spatially uniform when compared to the geometric size of the discrete
circuit elements: They have to be treated as propagating waves. Since Kirchhoff’s volt-
age and current laws do not account for these spatial variations, we must significantly
modify the conventional lumped circuit analysis.

The purpose of this chapter is to outline the physical reason for transitioning from
lumped to distributed circuit representation and, in the process, develop one of the most
useful equations: the spatially dependent impedance representation of a generic RF
transmission line configuration. The application of this equation to the analysis and
design of high-frequency circuits is going to assume central importance in subsequent
chapters. Developing the background of transmission line theory in this chapter, we have
purposely attempted to minimize (albeit not eliminate) the reliance on electromagnetics.
The motivated reader who would like to delve deeper into the concepts of electromag-
netic wave theory is referred to a host of excellent books listed at the end of this chapter.

2.1 Why Transmission Line Theory?

Let us once again return to the wave field representation  (1.1a):
E, = Eycos(wr—Pz). Here we have an x-directed electric field propagating in the
positive z-direction. For propagation in free space the orthogonality between electric
field and direction of propagation is always assured. If, on the other hand, we assume
that the wave is confined to a conducting medium that is aligned with the z-axis, we will
find that the electric field has a longitudinal component E, that, when integrated in z-
direction, gives us a voltage drop (i.e., V = -JEzdlz, where dl, is the line element in the

37
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z-direction). Let us now consider more closely the argument of the cosine term in
(1.1a). It couples space and time in such a manner that the sinusoidal space behavior is
characterized by the wavelength A along the z-axis. Moreover, the sinusoidal temporal
behavior can be quantified by the time period T = 1/ f along the time-axis. In mathe-
matical terms this leads to the method of characteristics, where the differential change
in space over time denotes the speed of evolution, in our case the constant phase veloc-

ity in the form v,

y =@ opp= o € @2.1)

? Jew e,
For a frequency of, let us say, f=1 MHz and medium parameters of €,= 10 and
H,=1(v, = 9.49x10 m/s ), a wavelength of A = 94.86 m is obtained. This situation is

spatially and temporally depicted in Figure2-1 for the voltage wave
V = —cos(wt - Bz)dz = sin(wz-Pz)/P.

0 02 04 06 08 1.0 12 14 16 1.8 20
t, s

=0

-20

0 20 40 60 80 100 120 140 160 180 200

z,m
Figure 2-1 Voltage distribution as a function of time (z = 0) and as a function of
space (ft=0).

We next direct our attention to a simple electric circuit consisting of load resistor
R; and sinusoidal voltage source V with internal resistance R connected to the load
by means of 1.5 cm long copper wires. We further assume that those wires are aligned
along the z-axis and their resistance is negligible. If the generator is set to a frequency
of 1 MHz, then, as computed before, the wavelength will be 94.86 m. A 1.5 cm long
wire connecting source with load will experience spatial voltage variations on such a
minute scale that they are insignificant.
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When the frequency is increased to 10 GHz, the situation becomes dramatically
different. In this case the wavelength reducesto A = v » 10"° m = 0.949 cm and thus
is approximately two-thirds the length of the wire. Consequently, if voltage measure-
ments are now conducted along the 1.5 cm wire, location becomes very important in
determining the phase reference of the signal. This fact would readily be observed if an
oscilloscope were to measure the voltage at the beginning (location A), at the end (loca-
tion B), or somewhere along the wire, where distance A-B is 1.5 cm measured along the

z-axis in Figure 2-2.

7 ! —s

0 !

Figure 2-2 Amplitude measurements of 10 GHz voltage signal at the beginning
(location A) and somewhere in between a wire connecting load to source.

We are now faced with a dilemma. A simple circuit, seen in Figure 2-2, with a
voltage source V; and source resistance R connected to a load resistor R; through a
two-wire line of length [, whose resistance is assumed negligible, can only be analyzed
with Kirchhoff’s voltage law

N
i=1

when the line connecting source with load does not possess a spatial voltage variation,
as is the case in low-frequency circuits. In (2.2) V; (i=1, ..., N) represents the voltage
drops over N discrete components. When the frequency attains such high values that the
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spatial behavior of the voltage, and also the current, has to be taken into account, Kirch-
hoff’s circuit laws cannot be directly applied. The situation can be remedied, however,
if the line is subdivided into elements of small, (mathematically speaking) infinitesimal
length, over which voltage and current can be assumed to remain constant, as depicted
in Figure 2-3.

z :z+Az
IQF) R I _élgzhﬁz)
) | G=cC VA
9 rL T (#242)
:Z z+Az

Figure 2-3 Partitioning an electric line into small elements Az over which
Kirchhoff's laws of constant voltage and current can be applied.

For each section of length Az, we can devise an equivalent electric circuit repre-
sentation. With reference to our discussions in Chapter 1 it is immediately concluded
that there will be some series resistance and inductance associated with each wire. In
addition, due to the relative proximity of the two wires, a capacitive effect will also be
observed. Since in reality no perfect insulator does exist, a small current flow through
the dielectric occurs. A more accurate analysis of all these effects will be given in
Section 2.2. At this point we need to stress that equivalent elements, briefly described
here, represent only a small segment of the line. To build the complete model of the
entire line we would have to replicate Az a large number of times. Therefore, the trans-
mission line in general cannot be represented in terms of lumped parameters, but must
be viewed as distributed parameters R, L, C, and G, where all circuit parameters are
given in terms of unit length.

The question of when a wire, or a discrete component, has to be treated as a trans-
mission line cannot precisely be answered with a single number. The transition from
lumped circuit analysis obeying Kirchhoff’s laws to distributed circuit theory involving
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voltage and current waves depends on the wavelength in comparison with the average
component size. The transition takes place gradually as the wavelength becomes
increasingly comparable with the circuit elements. As a rule of thumb, when the aver-
age size 1, of the discrete circuit component is more than a tenth of the wavelength,
transmission line theory should be applied (I, =2 M10). For the example of the 1.5 cm
wire we would determine the following frequency estimation:

£ Jp L 949X 10" m/s
101 0.15m
Can the RF design engineer deal with the simple circuit in Figure 2-2 as a lumped ele-
ment representation at 700 MHz? Perhaps. Can Kirchhoff’s circuit theory be applied to
the circuit at 1 GHz? Not without having to take into account a significant loss in preci-
sion. Additional reasons why the use of transmission line theory is needed will become
apparent in later chapters.

= 633 MHz

2.2 Examples of Transmission Lines

221 Two-Wire Lines

The two-wire transmission line discussed in Section 2.1 is one example of a sys-
tem capable of transporting high-frequency electric energy from one location to
another. Unfortunately, it is perhaps the most unsuitable way of transmitting high-fre-
quency voltage and current waves. As shown schematically in Figure 2-4, the two con-
ductors separated over a fixed distance suffer from the drawback that the electric and
magnetic field lines emanating from the conductors extend to infinity and thus influence
electronic equipment in the vicinity of the line.

Electric Field
(solid lines) ~a

Magnetic Field
(dashed lines)

Figure 2-4 Geometry and field distribution in two-wire parallel conductor
transmission line.
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Further, due to the fact that the wire pair acts as a large antenna, radiation loss
tends to be very high. Therefore, the two-wire line finds only limited applications in the
RF domain (for instance, when connecting private TV sets to receiving antennas). How-
ever, it is commonly used in 50-60 Hz power lines and local telephone connections.
Even though the frequency is low, the distance can easily extend over several kilome-
ters thus making the wire size comparable to the wavelength (as an example,

=c/f=3x10 5/60 = 5000 km ). Here again, distributed circuit behavior may
have to be taken into account.

2.2.2 Coaxial Line

A more common example of a transmission line is the coaxial cable. It is used for
almost all cases of externally connected RF systems or measurement equipment at fre-
quencies of up to 10 GHz. As shown in Figure 2-5, a typical coaxial line consists of an
inner cylindrical conductor of radius a, an outer conductor of radius b, and a dielectric
medium layered in between. Usually the outer conductor is grounded, thus minimizing
radiation loss and field interference. Several of the most commonly used dielectric
materials include polystyrene (g, =2.5, tanA, =0.0003 at 10 GHz), polyethylene
(e, = 2.3, tanA, = 0.0004 at 10 GHz), or teflon (g, = 2.1, tanA, = 0.0004 at 10 GHz).

Figure 2-5 Coaxial cable transmission line.

2.2.3 Microstrip Lines

It is a common practice to use planar printed circuit boards (PCBs) as the basic
medium to implement most electronic systems. When dealing with actual RF circuits,
we need to consider the high-frequency behavior of the conducting strips etched on the
PCBs, as depicted qualitatively in Figure 2-6.

The ground plane below the current carrying conductor traces helps prevent exces-
sive field leakage and thus reduces radiation loss. The use of PCBs simplifies the access
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(a) Printed circuit board section (b) Microstrip line
Figure 2-6 Microstrip transmission line representation.

to the active and passive devices on the board and reduces the cost of the manufacturing
process. In addition, PCBs allow the tuning of circuits by simply changing the position
of the components and manually adjusting variable tuning capacitors and inductors.

One of the disadvantages of single layered PCBs is that they have rather high radi-
ation loss and are prone to “crosstalk” (interference) between neighboring conductor
traces. As noted in Figure 2-7, the severity of field leakage depends on the relative
dielectric constants, as shown qualitatively in the electric field line displays for teflon
epoxy (€, = 2.55) and alumina (g, = 10.0) dielectrics.

(a) Teflon epoxy (¢, = 2.55) (b) Alumina (g, = 10.0)
Figure 2-7 Electric field leakage as a function of dielectric constants.

Direct comparison of the field lines in Figure 2-7 suggests that to achieve high
board density of the component layout, we should use substrates with high dielectric
constants since they minimize field leakage and cross coupling.

Another way to reduce radiation losses and interference is to use multilayer tech-
niques to achieve balanced circuit board designs where the microstrip line is “sand-
wiched” between two ground planes, resulting in the triple-layer configuration seen in
Figure 2-8.

A microstrip configuration that is primarily used for low impedance, high-power
applications is the parallel-plate line. Here the current and voltage flow is confined to two
plates separated by a dielectric medium. This configuration and the corresponding field
distribution are shown in Figure 2-9 for the dielectric medium of teflon epoxy (g, = 2.55).
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(a) Sandwich structure (¢, = 2.55) (b) Cross-sectional field distribution

Figure 2-8 Triple-layer transmission line configuration.

(a) Geometric representation (b) Field distribution (g, = 2.55)

Figure 2-9 Parallel-plate transmission line.

There are many more transmission line configurations used for a number of spe-
cial-purpose applications. However, a detailed coverage of the pros and cons of all pos-
sible combinations would go beyond the objectives of this book.

The preceding transmission line examples all have the commonality that the elec-
tric and magnetic field components between the current-carrying conductors are trans-
versely orientated (or polarized); that is, they form a transverse electromagnetic (TEM)
field pattern similar to the one shown in Figure 1-3. As mentioned in Chapter 1, the
TEM behavior has to be seen in contrast to guided modes, where the electromagnetic
wave propagation is accomplished through wave reflections and refractions between
conducting plates or indexed dielectric media in optical fibers. The analysis is broken
down into so-called transverse magnetic (TM) and transverse electric (TE) modes.
Such modes of operation are of major interest in the microwave range for satellite com-
munication, radar, and remote sensing applications. Due to their extremely high fre-
quency of operation, well above the RF range, waveguides and optical fiber cables
require special electromagnetic treatment and are not considered further. Instead, we
refer the reader to a number of references listed at the end of this chapter.
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2.3 Equivalent Circuit Representation

As mentioned previously, voltages and currents are no longer spatially constant on
the geometric scale of interest to RF circuit design engineers. As a consequence, Kirch-
hoff’s voltage and circuit laws cannot be applied over the macroscopic line dimenston.
However, this problem can be circumvented when the transmission line is broken down
into smaller (in the limit infinitesimally small) segments. Those segments are still large
enough to contain all relevant electric characteristics such as loss, as well as inductive
and capacitive line effects. The main advantage of this reduction to a microscopic rep-
resentation is the fact that a distributed parameter description can now be introduced
whose analysis follows Kirchhoff’s laws on a microscopic scale. Besides providing an
intuitive picture, the approach also lends itself to a two-port network analysis, as dis-
cussed in Chapter 4.

To develop an electric model, let us consider once again a two-wire transmission
line. As Figure 2-10 indicates, the transmission line is aligned along the z-axis and seg-
mented into elements of length Az.

z z+Az
f Z > r\: :¢:
a — ' y 1
"""""" L R, L Mg Ry L,
e' \\ ----- ! e ? """W 1 1 + : ] l K ﬂ? ].
¢ I [
G - C:iz V(Z) G C V(Z +AZ) G E__ C::::::
R, L v R L T vy R Ly
A VY s SR __W\,_rrm l 4 AAR ST 2
z 7+ Az

Figure 2-10 Segmentation of two-wire transmission line into Az-long sections
suitable for lumped parameter analysis.

If we focus our attention on a single section residing between z and z + Az, we
notice that each conductor (1 and 2) is described as a series connection of resistor and
inductor (R, L, and R,, L,). In addition, the charge separation created by conduc-
tors 1 and 2 gives rise to a capacitive effect denoted by C. Recognizing that all dielec-
trics suffer losses (see our discussion in Section 1.4.2), we need to include a
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conductance G. Again attention is drawn to the fact that all circuit parameters R, L, C,

and G are given in values per unit length.
Similar to the two-wire transmission line, the coaxial cable in Figure 2-11 can

also be recognized as a two-conductor configuration with the same lumped parameter
representation.

z +Az
N Y
S . s tn -----
""""" R L K2R, L, ie+p R, 1, T
T i | L 3 ..........-'- l _'l_ --":.;" .......... Tieen ?. ........ D
G - C=:i= V(Z) G C V(Z +AZ) GE > C:ix
R, L R, L -1— R, L, *
TN T WO 2 B B
;. z;Az

Figure 2-11 Segmentation of a coaxial cable into Azlength elements suitable for
lumped parameter analysis.

A generic form of an electric equivalent circuit is developed as shown in Figure 2-
12, where the resistances and inductances of the two conductors are usually combined
into single elements. This representation is not suitable for all transmission line appli-
cations. For instance, when dealing with transient wave propagation and signal integrity
issues of inductive and capacitive crosstalks, it generally makes more sense to retain the
parameter representation shown in Figure 2-11. However, for our treatment of transmis-
sion lines we will exclusively use the model shown in Figure 2-12.

o, R L I(_zj)Az)
§ |

(z) G= C=F V(z+ Az2)
: e
z z+Az

Figure 2-12 Generic electric equivalent circuit representation.
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It should be recalled from the discussion in Chapter 1 that the aforementioned R,
L, C, and G elements are frequency-dependent parameters that change significantly
depending on the operational frequency and the employed transmission line type. Fur-
ther, L not only incorporates the inductance of the wire (self-inductance; see Section
1.4.3) but also takes into account the mutual inductance between the wires. In general,
the self-inductance is so small compared with the mutual inductance that it can be
safely neglected. To summarize the advantages of the electric circuit representation, we
observe that it

» provides a clear intuitive physical picture

e lends itself to a standardized two-port network representation

« permits the analysis with Kirchhoff’s voltage and current laws

» provides building blocks that allow the expansion from microscopic to macro-
scopic forms

There are also two significant disadvantages worth noting:

oIt is basically a one-dimensional analysis that does not take into account field
fringing in the plane orthogonal to the direction of propagation and therefore can-
not predict interference with other components of the circuit.

« Material-related nonlinearities due to hysteresis effects are neglected.

Despite these disadvantages, the equivalent circuit representation is a powerful mathe-
matical model for describing the characteristic transmission line behavior. With this
model in place, we can now embark on developing generalized transmission line
equations.

2.4 Theoretical Foundation

241 Basic Laws

The next question that we should ask ourselves is how to determine the distributed
circuit parameters if we know the physical dimensions and electric properties of the
transmission line. The answer is provided through the use of two central laws of elec-
- tromagnetics: Faraday’s law and Ampere’s law.

_ Rooted in experimental observations, Faraday’s and Ampére’s laws establish two

fundamental relations linking electric and magnetic field quantities. As such, both laws
provide cornerstones of Maxwell’s theory by stating so-called source-field relations. In
other words, the time-varying electric field as a source gives rise to a rotational mag-
netic field. Alternatively, the time-varying magnetic field as a source results in a time-
varying electric field that is proportional to the rate of change of the magnetic field. The
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mutual linkage between electric and magnetic fields is ultimately responsible for wave
propagation and traveling voltage and current waves in RF circuits.

By stating Faraday’s and Ampere’s laws in integral and differential forms, we pos-
sess the necessary tools to calculate, at least in principle, the line parameters R, L, C,
and G for the electric circuit elements. They are needed to characterize various trans-
mission line systems. By going through the subsequent calculations, we will observe
how abstract theoretical laws can be used as a starting point to derive practical circuit
parameters for a particular type of transmission line.

Ampére’s Law

This fundamental law states that moving charges, which are characterized by the
current density J, give rise to a rotational magnetic field H surrounding the charge flow
as expressed by the integral relation

§H dl = _[ jJ .dS (2.3)

where the line integral is taken along the path characterized by the differential element
dl that defines the edge of the surface element S in such a manner that the surface S
always stays on the left side. In equation (2.3) the total current density can be written as
J = J,+0E +d(eE)/dt. It is comprised of (a) the impressed source current density
J,, (b) the conduction current density GE, which is induced by an electric field E in the
conductor and is responsible for conduction losses; and (c) the displacement current
density d(eE)/dr, which is responsible for radiation losses. Here and in the following
equations we use again bold letters to denote vector quantities such that

E(r,t) = E(x,y,2,1)X + Ey(x, v, o, )y +E (x,y,2,1)%
where E , Ey, E, are the vector components and %, ¥, Z are unit vectors in x, y, z direc-
tions in a Cartesian coordinate system. Figure 2-13 illustrates the meaning of equation
(2.3).
Perhaps less intuitive than the integral relation, nonetheless perfectly identical to
(2.3), is Ampere’s law in differential or point form:

(V<) n = lim - $H - dl = lim o [[J-as=J-n (2.4
AS

where Vx is the curl operator and n is a unit vector perpendicular to the surface ele-

ment AS. When using vector components in a rectangular coordinate system, this dif-

ferential operator can be represented in the matrix form
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o 9d
T
vx=[9 o _9 25
0z 0 ox (25)
Jd o
oy
Therefore, by applying the curl to the vector field H, we obtain
- S 5 -
0 -2 Z
aZ ay Hx ‘Ix
VsH=|9 o _9lH = 2.6
3 0 —-1 H, J, (2.6)
0 od 0 Hz ‘]z
| 9y ox |

where H,, Hy, H and J, J), J, are x, y, and z components of the magnetic field vector H,

and the current density J.
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RF &M W

Example 2-1: Magnetic field generated by a constant current
flow in a conductor

Plot the graph of the radial magnetic field H(r) inside and outside
an infinitely long wire of radius ¢ = 5 mm aligned along the z-axis
and carrying a DC current of 5 A. The surrounding medium is
assumed to be air.

Solution:  This is a typical example for Ampere’s law in integral
form as given by (2.3). Inside the conductor the current density J is
uniform and is equal to J = I/(na?)2. Therefore, the application
of (2.3) yields the following result:

H2nr = —I~Rr2 = H = Ir
a2 2na?

where 0 <r<a. Outside of the conductor the current density is
equal to zero and the surface integral in (2.3) gives the total current /
flowing through the conductor. Thus, the magnetic field H outside
the wire is obtained as
Hanr=1 = =1L
2nr
where r 2 a . The total magnetic field inside and outside of the infi-
nitely long wire is thus

;

Ir

mat’ = 31.83r kA/m, r <5 mm
H(r) = ta ={ . -

I S 0.796/r A/m, r 25 mm

2nr T

The graph of this radial magnetic field distribution is plotted in
Figure 2-14.

We make the important observation that inside the wire the
magnetic field linearly increases from the center to the outer con-
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Figure 2-14 Magnetic field distribution inside and outside of an infinitely long wire
of radius a = 5 mm carrying a current of 5 A.

ductor periphery since more current contributes to the magnetic
field.

Faraday’s law

This law implies that the time rate of change of the magnetic flux density B = pH
(1 = pol, ) as a source gives rise to a rotating electric field

§E - di = —g—t”B-dS @2.7)

The line integral is again taken along the edge of the surface S as previously described
- for Ampére’s law. The integration of the electnc field alonf{ a wire loop as shown in

Flgm'e 2-15 yields an induced voltage V = cdl = —
~ Similar to Ampere’s law, we can convert (2 7) into a 1 erent1a1 or point form:

VXE = E)t (2.8)

Equatlon (2.8) makes it clear that we need a time-dependent magnetic flux density to
- obtain an electric field, which in turn creates a magnetic field according to Ampere’s law.
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Figure 2-15 The time rate of change of the magnetic flux density induces a
voltage.

RFEMW—

Example 2-2: Induced voltage in a stationary wire loop

Find the induced voltage of a thin wire loop of radius @ = 5 mm in
air subjected to a time-varying magnetic field H = Hjcos(w?),
where H, = 5A/m, and the operating frequency 1is
f = 100 MHz.

Solution:  The voltage induced in the loop is equal to the line
integral of the electrical field E along the loop. Employing Faraday’s
law (2.7) results in the following:

V= —§E-dl=§t-”B~dS

Since the surrounding medium is air, the relative permeability j,
equals unity and the magnetic flux density is
B = nH = poHycos(wr)z. Substituting B into the preceding
integral leads to an expression for the induced voltage V in the loop:

_d(fp.g - 4 o '
= EJ‘J-B dS = EuoH()COS((Dt)TCa = —Ta CDHOHOSln(mt)
This can be further simplified to V = -0.31 sin(6.28x108 HV.
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The result of this example is also known as the transformer
form of Faraday’s law whereby a time-varying field produced by a
primary coil induces a voltage response in a secondary loop.

2.5 Circuit Parameters for a Parallel Plate Transmission Line

Our goal is to compute the line parameters R, L, C, and G for a section of a trans-
mission line seen in Figure 2-16. To avoid any confusion we explicitly use 6,4 and
G4 to denote, respectively, conductivity in the conductor and conductivity in the
dielectric medium.

Figure 2-16 Parallel-plate transmission line geometry. The plate width wis large
compared with the separation d.

For the analysis‘y we must assume that the plate width w is large compared with the plate
separation d for a one-dimensional analysis to apply. Further, we assume that the skin
depth & is small compared to the thickness &, of the plates to simplify the derivation of
the parameters. Under these conditions we are able to cast the electric and magnetic
- fields in the conducting plates in th= form

E = 2E _(x,z)e/¥ (2.9a)
H = j}Hy(x,z)ef"” (2.9b)
The term ¢’ represents the time dependence of the sinusoidal electric and magnetic

fields, and phasors E (x,z) and H,(x,z) encode spatial variations. We do not have any
field dependency upon y, because the plates are assumed very wide, and thus the elec-
tromagnetic fields do not change appreciably along the y-axis. Application of the differ-
ential forms of Faraday’s and Ampere’s laws
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dH

VxE = —-u—*a-;- (210)
VxH = ¢, ,E (2.11)
results in two differential equations:
0 -9 9
dz dy 0 0
J 0 d 0 =._a_EZ=_iH _—_-_Ei_F{l’:_'(ouH (2.12)
dz “ox ox Har) dt J y '
E 0
99 4 F
| dy dx )
and
0 9 9
dz dy
0 0
d d oH,
é} 0 —-Xx— Hy = —?X‘_ = Ogong) 0 = 0-C(dez (2.13)
0 E,
9.9
dy ox |
By differentiating (2.13) with respect to x and substituting (2.12), we find
dI’H, )
P = JOO g, = p°H, (2.14)
x

where p2 = JOO ,qM . The general solution for this second-order ordinary differential
equation (2.14) is H (x) = Ae P* 4+ Be™ . The coefficients A and B are integration
constants. We can now perform the following manipulations:

p = Jj®O U = J} /06, M = (1 +j)ﬂm0condu)/2 = (1+,)/6 (2.15)

where § = JZ/ (0O 41) 1s recognized as the skin depth. Since p has a positive real
component, constant A should be equal to zero to satisfy the condition that the magnetic
field in the lower plate must decay in amplitude for negative x. A similar argument can
be made for the upper plate by setting B = 0. Thus, for the magnetic field in the lower
conducting plate we have a simple exponential solution

H, = Hye™ = Hgel! "7 (2.16)
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where B = H is a yet to be determined constant factor. Since the current density can
be written as
oH, (1+ j)HOe(l + /8

— _ y
Jz—cEz—ax_ o

we are now able to relate the current density J, to the total current flow 7 in the lower
plate

(2.17)

1+ j)x/8° ~(1+j)d,/8

= wHy(l-e ) (2.18)

P

= 'S[ [4,axdy = w f , Jedx = wHee

where S is the cross sectional area of the lower plate and d,, is the thickness of that plate.
Since we assume that d , » d, the exponential term in (2.18) drops out and I = wH,,.
From this we conclude that H, = I/w. The electric field at the surface of the conduc-
tor (x = 0) can be specified as

J(0) _(+DHy _ 1+j1

E0) =3 Coond®  OcondOW

(2.19)

cond cond

Equation (2.19) allows us to compute the surface impedance per unit length, Z, by
eliminating the current I as follows:

1 j .
Z =EJ/I = + = R+ joL (2.20)
‘ wccond8 Wo—cond6 ’ ’

The surface resistance and surface inductance per unit length are then identified as

1
R. = 221
g wccondﬁ ( )
L=t (2.22)
s~ WO g OO '

Both are dependent on the skin depth 9. It is important to point out that (2.21) and
(2.22) apply for a single conductor. Since we have two conductors in our system (upper
and lower plates) the total series resistance and inductance per unit length will be twice
the value of R, and L_, respectively.

To obtain the inductive and capacitive behavior of the mutual line coupling, we
must employ the definitions of capacitance and inductance:

_ i L _EEw _ew (2.23)

€= % _fExdlx Ed d

<R
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and

. [[Bas _ [[ur,as WHd_ pHd

I Ji I Hw W (2.24)

where we have used the result of (2.18) to compute the current / = wH,, Both in (2.23)
and (2.24) the capacitance and inductance are given per unit length.
Finally, we can express the conductance G in a similar way as derived in (2.23):

G = JJa-as - O] [£:45 _ OaiaE W _ O (2.25)
4 [Ea E.d d
Thus we have succeeded in deriving all relevant parameters for the parallel-plate trans-

mission line. From a practical point of view, at RF frequencies the magnitude of L, is
typically much smaller than L and therefore is neglected.

~RF&MW-

Example 2-3: Line parameters of a parallel-plate transmission
line

For a parallel copper-plate transmission line operated at 1 GHz, the
following parameters are given: w = 6 mm, d = 1 mm, g, = 2.25, and
O gie; = 0.125 mS/m. Find the line parameters R, L, G, and C per unit
length.

Solution: The skin depth for copper with conductivity
Ocond = 64.516x10°Q-1m-1 at operating frequency of 1 GHz is

= 1/, /"6 qllof = 1.98 pm, which is assumed to be much
smaller than the thickness of the conductor. Therefore, the resistance
of each plate is determined by (2.21). Since we have two plates, the
total resistance is R = 2R = 2/(w0,;40) = 2.6 Q/m. The
series inductance @ due to  the skin  effect is
L, = 2/(w0_q00) = 0.42 nH/m, where the factor 2 takes into
account both plates. The mutual inductance between plates is deter-
mined by (2.24) and for our problem is equal to L = 209.4 nH/m.
As seen, the series inductance is much smaller than the mutual
inductance and therefore can safely be neglected. According to
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(2.23), the capacitance of the line is given by
C = (gy¢,w)/d = 119.5 pF/m. Finally, the conductance G is
determined from (2.25) and equals G = 0.75 mS/m.

The RF surface resistance due to the skin depth phenomenon
does, in general, contribute much more significantly to the line
losses than does the DC resistance.

2.6 Summary of Different Line Configurations

The previous computations were carried out for the relatively simple case of a
parallel-plate transmission line. Similar analyses apply when dealing with more com-
plicated line geometries, such as coaxial cables and twisted wire pairs. Table 2-1 sum-
marizes the three common transmission line types.

57

Table 2-1 Transmission line parameters for three line types
' Parameter Two-Wire Line Coaxial Line Parallel-Plate Line Unit
R 1 1 (1 N 1) 2 C/m
nao-conda 21c0‘c0nd6 a b wo-conda
L d H/
Eacosh(g) £ln (’—)) H= m
T 2a 27 \a
G RO giel 2TC 4ie) w S/m
—_— Ciel
acosh(D/(2a)) In(b/a)
C RE 2Te eV F/m
acosh(D/(2a)) In(b/a) d

The geometric dimensions for the two-wire (D, a), coaxial (a, b), and parallel-
plate (w, d) lines are depicted in Figures 2-4, 2-5, and 2-16. The term acosh in Table 2-1
denotes the inverse hyperbolic cosine function. For more complex transmission line
configurations, significant mathematical effort must be exerted, and resorting to numer-
ical analysis procedures is often the only available solution. This is seen when dealing
with microstrip transmission lines (Section 2.8).
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2.7 General Transmission Line Equation

2.7.1 Kirchhoff Voltage and Current Law Representations

Having developed the background of Faraday’s and Ampere’s laws in
Section 2.4.1, we are well positioned to exploit both equations from a circuit point of
view. This is identical with applying Kirchhoff’s voltage and current laws (KVL and
KCL, respectively) to the loop and node a shown in Figure 2-17.

o r L, 128
A —TT 2

+

$ ]
V(z) G<= C=F V(z+Az)

y v

Figure 2-17 Segment of a transmission line with voitage loop and current node.

Adopting phasor notation, we can use Kirchhoff’s voltage law to conclude
(R+ joL)I(2)Az+ V(z+Az) = V(2) (2.26)

which is re-expressed as a differential equation by combining the voltage drop on either
side of the differential transmission line segment into a differential quotient:

. V(z+Az)-V(2)) _ dV(z) _ :
Alzn_l;lo(— ! ) = 2P - R+ joL)I(2) 2.27)
or
‘dZiZ) = (R + joL)I(z) (2.28)

where R and L are the combined resistance and inductance of the two lines. Applying
Kirchhoff’s current law to the designated node a in Figure 2-17 yields

I(2) - V(z+Az2HG + joC)Az = I(z+ Az) (2.29)

which can be converted into a differential equation similar to (2.27). The result is

fim [E*+A0-1@) _ d@) _ G, ia0)v(z) (2.30)
Az >0 Az dz

Equations (2.28) and (2.30) are coupled first-order differential equations. They can also
be derived from a more fundamental point of view, revealing the definitions of R, G, C,
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iand L as discussed in Example 2-4 for the previously analyzed parallel-plate transmis-

RFEMW—

Example 2-4: Derivation of the parallel-plate transmission line
equations

Establish the transmission line equations for the parallel-plate con-
ductors.

Solution:  The purpose of this example is to show how the trans-
mission line equations (2.28) and (2.30) can be derived from the
fundamental physical concepts of Faraday’s and Ampere’s laws.

Let us first consider Faraday’s law (2.7). The surface element
over which the line and surface integrations are performed is shown
as a shadowed area in Figure 2-18.

ith cell plate 2
—_— /

Figure 2-18 Integration surface element for Faraday’s law application.

The line integral in (2.7) is taken along the edge of the shaded
region with the integration direction denoted by arrows in Figure 2-
18. Evaluation of this line integration yields the following contribu-
tions:

§E .dl = E'-3Az + E(z+ A7) - %d - E2 - (-2)Az + E(2) - (—R)d
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where E! = E! -2 and E? = E%- % are the electric fields in the
lower (denoted by index 1) and upper (index 2) plates, respectively;
and E (z) = E(z)-% and E (z+Az) = E(z+Az)- X are the
electric fields in the dielectric medium between locations z and
z + Az. It is important to note that the direction of the electric field
in the upper conductor is opposite to that of the electric field in the
Jower conductor, whereas the direction of the field in the dielectric is
the same regardless of position. The minus sign in front of the unit
vectors indicates that the integration is performed counterclockwise.
Combining terms, we obtain

§E -dl = ElAz+ E2Az+E (24 A2)d - E(2)d

Since the magnetic field in the dielectric is assumed uniform, the
integration over the surface in (2.7) gives

[[uH-ds = pH,Aza
Substitution of these two integrals into (2.7) results in
ElAz + E2Az+E,(z+ A)d— E(2)d = ~uH Azd

Similar to discussions in Section 2.5, the magnetic field in the
dielectric can be expressed as H, = I/w. The electric field in the
conductor at high frequency is dependent on the skin effect and is
El = E? = /(WO yq8) + jI/ (WO ,y®) = E,. At low fre-
quency, the skin effect does not affect the electric field behavior. The
field is solely determined by the DC resistivity of the plates and cur-
rent I: E, = 1/(w0,qd,) . Since we are primarily concerned with
the high-frequency performance, we must assume that the skin
depth & is much smaller than the thickness of the plates. Thus, d p
has to be replaced with 8. Combining expressions for H, and E ,
and taking into account the relation for the potential between the
plates, V = E d, we obtain

I JI 3 _ _,dAzal _ . 44z
z(wccondﬁ ¥ wocondS)Az+ Viz+az)-V(z) = w TR, ! |

or
V(z+A2)-V(z) _ 9V

2RI+ jol(L+2L)) = Az 7
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where R, = 1/ (w0 ;,¢0) is the surface resistance of the plates,
L, = 1/(wG,q®d) is the high-frequency self-inductance of the
plates, and L = pd/w is the mutual inductance between both plate

conductors.
For the application of Ampere’s law (2.3) we use the surface

element shown in Figure 2-19.

ith cell plate 2
" e

y plate 1

Figure 2-19 Surface element used to apply Ampére’s law.

The surface integral of the current density J in the dielectric
medium results in the following expression
oE
j j J-dS = JAw = OB, whAz+e—="whz

where the 64, E,wAz term represents the conduction current in the
dielectric, and (3E,/9df)wAz is the contribution of the displace-
ment current. The line integration of the magnetic field yields

§H-dl = - Hy(z+ bayw+ Hy(@w = ~1(z+82) +1(2)

Taking into account the relation between the electric field and the
potential drop V between z and z + Az, thatis, E, = V/d, we com-
bine both integrals:
OgieW,,  ewdV _ I(z+Az) - 1(z)
d d dt Az

or, after introducing the differential quotient,

ol _ Cga¥,, ewdV _ CaeW . €W

%" d 'taa - "a 't

joV = (G+ joC)V
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Thus, we succeeded in deriving the equations for the parallel-plate
transmission line. To obtain the voltage and current distribution of
such a line, the following system of coupled first-order differential
equations must be solved:

e

OV _[2R, + jo(L + 2L
) oz
(G4 joC)V
0z

-

Usually, the self-inductance due to the skin effect L; is much
smaller than the mutual inductance L and is often neglected.

This example underscores the effort and assumptions required
to develop closed-form expressions for the parallel-plate transmis-
sion line. However, if w is comparable in size to d, the preceding
treatment breaks down and one has to resort to numerical
simulations.

2.7.2 Traveling Voltage and Current Waves

The solution of equations (2.28) and (2.30) is greatly facilitated if these first-order
differential equations are decoupled. This can be accomplished by spatially differentiat-
ing both sides of (2.28) and substituting (2.30) for the space derivative of the current.
The result is a standard second-order differential equation

d’V(z)
d z2
describing the voltage behavior in phasor form. Here the factor & is known as a complex

propagation constant

KV(z) = 0 (2.31)

k =k +jk;= J(R+ joL)(G+ joC) (2.32)

that depends on the type of transmission line. For simple line configurations, Table 2-1
provides explicit parameters. Reversing the order of decoupling by differentiating
(2.30) and substituting (2.28) results in an identical differential equation describing the
current:
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d* I(z)
dz

282 iy =0 (2.33)

Belutions to these decoupled equations are two exponential functions for the voltage

V(z) = Ve X4 v et (2.34)

d for the current

I(z) = I'e ™ 4+ ™ (2.35)
"important to observe that (2.34) and (2.35) are general solutions for transmission
s aligned along the z-axis. The convention is such that the first term represents

vefronts propagating in the +z-direction, whereas the second term denotes wave
sa pagation in the —z-direction. This makes physical sense since the negative sign in
’ Junctlon with k, >0 ensures diminishing amplitudes for the positive (+z) traveling
e. Conversely, negative traveling waves are attenuated due to the diminishing expo-
jhtial term.

2.7.3 General Impedance Definition
Equation (2.35) is related to (2.34). This can be seen if (2.34) is substituted into
gL 8). Differentiating and rearranging provides us with a current expression in the fol-
bwing form:

__k
(R+ jol)
ice voltage and current are generally related via an impedance, we can introduce the
ed characteristic line impedance Z, by defining

(R+joL) _ [(R+jwL)
Zy="—F = /m (2.37)

txsl_;ituting the current expression (2.35) into the left-hand side of (2.36), we also find

1(z) = (Ve v et (2.36)

. _
‘-I/: - —-‘I-’j (2.38)

B characteristic impedance allows us to express the current (2.36) in the concise form

27

ZO=

I(z) = (V+ k_ymethyy (2.39)
0



64 Chapter 2 « Transmission Line Analysis

The importance of Z, will become apparent in the following sections. Here it is note-
worthy to point out that Z is not an impedance in the conventional circuit sense. Its
definition is based on the positive and negative traveling voltage and current waves. As
such this definition has nothing in common with the total voltage and current expres-
sions used to define a conventional circuit impedance.

2.7.4 lLossless Transmission Line Model

The characteristic line impedance defined in (2.37) is, in general, a complex quan-
tity and therefore takes into account losses that are always present when dealing with
realistic lines. However, for short line segments, as mostly encountered in RF and MW
circuits, it does not create an appreciable error to deal with lossless line conditions. This
implies R = G = 0 and the characteristic impedance (2.37) simplifies to

z, = JL/C (2.40)

Since Z,, is independent of frequency, current and voltage waves are only scaled by a
constant factor. It is instructive to substitute values for a particular transmission line
type. If we use the parallel-plate transmission line with L and C given in Table 2-1, we

ﬁnd the explicit form
7 ].ld 7 4
0 A/; w (2.41)

where the square root term is known as the wave impedance, which yields (L = Lo,
€ = €,), a value of approximately 377 Q in free space. This value is typical when deal-
ing with radiation systems whereby an antenna emits electromagnetic energy into free
space. However, unlike electromagnetic field radiation into open space, the transmis-
sion line introduces geometric constraints as expressed through w and d for the parallel-
plate line configuration.

2.8 Microstrip Transmission Lines

As we have seen in Figures 2-6 and 2-7, a simple treatment of the strip line as a
parallel-plate capacitor that formed the basis of computing C in Table 2-1 does not
apply in the general case. If the substrate thickness h increases or if the conductor width
w decreases, fringing fields become more prominent and cannot be ignored in the math-
ematical model. Over the years a number of researchers have developed approximate
expressions for the calculation of the characteristic line impedance, taking into account
conductor width and thickness. As often encountered in engineering, we have to strike a
balance between complexity and the accuracy of our computations. The most precise
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mipressions describing microstrip lines are derived by using conformal mapping, but
e expressions are also the most complex, requiring substantial computational
fforts. For the purposes of obtaining fast and generally reliable estimations of the line
rameters, simpler empirical formulas are more beneficial.

. Asafirst approximation, we assume that the thickness ¢ of the conductor forming
he line is negligible compared to the substrate height # (¢/h < 0.005 ). In this case, we
R can use empirical formulas that depend only on the line dimensions (w and #) and the
electric constant €, . They require two separate regions of applicability depending on
shether the ratio w/h is larger or less than unity. For narrow strip lines, w/h <1, we
btain the line impedance

Z h

f w

Z, = 1n(8—+—) (2.42)
0 2W, [€st w  4h

here Z, = ,/Uy/€, = 376.8 Q is the wave impedance in free space, and € is the
ffective dielectric constant given by

e,+1 ¢,-1 h\"172 w\2
B = 5+ [(1”2;) +0‘04(1"ZH (2.43)

or a wide line, w/h > 1, we need to resort to a different characteristic line impedance
£ expression:

Zy
Z, = (2.44)

./eeff(1.393 +2 %m(%’ ¥ 1.444))

Seff = + 1+12— (245)

e,+1 €,-1 h\"172
(1)

Eft is important to note that the characteristic impedances given by (2.42) and (2.44) are
nly approximations and do not produce continuous functions over the entire range of
9/ h . In particular, we notice that at w/h = 1 the characteristic impedance computed
i cOo rding to (2.42) and (2.44) displays a small discontinuity. Since the error introduced
this discontinuity is less than 0.5%, we still can use the preceding expressions for the
omputation of both the characteristic line impedance and the effective dielectric con-
t, as shown in Figures 2-20 and 2-21. In these figures the quantities Z, and € ¢ are
Eplotted as functions of w/h ratios and €, values. The parameter range of w/h and g,




is chosen such that it spans the domain of typically encountered practically relevant cir-
cuit values.
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Figure 2-20 Characteristic line impedance as a function of w/h.
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Figure 2-21 Effective dielectric constant as a function of w/h for different
dielectric constants.
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In the preceding formulas the effective dielectric constant is viewed as the dielec-
tric constant of a homogeneous material that fills the entire space around the line,
replacing dielectric substrate and surrounding air. With the knowledge of the effective
dielectric constant we can compute the phase velocity of the strip line as
Vv, = ¢/ J€. This leads to an expression for the wavelength of

A\ = Yoo ¢ _ Ag ,
f f /\/‘c:ff E"eff
where, as before, c is the speed of light and f is the operating frequency.

For design purposes we would like to have a relation that allows us to compute
w/h ratios based on a given characteristic impedance Z,, and dielectric constant €, of
the substrate. Assuming an infinitely thin line conductor, we can write (see Sobol’s arti-
cle in Further Reading at the end of the chapter) for w/h <2:

w 8ed
where the factor A is given by
Zy je.+1 g.-1
A=anSd S (0.23+0'”)
ZN 2 €. +1 .
For w/h > 2 we obtain:
w2 e, —1 0.61
2 =%2/B-1-m(2B-1 In(B-1)+0.39 22" .
. n{ In(2B - 1) + 2 [n( 1) +0.39 3 ]} (2.46b)
where the factor B is given by
Z.m
B= -1
22, F,
RF &M W

Example 2-5: Design of a microstrip line

A particular RF circuit requires that a line impedance of 50 Q is to
be maintained. The selected PCB board material is FR-4 with a rela-
tive dielectric constant of 4.6 and a thickness of 40 mil. What are the
width of the trace, phase velocity, and wavelength at 2 GHz?
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Solution: At first we can use Figure 2-20 to determine an
approximate ratio of w/h. Choosing a curve corresponding to
g, = 4.6, we find that for Z, = 50 Q, w/h is approximately 1.9.
Therefore, in (2.46) we have to chose the case where w/h < 2. This
leads to

0.11

r

Zy g, +1 €,-1
R— + (0.23 +
ZN 2 g +1
Substituting this result into (2.46a), we find

w 8e4
- = = 1.847
= A 8477
Then, by using (2.45), we obtain the effective dielectric constant

to be

A=

) — 1.5583

e.+1 ¢-1 172
o = 15—+ (1+12§J = 3.4575

We can compute the characteristic impedance of the line (2.44) to
verify our result:

Zf
Z, = = 50.2243€Q
J 1.393 21 1.444
Scff . + Z + § n z + I.

which is very close to the target impedance of 50 £ and therefore
indicates that our result is correct.

Using the obtained ratio for w/k, we find the trace width to be
w = 73.9 mil. Finally, the effective dielectric constant just com-
puted allows us to evaluate the phase velocity of the microstrip line

v, = ¢/ [ = 1.61x10° m/s

and the effective wave length at 2 GHz
A =v,/f = 80.67 mm

Strictly speaking, this example focuses on a single trace of infi-
nite length only. In reality, proximity to neighboring traces and
bends is an issue of practical importance that is most easily
accounted for in RE/MW computer aided design (CAD) programs.




Terminated Loesless Transmission Line 69

For many applications the assumption of zero thickness of the strip line may not be
valid and corrections to the preceding equations are needed. The effect of nonzero copper
strip thickness is approximated as an increase in effective width w of the conductor
since more fringing fields will occur. In other words, a finite thickness is modeled by sim-
ply replacing the width of the strip in (2.42)—(2.45) with an effective width computed as

t 2x
weff = w+ ‘E(l + IHTJ (2.47)

where ¢ is the thickness of the conductor, and either x = h if w>h/(2%) > 2t, or
x = 2nw if R/ (2R)>w > 2t.

The influence of nonzero thickness on the characteristic line impedance for a stan-
dard FR-4 substrate with # = 25mil is illustrated in Figure 2-22.

150
o FR-4
Na, t=0 h=25mil
g £ =40
£ 100
a
=
V]
k-
2
% 50
B
[+]
S
=
O
L S B 3 10

Line width to dielectric thickness ratio, w/h
Figure 2-22 Effect of conductor thickness on the characteristic impedance of a
microstrip line placed on a 25 mil thick FR-4 printed circuit board.

As seen in the figure, the effect is most noticeable for narrow strips, while it become
almost negligible for cases when the width is greater than the thickness of the dielectric.

2.9 Terminated Lossless Transmission Line

2.9.1 Voltage Reflection Coefficient

High-frequency electric circuits can be viewed as a collection of finite transmis-
sion line sections connected to various discrete active and passive devices. Therefore,
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let us take at first a closer look at the simple configuration of a load impedance con-
nected to a finite transmission line segment of length / depicted in Figure 2-23. Such a
system forces us to investigate how an incident voltage wave propagating along the
positive z-axis interacts with a load impedance representing a generic line termination.

Z in ro

Zy Z

v

1 1

z=-] 0

Figure 2-23 Terminated transmission line at location z = 0.

Without a loss of generality, the load is assumed to be located at z = O and the
voltage wave is coupled into the line at z = —. As we know, the voltage anywhere
along the line is generically given by (2.34). The second term in (2.34) has the meaning
of a reflection from the terminating load impedance for values z < 0. We introduce the
voltage reflection coefficient I, as the ratio of reflected to incident voltage wave

r, =L (2.48)
at the load location z = 0. As a consequence of this definition, the voltage and current
waves can be re-expressed in terms of the reflection coefficient as

V(z) = V(e + ™ (2.49)

and
V+ —kz +kz
I(2) = (™ - Tye™™) (2.50)
0

If (2.49) is divided by (2.50), we find the impedance as a function of space Z(z) any-
where along the z-axis -/ < z < 0. For instance at z = —{ the total input impedance Z,
is recorded, and for location 7z = 0 the impedance becomes the load impedance
1+I,

Z(0) = Z; = Z, (2.51)
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Equation (2.51) can be solved for the reflection coefficient Iy with the result

0= 77, (2.52)

This is a more useful representation than (2.48) since it involves known circuit quanti-
ties independent of particular voltage wave amplitude ratios.

~ We conclude that for an open line (Z; — =) the reflection coefficient becomes 1,
which means the reflected wave returns with the same polarity as the incident voltage.
In contrast, for a short circuit (Z, = 0) the reflected voltage returns with inverted
amplitude, resulting in T’y = —1. For the case where the load impedance matches the
line impedance, Z, = Z; , no reflection occurs and I'y = 0. If there is no reflection we
have the case where the incident voltage wave is completely absorbed by the load. This
can be regarded as if a second transmission line with the same characteristic imped-

ance, but infinite length, is attached at z = 0.

2.9.2 Propagation Constant and Phase Veloclty

The definition of the complex propagation constant (2.32) assumes a very simple
form for the lossless line (R = G = 0). For this case we obtain

k =k, + jk;, = joJLC (2.53)
This is identified in generally accepted engineering notation as
| a=k =0 (2.54)
and
B=k, = oJLC (2.55)

where o represents the attenuation coefficient and f§ is the wave number or propaga-
tion constant for lossless lines. The propagation constant is now purely imaginary,
resulting in

V(z) = V(e 4+ T e (2.56)
and
AP -
1(z) = Z)—(e_JBZ—I"Oe”BZ) (2.57)

Here, the characteristic impedance is again given by (2.40). Furthermore, from (2.1) it is
known that the wavelength A can be related to the frequency f via the phase velocity v, :
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A=v,/f (2.58)
and the phase velocity v p 18 given in terms of the line parameters L, C as
v L (2.59)

o JLC

Because of (2.55), we can relate the wave number to the phase velocity:

B = @ (2.60)

Vp

Substituting the appropriate line parameters from Table 2-1, it is noticed that for all
three transmission line types the phase velocity is independent of frequency. The impli-
cation of this fact is as follows: If we assume a pulsed voltage signal propagating down
a line, we can decompose the pulse into its frequency components, and each frequency
component propagates with the same fixed phase velocity. Thus, the original pulse will
appear at a different location without having changed in shape. This phenomenon is
known as dispersion-free transmission. Unfortunately, in reality we always have to
take into account a certain degree of frequency dependence or dispersion of the phase
velocity that causes signal distortion.

29.3 Standing Waves

It is instructive to insert the reflection coefficient for a short-circuit line
(I'y = -1) into the voltage expression (2.56) and change to a new coordinate d repre-
sentation such that z = 0 in the old system coincides with the origin of the new coordi-
nate system but extends in opposite, -z direction, as shown in Figure 2-24.

Zin

d | |

T T

d=1 0
Figure 2-24 Short-circuit transmission line and new coordinate system d,

Equation (2.56) now reads
V(d) = V¥(ePI_ Ry (2.61)
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‘We notice that the bracket can be replaced by 2 jsin(Bd), and upon converting the pha-
sor expression back into the time domain, we obtain

w(d, 1) = Re{Ve’™} = Re{2jV sin(Bd)e’'}
= 2V sin(Bd)cos(wr + m/2)

The sin-term ensures that the voltage maintains the short circuit condition for d = 0 at
all time instances #, see Figure 2-25. Because time and space are now decoupled, no
wave propagation, as discussed in Chapter 1, occurs. This phenomenon can physically
be explained by the fact that the incident wave is 180° out of phase with the reflected
wave, giving rise to fixed zero crossings of the wave at spatial locations 0, A/2, A, 3A/2,
and so on.

(2.62)

ot =12n+2n1n

0.8 wt=3/8x +27n
06

wt=1/8n+2nn
0.4

0271 wt=27n

(V™)

ot =14R+2"m

0 0.5% n 1.:511: Zln 2.5 3ln: 3.5n
Bd
Figure 2-25 Standing wave pattern for various instances of time.
Introducing the new coordinate 4 into (2.56), this equation becomes
Vidy = Ve 1+ Ty ) = A1+ T(d)] (2.63)
where we set A(d) = viet B4 and define a reflection coefficient

T(d) = T,/ (2.64)
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valid anywhere along the length of the line d. The far-reaching implications of equation
(2.64) as part of the Smith Chart will be subject of Chapter 3. Similarly, the current in
the new spatial reference frame can be defined as

V+

I(d) = z

e (1 -1y P = A—uz(d)[l ~T(d)] (2.65)
0

Under matched condition (I'y = 0) the reflection coefficient I'(<) is zero, thus main-

taining only a right-propagating wave. To quantify the degree of mismatch, it is cus-

tomary to introduce the standing wave ratio (SWR) as the ratio of the maximum

voltage (or current) over the minimum voltage (or current) as follows:

Vmax Imax

||Vmin|| ) |’Imin}l (2.66)
We note that the extreme values of (2.64) can only be +1 and —1. Knowing that the
exponential function has a magnitude of 1, we find for (2.66) the form
_ 1+|Ty)

1-r|

SWR =

SWR (2.67)

which has a range of 1 £ SWR < oo, as seen in Figure 2-26.

20
18}
16 -
14

SWR
S &

S N B N oo

0 01 02 03 04 05 06 07 08 09 1
1T |

Figure 2-26 SWR as a function of load reflection coefficient |I'y| .
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- In many cases engineers use the term voltage standing wave ratio (VSWR)
ad of SWR by defining it as the ratio of the maximum absolute voltage value to its
inimum. It is concluded from the definition (2.66) and from Figure 2-26 that the ideal
e of matched termination yields an SWR of 1, whereas the worst case of either open
» short-circuit termination results in SWR — oo, Strictly speaking, SWR can only be
splied to lossless lines, since it is impossible to define a SWR for lossy transmission
stems. This is because the magnitude of the voltage or current waves diminishes as a
inction of distance due to attenuation and thus invalidates (2.67), which, as a single
iptor, is independent of where along the transmission line the measurement is
ren. Because most RF systems possess very low losses, (2.67) can be safety applied.
pon inspection of the exponent in (2.64) we see that the distance between the maxi-
um and minimum of the reflection coefficient is 2Bd = © or d = A/4 and the dis-
‘tance between two maxima is d = A/2.

10 Special Termination Conditions

- 2.10.1 Input Impedance of Terminated Lossless Line
At a distance d away from the load the input impedance is given by the expression

V(d) _ V+ede(l + Foe_Zde)

= Zy—— : 2.68
1@~ 7yt (269

Z,,(d) =

- where (2.63) and (2.65) are used for the voltage and current expressions. Equation
§ (2 68) can be converted into the form

g Z.(d) =2 %L% (2.69)

; and upon using (2.52) to replace I',, we obtain
:; Z. -7
. B4 ( L Oje—fﬁd
Z (d) Z, +Z,

" jpd (ZL— Zo) ~jBd

(2.70)

_ Z cos(Bd) + jZ,sin(Bd)
Zocos(Bd) + jZ, sin(Bd)"®
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Division by the cosine term gives us the final form of the input impedance for the termi-
nated transmission line:

Z, + jZytan(Bd)

Z(d)= Zozp o B @.71)

This important result allows us to predict how the load impedance Z; is trans-
formed along a transmission line of characteristic impedance Z; and length d. It takes
into account the frequency of operation through the wave number B. Depending on the
application, B can be expressed either in terms of frequency and phase velocity,
B = (2rf)/v,, or wavelength, B = 2n/A.

2.10.2 Short Circuit Transmission Line

If Z;, = 0 (which means the load is represented by a short circuit) expression
(2.71) simplifies to

Z. (d) = jZ,tan(Pd) (2.72)
Equation (2.72) can also directly be derived by the division of voltage through current
wave for the short circuit condition (I'y = —1):
Vid) = Ve - P = 2V sin(Bd) 2.73)
and
v* +Bd  —jBd 2v*
Id) = =[e’ +e "] = cos(Bd) (2.74)
Z Zg

so that Z, (d) = V/I = jZ,tan(Bd). A plot of voltage, current, and impedance as a
function of line length is shown in Figure 2-27.

It is interesting to note the periodic transitions of the impedance as the distance
from the load increases. If d = 0, the impedance is equal to the load impedance, which
is zero. For increasing d the impedance of the line is purely imaginary and increases in
magnitude. The positive sign of the impedance at this location shows that the line
exhibits inductive behavior. When d reaches a quarter-wave length, the impedance is
equal to infinity, which represents an open-circuit condition. Further increase in dis-
tance leads to negative imaginary impedance, which is equivalent to a capacitive behav-
ior. At distance d = A/2 the impedance becomes zero and the entire periodic process
is repeated for d > A/ 2.

From a practical point of view, it is difficult to conduct electric measurements at
various locations along the line, or alternatively by considering a multitude of lines of
different lengths. Much easier (for instance, through the use of a network analyzer) is
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Figure 2-27 Voltage, current, and impedance as a function of line length for a
short circuit termination.

the recording of the impedance as a function of frequency. In this case d is fixed, and
the frequency is swept over a specified range, as discussed in the following example.

RF &M W

Example 2-6: Input impedance of a short-circuit transmission
line as a function of frequency

For a short-circuit transmission line of / = 10 cm compute the mag-
nitude of the input impedance when the frequency is swept from
f=1 GHz to 4 GHz. Assume the line parameters are the same as the
ones given in Example 2.3 (i.e., L=209.4 nH/m and C=119.5
pF/m).

Solution:  Based on the line parameters L and C, the characteris-
tic impedance is found to be Z, = JL/C = 41.86 (). Further, the

phase velocity is given by v, = 1/JLC and is equal to
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1.99x10° m/s. The input impedance of the transmission line
Z;,(d = 1) as a function of frequency can then be expressed in the
form '

Zi,(d=1) = jZytan(Bl) = jZ,tan (2—:11) (2.75)
p

The magnitude of the impedance is shown in Figure 2-28 for the fre-
quency range of 1 GHz to 4 GHz. Again we notice the periodic
short- or open-circuit behavior of this line segment. In other words,
depending on the frequency, the line exhibits an open-circuit behav-
ior (for instance at 1.5 GHz) or a short-circuit behavior (for instance
at 2 GHz).

500
450 |
400}
350}

iﬁ 300)

N 250l
200 |
150
100}

50}
0

1 15 2 25 3 35 4
f, GHz

Figure 2-28 Magnitude of the input impedance for a 10 cm long, short-circuit
transmission line as a function of frequency.

Practical measurements with a network analyzer permir the
recording of graphs as the one seen in Figure 2-28. Had we fixed the
frequency and varied the line length, we would have gotten an iden-
tical response.
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2.10.3 Open-Circuit Transmission Line

If Z, — oo the input impedance (2.71) simplifies to the expression
: 1

0 Gn(Bd)

which can be directly derived when we divide the voltage (2.63) by the current wave
(2.65) for the open circuit condition (I'y= +1):

Z(d) = (2.76)

vid) = Ve + e = 2v7cos(Bd) 2.77)
and
V' osipd —jpdy _ 25V .
I(d) = 2-[¢MP - P = 2L sin(Bd) (2.78)
ZO ZO

so that Z, (d) = V/I = —jZ,cot(pd) . Plotting voltage, current, and impedance as a
function of line length is shown in Figure 2-29.

2

. Lo . i . L ‘

01 02 03 04 05 06 07 08 09 144
e T e |
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circuit circuit circuit circuit circuit

=

b

Figure 2-29 Voltage, current, and impedance as a function of line length for an
open-circuit termination.

It is again of interest to keep the length 4 fixed, and sweep the frequency over a speci-
fied range, as the next example illustrates.
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RF&MW-

Example 2-7: Input impedance of an open-circuit transmission
line as a function of frequency

For an open-circuit transmission line of / = 10 cm, repeat the calcu-
lations of Example 2-6.

Solution:  All calculations remain the same, except that the input
impedance is changed to

Z (d=1) = —jZycot(Bl) = - jzocot(z—v’-‘-fz] (2.79)
p

The magnitude of the impedance is displayed in Figure 2-30 for the
frequency range of 1 GHz to 4 GHz. The points where the cotangent
approaches infinity correspond to values where the argument
reaches 90°, 180°, 270°, and so on. In reality, small losses due to
the presence of R and G tend to limit the amplitude to finite peaks.
The physical reason for these peaks is due to a phase shift between

500
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100}
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1 15 2 2.5 3 3.5 4
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Figure 2-30 Magnitude of impedance for a 10 cm long, open-circuit transmission
line as a function of frequency.
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voltage and current wave. Specifically, when the current wave
approaches zero and the voltage is finite, the line impedance
assumes a maximum. This is equivalent to the mechanical effect
where, for instance, a sound wave at particular discrete frequencies
(so-called eigen frequencies) forms standing waves between the
walls of a confining structure,

Figures 2-28 and 2-30 teach us that impedance matching to a

particular impedance value is only possible at a fixed frequency.
Any deviations can result in significantly different impedances.

210.4 Quarter-Wave Transmission Line

As evident from (2.70), if the line is matched, Z; = Z,, we see that
Z,(d) = Z, regardless of the line length. We can also ask ourselves the question: Is it
possible to make the input impedance of the line equal to the load impedance
(Z,(d) = Z,)? The answer is found by setting d = A/2 (or more generally
d=A2+mA/2),m = 1,2,...),1e,

ZL+jZOtan(%—i—t : %)
Z (d= \M/2) = Z =Z; (2.80)

: 2n A

In other words, if the line is exactly a half wavelength long, the input impedance is
equal to the load impedance, independent of the characteristic line impedance Z,.

As a next step, let us reduce the length to d = A/4 (or d = A/4 +m(A/2),
m = 1,2,...). This yields

Z; + jZotan(ZT:It : z—t) 72
Z, (d= M/4) = Z, o * 2—0 (2.81)
Zy+ sztan(T“ : Z) L

The implication of (2.81) leads to the lambda-quarter transformer, which allows the
matching of a real load impedance to a desired real input impedance by choosing a
transmission line segment whose characteristic impedance can be computed as the geo-
metric mean of load and input impedances:
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Zy = [Z,Z. (2.82)

This is shown in Figure 2-31, where Z;, and Z; are known impedances and Z; is
determined based on (2.82).

zZ & desired Z, = given

L™ Cald

Figure 2-31 Input impedance matched to a load impedance through a A/4 line
segment Z,.

The idea of impedance matching has important practical design implications and
is investigated extensively in Chapter 8. In terms of a simple example we place the pre-
ceding formula in context with the reflection coefficient.

RFEM W=

Example 2-8: Impedance matching via a A/4 transformer

A transistor has an input impedance of Z, = 25 Q which is to be
matched to a 50 Q microstrip line at an operating frequency of
500 MHz (see Figure 2-32). Find the length, width, and characteris-
tic impedance of the quarter-wave parallel-plate line transformer for
which matching is achieved. The thickness of the dielectric is
d = 1 mm and the relative dielectric constant of the material is
€, = 4. Assume that the surface resistance R and shunt conduc-
tance G (see Table 2-1) can be neglected.

Solution: = We can directly apply (2.81) by using the given
impedances from the problem statement. For the line impedance we
find

Z. (I=\/4) = [Z,Z, = 35355 Q
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Figure 2-32 Input impedance of quarter-length transformer.

On the other hand, the characteristic impedance of the parallel-plate
line is

Zyne = JL/C = (d,/W)JU/E
Thus, the width of the line is

d
w= =2 /”0 = 5.329 mm
Zline e()E'Jr'

From Table 2-1 we find the values for capacitance and inductance of
the line:

L = pd,/w = 235.8 nH/m
C = ew/d, = 188.6 pF/m

The line length ! follows from the condition
A 1

4~ 4fJLC
The input impedance of the combined transmission line and the load

is shown in Figure 2-32.

Zy + jZyyetan(Bd) 7. 1+T(d)
- hnel_r(d)

= 74.967 mm

Z. = 7
n Zlmezline_l_ jZLtan(Bd)

where d = I = M4 and the reflection coefficient is given by

i Z, -7
r(d) = roe 2jBd = _E_}Eexp(_ngﬂdj
ZL+Zlinc Vp

The reflection coefficient is next inserted into the expression for
Z, .. Plotting the impedance magnitude is shown in Figure 2-33.

We note that Z. is matched to the line impedance of 50 £2 not
only at 500 MHz, but also at 1.5 GHz. Since the quarter-wave trans-
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Figure 2-33 Magnitude of Z, for frequency range of 0 to 2 GHz and fixed
length d.

former is designed to achieve matching only at 500 MHz for a par-
ticular line length I, we cannot expect matching to occur for
frequencies away from the 500 MHz point. In fact, for circuits
required to operate over a wide frequency band, this approach may
not be a suitable strategy.

The )/ 4 transformer plays an important role in many applica-
tions as an easy-to-build, narrowband matching circuit.

2 11 Sourced and Loaded Transmission Line

Thus far our discussion has only relied on the transmission line and its termina-
tion through a load impedance. In completing our investigation, we need to attach a
source to the line. This results in the added complication of not only having to deal with
an impedance mismatch between transmission line and load, but having to take into
considerations possible line-to-source mismatches as well.



Sourced and Loaded Transmisslon Line 85

2.11.1 Phasor Representation of Source

The generic transmission line circuit is shown in Figure 2-34 and involves a volt-
age source consisting of a generator voltage V and source impedance Z .

Z, | Iy I-}.=1_l‘]

in out

Figure 2-34 Generic transmission line circuit involving source and load
terminations.

The input voltage recorded at the beginning of the transmission line can be written
in general form

_ + - + F _ Zm
V. = V. +V, =V (1+I}) = Vg 7 +Z, (2.83)
where the last expression follows from the voltage divider rule. The input reflection
coefficient T, is obtained by looking from the source into the transmission line of

length d = I:

Z,-Z _2jp
[, =Td=1) = =222 =T, (2.84)
" Z,+Zy P

In (2.84), T’y is the load reflection coefficient as defined in (2.52). In addition, it is often
useful to introduce transmission coefficients, which take the form

T 1+T 2Zin 2.85
. = <+ . = .
1 mZo+Z ( )
at the beginning of the line, and
T 1+T 2Z; 2.86
= -+ = .
0 0" Z,+2Z, (2.86)

at the load end. The formal derivation of the transmission coefficient for a terminated
transmission line is presented in the following example.
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Example 2-9: Determination of transmission coefficient

Consider a transmission line aligned along the z-axis whose charac-
teristic line impedance is Z,;, and has a load Z; at d = 0. Derive
the transmission coefficient T,.

Solution:  To the left of the load impedance (d > () we can write
for the voltage wave

V) = V(P 117
and for the transmitted voltage at the load impedance (d = 0) we set
generically

Vd=0) = V'T,

Since the voltage has to maintain continuity at d = 0, we obtain

from which we can find the transmission coefﬁcient
Z,-Z 27
To=1+4_2-—"= %

Z, +Zy Z;+7Z,
The argument of matching incident voltage with transmitted voltage

wave can be applied to any discontinuity between two lines involv-
ing different characteristic impedances.

Reflection and transmission coefficients are easier to measure
at high frequency than impedances. They are therefore more com-
monly used to characterize an interface between two dissimilar
transmission line segments.

In addition to the preceding reflection and transmission coefficients, the connected
source introduces an additional difficulty. Since the voltage reflected from the load is
traveling toward the source, we need to consider a mismatch between the transmission



Sourced and Loaded Transmisslon Line 87

line and the source impedance. Accordingly, when looking from the line into the source
we can define the source reflection coefficient:
Z,-Z,

S =737, (2.87)

The output reflection coefficient shown in Figure 2-34 is then computed similar to
(2.84), but moving in opposite direction: I'_, = T'ge™” 2

2.11.2 Power Conslderations for a Transmission Line
From the definition of time-averaged power

P,, = sRe{VI¥) (2.88)

we can compute the total power at the beginning of the transmission line. To accom-
plish this task, the complex input voltage V, = Vi, (1+ I';,) and current
I, = (Vy,/Zy)(1-T,,) have to be inserted in (2.88). The result is

2
m

- 1|V
Pip = P+ Py = 352-(1=|Tyf) (2:89)

[ +

We notice here again that, just like voltage and current, power is also treated as being
comprised of a positive and negative traveling wave.,

Since V;; in (2.89) is not directly accessible, it is more useful to re-express (2.89)
in terms of the generator voltage V; as follows:

+ Vin _ VG Zin
Vin = 13T T 1+I“jn(zin +ZG) (2.50)

where (2.83) is used. As already known from (2.69), the input impedance is rewritten

z =zt i (2.91)
in 01 _ Fin .
The generator impedance follows from (2.87) as
1+T
Z; = Z01 T, (2.92)

Inserting (2.91) and (2.92) into (2.90) yields, after some algebra,
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. Vg (1-Ty)

Vi T ATy &)
Using (2.93) in (2.89), the final expression for the input power is therefore
2 2
1\Vg -T 2
R L BT ) 9%
0 [I-T Fm[

Upon using (2.84), we obtain the following expression for the input power for a lossless
line:
2 2
p W [1-Ty
in — ,
8 Zo |1 _ryr,e ¥

(1= [Toe 2 (2.95)

Since the line is lossless, the power delivered to the load will be equal to the input
power. If source and load impedances both are matched to the transmission line imped-
ance (implying I'y = 0 and I’y = 0), then (2.95) simplifies to

Vel _ 1vd
" 8z "Rz (2.96)

which represents the power produced by the source under perfectly matched conditions
and which constitutes the maximum available power provided by the source. When the
load Z; is matched to the transmission line, but the source impedance Z; is mis-
matched, then part of the power will be reflected and only portion of the maximum
available power will be transmitted into the line at location d = [:

p. 1| Gl

n =gz l" Iy (2.97)

For the case where both source and load 1mpcdances are mismatched, reflections will
occur on both sides of the transmission line and the power that will be delivered to the
load 1s defined by (2.95). Besides warts (W), the unit that is widely used to quantify
power in RF circuit design is dBm, which is defined as follows:
P[W]
1 mW

In other words, power is measured relative to 1 milliwatt.

P[dBm] = 10log (2.98)
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Example 2-10: Power considerations of transmission line

For the circuit shown in Figure 2-34, assume a lossless line with
g Zy=75Q, Zg =50 Q, and Z; = 40 Q. Compute the input
power and power delivered to the load. Give your answer both in W
and dBm. Assume the length of the line to be A/2 with a source
voltage of Vs = 5V,

Solution:  Since the line is lossless, the power delivered to the
load is exactly the same as the input power. To find the input power,
we use expression (2.95). Because the length of the line is A/2, all
exgqnential terms in (2.95) are equal to unity; that is,
e Bl 8-2;(211:/70(1/2) = 1 and (2.95) can be rewritten as
_ 1|VG|2 1 'FS‘E

8 Zo |1-140,°
where the reflection coefficient at the source end is
Ty =(Zg-2y)/(Zg+Zy) = —0.2 and the reflection coefficient
at the load is Ty = (Z; ~Zy)/(Z, +Z,) = -0.304. Substitution
of the obtained values into the preceding equation yields

P, =P, = 6L.7T mW

(1- \1"0|2)

n

or

Most RF data sheets and application notes specify the output
power in dBm. It is therefore important to gain a “feel” of the rela-
tive magnitudes of mW and dBm.

The previous analysis is easy to extend to a lossy transmission line. Here we find
that the input power is no longer equal to the load power due to signal attenuation.
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However, with reference to Figure 2-34 the power absorbed by the load can be
expressed similarly to (2.89) as

+)2
v
27,

P, = - (2.99)

where the voltage IVI’ for a lossy transmission is ‘VII = V;; e_w, with o again being

the attenuation coefficient. Inserting (2.93) into (2.99) gives as the final expression

_ 1|VGI2 |1‘Fs|2 o2
8 Zy |1-1,T,°

1

L (=[P (2.100)

where all parameters are defined in terms of the source voltage and the reflection
coefficients.

2.11.3 Input Impedance Matching

Employing an electric equivalent circuit representation for the transmission line
configuration shown in Figure 2-34 allows us to examine optimal conditions for the
matching of the generator to the line.

Figure 2-35 Equivalent lumped input network for a transmission line
configuration.

In a lumped parameter expression, and consistent with Figure 2-35, we can
express (2.95) as

* 2
1 Vin 1 1VG| 2
P == === L=
in ZRC{Vm{Z* ]} ZRE{Z;I}

Zin

(2.101)
Ze+Z,,

in

If we assume the generator impedance to be of fixed complex value Z; = R, + jX,
we can find the conditions that have to be imposed on Z;, to obtain maximum power
transfer into the transmission line. Treating P,, as a function of two independent vari-
ables R, and X, , we find the maximum power value by taking the first derivatives of
P, with respect to R, and X;, and setting the values to zero:
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oP, OP,
3R - oX, - 0 (2.102)
e two conditions that result are
Ry -R2 +(XZ+2X X, +X2) =0 (2.103a)
Xin(Xg +Xjp) = 0 (2.103b)

ng (2.103b) gives X;, = —X; and, upon substituting this result into (2.103a),
R., = R . This derivation shows that optimal power transfer requires conjugate
plex matching of the transmission line to the generator impedance:

z. =27t (2.104)

mn

ough this is done for the case of generator to input impedance matching, an identi-
analysis can be carried out to match the output impedance to the load impedance.
in we will find that the impedances require conjugate complex matching for maxi-
1 power transfer:

Z,.=2;
represents the impedance looking into the transmission line from the load

uf

Jere, Z

out

2.11.4 Return Loss and Insertion Loss

Practical circuit realizations always suffer a certain degree of mismatch between
le source power and power delivered to the transmission line; that is, I'; in
9) is not zero. This mismatch is customarily defined as return loss (RL), which is
B ratio of reflected power, P, = P, ,to incident power, P; = Pi; , or

Pr
RL = —IOIOg(F

1

) = ~10log|[y |2 = ~20log|T'| (2.105a)

RL = —ln|T,,| (2.105b)

ere equation (2.105a) specifies the refurn loss in decibel (dB) based on the logarithm
i the base 10, whereas (2.105b) specifies RL in Nepers (Np) based on the natural loga-
Bthm. A conversion between Np and dB is accomplished by noting that

RL = —20log|T;,| = -20(In|T,|)/(In10) = —(20loge)In|Ty,| (2.106)
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Therefore, 1 Np = 20loge = 8.686 dB. As seen from (2.106), if the line is matched
I';, = 0, then RL — oo.

RFEMW—

Example 2-11: Return loss of transmission line section

For the circuit in Figure 2-35 a return loss of 20 dB is measured.
Assuming real impedance values only, what is the source resistance
R if the transmission line has a characteristic line impedance of
R. = 50 Q?Is the answer unique?

n

Solution:  The reflection coefficient is found from (2.105a) as

’1.. | 10 -RL/20 _ 14720720 _ 4
in - -
The source resistance is now computed by using (2.91):
1+ T, 1+0.1
R, = Ri“-l'-_ul"in = 50(1_0_1) Q= 61.10Q

In the preceding calculations, we assumed that the reflection coeffi-
cient T, is positive and therefore is equal to its absolute value.
However, it can also be negative, and in that case the source resis-
tance would be

1+T,
R, = R — 50(1 01)9:40.99

in
1-T, 0.1
The return loss, which can be recorded with a network ana-
lyzer, provides immediate access to the reflection coefficient and
thus the degree of impedance mismatch between the transmission
line and generator.

In addition to the return loss, which involves the reflected power, it is useful to intro-
duce the insertion loss (IL) defined as a ratio of transmitted power P, to incident
power P;. In practice insertion loss is measured in dB according to the following
formula:
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P .
IL = -10log5 = -10log i 5— = -10log(1 —Tul ) (2.107)

i i

The meaning of (2.107) in circuit design is straightforward. As the name implies, if an
unmatched circuit is connected to an RF source, reflections occur that result in a loss of
power delivered to the circuit. For instance, if the circuit represents an open- or short-
circuit condition, the insertion loss reaches a maximum (1L —> o). Alternatively, if the
circuit is matched to the source, all power is transferred to the circuit, and the insertion
loss becomes a minimum (IL = 0).

2.12 Summary

In this chapter a detailed description is given of the fundamental concepts of dis-
tributed circuit theory. The topic is motivated by the fact that when the wavelengths of
the voltage and current waves shrink to roughly 10 times the size of the circuit compo-
nents, a transition must be made from lumped element analysis, based on Kirchhoff’s
current and voltage laws, to distributed theory according to wave principles. This transi-
tion from low- to high-frequency circuit analysis may not be as clear-cut as the defini-
B of less than or equal to 10 A implies; in fact, a considerable “gray area” does exist.
eless, starting at a particular frequency a transition is needed to obtain meaning-
esign results.

The underlying concepts of distributed theory can best be understood by develop-
equivalent circuit representation (Section 2.3) of a microscopic section of the
ission line. The required circuit parameters per unit length R, L, G, C are
directly from Table 2-1 for three common transmission line types (Section
ithout going into much theoretical detail. However, for the readers who are inter-
in how the parameters can be found, Section 2.4 introduces the necessary tools of
y’s and Ampere’s laws, followed by Section 2.5, which derives all four circuit
ets for the parallel-plate transmission line.

In either case, the knowledge of the circuit parameters ultimately leads to the
teristic line impedance of a generic transmission line system:

7 - (R + joL)
| 07 J(G + jol)
Rin this representation the input impedance of a terminated transmission line is devel-
The result is perhaps one of the single most important RF equations:

s 5 e 7 LutiZotan(Ba)
in(d)= 0Z,+ jZ,tan(Bd)
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The application of this equation for the special cases of open, short, and matched load
impedances are investigated in terms of their spatial and frequency domain behaviors.
Furthermore, the lambda-quarter or quarter-wave transformer is introduced as a way of
matching a load impedance to a desired input impedance.

As an alternative to the input impedance equation, it is often very useful to repre-
sent the line impedance in terms of the reflection coefficients at load and source end:

_ Z, -2, r. = Zg-Zy
07 Z,+Zy’ ST Zg+Z,

It is found that the reflection coefficient is spatially dependent, as shown by

I'(d) = Tge 2P

The reflection coefficient concept allows concise expressions for power flow con-
siderations. Similar to the input impedance we found the input power
2 2
_1|Ve" 1T
8 Z 2 ;|31|2
0 |1 -T¢Tye
This equation permits the investigation of various matching or mismatching conditions

at the load/source side. Chapter 2 concludes with a brief discussion of insertion loss and
return loss.

P, (1- [T )

in
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24

To estimate the effective relative permittivity €, of a dielectric material used
in a transmission line, you decide to measure the voltage distribution along
the line using a similar setup as depicted in Figure 2-2. Your measurements
at 1 GHz excitation frequency have shown that the wavelength of the signal
in the cable is equal to 10 m. Using this information, compute the effective
relative permittivity of the material. Discuss how this experimental setup
could be used to measure the attenuation factor o..

As discussed in this chapter, a single signal trace on a printed circuit board
(PCB) can be treated as a transmission line and can be modeled using an
equivalent circuit, shown in Figure 2-12. Nevertheless, when the size of the
PCB gets smaller, the distance between the traces decreases and they can no
longer be treated as separate transmission lines. Therefore, the interaction
between them has to be accounted for. Using the configuration shown in
Figure 2-7, suggest a new equivalent circuit that takes into account interac-
tion between two signal traces.

In Example 2-1 we showed how to compute the magnetic field distribution
produced by the wire carrying current /. Repeat your computations for a
system consisting of two parallel wires each of radius 5 mm and carrying a
current of 5 A in the same direction. Plot the field distribution of the mag-
netic field H(r) as a function of distance r starting at the center-line posi-
tion between the two wires.

Consider a system consisting of a circular loop of radius r = 1 cm of thin
wire (assume the radius of the wire to be equal to zero) and carrying a con-
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stant current /7 = 5 A. Compute the magnetic field along the center line of
the loop as a function of distance % from the center of the loop.

Find &, and k; interms of L, C, G, R, and ® in equation (2.32).

In the text we have derived the transmission line parameters (R, L, G, and C)
for a parallel-plate line. Derive these parameters for a two-wire configura-
tion, see Figure 2-4. Assume that D >> a.

Repeat Problem 2.6 for a coaxial cable, see Figure 2-5.

An RG6A/U cable has a characteristic impedance of 75 Q. The capacitance
of a 0.5 m long cable is measured and the value is found to be 33.6 pF. What
is the cable inductance per unit length, if the cable is lossless?

Assuming that dielectric and conductor losses in a transmission line are
small (i.e. G « WC and R « ®L), show that propagation constant k¥ can be
written as

k=oa+jB = %(ZE + GZOJ+jm,\/LC
0
where Zy, = JL/C is the characteristic impedance of the line in the

absence of loss.

Using the results from the previous problem and the transmission line

parameters given in Table 2-1,
(a) show that the attenuation constant in a coaxial cable with small losses is

_1 1 e 1 (1 1), Cae fu
%= 20,40 uln(b/a)(a+b)+ 2 x/;

where G, and G, are the conductivities of the dielectric material
and the conductors, respectively.

(b) show that the attenuation in this case is minimized for conductor radii
such that xInx = 1+ x, where x = b/a.

(c) show that for a coaxial cable with dielectric constant g, = 1 the condi-
tion of minimum losses results in the characteristic impedance of
Zy = 76.7C).

Compute the transmission-line parameters for a coaxial cable, which charac-
teristics are listed as follows:
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Inner Conductor: Copper

a = 0.5mm, 0, = 64 516x10° S/m
Dielectric: Polyethylene

b = 1.5mm, Opy, = 107 S/m
Outer Conductor: Copper

t = 0.5mm, o, = 64. 516x10° S/m

An RG58A/U cable has a characteristic line impedance of 50 Q. The mea-
surements performed on a section of this cable produce the following results
 capacitance of 1 meter of cable: 101 pF
* phase velocity: 66% of speed of light
* attenuation at 1 GHz: 0.705 dB/m
e outer diameter of the insulation layer: 2.95 mm
e center conductor is made out of AWG20 copper wire,
o, = 64.516x10° S/m
* dielectric layer is made out of polyethylene, 6p,, = 10
From this list of informatton, find the following quantities:
(a) inductance L per unit length of the cable assuming that cable is lossless
(b) relative permeability € _ of the dielectric material
(c) resistance R per unit length of the cable at operating frequency of
1 GHz (Hint: use the formula for the attenuation constant derived in
Problem 2.10)
(d) conductance G of the dielectric per unit length

% $/m

Using the coaxial cable from the previous problem, compute its characteris-
tic impedance. Plot the frequency behavior of the real and imaginary compo-
nents of the characteristic impedance. Is the result what you expected to see?
Explain any discrepancies.

A distortionless transmission line results if R = G = 0, which results in
k= joJLC = o+ jB,oro =0 and B = /v, with the phase velocity
independent of frequency [ie, v, = 1/ (JLO)1. A signal propagating along
this transmission line will not suffer any pulse distortion or attenuation. If we
allow R # G # 0, find the condition for which o = /RG and B = 0./LC.
In other words, the line is attenuative but remains distortionless.

It is desired to construct a 50 Q microstrip line. The relative dielectric con-
stant is 2.23 and the board height is # = 0.787 mm. Find the width, wave-
length, and effective dielectric constant when the thickness of the copper
trace is negligible. Assume an operating frequency of 1 GHz.
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Starting with basic definition for the standing wave ratio (SWR)
Vinar| _ |1

max| max|

SWR = =
| Vmin| |I min
show that it can be re-expressed as
swr = I
1-|Ty

The characteristic impedance of a coax cable is 50 Q and assumed lossless.
If the load is a short circuit, find the input impedance if the cable is 2 wave-
length, 0.75 wavelength, and 0.5 wavelength in length.

An experiment similar to the one shown in Figure 2-2 is performed with the
following results: The distance between successive voltage minima is
2.1 cm; the distance of the first voltage minimum from the load impedance
is 0.9 cm; the SWR of the load is 2.5. If Z, = 50 £, find the load imped-

ance.

In this chapter we have derived the equation for the input impedance of the
loaded lossless line, (2.65). Using the same approach, show that for a loaded
lossy transmission line (i.e., R # 0, G # 0) the input impedance is
Z, + Zytanh(yd
Zin(d)= ZOZL - (Y )
o+ Ztanh(yd)

where vy is the complex propagation constant and tanh denotes the hyper-
bolic tangent

e —e
tanh(x) =

e +e

Using the result from the previous problem, compute the input impedance of
a 10 cm long lossy coaxial cable connected to a Z; = (45 + j5) Q load
impedance. The system is operated at 1 GHz frequency, and the coaxial
cable has the following parameters: R = 123(u2/m), L = 123(nH/m),
G = 123(uS/m), and C = 123(pF/m).

Show that the input impedance of a lossless transmission line repeats itself
every half wavelength [ie., Z, (I;) = Z,{l;+m(A/2)}], where [, is an
arbitrary length and m is an integer 0, 1, 2, . ..
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A radio transmitter is capable of producing 3 W output power. The transmit-
ter is connected to an antenna having a characteristic impedance of 75 2.
The connection is made using a lossless coaxial cable with 50 Q character-
istic impedance. Calculate the power delivered to the antenna if the source
impedance is 45 Q and the cable length is 11A.

For an RF circuit project an open-circuit impedance has to be created with a
75 € microstrip line placed on a circuit board with relative dielectric con-
stant of 10 and operated at 1.96 GHz. The line is terminated with a short cir-
cuit on one side. To what length does the line have to be cut to measure an
infinite impedance on the other side?

A short-circuited microstrip line of Z, = 85 Q and (3/4)A in length is
used as a lumped circuit element. What is the input impedance if the line is

assumed lossless?

For the following system, compute the input power, power delivered to the
load, and insertion loss. Assume that all transmission lines are lossless.

Zg
—{ —
50 Q B 3 Z
10V Z,=75Q Z,=50£) 00
. 0353 « 0.65%

Repeat Problem 2.25 for a 50 € load impedance.

The complex load impedance Z; = (75— j50)Q is attached to a lossless
transmission line of 100 € characteristic impedance. The frequency is
selected such that the wavelength is 30 cm for a 50 cm long line. Find (a) the
input impedance, (b) the impedance looking toward the load 10 cm away
from the load, and (c¢) the voltage reflection coefficient at the load and 10 cm
away from the load.

A 100 Q microstrip line is connected to a 75 € line. Determine ", SWR,
percentage power reflected, return loss, percentage power transmitted, and
insertion loss.

A 50  transmission line is matched to a source and feeds a load of
Z, =75 Q. If the line is 3.4A long and has an attenuation constant
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o = 0.5 dB/A, find the power that is (a) delivered by the source, (b) lost in
the line, and (c) delivered to the load. The amplitude of the signal produced
by the source is 10 V.

A measurement technique is proposed to determine the characteristic line
impedance of a coaxial cable via the determination of open, Z, and short
circuit, Z$¢ input impedances with a network analyzer. It is assumed that the
line impedance is real. How does one have to process these impedances to
obtain Z,?

A signal generator is used to feed two loads, as shown in the following
figure.

Find the both the power produced by the source and the power delivered to
each load.

A lossless 50 § microstrip line is terminated into a load with an admittance
of 0.05 mS. (a) what additional impedance has to placed in parallel with the
Joad to assure an input impedance of 50 2 ? (b) If the input voltage is 10V,
find the voltage, current, and power absorbed by the combined load.

Show that return loss and insertion loss can be expressed in terms of the
voltage standing wave ratio SWR as

RL = 20logSWR*+ 1 \nq 1L = 20l0g VR 21,

SWR -1 2. /SWR



CHAPTER 3

The Smith Chart

A transmission line changes its impedance
Jdcpcnd.mg on material properties and geometric dimensions. Typical practical realiza-
tions include microstrip line, coaxial cable, and paratlel-plate line. In addition, both the
lengl.h and operating frequency of the transmission line significantly influence the input
impedance. In the previous chapter we derived the fundamental equation describing the
;input impedance of a terminated transmission line. We found that this equation incorpo-
rates the characteristic line impedance, load impedance, and, through the argument of
the tangent function, line length and operating frequency. As we saw in Section 2.9, the
input impedance can equivalently be evaluated by using the spatially dependent reflec-
tion coefficient. To facilitate the evaluation of the reflection coefficient, P. H. Smith
developed a graphical procedure based on conformal mapping principles. This
approach permits an easy and intuitive display of the reflection coefficient as well as the
fine impedance in one single graph. Although this graphical procedure, nowadays
known as the Smith Chart, was developed in the 1930s prior to the computer age, it has
retained its popularity and today can be found in every data book describing passive
and active RE/MW components and systems. Almost all computer-aided design pro-
grams utilize the Smith Chart for the analysis of circuit impedances, design of matching
networks, and computations of noise figures, gain, and stability circles. Even instru-
ments such as the ubiquitous network analyzer have the option to represent certain
measurements in a Smith Chart format.
This chapter reviews the steps necessary to convert the input impedance in its
standard complex plane into a suitable complex reflection coefficient representation via
2 specific conformal transformation originally proposed by Smith. The graphical dis-

101
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play of the reflection coefficient in this new complex plane can then be utilized directly
to find the input impedance of the transmission line. Moreover, the Smith Chart facili-
tates evaluation of more complicated circuit configurations, which will be employed in
subsequent chapters to build filters and matching networks for active devices.

The following sections present a step-by-step derivation of the Smith Chart fol-
lowed by several examples of how to use this graphical design tool in computing the
impedance of passive circuits.

3.1 From Reflection Coefficient to Load Impedance

In Section 2.9 the reflection coefficient is defined as the ratio of reflected voltage
wave to incident voltage wave at a certain fixed spatial location along the transmission
line. Of particular interest is the reflection coefficient at the load location d = 0.Froma
physical point of view this coefficient I, describes the mismatch in impedance between
the characteristic line impedance Z, and the load impedance Z; as expressed by (2.52).
In moving away from the load in the positive d-direction toward the beginning of the
transmission line, we have to muitiply I', by the exponential factor exp(— j2Bd), as
seen in (2.64), to obtain T'(d) . It is this transformation from I’y to T'(d) that constitutes
one of the key ingredients in the Smith Chart as a graphical design tool.

3.1.1 Reflection Coefficient in Phasor Form
The representation of the reflection coefficient I'y can be cast in the following
complex notation.
Z,-Z,
0T Z ¥Z,

3¢
= Ty, + jTy = |Tole’ " 3.1)

where 0; = tan_l(FOi/ T'y,) . We recall that pure short- and open-circuit conditions in
(3.1) correspond to T'y values of —1 and +1, located on the real axis in the complex T'-
plane.

RFEMW—

Example 3-1: Reflection coefficient representations

A transmission line with a characteristic line impedance of
Z, = 50 Q is terminated into the following load impedances:

(a) Z; = O (short circuit)
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(b) Z; — oo (open circuit)

() Z;, =508

(d) Z; = (16.67 - j16.67) Q
(e) Z; = (50+ j150) Q

Find the individual reflection coefficients T’y and display them in
the complex I -plane.

Solution:  Based on (3.1) we compute the following numbers for
the reflection coefficients:

(@) I'y = =1 (short circuit)

(b) I'y = 1 (open circuit)

(c) I'y = O (matched circuit)

(d) Ty = 0.54£221°

(e) I'y = 0.83£34°

The values are displayed in potar form in Figure 3-1.

90

120 60

I, =0.83234°

210\

T, =0.54£221°

240

270

Figure 3-1 Complex I' -plane and various locations of I';,.

The reflection coefficient is represented in phasor form as done
when dealing with the conventional voltages and currents in basic
circuit theory.
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3.1.2 Normalized Impedance Equation

Let us return to our general input impedance expression (2.69), into which we
substitute the reflection coefficient

I'(d) = |Tole’ e = T, + T, (3.2)
This results in
Zip(d) = ZOM (3.3)
1-T,-jT;

In order to generalize the subsequent derivations, we normalize (3.3) with respect to the
characteristic line impedance as follows

14T 1+, +jT

" 1-T(d) 1-T,-,T, G4

Z(dY/Zy=z,=r+jx

The preceding equation represents a mapping from one complex plane, the z;, -plane,
to a second complex plane, the I -plane. Multiplying numerator and denominator of
(3.4) by the complex conjugate of the denominator allows us to isolate real and imagi-
nary parts of z;, in terms of the reflection coefficient. This means

1-T2-T; +2jT,

=T+ Jjx = T )2 = (3.5)
-1, +1;
can be separated into
_1-Ti-T;
T Tl 0
and
21 X))
X = .
(1-T,)°+T;

Equations (3.6) and (3.7) are explicit transformation rules of finding z;, if the reflection
coefficient is specified in terms of T, and T';. Therefore, the mapping from the com-
plex T -plane into the z, -plane is straightforward, as the following example under-
scores.
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Example 3-2: Input impedance of a terminated transmission
line

A load impedance Z; = (30+ j60) Q is connected to a 50 Q
transmission line of 2 cm length and operated at 2 GHz. Use the
reflection coefficient concept and find the input impedance Z;
under the assumption that the phase velocity is 50% of the speed of

light.

Solution: We first determine the load reflection coefficient

r = Ze=%o _ 30+60 50
7 Z,+Z, 30+ ;60+50
Next we compute ['(d = 2cm) based on the fact that

Jj71.56° (3.8)

= 0.2+ j0.6 = J2/5e

2 2nf _ 2nf -1
=—=—=— =83.77
P= =7, “0sc "
This results in 2d = 191.99° and yields for the refection coeffi-

cient
[ = Tye? =T, 4T, = ~032-j0.55 = /2756704
Having thus determined the reflection coefficient, we can now

directly find the corresponding input impedance:

Z. = zo% = R+jX = 147-j26.7 Q

We note that the reflection coefficient phasor form at the load,
Iy, is multiplied with a rotator that incorporates twice the electric
line length Bd. This mathematical statement thus conveys the idea
that voltage/current waves have to travel to the load and return back
to the source to define the input impedance.

Example 3.2 could have been solved just as efficiently by using the impedance
equation (2.65) developed in Section 2.9.
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3.1.3 Parametric Reflection Coefficient Equation

The goal of our investigation is to pursue a different approach toward computing
the input impedance. This new approach involves the inversion of (3.6) and (3.7). In
other words, we ask ourselves how a point in the z;, -domain, expressed through its nor-
malized real, r, and imaginary, x, components, is mapped into the complex I"-plane,
where it then can be expressed in terms of the real, I',, and imaginary, I';, componenis
of the reflection coefficient. Since I' appears in the numerator and denominator, we
have to suspect that straight lines in the impedance plane z;; may not be mapped into
straight lines in the I -plane. All we can say at this point is that the matching of the load
impedance to the transmission line impedance Z;, = Z;, or z;, = 1, results in a zero
reflection coefficient (i.e., [, = T'; = 0) located in the center of the I"-plane.

The inversion of (3.6) is accomplished by going through the following basic alge-
braic operations:

P[(1-T)*+T = 1-T?-T; (3.92)

P(r+1)-2rT,+Ti(r+1) = 1-r (3.9b)
2 2r _l-r

r;- =T, +T7 = — (3.9¢)

At this point the trick consists in recognizing that ', can be written as a complete bino-
mial expression (see also Appendix C)

r o\ r? 2 1-r
- —- = .9d
(r, r+l] T = o (3.90)

This finally can be cast in the form

r \2 2 1 \?
o= ()

In an identical way as done previously, we proceed to invert (3.7). The result for
the normalized reactance is

(T, —1)%+ (r,.- }C)z - ng @3.11)

X

Both (3.10) and (3.11) are parametric equatlons of cm:les in the complex I -plane that
can be written in the generic form (I', - a) +(T'; - b) . Here a, b denote shifts
along the real and imaginary T" axes, and c is the radius of the circle.
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Figure 3-2 depicts the parametric circle equations of (3.10) for various resis-
tances. For example, if the normalized resistance r is zero, the 01rcle is centered at the
origin and possesses aradlus of 1 since (3.10) reduces to F + F = 1.Forr =1 we
find (I, - 1/ 2) + F = (1/ 2) which represents a circle of radlus 1/2 shifted in the
positive I, direction by 1/2 units. We conclude that as r increases, the radii of the cir-
cles are continually reduced and shifted further to the right toward the point 1 on the
real axis. In the limit for r - e we see that the shift converges to the point
r/(r+ 1) - 1 and the circle radius approaches 1/(r + 1)2 —0.

It is important to realize that this mapping transforms fixed values of r only and
does not involve x. Thus, for a fixed r an infinite range of reactance values x, as indi-
cated by the straight lines in the z-plane, maps onto the same resistance circle. The
mapping involving r alone is therefore not a unique point-to-point correspondence.

-1

z-plane I"-plane

Constant resistance lines (# = const)

Figure 3-2 Parametric representation of the normalized resistance rin the
complex I -plane.

A different graphical display results for the circle equation (3.11), which involves
the normalized reactance. Here the centers of the circles reside all along a line perpen-
dicular to the ', = 1 point. For instance, for x = o we note that (I", - l)2 +1; =0,
which is a cm::le of zero radius, or a point located at I, 1 andI', = 0. Forx = 1
we see that the circle equation becomes (T°, — 1) +(T'; - 1) =1. As x — 0 the radii
and shifts along the positive imaginary axis approach infinity. Interestingly, the shifts
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can also be along the negative imaginary axis. Here for x = —1 we notice that the cir-
cle equation becomes (I', - 1)2 +(I; + 1)2 = 1 with the center located at I',= 1 and
[, = —1.We observe that negative x-values refer to capacitive impedances residing in
the lower half of the I -plane. Figure 3-3 shows the parametric form of the normalized
imaginary impedance. For better readability the circles are displayed inside the unit cit-
cle only. In contrast to Figure 3-2 we notice that fixed x-values are mapped into circles
in the T -plane for arbitrary resistance values 0 <r <o, as indicated by the straight
lines in the impedance plane.

The transformations (3.10) and (3.11) taken individually do not constitute unique
mappings from the normalized impedance into the reflection coefficient plane. In other
words, impedance points mapped into the T -plane by either (3.10) or (3.11) cannot
uniquely be inverted back into the original impedance points. However, since the trans-
formations complement each other, a unique mapping can be constructed by combining
both transformations, as discussed in the next section.

-1
z-plane (r > 0) I"-plane

Constant reactance lines (x = const)

Figure 3-3 Parametric representation of the normalized reactance x in the
complex I -plane.

3.1.4 Graphical Representation

Combining the parametric representations for normalized resistance and reactance
circles (i.e., Figures 3-2 and 3-3) for |T'| <1 results in the Smith Chart as illustrated
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‘Figure 3-4. An important observation of the Smith Chart is that there is a one-to-one
‘mapping between the normalized impedance plane and the reflection coefficient plane.
MWe notice also that the normalized resistance circles r have a range 0 < r < and the
‘normalized reactance circles x can represent either negative (i.e., capacitive) or positive
(i.e., inductive) values in the range —oo < x < 40,

It should be pointed out that the reflection coefficient does not have to satisfy
T £ 1. Negative resistances, encountered for instance as part of the oscillation condi-
tion for resonators, lead to the case |I'| > 1 and consequently map to points residing
putside the unit circle. Graphical displays where the reflection coefficient is greater than
1 are known as compressed Smith Charts. These charts, however, play a rather limited
role in RF/MW engineering designs and are therefore not further pursued in this text.
The interested reader may consult specialized literature (see the Hewlett-Packard appli-
cation note listed at the end of this chapter).

xdh: cz=rtjx I}Ax=+l r=%
. ; r+jx

x=+3
=3
L
x=-3

z-plane I'-plane

Figure 3-4 Smith Chart representation by combining rand x circles for [T < 1.

In Figure 3-4 we must note that the angle of rotation 24 introduced 1}\6 the length
of the transmission line is measured from the phasor location of I’y = |I'g|e " in clock-
wise (mathematically negative) direction due to the negative exponent (-2 jBd ) in the
reflection coefficient expression (3.2). For the computation of the input impedance of a
ferminated transmission line, the motion is thus always away from the load impedance
or toward the generator. This rotation is indicated by an arrow on the periphery of the
chart. We further observe that a complete revolution around the unit circle requires
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2Bd = Z%d =27
where d = A/2 or 180°. The quantity Bd is sometimes referred to as the electrical

length of the line.

3.2 Impedance Transformation

3.2.1 Impedance Transformation for General Load

The determination of the impedance response of a high-frequency circuit is often
a critical issue for the RF design engineer. Without detailed knowledge of the imped-
ance behavior, RF/MW system performance cannot adequately be predicted. In this
section we will elaborate on how the impedance can be determined easily and effi-
ciently with the aid of the previously introduced Smith Chart.

A typical Smith Chart computation involving a load impedance Z; connected to 2
transmission line of characteristic line impedance Z; and length d proceeds according
to the following six steps:

1. Normalize the load impedance Z, with respect to the line impedance Z,, to deter-
mine 7, .

2. Locate z; in the Smith Chart.

3. Identify the corresponding load reflection coefficient I'y in the Smith Chart both
in terms of its magnitude and phase.

4. Rotate T, by twice its electrical length Bd to obtain I'; (d).

5. Record the normalized input impedance z;, at this spatial location d.

6. Convert z;, into the actual impedance Z; .

Example 3-3 goes through these steps, which are the standard procedure to arrive at the
graphical impedance solution.

RFEMW—

Example 3-3: Transmission line input impedance determina-
tion with the Smith Chart

Solve Example 3-2 by following the six-step Smith Chart computa-
tions given in the preceding list.
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Solution: We commence with the load impedance
Z; = (30 + j60) Q and proceed according to the previously out-
lined steps:

1. The normalized load impedance is

z, = (30 + j60)/50 = 0.6+ j1.2

2. This point can be identified in the Smith Chart as the intersec-
tion of the circle of constant resistance r = 0.6 with the circle of
constant reactance x = 1.2, as seen in Figure 3-5.

3. The straight line connecting the origin to point z; determines
the load reflection coefficient I'y. The associated angle is recorded

with respect to the positive real axis.

4. Keeping in mind that the outside circie on the Smith Chart cor-
responds to the unity reflection coefficient (|I'g| = 1), we can find
its magnitude as the length of the vector connecting the origin to z; .
Rotating this vector by twice the electrical length of the line (i.e.,
2xPd = 2%x96° = 192°) yields the input reflection coefficient
I,
5. This point uniquely identifies the associated normalized input
impedance z;, = 0.3 - j0.53.

6. The preceding normalized impedance can be converted back
into actual input impedance values by multiplying it by
Z, = 50 Q, resulting in the final solution: Z, = (15 - j26.5)2.

We recall that the exact value of the input impedance obtained
in Example 3-2 is (14.7-j26.7) . The small discrepancy is
understandable because of the approximate processing of the graph-
ical data in the Smith Chart. The entire sequence of steps leading to
the determination of the input impedance of the line connected to
the load is shown in Figure 3-3.
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Figure 3-5 Usage of the Smith Chart to determine the input impedance for
Example 3-3.

These steps appear at first cumbersome and prone to error if
carried out by hand. However, using mathematical spreadsheets and
relying on modern computer-based instrumentation, the calcula-
tions are routinely done in seconds and with a high degree of

accuracy.
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3.2.2 Standing Wave Ratio
From the basic definition of the SWR in Section 2.8.3 it follows that for an arbi-
trary distance d along the transmission line, the standing wave ratio is written

1+(I'(d)l

SWR(d) = 3.12
(d) [T (3.12)
where I'(d) = T'yexp(—j2fd). Equation (3.12) can be inverted to give
_ SWR-1
T = R (3.13)

This form of the reflection coefficient permits the representation of the SWR as circles
in the Smith Chart with the matched condition I'(d) = 0 (or SWR = 1) being the
origin.

It is interesting to note that equation (3.12) is very similar in appearance to the
expression for determining the impedance from a given refiection coefficient:

1+ (d)
01 -T(d)

This similarity, together with the fact that for [['(d)| <1 the SWR is greater or equal to
unity, suggests that the actual numerical value for the SWR can be found from the
¢ Smith Chart by finding the intersection of the circle of radius |[T'(d)| with the right-
* hand side of the real axis.

Z(d) = Z (3.14)

RF&M W

Example 3-4: Reflection coefficient, voltage standing wave
ratio, and return loss

Four different load impedances:

() Z;, =50, b)Z, =485Q, (¢0)Z; = (75+j25)Q, and
(d) Z, = (10~ j5) Q, are sequentially connected to a 50 € trans-
mission line. Find the reflection coefficients and the SWR circles,
and determine the return loss in dB.

Solution:  The normalized load impedances and corresponding
reflection coefficients, return loss, and SWR values are computed as
follows:
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@z, =1,T = (z;-1)/(z,+1) = 0,RLgz = oo, SWR = 1

)z, = 097, T = (z;, - 1)/(z; +1) = —0.015, RL;5 = 363,
SWR = 1.03

(©)z, = 1.5+ j05,T = (z,-1)/(z, + 1) = 023+ j0.15,
RLy = 11.1, SWR = 1.77

@z, = 02-j0.1,T = (z,—1)/(z,+1) = —0.66 - j0.14,
RLg = 3.5, SWR = 5.05

To determine the approximate values of the SWR requires us to
exploit the similarity with the input impedance, as discussed previ-
ously. To this end, we first plot the normalized impedance values in
the Smith Chart (see Figure 3-6). Then we draw circles with centers
at the origin and radii whose lengths reach the respective impedance
points defined in the previous step. From these circles we see that
the load refection coefficient for zero load reactance (x; = 0)is

z;—1 rr—1
[p=+—=2X_=T
z;+1  rp+1
The SWR can be defined in term of the real load reflection coeffi-
cient along the real I" -axis:
1+|Ty 1+7
SWR = = A
This requires \TO| = I, 20. In other words, for I', 20 we have to

enforce r; > 1, meaning that only the intersects of the right-hand-
side circles with the real axis define the SWR.

As a graphical design tool, the Smith Chart allows immediate
observation of the degree of mismatch between line and load imped-
ances by plotting the radius of the SWR circle.
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z,=1.5+j0.5

- : Tz, = 0.97 43 HERE
mmunsy : SWR - 5.
2,=0.2 —jO.1 30X SWR = 1,03

SWR =1.77

Figure 3-6 SWR circles for various reflection coefficients.

3.2.3 Special Transformation Conditions

The amount of rotation by which the point of the normalized transmission line
impedance circles around the Smith Chart is controlled by the length of the line, or
alternatively the operating frequency. Consequently, both inductive (upper plane) and
capacitive (lower plane) impedances can be generated based on the line length and the
termination conditions at a given frequency. These lumped circuit parameter represen-
tations, realized through distributed circuit analysis techniques, are of significant practi-
cal importance.

The cases of open- and short-circuit line termination are of particular interest in
generating inductive and capacitive behavior and are examined in more detail next.
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Open Circuit Transformations

To obtain a pure inductive or capacitive impedance behavior, we need to operate
along the r = 0 circle. The starting point is the right-hand location (I'y = 1) with
rotation toward the generator in a clockwise sense.

A capacitive impedance —jX - is obtained through the condition

1 1 _ .
j&)_CZ_O =z, = —jcot(Bd,) (3.15)
as direct comparison with (2.70) shows. The line length 4, is found to be
1 -1 1
d; = ﬁ[cot (u)CZOJ + ml:] (3.16)
where nt (n = 1,2, ...)is required due to the periodicity of the cotangent function.

Alternatively, an inductive impedance jX, can be realized via the condition

. 1 )
ijZ) =z, = —jcot(Bd,) 3.17

The line length d, is now found to be

1 ~1{ WL

d, = —[Tc —cot (—) + nn} (3.18)
*TB Zy

Both conditions are schematically depicted in Figure 3-7. How to choose a particular

open-circuit line length to exhibit capacitive or inductive behavior is discussed in the

following example.

WRF EM W

Example 3-5: Representation of passive circuit elements
through transmission line section

For an open-ended 50 £ transmission line operated at 3 GHz and
with a phase velocity of 77% of the speed of light, find the line
lengths to create a 2 pF capacitor and a 5.3 nH inductor. Perform
your computations both by relying on (3.16) and (3.18) and by using
the Smith Chart.

Solution:  For a given value of phase velocity, the propagation
constant is
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B = 2nf/v, = 2nf/(0.77¢) = 81.6 m™
Substituting this value into (3.16) and (3.18), we conclude that for
the representation of a 2 pF capacitor we need an open-circuit line or
stub with line length d; = 13.27 + n38.5 mm . For the realization of
a 5.3 nH inductor, a d, = 32.81 + n38.5 mm stub is required.

The alternative method for computing the lengths of the
required stubs is through the use of the Smith Chart (see Figure 3-7).
At a 3-GHz frequency, the reactance of a 2 pF capacitor is
Xc = 1/(0C) = 26.5Q . The corresponding normalized imped-
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Figure 3-7 Creating capacitive and inductive impedances via an open-circuit
transmission line.
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ance in this case is z, = —jX, = —j0.53. From the Smith Chart
we can deduce that the required transmission line length has to be
approximately 0.172 of one wavelength. We note that for the given
phase velocity, the wavelength is A = v p/ f =77 mm. This
results in a line length of d; = 13.24 mm which is very close to the
previously computed value of 13.27 mm. Similarly, for the induc-
tance we obtain z; = j2. The line length in this case is 0.426 of
one wavelength, which is equal to 32.8 mm.

Circuits are often designed with lumped elements before con-
verting them into transmission line segments, similar to the proce-
dure described in this example.

Short-Circuit Transformations

Here the transformation rules follow similar procedures as outlined previously,
except that the starting point in the Smith Chart is now the T’y = —1 point on the real
axis, as indicated in Figure 3-8.

A capacitive impedance - jX ~ follows from the condition

1 1 _ .
j(ﬂ_CZ_O=Z"" = jtan(Bd,) (3.19)
where use is made of (2.66). The line length d; is found to be
1 -1
= = - tan .
d, ﬁ[n (m - ZOJ ¥ n‘n:} (3.20)

Alternatively, an inductive impedance jX, can be realized via the condition

.1 .
]OJLZ— =z, = jtan(Bd,) (3.21)
0
The line length 4, is now found to be
11, -1{foL
4y = g[tan”'(S5) + nn] (3.2
B Zy

At high frequencies, it is very difficult to maintain perfect open-circuit conditions
because of changing temperatures, humidity, and other parameters of the medium sur-
rounding the open transmission line. For this reason short-circuit conditions are more
preferable in practical applications. However, even a short-circuit termination becomes
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Figure 3-8 Creating capacitive and inductive impedances via a short-circuit
transmission line.

problematic at very high frequencies or when through-hole connections in printed cir-
cuit boards are involved, since they result in additional parasitic inductances. Moreover,
adesign engincer may not have a choice if the circuit layout area is to be minimized by
requiring the selection of the shortest line segments. For instance, the realization of a
capacitor always yields the shortest length for an open-circuit line.

3.24 Computer Simulations

There are many computer aided design (CAD) programs available to facilitate the
RF/MW circuit design and simulation processes. These programs can perform a multi-
tude of tasks, varying from simple impedance calculations to complex circuit optimiza-
tions and circuit board layouts. One commercial software package that is used throughout
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this textbook is called Monolithic and Microwave Integrated Circuit Analysis and Design
(MMICAD) (Optotek Ltd., Kanata, Ontario, Canada), which is a linear simulator pro-
gram with optimization tools. Another well-known program with advanced features is
EESof’s Libra package (Hewlett-Packard Corporation, Westlake Village, CA, USA),
which is capable of performing linear as well as nonlinear analyses and optimizations.

It is not the purpose of this textbook to review and discuss the various CAD pro-
grams presently in industrial and academic use. However, to reproduce the subsequent
simulation results, Appendix I provides a brief introduction to the basic features of
MATLAB, which was chosen as a tool to carry out most simulations presented in this book.

The main reason for using MATLAB is its wide-spread use as a mathematical
spreadsheet which permits easy programming and direct graphical display. This elimi-
nates the need to rely on complex and expensive programs accessible to only a few
readers. The benefit of a MATLAB routine will immediately become apparent when the
Smith Chart computations have to be performed repetitively for a range of operating
frequencies or line lengths as the following discussion underscores.

In this section we revisit Example 3-2, which computed the input reflection coeffi-
cient and input impedance of a generic transmission line connected to a load. We now
extend this example beyond a single operating frequency and a fixed line length. Our
goal is to examine the effect of a frequency sweep in the range from 0.1 GHz to 3 GHz
and a change in line length varying from 0.1 cm to 3 cm. The example MATLAB routine,
which performs the analysis of the transimission line length changing from 0.1 cm to
3 cm at a fixed operating frequency 2 GHz, is as follows:

smith_chart;
Set_20(50);

% plot smith chart
% set characteristic impedance to 50 Chm
s_Load({30+j*60); % set load impedance to 30+j60 Ohm
vp=0.5*3e8; % compute phase velocity
f=2e9; % set frequency to 2 GHz
d=0,0:0.001:0.03; % set the line length to a range from 0 to

$ 3 cm in 1 mm increments
betta=2*pi*f/vp; % compute propagation constant
Gamma=(ZL-Z0)/(ZL+20); % compute load reflection coefficient
rd=abs { Gamma) ; $ magnitude of the reflection coefficient
alpha=angle(Gamma)-2*betta*d; % phase of the reflection

% coefficient

plot (rd*cos(alpha},rd*sin{alpha}); % plot the graph

In the first line of the MATLAB code (see file fig3_9.m on the accompanying CD)
we generate the Smith Chart with the necessary resistance and reactance circles. The
next lines define the characteristic line impedance Z; = 50 €2, load impedance
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€, = (30+ j60) (), operation frequency f = 2X 10’ Hz, and phase velocity
v, = 05x3x 10® m/s . The command line ¢=0.0:0.001:0.03 creates an array d rep-
resenting the transmission line length, which is varied from O mm to 3 ¢cm in 1-mm
‘increments. After all parameters have been identified, the magnitude and phase of the
input reflection coefficients have to be computed. This is accomplished by determining
the propagation  constant [ = 2rf/v,  load reflection  coefficient
To= (Z,-20)/(Z +2Zy) and its magnitude ||, and the total angle of rotation
-0 = Z(I'y) - 2Pd . Finally, the display of the impedance as part of the Smith Chart is
“done through the plot command, which requires both real and imaginary phasor argu-
ments [T|cos(a) and |T|sin(o) . The final result is shown in Figure 3-9.

i
-

Figure 3-9 input impedance of a loaded line of 2 cm length for a sweep in
operating frequency from 0.0 to 3 GHz. If the operating frequency is fixed at 2 GHz
and the line length is varied from 0.0 to 3 cm, the same impedance curve is obtained.

For the case where the length of the line is fixed to be 2 cm and the frequency is
“swept from values ranging from 0.0 to 3 GHz, the only necessary modification to the
above input file is to set d=0.02, followed by specifying the frequency range in incre-
“ments of 100 MHz (i.e., £=0.0:1e7:3e9). We should note that in both cases the electri-
“cal length (Bd) of the line changes from 0° to 144°. Therefore, the impedance graphs

produced for both cases are identical.

At the end of the rotation, either by fixing the frequency and varying the length or
' Vice versa, the input impedance is found to be Z;, = (12.4 + j15.5) Q. Itis reassuring
that for a fixed frequency f = 2 GHz and a line lengthrange d =0 ... 2 cm, we ulti-
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mately arrive at the same input impedance of Z,, = (14.7 - j26.7) Q as obtained in
Example 3-2.

3.3 Admittance Transformation

3.3.1 Parametric Admittance Equation

From the representation of the normalized input impedance (3.4), it is possible to
obtain a normalized admittance equation by simple inversion:

Yo 1 _1-T(d)

T T Y T T 1+T(d)

(3.23)

where Y = 1/Z,. To represent (3.23) graphically in the Smith Chart, we have several
options. A very intuitive way of displaying admittances in the conventional Smith Chart
or Z-Smith Chart is to recognize that (3.23) can be found from the standard represen-
tation (3.4) via

_jﬂ;
1-T(d) _ 1+¢7"T(d) (3.24)
1+T(d) 1- e‘f’tr‘(d)
In other words, we take the normalized input impedance representation and multiply

the reflection coefficient by —1 = e’ " which is equivalent to a 180° rotation in the
complex I"-plane.

RFEM W

Example 3-6: Use of the Smith Chart for converting imped-
ance to admittance

Convert the normalized input impedance z;, = 1+ j1 = 2674
into normalized admittance and display it in the Smith Chart.

Solution:  The admittance can be found by direct inversion, that is

- _l_e—j(r:/4) 1 .1

Yin ﬁ ) 2
In the Smith Chart we simply rotate the reflection coefficient corre-
sponding to z;, by 180° to obtain the impedance. Its numerical
value is equal to y;, as shown in Figure 3-10. To denormalize y,
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- " -
= = El

lESIS]LVfF IL]HFU.\'E\T fL Tu

Figure 3-10 Conversion from impedance to admittance by 180° rotation.

we multiply by the inverse of the impedance normalization factor.
Thus,

i
Yip = Z))’in = YoV -

Rotations by 180 degrees to convert from the impedance to the
admittance representation require only a reflection about the origin
in the I'-plane.

In addition to the preceding operation, there is a widely used additional possibility.
 Instead of rotating the reflection coefficient by 180° in the Z-Smith Chart, we can
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rotate the Smith Chart itself. The chart obtained by this transformation is called the
admittance Smith Chart or the Y-Smith Chart. The correspondences are such that
normalized resistances become normalized conductances and normalized reactances
become normalized susceptances. That is,

R G
and
X B
x—Z—O=>b—Y—O—ZOB

This reinterpretation is depicted in Figure 3-11 for a particular normalized impedance
point z = 0.6 + j1.2.

(a) Z-Smith Chart (b) ¥-Smith Chart
Figure 3-11 Reinterpretation of the Z-Smith Chart as a Y-Smith Chart.

As seen in Figure 3-11, the transformation preserves (a) the direction in which the
angle of the reflection coefficient is measured and (b) the direction of rotation (either
toward or away from the generator). Attention has to be paid to the proper identification
of the extreme points: A short-circuit condition z; = 0 in the Z-Smith Chart is
yr = < in the ¥-Smith Chart, and conversely an open-circuit z; = oo in the Z-Smith
Chartis y; = O in the ¥-Smith Chart. Furthermore, negative values of susceptance are
plotted now in the upper half of the chart, corresponding to inductive behavior, and pos-
itive values in the bottom half, corresponding to capacitive behavior. The real compo-
nent of the admittance increases from right to left.
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To complete our discussion of the ¥-Smith Chart, we should mention an addi-
 tional, often employed definition of the admittance chart. Here the admittance is repre-
- sented in exactly the same manner as the impedance chart without a 180° rotation. In
 this case the reflection coefficient phase angle is measured from the opposite end of the
chart (see the book by Gonzalez listed in Further Reading at the end of this chapter).

3.3.2 Additional Graphical Displays
In many practical design applications it is necessary to switch frequently from

" impedance to admittance representations and vice versa. To deal with those situations a
combined, or so-called ZY-Smith Chart, can be obtained by overlaying the Z- and ¥-

Smith Charts, as shown in Figure 3-12.
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Figure 3-12 The ZY-Smith Chart superimposes the Z- and Y-Smith Charts in one
graphical display.
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This combined ZY-Smith Chart allows direct conversion between impedances and
admittances. In other words, a point in this combined chart has two interpretations
depending on whether the Z-Chart or ¥-Chart display is chosen.

RF &M W+
Example 3-7: Use of the combined ZY-Smith Chart

Identify (a) the normalized impedance value z = 0.5 + j0.5 and (b)
the normalized admittance value y = 1+ j2 in the combined ZY-
Smith Chart and find the corresponding values of normalized admit-
tance and impedance.

Solution:  Let us first consider the normalized impedance value
z =05+ j05. In the combined ZY-Smith Chart we locate the
impedance by using circles of constant resistance r = 0.5 and con-
stant reactance x = (.5, as shown in Figure 3-12. The intersection of
these two circles determines the specified impedance value
z = 0.5+ j05. To find the corresponding admittance value we
simply move along the circles of constant conductance g and sus-
ceptance b. The intersection gives us g =1 and jb = —j1 (i.e., the
admittance for part (a) of this example is y = 1 - j1). The solution
for the normalized admittance y = 1+ j2 is obtained in identical
fashion and is also illustrated in Figure 3-12.

The ZY-Smith Chart requires a fair amount of practice due to
its “busy” appearance and the fact that inductors and capacitors
are counted either in positive or negative units depending on
whether an impedance or admittance representation is needed.

3.4 Parallel and Series Connections

In the following sections several basic circuit element configurations are analyzed
and their impedance responses are displayed in the Smith Chart as a function of fre-
quency. The aim is to develop insight into how the impedance/admittance behaves over
a range of frequencies for different combinations of lumped circuit parameters. A prac-
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tical understanding of these circuit responses is needed later in the design of matching
networks (see Chapter 8) and in the development of equivalent circuit models.

3.4.1 Parallel Connection of R and L Elements

Recognizing that g = Z,/R and b; = +Z,/(wL), we can locate the normal-
ized admittance value in the upper ¥-Smith Chart plane for a particular, fixed normal-
ized conductance g at a certain angular frequency ®; :

Ly

Yinl®@1) = 8- (3.25)
As the angular frequency is increased to the upper limit ®,,, we trace out a curve along
the constant conductance circle g. Figure 3-13 schematically shows the frequency-
dependent admittance behavior for various constant conductance values g = 0.3, 0.5,
0.7, and 1 and for frequencies ranging from 500 MHz to 4 GHz. For a fixed inductance
value of L = 10 nH and a characteristic line impedance Z, = 50 £, the susceptance
always starts at —1.59 (500 MHz) and ends at —0.20 (4 GHz).

In Figure 3-13 and the following three additional cases, the transmission line
characteristic impedance is represented as a lumped impedance of Zy = 50 Q. This is
permissible since our interest is focused on the impedance and admittance behavior of
different load configurations. For these cases the characteristic line impedance serves
only as a normalization factor.

10 nH

MWV
= Zg/g

L
R

Figure 3-13 Admittance response of parallel AL circuit for ®; < W <y at
constant conductances g = 0.3, 0.5, 0.7, and 1.
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3.4.2 Parallel Connection of A and C Elements

Here we operate in the lower Y-Chart plane because susceptance b, = Z,0C
remains positive. To locate the normalized admittance value for a particular, fixed nor-
malized conductance g and angular frequency ®; we have

Yin(®) = g+ jZy0,C (3.26)

Figure 3-14 depicts the frequency-dependent admittance behavior as a function of vari-
ous constant conductance values g = 0.3, 0.5, 0.7, and 1. The normalized susceptance
for C = 1 pF and characteristic line impedance Z, = 50 Q always starts at 0.16
(500 MHz) and ends at 1.26 (4 GHz).

WA
=Zy/g

C